
Chapter 3
Immigration

3.1 The model

A natural extension of the population model considered so far is to incorporate the
possibility of immigration which means that at any time individuals from outside
may join the population and then produce offspring like the others. We set out with
a precise definition of the model to be studied in this chapter.

Definition 3.1. For k ∈ N0, let (Zn(k))n≥0 be independent GWP’s with the
same offspring distribution (pn)n≥0 and offspring mean m. Further, let
Z0(1),Z0(2), ... be identically distributed with common distribution (cn)n≥0.
Then

Zn :=
n

∑
k=0

Zn−k(k), n ∈ N0 (3.1)

is called Galton-Watson process with immigration (GWPI) with offspring dis-
tribution (pn)n≥0, immigration distribution (cn)n≥0 and Z0 = Z0(0) ancestors.
As before, it is further called subcritical, critical, or supercritical) depending
on whether m< 1, m= 1, or m> 1, respectively.

The interpretation of (3.1) is that any generation n ∈ N is formed by the progeny
of the previous one (its endogenous part), viz.

Z′n :=
n−1

∑
k=0

Zn−k(k),

plus a random number Z0(n) of immigrants that join the population and then pro-
duce offspring like all other individuals. In other words, they spawn a subpopula-
tion described by a simple GWP (Zk(n))k≥0 with the same offspring distribution
(pn)n≥0. Naturally, its kth generation forms a subset of the (n+ k)th generation of
the considered total population.
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Let Fn be the σ -field generated by {Zk( j) : 0 ≤ j + k ≤ n} for n ≥ 0. The as-
sumptions stated in Def. 3.1 ensure that Z0(n) is independent of both, Fn−1 and Z′n,
for each n≥ 1 and that

P(Z′n = j, Z0(n) = k|Fn−1) = P(Z′n = j |Fn−1)P(Z0(n) = k) a.s. (3.2)

As Z′n gives the number of offspring of the (n−1)th generation, we further have

P(Z′n = j |Fn−1,Zn−1 = i) = P(Z′n = j |Zn−1 = i) = p∗ij (3.3)

for all n ≥ 1 and i, j ≥ 0. We thus see that (Zn)n≥0 constitutes a temporally homo-
geneous Markov chain on N0 with transition matrix P = (pi j)i, j≥0 given by

pi j = P(Zn = j |Zn−1 = i)

=
j

∑
k=0

P(Z′n = j− k, Z0(n) = k |Zn−1 = i)

=
j

∑
k=0

P(Z′n = j− k |Zn−1 = i)P(Z0(n) = k)

=
j

∑
k=0

p∗ij−kck

for all i, j ∈ N0.
So far we have not specified the distribution of Z0 = Z0(0). As in the non-

immigration case, we could consider a standard model with probability measures Pi,
i∈N0, such that (Zn)n≥0 is a GWPI as described under every Pi with Pi(Z0 = i) = 1.
For ease of exposition, however, the subsequent analysis will be done under the as-
sumption that Z0(0) has the same distribution (cn)n≥0 as all other Z0(k), k ≥ 1. In
the afore-mentioned standard model this amounts to choosing P = ∑i≥0 ciPi as the
underlying probability measure. The reader can readily verify that a deviation from
this assumption does either not at all affect the results or just requires some minor
adjustment [+ e.g. Problem 3.5].

3.2 Generating functions

Since gf’s are again heavily used in the subsequent analysis, we first collect some
basic properties of them in the present setup. Let hn denote the gf of Zn, f as before
the gf of (pn)n≥0 with n-fold iteration fn, and h the gf of the immigration distribution
(cn)n≥0. Note that h0 = h by our convention that Z0(0) has distribution (cn)n≥0.

In order to provide a recursive relation for hn, there are two distinct ways of
decomposing Zn at any fixed time n. Adopting the forward view, Zn is split up into its
endogenous part Z′n and its exogenous or immigration part Z0(n) at time n, whereas
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under the backward view Zn is decomposed into the subpopulation size Zn(0) of
those individuals stemming from the Z0(0) ancestors at time 0 (the natives) and the
total number of all other ones (having immigration background), viz. ∑

n
k=1 Zn−k(k).

Here are the formal details:
Using (3.2) and (3.3), we infer

E(sZn |Fn−1) = E(sZ′n |Zn−1)E(sZ0(n)) = f (s)Zn−1h(s) a.s.

and thereupon the forward equation

hn(s) = h(s)E f (s)Zn−1 = h(s)hn−1 ◦ f (s) (3.4)

for any n ∈ N and s ∈ [0,1]. The backward view embarks on (3.1) and provides us
with

hn(s) =
n

∏
k=0

EsZn−k(k)

=
n

∏
k=0

(
∑
j≥0

E(sZn−k(k)|Z0(k) = j)c j

)

=
n

∏
k=0

(
∑
j≥0

fn−k(s) jc j

)

=
n

∏
k=0

h◦ fk(s) (3.5)

and thus with the backward equation

hn(s) = h◦ fn(s)hn−1(s) (3.6)

for any n ∈N and s ∈ [0,1]. As an immediate consequence of this equation, we find
that hn decreases to a limiting function h∞ on [0,1] satisfying h∞(1) = 1≥ h∞(1−)
and h∞(s) =∑k≥0 dksk for suitable dk ≥ 0. The forward equation then further implies

h∞(s) = h(s)h∞ ◦ f (s) (3.7)

for s ∈ [0,1], which in terms of random variables takes the form of another distribu-
tional equation, viz.

Z∞

d
= Y +

Z∞

∑
n=1

Xn (3.8)

where all occurring random variables are independent with Z∞ having gf h∞, Y hav-
ing gf h and thus distribution (cn)n≥0, and X1,X2, ... having gf f and thus distribution
(pn)n≥0. In the next section, we give a necessary and sufficient condition for h∞ to
be the gf of a proper distribution on N0, i.e. h∞(1−) = ∑k≥0 dk = 1. As for Z∞, this
means that this random variable is a.s. finite. Let us finally note that by (3.5), we
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find that
h∞(s) = ∏

n≥0
h◦ fn(s), (3.9)

for s ∈ [0,1].

3.3 Subcritical and critical case: a stability theorem and a
gamma limit law

Knowing from the previous chapters that a simple GWP never stabilizes on a pos-
itive finite level, it is natural to ask whether this may be accomplished for a GWPI
under a suitable immigration rate. Plainly, a positive probability for at least one im-
migrant per generation excludes almost certain extinction of the population, but 0
may now occur as an intermittent state, for it is no longer absorbing. On the other
hand, if explosion of the population is to be excluded, any population member can
only generate a finite subpopulation which means that its pertinent GWP must have
extinction probability one and thus be subcritical or critical. The following theorem
by FOSTER & WILLIAMSON [11] provides a necessary and sufficient condition for
stability result of this kind.

Theorem 3.2. [Foster-Williamson] Let (Zn)n≥0 be a GWPI with offspring
mean m∈ (0,1]. Then Zn converges in distribution to a finite random variable
Z∞ with gf h∞ iff ∫ 1

0

1−h(s)
f (s)− s

ds < ∞. (3.10)

In this case, h∞ is the unique solution to equation (3.7) which is continuous
on [0,1] and satisfies h∞(1) = 1.

Denoting by π = (π j) j≥0 the distribution of Z∞, the previous result implies that

π j = lim
n→∞

P(Zn+1 = j) = lim
n→∞

∑
i≥0

P(Zn = i) pi j = ∑
i≥0

πi pi j

for all i≥ 0 which means that π satisfies the invariance or balance equation π = πP
and is thus a stationary distribution of the Markov chain (Zn)n≥0, i.e.

Pπ((Zn)n≥0 ∈ ·) = Pπ((Zk+n)n≥0 ∈ ·)

for all k ∈ N. It can further be shown [+ Problem 3.5] that every state j ∈ N0 with
π j > 0 is positive recurrent and that Zn has asymptotic distribution π under any
initial distribution. Therefore, π is the unique nonnegative solution to the balance
equation modulo positive scalars.
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As a consequence of Thm. 3.2 and an analytic lemma similar to Lemma 2.6, we
obtain the following older result due to HEATHCOTE [14]. The reader is asked to
give a proof in Problem 3.7.

Corollary 3.3. [Heathcote] Let (Zn)n≥0 be a subcritical GWPI with p0 < 1.
Then Zn converges in distribution to a finite random variable Z∞ with gf h∞ iff

∑
n≥2

cn logn < ∞. (3.11)

For a critical GWPI with finite reproduction variance σ2 = f ′′(1) and finite im-
migration mean ν = ∑n≥1 ncn = h′(1), the situation is different, for Thm. 3.2 easily
implies that Zn cannot converge in distribution to a finite random variable [+ Prob-
lem 3.8]. Instead, a conditional limit theorem similar to the one obtained for critical
ordinary GWP [+ (2.33) in Thm. 2.24] holds true. The following heuristic argu-
ment may serve as an intuitive explanation. Per generation, an average number of ν

individuals immigrate and create critical simple GWP’s of which, by (2.31) in Thm.
2.24, approximately 2ν/(nσ2) survive the next n generations. In the long run we
thus expect about 2ν/σ2 processes to survive, and by (2.33) they are approximately
exponentially distributed with parameter 2/σ2 after normalization. Consequently,
n−1Zn given Zn > 0 is expected to have a gamma law with parameters 2ν/σ2 and
2/σ2, as n→∞. The result was proved by FOSTER in his Ph.D. thesis [10] and also
by SENETA [28] and PAKES [23].

Theorem 3.4. [Foster-Pakes-Seneta] Let (Zn)n≥0 be a critical GWPI with fi-
nite offspring variance σ2 = f ′′(1) and finite immigration mean ν = h′(1).
Then n−1Zn converges in distribution to a random variable Z∞ having a
gamma law with parameters α := 2ν/σ2 and β := 2/σ2, i.e.

lim
n→∞

P
(

Zn

n
≤ t
)

=
∫ t

0

1
Γ (α)β α

xα−1e−βx dx

for all t ∈ R>.

It is worth pointing out that a critical GWPI with infinite offspring variance σ2

may very well converge in distribution without normalization. An example is given
in Problem 3.9, and we also refer to Sect. 3.5 for further studies of the Markov chain
(Zn)n≥0 in the critical case.

Proof (of Thm. 3.2). We have already mentioned at the end of the previous section
that hn converges pointwise on [0,1] to a function h∞, namely [+ (3.9)]
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h∞ = ∏
n≥0

h◦ fn = ∏
n≥1

(1− (1−h◦ fn))

for s ∈ [0,1]. It is the gf of a distribution Q on N0∪{∞} which satisfies Q(N0) = 1
iff lims↑1 h∞(s) = h∞(1−) = 1. In the following we will consider logh∞ on [0,1]. It
follows from

0 ≤ −∑
k≥n

logh◦ fk(s) ≤ −∑
k≥n

logh◦ fk(0)

for all s ∈ [0,1] and n ∈ N0 that logh∞ is the uniform limit of the continuous func-
tions ∑

n
k=0 logh◦ fk and thus continuous as well on [0,1] iff

−∑
k≥0

logh◦ fk(0) � ∑
k≥0

(1−h◦ fk(0)) < ∞. (3.12)

Therefore it suffices to show the equivalence of (3.10) and (3.12) hereafter. By the
convexity of f ,h, the functions

1−h(s)
1− s

and
1− s

f (s)− s
=

(
1− 1− f (s)

1− s

)−1

are both nondecreasing in s, which in combination with fk(0) ↑ 1 implies

∑
k≥0

(1−h◦ fk(0)) = ∑
k≥0

1−h◦ fk(0)
f ◦ fk(0)− fk(0)

( fk+1(0)− fk(0))

≤
∫ 1

0

1−h(s)
f (s)− s

ds

≤ ∑
k≥0

1−h◦ fk+1(0)
f ◦ fk+1(0)− fk+1(0)

( fk+1(0)− fk(0))

= ∑
k≥0

(1−h◦ fk+1(0))
fk+1(0)− fk(0)

f ◦ fk+1(0)− f ◦ fk(0)
.

By the mean value theorem,

fk+1(0)− fk(0)
f ◦ fk+1(0)− f ◦ fk(0)

=
1

f ′(sk)

for some sk ∈ ( fk(0), fk+1(0)) and each k ∈ N0. Since f ′(sk)→ f ′(1) =m ∈ (0,1],
the first and the last sum in the above estimation are always finite together, that is

∑
k≥0

(1−h◦ fk(0)) � ∑
k≥0

(1−h◦ fk+1(0))
fk+1(0)− fk(0)

f ◦ fk+1(0)− f ◦ fk(0)

and this proves the desired equivalence.
It remains to show the uniqueness assertion for which we assume that ĥ∞ is an-

other continuous solution to equation (3.7) on [0,1] with ĥ∞(1) = 1. By the standard
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iteration argument, we infer that on [0,1)

|h∞− ĥ∞| = |h| · |h∞ ◦ f − ĥ∞ ◦ f | ≤ |h∞ ◦ f − ĥ∞ ◦ f |

≤ ...≤ |h∞ ◦ fn− ĥ∞ ◦ fn| → |h∞(1)− ĥ∞(1)| = 0,

as n→ ∞. The last convergence is guaranteed by the continuity of h∞, ĥ∞ at 1 and
the fact that fn↗ 1 on [0,1) by Cor. 1.8. ut

Proof (of Thm. 3.4). First note that n−1Zn and Z∞ have LT’s hn(e−t/n) and (1+
β t)−α , respectively, so that

lim
n→∞

loghn(e−t/n) = −α log(1+β t) (3.13)

for t ∈ R> must be verified. By (3.5),

loghn(e−t/n) =
n

∑
k=0

logh◦ fk(e−t/n) (3.14)

for t ∈ R> and n ∈ N0. Further ingredients to the proof of (3.13) are a Taylor-like
expansion of − logh at 1, viz.

− logh(s) = (ν +ρ(s))(1− s) (3.15)

with lims↑1 ρ(s) = 0, and Lemma 2.26 which provides us with

1
1− fn(s)

− 1
1− s

= n(β + rn(s)) (3.16)

where limn→∞ rn(s) = 0 uniformly in s ∈ [0,1]. The last equation may be rewritten
as

1− fn(s) =
1− s

1+n(β + rn(s))(1− s)
. (3.17)

A combination of (3.14)–(3.17) leads to

− loghn(e−t/n) =
n

∑
k=0

(
ν +ρ ◦ fk(e−t/n)

)
(1− fk(e−t/n))

=
n

∑
k=0

(
ν +ρ ◦ fk(e−t/n)

)
(1− e−t/n)

1+ k(β + rk(e−t/n))(1− e−t/n)
=: Sn(e−t/n)

for all t ∈ R>. Fixing any t and ε ∈ (0,β ), let N ∈ N be so large that

sup
n≥N

sup
k≥1
|ρ ◦ fk(e−t/n)|< ε and sup

n≥N
sup
k≥1
|rk(e−t/n)|< ε,

where f (e−t/N) ≤ f (e−t/n) ≤ 1 for all n ≥ N and k ≥ 1 should be observed. Obvi-
ously, limn→∞ SN(e−t/n) = 0 and, setting ∆N,n(e−t/n) = Sn(e−t/n)−SN−1(e−t/n),
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n

∑
k=N

(ν− ε)(1− e−t/n)

1+ k(β + ε)(1− e−t/n)
≤ ∆N,n(e−t/n) ≤

n

∑
k=N

(ν + ε)(1− e−t/n)

1+ k(β − ε)(1− e−t/n)

for n≥ N. By using these facts together with the simple inequality

a
b

log
(

1+b(n−1)
1+bN

)
≤

n

∑
k=N

a
1+bk

≤ a
b

log
(

1+bn
1+b(N−1)

)
for any a,b > 0 we further obtain

ν− ε

β + ε
log

(
1+(β + ε)(1− e−t/n)(n−1)

1+(β + ε)(1− e−t/n)N

)

≤ ∆N,n(e−t/n) ≤ ν + ε

β − ε
log

(
1+(β − ε)(1− e−t/n)n

1+(β − ε)(1− e−t/n)(N−1)

)
.

Now let n tend to infinity to conclude that

ν− ε

β + ε
log(1+(β + ε)t) ≤ liminf

n→∞
Sn(e−t/n)

≤ limsup
n→∞

Sn(e−t/n) ≤ ν + ε

β − ε
log(1+(β − ε)t),

which proves (3.13) because ε can be made arbitrarily small. ut

Problems

Problem 3.5. Let (Zn)n≥0 be a GWPI in a standard model with offspring mean m ∈
(0,1]. Show that, under every Pi, Zn converges in distribution to the law π on R>∪
{∞} having gf h∞. Argue that this implies the uniqueness of π modulo positive
scalars as a nonzero solution to the invariance equation π = πP, P = (pi j)i, j∈N0 , and
that all states j with π j = 0 are transient.

Problem 3.6. In the situation of Thm. 3.2, show that minn≥0 Zn = j0 P-a.s., where
j0 = min{ j ≥ 0 : c j > 0} and P= P1.

Problem 3.7. (a) Show the equivalence of (3.11) in Heathcote’s result [Cor. 3.3] to
each of

∑
n≥0

(1−h(1−δ
n))< ∞ for all (some) δ ∈ (0,1) (3.18)

and ∫ 1

0

1−h(s)
1− s

ds < ∞. (3.19)

[Hint: Show first the equivalence of (3.18) and (3.19) via a similar argument as in
the proof of Lemma 2.6.]
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(b) Prove Heathcote’s result with the help of part (a) and Thm. 3.2.

Problem 3.8. Show with the help of Thm. 3.2, but without using Thm. 3.4, that a
critical GWPI with finite reproduction variance and finite immigration mean never
converges in distribution to a finite random variable.

Problem 3.9. (a) Show that f (s) := s+β (1− s)α for α ∈ (1,2) and β ∈ (0,1/α)
constitutes the gf of a distribution on N0 with mean one and infinite variance.

(b) [SENETA] Let (Zn)n≥0 be a GWPI with offspring gf f of the form in (a) and
finite immigration mean. Prove that Zn converges in distribution to a finite random
variable Z∞.

Problem 3.10. Let (Zn)n≥0 be a GWPI with offspring mean m ∈ (0,1] and station-
ary distribution π = (πn)n≥0 with mean η . Prove that η < ∞ iff m < 1 and ν < ∞,
and that in this case η = (1−m)−1ν holds true.

Problem 3.11. Let f be a subcritical gf with m = f ′(1) and then g the gf of the
pertinent Yaglom limit in Thm. 2.14, so that g(s) =mg◦ f (s)+(1−m). Define

h∞(s) =
1−g(s)

1− s
and h(s) =

1− f (s)
m(1− s)

and show that h∞ is a solution to (3.7) for the pair ( f ,h). [Note: This is an intriguing
connection between the functional equation (2.24) valid for g and equation (3.7).
On the other hand, as h∞(1) = g′(1)≥ 1, h∞ is usually not a gf of a distribution, but
if g′(1)< ∞, one can take h∞/g′(1) which clearly also solves (3.7).]

3.4 The supercritical case: a counterpart of the Heyde-Seneta
theorem

Let us turn to the supercritical case and assume 1 < m < ∞. Looking back at our
considerations for simple supercritical GWP’s, it appears to be natural to set out
with a study of the asymptotic behavior of Wn =m−nZn. If the immigration mean ν

is finite, one can indeed readily verify that

1
mn

(
Zn−

ν(mn+1−1)
m−1

)
= Wn−

ν(mn+1−1)
mn(m−1)

, n≥ 0 (3.20)

forms an L1-bounded martingale which thus converges a.s. to an integrable random
variable W − (m− 1)−1νm [+ Problem 3.14]. However, Thm. 3.12 below will
provide us with a more general result by pursuing the same plan that led us to the
Heyde-Seneta theorem in Sect. 2.1.

Recall from (3.1) that Zn = ∑
n
k=0 Zn−k(k) where the (Zn(k))n≥0 are iid simple

GWP’s with ancestor distribution (cn)n≥0. As in Sect. 2.1, let gn denote the inverse
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of fn on [q,1], q as usual the smallest fixed point of f in [0,1], and kn =−1/ loggn(s)
for an arbitrary fixed s ∈ (q,1). Thm. 2.1 then implies that

lim
n→∞

Zn(k)
kn

= V ∗(k) a.s.

for all k ∈ N0, and the V ∗(k) are clearly iid random variables. Defining

ϕ(t) = E
(

e−tV ∗(k)
∣∣∣Z0(k) = 1

)
, t ≥ 0,

the unconditional LT of V ∗(k) is easily calculated as

φ(t) = ∑
n≥0

cnE
(

e−tV ∗(k)
∣∣∣Z0(k) = n

)
= ∑

n≥0
cnϕ(t)n = h◦ϕ(t) (3.21)

for t ≥ 0, having once again utilized Lemma 1.2. Recall from Thm. 2.8 that ϕ satis-
fies the functional equation

ϕ(mt) = f ◦ϕ(t), t ≥ 0. (3.22)

We are now ready to formulate the announced counterpart of the Heyde-Seneta the-
orem which is again a result owing to SENETA [29].

Theorem 3.12. [Seneta] Let (Zn)n≥0 be a supercritical GWPI with finite re-
production mean m and c0 < 1. Then W ∗ := limn→∞ k−1

n Zn exists a.s. and
satisfies

∑
n≥2

cn logn = ∞ ⇒ W ∗ = ∞ a.s., (3.23)

∑
n≥2

cn logn < ∞ ⇒ 0 <W ∗ < ∞ a.s. (3.24)

In the last case, the LT ψ of W ∗ satisfies the functional equation

ψ(t) = ∏
n≥0

h◦ψ

( t
mn

)
(3.25)

for t ≥ 0. One may choose kn = mn in the above result if (ZlogZ) holds true
for the offspring distribution (pn)n≥0.

A result similar to Heyde’s Lemma 2.5 will be given first as a prerequisite for the
proof of this theorem. Recall that Fn = σ(Zk( j) : 0 ≤ j+ k ≤ n) and put Xn(s) =
gn(s)Zn for n ∈ N0 and s ∈ [q,1].



3.4 The supercritical case: a counterpart of the Heyde-Seneta theorem 73

Lemma 3.13. For each s ∈ [q,1], (Xn(s),Fn)n≥0 forms a nonnegative super-
martingale taking values in [0,1]. It converges a.s. and in Lp for any p≥ 1 to
a random variable X(s).

Proof. We must only show the supermartingale property, for then all further proper-
ties follow immediately because the sequence is bounded. By using the basic model
properties stated in Sect. 3.1, we infer for any n ∈ N0 and s ∈ [q,1] that

E
(
gn+1(s)Zn+1 |Fn

)
= E

(
gn+1(s)Z′n+1gn+1(s)Z0(n+1)|Zn

)
≤ E

(
gn+1(s)Z′n+1 |Zn

)
= gn(s)Zn a.s.

which is the desired conclusion. ut

Proof (of Thm. 3.12). With kn = −1/ loggn(s), W ∗n = − logXn(s) = k−1
n Zn and

W ∗ =− logX(s) for any fixed s ∈ (q,1), we infer from the previous lemma that W ∗n
converges a.s. to W ∗, where W ∗ may be infinite with positive probability. Now con-
sider the LT’s ψn and ψ , say, of W ∗n and W ∗, respectively. Then limn→∞ ψn(t) =ψ(t)
for all t ≥ 0. By the definition of the kn and the backward equation (3.6) for the hn
we obtain

ψn(t) = hn(e t loggn(s)) = hn(gn(s)t)

= h◦ fn(gn(s)t) ·hn−1(gn(s)t)

= h
(
E
(

gn(s)tZn(0)
∣∣∣Z0(0) = 1

))
·E
(
gn(s)tZn−1

)
= E

(
gn(s)tZn(0)

)
·E
(
gn(s)tZn−1

)
= E

(
e−tZn(0)/kn

)
·ψn−1

(
tkn−1

kn

)
. (3.26)

Since limn→∞ k−1
n Zn(0) =V ∗(0) a.s., we infer with the help of (3.21) that

lim
n→∞

E
(

e−tZn(0)/kn
)

= φ(t) = h◦ϕ(t). (3.27)

Moreover, k−1
n−1kn→m by Thm. 2.1, so that

lim
n→∞

ψn−1

(
tkn−1

kn

)
= lim

n→∞
E
(

e−t(kn−1/kn)W ∗n−1

)
= ψ

( t
m

)
. (3.28)

A combination of (3.26)–(3.28) provides us with the functional equation

ψ(t) = h◦ϕ(t) ·ψ
( t
m

)
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for t > 0 and then via iteration

ψ(t) = ψ(0+) ∏
n≥0

h◦ϕ

( t
mn

)
= ψ(0+) ∏

n≥0
h◦gn ◦ϕ(t) (3.29)

for t > 0, where as usual ψ(0+) = limt↓0 ψ(t). Note that ψ(0+) = ψ(0) = 1 iff
W ∗ < ∞ a.s. For the second equality in (3.29) it is further to be noted that ϕ(t) >
P(V ∗(0) = 0|Z0(0) = 1) = q by Thm. 2.1, whence (3.22) implies g◦ϕ(t) = ϕ(t/m)
and upon iteration gn ◦ϕ(t) = ϕ(t/mn) for all t > 0 and n ∈ N. For t = 1, we find

ψ(1) = lim
n→∞

E(e−tW ∗n )

= lim
n→∞

E(gn(s)Zn)

= lim
n→∞

hn ◦gn(s)

= lim
n→∞

n

∏
k=0

h◦ fk ◦gn(s) (by (3.5))

= lim
n→∞

n

∏
k=0

h◦gn−k(s)

= ∏
k≥0

h◦gk(s). (3.30)

Next, recall from (2.18) that

1−an ≤ gn(s) ≤ 1−bn

for all n ≥ N and suitable a,b ∈ (0,1), N ∈ N which can be used to show that the
infinite product in (3.30) and thus ψ(1) is positive iff ∑n≥2 cn logn < ∞ [+ Problem
3.15]. Assuming the last condition, use Lemma 2.5 to infer

ϕ(1) = lim
n→∞

E
(

e−Zn(0)/kn
∣∣∣Z0(0) = 1

)
= lim

n→∞
E
(

gn(s)Zn(0)
∣∣∣Z0(0) = 1

)
= s

and combine this with (3.29) (for t = 1) and (3.30) to obtain

0 < ∏
n≥0

h◦gn(s) = ψ(1) = ψ(0+)∏
n≥0

h◦gn(s),

giving ψ(0+) = P(W ∗ < ∞) = 1. The functional equation (3.25) then follows di-
rectly from (3.29). Finally, the almost sure positivity of W ∗ is left to the reader as an
exercise [+ Problem 3.16] and may e.g. be deduced from ψ(∞) = limt→∞ ψ(t) = 0.

Assuming (ZlogZ) for (pn)n≥0, we know from the proof of the Kesten-Stigum
theorem 2.2 that limn→∞m−nkn ∈ R> which finally proves the last assertion of the
theorem. ut
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Problems

Problem 3.14. Let (Zn)n≥0 be a supercritical GWPI with finite reproduction mean
m and finite immigration mean ν . Prove the following assertions:

(a) The sequence defined in (3.20) defines an L1-bounded martingale and is thus
a.s. convergent to an integrable random variable.

(b) If W and V (k) denote the almost sure limits of Wn :=m−nZn [which exists by
part (a)] and of m−nZn(k), respectively, then W = ∑n≥0m

−nV (n) a.s.
(c) The following assertions [+ also Thm. 2.2] are each equivalent to condition

(ZlogZ) for (pn)n≥0:

P(W > 0)> 0, (3.31)

EW =
νm

m−1
, (3.32)

lim
n→∞

E|Wn−W | = 0, (3.33)

(Wn)n≥0 is uniformly integrable (ui), (3.34)
Esup

n≥0
Wn < ∞. (3.35)

(d) If (ZlogZ) fails to hold, then W = 0 a.s.

Problem 3.15. Let (cn)n≥0 be a distribution on N0 with gf h. Prove that, for any
δ ∈ (0,1),

∏
n≥0

h(1−δ
n)> 0 iff ∑

n≥2
cn logn < ∞.

[Hint: Lemma 2.6]

Problem 3.16. Given the assumptions and the notation of Thm. 3.12 and further
∑n≥2 cn logn < ∞, prove the following assertions:

(a) W ∗ = ∑n≥0m
−nV ∗(n) a.s.

(b) W ∗ is a.s. positive and not constant.
(c) EW ∗ < ∞ iff ν < ∞ and (ZlogZ) holds true.

3.5 The critical case revisited: criteria for null recurrence and
transience

In this section, we return to the critical case and deal with the question under which
conditions a critical GWPI (Zn)n≥0 with finite offspring variance σ2 and finite im-
migration mean ν is null recurrent. We have already pointed out that criterion (3.10)
then rules out distributional convergence to a finite limit and thus the existence of
positive recurrent states. On the other hand, null recurrence is still an open ques-
tion, and the following result owing to PAKES [23], [25] provides almost exhaustive
information.
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For simplicity, it is assumed hereafter that (Zn)n≥0 is an irreducible Markov
chain, for which c0 = h(0)> 0 and σ2,ν > 0 are necessary conditions [+ also Prob-
lem 3.6]. Irreducibility allows us to reduce our analysis to the null recurrence of 0
(by solidarity). Let a standard model be given with Pi(Z0 = i) = 1, P=∑i≥0 ciPi and
pn

i j = Pi(Zn = j) for i, j ∈ N0. With positive recurrence ruled out, standard Markov
chain theory tells us that pn

00→ 0 and

0 null recurrent iff ∑
n≥0

pn
00 = ∞. (3.36)

Before stating Pakes’ result, we finally define

hin(s) = Ei sZn = ∑
j≥0

pn
i j s j

for i,n ∈ N0.

Theorem 3.17. [Pakes] Let (Zn)n≥0 be an irreducible critical GWPI with
offspring variance σ2 ∈ R> and immigration mean ν ∈ R>. Put further
γ = 2ν

σ2 = 2h′(1)
f ′′(1) . Then the following assertions hold true:

(a) (Zn)n≥0 is null recurrent if γ < 1, and transient if γ > 1.
(b) If, furthermore, ∑n≥2 pnn2 logn < ∞ and ∑n≥2 cnn logn < ∞, then there

exists a positive and finite function H(s) = ∑n≥0 ansn on [0,1) with
nonnegative coefficients such that H forms a solution to (3.7), i.e.
H = h ·H ◦ f , and

lim
n→∞

nγ hin(s) = H(s) (3.37)

for all i ∈ N0 and s ∈ [0,1). In particular, (Zn)n≥0 is null recurrent iff
γ ≤ 1.

Remark 3.18. Recalling the discussion after Thm. 3.2 by FOSTER & WILLIAMSON
it is clear that the measure π = (πi)i≥0 with gf H must be stationary for (Zn)n≥0
and thus infinite, i.e. H(1) = ∑i≥0 πi = ∞, for otherwise (Zn)n≥0 would be positive
recurrent.

Proof (of Thm. 3.17(a)). In view of (3.36) we must show that ∑n≥0 pn
00 = (<)∞ if

γ < (>)1. By Raabe’s test [+ e.g. [30, (7.16)],

lim
n→∞

n

(
1−

pn+1
00
pn

00

)
>
<

1 ⇒ ∑
n≥0

pn
00

=
<

∞.

As one can easily see, (3.5) implies

pn+1
00 = P0(Zn+1 = 0) = P(Zn = 0) = hn(0) =

n

∏
k=0

h◦ fk(0)
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and therefore

n

(
1−

pn+1
00
pn

00

)
= n(1−h◦ fn(0))

for each n ∈N0. Now use h(s) = 1−ν(1− s)+o(1− s) as s ↑ 1 and n(1− fn(0))→
2/σ2 [Lemma 2.26] to finally conclude

n(1−h◦ fn(0)) = νn(1− fn(0))+no(1− fn(0)) → γ

as n→ ∞ and thus the desired result. ut
The proof of Thm. 3.17(b) will be furnished by the two subsequent lemmata,

the first of which is of similar type as Lemma 2.6, while the second one sharpens
Lemma 2.26. Given an arbitrary gf g(s) = ∑n≥0 ansn with g′(1)< ∞, we define

g(1)(s) =
1−g(s)

1− s
and g(2)(s) =

g(1)(1)−g(1)(s)
1− s

(3.38)

for s ∈ [0,1) and further g(1)(1) = g′(1), g(2)(1) = g′′(1)/2. By the convexity of g
and g′, these functions are nondecreasing and [+ (2.20) in Problem 2.10]

g(1)(s) = ∑
n≥0

a(1)n+1sn, a(1)n := ∑
k≥n

ak,

g(2)(s) = ∑
n≥0

a(2)n+1sn, a(2)n := ∑
k≥n

a(1)k+1

(3.39)

for s ∈ [0,1).

Lemma 3.19. Let f be the gf of an arbitrary distribution (pn)n≥0 on N0. For
n≥ 1, let δn ∈ (0,1) be such that c := limn→∞ n(1−δn) is positive and finite.
Then ∑n≥1 n−1(1− f (δn))< ∞ holds iff ∑n≥2 pn logn < ∞.

Proof. It suffices to prove the lemma for the case 1−δn = cn−1 for some c ∈ (0,1),
for there always exist m,N ∈ N and 0 < c1 < c2 < 1 such that c1(n+m)−1 ≤ δn ≤
c2(n−m)−1 for all n≥ N. Then it follows that

∑
n≥1

1
n
(1− f (c/n)) = ∑

n≥1

c
n2 f (1)(1− c/n)

� ∑
n≥1

∫ 1−c/(n+1)

1−c/n
f (1)(s) ds

=
∫ 1

1−c
f (1)(s) ds

� ∑
n≥1

p(1)n

n
= ∑

n≥1
pn

n

∑
k=1

1
k
� ∑

n≥1
pn logn
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and the lemma is proved. ut

Lemma 3.20. Let f be the gf of a distribution (pn)n≥0 on N0 with mean one
and finite variance σ2 = f ′′(1). Then

∑
n≥1

1
n

∣∣∣∣σ2

2
− 1

n

(
1

1− fn(s)
− 1

1− s

)∣∣∣∣ < ∞ (3.40)

holds iff ∑n≥2 pnn2 logn < ∞.

Proof. Put g(s) = 2σ−2 f (2)(s) so that g(1) = 1. Using (1− s)−1( f (s)− s) = 1−
f (1)(s) for s ∈ [0,1), we obtain

σ2

2
− 1

n

(
1

1− fn(s)
− 1

1− s

)
=

σ2

2
− 1

n

n

∑
k=1

(
1

1− fk(s)
− 1

1− fk−1(s)

)
=

σ2

2
− 1

n

n

∑
k=1

f ◦ fk−1(s)− fk−1(s)
(1− fk−1(s))(1− fk(s))

=
σ2

2
− 1

n

n

∑
k=1

1− f (1) ◦ fk−1(s)
1− fk(s)

=
σ2

2
− 1

n

n

∑
k=1

1− f (1) ◦ fk−1(s)
1− fk−1(s)

+ O
(

logn
n

)

=
σ2

2

(
1− 1

n

n

∑
k=1

g◦ fk−1(s)

)
+ O

(
logn

n

)
=

σ2

2

n

∑
k=1

(1−g◦ fk−1(s)) + O
(

logn
n

)
,

where we have used for the third line from below that, as n→ ∞,

1− f (1) ◦ fn−1(s) = O
(

1
n

)
, 1− fn(s) = O

(
1
n

)
and fn(s)− fn−1(s) = O

(
1
n2

)
[+ Problem 2.35(a) for the last assertion]. Summation over n ≥ 1 in the above
estimation provides us with

∑
n≥1

1
n

∣∣∣∣σ2

2
− 1

n

(
1

1− fn(s)
− 1

1− s

)∣∣∣∣ � ∑
n≥1

1
n2

n

∑
k=1

(1−g◦ fk−1(s))

� ∑
k≥1

1
k
(1−g◦ fk−1(s)) .
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Since n(1− fn−1(s))→ 2/σ2, we can now invoke Lemma 3.19 to infer that the last
sum converges iff ∑n≥2 p(2)n logn < ∞ which in turn is easily seen to be equivalent
to the condition ∑n≥2 pnn2 logn < ∞ [+ Problem 3.21]. ut

Proof (of Thm. 3.17(b)). We start by noting that (in the usual notation of this chap-
ter)

hin(s) = Ei

(
s∑

n
k=0 Zn−k(k)

)
= Ei sZn(0)

n−1

∏
k=0

EsZk(n−k) = fn(s)i
n−1

∏
k=0

h◦ fk(s)

for all i,n ∈N0 and s ∈ [0,1]. This in combination with limn→∞ fn(s) = 1 shows that
it suffices to show (3.37) for i = 0. Obviously,

nγ h0n(s) = h(s)
n−1

∏
k=1

(
1+

1
k

)γ

h◦ fk(s) (3.41)

for n ∈ N and s ∈ [0,1], and this sequence converges to a finite, positive limit iff the
sum ∑n≥1(dn(s)−1) with dn(s) := (1+ 1

n )
γ h◦ fn(s) converges absolutely. By using

the expansions(
1+

1
n

)γ

= 1+
γ

n
+O

(
1
n2

)
and 1−h◦ fn(s) = O

(
1
n

)
as n→ ∞, we have

dn(s)−1 =
γ

n
− (1−h◦ fn(s))−

γ

n
(1−h◦ fn(s))+O

(
1
n2

)
=

γ

n
−ν(1− fn(s))− (ν−h(1) ◦ fn(s))(1− fn(s))+O

(
1
n2

)
(3.42)

By Lemma 3.19 applied to h∗ := ν−1h(1), we have

∑
n≥1

(ν−h(1) ◦ fn(s))(1− fn(s)) � ∑
n≥1

1
n
(1−h∗ ◦ fn(s)) < ∞

iff ∑n≥1 c(1)n logn < ∞ which in turn holds iff ∑n≥2 cnn logn < ∞.
This leaves us with the first and second term in (3.42). Defining

∆n(s) :=
σ2

2
− 1

n

(
1

1− fn(s)
− 1

1− s

)
,

it is easily seen that

ν(1− fn(s)) =

(
n
ν
+

1
ν(1− s)

− n
ν

∆n(s)
)−1
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and thereupon, using limn→∞ ∆n(s) = 0 for each s ∈ [0,1), that

γ

n
−ν(1− fn(s)) =

ν

1− s
−nν∆n(s)

n2

(
1+

1
n(1− s)

−∆n(s)
) =

−ν∆n(s)
n

+O
(

1
n2

)
.

Since ∑n≥2 cnn2 logn < ∞, Lemma 3.20 ensures that ∑n≥1 n−1|∆n(s)|< ∞ and thus,
by putting the previous facts together, ∑n≥1 |dn(s)− 1| < ∞ for all s ∈ [0,1) or,
equivalently,

lim
n→∞

nγ h0n(s) =: H(s) ∈ R>

for all s ∈ [0,1). A look at (3.41) shows that nγ h0n(s), n≥ 1, satisfies the recursion

(n+1)γ h0,n+1(s) = h(s)
(

1+
1
n

)γ

nγ h0n(s)

for s ∈ [0,1] which upon letting n→ ∞ immediately yields the asserted functional
equation for H. As a particular consequence, we finally conclude that

nγ pn
00 = nγ h0n(0) → H(0) > 0,

as n→ ∞ and therefore ∑n≥0 pn
00 = ∞ iff γ ≤ 1. ut

Problems

Problem 3.21. Given an arbitrary gf f (s) = ∑n≥0 pnsn, prove that

∑
n≥2

p(2)n logn < ∞ ⇔ ∑
n≥2

p(1)n n logn < ∞ ⇔ ∑
n≥2

pnn2 logn < ∞,

where the p(i)n for i ∈ {1,2} are as defined in (3.39).

Problem 3.22. In the situation of Pakes’ Thm. 3.17, suppose that (Zn)n≥0 has linear
fractional gf f (s) = (2− s)−1. Prove the following assertions:

(a) If h(s) = (2− s)−α for some α > 0, then limn→∞ n−α pn
00 = 1.

(b) If the immigration distribution is Poissonian, i.e. h(s) = e−β (1−s) for some
β > 0, then limn→∞ n−β pn

00 = e−κβ , where κ = 0.5772... denotes Euler’s
constant.

[Hint: (3.41) and (1.21).]




