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Chapter 4
The Ulam-Harris model and Galton-Watson
trees

The purpose of this chapter is to lay the foundations for a study of Galton-Watson
branching processes within an extended framework that beyond mere generation
sizes also incorporates the genealogical structure of the considered population and
therefore requires the introduction of labeled trees with a distinguished root as ran-
dom elements on a suitable probability space.

4.1 Basic setup

In the following we will define labeled trees with a distinguished root in a canonical
way as subsets of the infinite Ulam-Harris tree with vertex set

V =
⋃
n≥0

Nn,

where N0 := {∅} consists of the root [+ also Section 1.2]. Each vertex v= v1...vn ∈
V\{∅} is connected to the root via the unique shortest path

∅ → v1 → v1v2 → ... → v1...vn.

The the length of v is denoted by |v|, thus |v1...vn| = n and particularly |∅| = 0.
Further let uv = u1...umv1...vn denote the concatenation of two vectors u= u1...um
and v = v1...vn.

Definition 4.1. A subset τ of V is called (labeled) tree if

(T1) ∅ ∈ τ .
(T2) v1...vn ∈ τ implies v1...vk ∈ τ for each k = 1, ...,n−1.
(T3) v1...vn ∈ τ implies v1...vn−1 j ∈ τ for each j ∈ {1, ...,vn}.
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If, furthermore,

(T4) zn(τ) := |τ ∩Nn|< ∞ for any n ∈ N0,

then τ is called locally finite. The elements of τ are called nodes, vertices or
individuals, the individual ∅ is called the root or ancestor. Finally, the height
of τ is defined as

H(τ) = sup{n≥ 0 : zn(τ)> 0} ∈ N0.

∅
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Fig. 4.1 A finite tree with Ulam-Harris labeling.

Since any tree considered hereafter has the described Ulam-Harris labeling and
the distinguished root ∅ we may omit, unlike other texts, the attributes ’labeled’ and
’rooted’. We are further interested only in locally finite trees and therefore define

T = {τ ⊂ V : τ is a locally finite tree}.

The subset of finite trees is denoted by Te, i.e.

Te = {τ ∈ T : |τ|< ∞} = {τ ∈ T : H(τ)< ∞}.

In order to study random quantities taking values in T, or functionals thereof, we
must first endow this set with a suitable σ -field T so as to render measurability.
This will be accomplished by defining a metric d on T and then choosing T as the
associated Borel σ -field generated by the topology induced by d.

For τ ∈ T and n ∈ N0, we define
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τn = τ ∩Nn = {v ∈ τ : |v|= n},

τ|n =
n⋃

k=0

τk = {v ∈ τ : |v| ≤ n},

[τ]n = {τ ′ ∈ T : τ
′
|n = τn}.

Lemma 4.2. Defining d : T×T→ [0,1] by

d(τ,τ ′) = exp
(
−sup{n≥ 0 : τ|n = τ

′
|n}
)

with e−∞ := 0, the pair (T,d) forms a separable metric space with countable
dense subset Te.

Proof. To see that d is a metric, we must only verify the triangular inequality. But
for τ,τ ′,τ ′′ ∈ T, we have

sup{n≥ 0 : τ|n = τ
′′
|n} ≥ sup{n≥ 0 : τ|n = τ

′
|n}∧ sup{n≥ 0 : τ

′
|n = τ

′′
|n}

and so
d(τ,τ ′′) ≤ d(τ,τ ′)∨d(τ ′,τ ′′) ≤ d(τ,τ ′)+d(τ ′,τ ′′).

Any metric satisfying the first stronger form of the triangular inequality is called
ultrametric.

Setting Tn = {τ ∈ T : H(τ) = n} for n ∈ N0, we have

Te =
⋃
n≥0

Tn,

and since any Tn is obviously countable, the same holds true for Te. Furthermore,
for any τ ∈ T and n ∈ N0, it follows that

d(τ,τ|n) ≤ e−n

which together with τ|n ∈ Te for any n shows that Te is a dense subset of T. ut

Remark 4.3. Although not needed for our purposes, we mention that (T,d) is also
complete and leave the proof as an exercise [+ Problem 4.7].

Remark 4.4. For τ ∈ T and ε > 0, let

B(τ,ε) = {τ ′ ∈ T : d(τ,τ ′)< ε}

be the open ε-ball about τ with respect to d. Since d takes values only in the count-
able set {e−n : n ∈ N0}, we infer that B(τ,ε) = T if ε > 1, and

{B(τ,ε) : τ ∈ T, 0 < ε ≤ 1} = {B(τ,e−n) : τ ∈ T, n≥ 0} = {[τ]n : τ ∈ T, n≥ 1},
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where the second equality follows from

τ
′ ∈ B(τ,e−n) ⇔ sup{k : τ|k = τ

′
|k}> n

⇔ τ|n+1 = τ
′
|n+1

⇔ τ
′ ∈ [τ]n+1

for any n ∈ N0. Next observe that, for any τ,τ ′ ∈ T and n≥ k ≥ 1,

[τ]n∩ [τ ′]k = {χ ∈ T : χ|n = τ|n, χ|k = τ
′
|k} =

{
[τ]n, if τ|k = τ ′|k,

/0, otherwise

holds true. Consequently,

E := { /0,T}∪{[τ]n : τ ∈ T, n≥ 1} (4.1)

forms a ∩-stable system of open neighborhoods of T.

We now define T as the σ -field generated by E , i.e.

T = σ(E ) = σ ({[τ]n : τ ∈ T, n≥ 1}) . (4.2)

Based on the previous considerations, the following lemma is easily proved.

Lemma 4.5. The σ -field T defined in (4.2) equals the Borel σ -field B(T)
induced by d, that is, the σ -field generated by the open subsets of T with
respect to d.

Proof. Clearly, T ⊂B(T). In view of Remark 4.4 it therefore suffices to note that
any nonempty open subset of a separable metric space can be obtained as a count-
able union of ε-balls. ut

We close this section with the definition of an ordering on V that reflects the
kinship of its vertices when interpreted as individuals of a genealogical tree.

Definition 4.6. Let v = v1...vm and w = w1...wn be elements of V.

(a) If w= vu for some u ∈ V, then v is called an ancestor or progenitor of
w and, conversely, w a descendant of v. In this case we write v � w or
w � w.

(b) If u ∈ N in (a), then v is also called mother of w and, conversely, w
child or offspring of v.
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(c) Setting φ(v,w) := inf{k ≥ 1 : vk 6= wk}, the most recent common an-
cestor (MRCA) of v and w is defined as

v∧w := v1...vφ(v,w)−1.

(d) In the case v 6= w, we further define

v < w
def⇐⇒

{
|v|< |w|, if |v| 6= |w|,
vφ(v,w) < wφ(v,w), if |v|= |w|

and then generally v ≤ w iff v = w or v < w.

With these definitions ∅� v as well as ∅≤ v for any v ∈ V holds true.

The relation ”≤” introduced in (d) defines a total ordering on V which, when
restricted to N, coincides with the usual one. Thus, for any two elements v,w of V,
either v ≤ w or w ≤ v holds true, and each finite subset of V possesses a minimum
and a maximum. If this subset consists of two elements v,w, then the minimum
equals their MRCA v∧w defined in (c) which explains the chosen notation ”∧”.
Finally, we note that ”v < w” may be interpreted as ”v is older than w” when in-
troducing a suitable ordering of ages of the individuals of V. Details are left to the
reader [+ Problem 4.9].

Problems

Problem 4.7. Prove that the metric space (T,d) is complete.

Problem 4.8. Prove that

d2(τ,τ
′) :=

1
1+ sup{n≥ 0 : τ|n = τ ′|n}

defines another metric on T which generates the same topology and thus the same
Borel σ -field on T as the metric d.

Problem 4.9. Let v,w ∈ V and τ ∈ Te be a finite tree.

(a) Let v∨w be the maximum of v,w with respect to the ordering given in Def.
4.6(d). Give an intuitive characterization of this element.

(b) Give an intuitive characterization of the minimal and maximal element of τ .

Problem 4.10. Show that V is a multiplicative semigroup with neutral element ∅
when multiplication is defined as concatenation. [This provides a justification for
the notation v1...vn for (v1, ...,vn).]
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4.2 The Galton-Watson tree: formal definition and properties

Given an offspring distribution (pn)n≥0, we are now able to provide the formal
definition of an associated Galton-Watson tree (GWT) GW as a random element
in (T,B(T)), which is most conveniently accomplished in the following standard
model similar to the one described in Section 1.1 for the GWP.

Let {Xv : v ∈ V} be a family of iid random variables with common distribution
(pn)n≥0 and defined on a probability space (Ω ,A,P). Define GW0 = {∅},

GWn = {v1...vn ∈ Nn : v1...vn−1 ∈ GWn−1 and 1≤ vn ≤ Xv1...vn−1}

for n≥ 1 (with the usual convention v1...vn−1 :=∅ if n = 1) and finally

GW =
⋃
n≥0

GWn.

Obviously, GW then is a T-valued map when stipulating that edges are put between
v,w ∈ GW whenever w is a child of v. We further define (with zn : T→ N0 as in
(T4) of Definition 4.1)

Zn = |GWn| = zn ◦GW

for n ∈ N0.

Lemma 4.11. The following assertions hold true for the previously defined
mappings:

(a) GW : Ω → T is A-B(T)-measurable and thus a T-valued random ele-
ment defined on (Ω ,A,P).

(b) For any n∈N0, the mapping zn : T→N0 is B(T)-measurable and thus
Zn = zn ◦GW an integer-valued random variable defined on (Ω ,A,P).

Proof. (a) We must only show that GW−1(E ) ⊂ A. But for A = [τ]n, τ ∈ T and
n ∈ N, we obtain

GW−1(A) =
{

ω ∈Ω : GW|n(ω) = τ|n
}

=
n⋂

k=1

{GWk(ω) = τk}

∈ σ ({Xv : |v| ≤ n−1}) ⊂ A.

(b) Here it suffices to note that for each n ∈ N

z−1
n ({k}) = {τ ∈ T : zn(τ) = k} =

⋃
τ∈Tn:τn=k

[τ]n,

which is an element of B(T) because the last union is countable. ut
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After these preparations we are ready to give the following definition of the
Galton-Watson measure:

Definition 4.12. We put GW := P(GW ∈ ·) and call this distribution of GW
the Galton-Watson measure (GWM) on (T,B(T)) associated with (pn)n≥0.

It now follows for each n ∈ N0 that

P(Zn ∈ ·) = P(zn ◦GW ∈ ·) = GW(zn ∈ ·)

as well as, more generally,

P((Zn)n≥0 ∈ ·) = P((zn ◦GW)n≥0 ∈ ·) = GW((zn)n≥0 ∈ ·).

Since (Zn)n≥0 is clearly a GWP with one ancestor and offspring distribution (pn)n≥0,
the last relation shows that such a process may also be realized as a stochastic se-
quence defined on the probability space (T,B(T),GW) which in fact means nothing
but realizing the generation sizes of a given population as functionals of the associ-
ated GWT, namely as its numbers of nodes at each level.

We proceed with a result that, in view of the stochastically independent and iden-
tical reproductive behavior of individuals in a GWT, should not take by surprise,
namely that the subtrees of descendants generated by individuals of the same gener-
ation independent with common distribution GW. To make this precise, some further
definition are needed.

Given τ ∈ T and u ∈ τ , we call

τ
u := {v ∈ τ : v � u}

the subtree of τ rooted in u. It consists of all individuals which are descendants
of u including u itself. In order to identify τu in a unique way with an isomorphic
element of T, let Θu be the u-shift, defined on uV := {uv : v ∈ V} by

Θu(uv) = v,

in particular Θu(u) =∅. Evidently, Θu(τ
u) then just equals the unique element of T

that coincides with τu apart from a relabeling of its nodes such that the root becomes
∅. By a similar argument as in the proof of Lemma 4.11(a) one can easily verify the
A-B(T)-measurability of Θu ◦GWu for any u∈GW [+ Problem 4.14 for a precise
formulation of this statement].

Proposition 4.13. Let GW be a GWT with GWM GW and associated GWP
(Zn)n≥0. Then the following assertion holds true for any n ∈ N: If k ∈ N is
such that P(Zn = k)> 0, then, given GW|n = τ for some τ ∈ T with zn(τ) = k,
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the k shifted subtrees ΘuGWu, u ∈ τn, generated by the individuals of the nth

generation are conditionally iid with common distribution GW.

Proof. Suppose that GW|n = τ for some τ ∈ T with zn(τ) = k and pick any w.l.o.g.

nonempty Au ∈ E for u∈ τn. With a suitable family {B(u)
v : v ∈V, u∈ τn} of subsets

of N0, we then obtain

∏
u∈τn

GW(Au) = ∏
u∈τn

∏
v∈V

P(Xv ∈ B(u)
v )

=
1

P(GW|n = τ, Zn = k) ∏
u∈τn

∏
v∈V

P(Zn = k)P(Xuv ∈ B(u)
v )

=
1

P(GW|n = τ, Zn = k)
P

(
{Zn = k}∩

⋂
u∈τn

⋂
v∈V

{
Xuv ∈ B(u)

v

})

=
P
(
GW|n = τ, Zn = k,ΘuGWu ∈ Au for u ∈ τn

)
P(GW|n = τ, Zn = k)

= P
(

ΘuGWu ∈ Au for u ∈ τn

∣∣∣GW|n = τ, Zn = k
)

having utilized that the Xv are iid. This proves the assertion because E is a ∩-stable
generator of B(T) containing T [+ e.g. [5, Thm. 22.2]]. ut

Problems

Problem 4.14. Let GW be any GWT and u ∈ V. Prove that the map

ω 7→

{
Θu ◦GWu(ω), if u ∈ GW(ω),

{∅}, otherwise.

from Ω to T is A-B(T)-measurable.




