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‖Ψn−Ψ‖t,∞ ≤ ‖Ψ0−Ψ‖t,∞ F(t)n for all n ∈ N0 (5.20)

which is the result given in [91].
Our final result points out the useful property that first-step monotonicity of an

iteration scheme is preserved at all future steps.

Proposition 5.17. Let t ∈R>, Ψ = ψ ∗U and (Ψn)n≥0 be an iteration scheme
of type (5.19) with bounded initialization Ψ0 on [0, t]. Then Ψ0 ≤ [≥] Ψ1 on
[0, t] implies Ψn ↑ [↓]Ψ on this interval.

Proof. It suffices to note that, if Ψn−1 ≤ [≥]Ψn on [0, t], then

Ψn(x) =
∫

[0,x]
Ψn−1(x− y) F(dy) ≤ [≥]

∫

[0,x]
Ψn(x− y) F(dy) = Ψn+1(x)

for each x ∈ [0, t] and n≥ 1, where ψ ≡ 0 has been assumed w.l.o.g. ut

5.5 Déjà vu: two applications revisited

We return to the applications from the theory of branching processes and from col-
lective risk theory discussed in Sections 1.4 and 1.5, respectively. As it turns out, we
are now able to provide asymptotic estimates of the relevant quantities under more
general model assumptions.
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Fig. 5.1 A random tree with Ulam-Harris labeling.
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5.5.1 Age-dependent branching processes

Consider a population of individuals originating from one ancestor born at time 0.
The individuals are labeled by elements of V := {∅}∪⋃n≥1Nn, called Ulam-Harris
tree, in the following way so as to give full information about the genealogy. Use
v1...vn as shorthand notation for (v1, ...,vn) ∈ Nn. The ancestor gets label ∅ (the
root) and any member of the nth generation (n ≥ 1) is labeled by an element of Nn

subject to the following constraints: If label v1...vn has been assigned to a population
member, then the same holds true for v1...vn−1 (the mother) as well as any v1...vn−1k
for 1 ≤ k < vn (siblings) [+ Fig. 5.1]. Let {(Tv,Nv) : v ∈ V} be a family of iid
random vectors taking values in R>×N0 and interpret Tv as the random lifetime of
the (potential) individual v, while Nv denotes its number of children. Both variables
are assumed to have finite mean. We further assume, although this could be relaxed,
that all children are born at the end of the mother’s lifetime.

As in Section 1.4, we are interested in the population size process (Z(t))t≥0,
called age-dependent branching process which satisfies [compare (1.16)]

Z(t) := 1{T∅>t} + 1{T∅≤t}
N∅

∑
k=1

Zk(t−T∅), t ≥ 0, (5.21)

where the (Zk(t))t≥0, k≥ 1, are iid copies of (Z(t))t≥0 and independent of (T,N) :=
(T∅,N∅). They represent the subpopulation size processes pertaining to the (poten-
tial) children of ∅. As a consequence of (5.21), the mean function M(t) := EZ(t)
satisfies the standard renewal equation

M(t) = P(T > t)+
∫

[0,t]
∑
n≥0

nM(t− s)P(N = n|T = s) P(T ∈ ds)

= P(T > t)+
∫

[0,t]
M(t− s)h(s) P(T ∈ ds)

= P(T > t)+
∫

[0,t]
M(t− s) F(ds), t ≥ 0

with h(s) := E(N|T = s) for s ≥ 0 and F(ds) := h(s)P(T ∈ ds), the latter being
clearly admissible and having total mass ‖F‖ = EN. The asymptotic behavior of
M(t) as t → ∞ is now easily derived with the help of Theorem 5.7 and depends
on whether EN < 1, = 1, or > 1. Owing to a quite different behavior, the age-
dependent branching process (Z(t))t≥0 is called subcritical in the first case, critical
in the second, and supercritical in the last one. Suppose that F has characteristic
exponent ϑ , called Malthusian parameter in the present context and given as the
unique positive number such that

‖Fϑ‖ =
∫

eϑs F(ds) = ENeϑT = 1.
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Note that this assumption can only fail in the subcritical case and is trivially true
with ϑ = 0 if ‖F‖ = 1. In the supercritical case, ϑ always exists and is negative
by Rem. 5.8. Here is the result, where we restrict ourselves to the case when F is
nonarithmetic.

Proposition 5.18. Let (Z(t))t≥0 be an age-dependent branching process as
described before such that ET < ∞, EN < ∞ and F(ds) = E(N|T = s)P(T ∈
ds) is nonarithmetic with characteristic exponent ϑ . Then its mean function
M(t) satisfies

lim
t→∞

eϑ tM(t) =





EeϑT −1
ϑ ENTeϑT in the subcritical case (ϑ > 0),

ET
ENT

in the critical case (ϑ = 0),

1−EeϑT

|ϑ |ENTeϑT in the subcritical case (ϑ < 0).

with the usual convention that the right-hand side equals 0 if ENTeϑT = ∞.

Proof. The result is a direct consequence of Thm. 5.7(b), the standard formula

∫
∞

0
eϑxP(T > x) dx =





ϑ−1E(eϑT −1), if ϑ > 0,
ET, if ϑ = 0,

|ϑ |−1E(1− e−ϑT ), if ϑ < 0,

that follows upon integration by parts [+ A.1], and Lemma 4.3 which ensures the
direct Riemann integrability of x 7→ eϑxP(T > x) on R≥ for ϑ 6= 0. ut
Remark 5.19. The limits in the above proposition simplify a little if N and T are
further assumed to be independent, in which case (Z(t))t≥0 is also called Bellman-
Harris process. Namely, we then have ENTeϑT = ENETeϑT , giving limit 1 in the
critical case. The cell-division process discussed in Section 1.4 is a special example
for this situation that even led us to explicit results for M(t) for standard exponen-
tially distributed T [+ (1.19)].

Another quantity of interest for the given model is the expectation Ma(t), say,
of the number Za(t) of individuals alive at time t and not older than a for arbitrary
a > 0. Since

Za(t) = 1{t<T≤a}1[0,a)(t)+
N

∑
k=1

Za
k (t−T )1{T≤t}, t ≥ 0, (5.22)

as one can readily see (with Za
k (t) having the obvious meaning), the mean function

Ma(t) = EZa(t) satisfies the renewal equation



5.5 Déjà vu: two applications revisited 129

Ma(t) = P(t < T ≤ a)1[0,a)(t)+
∫ t

0
Ma(t− s) F(ds)

of similar type as M(t). The following result is therefore obtained in the same man-
ner as the previous proposition and stated without proof.

Proposition 5.20. Given the assumptions of Prop. 5.18, the function Ma(t)
satisfies for each a > 0

lim
t→∞

eϑ tMa(t) =





E(eϑT −1)1{T≤a}
ϑ ENTeϑT in the subcritical case (ϑ > 0),

ET 1{T≤a}
ENT

in the critical case (ϑ = 0),

E(1− eϑT )1{T≤a}
|ϑ |ENTeϑT in the subcritical case (ϑ < 0).

5.5.2 Collective risk theory: the general model with iid input

Let us start by briefly recalling from Section 1.5 the situation one is facing in col-
lective risk theory: An insurance company earns premiums at a constant rate c∈R>

from a portfolio of insurance policies and faces negative claims from these of abso-
lute sizes X1,X2, ... at successive random epochs 0 < T1 < T2 < ... Given an initial
risk reserve R(0), the risk reserve R(t) at time t, i.e., the available capital at t to
cover incurred future claims, is given by

R(t) = R(0)+ ct−SN(t) for all t ≥ 0,

where N(t) :=∑n≥1 1{Tn≤t} denotes the number of claims up to time t and Sn :=X1+
...+Xn denotes the total claim size up to time Tn. Defining the epoch of technical
ruin, viz.

Λ := inf{t ≥ 0 : R(t)< 0} (inf /0 := ∞),

a fundamental task consists in the computation or at least approximation (as r be-
come large) of the so-called ruin probability

Ψ(r) := P(Λ < ∞|R(0) = r), r ≥ 0,

for a fixed premium rate c, which may also be written as

Ψ(r) = P(τ < ∞|R(0) = r), r ≥ 0,

with


