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Chapter 1
Introduction

Probabilists are often facing the task to determine the asymptotic behavior of a given
stochastic sequence (Xn)n≥0, more precisely, to prove its convergence (in a suitable
sense) to a limiting variable X∞, as n→ ∞, and to find or at least provide informa-
tion about the distribution (law) of X∞, denoted as L (X∞). Of course, there is no
universal approach to accomplish this task, but in situations where (Xn)n≥0 exhibits
some kind of recursive structure, expressed in form of a so-called random recursive
equation, one is naturally prompted to take advantage of this fact in one way or an-
other. Often, one is led to a distributional equation for the limit variable X∞ of the
form

L (X∞) = L (Ψ(X∞(1),X∞(2), ...)) (1.1)

where X∞(1),X∞(2), ... are independent copies of X∞ and Ψ denotes a random func-
tion independent of these variables. (1.1) constitutes the general form of a so-called
stochastic fixed-point equation (SFPE), also called recursive distributional equa-
tion by ALDOUS & BANDYOPADHYAY in [1]. The distribution of X∞ is then called
a solution to the SFPE (1.1).

To provide an introduction of a collection of interesting equations of this kind,
some of them related to very classical problems in probability theory, and of the
methods needed for their analysis is the main goal of this course. The present chapter
is devoted to an informal discussion of a selection of examples that will help the
reader to gain a first impression of what is lying ahead.

1.1 A true classic: the central limit problem

Every student with some basic knowledge in theoretical probability knows that,
given a sequence of iid real-valued random variables X ,X1,X2, ... with mean 0 and
variance 1, the associated sequence of standardized partial sums

S∗n :=
X1 + ...+Xn

n1/2 , n≥ 1

1



2 1 Introduction

converges in distribution to a standard normal random variable Z as n→ ∞. This is
the classic version of the central limit theorem (CLT) and most efficiently proved by
making use of characteristic functions (Fourier transforms). Namely, let φ denote
the chf of X and note that a second order Taylor expansion of φ at 0 gives

φ(t) = 1− t2

2
+o(t2) as t→ 0.

Since S∗n has chf ψn(t) = φ(n−1/2t)n, we now infer

lim
n→∞

ψn(t) = lim
n→∞

(
1− t2

2n
+o
(

t2

2n

))n

= e−t2/2

for all t ∈ R and thus the asserted convergence by Lévy’s continuity theorem com-
bined with the fact that e−t2/2 is the chf of the standard normal distribution.

Having solved the central limit problem for good in the classical setup of iid
random variables, the reader may wonder so far about its connection with random
recursive equations. Let us therefore narrow our perspective by assuming that the
weak convergence of L (S∗n) to a limit law Q with mean 0 and unit variance has al-
ready been settled. Then the problem reduces to giving an argument that shows that
Q must be the standard normal distribution. To this end, we make the observation
that

S∗2n =
S∗n +S∗n,n

21/2 , (1.2)

where S∗n,n := n−1/2(Xn+1 + ...+X2n) for n ≥ 1. Since S∗n,n is an independent copy
of S∗n, it follows that (

S∗n,S
∗
n,n
) d→ (Z,Z′) as n→ ∞

for two independent random variables Z,Z′ with common distribution Q and then
from (1.2) that, by the continuous mapping theorem,

Z d
=

Z +Z′

21/2 , (1.3)

where d
= means equality in distribution. In terms of the chf ϕ , say, of Z, this equation

becomes

ϕ(t) = ϕ

( t
21/2

)2
, t ∈ R, (1.4)

which via iteration leads to

ϕ(t) = lim
n→∞

ϕ

( t
2n/2

)2n

= lim
n→∞

(
1− t2

2n+1 +o
(

t2

2n+1

))2n

= e−t2/2,

for all t ∈ R, when noting that ϕ satisfies the same Taylor expansion as φ given
above. Hence we have proved that Q is the standard normal law.
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The random recursive equation (1.2) that has worked for us here may also be
written as

S∗2n = Ψ(S∗n,S
∗
n,n) with Ψ(x,y) :=

x+ y
21/2 .

Although stated in terms of random variables, it should be noticed that its recursive
property is rather in terms of distributions: The distribution of S∗2n is expressed as
a functional of the distribution of S∗n (recalling that S∗n,n is an independent copy of
this variable). Then, by taking the limit n→ ∞ and using the continuity of Ψ , the
limiting distribution has been identified as a solution to the SFPE (1.3), viz.

Z d
= Ψ(Z,Z′) =

Z +Z′

21/2 .

Under the proviso that Z (or Q) has mean 0 and unit variance, we have shown that
the standard normal distribution forms the unique solution to (1.3). We note in pass-
ing that, by a simple scaling argument, Normal(0,σ2), the normal distribution with
mean 0 and variance σ2 > 0, is found to be the unique solution to the very same
SFPE within the class of distributions with mean 0 and variance σ2.

Generalizing in another direction, fix any N ≥ 2 and positive integers k1, ...,kN
satisfying k1 + ...+kN = N. Define s1 := k1,s2 := k1 +k2, ...,sN := k1 + ...+kN and
then

S∗n( j) :=
1

(k jn)1/2

s jn

∑
m=s j−1n+1

Xm

for j = 1, ...,N. The latter random variables are clearly independent with L (S∗n( j))=
L (S∗k jn) for each j = 1, ...,N. Moreover, the random recursive equation

S∗Nn =
N

∑
j=1

Tj S∗n( j) (1.5)

with Tj := (k j/N)1/2 for j = 1, ...,N holds true. Hence, the distribution of S∗Nn is a
functional of the distributions of S∗k1n, ...,S

∗
kN N . By another appeal to the continuous

mapping theorem, we obtain upon passing to the limit n→ ∞ that (under the same
proviso as before)

Z d
=

N

∑
j=1

TjZ j (1.6)

where Z1, ...,ZN are independent copies of Z. Equivalently,

ϕ(t) =
N

∏
j=1

ϕ (Tjt) , t ∈ R

holds for the chf ϕ of Z, and a similar argument as before may be employed to
conclude that the standard normal law forms the unique solution to (1.6) within the
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class of distributions with mean 0 and unit variance. We close this section with the
following natural question:

Under which conditions on (N,T1, ...,TN), the parameters of the SFPE (1.6), does
the previous uniqueness statement remain valid?

The restriction imposed by our construction is that N is finite and that T 2
1 , ...,T

2
N are

positive rationals summing to unity. The very last property is clearly necessary, for
(1.6) in combination with VarZ = 1 entails

1 = VarZ =
N

∑
j=1

Var(TjZ j) =
N

∑
j=1

T 2
j .

That no further restriction on (N,T1, ...,TN) is needed will be shown in ??????? in a
more general framework. This means that N may even be infinite and T1,T2, ...,TN
any real numbers such that ∑

N
j=1 T 2

j = 1.

Problems

Problem 1.1. For any α ∈ (0,2] and b > 0, the function φ(t) = exp(−b|t|α) is the
chf of a (symmetric) distribution S (α,b) on R, called symmetric stable law with
index α and scaling parameter b. Note that S (2,b)=Normal(0,2b) and S (1,b)=
Cauchy(b), the symmetric Cauchy distribution with λλ -density 1

π

b
b2+x2 . Prove that

S (α,b) forms a solution to the SFPE

X d
=

X1 + ...+Xn

n1/α
(1.7)

for any n≥ 2, where X1, ...,Xn are independent copies of X .

Problem 1.2. Prove the following assertions for any b> 0:

(a) The function R≥ 3 t 7→ϕ(t)= exp(−btα) is the LT of a distribution S+(α,b)
on R≥, called one-sided stable law with index α and scaling parameter b, iff
α ∈ (0,1].

(b) S+(α,b) forms a nonnegative solution to the SFPE (1.7).

Problem 1.3. Let N ∈ N∪{∞} and T1, ...,TN ≥ 0. Find conditions on N,T1, ...,TN
such that S (α,b) and S+(α,b) are solutions to the SFPE (1.6).

1.2 A prominent queuing example: the Lindley equation

In a single-server queuing system, the Lindley equation for the waiting time of a cus-
tomer before receiving service provides another well-known example of a random
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recursive equation. To set up the model, suppose that an initially idle server is facing
(beginning at time 0) arrivals of customers at random epochs 0≤ T0 < T1 < T2 < ...
with service requests of (temporal) size B0,B1, ... Customers who find the server
busy join a queue and are served in the order they have arrived (first in, first out).
Typical performance measures are quantities like workload, queue length or waiting
times of customers in the system. They may be studied over time (transient analysis)
or in the long run (steady state analysis). Here we will focus on the time a customer
spends in the queue (if there is one) before receiving service and will do so for the
so-called G/G/1-queue specified by the following assumptions [+ also [6]]:

(G/G/1-1) The sequence of arrival epochs (Tn)n≥0 has iid positive increments
A1,A2, ... with finite mean λ and thus forms a renewal process with
finite drift.

(G/G/1-2) The service times B0,B1, ... are iid with finite positive mean µ .
(G/G/1-3) The sequences (Tn)n≥0 and (Bn)n≥0 are independent.
(G/G/1-4) There is one server and a waiting room of infinite capacity.
(G/G/1-5) The queue discipline is FIFO (“first in, first out”).

The Kendall notation “G/G/1”, which may be expanded by further symbols when
referring to more complex systems, has the following meaning: The first letter refers
to the arrival pattern, the second one to the service pattern, and the number in the
third position to the number of servers (or counters). The letter “G” stands for “gen-
eral” and is sometimes replaced with “GI” for “general independent”. It means that
both, interarrival times and service times are each iid with a general distribution.

Let Wn denote the quantity in question, that is, the waiting time of the nth arriving
customer before receiving service and notice that W0 = 0, for the server is supposed
to be idle before T0. In order to derive Lindley’s equation for Wn (n ≥ 1), we point
out the following: Either Wn = 0, which happens if the nth customer arrives after
his predecessor’s departure time, or Wn equals the time spent in the system by the
predecessor, i.e. Wn−1 +Bn−1, minus the time An that elapses between the arrival
of that customer and his own arrival. The first case occurs if Tn > Tn−1 +Wn−1 +
Bn−1 or, equivalently, Wn−1+Bn−1−An < 0, while the second one occurs if Wn−1+
Bn−1−An ≥ 0. Consequently, the Lindley equation [80] takes the form

Wn = (Wn−1 +Xn)
+ (1.8)

for each n ≥ 1, where Xn := Bn−1−An. Put also S0 := 0 and Sn = X1 + ...+Xn for
n≥ 1. Then (Sn)n≥0 forms an ordinary zero-delayed random walk with drift µ−λ .
It is now an easy exercise [+ Problem 1.5] to prove via iteration that

Wn = max
0≤k≤n

(Sn−Sk)
d
= max

0≤k≤n
Sk (1.9)

for each n≥ 0 and then to deduce the following result about the asymptotic behavior
of Wn.
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Theorem 1.4. Under the stated assumptions, the waiting time Wn converges
in distribution to W∞ := maxk≥0 Sk iff µ < λ . In this case

W∞

d
= (W∞ +X)+, (1.10)

where X denotes a generic copy of X1,X2, ... independent of W∞. Furthermore,

limn→∞ Wn = ∞ a.s. if µ > λ ,
and

0 = liminfn→∞ Wn < limsupn→∞ Wn = ∞ a.s. if µ = λ .

Proof. Problem 1.5 ut

It is intuitively obvious (and indeed true) that asymptotic stability of waiting
times, i.e. distributional convergence of the Wn, is equivalent to the asymptotic sta-
bility of the whole system in the sense that other relevant functionals like queue
length or workload approach a distributional limit as well. Adopting a naive stand-
point by simply ignoring random fluctuations of system behavior, we expect this to
be true iff the mean service time is smaller than the mean time between two arriv-
ing customers, for then the server works faster on average than the input rate. The
previous result tells us that naive thinking does indeed lead to the correct answer.

Further dwelling on the stable situation, thus assuming µ < λ , it is natural to
strive for further information on the distribution of W∞, which in general cannot be
determined explicitly [+ Problem 1.7 for an exception]. For this purpose, the queu-
ing background no longer matters so that we may just assume to be given a general
nonnegative sequence (Wn)n≥0, called Lindley process, of the recursive form (1.8)
with iid random variables X1,X2, ...with negative mean. The reader is asked in Prob-
lem 1.6 to show that then Wn always converges in distribution to W∞ = maxk≥0 Sk,
regardless of the distribution of W0. This implies that the SFPE (1.10) determines
the distribution G, say, of W∞ uniquely. Implicit renewal theory, to be developed in
Chapter 4, will enable us to determine the asymptotic behavior of the tail probabili-
ties P(W > t) as t→ ∞ with the help of (1.10). At this point we finally note that the
latter may be stated in terms of G(t) = P(W ≤ t) as

G(t) =
∫

(−∞,t]
G(t− x) P(X ∈ dx), t ≥ 0, (1.11)

called Lindley’s integral equation.

Problems

Problem 1.5. Given a G/G/1-queue as described above, prove that Wn satisfies (1.9)
and then Theorem 1.4.
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Problem 1.6. Given a sequence of iid real-valued random variables X ,X1,X2, ...
with associated SRW (Sn)n≥0, consider the Lindley process

Wn = (Wn−1 +Xn)
+, n≥ 1

with arbitrary initial value W0 ≥ 0 independent of X1,X2, ... Prove the following
assertions:

(a) For each n≥ 1, Wn
d
= Mn−1∨ (W0 +Sn), where Mn = max0≤k≤n Sk for n≥ 0.

(b) If EX < 0, then Wn
d→W∞ = maxk≥0 Sk.

(c) If EX < 0, then L (W∞) forms the unique solution to the SFPE (1.10) in the
class of distributions on R≥.

Problem 1.7. In the previous problem, suppose that X is integer-valued with nega-
tive mean and L (X+) = Bern(p) for some p > 0. Prove that W∞ has a geometric
distribution. [Hint: Consider the strictly descending ladder epochs (σ<

n )n≥0, recur-
sively defined by σ

<
0 := 0 and

σ
<
n := inf

{
k > σ

<
n−1 : Sk < Sσ

<
n−1

}

for n≥ 1, where inf /0 := ∞. Then write W∞ in terms of the associated ladder heights
Sσ

<
n

1{σ<n <∞} and use that, given σ<
n < ∞, the random vectors

(
σ
<
k −σ

<
k−1,Sσ

<
k
−Sσ

<
k−1

)
, k = 1, ...,n,

are conditionally iid [+ Subsec. 2.2.1 in [2] for further information].]

Problem 1.8. Here is a version of the continuous mapping theorem that will fre-
quently be used hereafter:
Let θ1,θ2, ... be iid Rd-valued (d ≥ 1) random variables with generic copy θ and
independent of X0. Suppose further that Xn = ψ(Xn−1,θn) for all n ≥ 1 and a con-
tinuous function ψ : Rd+1 → R. Prove that, if Xn converges in distribution to X∞,
then

ψ(Xn−1,θn)
d→ ψ(X∞,θ) and X∞

d
= ψ(X∞,θ),

where X∞ and θ are independent.

1.3 A rich pool of examples: branching processes

Consider a population starting from one ancestor (generation 0) in which individu-
als of the same generation produce offspring independently and also independent of
the current generation size. The offspring distribution, denoted as (pn)n≥0, is sup-
posed to be the same for all population members and to have finite mean m. Under
these assumptions, the generation size process (Zn)n≥0, thus Z0 = 0, forms a so-
called (simple) Galton-Watson (branching) process (GWP) and satisfies the random
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recursive equation

Zn =
Zn−1

∑
k=1

Xn,k, n≥ 1, (1.12)

where {Xn,k : n,k ≥ 1} forms a family of iid integer-valued random variables with
common distribution (pn)n≥0. Here Zn denotes the size of the nth generation and
Xn,k the number off children of the kth member of this generation (under an arbitrary
labeling of these members). To exclude the trivial case Z0 = Z1 = ...= 1, we make
the standing assumption p1 < 1.

A classical result, known as the extinction-explosion principle, states that the
population either dies out (Zn = 0 eventually) or explodes (Zn→ ∞), i.e.

P({Zn = 0 eventually}∪{Zn→ ∞}) = 1.

Moreover, extinction occurs almost surely if m< 1 (subcritical case) or m = 1 (criti-
cal case), while q :=P(Zn = 0 eventually)< 1 if m> 1 (supercritical case). Defining
the offspring gf f (s) := ∑n≥0 pnsn for s ∈ [0,1], q equals the minimal fixed point of
f in [0,1].

It is easily verified that the normalized sequence Wn =m−nZn, n≥ 0, constitutes a
nonnegative mean one martingale which therefore converges to a nonnegative limit
W with EW ≤ 1 by the martingale convergence theorem [+ Problem 1.9]. If m≤ 1,
then clearly W = 0 a.s. holds true, but if m > 1 we may hope for W > 0 a.s. on the
survival event {Zn→ ∞} giving that Zn grows like a random constant times mn on
that event as n→ ∞. A famous result by KESTEN & STIGUM [73] states that this
holds true iff

EZ1 logZ1 = ∑
n≥1

pn n logn < ∞ (ZlogZ)

which we will assume hereafter. Then (Wn)n≥0 is ui and thus E|Wn−W | → 0, in
particular EW = EW0 = 1.

What can be said about the distribution of W? The following argument shows
that once again its distribution satisfies a SFPE. First notice that, besides (1.12), we
further have

Zn =
Z1

∑
j=1

Zn−1( j), n≥ 1, (1.13)

where (Zn( j))n≥0 denotes the generation size process of the subpopulation stem-
ming from the j th individual in the first generation of the whole population. In fact,
we can define (Zn( j))n≥0 for any j ≥ 1 in such a way that these processes are inde-
pendent copies of (Zn)n≥0 and also independent of Z1. Then, defining Wn( j) in an
obvious manner, we infer

Wn =
1
m

Z1

∑
j=1

Wn−1( j), n≥ 1

and then, by letting n→ ∞, that
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W =
1
m

Z1

∑
j=1

W ( j) a.s., (1.14)

where W ( j) denotes the almost sure limit of the martingale (Wn( j))n≥0. By what
has been pointed out before, the W ( j) are independent copies of W and independent
of Z1 so that (1.14) does indeed constitute an SFPE for L (W ). In terms of the LT
ϕ(t) := Ee−tW of W , it may be restated as

ϕ(t) = f ◦ϕ

( t
m

)
, t ≥ 0, (1.15)

as one can readily verify. With the help of this equation, one can further show (under
(ZlogZ)) that ϕ is the unique solution with right derivative ϕ ′(0+) = −EW = −1
at 0 [+ Problem 1.10]. Since distributions are determined by their LT’s we hence
conclude that L (W ) is the unique solution to (1.14).

There are many other functionals in connection with GWP’s that can be described
by a random recursive equation. Here we confine ourselves to two further examples
in the case when m≤ 1 in which almost certain extinction occurs. First, consider the
total population size process

Yn :=
n

∑
k=0

Zk, n≥ 0

which satisfies

Yn = 1+
Z1

∑
j=1

Yn−1( j), n≥ 1, (1.16)

where (Yn( j))n≥0 denotes the total population size process associated with the GWP
(Zn( j))n≥0 defined above. Plainly, Yn increases to an a.s. finite limit Y∞ which, by
(1.16), satisfies the SFPE

Y∞ = 1+
Z1

∑
j=1

Y∞( j). (1.17)

Problem 1.11 shows that this equation characterizes the distribution of Y∞ uniquely.
It is not obvious at all but has been shown by DWASS [41] that L (Y∞) can be
obtained explicitly, namely

P(Y∞ = j) =
1
j

p j, j−1, j ≥ 1,

where pi j := P(Z1 = j|Z0 = i) for i, j ≥ 0. The proof is based on a clever analysis
of the random recursive equation (1.16) in terms of gf’s.

As a second example, still assuming m ≤ 1, we mention the extinction time of
(Zn)n≥0, viz.

T := inf{n≥ 1 : Zn = 0}.
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If T ( j) denotes the corresponding random variable for the GWP (Zn( j))n≥0 for each
j ≥ 1, then the following SFPE follows immediately:

T = 1+
Z1∨

j=1

T ( j) (1.18)

with the convention that
∨0

j=1 x j := 0.

Problems

Problem 1.9. Given a GWP (Zn)n≥0 with one ancestor and finite offspring mean m,
prove that Wn = m−nZn for n≥ 0 forms a nonnegative martingale.

Problem 1.10. Prove (1.15) and then, assuming (ZlogZ), that ϕ is the unique solu-
tion with right derivative at 0 satisfying |ϕ ′(0+)|= 1.

Problem 1.11. Suppose m≤ 1 and let ϕ denote the LT of the final total population
size Y∞. Prove that ϕ satisfies the functional equation ϕ(t) = e−t f ◦ϕ(t) equivalent
to (1.17) and that it forms the unique solution in the class of LT’s of distributions.
[Hint: Use the convexity of f .]

1.4 The sorting algorithm Quicksort

Quicksort, first introduced by HOARE [68, 69], is probably the nowadays most
commonly used, so called divide-and-conquer algorithm to sort a list of n real num-
bers and serves as the standard sorting algorithm in UNIX-systems. Based on the
general idea to successively divide a given task into subtasks of the same kind but
smaller dimension, it forms a random recursive algorithm that may be briefly de-
scribed as follows: Given n distinct reals a1, ...,an, which are to be sorted in increas-
ing order, the first step is to create two sublists by first choosing an element x from
the list, called pivot, and then to put all ak smaller than x in the first sublist and all
ak bigger than x in the second sublist. The same procedure is then applied to the two
sublists and all further on created ones as long as these contain at least two elements.
Hence, the algorithm terminates when all sublists consist of only one element which
are then merged to yield a1, ...,an in increasing order. The way the pivots are chosen
throughout the performance of the algorithm may be deterministic or at random,
e.g. by picking any element of a given sublist with equal probability. Notice that the
particular values of a1, ...,an do not matter for the algorithm so that we may assume
w.l.o.g. that (a1, ...an) is a permutation of the numbers 1, ...n. When picking such a
permutation at random, the number of key comparisons needed by Quicksort to
output the ordered sample becomes a random variable Xn, and our goal hereafter is
to study the distribution of Xn. But before proceeding we give an example first.
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Example 1.12. In order to illustrate how Quicksort may perform on a given sam-
ple, we have depicted a permutation of the numbers 1,2, ...,12. The table below
shows that the algorithm needs four rounds to output the ordered sample. Each round
consists of the further subdivisions of the currently given sublists with more than
one element with respect to previously chosen pivots (shown in boldface). The final
column of the table displays how many key comparisons are needed to complete the
round.

List to be sorted 6 3 9 2 5 12 8 1 10 4 11 7 # key comparisons
Round 1 3 2 5 1 4 6 9 12 8 10 11 7 11
Round 2 2 1 3 5 4 • 8 7 9 12 10 11 9
Round 3 1 2 • 4 5 • 7 8 • 10 11 12 5
Round 4 1 • • 4 • • 7 • • 10 11 • 1

The reader may wonder about the necessity of Round 4 because the sample appears
to be in correct order already after Round 3. The simple explanation is that after
Round 3 we still have one sublist of length ≥ 2, namely (10,11) which in the final
round is assessed to be in correct order by choosing 10 as the pivot and making the
one necessary comparison with the other element 11 [+ also Figure 1.1 below].

10 3 2 9
5 8 12 11
7 1 6 4

3 2 5
1 4

2 1

1

5 4

4

9 12 8
10 11 7

8 7

7

12 10
11

10 11

11

Fig. 1.1 Example 1.12: Left and right nodes of the tree are representing the respective sublists as
created in the successive rounds by comparison with the pivot (shown in boldface) in the previous
node.

As already announced, our performance analysis of Quicksort will be based
on the number of key comparisons Xn needed to sort a random permutation of length
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n. It seems plausible that this number is essentially proportional to the performance
time and therefore the appropriate quantity to analyze.

To provide a rigorous model for Xn, let

Ωn := {π ∈ {1, ...,n}n : πi 6= π j for i 6= j}

be the permutation group of 1, ...,n, here the set of possible inputs, and Pn the (dis-
crete) uniform distribution on Ωn. The discrete random variable Xn : Ωn→ N0 then
maps any π on the number of key comparisons needed by Quicksort to sort π

in increasing order where, for simplicity, we assume that pivots are always chosen
as first elements in the appearing sublists1. Consequently, Zn(π) := π1 denotes the
pivot in the input list and has a uniform distribution on {1, ...,n}. It also gives the
rank of this element in the list. The derivation of results about the distribution of
Xn will be heavily based on the recursive structure of Quicksort which we are
now going to make formally more explicit. Denote by Ln,Rn the rank tuples of the
left and right sublist, respectively, created in the first round via key comparison with
Zn. Observe that these lists have lengths Zn − 1 and n− Zn, respectively, so that
Ln(π) ∈ ΩZn(π)−1 and Rn(π) ∈ Ωn−Zn(π) for any π ∈ Ωn. After these settings the
crucial random recursive equation for Xn takes the form

Xn = XZn−1 ◦Ln + Xn−Zn ◦Rn + n−1 (1.19)

for any n≥ 1, where X0( /0) := 0. It follows by a combinatorial argument that, given
Zn = i , Ln and Rn are conditionally independent and uniformly distributed on Ωi−1
and Ωn−i, respectively [+ Problem 1.14]. Setting P0(X0 ∈ ·) := δ0, it hence follows
that

Pn(Xn ∈ ·) =
n

∑
i=1

Pn(Zn = i)Pn(Xn ∈ ·|Zn = i)

=
1
n

n

∑
i=1

Pn(XZn−1 ◦Ln +Xn−Zn ◦Rn +n−1 ∈ ·|Zn = i)

=
1
n

n

∑
i=1

Pn(XZn−1 ◦Ln ∈ ·|Zn = i)∗Pn(Xn−Zn ◦Rn ∈ ·|Zn = i)∗δn−1

=
1
n

n

∑
i=1

Pi−1(Xi−1 ∈ ·)∗Pn−i(Xn−i ∈ ·)∗δn−1

for each n ≥ 1. From now on, we assume that all Xn,Zn, n ≥ 1, are defined on just
one sufficiently large probability space (Ω ,A,P) which further carries independent
random variables X ′0,X

′′
0 ,X

′
1,X

′′
1 , ..., which are also independent of (Xn,Zn)n≥1, such

that
X ′0 = X ′′0 := 0 and Xn

d
= X ′n

d
= X ′′n for n≥ 1.

Then equation (1.19) provides us with the distributional relation

1 this version is sometimes referred to as vanilla Quicksort
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Xn
d
= X ′Zn−1 + X ′′n−Zn + n−1 (1.20)

for all n≥ 1.
Our ultimate goal to be accomplished later [+ Section 5.6] is to show that a suit-

able normalization of Xn converges in distribution to some X∞ and to characterize
L (X∞) as the solution to a certain SFPE. At this point, we must contend ourselves
with some preliminary considerations towards this result due to RÖSLER [101] in-
cluding a heuristic derivation of the SFPE.

In order to gain an idea about a suitable normalization of Xn, we first take a look
at its expectation. Let Hn := ∑

n
k=1

1
k be the nth harmonic sum and

γ := lim
n→∞

(Hn− logn) = 0.5772...

denote Euler’s constant.

Lemma 1.13. For each n≥ 1,

EXn = 2(n+1)Hn−4n (1.21)

holds true and, furthermore,

EXn = 2(n+1) logn+(2γ−4)n+2γ +1+O
(

1
n

)
(1.22)

as n→ ∞.

Proof. Taking expectations in (1.20), we obtain

EXn = n−1+
n

∑
j=1

P(Zn = j)
(
EX j−1 +EXn− j

)

= n−1+
1
n

n

∑
j=1

(
EX j−1 +EXn− j

)

= n−1+
2
n

n−1

∑
j=1

EX j

and then upon division by n+1 and a straightforward calculation that

EXn

n+1
=

EXn−1

n
+

2(n−1)
n(n+1)

(1.23)

for all n ≥ 1. We leave it to the reader [+ Problem 1.15] to verify this recursion
and to derive (1.21) from it. The asymptotic expansion (1.22) then follows directly
when using that Hn = logn+ γ +(2n)−1 +O(n−2) as n→ ∞. ut
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The reader is asked to show in Problem 1.16 that VarXn ' σ2n2 as n→∞, where
σ2 := 7− 2

3 π2. In view of this fact it is now reasonable to study the asymptotic
behavior of the normalization

X̂n :=
Xn−EXn

n
.

The contraction argument due to RÖSLER [101] that proves convergence in distri-
bution of X̂n to a limit X̂∞ with mean 0 and variance σ2 will be postponed to Section
5.6. Here we outline the argument that shows that L (X∞), called Quicksort dis-
tribution, may again be characterized by an SFPE.

The argument embarks on the distributional equation (1.20), which after normal-
ization becomes

X̂n
d
=

Zn−1
n

X̂ ′Zn−1 +
n−Zn

n
X̂ ′′n−Zn + gn(Zn) (1.24)

for n≥ 2, where X̂0 = X̂1 := 0 and gn : {1, ...,n}→ R is defined by

gn(k) :=
n−1

n
+

1
n
(EXk−1 +EXn−k−EXn) . (1.25)

Notice that the X̂ ′n, X̂
′′
n , n≥ 0, continue to be independent of (Xn,Zn)n≥1. The reader

can easily verify [+ Problem 1.17] that Zn/n d→ Unif(0,1), and we will prove in
5.6 that 0≤ supn≥1,1≤k≤n gn(k)< ∞ as well as

lim
n→∞

gn(dnte) = g(t) := 1+2t log t +2(1− t) log(1− t)

for all t ∈ (0,1) uniformly on compact subsets, where dxe := inf{n ∈ Z : x ≤ n}.
By combining these facts and X̂n

d→ X̂∞, it can be deduced from (1.24) that L (X̂∞)
solves the SFPE

X̂∞

d
= UX̂ ′∞ +(1−U)X̂ ′′∞ +g(U) (1.26)

where X̂ ′∞, X̂
′′
∞ and U are independent with X̂ ′∞

d
= X̂ ′′∞

d
= X̂∞ and U d

= Unif(0,1). This
is the Quicksort equation, and we will also show in 5.6 that L (X̂∞) forms its
unique solution within the class of zero mean distributions with finite variance.

Binary search trees. A binary search tree (BST) of size n is a labeled binary tree
with n internal nodes generated from a permutation π = (π1, ...,πn) ∈Ωn. One way
to construct it is as follows: Start with π1, store it in the root of the tree and attach to
it two empty nodes, called external. Then π2 is compared with π1 and becomes the
left descendant if π2 < π1, and the right descendant otherwise. Attach two empty
nodes to the now internal node occupied by π2. Proceed with any πk in the same
manner by moving it along internal nodes until an external one is reached where it
is stored. At each internal node with value x, say, where x∈ {π1, ...,πk−1}, move left
if πk < x and right otherwise. Finish step k by attaching two external nodes to the
node now occupied by πk. After n steps all keys have been stored, giving a binary
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tree with n internal and n+ 1 external nodes. This is exemplified in Fig. 1.2 with
the permutation from Example 1.12. As one can see, the same tree as in Fig. 1.1
is obtained when ignoring external nodes. In fact, an application of Quicksort
always leads to the same result as the procedure just described when only storing
the leading element of each sublist (the pivot) in the nodes.

6

3

2

1

5

4

9

8

7

12

10

11

Fig. 1.2 The permutation (6,3,9,2,5,12,8,1,10,4,11,7) from Example 1.12 stored in a binary
search tree. External nodes are shown as empty circles.

Problems

Problem 1.14. Prove that, given Zn = i, the rank tuples Ln and Rn are conditionally
independent with a discrete uniform distribution on Ωi−1 and Ωn−i, respectively.

Problem 1.15. Complete the proof of Lemma 1.13 by verifying (1.23) and then
deriving (1.21) from it.

Problem 1.16. Prove that σ2
n := VarXn satisfies

σ
2 := lim

n→∞

σ2
n

n2 = 7− 2
3

π
2 = 0.4203... (1.27)

by doing the following parts:

(a) Use (1.20) to show that

σ
2
n = cn− (n−1)2 +

2
n

n−1

∑
k=1

σ
2
k (1.28)

for all n≥ 1, where µn := EXn and cn := 1
n ∑

n
k=1(µk−1 +µn−k−µn)

2.
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(b) Use (1.28) to derive the recursion

dn

n+1
=

dn−1

n
+

2
(
cn−1− (n−2)2

)

n(n+1)
(1.29)

for any n≥ 2, where dn := σ2
n +(n−1)2−cn for n≥ 1. Note that σ2

1 = c1 =
d1 = 0.

(c) Use Lemma 1.13 to show that

cn

n2 =
4
n

n

∑
k=1

(
k
n

log
(

k
n

)
+

(
1− k

n

)
log
(

1− k
n

))2

+ o(1)

as n→ ∞ and thereby

lim
n→∞

cn

n2 = c :=
10
3
− 2

9
π

2. (1.30)

(d) Finally, combine the previous parts to infer

lim
n→∞

σ2
n

n2 = 3(c−1)

which is easily seen to be the same as (1.27).
(e) Those readers who want to work harder should prove the stronger assertion

[stated by FILL & JANSON in [56]]

σ2
n

n2 = 3(c−1)− 2 logn
n

+O
(

1
n

)

as n→ ∞.

Problem 1.17. Prove that Zn/n d→ Unif(0,1) if Zn has a discrete uniform distribu-
tion on {1, ...,n} for each n≥ 1.

Problem 1.18. Let Dn denote the depth or height of a random BST with n internal
nodes, thus D0 = D1 = 0. Prove that

Dn
d
= 1+D′′Zn−1∨D′′n−Zn

for each n≥ 1, where D′k,D
′′
k , k ≥ 0, and Zn are independent random variables such

that L (Dk) = L (D′k) = L (D′′k ) for each k and L (Zn) = Unif({1, ...,n}).

1.5 Random difference equations and perpetuities

A random difference equation (RDE) is probably the simplest nontrivial example
of a random recursive equation, the recursion being defined by a random affine
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linear function Ψ(x) = Mx+Q for a pair (M,Q) of real-valued random variables.
More precisely, let (Mn,Qn)n≥1 be a sequence of independent copies of (M,Q), X0
a further random variable independent of this sequence, and define the sequence
(Xn)n≥0 recursively by

Xn := MnXn−1 +Qn, n≥ 1. (1.31)

This is the general form of a (one-dimensional) RDE and has been used in many
applications to model a quantity that is subject to an intrinsic random increase or
decay, given by Mn for the time interval (n− 1,n], and an external random in- or
output of size Qn right before time n for any n≥ 1. Here are some special cases:

• The choice M ≡ 1 leads to the classical random walk (RW)

Xn = X0 +
n

∑
k=1

Qk, n≥ 0

with initial value (delay) X0, which constitutes one of the most fundamental
type of a random sequence.

• If Q≡ 0, then we obtain its multiplicative counterpart

Xn = X0

n

∏
k=1

Mk, n≥ 0,

called multiplicative RW.
• If M ≡ α for some constant α 6= 0, then

Xn = αXn−1 +Qn = ...= α
nX0 +

n

∑
k=1

α
n−kQk, n≥ 1

is a so-called autoregressive process of order 1, usually abbreviated as AR(1),
and one of the simplest examples of a linear times series.

• As a particular case of an AR(1)-process consider the situation where α ∈ (0,1),
X0 = 0 and Qn = αξn with L (ξn) = Bern(p) for some p∈ (0,1). Then we have

Xn =
n

∑
k=1

α
k
ξn+1−k

d
=

n

∑
k=1

α
k
ξk =: X̂n

for each n≥ 0, and since X̂n increases a.s. to the limit

X̂∞ := ∑
n≥1

α
n
ξn,

we infer that Xn
d→ X̂∞. The law of X̂∞ is called a Bernoulli convolution and has

received considerable interest with regard to the question when it is nonsingular
with respect to Lebesgue measure. The interested reader may consult the survey
by PERES, SCHLAG & SOLOMYAK [99] and the references given there.
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Returning to the general situation, we first note that an iteration of (1.31) leads to

Xn = MnXn−1 +Qn

= MnMn−1Xn−2 +MnQn−1 +Qn

= MnMn−1Mn−2Xn−3 +MnMn−1Qn−2 +MnQn−1 +Qn

...

= MnMn−1 · ... ·M1X0 +
n

∑
k=1

Mn · ... ·Mk+1Qk

for each n ≥ 1. Now use the independence assumptions and replace (Mk,Qk)1≤k≤n
with the copy (Mn+1−k,Qn+1−k)1≤k≤n to see that

Xn
d
= ΠnX0 +

n

∑
k=1

Πk−1Qk (1.32)

for any n≥ 1, where (Πn)n≥0 is the multiplicative RW associated with (Mn)n≥1 and
starting at Π0 = 1.

We are interested in finding conditions that ensure the convergence in distribution
of Xn, but confine ourselves at this point to some basic observations. By an appeal
to the continuous mapping theorem [as stated in Problem 1.8], we infer from (1.31)
that Xn

d→ X∞ implies the SFPE

X∞

d
= MX∞ +Q, (1.33)

naturally the independence of (M,Q) and X∞. Furthermore, by (1.32), it entails that

X∞

d
= X̂∞, where

X̂∞ := lim
n→∞

(
ΠnX0 +

n

∑
k=1

Πk−1Qk

)

exists in the sense of distributional convergence.
It is natural to ask whether L (X∞) depends on the initial value X0. Consider the

bivariate RDE

(Xn,X ′n) = (MnXn−1 +Qn,MnX ′n−1 +Qn), n≥ 1

with two distinct initial values X0 and X ′0. Then

Xn−X ′n = Mn(Xn−1−X ′n−1) = ...= Πn(X0−X ′0)

for each n≥ 1. Consequently, sufficient for L (X∞) to be independent of X0 is that

lim
n→∞

Πn = 0 a.s. (1.34)
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and X̂∞ = ∑
k≥1

Πk−1Qk exists a.s. in R. (1.35)

The infinite series ∑k≥1 Πk−1Qk is called perpetuity which is an actuarial notion
for the present value of an infinite payment stream, here Q1,Q2, ..., at times 1,2,...
discounted by the random products Π1,Π2, ... The reader is asked in Problem 1.20
to show that (1.34) and (1.35) are valid if E log |M|< 0, E|M|θ < ∞ and E|Q|θ < ∞

for some θ > 0. On the other hand, these conditions are far from being necessary.
RDE’s and perpetuities will be further discussed in Subsections 3.1.4 and 4.4.1.

Problems

Problem 1.19. Suppose that M ≥ 0 a.s. and that E logM exists, i.e. E log+ M < ∞

or E log−M < ∞. Prove that exactly one of the following cases occurs for the mul-
tiplicative RW (Πn)n≥0 and characterize them in terms of M.

Πn = 1 a.s. for all n≥ 0
lim
n→∞

Πn = ∞ a.s.

lim
n→∞

Πn = 0 a.s.

0 = liminf
n→∞

Πn < limsup
n→∞

Πn = ∞ a.s.

Problem 1.20. Assuming E log |M|< 0, E|M|θ <∞ and E|Q|θ <∞ for some θ > 0,
prove the following assertions:

(a) There exists κ ∈ (0,θ ] such that E|M|κ < 1. [Hint: Consider the function
s 7→ E|M|s for s ∈ [0,θ ].]

(b) |Πn| → 0 a.s. and
∣∣∣∣∣∑k≥1

Πk−1Qk

∣∣∣∣∣ ≤ ∑
k≥1
|Πk−1Qk| < ∞ a.s.

(c) The last assertion remains valid if E log+ |Q|< ∞ [use a Borel-Cantelli argu-
ment].

Problem 1.21. Given an RDE Xn = MnXn−1 +Qn for n ≥ 1, prove that, if Xn con-
verges in distribution and P(Q = 0)< 1, then P(M = 0) = 0.

Problem 1.22. Assuming M and Q to be constants, find all solutions to the SFPE
(1.33), i.e. X d

= MX +Q.
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1.6 A nonlinear time series model

Motivated by its relevance for the modeling of financial data, BORKOVEC & KLÜP-
PELBERG [22] studied the limit distribution of the following nonlinear time series
model, designed to allow conditional variances to depend on past information (con-
ditional heteroscedasticity) and reflecting the observations of early empirical work
by MANDELBROT [88] and FAMA [50] which had shown that “that large changes
in equity returns and exchange rates, with high sampling frequency, tend to be fol-
lowed by large changes settling down after some time to a more normal behavior”
[+ [22, p. 1220]]. This leads to models of the form

Xn = σnεn, n≥ 1, (1.36)

where the εn, called innovations, are iid symmetric random variables and the σn,
called volatilities, describe the change of the (conditional) variance. If σ2

n is a linear
function of the p prior squared observations, viz.

σ
2
n = β +

p

∑
k=1

λkX2
n−k, n≥ 1, (1.37)

where β ,λp > 0 and λ1, ...,λp−1 ≥ 0, we are given an autoregressive conditionally
heteroscedastic (ARCH) model of order p as introduced by ENGLE [46]. Here we
focus on the simplest case p = 1 and note that a combination of (1.36) and (1.37)
then leads to the random recursive equation

Xn =
(
β +λX2

n−1
)1/2

εn, n≥ 1, (1.38)

for some β ,λ > 0, naturally assuming that X0 and (εn)n≥1 are independent. It may
further be extended by adding an autoregressive term, viz.

Xn = αXn−1 +
(
β +λX2

n−1
)1/2

εn, n≥ 1, (1.39)

with α ∈R, to give an AR(1)-model with ARCH(1) errors. This is the model actually
studied in [22] and belongs to a larger class of autoregressive models with ARCH
errors introduced by WEISS [118].

If Xn converges in distribution to a random variable X∞, the latter may obviously
again be described by an SFPE, namely

X∞

d
= αX∞ +

(
β +λX2

∞

)1/2
ε (1.40)

where ε is a copy of the εn and independent of X∞. The intersting questions are,
for which parameter triples (α,β ,λ ) convergence in distribution actually occurs,
whether in this case the SFPE characterizes L (X∞), and what information the SFPE
provides about the tail behavior of L (X∞).
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We close this section with some observations of a more general kind, exemplified
by the present model. Writing (1.39) in the form

Xn = φ(Xn−1,εn), n≥ 1,

where φ(x,y) = φα,β ,λ (x,y) = αx+(β +λx2)1/2y, we immediately infer, by using
the independence of Xn−1,εn and the identical distribution of the innovations, that
(Xn)n≥0 forms a temporally homogeneous Markov chain (MC) with state space R
and transition kernel

P(x,A) = P((αx+(β +λx2)1/2
ε ∈ A), A ∈B(R).

The continuity of φ(·,y) for any y ∈ R further shows that (Xn)n≥0 forms a Feller
chain, defined by the property that

x 7→ P f (x) :=
∫

f (y) P(x,dy) = E f (αx+(β +λx2)1/2
ε) ∈ Cb(R)

whenever f ∈ Cb(R). In other words, a Feller kernel P maps bounded continuous
functions to bounded continuous functions. Next we point out that π forms a so-
lution to the SFPE (1.40), i.e. X d

= φ(X ,ε), iff it is a a stationary distribution for
(Xn)n≥0. The latter means that

πP :=
∫

P(x, ·) π(dx) = π

and therefore that L (Xn−1) = π implies L (Xn) = π . Thus, to determine all so-
lutions to the SFPE means to find all stationary distributions of the MC (Xn)n≥0.
Here is a lemma that sometimes provides a simple tool to check the existence of a
stationary distribution for a Feller chain on R.

Lemma 1.23. Let (Xn)n≥0 be a Feller chain on R.

(a) If Xn
d→ X∞, then L (X∞) is a stationary distribution.

(b) If (Xn)n≥0 is tight, then there exists a stationary distribution.

Proof. Problem 1.24 ut

Problems

Problem 1.24. Prove Lemma 1.23. [Hint for part (b): Show that tightness implies
that (n−1

∑
n
k=1 µPk)n≥1, contains a weakly convergent subsequence, where Pk de-

notes the k-step transition kernel of the chain and µ := P(X0 ∈ ·). Then verify that
the weak limit is necessarily a stationary distribution.]
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Problem 1.25. Given the random recursive equation (1.38) with λ ∈ (0,1), Eε2 = 1
and EX2

0 < ∞, prove the following assertions:

(a) (Xn)n≥0 is L2-bounded, that is supn≥0EX2
n < ∞.

(b) (Xn)n≥0 possesses a stationary distribution which is nondegenerate.

Problem 1.26. Consider the random recursive equation (1.39) with α 6= 0, E|ε|<∞

(thus Eε = 0) and E|X0|< ∞.

(a) Prove that (α−nXn)n≥0 is a martingale.
(b) Assuming Eε2 < ∞ and EX2

0 < ∞, find a necessary and sufficient condition
on (α,β ,λ ) ∈ (R\{0})×R>×R> for (Xn)n≥0 to be L2-bounded.

1.7 A noisy voter model on a directed tree

Let T3(n) =
⋃n

k=0{1,2,3}k be the rooted homogenous tree of order 3 and height n
in Ulam-Harris labeling and T3 = T3(∞) its infinite height counterpart. This means
that {1,2,3}0 consists of the root ∅ and that each vertex v= (v1, ...,vk) ∈ {1,2,3}k

at level k (< n for T3(n)) has exactly 3 children, labeled (v1, ...,vk, i) for i = 1,2,3
[+ Fig. 1.3 below]. Let us write v1...vk as shorthand for (v1, ...,vk), |v| for the
length of v, and uv for the concatenation of u and v. Note that u is the parent node
of u1,u2,u3.

For any fixed n ≥ 1, let {Xn(v) : v ∈ {1,2,3}n} be a family of iid Bern(p)-va-
riables (p> 0) and {ξ (v) : v ∈ T3(n−1)} a second family of iid Bern(ε)-variables
(ε > 0 small) independent of the former one. As in ALDOUS & BANDYOPADHYAY
[1, Example 13], we now define recursively

Xn(u) := ξ (u)+1{Xn(u1)+Xn(u2)+Xn(u3)≥2} mod 2 (1.41)

and Xn := Xn(∅). A possible interpretation, reflecting the title of this subsection, is
the following: Each parent node adopts the majority opinion, which can be 0 or 1,
of its children, except with a small probability ε adopting the opposite opinion.

∅

1

11 12 13

2

21 22 23

3

31 32 33

Fig. 1.3 The rooted homogenous tree T3(3) with Ulam-Harris labeling
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Following [1], we call the process (Xn(v))v∈T3(n) a recursive tree process (RTP)
of depth n and note that the recursion is bottom-up because the value of Xn(v) is
defined via the values of the corresponding variables of the children vi for i = 1,2,3.
Hence, the terminal or output value is Xn(∅).

The reader is asked in Problem 1.27 to verify the basic recursive relation

Xn
d
= ξ +1{Xn−1+X ′n−1+X ′′n−1≥2} mod 2 (1.42)

for n ≥ 1, where Xn−1,X ′n−1,X
′′
n−1 are iid and independent of ξ

d
= Bern(ε), and

L (X0(∅)) = Bern(p). This constitutes again a random recursive equation for the
Xn, but only in terms of their distributions. In other words, we are given here a map-
ping that maps the distribution of Xn−1 to the distribution of Xn. Now it is readily
seen that, if L (Xn−1) = Bern(q), then L (Xn) = Bern(g(q)), where

g(s) := (1− ε)(s3 +3s2(1− s))+ ε(1− s3−3s2(1− s)) (1.43)

for s∈ [0,1]. As Fig. 1.4 shows, the function g has three fixed points p(ε), 1
2 ,1− p(ε)

with p(ε)→ 0 as ε→ 0. Hence, if L (X0) = Bern(q) with q being one of these fixed
points, then L (Xn) = Bern(q) for all n ≥ 1. The asymptotic behavior of Xn when
L (X0) = Bern(q) for q 6∈ {p(ε), 1

2 ,1− p(ε)} is discussed in Problem 1.28.
Returning to the RTP (Xn(v))v∈T3(n) defined above, it follows that the marginal

distributions of all Xn(v) are the same whenever Bern(q) for q ∈ {p(ε), 1
2 ,1− p(ε)}

is chosen as the distribution of the variables at the bottom of the tree (level n).
In this case the RTP is called invariant, and it may be extended to an invariant
RTP (Xn(v))v∈T3 on the infinite tree T3 with the help of Kolmogorov’s consistency
theorem.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 1.4 The function g(s) = (1− ε)(s3 +3s2(1− s))+ ε(1− s3−3s2(1− s)) with ε = 0.05.
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Problems

Problem 1.27. Prove (1.42) under the stated assumptions.

Problem 1.28. Let (Xn)n≥0 be a sequence of Bernoulli variables satisfying (1.42)
with L (ξ ) = Bern(ε) for any small ε and L (X0) = Bern(q) for any q ∈ [0,1]. Let
g be defined by (1.43) with fixed points p(ε), 1

2 ,1− p(ε). Prove that

Xn
d→ X∞, where L (X∞) =





Bern(p(ε)), if q< 1
2 ,

Bern(1/2), if q = 1
2 ,

Bern(1− p(ε)), if q> 1
2 .

Problem 1.29. Here is a simpler variation of the noisy voter model on the binary
trees T2(n) =

⋃n
k=0{1,2}n, n≥ 1: Consider an RTP (Xn(v))v∈T2(n) of depth n with a

family {Xn(v) : v ∈ {1,2}}n of iid Bern(p)-variables (0≤ p≤ 1). For any parental
vertex u ∈ T2(n−1), define

Xn(u) := ξ (u)+Xn(uζ (u)) mod 2,

where {(ξ (u),ζ (u)) : u ∈ T2(n− 1)} is independent of {Xn(v) : v ∈ {1,2}}n and
consisting of iid random vectors with common distribution Bern(ε)⊗Unif({1,2})
for some ε ∈ (0,1). This means that u adopts the opinion of the randomly chosen
child uζ (u), except with probability ε adopting the opposite opinion. Put Xn :=
Xn(∅) for n≥ 0, where L (X0(∅)) = Bern(p), and prove:

(a) For all n≥ 1, Xn
d
= ξ +Xn−1 mod 2.

(b) For any p ∈ [0,1], Xn converges in distribution to Bern(1/2).
(c) The RTP’s defined above are invariant iff p = 1/2.

1.8 An excursion to hydrology: the Horton-Strahler number

The Strahler number2 or Horton-Strahler number was first developed by two Amer-
icans, the ecologist and soil scientist HORTON [70] and the geoscientist STRAHLER
[109, 110], as a measure in hydrology for stream size based on a hierarchy of trib-
utaries3 In this context, it is also referred to as the Strahler stream order. It further
arises in the analysis of hierarchical biological structures (like biological trees) and
of social networks. BENDER in his introductory book [15] on mathematical mod-
eling has a nicely written section on stream networks which provides a little more
background information.

2 in German called Fluss- oder Gewässerordnungszahl nach Strahler
3 defined as a river which flows into a parent river or lake instead of directly flowing into a sea or
ocean.
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In mathematics, the Strahler number is simply a numerical measure of the bran-
ching complexity of a finite (mathematical) tree and defined as follows (when using
Ulam-Harris labeling as in the previous section): Starting at the bottom, all leaves
(the sources in the hydrological context) get Strahler number 1. For any other vertex
v, suppose it has children v1, ...,vk with respective Strahler numbers S(v1), ...,S(vk)
having maximal value s, say. Then the Strahler number S(v) at v is recursively de-
fined as

• s if this value is attained uniquely among the S(vi), i= 1...,k.
• s+1 if S(vi) = S(vj) for at least two distinct i, j ∈ {1, ...,k}.
Finally, the Strahler number or index of the tree is defined as S(∅).

In the river network context, the trees are typically binary and the numbers are
assigned to the edges leaving a node upwards rather than the node itself [+ Fig.
1.5]. Of course, the nodes represent the points where two streams come together.
When two streams of the same order k meet, they form a stream of order k + 1,
whereas if one of them has a lower order it is viewed as subordinate to the higher
stream, the order of which thus remains unchanged. The index of a stream or river
may range from 1 (a stream with no tributaries) to 12 (the most powerful river, the
Amazon, at its mouth). The Ohio River is of order eight and the Mississippi River
is of order 10. 80% of the streams and rivers on the planet are first or second order
[+ http://en.wikipedia.org/wiki/Strahler_number].

Fig. 1.5 U.S. Corps of Engineer diagram showing the Strahler stream order.
[license by http://creativecommons.org/licenses/by-sa/3.0/deed.en]

Now let us return to the mathematical framework. Given a finite tree τ , the above
definition of the (S(v))v∈τ provides us with another example of a RTP of finite depth
which becomes stochastic as soon as τ is chosen by some random mechanism. For
instance τ may be the realization of a Galton-Watson tree up to some finite genera-
tion. In this case, with (Zn)n≥0 denoting the associated GWP, one can easily derive
the following random recursive equation for the Strahler index Sn of the Galton-
Watson tree up to generation n:

Sn = 1{Z1=0}+1{Z1≥1}
(

max
1≤k≤Z1

Sn−1(k)+1{Nn>1}
)
, (1.44)
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where Sn−1(k) denotes the Strahler index of the subtree rooted at the kth member
of the first generation and Nn := |{1 ≤ k ≤ Z1 : Sn−1(k) = max1≤i≤Z1 Sn−1(i)}|. In
this formulation, only Sn−1(1), ...,Sn−1(Z1) are specified and, given Z1, condition-
ally i.i.d. with the same distribution as Sn−1. However, we can also define an infinite
sequence (Sn−1(k))k≥1 of independent copies of Sn−1 which are unconditionally
independent of Z1. This does not affect the validity of (1.44). Since Nn is then obvi-
ously a measurable function of Z1,Sn−1(1),Sn−1(2), ..., we see that (1.44) fits into
the general form

Sn = Ψ(Z1,Sn−1(1),Sn−1(2), ...)

for some measurable function Ψ (not depending on n).
As another example, one may consider (S(v))v∈τ when τ is drawn at random from

the set of binary trees with n nodes. This was done by DEVROYE & KRUSCZEWSKI
[33] who showed that, if Sn := S(∅), then

ESn = log4 n+O(1) as n→ ∞

and P(|Sn− log4 n| ≥ x) ≤ c4−x

for all x > 0, n ≥ 1 and some c > 0. Therefore, the distribution of Sn exhibits

1

0 1

0 1

0 1

0 1

Fig. 1.6 The binary tree with 5 internal nodes having minimal Strahler number 1. Due to its shape
when including external nodes (those with numbers 0) it is sometimes called “gourmand de la
vigne”.

very sharp concentration about its mean which is approximately equal to log4 n. In
connection with this result it is worthwhile to point out that the binary trees with
extremal Strahler numbers are

• the single-stranded tree with n nodes and Strahler number 1 [+ Fig. 1.6],
• the complete tree with k levels, n = 2k− 1 nodes and Strahler number Sn =

k = log2(n+1) [+ Fig. 1.7].
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4

3

2

1 1

2

1 1

3

2

1 1

2

1 1

Fig. 1.7 The binary tree with 24−1 = 15 internal nodes and maximal Strahler number 4.





Chapter 2
Renewal theory

Terminology. An additive sequence (Sn)n≥0 of real-valued random variables with
increments X1,X2, ... is called

random walk (RW) if X1,X2, ... are iid and independent of S0;
renewal process (RP) if it is a RW such that S0,X1,X2, ... are nonnega-

tive and P(X1 > 0)> 0;
standard random walk (SRW) if it is a RW with S0 = 0. It is also called zero-

delayed RW;
standard renewal process (SRP) if it is a RP with S0 = 0. It is also called zero-

delayed RP.

Given a RW (Sn)n≥0, we use X for a generic copy of its increments. The initial vari-
able S0 is also called delay, the mean of X , if it exists, the drift of (Sn)n≥0. Finally,
we are given a standard model (Ω ,A,(Sn)n≥0,(Pλ )λ∈P(R)) if (Sn)n≥0, defined on
(Ω ,A), constitutes a RW under each Pλ with the same increment distribution F ,
say, and Pλ (S0 ∈ ·) = λ , hence Pλ (Sn ∈ ·) = λ ∗F∗n for each n ∈ N, where F∗n

denotes n-fold convolution of F .

2.1 An introduction and first results

Let us begin with a short description of the classical renewal problem: Suppose we
are given an infinite supply of light bulbs which are used one at a time until they
fail. Their lifetimes are denoted as X1,X2, ... and assumed to be iid random variables
with positive mean µ . If the first light bulb is installed at time S0 := 0, then

Sn :=
n

∑
k=1

Xk for n≥ 1

denotes the time at which the nth bulb fails and is replaced with a new one. In
other words, each Sn marks a renewal epoch. Due to this interpretation, a sequence

29
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(Sn)n≥0 with iid nonnegative increments having positive mean is called renewal
process (RP). Let N(t) denote the number of renewals up to time t, that is

N(t) := sup{n≥ 0 : Sn ≤ t} for t ≥ 0. (2.1)

An equivalent definition is

N(t) := ∑
n≥1

1[0,t](Sn)

and has the advantage that it immediately extends to general measurable subsets A
of R≥ by putting

N(A) := ∑
n≥1

1A(Sn) = ∑
n≥1

δSn(A). (2.2)

We see that N is in fact a random counting measure, also called point process, on
(R≥,B(R≥)). By further defining its intensity measure

U(A) := EN(A) = ∑
n≥1

P(Sn ∈ A), A ∈B(R≥), (2.3)

we arrive at the so-called renewal measure of (Sn)n≥1 which measures the expected
number of renewals in a set and is one of the central objects in renewal theory. Its
“distribution function”

[0,∞) 3 t 7→ U(t) := U([0, t]) = ∑
n≥1

P(Sn ≤ t) (2.4)

is called renewal function of (Sn)n≥1 and naturally of particular interest.

0 S1 S2 S3
t

N(t)

1

2

3

•

•

•

•

Fig. 2.1 The renewal counting process (N(t))t≥0 with renewal epochs S1,S2, ...

Natural questions to be asked now are ...

(Q1) Is the number of renewals up to time t, denoted as N(t), almost surely finite
for all t > 0? And what about its expectation EN(t)?
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(Q2) What is the asymptotic behavior of t−1N(t) and its expectation as t → ∞,
that is the long run average (expected) number of renewals per unit of time?

(Q3) What can be said about the long run behavior of E(N(t +h)−N(t)) for any
fixed h> 0?

... with partial answers provided by the following lemma. Given a distribution F ,
let F∗n denote its n-fold convolution for n ∈ N and F∗0 := δ0.

Lemma 2.1. Let (Sn)n≥0 be a RP with S0 = 0, increment distribution F, drift
µ =ES1 ∈ (0,∞] and renewal measure U=∑n≥1P(Sn ∈ ·). Then the following
assertions hold true:

(a) N(t)< ∞ a.s. for all t ≥ 0.
(b) P(N(t) = n) = F∗n(t)−F∗(n+1)(t) for all n ∈ N0 and t ≥ 0.
(c) U= ∑n≥1 F∗n, in particular U(t) = ∑n≥1 F∗n(t) for any t ≥ 0.
(d) EeaN(t) < ∞ for all t ≥ 0 and some a> 0.
(e) t−1N(t)→ µ−1 a.s. with the usual convention that ∞−1 := 0.
(f) [Elementary Renewal Theorem] lim t→∞ t−1U(t) = µ−1.

Proof. (a) follows immediately from Sn→ ∞ a.s.
(b) follows when noting that

{N(t) = n}= {Sn ≤ t < Sn+1}= {Sn ≤ t}\{Sn+1 ≤ t}

for all n ∈ N0 and t ≥ 0.
(c) Here it suffices to note that L (Sn) = F∗n for all n ∈ N0.
(d) Since µ = ES1 > 0, there exists b > 0 such that F(b) < 1. Consider the RP

(S′n)n≥0 with increments given by X ′n := b1{Xn>b} for n ∈ N and renewal counting
process (N′(t))t≥0. Then S′n ≤ Sn for all n ∈ N0 implies N(t) ≤ N′(t) for all t ≥ 0.
Now observe that, for n ∈ N and 0< t < b,

P(N′(t)> n) = P(X ′1 = ...= X ′n = 0) = F(b)n

implying EeaN(t) ≤ EeaN′(t) < ∞ for any a<− logF(b) as one easily see. We leave
it as an exercise [+ Problem 2.3] to extend the last assertion to all t ≥ b.

(e) Since N(t)→ ∞ a.s., the SLLN implies N(t)−1SN(t)→ µ a.s. By combining
this with the obvious inequality SN(t) ≤ t < SN(t)+1 [use (2.1)] we find

SN(t)

N(t)
≤ t

N(t)
≤ N(t)+1

N(t)
·

SN(t)+1

N(t)+1

and then obtain t−1N(t)→ µ a.s. by letting t tend to ∞ in this inequality.
(f) Use U(t) = EN(t), (e) and Fatou’s lemma to infer

liminf
t→∞

U(t)
t
≥ E

(
liminf

t→∞

N(t)
t

)
≥ 1

µ
.
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Towards a reverse estimate, notice that

N(t)+1 = τ(t) := inf{n≥ 0 : Sn > t}

and thus U(t)+1 = Eτ(t) for all t ≥ 0. If X1,X2, ... are bounded by some c > 0, in
particular giving µ < ∞, then we obtain with the help of Wald’s identity [+ Prop.
2.53]

Eτ(t) =
ESτ(t)

µ
=

t +E(Sτ(t)− t)
µ

≤ t + c
µ

and thereby

limsup
t→∞

U(t)
t
≤ limsup

t→∞

Eτ(t)
t
≤ 1

µ

as required. Otherwise, consider the RP (Sc,n)n≥0 with generic increment X ∧c, drift
µc := E(X ∧ c) > 0 and renewal measure Uc. Plainly, U(t) ≤ Uc(t) for all t ≥ 0,
whence

limsup
t→∞

U(t)
t
≤ limsup

t→∞

Uc(t)
t
≤ 1

µc

for any c> 0. Finally, use limc→∞ µc = µ to arrive at

limsup
t→∞

U(t)
t
≤ 1

µ

which completes the proof of the lemma. ut

Remark 2.2. The reader is asked in Problem 2.4 below to verify that all assertions
of the previous lemma except for (b) remain valid if (Sn)n≥0 has arbitrary delay
distribution F0 := P(S0 ∈ ·). As for part (b), it must be modified as

P(N(t) = n) = F0 ∗F∗(n−1)(t)−F0 ∗F∗n(t)

for n ∈ N and t ≥ 0, and P(N(t) = 0) = 1−F0(t).

Problems

Problem 2.3. Let (Sn)n≥0 be a RP with S0 = 0, increment distribution Bern(p) for
some p ∈ (0,1) and renewal counting process (N(t))t≥0. Prove the following asser-
tions:

(a) L (N(n)) = NBin(n+1, p) for each n ∈ N0.
(b) For any t ≥ 0, EeaN(t) < ∞ iff a<− log(1− p).

Problem 2.4. Prove Lemma 2.1, with part (b) modified in the form stated in Rem.
2.2, for a general delayed RP with delay distribution F0.
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2.2 An important special case: exponential lifetimes

A case of particular interest occurs when the RP (Sn)n≥0 has exponential incre-
ments, i.e. F = Exp(1/µ) for some µ > 0. Then Sn has a Gamma distribution with
parameters n and 1/µ , i.e. F∗n = Γ (n,1/µ), the λλ -density of which equals

fn(x) =
xn−1

µn(n−1)!
e−x/µ 1(0,∞)(x)

for each n ∈ N. Since U = ∑n≥1 F∗n, we find that its λ -density u, called renewal
density, equals

u(x) = ∑
n≥1

fn(x) = e−x/µ
∑
n≥1

xn−1

µn(n−1)!
=

1
µ

for all x > 0, hence U = µ−1 λλ+, where λλ+ := λλ (· ∩R>). Equivalently, the ex-
pected number of renewals in an interval [t, t + h] ⊂ R≥ of length h > 0 always
equals µ−1h. The reason lurking behind this phenomenon is of course the lack of
memory property of the exponential distribution. Here is a heuristic argument: Sup-
pose we start observing the RP at a time t > 0 and reset our clock to 0. Then renewals
occur at Sτ(t)− t,Sτ(t)+1− t, ... with interrenewal times Xτ(t)+1,Xτ(t)+2, ... after the
delay R(t) := Sτ(t)− t. Proposition ?? will show that R(t) and Xτ(t)+1,Xτ(t)+2, ... are
independent and the latter sequence further iid with L (Xτ(t)+1) = Exp(1/µ). Con-
sequently, we will see the same arrival pattern as someone who starts observing the
system at time 0 if L (R(t)) = Exp(1/µ) as well. But this is indeed intuitively clear
by the lack of memory property and may also formally be proved fairly easily [+
Problem 2.6].

Turning to the associated renewal counting process (N(t))t≥0, the previous con-
siderations entail that L (N(t + h)−N(t)) = L (N(h)) for any t ≥ 0 and h > 0
which means that (N(t))t≥0 has stationary increments. They further provide some
evidence (though not a proof) that the numbers of renewals in [0, t] and [t, t + h]
are independent. In fact, one can more generally show that, for any choice 0 = t0 <
t1 < ... < tn < ∞ and n ∈ N, the random variables N(tk)−N(tk−1), k = 1, ...,n, are
independent which means that (N(t))t≥0 has independent increments. It remains
to find the distribution of N(t) for any t > 0. By Lemma 2.1(b), it follows that
pn(t) := P(N(t) = n) satisfies

pn(t) = F∗n(t)−F∗(n+1)(t)

for all t > 0 and n ∈ N0. If n = 0, this yields

p0(t) = 1−F(t) = e−t/µ , t > 0.

For n≥ 1, pn(·) is differentiable with
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p′n(t) = fn(t)− fn+1(t) = e−t/µ

(
tn−1

µn(n−1)!
− tn

µn+1n!

)
, t > 0,

and pn(0) = 0. Consequently,

pn(t) = e−t/µ (t/µ)n

n!
, t > 0,

and we have arrived at the following result.

Theorem 2.5. If (Sn)n≥0 is a SRP having exponential increments with param-
eter 1/µ , then the associated renewal counting process (N(t))t≥0 forms a
homogeneous Poisson process with intensity (rate) 1/µ , that is:

(PP1) N(0) = 0.
(PP2) (N(t))t≥0 has independent increments, i.e.,

N(t1), N(t2)−N(t1), ..., N(tn)−N(tn−1)

are independent random variables for each choice of n ∈ N and
0< t1 < t2 < ... < tn < ∞.

(PP3) (N(t))t≥0 has stationary increments, i.e., N(s+t)−N(s) d
= N(t) for

all s, t ≥ 0.
(PP4) N(t) d

= Poisson(t/µ) for each t ≥ 0.

If µ = 1, then (N(t))t≥0 is also called standard Poisson process.

Poisson processes have many nice properties some of which are stated in the
Problem section below.

Problems

Problem 2.6. Let (Sn)n≥0 be a RP with S0 = 0, increment distribution Exp(1/µ) for
some µ > 0 and renewal measure U = ∑n≥1P(Sn ∈ ·). Let also R(t) = Sτ(t)− t for
t ≥ 0. Prove the following assertions:

(a) P(R(t)> s) = e−(s+t)/µ +
∫
[0,t] e

−(t+s−x)/µ U(dx) for all s> 0.
(b) L (R(t)) = Exp(1/µ) for all t ≥ 0. [Use (a).]

Problem 2.7. Let (N(t))t≥0 be a homogeneous Poisson process with intensity θ .
Find the conditional distribution of N(s) given N(t)= n for any 0< s< t and n∈N0.

Problem 2.8 (Superposition of Poisson processes). Given two independent homo-
geneous Poisson processes (N1(t))t≥0 and (N2(t))t≥0 with intensities θ1 and θ2,
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respectively, prove that the superposition N(t) := N1(t)+N2(t) for t ≥ 0 forms a
homogeneous Poisson process with intensity θ1 +θ2.

Problem 2.9 (Thinning of Poisson processes). Given a homogeneous Poisson pro-
cess (N(t))t≥0 with associated SRP (Sn)n≥0 of arrival epochs, let (ξn)n≥1 be an
independent sequence of iid Bern(p) variables for some p ∈ (0,1). Let (N1(t))t≥0
be the thinning or p-thinning of (N(t))t≥0, defined by

N1(t) := ∑
n≥1

ξnδSn([0, t]), t ≥ 0,

and put N2(t) = N(t)−N1(t) for t ≥ 0.

Problem 2.10 (Conditional equidistribution of points). Let (N(t))t≥0 be a homo-
geneous Poisson process with intensity θ and associated SRP (Sn)n≥0. Let further
(Un)n≥1 be a sequence of iid Unif(0,1) variables. Prove that

L ((S1, ...,Sn)|N(t) = n) = L ((tU(1), ..., tU(n)))

for all t > 0 and n ∈ N, where (U(1), ...,U(n)) denotes the increasing order statis-
tic of the random vector (U1, ...,Un). This means that, given N(t) = n, a sample
of S1, ...,Sn may be generated by throwing n points uniformly at random into the
interval [0, t].

2.3 Lattice-type

A more profound analysis of the renewal measure U of a SRP (Sn)n≥0 must take
into account the fact that, if X takes values only in a closed discrete subgroup of R,
thus in Gd := dZ for some d > 0, then U puts only mass on this subgroup as well
and consequently looks very different from Lebesgue measure encountered in the
previous section. The subsequent definitions provide the appropriate specifications
of the lattice-type of a distribution F on R and of a RW (Sn)n≥0.

Definition 2.11. For a distribution F on R, its lattice-span d(F) is defined as

d(F) := sup{d ∈ [0,∞] : F(Gd) = 1}.

Let {Fx : x∈R} denote the translation family associated with F , i.e., Fx(B) :=
F(x+B) for all Borel subsets B of R. Then F is called

– nonarithmetic, if d(F) = 0 and thus F(Gd)< 1 for all d > 0.
– completely nonarithmetic, if d(Fx) = 0 for all x ∈ R.
– d-arithmetic, if d ∈ R> and d(F) = d.
– completely d-arithmetic, if d ∈ R> and d(Fx) = d for all x ∈Gd .
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If X denotes any random variable with distribution F , thus L (X−x) = Fx for
each x ∈R, then the previous attributes are also used for X , and we also write
d(X) instead of d(F) and call it the lattice-span of X .

For our convenience, a nonarithmetic distribution is sometimes referred to as
0-arithmetic hereafter, for example in the lemma below. A random variable X is
nonarithmetic iff it is not a.s. taking values only in a lattice Gd , and it is completely
nonarithmetic if this is not either the case for any shifted lattice x+Gd , i.e. any affine
closed subgroup of R. As an example of a nonarithmetic, but not completely nonar-
ithmetic random variable we mention X = π +Y with a standard Poisson variable
Y . Then d(X −π) = d(Y ) = 1. If X = 1

2 +Y , then d(X) = 1
2 and d(X − 1

2 ) = 1. In
this case, X is 1

2 -arithmetic, but not completely 1
2 -arithmetic. The following simple

lemma provides the essential property of a completely d-arithmetic random variable
(d ≥ 0).

Lemma 2.12. Let X ,Y be two iid random variables with lattice-span d ≥ 0.
Then d ≤ d(X−Y ) with equality holding iff X is completely d-arithmetic.

Proof. Let F denote the distribution of X ,Y . The inequality d ≤ d(X−Y ) is trivial,
and since (X +z)−(Y +z) = X−Y , we also have d(X +z)≤ d(X−Y ) for all z∈R.
Suppose X is not completely d-arithmetic. Then d(X + z)> d for some z ∈Gd and
hence also c := d(X−Y )> d. Conversely, if the last inequality holds true, then

1 = P(X−Y ∈Gc) =
∫

Gd

P(X− y ∈Gc) F(dy)

implies
P(X− y ∈Gc) = 1 for all F-almost all y ∈Gd

and thus d(X − y) ≥ c > d for F-almost all y ∈ Gd . Therefore, X cannot be com-
pletely d arithmetic. ut

Definition 2.13. A RW (Sn)n≥0 with increments X1,X2, ... is called

– (completely) nonarithmetic if X1 is (completely) nonarithmetic.
– (completely) d-arithmetic if d > 0, P(S0 ∈ Gd) = 1, and X1 is (com-

pletely) d-arithmetic.

Furthermore, the lattice-span of X1 is also called the lattice-span of (Sn)n≥0 in
any of these cases.

The additional condition on the delay in the d-arithmetic case, which may be
restated as d(S0) = kd for some k ∈ N∪{∞}, is needed to ensure that (Sn)n≥0 is
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really concentrated on the lattice Gd . The unconsidered case where (Sn)n≥0 has d-
arithmetic increments but non- or c-arithmetic delay for some c 6∈Gd ∪{∞} will not
play any role in our subsequent analysis.

2.4 Uniform local boundedness and stationary delay distribution

Given a RP (Sn)n≥0 with renewal measure U= ∑n≥0P(Sn ∈ ·) and renewal counting
measure N = ∑n≥0 δSn , we now turn to question (Q3) about the asymptotic behavior
of U((t, t +h]) = E(N(t +h)−N(t)) for any fixed h > 0. Notice that, unlike in the
previous sections, summation in the definitions of U and N now ranges over n≥ 0.
Denoting by λ and F the distribution of S0 and X , we thus have

U = ∑
n≥0

λ ∗F∗n = λ ∗∑
n≥0

F∗n = λ ∗U0, (2.5)

where U0 is the renewal measure of the SRP (Sn− S0)n≥0. Assuming a standard
model, (2.5) may in fact also be stated as Uλ = λ ∗U0 for any λ ∈P(R≥) if Uλ

denotes the renewal measure under Pλ and Ux is used for Uδx .

2.4.1 Uniform local boundedness

The first step towards our main results in the next sections is the following lemma
which particularly shows uniform local boundedness of Uλ , defined by

sup
t∈R

U([t, t +h]) < ∞ for all h> 0.

Lemma 2.14. Let (Sn)n≥0 be a RP in a standard model. Then

sup
t∈R

Pλ (N([t, t +h])≥ n) ≤ P0(N(h)≥ n) (2.6)

for all h> 0, n ∈ N0 and λ ∈P(R≥). In particular,

sup
t∈R

Uλ ([t, t +h]) ≤ U0(h) (2.7)

and {N([t, t +h]) : t ∈R} is uniformly integrable under each Pλ for all h> 0.

Proof. If (2.6) holds true, then the uniform integrability of {N([t, t +h]) : t ∈ R} is
a direct consequence, while (2.7) follows by summation over n. So (2.6) is the only
assertion to be proved. Fix t ∈ R, h > 0, and define τ := inf{n≥ 0 : Sn ∈ [t, t +h]}.
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Then

N([t, t +h]) =

{
∑k≥0 1[t,t+h](Sτ+k), if τ < ∞,

0, otherwise.

The desired estimate now follows from

Pλ (N([t, t +h])≥ n) = Pλ

(
τ < ∞,∑

k≥0
1[t,t+h](Sτ+k)≥ n

)

= ∑
j≥0

Pλ

(
τ = j,∑

k≥0
1[t,t+h](S j+k)≥ n

)

≤ ∑
j≥0

Pλ

(
τ = j,∑

k≥0
1[0,h](S j+k−S j)≥ n

)

= ∑
j≥0

Pλ (τ = j)P0(N(h)≥ n)

= Pλ (τ < ∞)P0(N(h)≥ n)

for all n ∈ N and λ ∈P(R≥). ut

2.4.2 Finite mean case: the stationary delay distribution

As already explained in the previous section, the behavior of U((t, t+h]) is expected
to be different depending on whether the underlying RP (Sn)n≥0 is arithmetic or
not. We make the standing assumption hereafter that (Sn)n≥0 has either lattice-span
d = 0 or d = 1. The latter is no restriction in the arithmetic case because one may
otherwise switch to the RP (d−1Sn)n≥0. Recall that Gd = dZ for d > 0 and put
also G0 = R as well as Gd,α :=Gd ∩Rα for α ∈ {≥,>}. Let λλ0 denote Lebesgue
measure, thus λλ0 = λλ , and λλ1 counting measure on Z. Since U is concentrated on
Z in the 1-arithmetic case, it is clear that convergence of U((t, t + h]) in this case
can generally take place only as t → ∞ through Z. This should be kept in mind for
the following discussion.

Intuitively, the asymptotic behavior of U((t, t +h]) should not depend on where
the RP started, that is, on the delay distribution. In a standard model, this means that
the limit of Uλ ((t, t + h]), if it exists, should be independent of λ ∈P(Gd). If we
can find a delay distribution ν such that Uν may be computed explicitly, in particular
Uν((t, t + h]) for any h > 0 and t → ∞ through Gd , then we may hope for being
able to provide a coupling argument that shows |Uλ ((t, t +h])−Uν((t, t +h])| → 0
for any λ ∈P(Gd,≥) and thus confirm the afore-mentioned intuition. For a quick
assessment of what the limit of g(h) = limGd3t→∞Uλ ((t, t +h]) for any h> 0 looks
like, observe that

g(h1 +h2) = lim
Gd3t→∞

Uλ ((t, t +h1]) + lim
Gd3t→∞

Uλ ((t +h1, t +h1 +h2])
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= g(h1)+g(h2) for all positive h1,h2 ∈Gd

which shows that g must be linear on Gd,≥. In combination with the elementary
renewal theorem, this entails that g(h) = h/µ for all h ∈Gd,>, thus g≡ 0 if µ = ∞.

Suppose now we are given a RP (Sn)n≥0 in a standard model with finite drift µ

and increment distribution F . The first thing to note is that Uλ = λ ∗U0 satisfies the
convolution equation

Uλ = λ +F ∗Uλ for any λ ∈P(R≥)

which in terms of the renewal function becomes a so-called renewal equation to be
studied in more detail in Section 2.7, namely

Uλ (t) = λ (t) +
∫

[0,t]
F(t− x) Uλ (dx) for any λ ∈P(R≥) (2.8)

The goal is to find a λ such that Uλ (t) = µ−1t for all t ∈ R≥ (thus Uλ = µ−1λλ
+
0 )

and we will now do so by simply plugging the result into (2.8) and solving for λ (t).
Then, with F := 1−F ,

λ (t) =
t
µ
− 1

µ

∫ t

0
F(t− x) dx

=
1
µ

∫ t

0
F(t− x) dx =

1
µ

∫ t

0
F(x) dx for all t ≥ 0.

We thus see that there is only one λ , now called Fs, that gives the desired property
of Uλ , viz.

Fs(t) :=
1
µ

∫ t

0
F(x) dx =

1
µ

∫ t

0
P(X > x) dx for all t ≥ 0,

which is continuous and requires that µ is finite. To all those who prematurely lean
back now let is be said that this is not yet the end of the story because there are
questions still open, viz. “Is this really the answer we have been looking for if the
RP is arithmetic?” and “What about the infinite mean case?”

If (Sn)n≥0 is 1-arithmetic a continuous delay distribution appears to be inappro-
priate because it gives a continuous renewal measure. In fact, the stationary delay
distribution Fs must now rather be concentrated on N, but only give UFs(t) = µ−1t
for t ∈ N0. By pursuing the same argument as above, but for t ∈ N0 only, one finds
[+ Problem 2.18] that Fs must satisfy

Fs(n) =
1
µ

n−1

∑
k=0

F(k) =
1
µ

n

∑
k=1

P(X ≥ k) for all n ∈ N

as the unique solution among all distributions concentrated on N. We summarize
our findings as follows.
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Proposition 2.15. Let (Sn)n≥0 be a RP in a standard model with finite drift µ

and lattice-span d ∈ {0,1}. Define its stationary delay distribution Fs on R>
by

Fs(t) :=

{
1
µ

∫ t
0 P(X > x) dx, if d = 0,

1
µ ∑

n(t)
k=1P(X ≥ k), if d = 1

(2.9)

for t ∈ R>, where n(t) := btc= sup{n ∈ Z : n≤ t}. Then UFs = µ−1λλ
+
d .

Now observe that the integral equation (2.8) remains valid if λ is any locally
finite measure on R≥ and Uλ is still defined as λ ∗U0. This follows because (2.8)
is linear in λ . Hence, if we drop the normalization µ−1 in the definition of Fs, we
obtain without further ado the following extension of the previous proposition.

Corollary 2.16. Let (Sn)n≥0 be a RP in a standard model with lattice-span
d ∈ {0,1}. Define the locally finite measure ξ on R> by

ξ (t) :=

{∫ t
0 P(X > x) dx, if d = 0,

∑
n(t)
k=1P(X ≥ k), if d = 1

(2.10)

for t ∈ R> and n(t) as in Prop. 2.15. Then Uξ = λλ
+
d .

2.4.3 Infinite mean case: restricting to finite horizons

There is no stationary delay distribution if (Sn)n≥0 has infinite mean µ , but Cor. 2.16
helps us to provide a family of delay distributions for which stationarity still yields
when restricting to finite horizons, that is to time sets [0,a] for a ∈ R>. As a further
ingredient we need the observation that the renewal epochs in [0,a] of (Sn)n≥0 and
(Sa,n)n≥0, where Sa,n := S0 +∑

n
k=1(Xk ∧ a), are the same. As a trivial consequence

they also have the same renewal measure on [0,a], whatever the delay distribution
is. But by choosing the latter appropriately, we also have a domination result on
(a,∞) as the next result shows.

Proposition 2.17. Let (Sn)n≥0 be a RP in a standard model with drift µ =
∞ and lattice-span d ∈ {0,1}. With ξ given by (2.10) and for a > 0, define
distributions Fs

a on R> by

Fs
a (t) :=

ξ (t ∧a)
ξ (a)

for t ∈ R>. (2.11)
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Then, for all a ∈ R>, UFs
a ≤ ξ (a)−1λλ

+
d with equality holding on [0,a].

Proof. Noting that Fs
a can be written as Fs

a = ξ (a)−1ξ −λa, where λa ∈P(R>) is
given by

λa(t) :=
ξ (t)−ξ (a∧ t)

ξ (a)
= 1(a,∞)(t)

ξ (t)−ξ (a)
ξ (a)

for all t ∈ R>,

we infer with the help of Cor. 2.16 that

UFs
a = ξ (a)−1Uξ −λa ∗U0 ≤ ξ (a)−1Uξ = ξ (a)−1

λλd on R>

as claimed. ut

Problems

Problem 2.18. Given a 1-arithmetic RP (Sn)n≥0 in a standard model with finite drift
µ and increment distribution F , prove that Fs as defined in (2.9) for d = 1 is the
unique distribution on N such that UFs = µ−1λλ

+
1 .

Problem 2.19. Under the assumptions of Prop. 2.15, let µp and µs
p for p> 0 denote

the pth moment of F and Fs, respectively. Prove that

µ
s
p :=

∫
t p Fs(dt) =





µp+1

(p+1)µ
, if d = 0,

1
µ
E

(
X

∑
n=1

np

)
, if d = 1.

(2.12)

and in the 1-arithmetic case furthermore

µp+1

(p+1)µ
≤ 1

µ
E

(
X

∑
n=1

np

)
≤ µp+1

(p+1)µ
+

E(X +1)p

µ
. (2.13)

Hence, µs
p < ∞ iff µp+1 < ∞. Note also that µs = µs

1 satisfies

µ
s =

EX(X +d)
2µ

=
µ2

2µ
+

d
2

=
σ2 +µ2

2µ
+

d
2
, (2.14)

where σ2 := VarX .
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2.5 Blackwell’s renewal theorem

Blackwell’s renewal theorem first obtained by ERDÖS, FELLER & POLLARD [47]
for arithmetic RP’s and by BLACKWELL [21] for nonarithmetic ones, may be right-
fully called the mother of all deeper results in renewal theory. Not only it provides
an answer to question (Q3) stated in the first section of this chapter on the expected
number of renewals in a finite remote interval, but is also the simpler, yet equivalent
version of the key renewal theorem discussed in the next section that allows us to de-
termine the asymptotic behavior of many interesting quantities in applied stochastic
models.

The following notation is introduced so as to facilitate a unified formulation of
subsequent results for the arithmetic and the nonarithmetic case. For d ∈ {0,1},
define

d-lim
t→∞

f (t) :=





lim
t→∞

f (t), if d = 0,

lim
n→∞

f (n), if d = 1.

Recall that λλ0 denotes Lebesgue measure on G0 =R, while λλ1 is counting measure
on G1 = Z.

Theorem 2.20. [Blackwell’s renewal theorem] Let (Sn)n≥0 be a RP in a
standard model with lattice-span d ∈ {0,1} and positive drift µ . Then

d-lim
t→∞

Uλ ([t, t +h]) = µ
−1

λλd([0,h]) (2.15)

for all h≥ 0 and λ ∈P(Gd,≥), where µ−1 := 0 if µ = ∞.

The result, which actually extends to RW’s with positive drift as will be seen later,
has been proved by many authors and using various methods. The interested reader
is referred to the monography [2, Ch. 3] for a detailed historical account. Here we
will employ a coupling argument which to some extent forms a blend of the proofs
given by LINDVALL [81], ATHREYA, MCDONALD & NEY [7], THORISSON [113]
and finally by LINDVALL & ROGERS [82], all based on coupling as well. The proof
is split into several steps given in separate subsections.

2.5.1 First step of the proof : shaking off technicalities

1st reduction: S0 = 0.
It is no loss of generality to prove (2.15) for zero-delayed RP’s only. Indeed, if S0
has distribution λ ∈P(Gd,≥), then

Uλ ([t, t +h]) =
∫

U0([t− x, t− x+h]) λ (dx)
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together with supt∈RU0([t, t +h]) ≤ U0([−h,h]) < ∞ [+ Lemma 2.14] implies by
an appeal to the dominated convergence theorem that (2.15) is valid for Uλ if so for
U0.

2nd reduction: (Sn)n≥0 is completely d-arithmetic (d ∈ {0,1}).
The second reduction that will be useful hereafter is to assume that the increment
distribution is completely d-arithmetic so that, by Lemma 2.12, its symmetrization
has the the same lattice-span.

Lemma 2.21. Let (Sn)n≥0 be a SRP with lattice-span d ∈ {0,1} and renewal
measure U. Let (ρn)n≥0 a SRP independent of (Sn)n≥0 and with geometric
increments, viz. P(ρ1 = n) = (1− θ)n−1θ for some θ ∈ (0,1) and n ∈ N.
Then (Sρn)n≥0 is a completely d-arithmetic SRP with renewal measure U(ρ)

satisfying U(ρ) = (1−θ)δ0 +θ U.

Proof. First of all, let (In)n≥1 be a sequence of iid Bernoulli variables with param-
eter θ independent of (Sn)n≥0. Each In may be interpreted as the outcome of a coin
tossing performed at time n. Let (Jn)n≥0 be the SRP associated with (In)n≥1 and let
(ρn)n≥0 be the sequence of copy sums associated with ρ = ρ1 := inf{n≥ 1 : In = 1}.
Then (ρn)n≥0 satisfies the assumptions of the lemma, and one can easily verify [+
Problem 2.24] that (Sρn)n≥0 forms a SRP. Next observe that, for each A ∈B(R),

U(ρ)(A)−δ0(A) = E

(
∑
n≥1

In1A(Sn)

)
= EI1

(
U(A)−δ0(A)

)

which proves the relation between U(ρ) and U, for EI1 = θ .
It remains to show that (Sρn)n≥0 is completely d-arithmetic. Let (S′n,ρ

′
n)n≥0 be

an independent copy of (Sn,ρn)n≥0 and put ρ ′ := ρ ′1. By Lemma 2.12, it suffices to
show that the symmetrization Sρ −S′

ρ ′ is d-arithmetic. Since c := d(Sρ −S′
ρ ′) ≥ d,

we must only consider the case c> 0 and then show that P(X1 ∈ cZ) = 1. But

1 = P(Sρ −S′
ρ ′ ∈ cZ) = ∑

m,n≥1
θ

2(1−θ)m+n−2P(Sm−S′n ∈ cZ)

clearly implies P(Sm−S′n ∈ cZ) = 1 for all m,n ∈ N. Hence

0< P(S1−S′1 = 0) = P(S2−S′1 ∈ cZ,S1−S′1 = 0) = P(X1 ∈ cZ)P(S1−S′1 = 0)

giving P(X1 ∈ cZ) = 1 as asserted. ut
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2.5.2 Setting up the stage: the coupling model

Based on the previous considerations, we now assume that (Sn)n≥0 is a zero-delayed
completely d-arithmetic RP with drift µ . As usual, the increment distribution is
denoted by F and a generic copy of the increments by X . The starting point of
the coupling construction is to consider this sequence together with a second one
(S′n)n≥0 such that the following conditions are satisfied:

(C1) (Sn,S′n)n≥0 is a bivariate RP with iid increments (Xn,X ′n), n≥ 1.

(C2) (S′n−S′0)n≥0
d
= (Sn)n≥0 and thus X ′ d

= X .

(C3) S′0
d
= Fs if µ < ∞, and S′0

d
= Fs

a for some a> 0 if µ = ∞.

Here Fs and Fs
a denote the stationary delay distribution and its truncated variant

defined in (2.9) and (2.11), respectively. By the results in Section 2.5, the renewal
measure U′ of (S′n)n≥0 satisfies U′([t, t + h]) = µ−1λλd([0,h]) for all t,h ∈ R> if
µ < ∞, and U′([t, t +h]) ≤ ξ (a)−1λλd([0,h]) for all t,h ∈ R> if µ = ∞ where ξ (a)
tends to ∞ as a→ ∞. Hence U′ satisfies (2.15) in the finite mean case and does
so approximately for sufficiently large a if µ = ∞. The idea is now to construct a
third RP (S′′n)n≥0 from the given two which is a copy of (S′n)n≥0 and such that S′′n
is equal or at least almost equal to Sn for all n ≥ T , T an a.s. finite stopping time
for (Sn,S′n)n≥0, called coupling time. This entails that the coupling process (S′′n)n≥0
has renewal measure U′ while simultaneously being close to U on remote intervals
because with high probability such intervals contain only renewal epochs S′′n for
n≥ T .

Having outlined the path towards the asserted result we must now complete the
specification of the above bivariate model so as to facilitate a successful coupling.
But the only unspecified component of the model is the joint distribution of (X ,X ′)
for which the following two alternatives will be considered:

(C4a) X and X ′ are independent or, equivalently, (Sn)n≥0 and (S′n)n≥0 are inde-
pendent.

(C4b) X ′ = Y 1[0,b](|X −Y |)+X 1(b,∞)(|X −Y |), where Y is an independent copy
of X an b is chosen so large that Gb := P(X −Y ∈ ·||X −Y | ≤ b) is d-
arithmetic (and thus nontrivial).

The existence of b with d(Gb) = d follows from the fact that G := P(X −Y ∈ ·) is
d-arithmetic together with Gb

w→ G.
Condition (C4a) is clearly simpler than (C4b) and will serve our needs in the

finite mean case in which the symmetrization X1−X ′1 is integrable with mean zero
and also d-arithmetic. Hence we infer from Thm. 2.22 below that (Sn− S′n)n≥0 is
(topologically) recurrent on Gd .

On the other hand, if µ = ∞, the difference of two independent X ,X ′ fails to
be integrable, while under (C4b) we have X −X ′ = (X −Y )1[−b,b](X −Y ) which is
again symmetric with mean zero and d-arithmetic by choice of b. Once again we
hence infer the recurrence of the symmetric RW (Sn−S′n)n≥0 on Gd .



2.5 Blackwell’s renewal theorem 45

We close this subsection with the recurrence theorem for centered RW’s needed
here to guarantee successful coupling. The proof is omitted because it cannot be
given shortly and is of no importance for our purposes. It may be found e.g. in [2,
Ch. 2].

Theorem 2.22. Any SRW (Sn)n≥0 with lattice-span d ∈ {0,1} and drift zero
is (topologically) recurrent on Gd , that is

P(|Sn− x|< ε infinitely often) = 1

for any x ∈Gd and ε > 0.

2.5.3 Getting to the point: the coupling process

In the following suppose that (C1–3) and (C4a) are valid if µ < ∞, while (C4a) is
replaced with (C4b) if µ = ∞. Fix any ε > 0 if F is nonarithmetic, while ε = 0
if F has lattice-span d > 0. Since (Sn− S′n)n≥0 is recurrent on Gd (recall that the
delay distribution of S′0 is also concentrated on Gd) we infer the a.s. finiteness of the
ε-coupling time

T := inf{n≥ 0 : |Sn−S′n| ≤ ε}
and define the coupling process (S′′n)n≥0 by

S′′n :=

{
S′n, if n≤ T,
Sn− (ST −S′T ), if n≥ T

for n ∈ N0, (2.16)

which may also be stated as

S′′n :=

{
S′n, if n≤ T,
S′T +∑

n
k=T+1 Xk, if n> T

for n ∈ N0. (2.17)

The subsequent lemma accounts for the intrinsic properties of this construction.

Lemma 2.23. Under the stated assumptions, the following assertions hold
true for the coupling process (S′′n)n≥0:

(a) (S′′n)n≥0
d
= (S′n)n≥0.

(b) |S′′n −Sn| ≤ ε for all n≥ T .

Proof. We only need to show (a) because (b) is obvious from the definition of the
coupling process and the coupling time. Since T is a stopping time for the bivariate
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RP (Sn,S′n)n≥0, Problem 2.25 shows that XT+1,XT+2, ... are iid with the same dis-
tribution as X and further independent of T,(Sn,S′n)0≤n≤T . But this easily seen to
imply assertion (a), namely

P(S′′0 ∈ B0,X ′′j ∈ B j for 1≤ j ≤ n)

=
n

∑
k=0

P(T = k,S′0 ∈ B0,X ′j ∈ B j for 1≤ j ≤ k)P(X j ∈ B j for k < j ≤ n)

+P(T > n,S′0 ∈ B0,X ′j ∈ B j for 1≤ j ≤ n)

=
n

∑
k=0

P(T = k,S′0 ∈ B0,X ′j ∈ B j for 1≤ j ≤ k)P(X ′j ∈ B j for k < j ≤ n)

+P(T > n,S′0 ∈ B0,X ′j ∈ B j for 1≤ j ≤ n)

= P(S′0 ∈ B0,X ′j ∈ B j for 1≤ j ≤ n)

for all n ∈ N and B1, ...,Bn ∈B(R≥). ut

Before moving on to the finishing argument, let us note that a coupling with
a.s. finite 0-coupling time is called exact coupling, while we refer to an ε-coupling
otherwise.

2.5.4 The final touch

As usual, let N(I) denote the number of renewals Sn in I, and let N′′(I) be the
corresponding variable for the coupling process (S′′n)n≥0. Define further Nk(I) :=
∑

k
j=0 1I(Sn) and N′′k (I) in a similar manner. Fix any h > 0, ε ∈ (0,h/2), and put

I := [0,h], Iε := [ε,h− ε], and Iε := [−ε,h + ε]. The following proof of (2.15)
focusses on the slightly more difficult nonarithmetic case, i.e. d = 0 hereafter. We
first treat the case µ < ∞.

A. The finite mean case. By Lemma 2.23(a), (S′′n)n≥0 has renewal measure U′ which
in turn equals µ−1λλ

+
0 by our model assumption (C3). It follows from the coupling

construction that

{S′′n ∈ t + Iε} ⊂ {Sn ∈ t + I} ⊂ {S′′n ∈ t + Iε}

for all t ∈ R≥ and n≥ T . Consequently,

N′′(t + Iε)−NT (t + I) ≤ N(t + I) ≤ N′′(t + Iε)+NT (t + I)

and therefore, by taking expectations,

U′(t + Iε)−ENT (t + I) ≤ U(t + I) ≤ U′(t + Iε)+ENT (t + I) (2.18)
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for all t ∈ R≥. But U′(t + Iε) = µ−1(h− 2ε) and U′(t + Iε) = µ−1(h+ 2ε) for all
t > ε . Moreover, the uniform integrability of {N(t + I) : t ∈R} [+ Lemma 2.14] in
combination with NT (t + I)≤ N(t + I) and limt→∞ NT (t + I) = 0 a.s. entails

lim
t→∞

ENT (t + I) = 0.

Therefore, upon letting t tend to infinity in (2.18), we finally arrive at

h−2ε

µ
≤ liminf

t→∞
U(t + I) ≤ limsup

t→∞

U(t + I) ≤ h+2ε

µ
.

As ε can be made arbitrarily small, we have proved (2.15).

B. The infinite mean case. Here we have U′ ≤ ξ (a)−1λλ
+
0 where a may be chosen

so large that ξ (a)−1 ≤ ε . Since validity of (2.18) remains unaffected by the drift
assumption, we infer by just using the upper bound

limsup
t→∞

U(t + I) ≤ ξ (a)−1(h+2ε) ≤ ε(h+2ε)

and thus again the assertion, for ε can be made arbitrarily small. This completes our
coupling proof of Blackwell’s theorem. ut

Problems

Problem 2.24. Let (Sn)n≥0 and (ρn)n≥0 be two independent SRP’s such that ρ1,ρ2, ...
take values in N0.

(a) Prove that (Sρn)n≥0 forms a SRP as well.
(b) Find the distribution of Sρ1 if (Sn)n≥0 has exponential increments and L (ρ1)=

Geom(θ) for some θ ∈ (0,1).

Problem 2.25. Let (Sn)n≥0 be a RW adapted to a filtration (Fn)n≥0 such that Fn is
independent of (Xk)k>n for each n ∈ N0. Let T be an a.s. finite stopping time with
respect to (Fn)n≥0.

(a) Prove that XT+1 is independent of FT and XT+1
d
= X1.

(b) Use (a) and an induction to infer that (XT+n)n≥1 is a sequence of iid random
variables independent of FT .

2.6 The key renewal theorem

Given a RP (Sn)n≥0 in a standard model with drift µ and lattice-span d, the simple
observation
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Uλ ([t−h, t]) =
∫

1[0,h](t− x) Uλ (dx) = 1[0,h] ∗Uλ (t)

for all t ∈ R, h ∈ R> and λ ∈P(R≥) shows that the nontrivial part of Blackwell’s
renewal theorem may also be stated as

d-lim
t→∞

1[0,h] ∗Uλ (t) =
1
µ

∫
1[0,h] dλλd (2.19)

for all h ∈ R> and λ ∈P(Gd,≥), in other words, as a limiting result for convolu-
tions of indicators of compact intervals with the renewal measure. This raises the
question, supported further by numerous applications [+ e.g. [2, Ch. 1]], to which
class R of functions g : R→ R an extension of (2.19) in the sense that

d-lim
t→∞

g∗Uλ (t) =
1
µ

∫
g dλλd for all g ∈R (2.20)

is possible. Obviously, all finite linear combinations of indicators of compact inter-
vals are elements of R. By taking monotone limits of such step functions, one can
further easily verify that R contains any g that vanishes outside a compact interval
I and is Riemann integrable on I. On the other hand, in view of applications a re-
striction to functions with compact support appears to be undesirable and calls for
appropriate conditions on g that are not too difficult to check in concrete examples.
In the nonarithmetic case one would naturally hope for λλ0-integrability as being a
sufficient condition, but unfortunately this is not generally true. The next subsection
specifies the notion of direct Riemann integrability, first introduced and thus named
by Feller [52], and provides also a discussion of necessary and sufficient conditions
for this property to hold. Assertion (2.20) for functions g of this kind, called key
renewal theorem, is proved in Subsection 2.6.2.

2.6.1 Direct Riemann integrability

Definition 2.26. Let g be a real-valued function on R and define, for δ > 0
and n ∈ Z,

In,δ := (δn,δ (n+1)],
mn,δ := inf{g(x) : x ∈ In,δ}, Mn,δ := sup{g(x) : x ∈ In,δ}
σ(δ ) := δ ∑

n∈Z
mn,δ and σ(δ ) := δ ∑

n∈Z
Mn,δ .

The function g is called directly Riemann integrable (dRi) if σ(δ ) and σ(δ )
are both absolutely convergent for all δ > 0 and
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lim
δ→0

(σ(δ )−σ(δ )) = 0.

The definition reduces to ordinary Riemann integrability if the domain of g is
only a compact interval instead of the whole line. In the case where

∫
∞

−∞
g(x)dx

may be defined as the limit of such ordinary Riemann integrals
∫ b
−a g(x)dx with a,b

tending to infinity, the function g is called improperly Riemann integrable. An ap-
proximation of g by upper and lower step functions having integrals converging to a
common value is then still only taken over compact intervals which are made bigger
and bigger. However, in the above definition such an approximation is required to
be possible directly over the whole line and therefore of a more restrictive type than
improper Riemann integrability.

The following lemma, partly taken from [6, Prop. V.4.1], collects a whole bunch
of necessary and sufficient criteria for direct Riemann integrability.

Proposition 2.27. Let g be an arbitrary real-valued function on R. Then the
following two conditions are necessary for direct Riemann integrability:

(dRi-1) g is bounded and λλ0-a.e. continuous.
(dRi-2) g is λλd-integrable for all d ≥ 0.

Conversely, any of the following conditions is sufficient for g to be dRi:

(dRi-3) For some δ > 0, σ(δ ) and σ(δ ) are absolutely convergent, and g
satisfies (dRi-1).

(dRi-4) g has compact support and satisfies (dRi-1).
(dRi-5) g satisfies (dRi-1) and f ≤ g≤ h for dRi functions f ,h.
(dRi-6) g vanishes on R<, is nonincreasing on R≥ and λλ0-integrable.
(dRi-7) g = g1− g2 for nondecreasing functions g1,g2 and f ≤ g ≤ h for

dRi functions f ,h.
(dRi-8) g+ and g− are dRi.

Proof. (a) Suppose that g is dRi. Then the absolute convergence of σ(1) and σ(1)
ensures that g is bounded, for

sup
x∈R
|g(x)| ≤ sup

n∈Z
(|m1

n|+ |M1
n |) < ∞.

That g must also be λλ0-a.e. continuous is a standard fact from Lebesgue integration
theory but may also be quickly assessed as follows: If g fails to have this property
then, with g∗(x) := liminfy→x g(y) and g∗(x) := limsupy→x g(y), we have

α := λλ0({g∗ ≥ g∗+ ε})> 0 for some ε > 0.
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As mn,δ ≤ g∗(x) ≤ g∗(x) ≤ Mn,δ for all x ∈ (nδ ,(n+ 1)δ ), n ∈ Z and δ > 0, it
follows that

σ(δ )−σ(δ ) ≥
∫
(g∗(x)−g∗(x)) λλ0(dx) ≥ εα for all δ > 0

which contradicts direct Riemann integrability. We have thus proved necessity of
(dRi-1).

As for (dRi-2), it suffices to note that, with

φ(δ ) := δ ∑
n∈Z
|mn,δ | and δφ(δ ) := ∑

n∈Z
|Mn,δ |,

we have
∫ |g(x)|λλ0(dx)≤ φ(1)+φ(1) and

∫ |g(x)|λλd(dx)≤ φ(d)+φ(d) for each
d > 0.

(b) Turning to the sufficient criteria, put

gδ := ∑
n∈Z

mn,δ 1In,δ and gδ := ∑
n∈Z

Mn,δ 1In,δ for δ > 0. (2.21)

If (dRi-3) holds true, then gδ ↑ g and gδ ↓ g λλ0-a.e. as δ ↓ 0 by the λλ0-a.e. conti-
nuity of g. Hence the monotone convergence theorem implies (using −∞< σ(δ )≤
σ(δ )< ∞)

σ(δ ) =
∫

gδ dλλ0 ↑
∫

g dλλ0 and σ(δ ) =
∫

gδ dλλ0 ↑
∫

g dλλ0

proving that g is dRi.
Since each of (dRi-4) and (dRi-5) implies (dRi-3), there is nothing to prove under

these conditions.
Assuming (dRi-6), the monotonicity of g on R≥ gives

Mn,δ = g(nδ+) and mn,δ = g((n+1)δ )≥Mn,δ for all n ∈ N0, δ > 0.

Consequently,

0 ≤ σ(δ ) ≤
∫

∞

0
g(x) dx ≤ σ(δ )

≤ δg(0)+σ(δ ) ≤
∫

∞

0
g(x) dx + δg(0) < ∞

and therefore σ(δ )− σ(δ )≤ δg(0)→ 0 as δ → 0.
Assuming (dRi-7) the monotonicity of g1 and g2 ensures that g has at most count-

ably many discontinuities and is thus λλ0-a.e. continuous. g is also bounded because
f ≤ g≤ h for dRi function f ,h. Hence (dRi-5) holds true.

Finally assuming (dRi-8), note first that g−,g+ both satisfy (dRi-1) because this
is true for g. Moreover,
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0 ≤ g± ≤ (gδ )++(gδ )
− ≤ ∑

n∈Z

(
|Mn,δ |+ |mn,δ |

)
1In,δ for all δ > 0

whence g−,g+ both satisfy (dRi-5). ut

For later purposes, we state one further criterion for direct Riemann integrabil-
ity, which may be deduced from Lemma 2.29 below or just directly verified [+
Problem 2.35 and also Problem 4.8 for an extension].

Lemma 2.28. Let g be a function on R that vanishes on R< and is nonde-
creasing on R≥. Then gθ (x) := eθxg(x) is dRi for any θ ∈ R such that gθ is
λλ0-integrable.

Given a measurable function f : R→R and a standard exponential random vari-
able X , define the exponential smoothing of f by

f (t) :=
∫

(−∞,t]
e−(t−x) f (x) λλ0(dx) = E f (t−X), t ∈ R, (2.22)

whenever this function is well-defined, which is obviously the case if f ∈ L1. It then
also has the same integral because

∫
f dλλ0 = E

(∫
f (t−X) dλλ0

)
=
∫

f dλλ0. (2.23)

In Chapter 4, we will use the fact that exponential smoothing of a L1-function always
provides us with a dRi function. This is stated as Lemma 2.30 after the following
auxiliary result.

Lemma 2.29. Suppose that f ∈ L1 satisfies f ≥ 0 and f (t +ε)≥ r(ε) f (t) for
all t ∈ R, ε > 0 and a function r : R>→ R≥ satisfying limε↓0 r(ε) = 1. Then
f is dRi.

Proof. W.l.o.g. let r be nonincreasing. Then

r(δ ) f (nδ )≤ r(x−nδ ) f (nδ )≤ f (x)≤ f ((n+1)δ )
r((n+1)δ − x)

≤ f ((n+1)δ )
r(δ )

for all n ∈ Z, δ > 0 and x ∈ In,δ implies

r(δ ) f (nδ )≤ mn,δ ≤
1
δ

∫

In,δ
f dλλ0 ≤Mn,δ ≤ r(δ )−1 f ((n+1)δ )

and therefore



52 2 Renewal theory

δ r(δ ) ∑
n∈Z

f (nδ ) ≤ σ(δ ) ≤
∫

f dλλ0 ≤ σ(δ ) ≤ δ

r(δ ) ∑
n∈Z

f (nδ )

for any δ > 0. Hence, δ ∑n∈Z f (nδ ) stays bounded as δ ↓ 0 and so

σ(δ )−σ(δ ) ≤
(

1
r(δ )

− r(δ )
)

δ ∑
n∈Z

f (nδ )
δ↓0−→ 0

as required. ut

Lemma 2.30. For each f ∈ L1, its exponential smoothing f is dRi.

Proof. By considering f+ and f−, we may assume w.l.o.g. that f ≥ 0. Then

f (t + ε) = e−ε

∫

(−∞,t+ε]
e−(t−x) f (x) λλ0(dx)

≥ e−ε

∫

(−∞,t]
e−(t−x) f (x) λλ0(dx) = e−ε f (t)

for all t ∈ R and ε > 0, whence we may invoke the previous lemma to infer that f
is dRi. ut

2.6.2 The key renewal theorem: statement and proof

We are now ready to formulate and prove the announced extension of Blackwell’s
renewal theorem. In allusion to its eminent importance in applications Smith [106]
called it key renewal theorem. The proof presented here is essentially due to FELLER
[52].

Theorem 2.31. [Key renewal theorem] Let (Sn)n≥0 be a RP with drift µ ,
lattice-span d ∈ {0,1} and renewal measure U. Then

d-lim
t→∞

g∗U(t) =
1
µ

∫

R≥
g dλλd (2.24)

for every dRi function g : R→ R vanishing on the negative halfline.

Listing non- and d-arithmetic case separately, (2.24) takes the form

d-lim
t→∞

g∗U(t) =
1
µ

∫
∞

0
g(x) dx (2.25)
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if d = 0 where the right-hand integral is meant as an improper Riemann integral. In
the case d = 1, we have accordingly

lim
n→∞

g∗U(n) =
d
µ

∑
n≥0

g(n) (2.26)

and, furthermore, for any a ∈ R,

d-lim
t→∞

g∗U(nd +a) =
1
µ

∑
n≥0

g(n+a), (2.27)

because g(·+a) is clearly dRi as well.

Proof. We restrict ourselves to the more difficult nonarithmetic case. Given a dRi
function g vanishing on R<, let gδ ,gδ be as in (2.21) for δ > 0. Plainly, these func-
tions vanish on R< as well, so that we have

gδ ≤ g≤ gδ , σ(δ ) =
∫

∞

0
gδ (x) dx and σ(δ ) =

∫
∞

0
gδ (x) dx.

Fix any δ ∈ (0,1) and m ∈ N large enough such that ∑n>m |Mn,δ |< δ . Then, using
inequality (2.7), we infer

gδ ∗U(t) = ∑
n≥0

Mn,δU(t− In,δ ) ≤
m

∑
n=0

Mn,δ U(t−nδ − I0,δ ) + δ U(1)

and therefore with Blackwell’s theorem

limsup
t→∞

gδ ∗U(t) ≤
m

∑
n=0

Mn,δ lim
t→∞

U(t−nδ − I0,δ ) + δ U(1)

=
δ

µ

m

∑
n=0

Mn,δ + δ U(1)

≤ 1
µ

∫
∞

0
gδ (x) dx +

δ 2

µ
+ δ U(1)

=
1
µ

σ(δ ) +
δ 2

µ
+ δ U(1).

(2.28)

Consequently, as g∗U≤ gδ ∗U for all δ > 0,

limsup
t→∞

g∗U(t) ≤ lim
δ↓0

limsup
t→∞

gδ ∗U(t) ≤ 1
µ

∫
∞

0
g(x) dx.

Replace g with −g in the above estimation to obtain

liminf
t→∞

g∗U(t) ≥ 1
µ

∫
∞

0
g(x) dx.
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This completes the proof of (2.24). ut

Remark 2.32. In the 1-arithmetic and thus discrete case, the convolution g ∗U may
actually be considered as a function on the discrete group Z and thus requires g to be
considered on this set only which reduces it to a sequence (gn)n∈Z. Doing so merely
absolute summability, i.e. ∑n∈Z |gn| < ∞, is needed instead of direct Riemann inte-
grability. With this observation the result reduces to a straightforward consequence
of Blackwell’s renewal theorem and explains that much less attention has been paid
to it in the literature.

Remark 2.33. The following counterexample shows that in the nonarithmetic case
λλ0-integrability of g does not suffice to ensure (2.24). Consider a distribution F
on R≥ with positive mean µ =

∫
xF(dx) and renewal measure U = ∑n≥0 F∗n. The

function g := ∑n≥1 n1/21[n.n+n−2) is obviously λλ0-integrable, but

g∗U(n) = ∑
k≥0

g∗F∗k(n) ≥ g∗F∗0(n) = g(n) = n1/2

diverges to ∞ as n→ ∞. Here the atom at 0, which any renewal measure of a SRP
possesses, already suffices to demonstrate that g(x) must not have unbounded oscil-
lations as x→ ∞. But there are also examples of renewal measures with no atom
at 0 (thus pertaining to a delayed RP) such that the key renewal theorem fails
to hold for λλ0-integrable g. FELLER [52, p. 368] provides an example of a λλ0-
continuous distribution F with finite positive mean such that U= ∑n≥1 F∗n satisfies
limsupt→∞ g∗U(t) = ∞ for some λλ0-integrable g.

Example 2.34. [Forward and backward recurrence times] Let (Sn)n≥0 be a SRP
with increment distribution F , lattice-span d ∈ {0,1} and finite drift µ . For t ≥ 0, let
τ(t) := inf{n≥ 0 : Sn > t} denote the first passage time beyond level t and consider
the first renewal epoch after t and the last renewal epoch before t, more precisely

R(t) := Sτ(t)− t and R̂(t) := t−Sτ(t)−1

called forward and backward recurrence time, respectively. Other names for R(t),
depending on the context in which it is discussed, are overshoot, excess (over the
boundary) or residual waiting time. Other names for R̂(t) are age and spent waiting
time. We are interested in the asymptotic behavior of R(t) and R̂(t). It follows by a
standard renewal argument that

P(R(t)> r) =
∫

[0,t]
P(X > t + r− x) U(dx)

and P(R̂(t)> r) =
∫

[0,t]
P(X > t− x)1(r,∞)(t− x) U(dx)

for all r, t ≥ 0. To both right-hand expressions the key renewal theorem applies and
yields that

R(t) d→ R(∞) and R̂(t)+d d→ R(∞) (2.29)
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as t→ ∞ (through Z if d = 1), where L (R(∞)) = Fs. Details are left as an exercise
to the reader [+ Problem 2.36].

Problems

Problem 2.35. Give a direct proof of Lemma 2.28.

Problem 2.36. Under the assumptions of Example 2.34, prove (2.29) by filling in
the details of the argument outlined there. Then proceed in a similar manner to find
the asymptotic joint distribution of (R(t), R̂(t)) and of Xτ(t) = R(t)+ R̂(t) as t→ ∞

(through Z if d = 1). Do the results persist if the distribution of S0 is arbitrarily
chosen from P(Gd,≥)?

Problem 2.37. Still in the situation of Example 2.34, suppose that F = Exp(θ) for
some θ > 0. Compute the asymptotic joint distribution of (R(t), R̂(t)) and of Xτ(t) =

R(t)+ R̂(t) in this case.

2.7 The renewal equation

Almost every renewal quantity may be described as the solution to a convolution
equation of the general form

Ψ = ψ + Ψ ∗Q, (2.30)

where Q is a given locally finite measure and ψ a given locally bounded function on
R≥ (standard case) or R (general case). For reasons that will become apparent soon
it is called renewal equation. If ψ = 0, then (2.30) is also a well-known object in
harmonic analysis where its solutions are called Q-harmonic functions. It has been
studied in the more general framework of Radon measures on separable locally com-
pact Abelian groups by CHOQUET & DENY [28] and is therefore also known as the
Choquet-Deny equation. Here we will focus on the standard case where functions
and measures vanish on the negative halfline. Eq. (2.30) then takes the form

Ψ(x) = ψ(x) +
∫

[0,x]
Ψ(x− y) Q(dy), x ∈ R≥, (2.31)

and is called standard renewal equation because it is the one encountered in most
applications. Regarding the total mass of Q, a renewal equation is called defective if
‖Q‖< 1, proper if ‖Q‖= 1, and excessive if ‖Q‖> 1.
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2.7.1 Getting started

Some further notation is needed hereafter and therefore introduced first. Recall that
Q is assumed to be locally finite, thus Q(t) = Q([0, t])<∞ for all t ∈R≥. We denote
its mean value by µ(Q) and its mgf by φQ, that is

µ(Q) :=
∫

R≥
x Q(dx)

and
φQ(θ) :=

∫

R≥
eθx Q(dx).

The latter function is nondecreasing and convex on its natural domain

DQ := {θ ∈ R : φQ(θ)< ∞}

for which one of the four alternatives

DQ = /0, (−∞,θ ∗), (−∞,θ ∗], or R

with θ ∗ ∈ R must hold. If DQ has interior points, then φQ is infinitely often differ-
entiable on int(DQ) with nth derivative given by

φ
(n)
Q (θ) =

∫

R≥
xneθx Q(dx) for all n ∈ N.

In the following we will focus on measures Q on R≥, called admissible, for which
µ(Q) > 0, Q(0) < 1 and DQ 6= /0 holds true. Note that the last condition is par-
ticularly satisfied if ‖Q‖ < ∞ or, more generally, Q is uniformly locally bounded,
i.e.

sup
t≥0

Q([t, t +1]) < ∞.

Moreover, φQ is increasing and strictly convex for such Q. Hence, there exists at
most one value ϑ ∈DQ such that φQ(ϑ) = 1. It is called the characteristic exponent
of Q hereafter.

Let U := ∑n≥0 Q∗n with Q∗0 := δ0 be the renewal measure of Q. Put further

Qθ (dx) := eθx Q(dx)

again a locally finite measure for any θ ∈ R, and let Uθ be its renewal measure.1

Then
Uθ (dx) = ∑

n≥0
Q∗nθ (dx) = ∑

n≥0
eθx Q∗n(dx) = eθxU(dx). (2.32)

1 The reader will notice here a notational conflict because in all previous and almost all subsequent
sections Uθ = δθ ∗U. On the other hand, whenever the current definition is meant, this will be
clearly pointed out and should therefore not lead to any confusion.
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Moreover, φQθ
= φQ(·+θ) and φUθ

= φU(·+θ).

Lemma 2.38. Given an admissible measure Q on R≥, the following asser-
tions hold true for any θ ∈ R:

(a) Q∗n
θ

is admissible for all n ∈ N.
(b) Uθ is locally finite, that is Uθ (t)< ∞ for all t ∈ R≥.
(c) limn→∞ Q∗n(t) = 0 for all t ∈ R≥.

Proof. Assertion (a) is trivial when noting that Q∗n
θ
(0) = Q∗n(0) = Q(0)n for all

θ ∈ R and n ∈ N. As for (b), it clearly suffices to show that Uθ is locally finite for
some θ ∈R. To this end note that DQ 6= /0 implies φQ(t)→ 0 as t→−∞ and thus the
existence of θ ∈ R such that ‖Qθ‖= φQ(θ)< 1. Hence Uθ is the renewal measure
of the defective probability measure Qθ and thus finite, for

‖Uθ‖ = ∑
n≥0
‖Q∗nθ ‖ = ∑

n≥0
‖Qθ‖n =

1
1−φQ(θ)

< ∞.

Finally, the local finiteness of U= U0 gives U(t) = ∑n≥0 Q∗n(t)< ∞ for all t ∈ R≥
from which (c) directly follows. ut

2.7.2 Existence and uniqueness of a locally bounded solution

We are now ready to prove the fundamental theorem about existence and uniqueness
of solutions in the standard case (2.31) under the assumption that the measure Q is
regular and the function ψ is locally bounded on R≥, i.e.

sup
x∈[0,t]

|ψ(x)| < ∞ for all t ∈ R≥.

Before stating the result let us note that n-fold iteration of equation (2.31) leads to

Ψ(x) =
n

∑
k=0

ψ ∗Q∗k(x) + Ψ ∗Q∗(n+1)(x)

which in view of part (c) of the previous lemma suggests that Ψ = ψ ∗U forms the
unique solution of (2.31).

Theorem 2.39. Let Q be an admissible measure on R≥ and ψ : R≥ → R a
locally bounded function. Then there exists a unique locally bounded solution
Ψ of the renewal equation (2.31), viz.
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Ψ(x) = ψ ∗U(x) =
∫

[0,x]
ψ(x− y) U(dy), x ∈ R≥

where U denotes the renewal measure of Q. Moreover, Ψ is nondecreasing if
the same holds true for ψ .

Proof. Since U is locally finite, the local boundedness of ψ entails the same for the
function ψ ∗U, and the latter function satisfies (2.31) as

ψ ∗U = ψ ∗δ0 +

(
∑
n≥1

ψ ∗Q∗(n−1)

)
∗Q = ψ + (ψ ∗U)∗Q.

Moreover, ψ ∗U is nondecreasing if ψ has this property.
Turning to uniqueness, suppose we have two locally bounded solutions Ψ1,Ψ2 of

(2.31). Then its difference ∆ , say, satisfies the very same equation with ψ ≡ 0, that
is ∆ = ∆ ∗Q. By iteration,

∆ = ∆ ∗Q∗n for all n ∈ N.

Since ∆ is locally bounded, it follows upon setting ‖∆‖x,∞ := supy∈[0,x] |∆(x)| and
an appeal to Lemma 2.38(c) that

|∆(x)| = lim
n→∞
|∆ ∗Q∗n(x)| ≤ ‖∆‖x,∞ lim

n→∞
Q∗n(x) = 0 for all x ∈ R≥

which proves Ψ1 =Ψ2. ut

The following version of the Choquet-Deny lemma is a direct consequence of
the previous result.

Corollary 2.40. If Q is an admissible measure on R≥, then Ψ ≡ 0 is the only
locally bounded solution to the Choquet-Deny equation Ψ =Ψ ∗Q.

2.7.3 Asymptotics

Continuing with a study of the asymptotic behavior of solutions ψ ∗U a distinction
of the cases ‖Q‖< 1, Q‖= 1, and ‖Q‖> 1 is required. Put Id := {0} if d = 0, and
Id := [0,d) if d > 0.

We begin with the defective case when φQ(0) = ‖Q‖< 1 and thus U is finite with
total mass ‖U‖= (1−φQ(0))−1.
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Theorem 2.41. Given a defective renewal equation of the form (2.31) with
locally bounded ψ such that ψ(∞) := limx→∞ ψ(x) ∈ [−∞,∞] exists, the same
holds true for Ψ = ψ ∗U, namely

Ψ(∞) =
ψ(∞)

1−φQ(0)
.

Proof. If ψ(∞) = ∞, then the local boundedness of ψ implies infx≥0 ψ(x) > −∞.
Consequently, by an appeal to Fatou’s lemma,

liminf
x→∞

Ψ(x) = liminf
x→∞

∫

[0,x]
ψ(x− y) U(dy)

≥
∫

R≥
liminf

x→∞
1[0,x](y)ψ(x− y) U(dy)

= ψ(∞)‖U‖ = ∞.

A similar argument shows limsupx→∞Ψ(x) = −∞ if ψ(∞) = −∞. But if ψ(∞) is
finite then ψ is necessarily bounded and we obtain by the dominated convergence
theorem that

lim
x→∞

Ψ(x) =
∫

R≥
lim
x→∞

1[0,x](y)ψ(x− y) U(dy) = ψ(∞)‖U‖ =
ψ(∞)

1−φQ(0)

as claimed. ut

Turning to the case where Q 6= δ0 is a probability distribution on R≥ (proper
case) a statement about the asymptotic behavior of solutions ψ ∗U can be directly
deduced with the help of the key renewal theorem 2.31.

Theorem 2.42. Given a proper renewal equation of the form (2.31) with dRi
function ψ , it follows for all a ∈ Id that

d-lim
x→∞

Ψ(x+a) =
1

µ(Q)

∫

R≥
ψ(x+a) λλd(dx), (2.33)

where d denotes the lattice-span of Q.

Our further investigations will rely on the subsequent lemma which shows that a
renewal equation preserves its structure under the exponential transform Q(dx) 7→
Qθ (dx) = eθxQ(dx) for any θ ∈R. Plainly, Qθ is a probability measure iff θ equals
the characteristic exponent of Q. Given a function ψ on R≥, put

ψθ (x) := eθx
ψ(x), x ∈ R≥
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for any θ ∈ R.

Lemma 2.43. Let Q be an admissible measure on R≥, ψ : R≥→ R a locally
bounded function and Ψ any solution to the pertinent renewal equation (2.31).
Then, for any θ ∈ R, Ψθ forms a solution to (2.31) for the pair (ψθ ,Qθ ), i.e.

Ψθ = ψθ +Ψθ ∗Qθ . (2.34)

Moreover, if Ψ = ψ ∗U, then Ψθ = ψθ ∗UQθ
is the unique locally bounded

solution to (2.34).

Proof. For the first assertion, it suffices to note that Ψ = ψ +Ψ ∗Q obviously im-
plies (2.34), for

eθx
Ψ(x) = eθx

ψ(x) +
∫

[0,x]
eθ(x−y)

Ψ(x− y) eθy Q(dy)

for all x ∈ R≥. Since Qθ is admissible for any θ ∈ R, the second assertion follows
by Thm. 2.39. ut

With the help of this lemma we are now able to derive the following general
result on the asymptotic behavior of ψ ∗U for a standard renewal equation of the
form (2.31). It covers the excessive as well as the defective case.

Theorem 2.44. Given a renewal equation of the form (2.31) with admissible
Q with lattice-span d and locally bounded function ψ , the following assertions
hold true for its unique locally bounded solution Ψ = ψ ∗U:

(a) If θ ∈ R is such that ‖Qθ‖< 1 and ψθ (∞) exists, then

lim
x→∞

eθx
Ψ(x) =

ψθ (∞)

1−φQ(θ)
(2.35)

(b) If Q possesses a characteristic exponent ϑ , then

d-lim
x→∞

eϑx
Ψ(x+a) =

1
µ(Qϑ )

∫

R≥
eϑx

ψ(x+a) λλd(dx) (2.36)

for all a ∈ Id if ψϑ is dRi.

Proof. All assertions are direct consequences of the previous results. ut

Remark 2.45. If 1 < ‖Q‖ < ∞ in the previous theorem, then DQ ⊃ (−∞,0] and the
continuity of φQ together with limθ→−∞ φQ(θ) = 0 always ensures the existence of
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ϑ < 0 with φQ(ϑ) = ‖Qϑ‖ = 1 by the intermediate value theorem. On the other
hand, if Q is an infinite admissible measure, then it is possible that φQ(θ) < 1 for
all θ ∈ DQ.

There is yet another situation uncovered so far where further information on the
asymptotic behavior of ψ ∗U may be obtained. Suppose that, for some θ ∈R, ψθ (∞)
exists but is nonzero and that Qθ is defective. Then Thm. 2.41 provides us with

Ψθ (∞) = lim
x→∞

eθx
Ψ(x) =

ψθ (∞)

1−φQ(θ)
6= 0

which in turn raises the question whether the rate of convergence of Ψθ (x) to Ψθ (∞)
may be studied by finding a renewal equation satisfied by the difference Ψ 0

θ
:=

Ψθ (∞)−Ψθ . An answer is given by the next theorem for which θ = 0 is assumed
without loss of generality. For d ∈ R≥ and θ ∈ R, let us define

e(d,θ) :=

{
θ , if d = 0,
(eθd−1)/d, if d > 0.

(2.37)

which is a continuous function on R≥×R.

Theorem 2.46. Given a defective renewal equation of the form (2.31) with
locally bounded ψ such that ψ(∞) 6= 0, it follows that Ψ 0 :=Ψ(∞)−Ψ forms
the unique locally bounded solution to the renewal equation Ψ 0 = ψ̂ +Ψ 0 ∗Q
with

ψ̂(x) := ψ
0(x)+ψ(∞)

Q((x,∞))

1−φQ(0)
, x ∈ R.

Furthermore, if Q has characteristic exponent ϑ (necessarily positive) and
lattice-span d, then

d-lim
x→∞

Ψ
0

ϑ (x+a) =
eϑa

µ(Qϑ )

(
ψ(∞)

e(d,ϑ)
+
∫

R≥
eϑy

ψ
0(y+a) λλd(dy)

)
(2.38)

for any a ∈ Id provided that ψ̂ϑ is dRi.

Proof. A combination of

Ψ(∞)−
∫

[0,x]
Ψ(∞) Q(dx) = Ψ(∞)(1−φQ(0))+Ψ(∞)Q((x,∞))

= ψ(∞)+
ψ(∞)Q((x,∞))

1−φQ(0)

= ψ(x)+ ψ̂(x)

and Ψ = ψ +Ψ ∗Q shows the asserted renewal equation for Ψ 0. By the previous
results, we then infer under the stated conditions on ψ̂ and Q that
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d-lim
x→∞

Ψ
0

ϑ (x+a) =
1

µ(Qϑ )

∫

R≥
ψ̂ϑ (y+a) λλd(dy)

for any a ∈ Id . Hence it remains to verify that the right-hand side equals the right-
hand side of (2.38).

Let us first consider the case d = 0: Using φQ(ϑ) = 1, we find that

∫

R≥
eϑy(ψ̂(y)−ψ

0(y)) λλ0(dy) =
ψ(∞)

1−φQ(0)

∫

R≥
eϑyQ((y,∞)) λλ0(dy)

=
ψ(∞)

ϑ(1−φQ(0))

∫

R≥
(eϑy−1) Q(dy) =

ψ(∞)

ϑ

which is the desired result.
If d > 0 and a ∈ [0,d), use Q((y+a,∞)) = Q((y,∞)) for any y ∈ dZ to see that

∫

dN0

eϑy(ψ̂(y+a)−ψ
0(y+a)) λλd(dy) =

ψ(∞)

1−φQ(0)

∫

dN0

eϑyQ((y,∞)) λλd(dy)

=
dψ(∞)

1−φQ(0)
∑
n≥0

∑
k>n

eϑndQ({kd})

=
dψ(∞)

1−φQ(0)
∑
k≥1

Q({kd})
k−1

∑
n=0

eϑnd

=
dψ(∞)

1−φQ(0)
∑
k≥1

eϑkd−1
eϑd−1

Q({kd})

=
ψ(∞)

(1−φQ(0))e(d,ϑ) ∑
k≥0

(eϑkd−1)Q({kd}) =
ψ(∞)

e(d,ϑ)
.

The proof is herewith complete. ut

It is worthwile to give the following corollary that provides information on the
behavior of the renewal function U(t) pertaining to an admissible measure Q that
possesses a characteristic exponent ϑ 6= 0. The proper renewal case ϑ = 0 will be
considered more carefully in the upcoming section.

Corollary 2.47. Let Q be an admissible measure on R≥ with lattice-span d
and characteristic exponent ϑ . Then its renewal function U(x) satisfies

(a) in the defective case (ϑ > 0):

d-lim
x→∞

eϑx
(

1
1−φQ(0)

−U(x)
)

= d-lim
x→∞

U((x,∞)) =
1

µ(Qϑ )e(d,ϑ)
.

(b) in the excessive case (ϑ < 0):
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d-lim
x→∞

eϑxU(x) =
1

µ(Qϑ )|e(d,ϑ)|

Proof. Since U(x) = I(x) +U ∗Q(x) for x ∈ R≥ with I := 1[0,∞), we infer from
Thm. 2.46 that in the defective case U0(x) = ‖U‖−U((x,∞)) satisfies the renewal
equation

U0(x) = Î(x)+U0 ∗Q(x) with Î(x) := ‖U‖Q((x,∞)).

The function Îϑ is dRi by Lemma 2.28 because Î is nondecreasing on R≥ and∫
∞

0 ϑeϑyQ((y,∞))dy = φQ(ϑ)− φQ(0) < ∞. Hence we obtain the asserted result
by an appeal to (2.38) of Thm. 2.46.

In the excessive case, ϑ < 0 implies that Iϑ (x) = eϑx1[0,∞)(x) is dRi. Therefore,
by (2.36) of Thm. 2.44(b),

d-lim
x→∞

eϑxU(x) =
1

µ(Qϑ )

∫

R≥
eϑx

λλd(dx) =
1

µ(Qϑ )|e(d,ϑ)|

as claimed. ut

2.8 Renewal function and first passage times

Let (Sn)n≥0 be a RP in a standard model with increment distribution F , lattice-
span d ∈ {0,1}, finite drift µ and renewal measure Uλ under Pλ . Recall that τ(t) =
inf{n≥ 0 : Sn > t} denotes the associated first passage time beyond level t for t ≥ 0.
The rather crude asymptotic t−1U0(t)→ µ−1, known as the elementary renewal
theorem [+ Lemma 2.1(f)], in combination with d-lim t→∞(U0(t + h)−U0(t)) =
µ−1λλd((0,h]) for any h> 0 from Blackwell’s theorem 2.20 provides some evidence
for the assertion that

U0(t) =
t
µ
+∆ +o(1) as t→ ∞ through Gd ,

where ∆ denotes a suitable constant depending on F . This will now in fact be derived
via another standard renewal equation and requires the assumption that F has finite
variance σ2 = E(X − µ)2. The result will also lead to an asymptotic expansion of
E0τ(t) up to vanishing terms as t→∞ because of a simple but important relationship
with the renewal function stated in the subsequent lemma.

Lemma 2.48. Given a RP (Sn)n≥0 in a standard model with associated first
passage times τ(t), the identity



64 2 Renewal theory

Uλ (t) = Eλ τ(t) (2.39)

holds true for any t ≥ 0 and λ ∈P(R≥).

Proof. It suffices to note that

Eλ τ(t) = ∑
n≥0

Pλ (τ(t)> n) = ∑
n≥0

Pλ (Sn ≤ t) = Uλ (t)

for any t ≥ 0 and λ ∈P(R≥). ut
Observe that, by an appeal to Wald’s identity [+ Prop. 2.53],

U0(t) =
1
µ
E0Sτ(t) =

t
µ
+

1
µ
E(Sτ(t)− t) ≥ t

µ

for all t ≥ 0. Therefore, the function Ψ(t) := U0(t)−UFs(t) is nonnegative, locally
bounded, vanishes on R< and equals U0(t)−µ−1t for t ∈Gd,≥. By (2.8), it satisfies
the renewal equation

Ψ(t) = ψ(t) +
∫

[0,t]
Ψ(t− x) F(dx), t ≥ 0,

where
ψ(t) := δ0(t)−Fs(t) = Fs

(t) t ≥ 0,

is clearly locally bounded. Consequently, Ψ forms the unique locally bounded solu-
tion to the renewal equation by Thm. 2.39 and must hence equal ψ ∗U0. The function
ψ is dRi by (dRi-6) of Prop. 2.27, for it is nonincreasing on R≥ and satisfies

∫
∞

0
Fs

(t) dt = µ
s =

σ2 +µ2

2µ
+

d
2
< ∞ (2.40)

by (2.14). The following result, giving the announced second order approximation
of the renewal function, is now easily inferred with the help of Thm. 2.42.

Theorem 2.49. Let (Sn)n≥0 be a RP in a standard model with lattice-span
d ∈ {0,1}, drift µ and finite increment variance σ2. Then

d-lim
t→∞

(
Uλ (t)−

t
µ

)
=

d
2µ

+
µ2 +σ2

2µ2 − µ0

µ
(2.41)

for any λ ∈P(R≥) having finite mean µ0.

Proof. The result follows from the previous considerations if λ = δ0 and for general
λ with finite mean µ0 upon using Uλ = λ ∗U0. Details are left to the reader [+
Problem 2.51]. ut
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Regarding the forward recurrence time R(t) = Sτ(t)− t, let us finally point out
that a combination of the previous result with (2.39), (2.40) and Wald’s identity [+
Prop. 2.53] implies

d-lim
t→∞

E0R(t) = d-lim
t→∞

(
µ E0τ(t)− t

)
= d-lim

t→∞

(
µ U0(t)− t

)
= µ

s.

But we further know from (2.29) that R(t) converges in distribution to Fs, whence
the following result is immediate.

Corollary 2.50. Let (Sn)n≥0 be a RP in a standard model with lattice-span d ∈
{0,1}, drift µ and finite increment variance σ2. Then the family of forward
recurrence times {R(t) : t ≥ 0} is ui.

Problems

Problem 2.51. Prove Thm. 2.49.

2.9 An intermezzo: random walks, stopping times and ladder
variables

Before giving a brief account of the most important extensions of previous results to
random walks on the line with positive drift, we collect some important facts about
random walks and stopping times including the crucial concept of ladder variables.
We skip some of the proofs and refer instead to [2].

In the following, let (Sn)n≥0 be a RW in a standard model with increments
X1,X2, ... and increment distribution F . For convenience, it may take values in any
Rd , d ≥ 1. We will use P for probabilities that do not depend on the distribution of
S0. Let further (Fn)n≥0 be a filtration such that

(F1) (Sn)n≥0 is adapted to (Fn)n≥0, i.e., σ(S0, ...,Sn)⊂Fn for all n ∈ N0.
(F2) Fn is independent of (Xn+k)k≥1 for each n ∈ N0.

Let also F∞ be the smallest σ -field containing all Fn. Condition (F2) ensures that
(Sn)n≥0 is a temporally homogeneous Markov chain with respect to (Fn)n≥0, viz.

P(Sn+1 ∈ B|Fn) = P(Sn+1 ∈ B|Sn) = F(B−Sn) Pλ -a.s.

for all n ∈ N0, λ ∈P(Rd) and B ∈B(Rd). A more general, but in fact equivalent
statement is that
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P((Sn+k)k≥0 ∈C|Fn) = P((Sn+k)k≥0 ∈C|Sn) = P(Sn,C) Pλ -a.s.

for all n ∈ N0, λ ∈P(R) and C ∈B(Rd)N0 , where

P(x,C) := Px((Sk)k≥0 ∈C) = P0((Sk)k≥0 ∈C− x) for x ∈ Rd .

Let us recall that, if τ is any stopping time with respect to (Fn)n≥0, also called
(Fn)-time hereafter, then

Fτ = {A ∈F∞ : A∩{τ ≤ n} ∈Fn for all n ∈ N0},

and the random vector (τ,S0, ...,Sτ)1{τ<∞} is Fτ -measurable. The following basic
result combines the strong Markov property and temporal homogeneity of (Sn)n≥0
as a Markov chain with its additional spatial homogeneity owing to its iid incre-
ments.

Proposition 2.52. Under the stated assumptions, let τ be a (Fn)-time. Then,
for all λ ∈P(Rd), the following equalities hold Pλ -a.s. on {τ < ∞}:

P((Sτ+n−Sτ)n≥0 ∈ ·|Fτ) = P((Sn−S0)n≥0 ∈ ·) = P0((Sn)n≥0 ∈ ·). (2.42)
P((Xτ+n)n≥1 ∈ ·|Fτ) = P((Xn)n≥1 ∈ ·). (2.43)

If Pλ (τ < ∞) = 1, then furthermore (under Pλ )

(a) (Sτ+n−Sτ)n≥0 and Fτ are independent.

(b) (Sτ+n−Sτ)n≥0
d
= (Sn−S0)n≥0.

(c) Xτ+1,Xτ+2, ... are iid with the same distribution as X1.

Proof. It suffices to prove (2.43) for which we pick any k ∈ N0, n ∈ N, B1, ...,Bn ∈
B(Rd) and A ∈ Fτ . Using A∩ {τ = k} ∈ Fk and (F2), it follows for each λ ∈
P(Rd) that

Pλ (A∩{τ = k,Xk+1 ∈ B1, ...,Xk+n ∈ Bn})
= Pλ (A∩{τ = k})P(Xk+1 ∈ B1, ...,Xk+n ∈ Bn)

= Pλ (A∩{τ = k})P(X1 ∈ B1, ...,Xn ∈ Bn),

and this yields the desired conclusion. ut

We continue with a statement of two very useful identities originally due to A.
WALD [117] for the first and second moment of stopped sums Sτ for finite mean
stopping times τ , known as Wald’s equations or Wald’s identities. The first of these
has already been used before.
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Proposition 2.53. [Wald’s equations] Let (Sn)n≥0 be a SRW adapted to a
filtration (Fn)n≥0 satisfying (F1) and (F2). Let further τ be an a.s. finite (Fn)-
time and suppose that µ := EX1 exists. Then

ESτ = µ Eτ (Wald’s equation)

provided that either the Xn are a.s. nonnegative, or τ has finite mean. If the Xn
have also finite variance σ2, then furthermore

E(Sτ −µτ)2 = σ
2Eτ (Wald’s 2nd equation)

for any (Fn)-time τ with finite mean.

Proof. + [2, Prop. 2.11 and 2.12]. ut

Assuming S0 = 0 hereafter, let us now turn to the concept of formally copying a
stopping time τ for (Sn)n≥1. The latter means that there exist Bn ∈B(Rnd) for n≥ 1
such that

τ = inf{n≥ 1 : (S1, ...,Sn) ∈ Bn}, (2.44)

where as usual inf /0 := ∞. With the help of the Bn we can copy this stopping rule to
the post-τ process (Sτ+n−Sτ)n≥1 if τ < ∞. For this purpose put Sn,k := Sn+k−Sn,

Sn,k := (Sn+1−Sn, ...,Sn+k−Sn) = (Sn,1, ...,Sn,k) and
Xn,k := (Xn+1, ...,Xn+k)

for k ∈ N and n ∈ N0.

Definition 2.54. Let τ be a stopping time for (Sn)n≥1 as in (2.44). Then the
sequences (τn)n≥1 and (σn)n≥0, defined by σ0 := 0 and

τn :=

{
inf{k ≥ 1 : Sσn−1,k ∈ Bk}, if σn−1 < ∞

∞, if σn−1 = ∞
and σn :=

n

∑
k=1

τk

for n ≥ 1 (thus τ1 = τ) are called the sequence of formal copies of τ and its
associated sequence of copy sums, respectively.

The following proposition summarizes the most important properties of the τn,σn
and Sσn1{σn<∞}.

Proposition 2.55. Given the previous notation, put further β :=P(τ <∞) and
Zn := (τn,Xσn−1,τn) for n ∈ N. Then the following assertions hold true:
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(a) σ0,σ1, ... are stopping times for (Sn)n≥0.
(b) τn is a stopping time with respect to (Fσn−1+k)k≥0 and Fσn−1 -

measurable for each n ∈ N.
(c) P(τn ∈ ·|Fσn−1) = P(τ < ∞) a.s. on {σn−1 < ∞} for each n ∈ N.
(d) P(τn < ∞) = P(σn < ∞) = β n for all n ∈ N.
(e) P(Zn ∈ ·,τn < ∞|Fσn−1) = P(Z1 ∈ ·,τ1 < ∞) a.s. on {σn−1 < ∞} for

all n ∈ N.
(f) Given σn < ∞, the random vectors Z1, ...,Zn are conditionally iid with

the same distribution as Z1 conditioned upon τ1 < ∞.
(g) If G := P((τ,Sτ) ∈ ·|τ < ∞), then P((σn,Sσn) ∈ ·|σn < ∞) = G∗n a.s.

for all n ∈ N.

In the case where τ is a.s. finite (β = 1), this implies further:

(h) Zn and Fσn−1 are independent for each n ∈ N.
(i) Z1,Z2, ... are iid.
(j) (σn,Sσn)n≥0 forms a SRW taking values in N0×Rd .

Proof. The simple proof of (a) and (b) is left to the reader. Assertion (c) and (e)
follow from (2.42) when observing that, on {σn−1 < ∞},

τn = ∑
k≥0

1{τn>k} = ∑
k≥0

k

∏
j=1

1Bc
j
(Sσn−1, j) and Zn 1{τn<∞}

are measurable functions of (Sσn−1,k)k≥0. Since P(τn < ∞) = P(τ1 < ∞, ...,τn < ∞),
we infer (d) by an induction over n and use of (c). Another induction in combination
with (d) gives assertion (f) once we have proved that

P((Z1, ...,Zn) ∈ An,Zn+1 ∈ B,σn+1 < ∞)

= P((Z1, ...,Zn) ∈ An,σn < ∞)P(Z1 ∈ B,τ < ∞)

for all n ∈ N and An,B from the σ -fields obviously to be chosen here. But with the
help of (e), this is inferred as follows:

P((Z1, ...,Zn) ∈ An,Zn+1 ∈ B,σn+1 < ∞)

= P((Z1, ...,Zn) ∈ An,Zn+1 ∈ B,σn < ∞,τn+1 < ∞)

=
∫

{(Z1,...,Zn)∈An,σn<∞}
P(Zn+1 ∈ B,τn+1 < ∞|Fσn) dP

= P((Z1, ...,Zn) ∈ An,σn < ∞)P(Z1 ∈ B,τ < ∞).

Assertion (g) is a direct consequence of (f), and the remaining assertion (h),(i) and
(j) in the case β = 1 are just the specializations of (e),(f) and (g) to this case. ut
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The most prominent sequences of copy sums in the theory of RW’s are obtained
by looking at the record epochs and record values of a RW (Sn)n≥0, or its reflec-
tion (−Sn)n≥0. They also provide a key tool for the extension of renewal theory to
random walks with positive drift

Definition 2.56. Given a SRW (Sn)n≥0, the stopping times

σ
> := inf{n≥ 1 : Sn > 0}, σ

≥ := inf{n≥ 1 : Sn ≥ 0},
σ
< := inf{n≥ 1 : Sn < 0}, σ

≤ := inf{n≥ 1 : Sn ≤ 0},

are called first strictly ascending, weakly ascending, strictly descending and
weakly descending ladder epoch, respectively, and

S>1 := Sσ>1{σ><∞}, S≥1 := Sσ≥1{σ≥<∞},

S<1 := Sσ<1{σ<<∞}, S≤1 := Sσ≤1{σ≤<∞}

their respective ladder heights. The associated sequences of copy sums
(σ>

n )n≥0, (σ≥n )n≥0, (σ<
n )n≥0 and (σ≤n )n≥0 are called sequences of strictly as-

cending, weakly ascending, strictly descending and weakly descending ladder
epochs, respectively, and

S>n := Sσ
>
n

1{σ>n <∞}, n≥ 0, S≥n := S
σ
≥
n

1{σ≥n <∞}, n≥ 0,

S<n := Sσ
<
n

1{σ<n <∞}, n≥ 0, S≤n := S
σ
≤
n

1{σ≤n <∞}, n≥ 0

the respective sequences of ladder heights.

Plainly, if (Sn)n≥0 has nonnegative (positive) increments, then σ≥n = n (σ>
n = n)

for all n ∈N. Moreover, σ≥n = σ>
n and σ≤n = σ<

n a.s. for all n ∈N in the case where
the increment distribution is continuous, for then P(Sm = Sn) = 0 for all m,n ∈ N.

The following proposition provides some basic information on the ladder vari-
ables and is a consequence of the SLLN and Prop. 2.55.

Proposition 2.57. Let (Sn)n≥0 be a nontrivial SRW. Then the following asser-
tions are equivalent:

(a)
(
σα

n ,Sσα
n

)
n≥0 is a SRW taking values in N0×R for any α ∈ {>,≥}

(resp. {<,≤}).
(b) σα < ∞ a.s. for α ∈ {>,≥} (resp. {<,≤}).
(c) limsupn→∞ Sn = ∞ a.s. (resp. liminfn→∞ Sn =−∞ a.s.)

Proof. It clearly suffices to prove equivalence of the assertions outside parenthe-
ses. The implications “(a)⇒(b)” and “(c)⇒(b)” are trivial, while “(b)⇒(a)” follows
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from Prop. 2.55(j). This leaves us with a proof of “(a),(b)⇒(c)”. But ES> > 0 in
combination with the SLLN applied to (S>n )n≥0 implies

limsup
n→∞

Sn ≥ lim
n→∞

S>n = ∞ a.s.

and thus the assertion. ut
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>
3 = 10, and

strictly descending ladder epochs σ
<
1 = 1, σ

<
2 = 5 and σ

<
3 = 12.

If EX1 > 0 (resp. < 0) we thus have that σ>,σ≥ (resp. σ<,σ≤) are a.s. finite
whence the associated sequences of ladder epochs and ladder heights each constitute
nondecreasing (resp. nonincreasing) zero-delayed RW’s. Much deeper information,
however, is provided by Prop. 2.59 below which discloses a quite unexpected duality
between ascending and descending ladder epochs that will enable us to derive a
further classification of RW’s as to their asymptotic behavior including the Chung-
Fuchs theorem on the asymptotic behavior of a RW with drift zero. We pause for
the following lemma about the lattice-type of a ladder height.

Lemma 2.58. Let (Sn)n≥0 be a nontrivial SRW and σ an a.s. finite first ladder
epoch. Then d(X1) = d(Sσ ).

Proof. + [2, Lemma 2.33] or Problem 2.62. ut
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Proposition 2.59. Given a SRW (Sn)n≥0 with first ladder epochs σ≥, σ>, σ≤,
σ<, the following assertions hold true:

Eσ
≥ =

1
P(σ< = ∞)

and Eσ
> =

1
P(σ≤ = ∞)

, (2.45)

P(σ≤ = ∞) = (1−κ)P(σ< = ∞), (2.46)

where

κ := ∑
n≥1

P(S1 > 0, ...,Sn−1 > 0,Sn = 0) = ∑
n≥1

P(σ≤ = n,S≤1 = 0).

Proof. + [2, Prop. 2.15]. ut

We close this section with the announced classification of RW’s that provides us
with a good understanding of their long-run behavior.

Theorem 2.60. Let (Sn)n≥0 be a nontrivial SRW. Then exactly one of the fol-
lowing three cases holds true:

(i) σ≤,σ< are both defective and Eσ≥,Eσ> are both finite.
(ii) σ≥,σ> are both defective and Eσ≤,Eσ< are both finite.
(iii) σ≥,σ>,σ≤,σ< are all a.s. finite with infinite expectation.

In terms of the asymptotic behavior of Sn as n→ ∞, these three alternatives
are characterized as follows:

(i) limn→∞ Sn = ∞ a.s.
(ii) limn→∞ Sn =−∞ a.s.
(iii) liminfn→∞ Sn =−∞ and limsupn→∞ Sn = ∞ a.s.

Finally, if µ := EX1 exists, thus EX+ < ∞ or EX− < ∞, then (i), (ii), and (iii)
are equivalent to µ > 0, µ < 0, and µ = 0, respectively.

The last stated fact that alternative (iii) occurs for any SRW with drift µ = 0 is
usually referred to as the Chung-Fuchs theorem.

Proof. Notice first that P(X1 = 0)< 1 is equivalent to κ < 1, whence (2.46) ensures
that σ>,σ≥ as well as σ<,σ≤ are always defective simultaneously in which case
the respective dual ladder epochs have finite expectation by (2.45). Hence, if neither
(a) nor (b) holds true, the only remaining alternative is that all four ladder epochs
are a.s. finite with infinite expectation. By combining the three alternatives for the
ladder epochs just proved with Prop. 2.57, the respective characterizations of the
behavior of Sn for n→ ∞ are immediate.
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Suppose now that µ = EX1 exists. In view of Prop. 2.57 it then only remains to
verify that (iii) holds true in the case µ = 0. But any of the alternatives (i) or (ii)
would lead to the existence of a ladder epoch σ such that Eσ < ∞ and Sσ is a.s.
positive or negative. On the other hand, ESσ = µ Eσ = 0 would follow by an appeal
to Wald’s identity which is impossible. Hence µ = 0 entails (iii). ut

The following definition gives names to the three above alternatives (i), (ii) and
(iii) that may occur for a RW (Sn)n≥0.

Definition 2.61. A RW (Sn)n≥0 is called

– positive divergent if limn→∞ Sn = ∞ a.s.
– negative divergent if limn→∞ Sn =−∞ a.s.
– oscillating if liminfn→∞ Sn =−∞ and limsupn→∞ Sn = ∞ a.s.

Problems

Problem 2.62. Prove Lemma 2.58.

2.10 Two-sided renewal theory: a short path to extensions

Now we are ready to extend some of the previously stated renewal theorems to RW’s
with positive drift. The basic idea is as simple as effective and based upon the use
of the embedded RP of strictly ascending ladder heights.

For most of the following derivations it suffices to consider the zero-delayed case
when S0 = 0, for the result in the general case then usually follows by a straight-
forward argument. So let (Sn)n≥0 be a SRW with increment distribution F , positive
drift µ and embedded SRP (S>n )n≥0 of strictly ascending ladder heights the drift of
which we denote by µ> = ES>1 . Since Eσ> is finite, Wald’s equation implies

µ
> = ES>1 = ESσ> = µ Eσ

>

even if µ =∞. As before, let U=∑n≥0 F∗n =∑n≥0P(Sn ∈ ·) be the renewal measure
of (Sn)n≥0 so that U(A) gives the expected number of visits of the RW to A∈B(R).
We remark that it is not clear at this point whether U(A) is always finite for any
bounded B as in the renewal case. The renewal measure of (S>n )n≥0 is denoted U>.
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2.10.1 The key tool: cyclic decomposition

Let σ be an a.s. finite stopping time for (Sn)n≥1 with associated sequence (σn)n≥0
of copy sums. Denote by U(σ) the renewal measure of the RW (Sσn)n≥0 and define
the pre-σ occupation measure of (Sn)n≥0 by

V(σ)(A) := E

(
σ−1

∑
n=0

1A(Sn)

)
for A ∈B(R), (2.47)

which has total mass ‖V (σ)‖= Eσ and is hence finite if σ has finite mean. The next
lemma shows that U and U(σ),V(σ) are related in a nice way and holds true even
without any assumption on the drift of (Sn)n≥0.

Lemma 2.63. [Cyclic decomposition formula] Under the stated assump-
tions,

U = V(σ) ∗U(σ)

for any a.s. finite stopping time σ for (Sn)n≥1.

Proof. Using cyclic decomposition with the help of the σn, we obtain

U(A) = E

(
∑
k≥0

1A(Sk)

)
= ∑

n≥0
E

(
σn+1−1

∑
k=σn

1A(Sk)

)

= ∑
n≥0

∫

R
E

(
σn+1−σn−1

∑
k=0

1A−x(Sσn+k−Sσn)

∣∣∣∣∣Sσn = x

)
P(Sσn ∈ dx)

= ∑
n≥0

∫

R
V(σ)(A− x) P(Sσn ∈ dx)

= V(σ) ∗U(σ)(A) for all A ∈B(R),

where (2.42) of Prop. 2.52 has been utilized for the penultimate line. ut

Specializing to σ = σ> and writing V> for V(σ>), the cyclic decomposition
formula takes the form

U = V> ∗U>. (2.48)

We thus have a convolution formula for the renewal measure U that involves a finite
measure concentrated on R≤, viz. V>, and the renewal measure of a SRP, namely
U>, for which the asymptotic behavior has been found in the previous sections.
Various results for RP’s including Blackwell’s theorem and the key renewal theorem
will now easily be extended to RW’s with positive drift with help of this formula.

If (Sn)n≥0, given in a standard model, has arbitrary initial distribution λ , then
Lemma 2.63 in combination with Uλ = λ ∗U0 immediately implies
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Uλ = λ ∗V(σ) ∗U(σ) = V(σ) ∗U(σ)
λ

(2.49)

where V(σ),U(σ) are defined as before under P0.
Returning to the zero-delayed situation, let us further note that a simple compu-

tation shows that
V(σ) = ∑

n≥0
P(σ > n,Sn ∈ ·) (2.50)

[+ Problem 2.69] and that, for any real- or complex-valued function f

∫
f dV(σ) = ∑

n≥0

∫

{σ>n}
f (Sn) dP = E

(
σ−1

∑
n=0

f (Sn)

)
(2.51)

whenever one of the three expressions exist.

2.10.2 Uniform local boundedness and stationary delay
distribution

The following lemma showing uniform local boundedness of the renewal measure
for any random walk with positive drift is the partial extension of Lemma 2.14. A
full extension by extending the argument given there is stated as Problem 2.71.

Lemma 2.64. Let (Sn)n≥0 be a RW with positive drift in a standard model.
Then Uλ is uniformly locally bounded for each λ ∈P(R), in fact

sup
t∈R

Uλ ([t, t +h]) ≤ Eσ
>U>0 (h) (2.52)

for all h> 0.

Proof. For any λ ∈P(R) and h> 0, the cyclic decomposition formula (2.49) with
σ = σ> in combination with ‖V>‖= Eσ> and

sup
t∈R

U>
λ
([t, t +h]) ≤ U>0 (h)

by Lemma 2.14 yields

Uλ ([t, t +h]) = V> ∗U>
λ
([t, t +h])

=
∫

U>
λ
([t− x, t− x+h]) V>(dx)

≤ Eσ
>U>0 (h)

as claimed. ut
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Cyclic decomposition also allows us to generalize the results from Subections
2.4.2 and 2.4.3 about the stationary delay distribution. This is accomplished by
considering Fs,Fs

a and ξ as defined there, but for the associated ladder height RP
(S>n )n≥0. Hence we put

ξ (t) :=

{∫ t
0 P(S>1 > x) dx, if d = 0,

∑
n(t)
k=1P(S

>
1 ≥ k), if d = 1

(2.53)

for t ∈ R≥ (with n(t) as in Prop. 2.15) and then again Fs
a by (2.11) for a ∈ R>.

If S>1 has finite mean µ> and hence ξ is finite, then let Fs be its normalization, i.e.
Fs = (µ>)−1ξ . Recall from Lemma 2.58 that S>1 and X1 are of the same lattice-type.

Theorem 2.65. Let (Sn)n≥0 be a RW in a standard model with positive drift µ

and lattice-span d ∈ {0,1}. Then the following assertions hold with ξ ,Fs
a and

Fs as defined in (2.53) and thereafter.

(a) U+
ξ
= Eσ>λλ

+
d .

(b) U+
Fs

a
≤ ξ (a)−1Eσ>λλ

+
d for all a ∈ R>.

(c) If µ is finite, then U+
Fs = µ−1λλ

+
d .

Proof. First note that µ > 0 implies Eσ> < ∞ [+ Thm. 2.60] and µ> = ES>1 =
µ Eσ> by Wald’s identity. By (2.49), Uλ = V> ∗U>

λ
for any distribution λ and this

obviously extends to arbitrary locally finite measures λ . Therefore,

Uξ (A) = V> ∗U>
ξ
(A) =

∫

R≤
U>

ξ
(A− x) V>(dx)

=
∫

R≤
λλ
+
d (A− x) V>(dx) = V>(R≤)λλ

+
d (A)

= Eσ
>

λλ
+
d (A) for all A ∈B(R≥)

where Cor. 2.16, the translation invariance of λλd and A−x⊂R≥ for all x∈R≤ have
been utilized. Hence assertion (a) is proved. As (b) and (c) are shown in a similar
manner, we omit supplying the details again and only note for (c) that, if µ < ∞,
U+

Fs = (µ>)−1Eσ>λλ
+
d really equals µ−1λλ

+
d because µ> = µ Eσ> as mentioned

above. ut

2.10.3 Extensions of Blackwell’s and the key renewal theorem

Extensions of the two main renewal theorems to RW’s with positive drift are now
obtained in a straightforward manner by combination of these results for the ladder
height RP with cyclic decomposition.
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Theorem 2.66. [Blackwell’s renewal theorem] Let (Sn)n≥0 be a RW in a
standard model with lattice-span d ≥ 0 and positive drift µ . Then

d-lim
t→∞

Uλ ([t, t +h]) = µ
−1

λλd([0,h]) and (2.54)

lim
t→−∞

Uλ ([t, t +h]) = 0 (2.55)

for all h> 0 and λ ∈P(Gd), where µ−1 := 0 if µ = ∞.

Proof. By another use of cyclic decomposition in combination with Lemma 2.64,
Blackwell’s theorem for U>

λ
and of µ ‖V>‖ = µ Eσ> = µ> if µ < ∞, it follows

with the help of the dominated convergence theorem that

d-lim
t→∞

Uλ ([t, t +h]) =
∫

d-lim
t→∞

U>
λ
([t− x, t− x+h]) V>(dx)

=
‖V>‖λλd([0,h])

µ>
=

λλd([0,h])
µ

for any h > 0, i.e. (2.54). But (2.55) follows analogously, for U> vanishes on the
negative halfline giving limt→−∞U>

λ
([t, t +h]) = 0. ut

Theorem 2.67. [Key renewal theorem] Let (Sn)n≥0 be a RW with positive
drift µ , lattice-span d ∈ {0,1} and renewal measure U. Then

d-lim
t→∞

g∗U(t) =
1
µ

∫
g dλλd and (2.56)

lim
t→−∞

g∗U(t) = 0 (2.57)

for every dRi function g : R→ R.

Proof. Given a dRi function g : R→R, we leave it to the reader [+ Problem 2.72]
to verify that Thm. 2.31 still applies and yields

d-lim
t→∞

g∗U>(t) =
1

µ>

∫
∞

−∞

g(x) λλd(dx)

as well as
lim

t→−∞
g∗U>(t) = 0.

In particular, g∗U> is a bounded function. Then use cyclic decomposition and the
dominated convergence theorem to infer that

g∗U(t) =
∫

g∗U>(t− x) V>(dx)
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has the asserted limits as t→ ∞ (through Gd) and t→−∞. ut

We finish with a brief look at the renewal function U(t) =U((−∞, t]) for a SRW
(Sn)n≥0 with positive drift µ . We know that (µ>)−1t ≤ U>(t) ≤ (µ>)−1t +C for
all t ≥ 0 and a suitable constant C ∈ R>, whence cyclic decomposition provides us
with the estimate

U(t) =
∫

R≤
U>(t− x) V>(dx)

{
≥ µ−1t +

∫
R≤ |x| V

>(dx)

≤ µ−1t +
∫
R≤ |x| V

>(dx) + CEσ>

for all t ≥ 0. As a consequence, U(t)< ∞ for some/all t ∈ R holds iff (use (2.51))

∫

R≤
|x| V>(dx) = E

(
σ>−1

∑
n=0
|Sn|
)

= E

(
σ>−1

∑
n=0

S−n

)
< ∞.

A nontrivial result not derived here states [+ [2, Cor. 6.25]] that this is equivalent
to the moment condition

µ
−
2 := E(X−)2 < ∞.

2.10.4 An application: Tail behavior of supn≥0 Sn in the negative
drift case

In Applied Probability, the supremum of a SRW with negative drift (or, equivalently,
the minimum of a SRW with positive drift) pops up in various contexts like the ruin
problem in insurance mathematics or the asymptotic analysis of queuing models.
An instance already encountered is Lindley’s equation

W d
= (W +X)+

for a random variable X with negative mean and independent of W . As explained in
Section 1.2, the law of W equals the equilibrium distribution of a customer’s waiting
time in a G/G/1-queue before proceeding to the server if X = B−A, the difference
of a generic service time B and a generic interarrival time A. If (Sn)n≥0 denotes a
SRW with increments X1,X2, ... which are copies of X , then

W d
= sup

n≥0
Sn

as stated in Theorem 1.4 [+ also Problem 1.6(b)]. The following classical result,
which may already be found in FELLER’s textbook [52, Ch. XII, (5.13)], provides
the exact first-order asymptotics for P(W > t) as t → ∞ under an exponential mo-
ment condition.
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Theorem 2.68. Let (Sn)n≥0 be a SRW with negative drift µ , lattice-span d ∈
{0,1}, EeϑS1 = 1 and µϑ := EeϑS>1 S>1 1{σ><∞} < ∞ for some ϑ > 0. Then

d-lim
t→∞

eϑ t P
(

sup
n≥0

Sn > t
)

=
P(σ> = ∞)

e(d,ϑ)µϑ

∈ R> (2.58)

with e(d,θ) as defined in (2.37). If µϑ = ∞, the result remains true when
interpreting the right-hand side of (2.58) as zero.

For an alternative approach to this result via implicit renewal theory, we refer to
Subsection 4.4.2. Let us further point out that the increments of (Sn)n≥0 may take
values in R∪{−∞} as one can readily see from the following proof. In this case,
e−∞ := 0 as usual.

Proof. By Prop. 2.59, P(σ> = ∞) = (Eσ≤)−1 > 0, for µ < ∞ implies Eσ≤ < ∞.
Further, P(σ> = ∞)< 1 and µϑ > 0, for EeϑS1 = 1 ensures P(S1 > 0)> 0. Conse-
quently, Q> := P(S>1 ∈ ·,σ> <∞) is nonzero and defective, i.e. 0< ‖Q>‖< 1, and
the associated renewal measure

U> = ∑
n≥0

P(S>n ∈ ·,σ>
n < ∞) = ∑

n≥0
Q∗n>

[use Prop. 2.55(g) for the second equality] a finite measure.
Since EeϑS1 = 1, the sequence (eϑSn)n≥0 constitutes a nonnegative martingale

with mean one. Let (Fn)n≥0 denote its natural filtration and F∞ := σ(Sn : n ≥ 0).
Define a new probability measure P̂ on (Ω ,F∞) by

P̂(A) := EeϑSn1A for A ∈Fn and n≥ 0.

As one easily see, X1,X2, ... are still iid under P̂ with the same lattice-span d, com-
mon distribution Q̂(B) := EeϑS11B(S1) for B ∈ B(R), and mean µ̂ := EeϑS1S1.
Equivalently, (Sn)n≥0 is still a SRW with drift µ̂ . The latter is positive because
φ(θ) := EeθS1 is a convex function on [0,ϑ ] with φ(0) = φ(ϑ) = 1 and negative
(right) derivative µ at 0. We further infer that

1 = P̂(σ> < ∞) = ∑
n≥1

P̂(σ> = n) = ∑
n≥1

EeϑSn1{σ>=n} = EeϑS>1 .

Now observe that, with g(x) := 1(−∞,0)(x),

P
(

sup
n≥0

Sn > t
)

= ∑
n≥0

P(S>n > t, σ
>
n < ∞, σ

>
n+1−σ

>
n = ∞)

= P(σ> = ∞)U>((t,∞))

= P(σ> = ∞)g∗U>(t)



2.10 Two-sided renewal theory: a short path to extensions 79

implying

eϑ t P
(

sup
n≥0

Sn > t
)

= P(σ> = ∞)gϑ ∗U>ϑ (t),

where, as in Section 2.7, gϑ (x) = eϑxg(x) and U>
ϑ
(dx) = eϑxU>(dx), the latter

being the renewal measure of (S>n )n≥0 under P̂. Since gϑ is easily seen to be dRi,
the assertion finally follows by an appeal to the key renewal theorem 2.67. ut

Problems

Problem 2.69. Prove (2.50).

Problem 2.70. Prove that the cyclic decomposition formula remains true for any a.s.
finite σ that is independent of (Sn)n≥0 and called randomized stopping time for this
RW. [Hint: Consider a SRP (σn)n≥0 independent of (Sn)n≥0 with L (σ1) = L (σ).]

Problem 2.71. Let (Sn)n≥0 be a RW with positive drift in a standard model. As in
the renewal case, put N(A) := ∑n≥0 1A(Sn) for A ∈B(R). Then

sup
t∈R

Pλ (N([t, t +h])≥ n) ≤ P0(N([−h,h])≥ n) (2.59)

for all h> 0, n ∈ N0 and λ ∈P(R). In particular,

sup
t∈R

Uλ ([t, t +h]) ≤ U0([−h,h]) (2.60)

and {N([t, t +h]) : t ∈R} is uniformly integrable under each Pλ for all h> 0. [Hint:
Generalize the proof of Lemma 2.14.]

Problem 2.72. Prove that the (one-sided) key renewal theorem 2.31 remains valid if
g is dRi, but not necessarily vanishing on the negative halfline, and that g∗U(t)→ 0
as t→−∞ holds true in this case as well.





Chapter 3
Iterated random functions

This chapter is devoted to a rather short introduction of the general theory of itera-
tions of iid random Lipschitz functions, also called iterated function systems. They
may be viewed as a particular class of Markov chains on a topological state space for
which stability results are usually deduced via appropriate contraction conditions on
the occurring class of random functions.

3.1 The model, definitions, some basic observations and
examples

In order to provide an appropriate framework for the subsequent considerations, we
begin with a formal definition of the special class of Markov chains to be studied
here. The relevance in connection with random recursive equations, the actual topic
of this course, becomes immediately apparent by the way these chains are defined
in (3.1) below.

Although all examples encountered so far have been Markov chains on R or Rm,
we have chosen to take a more general approach here by allowing the state space
to be any complete separable metric space (X,d) endowed with the Borel σ -field
B(X). The reader will hopefully acknowledge that this appears to be quite natural
and does not make our life more complicated. Nevertheless it may be useful to point
out the following facts:
Convergence in distribution for random elements X ,X1,X2, ... in (X,B(X)) is still

defined in the usual manner, i.e. Xn
d→ X if

lim
n→∞

E f (Xn) = E f (X) for all f ∈ Cb(X),

where Cb(X) denotes the space of bounded continuous functions f : X → R.
Uniqueness of the limit distribution is guaranteed by the fact that this space is
measure-determining, i.e., two bounded measures λ1,λ2 on (X,B(X)) are equal

81
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whenever
∫

X
f (x) λ1(dx) =

∫

X
f (x) λ2(dx) for all f ∈ Cb(X).

Finally, the Portmanteau theorem remains valid as well. For further information
on convergence of probability measures on metric spaces we refer to the classic
monograph by BILLINGSLEY [18].

3.1.1 Definition of an iterated function system and its canonical
model

The formal definition of an iterated function system is first, followed by the discus-
sion of some measurability aspects and the specification of a canonical model.

Definition 3.1. Let (X,d) be a complete separable metric space with Borel-
σ -field B(X). A temporally homogeneous Markov chain (Xn)n≥0 with state
space X is called iterated function system (IFS) of iid Lipschitz maps if it
satisfies a recursion of the form

Xn =Ψ(θn,Xn−1) (3.1)

for n≥ 1, where

(IFS-1) X0,θ1,θ2, ... are independent random elements on a common prob-
ability space (Ω ,A,P);

(IFS-2) θ1,θ2, ... are identically distributed with common distribution Λ

and taking values in a measurable space (Θ ,A );
(IFS-3) Ψ : (Θ ×X,A ⊗B(X))→ (X,B(X)) is jointly measurable and

Lipschitz continuous in the second argument, that is

d(Ψ(θ ,x),Ψ(θ ,y))≤Cθ d(x,y)

for all x,y ∈ X, θ ∈Θ and a suitable Cθ ∈ R≥.

A natural way to generate an IFS is to first pick an iid sequence Ψ1,Ψ2, ... of
random elements from the space CLip(X) of Lipschitz self-maps on X and to then
produce a Markov chain (Xn)n≥0 by picking an initial value X0 and defining

Xn = Ψn ◦ ...◦Ψ1(X0) (3.2)

for each n≥ 1. In the context of the above definition, Ψn =Ψ(θn, ·), but it becomes
a measurable object only if we endow CLip(X) with a suitable σ -field. Therefore we
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continue with a short description of what could be called the canonical model of an
IFS which particularly meets the last requirement.

Let X0 := {x1,x2, ...} be a countable dense subset of X and L (X0,X) the “se-
quence” space of all mappings from X0 to X. The latter clearly forms a complete
separable metric space, for instance, when choosing

ρ(ψ1,ψ2) = ∑
n≥1

1
2n

d(ψ1(xn),ψ2(xn))

1+d(ψ1(xn),ψ2(xn))

for ψ1,ψ2 ∈L (X0,X) as a metric. We endow L (X0,X) with the product σ -field
B(X)X0 generated by the product topology. Finally, we define the Lipschitz constant
of ψ as

L(ψ) := sup
x,y∈X,x 6=y

d(ψ(x),ψ(y))
d(x,y)

(3.3)

and note that L(ψ) = 0 iff ψ is constant. The following lemma is taken from [34].

Lemma 3.2. Given the previous notation, the following assertions hold true:

(a) CLip(X) is a Borel subset of L (X0,X).
(b) The mapping ψ 7→ L(ψ) is a Borel function on CLip(X).
(c) The mapping (ψ,x) 7→ ψ(x) is a Borel function on CLip(X)×X.

Proof. The map L0 : L (X0,X)→ [0,∞], defined by

L0(ψ) := sup
x,y∈X0,x 6=y

d(ψ(x),ψ(y))
d(x,y)

,

is clearly a Borel function, for it is the supremum of countably many continuous
functions, namely

L (X0,X) 3 ψ 7→ d(ψ(x),ψ(y))
d(x,y)

for (x,y) ∈ X2
0, x 6= y. Now observe that, if L0(ψ) < ∞, then ψ has a unique exten-

sion to a Lipschitz function on X with L(ψ) = L0(ψ) because X0 is dense in X. Con-
versely, the restriction of any Lipschitz continuous ψ to X0 satisfies L0(ψ) = L(ψ)
whence we conclude

CLip(X) = {ψ : L0(ψ)< ∞} ∈ B(X)X0

(by unique embedding) as well as the measurability of ψ 7→ L(ψ).
In oder to prove (c), let x1,x2, ... be an enumeration of the elements of X0 and

Bε(x) the open ε-ball with center x. For n,k ∈ N, define
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An,1 := B1/n(x1) and An,k := B1/n(xk)∩
k−1⋃

j=1

B1/n(x j)
c for k ≥ 2.

Then each (An,k)k≥1 forms a measurable partition of X. For any ψ : X→ X, put

ψn(x) := ∑
k≥1

ψ(xk)1An,k(x) for n≥ 1.

Then the mapping (ψ,x) 7→ ψn(x) is measurable from L (X0,X)×X to X and its
retraction to CLip(X)×X converges pointwise to the evaluation map (ψ,x) 7→ ψ(x)
which gives the desired result. ut

In view of the previous lemma we can choose the following canonical model
for an IFS of iid Lipschitz maps: Let A be the Borel σ -field on Θ := CLip(X),
more precisely A := B(X)X0 ∩CLip(X), and let (X0,θ) = (X0,θ1,θ2, ...) be the
identity map on the product space (X×CLip(X)N,B(X)⊗A N), so that θn de-
notes the nth projection for each n, taking values in (Θ ,A ). If we choose an in-
finite product distribution ΛN on (CLip(X)N,A N) and Px := δx⊗ΛN on (Ω ,A) :=
(X×CLip(X)N,B(X)⊗A N), these projections are iid with common distribution
F and independent of X0 under any Pλ :=

∫
Px λ (dx), λ ∈P(X). Finally, define

Ψ : (CLip(X)×X,A ⊗B(X)) by Ψ(θ ,x) := θ(x) and Xn :=Ψ(θn,X0). Then

(Ω ,A,(Xn)n≥0,(Pλ )λ∈P(X)) (3.4)

provides a canonical model for the IFS (Xn)n≥0 of iid Lipschitz maps in which

Ψn :=Ψ(θn, ·), n≥ 0

is a sequence of iid random elements in CLip(X) independent of X0 under each Pλ .
As a Markov chain, (Xn)n≥0 has one-step transition kernel

P(x,B) = Px(Ψ(θ1,X0) ∈ B) = Λ(Ψ(·,x) ∈ B), B ∈B(X), (3.5)

which is easily seen to be Fellerian [+ Problem 3.12]. In the following, we will
always assume a standard model of the afore-mentioned type be given and write Ψn
for Ψ(θn, ·), thus

Xn = Ψn(Xn−1) = Ψn ◦ ...Ψ1(X0)

as already stated in (3.2). We further put Ln := L(Ψn) for n ≥ 1, by Lemma 3.2(b)
a random variable taking values in R≥, and note that L1,L2, ... are iid under each
Pλ with a distribution independent of λ . Therefore we use P for probabilities not
depending on the initial distribution of the Markov chain.
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3.1.2 Lipschitz constants, contraction properties and the top
Liapunov exponent

In view of the fact that (CLip(X),◦) forms a multiplicative semigroup and thus
Ψn:k :=Ψn ◦ ...◦Ψk ∈ CLip(X) for any n≥ 1 and 1≤ k ≤ n, it is natural to ask about
how the Lipschitz constant L(Ψn:1) of Ψn:1 relates to those of its factors Ψ1, ...,Ψn.
The following simple lemma is basic for our analysis.

Lemma 3.3. For any ψ1,ψ2 ∈ CLip(X),

L(ψ1 ◦ψ2)≤ L(ψ1) ·L(ψ2).

Proof. Problem 3.13. ut
As an immediate consequence of this lemma, we infer that

L(Ψn:1) ≤ L(Ψn:k+1)L(Ψk:1) for any 1≤ k < n (3.6)

and L(Ψn:1) ≤
n

∏
k=1

Lk for any n≥ 1. (3.7)

An important consequence of (3.6) is that it entails the existence of the so-called
(top) Liapunov exponent with the help of Kingman’s subadditive ergodic theorem,
the latter being stated without proof as Theorem A.5 in the Appendix. The following
result is due to FURSTENBERG & KESTEN [58] for linear maps and to ELTON [45]
for Lipschitz maps.

Theorem 3.4. [Furstenberg-Kesten, Elton] Let (Xn)n≥0 be an IFS of iid Lip-
schitz maps with Lipschitz constants L1,L2, ... satisfying E log+ L1 < ∞. Then

lim
n→∞

1
n

logL(Ψn:1) = inf
n≥1

E logL(Ψn:1)

n
=: ` a.s.

where ` ∈ R∪ {−∞} is called (top) Liapunov exponent of (Xn)n≥0. If ` is
finite, then the convergence holds in L1 as well.

Proof. By (3.6), the triangular scheme (Yk,n)
0≤k<n
n≥1 , defined by

Yk,n := logL(Ψn:k+1),

is subadditive in the sense that Y0,n ≤ Y0,k +Yk,n a.s. for all 0 ≤ k < n. The reader
can easily check that it also satisfies all other conditions of the subadditive er-
godic theorem A.5 in the Appendix including ergodicity of the stationary sequences
(Xnk,n(k+1))n≥1 for all k ≥ 1. This leads to the conclusion that
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lim
n→∞

1
n

logL(Ψn:1) = ` a.s.

for some ` ∈ R∪{−∞}, and the convergence is also in L1 if ` >−∞. ut

A combination of the previous result with (3.7) and the SLLN further provides
us with:

Corollary 3.5. Let (Xn)n≥0 be an IFS of iid Lipschitz maps with Lipschitz con-
stants L1,L2, ... satisfying E log+ L1 < ∞. Then its Liapunov exponent ` satis-
fies

` ≤ E logL1. (3.8)

Proof. It suffices to note that (∑n
k=1 logLk)n≥0 forms a SRW with drift E logL1 and

that logL(Ψn:1)≤ ∑
n
k=1 logLk for each n≥ 1. ut

It should not be surprising that the Lipschitz constants L(Ψn:1) play an important
role in the stability analysis of (Xn)n≥0. This will already become quite clear in the
next section when studying strongly contractive IFS to be defined below along with
other contraction conditions. Recall that a Lipschitz map ψ is called contractive or
a contraction if L(ψ)< 1.

Definition 3.6. An IFS (Xn)n≥0 of iid Lipschitz maps is called

– strongly contractive if logL1 ≤−l a.s. for some l ∈ R>.
– strongly mean contractive of order p if log ELp

1 < 0. (p> 0)
– mean contractive if E logL1 < 0.
– contractive if it has Liapunov exponent ` < 0.

It is obvious that strong contraction implies contraction and strong mean contrac-
tion of any order, while an application of Jensen’s inequality shows that the latter
implies mean contraction; for a converse see Problem 3.14. Moreover, strong mean
contraction of order p may always be reduced to the case p = 1 by switching the
metric [+ Problem 3.15].

3.1.3 Forward versus backward iterations

The recursive character of an IFS naturally entails that its state Xn at any time n is
obtained via forward iteration or left multiplication of the random Lipschitz func-
tions Ψ1, ...,Ψn. This means, we first apply Ψ1 to X0, then Ψ2 to Ψ1(X0), and so on
until we finally apply Ψn to Ψn−1 ◦ ...◦Ψ1(X0). On the other hand, since
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(Ψ1, ...,Ψn)
d
= (Ψn, ...,Ψ1),

the distribution of the forward iteration Xn is at all times n the same as of the back-
ward iteration or right multiplication X̂n :=Ψ1 ◦ ...◦Ψn(X0), that is

X̂n
d
= Xn for all n≥ 0. (3.9)

Consequently, we may also study the sequence of backward iterations (X̂n)n≥0

when trying to prove asymptotic stability of (Xn)n≥0, i.e. Xn
d→ π for some π ∈

P(X). The usefulness of this observation relies on the fact that in the stable case the
X̂n exhibit a stronger pathwise convergence as we will see, which particularly shows
that the joint distributions of (Xn)n≥0 and (X̂n)n≥0 are generally very different. Most
notably, (X̂n)n≥0 is not a Markov chain except for trivial cases.

In the following, we put Ψk:n := Ψk ◦ ... ◦Ψn for 1 ≤ k ≤ n and note as direct
counterparts of (3.6) and (3.7) that

L(Ψ1:n) ≤ L(Ψ1:k)L(Ψk+1:n) for any 1≤ k < n (3.10)

and L(Ψ1:n) ≤
n

∏
k=1

Lk for any n≥ 1. (3.11)

Also Theorem 3.4 and its corollary remain valid when replacing L(Ψn:1) with
L(Ψ1:n) in (3.8).

3.1.4 Examples

At the end of this section we present a collection of examples some of which we
have already encountered before.

Example 3.7 (Random difference equations). Iterations of iid linear functionsΨn(x)=
Mnx+Qn on R, with Lipschitz constants Ln = |Mn|, constitute one of the basic ex-
amples of an IFS and lead back to the one-dimensional random difference equation
(RDE)

Xn := MnXn−1 +Qn, n≥ 1, (3.12)

discussed in Section 1.5. Recall from there that

Xn = Ψn:1(X0) = ΠnX0 +
n

∑
k=1

Πk+1:nQk (3.13)

for each n∈N, where Πk:n := Mk · ... ·Mn for 1≤ k≤ n, Πn+1:n := 1 and Πn := Π1:n,
which shows that

L(Ψn:1) = |Πn| =
n

∏
k=1

Lk
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for each n ∈ N. The distributional equality (3.9) of forward and backward iteration
at any time n was also stated there in (1.32), viz.

Xn
d
= ΠnX0 +

n

∑
k=1

Πk−1Qk = Ψ1:n(X0) = X̂n.

From these facts we see that (Xn)n≥0 is

– strongly contractive if log |M1| ≤ −l a.s. for some l ∈ R>.
– strongly mean contractive of order p if log E|M1|p < 0. (p> 0)
– mean contractive if E log |M1|< 0.

In the multivariate case, the RDE (3.12) is defined on Rm for some m ≥ 2 with
X0,X1, ... and Q1,Q2, ... being column vectors and M1,M2, ... being m×m real ma-
trices. For x ∈ Rm and a m×m matrix A, let |x| be the usual Euclidean norm and

‖A‖ := max
|x|=1
|Ax|

the usual operator norm of A. Contraction conditions must now be stated in terms of
‖M1‖ but look the same as before otherwise. Hence, (Xn)n≥0 is

– strongly contractive if log‖M1‖ ≤ −l a.s. for some l ∈ R>.
– strongly mean contractive of order p if log E‖M1‖p < 0. (p> 0)
– mean contractive if E log‖M1‖< 0.

Example 3.8 (Lindley processes). Lindley processes were introduced in Section 1.2
in connection with the G/G/1-queue and have the general form

Xn := (Xn−1 +ξn)
+, n≥ 1, (3.14)

for a sequence (ξn)n≥1 of iid real-valued random variables which are not a.s. van-
ishing. This is an example of an IFS of iid Lipschitz functions on X = R≥ having
Lipschitz constants Ln = 1, namely Ψn(x) := (x+ξn)

+ for n≥ 1. Denote by (Sn)n≥0
the SRW associated with the ξn, thus S0 = 0 and Sn = ξ1+ ...+ξn for n≥ 1. Forward
and backward iterations are easily computed as

Xn = Ψn:1(X0) = max{0,Sn−Sn−1,Sn−Sn−2, ...,Sn−S1,X0 +Sn}
and X̂n = Ψ1:n(X0) = max{0,S1,S2, ...,Sn−1,X0 +Sn},

and the latter sequence is obviously nondecreasing. Furthermore, it converges a.s.
to a finite limit, viz. X̂∞ := supn≥0 Sn, iff (Sn)n≥0 is negatively divergent, which
particularly holds if Eξ < 0 [+ Thm. 1.4]. In this case, Xn converges to the same
limit in distribution by (3.9). Notice that despite this stability result none of the
above contraction conditions is valid, for L1 = 1.

Example 3.9 (AR(1)-model with ARCH(1) errors). As another recurring example of
an IFS we mention the AR(1)-model with ARCH(1) errors, defined by
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Xn = αXn−1 +
(
β +λX2

n−1
)1/2

εn, n≥ 1, (3.15)

for (α,β ,λ ) ∈ R×R2
> and a sequence (εn)n≥1 of iid symmetric random variables.

Here Ψn(x) := αx+(β +λx2)1/2εn for n≥ 1 and therefore

|Ψn(x)−Ψn(y)|
|x− y| =

∣∣∣∣∣α +
λ 1/2(x+ y)εn

(β/λ + x2)1/2 +(β/λ + y2)1/2

∣∣∣∣∣ ≤ |α|+λ
1/2|εn|

for all x,y ∈ R. By combining this with

lim
x→±∞

|Ψn(x)−Ψn(0)|
|x| = |α±λ

1/2
εn|,

it follows easily that L(Ψn) = |α|+λ 1/2|εn|. Hence, the IFS is mean contractive if
E log(|α|+λ 1/2|ε|)< 0. On the other hand, neither forward nor backward iterations
are easily computed here so that stability can only be analyzed by more sophisticated
tools than in the previous two examples.

Example 3.10 (Random logistic maps). The logistic map x 7→ θx(1− x) is a self-
map of the unit interval [0,1] if 0 ≤ θ ≤ 4. Therefore, we obtain an IFS of i.i.d.
Lipschitz functions on [0,1] by defining

Xn = ξnXn−1(1−Xn−1), n≥ 1, (3.16)

for a sequence (ξn)n≥1 of iid random variables taking values in [0,4]. Hence
Ψn(x) = ξn x(1− x), which has Lipschitz constant Ln = ξn as one can easily ver-
ify. Contraction conditions as introduced before are thus to be formulated in terms
of moments of ξ , but it should be noted that the Markov chain (Xn)n≥0 possesses a
stationary distribution in any case by Lemma 1.23 because the state space is compact
which trivially ensures tightness of (Xn)n≥0. In fact, if the chain is mean contractive,
i.e. E logξ < 0 holds, then Xn converges a.s. to zero under any initial distribution and
geometrically fast [+ Problem 3.15] which appears to be fairly boring and leaves
us with the real challenge to find out what happens if mean contraction fails to hold
and to provide conditions under which a stationary distribution π 6= δ0 exists. These
questions have been addressed in a number of articles by DAI [31], STEINSALTZ
[108], ATHREYA & DAI [8, 9], and ATHREYA & SCHUH [10]. We will return to
this question in Subsection ??.

Problems

Problem 3.11. Let (Xn)n≥0 be an IFS of iid Lipschitz maps in a canonical model as
stated in (3.4). Prove that, under each Pλ and for each n ∈ N0, Xn and (Ψk)k>n are
independent with
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Pλ (Xn ∈ · ,(Ψk)k>n ∈ ·) = Pλn(X0 ∈ · ,(Ψk)k≥1 ∈ ·),

where λn := Pλ (Xn ∈ ·).

Problem 3.12. Prove that the transition kernel P defined in (3.5) is Fellerian, i.e. it
maps bounded continuous functions on X to functions of the same type [+ Section
1.6].

Problem 3.13. Prove Lemma 3.3.

Problem 3.14. Let (Xn)n≥0 be a mean contractive IFS of iid Lipschitz maps. Prove
that, if ELp

1 < ∞ for some p > 0, then (Xn)n≥0 is also strongly mean contractive of
some order q≤ p, i.e. ELq

1 < 1.

Problem 3.15. Let (Xn)n≥0 be an IFS of iid Lipschitz maps which is strongly mean
contractive of order p 6= 1. Prove that there exists a complete separable metric d′ on
X generating the same topology as d such that (Xn)n≥0 is strongly mean contractive
of order one under d′, that is, when using the Lipschitz constants defined with the
help of d′.

Problem 3.16. Consider the IFS (Xn)n≥0 of random logistic maps introduced in Ex-
ample 3.10. Prove that, if E logξ < 0, then µ−nXn→ 0 a.s. for any µ < 1 such that
log µ > E logξ . What happens if E logξ = 0?

3.2 Geometric ergodicity of strongly contractive IFS

Aiming at an ergodic theorem for mean contractive IFS, we first study the simpler
strongly contractive case for which we are going to prove geometric ergodicity, i.e.
convergence to a stationary distribution at a geometric rate (under a mild moment
condition). The distance between probability distributions on X is measured by the
Prokhorov metric associated with d (the metric on X) and denoted by the same letter.
Given λ1,λ2 ∈P(X), it is defined as the infimum of the δ > 0 such that

λ1(A)≤ λ2(Aδ )+δ and λ2(A)≤ λ1(Aδ )+δ

for all A ∈B(X), where Aδ := {x ∈ X : d(x,y) < δ for some y ∈ A}. We note that
d(λ1,λ2)≤ 1 and without proof that convergence in the Prokhorov metric is equiv-
alent to weak convergence, that is

d(λn,λ )→ 0 iff λn
w→ λ .

More detailed information may be found in [18, p. 72ff]] by BILLINGSLEY. The
following simple coupling lemma provides a useful tool to derive an estimate for
d(λ1,λ2).
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Lemma 3.17. Let X1,X2 be two X-valued random elements on the same
probability space (Ω ,A,P) such that L (X1) = λ2 and L (X2) = λ2. Then
P(d(X1,X2)≥ δ )< δ implies d(λ1,λ2)≤ δ .

Proof. The assertion follows from the obvious inequality

max{P(X1 ∈ A,X2 6∈ Aδ ), P(X1 6∈ Aδ ,X2 ∈ A)} ≤ P(d(X1,X2)≥ δ )

for all A ∈B(X) and δ > 0. ut

After these preliminary remarks we are ready to state the announced ergodic
theorem.

Proposition 3.18. Given a strongly contractive IFS (Xn)n≥0 of iid Lipschitz
maps in a standard model such that logL1 ≤−l for some l ∈ R> and

E log+ d(x0,Ψ1(x0))< ∞ (3.17)

for some x0 ∈ X, the following assertions hold true:

(a) For any x∈X, the backward iteration X̂n converges Px-a.s. to a random
element X̂∞ with distribution π which does not depend on x and satsifies
the SFPE

X̂∞ =Ψ1(X̂ ′∞) (3.18)

where X̂ ′∞ is a copy of X̂∞ independent of Ψ1.
(b) For any x ∈ X and γ ∈ (1,e l),

lim
n→∞

γ
n d(X̂n, X̂∞) = 0 Px-a.s. (3.19)

(c) For any x ∈ X, the forward iteration Xn converges to π in distribution
under Px, and π is the unique stationary distribution of (Xn)n≥0.

(d) Under Pπ , (Xn)n≥0 forms an ergodic stationary sequence, i.e.

1B(X0,X1, ...) = 1B(X1,X2, ...) Pπ -a.s.

implies Pπ((Xn)n≥0 ∈ B) ∈ {0,1}.
(e) If (3.17) is sharpened to

Ed(x0,Ψ1(x0))
p < ∞ (3.20)

for some p> 0 and x0 ∈ X, then geometric ergodicity in the sense that

lim
n→∞

rn d(Px(Xn ∈ ·),π) = 0 (3.21)
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for some r > 1 holds true.

Before we turn to the proof of this result, some comments are in order.

Remark 3.19. A fundamental conclusion from this result is that forward and back-
ward iterations, despite having the same one-dimensional marginals, exhibit a dras-
tically different behavior. While backward iterations converge a.s. at a geometric
rate to a limit having distribution π , the convergence of the forward iterations, nat-
urally to the same limit, occurs in the distributional sense only. Their trajectories,
however, typically oscillate wildly in space due to the ergodicity which ensures that
every π-positive subset is visited infinitely often. This is illustrated in Figure 3.1
below.
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Fig. 3.1 Ergodic behavior of the forward iterations (left panel) versus pathwise convergence of
the backward iterations (right panel), illustrated by a simulation of 150 iterations of the IFS which
picks the function ψ1(x) = 0.5x+2 with probability 0.75 and the function ψ2(x) = 2x+0.5 with
probability 0.25 at each step.

Remark 3.20. The extra moment conditions (3.17) – in which log+ x may be re-
placed with the subadditive majorant log∗ x := log(1+ x) – and (3.20), frequently
called jump-size conditions hereafter, are needed beside strong contraction to en-
sure that the chain is not carried away too far in one step when moving in space.
The reader should realize that this is indeed a property not guaranteed by contrac-
tion, which rather ensures forgetfulness of initial conditions. Let us further point out
that, if any of these jump-size conditions is valid for one x0 ∈ X, then it actually
holds for all x0 ∈ X. This follows from

d(x,Ψ1(x)) ≤ d(x,x0)+d(x0,Ψ1(x0))+d(Ψ1(x0),Ψ1(x))

≤ (1+L1)d(x,x0)+d(x0,Ψ1(x0))

≤ (1+ e−l)d(x,x0)+d(x0,Ψ1(x0))



3.2 Geometric ergodicity of strongly contractive IFS 93

for all x ∈ X.

In the following we will use P for probabilities that do not depend on the initial
distribution of (Xn)n≥0. For instance,

Px(Xn ∈ ·) = P(Ψn:1(x) ∈ ·)

because Ψ1,Ψ2, ... are independent of X0. Note also that, for any x,y ∈ X,

(Xx
n ,X

y
n ) := (Ψn:1(x),Ψn:1(y)), n≥ 0

provides a canonical coupling of two forward chains starting at x and y. A similar
coupling is naturally given by (X̂x

n , X̂
y
n ) := (Ψ1:n(x),Ψ1:n(y)), n≥ 0, for the backward

iterations.

Proof (of Prop. 3.18). We leave it as an exercise [+ Problem 3.21] to verify that

γ
nd(X̂n, X̂∞)→ 0 Px-a.s.

for γ ≥ 1 and a random variable X̂∞ if

∑
n≥0

γ
n d(X̂n, X̂n+1)< ∞ Px-a.s. (3.22)

Strong contraction implies for any γ ∈ [1,e l)

γ
n d(X̂n, X̂n+1) = γ

n d(Ψ1:n(X0),Ψ1:n ◦Ψn+1(X0))

≤ β
n d(X0,Ψn+1(X0))

= β
n d(x,Ψn+1(x)) Px-a.s.

for any x ∈ X, where β := γe−l ∈ (0,1]. Now use (3.17), by Remark 3.20 valid for
any x ∈ X, to infer

∑
n≥0

Px(γ
n d(X̂n, X̂n+1)> ε) ≤ ∑

n≥0
P(β n d(x,Ψn+1(x))> ε)

= ∑
n≥0

P(logd(x,Ψ1(x))> logε +n log(1/β ))

≤ log(1/ε)+E log+ d(x,Ψ1(x))
log(1/β )

< ∞

for any ε > 0 and thus Zn(γ) := γ n d(X̂n, X̂n+1)→ 0 Px-a.s. for any γ ∈ [1,e l) by an
appeal to the Borel-Cantelli lemma. But the last conclusion further implies (3.22),
because

∑
n≥0

γ
n d(X̂n, X̂n+1) ≤ ∑

n≥0

(
γ

β

)n

Zn(β ) < ∞

for any 1≤ γ < β < e l . This completes the proof of (b) and the first part of (a). As
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d(X̂x
n , X̂

y
n ) = d(Ψ1:n(x),Ψ1:n(y)) ≤ e−nl d(x,y) P-a.s.

we see that X̂∞ and its distribution are the same under every Px. Moreover, the fact
that (Ψ2:n)n≥2 is a copy of (Ψ1:n)n≥1 implies that Ψ2:n(x) converges a.s. to some X̂ ′∞
not depending on x and with the same law as X̂∞. Finally, the asserted SFPE (3.18)
follows from

X̂∞ = lim
n→∞

Ψ1(Ψ2:n(x)) = Ψ1

(
lim
n→∞

Ψ2:n(x)
)

= Ψ1(X̂ ′∞) P-a.s.

where the continuity of Ψ1 enters in the second equality. This completes the proof
of (a).

As for part (c), the first assertion is obvious from (a) because Xn
d
= X̂n under each

Px and therefore each Pλ , λ ∈P(X). But this also implies that π must be the unique
stationary distribution of (Xn)n≥0. Indeed, any stationary π ′ satisfies

∫
f (x) π

′(dx) = Eπ ′ f (Xn)
n→∞−→

∫
f (x) π(dx)

for all f ∈ Cb(X) and thus π ′ = π because the class Cb(X) is measure-determining.
The proof of (d) forces us to make an excursion into ergodic theory and fol-

lows the argument given by ELTON [45, p. 43]. First of all, we may w.l.o.g. ex-
tend (Ψn)n≥0 to a doubly infinite sequence (Ψn)n∈Z of iid Lipschitz maps. This se-
quence is ergodic [+ Prop. A.1], which in the terminology of ergodic theory means
that the shift S1 : (...,ψ−1,ψ0,ψ1, ...) 7→ (...,ψ0,ψ1,ψ2, ...) consitutes a measure-
preserving ergodic transformation on (CLip(X)Z,A Z,ΛZ). Next, fix any x ∈X and
define the doubly infinite stationary sequence

Yn := lim
k→∞

Ψ−k:n(x), n ∈ Z

which is clearly a function ϕ , say, of (Ψn)n∈Z and does not depend on the choice
of x (by part (a)). Let Γ denote its distribution and notice that Y1 = X̂∞ as well
as P((Yn)n≥0 ∈ ·) = Pπ((Xn)n≥0 ∈ ·). The stationarity of (Yn)n∈Z means that the
shift S2 : (...,x−1,x0,x1, ...) 7→ (...,x0,x1,x2, ...) is a measure-preserving transfor-
mation on (XZ,B(X)Z,Γ ). Now the ergodicity of S2, and thus of (Yn)n∈Z, fol-
lows because S2 is a factor of S1, viz. ϕ ◦S1 = S2 ◦ ϕ a.s. for the measure-
preserving map ϕ : (CLip(X)Z,A Z,ΛZ)→ (XZ,B(X)Z,Γ ), defined by (ψn)n∈Z 7→
(limsupk→∞ ψ−k:n(x))n∈Z [+ Prop. A.2 in the Appendix and before for further in-
formation].

Turning to (e), assume (3.20) for some p> 0, w.l.o.g. p≤ 1. Then it follows with
the help of the subadditivity of x 7→ xp on R≥ that, for any s> 1,

Px(d(X̂n, X̂∞)≥ s−n) ≤ snpEx d(X̂n, X̂∞)
p

≤ snp
∑
k≥n

Ex d(X̂k, X̂k+1)
p
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= snp
∑
k≥n

Ed(Ψ1:k(x),Ψ1:k+1(x))p

≤ (se−l)npEd(x,Ψ1(x))p
∑
k≥0

e−kl p

= (se−l)npEd(x,Ψ1(x))p

1− e−l p .

The last expression is ultimately bounded by o(1)s−n as n→ ∞ if (se−l)p < s−1 or,
equivalently, 1< s< eql with q := p/(p+1). Hence, for any such s we have shown
that

lim
n→∞

snPx(d(X̂n, X̂∞)≥ s−n) = 0.

Since (X̂n, X̂∞) constitutes a coupling of Px(Xn ∈ ·) and π under Px, this entails
d(Px(Xn ∈ ·),π)≤ s−n for all n sufficiently large and thus (3.21) for r ∈ (1,s) by an
appeal to Lemma 3.17. ut

Problems

Problem 3.21. Given a sequence (Xn)n≥0 of random variables taking values in a
complete metric space (X,d), prove that

∑
n≥0

d(Xn,Xn+1)< ∞ P-a.s.

implies the a.s. convergence of Xn to a random variable X∞. More generally, if

∑
n≥0

an d(Xn,Xn+1)< ∞ P-a.s.

holds true for a nondecreasing sequence (an)n≥0 in R>, then

lim
n→∞

an d(Xn,X∞) = 0.

Problem 3.22. The proof of part (e) of Prop. 3.18 has shown that (3.21) holds true
for any r ∈ (1,epl/(p+1)), provided that p ≤ 1 in the jump-size condition (3.20).
Show that this remains valid in the case p> 1 as well. [Hint: Show first that

(
Exd(X̂n, X̂∞)

p)1/p ≤ e−ln

(
Ed(x,Ψ1(x))p

)1/p

1− e−l

and then argue as in the afore-mentioned proof.]

Problem 3.23. Suppose that Ψ ,Ψ1,Ψ2, ... are iid Lipschitz maps on a complete met-
ric space (X,d) such that, for
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α := P(Ψ ≡ x0)> 0

for some x0 ∈ X. Define σ := inf{n ≥ 1 : Ψn ≡ x0} and then the pre-σ -occupation
measure

π(A) := E

(
σ−1

∑
n=0

1A
(
Ψn:1(x0)

)
)
, A ∈A ,

where Ψ0:1(x) = x. Show that π is the unique stationary distribution of the strongly
contractive IFS generated by (Ψn)n≥1.

3.3 Ergodic theorem for mean contractive IFS

We will now proceed with the main result of this chapter, an ergodic theorem for
mean contractive IFS of iid Lipschitz maps. The basic idea for its proof is taken
from [3] and combines our previous result for strongly contractive IFS with a re-
newal argument based on the observation that any weakly contractive IFS contains
a strongly contractive one. Before dwelling on this further, let us state the result we
are going to prove in this section.

Theorem 3.24. Given a mean contractive IFS (Xn)n≥0 of iid Lipschitz maps
in a standard model which also satisfies the jump-size condition (3.17) for
some and thus all x0 ∈ X, the following assertions hold true:

(a) For any x∈X, the backward iteration X̂n converges Px-a.s. to a random
element X̂∞ with distribution π which does not depend on x and satisfies
the SFPE (3.18).

(b) For some γ > 1 and any x ∈ X, (3.19) holds true, that is

lim
n→∞

γ
n d(X̂n, X̂∞) = 0 Px-a.s.

(c) For any x ∈ X, the forward iteration Xn converges to π in distribution
under Px, and π is the unique stationary distribution of (Xn)n≥0.

(d) Under Pπ , (Xn)n≥0 forms an ergodic stationary sequence.
(e) If, for some p> 0, (Xn)n≥0 is even strongly mean contractive of order p

and satisfies the sharpened jump-size condition (3.20), then geometric
ergodicity in the sense of (3.21) for some r > 1 holds true.

Remark 3.25. In view of Problem 3.14, the assumptions of (e) could be relaxed to

ELp
1 < ∞ and Ed(x0,Ψ1(x0))

p < ∞ (3.23)

for some x0 ∈ X and p> 0.
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For the rest of this section, the assumptions of Theorem 3.24 will always be in
force without further mention. We embark on the simple but crucial observation that,
given a mean contractive IFS (Xn)n≥0 of iid Lipschitz maps with Lipschitz constants
L1,L2, ..., the SRW

S0 := 0 and Sn :=
n

∑
k=1

logLk for n≥ 1

has negative drift. Hence we may fix any l > 0 and consider the SRP of a.s. finite
level −l ladder epochs, defined by σ0 := 0 and

σn := inf{k > σn−1 : Sk−Sσn−1 <−l}

for n ≥ 1. For simplicity, we choose l such that P(σ1 = 1) > 0 and thus (σn)n≥0 is
1-arithmetic. The following lemma is basic.

Lemma 3.26. The embedded sequence (Xσn)n≥0 forms a strongly contractive
IFS of iid Lipschitz maps satisfying (3.17), and the same holds true for the
sequence (Yn)n≥0, defined by Y0 := X0 and

Yn :=Ψσn−1+1:σn ◦ ...◦Ψ1:σ1(X0)

for n≥ 1.

Proof. Plainly, Xσn = Φn:1(X0) with Φn :=Ψσn:σn−1+1 ∈ CLip(X) for n ≥ 1. Since
(σn)n≥0 has iid increments, one can readily check that Φ1,Φ2, ... are iid as well.
Moreover, by (3.7),

logL(Φ1) = logL(Ψσ1 ◦ ...◦Ψ1) ≤ Sσ1 < −l

which a confirms the strong contraction property. In order to verify the jump-size
condition (3.17), i.e.

E log+ d(x0,Ψσ1:1(x0))< ∞

for some and thus all x0 ∈ X, we will use log+ x≤ log∗ x := log(1+ x) and note the
following properties of the latter function: For any x,y ∈ R≥,

log∗(x+ y) ≤ log∗ x + log∗ y (subadditivity),
log∗(xy) ≤ log∗ x + log∗ y.

(3.24)

With S∗k := ∑
k
j=1 log∗L j for k ≥ 1, we infer

log d(x0,Ψσ1:1(x0)) ≤ log

(
d(x0,Ψσ1(x0))+

σ1−1

∑
n=1

d(Ψσ1:n+1(x0),Ψσ1:n(x0))

)
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≤ log

(
σ1

∑
n=1

eSσ1−Sn d(x0,Ψn(x0))

)

≤ log

(
eS∗σ1

σ1

∑
n=1

d(x0,Ψn(x0))

)

≤ S∗σ1
+

σ1

∑
n=1

log∗ d(x0,Ψn(x0)), (3.25)

whence, by using Wald’s equation,

E log+ d(x0,Ψσ1:1(x0)) ≤
(
E log∗L1 +E log∗ d(x0,Ψ1(x0))

)
Eσ1 < ∞

as claimed.
Turning to the sequence (Yn)n≥0, it suffices to point out that it is obtained from

(Xσn)n≥0 by reversing the iteration order within, and only within, the segments
determined by the σn [+ Fig. 3.2]. In other words, the Φn are substituted for
Φ←n :=Ψσn−1+1:σn , which are still iid and satisfy L(Φ←n )≤−l a.s. Again, the bound
(3.25) is obtained, when embarking on

log d(x0,Ψ1:σ1(x0)) ≤ log

(
d(x0,Ψ1(x0))+

σ1

∑
n=2

d(Ψ1:n−1(x0),Ψ1:n(x0))

)
.

The rest is straightforward. ut

Xσn :
∣∣∣Ψσn ...Ψσn−1+1

∣∣∣
∣∣∣Ψσn−1 ...Ψσn−2+1

∣∣∣ ...
∣∣∣Ψσ1 ...Ψ1

∣∣∣

Yn :
∣∣∣Ψσn−1+1...Ψσn

∣∣∣
∣∣∣Ψσn−2+1...Ψσn−1

∣∣∣ ...
∣∣∣Ψ1...Ψσ1

∣∣∣

Ŷn = X̂σn :
∣∣∣Ψ1...Ψσ1

∣∣∣ ...
∣∣∣Ψσn−2+1...Ψσn−1

∣∣∣
∣∣∣Ψσn−1+1...Ψσn

∣∣∣

Fig. 3.2 Schematic illustration of how the blocks of Ψk’s determined by the σn are composed in
the definition of Xσn ,Yn and Ŷn = X̂σn .

The reason for introducing (Yn)n≥0 becomes apparent when observing the follow-
ing twist: the backward iterations of (Xn)n≥0 at the ladder epochs σn, i.e. (X̂σn)n≥0,
are not given by the backward iterations of the IFS (Xσn)n≥0 but rather of (Yn)n≥0,
thus (Ŷn)n≥0. By the previous lemma in combination with Prop. 3.18, we infer the
Px-a.s. convergence of Ŷn to a limit not depending on x, which is clearly the candi-
date for the a.s. limit of X̂n and therefore denoted X̂∞.

Let us define τ(n) := inf{k ≥ 0 : σk ≥ n} for n≥ 0, and

Cn : = d(X0,Φ
←
n (X0))∨ max

σn−1<k<σn

{
d(Ψσn−1+1:k(X0),Ψσn−1+1:σn(X0))

}
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= maximal distance between Φ
←
n (X0) =Ψσn−1+1:σn(X0) and the set

{X0,Ψσn−1+1(X0),Ψσn−1+1:σn−1+2(X0), ...,Ψσn−1+1:σn−1(X0)} (3.26)

for n≥ 1. By the elementary renewal theorem [+ Lemma 2.1(e) and (f)],

n−1
τ(n)→ µ

−1 as well as n−1Eτ(n)→ µ
−1,

where µ = µ(l) :=Eσ1. Under each Px, the Cn are clearly iid, and a standard renewal
argument shows that Cτ(n) converges in distribution to a random variable C∞ [+
Problem 3.30]. However, the really needed piece of information about Cτ(n) will be
a consequence of the following lemma.

Lemma 3.27. For any x ∈ X, Ex log+C1 < ∞ and hence n−1 log+Cn → 0 as
well as e−εn Cn→ 0 Px-a.s. for each ε > 0.

Indeed, as τ(n)→ ∞, the last assertion particularly implies

lim
n→∞

e−ετ(n)Cτ(n) = 0 Px-a.s. (3.27)

for all x ∈ X and ε > 0.

Proof. Fix any x ∈ X. By proceeding in a similar manner as for (3.25), we find

log+C1 ≤ log∗
(

d(x0,Ψ1(x))+
σ1

∑
n=2

d(Ψ1:n−1(x),Ψ1:n(x))

)

≤ log∗
(

σ1

∑
n=1

eSn−1d(x,Ψn(x))

)

≤ S∗σ1
+

σ1

∑
n=1

log∗ d(x,Ψn(x)) Px-a.s.

and the last expression has finite expectation under Px by an appeal to Wald’s equa-
tion. As a consequence, n−1 log+Cn→ 0 or, equivalently, limsup

n→∞

C1/n
n ≤ 1 Px-a.s.,

and this is readily seen to give e−εn Cn→ 0 Px-a.s. for all ε > 0. ut
The crucial estimate of d(X̂n, X̂∞) in terms of the previously introduced variables

is provided in a further lemma.

Lemma 3.28. For all n≥ 0 and x ∈ X, the inequality

d(X̂n, X̂∞) ≤ e−(τ(n)−1)lCτ(n)+d(Ŷτ(n), X̂∞) Px-a.s.

holds, where C0 := 0.
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Proof. Using the strong contraction property of (Ŷn)n≥0 and Ŷn → X̂∞ Px-a.s., we
obtain

d(X̂n, X̂∞) ≤ d(X̂n,Ŷτ(n))+d(Ŷτ(n), X̂∞)

≤ e−(τ(n)−1)l Cτ(n)+d(Ŷτ(n), X̂∞) Px-a.s.

and this is the asserted inequality. ut

Proof (of Theorem 3.24). (a) Recall that X̂∞ equals the Px-a.s. limit of Ŷn = X̂σn

for each x ∈ X. By combining this with (3.27) and the previous lemma, the a.s.
convergence X̂n → X̂∞ under each Px follows. The SFPE for X̂∞ is obtained in the
same manner as in the proof of Prop. 3.18.

(b) First note that, by Prop. 3.18(b),

lim
n→∞

β
τ(n) d(Ŷτ(n), X̂∞) = 0 Px-a.s.

for some β > 1. Since n−1τ(n)→ µ−1 P-a.s., we can pick ε > 0 and γ > 1 such that
γ n/τ(n) < β and γ ne−l(τ(n)−1) < e−ετ(n) P-a.s. for all sufficiently large n (depending
on the realization of the τ(n)). By another use of Lemma 3.28, we then infer

γ
nd(X̂n, X̂∞) ≤ γ

ne−l(τ(n)−1)Cτ(n)+
(
γ

n/τ(n))τ(n) d(Ŷτ(n), X̂∞)

≤ e−ετ(n)Cτ(n)+β
τ(n) d(Ŷτ(n), X̂∞) Px-a.s.

for all sufficiently large n and any x ∈ X, and this yields (3.19) upon letting n tend
to ∞.

(c) and (d) follow again in the same way as in the proof of Prop. 3.18.

(e) Now assume strong mean contraction of order p, w.l.o.g. 0 < p ≤ 1, and
(3.20). Put β := ELp

1 = EepS1 . Using the independence of Sn and Ψn+1(x) for all
n ∈ N0 and x ∈ X, a similar estimation as in the proof of Prop. 3.18(e) leads to

Px(d(X̂n, X̂∞)≥ s−n) ≤ snpEx d(X̂n, X̂∞)
p

≤ snp
∑
k≥n

Ex d(X̂k, X̂k+1)
p

= snp
∑
k≥n

Ed(Ψ1:k(x),Ψ1:k+1(x))p

≤ snp
∑
k≥n

EepSk d(x,Ψk+1(x))p

≤ (sp
β )nEd(x,Ψ1(x))p

∑
k≥0

β
k

= (sp
β )nEd(x,Ψ1(x))p

1−β
.

for s> 0. It follows that
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lim
n→∞

snPx(d(X̂n, X̂∞)≥ s−n) = 0

for 1 < s < β−1/(p+1), and once again this entails (3.21) for r ∈ (1,s) by an appeal
to Lemma 3.17. ut

We close this section with a result on the existence of moments of π , more pre-
cisely of ∫

X
d(x0,x)p

π(dx) = Ed(x0, X̂∞)
p

for any fixed x0 ∈ X and p > 0. In the case of Euclidean space X = Rm for some
m≥ 1 with the usual norm d(x,y) = |x− y| and x0 = 0, this means to consider

∫

Rm
|x|p π(dx) = E|X̂∞|p.

The following theorem is due to BENDA [14, Prop. 2.2] for p ≥ 1; for a weaker
version see [3, Theorem 2.3(d)]. It does not only complement the main result of
this section, but will also be useful in connection with the implicit renewal theory
developed in Chapter 4.

Theorem 3.29. If (Xn)n≥0 is strongly mean contractive of order p > 0 and
satisfies the corresponding sharpened jump-size condition (3.20), i.e. ELp

1 < 1
and Ed(x0,Ψ1(x0))

p < ∞ for some/all x0 ∈ X, then

Ed(x0, X̂∞)
p =

∫

X
d(x0,x)p

π(dx) < ∞

for some and then all x0 ∈ X.

Proof. Put again β := ELp
1 = EepS1 . For p ≤ 1, we proceed as at the end of the

previous proof. By using the subadditivity of x 7→ xp and the model assumptions it
follows that, for any x0 ∈ X,

Ed(x0, X̂∞)
p ≤ E

(
d(x0,Ψ1(x0))+ ∑

n≥1
d(Ψ1:n(x0),Ψ1:n+1(x0))

)p

≤ Ed(x0,Ψ1(x0))
p + ∑

n≥1
EepSnd(x0,Ψn+1(x0))

p

≤ Ed(x0,Ψ1(x0))
p
∑
n≥0

EepSn

=
Ed(x0,Ψ1(x0))

p

1−β
< ∞.

In the case p> 1 we can use Minkowski’s inequality, which also holds for infinitely
many nonnegative summands, to obtain in a similar manner
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‖d(x0, X̂∞)‖p ≤
∥∥∥∥∥d(x0,Ψ1(x0))+ ∑

n≥1
d(Ψ1:n(x0),Ψ1:n+1(x0))

∥∥∥∥∥
p

≤ ‖d(x0,Ψ1(x0)‖p + ∑
n≥1
‖eSnd(x0,Ψn+1(x0)‖p

≤ ‖d(x0,Ψ1(x0)‖p ∑
n≥0
‖eSn‖p

=
Ed(x0,Ψ1(x0))

p

1−β 1/p < ∞.

This completes the proof. ut

Problems

Problem 3.30. Use a renewal argument to prove that Cτ(n) defined in (3.26) con-
verges in distribution to a random variable C∞ with cdf

Px(C∞ ≤ t) =
1
µ

∑
n≥0

Px(σ1 ≥ n,C1 ≤ t), t ∈ R≥.

[Recall that l in the definition of σ1 was chosen such that σ1 is 1-arithmetic.]

Problem 3.31. Following WU & SHAO [119], say that an IFS (Xn)n≥0 of iid Lip-
schitz maps Ψ1,Ψ2, ... is geometrically moment contracting of order p > 0 if there
exist x0 ∈ X, κp ∈ R> and ρp ∈ (0,1) such that

Ed(Ψn:1(x0),Ψn,1(x))p ≤ κp d(x0,x)p
ρ

n
p (3.28)

for all x ∈ X and n ∈ N. Prove the following assertions:

(a) If (3.28) is valid for some x0 ∈ X, then it actually holds for any x1 ∈ X in the
slightly weaker form

Ed(Ψn:1(x1),Ψn,1(x))p ≤ κp(x1)
(
d(x1,x)p +1)ρ

n
p

for all x ∈ X, n ∈ N and some κp(x1) ∈ R>.
(b) (3.28) implies the very same condition for any q ∈ (0, p).
(c) If (Xn)n≥0 is strongly mean contractive of order p, then it is also geometri-

cally moment contracting of order p.
(d) [119, Theorem 2] If (Xn)n≥0 is geometrically moment contracting of some

order p and satisfies the sharpened jump-size condition (3.20), then all asser-
tions of Theorem 3.24 remain valid.
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3.4 A central limit theorem for strongly mean contractive IFS

Let CLip(X,R) be the vector space of all real-valued Lipschitz functions g on X and

L(g) := sup
x,y∈X,x 6=y

|g(x)−g(y)|
d(x,y)

the Lipschitz constant of g [+ (3.3)]. For π ∈P(X) and g ∈ L1(π), we put

π(g) :=
∫

X
g(x) π(dx).

Notice that, if µp(x0) :=
∫

d(x0,x)p π(dx)< ∞ for some p≥ 1 and x0 ∈ X, then

‖g‖p ≤ |g(x0)|+‖g−g(x0)‖p ≤ |g(x0)|+L(g)µp(x0) < ∞. (3.29)

and therefore
CLip(X,R)⊂ Lp(π).

The purpose of this section is to study the asymptotic behavior of additive func-
tionals of an IFS (Xn)n≥0, viz.

Sn(g) : =
n

∑
k=1

g(Xk) =
n

∑
k=1

g(Ψk:1(X0)), n≥ 1,

for suitable functions g. The following CLT was obtained by BENDA [14] and
requires g to be Lipschitz continuous. For a corresponding SLLN under slightly
weaker assumptions + Problem 3.33.

Theorem 3.32. Let (Xn)n≥0 be an IFS of iid Lipschitz maps in a standard
model which is strongly mean contractive of order 2 and satisfies the sharp-
ened jump-size condition (3.20) with p = 2 for some and thus all x0 ∈ X. Let
π be its stationary distribution and further g∈CLip(X,R). Then the following
assertions hold true:

(a) There exists h ∈ CLip(X,R) such that g = h−Ph, where

Ph(x) := Eh◦Ψ1(x) = Ex h(X1)

is the transition operator of (Xn)n≥0.
(b) If σ2 := π(h2)−π((Ph)2)> 0, then

Sn(g)−nπ(g)
σn1/2

d→ Normal(0,1) (3.30)

under each Px, x ∈ X.
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After inspection of the proof the reader can easily verify and is asked to do so in
Problem 3.35 that the theorem remains valid for g ∈ CLip(X,R)∩L2(π) if (Xn)n≥0
is only strongly mean contractive of order p > 0 and satisfying the corresponding
sharpened jump-size condition (3.20).

Proof. First of all, we point out that it suffices to prove (3.30) under Pπ . Namely,
ϑ := EL1 ≤ (EL2

1)
1/2 < 1 implies

r−n L(Ψn:1) ≤ r−n
n

∏
k=1

Lk → 0 a.s.

for any r ∈ (ϑ ,1) and then

1
n1/2

∣∣∣∣∣
n

∑
k=1

g(Ψk:1(x))−
n

∑
k=1

g(Ψk:1(Z))

∣∣∣∣∣ ≤
L(g)d(x,Z)

n1/2

n

∑
k=1

L(Ψk:1) → 0 a.s.

for any x ∈ X and any random variable Z with law π and independent of Ψ1,Ψ2, ...
Therefore, we will study Sn(g) only under P = Pπ hereafter and thus assume that
X0 has distribution π . Next observe that, by stationarity, Png = Eg(Ψn:1(X0)) =
Eg(X0) = π(g) for each n≥ 0, implying

Sn(g)−nπ(g) = Sn(g−π(g)) a.s.

for each n≥ 1. It is therefore no loss of generality to further assume π(g) = 0.
Define

L :=
{

f ∈ CLip(X,R) : π( f ) = 0
}

and, for any fixed x0 ∈ X, the norm

‖ f‖ := sup
x∈X

| f (x)|
1+d(x0,x)

+L( f ).

Then (L ,‖ · ‖) is a Banach space and P : L →L a bounded linear operator with

‖P‖ := sup
‖ f‖=1

‖P f‖ ≤ 1

[+ Problem 3.34(a)]. Since, by (3.20) (with p = 2) and Theorem 3.29,

µ2(x0) =
∫

d(x0,x)2
π(dx) < ∞,

we infer L ⊂ CLip(X,R)⊂ L2(π) from (3.29).
In order to get an estimate for ‖Pn f‖ for any n≥ 1, note that

|Pn f (x)| = |E f ◦Ψn:1(x)| = |E f ◦Ψ1:n(x)|
=
∣∣∣E f ◦Ψ1:n(x)− lim

m→∞
E f ◦Ψ1:m(x)

∣∣∣



3.4 A central limit theorem for strongly mean contractive IFS 105

≤ lim
m→∞

E | f ◦Ψ1:n(x)− f ◦Ψ1:m(x)|

≤ L( f )EL(Ψ1:n) lim
m→∞

Ed(x,Ψn+1:m(x))

= L( f )µ(x)ϑ
n, (3.31)

where µ(x) :=
∫

d(x,y)π(dy) is finite for any x by another appeal to Theorem 3.29
and

lim
m→∞

E f ◦Ψ1:m(x) = 0 and lim
m→∞

Ed(x,Ψn+1:m(x) = µ(x)

has been used which the reader is asked to verify in Problem 3.34(b). Furthermore,

L(Pn f ) = sup
x,y∈X,x 6=y

|E f ◦Ψn:1(x)−E f ◦Ψn:1(y)|
d(x,y)

≤ sup
x,y∈X,x 6=y

E | f ◦Ψn:1(x)− f ◦Ψn:1(y)|
d(x,y)

≤ L( f )ϑ
n (3.32)

for any n≥ 1. A combination of (3.31) and (3.32) then yields

‖Pn f‖ ≤ ‖ f‖K ϑ
n with K := sup

x∈X

µ(x)
1+d(x0,x)

+1 < ∞

(observe that µ(x)≤ d(x0,x)+µ(x0) for the finiteness of K) and thereupon

limsup
n→∞

‖Pn‖1/n < 1.

Consequently, I−P : L → L with I denoting the identity operator is invertible.
This completes the proof of (a) when choosing h := (I−P)−1g = ∑n≥0 Png.

Since Ph(x) = Exh(X1) = E(h(Xk)|Xk−1 = x) for any x ∈ X and k ≥ 1, we see
that, under P= Pπ , the sequence

Mn :=
n

∑
k=1

(
h(Xk)−E(h(Xk)|Xk−1)

)
, n≥ 0

forms a zero-mean L2-martingale with stationary, ergodic increments having vari-
ance σ2. By invoking an old result by BILLINGSLEY [16], we then infer that

n−1/2Mn
d→ Normal(0,σ2).

The proof of (b) is finally completed by the observation that

Sn(g) = Sn(h)−Sn(Ph)

= Ph(X0)−Ph(Xn)+
n

∑
k=1

(
h(Xk)−Ph(Xk−1)

)
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= Ph(X0)−Ph(Xn)+
n

∑
k=1

(
h(Xk)−E(h(Xk)|Xk−1)

)

= Ph(X0)−Ph(Xn)+Mn

for all n≥ 1 in combination with n−1/2(Ph(X0)−Ph(Xn))
P→ 0. ut

Despite its elegant proof, the previous theorem has the obvious disadvantage that
it requires Lipschitz continuity of g which excludes even indicators of simple sub-
sets of X like ε-balls and does therefore not provide information on the asymptotic
behavior of relative frequencies

Sn(1B)

n
=

1
n

n

∑
k=1

1B(Sn)

which are of particular interest for statistical purposes.
WU & WOODROOFE [120] have provided an alternative result which shows that,

under a slightly stronger integrability condition on g, one can dispense with the
continuity of g and also relax the conditions on the IFS (Xn)n≥0.

A function g : X→ R is called Dini continuous if

∫ 1

0

ωg(t)
t

dt < ∞,

where
ωg(t) := sup{|g(x)−g(y)| : d(x,y)≤ t}

denotes the modulus of continuity of g.

Problems

Problem 3.33. Consider the situation of Theorem 3.32, but with (Xn)n≥0 being only
strongly mean contractive of order one and satisfying the sharpened jump-size con-
dition (3.20) with p = 1. Prove that

Sn(g)
n
→ π(g) Px-a.s. (3.33)

for all x ∈ X and g ∈ CLip(X,R)⊂ L1(π) [+ (3.29)].

Problem 3.34. Given the assumptions of Theorem 3.32 and the notation of its proof,
prove the following assertions from there:

(a) (L ,‖ · ‖) is a Banach space and P : L →L a bounded linear operator with
norm ‖P‖ ≤ 1.

(b) Recalling that µ(x) =
∫

d(x,y)π(dy) and f ∈L ,
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lim
m→∞

E f ◦Ψ1:m(x) = 0 and lim
m→∞

Ed(x,Ψn+1:m(x) = µ(x).

Problem 3.35. Show that Theorem 3.32 remains valid for g ∈ CLip(X,R)∩L2(π) if
(Xn)n≥0 is strongly mean contractive of order p> 0 and satisfying the corresponding
sharpened jump-size condition (3.20). Furthermore, (3.33) then holds true for any
g ∈ CLip(X,R)∩L1(π).

Problem 3.36.





Chapter 4
Power law behavior of stochastic fixed points
and implicit renewal theory

The previous chapter has shown that any mean contractive IFS (Xn)n≥0 of iid Lips-
chitz maps Ψ1,Ψ2, ... converges in distribution to a unique stationary limit π which
is characterized as the unique solution to the SFPE

X d
= Ψ(X) (4.1)

where Ψ denotes a generic copy of the Ψn independent of X . In the following, we
will deal with the problem of gaining information about the tail behavior of π =
P(X ∈ ·), more precisely, the behavior of

P(X > t) and/or P(X <−t) as t→ ∞.

If they are asymptotically equal to a nonzero constant times a power |t|−ϑ for some
ϑ > 0, we say that X (or π) exhibits a power law behavior.1 For the case when Ψ(x),
for x large, is approximately Mx for a random variable M, GOLDIE [60] developed
a method he called implicit renewal theory, which allows to establish power law
behavior of X under appropriate moment conditions on M. The present chapter is
devoted to a presentation of this method.

4.1 Goldie’s implicit renewal theorem

Given an SFPE of type (4.1) with Ψ(x)≈Mx for a random variable M if x is large,
Goldie’s basic idea for studying the asymptotics of P(X > t) and P(X < −t) as
t→ ∞ is to consider the differences

P(X > t)−P(MX > t) and P(X <−t)−P(MX <−t)

1 In some papers like [34] it is alternatively said that X has algebraic tails.

109
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as t tends to ∞. Additionally assuming that M is nonnegative, the renewal-theoretic
character of this approach becomes immediately apparent after a logarithmic trans-
form. Put Y := logX+, ξ := logM and G(t) := P(Y > t) for t ∈ R. Since M and X
are independent, we infer for ∆(t) := P(X > e t)−P(MX > e t) that

∆(t) = G(t)−
∫

G(t− x) P(ξ ∈ dx), t ∈ R, (4.2)

or, equivalently, the renewal equation G = ∆ +G ∗Q with Q := P(ξ ∈ ·) holds.
However, unlike the usual situation [+ Section 2.7], the function ∆ is also unknown
here and indeed an integral involving G. That renewal-theoretic arguments still work
to draw conclusions about G is the key feature of the approach and the following
result in particular. It will be made more precise in the next section.

Theorem 4.1. [Implicit renewal theorem] Let M,X be independent random
variables such that, for some ϑ > 0,

(IRT-1) E|M|ϑ = 1.
(IRT-2) E|M|ϑ log+ |M|< ∞.
(IRT-3) The conditional law P(log |M| ∈ ·|M 6= 0) of log |M| given M 6= 0 is

nonarithmetic, in particular, P(|M|= 1)< 1.

Then −∞ ≤ E log |M| < 0, 0 < µϑ := E|M|ϑ log |M| < ∞, and the following
assertions hold true:

(a) Suppose M is a.s. nonnegative. If
∫

∞

0

∣∣P(X > t)−P(MX > t)
∣∣ tϑ−1 dt < ∞ (4.3)

or, respectively,
∫

∞

0

∣∣P(X <−t)−P(MX <−t)
∣∣ tϑ−1 dt < ∞, (4.4)

then
lim
t→∞

tϑ P(X > t) = C+, (4.5)

respectively
lim
t→∞

tϑ P(X <−t) = C−, (4.6)

where C+ and C− are given by the equations

C+ :=
1

µϑ

∫
∞

0

(
P(X > t)−P(MX > t)

)
tϑ−1 dt, (4.7)

C− :=
1

µϑ

∫
∞

0

(
P(X <−t)−P(MX <−t)

)
tϑ−1 dt. (4.8)
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(b) If P(M < 0)> 0 and (4.3), (4.4) are both satisfied, then (4.5) and (4.6)
hold with C+ =C− =C/2, where

C :=
1

µϑ

∫
∞

0

(
P(|X |> t)−P(|MX |> t)

)
tϑ−1 dt. (4.9)

The proof of this result naturally requires some work which will be carried out
in Section 4.3. We point here as in [60] that the theorem has real content only if
E|X |ϑ = ∞, because otherwise, by the independence of M and X and condition
(IRT-1),

C =
1

ϑ µϑ

(
E|X |ϑ −E|MX |ϑ

)
=

1
ϑ µϑ

E|X |ϑ
(

1−E|M|ϑ
)

= 0

in which case (4.5) and (4.6) take the form

lim
t→∞

tϑ P(|X |> t) = 0,

Naturally, this follows also directly from tϑ P(|X | > t) ≤ E1{|X |>t}|X |ϑ → 0. We
thus see that the ”right” choice of M and ϑ is crucial.

The next corollary specializes to the situation where X additionally satisfies the
SFPE (4.1) for a Borel-measurable random function Ψ .

Corollary 4.2. Let (Ω ,A,P) be any probability space, Ψ : Ω ×R → R a
A⊗B(R)-measurable function and X ,M further random variables on Ω such
that X solves (4.1) and is independent of (Ψ ,M). Suppose also that M satis-
fies (IRT-1)-(IRT-3). Then, in Theorem 4.1, conditions (4.3) and (4.4) may be
replaced by (the generally stronger)

E
∣∣(Ψ(X)+)ϑ − ((MX)+)ϑ

∣∣< ∞ (4.10)

and
E
∣∣(Ψ(X)−)ϑ − ((MX)−)ϑ

∣∣< ∞ (4.11)

respectively, and the formulae in (4.7), (4.8) and (4.9) by

C+ =
1

ϑ µϑ

E
(
(Ψ(X)+)ϑ − ((MX)+)ϑ

)
, (4.12)

C− =
1

ϑ µϑ

E
(
(Ψ(X)−)ϑ − ((MX)−)ϑ

)
, (4.13)

and
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C =
1

ϑ µϑ

E
(
|Ψ(X)|ϑ −|MX |ϑ

)
, (4.14)

respectively.

The proof with the help of Theorem 4.1 is quite simple and provided after the
following lemma.

Lemma 4.3. Let X ,Y be two real-valued random variables and ϑ > 0. Then
∫

∞

0

∣∣P(X > t)−P(Y > t)
∣∣ tϑ−1 dt ≤ 1

ϑ
E
∣∣∣(X+)ϑ − (Y+)ϑ

∣∣∣, (4.15)

finite or infinite. If finite, absolute value signs may be removed to give
∫

∞

0

(
P(X > t)−P(Y > t)

)
tϑ−1 dt =

1
ϑ
E
(
(X+)ϑ − (Y+)ϑ

)
. (4.16)

Proof. Problem 4.6. ut
Remark 4.4. The previous lemma bears a subtlety that is easily overlooked at first
reading (and has actually been done so also in [60, Lemma 9.4] where equality in
(4.15) is asserted). If F,G denote the df’s of X ,Y , then (4.15) may be restated as

∫
∞

0

∣∣F(t)−G(t)
∣∣ tϑ−1 dt ≤ 1

ϑ
E
∣∣∣(X+)ϑ − (Y+)ϑ

∣∣∣ (4.17)

and holds true for every (F,G)-coupling (X ,Y ) on some probability space (Ω ,A,P),
i.e., for any pair of random variables (X ,Y ) such that L (X) = F and L (Y ) = G.
Moreover, any such coupling having E

∣∣(X+)ϑ−(Y+)ϑ
∣∣<∞ leads to the same value

when removing the absolute value signs, namely the left-hand integral in (4.16), i.e.
∫

∞

0

(
F(t)−G(t)

)
tϑ−1 dt.

This is trivial if E(X+)ϑ and E(Y+)ϑ are finite individually, but requires a proof
otherwise. Finally, it should be noted that the above integral (with or without abso-
lute value signs) actually depends only on the restrictions F+,G+ of F,G to R≥, i.e.,
the cdf of X+,Y+, respectively.

Concerning inequality (4.17), it is natural to ask whether equality can be achieved
by choosing a special (F,G)-coupling of (X ,Y ) or actually, by the previous remark,
a special (F+,G+)-coupling (X+,Y+). This is indeed the case when X+ = F−1

+ (U)

and Y+ = G−1
+ (U), where U is a Unif(0,1) random variable and H−1 denotes the

pseudo-inverse of a cdf H, defined by H−1(u) := inf{x ∈ R : H(x) ≥ u} for u ∈
(0,1). The reader is asked for a proof in Problem 4.6.
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Proof (of Corollary 4.2). By combining the SFPE (4.1) with the previous lemma,
we see that (4.3) turns into

∞ >
∫

∞

0

∣∣P(Ψ(X)> t)−P(MX > t)
∣∣ tϑ−1 dt

= E
∣∣(Ψ(X)+)ϑ − ((MX)+)ϑ

∣∣

which is condition (4.10). Since all other asserted replacements follow in the same
manner, the result is proved. ut

Problems

Problem 4.5. Prove that, if at least one of (4.3) and (4.4) is valid, then these condi-
tions hold together iff

∫
∞

0

∣∣P(|X |> t)−P(|MX |> t)
∣∣ tϑ−1 dt < ∞. (4.18)

Problem 4.6. Prove Lemma 4.3 and, furthermore, that
∫

∞

0

∣∣F(t)−G(t)
∣∣ tϑ−1 dt =

1
ϑ
E
∣∣∣F−1

+ (U)ϑ −G−1
+ (U)ϑ

∣∣∣ (4.19)

where F−1
+ ,G−1

+ and U are as stated in Remark 4.4.

4.2 Making explicit the implicit

Let us take as a starting point a two-sided renewal equation of the form

G(t) = ∆(t) +
∫

G(t− x) Q(dx), t ∈ R,

as in (4.2), where G,∆ : R→R are unknown bounded functions vanishing at ∞, i.e.

lim
t→∞

G(t) = 0 and lim
t→∞

∆(t) = 0,

and Q is a given probability measure with mean µ < 0. Let U := ∑n≥0 Q∗n denote its
renewal measure. The goal is to determine the precise asymptotic behavior of G(t)
as t→∞. Although we have studied only standard renewal equations in Section 2.7,
where G,∆ and Q vanish on R>, it is reasonable to believe and sustained by an
iteration argument that G = ∆ ∗U. In fact, if ∆ ∗U exists, this only takes to verify
that limn→∞ G∗Q∗n(t) = 0 for all t ≥ 0, as
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G(t) =
n−1

∑
k=0

∆ ∗Q∗k(t) + G∗Q∗n(t), t ∈ R

for each n∈N. But with (Sn)n≥0 denoting a SRW with increment distribution Q and
thus negative drift, it follows indeed that

lim
n→∞

G∗Q∗n(t) = lim
n→∞

EG(t−Sn) = 0

by an appeal to the dominated convergence theorem and G(t)→ 0 as t→ ∞.
So far we have not really gained any new insight because an application of the

key renewal theorem 2.67 to G(t) = ∆ ∗U(t), if possible, only reconfirms what
we already know, namely that G(t) → 0 as t → ∞. On the other hand, defining
Gθ (t) := eθ tG(t), ∆θ (t) := eθ t∆(t) and Qθ (dx) := eθxQ(dx) for θ ∈ R, we find as
in Lemma 2.43 that Gθ solves a renewal equation as well, viz.

Gθ (t) = ∆θ (t)+
∫

Gθ (t− x) Qθ (dx), t ∈ R.

Hence, if Q possesses a characteristic exponent ϑ , defined by the unique (if it exists)
value 6= 0 such that φQ(ϑ) =

∫
eϑx Q(dx) = 12, it appears to be natural to use this

renewal equation with θ = ϑ which should lead to Gϑ = ∆ϑ ∗Uϑ , Uϑ := ∑n≥0 Q∗n
ϑ

,
and then to the conclusion that Gϑ (t) converges to a constant as t→∞ by an appeal
to the key renewal theorem, thus

lim
t→∞

eϑ tG(t) =C

for some C ∈ R which in the best case is 6= 0. Naturally, further conditions must
be imposed to make this work for us. They are stated in the following proposition
together with the expected conclusion. Let us mention that ϑ , if it exists, is neces-
sarily positive and that Qϑ has positive, possibly infinite mean. This follows from
the fact that the mgf of Q, i.e. φQ(θ) =

∫
eθx Q(dx), is convex on its natural domain

DQ and that φ ′(0) =
∫

xQ(dx)< 0.

Proposition 4.7. In addition to the assumptions on G,∆ and Q stated at the
beginning of this section suppose that Q is nonarithmetic and possesses a
characteristic exponent ϑ > 0. Let µϑ :=

∫
xeϑx Q(dx) denote the (positive)

mean of Qϑ . Also assume that ∆ is dRi and
∫

∞

−∞

eϑx |∆(x)| dx < ∞. (4.20)

Then G = ∆ +G∗Q implies G = ∆ ∗U and

2 In Subsection 2.7.1, a slightly different definition has been used for bounded measures on R≥
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lim
t→∞

eϑ tG(t) =
1

µϑ

∫
∞

−∞

eϑx
∆(x) dx, (4.21)

which, by our usual convention, equals 0 if µϑ = ∞.

Proof. First note that, since ∆ is dRi and (4.20) holds, the function ∆ϑ is dRi as well
[+ Problem 4.8]. This in combination with the uniform local boundedness of Uϑ

[+ Lemma 2.64] implies that ∆ϑ ∗Uϑ is everywhere finite. We have already argued
above that G = ∆ ∗U so that Gϑ = ∆ϑ ∗Uϑ . Therefore, assertion (4.21) follows by
an appeal to the (nonarithmetic version of the) key renewal theorem 2.67. ut

The previous result should be kept in mind as a kind of general version of what
is actually derived for special triples G,∆ and Q in the proof of the implicit renewal
theorem we are now going to present.

Problems

Problem 4.8. [+ also Lemma 2.28] Let g : R→ R be a dRi function and θ ∈ R be
such that gθ (x) = eθxg(x) is λλ0-integrable. Prove that gθ is then dRi as well.

Problem 4.9. [Two-sided renewal equation] Prove that, given a two-sided renewal
equation G = g+G∗Q with a dRi function g and a probability measure Q on R, the
set of solutions equals {

a+g∗U : a ∈ R
}
,

where U denotes the renewal measure of Q.

4.3 Proof of the implicit renewal theorem

It suffices to show (4.5) and the formula for C+ in the respective parts (a) and (b)
because the other assertions follow by considering −X instead of X . The proof will
be carried out for the three cases

M ≥ 0 a.s., P(M > 0)∧P(M < 0)> 0 and M ≤ 0 a.s.

separately and frequently make use of the following notation most of which has
already been used earlier. Let X ,M,M1,M2, ... be independent random variables on
a common probability space (Ω ,A,P) such that M,M1,M2, ... are further identically
distributed. Then

Π0 := 1 and Πn :=
n

∏
k=1

Mk for n≥ 1,
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ξ := log |M|, Q := L (ξ ),

ξn := log |Mn|, S0 := 0 and Sn := log |Πn|=
n

∑
k=1

ξk for n≥ 1,

U := ∑
n≥0

Q∗n = ∑
n≥0

P(Sn ∈ ·), Uθ (dx) := eθxU(dx),

G(t) := P(X > et), Gθ (t) := eθ t G(t),

∆(t) := P(X > et)−P(MX > et), ∆θ (t) := eθ t
∆(t) for θ , t ∈ R,

f (t) :=
∫

(−∞,t]
e−(t−x) f (x)λλ0(dx) = E f (t−Z) for suitable f : R→ R,

where Z is a standard exponential random variable. The function f has already been
introduced in Subsection 2.6.1 and called exponential smoothing of f . Recall from
Lemma 2.30 there that f is dRi whenever f ∈ L1. The next simple lemma further
shows that exponential smoothing is preserved under convolutions with measures.

Lemma 4.10. Let f : R→R be a measurable function and V a finite measure
on R such that f as well as f ∗V exist as real-valued functions on R. Then

f ∗V = f ∗V , (4.22)

and f = g+ f ∗V for a measurable function g with exponential smoothing g
implies f = g+ f ∗V .

Proof. W.l.o.g. suppose that ‖V‖ = 1. Let Y,Z be independent random variables
such that L (Y ) =V and L (Z) = Exp(1). For (4.22), it suffices to note that

f ∗V (t) = E f (t−Y −Z) = f ∗V (t)

for all t ∈ R, while the last assertion then follows from

f = g+ f ∗V = g+ f ∗V = g+ f ∗V.

having used that exponential smoothing is a linear operation. ut

By combining this lemma with next one, we will be able to use exponential
smoothing when studying the asymptotic properties of the function Gϑ in the proof
of the implicit renewal theorem.

Lemma 4.11. [Smoothing lemma] If P(X > t) satisfies

lim
t→∞

1
t

∫ t

0
xϑ P(X > x) dx = C+
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for some ϑ > 0 and C+ ∈ R≥, then (4.5) holds true as well.

In other words, if the Césaro smoothing of eϑ t P(X > t) converges to some C+,
then so does the function eϑ t P(X > t) itself as t→ ∞.

Proof. Fixing any b> 1, we infer

C+(b−1)t '
∫ bt

0
xϑ P(X > x) dx −

∫ t

0
xϑ P(X > x) dx

=
∫ bt

t
xϑ P(X > x) dx

≤ P(X > t)
∫ bt

t
xϑ dx

=
bϑ+1−1

ϑ +1
tϑ+1P(X > t)

and thereby

liminf
t→∞

tϑ P(X > t) ≥ C+(ϑ +1)
b−1

bϑ+1−1
.

Now let b tend to 1 and use

lim
b↓1

b−1
bϑ+1−1

=
1

ϑ +1

to conclude liminft→∞ tϑ P(X > t)≥C+.
By an analogous argument for 0< b< 1, one finds that

C+(1−b)t '
∫ t

bt
xϑ P(X > x) dx ≥ 1−bϑ+1

ϑ +1
tϑ+1P(X > t)

which upon letting b again tend to 1 yields limsupt→∞ tϑ P(X > t)≤C+. ut
In view of this lemma, it suffices to verify t−1 ∫ t

0 xϑ P(X > x)dx→C+ as t→ ∞

instead of (4.5), and since

1
t

∫ t

0
xϑ P(X > x) dx =

1
t

∫ log t

−∞

e(ϑ+1)xP(X > ex) dx

=
1
t

∫ log t

−∞

ex Gϑ (x) dx

=
∫ log t

−∞

e−(log t−x) Gϑ (x) dx

= Gϑ (log t)

this means to show that
lim
t→∞

Gϑ (t) =C+.
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4.3.1 The case when M ≥ 0 a.s.

Rewriting (IRT-1)-(IRT3) in terms of ξ = logM, we have

(IRT-1) ‖Qϑ‖= Eeϑξ = 1.
(IRT-2)

∫
R≥ xQϑ (dx) = Eeϑξ ξ+ < ∞

[thus 0< µϑ =
∫

xQϑ (dx) = Eeϑξ ξ < ∞ as explained before Prop. 4.7].
(IRT-3) Qϑ is nonarithmetic.

We have already argued for this case that G = ∆ +G ∗Q, G = ∆ ∗U and thus
Gϑ = ∆ϑ ∗Uϑ . As

∫
∞

−∞

|∆ϑ (x)| dt =
∫

∞

−∞

∣∣P(X > ex)−P(MX > ex)
∣∣eϑx dx

=
∫

∞

−∞

∣∣P(X > t)−P(MX > t)
∣∣ tϑ−1 dt,

we see that ∆ϑ ∈ L1 by (4.3), and also (when removing absolute values)

1
µϑ

∫
∞

−∞

∆ϑ (x) dx = C+.

By Lemma 2.30 and (2.23), ∆ϑ is dRi and µ
−1
ϑ

∫
∞

−∞
∆ϑ (x)dx = C+ as well. Now

use Lemma 4.10, the smoothing lemma 4.11 and the key renewal theorem 2.67 to
conclude

lim
t→∞

Gϑ (t) = lim
t→∞

Gϑ (t) = lim
t→∞

∆ϑ ∗Uϑ (t) =
1

µϑ

∫
∞

−∞

∆ϑ (x) dx = C+

as claimed.

4.3.2 The case when P(M > 0)∧P(M < 0)> 0

The main idea for the proof of the remaining two cases is to reduce it to the first
case by comparison of X with Πσ X , where

σ := inf{n≥ 1 : Πn ≥ 0} =

{
1, if M1 ≥ 0,
inf{n≥ 2 : Mn ≤ 0}, otherwise.

Plainly, σ is a.s. finite, and we may thus hope to be successful in our endeavor if Πσ

satisfies (IRT-1)-(IRT-3).
The reader should keep in mind that, besides (IRT-1)-(IRT-3) for M, we are now

always assuming (4.3) and (4.4), or, equivalently [+ Problem 4.5],
∫

∞

−∞

∆
∗
ϑ (x) dx =

∫
∞

0

∣∣P(|X |> t)−P(|MX |> t)
∣∣ tϑ−1 dt < ∞,
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where ∆ ∗
ϑ
(x) := eϑx∆ ∗(x) as usual and

∆
∗(x) := P(|X |> ex)−P(|MX |> ex), x ∈ R.

We begin with a lemma that verifies (IRT-1)-(IRT-3) for Πσ .

Lemma 4.12. The stopped product Πσ = eSσ satisfies the conditions (IRT-1)-
(IRT-3), i.e.

EΠ
ϑ
σ = EeϑSσ = 1, EΠ

ϑ
σ log+ Πσ = EeϑSσ S+σ < ∞,

and the law of logΠσ given Πσ 6= 0 is nonarithmetic. Moreover,

EΠ
ϑ
σ logΠσ = EeϑSσ Sσ = 2µϑ .

Proof. First note that (|Πn|ϑ )n≥0 constitutes a nonnegative mean one product martin-
gale with respect to the filtration Fn := σ(Π0,M1, ...,Mn) for n ≥ 0. As in the
proof of Theorem 2.68, define a new probability measure P̂ on (Ω ,F∞), F∞ :=
σ(
⋃

n≥0 Fn), by

P̂(A) := E|Πn|ϑ 1A = EeϑSn1A for A ∈Fn and n≥ 0.

Then M1,M2, ... are still iid under P̂ with common distribution

P̂(M1 ∈ B) = E|M1|ϑ 1B(M1), B ∈B(R).

Equivalently, (Sn)n≥0 remains a SRW under P̂ with increment distribution

P̂(ξ1 ∈ B) = Eeϑξ11B(ξ1), B ∈B(R),

and drift Êξ1 = Eeϑξ1ξ1 = µϑ . It is shown in Problem 4.15 that σ is a.s. finite and
has finite moments of any order under P̂. The almost sure finiteness ensures that, for
any A ∈Fσ ,

P̂(A) = ∑
n≥1

P̂(A∩{σ = n}) = ∑
n≥1

E|Πn|ϑ 1A∩{σ=n} = E|Πσ |ϑ 1A,

for A∩{σ = n} ∈Fn for each n ≥ 1. Choosing A = Ω , we particularly find that
E|Πσ |ϑ = 1. Next, use the Fσ -measurability of Sσ and Wald’s equation to infer

EeϑSσ S+σ = ÊS+σ ≤ Ê

(
σ

∑
k=1

ξ
+
k

)
= Êξ

+
1 Êσ

which is finite because Êσ < ∞ and Êξ
+
1 = E|M|ϑ log+ |M| < ∞ by (IRT-2). But

then, by another use of Wald’s equation,
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EeϑSσ Sσ = ÊSσ = Êξ1 Êσ = µϑ Êσ = 2µϑ ,

where Êσ = 2 is again shown as a part of Problem 4.15.
Finally, use [and prove as part (c) of Problem 4.15] that

P(Sσ ∈ ·,Πσ 6= 0) = pQ>+(1− p)2
∑
n≥0

pn Q∗n> ∗Q∗2< , (4.23)

where p := P(M > 0), Q> := P(ξ ∈ ·|M > 0) and Q< := P(ξ ∈ ·|M < 0). Since,
by (IRT-3), at least one of Q< or Q> is nonarithmetic, the same must hold for the
conditional law P(Sσ ∈ ·|Πσ 6= 0) as one may easily deduce with the help of FT’s
[+ again Problem 4.15]. ut

Lemma 4.13. If (4.3), (4.4), and thus (4.18) are valid, then
∫

∞

0

∣∣P(|X |> t)−P(|Πσ X |> t)
∣∣ tϑ−1 dt < ∞. (4.24)

holds true as well and, furthermore,

1
2µϑ

∫
∞

0

(
P(|X |> t)−P(|Πσ X |> t)

)
tϑ−1 dt = C (4.25)

for C as defined in (4.9).

Proof. First observe that, for all t ≥ 0,
∣∣P(|X |> t)−P(|Πσ X |> t)

∣∣
= lim

m→∞

∣∣P(|X |> t)−P(|Πσ∧mX |> t)
∣∣

= lim
m→∞

∣∣∣∣∣E
(

σ∧m

∑
n=1

1(t,∞)(|Πn−1X |)−1(t,∞)(|ΠnX |)
)∣∣∣∣∣

= lim
m→∞

∣∣∣∣∣E
(

m

∑
n=1

1{σ≥n}
(

1(t,∞)(|Πn−1X |)−1(t,∞)(|ΠnX |)
))∣∣∣∣∣

≤ ∑
n≥1

∣∣∣P(σ ≥ n, |Πn−1X |> t)−P(σ ≥ n, |ΠnX |> t)
∣∣∣.

Consequently, defining Pn(ds) := P(σ ≥ n, |Πn−1| ∈ ds) for n≥ 1, we obtain
∫

∞

0

∣∣P(|X |> t)−P(|Πσ X |> t)
∣∣ tϑ−1 dt (4.26)

≤ ∑
n≥1

∫
∞

0

∣∣∣P(σ ≥ n, |Πn−1X |> t)−P(σ ≥ n, |ΠnX |> t)
∣∣∣ tϑ−1 dt

= ∑
n≥1

∫
∞

0

∣∣∣∣
∫

R>
P
(
|X |> t

s

)
−P

(
|MX |> t

s

)
Pn(ds)

∣∣∣∣ tϑ−1 dt
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≤ ∑
n≥1

∫

R>

∫
∞

0

∣∣∣P
(
|X |> t

s

)
−P

(
|MX |> t

s

)∣∣∣
( t

s

)ϑ−1
dt sϑ−1Pn(ds)

=

(∫
∞

0

∣∣P(|X |> t)−P(|MX |> t)
∣∣ tϑ−1 dt

)
∑
n≥1

E1{σ≥n}|Πn−1|ϑ ,

where the independence of ({σ ≥ n},Πn−1) ∈ σ(Π0,M1, ...,Mn−1) and (Mn,X) has
been utilized for the third line and the change of variables t/s t for the last one.
In view of the fact that (4.18) holds true, it remains to verify for (4.24) that the last
series, which may also be written as E(∑σ

n=1 |Πn−1|ϑ ), is finite. To this end, let P̂ be
defined as in the proof of Lemma 4.12. Then

an := E1{σ≥n}|Πn−1|ϑ = P̂(σ ≥ n)

for each n≥ 1, because {σ ≥ n} ∈Fn−1 and therefore [+ Problem 4.15(b)]

∑
n≥1

an = Êσ = 2,

which completes the proof of (4.24). But by now repeating the calculation in (4.26)
without absolute value signs, all inequalities turn into equalities, giving

∫
∞

0

(
P(|X |> t)−P(|Πσ X |> t)

)
tϑ−1 dt

=

(∫
∞

0

(
P(|X |> t)−P(|MX |> t)

)
tϑ−1 du

)
∑
n≥1

E1{σ≥n}|Πn−1|ϑ

= 2
∫

∞

0

(
P(|X |> t)−P(|MX |> t)

)
tϑ−1 dt

and so (4.25) upon multiplication with (2µϑ )
−1. ut

Finally, we must verify condition (4.3) when substituting M for Πσ and provide
the formula that replaces (4.7) in this case.

Lemma 4.14. Under the same assumptions as in the previous lemma,
∫

∞

0

∣∣P(X > t)−P(Πσ X > t)
∣∣ tϑ−1 dt < ∞ (4.27)

as well as

1
2µϑ

∫
∞

0

(
P(X > t)−P(Πσ X > t)

)
tϑ−1 dt =

C
2
. (4.28)

Proof. We leave it as an exercise to first verify (4.27) along similar lines as in (4.26)
[+ Problem 4.16]. Keeping the notation of the proof of the previous lemma, we
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then obtain (using Πn−1 =−|Πn−1| on {σ ≥ n} for any n≥ 2 and ∑n≥2 an = 1)
∫

∞

0

(
P(X > t)−P(Πσ X > t)

)
tϑ−1 dt

= ∑
n≥1

∫
∞

0

(
P(σ ≥ n,Πn−1X > t)−P(σ ≥ n,ΠnX > t)

)
tϑ−1 dt

=
∫

∞

0

(
P(X > t)−P(MX > t)

)
tϑ−1 dt

+ ∑
n≥2

∫
∞

0

(
P(σ ≥ n, |Πn−1|X <−t)−P(σ ≥ n, |Πn−1|MnX <−t)

)
tϑ−1 dt

=
∫

∞

0

(
P(X > t)−P(MX > t)

)
tϑ−1 dt

+ ∑
n≥2

∫

R>

∫
∞

0

(
P
(

X <− t
s

)
−P

(
MX >− t

s

)) ( t
s

)ϑ−1
dt sϑ−1 Pn(ds)

=
∫

∞

0

(
P(X > t)−P(MX > t)

)
tϑ−1 dt

+

(∫
∞

0

(
P(X <−t)−P(MX <−t)

)
tϑ−1 dt

)
∑
n≥2

an

=
∫

∞

0

(
P(|X |> t)−P(|MX |> t)

)
tϑ−1 dt

and therefore

1
2µϑ

∫
∞

0

(
P(X > t)−P(Πσ X > t)

)
tϑ−1 dt =

C
2

as claimed. ut

Taking a deep breath, we are finally able to settle the present case by using part
(a) of the theorem upon replacing M with Πσ ≥ 0. Lemma 4.12 ensures validity
of (IRT-1)-(IRT-3) under this replacement and also that 2µϑ takes the place of µϑ .
Condition (4.3) now turns into (4.27), which has been verified as part of Lemma
4.14. Therefore, we conclude

C+ = lim
t→∞

tϑ P(X > t) =
1

2µϑ

∫
∞

0

(
P(X > t)−P(Πσ X > t)

)
tϑ−1 dt,

and, by (4.28), the last expression equals C/2 as asserted.

4.3.3 The case when M ≤ 0 a.s.

This case is handled by the same reduction argument as the previous one, but is
considerably simpler because of the obvious fact that σ ≡ 2 holds true here. We
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leave it to the reader to check all necessary conditions as well as to show that (4.25)
and (4.28) remain valid [+ Problem 4.17].

Problems

Problem 4.15. Given the assumptions of Subsection 4.3.2, prove the following as-
sertions:

(a) P(σ −2 ∈ ·|σ ≥ 2) = Geom(θ) with θ = P(M ≤ 0).
(b) P̂(σ −2 ∈ ·|σ ≥ 2) = Geom(θ̂) with θ̂ = E|M|ϑ 1{M<0}, and Êσ = 2.
(c) The conditional law under P of Sσ given Πσ 6= 0 satisfies (4.23).
(d) Compute the FT of P(Sσ ∈ ·|Πσ 6= 0) in terms of those of Q<,Q> and use it

to show that this law is nonarithmetic.

Problem 4.16. Give a proof of (4.27) under the assumptions of Lemma 4.14.

Problem 4.17. Give a proof of the implicit renewal theorem for the case M ≤ 0 a.s.

Problem 4.18. [Tail behavior at 0] Prove the following version of the implicit re-
newal theorem:
Let M,X be independent random variables taking values in R\{0} such that, for
some ϑ > 0,

(IRT2-1) E|M|−ϑ = 1.
(IRT2-2) E|M|−ϑ log− |M|< ∞.
(IRT2-3) The conditional law P(log |M| ∈ ·||M|< ∞) of log |M| given |M|< ∞ is

nonarithmetic, in particular, P(|M|= 1)< 1.

Then 0< E log |M| ≤∞, 0< µϑ :=−E|M|−ϑ log |M|<∞, and the following asser-
tions hold true:

(a) Suppose M is a.s. positive. If
∫

∞

0

∣∣P(X ≤ t)−P(MX ≤ t)
∣∣ t−1−ϑ dt < ∞ (4.29)

or, respectively,
∫

∞

0

∣∣P(X ≥−t)−P(MX ≥−t)
∣∣ t−1−ϑ dt < ∞, (4.30)

then
lim

t→0+
t−ϑ P(0< X ≤ t) = C+, (4.31)

respectively
lim

t→0+
tϑ P(−t ≤ X < 0) = C−, (4.32)

where C+ and C− are given by the equations
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C+ :=
1

µϑ

∫
∞

0

(
P(X ≤ t)−P(MX ≤ t)

)
t−1−ϑ dt, (4.33)

C− :=
1

µϑ

∫
∞

0

(
P(X ≥−t)−P(MX ≥−t)

)
t−1−ϑ dt. (4.34)

(b) If P(M < 0) > 0 and (4.29), (4.30) are both satisfied, then (4.31) and (4.32)
hold with C+ =C− =C/2, where

C :=
1

µϑ

∫
∞

0

(
P(|X | ≤ t)−P(|MX | ≤ t)

)
t−1−ϑ dt. (4.35)

4.4 Applications

We will proceed with an application of the previously developed results to a number
of examples some of which are also discussed in [60]. In view of the fact that im-
plicit renewal theory deals with the tail behavior of solutions to SFPE’s of the form
(4.1) and embarks on linear approximation of the random function Ψ involved, the
simplest and most natural example that comes to mind is a RDE and therefore stud-
ied first.

4.4.1 Random difference equations and perpetuities

Returning to the situation described in Section 1.5, let (M,Q),(M1,Q1),(M2,Q2), ...
be iid two-dimensional random variables and (Xn)n≥0 recursively defined by the
(one-dimensional) RDE

Xn := MnXn−1 +Qn, n≥ 1.

As usual, let Π0 := 0 and Πn := M1 · ... ·Mn for n ≥ 1. If E log |M| < 0 and
E log+ |Q| < ∞, then (Xn)n≥0 is a mean contractive IFS on R satisfying the jump-
size condition (3.17) (with x0 = 0 and d(x,y) = |x−y|). By Theorem 3.24, it is then
convergent in distribution (under any initial distribution) to the unique solution of
the SFPE

X d
= MX +Q, X independent of (M,Q), (4.36)

which is (the law of) the perpetuity X := ∑n≥1 Πn−1Qn and in turn is obtained as the
a.s. limit (under any initial distribution) of the backward iterations. By applying the
same arguments to the RDE

Yn = |Mn|Yn−1 + |Qn|, n≥ 1,

we see that Y := ∑n≥1 |Πn−1Qn| is a.s. finite as well and its law the unique solution
to the SFPE
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Y = |M|Y + |Q|, Y independent of (M,Q).

An application of the implicit renewal theorem provides us with the following
result about the tail behavior of X under appropriate conditions on M and Q. Its far
more difficult extension to the multidimensional situation is a famous result due to
KESTEN [72].

Theorem 4.19. Suppose that M satisfies (IRT-1)-(IRT-3) and that E|Q|ϑ <∞.
Then there exists a unique solution to the SFPE (4.36), given by the law of the
perpetuity X := ∑n≥1 Πn−1Qn. This law satisfies (4.5) as well as (4.6), where

C± =
E
(
((MX +Q)±)ϑ − ((MX)±)ϑ

)

ϑ µϑ

(4.37)

if M ≥ 0 a.s., while

C+ =C− =
E
(
|MX +Q|ϑ −|MX |ϑ

)

2ϑ µϑ

(4.38)

if P(M < 0)> 0. Furthermore,

C++C− > 0 iff P(Q = c(1−M))< 1 for all c ∈ R. (4.39)

A crucial ingredient to the proof of this theorem is the following moment result
that will enable us to verify validity of (4.3) and (4.4) of the implicit renewal theo-
rem. For a.s. nonnegative M,Q and κ > 1, it was obtained by VERVAAT [116]; for a
stronger version see [4] and Problem 4.33.

Proposition 4.20. Suppose that E|M|κ ≤ 1 and E|Q|κ < ∞ for some κ > 0.
Then Y = ∑n≥1 |Πn−1Qn| satisfies EY p < ∞ for any p ∈ (0,κ).

Proof. This is actually a direct consequence of the more general Theorem 3.29, but
we repeat the argument for the present situation because it is short and simple.

As argued earlier, E|M|p < 1 for any p ∈ (0,κ). If p ≤ 1, the subadditivity of
x 7→ xp implies that

EY p ≤ ∑
n≥1

E|Πn−1Qn|p ≤ E|Q|p ∑
n≥1

(E|M|p)n−1 ≤ E|Q|p
1−E|M|p < ∞,

whereas in the case p > 1 a similar estimation with the help of Minkowski’s in-
equality yields
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‖Y‖p ≤ ∑
n≥1
‖Πn−1Qn‖p = ‖Q‖p ∑

n≥1
‖M‖n−1

p =
‖Q‖p

1−‖M‖p
< ∞.

This completes the proof. ut
GRINCEVIČIUS [62] provided the following extension of Lévy’s symmetrization

inequalities that will be utilized in the proof of (4.39). Under the assumptions of
Theorem 4.19, define m0 := med(X),

Πk:n :=
n

∏
j=k

M j for 1≤ k ≤ n,

X̂n :=
n

∑
k=1

Πk−1Qk, X̂k:n :=
n

∑
j=k

Πk: j−1Q j for 1≤ k ≤ n,

X̂∗0 := m0, X̂∗n := X̂n +Πnm0 for n≥ 1,

Rk := X̂k +Πk med
(
X̂k+1:n +Πk+1:ny

)
for 1≤ k ≤ n, y ∈ R

Un := Πn−1
(
Qn−m0(1−Mn)

)
for n≥ 1.

where X̂n+1:n := 0 and Πn+1:n := 1 in the definition of Rn. The X̂n are obviously the
backward iterations when X0 = 0 and hence a.s. convergent to X = ∑n≥1 Πn−1Qn.

Lemma 4.21. [Grincevičius] With the given notation,

P
(

max
1≤k≤n

Rk > x
)
≤ 2P(X̂n +Πny> x)

for all x,y ∈ R.

Specializing to y = 0, we obtain

P
(

max
1≤k≤n

(
X̂k +Πk med

(
X̂k+1:n

))
> x
)
≤ 2P(X̂n > x)

for any x ∈ R and then upon letting n→ ∞

P
(

sup
n≥1

X̂∗n > x
)

= P
(

sup
n≥1

(
X̂n +Πn m0

)
> x
)
≤ 2P(X > x), (4.40)

because limn→∞ X̂k+1:n
d
= X for any k ≥ 1. The same inequality holds, of course,

with −X̂n,−X instead of X̂n,X whence

P
(

sup
n≥1
|X̂∗n |> x

)
≤ 2P(|X |> x) (4.41)

for all x ∈ R≥.
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Proof. Fixing any x,y ∈ R, define

Ak := {R1 ≤ x, ...,Rk−1 ≤ x, Rk > x},
Bk :=

{
X̂k+1:n +Πk+1:ny≥med

(
X̂k+1:n +Πk+1:ny

)}

for k = 1, ...,n. Observe that Ak and Bk are independent events with P(Bk)≥ 1/2 for
each k and that

{
max

1≤k≤n

(
X̂k +Πk med

(
X̂k+1:n +Πk+1:ny

))
> x
}

=
n

∑
k=1

Ak,

{
X̂n +Πny> x

}
⊃

n

∑
k=1

Ak ∩Bk.

For the last inclusion we have used that, on Ak ∩Bk,

x < Rk ≤ X̂k +Πk

(
X̂k+1:n +Πk+1:ny

)
= X̂n +Πny

for each k = 1, ...,n. Now

P(X̂n +Πny> x) ≥
n

∑
k=1

P(Ak)P(Bk) ≥
1
2

n

∑
k=1

P(Ak) =
1
2
P
(

max
1≤k≤n

Rk > x
)

proves the assertion. ut

Proof (of Theorem 4.19). We first prove (4.5) and (4.6) for which, by Corollary 4.2,
it suffices to verify (4.10) and (4.11). But since −X satisfies the same SFPE as X
when replacing (M,Q) with (M,−Q), it is further enough to consider only the first
of these two conditions, viz. E

∣∣((MX +Q)+)ϑ − ((MX)+)ϑ
∣∣< ∞.

By making use of the inequality

(x+ y)p ≤ xp + p2p−1(xp−1y+ xyp−1)+ yp, (4.42)

valid for all x,y ∈ R≥ and p> 1, we find that

((MX +Q)+)ϑ − ((MX)+)ϑ ≤ ((MX)++Q+)ϑ − ((MX)+)ϑ

≤
{
(Q+)ϑ , if ϑ ∈ (0,1],
(Q+)ϑ + cϑ

(
((MX)+)ϑ−1Q++(MX)+(Q+)ϑ−1

)
, if ϑ > 1,

where cϑ := ϑ2ϑ−1. A combination of (MX)+ ≤ |MX |, the independence of X and
(M,Q), E|M|ϑ <∞, E|Q|ϑ <∞, and of E|X |ϑ−1 <∞ if ϑ > 1 [by Prop. 4.20] hence
implies that

E
(
((MX +Q)+)ϑ − ((MX)+)ϑ

)+
< ∞.

Indeed, if ϑ > 1, the obtained bound is
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E(Q+)ϑ + cϑ E(|M|ϑ−1Q+)E|X |ϑ−1 + cϑ E(|M|(Q+)ϑ−1)E|X |

and the finiteness of E(|M|ϑ−1Q+), E(|M|(Q+)ϑ−1) follows by an appeal to Hölder’s
inequality.

In order to get

E
(
((MX +Q)+)ϑ − ((MX)+)ϑ

)−
< ∞,

one can argue in a similar manner when using the estimate

((MX)+)ϑ − ((MX +Q)+)ϑ ≤ ((MX +Q)++Q−)ϑ − ((MX +Q)+)ϑ

≤
{
(Q−)ϑ , if ϑ ∈ (0,1],
(Q+)ϑ + cϑ

(
((MX +Q)+)ϑ−1Q−+(MX +Q)+(Q−)ϑ−1

)
, if ϑ > 1.

The straightforward details are again left as an exercise [+ Problem 4.34].

Turning to the proof of (4.39), suppose that Q = c(1−M) a.s. for some c ∈ R.
Then X = c a.s. forms the unique solution to (4.36) so that C+ = C− = 0. For the
converse, let P(Q = c(1−M))< 1 for all c ∈ R. Since

C++C− = lim
t→∞

tϑ P(|X |> t),

we must verify that the limit on the right-hand side is positive. To this end, we start
by noting that, by our assumption, we can pick ε > 0 such that

p := P(|Q−m0(1−M)|> ε)> 0.

Next, observe that

X̂∗n−1 +Un = X̂n−1 +Πn−1m0 +Πn−1(Qn−m0(1−Mn)) = X̂∗n

for each n≥ 1, which implies

sup
n≥0
|X̂∗n | ≥ sup

n≥1
|X̂∗n | ≥ sup

n≥1
|Un|− sup

n≥0
|X̂∗n |

and therefore
sup
n≥0
|X̂∗n | ≥

1
2

sup
n≥1
|Un|.

Since X̂∗0 = m0, we thus find for any t > |m0| that
{

sup
n≥1
|X̂∗n |> t

}
=

{
sup
n≥0
|X̂∗n |> t

}
⊃
{

sup
n≥1
|Un|> 2t

}

and then in combination with Grincevičius’ inequality (4.41)
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P(|X |> t) ≥ 1
2
P
(

sup
n≥1
|X̂∗n |> t

)

≥ 1
2
P
(

sup
n≥1
|Un|> 2t

)

≥ 1
2 ∑

n≥1
P(τ = n−1, |Qn−m0(1−Mn)|> ε)

=
p
2
P
(

sup
n≥0
|Πn|>

2t
ε

)
,

where τ := inf{n≥ 0 : |Πn|> 2t/ε} and

|Un|= |Πn−1(Qn−m0(1−Mn))|> 2t on {τ = n−1, |Qn−m0(1−Mn)|> ε}

for each n≥ 1 has been utilized for the penultimate line. Finally,

lim
t→∞

tϑ P
(

sup
n≥0
|Πn|> t

)
= lim

t→∞
eϑ log t P

(
sup
n≥0

Sn > log t
)
= K+ > 0,

by Theorem 2.68 leads to the desired conclusion. ut

Formula (4.38) may be used to derive further information on C± or C++C− like
upper bounds or alternative formulae. We refrain from dwelling on this further and
refer to Problems 4.36-4.38.

It is usually impossible to determine the law of a perpetuity explicitly, but there
are exceptions. One such class is described in Proposition 4.23 below. Recall that a
beta distribution with parameters a,b> 0 has λλ -density

ga,b(x) :=
1

B(a,b)
xa−1(1− x)b−11(0,1)(x),

where the normalizing constant

B(a,b) :=
∫ 1

0
xa−1(1− x)b−1 dx =

Γ (a)Γ (b)
Γ (a+b)

equals the so-called complete beta integral at (a,b). The substitution y
1+y for x pro-

vides us with the equivalent formula

B(a,b) =
∫

∞

0
ya−1(1+ y)−a−b dx

for all a,b ∈ R>. As a consequence,

g∗a,b(x) :=
1

B(a,b)
xa−1(1+ x)−a−b 1R>(x)
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for a,b > 0 defines the λλ -density of another distribution β ∗(a,b), say, called beta
distribution of the second kind. Here is a useful (multiplicative) convolution property
of these distributions that is crucial for the proof of the announced proposition.

Lemma 4.22. If X and Y are two independent random variables with L (X)=
β ∗(a,b) and L (Y ) = β ∗(c,a+b) for a,b,c ∈ R>, then

L ((1+X)Y ) = β
∗(c,b).

Proof. For s ∈ (−c,b), we obtain

EY s =
Γ (a+b+ c)
Γ (c)Γ (a+b)

∫
∞

0
yc+s−1(1+ y)−((c+s)+(a+b−s)) dy

=
Γ (c+ s)Γ (a+b− s)

Γ (c)Γ (a+b)

and further in a similar manner

E(1+X)s =
Γ (a+b)
Γ (a)Γ (b)

∫
∞

0
xa−1(1+ x)−(a+b−s) dx

=
Γ (a+b)Γ (b− s)
Γ (b)Γ (a+b− s)

.

Consequently, the independence of X ,Y implies

E((1+X)Y )s = E(1+X)sEY s =
Γ (c+ s)Γ (b− s)

Γ (c)Γ (b)
.

But the last expression also equals φ(s) = EZs if L (Z) = β ∗(c,b). The function
φ is called the Mellin transform of Z and is the same as the mgf of logZ (as Z is
positive). But the mgf, if not only defined at 0, determines the distribution of logZ
and thus of Z uniquely, giving β ∗(c,b) = L (Z) = L ((1+X)Y ) as claimed. ut

Here is the announced result, again taken from [60]. The cases m = 1,2 are due
to CHAMAYOU & LETAC [26].

Proposition 4.23. For m ∈ N and positive reals a1, ...,am,b, let X ,Y1, ...,Ym
be independent random variables such that L (X) = β ∗(a1,b) and L (Yk) =
β ∗(ak+1,ak +b) for k = 1, ...,m, where am+1 := a1. Then X satisfies the SFPE

(4.36), i.e. X d
= MX +Q, for the pair (M,Q) defined by

M :=
m−1

∏
k=0

Ym−k and Q :=
m−1

∑
k=0

k

∏
j=0

Ym− j.
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Furthermore,

lim
t→∞

tbP(X > t) =
1

bB(a1,b)
. (4.43)

Proof. We put X1 :=X and Xn :=(1+Xn−1)Yn−1 for n= 2, ...,m. A simple induction
in combination with the previous lemma shows that L (Xn) = β ∗(an,b) for n =
1, ...,m. Moreover,

(1+Xn)Yn = Yn +XnYn = (1+Xn−1)Yn−1Yn = ...= Q+MX

and L ((1+Xn)Yn) = β ∗(am+1,b) = β ∗(a1,b) by another appeal to Lemma 4.22.
Left with the proof of (4.43) and using L (X) = β ∗(a1,b), we infer

P(X > t) =
1

B(a1,b)

∫
∞

t
xa1−1(1+ x)−a1−b dx

=
1

B(a1,b)

∫
∞

t

(
x

1+ x

)a1−1( x
1+ x

)b+1

dx.

Since the last integral is easily seen to behave like
∫

∞

t x−b−1 dx = bt−b as t→∞, we
arrive at the desired conclusion. ut

We leave it as an exercise [+ Problem 4.39] to verify that (M,Q) satisfies the
assumptions of the implicit renewal theorem 4.1 with ϑ = b and so, by this result,

1
bB(a1,b)

=
E
(
(MX +Q)b− (MX)b

)

bµb

holds true.

4.4.2 Lindley’s equation and a related max-type equation

If we replace addition in (4.36) by the max-operation, we get a new SFPE, namely

X d
= MX ∨Q, (4.44)

where X and (M,Q) are as usual independent. We make the additional assumption
that M ≥ 0 a.s. If E logM < 0 and E log+ Q+ < ∞, it has a unique solution which is
the unique stationary distribution of the mean contractive IFS of iid Lipschitz maps
with generic copy Ψ(x) := MX ∨Q [+ Problem 4.40] and the law of

X := sup
n≥1

Πn−1Qn.
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Notice that Πn → 0 a.s. in combination with the stationarity of the Qn entails
Πn−1Qn→ 0 in probability and thus X ≥ 0 a.s. In other words, only the right tail of X
needs to be studied hereafter. Theorem 4.24 below constitutes the exact counterpart
of Theorem 4.19 for (4.44), but before stating it we want to point out the direct rela-
tion of this SFPE with Lindley’s equation, which is revealed after a transformation.
Namely, if Q≡ 1, then taking logarithms in (4.44) yields

Y d
= (Y +ξ )∨0 = (Y +ξ )+

for Y = logX , where ξ := logM, and the unique solution is given by the law of

logX = sup
n≥0

logΠn = sup
n≥0

Sn,

a fact already known from Problem 1.6.

Theorem 4.24. Suppose M satisfies (IRT-1)-(IRT-3) and E(Q+)ϑ < ∞. Then
there exists a unique solution to the SFPE (4.44), given by the law of X =
supn≥1 Πn−1Qn. This law satisfies (4.5) with

C+ =
E
(
((MX ∨Q)+)ϑ − ((MX)+)ϑ

)

ϑ µϑ

. (4.45)

Moreover, C+ is positive iff P(Q> 0)> 0.

Proof. Problem 4.40 shows that (the law of) X = supn≥1 Πn−1Qn provides the
unique solution to the SFPE (4.44) under the assumptions stated here. (4.5) with
C+ given by (4.45) is now directly inferred from Corollary 4.2 because

E
∣∣((MX ∨Q)+)ϑ − ((MX)+)ϑ

∣∣

= E
∣∣Qϑ − ((MX)+)ϑ

∣∣1{MX<Q,Q>0}

≤ E(Q+)ϑ < ∞

[which is (4.10) in that corollary] holds true.

Turning to the asserted equivalence, one implication is trivial, for Q ≤ 0 a.s.
entails X = 0 a.s. and thus C+ = 0. Hence, suppose P(Q> 0)> 0 and fix any c> 0
such that P(Q> c)> 0. Defining the predictable first passage time

τ(t) := inf{n≥ 1 : Πn−1 > t/c}, t ≥ 0,

we note that

P
(

sup
n≥1

Πn−1 >
t
c

)
= P(τ(t)< ∞) (4.46)

and claim that
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P
(

sup
n≥1

Πn−1Qn > t
)
≥ P(Q> c)P(τ(t)< ∞). (4.47)

For a proof of the latter claim, just note that

P
(

sup
n≥1

Πn−1Qn > t
)
≥ ∑

n≥1
P(τ(t) = n,Πn−1Qn > t)

≥ ∑
n≥1

P(τ(t) = n, Qn > c)

= P(Q> c)P(τ(t)< ∞),

where the last line follows by the independence of {τ(t) = n} ∈ σ(Π0, ...,Πn−1)
and Qn. Now we infer upon using (4.46) and (4.47) that

P(X > t) = P
(

sup
n≥1

Πn−1Qn > t
)
≥ P(Q> c)P

(
sup
n≥1

Πn−1 >
t
c

)

and thereby the desired result C+ > 0, for P(Q> c)> 0 and

lim
t→∞

( t
c

)ϑ

P
(

sup
n≥1

Πn−1 >
t
c

)
= lim

t→∞
eϑ t P

(
sup
n≥0

Sn > t
)
> 0

by invoking once again Theorem 2.68. ut

4.4.3 Letac’s max-type equation X d
= M(N∨X)+Q

A more general example of a max-type SFPE studied by GOLDIE in [60] was first
introduced by LETAC [77, Example E], namely

X d
= M(N∨X)+Q (4.48)

for a random triple (M,N,Q) independent of X such that M ≥ 0 a.s. As usual, this
equation characterizes the unique stationary law of the pertinent IFS of iid Lipschitz
maps, defined by

Xn = Mn(Nn∨Xn−1)+Qn, n≥ 1,

provided that mean contractivity and the jump-size condition (3.17) hold. The
(Mn,Nn,Qn), n ≥ 1, are of course independent copies of (M,N,Q). We leave it as
an exercise [+ Problem 4.42] to verify that mean contraction holds if E logM < 0
and (3.17) holds if, furthermore, E log+ N+ < ∞ E log+ |Q|< ∞. By computing the
backward iterations, one then finds as in [60, Prop. 6.1] that

X := max

{
∑
n≥1

Πn−1Qn,sup
n≥1

(
n

∑
k=1

Πk−1Qk +ΠnNn

)}
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is a.s. finite and its law the unique solution to (4.48). But ΠnNn→ 0 in probability
in combination with

X ≥ lim
n→∞

(
n

∑
k=1

Πk−1Qk +ΠnNn

)
= ∑

n≥1
Πn−1Qn

obviously implies that

X = sup
n≥1

(
n

∑
k=1

Πk−1Qk +ΠnNn

)
. (4.49)

The following result determines the right tail behavior of X with the help the implicit
renewal theorem. As for the left tail behavior see Remark 4.27 below.

Theorem 4.25. Suppose that M satisfies (IRT-1)-(IRT-3) and

E(N+)ϑ < ∞, E|Q|ϑ < ∞ and E(MN+)ϑ < ∞. (4.50)

Then the SFPE (4.48) has a unique solution given by the law of X in (4.49).
This law satisfies (4.5) with

C+ =
E
(
((M(N∨X)+Q)+)ϑ − ((MX)+)ϑ

)

ϑ µϑ

. (4.51)

Furthermore, C+ is positive iff P(Q = c(1−M)) < 1 for all c ∈ R, or Q =
c(1−M) a.s. and P(M(N− c)> 0)> 0 for some c ∈ R.

Remark 4.26. In [60, Theorem 6.2] only a sufficient condition for C+ > 0 was given,
namely that Q− c(1−M)≥ 0 a.s. and

P(Q− c(1−M)> 0)+P(M(N− c)> 0)> 0 (4.52)

for some constant c ∈ R.

Remark 4.27. Concerning the left tail of X in Theorem 4.25, let us point out the
following: Since M(N∨X)+Q≥MN +Q1{Q<0}, we have

E(X−)ϑ = E((M(N∨X)−)ϑ ≤ E(MN−)ϑ +E(Q−)ϑ

and thus C− = limt→∞ tϑ P(X <−t) = 0 if the last moment assumption in (4.50) is
sharpened to EM|N|ϑ < ∞.

Proof (of Theorem 4.25). By what has been stated before the theorem and is shown
in Problem 4.42(a), (4.50) ensures that the IFS pertaining to the SFPE (4.48) is mean
contractive and satisfies (3.17). Therefore the law of X , defined in (4.49), forms the
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unique solution to (4.48). In order to infer (4.5) for its right tails by Corollary 4.2,
we must verify

E
∣∣((M(N∨X)+Q)+)ϑ − ((MX)+)ϑ

∣∣< ∞

or, a fortiori,

E
∣∣((M(N∨X)+Q)+)ϑ − ((M(N∨X)+)ϑ

∣∣< ∞

and E
∣∣(M(N∨X)+)ϑ − ((MX)+)ϑ

∣∣< ∞.

If ϑ ∈ (0,1], the desired conclusion is obtained by the usual subadditivity argument
[+ proof of Theorem 4.19], namely

E
∣∣((M(N∨X)+Q)+)ϑ − ((MX)+)ϑ

∣∣ ≤ E|Q|ϑ < ∞.

Left with the case ϑ > 1, we first point out that the sharpened jump-size condition
(3.20) (with p = ϑ , x0 = 0 and d(x,y) = |x− y|) holds, namely

E
(
MN++Q+

)ϑ
< ∞.

This is an obvious consequence of (4.50). Therefore E|X |p < ∞ for any p ∈ (0,ϑ)
by Theorem 3.29. By another use of inquality (4.42), we find that

((M(N∨X)+Q)+)ϑ − ((M(N∨X)+)ϑ

≤ (Q+)ϑ +ϑ 2ϑ−1
(
(M(N∨X)+)ϑ−1Q++M(N∨X)+(Q+)ϑ−1

)

≤ (Q+)ϑ +ϑ 2ϑ−1
(
(MN+∨X)+)ϑ−1Q++M(N∨X)+(Q+)ϑ−1

)

≤ (Q+)ϑ +ϑ 2ϑ−1
(
((MN+)ϑ−1 +(X+)ϑ−1)Q++((MN+)ϑ−1

+(MX+)ϑ−1)(Q+)ϑ−1
)
.

But the last expression has finite expectation as one can see by using E|X |ϑ−1 < ∞,
our moment assumptions (4.50) and the independence of X and (M,N,Q). We refer
to the proof of Theorem 4.19 for a very similar argument spelled out in greater
detail. Having thus shown

E
(
((M(N∨X)+Q)+)ϑ − ((M(N∨X)+)ϑ

)+
< ∞

we leave it to the reader to show by similar arguments that the corresponding neg-
ative part has finite expectation, too, and that E

∣∣(M(N ∨X)+)ϑ − ((MX)+)ϑ
∣∣ < ∞

[+ Problem 4.43].
Turning to the equivalence assertion, recall from above that

X ≥ Y := ∑
n≥1

Πn−1Qn
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so that P(X > t) ≥ P(Y > t). But Theorem 4.19 tells us that, under the given as-
sumptions, tϑ P(Y > t) converges to a positive limit if P(Q = c(1−M)) < 1 for
all c ∈ R, whence the same must then hold for tϑ P(X > t). On the other hand, if
Q = c(1−M) a.s. for some c, then a simple calculation shows that

X = sup
n≥1

(c(1−Πn)+ΠnNn) = c+ sup
n≥1

(Πn−1Mn(Nn− c)) .

By Theorem 4.24, X − c then forms the unique solution to the SFPE (4.44) when
choosing Q = M(N− c) there. Consequently,

C+ = lim
t→∞

tϑ P(X > t) = lim
t→∞

tϑ P(X− c> t) > 0

iff P(M(N− c)> 0)> 0 as claimed. ut

Writing (4.48) in the form X d
= (MN)∨MX +Q, we see that an SFPE of type

(4.44), which has been discussed in the previous subsection, yields as a special case
when choosing Q = 0. However, as P(MN = 0)≥ P(M = 0), the statement fails to

hold for those equations X d
= MX ∨Q′ with P(Q′ = 0) < P(M = 0) [+ Problem

4.44 for further information].
Further specializing to the situation when Q = 0 and N > 0 a.s., Letac’s equation

(4.48) after taking logarithms turns into

Y d
= ζ ∨Y +ξ , (4.53)

where Y := logX , ξ := logM and ζ := logN. Upon choosing the usual notation for
the associated IFS (Yn)n≥0, say, of iid Lipschitz maps with generic copy Ψ(x) :=
ζ ∨ x+ξ , backward iterations can be shown to satisfy [+ Problem 4.45(a)]

Ŷn = max
{

Sn + x, max
1≤k≤n

(Sk +ζk)

}
(4.54)

if Ŷ0 = x and (Sn)n≥0 denotes the SRW associated with the ξ1,ξ2, ... Provided that ξ

has negative mean and thus (Sn)n≥0 negative drift, we infer a.s. convergence of the
Ŷn to

Y := sup
n≥1

(Sn +ζn)

the law of which then constitutes the unique solution to (4.53). However, P(Y = ∞)
may be positive. In order to rule out this possibility, it is sufficient to additionally
assume E log+ ζ < ∞ [+ Problem 4.45(c)].

HELLAND & NILSEN [67] have studied a random recursive equation leading to
a special case of (4.53), namely

Yn = (Yn−1−Dn)∨Un =
(
Yn−1∨ (Un +Dn)

)
−Dn, n≥ 1,
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for independent sequences (Dn)n≥1 and (Un)n≥1 of iid random variables which are
also independent of Y0. The model had been suggested earlier by GADE [59] (with
constant Dn) and HELLAND [66] in an attempt to describe the deep water exchanges
in a sill fjord, i.e., an inlet containing a relatively deep basin with a shallower sill at
the mouth. The water exchanges are described by the following simple mechanism:
If, in year n, Un denotes the density of coastal water adjacent to the fjord and Yn
the density of resident water in the basin, then fresh water running into the fjord
causes the resident water density to decrease by an amount Dn from year n− 1 to
n. Nothing happens if this water is still heavier than the coastal water, but resident
water is completely replaced with water of density Un otherwise [+ [59] and [67]
for further information]. Obviously, the distributional limit of Yn, if it exists, satisfies
(4.53) with ζ :=U +D and ξ :=−D, where as usual (D,U) denotes a generic copy
of the (Dn,Un) independent of Y .

4.4.4 The AR(1)-model with ARCH(1) errors

We return to the nonlinear time series model first introduced in Section 1.6 and
briefly discussed further in Example 3.9, namely the AR(1)-model with ARCH(1)
errors

Xn = αXn−1 +(β +λX2
n−1)

1/2
εn, n≥ 1, (4.55)

where ε,ε1,ε2, ..., called innovations, are iid symmetric random variables indepen-
dent of X0 and (α,β ,λ ) ∈ R×R2

>. This is an IFS of iid Lipschitz maps of generic
form Ψ(x) := αx+(β +λx2)1/2ε . As pointed out in 3.9, Ψ has Lipschitz constant
L(Ψ) = |α|+λ 1/2|ε|. The following result is therefore immediate when using The-
orem 3.24.

Proposition 4.28. The IFS (Xn)n≥0 stated above is mean contractive and sat-
isfies the jump-size condition (3.17) if E log(|α|+λ 1/2|ε|)< 0. In this case it
possesses a unique stationary distribution, which is symmetric and the unique
solution to the SFPE

X d
= αX +(β +λX2)1/2

ε, (4.56)

where X ,ε are independent.

Proof. We only mention that, if (4.56) holds, then

−X d
= α(−X)+(β +λX2)1/2(−ε)

d
= α(−X)+(β +λ (−X)2)1/2

ε,

the second equality by the symmetry of ε . Hence the law of −X also solves (4.56)
implying L (X) = L (−X) because this SFPE has only one solution. ut
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Remark 4.29. [+ also [22, Remark 2]] Let us point out that, if Xn is given by (4.55),
then X?

n := (−1)nXn satisfies the same type of random recursive equation, viz.

X?
n = −αX?

n−1 +(β +λX?2
n−1)

1/2
ε
?
n

with ε?n := (−1)nεn for n ≥ 1. But the ε?n are again independent copies of ε1, for
ε1 is symmetric. In terms of distributions, the IFS (Xn)n≥0 and (X?

n )n≥0 thus differ
merely by a sign change for the parameter α , and under the assumptions of the
previous result we further have that X?

n converges in distribution to the same limit
X . It is therefore no loss of generality to assume α > 0.

The symmetry of the law of X , giving

P(X > t) = P(X <−t) =
1
2
P(|X |> t) =

1
2
P(X2 > t2)

for all t ∈R≥, allows us to subsequently focus on Y = X2, which satisfies the distri-
butional equation

Y d
= (α2 +λε

2)Y +2αεX(β +λY )1/2 +βε
2.

This is not a SFPE as X is not a function of Y . But when observing that εX d
= η |X |,

where η is a copy of ε independent of |X |=Y 1/2 and satisfying η2 = ε2, we are led
to

Y d
= (α +λ

1/2
η)2 Y +2αηY 1/2

(
(β +λY )1/2− (λY )1/2

)
+βη

2

= (α +λ
1/2

η)2 Y +
2αβηY 1/2

(β +λY )1/2 +(λY )1/2 +βη
2 =: Φ(Y ). (4.57)

with Y and η being independent. Observe that

Φ(y) := My− c|η |+βη
2 ≤ Φ(y) ≤ My+ c|η |+βη

2 =: Φ(y) (4.58)

for all y ∈R≥, where M := (α +λ 1/2η)2 and c := αβλ−1/2. As a consequence, we
obtain the following lemma which will be useful to prove our main result, Theorem
4.31 below.

Lemma 4.30. Assume E logM < 0 and let (Φn,Φn,Φn)n≥1 be a sequence of
iid copies of (Φ ,Φ ,Φ), defined on the same probability space as Y . Then the
following assertions hold true:

(a) Φ1:n ≤Φ1:n ≤Φ1:n for all n≥ 1.
(b) Φ1:n(Y )→ Y∗ and Φ1:n(Y )→ Y ∗ a.s. for random variables Y∗ ≤ Y ∗

satisfying
Y∗

d
= Φ(Y∗) and Y ∗ d

= Φ(Y ∗). (4.59)
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(c) Y∗ ≤st Y ≤st Y ∗, i.e.

P(Y∗ > t) ≤ P(Y > t) ≤ P(Y ∗ > t)

for all t ∈ R.

Proof. Using (4.58), i.e. Φn ≤ Φn ≤ Φn for all n ∈ N, and the fact that the Φn,Φn
are all a.s. nondecreasing, part (a) follows by induction over n: Just note for the
inductive step that, assuming the assertion be true for n−1, we find

Φ1:n(y) = Φ1:n−1(Φn(y)) ≤ Φ1:n−1(Φn(y)) ≤ Φ1:n−1(Φn(y)) = Φ1:n(y),

Φ1:n(y) = Φ1:n−1(Φn(y)) ≥ Φ1:n−1(Φn(y)) ≥ Φ1:n−1(Φn(y)) = Φ1:n(y)

for all y ∈ R, where in both lines the inductive hypotheses is needed for the second
inequality.

Since E logM < 0 implies E log+ |η | < ∞, we see that the IFS generated by the
sequences (Φn)n≥1 and (Φn)n≥1 are mean contractive and satisfying (3.17). There-
fore, their backward iterations are a.s. convergent under any initial condition to lim-
iting variables solving the SFPE’s stated in (4.59). This proves (b). Finally, as Y
satisfies the SFPE (4.57), we infer

Φ1:n(Y )
d
= Y

and thus Φ1:n(Y )≤st Y ≤st Φ1:n(Y ) for all n≥ 1. Taking the limit n→ ∞ yields the
assertion. ut

The quintessential outcome of the previous lemma is that Y can be sandwiched
in the sense of stochastic majorization (≤st) by two perpetuities, Y∗ and Y ∗. The
following result is now derived very easily with the help of the implicit renewal
theorem.

Theorem 4.31. Suppose that M = (α +λ 1/2η)2 satisfies (IRT-1)-(IRT-3) and
let Y be a nonnegative solution to the SFPE (4.57). Then the law of Y satisfies
(4.5) with

C+ =
E
(
Φ(Y )ϑ − (MY )ϑ

)

ϑ µϑ

(4.60)

which is positive if ϑ ≥ 1.

Remark 4.32. In all previous applications, the random variable M that appeared in
the respective tail result happened to be also the Lipschitz constant of the generic
Lipschitz function Ψ in the SFPE under consideration, i.e. M = L(Ψ). In the present
situation, however, this is no longer true. We have L(Ψ) = |α|+ λ 1/2|η | which,
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after squaring, would suggest M′ = (|α|+ λ 1/2|η |)2 in the above theorem. But
M′ > M = (α + λ 1/2η)2 a.s. even if α is positive. What this essentially tells us
is that mean contraction with respect to global Lipschitz constants, albeit consti-
tuting a sufficient condition for the distributional convergence of a given IFS of
iid Lipschitz maps to a unique limit law, fails to be necessary in general. For the
AR(1)-model with ARCH(1) errors, BORKOVEC & KLÜPPELBERG [22, Theorem
1] show that E logM < 0 in combination with some additional conditions on L (η)
(beyond symmetry) already ensures convergence to a unique symmetric stationary
distribution. Earlier results in this direction under the second moment condition
α2 +λ Eη2 = EM2 < 1 were obtained by GUÉGAN & DIEBOLT [63] and MAER-
CKER [83].

Proof. Note that (IRT-1) for (α +λ 1/2η)2 ensures E|η |2ϑ < ∞. Under the assump-
tions of the theorem und with the notation of the previous lemma, the IFS gener-
ated by (Φn)n≥1 and (Φn)n≥1 are strongly contractive of order ϑ and satisfy the
sharpened jump-size condition (3.20) for p = ϑ . Hence, the perpetuities Y∗ and
Y ∗, have moments of all orders p ∈ (0,ϑ) [+ Prop. 4.20]. Using Lemma 4.30(c),
E|Y |p ≤ E|Y∗|p +E|Y ∗|p < ∞ for all p ∈ (0,ϑ). Now it follows in a meanwhile
routine manner that

E
∣∣∣Φ(Y )ϑ − (MY )ϑ

∣∣∣ ≤ E
∣∣c|η |+βη

2∣∣ϑ < ∞

if ϑ ≤ 1, and [use again (4.42) and put cϑ := ϑ2ϑ−1]

E
∣∣∣Φ(Y )ϑ − (MY )ϑ

∣∣∣ ≤ E
∣∣∣Φ(Y )ϑ − (MY )ϑ

∣∣∣

≤ E
∣∣c|η |+βη

2∣∣ϑ

+ cϑ

(
EY ϑ−1E

∣∣c|η |+βη
2∣∣+EY E

∣∣c|η |+βη
2∣∣ϑ−1

)
< ∞

if ϑ > 1. Hence, by Corollary 4.2, the right tails of Y satisfy (4.5) with C+ as stated.
Left with the proof of C+ > 0 if ϑ ≥ 1, a Taylor expansion of Φ(Y )ϑ about MY

yields

Φ(Y )ϑ = (MY )ϑ +ϑ(MY )ϑ−1h(Y,η)+ϑ(ϑ −1)Zϑ−2h(Y,η)2

≥ (MY )ϑ +ϑ(MY )ϑ−1h(Y,η),

where

h(Y,η) :=
2αβηY 1/2

(β +λY )1/2 +(λY )1/2 +βη
2

and Z is an intermediate (random) point between MY and Φ(Y ) =MY +h(Y,η) and
thus ≥ 0. As a consequence,

E
(

Φ(Y )ϑ − (MY )ϑ

)
≥ ϑ E(MY )ϑ−1h(Y,η) = ϑβ Eη

2 > 0,

having utilized Eη = 0 and the independence of Y and η . ut
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Problems

Problem 4.33. Prove the following converse of Proposition 4.20: If EY p < ∞ for
some p ≥ 1 and P(|Q| > 0) > 0, then E|M|p < 1 and E|Q|p < ∞. [Hint: Use that
∑n≥1 |Πn−1Qn|p ≤ Y p.]

Problem 4.34. Complete the proof of Theorem 4.19.

Problem 4.35. Given the assumptions of Theorem 4.19, suppose additionally that
ϑ > 1 and E|Q|κ < ∞ for some κ ∈ [1,ϑ). Prove that

EXn =
n

∑
k=0

(
n
k

)
E
(
MkQn−k)EXk (4.61)

for all integers n≤ κ . [This was first shown by VERVAAT [116].]

Problem 4.36. Given the assumptions of Theorem 4.19 and M ≥ 0 a.s., prove that,
if 0< ϑ ≤ 1,

C++C− ≤
1

ϑ µϑ

E|Q|ϑ ,

while, if ϑ > 1,

C++C− ≤
2ϑ−1

ϑ µϑ

(
E|Q|ϑ +E

(
Mϑ−1|Q|

)
E|X |ϑ−1

)

≤ 2ϑ−1

ϑ µϑ

(
E|Q|ϑ +

E
(
Mϑ−1|Q|

)
E|Q|ϑ−1

1−‖M‖ϑ−1)ϑ−1

)
.

If P(M < 0)> 0 and thus C+ =C−, the same bounds with an additional factor 1/2
and M replaced by |M| hold for C+ and C−.

Problem 4.37. Given the assumptions of Theorem 4.19, M,Q ≥ 0 a.s. and ϑ ∈ N,
prove that C− = 0 and

C+ =
1

ϑ µϑ

ϑ−1

∑
k=0

(
ϑ

k

)
E
(
MkQϑ−k)EXk (4.62)

with EXk being determined by (4.61) for k = 1, ...,ϑ −1. Show further that

C+ =





EQ
EM logM

, if ϑ = 1,

1
µϑ

(
1
2
EQ2 +

EQEMQ
1−EM

)
, if ϑ = 2.

(4.63)

Problem 4.38. Given the assumptions of Theorem 4.19 and ϑ ∈ 2N, prove the fol-
lowing assertions:

(a) If M ≥ 0 a.s., then (4.62) holds for C++C− instead of C+.
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(b) If P(M < 0)> 0, then

C+ = C− =
1

2ϑ µϑ

ϑ−1

∑
k=0

(
ϑ

k

)
E
(
MkQϑ−k)EXk

with EXk being determined by (4.61) for k = 1, ...,ϑ −1.
(c) If ϑ = 2, then the respective formula in (4.63) holds for C++C− instead of

C+.

Problem 4.39. Prove that (M,Q) defined in Proposition 4.23 satisfies the conditions
of the implicit renewal theorem 4.1 with ϑ = b.

Problem 4.40. Let (Xn)n≥0 be an IFS generated by iid Lipschitz maps of generic
form Ψ(x) := Mx∨Q and suppose that E log |M|< 0 and E log+ |Q|<∞. Prove that
(Xn)n≥0 has a unique stationary distribution π which forms the unique solution to
the SFPE (4.44) and is the distribution of supn≥1 Πn−1Qn (in the usual notation).

Problem 4.41. As a variation of (4.44), consider the SFPE

X d
= MX gQ, (4.64)

where as usual X and (M,Q) are independent and

xg y :=

{
x, if |x|> |y|,
y, otherwise.

Prove the following counterpart of Theorem 4.24:
If M satisfies (IRT-1)-(IRT-3) and E|Q|ϑ < ∞, then (4.64) has a unique solution X
(in terms of its law) and (4.5), (4.6) hold true. If M ≥ 0 a.s., then

C± =
E
(
((MX gQ)±)ϑ − ((MX)±)ϑ

)

ϑ µϑ

,

and if P(M < 0)> 0, then

C+ =C− =
E
(
(|Q|ϑ −|MX |ϑ )+

)

ϑ µϑ

.

Moreover, C++C− is positive iff P(Q 6= 0)> 0.

Problem 4.42. (Letac’s example E in [77]) Consider the IFS, defined by the ran-
dom recursive equation

Xn = Mn(Nn∨Xn−1)+Qn, n≥ 1,

for iid random triples (Mn,Nn,Qn), n≥ 1, in R≥×R2 with generic copy (M,N,Q).
Show that
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(a) (Xn)n≥0 is mean contractive if E logM < 0 and satisfies the jump-size condi-
tion (3.17) if, furthermore, E log+ N+ < ∞ and E log+ |Q|< ∞.

(b) If the previous conditions hold, the a.s. limit of the associated backward iter-
ations X̂n is given by

X := max

{
∑
n≥1

Πn−1Qn,sup
n≥1

(
n

∑
k=1

Πk−1Qk +ΠnNn

)}
,

where Πn has the usual meaning. [Hint: Use induction over n to verify that

Ψn:1(t) = max

{
n

∑
k=1

Πk−1Qk +Πnt, max
1≤m≥n

(
m

∑
k=1

Πk−1Qk +ΠmNm

)}

for any ∈ R, where Ψn(t) := Mn(Nn∨ t)+Qn for n ∈ N.]

Problem 4.43. Complete the proof of Theorem 4.25 by showing along similar lines
as in the proof of Theorem 4.19 that, for the case ϑ > 1,

E
(
((M(N∨X)+Q)+)ϑ − ((M(N∨X)+)ϑ

)−
< ∞

as well as
E
∣∣(M(N∨X)+)ϑ − ((MX)+)ϑ

∣∣< ∞.

Problem 4.44. Prove that, if M,Q are real-valued random variables such that M ≥
0 a.s. and P(Q = 0) ≥ P(M = 0), then there exist random variables M′,N′ (on a
suitable probability space) such that (M′,M′N′) forms a copy of (M,Q).

Problem 4.45. Consider an IFS (Yn)n≥0 of iid Lipschitz maps with generic copy
Ψ(x) = ζ ∨ x+ξ and let (Sn)n≥0 denote the SRW with increments ξ1,ξ2, ... (in the
usual notation). Prove the following assertions:

(a) The backward iterations Ŷn, when starting at Ŷ0 = x, are given by (4.54).
(b) If Eξ < 0, then Ŷn→ Y a.s., where Y = supn≥1(Sn +ζn).
(c) If, furthermore, Eζ+ < ∞, then Y is a.s. finite.





Chapter 5
The smoothing transform: a stochastic linear
recursion with branching
Part I: Contraction properties

Except for the introductory Chapter 1, we have dealt so far only with random recur-
sive equations with no branching, viz.

Xn =Ψn(Xn−1) (5.1)

for n≥ 1 and iid random functions Ψ1,Ψ2, ... independent of X0. The branching case
to be considered next occurs if the right-hand side of (5.1) involves multiple copies
of Xn−1, i.e.

Xn =Ψn(Xn−1,1Xn−1,2, ...), (5.2)

for n≥ 1, where (Xn−1,k)k≥1 is a sequence of iid copies of Xn−1 and further indepen-
dent of Ψn. The present chapter will focus on the situation when the Ψn are random
linear functions with generic copy

Ψ(x1,x2, ...) = ∑
k≥1

Tkxk +C

for a sequence of real-valued random variables (C,T1,T2, ...). This leads to the so-
called smoothing transform(ation)

S : F 7→ L

(
∑
k≥1

TkXk +C

)
(5.3)

which maps a distribution F ∈P(R) to the law of ∑k≥1 TkXk +C, where X1,X2, ...
are independent of (C,T1,T2, ...) with common distribution F . On the event where

N := ∑
k≥1

1{Tk 6=0}

is infinite, we understand ∑k≥1 TkXk as the limit of the finite partial sums ∑
n
k=1 TkXk

in the sense of convergence in probability. Then it can be shown [+ Problem 5.42]
that, if

P(N < ∞) = 1, (A0)

145
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then S (F) is indeed defined for all F ∈P(R), but exists only for F from a subset
of P(R) (always containing δ0) otherwise. Subsets of interest here are typically
characterized by the existence of moments of certain order, viz.

P p(R) :=
{

F ∈P(R) :
∫
|x|p F(dx)< ∞

}
, (5.4)

for any p> 0 or, more specifically, the set of all centered and standardized distribu-
tions on R, that is

P2
0,1(R) :=

{
F ∈P(R) :

∫
x F(dx) = 0 and

∫
x2 F(dx) = 1

}
. (5.5)

Section 5.4 will provide conditions ensuring that S is a self-map on P p(R), and
these do not necessarily require (A0). A standing assumption throughout this chapter
is that

P(N ≥ 2)> 0 (A1)

because N ≤ 1 a.s. obviously leads back to RDE’s studied at length in the previous
chapter. Our primary goals are,

1. for subsets of P(R) as just mentioned, to provide conditions under which S is
contractive with respect to a suitable metric.

2. in P(R) or again subsets thereof, to study existence and uniqueness of fixed
points of S , characterized by the SFPE

X d
= ∑

k≥1
TkXk +C (5.6)

when stated in terms of random variables, where as usual X1,X2, ... are iid copies
of X and independent of (C,T1,T2, ...).

By going back to Chapter 1, the reader can find a number of examples where
distributions solving an SFPE of type (5.6) appear:

• + Section 1.1, notably (1.6) giving a characterization of limit laws of suitably
normalized sums of iid random variables.

• + Section 1.3, notably (1.14) characterizing the law of the total size of a Galton-
Watson population.

• + Section 1.4 on the Quicksort algorithm, notably (1.26) characterizing its
limit law after suitable normalization.

A key tool in the analysis of S is the study of its iterations S n when described
in terms of random variables. This leads to the so-called weighted branching model
that will be formally introduced in the next section.
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5.1 Setting up the stage: the weighted branching model

In order to motivate the subsequent definitions, consider the homogeneous smooth-
ing transform, defined by (5.3) with C = 0. Then it is easily seen that

S 2(F) = L

(
∑
i≥1

∑
j≥1

TiTj(i)Xij

)

and S 3(F) = L

(
∑
i≥1

∑
j≥1

∑
k≥1

TiTj(i)Tk(ij)Xijk

)

where (Tn)n≥1 and the (Tn(i))n≥1, (Tn(ij))n≥1 for i, j ≥ 1 are iid and independent
of the iid Xij,Xijk with common distribution F . This reveals the branching nature
behind the recursion defined by S which will now be formalized.

Consider the infinite Ulam-Harris tree

T :=
⋃

n≥0

Nn, N0 := {∅},

of finite integer words having the empty word ∅ as its root. As already explained
in Section 1.7, we write v1...vn as shorthand for (v1, ...,vn), |v| for the length of v,
and uv for the concatenation of u and v. If v = v1...vn, put further v|0 := ∅ and
v|k := v1...vk for 1≤ k ≤ n. The unique shortest path (geodesic) from the root ∅ to
v, or the ancestral line of v when using a genealogical interpretation, is then given
by

v|0 =∅ → v|1 → ...→ v|n−1 → v|n = v.

The tree T is now turned into a weighted (branching) tree by attaching a random
weight to each of its edges. Let Ti(v) denote the weight attached to the edge (v,vi)
and assume that the T (v) := (Ti(v))i≥1 for v ∈ T form a family of iid copies of
T = (Ti)i≥1. The number of nonzero weights Ti(v) is denoted N(v), thus

N(v) := ∑
i≥1

1{Ti(v)6=0}
d
= N.

Put further L(∅) := 1 and then recursively

L(vi) := L(v)Ti(v) (5.7)

for any v ∈ T and i ∈ N, which is equivalent to

L(v) = Tv1(∅)Tv2(v|1) · ... ·Tvn(v|n−1) (5.8)

for any v = v1...vn ∈ T. Hence, L(v) equals the total weight of the minimal path
from ∅ to v obtained upon multiplication of the edge weights along this path.
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With the help of a weighted branching model as just introduced, we are now able
to describe the iterations of the homogeneous smoothing transform in a convenient
way.

Lemma 5.1. Given the previous notation and S defined by (5.3) with C = 0,
let X := {X(v) : v ∈ T} be a family of iid random variables independent of
T := (T (v))v∈T with common distribution F. Define

Yn := ∑
|v|=n

L(v)X(v), n≥ 0, (5.9)

called weighted branching process (WBP) associated with

T⊗X := (T (v),X(v))v∈T.

Then S n(F) = L (Yn) holds true for each n≥ 0.

Proof. The easy proof is left as an exercise [+ Problem 5.6]. ut

In the special case when X(v) = 1 for v ∈ T, the sequence Y defined by (5.9) is
simply called weighted branching process associated with T.

It is not difficult to extend the previous weighted branching model so as to de-
scribe the iterations of S in the nonhomogeneous case when P(C = 0)< 1. To this
end, let

C⊗T := (C(v),T (v))v∈T

denote a family of iid copies of (C,T ), T := (Ti)i≥1. The following lemma provides
the extension of the previous one by allowing a general C in the definition of S .

Lemma 5.2. Given the previous notation and S defined by (5.3), let X :=
{X(v) : v ∈ T} be a family of iid random variables independent of C⊗T with
common distribution F. Define Y (∅) = X(∅) and

Yn :=
n−1

∑
k=0

∑
|v|=k

L(v)C(v)+ ∑
|v|=n

L(v)X(v), n≥ 1, (5.10)

called weighted branching process associated with

C⊗T⊗X := (C(v),T (v),X(v))v∈T.

Then S n(F) = L (Yn) holds true for each n≥ 0.

Proof. The proof is again left as an exercise [+ Problem 5.6]. ut
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We proceed to a description of the recursive structure of WBPs after the fol-
lowing useful definition of the shift operators [·]v, v ∈ T. Given any function Ψ of
C⊗T⊗X and any v ∈ T, put

[Ψ(C⊗T⊗X)]v := Ψ ((C(vw),T (vw),X(vw))w∈T)) , (5.11)

which particularly implies

[Ψ(C⊗T⊗X)]v = Ψ ([C⊗T⊗X]v) . (5.12)

If we think of C⊗T⊗X as the family of random variables associated with T, then
[C⊗T⊗X]v equals its subfamily and copy associated with the subtree T(v) rooted
at v which is isomorphic to T. Obviously, L := (L(v))v∈T is a function of T, and one
can easily verify that [L]v = ([L(w)]v)w∈T with

[L(w)]v := Tw1(v)Tw2(vw1) · ... ·Twn(vw1...wn−1) (5.13)

if w = w1...wn. Hence, [L(w)]v gives the total weight of the minimal path from v to
vw. Notice that, for all v,w ∈ T,

L(vw) = L(v) · [L(w)]v (5.14)

and therefore

[L(w)]v =
L(vw)
L(v)

(5.15)

for all w ∈ T if L(v) 6= 0.

Returning to the WBP Y = (Yn)n≥0, clearly a function of C⊗T⊗X, put Y(v) =
(Yn(v))n≥0 := [Y]v for v ∈ T, hence Y0(v) := X(v) and

Yn(v) :=
n−1

∑
k=0

∑
|w|=k

[L(w)]vC(vw)+ ∑
|w|=n

[L(w)]v X(vw), n≥ 1.

Some straightforward facts about the Y(v) are collected in the following lemma.

Lemma 5.3.

(a) For each v ∈ T, Y(v) is the WBP associated with [C⊗T⊗X]v and a
copy of Y = Y(∅).

(b) For each n ≥ 1, the processes Y(v), v ∈ T with |v| = n, are mutually
independent and also independent of (C(u),T (u),X(u))|u|≤n−1.

(c) For each v ∈ T and n≥ 1, the backward equation

Yn(v) = C(v)+∑
i≥1

Ti(v)Yn−1(vi) (5.16)
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holds true.

Proof. Since (a) and (b) are obvious, we confine ourselves to the proof of (c).
W.l.o.g. choosing v =∅, it follows from (5.10) and (5.14) that

Yn = C(∅)+∑
i≥1

(
n−2

∑
k=0

∑
|w|=k

L(iw)C(iw)+ ∑
|w|=n−1

L(iw)X(iw)

)

= C(∅)+∑
i≥1

Ti(∅)

(
C(i)+

n−2

∑
k=1

∑
|w|=k

[L(w)]iC(iw)+ ∑
|w|=n−1

[L(w)]i X(iw)

)

= C(∅)+∑
i≥1

Ti(∅)Yn−1(i)

for each n≥ 1 where, as usual, empty sums are defined as zero. ut

Let us return to the homogeneous case when C = 0 and further assume X(v) = 1
for all v ∈ T. Then the following useful martingale result is obtained. We put

Fn := σ (T (v) : |v| ≤ n−1) (5.17)

for n≥ 1 and let F0 be the trivial σ -field. Observe that

Fn ⊃ σ(L(v) : |v| ≤ n)

for each n≥ 0.

Lemma 5.4. If C = 0 and X(v) = 1 for v ∈T, then the WBP Y associated with
T constitutes a (mean one) martingale with respect to (Fn)n≥0 if

E

(
∑
i≥1
|Ti|
)
< ∞ and E

(
∑
i≥1

Ti

)
= 1.

Proof. Under the given assumptions, Yn = ∑|v|=n L(v) for n≥ 0,

E|Y1| ≤ E

(
∑
i≥1
|Ti|
)
< ∞ and E(Y1|F0) = EY1 = 1 = Y0.

For general n, we use an inductive argument and assume that E(Yk|Fk−1) = Yk−1
a.s. and E(∑|v|=k |L(v)|) < ∞ for k = 1, ...,n− 1 (inductive hypothesis). Then, by
further using the independence of Fn−1 and (T (v))|v|=n−1, we infer
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E|Yn| = E

∣∣∣∣∣ ∑
|v|=n−1

L(v)∑
i≥1

Ti(v)

∣∣∣∣∣ ≤ E

(
∑

|v|=n−1
|L(v)|

)
E

∣∣∣∣∣∑i≥1
Ti

∣∣∣∣∣ < ∞

as well as

E(Yn|Fn−1) = E

(
∑

|v|=n−1
L(v)∑

i≥1
Ti(v)

∣∣∣∣Fn−1

)

= ∑
|v|=n−1

L(v)E

(
∑
i≥1

Ti(v)

∣∣∣∣Fn−1

)

= ∑
|v|=n−1

L(v) a.s.

which proves the assertion because the last sum equals Yn−1. ut
The reader is asked in Problem 5.8 to show by providing examples that Lemma

5.4 may or may not hold if E(∑i≥1 |Ti|) < ∞ is replaced with the weaker condition
E|∑i≥1 Ti|<∞. If T is nonnegative, i.e. Ti≥ 0 for all i≥ 1, then these two conditions
are evidently identical, and in combination with E(∑i≥1 Ti) = 1 actually equivalent
to the martingale property of Y as one can easily check.

If all T (v) are nonnegative, which is the situation encountered in most applica-
tions, the following result is easily derived from the previous one.

Lemma 5.5. In the situation of the Lemma 5.4, suppose further that Ti ≥ 0 for
all i≥ 1 and

m(θ) := E

(
∑
i≥1

T θ
i

)
< ∞,

for some θ ≥ 0, where T 0
i := 1{Ti>0}. Then

Wθ ,n := ∑
|v|=n

L(v)θ

m(θ)n , n≥ 0

is the WBP associated with (T (v)θ/m(θ))v∈T and constitutes a martingale
with respect to (Fn)n≥0.

Proof. Problem 5.10. ut
We leave it to the reader to verify that

Y0,n := ∑
|v|=n

L(v)0 = ∑
|v|=n

1{L(v)>0}, n≥ 0

forms a simple GWP with offspring distribution (pn)n≥0, where pn := P(N = n),
and offspring mean EN =m(0) [+ Problem 5.11].
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Problems

Problem 5.6. Prove Lemmata 5.1 and 5.2.

Problem 5.7. Prove the following generalization of the backward equation (5.16):

Yn(v) = C(v)+
k−1

∑
j=1

∑
|w|= j

[L(w)]vC(vw)+ ∑
|w|=k

[L(w)]vYn−k(vw) (5.18)

for all v ∈ T and n≥ k ≥ 1.

Problem 5.8. Consider the situation of Lemma 5.4 and give two examples of weight
sequences T = (Ti)i≥1 satisfying

E

(
∑
i≥1
|Ti|
)

= ∞, E

∣∣∣∣∣∑i≥1
Ti

∣∣∣∣∣< ∞ and E

(
∑
i≥1

Ti

)
= 1,

such that the WBP Y associated with T is a martingale with respect to (Fn)n≥0 in
the first case, while failing to be integrable (i.e. E|Yn| = ∞ for some n ≥ 1) in the
second one.

Problem 5.9. Suppose that T1,T2, ... are nonnegative and consider the function

m(θ) := E

(
∑
i≥1

T θ
i

)

on its canonical domain Dm := {θ ≥ 0 : m(θ)<∞}. Prove the following assertions:

(a) If Dm 6= /0, then Dm is an interval (possibly containing only one element).
(b) The function m is convex on Dm and further infinitely often differentiable on

the interior of Dm if the latter is nonempty. In this case, the kth derivative m(k)

is given by

m(k)(θ) = E

(
∑
i≥1

T θ
i logk Ti

)

for any k ∈ N with the usual convention that xθ logk x := 0 if x = 0.

Problem 5.10. Prove Lemma 5.5.

Problem 5.11. Suppose that T has nonnegative entries. Show that the WBP (Y0,n)n≥0
associated with T0 := (T (v)0)v∈T is a simple GWP with offspring distribution given
by the law of N = ∑i≥1 1{Ti>0}.
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5.2 A digression: weighted branching and random fractals

Fractal geometry provides another area where the weighted branching model intro-
duced before enters in a natural way when dealing with so-called random recursive
constructions, a notion coined by MAULDIN & WILLIAMS in [89].

A Cantor set is usually defined as a compact and perfect (= closed with no iso-
lated points) subset of Rd having topological dimension zero. The most prominent
example is the Cantor ternary set, which is constructed by initially removing the
open middle third from the unit interval [0,1] and by then indefinitely doing the
same with the remaining subintervals, the latter being [0,1/3] and [2/3,1] after the
first round, [0,1/9], [2/9,1/3], [2/3,7/9] and [8/9,1] after the second round, and
so on. Here is a generalization: Fix positive numbers a,b, 0 < a < b < 1, and re-
move (a,b) from [0,1] in the first step. Apply the same procedure to the remaining
subintervals [0,a] and [b,1] in Step 2, then to [0,a2], [ab,a], [b,b+ a(1− b)] and
[b(2−b),1] in Step 3, and so on. The thus constructed Cantor set is defined by

Ca,b =
⋂

n≥0

2n⋃

k=1

In,k, (5.19)

where I0,1 := [0,1] and In,1, ..., In,2n for n ≥ 1 are the remaining subintervals after n
steps.

A random recursive construction of a subset of Rd as defined in [89] generalizes
this procedure even further. Let | · | denote Euclidean metric on Rd and, for any
A⊂ Rd ,

diam(A) := sup{|x− y| : x,y ∈ A}, int(A) and cl(A)

the diameter, interior and closure of A, respectively. Two sets A,B are called
nonoverlapping if they have no common interior points (int(A)∩ int(B) = /0) and
geometrically similar if A may be obtained from B via translation, rotation, reflec-
tion and dilation. A sequence (An)n≥1 of pairwise nonoverlapping subsets of Rd

such that A =
⋃

n≥1 An is called a quasi-partition of A hereafter.
Now fix any compact /0 6= J ⊂Rd with the additional property that cl(int(J)) = J,

which guarantees λλ d(J)> 0 as well as λλ d(J) = λλ d(int(J)). Defined on a probabil-
ity space (Ω ,A,P), let J = {Jv : v ∈ T} be a family of random subsets of J with the
following properties:

(RC-1) J∅ = J a.s., and Jv(ω), if nonempty, is geometrically similar to J for any
v ∈ T and ω ∈Ω .

(RC-2) Defining Jv0 := Jv\
⋃

i≥1 Jvi, we have a.s. that λλ d(int(Jv0))> 0 and (Jvi)i≥0
forms a quasi-partition of Jv\Jv0 for each v ∈ T.

(RC-3) The random sequences T (v) = (Ti(v))i≥1, v ∈ T, defined by

Ti(v) :=
diam(Jvi)
diam(Jv)

1{Jv 6= /0} (5.20)
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are iid with P(N(v)≥ 1)> 0.

The d-dimensional random Cantor set

C :=
⋂

n≥0

Cn,

where C0 := J and
Cn :=

⋃

|v|=n−1

⋃

i≥1

Jvi =
⋃

|v|=n

Jv

for n≥ 1, is then obtained by the following recursive construction: In the first step,
the set J, quasi-partitioned by (Ji)i≥0, is reduced by the random set J0. In the next
step, each of the remaining Ji, quasi-partitioned by (Jij) j≥0, is reduced by the set Ji0,
and so on. The reader is asked in Problem 5.13(a) to verify that C is nonempty with
positive probability if, in addition to (RC-1)-(RC-3),

EN(v)> 1 (RC-4)

holds true.
As an example, consider the unit square [0,1]2 divided into four congruent sub-

squares of which one is removed at random. Then the same procedure is applied to
the remaining three subsquares, and so on. The first three steps are illustrated in Fig.
5.1 below. As a second example consider the set Ca,b introduced above, but with
randomly chosen a,b.

3. Beispiele 13

für die verbliebenen drei Teilquadrate, usw. Bild 3.2 zeigt mögliche Realisierungen von C1, C2
und C3. Als weiteres Beispiel betrachte die Cantor-Menge Ca,b in (3.9), wenn a, b zufällig ge-

wählt werden.

Bild 3.2. Konstruktion einer zufälligen Cantor-Menge durch Teilung des Einheitsquadrats
in vier Teilquadrate, von denen eines (weiß) per Zufallsauswahl entfernt wird.

Eine einfache Überlegung zeigt (☞ Übung 3.4), daß

Ti(v)d =
λλd(Jvi)

λλd(Jv)
=

λλd(int(Jvi))

λλd(int(Jv))
, falls Jv �= ∅, (3.11)

und somit (beachte int(Jvi) ⊂ int(Jv) und int(Jvi) ∩ int(Jvj) = ∅ für alle v ∈ V und i, j ≥ 0

mit i �= j)
∑

i≥1

Ti(v)d =
∑

i≥1

λλd(int(Jvi))

λλd(int(Jv))
=

λλd(
∑

i≥1 int(Jvi))

λλd(int(Jv))

≤ 1− λλd(int(Jv0))

λλd(int(Jv))
< 1 P -f.s.

für alle v ∈ V gilt. Wir definieren nun weiter C(v)
def
= 0 und X(v)

def
= 1 für v ∈ V. Sei (Yα,n)n≥0

der GewVP zur Basisfamilie (C(v), T (v)α, X(v))v∈V und Uα(v)
def
=

∑
i≥1 Ti(v)α1{Ti(v)>0} für

α ≥ 0. Im Fall α = 1 schreiben wir wie bisher auch (Yn)n≥0 für (Y1,n)n≥0 und U(v) für U1,v.

Dann folgt vermöge (1.2) und (3.10)

L(v) = Tv1(∅)
n−1∏

i=1

Tvi+1(v|i) =
diam(Jv1)

diam(J)

n(v)−1∏

i=1

(
diam(Jv|i+1)

diam(Jv|i)

)
=

diam(Jv)

diam(J)
,

falls |v| = n und n(v)
def
= inf{1 ≤ k ≤ n : diam(Jv|i) = 0}, und daher

Yα,n =
∑

|v|=n

L(v)α =
1

diam(J)α

∑

|v|=n

diam(Jv)
α (3.12)

für alle n ≥ 1 und α ≥ 0. Im Fall α = d ergibt sich wie in (3.11) speziell

L(v)d =
diam(Jv)

d

diam(J)d
=

λλd(int(Jv))

λλd(int(J))
=

λλd(Jv)

λλd(J)
,

Fig. 5.1 Construction of a 2-dimensional random Cantor set: The removed squares are shown in
white.

A rather simple argument [+ Problem 5.13(c)] shows that

Ti(v)
d =

λλ d(Jvi)
λλ d(Jv)

=
λλ d(int(Jvi))
λλ d(int(Jv))

if Jv 6= /0, (5.21)

holds true and therefore

∑
i≥1

Ti(v)
d = ∑

i≥1

λλ d(int(Jvi))
λλ d(int(Jv))
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=
λλ d(∑i≥1 int(Jvi))

λλ d(int(Jv))

≤ 1− λλ d(int(Jv0))

λλ d(int(Jv))
< 1

for all v ∈T, where int(Jvi)⊂ int(Jv) and int(Jvi)∩ int(Jvj) = /0 for any i, j≥ 0, i 6= j
should be observed. In particular,

m(d)< 1, (5.22)

where

m(θ) := E

(
∑
i≥1

Ti(v)
θ

)
= ∑

i≥1
ETi(v)

θ

for θ ≥ 0 [recall that Ti(v)
0 := 1{Ti(v)>0} and thus m(0) = EN(v) holds true].

For v ∈ T and θ ≥ 0, we now further define X(v) := 1 and let (Yθ ,n)n≥0 denote
the WBP associated with Tθ = (T (v)θ )v∈T. In particular,

Yθ ,1 := ∑
i≥1

Ti(∅)θ .

It follows with the help of (5.8) and (5.20) that

L(v) = Tv1(∅)
n−1

∏
i=1

Tvi+1(v|i) =
diam(Jv1)

diam(J)

n(v)−1

∏
i=1

diam(Jv|i+1)

diam(Jv|i)
=

diam(Jv)
diam(J)

,

if |v|= n≥ 1 and n(v) := inf{k ≥ 1 : diam(Jv|k) = 0 or k = n}. Therefore,

Yθ ,n = ∑
|v|=n

L(v)θ = ∑
|v|=n

diam(Jv)θ

diam(J)θ
(5.23)

for all n≥ 1 and θ ≥ 0. For the case θ = d, we find as in (5.21) that

L(v)d =
diam(Jv)d

diam(J)d =
λλ d(int(Jv))
λλ d(int(J))

=
λλ d(Jv)
λλ d(J)

,

and thereby that

Yd,n = ∑
|v|=n

L(v)d = ∑
|v|=n

λλ d(Jv)
λλ d(J)

≥ λλ d(Cn)

λλ d(J)
(5.24)

for all n ≥ 1. By Lemma 5.5, (m(d)−nYd,n)n≥0 forms a nonnegative and hence a.s.
convergent martingale which in combination with (5.22) implies

lim
n→∞

EYd,n = lim
n→∞

m(d)nEYd,0 = 0
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and then also Yd,n→ 0 a.s. But (5.24) further gives limn→∞ Yd,n ≥ λλ d(C)/λλ d(J) and
finally leads to the conclusion that

λλ
d(C) = 0. (5.25)

Every random Cantor set is therefore a Lebesgue null set under the stated condi-
tions (RC-1)-(RC-4) and particularly contains no inner points. A far more difficult
and surprising result is the following theorem by MAULDIN & WILLIAMS [89, The-
orem 1.1] about the Hausdorff dimension of C [+ (5.28) and (5.29) below for its
definition]. For related work see also the articles by HUTCHINSON [71], FALCONER
[48], and GRAF [61].

Theorem 5.12. Let J = {Jv : v ∈T} be a family of random compact subsets of
Rd in a random recursive construction satisfying (RC-1)-(RC-4) and let C be
the associated random Cantor set having Hausdorff dimension dimH C. Then

α := inf{θ ≥ 0 : m(θ)≤ 1} ∈ (0,d] (5.26)

and
P(dimH C= α|C 6= /0) = 1. (5.27)

The θ -dimensional Hausdorff (outer) measure on Rd is defined by

H d
θ (A) := lim

ε↓0
inf

{
∑
n≥1

diam(An)
θ : (An)n≥1 ε-covering of A

}
(5.28)

for any A ⊂ Rd and constitutes a measure on B(Rd), where (An)n≥1 is called an
ε-covering of A if

diam(An)≤ ε for all n≥ 1 and A⊂
⋃

n≥1

An.

The Hausdorff dimension of A is the unique number dimH A ∈ [0,∞] characterized
by

H d
θ (A) =

{
∞, if θ < dimH A,
0, if θ > dimH A.

(5.29)

More detailed information may be found in Appendix B.

Proof (the easy half). The difficult part is to show that P(dimH C ≥ α|C 6= /0) = 1
and must wait until Section 5.7. Here we confine ourselves to the simpler converse
that may be stated as dimH C ≤ α a.s., and for which α < d can be assumed, for
otherwise there is nothing to verify.

First note that (5.22) and (RC-4) imply α ∈ (0,d]. We have m(θ) < 1 for any
θ ∈ (α,d] because m(θ) is obviously decreasing on Dm := {θ ≥ 0 : m(θ) < ∞}.
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As a consequence, Yθ ,n→ 0 a.s. for any θ ∈ (α,d] by a similar argument as given
before (5.25) for θ = d.

W.l.o.g. let diam(J) = 1. Use Yd,n→ 0 a.s. and 0≤ supv∈T L(v)≤ 1 to infer

lim
n→∞

L∗n = 0 a.s.

for L∗n := sup|v|=n L(v). Since diam(Jv) = L(v) for all v ∈ T with Jv 6= /0, we have
that (Jv)|v|=n forms a (random) L∗n-covering of C for each n≥ 1, which together with
L∗n→ 0 a.s. and Yθ ,n→ 0 a.s. for θ ∈ (α,d] finally implies

H d
θ (C) ≤ lim

n→∞
∑
|v|=n

diam(Jv)θ = lim
n→∞

Yθ ,n = 0 a.s.

and therefore dimH C≤ α a.s. as claimed. ut

Problems

Problem 5.13. Let J = {Jv : v ∈ T} be a family of random compact subsets of Rd

in a random recursive construction with associated random Cantor set C. Prove the
following assertions:

(a) If EN(v)> 1 then P(Cn 6= /0 f.a. n≥ 0)> 0 and thus (why?) P(C 6= /0)> 0.
(b) If N(v) = 1 a.s., then C is a.s. a singleton set.
(c) For any two measurable and geometrically similar A,B⊂Rd with λλ d(B)> 0

λλ d(A)
λλ d(B)

=
diam(A)d

diam(B)d

holds true and thus particularly (5.21).

Problem 5.14. Divide the unit square [0,1]2 into four congruent subsquares and
remove one of these at random with probability 1/4 each. Apply the same procedure
to the remaining three subsquares, and so on [+ Fig. 5.1].

(a) Give the distribution of the T (v).
(b) Use Theorem 5.12 to determine the Hausdorff dimension of the resulting

random Cantor set.
(c) How does the result in (b) change if the subsquare to be removed is picked in

accordance with an arbitrary distribution (p1, p2, p3, p4)?

5.3 The minimal Lp-metric

In the following, let P p(R) for p > 0 be the set of probability distributions on
R with finite pth absolute moment as defined in (5.4). Given a probability space
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(Ω ,A,P), let further Lp(P) = Lp(Ω ,A,P) denote the vector space of p times
integrable random variables on (Ω ,A,P). Then it is well-known that ‖X‖p :=
(E|X |p)1/p defines a complete (pseudo-)norm on Lp(P) if p ≥ 1, but fails to do
so if 0< p< 1 [+ Problem 5.27]. On the other hand, when setting ‖X‖p := E|X |p
in the latter case, so that generally

‖X‖p := (E|X |p)1∧(1/p) ,

it is not difficult to verify that

`p(X ,Y ) := ‖X−Y‖p (5.30)

provides us with a complete (pseudo-)metric1 on Lp(P) for each p > 0 [+ again
Problem 5.27].

Recall from Remark 4.4, that a pair (X ,Y ) of real-valued random variables de-
fined on (Ω ,A,P) is called (F,G)-coupling if L (X) = F and L (Y ) = G. In this
case we will use the shorthand notation (X ,Y )∼ (F,G) hereafter. Recall further that
the pseudo-inverse of a cdf F is defined as F−1(u) := inf{x ∈ R : F(x) ≥ u} for
u ∈ (0,1) and that F−1(U) has distribution F if L (U) = Unif(0,1).

Proposition 5.15. For each p> 0, the mapping `p : P p(R)×P p(R)→R≥,
defined by

`p(F,G) := inf
(X ,Y )∼(F,G)

‖X−Y‖p, (5.31)

is a metric on P p(R), called minimal Lp-metric (also Mallows metric in
[102]), and therefore possesses the following properties:

(1) `p(F,G) = 0 iff F = G.
(2) `p(F,G) = `p(G,F) for all F,G ∈P p(R).
(3) `p(F,H)≤ `p(F,G)+ `p(G,H) for all F,G,H ∈P p(R).

For p≥ 1, the infimum in (5.31) is attained, viz.

`p(F,G) = ‖F−1(U)−G−1(U)‖p

=

(∫ 1

0
|F−1(u)−G−1(u)|p du

)1/p (5.32)

for any Unif(0,1) random variable U.

Proof. That `p defines a metric follows easily from the corresponding properties of
‖ · ‖p [+ Problem 5.27]. So it suffices to show that the infimum is indeed attained
in the asserted manner for p ≥ 1, which will be accomplished by four subsequent
lemmata. ut
1 A pseudo-metric d has the same properties as a metric with one exception: d(x,y) = 0 does not
necessarily imply x = y.
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Lemma 5.16. Let (X ,Y ) be a (F,G)-coupling with cdf H on R2. Then

H(x,y)≤ F(x)∧G(y)

for all x,y ∈ R and equality holds if (X ,Y ) = (F−1(U),G−1(U)) for a
Unif(0,1) variable U.

Proof. The first assertion is trivial because

H(x,y) = P(X ≤ x,Y ≤ y) ≤ P(X ≤ x)∧P(Y ≤ y) = F(x)∧G(y)

for all x,y ∈ R. As for the second assertion, we first note that

{u : F−1(u)≤ x} = {u : F(x)≥ u}

holds true for each distribution F and all x ∈ R. This implies

P(F−1(U)≤ x,G−1(U)≤ y) = P(U ≤ F(x),U ≤ G(y)) = F(x)∧G(y)

for all x,y ∈ R. ut

Lemma 5.17. For each p> 0, the function kp : R2→ R≥, (x,y) 7→ |x− y|p is
continuous, symmetric and ∆ -antitone, viz.

∆
x′,y′
x,y kp := kp(x′,y′)+ kp(x,y)− kp(x′,y)− kp(x,y′) ≤ 0

for all (x,y),(x′,y′) ∈ R2 with x≤ x′ and y≤ y′.

Proof. Problem 5.28. ut
Every continuous and ∆ -antitone function k defines a unique continuous Borel

measure on R2 via
K ([x,x′)× [y,y′)) := −∆

x′,y′
x,y k (5.33)

for all (x,y),(x′,y′) ∈ R2 with x ≤ x′ and y ≤ y′. This is now used to show the
following result.

Lemma 5.18. Given a (F,G)-coupling (X ,Y ) with cdf H, let

AH(x,y) := F(x∧ y)+G(x∧ y)−H(x∧ y,x∨ y)−H(x∨ y,x∧ y)

for x,y ∈R. Then every continuous, symmetric and ∆ -antitone function k sat-
isfies
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2Ek(X ,Y ) = Ek(X ,X) + Ek(Y,Y ) +
∫

AH(x,y) K (dx,dy), (5.34)

that is, Ek(X ,Y ) =
∫

k(x,y)H(dx,dy) depends on H only through its margin-
als F,G and AH .

Proof. On Ω ×R2, let Z be defined by

Z(ω,x,y) := 1[X(ω)∧Y (ω),X(ω)∨Y (ω))2(x,y).

Using (5.33) and the symmetry of k, it follows that on {X ≤ Y}
∫

R2
Z(·,x,y) K (dx,dy) = K ([X ,Y )× [X ,Y ))

= −
(
k(X ,X)+ k(Y,Y )− k(X ,Y )− k(Y,X)

)

= 2k(X ,Y )− k(X ,X)− k(Y,Y ), (5.35)

and the same result is obviously found on {X ≥ Y}. Writing Z as

Z(ω,x,y) = 1(−∞,x∧y](X(ω))1(x∨y,∞)(Y (ω))+1(x∨y,∞)(X(ω))1(−∞,x∧y](Y (ω)),

we further obtain

EZ(·,x,y) = P(X ≤ x∧ y,Y > x∨ y)+P(X > x∨ y,Y ≤ x∧ y)

= F(x∧ y)−H(x∧ y,x∨ y)+G(x∧ y)−H(x∨ y,x∧ y)

= AH(x,y). (5.36)

Finally, we conclude by a combination of (5.35) and (5.36) that

2Ek(X ,Y )−Ek(X ,X)−Ek(Y,Y ) =
∫

Ω

∫

R2
Z(ω,x,y) K (dx,dy) P(dω)

=
∫

R2
EZ(·,x,y) K (dx,dy)

=
∫

R2
AH(x,y) K (dx,dy),

which proves the asserted identity (5.34). ut

For kp(x,y) = |x− y|p, which vanishes if x = y, formula (5.34) simplifies to

Ekp(X ,Y ) =
1
2

∫
AH(x,y) Kp(dx,dy), (5.37)

where Kp has the obvious meaning. The last ingredient to the proof of Proposition
5.15 is now provided by
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Lemma 5.19. Given F,G ∈P p(R) for some p > 0 and U d
= Unif(0,1), any

(F,G)-coupling (X ,Y ) satisfies

Ekp(X ,Y ) ≥ Ekp(F−1(U),G−1(U)).

Proof. As before, let H denote the cdf of (X ,Y ) and H∗(x,y) := F(x)∧G(y) the cdf
of the (F,G)-coupling (F−1(U),G−1(U)). By Lemma 5.16, H(x,y) ≤ H∗(x,y) for
all x,y ∈ R which in turn implies AH(x,y)≥ AH∗(x,y) for all x,y ∈ R and hence the
assertion by an appeal to (5.37). ut

If p = 1, then (5.32) implies that `1(F,G) equals the area between F−1 and G−1.
Since F−1,G−1 are obtained as the reflections of F,G at the bisecting line y = x, this
area must be the same as between F and G, thus giving the following result.

Corollary 5.20. For F,G ∈P1(R),

`1(F,G) =
∫

∞

−∞

|F(x)−G(x)| dx. (5.38)

For any distribution F ∈P1(R) with mean value µF =
∫

xF(dx), let F0 denote
its centering, that is F0(t) := F(t + µF) for t ∈ R. The next lemma provides infor-
mation about the relation between `p(F,G) and `p(F0,G0) for p ≥ 1 and will be
needed in Section 5.5 for the case p = 2.

Lemma 5.21. Given p ≥ 1, distributions F,G ∈ P p(R) with mean values
µF ,µG and a Unif(0,1) random variable U, it holds true that

`p(F0,G0) = ‖(F−1(U)−µF)− (G−1(U)−µG)‖p, (5.39)

`p(F,G) = ‖((F0)−1(U)+µF)− ((G0)−1(U)+µG)‖p, (5.40)

and therefore
|`p(F,G)− `p(F0,G0)| ≤ |µF −µG|. (5.41)

If p = 2, then furthermore

`2
2(F,G) = `2

2(F
0,G0)+(µF −µG)

2. (5.42)

Proof. For (5.39) and (5.40), it suffices to note that F0(t) = F(t + µF) obviously
implies (F0)−1(t) = F−1(t)− µF for all t ∈ R. If p = 2, then (5.40) with X :=
(F0)−1(U) and Y := (G0)−1(U) yields
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`2
2(F,G) = E

(
(X−Y )+(µF −µG)

)2

= E(X−Y )2 +2(µF −µG)E(X−Y )+(µF −µG)
2

= `2
2(F

0,G0)+(µF −µG)
2,

where EX = EY = 0 has been utilized. ut

We proceed to a result that characterizes convergence with respect to `p (
`p−→).

Proposition 5.22. Let (Fn)n≥0 be a sequence of distributions in P p(R) and
U a Unif(0,1) random variable. Then the following assertions are equivalent
for any p> 0:

(a) Fn
`p−→ F, i.e. limn→∞ `p(Fn,F) = 0.

(b) Fn
w→ F and limn→∞

∫ |x|p Fn(dx) =
∫ |x|p F(dx)< ∞.

(c) Fn
w→ F and x 7→ |x|p is ui with respect to the Fn, that is

lim
a→∞

sup
n≥1

∫

(−a,a)c
|x|p Fn(dx) = 0.

(d) limn→∞ ‖F−1
n (U)−F−1(U)‖p = 0.

Note that by (5.32) of Prop. 5.15, the equivalence of (a) and (d) is trivial for p≥ 1
and thus a true assertion only for 0< p< 1.

Proof. By Skorohod’s representation theorem [+ e.g. [17, Thm. 25.6]] Fn
w→ F

holds iff F−1
n (U)→ F−1(U) a.s.. Therefore we may restate (b) and (c) as follows:

(b) F−1
n (U)→ F−1(U) a.s. and E|F−1

n (U)|p→ E|F−1(U)|p.
(c) F−1

n (U)→ F−1(U) a.s. and (|F−1
n (U)|p)n≥0 is ui.

The equivalences (a)⇔(b)⇔(c) are now directly inferred with the help of [29, Thm.
4.2.3(i) and Cor. 4.2.5]. Moreover, the restated form of (b) implies (d) due to a
theorem by F. Riesz [+ [13, Thm. 15.4], stated there for p≥ 1, but easily extended
to all s> 0]. Finally, (d) implies (a) for 0< p< 1, because for these p we still have

`p(Fn,F) ≤ ‖F−1
n (U)−F−1(U)‖p. ut

The proposition particularly states that `p metrizes weak convergence in com-
bination with convergence of absolute moments of order p. Two straightforward
consequences are given in two subsequent corollaries.
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Corollary 5.23. If Fn
`p−→ F for some p> 0, then

lim
n→∞

∫
|x|q Fn(dx) =

∫
|x|q F(dx)

for each q ∈ (0, p]. Moreover, if p≥ 1, then

lim
n→∞

∫
xk Fn(dx) =

∫
xk F(dx)

for each integral k ∈ (0, p].

Proof. Problem 5.31. ut
For the second corollary, note that ‖F−1

n (U)−F−1(U)‖q≤‖F−1
n (U)−F−1(U)‖p

if 1≤ q≤ p, and ‖F−1
n (U)−F−1(U)‖q ≤ ‖F−1

n (U)−F−1(U)‖q/p
p if 0< q< p≤ 1

[+ Problem 5.27(b)]. These immediately show:

Corollary 5.24. If Fn
`p−→ F for p> 0, then Fn

`q−→ F for any q ∈ (0, p).

Concerning completeness of the metric space (P p(R), `p), we finally note:

Proposition 5.25. For each p> 0, the space (P p(R), `p) is complete.

Proof. Given a Cauchy sequence (Fn)n≥1 in (P p(R), `p), we have that

lim
m,n→∞

`p(Fm,Fn) = lim
m,n→∞

‖F−1
m (U)−F−1

n (U)‖p = 0

for any Unif(0,1) variable U on a probability space (Ω ,A,P). Since Lp(P) is com-
plete (modulo a.s. equality), we infer the convergence of F−1

n (U) in Lp(P) as well
as in probability to a random variable X ∈ Lp(P) with distribution F , say, and
thereupon Fn

w→ F . But the latter further implies F−1
n (U)→ F−1(U) a.s. and thus

X = F−1(U) a.s. Finally,

lim
n→∞

`p(Fn,F) = lim
n→∞
‖F−1

n (U)−F−1(U)‖p = lim
n→∞
‖F−1

n (U)−X‖p = 0,

which completes the proof. ut
In the literature, the minimal Lp-metric often appears in connection with the so-

called Wasserstein-metric or Vasershtein-metric2, named after the Russian mathe-
matician L.N. VASERSHTEIN who introduced the concept in 1969 in [114]. The

2 Publications in English language mostly use the German spelling “Wasserstein” (attributed to the
name “Vasershtein” being of Germanic origin).
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name was coined one year later by DOBRUSHIN in [36]. We close this section with
a brief discussion of the connection with `p.

Let (X,ρ) be a metric space with Borel σ -field B(X) and let P(X) be the set of
probability measures on (X,B(X)). Then

dρ(F,G) := inf
(X ,Y )∼(F,G)

Eρ(X ,Y ), F,G ∈P(X) (5.43)

defines a distance function on P(X) which, however, may be infinite. We note the
following result:

Proposition 5.26. Let F be a probability measure on (X,B(X)) and

U (F) := {G ∈P(X) : dρ(F,G)< ∞}.

Then (U (F),dρ) forms a metric space which is complete if (X,ρ) is separa-
ble. The metric dρ is called Wasserstein metric.

Proof. The reader is referred to [36, Thm. 2]. ut
If (X,ρ) = (R, | · |p) for 0 < p ≤ 1, then the Wasserstein metric dρ coincides

exactly with the minimal Lp-metric `p, whereas for p > 1 we have dρ = `p
p when

keeping the definition of ρ , i.e. ρ(x,y) = |x− y|p, and the definition of dρ in (5.43).
However, it should be observed that ρ is no longer a metric on R for p > 1. Some
further historical background information may found in [105].

Problems

Problem 5.27. Let p > 0, (Ω ,A,P) be a probability space and U a Unif(0,1) ran-
dom variable.

(a) For 0< p< 1, show that `p in (5.30) is a complete (pseudo-)metric on Lp(P),
but that `p(X ,0) = ‖X‖p fails to be a norm.

(b) Show that ‖X −Y‖q ≤ ‖X −Y‖q/p
p holds true for 0 < q < p < 1 and X ,Y ∈

Lp(P).
(c) Verify that `p is indeed a metric on P p(R) for any p> 0.

Problem 5.28. Prove Lemma 5.17.

Problem 5.29. For F ∈P1(R) and c ∈ R, let Fc denote the translation of F with
mean value c, viz. Fc(t) := F0(t− c) for t ∈ R. Use Lemma 5.21 to show that

`p(Fc,Gc) = `p(F0,G0)

for all p≥ 1, F,G ∈P p(R) and c ∈ R.
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Problem 5.30. (Generalization) Let p> 0 and F,G ∈P p(R). Prove that

`p(F ∗H,G∗H) ≤ `p(F,G),

for every H ∈P p(R) and that equality holds if H = δa for some a ∈ R, i.e.

`p(F ∗δa,G∗δa) = `p(F,G)

for all a ∈ R. This obviously generalizes the result in the previous problem.

Problem 5.31. Prove Corollary 5.23.

Problem 5.32. Let P∞(R) denote the set of distributions on R with compact sup-
port. Further, let U be a Unif(0,1) random variable on a probability space (Ω ,A,P)
and ‖ · ‖∞ the usual L∞-norm (essential supremum) on the vector space of P-a.s.
bounded random variables. Prove the following assertions:

(a) The mapping `∞ : P∞(R)×P∞(R)→R≥, (F,G) 7→ ‖F−1(U)−G−1(U)‖∞,
defines a complete metric on P∞(R). [Hint: Use that ‖X‖p ↑ ‖X‖∞ as p ↑ ∞

for any X ∈ L∞(P).]
(b) Equivalence of

(i) limn→∞ `∞(Fn,F) = 0;
(ii) Fn

w→ F and F ∈P∞(R);
(iii) Fn

w→ F and Fn(K) = 1 for all n≥ 1 and a compact K ⊂ R.

holds true.

5.4 Conditions for S to be a self-map of P p(R)

In order to study the contractive behavior of S on P p(R) for p > 0, we must first
provide conditions that ensure that S is a self-map on this subset of distributions
on R. In other words, we need conditions on (C,T ) = (C,(Ti)i≥1) such that

∑
i≥1

TiXi +C ∈ Lp

whenever the iid X1,X2, ... are in Lp. Choosing X1 = X2 = ...= 0, we see that C ∈ Lp

is necessary, so that we are left with the problem of finding conditions on T such that
∑i≥1 TiXi ∈ Lp if this is true for the Xi. The main result is stated as Proposition 5.33
below and does not need that N =∑i≥1 1{Ti 6=0} is a.s. finite. We therefore remark that
∑i≥1 TiXi ∈ Lp is generally to be understood in the sense of Lp-convergence of the
finite partial sums ∑

n
i=1 TiXi, which particularly implies convergence in probability.

Before stating the result let us define

P p
c (R) :=

{
F ∈P p(R) :

∫
x F(dx) = c

}
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and also Lp
c := {X ∈ Lp : EX = c} for p≥ 1 and c ∈ R.

Proposition 5.33. Let T = (Ti)i≥1 and (Xi)i≥1 be independent sequences on a
given probability space (Ω ,A,P) such that X1,X2, ... are iid and in Lp. Then
each of the following set of conditions implies ∑i≥1 TiXi ∈ Lp:

(i) 0< p≤ 1 and ∑i≥1 |Ti|p ∈ L1.
(ii) 1< p≤ 2, ∑i≥1 Ti ∈ Lp and ∑i≥1 |Ti|p ∈ L1.
(iii) 2≤ p< ∞, ∑i≥1 Ti ∈ Lp and ∑i≥1 T 2

i ∈ Lp/2.
(iv) 1< p≤ 2, ∑i≥1 |Ti|p ∈ L1 and EX1 = 0.
(v) 2≤ p< ∞, ∑i≥1 T 2

i ∈ Lp/2 and EX1 = 0.

Conversely, if 1< p< ∞, then

(a) ∑i≥1 TiXi ∈ Lp for any choice of T -independent and iid X1,X2, ... in Lp

implies ∑i≥1 Ti ∈ Lp and ∑i≥1 T 2
i ∈ Lp/2.

(b) ∑i≥1 TiXi ∈ Lp for any choice of T -independent and iid X1,X2, ... ∈ Lp
0

implies ∑i≥1 T 2
i ∈ Lp/2.

Remark 5.34. The reader should observe that, in view of (iii) and (v), the implica-
tions in the converse parts (a) and (b) are in fact equivalences. It is tacitly under-
stood there that the underlying probability space (Ω ,A,P) is rich enough to carry
T -independent iid X1,X2, ... with arbitrary distribution in P p(R), which is obvi-
ously the case if it carries a sequence of iid Unif(0,1) variables. Our proof will
show that it is even enough if there exist T -independent iid X1,X2, ... taking values
±1 with probability 1/2 each.

Proof. (i) If 0 < p ≤ 1, the subadditivity of x 7→ xp for x ≥ 0 immediately implies
under the given assumptions that

E

(
∑
i≥1
|TiXi|

)p

≤ ∑
i≥1

E|TiXi|p = E|X1|p ∑
i≥1

E|Ti|p < ∞

and thus the almost sure absolute convergence of ∑i≥1 TiXi as well as its integrability
of order p.

(ii) Here we argue that (∑n
i=1 TiXi)n≥1 forms a Cauchy sequence in (Lp(P),‖·‖p)

and is therefore Lp-convergent. First note that E(∑i≥1 |Ti|p) = ∑i≥1E|Ti|p implies
Ti ∈ Lp for each i ≥ 1, which in combination with Xi ∈ Lp for each i ≥ 1 ensures
that ∑

n
i=m TiXi ∈ Lp for all n ≥ m ≥ 1. Denoting by µ the expectation of the Xi, we

have that (∑k
i=m Ti(Xi−µ))m≤k≤n conditioned upon T forms an Lp-martingale, for T

and (Xi)i≥1 are independent. Since 1 < p≤ 2, the even function x 7→ |x|p is convex
with concave derivative on R≥ which allows us to make use of the Topchiı̆-Vatutin
inequality B.1 in the Appendix. This yields
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E

(∣∣∣∣∣
n

∑
i=m

Ti(Xi−µ)

∣∣∣∣∣

p ∣∣∣∣∣T
)
≤ 2E|X1−µ|p

n

∑
i=m
|Ti|p a.s.

and then by taking unconditional expectations

∥∥∥∥∥
n

∑
i=m

Ti(Xi−µ)

∥∥∥∥∥
p

≤ 2‖X1−µ‖p

∥∥∥∥∥
n

∑
i=m
|Ti|p

∥∥∥∥∥

1/p

1

.

Since ∑i≥1 |Ti|p ∈ L1, the right-hand side converges to zero as m,n→ ∞. By using
the second assumption ∑i≥1 Ti ∈ Lp, we infer that limm,n→∞ ‖∑

n
i=m Ti‖p = 0 as well,

whence finally
∥∥∥∥∥

n

∑
i=m

TiXi

∥∥∥∥∥
p

≤
∥∥∥∥∥

n

∑
i=m

Ti(Xi−µ)

∥∥∥∥∥
p

+ |µ|
∥∥∥∥∥

n

∑
i=m

Ti

∥∥∥∥∥
p

→ 0 (5.44)

as m,n→ ∞.

(iii) Here we use the same Cauchy sequence argument as in (ii), but make use of
the famous Burkholder inequality B.4 in the Appendix.. This yields

E

(∣∣∣∣∣
n

∑
i=m

Ti(Xi−µ)

∣∣∣∣∣

p ∣∣∣∣∣T
)
≤ bp

pE



(

n

∑
i=m

T 2
i (Xi−µ)2

)p/2 ∣∣∣∣∣T


 a.s.

for a constant bp ∈ R> which only depends on p. Next, put Σm:n := (∑n
i=m T 2

i )
1/2

for n≥ m≥ 1. Given T and Σm:n 6= 0, the vector
(

T 2
m

Σ 2
m:n
, ...,

T 2
n

Σ 2
m:n

)

defines a discrete probability distribution on {m, ...,n}, which in combination with
the independence of T and (Xi)i≥1, the convexity of x 7→ xp/2 for x ≥ 0 and p ≥ 2
and an appeal to Jensen’s inequality yields

E



(

n

∑
i=m

T 2
i (Xi−µ)2

)p/2 ∣∣∣∣∣T


 = E



(

n

∑
i=m

T 2
i

Σ 2
m:n

Σ
2
m:n(Xi−µ)2

)p/2 ∣∣∣∣∣T




≤ E

(
n

∑
i=m

T 2
i

Σ 2
m:n

Σ
p
m:n|Xi−µ|p

∣∣∣∣∣T
)

=

(
Σ

p
m:n

n

∑
i=m

T 2
i

Σ 2
m:n

)
E|X1−µ|p

= Σ
p
m:nE|X1−µ|p a.s. on {Σm:n > 0}.
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But if Σm:n = 0, the inequality is trivially satisfied. Since, by assumption, EΣ
p
m,n→ 0

as m,n→ ∞, we now obtain by taking unconditional expectations and letting m,n
tend to infinity that

lim
m,n→∞

E

∣∣∣∣∣
n

∑
i=m

Ti(Xi−µ)

∣∣∣∣∣

p

≤ bp
pE|X1−µ|p lim

m,n→∞
EΣ

p
m,n = 0.

The remaining argument via (5.44) is identical to the one in the previous case and
thus not repeated here.

(iv), (v) If µ = EX1 = 0, the assumption in ∑i≥1 Ti ∈ Lp can be dropped because
then the second term on the right-hand side in (5.44) vanishes.

The converse part:

(a) By choosing Xi = 1 for i ≥ 1, we find that ∑i≥1 Ti ∈ Lp and are thus left
with a proof of ∑i≥1 T 2

i ∈ Lp/2. Let now X1,X2, ... be iid random variables taking
values ±1 with probability 1/2 each. Then EX1 = 0, X1 ∈ Lp for any p > 1, and
(∑n

i=1 TiXi)n≥0 conditioned on T forms a Lp-bounded martingale. By another appeal
to Burkholder’s inequality B.4 (lower bound) and observing X2

1 = 1, it follows that

E

(∣∣∣∣∣
n

∑
i=1

TiXi

∣∣∣∣∣

p ∣∣∣∣∣T
)
≥ ap

p

(
n

∑
i=1

T 2
i

)p/2

a.s.

for a constant ap ∈ R> which only depends on p. Consequently,

E

(
∑
i≥1

T 2
i

)p/2

≤ 1
ap

p
E

∣∣∣∣∣∑i≥1
TiXi

∣∣∣∣∣

p

< ∞

which proves the remaining assertion.

(b) Here it suffices to refer to the last argument. ut

In the following, we say that the smoothing transform S exists in Lp-sense if
S is a self-map on P p(R). Then we obtain as a direct consequence of Proposition
5.33:

Corollary 5.35. The smoothing transform S exists

• in Lp-sense for 0< p≤ 1 if C ∈ Lp and ∑i≥1 |Ti|p ∈ L1.

• in Lp-sense for 1< p< 2 if C, ∑i≥1 Ti ∈ Lp and ∑i≥1 |Ti|p ∈ L1.
• from P p

0 (R)→P p
0 (R) for 1< p< 2 if C ∈ Lp

0 and ∑i≥1 |Ti|p ∈ L1.
• from P p

0 (R)→P p(R) for 1< p≤ 2 if C ∈ Lp and ∑i≥1 |Ti|p ∈ L1.

• in Lp-sense for 2≤ p< ∞ iff C,∑i≥1 Ti ∈ Lp and ∑i≥1 T 2
i ∈ Lp/2.
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• from P p
0 (R)→P p

0 (R) for 2≤ p< ∞ iff C ∈ Lp
0 and ∑i≥1 T 2

i ∈ Lp/2.
• from P p

0 (R)→P p(R) for 2≤ p< ∞ iff C ∈ Lp and ∑i≥1 T 2
i ∈ Lp/2.

Conversely, if S exists

• in Lp-sense for 1< p< 2, then C,∑i≥1 Ti ∈ Lp and ∑i≥1 T 2
i ∈ Lp/2.

• from P p
0 (R)→P p

0 (R) for 1< p< 2, then C ∈ Lp
0 and ∑i≥1 T 2

i ∈ Lp/2.

Proof. Problem 5.39. ut

In the particularly important case when T1,T2, ... are nonnegative, a necessary
and sufficient condition for S to exist in Lp-sense can be given for all p > 0 and
follows directly from the previous result.

Corollary 5.36. Let T1,T2, ... be nonnegative and 1 ≤ p < ∞. Then the
smoothing transform S exists in Lp-sense iff C, ∑i≥1 Ti ∈ Lp.

Proof. Problem 5.39. ut

Problems

Problem 5.37. Consider the situation of Proposition 5.33 with p = 2 and show by
direct computation that

E

(
n

∑
i=m

TiXi

)2

= VarX1E

(
n

∑
i=m

T 2
i

)
+
(
EX1

)2E

(
n

∑
i=m

Ti

)2

for all n≥ m≥ 1. Use this to infer that (∑n
i=1 TiXi)n≥1 forms a Cauchy sequence in

(L2(P),‖ · ‖2).

Problem 5.38. Again in the situation of Proposition 5.33, prove the following as-
sertions for 1< p< ∞:

(a) If ∑i≥1 |Ti| ∈ Lp, then ∑i≥1 Ti ∈ Lp and ∑i≥1 T 2
i ∈ Lp/2.

(b) If 0< p≤ 2, then ∑i≥1 |Ti|p ∈ L1 implies ∑i≥1 T 2
i ∈ Lp/2.

(c) If 2≤ p< ∞, then ∑i≥1 T 2
i ∈ Lp/2 implies ∑i≥1 |Ti|p ∈ L1.

Problem 5.39. Prove Corollaries 5.35 and 5.36.

Problem 5.40. Give conditions on (C,T ) which entail that S is a self-map of
P2

0,1(R), the set of distributions on R with mean zero and variance one.
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Problem 5.41. Conditions on (C,T ) for S to be a self-map may also be studied
for other subsets of P(R) which are not characterized by moments. Do so for the
following subsets:

(a) Pcont(R), the set of continuous distributions.
(b) Pac(R), the set of absolutely continuous distributions.
(c) P(Z), the set of discrete distributions concentrated on Z.
(d) Psymm(R), the set of symmetric distributions F satisfying F(B) = F(−B) for

all B ∈B(R).
(e) the set of normal distributions.
(f) the set of Poisson distributions.
(g) the set of Cauchy distributions.
(h) the set of linear fractional distributions

Fb,p =
1−b− p

1− p
δ0 + ∑

n≥1
bpn

δn

for b, p ∈ (0,1) with b+ p≤ 1.

Problem 5.42. Prove that S is a self-map of P(R) iff (A0), i.e. N < ∞ a.s., holds
true. [Hint: Use Kolmogorov’s three series theorem which states that, given indepen-
dent random variables X1,X2, ..., the series ∑i≥1 Xi is a.s. convergent iff the following
three conditions hold true:

(TST-1) ∑i≥1P(|Xi|> 1)< ∞.
(TST-2) the series ∑i≥1EXi1{|Xi|≤1} is a.s. convergent.
(TST-3) ∑i≥1Var(Xi1{|Xi|≤1})< ∞.

A proof of this result can be found e.g. in [29, Thm. 5.1.2]].

Problem 5.43. Prove that, if S is a self-map on P(R), then it is weakly continu-
ous, that is, Fn

w→ F implies S (Fn)
w→S (F).

5.5 Contraction conditions for S

We now turn to the central question under which conditions on (C,T ) the smoothing
transform S is a contraction or quasi-contraction on P p(R), or a subset thereof
like P p

0 (R), and therefore possesses a unique geometrically attracting fixed point
on this set by Banach’s fixed point theorem [+ Appendix A]. More precisely, we
will study the problem of finding conditions which ensure (geometric) convergence
of the sequence (S n(F))n≥0 for F ∈P p(R). Since the behavior of S is different
for 0< p≤ 1, 1< p≤ 2 and p> 2, these cases will be treated separately.
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5.5.1 Convergence of iterated mean values

By Theorem C.5 in the Appendix, the convergence of S n(F) to a fixed point in
(P p(R), `p) follows if S is a continuous self-map of this space and

`p(S
n+1(F),S n(F)) ≤ cα

n (5.45)

holds true for suitable c ≥ 0, α ∈ [0,1) and all n ≥ 0. A contraction lemma will
ensure the continuity of S in each of the cases mentioned above, but in order to
infer uniqueness of the fixed point we must consider expected values if p≥ 1, which
provides the motivation behind the subsequent lemma [+ [102, Lemma 1]]. In
slight abuse of language, we will use the convenient notation EF :=

∫
xF(dx) for

the mean value of a distribution F ∈P1(R).

Lemma 5.44. Suppose that S exists in Lp-sense for some p ≥ 1 and let F ∈
P p(R). Then

(a) E(∑i≥1 Ti) ∈ (−1,1) implies

lim
n→∞

ES n(F) =
EC

1−E(∑i≥1 Ti)
,

and the convergence rate is geometric.
(b) |E(∑i≥1 Ti)|> 1 and EF +(E(∑i≥1 Ti)−1)−1EC 6= 0 imply

lim
n→∞
|ES n(F)| = ∞.

(c) |E(∑i≥1 Ti)|> 1 and EF +(E(∑i≥1 Ti)−1)−1EC = 0 imply

lim
n→∞

ES n(F) = EF =
EC

1−E(∑i≥1 Ti)
.

(d) E(∑i≥1 Ti) = 1 and EC 6= 0 imply

lim
n→∞
|ES n(F)| = ∞.

(e) E(∑i≥1 Ti) = 1 and EC = 0 imply ES n(F) = EF for all n≥ 0.
(f) E(∑i≥1 Ti) = −1 implies ES2n(F) = EF and ES 2n+1(F) = EC−EF

for all n≥ 0.

Proof. Fix any n ≥ 1 and let (C,T ), X1,X2, ... be independent such that L (Xi) =
S n−1(F) for each i≥ 1. Since ∑i≥1 Ti ∈ L1 by Corollary 5.35, we infer upon setting
β := E(∑i≥1 Ti) that
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ES n(F) = EC+E

(
∑
i≥1

TiXi

)
= EC+β EX1 = EC+β ES n−1(F) (5.46)

and then inductively

ES n(F) = EC
n−1

∑
k=0

β
k +β

nEF.

All assertions are easily derived from this equation, which is left as an exercise to
the reader [+ Problem 5.57]. ut

5.5.2 Contraction conditions if 0< p≤ 1

We are now ready to derive contraction results for S on the space (P p(R), `p) and
begin with the simplest case when 0< p≤ 1.

Theorem 5.45. Let 0< p≤ 1. If

C ∈ Lp and

∥∥∥∥∥∑i≥1
|Ti|p

∥∥∥∥∥
1

< 1,

then S defines a contraction on (P p(R), `p) and has a unique geometrically
attracting fixed point G0 in this space.

The proof of this result is furnished by the following contraction lemma.

Lemma 5.46. Let 0< p≤ 1, C ∈ Lp and ∑i≥1 |Ti|p ∈ L1. Then

`p(S (F),S (G)) ≤
∥∥∥∥∥∑i≥1
|Ti|p

∥∥∥∥∥
1

`p(F,G) (5.47)

for all F,G ∈P p(R).

Proof. Pick any F,G∈P p(R) and let (X1,Y1),(X2,Y2), ... be iid and (C,T )-indepen-
dent random variables with L (X1) = F,L (Y1) = G and ‖X1−Y1‖p = `p(F,G). We
note that S exists in Lp-sense by Corollary 5.35. Since x 7→ xp is subadditive for
x≥ 0 and (∑i≥1 TiXi +C,∑i≥1 TiYi +C)∼ (S (F),S (G)), we infer

`p(S (F),S (G)) ≤
∥∥∥∥∥∑i≥1

TiXi−∑
i≥1

TiYi

∥∥∥∥∥
p
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= E

∣∣∣∣∣∑i≥1
Ti(Xi−Yi)

∣∣∣∣∣

p

≤ ‖X1−Y1‖pE

(
∑
i≥1
|Ti|p

)

=

∥∥∥∥∥∑i≥1
|Ti|p

∥∥∥∥∥
1

`p(F,G),

which is the assertion. ut
Proof (of Theorem 5.45). By virtue of the previous lemma, S forms an α-contraction
with α := ‖∑i≥1 |Ti|p‖1. Hence, the assertions follow from Banach’s fixed point the-
orem C.2 in combination with (5.47) (or Corollary C.3). ut

5.5.3 Contraction conditions if p> 1

Having settled the case 0 < p ≤ 1 with just one condition, viz.
∥∥∑i≥1 |Ti|p

∥∥
1 < 1,

giving contraction of S and a unique fixed point on (P p(R), `p), the case 1< p<
∞ exhibits a more complex picture as shown by three subsequent theorems, which
for p = 2 are all due to RÖSLER [102]. The afore-mentioned contraction condition,
which figured in the previous subsection, is now replaced with

Cp(T ) := E

(
∑
i≥1
|Ti|p

)
∨E
(

∑
i≥1

T 2
i

)p/2

(5.48)

which is still
∥∥∑i≥1 |Ti|p

∥∥
1 if 1 < p ≤ 2, but equals

∥∥∑i≥1 T 2
i

∥∥p/2
p/2 if p ≥ 2 [+

Problem 5.38(c)]. Plainly, the conditions are exactly the same if p = 2.

Theorem 5.47. Let p> 1. If

C ∈ Lp
0 and Cp(T )< 1,

then S defines a quasi-contraction on (P p
0 (R), `p) and has a unique geo-

metrically attracting fixed point G0 in this space.

Theorem 5.48. Let p> 1. If

C, ∑
i≥1

Ti ∈ Lp, Cp(T )< 1 and

∣∣∣∣∣E
(

∑
i≥1

Ti

)∣∣∣∣∣< 1,



174 5 The smoothing transform. Part I: Contraction properties

then S defines a quasi-contraction on (P p(R), `p) and has a unique geo-
metrically attracting fixed point G0 in this space.

Theorem 5.49. Let p> 1 and c ∈ R. If

C ∈ Lp
0 , ∑

i≥1
Ti ∈ Lp, Cp(T )< 1, and E

(
∑
i≥1

Ti

)
= 1,

then S defines a quasi-contraction on (P p
c (R), `p) and has a unique geomet-

rically attracting fixed point Gc in this space. Moreover, if even ∑i≥1 Ti = 1 a.s.
holds true, then the Gc form a translation family, i.e. Gc = δc∗G0 for all c∈R.

We proceed to the derivation of two contraction lemmata, treating the cases

• p = 2 and Cp(T ) = ‖∑i≥1 |Ti|p‖1 = ‖∑i≥1 T 2
i ‖

p/2
p/2 < 1.

• p> 1 and Cp(T )< 1.

The proofs of the previous theorems require only the last of these lemmata, but we
have included the other one because the provided contraction constant is better for
p = 2. Recall that F0 denotes the centering of F if F ∈P1(R).

Lemma 5.50. Assuming C ∈ L2 and ∑i≥1 T 2
i ∈ L1, the following assertions

hold true:

(a) S exists from P2
0 (R)→P2(R) and

`2
2(S (F0),S (G0)) ≤

∥∥∥∥∥∑i≥1
T 2

i

∥∥∥∥∥
1

`2
2(F

0,G0) (5.49)

for all F,G ∈P2(R).
(b) If also ∑i≥1 Ti ∈ L2, then S exists in the L2-sense and

`2
2(S (F),S (G)) ≤

∥∥∥∥∥∑i≥1
T 2

i

∥∥∥∥∥
1

`2
2(F

0,G0)+

∥∥∥∥∥∑i≥1
Ti

∥∥∥∥∥

2

2

(
EF−EG

)2

(5.50)
for all F,G ∈P2(R).

Proof. In both parts, the existence of S in the claimed sense follows again from
Corollary 5.35.
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(a) Given any F,G ∈P2(R), let (X1,Y1),(X2,Y2), ... be iid random vectors inde-
pendent of (C,T ) and satisfying (X1,Y1) ∼ (F0,G0) and ‖X1−Y1‖2 = `2(F0,G0).
By a similar estimation as in the proof of Lemma 5.46, it then follows that

`2
2(S (F0),S (G0)) ≤

∥∥∥∥∥∑i≥1
TiXi−∑

i≥1
TiYi

∥∥∥∥∥

2

2

= E

(
∑
i≥1

Ti(Xi−Yi)

)2

= E(X1−Y1)
2E

(
∑
i≥1

T 2
i

)

=

∥∥∥∥∥∑i≥1
T 2

i

∥∥∥∥∥
1

`2
2(F

0,G0),

where E(X1−Y1) = 0 has been utilized for the penultimate line.

(b) Keeping the notation of part (a), note that (X1+EF,Y1+EG)∼ (F,G). There-
fore, we obtain

`2
2(S (F),S (G)) ≤

∥∥∥∥∥∑i≥1
Ti(Xi +EF)−∑

i≥1
Ti(Yi +EG)

∥∥∥∥∥

2

2

= E

(
∑
i≥1

Ti

(
(Xi−Yi)+(EF−EG)

))2

= E(X1−Y1)
2E

(
∑
i≥1

T 2
i

)
+(EF−EG)2E

(
∑
i≥1

Ti

)2

=

∥∥∥∥∥∑i≥1
T 2

i

∥∥∥∥∥
1

`2
2(F

0,G0)+

∥∥∥∥∥∑i≥1
Ti

∥∥∥∥∥

2

2

(EF−EG)2,

where again E(X1−Y1) = 0 has entered to get the penultimate line. ut

The corresponding lemma for p> 1 is technically more difficult to prove because
pth powers of sums can be written out term-wise only for integral p.

Lemma 5.51. Let 1 < p < ∞, C ∈ Lp and ∑i≥1 |Ti|p ∈ L1. Then the following
assertions hold true:

(a) S exists from P p
0 (R)→P p(R) and

`p(S
n(F0),S n(G0)) ≤ bp Cp(T )n/p `p(F0,G0) (5.51)
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for all F,G ∈P p(R) and n≥ 1.
(b) If also ∑i≥1 Ti ∈ Lp, then S exists in Lp-sense and

`p(S
n(F),S n(G))

≤ bp

[
Cp(T )n/p `p(F0,G0)+nλpκ

n−1
p
∣∣EF−EG

∣∣
]

(5.52)

≤ bp

(
nλp

κp
+2
)

κ
n
p `p(F,G) (5.53)

for all F,G ∈P p(R) and n≥ 1, where

κp :=

∣∣∣∣∣E
(

∑
i≥1

Ti

)∣∣∣∣∣∨Cp(T )1/p

and λp :=

∥∥∥∥∥∑i≥1
(Ti−ETi)

∥∥∥∥∥
p

+b−1
p

∥∥∥∥∥∑i≥1
Ti

∥∥∥∥∥
p

.

If 1< p≤ 2, we can choose bp = 21/p in both parts.

Proof. The existence of S in the claimed sense is again guaranteed by Corollary
5.35.

(a) Given any F,G ∈P p(R), let (X(v),Y (v))v∈T be a family of iid random vec-
tors which is independent of C⊗T = (C(v),T (v))v∈T (having the usual meaning)
and satisfies (X(v),Y (v)) ∼ (F0,G0) and ‖X(v)−Y (v)‖p = `p(F0,G0). Consider
two WBP (Z′n)n≥0 and (Z′′n )n≥0 associated with C⊗T⊗X = (C(v),T (v),X(v))v∈T
and C⊗T⊗Y, respectively, so that L (Z′n) = S n(F0) and L (Z′′n ) = S n(G0) for
each n≥ 0 [+ Lemma 5.2]. Furthermore,

Zn := Z′n−Z′′n = ∑
|v|=n

L(v)(X(v)−Y (v)), n≥ 0

defines a WBP associated with T⊗X−Y = (T (v),X(v)−Y (v))v∈T such that

`p(S
n(F0),S n(G0)) ≤ ‖Z′n−Z′′n‖p = ‖Zn‖p

for all n≥ 0, because (Z′n,Z
′′
n )∼ (S n(F0),S n(G0)). Write Zn as

Zn = Lp- lim
k→∞

k

∑
j=1

L(v j)(X(v j)−Y (v j))

for a suitable enumeration v1,v2, ... of Nn and observe that, conditioned on T, the
right-hand sum forms an Lp-martingale in k≥ 1. As in the proof of Proposition 5.33,
we must distinguish the cases 1< p≤ 2 and p≥ 2 to complete our argument.
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CASE 1: 1< p≤ 2. Then we infer with the help of the Topchiı̆-Vatutin inequality
B.1 in the Appendix that

E(|Zn|p|T) ≤ 2 lim
k→∞

k

∑
j=1
|L(v j)|pE|X(v j)−Y (v j)|p

= 2 ∑
j≥1
|L(v j)|pE|X(v j)−Y (v j)|p

= 2`p(F0,G0)p
∑
|v|=n
|L(v)|p a.s.

Since, furthermore, E(∑|v|=n |L(v)|p) = ‖∑i≥1 |Ti|p‖n
1 [use Lemma 5.5], we obtain

(5.51) by taking unconditional expectation in the previous estimation.

CASE 2: p≥ 2. Put Σ 2
1 := ∑i≥1 Ti(∅)2. By proceeding as in the proof of Propo-

sition 5.33(iii), but with X(i)−Y (i) instead of Xi− µ and m = 1, n = ∞, it then
follows by use of Burkholder’s inequality B.4 and Jensen’s inequality that

E

(∣∣∣∣∣∑i≥1
Ti(∅)(X(i)−Y (i))

∣∣∣∣∣

p ∣∣∣∣∣T
)

≤ bp
pE



(

∑
i≥1

Ti(∅)2(X(i)−Y (i))2

)p/2 ∣∣∣∣∣T




≤ bp
p Σ

p
1 E



(

∑
i≥1

Ti(∅)2

Σ 2
1

(X(i)−Y (i))2

)p/2 ∣∣∣∣∣T




≤ bp
p Σ

p
1 E|X(1)−Y (1)|p

≤ bp
p Σ

p
1 `

p
p(F

0,G0) a.s.

and thereby

`p(S (F0),S (G0)) ≤
∥∥∥∥∥∑i≥1

Ti(X(i)−Y (i))

∥∥∥∥∥
p

≤ bp ‖Σ‖p `p(F0,G0),

where bp only depends on p. This proves (5.51) for n = 1. But in the same manner,
we obtain for general n

`p(S
n(F),S n(G)) ≤

∥∥∥∥∥ ∑
|v|=n

L(v)(X(v)−Y (v))

∥∥∥∥∥
p

≤ bp ‖Σn‖p `p(F0,G0),

where Σ 2
n := ∑|v|=n L(v)2. Hence, the proof of (5.51) will be complete once we have

shown that
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‖Σn‖p ≤ ‖Σ‖n
p (5.54)

for all n ≥ 1. To this end put Σ(v) := ∑i≥1 Ti(v)
2 for v ∈ T and recall from (5.17)

that Fk = σ(T (v) : |v| ≤ k−1) for k ≥ 1. Then

E(Σ p
n |Fn−1) = E



(

∑
|v|=n−1

L(v)2
Σ(v)2

)p/2 ∣∣∣∣∣Fn−1




= Σ
p
n−1E



(

∑
|v|=n−1

L(v)2

Σ 2
n−1

Σ(v)2

)p/2 ∣∣∣∣∣Fn−1




≤ Σ
p
n−1E

(
∑

|v|=n−1

L(v)2

Σ 2
n−1

Σ(v)p

∣∣∣∣∣Fn−1

)

= Σ
p
n−1 ‖Σ‖p

p a.s.

for each n≥ 2, which clearly gives (5.54) upon taking expectations and iteration.

(b) Let us first note that it suffices to show (5.52) because then (5.53) can be easily
deduced with the help of (5.41) and the obvious inequality |EF −EG| ≤ `p(F,G),
namely

Cp(T )n/p `p(F0,G0)+nλpκ
n−1
p
∣∣EF−EG

∣∣

≤ Cp(T )n/p `p(F,G)+

(
nλp

κp
+1
)

κ
n
p
∣∣EF−EG

∣∣

≤
(

nλp

κp
+2
)

κ
n
p `p(F,G)

for all F,G ∈P p(R).
Similar to the proof of part (b) of the previous lemma, we obtain with the help of

part (a) and Minkowski’s inequality that

`p(S
n(F),S n(G)) ≤

∥∥∥∥∥ ∑
|v|=n

L(v)
((

X(v)−Y (v)
)
+(EF−EG)

)∥∥∥∥∥
p

≤
∥∥∥∥∥ ∑
|v|=n

L(v)
(
X(v)−Y (v)

)
∥∥∥∥∥

p

+ |EF−EG|
∥∥∥∥∥ ∑
|v|=n

L(v)

∥∥∥∥∥
p

= ‖Zn‖p + |EF−EG|
∥∥∥∥∥ ∑
|v|=n

L(v)

∥∥∥∥∥
p

≤ bp Cp(T )n/p `p(F0,G0)+ |EF−EG|
∥∥∥∥∥ ∑
|v|=n

L(v)

∥∥∥∥∥
p

(5.55)
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for all n ≥ 1, where bp can be chosen as 21/p if 1 < p ≤ 2. This leaves us with the
task to give an estimate for an := ‖∑|v|=n L(v)‖p, which will be accomplished by
another martingale argument involving the Topchiı̆-Vatutin inequality if 1 < p≤ 2,
and the Burkholder inequality if p≥ 2.

CASE 1: 1 < p ≤ 2. We put U(v) := ∑i≥1 Ti(v), α := Cp(T )1/p, β := EU(v)
and γ := ‖U(v)− β‖p = ‖∑i≥1 Ti− β‖p. Since ∑i≥1 Ti ∈ Lp and p > 1, we have
|β | ≤ a1 < ∞. By a similar argument as in (a), we see that ∑|v|=n L(v)(U(v)− β )
conditioned on Fn is the limit of an Lp-martingale (use that U(v) is independent of
Fn), whence the Topchiı̆-Vatutin inequality yields

E

(∣∣∣∣∣ ∑
|v|=n

L(v)(U(v)−β )

∣∣∣∣∣

p ∣∣∣∣∣Fn

)
≤ 2γ

p
∑
|v|=n
|L(v)|p a.s.

As a consequence,

an+1 =

∥∥∥∥∥ ∑
|v|=n

L(v)U(v)

∥∥∥∥∥
p

≤
∥∥∥∥∥ ∑
|v|=n

L(v)(U(v)−β )

∥∥∥∥∥
p

+ |β |an

≤ 21/p
γ

∥∥∥∥∥ ∑
|v|=n
|L(v)|p

∥∥∥∥∥

1/p

1

+ |β |an

= 21/p
γ α

n + |β |an (5.56)

for all n≥ 1, which leads to

an+1 ≤ 21/p
γ

n−1

∑
k=0
|β |kα

n−k + |β |na1

≤ (n+1)(21/p
γ +a1)(|β |∨α)n = (n+1)21/p

λpκ
n
p (5.57)

for all n ≥ 1. Since this inequality trivially holds for n = 0, we finally obtain the
asserted inequality (5.52) from (5.55) and (5.57).

CASE 2: p≥ 2. In this case, we obtain with the Burkholder inequality that

E

(∣∣∣∣∣ ∑
|v|=n

L(v)(U(v)−β )

∣∣∣∣∣

p ∣∣∣∣∣Fn

)
≤ bp

pE



(

∑
|v|=n

L(v)2(U(v)−β )2

)p/2 ∣∣∣∣∣Fn




≤ bp
p γ

p
Σ

p
n a.s.

which upon taking expectations on both sides and using (5.56) provides us with
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∥∥∥∥∥ ∑
|v|=n

L(v)(U(v)−β )

∥∥∥∥∥
p

≤ bp γ ‖Σ1‖n
p = bp γ α

n

and thus [+ also (5.56)]

an+1 ≤
∥∥∥∥∥ ∑
|v|=n

L(v)(U(v)−β )

∥∥∥∥∥
p

+ |β |an ≤ bp γ α
n + |β |an (5.58)

for all n≥ 1. For the remaining arguments we can refer to the previous case. ut

Now we can turn to the proofs of the theorems stated above.

Proof (of Theorem 5.47). As EC = 0 is assumed, S defines a self-map of P p
0 (R) by

Corollary 5.35. It is also an α-contraction on (P p
0 (R), `p) with α := ‖∑i≥1(Ti)

2‖1/p
p/2

if p = 2 [by Lemma 5.50(a)], and an αm-quasi-contraction with αm := bp αm for
suitable m ≥ 1 if p > 1 [by Lemma 5.51(a)]. Therefore, the assertion follows from
Banach’s fixed point theorem C.2 or its generalization C.4 in combination with the
contraction inequality (5.49) or (5.51), respectively. ut

Proof (of Theorem 5.48). The existence of S in Lp-sense follows again from Corol-
lary 5.35, while contraction inequality (5.53) shows that S is a quasi-contraction
on P p(R), viz.

`p(S
n(F),S n(G)) ≤ cκ

n `p(F,G)

for any κ ∈ (0,κp), F,G∈P p(R), n≥ 1 and a suitable c = c(κ)> 0. All assertions
now follow from Banach’s fixed point theorem C.4 for quasi-contractions. ut

Proof (of Theorem 5.49). First note that EC = 0 and E(∑i≥1 Ti)= 1 entail ES (F)=
EF = c for all F ∈P p

c (R). Hence, S is a self-map of P p
c (R) for any c ∈ R.

Moreover, (5.52) simplifies to

`p(S
n(F),S n(G)) ≤ bp

∥∥∥∥∥∑i≥1
T 2

i

∥∥∥∥∥

n/2

p/2

`p(F,G)

for all n≥ 1 and F,G ∈P p
c (R) because `p(F,G) = `p(F0,G0). Hence S is also a

quasi-contraction on P p
c (R) and therefore has a unique fixed point Gc by Theorem

C.4. It remains to verify that Gc = δc ∗G0 in the case when ∑i≥1 Ti = 1 a.s. By the
uniqueness property of Gc, it suffices to verify that S (δc ∗G0) = δc ∗G0. Choose
iid (C,T )-independent random variables X1,X2, ... with law G0. Then

S (δc ∗G0) = L

(
∑
i≥1

Ti(Xi + c)+C

)

= L

(
∑
i≥1

TiXi + c+C

)
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= δc ∗L
(

∑
i≥1

TiXi +C

)

= δc ∗S (G0)

= δc ∗G0

yields the desired conclusion. ut

5.5.4 Contraction conditions if p> 2 and ∑i≥1 |Ti| ∈ Lp

If p> 2 and ∑i≥1 Ti ∈ Lp is replaced by the generally stronger condition ∑i≥1 |Ti| ∈
Lp, then we can trade in the contraction condition ‖∑i≥1 T 2

i ‖p/2 < 1 for a weaker
one as the following results due to RÖSLER [102] show. However, proofs are be-
coming more involved. Let us define

m(θ) := E

(
∑
i≥1
|Ti|θ

)

and note that m(q)∨m(p)< 1 for 0< q< p<∞ implies m(r)< 1 for any r ∈ [q, p]
because m is convex on [2, p] [+ Problem 5.9].

Theorem 5.52. Let p> 2. If

C ∈ Lp
0 , ∑

i≥1
|Ti| ∈ Lp and m(2)∨m(p)< 1,

then S is a self-map of P p
0 (R) with a unique geometrically `p-attracting

fixed point G0 in this set.

Theorem 5.53. Let p> 2. If

C, ∑
i≥1
|Ti| ∈ Lp, m(2)∨m(p)< 1 and

∣∣∣∣∣E
(

∑
i≥1

Ti

)∣∣∣∣∣< 1,

then S exists in Lp-sense and has a unique geometrically `p-attracting fixed
point G0 in (P p(R), `p).

Proof (of Theorem 5.52). Here we will proceed in a different way than before and
prove that S is locally contractive on (P p

0 (R), `p) in the sense of Theorem C.5
[+ (5.59) below]. In particular, we will not make use of the contraction lemma
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5.51. The first step is to show the result for integral p > 2 (the only case actually
considered by RÖSLER in [102]).

So let 2< p ∈N. We prove by induction that, for each q ∈ {1, ..., p}, there exists
ρq ∈ (0,1) such that

`q
q(S

n(F),S n(G)) ≤ cq ρ
n
q (5.59)

for all F,G ∈P p
0 (R), n ≥ 1 and a suitable cq ∈ R> which may depend on F,G.

Observe that this corresponds to (C.5) when choosing F = S (G).

Hereafter, K ∈ R> shall denote a generic constant which may differ from line
to line but does not depend on n. Recall from above that m(2)∨m(p) < 1 entails
m(q)< 1 for all q ∈ [2, p].

If q = 1 or = 2, we may invoke Lemma 5.50 to find

`2
1(S

n(F),S n(G)) ≤ `2
2(S

n(F),S n(G)) ≤ m(2)n `2
2(F,G)

for all n≥ 1 and F,G ∈P2
0 (R), which clearly shows (5.59) in this case. We further

see that S forms a contraction on (P2
0 (R), `2) and hence possesses a unique fixed

point G0 in this space. Since P2
0 (R)⊃P p

0 (R), it follows that G0 is also the unique
fixed point in P p(R) once (5.59) has been verified for q = p.

For the inductive step suppose that (5.59) holds for any r ∈ {1, ...,q−1} and let
(Ui)i≥1 be a sequence of iid Unif(0,1) random variables which are further indepen-
dent of (C,T ). Fixing any F,G ∈Pq

0 (R) throughout the rest of the proof, put

Yn,i := S n(F)−1(Ui)−S n(G)−1(Ui), n≥ 1

and note that ‖Yn,i‖r = `r(S n(F),S n(G)) for all i≥ 1,n≥ 0 and r ∈ [1,q]. Since

`q
q(S

n+1(F),S n+1(G)) ≤ E

∣∣∣∣∣∑i≥1
TiYn,i

∣∣∣∣∣

q

≤ lim
m→∞

E

(
m

∑
i=1
|TiYn,i|

)q

we will further estimate the last expectation for arbitrary m ∈ N by making use of
the multinomial formula which provides us with

E

(
m

∑
i=1
|TiYn,i|

)q

= E

(
m

∑
i=1
|TiYn,i|q

)
+E


 ∑

0≤r1 ,...,rm<q,
r1+...+rm=q

q!
r1! · ... · rm!

m

∏
j=1
|TjYn, j|r j


 .

The first term on the right-hand side obviously equals m(q)`q
q(S n(F),S n(G)),

while the second may be further computed as follows by conditioning upon T and
using the fact that the Yn,i for any fixed n are iid:
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E


 ∑

0≤r1 ,...,rm<q,
r1+...+rm=q

q!
r1! · ... · rm!

m

∏
j=1
|TjYn, j|r j




= E


 ∑

0≤r1 ,...,rm<q,
r1+...+rm=q

q! E|Yn,1|r1 · ... ·E|Yn,1|rm

r1! · ... · rm!

m

∏
j=1
|Tj|r j




=

(
m

∏
j=1
`

r j
r j(S

n(F),S n(G))

)
E


 ∑

0≤r1 ,...,rm<q,
r1+...+rm=q

q!
r1! · ... · rm!

m

∏
j=1
|Tj|r j




≤ K ρ
nE

(
m

∑
i=1
|Ti|
)q

where the inductive hypothesis has been utilized to give the last estimate with ρ :=
max1≤s≤q−1 ρs. The reader should notice that the constant K is not only independent
of n but of m as well. Hence, by taking the limit m→ ∞, we find that

`q
q(S

n+1(F),S n+1(G)) ≤ m(q)`q
q(S

n(F),S n(G))+K ρ
n

for all n≥ 0 and thereupon

`q
q(S

n+1(F),S n+1(G)) ≤ m(q)n+1 `q
q(F,G)+K

n

∑
k=1

ρ
km(q)n−k

≤
(
`q

q(F,G)+Kn
)
(m(q)∨ρ)n+1

for all n≥ 0 which implies (5.59) for any ρq ∈ (m(q)∨ρ,1). By an appeal to The-
orem C.5, we conclude that, for any F ∈P p

0 (R), S n(F) converges to a fixed point
in this set which must be unique by what has been stated above.

We turn to the second step which aims at an extension of the assertion to general
p > 2 with integer part p̂, say. Let r ∈ N be such that 2r < p ≤ 2r+1 and s :=
p/2r+1 ∈ (0,1]. From the first part of the proof, we know that (5.59) holds true for
every q ∈ {1, ..., p̂}, and since `α(·, ·) is nondecreasing in α , this readily extends to
all q ∈ [1, p̂ ]. We will show hereafter that (5.59) is also true for q = p (and thus for
all q ∈ [1, p]) which finally proves the theorem in full generality.

Let us introduce the following operator ∆ and its k-fold iterations ∆ k: For any
nonnegative random variable W define

∆W := (W −EW )2, ∆
2W =

(
(W −EW )2−VarW

)2
, etc.

and ∆ 0W :=W . Naturally, ∆W = ∞ is stipulated if EW = ∞. We note that

E∆
kW ≤ E(∆ k−1W )2 ≤ 2E(∆ k−2W )4 ≤ ...≤ 2k−1EW 2k

(5.60)
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holds true for any k ≥ 1. The reader is asked for a proof in Problem 5.60.

By repeated use of the Burkholder inequality B.4 (in the by now familiar manner
after conditioning on T ) and the subadditivity of x 7→ xα for x ≥ 0 and 0 < α ≤ 1,
we now obtain
∥∥∥∥∥∑i≥1

TiYn,i

∥∥∥∥∥
p

≤ K

∥∥∥∥∥∑i≥1
T 2

i Y 2
n,i

∥∥∥∥∥

1/2

p/2

≤ K



∥∥∥∥∥∑i≥1

T 2
i (Y

2
n,i−EY 2

n,i)

∥∥∥∥∥

1/2

p/2

+
(
EY 2

n,1
)1/2

∥∥∥∥∥∑i≥1
T 2

i

∥∥∥∥∥

1/2

p/2




≤ K



∥∥∥∥∥∑i≥1

T 4
i ∆Y 2

n,i

∥∥∥∥∥

1/4

p/4

+
(
EY 2

n,1
)1/2

∥∥∥∥∥∑i≥1
|Ti|
∥∥∥∥∥

1/2

p




...

≤ K



∥∥∥∥∥∑i≥1

T 2r+1

i ∆
rY 2

n,i

∥∥∥∥∥

1/2r+1

s

+
r−1

∑
j=0

(
E∆

jY 2
n,1
)1/2 j+1

∥∥∥∥∥∑i≥1
|Ti|
∥∥∥∥∥

1/2

p




≤ K



∥∥∥∥∥∑i≥1
|Ti|p

(
∆

rY 2
n,i
)s

∥∥∥∥∥

1/2r+1

1

+
r−1

∑
j=0

(
E∆

jY 2
n,1
)1/2 j+1

∥∥∥∥∥∑i≥1
|Ti|
∥∥∥∥∥

1/2

p




≤ K


∥∥∆

rY 2
n,1
∥∥1/2r+1

s

∥∥∥∥∥∑i≥1
|Ti|p

∥∥∥∥∥

1/2r+1

1

+
r−1

∑
j=0

(
E∆

jY 2
n,1
)1/2 j+1

∥∥∥∥∥∑i≥1
|Ti|
∥∥∥∥∥

1/2

p




for all n≥ 1. Use (5.60), the definition of Yn,1, and (5.59) for p̂ to infer

(
E∆

jY 2
n,1
)1/2 j+1

≤
(

2 j−1EY 2 j+1

n,1

)1/2 j+1

≤ 2‖Yn,1‖2 j+1

≤ 2‖Yn,1‖p̂ = 2`p̂(S
n(F),S n(G)) ≤ 2c p̂ ρ

n
p̂

for any j ∈ {0, ...,r−1} and n≥ 0. By combining this with ‖∑i≥1 |Ti|p‖1 =m(p)<
1, the above estimation finally provides us with

`p(S
n+1(F),S n+1(G)) ≤

∥∥∥∥∥∑i≥1
TiYn,i

∥∥∥∥∥
p

≤ K ρ
n+1

for all n≥ 0 and a suitable ρ ∈ (0,1). ut

Proof (of Theorem 5.53). We are now in a more comfortable situation because the
bulk of work has already been carried out in the previous proof. First note that all
assumptions of Theorem 5.48 with p = 2 are fulfilled which allows us to infer the
existence of a unique fixed point G0 ∈P2(R). By Lemma 5.44(a), its mean value
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equals c := EG0 = (1−β )−1EC with β := E(∑i≥1 Ti). The reader can easily check
that, if F ∈P p

c (R), then ESn(F) = c for all n ≥ 0 and that this further implies
S n(F)c = S n(Fc) (recall that Fc = F0(·− c)) and thereupon [+ Problem 5.29]

`p(S
n+1(Fc),S n(Fc)) = `p(S

n+1(F)c,S n(F)c)

= `p(S
n+1(F)0,S n(F)0)

(5.61)

for all F ∈P p(R) and n≥ 0.

Now fix any F ∈P p(R), define Yn,i as in the previous proof, but for the pair
(S (Fc),Fc). Then (5.59) for q = p can be shown as in the previous proof, giving

`p
p(S

n+1(Fc),S n(Fc)) ≤
∥∥∥∥∥∑i≥1

TiYn,i

∥∥∥∥∥

p

p

≤ cpρ
n
p

for all n≥ 0 and suitable constants cp ∈ R> and ρp ∈ (0,1). Note further that

ES n+1(F)−ES n(F) = β
n (ES (F)−EF)

for all n ≥ 0, as has been shown in the proof of Lemma 5.44 [+ (5.46)]. By com-
bining these facts with (5.41) and (5.61), we finally obtain

`p(S
n+1(Fc),S n(Fc)) ≤ `p(S

n+1(F)0,S n(F)0)+
∣∣ES n+1(F)−ES n(F)

∣∣
= `p(S

n+1(F)0,S n(F)0)+
∣∣ES n+1(F)−ES n(F)

∣∣
= `p(S

n+1(Fc),S n(Fc))+
∣∣ES n+1(F)−ES n(F)

∣∣

≤ c1/p
p ρ

n/p
p +β

n |ES (F)−EF |

for all n ≥ 0, that is geometric contraction of every iteration sequence in P p(R).
By invoking Theorem C.5, we conclude that G0 is the unique geometrically `p-
attracting fixed point in this set. ut

5.5.5 A global contraction condition if p≥ 1

None of the previous results has provided conditions ensuring global contraction of
S on (P p(R), `p) if p > 1. We make up for this by the following theorem, again
taken from [102]. It should be compared with its counterpart Theorem 5.45 for the
case 0< p≤ 1.

Theorem 5.54. Let p≥ 1. If
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C ∈ Lp and

∥∥∥∥∥∑i≥1
|Ti|
∥∥∥∥∥

p

< 1,

then S is a contraction on (P p(R), `p) and has a unique geometrically at-
tracting fixed point in this space.

Proof. In view of Banach’s fixed point theorem C.2 it suffices to prove that S forms
a contraction on (P p(R), `p). Pick any F,G ∈P p(R) and then as usual iid and
(C,T )-independent random variables (X1,Y1),(X2,Y2), ... such that (X1,Y1)∼ (F,G)
and ‖X1−Y1‖p = `p(F,G). Setting Σn := ∑

n
i=1 |Ti|, it follows by a similar argument

as in the proof of Proposition 5.33(iii) that

E

((
n

∑
i=1
|Ti(Xi−Yi)|

)p ∣∣∣∣∣T
)
≤ Σ

p
n E|X1−Y1|p = Σ

p
n `

p
p(F,G) a.s.

for all n ≥ 1 and therefore upon taking expectations, letting n→ ∞ and using the
monotone convergence theorem

`p(S (F),S (G)) ≤
∥∥∥∥∥∑i≥1
|Ti(Xi−Yi)|

∥∥∥∥∥
p

≤
∥∥∥∥∥∑i≥1
|Ti|
∥∥∥∥∥

p

`p(F,G).

which proves that S is indeed a contraction on on (P p(R), `p). ut

The following list summarizes the results of the last two subsections concerning
contraction properties of S :

(a) Conditions of Theorem 5.47 ⇒ S is a quasi-contraction on P p
0 (R)

and has a unique fixed point in this set (p> 1).
(b) Conditions of Theorem 5.48 ⇒ S is a quasi-contraction on P p(R)

and has a unique fixed point in this set (p> 1).
(c) Conditions of Theorem 5.49⇒S is a quasi-contraction on P p

c (R) for
each c ∈ R and has a unique fixed point in each of these sets (p> 1).

(d) Conditions of Theorem 5.52⇒ S is a self-map of P p
0 (R) and has a

unique fixed point in this set (p> 2).
(e) Conditions of Theorem 5.53⇒S exists in Lp-sense and has a unique

fixed point in P p(R) (p> 2).
(f) Conditions of Theorem 5.54⇒S is a contraction on P p(R) and has

a unique fixed point in this set (p≥ 1).
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5.5.6 Existence of exponential moments

We close this chapter with a discussion of the question which conditions on (C,T )
entail that a fixed point G0 of S has exponential moments, that is

∫
etx G0(dx)< ∞

for all t ∈ [−t0, t0] and some t0 > 0. In other words, we ask for conditions im-
plying that 0 is an inner point of the natural domain {t ∈ R : ψG0(t) < ∞} of the
mgf of G0. Our analysis will include exponential moments of an iteration sequence
(S n(F))n≥0. The two results to be shown thereafter, once again due to RÖSLER
[102], are stated first.

Theorem 5.55. Suppose that

sup
i≥1
|Ti| ≤ 1 a.s. and

∥∥∥∥∥∑i≥1
T 2

i

∥∥∥∥∥
1

< 1.

Suppose further that

Eexp

(
t ∑

i≥1
|Ti|
)
< ∞ and EetC < ∞

for all t in an open neighborhood of zero and that EC = 0 if E(∑i≥1 Ti) = 1.
Let a := (1−E(∑i≥1 Ti))

−1EC if E(∑i≥1 Ti) 6= 1, and arbitrary otherwise.
Finally, let F be any distribution with mgf ψF satisfying

ψF(t)≤ eat+b0t2
(5.62)

for some b0 > 0 and all t in an open neighborhood of zero, and let G denote
the `2-limit of S n(F), thus a fixed point of S in (P2(R), `2). Then there
exists an open neighborhood (−t0, t0) and some b1 ≥ b0 such that

ψH(t)≤ eat+b1t2
(5.63)

whenever t ∈ (−t0, t0) and H ∈ {S n(F) : n≥ 0}∪{G}.

Additional conditions on (C,T ) lead to the following improvement of the previ-
ous theorem.

Theorem 5.56. Given the assumptions of Theorem 5.55, suppose further that

∑
i≥1

T 2
i ≤ 1 a.s. and Ee3s|C| < ∞ for some s> 0

and, in the case E(∑i≥1 Ti) 6= 1, that
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Eexp

(
3

∣∣∣∣∣a ∑
i≥1

Ti

∣∣∣∣∣

)
< ∞.

Then assertion (5.63) holds true for all t ∈ [−s,s], some b1 > 0, and with a= 0
if E(∑i≥1 Ti) = 1.

The reader should notice that property (5.62) entails that F has absolute moments
of arbitrary order, i.e. F ∈P p(R) for all p> 0. This follows because

Eet|X | ≤ ψF(t)+ψF(−t)

for some t > 0 and any random variable X with law F .

Proof (of Theorem 5.55). Since |Ti| ≤ 1 for all i ≥ 1, we have ∑i≥1 T 2
i ≤ ∑i≥1 |Ti|

and thus

Eexp

(
t ∑

i≥1
T 2

i

)
≤ Eexp

(
t ∑

i≥1
|Ti|
)
< ∞

for all t in an open neighborhood of zero. Defining R1 := ∑i≥1 Ti− 1 and R2 :=
∑i≥1 T 2

i −1, consider the function

fb(t) := EetC+atR1+bt2R2

for any b > 0, which is finite for all t in an open neighborhood of zero (depending
on b). Then fb is infinitely often differentiable on this set and

f ′b(t) = E(C+aR1 +2btR2)e tC+atR1+bt2R2 ,

f ′′b (t) = E
(

2bR2 +(C+aR1 +2btR2)
2
)

etC+atR1+bt2R2 .

By choice of a, this implies

f ′b(0) = E(C+aR1) = 0 and f ′′b (0) = 2bER2 +E(C+aR1)
2,

and since ER2 < 0 by assumption, we can fix b1 ≥ b0 such that f ′′b1
(0)< 0. By com-

bining these facts with fb1(0) = 1, we find that fb1(t) ≤ 1 for all t in a sufficiently
small neighborhood (−t0, t0) of zero.

Now let F be a distribution satisfying (5.62) on (−t0, t0) which may require to
further reduce the given t0. We prove by induction over n ≥ 0 that (5.63) holds for
H = S n(F). If n = 0, this follows from (5.62), for b1 ≥ b0. So assume validity of
(5.63) for some S n(F) and pick a (C,T )-independent sequence (Xi)i≥1 of iid ran-
dom variables with common law S n(F). Using supi≥1 |Ti| ≤ 1 a.s. and the inductive
hypothesis, we infer
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Eexp

(
t

(
∑
i≥1

TiXi +C

)∣∣∣∣∣C,T
)

= etC
∏
i≥1

ψS n(F)(tTi)

≤ eat+b1t2
e tC+atR1+bt2R2 a.s.

and then

ψS n+1(F)(t) = Eexp

(
t

(
∑
i≥1

TiXi +C

))
≤ eat+b1t2

fb1(t) ≤ eat+b1t2

for all t ∈ (−t0, t0) which is the desired inequality. Finally, use S n(F)
w→ G and

thus S n(F)−1(U)→ G−1(U) a.s. for any Unif(0,1) variable U to conclude with
the help of Fatou’s lemma that

ψG(t) ≤ liminf
n→∞

ψS n(F)(t) ≤ eat+b1t2

for all t ∈ (−t0, t0) holds true as well. ut

We could have arrived at the very last conclusion also by observing that (5.63)
for the S n(F) implies uniform integrability of (exp(tS n(F)−1(U)))n≥0 for all t ∈
(−t0, t0), which in turn gives ψS n(F)(t)→ ψG(t) and thus again validity of (5.63)
for ψG(t) and all t from this interval.

Proof (of Theorem 5.56). Keeping the notation from before, it is obviously enough
to show fb(t) ≤ t for all t ∈ [−s,s] and a sufficiently large b. By Theorem 5.55,
this is true for all |t| ≤ ε < s and a suitable ε , which does not depend on b because
R2 ≤ 0 a.s. here. If |t| ∈ (ε,s], then use the generalized Hölder inequality [+ e.g.
[13, p. 78]] and the afore-mentioned property of R2 to infer

fb(t) ≤
∥∥etC∥∥

3

∥∥eatR1
∥∥

3

∥∥∥ebt2R2
∥∥∥

3

≤
∥∥∥et|C|

∥∥∥
3

∥∥∥∥∥exp

(
as

∣∣∣∣∣∑i≥1
Ti

∣∣∣∣∣+as

)∥∥∥∥∥
3

∥∥∥ebε2R2
∥∥∥

3

where the last product is finite by the conditions of the theorem. Since, furthermore,
P(R2 < 0) > 0, the last factor converges to 0 as b→ ∞. Obviously, this yields the
desired conclusion. ut

Problems

Problem 5.57. Complete the proof of Lemma 5.44.

Problem 5.58. Consider the situation stated in Lemma 5.50(b) and prove the fol-
lowing assertions:
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(a) ES (F)−ES (G) = E(∑i≥1 Ti)(EF−EG) for all F,G ∈P1(R).
(b) If (X1,Y1),(X2,Y2), ... are iid and (C,T )-independent random variables such

that (X1,Y1)∼ (F0,G0) and ‖X1−Y1‖2 = `2(F0,G0) for any F,G ∈P2(R),
then

`2
2(S (F)0,S (G)0) ≤

∥∥∥∥∥∑i≥1
Ti(Xi−Yi)

∥∥∥∥∥

2

2

+Var

(
∑
i≥1

Ti

)
(EF−EG)2.

(c) Use part (b), (5.49) and

`2
2(S (F),S (G)) = `2

2(S (F)0,S (G)0)+(ES (F)−ES (G))2,

valid by (5.42) of Lemma 5.21, to give an alternative proof of inequality
(5.50), the difference being that S and the centering operation are applied in
reverse order.

Finally, consider the situation in Lemma 5.51(b) for p = 2 and adopt the notation of
its proof, viz. an = ‖∑|v|=n L(v)‖2 for n≥ 1, α = ‖∑i≥1 T 2

i ‖
1/2
1 , β =E(∑i≥1 Ti) and

γ 2 = Var(∑i≥1 Ti). By improving the argument from there, prove the following:

(d) For all n≥ 1 and F,G ∈P2(R),

`2
2(S

n(F),S n(G)) = a2
n

(
`2

2(F
0,G0)+(EF−EG)2

)

as well as a2
n = β 2(n−1)a1 + γ 2

∑
n−2
k=0 β 2kα2(n−k−1) hold true. What is the re-

sulting estimate for `2
2(S

n(F),S n(G)) alternative to (5.50)?

Problem 5.59. Replacing the condition E(∑i≥1 Ti) = 1 with E(∑i≥1 Ti) = −1 in
Theorem 5.49, prove the following assertions:

(a) S 2 fulfills the assumptions of Theorem 5.49 and hence possesses a unique
geometrically `p-attracting fixed point Gc in P p

c (R) for each c ∈ R.
(b) S itself has at most one fixed point, namely G0. [Hint: Lemma 5.44]

Problem 5.60. Given any nonnegative random variable W , define ∆ 0W :=W and

∆W := (W −EW )2, ∆
2W =

(
(W −EW )2−VarW

)2
, etc.

with the usual convention that ∆W := ∞ if EW = ∞. Show that

E∆
kW ≤ E(∆ k−1W )2 ≤ 2E(∆ k−2W )4 ≤ ...≤ 2k−1EW 2k

for all k ≥ 1 [+ (5.60)].



5.6 An application: Quicksort asymptotics 191

5.6 An application: Quicksort asymptotics

In Section 1.4, we gave a brief introduction of the sorting algorithm Quicksort
and provided an outline of how to determine the asymptotic behavior, as n→ ∞,
of the number of key comparisons Xn necessary to sort a random list of n distinct
numbers, w.l.o.g. a random permutation of 1, ...,n. Here is a short summary of the
major findings from there. First of all, the crucial random recursive equation (1.20)
must be recalled, viz.

Xn
d
= X ′Zn−1 + X ′′n−Zn + n−1

for all n≥ 1, where X ′0 =X ′′0 = 0 and (X ′n)n≥1,(X ′′n )n≥1,(Zn)n≥1 are independent with
L (X ′n) = L (X ′′n ) = L (Xn) and L (Zn) = Unif{1, ...,n} for each n≥ 1. We further
recall that EXn = 2n logn+O(n) [+ Lemma 1.13] and VarXn = (7− 2

3 π2)n2 +

o(n2) [+ Problem 1.16]. Defining the normalization

X̂n :=
Xn−EXn

n
,

the above distributional equation may be rewritten in terms of X̂n, namely [+ (1.24)
and (1.25)]

X̂n
d
=

Zn−1
n

X̂ ′Zn−1 +
n−Zn

n
X̂ ′′n−Zn + gn(Zn) (5.64)

for n≥ 2, where X̂0 = X̂1 := 0 and gn : {1, ...,n}→ R is defined by

gn(k) :=
n−1

n
+

1
n
(EXk−1 +EXn−k−EXn) .

It is easily verified that Zn/n d→ Unif(0,1), and we will show in Lemma 5.62 that

lim
n→∞

gn(dnte) = g(t) := 1+2t log t +2(1− t) log(1− t) (5.65)

for all t ∈ (0,1) uniformly on compact subsets, where dxe := inf{n ∈ Z : x ≤ n}.
Therefore it seems plausible and will actually be the main result to be shown in this
section that X̂n

d→ X̂∞ for some random variable X̂∞ with a law which in P2
0 (R)

uniquely solves the so-called Quicksort equation

X̂∞

d
= UX̂ ′∞ +(1−U)X̂ ′′∞ +g(U) (5.66)

where X̂ ′∞, X̂
′′
∞ and U are independent with X̂ ′∞

d
= X̂ ′′∞

d
= X̂∞ and U d

= Unif(0,1).
Plainly, this is the SFPE pertaining to the smoothing transform S with

T1 =U, T2 = 1−U, T3 = T4 = ...= 0 and C = g(U),

and one can immediately assess that
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Fig. 5.2 The function g(t) = 1+2t log t +2(1− t) log(1− t).

(1) ∑i≥1 Ti = 1.
(2) ∑i≥1 T p

i =U p +(1−U)p < 1 and thus Cp(T )< 1 for all p> 1.
(3) EC = 0 because EU logU = E(1−U) log(1−U) =− 1

4 [+ Problem 5.63].
(4) ‖C‖p < ∞ for all p> 0 because g is bounded on (0,1).

Hence the conditions of Theorem 5.49 are fulfilled for each p> 1 and we conclude
from this result that S has indeed a fixed point in

⋂
p>1 P p

0 (R) which is unique
up to translations and has moments of arbitrary order. Denote by F the unique fixed
point with mean 0, and let Fn be the law of X̂n. Here is our main result of this section:

Theorem 5.61. In the given notation, Fn
`p−→ F for each p> 0.

For its proof, we first give a technical lemma that shows (5.65), that is the con-
vergence of gn(dnte) to g(t) = 1+2t log t +2(1− t) log(1− t) for t in the open unit
interval. The graph of g is shown in Figure 5.2.

Lemma 5.62. The function gn(dn ·e) converges pointwise to g on (0,1), and
the convergence is uniform on compact subsets. Moreover, the gn are uni-
formly bounded on [0,1], that is

sup
n≥1

max
1≤i≤n

gn(i)< ∞.

Proof. Putting `(t) := t log t and R(k) := EXk−2`(k), write

gn(dnte) =
n−1

n
+

1
n

(
2`(dnte−1)+R(dnte−1)

+2`(n−dnte)+R(n−dnte)−2`(n)−R(n)
)
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=
n−1

n
+2`

(dnte−1
n

)
+2`

(
n−dnte

n

)
− 2

n
logn

+
dnte−1

n
· R(dnte−1)
dnte−1

+
n−dnte

n
· R(n−dnte)

n−dnte −
R(n)

n
(5.67)

for all t ∈ (0,1) and n ∈ N. This implies the pointwise convergence of gn(dnte) as
n→ ∞, because limn→∞ R(n)/n exists and is finite by Lemma 1.13. We leave it to
the reader to verify that the convergence is uniform on compact subsets of (0,1) [+
Problem 5.64]. Replacing dnte with i in (5.67), the last assertion of the lemma is
immediate when using the convergence of R(n)/n in combination with the uniform
boundedness of ` on [0,1]. ut

Proof (of Theorem 5.61). The asserted convergence will be shown by an induction
over even integers p, which suffices by the monotonicity of `p(·, ·) in p.

STEP 1: p = 2.
Let U,V,W be independent Unif(0,1) variables, Gn = Unif{1/n,2/n, ...,1} for n≥
1 and

X̂ ′n := F−1
n (V ), n ∈ N, X̂ ′∞ := F−1(V ),

X̂ ′′n := F−1
n (W ), n ∈ N, X̂ ′′∞ := F−1(W ),

Zn := nG−1
n (U), n ∈ N.

Obviously, L (Zn) = Unif{1, ...,n}, and we have for n≥ 2 that

`2(Fn,F)≤
∥∥∥∥

Zn−1
n

X̂ ′Zn−1 +
n−Zn

n
X̂ ′′Zn−1 +gn(Zn)−UX̂ ′∞− (1−U)X̂ ′′∞−g(U)

∥∥∥∥
2

≤ϒ1,n +ϒ2,n +ϒ3,n,

where

ϒ1,n :=
∥∥∥∥

Zn−1
n

(X̂ ′Zn−1− X̂ ′∞)+
n−Zn

n
(X̂ ′′n−Zn − X̂ ′′∞)

∥∥∥∥
2
,

ϒ2,n :=
∥∥∥∥
(

Zn−1
n
−U

)
X̂ ′∞ +

(
n−Zn

n
− (1−U)

)
X̂ ′′∞

∥∥∥∥
2
,

and ϒ3,n := ‖gn(Zn)−g(U)‖2 ,

which are now further estimated individually.
Since the X̂ ′n, X̂

′′
n for n ∈ N0 are independent with mean zero, we infer

ϒ
2

1,n =
n

∑
i=1

P(Zn = i)E
(

i−1
n

(X̂ ′i−1− X̂ ′∞)+
n− i

n
(X̂ ′′n−i− X̂ ′′∞)

)2

=
1
n

n

∑
i=1

((
i−1

n

)2

E(X̂ ′i−1− X̂ ′∞)
2 +

(
n− i

n

)2

E(X̂ ′′n−i− X̂ ′′∞)
2

)
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=
1
n

n

∑
i=1

((
i−1

n

)2

`2
2(Fi−1,F)+

(
n− i

n

)2

`2
2(Fn−i,F)

)

=
2
n

n−1

∑
i=1

(
i
n

)2

`2
2(Fi,F).

As for ϒ2,n, we have the estimate

ϒ2,n ≤
(∥∥∥∥

Zn−1
n
−U

∥∥∥∥
2
+

∥∥∥∥
n−Zn

n
− (1−U)

∥∥∥∥
2

)
‖X̂ ′∞‖2

=

(
‖G−1

n (U)−U‖2 +
1
n
+‖(1−G−1

n (U))− (1−U)‖2

)
‖X̂ ′∞‖2

=

(
2(‖G−1

n (U)−U‖2 +
1
n

)
‖X̂ ′∞‖2.

Since Gn
w→U implies G−1

n (U)→U a.s., this further implies

lim
n→∞

ϒ2,n = 0.

For the third term ϒ3,n, we first point out that G−1
n (w)→ w actually holds true

for all w ∈ (0,1). Fixing w, we thus find εw > 0 and n0 ∈ N such that G−1
n (w) ∈

[w− εw,w+ εw] ⊂ (0,1) for all n ≥ n0. By combining this with Lemma 5.62, we
infer with the help of the dominated convergence theorem that

lim
n→∞

ϒ3,n = lim
n→∞
‖gn(Zn)−g(U)‖2 = 0.

Summarizing, we have shown that

`2(Fn,F) ≤
(

2
n

n−1

∑
i=1

(
i
n

)2

`2
2(Fi,F)

)1/2

+bn (5.68)

for all n≥ 2 and a suitable sequence (bn)n≥2 with limit zero. Setting an := `2(Fn,F)
and a∗n := max1≤i≤n ai, it follows upon using the well-known formula ∑

n
i=1 i2 =

1
6 n(n+1)(2n+1) in (5.68) that

an ≤ a∗n−1

(
n−1

∑
i=1

(
i
n

)2
)1/2

+bn

=
a∗n−1

n

(
1
3
(n−1)(2n−1)

)1/2

+bn

≤
(

2
3

)1/2

a∗n−1 +bn
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and thus the boundedness of the an. We leave it to the reader to further conclude
from this and (5.68) that an→ 0 as n→ ∞ [+ Problem 5.65].

STEP 2: p−2→ p.
Suppose that `q(Fn,F)→ 0 for any q≤ p−2 (inductive hypothesis). It is clear that
we still have

`p(Fn,F) ≤ ϒ1,n +ϒ2,n +ϒ3,n

if we replace ‖ ·‖2 by ‖ ·‖p in the definitions of the ϒi,n. It is also immediate that ϒ2,n
and ϒ3,n are still convergent to zero which leaves us with a study of

ϒ1,n :=
∥∥∥∥

Zn−1
n

(X̂ ′Zn−1− X̂ ′∞)+
n−Zn

n
(X̂ ′′n−Zn − X̂ ′′∞)

∥∥∥∥
p
.

Keeping in mind that ‖X̂ ′i − X̂ ′∞‖q = ‖X̂ ′′i − X̂ ′′∞‖q = `q(Fi,F) for any q ≤ p and
E(X̂ ′i − X̂ ′∞) = E(X̂ ′′i − X̂ ′′∞) = 0, we obtain

ϒ1,n =

(
n

∑
i=1

P(Zn = i)E
(

i−1
n

(X̂ ′i−1− X̂ ′∞)+
n− i

n
(X̂ ′′n−i− X̂ ′′∞)

)p
)1/p

=
1

n1/p

(
n

∑
i=1

[(
i−1

n

)p

E(X̂ ′i−1− X̂ ′∞)
p +

(
n− i

n

)p

E(X̂ ′′n−i− X̂ ′′∞)
p
]

+
p−1

∑
k=1

(
p
k

) n

∑
i=1

[(
i−1

n

)k

E(X̂ ′i−1− X̂ ′∞)
k
(

n− i
n

)p−k

E(X̂ ′′n−i− X̂ ′′∞)
p−k

])1/p

≤
(

1
n

n

∑
i=1

[(
i−1

n

)p

`p
p(Fi−1,F)+

(
n− i

n

)p

`p
p(Fn−i,F)

])1/p

+

(
1
n

p−2

∑
k=2

(
p
k

) n

∑
i=1

[(
i−1

n

)k

dk
k(Fi−1,F)

(
n− i

n

)p−k

`p−k
p−k(Fn−i,F)

])1/p

=

(
2
n

n−1

∑
i=1

(
i
n

)p

`p
p(Fi−1,F)

)1/p

+ cn,

where

cn :=

(
1
n

p−2

∑
k=2

(
p
k

) n

∑
i=1

[(
i−1

n

)k

dk
k(Fi−1,F)

(
n− i

n

)p−k

`p−k
p−k(Fn−i,F)

])1/p

is easily seen to converge to zero as n→ ∞ by making use of the inductive hypoth-
esis. Therefore we have shown that

`p(Fn,F) ≤
(

2
n

n−1

∑
i=1

(
i
n

)p

`p
p(Fi−1,F)

)1/p

+bn
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for all n≥ 2 and suitable bn convergent to zero as n→ ∞. The remaining argument
to conclude `p(Fn,F)→ 0 is the same as in the case p = 2. ut

Problems

Problem 5.63. Check that EU logU =− 1
4 if U d

= Unif(0,1).

Problem 5.64. Given the situation of Lemma 5.62, prove that the asserted conver-
gence gn(dnte)→ g(t) is uniform on compact subsets of (0,1).

Problem 5.65. Use (5.68) and the boundedness of an = `2(Fn,F) to show that an→
0 as n→ ∞.

Problem 5.66. If F as before denotes the Quicksort distribution and ψF its mgf,
prove that

ψF(t)≤ ebt2

for all t ≥ 0 and a suitable b > 0. [Remark: For further information the reader may
consult the article by FILL & JANSON [55].]

Problem 5.67. Consider the homogeneous version of the Quicksort equation,
viz.

X d
= UX1 +(1−U)X2, U d

= Unif(0,1), (5.69)

and show that

(a) every Cauchy distribution Cauchy(a,b), (a,b) ∈ R×R>, with λλ -density
ga,b(x) = 1

π

b
(x−a)2+b2 forms a solution to this equation.

(b) every convolution of the Quicksort distribution F with a Cauchy distri-
bution solves the Quicksort equation. [Remark: This is part of a stronger
result due to FILL & JANSON [54].]

(c) Stipulating Cauchy(a,0) = δa, parts (a) and (b) remain true for these degen-
erate distributions. How does this relate to Theorem 5.49.

5.7 The Hausdorff dimension of random Cantor sets: completing
the proof of Theorem 5.12

We return to the situation of Section 5.2 and will now complete the proof of Theorem
5.12 by MAULDIN & WILLIAMS [89] about the Hausdorff dimension of random
Cantor sets obtained from a random recursive construction [+ (RC-1)-(RC-4)].
Naturally adopting the notation from there, we are given a family J = {Jv : v ∈ T}
of random compact subsets of Rd which defines a random Cantor set C via

C =
⋂

n≥0

⋃

|v|=n

Jv.
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Assuming (RC-1)-(RC-4), Theorem 5.12 claims that the Hausdorff dimension of C
satisfies

P(dimH C= α|C 6= /0) = 1,

where
α := inf{θ ≥ 0 : m(θ)≤ 1} ∈ (0,d].

The simple half, viz. P(dimH C ≤ α|C 6= /0) = 1, has already been settled in 5.2.
This section is therefore devoted to the proof of the more difficult assertion that
P(dimH C≥ α|C 6= /0) = 1.

As usual, let T = (T1,T2, ...) and N = ∑i≥1 1{Ti>0} denote generic copies of T (v)
and N(v), respectively. Recall from (5.23) that

Yθ ,n = ∑
|v|=n

L(v)θ = ∑
|v|=n

diam(Jv)θ

diam(J)θ

for n ≥ 1 and θ ≥ 0, and put Yn := Y1,n. If m(α) = 1, then (Yα,n)n≥0 constitutes a
nonnegative martingale [+ Lemma 5.5], and we begin with two lemmata about this
martingale and its almost sure limit.

Lemma 5.68. In addition to the assumptions of Theorem 5.12, suppose that
m(α) = 1 and Yα,1 ∈ Lp for some p > 1. Then the martingale (Yα,n)n≥0 is
Lp-bounded, i.e.

sup
n≥0
‖Yα,n‖p < ∞.

Proof. W.l.o.g. we may assume α = 1, thus Yα,n = Yn. Recall that EYθ ,n = m(θ)n

for all θ > 0 and n∈N0, and that m(θ)< 1 if θ > 1. Put ν(r) := ‖Y1−1‖r for r≤ p
and Y (v) := ∑i≥1 Ti(v) for v ∈ T. Then the Y (v) are iid copies of Y1 and (Y (v))|v|=n
independent of Fn (defined in (5.17)) for each n.

We first show that each Yn is in Lp which must be done only for n≥ 2, for Y0 = 1
and Y1 ∈ Lp by assumption. Using Jensen’s inequality, we infer on {Yn−1 > 0}

Y p
n =

(
∑

|v|=n−1

L(v)
Yn−1

Yn−1Y (v)

)p

≤ ∑
|v|=n−1

L(v)
Yn−1

Y p
n−1Y (v)p

= Y p−1
n−1 ∑

|v|=n−1
L(v)Y (v)p.

Since {Yn > 0} ⊂ {Yn−1 > 0}, this implies
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EY p
n ≤ EY p

1 E

(
Y p−1

n−1 ∑
|v|=n−1

L(v)

)
= EY p

1 EY p
n−1

and thus an = ‖Yn‖p < ∞ for all n≥ 0 by an inductive argument.
Now recall (5.58), which in the present notation reads

an+1 ≤ an +

∥∥∥∥∥ ∑
|v|=n

L(v)(Y (v)−1)

∥∥∥∥∥
p

(5.70)

for each n≥ 0. Use inequality (B.5) in the Appendix (the Burkholder-Davis-Gundy
inequality specialized to weighted sums of iid random variables) after conditioning
with respect to Fn to infer

∥∥∥∥∥ ∑
|v|=n

L(v)(Y (v)−1)

∥∥∥∥∥

p

p

≤ cp

(
ν(2)pEY p/2

2,n +ν(p)pm(p)n
)

for all n ≥ 0 and some constant cp only depending on p, and then with the help of
the Cauchy-Schwarz inequality

EY p/2
2,n ≤ E

(
max
|v|=n

L(v) ∑
|v|=n

L(v)

)p/2

≤
(
E
(

max
|v|=n

L(v)p
))1/2 (

EY p
n

)1/2

≤ m(p)n/2ap/2
n

for all n≥ 0. By combining both estimates, we find in (5.70) that

an+1 ≤ an + c1/p
p

(
ν(2)m(p)n/2pa1/2

n +ν(p)m(p)n/p
)

and thereupon
an+1

an
≤ 1+Km(p)n/2p

for all n ≥ 0 and a suitable constant K ∈ R>, because m(p) < 1 and a1 ≤ a2 ≤ ...
(as (Y p

n )n≥0 forms a submartingale). Finally,

sup
n≥1
‖Yn‖p = ∏

n≥0

an+1

an
≤ ∏

n≥0
(1+Km(p)n/2p) < ∞

completes our proof. ut
Defining (Yα,n(v))n≥0 for any v ∈ T in the usual manner, namely

Yα,n(v) := ∑
|w|=n

[L(w)]αv , n≥ 0,
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the previous lemma implies that, for all v ∈ T,

Yα,n(v)→W (v) a.s. and in Lp,

where {W (v) : v ∈ T} forms a family of identically distributed random variables
in Lp

1 which are further independent if v ∈ {u : |u| = n} for any n ≥ 0. Denote by
G ∈P p(R≥) their common distribution and by W a generic copy.

Lemma 5.69. Given the assumptions of Lemma 5.68, the following assertions
hold true:

(a) For all v ∈ T and n ≥ 0, W (v) = ∑|w|=n[L(w]vW (vw), whence G con-
stitutes a fixed point of the homogeneous smoothing transform S asso-
ciated with T α = (T α

i )i≥1.
(b) q := P(W = 0) is the unique fixed point in [0,1) of the gf f (s) = EsN of

the counting variable N, where s∞ := 0.

Proof. (a) Naturally, it suffices to show the asserted equation for v = ∅. As the
WBP associated with (T (v)α)v∈T, (Yα,n)n≥0 = (Yα,n(∅))n≥0 satisfies the backward
equation

Yα,n = ∑
|w|=k

L(w)αYα,n−k(w)

for all n≥ k ≥ 1 [+ (5.16) and (5.18)]. Hence, by an appeal to Fatou’s lemma,

W (∅) = lim
n→∞

Yα,n ≥ ∑
|w|=k

L(w)α lim
n→∞

Yα,n−k = ∑
|w|=k

L(w)α W (w) a.s.

for all k ≥ 1. On the other hand, the previous inequality turns into an identity when
taking expectations, for m(α) = 1 and EW = 1, and then also without doing this,
i.e.

W (∅) = ∑
|w|=k

L(w)α W (w) a.s.

for any k ≥ 1, in particular S (G) = G.

(b) First note that EW = 1 implies q< 1. Using (a) and recalling our convention
that T1 ≥ T2 ≥ ..., we then obtain

q = P

(
N

∑
i=1

Ti(∅)W (i) = 0

)

= ∑
n≥0

P(N = n)P(W (i) = 0 for i = 1, ...,n)

= ∑
n≥0

P(N = n)qn

= f (q),
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that is the fixed-point property of q. The convexity of f on [0,1] in combination with
f (1) = P(N < ∞)≤ 1 then also shows the uniqueness of q in [0,1). ut

Turning to the core of the proof of P(dimH C≥ α|C 6= /0) = 1, we will do so first
under the additional condition

∃ξ > 0 : inf
1≤i≤N

Ti ≥ ξ a.s. (RC-5)

As Yd,1 = ∑i≥1 Ti(∅)d < 1 [+ after (5.21)], we then have

Yθ ,n = ∑
i≥1

Ti(∅)θ ≤ ξ
θ−d

∑
i≥1

Ti(∅)d ≤ ξ
θ−d (5.71)

for all 0 ≤ θ ≤ d and therefore ‖Yθ ,1‖p ≤ ‖Yθ ,1‖∞ < ∞ for all p ≥ 1. In particular,
N = Y0,1 ≤ ξ−d a.s. This allows an application of Lemmata 5.68 and 5.69.

We now define
Λn(A) := ∑

|v|=n,A∩Jv 6= /0
L(v)αW (v)

for n≥ 0 and A⊂ [0,1]d . Then

Λn+1(A) = ∑
|v|=n

L(v)α
∑

i≥1,A∩Jvi 6= /0
Ti(v)

αW (vi)

= ∑
|v|=n,A∩Jv 6= /0

L(v)α
∑

i≥1,A∩Jvi 6= /0
Ti(v)

αW (vi)

≤ ∑
|v|=n,A∩Jv 6= /0

L(v)α
∑
i≥1

Ti(v)
αW (vi)

= ∑
|v|=n,A∩Jv 6= /0

L(v)αW (v)

= Λn(A),

which implies the existence of

Λ(A) := lim
n→∞

Λn(A) = inf
n≥0

Λn(A)

for all A ⊂ [0,1]d , called random construction measure. The following lemma pro-
vides an explanation for this name.

Lemma 5.70. Under the additional assumption (RC-5), the random set func-
tion

Λ : Ω ×P([0,1]d)→ R≥
a.s. defines a metric outer measure [+ Definition D.1 in the Appendix], and
it is a.s. a measure on B([0,1]d) with Λ([0,1]d) = Λ(C) = W (∅) and thus
Λ(Cc) = 0. Furthermore,
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{C 6= /0} = {Λ(C)> 0} = {W (∅)> 0} a.s. (5.72)

holds true.

Proof. We leave it to the reader to verify that Λ(ω, ·) forms an outer measure for
each ω ∈ Ω [+ Problem 5.73]. Given two subsets A,B of [0,1]d with positive dis-
tance ε , choose τ = τ(ω) large enough to have diam(Jv(ω))< ε/2 for all v of length
|v| ≥ τ . Then τ is a.s. finite because

lim
n→∞

sup
|v|=n

L(v) = 0 a.s.

as we have shown already in the first half of the proof of Theorem 5.12 in Section
5.2. Consequently, any Jv with |v| ≥ τ can intersect at most one of the two sets A,B,
giving

Λn(A∪B) = Λn(A)+Λn(B) a.s.

for all n ≥ τ . By letting n tend to ∞, we find Λ(A∪B) = Λ(A) +Λ(B) a.s. and
have thus shown that Λ a.s. defines a metric outer measure. By Theorem D.2 in the
Appendix, it is then also a measure on B([0,1]d) a.s. Moreover,

Λ([0,1]d) = lim
n→∞

Λn([0,1]d) = ∑
|v|=n

L(v)αW (v) = W (∅) a.s.

For the verification of Λ(Cc) = 0 a.s. we refer once again to Problem 5.73.
As for (5.72), note that C 6= /0 holds true iff the GWP (Y0,n)n≥0 survives, the

probability being 1−q where q is the unique fixed point of f (s) =EsN in [0,1). But
by what has been shown before, we also have that

{C 6= /0} ⊇ {Λ(C)> 0} = {W (∅)> 0} a.s.,

and P(W (∅) > 0) = 1−q by Lemma 5.69(b). Hence, all events in (5.72) have the
same probability and must therefore be a.s. equal. ut

Lemma 5.71. Under the additional assumption (RC-5),

P

(
sup
|v|=n

L(v)α−θW (v)> b infinitely often

)
= 0 (5.73)

holds true for any θ ∈ [0,α) and b> 0, whence

κ := sup

{
n≥ 1 : sup

|v|≥n
L(v)α−θW (v)> b

}
< ∞ a.s. (5.74)
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Proof. We remind the reader that ‖Yθ ,1‖p < ∞ for all θ ∈ [0,d] and p ≥ 1. Hence,
by Lemma 5.68 and what has been pointed out after its proof, ‖W‖p < ∞ for all
p≥ 1. In the following, let θ ,b be fixed and p≥ 1 further below be suitably chosen.
Using the Markov inequality in combination with the independence of L(v),W (v),
we find

P(L(v)α−θW (v)> b) ≤ EL(v)p(α−θ)EW p

bp

for any v ∈ T and thereupon

∑
|v|=n

P(L(v)α−θW (v)> b) ≤ EW p

bp ∑
|v|=n

EL(v)p(α−θ) =
EW p

bp m(p(α−θ))n

for any n ≥ 1. Now fixing p large enough such that m(p(α − θ)) < 1, we finally
arrive at

∑
n≥1

P

(
sup
|v|=n

L(v)α−θW (v)> b

)
≤ ∑

n≥1
∑
|v|=n

P(L(v)α−θW (v)> b)

≤ EW p

bp ∑
n≥1

m(p(α−θ))n < ∞

which in turn implies (5.73) by an appeal to the Borel-Cantelli lemma. ut

The next proposition is the crucial step towards our ultimate goal of this section.

Proposition 5.72. Let θ ∈ [0,α). Under the additional assumption (RC-5),
there exists a P-null set N such that the implication

Hθ (A)< ∞, i.e. dimH A≤ θ =⇒ Λ(ω,A) = 0

holds true for all A ∈B([0,1]d) and ω ∈N c.

Proof. Fixing any θ ∈ [0,α) and A ∈B([0,1]d) with Hα(A)< ∞, let κ be defined
as in (5.74) for an arbitrarily small b> 0. Then pick any positive

ε ≤ 1∧min{L(v) : L(v)> 0 and |v| ≤ κ}

and observe that this number is random. The following considerations are based on
a pathwise analysis and thus valid only outside a P-null set which, however, does
not depend on A. Having this said, the annex ”a.s.” will be omitted hereafter.

Pick an arbitrary (ε/2)-covering (Ai)i≥1 of A, consisting of closed balls. For each
i≥ 1, we then find a random ri ∈ N0 such that

2−1−ri ≤ diam(Ai) < 2−ri ≤ 2diam(Ai) ≤ ε.
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For any x ∈ C and r ∈ N, let Vx,r be the unique node v of T with the properties

x ∈ Jv, L(v) = diam(Jv)< 2−r and L(v|k−1)≥ 2−r if |v|= k.

Define the random sets

Vi := {Vx,ri : x ∈ C∩ JVx,ri
∩Ai} ⊂ {v ∈ T : |v|> κ}

for i ≥ 1. Note for the stated inclusion that |Vx,ri | ≤ κ is indeed impossible, for
otherwise (recall from above the choice of ε)

ε ≤ diam(JVx,ri
) < 2−ri ≤ ε.

For all distinct v,w ∈ Vi, we further have either Jv = Jw or int(Jv)∩ int(Jw) = /0,
because the remaining alternative Jw ⊂ Jv (w.l.o.g. |v|< |w|= k) would yield w= vu
for some u ∈ T\{∅} and then the contradiction

diam(Jw|k−1) ≤ diam(Jv) < 2−ri .

Therefore, we conclude that {Jv : v ∈ Vi} forms a family of nonoverlapping sets
satisfying

|x− y| ≤ diam(Jv)+diam(Ai) < 21−ri

for any choice y ∈ Ai and x ∈ Jv, v ∈ Vi, as Ai∩ Jv 6= /0. This yields
⋃

v∈Vi

Jv ⊂ B(y,21−ri) (5.75)

for all y ∈ Ai, where B(y,r) denotes the closed ball centered at y with radius r. Now
condition (RC-5) comes once again into play and provides us with

diam(Jv) = Tvn(v|n−1)diam(Jv|n−1) ≥ ξ 2−ri

for any v = v1...vn ∈ Vi and then [+ also (5.21)]

λλ d(int(Jv))
λλ d(int(J))

=
diam(Jv)d

diam(J)d ≥
(

ξ 2−ri

diam(J)

)d

. (5.76)

Setting Ni := |Vi|, we obtain with the help of (5.75) and (5.76) that

Ni

(
ξ 2−ri

diam(J)

)d

λλ
d(int(J)) ≤ ∑

v∈Vi

λλ
d(int(Jv))

≤ λλ
d(B(y,21−ri))

= 2−rid λλ
d(B(0,2))

and thereby the estimate
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Ni ≤ K :=
(

diam(J)
ξ

)d
λλ d(B(0,2))
λλ d(int(J))

< ∞ (5.77)

for all i≥ 1 and some constant K which, unlike the random variables Ni, is fixed and
not depending on b> 0, nor on the particular choice of (Ai)i≥1.

Using Vi ⊂ {v : |v|> κ} and the definition of κ , we infer

L(v)αW (v) ≤ bL(v)θ ≤ b2−θri ≤ b2θ diam(Ai)
θ

for all v ∈ Vi and then upon summation

∑
v∈Vi

L(v)αW (v) ≤ bK 2θ diam(Ai)
θ

for any i≥ 1. Put n(i) := max{|v| : v ∈ Vi}. Then

Λ(A∩Ai) = Λ(A∩Ai∩C)
≤ Λn(i)(A∩Ai∩C)
= ∑

v∈T:|v|=n(i),Jv∩A∩Ai∩C 6= /0
L(v)αW (v)

≤ ∑
v∈Vi

L(v)αW (v)

≤ bK 2θ diam(Ai)
θ ,

where, for the penultimate line, we have utilized Lemma 5.69(a) and the fact that
any vertex v of length n(i) and with Jv∩Ai∩C 6= /0 must be in Vi or stemming from
an element of Vi (by the defining property of n(i)). Summing over i≥ 1, we finally
arrive at

Λ(A) ≤ ∑
i≥1

Λ(A∩Ai) ≤ bK 2θ
∑
i≥1

diam(Ai)
θ

and thus
Λ(A) ≤ bK 2θ Hθ (A) < ∞.

Since b was arbitrary and K independent of b, the proof is complete. ut

Now we are in the position to complete the proof of Theorem 5.12.

Proof (of Theorem 5.12, 2nd half). Pick any θ ∈ [0,α). Under the additional as-
sumption (RC-5), we infer with the help of the previous proposition that Hθ (C(ω))=
∞ and thus dimH(C(ω))≥ α holds true for P-almost all ω ∈ {Λ(C)> 0}, which is
the desired conclusion as the last event a.s. equals {C 6= /0} by (5.72).

In order to get rid of assumption (RC-5), the obvious idea is to pick an arbitrarily
small ξ > 0 and consider the random recursive construction based on the family

{Jξ
v : v ∈ T},
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where Jξ

∅ := J∅ = J and, for v = v1...vn ∈ T\{∅},

Jξ
v :=

{
Jv, if Tv1(∅)∧Tv2(v1)∧ ...∧Tvn(v1...vn−1)≥ ξ ,

/0, otherwise.

Define T ξ (v) :=
(
Ti(v)1{Ti(v)≥ξ}

)
i≥1 with generic copy T ξ =

(
T ξ

i

)
i≥1 and then the

corresponding Lξ (v),Nξ (v) in the obvious manner. Recall that Nξ ≤ ξ−d a.s. and
put further

mξ (θ) := ∑
i≥1

E
(
T ξ

i

)θ

for θ ≥ 0 with associated unique αξ satisfying mξ (αξ ) = 1 for any ξ small enough
such that ENξ > 1. Plainly,

ENξ ↑ EN, mξ (·) ↑m(·) pointwise, and α
ξ ↑ α

as ξ ↓ 0. Furthermore,
Cξ :=

⋂

n≥0

⋃

|v|=n

Jξ
v ⊂ C

and therefore, by what has been already shown,

dimH C ≥ dimH Cξ = α
ξ a.s. on {Cξ 6= /0}

for all ξ > 0. By letting ξ tend to 0, it follows dimH C≥ α a.s. on the event

lim
ξ↓0
{Cξ 6= /0} =

⋃

ξ>0

{Cξ 6= /0} ⊂ {C 6= /0},

which leaves us with a proof of the last inclusion to be an identity. Obviously, this
follows if

qξ := P(Cξ = /0) → P(C= /0) =: q as ξ → 0.

But we have that q = P(Y0,n = 0 eventually). It is therefore the unique fixed point of
the gf f of N in [0,1), while qξ , for ξ sufficiently small, is the unique fixed point of
the gf f ξ , say, of Nξ in [0,1) [+ (5.72) in Lemma 5.70 and 5.69(b)]. Since Nξ ↑ N
and thus f ξ ↓ f on [0,1], we finally arrive at the desired conclusion. ut

Problems

Problem 5.73. For the random set function Λ considered in Lemma 5.70, prove the
following assertions:

(a) Λ(ω, ·) is an outer measure for any ω ∈Ω .
(b) Λ(ω,Cc) = 0 for P-almost all ω ∈Ω .





Chapter 6
The contraction method for a class of
distributional recursions

The probabilistic performance analysis of Quicksort described in Section 5.6
can be seen as a paradigm for a whole class of similar problems dealing with dis-
tributional recursions arising in the analysis of divide and conquer algorithms, ran-
dom data structures, random trees or combinatorial probability. A review of the
Quicksort analysis reveals that it actually involves two contraction arguments:

• the first one concerns the smoothing transform S , say, related to the Quicksort
equation (5.66) and ensures that S has a unique fixed point in the class P2

0 (R)
which thus qualifies as the limit law of the quantity of interest,

• the second and more delicate one provides a proof of the Quicksort equation
being indeed the limit of the finite-size model equation (5.64) which bears the
intrinsic recursive structure of the algorithm.

This approach works in many other applications as well. As to the first argument,
requiring information on the contraction properties of some smoothing transform,
one can draw on the results of the previous chapter, based to a fair extent on the
work in [102]. The present chapter aims at a discussion of the second argument in a
quite general framework. It is nowadays known as the contraction method, a name
coined by RACHEV & RÜSCHENDORF [100]. For a suitable class of model equa-
tions, which naturally bear the typical distributional recursion particularly present
in the Quicksort example, we will derive two contraction theorems due to
NEININGER & RÜSCHENDORF [97, 98] and then give a number of applications
ranging from random recursive trees, m-ary search trees to Quickselect (also
known as FIND) as another example of a divide and conquer algorithm. For related
work see also the article [100] mentioned above, [95], and the surveys [104, 103].
After the introduction of the basic setup in the next section, the Zolotarev metric
is defined and studied to some extent [+ Sections 6.2, 6.3]. It forms an important
tool, alternative to the minimal Ls-metric and better suited to situations where con-
vergence is to be proved for random variables with specified moments up to some
integral order m like in the frequently encountered case of normalized random vari-
ables with mean zero and variance one (m = 2). The proofs of the main contraction
theorems, derived in Sections 6.4 and 6.5, provide illuminating examples.

207
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6.1 The setup: a distributional recursion of general additive type

Consider a sequence (Xn)n≥0 of real-valued random variables, which satisfies the
random recursive equation

Xn
d
=

Nn

∑
i=1

An,i Xi,τn,i +Bn (6.1)

for n≥ n0 ∈ N0, where

(A1) Bn,An,1,An,2, ... are real-valued random variables such that An,i > 0 for 1 ≤
i≤ Nn and Ai,n = 0 otherwise, thus

Nn := ∑
i≥1

1{An,i 6=0}.

(A2) τn,1,τn,2, ... are random variables taking values in {0, ...,n}.
(A3) L ((Xi,n)n≥0) = L ((Xn)n≥0) for each i≥ 1.
(A4) (Bn,(An,1,τn,1),(An,2,τn,2), ...), (X1,n)n≥0, (X2,n)n≥0,... are independent.

Like in the Quicksort example, Xn typically represents a random quantity of
interest for a random discrete structure parametrized by n as a measure of its size
or complexity. The intrinsic nature of random structures satisfying (6.1) is that they
may be divided into Nn substructures of similar kind but random size or cardinality
τn,i. In the Quicksort example, Nn = 2 and τn,1 = Zn− 1, τn,2 = n−Zn, are the
lengths of the two sublists created by comparison with the pivot Zn.

Defining the normalization

X̂n :=
Xn−µn

σn

for some (µn,σ
2
n ) ∈ R×R>, we may rewrite (6.1) as

X̂n
d
=

Nn

∑
i=1

Tn,i X̂i,τn,i +Cn (6.2)

for n≥ n0, where X̂i,n has the obvious meaning,

Tn,i :=
στn,i

σn
An,i and Cn :=

1
σn

(
Bn−µn +

Nn

∑
i=1

Tn,i µτn,i

)
.

Of course, if P(Nn = ∞)> 0, we tacitly assume that ∑
Nn
i=1 Tn,i X̂i,τn,i and ∑

Nn
i=1 Tn,i µτn,i

are well-defined on {Nn = ∞}. In the common situation that Xn is square-integrable,
we essentially choose µn as the mean of Xn and σ2

n as its variance, entailing
L (X̂n) ∈P2

0,1(R). Our goal, to be accomplished in Section 6.4, is to prove a con-
vergence result for L (X̂n) by means of a contraction argument. Naturally, this re-
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quires appropriate assumptions about the input parameters Tn,i,τn,i and Cn in equa-
tion (6.2) as well as an appropriate class of metrics to be introduced next [Section
6.2] and then discussed in comparison with the already known minimal Lp-metrics
`p [Section 6.3].

6.2 The Zolotarev metric

As usual, let C 0(R) denote the space of continuous functions f :R→C and C m(R)
for m∈N the subspace of m times continuously differentiable complex-valued func-
tions. For s = m+α with m ∈ N0 and 0< α ≤ 1, put

Fs :=
{

f ∈ C m(R) : | f (m)(x)− f (m)(y)| ≤ |x− y|α for all x,y ∈ R
}
. (6.3)

which obviously contains the monomials x 7→ xk for k = 1, ...,m as well as x 7→
sign(x)|x|s/cs and x 7→ |x|s/cs for some cs ∈ R> [+ Problem 6.5]. Finally, if s > 1
and thus m∈N, then denote by Ps

z(R), z = (z1, ...,zm)∈Rm, the set of distributions
on R having kth moment zk for k = 1, ...,m.

ZOLOTAREV [121] introduced the metric ζs on Ps(R), defined by

ζs(F,G) := sup
f∈Fs,(X ,Y )∼(F,G)

∣∣E
(

f (X)− f (Y )
)∣∣ (6.4)

and nowadays named after him. Via a Taylor expansion of the functions f ∈ Fs in
(6.4), it can be shown that ζs(F,G) is finite for all F,G ∈Ps(R) if 0 < s ≤ 1, and
for all F,G ∈Ps

z(R) and z ∈ Rm if s > 1 [+ Problem 6.6]. On the other hand,
in the last case ζs(F,G) = ∞ for distributions F,G ∈Ps(R) that do not have the
same integral moments up to order m [+ Problem 6.7]. We thus see that ζs defines
a proper probability metric on Ps(R) only for 0 < s ≤ 1 and on Ps

z(R) for any
z ∈ Rm, otherwise. Here we should add that ζs(F,G) = 0 implies F = G because
C m

b (R) := { f ∈ C m(R) : f (m) is bounded} is a measure determining class for each
m ∈ N0 [+ Problem 6.8].

Given a probability space (Ω ,A,P), ζs can also be defined on Ls = Ls(P), viz.

ζs(X ,Y ) := sup
f∈Fs

∣∣E
(

f (X)− f (Y )
)∣∣ , (6.5)

and constitutes a pseudo-metric there if 0< s≤ 1. If p> 1, then this is true only on
Ls

z = Ls
z(P) := {X ∈ Ls(P) : EXk = zk for k = 1, ...,m} for any z ∈Rm. Recall that a

pseudo-metric has the same properties as a metric with one exception: ζs(X ,Y ) = 0
does not necessarily imply X = Y (here not even with probability one: just take two
iid X ,Y which are not a.s. constant).

A pseudo-metric ρ on a set of random variables is called simple if it depends only
on the marginals of the random variables being compared, and compound otherwise.
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It is called ideal of order s if

ρ(cX ,cY ) = |c|s ρ(X ,Y ) (6.6)

for all c ∈ R and
ρ(X +Z,Y +Z) ≤ ρ(X ,Y ) (6.7)

for any Z independent of X ,Y and with well-defined ρ(X +Z,Y +Z). Obviously, ζs
is simple, namely

ζs(X ,Y ) = ζs(F,G)

for any random variables X ,Y with respective laws F,G, whereas the Lp-pseudo-
metrics `p encountered in the previous chapter [+ (5.30)] are compound. It will
be shown in Proposition 6.1(a) below that ζs is also ideal of order s on any Ls

z for
z ∈ Rm.

Another example of a compound pseudo-metric on Ls is given by

κs(X ,Y ) := E |sign(X)|X |s− sign(Y )|Y |s| = E
∣∣X |X |s−1−Y |Y |s−1∣∣ ,

and, in the same manner as `s, it induces a metric on Ps(R), called minimal metric
associated with κs, namely

κs(F,G) := inf
(X ,Y )∼(F,G)

κs(X ,Y ),

where the infimum is taken over all possible (F,G)-couplings defined on an arbi-
trary probability space. Proposition 6.1(c) will show that ζs(X ,Y ) can be bounded in
terms of κs(X ,Y ) for random variables X ,Y ∈ Ls having equal moments of integral
order k = 1, ...,m. Part (d) will exhibit such a bound in terms of `s(X ,Y ).

In the following , it is stipulated that Ps
∗(R), Ls

∗ stand for Ps(R), Ls if 0< p≤ 1,
and for Ps

z(R), Ls
z for arbitrary z ∈ Rm if s> 1.

Proposition 6.1. Let s = m+α for some m ∈ N0 and 0 < α ≤ 1. Then ζs,
defined by (6.4) or (6.5), has the following properties:

(a) ζs is an ideal pseudo-metric on Ls
∗.

(b) For any X ,Y ∈ Ls and with cs := ∏
m
k=1(α + k) [:= 1 if m = 0],

cs ζs(X ,Y ) ≥ E|X |s−E|Y |s. (6.8)

(c) If Λs(X ,Y ) := 2mκs(X ,Y )+
(
2κs(X ,Y )

)α(E|X |s∧E|Y |s
)1−α , then

ζs(X ,Y ) ≤
Γ (1+α)

Γ (1+ s)
Λs(X ,Y ) (6.9)

for any X ,Y ∈ Ls
∗, in particular
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ζs(X ,Y ) ≤
2

(s−1)!
κs(X ,Y ) (6.10)

if α = 1 and thus s = m+1 ∈ N.
(d) For any X ,Y ∈ Ls

∗,

ζs(X ,Y ) ≤
Γ (1+α)

Γ (1+ s)
Θs(X ,Y ), (6.11)

where Θs(X ,Y ) := `s(X ,Y ) if 0< s = α ≤ 1, and

Θs(X ,Y ) := `s(X ,Y )α ‖X‖m
s +m`s(X ,Y )(`s(X ,Y )+‖Y‖s)

m−1

if s≥ 1.

Proof. (a) Property (6.6) follows directly from the fact that

{|a|−s fa,b : f ∈ Fs} = Fs

for any (a,b) ∈ (R\{0})×R, where fa,b(x) := f (ax+ b). This is also used in the
following inequality giving the first half of property (6.7).

ζs(X +Z,Y +Z) = sup
f∈Fs

∣∣E
(

f (X +Z)− f (Y +Z)
)∣∣

≤
∫

sup
f∈Fs

∣∣E
(

f1,z(X)− f1,z(Y )
)∣∣ P(Z ∈ dz)

=
∫

sup
f∈Fs

∣∣E
(

f (X)− f (Y )
)∣∣ P(Z ∈ dz)

= ζs(X ,Y ).

(b) This is immediate because f (x) = |x|s/cs is in Fs [+ Problem 6.5].

(c) Suppose first that m≥ 1. Putting ∆ f (x) = f (m)(x)− f (m)(0), we then have the
Taylor expansion

f (x) =
m

∑
k=0

f (k)(0)
k!

xk +
∫ 1

0

(1− t)m−1

(m−1)!
∆ f (tx)xm dt, x ∈ R,

with the help of which we infer
∣∣E
(

f (X)− f (Y )
)∣∣

≤
∫ 1

0

(1− t)m−1

(m−1)!
E
∣∣∆ f (tX)Xm−∆ f (tY )Y m∣∣ dt
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≤
∫ 1

0

(1− t)m−1

(m−1)!
E
∣∣∣ f (m)(tX)− f (m)(tY )

∣∣∣ |X |m dt

+
∫ 1

0

(1− t)m−1

(m−1)!
E
∣∣∆ f (tY )

∣∣ ∣∣|X |m−|Y |m
∣∣ dt

≤ Γ (α +1)
Γ (s+1)

(
E |X−Y |α |X |m +E|Y |α

∣∣|X |m−|Y |m
∣∣) (6.12)

where the Hölder continuity of f (m) and

∫ 1

0

(1− t)m−1tα

(m−1)!
dt =

Γ (α +1)
Γ (s+1)

have been utilized for the final estimate. Now observe that (6.12) remains obviously
valid if m = 0.

The rest of the proof consists in the derivation of bounds for E |X−Y |α |X |m and
E|Y |α ||X |m−|Y |m|. Let us start by noting that, if (w.l.o.g.) |X |s−1 > |Y |s−1,

|X−Y | |X |s−1 =
∣∣X |X |s−1−Y |X |s−1∣∣

≤
∣∣X |X |s−1−Y |Y |s−1∣∣+ |Y |

(
|X |s−1−|Y |s−1)

≤ 2
∣∣X |X |s−1−Y |Y |s−1∣∣ ,

where the last line follows as |Y |
(
|X |s−1−|Y |s−1

)
≤ |X |s−|Y |s≤

∣∣X |X |s−1−Y |Y |s−1
∣∣.

Then use Hölder’s inequality and this estimate to obtain

E |X−Y |α |X |m = E |X−Y |α |X |α(s−1)|X |s(1−α)

≤
(
E|X−Y | |X |s−1)α

(E|X |s)1−α

≤
(
2κs(X ,Y )

)α
(E|X |s)1−α .

Finally left with E|Y |α (|X |m−|Y |m) (only if m≥ 1), use

|Y |α (|X |m−|Y |m) = |Y |α
∣∣|X |− |Y |

∣∣
m−1

∑
k=0
|X |k |Y |m−1−k

≤ |X−Y |
m−1

∑
k=0
|X |k |Y |s−1−k

≤ m |X−Y | |X |s−1

≤ m
∣∣X |X |s−1−Y |Y |s−1∣∣+m |Y |

(
|X |s−1−|Y |s−1)

≤ 2m
∣∣X |X |s−1−Y |Y |s−1∣∣

on the event {|X | ≥ |Y |} and a similar estimate on {|X < |Y |} to infer that

E|Y |α
∣∣|X |m−|Y |m

∣∣ ≤ 2mκs(X ,Y ).
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By combining the previous estimates, the asserted inequality (6.9) follows.

(d) If 0< s = α ≤ 1, then the assertion is immediate from

ζs(X ,Y ) = sup
f∈Fs

|E( f (X)− f (Y ))| ≤ E|X−Y |s = `s(X ,Y ).

So let s > 1 and thus m ≥ 1 hereafter. We will once again make use of (6.12) by
providing suitable estimates for the two expectations there. First, by an appeal to
Hölder’s inequality,

E|X−Y |α |X |m ≤ (E|X−Y |s)α/s (E|X |s)m/s = `s(X ,Y )α‖X‖m
s

which equals the first term in the definition of Θs(X ,Y ). Second, put Z =X 1{|X |≤|Y |}+
Y 1{|X |>|Y |} and use

|Y |α
∣∣|X |m−|Y |m

∣∣ ≤ |Y |α ((|X−Y |+ |Z|)m−|Z|m)

to infer, again using Hölder’s inequality,

E|Y |α
∣∣|X |m−|Y |m

∣∣ = E|Y |α
(

m

∑
k=1

(
m
k

)
|X−Y |k |Z|m−k

)

≤
m

∑
k=1

(
m
k

)
E|X−Y |k |Y |s−k

≤
m

∑
k=1

(
m
k

)
`s(X ,Y )m ‖Y‖s−k

s

= (`s(X ,Y )+‖Y‖s)
m−‖Y‖m

s

≤ m`s(X ,Y ) (`s(X ,Y )+‖Y‖s)
m−1 .

In combination with the first estimate above, the assertion follows. ut

Convergence with respect to the Zolotarev metric is characterized by our second
proposition.

Proposition 6.2. Under the same assumptions as in the previous result, the
following properties hold true for ζs:

(a) ζs(Fn,F)→ 0 implies `s(Fn,F)→ 0 and thus particularly Fn
w→ F for

any F,F1,F2, ... ∈Ps
∗(R).

(b) Conversely, `s(Fn,F)→ 0 implies κs(Fn,F)→ 0 and therefore, by (6.9),
ζs(Fn,F)→ 0 for any F,F1,F2, ... ∈Ps

∗(R).
(c) The metric space (Ps

∗(R),ζs) is complete.
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Proof. (a) If ζs(Fn,F)→ 0 for F,F1,F2, ... ∈Ps
∗(R) and X ,X1,X2, ... are such that

L (X) = F and L (Xn) = Fn for n≥ 1, then these random variables are Ls-bounded
because, by (6.8),

sup
n≥1

E|Xn|s ≤ sup
n≥1

ζs(Fn,F) + E|X |s

Hence the assertion follows from Proposition 6.1(d).

(b) Conversely, if `s(Fn,F)→ 0, then F−1
n (U)→ F−1(U) a.s. and thus also Xn :=

sign(F−1
n (U))|F−1

n (U)|s → sign(F−1(U))|F−1(U)|s =: X a.s. for any Unif(0,1)
random variable U . Furthermore, we have E|Xn| = E|F−1

n (U)|s → E|F−1(U)|s =
E|X |. But a combination of these facts implies κs(Fn,F)≤ ‖Xn−X‖1→ 0 due to a
theorem by F. Riesz [+ [13, Thm. 15.4], stated there for s≥ 1, but easily extended
to all s> 0].

(c) Now consider a Cauchy sequence (Fn)n≥1 in (Ps
∗(R),ζs) with associated

sequence of chf’s (ϕn)n≥1. Since x 7→ γ t cos tx and x 7→ γ t sin tx are elements of Fs
for suitable γ t > 0, we infer that (ϕn)n≥1 is (pointwise) Cauchy as well and thus
converges to a function ϕ . It is further readily seen as that supn≥1 ζs(Fn,F1) < ∞

which, by (6.8), entails that the Fn have uniformly bounded absolute moments of
order s and are therefore tight. Consequently, any subsequence contains a further
subsequence which is weakly convergent. But their chf’s converge pointwise to ϕ ,
implying that ϕ is a chf of a distribution F and Fn

w→ F . Then, by Fatou’s lemma,

E|F−1(U)|s ≤ liminf
n→∞

E|F−1
n (U)|s < ∞

and thus F ∈Ps(R).
Finally, we must verify ζs(Fn,F)→ 0. Put Xn := F−1

n (U) and X := F−1(U). In
view of (6.9), it suffices to show κs(Xn,X)→ 0 and, for p > 1, that X has the same
moments up to order m as all Xn. But this follows if (|Xn|s)n≥1 is ui, for Xn→ X a.s.
and thus sign(Xn)|Xn|s → sign(X)|X |s a.s. We make use of the following technical
result taken from [39, Lemmata 5.2 and 5.3]: There exists an even function f ∈ Fs
such that

(1) f (x) = ψ(|x|) for some ψ ∈ C ∞(R).
(2) f (x) = 0 for 0≤ x≤ 1/2 and f (x) = axs for x≥ 1 and some a ∈ R>.

Putting fr(x) := rs f (x/r) for r ∈ R> and C f := supx∈R |x|−s| f (x)|, we then easily
find that, for each r ∈ R>,

(3) fr ∈ Fs.
(4) fr(x) = 0 for 0≤ x≤ r/2 and fr(x) = axs for x≥ r.
(5) fr(x)≤C f xs for all x ∈ R>.
(6) limr→∞ fr(x) = 0 for all x ∈ R.

Now fix any ε > 0 and pick n0 ∈ N such that

sup
r>0

∣∣E
(

fr(Xn0)− fr(Xn)
)∣∣ ≤ ζs(Fn0 ,Fn) < ε
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for all n≥ n0. Note that, by (5), (6), Xn0 ∈ Ls and the dominated convergence theo-
rem

lim
r→∞

E fr(Xn0) = 0.

Then it follows that

aE|Xn|s1{|Xn|≥r} ≤ E fr(Xn) ≤ E fr(Xn0) +
∣∣E
(

fr(Xn0)− fr(Xn)
)∣∣ < 2ε

for all n≥ n0 and sufficiently large r, which clearly proves the uniform integrability
of (|Xn|s)n≥1. ut

We now give a proposition that shows how the property of ζs to be an ideal metric
helps to provide contraction bounds for the distance between random weighted sums
of iid random variables as they appear in the definition of the smoothing transform
and in the analysis of distributional recursions like (6.2).

Proposition 6.3. Let (C,T ) = (C,T1,T2, ...), (Xn)n≥1 and (Yn)n≥1 be indepen-
dent sequences of real-valued random variables in Ls such that

(C-1) X1,X2, ... are independent with L (Xn) = Fn for n≥ 1.
(C-2) Y1,Y2, ... are independent with L (Yn) = Gn for n≥ 1.
(C-3) For each n≥ 1, Fn,Gn ∈Ps

∗(R).
(C-4) ∑i≥1 TiXi +C, ∑i≥1 TiYi +C ∈ Ls.

Then

ζs

(
∑
i≥1

TiXi +C,∑
i≥1

TiYi +C

)
≤ ∑

i≥1
E|Ti|s ζs(Fi,Gi). (6.13)

If S , the smoothing transform associated with (C,T ), exists in Ls-sense, then
in particular

ζs(S (F),S (G)) ≤ E

(
∑
i≥1
|Ti|s

)
ζs(F,G). (6.14)

for all F,G ∈Ps
∗(R).

Proof. Note that ζs(∑i≥1 TiXi +C,∑i≥1 TiYi +C) < ∞ because (C-3) and (C-4) en-
sure that ∑i≥1 TiXi +C,∑i≥1 TiYi +C ∈ Ls

∗. Let Λ be the distribution of (C,T ) and
t = (t1, t2, ...) in the subsequent integration with respect to Λ . Then, by multiple use
of properties (6.6) and (6.7) of ζs, we infer for each n ∈ N that

ζs

(
n

∑
i=1

TiXi +C,
n

∑
i=1

TiYi +C

)
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= sup
f∈Fs

∣∣∣∣∣E
(

f

(
n

∑
i=1

TiXi +C

)
− f

(
n

∑
i=1

TiYi +C

))∣∣∣∣∣

≤ sup
f∈Fs

∣∣∣∣∣
∫

E

(
f

(
n

∑
i=1

tiXi + c

)
− f

(
n

∑
i=1

tiYi + c

))
Λ(dc,dt)

∣∣∣∣∣

≤
∫

sup
f∈Fs

∣∣∣∣∣E
(

f

(
n

∑
i=1

tiXi + c

)
− f

(
n

∑
i=1

tiYi + c

))∣∣∣∣∣ Λ(dc,dt)

=
∫

ζs

(
n

∑
i=1

tiXi + c,
n

∑
i=1

tiYi + c

)
Λ(dc,dt)

≤
∫

ζs

(
n

∑
i=1

tiXi,
n

∑
i=1

tiYi

)
Λ(dc,dt)

≤
∫ n

∑
k=1

ζs

(
n

∑
i=k

tiXi +
k−1

∑
j=1

t jYj,
n

∑
i=k+1

tiXi +
k

∑
j=1

t jYj

)
Λ(dc,dt)

=
∫ n

∑
k=1

ζs (tkXk +Sk, tkYk +Sk) Λ(dc,dt)

[
where Sk :=

n

∑
i=k+1

tiXi +
k−1

∑
j=1

t jYj and is independent of Xk,Yk

]

≤
∫ n

∑
k=1

ζs (tkXk, tkYk) Λ(dc,dt)

=
∫ n

∑
k=1
|tk|s ζs (Xk,Yk) Λ(dc,dt)

=
n

∑
i=1

E|Ti|s ζs(Fi,Gi)

which proves (6.13) by letting n tend to infinity and using

lim
n→∞

ζs

(
n

∑
i=1

TiXi +C,
n

∑
i=1

TiYi +C

)
= ζs

(
∑
i≥1

TiXi +C,∑
i≥1

TiYi +C

)

[+ Problem 6.10]. But the second inequality (6.14) follows from the first one when
choosing Fi = F and Gi = G for all i≥ 1. ut

The final assertion of the lemma has the following direct consequence.

Corollary 6.4. Let (C,T ) = (C,T1,T2, ...) be a sequence of random variables
in Ls such that the associated smoothing transform exists in Ls-sense and
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E

(
∑
i≥1
|Ti|s

)
< 1.

Then S is a ζs-contraction on Ps(R) if 0 < s ≤ 1, and on Ps
z(R), if s > 1,

s = m+α for (m,α) ∈ N× (0,1] and z ∈ Rm is such that S is a self-map of
Ps

z(R).

Problems

In the subsequent problems, it is always assumed that s = m+α for (m,α) ∈ N0×
(0,1] and that Fs is given by (6.3).

Problem 6.5. Prove that x 7→ sign(x)|x|s/cs and x 7→ |x|s/cs with cs as in Proposition
6.1(a) are both elements of Fs.

Problem 6.6. Prove for arbitrary z ∈ Rm that F,G ∈Ps
z(R) implies ζs(F,G)< ∞.

Problem 6.7. Prove that ζs(X ,Y )=∞ if s> 1 and X ,Y do not have the same integral
moments up to order m.

Problem 6.8. Recall that C m
b (R) = { f ∈ C m(R) : f (m) is bounded} for m ∈N0 and

prove that, for any two random variables X ,Y ,

E f (X) = E f (Y ) for all f ∈ C m
b (R)

implies L (X) =L (Y ). Use this fact to verify that ζs, as defined in (6.4), is a metric
on Ps

z(R) for any z ∈ Rm.

Problem 6.9. Show that `p is an ideal metric of order p∧1 on Lp for any p> 0.

Problem 6.10. Prove that ζs(Xn,Yn)→ ζs(X ,Y ) whenever Xn
Ls
→ X , Yn

Ls
→ Y , and

Xn,Yn ∈ Ls
∗ for each n ∈ N.

6.3 Asymptotic normality: Zolotarev versus minimal Lp-metrics

The analysis of Quicksort is only one of various similar applications – and prob-
ably the most prominent one – where the minimal Lp-metric `p provides an effective
tool to prove contraction of the random quantity of interest after normalization to a
limit law which is characterized by a SFPE related to a smoothing transform [+ also
[97, 104] and the references stated therein]. On the other hand, in situations where
the limit law is normal, it appears to be inferior to other metrics like the Zolotarev
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metric ζs just introduced. The following discussion, taken from [97, Section 2], is
intended to shed some light on this.

Suppose that the limit law is in P2
0,1(R), the set of distributions with mean zero

and variance one, and characterized by the SFPE

X d
=

X1 +X2

21/2 (6.15)

already encountered in Section 1.1 [+ (1.3)], where X1,X2 are independent copies
of X . As argued there with the help of the CLT, its unique solution in P2

0,1(R) is the
standard normal law. Moreover, if S denotes the related smoothing transform, then
the CLT further shows that

S n(F)
w→ Normal(0,1)

for any F ∈P2
0,1(R). On the other hand, Lemma 5.50(a) provides us with

`2
2(S (F),S (G)) ≤

((
1

21/2

)2

+

(
1

21/2

)2
)
`2

2(F,G) = `2
2(F,G)

for all F,G ∈P2
0 (R) which suggests that S is not an `2-contraction on P2

0 (R),
nor on its restriction P2

0,1(R). In fact, since every normal law with mean 0 and
finite variance solves (6.15), S cannot be a contraction (or quasi-contraction) with
respect to `2 on P2

0 (R), and the same holds true with respect to any `p for p> 2.

The problem is that, even when restricting to the class P2
0,1(R), where the fixed

point is unique, `2 does not reflect this restriction in a way to yield contraction, and
here is exactly the point where the Zolotarev metric turns out to be more sensitive.
To see this, fix any α ∈ (0,1], put s = 2+α and choose arbitrary F,G ∈Ps

0,1(R).
Then, with independent X1,X2,Y1,Y2 such that (Xi,Yi)∼ (F,G) for i= 1,2, we obtain
by invoking Proposition 6.3 that

ζs(S (F),S (G)) = ζs

(
X1 +X2

21/2 ,
Y1 +Y2

21/2

)

≤
((

1
21/2

)s

+

(
1

21/2

)s)
ζs(F,G)

and thus contraction, for 2(1/21/2)s < 1. Consequently, by Banach’s fixed point
theorem, the standard normal law is the unique fixed point of S in

⋂
s>2 Ps

0,1(R).

Of course, the preceding discussion has only exemplified the advantage of the
Zolotarev metric for one special case. Nevertheless, it should have provided some
evidence that this advantage prevails in other applications as well, most notably
those where a normal distribution appears as the limit law.
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6.4 Back to recurrence equation (6.2): a general convergence
theorem

We return to the general recurrence equation

Xn
d
=

Nn

∑
i=1

An,i Xi,τn,i +Bn, n≥ n0 (6.1)

and its equivalent form

X̂n
d
=

Nn

∑
i=1

Tn,i X̂i,τn,i +Cn, n≥ n0 (6.2)

for the normalized sequence

X̂n :=
Xn−µn

σn
,

where (µn,σ
2
n ) ∈ R×R> and

Cn :=
1

σn

(
Bn−µn +

Nn

∑
i=1

Tn,i µτn,i

)
.

The general standing assumptions on Bn,An,i,τn,i,Xn,i are listed under (A1)-(A4).
Under additional conditions on the input parameters Bn,Tn,i and τn,i, our goal is to
show convergence of X̂n to a limit in Ls with respect to the Zolotarev metric ζs.
Since normalization can only scale first and second moments, it is natural to use ζs
for 0< s≤ 3.

Plainly, the Xn must be elements of Ls when using ζs, and in the case 2< s≤ 3 we
further assume that VarXn > 0 for all n≥ n1 ≥ n0. Our settings for the normalizing
constants µn,σn is displayed in the following table, where an asterisk indicates an
arbitrary positive number:

µn σ2
n

0< s≤ 1 0 ∗ n≥ 0

1< s≤ 2 EXn ∗ n≥ 0

2< s≤ 3 EXn 1 0≤ n< n1

EXn VarXn n≥ n1

This guarantees that all Xn have expectation zero if 1 < s≤ 3 and further unit vari-
ance for n ≥ n1 if 2 < s ≤ 3. We are now in the position to state the main conver-
gence theorem which slightly generalizes the corresponding results by NEININGER
& RÜSCHENDORF [97, Thms. 4.1 and 4.6]
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Theorem 6.11. Let 0 < s = m+α ≤ 3 for (m,α) ∈ N0× (0,1] and (Xn)n≥0
be a sequence of random variables in Ls satisfying (6.1) under (A1)-(A4). Let
Fn denote the law of the normalization X̂n. Suppose further there exist ran-
dom variables C,T1,T2, ... ∈ Ls with ∑i≥1 T 2

i ∈ Ls/2 and associated smoothing
transform S , such that

∑
i≥1

E|Ti|s < 1, (6.16)

∑i≥1E|Tn,i−Ti|s→ 0 if 0< s≤ 2,

E
(
∑i≥1(Tn,i−Ti)

2
)s/2→ 0 if 2< s≤ 3,

(6.17)

E|Cn−C|s→ 0. (6.18)

Finally, suppose that, for some N 3 mn→ ∞, mn ≤ n,

E

(
∑
i≥1

1{τn,i<mn or =n}|Tn,i|s
)
→ 0. (6.19)

Then ζs(Fn,F)→ 0, where F denotes the unique fixed point of S in Ps(R) if
0< s≤ 1, in Ps

0(R) if 1< s≤ 2, and in Ps
0,1(R) if 2< s≤ 3 [+ Cor. 6.4].

Remark 6.12. We note in passing that, under the conditions of the theorem,

∑
i≥1

Tn,i ∈ Ls and Cn ∈ Ls

for all n ∈ N0, and that S exists in Ls-sense if 0 < p ≤ 1, and as a self-map of
Ps

0(R) if 1 < s ≤ 3 [+ Corollary 5.35]. In the last case, one should also observe
that C,C1,C2, ... are centered. The condition ∑i≥1 T 2

i ∈ Ls/2 is a real proviso only
when 2< s≤ 3, but follows from (6.16) otherwise, for then (∑i≥1 T 2

i )
s/2≤∑i≥1 |Ti|s

by subadditivity. Moreover, (6.19) is easily seen to be equivalent to

E

(
∑
i≥1

1{τn,i<m or =n}|Tn,i|s
)
→ 0 for each m ∈ N,

which is the corresponding condition stated in [97]. Also, the condition
∥∥∥∥∥∑i≥1
|Tn,i−Ti|

∥∥∥∥∥
s

→ 0

is used there instead of (6.17) which appears to be stronger in the case when the Nn
are unbounded [+ [97, Thm. 4.6]].

Proof. The following argument shows that it is no loss of generality to assume n0 =
n1 = 0, thus guaranteeing that all Fn are in Ps

0(R) if 1 < p ≤ 2, and in Ps
0,1(R) if
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2< s≤ 3: Defining

X∗n := X̂n1+n, X∗i,n := X̂i,n1+n,

(T ∗n,i,τ
∗
n,i) :=

(
Tn1+n,i 1{τn1+n,i≥n1},τn1+n,i∨n1

)
,

N∗n := (Nn−n1)
+,

and C∗n :=
Nn1+n

∑
i=1

Tn1+n,i X̂i,τn1+n,i1{τn1+n,i<n1}+Cn1+n,

one can easily see that

X∗n
d
=

N∗n

∑
i=1

T ∗n,i X∗i,τ∗n,i +C∗n (n≥ 0)

and that the T ∗n,i,τ
∗
n,i,C

∗
n ,X

∗
i,n satisfy the same model assumptions as the original vari-

ables Tn,i,τn,i,Cn, X̂i,n, including the conditions of the theorem: just note for (6.17)
that

∑i≥1E|T ∗n,i−Tn1+n,i|s→ 0 if 0< s≤ 2,

and E
(

∑i≥1(T ∗n,i−Tn1+n,i)
2
)s/2
→ 0 if 2< s≤ 3,

and for (6.18) that

‖C∗n −C‖s ≤ ‖Cn1+n−C‖s +

∥∥∥∥ max
0≤k<n1

X̂k

∥∥∥∥
s

∥∥∥∥∥
Nn

∑
i=1

Tn,i 1{τn1+n,i<n1}

∥∥∥∥∥
s

→ 0.

Hence, we will from now on assume that n0 = n1 = 0.

Let (X̂i,∞)i≥1 be a family of independent random variables with common distri-
bution F , generic copy X̂∞, and independent of the Tn,i,Ti and τn,i. Setting

Yn := ∑
i≥1

Tn,iX̂i,τn,i +Cn [with law Fn],

Y (1)
n := ∑

i≥1
Tn,iX̂i,τn,i +C [with law F(1)

n , say],

Y (2)
n := ∑

i≥1
Tn,iX̂i,∞ +C [with law F(2)

n , say],

Y ∗n := ∑
i≥1

TiX̂i,∞ +C [with law F ]

for n≥ n1, we must show ζs(Yn,Y ∗n )→ 0 and will do so by “inserting” the auxiliary
random variables Y (i)

n for i = 1,2, viz.
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an := ζs(Yn,Y ∗n ) ≤ ζs(Yn,Y
(1)
n )+ζs(Y

(1)
n ,Y (2)

n )+ζs(Y
(2)
n ,Y ∗n ), (6.20)

and proving convergence to zero of each term on the right-hand side individually.

It is vital to observe here that F and all Fn,F
(1)
n ,F(2)

n for n ≥ 0 are in Ps
0(R) if

1 < s ≤ 2, and in Ps
0,1(R) if 2 < s ≤ 3, for this ensures that all terms on the right-

hand side of (6.20) are finite. Moreover, by Proposition 6.2(b), we may (and will)
replace ζs with `s where appropriate, in fact for the first and the last of the three
terms. Using assumption (6.18), we obtain

`s∨1
s (Yn,Y

(1)
n ) = `s∨1

s

(
∑
i≥1

Tn,i X̂i,τn,i +Cn,∑
i≥1

Tn,i X̂i,τn,i +C

)
= E|Cn−C|s → 0,

while (6.17) in connection with subadditivity (0 < s ≤ 1) or a suitable martingale
inequality (1< s≤ 3) provides us with

`s
s(Y

(2)
n ,Y ∗n ) ≤





∑i≥1E|Tn,i−Ti|sE|X̂∞|s, if 0< s≤ 1
2 ∑i≥1E|Tn,i−Ti|sE|X̂∞|s, if 1< s≤ 2

csE(∑i≥1(Tn,i−Ti)
2)s/2

[(
EX̂2

∞

)s/2
+E|X̂∞|s

]
, if 2< s≤ 3

→ 0 (6.21)

where the constant cs depends only on s. The details are very similar to those given
at various places in Section 5.5 and therefore left to the reader [+ Problem 6.15].
We just note that inequality (B.4) in the Appendix together with ∑i≥1E|Tn,i−Ti|s ≤
E(∑i≥1(Tn,i−Ti)

2)s/2 should be utilized in the case 2< s≤ 3.

Turning to ζs(Y
(1)
n ,Y (2)

n ), Proposition 6.3 after conditioning with respect to
(Tn,i,τn,i)i≥1 and C provides us with the estimate

ζs(Y
(1)
n ,Y (2)

n ) ≤ ∑
i≥1

E|Tn,i|saτn,i

when keeping in mind that ζs(X̂i,k, X̂i,∞) = ζs(Fk,F) = ak for any i,k ∈ N. Then, by
combining the previous estimates in (6.20), we arrive at

an ≤ ∑
i≥1

E|Tn,i|saτn,i +bn

for some nonnegative bn converging to zero. Next, use (6.17), (6.16) and (6.19) to
infer first that

lim
n→∞

∑
i≥1

E|Tn,i|s = ∑
i≥1

E|Ti|s

[+ Problem 6.16] and then that, for some ε,γ ∈ (0,1) with γ/(1− ε) < 1, n2 ∈ N
and all n≥ n2,



6.4 Back to recurrence equation (6.2): a general convergence theorem 223

∑
i≥1

E|Tn,i|s1{τn,i=n} < ε and ∑
i≥1

E|Tn,i|s < γ(1− ε).

As a consequence,

(1− ε)an ≤ ∑
i≥1

E|Tn,i|saτn,i1{τn,i<n}+bn < γ(1− ε)a∗n−1 +bn

or, equivalently,

an ≤
1

1− ε
∑
i≥1

E|Tn,i|saτn,i1{τn,i<n}+
bn

1− ε
< γ a∗n−1 +

bn

1− ε

for all n≥ n2, where a∗n = max0≤k≤n ak. The second inequality immediately implies
the boundedness of the an. Then, by another use of (6.19),

εn := ∑
i≥1

E|Tn,i|saτn,i1{τn,i<mn} ≤ sup
k≥0

ak ∑
i≥1

E|Tn,i|s1{τn,i<mn} → 0,

so that
an ≤

1
1− ε

∑
i≥1

E|Tn,i|saτn,i1{mn≤τn,i<n}+
εn +bn

1− ε
(6.22)

for all n ≥ n2. Now an→ 0 is easily deduced and details are thus left to the reader
[+ Problem 6.17]. ut

We close this section with two corollaries [+ [97, Thm. 5.1 and Cor. 5.2]] which
are easily inferred from the previous theorem by checking its assumptions.

Corollary 6.13. Let (Xn)n≥0 be a sequence in Ls, 0 < s ≤ 3, satisfying the
distributional recursion (6.1) with An,i = 1 for 1 ≤ i ≤ Nn. Suppose that, for
suitable f (n) ∈ R and g(n) ∈ R≥ (positive for sufficiently large n),

EXn = f (n)+o(g(n)), if 1< s≤ 3

and, furthermore,

VarXn = g(n)2 +o(g(n)2), if 2< s≤ 3.

Finally suppose that, for suitable C,T1,T2, ... ∈ Ls with ∑i≥1 T 2
i ∈ Ls/2,

∑
i≥1

E
∣∣∣∣
g(τn,i)

g(n)
−Ti

∣∣∣∣
s

→ 0 if 0< s≤ 2,

E

(
∑
i≥1

(
g(τn,i)

g(n)
−Ti

)2
)s/2

→ 0 if 2< s≤ 3,

(6.23)
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E

∣∣∣∣∣
1

g(n)

(
Bn− f (n)+

Nn

∑
i=1

f (τn,i)

)
−C

∣∣∣∣∣

s

→ 0, (6.24)

E

(
Nn

∑
i=1

1{τn,i=n}

)
→ 0 (6.25)

and the contraction condition (6.16), i.e. ∑i≥1E|Ti|s < 1, hold true. Then

Xn− f (n)
g(n)

d→ F,

where F is the unique solution of the smoothing transform associated with
(C,T1,T2, ...) in Ps(R) if 0 < s ≤ 1, in Ps

0(R) if 1 < s ≤ 2, and in Ps
0,1(R)

if 2< s≤ 3.

Proof. First check that (Xn − f (n))/g(n) d→ F iff X̂n = (Xn − µn)/σn
d→ F with

µn,σ
2
n chosen as in Theorem 6.11. Then show that all assumptions of the last result

are valid. Details are left to the reader [+ Problem 6.18]. ut

Specializing to the case when s > 2, the following central limit theorem can be
stated.

Corollary 6.14. Let s > 2 and C = 0 in the previous corollary and suppose
additionally that

∑
i≥1

T 2
i = 1 and P(Ti = 1 for some i≥ 1)< 1. (6.26)

Then
Xn− f (n)

g(n)
d→ Normal(0,1).

Proof. + Problem 6.19 ut

Problems

Problem 6.15. Verify (6.21) by proving the inequalities stated there.

Problem 6.16. Prove that (6.17) and (6.16) imply

lim
n→∞

∑
i≥1

E
∣∣|Tn,i|s−|Ti|s

∣∣ = 0
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and thus in particular
lim
n→∞

∑
i≥1

E|Tn,i|s = ∑
i≥1

E|Ti|s

Problem 6.17. Use (6.20) and the boundedness of the an to show that an → 0 [+
also Problem 5.65].

Problem 6.18. Prove Corollary 6.13.

Problem 6.19. Prove Corollary 6.14.

Problem 6.20. Use Corollary 6.13 to reprove Theorem 5.61, the main limit result
for Quicksort, for any 0< p≤ 3.

6.5 The degenerate case: recursion (6.2) with tautological limit
equation

There is an important class of recursions of the form (6.1) which, albeit contract-
ing to a limit distribution after normalization, are not covered by the results of the
previous section because the distributional limit equation of the normalized recur-
sion (6.2) is tautological and thus not providing any information about that limit.
This situation, also studied and referred to as the degenerate case by NEININGER &
RÜSCHENDORF [98], occurs when

lim
n→∞

(Tn,1,Tn,2, ...) = (1,0,0, ...) and lim
n→∞

Cn = 0

(assuming w.l.o.g. that Tn,1 ≥ Tn,2 ≥ ... a.s.) and, consequently, the limit SFPE re-
sulting from (6.2) becomes

X̂ d
= X̂ .

Under the basic assumption that all Xn are in Ls for some s > 2, the results proved
in this section will provide conditions that ensure asymptotic normality of X̂n. The
normalizing constants µn,σ

2
n are chosen as before, thus µn = EXn for n ≥ 0, σ2

n =
VarXn if the variance is positive, and σ2

n = 1 otherwise.
As in [98], we will first focus on the case Nn = 1 hereafter, that is, on recursions

of the form
Xn

d
= Xτn +Bn, n≥ n0, (6.27)

which after normalization becomes

X̂n
d
= Tn X̂τn +Cn, n≥ n0, (6.28)

where
Tn :=

στn

σn
and Cn :=

Bn−µn +µτn

σn
.

Since there is no branching (Nn = 1), we have dropped the double index on the
right-hand sides of these equations (writing Xn,Tn,τn for X1,n,Tn,1,τn,1). We make
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the usual assumptions that X0,X1, ... are mutually independent and also independent
of (Bn,τn)n≥n0 (and thus of (Tn)n≥n0 as well), that each τn takes values in {0, ...,n},
and that P(τn = n)< 1 for n≥ n0. The recursions (6.27) and (6.28) can be extended
to all n≥ 0 by setting

τn := n, Tn := 1 and Bn =Cn := 0

for n = 0, ...,n0−1. This is tacitly assumed hereafter.

The following CLT provides an extension of the corresponding result by NEININ-
GER & RÜSCHENDORF [98, Thm. 2.1] in that it holds for any s ∈ (2,3] instead of
s = 3 only. Moreover, (6.33) in the latter case appears to be slightly stronger due
to a somewhat different approach chosen here for the proof [+ especially Lemma
6.23 below].

Theorem 6.21. Let s = 2+α for α ∈ (0,1] and (Xn)n≥0 be a sequence of
random variables in Ls satisfying (6.27) under the usual conditions. Suppose
further that, for some β ,θ ∈ R> and 0≤ γ < β

σ
2
n = θ log2β n+O(log2γ n), (6.29)

‖Bn−µn +µτn‖s = O(logγ n), (6.30)

as n→ ∞, and

limsup
n→∞

E log
(

τn∨1
n

)
< 0, (6.31)

sup
n≥1

∥∥∥∥log
(

τn∨1
n

)∥∥∥∥
s
< ∞. (6.32)

Then X̂n
d→ Normal(0,1), in fact

ζs(L (X̂n),Normal(0,1)) = O(log−αδ n) (6.33)

as n→ ∞, where δ := (β − γ)∧1.

It is not difficult to show that (6.29) and (6.32) imply the degeneracy conditions

τn

n
→ 1 and Tn =

στn

σn
→ 1 a.s.

[+ Problem 6.25].

Proof. W.l.o.g. [+ Problem 6.26] let VarXn > 0 for all n≥ 0 which ensures that all
Fn := L (X̂n) are elements of Ps

0,1(R). Based on the sequence (τn)n≥0, define

ϕ : Ω ×N0→ N0, (ω,n) 7→ τn(ω),



6.5 The degenerate case: recursion (6.2) with tautological limit equation 227

and let (ϕn,Bn,1,Bn,2, ...) for n ≥ 1 be iid copies of (ϕ,B1,B2, ...). Notice that
(ϕn)n≥1 forms an IFS of iid Lipschitz maps on N0 and put ϕn:1 := ϕn ◦ ... ◦ϕ1 for
n≥ 1 [as in Chapter 3]. Then it is easily verified via iteration that

X̂n
d
=

σϕk:1(n)

σn
X̂ϕk:1(n)+

k

∑
j=1

σϕ j−1:1(n)

σn
C j,ϕ j−1:1(n) =: X̂n,k (6.34)

holds true for each n≥ 0 and k ≥ 1, where ϕ0:1(n) := n and

C j,k :=
B j,k−µk +µϕ j(k)

σk

for j,k ≥ 1. Note that (ϕ j,C j,1,C j,2, ...) for j ≥ 1 are iid copies of (ϕ,C1,C2, ...).
Pick m ∈ N so large that

νm := sup
n≥m

P(ϕ(n) = n) < 1 (6.35)

and ξ := 1+
1

logm
sup
n≥m

E log
(

τn∨1
n

)
< 1, (6.36)

which is possible by (6.31). Observe also that, by (6.29),

sup
n≥1

σ∗n
σn

< ∞,

where σ∗n := max0≤k≤n σk.
Let Z1,Z2, ... be iid standard normal random variables independent of the “rest of

the world” and define

Yn,k :=
σϕk:1(n)

σn
Zk+1 +

k

∑
j=1

σϕ j−1:1(n)

σn
C j,ϕ j−1:1(n), (6.37)

Y ∗n,k :=
σϕk:1(n)

σn
Zk+1 +

k

∑
j=1

(
σ2

ϕ j−1:1(n)
−σ2

ϕ j:1(n)

)1/2

σn
Z j (6.38)

for n≥ 0 and 1≤ k ≤ n. Put further an := ζs(Fn,Normal(0,1)). It is easily verified
and stated as part of Lemma 6.23 below that each Y ∗n,k has a standard normal law.
Therefore,

an = ζs(X̂n,k,Y ∗n,k) ≤ ζs(X̂n,k,Yn,k)+ζs(Yn,k,Y ∗n,k) (6.39)

for all n≥ 0 and 1≤ k ≤ n.

Since X̂n,k,Zk have equal first and second moments, we infer by an appeal to
Proposition 6.3 that
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ζs(X̂n,k,Yn,k) ≤ ν
k
m an +E

(
σϕk:1(n)

σn

)s

1{ϕk:1(n)<n} aϕk:1(n)

≤ ν
k
m an +E

(
σϕk:1(n)

σn

)s

1{ϕk:1(n)<n} a∗n−1

(6.40)

for any n≥m, where a∗n := max0≤ j≤n a j. Put p := sβ ∧1 and estimate further (with
suitable constants θ1,θ2,θ3 ∈ R>)

E
(

σϕk:1(n)

σn

)s

1{ϕk:1(n)<n} ≤
(

σ∗m
σn

)s

+E

(
θ1 logβ

ϕk:1(n)

θ2 logβ n

)s

1{m≤ϕk:1(n)<n}

≤
(

σ∗m
σn

)s

+

(
θ1

θ2

)s

ξ
kp

≤ θ3

(
1

logsβ n
+ξ

kp
)

(6.41)

for all k,n ∈ N satisfying n ≥ k ≥ m, where Lemma 6.22 further below has been
utilized for the last line.

As for the last term in (6.39), a combination of Proposition 6.1(d), viz. (6.11),
and Lemma 6.23(d) (with Z j,k as defined there) provides us with

ζs(Yn,k,Y ∗n,k) ≤ K `s(Yn,k,Y ∗n,k)
α

≤ K

(
k

∑
j=1

∥∥∥∥
σϕ j−1:1(n)

σn

(
C j,ϕ j−1:1(n)−Z j,ϕ j−1:1(n)

)∥∥∥∥
s

)α

≤ M
(
1+ k log−(β−δ ) n

)α

logαδ n

for all k,n≥ 1 and suitable constants K,M ∈ R>.
By combining the last result with (6.39)-(6.41), we arrive at

an ≤
θ3

1−νk
m

(
1

logsβ n
+ξ

kp
)

a∗n−1 +
M
(
1+ k log−(β−δ ) n

)α

logαδ n

for all k,n ∈N with n≥ k≥m which, by fixing k large enough, particularly implies

an ≤ ζ a∗n−1 +O(logαδ n)

for some ζ ∈ (0,1) and all n ≥ n1, n1 sufficiently large. As an immediate conse-
quence, we find that a∗ := supn≥0 an < ∞ and thus

an ≤
θ3

1−νk
m

(
1

logsβ n
+ξ

kp
)

a∗+
M
(
1+ k log−(β−δ ) n

)α

logαδ n
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for all k,n ∈ N with n ≥ k ≥ m. Finally, choose k = kn ' logε n for some arbitrary
ε ∈ (0,β −δ ) to infer that

an ≤
θ3

1−ν
kn
m

(
1

logsβ n
+ξ

kn p
)

a∗+
M
(
1+ kn log−(β−δ ) n

)α

logαδ n
= O(logαδ n)

as claimed. ut

The two lemmata that have been used in the previous proof are next.

Lemma 6.22. Given the assumptions of Theorem 6.21, let m ∈N be such that
(6.36) holds and r > 0. Then

E
(

logϕk:1(n)
logn

)r

1{ϕk:1(n)≥m} ≤ ξ
kp

for all k ≥ 1, where p = r∧1.

Proof. We start by pointing out that

E
(

logϕk:1(n)
logn

)r

1{ϕk:1(n)≥m}

≤ E

(
k

∏
j=1

logϕ j(ϕ j−1:1(n))
logϕ j−1:1(n)

)p

1{ϕ i:1(n)≥m, i=1...,k}

≤
[
E

(
k

∏
j=1

logϕ j(ϕ j−1:1(n))
logϕ j−1:1(n)

1{ϕ i:1(n)≥m, i=1...,k}

)]p

,

where we have used Jensen’s inequality for the last line and the fact that all factors
under the expectation are ≤ 1 for the penultimate one. Putting

A0 := {Ω , /0} and Ak := σ(ϕ1, ...,ϕk) for k ≥ 1, (6.42)

we have on the event {ϕ j−1:1(n)≥ m} that

E
(

logϕ j(ϕ j−1:1(n))
logϕ j−1:1(n)

1{ϕ j(ϕ j−1:1(n))≥m}

∣∣∣∣A j−1

)

≤ 1+E




log
(

ϕ j(ϕ j−1:1(n))
ϕ j−1:1(n)

)

logϕ j−1:1(n)
1{ϕ j(ϕ j−1:1(n))≥m}

∣∣∣∣∣A j−1




≤ 1+
1

logm
sup
k≥m

E log
(

ϕ(k)∨1
k

)

= ξ < 1 a.s.
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Hence, by successive conditioning with respect to Akn−1, ...,A0, we find

E

(
k

∏
j=1

logϕ j(ϕ j−1:1(n))
logϕ j−1:1(n)

1{ϕ j:1(n)≥m, j=1...,k}

)
≤ ξ

k

for any k ≥ 1. ut

Lemma 6.23. Under the assumptions of Theorem 6.21, let Y ∗n be given by
(6.38) and define

Z j,k :=

(
σ2

k −σ2
ϕ j(k)

σ2
k

)1/2

Z j

for j ≥ 1 and k ≥ 0. Then

Y ∗n,k =
σϕk:1(n)

σn
Zk+1 +

k

∑
j=1

σϕ j−1:1(n)

σn
Z j,ϕ j−1:1(n)

for each n≥ n0, and the following assertions hold true:

(a) L (Y ∗n,k) = Normal(0,1) for each n≥ n0, in fact this holds even true for
the conditional law of Y ∗n,k given Ak = σ(ϕ1, ...,ϕk).

(b) For each j ≥ 1 and k ≥ 0, Z j,k and C j,k have identical first and second
conditional moments given A j−1 as defined in (6.42), whence the same
holds true for Z j,ϕ j−1:1(n) and C j,ϕ j−1:1(n) for any n≥ n0.

(c) For each j ≥ 1, ‖Z j,k‖s = O(‖Ck‖s) = O(logγ−β k) as k→ ∞.
(d) For all k,n≥ 1,

k

∑
j=1

∥∥∥∥
σϕ j−1:1(n)

σn

(
C j,ϕ j−1:1(n)−Z j,ϕ j−1:1(n)

)∥∥∥∥
s
≤ g(k)

logδ n
.

where g(k) := M(1+ k log−(β−δ ) n) for a suitable constant M ∈ R>.

Proof. We only prove the last two parts and leave the other assertions to the reader
[+ Problem 6.27].

(c) The assumptions (6.29), (6.30) of the theorem directly imply

‖C j,k‖s = ‖Ck‖s = σ
−1
k ‖Bk−µk +µτk‖s = O(logγ−β k)

as k→ ∞, so that only ‖Z j,k‖s remains to be examined. In the following, we will
make use of the facts that

0 ≤ − log
(

ϕ(k)∨1
k

)
≤ logk,
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E(Z2
j,k|A j−1) = E(C2

j,k|A j−1) =
σ2

k −Eσ2
ϕ(k)

σ2
k

a.s.

and E(Z2
j,k|A j) =

σ2
k −σ2

ϕ(k)

σ2
k

a.s.

for all j,k ≥ 1. First, we point out that

Eσ
2
ϕ(k) = θ E log2β (ϕ(k)∨1)+O(log2γ k)

= θ log2β k+θ E log2β

(
ϕ(k)∨1

k

)
+O(log2γ k)

= θ log2β k+θ E log2
(

ϕ(k)∨1
k

)
O(1∨ log2β−2 k)+O(log2γ k)

= θ log2β k+O(log(2β−2)∨2γ k)

where (6.30) has been used for the last line. Second, the previous expansion is uti-
lized to give

∣∣∣∣∣
σ2

ϕ(k)−Eσ2
ϕ(k)

σ2
k

∣∣∣∣∣

s/2

=
1

logsβ k

∣∣∣∣log2β

(
ϕ(k)∨1

k

)
+O(log(2β−2)∨2γ k)

∣∣∣∣
s/2

=
1

logs k
logs

(
ϕ(k)∨1

k

)
+O

(
1

logsδ k

)
, (6.43)

where δ = 1∧ (β − γ) should be recalled. Third, we have that

E(|Z j,k|s|A j) =

∣∣∣∣∣
σ2

k −σ2
ϕ j(k)

σ2
k

∣∣∣∣∣

s/2

ns

≤ 2s/2 ns


∣∣E(C2

j,k|A j−1)
∣∣s/2

+

∣∣∣∣∣
σ2

ϕ j(k)
−Eσ2

ϕ j(k)

σ2
k

∣∣∣∣∣

s/2


≤ 2s/2 ns


E(|C j,k|s|A j−1)+

∣∣∣∣∣
σ2

ϕ j(k)
−Eσ2

ϕ j(k)

σ2
k

∣∣∣∣∣

s/2
 a.s.

where ns denotes the sth absolute moment of a standard normal variable. Now take
unconditional expectations and use (6.43) together with assumptions (6.29), (6.30)
of the theorem to arrive at the desired conclusion for part (c), viz.

‖Z j,k‖s
s = E

(
E(|Z j,k|s|A j)

)

≤ 2s/2 ns


‖C j,k‖s

s +E

∣∣∣∣∣
σ2

ϕ j(k)
−Eσ2

ϕ j(k)

σ2
k

∣∣∣∣∣

s/2




232 6 The contraction method for a class of distributional recursions

= O
(

1

logsδ k

)

for all j ≥ 1.

For the proof of (d), put ∆ j,k := C j,k−Z j,k, let m ∈ N be such that (6.36) holds,
and let K denote a generic positive constant which may differ from line to line. By
the previous part, we have that, for any j,n≥ 1,

E
(∣∣∆ j,ϕ j−1:1(n)

∣∣s
∣∣∣A j−1

)
= ∑

k≥n0

1{ϕ j−1:1(n)=k}E
∣∣∆1,k

∣∣s

≤ K ∑
k≥n0

1{ϕ j−1:1(n)=k} logsδ k

= K logsδ
ϕ j−1:1(n)

a.s. on {ϕ j−1:1(n)≥ n0}. Consequently,
∥∥∥∥

σϕ j−1:1(n)

σn
∆ j,ϕ j−1:1(n)

∥∥∥∥
s

s

=

∥∥∥∥
σϕ j−1:1(n)

σn
∆ j,ϕ j−1:1(n) 1{ϕ j−1:1(n)≥n0}

∥∥∥∥
s

s

≤ KE
(

logϕ j−1:1(n)
logn

)sβ

E
(∣∣∆ j,ϕ j−1:1(n)

∣∣s
∣∣∣A j−1

)
1{ϕ j−1:1(n)≥n0}

≤ K

logsδ n
E
(

logϕ j−1:1(n)
logn

)s(β−δ )

1{ϕ j−1:1(n)≥n0}

≤ K

logsδ n

((
logm
logn

)s(β−δ )

+ξ
k(sγ∧1)

)

for all j,n ≥ 1, where Lemma 6.22 has been used to provide the last estimate. The
assertion now easily follows when taking the root of order s and summing over
j = 1, ...,k. ut

Results similar to Theorem 6.21 can also be stated in the branching case when
(under the usual independence assumptions)

Xn
d
=

Nn

∑
i=1

Xi,τn,i +Bn, n≥ n0, (6.44)

with
1≤ Nn < ∞ a.s. for each n≥ 1 and limsup

n→∞

ENn > 1. (6.45)

We do not intend to embark on an extensive discussion of this case but confine
ourselves to the statement of one such generalization, Theorem 6.24 below which
appears in a similar form in [98, Thm. 5.1]. We also provide an appropriate setup for
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its proof, which follows similar lines as the one just given, but leave further details
to the interested reader [+ Problem 6.29]. Naturally, the previously used notation
will be in force throughout unless stated otherwise.

Before stating the result, note that (6.44) after normalization becomes

X̂n
d
=

Nn

∑
i=1

σi,τn,i

σn
X̂i,τn,i +Cn = ∑

i≥1
Tn,i X̂i,τn,i +Cn, (6.46)

where

Cn :=
1

σn

(
Bn−µn +

N

∑
i=1

µτn,i

)
and Tn,i :=

σi,τn,i

σn
1{N≥i}

for i,n≥ 1.

Theorem 6.24. Let s = 2+α for α ∈ (0,1] and (Xn)n≥0 a sequence of ran-
dom variables in Ls satisfying (6.27) under the usual conditions and (6.45).
Suppose further that (6.29) and (6.30) are valid for some β ,θ ∈ R> and
0≤ γ < β . Finally, assume that

limsup
n→∞

E log

(
1
n

Nn

∏
i=1

(τn,i∨1)

)
< 0, (6.47)

limsup
n→∞

E log

(
Nn

∑
i=1

1{τn,i=n}

)
= 0, (6.48)

sup
n≥1

∥∥∥∥log
(

τn,1∨1
n

)∥∥∥∥
s
< ∞, (6.49)

∥∥∥∥∥
Nn

∑
i=2

log(τn,i∨1)

∥∥∥∥∥
s

= O(logγ n). (6.50)

Then X̂n
d→ Normal(0,1), in fact

ζs(L (X̂n),Normal(0,1)) = O(log−αδ n)

as n→ ∞, where δ := (β − γ)∧1.

Proof (setup). Based on the family (τn,i)n≥0, i≥1, define random maps φ1,φ2, ... by

φi : Ω ×N0→ N0, (ω,n) 7→ τn,i(ω),

and let (Ni(v),φvi,Bi(v),Ci(v))i≥1 for v ∈ T be iid copies of (Ni,φi,Bi,Ci)i≥1. Put
further ϕ∅(n) := n and

ϕv(n) := φv1...vk ◦φv1...vk−1 ◦ ...◦φv1(n),
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In(v) := 1{v1≤Nn(∅),v2≤Nn(v1),...,vk≤Nn(v1...vk−1)},

Jn(v) := In(v)
k

∏
j=1

1{i:VarXi>0}(ϕv1...v j(n))

for k,n≥ 1 and v = v1...vk ∈ T\{∅}. Then it is not dificult to verify that

X̂n
d
= ∑
|v|=k

Jn(v)
σϕv(n)

σn
X̂ϕv(n)(v)+

k−1

∑
j=0

∑
|v|= j

In(v)
σϕv(n)

σn
Cϕv(n)(v) =: X̂n,k

for any k≥ 1 and n≥ n0, where X̂ j(v) denotes a copy of X̂ j independent of all other
occurring variables, for each j≥ 0 and v ∈T. Notice that X̂k is either in Ls

0,1 or equal
to 0. Finally, put

Yn,k := ∑
|v|=k

Jn(v)
σϕv(n)

σn
Z(v)+

k−1

∑
j=0

∑
|v|= j

Jn(v)
σϕv(n)

σn
Cϕv(n)(v),

Y ∗n,k := ∑
|v|=k

Jn(v)
σϕv(n)

σn
Z(v)+

k−1

∑
j=0

∑
|v|= j

Jn(v)
σϕv(n)

σn
Sn(v)Z(v),

where (Z(v))v∈T is a family of iid standard normals independent of all other occur-
ring variables and

Sn(v) :=
1

σϕv(n)

(
σ

2
ϕv(n)−∑

i≥1
Jn(vi)σ2

ϕvi(n)

)1/2

.

The reader should check that L (Y ∗n,k) = Normal(0,1). With the help of these set-
tings, the reader should be able to prove the result by proceeding in a similar manner
as for Theorem 6.21 [+ Problem 6.29]. ut

Problems

Problem 6.25. Given the assumptions (6.29) and (6.32) of Theorem 6.21, prove that

∑
n≥1

P
(

τn

n
< 1− 1

n

)
< ∞

and use this to infer

τn

n
→ 1 and Tn =

στn

σn
→ 1 a.s.

Problem 6.26. Given a recursion of the form (6.27) and the assumptions of Theo-
rem 6.21, let U be a Unif(−1,1) variable independent of all other occurring random
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variables and define X ′n := Xn +U for n≥ 0, which has the same mean µn as Xn and
positive variance σ ′n

2 := VarXn +VarU (= σ2
n +VarU if VarXn > 0). Prove the

following assertions which together provide a justification for the assumption that
all Xn have positive variances in the proof of the afore-mentioned theorem:

(a) X ′n
d
= X ′τn +Bn for each n ∈ N0.

(b) Theorem 6.21 applies to (X ′n)n≥0 with the same parameters θ ,β and γ , thus
(with δ = (β − γ)∧1)

ζs(L (X̂ ′n),Normal(0,1)) = O(log−αδ n)

(c) c := supn≥0 ‖X̂n‖s < ∞.
(d) `s(X̂n, X̂ ′n)≤ σ ′n

−1(c+‖U‖s) = O(log−β n) as n→ ∞.
(e) ζs(X̂n, X̂ ′n) = O(log−αβ n) = O(log−αδ n) as n→ ∞.

Problem 6.27. Give a proof of Lemma 6.23(a) and (b).

Problem 6.28. In [98], the normal limit law of X̂n in Theorem 6.21 is identified in a
different manner than here, namely via the following result [+ Lemma 3.3 there]:
Let X ,W ∈ L2

0,1 be independent random variables such that

X d
= qX +(1−q2)1/2 W

for all q ∈ (0,1). Then L (X) = Normal(0,1). Give a proof of this assertion.

Problem 6.29. Give a proof of Theorem 6.24 based on the setup described above.

6.6 Applications

6.6.1 The total path length of a random recursive tree

A recursive tree of size n is a rooted unordered tree with labels 1, ...,n such that
the root is given label 1 and, for any 2 ≤ k ≤ n, the labels of the vertices on the
unique path from the root to the vertex k are increasing [+ Figure 6.1 below]. It
is unordered in the sense that we do not care about the order in which labels are
assigned to the children of any vertex.

The following dynamic construction particularly shows that there are (n− 1)!
distinct recursive trees of size n:

• Start with the root and label it by 1.
• At any stage 2≤ k≤ n with k−1 vertices assigned and labeled 1, ...,k−1 , pick

anyone of these and attach a new node with label k to it.

For the general step one may also think of one external node attached to each of
the k− 1 assigned vertices of which one is picked and given label k [+ top part
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1
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4

The first four steps in the dynamic construction of the following recursive tree.

1

2

3

8

5

4 6

7 9

10

Fig. 6.1 A recursive tree with 10 (internal) nodes. In the uniform model, each of the external nodes,
shown as empty circles, is equally likely to be picked for the next key 11.

of Figure 6.1 for an illustration]. Doing so uniformly at random, the construction
provides a simple procedure to generate a so-called random or uniform recursive
tree of size n. This is sometimes called the uniform model because it obviously
induces a uniform distribution on the set of all (n−1)! recursive trees of size n. In
fact, by proceeding indefinitely as described, we obtain a nested sequence T1,T2, ...
of random trees such that, for each n ≥ 1, Tn is a random recursive tree of size n.
The associated natural filtration will be denoted (Gn)n≥1 hereafter.

Based on the uniform model, we will take a look at some interesting functionals
of recursive trees with special attention to the total path length studied by DOBROW
& FILL [35]. Let Dk denote the depth of the node k in Tn for any k ≥ n, i.e., its
distance from the root. Plainly, D1 = 0 and D2 = 1. Since node k for k≥ 2 is attached
to any of j = 1, ...,k−1 with equal probability, we see that

Dk = 1+DZk−1 = 1+
k−1

∑
j=1

1{Zk−1= j}D j, (6.51)

where Zk−1 is independent of D1, ...,Dk−1 with L (Zk−1) = Unif{1, ...,k− 1}, and
thus

EDk = 1+
1

k−1

k−1

∑
j=1

ED j = Hk−1, (6.52)
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where, as in Section 1.4, Hk denotes the kth harmonic sum. Second moment and
variance of Dk can also be explicitly computed with the help of (6.51) and (6.52).
The reader is asked to do so in Problem 6.42, the result for the variance being

VarDk = Hk−1−H(2)
k−1 (6.53)

for each k ≥ 1, where H(2)
n := ∑

n
k=1 k−2. This was first shown by MOON [91] who

more generally studied the distributional properties of the distance between two
arbitrary nodes in Tn. This and other interesting formulae like for the discrete pdf
P(Dn = k) are discussed in the Problem Section. As for the asymptotic distribution
of Dn, we see from the recursion (6.51) in combination with

EDn = logn+O(1) and VarDn = logn+O(1)

that Theorem 6.21 applies to yield asymptotic normality, viz.

Dn− logn

log1/2 n
d→ Normal(0,1). (6.54)

This was first obtained by DEVROYE [32] and later again by MAHMOUD [84], both
using other means.

As already mentioned, we are particularly interested in the asymptotic behavior
of the total path length of Tn, defined as

TPLn :=
n

∑
k=1

Dk

for n ≥ 1. It has maximal value (n− 1)n/2 when Tn is a path on n nodes, and has
minimal value n−1 when Tn is a star on n nodes. By (6.52), its mean is given by

µn := ETPLn =
n−1

∑
k=1

Hk = n(Hn−1).

If Ln,k denotes the number of nodes at level k in Tn for k = 0, ...,n (thus Ln,0 = 1,
Ln,n = 0 and ∑

n−1
k=0 Ln,k = n), then we obviously also have the identity

TPLn =
n−1

∑
k=1

k Ln,k,

which will be useful for the proof of the following result, again taken from [84,
Thm. 2] [+ also [35, Thm. 2.1]].

Proposition 6.30. The sequence (Wn,Gn)n≥1, where
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Wn :=
TPLn−µn

n
,

forms an L2-bounded zero-mean martingale, viz.

EW 2
n = 2− Hn

n
−H(2)

n (6.55)

for all n≥ 1. It thus converges a.s. and in L2 to a zero-mean random variable
W ∈ L2 with variance

EW 2 = lim
n→∞

EW 2
n = 2− π2

6
=: ℵ

2. (6.56)

Proof. Since

E(Dn|Gn−1) =
1

n−1

n−1

∑
k=1

k Ln−1,k−1 =
TPLn−1

n−1
+1

= Wn−1 +
µn−1

n−1
+1 = Wn−1 +Hn−1 a.s.

and

µn−1−µn

n
=

(n−1)Hn−1−nHn +1
n

= −Hn−1

n
,

for n≥ 2, the martingale property follows from

E(Wn|Gn−1) =

(
1− 1

n

)
Wn−1 +

E(Dn|Tn−1)

n
+

µn−1−µn

n

=

(
1− 1

n

)
Wn−1 +

Wn−1 +Hn−1

n
− Hn−1

n

= Wn−1 a.s.

Turning to the proof of L2-boundedness and formula (6.55), we first note that

Wn−Wn−1 =
Dn

n
+

µn−1−µn

n
−Wn−1

n
=

(Dn−EDn)−Wn−1

n

for each n≥ 2. It then follows with the help of the previous results that

EW 2
n = E

((
1− 1

n

)
Wn−1 +

1
n
(Dn−EDn)

)2

=

(
1− 1

n

)2

EW 2
n−1 +

1
n2 VarDn +

2(n−1)
n2 EWn−1Dn
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=

(
1− 1

n

)2

EW 2
n−1 +

1
n2 VarDn +

2(n−1)
n2 EWn−1E(Dn|Gn−1)

=

(
1− 1

n

)2

EW 2
n−1 +

1
n2 VarDn +

2(n−1)
n2 EWn−1(Wn−1 +Hn−1)

=

(
1− 1

n2

)
EW 2

n−1 +
1
n2 (Hn−1−H(2)

n−1) (6.57)

and therefore
(

1− 1
n+1

)
EW 2

n =

(
1− 1

n

)
EW 2

n−1 +
1

n(n+1)
(Hn−1−H(2)

n−1)

for each n≥ 2. We leave it as an exercise [+ Problem 6.45] to derive from this the
asserted formula (6.55) which particularly implies the L2-boundedness of (Wn)n≥1.
All remaining assertions of the proposition then follow by an appeal to the sharpened
L2-version of the martingale convergence theorem. ut

In view of the previous result, it is natural to ask next about further information
on the limit distribution of Wn, i.e., of L (W ). In order to make use of the contraction
method, we want to study the normalization of TPLn, given by

T̂PLn =
TPLn−µn

σn
, σ

2
n := VarTPLn.

Up to a scalar, it has the same almost sure limit as Wn because, by (6.56),

T̂PLn = Ŵn =
Wn

(EW 2
n )

1/2 →
W
ℵ

a.s. (6.58)

By using the main convergence theorem 6.11 proved in Section 6.4, we will now de-
rive the SFPE valid for this limit and also convergence with respect to the Zolotarev
metric ζ3. To this end, we first need a distributional recursion of type (6.1) for TPLn
and therefore begin with the following basic lemma taken from [35].

Lemma 6.31. For n≥ 2,

TPLn
d
= TPL1,n−Nn +TPL2,Nn +Nn (6.59)

where (TPL1,k)k≥1, (TPL2,k)k≥1 and Nn are independent with L (Nn) =
Uniform{1, ...,n−1} and L (TPLi,k) =L (TPLk) for each k≥ 1 and i= 1,2.

Proof. Every random recursive tree Tn of size n ≥ 2 can be decomposed into two
subtrees T ∗

1,n,T
∗

2,n rooted at 1,2 and of sizes n−Nn,Nn, respectively, where a node
belongs to T ∗

2,n if it has node 2 as an ancestor, and to T ∗
1,n if not. As one can easily

see, these two subtrees are conditionally independent random recursive trees given
Nn, that is
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P((T ∗
1,n,T

∗
2,n) ∈ ·|Nn = k) = P(Tn−k ∈ ·)⊗P(Tk ∈ ·)

for k = 1, ...,n−1. Regarding the total path length, one should observe that the depth
of any node in T ∗

1,n coincides with its depth within Tn, whereas the depth of a node
from T ∗

2,n within Tn is one plus its depth within the subtree itself. Therefore, (6.59)
holds true. It remains to prove that Nn is uniform on {1, ...,n−1}, which is a trivial
fact in the case n = 2. Using the dynamic construction of recursive trees, we hence
find by induction that

P(Nn+1 = k) =
1

n−1
(P(Nn+1 = k|Nn = k)+P(Nn+1 = k|Nn = k−1))

=
1

n−1

(
P
(
node n+1 is appended to T ∗

1,n
∣∣|T ∗

1,n|= n− k
)

+P
(
node n+1 is appended to T ∗

2,n
∣∣|T ∗

2,n|= k−1
))

=
1

n−1

(
n− k

n
+

k−1
n

)

=
1
n

for each k ∈ {1, ...,n} as required. ut

Rewriting equation (6.59) for T̂PLn, we obtain

T̂PLn
d
=

σn−Nn

σn
T̂PL1,n−Nn +

σNn

σn
T̂PL2,Nn +Cn, n≥ 2, (6.60)

where

Cn :=
Nn−µn +µn−Nn +µNn

σn
.

The reader should notice the great similarity of this equation to the corresponding
one in the Quicksort example [+ (5.64)]. As a consequence, it could indeed also
be further analyzed along the same lines as in 5.6 by using the minimal L2-metric
`2. On the other hand, it provides a good example where the general convergence
theorem from Section 6.4 applies which only leaves us with the verification of its
assumptions, with s = 3.

Let us begin with the statement of the following second order approximations
of µn and σ2

n which are easily obtained from the previous results in combination
with the expansion Hn = logn+ γ +(2n)−1 +O(n−2) for the harmonic sum, where
γ denotes Euler’s constant. As n→ ∞,

µn = n(Hn−1) = n logn+(γ−1)n+2+O(n−1),

σ
2
n = n2EW 2

n = ℵ
2n2−n logn+(1− γ)n+O(1),
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the last result being part of Problem 6.45. As in 5.6, we may further choose the Nn
in such a way that n−1Nn →U a.s. for some Uniform(0,1) variable U . Using this
and the expansion for µn, we find that

Cn =
n

σn

(
Nn

n
+

Nn

n
log
(

Nn

n

)
+

(
1− Nn

n

)
log
(

1− Nn

n

))

→ C :=
U +U logU +(1−U) log(1−U)

ℵ
a.s.

By the dominated convergence theorem, ‖n−1Nn−U‖3→ 0 as well and therefore

‖Cn−C‖3→ 0

which proves condition (6.18) of Theorem 6.11. In the notation of that result, we
have further that

Tn,1 =
σn−Nn

σn
, Tn,2 =

σNn

σn
and Tn,i = 0 otherwise,

so that

(Tn,1,Tn,2,Tn,3, ...)→ (T1,T2,T3, ...) := (1−U,U,0, ...) a.s.

It is now an easy task left for the reader as Problem 6.46 to check that all remaining
assumptions of Theorem 6.11 are valid, so that we can state the following result
about the total path length TPLn.

Theorem 6.32. If Fn denotes the distribution of the normalized total path
length T̂PLn and U,C are as stated above, then

ζ3(Fn,F)→ 0,

where F, by (6.58) the law of W/ℵ, is the unique solution in P2
0,1(R) of the

SFPE
X d

= UX1 +(1−U)X2 +C (6.61)

with X1,X2 being independent copies of X and also independent of U,C.

DOBROW & FILL [35] give a more detailed analysis of the limit distribution
F in the previous theorem by studying its higher order moments and its Lebesgue
density f , say. They state that f is everywhere positive, which can be obtained by
adapting a result by TAN & HADJICOSTAS [112], and furthermore that f satisfies
the functional equation

f (t) =
∫ 1

0

∫
∞

−∞

1
u

f
(

t−u+E (u)− (1−u)w
u

)
f (w) dw du (6.62)
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for λλ -almost all t ∈ R, where E (u) :=−u logu− (1−u) log(1−u) denotes the so-
called binary entropy function. The reader is asked in Problem 6.47 to derive this
equation from the SFPE (6.61) for F .

6.6.2 The number of leaves of a random recursive tree

There are of course many other interesting functionals that can be studied for a
random recursive tree, for instance, its profile (= number of nodes at each level),
its height, its number of nodes of a given degree, or the total internal and external
path length. SMYTHE & MAHMOUD [107] provide an excellent survey of results in
this direction and the relevant literature until 1995. For a more recent exposition of
recursive trees including some further references, the reader may consult the book
by DRMOTA [38, Ch. 6]. Here we confine ourselves to one more application, viz.
the number of leaves (= nodes with no descendant) of Tn, denoted as Ln. Note that
L1 = L2 = 1 and that n−Ln = |In|, where In is the (random) set of internal nodes
of Tn.

Lemma 6.33. For each n≥ 2,

Ln = Ln−1 + ∑
k∈In−1

1{k≺n}, (6.63)

Ln
d
= 1{Nn≤n−2}L1,n−Nn +L2,Nn , (6.64)

where k ≺ n means that node n is attached to node k. Moreover, (L1,k)k≥1,
(L2,k)k≥1 and Nn are independent with L (Nn) = Uniform{1, ...,n− 1} and
L (Li,k) = L (Lk) for each k ≥ 1 and i = 1,2.

Proof. The first identity follows because, when node n is added to Tn−1, the number
of leaves increases by one only if it is attached to an internal node of Tn−1 but
remains unchanged otherwise. For (6.64), we recall the proof of Lemma 6.31 and
let L∗1,n,L

∗
2,n denote the number of leaves of the subtrees T ∗

1 ,T
∗

2 rooted at 1,2 and
of sizes n−Nn,Nn, respectively. Then it is clear that

P((L∗1,n,L∗2,n) ∈ ·|Nn = k) = P(Ln−k ∈ ·)⊗P(Lk ∈ ·)

for k = 1, ...,n− 1. Moreover, if T ∗
1,n consists of node 1 only, thus Nn = n− 1,

then 1 is a leaf in this subtree but not in Tn (having descendant 2 there). In this
case L∗1,n = L1,n−Nn equals 1 but does not contribute to Ln. After these observations,
(6.64) easily follows. ut

(6.63) is very useful to derive recursions for the first and second moment of Ln
that can be solved to give explicit formulae. By taking expectations and using



6.6 Applications 243

E

(
∑

k∈In−1

1{k≺n}

∣∣∣∣In−1

)
=
|In−1|
n−1

= 1− Ln−1

n−1
,

we find as in [93, eq. (26)] that

ELn = ELn−1 +E

(
∑

k∈In−1

1{k≺n}

)
=

(
1− 1

n−1

)
ELn−1 +1

for n≥ 2, which upon straightforward calculations shows that

ELn =
n
2

(6.65)

for each n≥ 2. As for the second moment, (6.63) provides us with

EL2
m = EL2

m−1 +E

(
∑

k∈Im−1

1{k≺m}

)2

+2E

(
Lm−1 ∑

k∈Im−1

1{k≺m}

)

= EL2
m−1 +E

(
∑

k∈Im−1

1{k≺m}

)
+2E

(
Lm−1E

(
∑

k∈Im−1

1{k≺m}

∣∣∣∣Im−1

))

= EL2
m−1 +1− ELm−1

m−1
+2ELm−1

(
1− Lm−1

m−1

)

=

(
1− 2

m−1

)
EL2

m−1 +n− 1
2

which in turn is equivalent to

(m−2)(m−1)EL2
m = (m−3)(m−2)EL2

m−1 +
(m−2)(m−1)(2m−1)

2

for each m ≥ 3. Summation over m = 3, ...,n and using well-known formulae for
∑m m,∑m m2 and ∑m m3 then yields

(n−2)(n−1)EL2
n =

n

∑
m=3

(m−2)(m−1)(2m−1)
2

=
n−2

∑
m=1

m(m+1)(2m+3)
2

=
n−2

∑
m=1

(
m3 +

5
2

m2 +
3
2

m
)

=
(n−2)(n−1)

4

(
(n−2)(n−1)+

5(2n−3)
3

+3
)

=
(n−2)(n−1)n

4

(
n+

1
3

)
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and thereupon

EL2
n =

n2

4
+

n
12
, thus VarLn =

n
12
. (6.66)

This is the result also stated by NAJOCK & HEYDE [94, p. 677], but some confusion
may arise when consulting other sources. Indeed, the reader will find a different
formula for EL2

n in [87, 107] which – after a short calculation – turns out to be the
same as ours but for EL2

n+1. Yet another, fully mistaken formula appears in [38].
One may also derive the exact distribution of Ln from the recursion

P(Ln = k) = E

(
∑

j∈In−1

1{Ln−1=k−1, j≺n}

)
+E

(
∑

j∈Tn−1\In−1

1{Ln−1=k, j≺n}

)

=
n− k
n−1

P(Ln−1 = k−1)+
k

n−1
P(Ln−1 = k)

for n ≥ 2 and k = 1, ...,n− 1, which is again an immediate consequence of (6.63)
and may be restated as

pn,k = (n− k) pn−1,k−1 + k pn−1,k

for pn,k := (n− 1)!P(Ln = k), where pn,0 := 0. Since p1,1 = 1, this is exactly the
recursion defining the Eulerian number of the first kind

〈n−1
k−1

〉
for k ≥ 1, where

〈
n
k

〉
=

k

∑
j=0

(−1) j
(

n+1
j

)
(k+1− j)n

counts the number of permutations of 1, ...,n with exactly k ascents, that is, elements
which are strictly larger than the previous element [+ for example COMTET [30, p.
51, 243-244] or KNUTH [76, p. 34-40]]. Consequently,

P(Ln = k) =
1

(n−1)!

〈
n−1
k−1

〉
(6.67)

for n≥ 2 and k = 1, ...,n−1.

Turning to our principal goal of finding the asymptotic law of

L̂n =
Ln− (n/2)
(n/12)1/2 ,

we first note that (6.64) provides us with the distributional recursion

L̂n
d
= 1{Nn≤n−2}

(
1− Nn

n

)1/2

L̂1,n−Nn +

(
Nn

n

)1/2

L̂2,Nn −
1{Nn=n−1}
(n/3)1/2 (6.68)

for n ≥ 2, where n−1Nn → U a.s. for some Uniform(0,1) variable U . Hence, the
limiting SFPE equals
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X d
= (1−U)1/2X1 +U1/2X2

with iid X ,X1,X2 independent of U , which uniquely characterizes the standard nor-
mal law. Verifying the conditions of Theorem 6.11 is now an easy task left to the
reader [+ Problem 6.48] and leads to the following CLT for Ln first obtained by
NAJOCK & HEYDE [94] who were motivated by an application in philology, namely
stemma (= family tree of preserved copies of ancient manuscripts) reconstruction.

Theorem 6.34. The normalized leaf number L̂n with law Fn, say, converges in
distribution to a standard normal distribution, in fact

ζ3(Fn,Normal(0,1))→ 0

as n→ ∞.

A connection of the number of leaves distribution with a certain urn model is
discussed in Problem 6.49

6.6.3 Size and total path length of a random m-ary search tree

At the end of Section 1.4, we have briefly described how to generate a binary search
tree (BST) from a permutation π = (π1, ...,πn) of 1, ...,n, or in fact any finite totally
ordered set of n distinct elements (keys). The BST forms a fundamental data struc-
ture in computer science and has the following three properties:

(BST-1) Keys stored in the left subtree of a node are always less than the node’s
key.

(BST-2) Keys stored in the right subtree of a node are always larger than the
node’s key.

(BST-3) The left and right subtrees are both also BST’s.

Its main advantage over other data structures is that related sorting algorithms (like
Quicksort) and search algorithms can be very efficient due to the fact that on
average, when assuming random input, the maximal path length (= the height of the
BST) grows only logarithmically in the size of the data set it stores.

Search trees of higher branching degrees were first suggested by MUNTZ & UZ-
GALIS [92] to solve internal memory problems with large data sets. The m-ary
search tree generalizes the BST and is generated as follows from a permutation
or data set π = (π1, ...,πn) of length n:

(mST-1) Each node has maximal capacity m−1 and the keys it contains are stored
in increasing order.

(mST-2) If n< m, all keys are in the root.
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(mST-3) If n≥m, then π1, ...,πm−1 are stored in the root and πm, ...,πn go into one
of the m subtrees subject to the condition that, when (π(1), ...,π(m−1)) de-
notes the increasing order statistics of π1, ...,πm−1 and π(m) = −π(0) :=
∞, then x goes into the jth subtree if π( j−1) < x< π( j) for j = 1, ...,m−1.

(msT-4) All subtrees are also m-ary search trees.

The construction is illustrated in Figure 6.2 for a ternary search tree (m = 3). For
furtrher background information we refer to the monography by MAHMOUD [85,
Ch. 3].

In the case when the input π is chosen uniformly at random from the set of
permutations of length n, the obtained random tree Tm,n, say, is called a random
m-ary search tree. The case m = 2 leads back to a random BST.

Total path length of Tm,n
As for a random recursive tree, we are interested in the total path length of Tm,n,
which is again denoted by TPLn and defined as ∑

n
i=1 Di with Di being the depth of

i, i.e., the length of the path from the root to the node containing i. Then TPLi = i
for i = 0, ...,m−1 and

TPLn
d
=

m

∑
i=1

TPLi,Zn,i +n−m+1, n≥ m, (6.69)

where (TPLi,k)k≥0 for i = 1, ...,m and (Zn,1, ...,Zn,m) are mutually independent with
L (TPLi,k) = TPLk. Moreover, the Zn,i denote the random sizes (= number of
nonempty nodes) of the subtrees rooted at level one and satisfy Zn,1 + ...+Zn,m =
n−m+1. It is easily verified [+ Problem 6.52] that

P(Zn,1 = n1, ...,Zn,m = nm) =
(m−1)!

n(n−1) · ... · (n−m+2)
=

1( n
m−1

) (6.70)

for all (n1, ...,nm) ∈ Nm
0 with ∑

m
i=1 ni = n−m+1 and, as n→ ∞,

(
Zn,1

n−m+1
, ...,

Zn,m−1

n−m+1

)
→ (U(1)−U(0), ...,U(m)−U(m−1)) (6.71)

a.s. and in Ls for any s> 0, where U(0) := 0, U(m) = 1 and (U(1), ...,U(m−1)) denotes
the order statistics of iid Unif(0,1) variables U1, ...,Um−1.

Let us point out once again [+ also at the end of Section 1.4] that in the binary
case m = 2, the distributional recursion (6.69) for the total path length in a random
BST equals exactly the number of key comparisons to sort a random list of n items
by Quicksort.

In order to determine the asymptotic behavior of TPLn after normalization, we
first need information about its mean µn = ETPLn and variance σ2

n = VarTPLn in
the case m≥ 3. The recursions these quantities satisfy are far more difficult to solve
than in the binary case, and we therefore contend ourselves with a statement of the



6.6 Applications 247

6

3|6 3|6

9

3|6

2 9

3|6

2 5 9

3|6

2 5 9|12

3|6

2 5 9|12

8

3|6

1|2 5 9|12

8

3|6

1|2 5 9|12

8 10

3|6

1|2 4|5 9|12

8 10

3|6

1|2 4|5 9|12

8 10|11

3|6

1|2 4|5 9|12

7|8 10|11

Fig. 6.2 The permutation (6,3,9,2,5,12,8,1,10,4,11,7) from Example 1.12 stored in a ternary
search tree of size 6 [+ also Figure 1.2].
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following result taken from [85, Section 3.5] which also provides the details of its
(analytic) derivation.

Lemma 6.35. As n→ ∞, the mean and the variance of the total path length
TPLn in a random m-ary search tree on n keys (m≥ 2) satisfy

µn =
nHn

Hm−1
+bmn+O(nλ ) =

n logn
Hm−1

+ cmn+o(nλ ) (6.72)

for some λ = λm < 1 and bm,cm ∈ R, and

σ
2
n =

1
(Hm−1)2

(
(m+1)H(2)

m −2
m−1

− π2

6

)
n2 +o(n2). (6.73)

The reader may want to assess that (6.73) in the case m = 2 matches the asymp-
totic Quicksort variance (1.27) to be derived in Problem 1.16. In the ternary case
m = 3, MAHMOUD [85, p. 143] even provides exact formulae for µn and σ2

n which
presumably discourage anyone who wants to strive for the same for general m.

It is now easily checked that Corollary 6.13 with s = 3 applies to

TPL∗n :=
TPLn− f (n)

g(n)

(notice that this is not the “exact” normalization T̂PLn) upon setting

f (n) :=
n logn
Hm−1

+ cmn,

g(n) := σ
∗
mn, σ

∗
m :=

1
Hm−1

(
(m+1)H(2)

m −2
m−1

− π2

6

)1/2

and further observing that, by (6.71),

g(Zn,i)

g(n)
→ Vi := U(i)−U(i−1), i = 1, ...,m,

1
g(n)

(
n−m+1− f (n)+

m

∑
i=1

f (Zn,i)

)
→ 1+

1
σ∗m

m

∑
i=1

Vi logVi

in Lp for any p> 0. Here is the result for T̂PLn [+ also [96, Cor. 5.2]]:
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Theorem 6.36. The normalized total path length T̂PLn of a random m-ary
search tree on n keys converges in distribution to the unique solution in
P2

0,1(R) of the SFPE

X d
=

m

∑
i=1

Vi Xi +1+
1

σ∗m

m

∑
i=1

Vi logVi (6.74)

where X1, ...,Xm are independent of V1, ...,Vm and iid copies of X.

Size of Tm,n
Fixing any m ≥ 3, let Sn denote the size of Tm,n, that is the number of nodes con-
taining at least one key. Then S0 = 0, S1 = ...= Sm−1 = 1, and

Sn
d
= 1+

m

∑
i=1

Si,Zn,i , n≥ m, (6.75)

where L (Si,k) = L (Sk) for i = 1, ...,m and k ≥ 0, the Zn,i are defined as in (6.69),
and the usual independence assumptions are made.

An analysis very similar to the one given for TPLn enables us to derive a CLT
for Sn, however, only for 3 ≤ m ≤ 26. As before, the most difficult part is to pro-
vide approximations for µn := ESn and σ2

n := VarSn. The following result is due to
MAHMOUD & PITTEL [86, Thm. 1] [+ also [85, Thm. 3.1]], although earlier ap-
proximations for µn had already been obtained by KNUTH [76] and BAEZA-YATES
[11].

Lemma 6.37. As n→∞, the mean and the variance of the size Sn in a random
m-ary search tree on n keys (m≥ 3) satisfy for some α = αm < 2:

(a) [76, 11, 86]

µn =
n

2(Hm−1)
− 1

m−1
+O(nα−1). (6.76)

(b) [86] If 3≤ m≤ 26, then α < 3/2 and

σ
2
n = γ n+o(n) (6.77)

for some positive γ = γm only depending on m.
(c) [86] If m> 26, then α > 3/2 and

σ
2
n = φm,2(β logn)n2(α−1)+o(n2(α−1)), (6.78)
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where φm,2 is a positive bounded 2π-periodic function and β = βm ∈R>
a suitable constant.

A table of the values of αm,γm and infn φm,2(β logn) for 3≤m≤ 85 may also be
found in both, [86] and [85].

So we see that the variance of Sn exhibits an unexpected phase transition from
an asymptotic linear behavior if 3 ≤ m ≤ 26 to a superlinear growth if m ≥ 27. As
a consequence, the following result, which may easily be inferred from Corollary
6.14 by checking its conditions, does only hold for the case 3≤ m≤ 26. It has also
been derived by other means in [86, Thm. 2] for 3 ≤ m ≤ 15, extended by LEW &
MAHMOUD [78] to m≤ 26, and shown in full generality by CHERN & HWANG [27,
Thm. 1] who also show that for m > 26 all integral moments of n−(α−1)(Sn− µn),
µ := (2Hm− 2)−1, exhibit periodic behavior of the above kind, more precisely: if
m> 26, then

E
(

Sn−µn
nα−1

)k

= φm,k(βm logn)(1+o(1))

for all k ∈ N and some 2π-periodic functions φm,k. They further point out that
n−(α−1)(Sn− µn) does not have a limit law and provide some further discussion
of this fact in connection with the periodicity phenomenon [+ [27, Section 4]].

Theorem 6.38. If 3 ≤ m ≤ 26, the normalized size Ŝn = σ
−1/2
n (Sn− µn) of a

random m-ary search tree on n keys converges in distribution to a standard
normal law.

Proof. In order to use Corollary 6.14, put f (n) = (2Hm−2)−1n, g(n) := γ n1/2 and
consider S∗n := g(n)−1/2(Sn− f (n)) as in the previous example. Notice that, for i =
1, ...,m−1 and with (V1, ...,Vm) as before,

g(Zn,i)

g(n)
→ V 1/2

i

in Lp for any p > 0, and that ∑
m
i=1 Vi = 1. We leave it to the reader as Problem 6.53

to fill in all remaining details of the proof. ut

6.6.4 Maxima in right triangles

For n ≥ 1, let (U1,V1), ...,(Un,Vn) be a sample of n independent random points in
the right triangle ∆ ⊂R2 with vertices (0,0),(0,1) and (1,0). That is, each (Uk,Vk)
has a uniform distribution on ∆ . Given a realization (u1,v1), ...,(un,vn), an element
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(u,v) is called maximal point or Pareto optimal if it is not dominated by any other
sample point in both coordinates, i.e.

∀ k = 1, ...,n : u≥ uk or v ≥ vk.

An example is shown in Figure 6.3 below. Pareto optimality, which is not restricted
to points in the plane, is a very useful notion whenever facing the task of making
comparisons of multivariate observations and it has applications a various fields
ranging from economics to mechanics, from social sciences to algorithms. For a
more detailed discussion and some relevant literature, we refer to the article by BAI,
HWANG, LIANG & TSAI [12] which has been a major source for this subsection.

0 1

1

∆0

V(n)

U(n) U(n)+V(n)

U(n)+V(n)

• (U(n),V(n))

•

•

•

•

•

•

•
•

•

•

•
•

•

• • •
•

•

•

•

•

•

•

•

•
•••

•
••

•
•

• •

Fig. 6.3 The maximal points (red) of a uniform sample in a right triangle. The sample point
(U(n),V(n)) with maximal coordinate sum decomposes the given triangle into two congruent ones
of smaller size and one rectangle which does contain any maximal points.

We are interested in the asymptotic behavior, as n→∞, of the number of maximal
points in ∆ , denoted by MPn. As explained in the afore-mentioned article [12], this
is fundamental also for the more general problem of finding the number of max-
imal points in a uniform and independent random sample taken from an arbitrary
bounded planar region (with some smoothness constraints on the boundary). As in
[97], we will show with the help of Corollary 6.13 that MPn, suitably normalized,
satisfies a CLT. The necessary ingredients are a distributional recursion for MPn
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and sufficiently accurate approximations for mean and variance of this quantity as
n→ ∞.

Let (U(n),V(n)) be the point in the given random sample of size n which maxi-
mizes its coordinate sum, thus

U(n)+V(n) = max
1≤k≤n

(Uk +Vk).

As shown in the above figure, this point decomposes ∆ into a subset ∆0 with no sam-
ple points, a rectangle of size U(n)V(n) and number of sample points Nn,3, say, which
obviously cannot be maximal, and two congruent triangles of sizes 1

2 U2
(n),

1
2 V 2

(n) and
containing Nn,1, Nn,2 points of the sample, of course not counting (U(n),V(n))) so
that Nn,1 +Nn,2 +Nn,3 = n−1. But conditioned upon Nn,1 = k and Nn,2 = l, the two
subsamples of sizes k and l are again consisting of independent and uniformly dis-
tributed points in the respective subtriangles and their maximal points together with
(U(n),V(n)) are exactly those which are maximal in ∆ [+ Figure 6.3]. Therefore,
by finally noting that the problem is scale invariant (the size of the triangle does not
matter), we infer that

MPn
d
= MP1,Nn,1 +MP2,Nn,2 +1 (6.79)

holds true for each n ≥ 1 under the usual independence assumptions hold and with
L (MPi,k) = L (MPk) for each i = 1,2 and k ≥ 0. Plainly, MP0 := 0. Moreover,
in view of the stated areas of the three subsets arising from the decomposition, the
conditional distribution of (Nn,1,Nn,2,Nn,3) given (U(n),V(n)) = (u,v) is trinomial
with parameters n−1 and

(P1,P2,P3)(u,v) :=
(

u2

(u+v)2 ,
v2

(u+v)2 ,
2uv

(u+v)2

)

The distribution of (U(n),V(n)) is needed first and thus stated in the next lemma.

Lemma 6.39. The extremal point (U(n),V(n)) has λλ -density

h(u,v) := 2n(u+ v)2n−2 1∆ (u,v).

Moreover, U(n)
d
=V(n)

d
= h1(u)du with h1(u) := 2n

2n−1 (1−u2n−1)1(0,1)(u).

Proof. Let H denote the cdf of (U(n),V(n)) and note that the (Uk,Vk) have density
21∆ . Straightforward calculation further shows that

P(U1 +V1 < t) =
area of triangle with vertices (0,0),(0, t),(t,0)

area of ∆
= t2



6.6 Applications 253

for 0< t < 1. Then, for any 0< u,v< 1 with u+ v< 1, we find

H(u,v) = nP
(

U1 +V1 > max
2≤k≤n

(Uk +Vk),U1 ≤ u,V1 ≤ v
)

=
∫ u

0

∫ v

0
P
(

max
1≤k≤n−1

(Uk +Vk)< x+ y
)

2n1∆ (x,y) dy dx

=
∫ u

0

∫ v

0
2n1∆ (x,y) dy dx

=
∫ u

0

∫ v

0
2n(x+ y)2n−2 1∆ (x,y) dy dx,

giving the asserted density h for (U(n),V(n)). By symmetry, U(n),V(n) are identically
distributed and their common density is easily obtained by integration of h(u,v) with
respect to v. ut

With the help of the previous lemma it is now easy to deduce that

P(Nn,1 = k,Nn,2 = l,Nn,3 = m)

=
(n−1)!
k! l!m!

∫

∆

(
u2

(u+v)2

)k(
v2

(u+v)2

)l( 2uv
(u+v)2

)m

h(u,v) du dv

= 2n
2m (n−1)!

k! l!m!

∫ 1

0

∫ 1−u

0
u2k+m v2l+m du dv

=
2n

2l +m+1
2m (n−1)!

k! l!m!

∫ 1

0
u2k+m (1−u)2l+m+1 du (6.80)

for all k, l,m ∈ N0 with k+ l +m = n−1, a result that will enter in the proof of the
next lemma.

Turning to the step of deriving good approximations for EMPn and VarMPn, we
will provide details only for the mean and refer to the result in [12] for the variance.
The latter is derived in a similar manner as the mean but a technical tour de force
not worth to be included here.

Lemma 6.40. The mean and the variance of MPn satisfy

EMPn =
π1/2 n!

Γ (n+1/2)
−1 =

4n
(2n

n

) −1 = π
1/2n1/2 +O(1), (6.81)

VarMPn = σ
2n1/2 +O(1) (6.82)

as n→ ∞, where σ2 := (2log2−1)1/2π1/4.

Proof. The first step is to determine a recursive formula for the mgf of MPn, i.e. of

ψn(z) := EezMPn , z ∈ C,
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which is an entire function. By making use of the intrinsic recursion (6.79) in com-
bination with (6.80), we infer

ψn(z) = ez
∑

k+l+m=n−1
ψk(z)ψl(z)P(Nn,1 = k,Nn,2 = l,Nn,3 = m)

= 2nez
∑

k+l+m=n−1

2m (n−1)!
k! l!m!

ψk(z)ψl(z)
2l +m+1

∫ 1

0
u2k+m (1−u)2l+m+1 du

= ez
∑

k+l+m=n−1

2m (n−1)!
k! l!m!

ψk(z)ψl(z)
(2k+m)!(2l +m)!

(2n−1)!

= ez
∑

k+l+m=n−1

2m (n−1)!
k! l!m!

ψk(z)ψl(z)
∫ 1

0
u2k+m(1−u)2l+m du.

Defining

Ψ(θ ,z) := e−θ
∑
n≥0

θ n

n!
ψn(z) = EψT (θ)(z)

for θ ≥ 0 and with T (θ) denoting a Poisson(θ) random variable, Ψ(0,z) = 1 and

∂

∂θ
Ψ(θ ,z) =−Ψ(θ ,z)+ e−θ

∑
n≥1

θ n−1

(n−1)!
ψn(z)

hold true. We claim that

Ψ(θ ,z)+
∂

∂θ
Ψ(θ ,z) = ez

∫ 1

0
Ψ(u2

θ ,z)Ψ((1−u)2
θ ,z) du. (6.83)

In the subsequent calculation, let Tu,1(θ),Tu,2(θ),Tu,3(θ) be independent Poisson
variables with respective means u2θ , (1− u)2θ , 2θu(1− u) and sum Tu(θ), thus
L (Tu(θ)) = Poisson(θ). Note that the conditional law of (Tu,1(θ),Tu,2(θ),Tu,3(θ))
given Tu(θ) = n is multinomial with parameters n and u2, (1− u)2, 2u(1− u) for
each n ∈ N0. Then

Ψ(θ ,z)+
∂

∂θ
Ψ(θ ,z)

= e−θ
∑
n≥1

θ n−1

(n−1)!
ψn(z)

= ez
∑
n≥0

e−θ θ n

n! ∑
k+l+m=n

n!ψk(z)ψl(z)2m

k! l!m!

∫ 1

0
u2k+m(1−u)2l+m du

= ez
∫ 1

0
∑
n≥0

e−θ θ n

n! ∑
k+l+m=n

n!u2k (1−u)2l(2u(1−u))m

k! l!m!
ψk(z)ψl(z) du

= ez
∫ 1

0
∑
n≥0

P(Tu(θ) = n)E(ψTu,1(θ)(z)ψTu,2(θ)(z)|Tu(θ) = n) du
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= ez
∫ 1

0
EψTu,1(θ)(z)ψTu,2(θ)(z) du

= ez
∫ 1

0
EψT (u2θ)(z)EψT ((1−u)2θ)(z) du

= ez
∫ 1

0
Ψ(u2

θ ,z)Ψ((1−u)2
θ ,z) du

which proves (6.83).
The next step is to consider the function

Φ(θ) :=
∂

∂ z
Ψ(θ ,z)

∣∣
z=0 = Eψ

′
T (θ)(0) = ∑

n≥0

e−θ θ n

n!
EMPn. (6.84)

Note that Φ(0) = 0 and ∂

∂ z
∂

∂θ
Ψ(θ ,z)

∣∣
z=0 = Φ ′(θ). By taking partial derivatives

with respect to z on both sides of (6.83), we now easily find that

Φ(θ)+Φ
′(θ) = 1+2

∫ 1

0
Φ(u2

θ) du.

Write Φ(θ) = ∑n≥0 φn θ n, note that φ0 = 0, and equate coefficients of zn in the
previous equation. We thus obtain the recurrence relation

φn +(n+1)φn+1 = δn,0 +2φn

∫ 1

0
u2n du = δn,0 +

2φn

2n+1
, n≥ 0,

which one can easily be solved to yield

φn =
(−1)n−1

(2n−1)n!
, n≥ 1.

As can be seen from (6.84), EMPn/n! is the coefficient of θ n in the power series
expansion of eθ Φ(θ) about 0, giving

EMPn =
n

∑
k=1

(
n
k

)
(−1)k−1

2k−1
.

To evaluate the right-hand sum, we further compute

n

∑
k=1

(
n
k

)
(−1)k−1

2k−1
=

n

∑
k=1

(
n
k

)
(−1)k−1

∫ 1

0
s2k−2 ds

=
∫ 1

0

−t−3/2

2

n

∑
k=1

(
n
k

)
(−1)k tk dt

=
1
2

∫ 1

0
t−3/2(1− (1− t)n) dt
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=
1
2

n−1

∑
k=0

∫ 1

0
t−1/2(1− t)k dt

=
1
2

n−1

∑
k=0

Γ (1/2)Γ (k+1)
Γ (k+3/2)

=
π1/2

2

n−1

∑
k=0

k!
Γ (k+3/2)

.

If follows by a simple induction over n that the last expression does indeed equal
Γ (n+1/2)−1 π1/2 n!−1 for each n≥ 1 as claimed. The second and third equalities
in (6.81) may be obtained with the help of standard identities for the Gamma func-
tion and Stirling’s formula. ut

The obtained approximations for EMPn and VarMPn suggest to investigate the
limit behavior of

MP∗n :=
MPn−π1/2n1/2

σ n1/4 , n≥ 1,

which, by (6.79), satisfies the recursion

MP∗n
d
=

(
Nn,1

n

)1/4

MP∗1,n +
(

Nn,2

n

)1/4

MP∗2,n +Cn,

with

Cn :=
π1/2

σ n1/4

(
π
−1/2 +N1/2

n,1 +N1/2
n,1 −n1/2

)
, n≥ 1.

We leave it to the reader as Problem 6.54 to verify that

lim
n→∞

3

∑
i=1

∥∥∥∥∥

(
Nn,i

n

)1/2

−Pn,i

∥∥∥∥∥
p

= 0 (6.85)

for any p> 0, where Pn,i := Pi(U(n),V(n)), and that

(Pn,1,Pn,2,Pn,3)
d→
(
U2,(1−U)2,2U(1−U)

)
=: (P1,P2,P3)(U,1−U) (6.86)

for some Unif (0,1) random variable U . By choosing a suitable coupling, the latter
can be achieved to even hold a.s. and in Lp for any p > 0, which then, by (6.85),
further implies

lim
n→∞

3

∑
i=1

∥∥∥∥∥

(
Nn,i

n

)1/2

−P1/2
i

∥∥∥∥∥
p

= 0

for any p> 0, where Pi := Pi(U,1−U). These facts suggest an application of Corol-
lary 6.14 with s = 3, f (n) := π1/2n1/2 and g(n) := σn1/4. Indeed, the only condition
that still requires attention is (6.24) with C = 0, that is ‖Cn‖3→ 0 or, equivalently,
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lim
n→∞

1
n1/4

∥∥∥N1/2
n,1 +N1/2

n,1 −n1/2
∥∥∥

3
= 0.

The following argument differs from the one given in [97, p. 410]. Notice first that,
by (6.85) and Pn,1 +Pn,2 = 1,

1
n1/4

∣∣∣N1/2
n,1 +N1/2

n,1 −n1/2
∣∣∣ ≤ n1/4

2

∑
i=1

∣∣∣∣∣

(
Nn,i

n

)1/2

−Pn,i

∣∣∣∣∣ .

Moreover, n−1/2Nn,i +Pn,i→ Pi > 0 a.s. implies

P

(∣∣∣∣∣

(
Nn,i

n

)1/2

−Pn,i

∣∣∣∣∣> ε n−1/4

)
≤ P

((
Nn,i

n

)1/2

+Pn,i < n−1/8

)

+ P
(∣∣∣∣

Nn,i

n
−P2

n,i

∣∣∣∣> ε n−1/8
)

for all ε > 0 and i = 1,2, so that

C′n :=
1

n1/4

(
N1/2

n,1 +N1/2
n,1 −n1/2

)
P→ 0. (6.87)

Since L (Nn,i|U(n),V(n)) = Bin(n−1,P2
n,i) for i = 1,2, we further infer

E

((
Nn,i

n

)1/2

−Pn,i

)4

≤ E

((
Nn,i

n

)1/2

−Pn,i

)2((
Nn,i

n

)1/2

+Pn,i

)2

= E
(

Nn,i

n
−P2

n,i

)2

=
1
n
EP2

n,i(1−P2
n,i) ≤

4
n

for n≥ 1 and i = 1,2, and thereby the L4-boundedness of the C′n. But this in combi-
nation with (6.87) yields the desired conclusion ‖C′n‖3→ 0 and finally allows us to
state the following result which has also been derived in [12, Thm. 3] by the method
of moments.

Theorem 6.41. Given the assumptions and notation of this subsection, the
normalized number of maximal points in a right triangle converges to a stan-
dard normal distribution, viz.

MP∗n =
MPn−π1/2n1/2

σn1/4
d→ Normal(0,1)

as n→ ∞, where σ2 = (2log2−1)1/2π1/4.
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Problems

In all subsequent problems, (Tn)n≥1 denotes a random recursive tree sequence as
described in Subsection 6.6.1 and Dk the depth of node k in Tn for n≥ k.

Problem 6.42. Prove the following assertions:

(a) For each k ≥ 3,

ED2
k = ck +

k−1

∑
j=1

c j

j
= Hk−1 +

k−1

∑
i=2

2Hi−1

i
, (6.88)

where c1 := 0, c2 := 1 and ck := 1+ 2
k−1 ∑

k−2
j=1 H j for k ≥ 3.

(b) The variance of Dk is given by (6.53), that is

VarDk = Hk−1−H(2)
k−1

for each k ≥ 1.
(c) For each p≥ 1, there exists θp ∈ R> such that

EDp
k ≤ θp logp k (6.89)

for all k ≥ 1.

Problem 6.43. Under the same assumptions as in the previous problem, prove the
following assertions:

(a) If Ln,k denotes the number of nodes of Tn at level k and `n,k its expectation,
then

P(Dn = k) =
ELn−1,k−1

n−1
(6.90)

for n≥ 2 and k = 1, ...,n−1.
(b) [MEIR & MOON [90]] For each n≥ 1 and 0≤ k ≤ n,

`n,k = `n−1,k +
`n−1,k−1

n
,

where `0,k = δ0,k for k ≥ 0. Equivalently, an,k := (n−1)!`n,k satisfies

an,k = an−1,k +nan−1,k−1. (6.91)

(c) [DONDAJEWSKI & SZYMAŃSKI [37]] Let
[n

k

]
denote the kth signless Stirling

number of the first kind of order n, which is defined as the coefficient of the xk

of the rising factorial 〈x〉n := x(x+1) · ... · (x+n−1), thus

〈x〉n =
n

∑
k=1

[
n
k

]
xk.



6.6 Applications 259

Then

`n,k =
1

(n−1)!

[
n
k

]
(6.92)

for each n≥ 1 and 0≤ k≤ n. [Hint: Verify that
[n

k

]
and an,k both satisfy (6.91)

with the same boundary conditions.]
(d) [SZYMAŃSKI [111]] Use (6.90) and (6.92) to conclude

P(Dn = k) =
1

(n−1)!

[
n−1

k

]

for each n≥ 1 and k = 1, ...,n−1.

Problem 6.44. [MOON [91]] Let Di, j denote the distance (= length of the shortest
path) between nodes i, j in Tn for n≥ i∨ j, thus D1, j = D j and D j, j = 0. Prove the
following generalizations of (6.52) and (6.53):

EDi, j = Hi +H j−1−2+
1
i
,

VarDi, j = Hi +H j−1 +4−3H(2)
i −H(2)

j−1−
4Hi

i
+3i− 1

i2
.

[Hint: Use that Di, j = 1+∑
j−1
k=1 Di,k1{k≺ j} for arbitrary 1≤ i< j, where k≺ j means

that j is attached to node k.]

Problem 6.45. Complete the proof of Proposition (6.30) by deriving (6.55) from
(6.57). Show further that

EW 2
n = 2− π2

6
− logn

n
+

1− γ

n
+O

(
1
n2

)
(6.93)

where γ denotes Euler’s constant.

Problem 6.46. Complete the proof of Theorem 6.32 and show further, by mimick-
ing the arguments from Section 5.6, that `p(Fn,F)→ 0 for all p> 0.

Problem 6.47. Use the SFPE (6.61) to prove the functional equation (6.62) for the
density of the asymptotic total path length in a random recursive tree.

Problem 6.48. Based on (6.68), give a proof of Theorem 6.34 with the help of The-
orem 6.11.

Problem 6.49. BERNARD FRIEDMAN [57] proposed the following urn model: An
urn initially contains Wn white and Bn black balls at time n. Each time a ball is drawn
at random and then replaced together with α balls of the same and β balls of the
opposite color. The famous Pólya urn is obtained if β = 0. Make a connection of
Friedman’s urn for suitable α,β with the distribution of the number of leaves Ln in
a random recursive tree.
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Problem 6.50. For n ≥ 1 and k = 1, ...,n, let Degn,k denote the degree of node k in
the random recursive tree Tn of size n, thus Degn,k = 0 for 1≤ k< n and Degk,k = 1.
Put dn,k :=EDegn,k and s2

n,k :=VarDegn,k. Prove the following assertions for k≥ 1:

(a) Degn,k = Degn−1,k +1{k≺n} for each n> k.
(b) (Degn,k−dn,k)n≥k and ((Degn,k−dn,k)

2−∑
n
j=k+1 s2

j,k)n≥k are martingales.
(c) dn,k = 1+Hn−Hk for n> k.
(d) s2

n,k = Hn−Hk− (H(2)
n −H(2)

k ) for n> k.

(e) Degn,1
d
= DegNn,1 + 1 for n ≥ 1 where Nn is independent of (Degm,1)1≤m≤n

and uniformly distributed on {1, ...,n−1} [+ also Lemma 6.31)].
(f) Use (e) and the results of Section 6.5 to show that

Degn,1− logn

log1/2 n
d→ Normal(0,1).

Can you prove a similar result for Degn,k if k ≥ 2?

Problem 6.51. [Zagreb index of a random recursive tree] In mathematical chem-
istry, a molecular or chemical graph is a representation of the structural formula
of a chemical compound in terms of graph theory. For the calculation of topolog-
ical indices, it is sufficient to define a molecular graph as a connected undirected
graph which is in one-to-one correspondence to the structural formula of a chemical
compound such that vertices correspond to atoms of the molecule and edges to the
chemical bonds between these atoms [74]. The Zagreb index of a molecular graph
forms an example of a topological index and was defined by the chemists GUTMAN
&TRINAJSTIĆ [64] as the sum of the squared degrees of all vertices.

FENG & HU [53], arguing that structures of many molecules are tree-like, study
the Zagreb index of a random recursive tree. With Degn,k as defined in the previous
problem, the Zagreb index of Tn is formally defined as

Zn :=
n

∑
k=1

Deg2
n,k.

Prove the following assertions:

(a) Zn takes minimal value 4n−6 and maximal value n(n−1) for n≥ 2.
(b) µn := EZn = 6n−4Hn−1−6 and σ2

n := VarZn = 8n+O(log2 n).
(c) (Zn−µn)n≥1 forms a martingale.

(d) n−1Zn
P→ 6.

(e) In the notation of Lemma 6.31 and its proof,

Zn
d
= Z1,n−Nn +Z2,Nn +Rn

holds true, where Z1,k,Z2,k are independent copies of Zk independent of Nn and
such that Z1,n−k,Z2,k represent the Zagreb indices of the subtrees T ∗

1,n,T
∗

2,n
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given Nn = k [+ proof of Lemma 6.31]. Moreover, Rn denotes a nonnegative
random variable (not independent of Zn) satisfying n−1/2Rn

P→ 0.
(f) The sequence Ẑn = σ−1

n (Zn− µn), n ≥ 2, of normalizations is L4-bounded.
[Hint: Use part (c) of Problem 6.50.]

(g) Although the contraction method cannot applied here (explain why), use (b),
(e) and (f) to conclude that Ẑn

d→ Normal(0,1) if Ẑn converges in distribution
at all. [Remark: The CLT for Zn is in fact the main result in [53].]

Problem 6.52. Letting Zn,1, ...,Zn,m denote the level-one subtree sizes of a random
m-ary search tree on n keys, prove that (6.70) and (6.71) hold true.

Problem 6.53. Complete the proof of Theorem 6.38.

Problem 6.54. Given the assumptions of Subsection 6.6.4, give a proof of (6.85)
and (6.86).





Chapter 7
The smoothing transform: a stochastic linear
recursion with branching
Part II: Fixed points

7.1 The smoothing transform with deterministic weights
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Appendix A
A quick look at some ergodic theory and
theorems

A.1 Measure-preserving transformations and ergodicity

Given a probability space (Y,A ,P), a measurable mapping T : Y→ Y is called
measure-preserving transformation of (Y,A ,P) if P(T ∈ ·) = P. The iterations
(T n(y))n≥0 for any initial value y∈Y provide an orbit or trajectory of the dynamical
system generated by T . If y is picked according to P and thus formally replaced with
a random element Y0 : (Ω ,A,P)→ (Y,A ) having law P, then

Yn := T n(Y0), n≥ 0

forms a stationary sequence, the defining property being that

(Yn, ...,Yn+m)
d
= (Y0, ...,Ym) for all m,n ∈ N0. (A.1)

When studying the statistical properties of an orbit (T n(y))n≥0, for instance by
looking at absolute or relative frequencies

NT,n(y,A) :=
n

∑
k=0

1A(T k(y)) or hT,n(y,A) :=
1

n+1

n

∑
k=0

1A(T k(y)),

respectively, for A ∈ A , the notion of T -invariance arises quite naturally. A set
A ∈ A is called T -invariant or invariant under T if T−1(A) = A. Their collection
I ∗T forms a σ -field, called σ -field of T -invariant sets or just invariant σ -field of T .
Its completion IT , say, within A consists of all sets A ∈A for which T -invariance
holds P-a.s., thus

IT = {A ∈A : T−1(A) = A P-a.s.}
Obviously, y ∈ A for a [P-a.s.] T -invariant set A entails T n(y) ∈ A [P-a.s.] for all
n ∈ N. As a consequence , if IT contains a set A having 0 < P(A) < 1, then the
distribution of Y = (Yn)n≥0 under P may be decomposed as

P(Y ∈ ·) = P(A)P(Y ∈ ·|Y0 ∈ A)+(1−P(A))P(Y ∈ ·|Y0 ∈ Ac) (A.2)
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and Y remains stationary under both, P(·|Y0 ∈A) and P(·|Y0 ∈Ac) [+ Problem A.6].
If no such decomposition exists or, equivalently, IT is P-trivial, then the sequence
Y as well as the associated transformation T are called ergodic.

In probability theory, a stationary sequence Y = (Yn)n≥0 of Y-valued random
variables on a probability space (Ω ,A,P) is simply defined by property (A.1) and
hence does not require the ergodic-theoretic setting of a measure-preserving trans-
formation. On the other hand, when considering the associated coordinate model
(YN0 ,A N0 ,Λ) with Λ := P(Y ∈ ·) and X = (Xn)n≥0 denoting the identical mapping
on this space, so that Λ(X ∈ ·) = P(Y ∈ ·), the stationarity of Y is equivalent to the
property that the shift S on YN0 , defined by

S(y0,y1, ...) := (y1,y2, ...),

is measure-preserving. Therefore it appears to be natural to call Y ergodic if S is
ergodic. Defining the invariant σ -field associated with Y by

IY :=
{

B ∈A N0 : 1B(Y) = 1B(S◦Y) P-a.s.
}
,

we further see that IY = Y−1(IS) and that ergodicity of Y holds iff IY is P-trivial.

By Kolmogorov’s consistency theorem, any stationary sequence Y = (Yn)n≥0 has
a doubly infinite extension Y∗ = (Yn)n∈Z with distribution Γ ∗, say, which in turn is
associated with the measure-preserving shift map S∗ on the doubly infinite product
space (YZ,A Z,Γ ∗), defined by

S∗(...,y−1y0,y1, ...) := (...y0,y1,y2, ...).

Plainly, S∗ is invertible, and the inverse S∗−1 is also measure-preserving. It should
not take one by surprise that both transformations are further ergodic if this is true
for S. The following lemma shows that sequences of iid random variables are er-
godic.

Proposition A.1. Any sequence (Yn)n∈T of iid random variables, where T=N
or = Z, is ergodic.

Proof. This follows from Kolmogorov’s zero-one law if T=N and extends to T=Z
by the above remark about the ergodicity of S∗ and S∗−1. ut

As an example of a non-ergodic stationary sequence one can take any stationary
positive recurrent (and thus irreducible) periodic discrete Markov chain.

Let us finally introduce the ergodic theoretic notion of a factor which appeared
in the proof of Prop. 3.18. Given two measure-preserving transformations T1,T2 of
probability spaces (Y1,A1,P1) and (Y2,A2,P2), respectively, T2 is called a factor
of T1 if there exists a measure-preserving map ϕ : Y1 → Y2 (i.e. P1(ϕ ∈ ·) = P2)
such that ϕ ◦T1 = T2 ◦ϕ P1-a.s.
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Proposition A.2. If T2 is a factor of an ergodic transformation T1, then T2 is
ergodic as well.

Proof. With the notation introduced above, choose any A2 ∈ IT2 and put A1 :=
ϕ−1(A2). Then ϕ ◦T1 = T2 ◦ϕ P1-a.s. implies

T−1
1 (A1) = (ϕ ◦T1)

−1(A2) = (T2 ◦ϕ)−1(A2) = ϕ
−1(A2) = A1 P1-a.s.,

that is A1 ∈IT1 . Since T1 is ergodic and P1(ϕ ∈ ·) = P2, we hence infer

P2(A2) = P2(ϕ
−1(A1)) = P1(A1) ∈ {0,1},

which proves that T2 is ergodic. ut

A.2 Birkhoff’s ergodic theorem

The following theorem due to BIRKHOFF [19] [+ also [20] by the same author]
is one of the fundamental results in ergodic theory and may also be viewed as the
extension of the classical SLLN for sums of iid random variables to stationary se-
quences. We provide two versions of the result, the first one formulated in terms of
a measure-preserving transformation as in [19], the second more probabilistic one
in terms of a stationary sequence.

Theorem A.3. [Birkhoff’s ergodic theorem for measure-preserving trans-
formations] Let T be a measure-preserving transformation of a probability
space (Y,A ,P) and g : Y→ R be a P-integrable function, i.e. g ∈ L1(P).
Then

lim
n→∞

1
n+1

n

∑
k=0

g◦T k = E(g|IT ) P-a.s. and in L1(P), (A.3)

and the a.s. convergence ramins valid if g is quasi-P-integrable. As a particu-
lar consequence,

lim
n→∞

hT,n(·,A) = P(A|IT ) P-a.s. (A.4)

for any A ∈A .

Clearly, the conditional expectations in (A.3) and (A.4) reduce to unconditional
ones if T is ergodic and thus IT P-trivial.
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Theorem A.4. [Birkhoff’s ergodic theorem for stationary sequences] Let
Y = (Yn)n≥0 be a stationary sequence of Y-valued random variables on a
probability space (Ω ,A,P) and g : Y→ R be such that g ◦Y0 is integrable.
Then

lim
n→∞

1
n+1

n

∑
k=0

g◦Yk = E(g◦Y0|IY) P-a.s. and in L1(P), (A.5)

and the a.s. convergence remains valid if g is quasi-P-integrable. As a partic-
ular consequence,

lim
n→∞

1
n+1

n

∑
k=0

1A(Yk) = P(Y0 ∈ A|IY) P-a.s. (A.6)

for any A ∈A .

Excellent introductions to the theory of stationary sequences from a probabilist’s
viewpoint, including a proof of Theorem A.4, may be found in the textbooks by
BREIMAN [23] and DURRETT [40].

A.3 Kingman’s subadditive ergodic theorem

A sequence of real numbers (cn)n≥1 is called subadditive if

cm+n ≤ cm + cn

for all m,n ∈ N. An old lemma by FEKETE [51] states that every such sequence
converges, viz.

lim
n→∞

cn = inf
n≥1

cn

n
∈ R∪{−∞}.

The subadditive ergodic theorem for triangular schemes (Xk,n)
0≤k<n
n≥1 of real-valued

random variables, first obtained by KINGMAN [75] and later improved by LIGGETT
[79], builds upon this property together with a certain type of stationarity. Here we
present the more general version by LIGGETT.

Theorem A.5. [Subadditive ergodic theorem] Let (Xk,n)
0≤k<n
n≥1 be a family of

real-valued random variables which satisfies the following conditions:

(SA-1) X0,n ≤ X0,m +Xm,n a.s. for all 0≤ m< n.
(SA-2) (Xnk,(n+1)k)n≥1 is a stationary sequence for each k ≥ 1.
(SA-3) The distribution of (Xm,m+n)n≥1 does not depend on m≥ 0.



A.3 Kingman’s subadditive ergodic theorem 269

(SA-4) EX+
0,1 < ∞ and µ := infn≥1 n−1EX0,n >−∞.

Then

(a) limn→∞ n−1EX0,n = µ .
(b) n−1X0,n converges a.s. and in L1 to a random variable X with mean µ .
(c) If all stationary sequences in (SA-2) are ergodic, then X = µ a.s.
(d) If µ =−∞ in (SA-4), then n−1X0,n→−∞ a.s.

We note that Kingman assumed also (SA-4), but instead of (SA-1)-(SA-3) the
stronger conditions

(SA-5) Xk,n ≤ Xk,m +Xm,n a.s. for all 0≤ k < m< n.
(SA-6) The distribution of (Xm+k,n+k)0≤m<n does not depend on k ≥ 0.

A proof of the result may be found in the original article [79] or in the textbook
by DURRETT [40, Ch. 6], the latter also containing a good collection of interesting
applications including the Furstenberg-Kesten theorem for products of random ma-
trices [+ Theorem 3.4]. The reader is asked in Problem A.7 to deduce Birkhoff’s
ergodic theorem A.4 from the result.

Problems

Problem A.6. Let T be a measure-preserving transformation of a probability space
(Y,A ,P) with associated σ -field IT of P-a.s. T -invariant sets. Let further Y0 be
a random element in Y with L (Y0) = P and (Yn)n≥0 be the stationary sequence
defined by Yn := T n(Y0) for n≥ 1. Suppose there exists A ∈IT with 0< P(A)< 1.
Prove that (Yn)n≥0 is stationary under both, P(·|Y0 ∈ A) and P(·|Y0 ∈ Ac).

Problem A.7. Give a proof of Birkhoff’s ergodic theorem A.4 with the help of the
subadditive ergodic theorem.





Appendix B
Convex function inequalities for martingales and
their maxima

Let (Mn)n≥0 be a martingale with natural filtration (Fn)n≥0 and increments Dn =
Mn−Mn−1 for n ≥ 1. In the following, we collect (without proofs) some power-
ful martingale inequalities that provide bounds for the φ -moments Eφ(Mn), when
φ : R → R≥ denotes an even convex function with φ(0) = 0 and some addi-
tional properties. This includes the standard class φ(x) = |x|p for p ≥ 1. Setting
M∞ := liminfn→∞ Mn, all provided upper bounds remain valid for n = ∞ when ob-
serving that Fatou’s lemma implies

Eφ(M∞) ≤ liminf
n→∞

Eφ(Mn).

We begin with the class of φ that have a concave derivative in R> which encom-
passes φ(x) = |x|p for 1 ≤ p ≤ 2. The subsequent result is cited from [5] and an
improvement (with regard to the appearing constant) of a version due to TOPCHIĬ
& VATUTIN [115].

Theorem B.1. [Topchiı̆-Vatutin inequality] Let φ : R→R≥ be an even con-
vex function with concave derivative on R> and φ(0) = 0. Then

Eφ(Mn)−Eφ(M0) ≤ c
n

∑
k=1

Eφ(Dk), (B.1)

for all n ∈ N0 and c = 2. The constant may be chosen as c = 1 if (Mn)n≥0
is nonnegative or has a.s. symmetric conditional increment distributions, and
the same holds generally true, if φ(x) = |x| or φ(x) = x2, in the last case even
with equality sign in (B.1).

We continue with two famous convex function inequalities by BURKHOLDER,
DAVIS & GUNDY [25] which are valid for a much larger class of convex functions
φ . For proofs the reader may consult the textbooks [29, Thms. 11.3.1 & 11.3.2], [65,
Section 2.4], or the afore-mentioned original work.
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Theorem B.2. [Burkholder-Davis-Gundy inequalities] Let φ : R→ R≥ be
an even convex function satisfying φ(0) = 0 and φ(2t) ≤ γ φ(t) for all t ≥ 0
and some γ > 0. Put En(φ) := E(max0≤k≤n φ(Mk)). Then

aγ Eφ



(

n

∑
k=1

D2
k

)1/2

 ≤ E(φ) ≤ bγ Eφ



(

n

∑
k=1

D2
k

)1/2

 (B.2)

and

En(φ) ≤ cγ


Eφ



(

n

∑
k=1

E
(
D2

k |Fk−1
)
)1/2


+E

(
max

0≤k≤n
φ(Dk)

)
 (B.3)

for all n ∈ N0 and constants aγ ,bγ ,cγ ∈ R> depending only on γ . The last
inequality actually remains valid if, ceteris paribus, φ is merely nondecreasing
instead of convex on R≥.

Of special importance for our purposes is the case when Mn is a weighted sum of
iid zero-mean random variables and φ(x) = |x|p for some p> 0. We therefore note:

Corollary B.3. If φ(x)= |x|p (thus γ = 2p) for some p> 0 and Mn =∑
n
k=1 tkXk

for t1, t2, ... ∈ R and iid X1,X2, ... ∈ Lp
0 , then (B.3) takes the form

En(φ) ≤ cp


‖X1‖p

2

(
n

∑
k=1

t2
k

)p/2

+E
(

max
1≤k≤n

|tkXk|p
)
 , (B.4)

for all n ∈ N0 and a constant cp only depending on p, giving in particular

E|Mn|p ≤ cp


‖X1‖p

2

(
n

∑
k=1

t2
k

)p/2

+‖X1‖p
p

n

∑
k=1
|tk|p


 . (B.5)

We close this section with a statement of the classical Lp-inequality by BURKHOL-
DER, a proof of which may again be found in [29, Thm. 11.2.1], [65, Thm. 2.10],
or in the original work [24]. It is important to note that it holds for p > 1 only. The
case p = 1 is different but will not be considered here.
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Theorem B.4. [Burkholder inequality] Let p> 1. Then

ap

∥∥∥∥∥∥

(
n

∑
k=1

D2
k

)1/2
∥∥∥∥∥∥

p

p

≤ ‖Mn‖p ≤ bp

∥∥∥∥∥∥

(
n

∑
k=1

D2
k

)1/2
∥∥∥∥∥∥

p

p

(B.6)

for n ∈ N0 and constants ap,Bp ∈ R> only depending on p.





Appendix C
Banach’s fixed point theorem

We consider an arbitrary continuous self-map f : X→ X of a metric space (X,ρ)
and denote by f n = f ◦ ... ◦ f (n-times) its n-fold composition for n ≥ 1. If there
exists an initial value x0 ∈ X such that the sequence xn := f (xn−1) = f n(x0), n≥ 1,
converges to some x∞ ∈ X, then the continuity of f implies that x∞ is a fixed point
of f , for

x∞ = lim
n→∞

xn = f
(

lim
n→∞

xn−1

)
= f (x∞).

Generally, one cannot say anything about the existence and number of fixed points
of a continuous map f , but there are situations where it has a unique fixed point ξ

and every iteration sequence ( f n(x))n≥1, x ∈X, converges to ξ . An assertion of this
kind is the content of Banach’s fixed-point theorem for a special class of maps that
will be defined first.

Definition C.1. A self-map f : X→ X of a metric space (X,ρ) is called con-
traction or more specifically α-contraction if there exists α ∈ [0,1) such that

ρ( f (x), f (y))≤ α ρ(x,y) (C.1)

for all x,y ∈ X. If (C.1) holds true when replacing f with f n for some n ≥ 2,
then f is called quasi-contraction or α-quasi-contraction.

Under a contraction, the distance between two iteration sequences ( f n(x))n≥1
and ( f n(y))n≥1 is therefore decreasing geometrically fast, viz.

ρ( f n(x), f n(y)) ≤ α
n

ρ(x,y) (C.2)

for all n≥ 1. The following theorem shows that this entails convergence to a unique
fixed point of f if the space (X,ρ) is complete. Notice that the contraction property
trivially implies continuity.
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Theorem C.2. [Banach’s fixed-point theorem] Every contraction f :X→X
on a complete metric space (X,ρ) possesses a unique fixed point ξ ∈ X.

The example f (x) = x/2 on X = (0,1] shows that one cannot dispense with the
completeness of X.

Proof. We first prove existence of a fixed point ξ . Pick an arbitrary x0 ∈ X and put
xn = f (xn−1) for n≥ 1. Then the contraction property implies

ρ(xk+1,xk) = ρ( f (xk), f (xk−1)) ≤ α ρ(xk,xk−1)

and therefore upon k-fold iteration

ρ(xk+1,xk) ≤ α
k

ρ(x1,x0)

for some α ∈ [0,1) and all k ≥ 1. As a consequence,

ρ(xm+n,xm) ≤
m+n−1

∑
k=m

ρ(xk+1,xk)

≤ ρ(x1,x0)
m+n−1

∑
k=m

α
k ≤ αm

1−α
ρ(x1,x0)

(C.3)

for all m,n ≥ 1, that is, (xn)n≥0 is a Cauchy sequence in X and hence, by com-
pleteness, convergent to some ξ ∈ X which is also a fixed point of f because f is
continuous.

Turning to uniqueness of ξ , suppose that ζ is a second fixed point of f . By
another use of the contraction property, we then infer

ρ(ξ ,ζ ) = ρ( f (ξ ), f (ζ )) ≤ α ρ(ξ ,ζ )

and thus ρ(ξ ,ζ ) = 0. ut

By combining (C.3) with the fact that ρ : X×X→ R≥ is continuous in each
variable, we easily conclude the geometric convergence of any iteration sequence to
the fixed point ξ .

Corollary C.3. In the situation of Theorem C.2, furthermore

ρ(ξ , f n(x)) ≤ αn

1−α
ρ( f (x),x)

holds true for all x∈X and n≥ 1, where α denotes the contraction parameter
of f .
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Proof. Obvious in view of limn→∞ ρ(xm+n,xm) = ρ(ξ ,xm) and (C.3). ut

The next result shows that Banach’s fixed point theorem essentially remains valid
for quasi-contractions.

Theorem C.4. [Banach’s fixed-point theorem for quasi-contractions] Ev-
ery quasi-contraction f : X→X on a complete metric space (X,ρ) possesses
a unique fixed point ξ ∈ X, and

ρ(ξ , f n(x)) ≤ αn

1−α
max

0≤r<m
ρ( f m+r(x), f m(x)) (C.4)

for some m≥ 1, α ∈ [0,1) and all x ∈ X, n≥ 1.

Proof. Pick m,α such that f m forms an α-contraction on (X,ρ) with unique fixed
point ξ . Writing n ∈N in the form km+ r with unique k ∈N0 and r ∈ {0, ...,m−1},
we infer with the help of Corollary C.3

ρ(ξ , f n(x)) ≤ max
0≤ j<m

ρ(ξ , f km+ j(x)) ≤ α

1−α
max

0≤ j<m
ρ( f m+ j(x), f j(x))

and thus (C.4), in particular ρ(ξ , f n(x))→ 0. Since f is continuous, the latter im-
plies that ξ is also the (necessarily unique) fixed point of f . ut

The proof of Banach’s fixed point theorem C.2 shows even more: Replacing the
global by a local contraction property along an iteration sequence, existence of a
fixed point still follows, but it needs no longer be unique.

Theorem C.5. Let (X,ρ) be a complete metric space and f : X→X an arbi-
trary self-map. Suppose there exist x0 ∈ X and constants c≥ 0 and α ∈ [0,1)
such that

ρ( f n+1(x0), f n(x0)) ≤ cα
n (C.5)

for all n ≥ 1. Then ξ = limn→∞ f n(x0) exists and it is a fixed point of f if the
map is continuous. Moreover,

ρ(ξ , f n(x0)) ≤
cαn

1−α
(C.6)

for all n≥ 1.

Proof. Putting once again xn := f n(x0) and using (C.5), we obtain in (C.3)

ρ(xm+n,xm) ≤
cαm

1−α
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for all m,n ≥ 0 and therefore that (xn)n≥1 is again a Cauchy sequence in X. All
further necessary arguments to complete the proof follow in a similar manner as
given for the previous results. ut



Appendix D
Hausdorff measures and dimension

The following short introduction of Hausdorff measures and Hausdorff dimension is
based on the more detailed expositions of this subject by ELSTRODT [44], EDGAR
[42] and FALCONER [49].

From measure theory, we recall that a set function µ : P(X) → [0,∞] for an
arbitrary set X 6= /0 is called outer measure if µ( /0) = 0 and µ is subadditive, that is

µ

(
⋃

n≥1

An

)
≤ ∑

n≥1
µ(An)

for any sequence A1,A2, ... of subsets of X. Following CARATHÉODORY, a set A⊂X
is called µ-measurable if

µ(C) ≥ µ(C∩A)+µ(C∩Ac)

for all C ⊂ X which, by the subadditivity of µ , is actually equivalent to

µ(C) = µ(C∩A)+µ(C∩Ac)

for all C ⊂ X. One of the fundamental results in measure theory [+ e.g. [44, Satz
II.4.4]] states that the system Aµ of all µ-measurable sets forms a σ -field and that
µ is a measure on (X,Aµ).

Now let (X,ρ) be a metric space with Borel σ -field B(X). For x ∈X and A,B⊂
X, we put

ρ(A,B) := inf{ρ(x,y) : x ∈ A, y ∈ B},
ρ(x,B) := inf{ρ(x,y) : y ∈ B} = ρ({x},B),

diam(A) := sup{ρ(x,y) : x,y ∈ A},
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and call ρ(A,B) the distance between A and B, ρ(x,B) the distance between x and
B, and diam(A) the diameter of A, where diam( /0) := 0. The notion defined next goes
again back to CARATHÉODORY.

Definition D.1. An outer measure µ : P(X)→ [0,∞] is called metric outer
measure if

µ(A∪B) = µ(A)+µ(B)

for all A,B⊂ X with positive distance ρ(A,B).

Bound for the definition of Hausdorff measures, the next theorem and the subse-
quent construction scheme are of importance.

Theorem D.2. Given an outer measure µ : P(X)→ [0,∞] on a metric space
(X,ρ), the Borel σ -field B(X) is contained in Aµ iff µ is a metric outer
measure.

Proof. + [44, Satz II.9.3]. ut

A general construction scheme. Here is a general procedure for obtaining metric
outer measures: Let C ⊂ P(X) an arbitrary family of subsets of X containing the
empty set ∅, and let ξ : C→ [0,∞] be a set function with ξ ( /0) = 0. For A⊂ X and
ε > 0, we put

ηε(A) := inf

{
∑
n≥1

ξ (An) : An ∈ C, diam(An)≤ ε for all n≥ 1, A⊂
⋃

n≥1

An

}

with the usual convention inf /0 := ∞. As one can easily verify [+ Problem D.13],
ηε defines an outer measure, and the mapping ε 7→ ηε(A) is nonincreasing for each
A⊂ X. Further defining

η(A) := sup
ε>0

ηε(A) = lim
ε↓0

ηε(A), A⊂ X,

we find, for arbitrary A1,A2, ...⊂ X and ε > 0, that

ηε

(
⋃

n≥1

An

)
≤ ∑

n≥1
ηε(An) ≤ ∑

n≥1
η(An).

and therefore η(
⋃

n≥1 An)≤∑n≥1 η(An). Hence η is also an outer measure, and the
subsequent argument shows that it is even a metric outer measure. Pick any A,B⊂X
with ρ(A,B) > 0. Clearly, it remains to argue that η(A∪ B) ≥ η(A) + η(B) for
which we may assume η(A∪B)<∞. For any 0< ε < ρ(A,B), the latter implies the
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existence of Cn ∈ C with ξ (Cn)≤ ε for n≥ 1 and A∪B⊂ ⋃n≥1 Cn. But then no Cn
can have common elements with both, A and B, so that (Cn)n≥1 can be decomposed
into a covering of A and a covering of B, giving

∑
n≥1

ξ (Cn) ≥ ηε(A)+ηε(B).

This being actually true for any ε-covering of A∪B, ηε(A∪B) ≥ ηε(A)+ηε(B)
follows and thereupon η(A∪B)≥ η(A)+η(B) as desired when letting ε tend to 0.
Note that ηε needs not be a metric outer measure.

Example D.3. Consider the real line X with the usual Euclidean distance ρ(x,y) :=
|x− y|, let C be the system of left open intervals (a,b] and ξ (A) := diam(A). Since
each (a,b] can be decomposed into pairwise disjoint intervals of the same type (thus
elements of C) of length at most ε for arbitrary ε > 0, we see that η = ηε does not
depend on ε and equals Lebesgue outer measure λλ ∗ on R. Theorem D.2 above now
implies the known result that all Borel subsets of R are Lebesgue measurable, i.e.,
measurable with respect to λλ ∗.

The previous example is about a special and particularly important Hausdorff
measure, and we now proceed with its general definition. Again, for an arbitrary
metric space (X,ρ), let C be the system of all bounded subsets A of X, i.e. diam(A)<
∞, and ξ (A) := diam(A)α for nonempty A ∈ C and a fixed α ≥ 0, where 00 := 1.
The above construction scheme then provides us with the outer measures

Hα,ε(A) := inf

{
∑
n≥1

diam(A)α : A⊂
⋃

n≥1

An, diam(An)≤ ε f.a. n≥ 1

}
(D.1)

for A⊂ X, and the metric outer measure

Hα(A) := sup
ε>0

Hα,ε(A), A⊂ X, (D.2)

which, by Theorem D.2, is a measure on B(X). It does not take much to see that
Hα(A) remains unchanged when allowing only coverings of open (closed) An in the
definition of the Hα,ε . In particular, it is enough to consider measurable coverings
in (D.1).

Definition D.4. The (outer) measure Hα given by (D.2) is called α-dimen-
sional (outer) Hausdorff measure.

The following result identifies Hα in the case α = 0.
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Proposition D.5. The zero-dimensional Hausdorff measure H0 is the count-
ing measure on X.

Proof. If A= {a1, ...,an} consists of n elements, then A⊂⋃n
i=1B(ai,ε) for all ε > 0,

where B(x,ε) := {y ∈ X : ρ(x,y) ≤ ε} denotes the closed ε-ball with center x. It
follows that

H0,ε(A) ≤
n

∑
i=1

diam(B(ai,ε))
0 = n.

But the inequality obviously turns into an identity as soon as 2ε becomes smaller
than min1≤i 6= j≤n ρ(ai,a j). Hence H0(A) = limε↓0 H0,ε(A) = n. Finally, if A is an
infinite set, then it contains a subset An with n elements for each n≥ 1. As a conse-
quence, H0(A)≥ supn≥1 H0(An) = ∞. ut

As a function of α , Hα is easily seen to be nonincreasing, but the next result pro-
vides a much stronger assertion which, in particular, leads to the notion of Hausdorff
dimension.

Proposition D.6. For any A⊂ X and 0< α < β ,

Hα(A)< ∞ ⇒ Hβ (A) = 0,

Hβ (A)> 0 ⇒ Hα(A) = ∞.

Consequently, there exists a unique number, denoted as dimH A and called
Hausdorff dimension of A, such that

Hα(A) =

{
∞, if α < dimH A,
0, if α > dimH A.

Proof. For each B⊂ X with diameter diam(B)≤ ε , we have

diam(B)β ≤ ε
β−α diam(B)α .

It follows that Hβ ,ε(A)≤ εβ−α Hα,ε(A) and therefore in the case Hα(A)< ∞ that

Hβ (A) = lim
ε↓0

Hβ ,ε(A) ≤ lim
ε↓0

ε
β−α Hα,ε(A) = 0.

If Hβ (A)> 0, then

Hα(A) = lim
ε↓0

Hα,ε(A) ≥ lim
ε↓0

ε
α−β Hβ ,ε(A) = ∞,

which completes the proof. ut
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dimH A
α

•HdimHA(A)

0

∞

Fig. D.1 The function α 7→ Hα (A). Its value at α = dimH A (here positive and finite) can be
anything in [0,∞].

In view of the previous result the reader might expect the value of Hα(A) to be
positive and finite if α = dimH A. Unfortunately, the true answer is that this value can
be anything between and including 0 and ∞, although for many prominent examples
like the Cantor ternary set the value is indeed in R>.

Hausdorff measures and Hausdorff dimension play an important role in the study
of so-called fractal sets or fractals which are thus called because their dimension
is not an integer. Again, the Cantor ternary set provides a well-known example (of
dimension log2/ log3 as will be shown in Example D.12) of a fractal, but there
are many others including those random Cantor sets defined and studied in Section
5.2. In the case of a one-dimensional curve, a two-dimensional surface or a three-
dimensional body one can measure arc length, surface area or volume, respectively.
Fractal measures like the Hα allow the very same in a space of fractal dimension.
A more detailed exposition of this subject can be found in [42, 43] or [49].

That Hausdorff measures generalize the notion of ordinary volume measure in
spaces of integral dimension is further sustained by the next result. A bijective map
ϕ : X→ X satisfying ρ(ϕ(x),ϕ(y)) = ρ(x,y) for all x,y ∈ X is called a motion (in
X), and the set of all motions in X forms a group which contains the translations as
a subgroup if X is itself a group. Since the diameter of a set is obviously invariant
under motions, we have:

Proposition D.7. Any Hausdorff measure Hα on a metric space (X,ρ) is mo-
tion invariant, that is Hα(ϕ(A)) = Hα(A) for all A⊂ X and motions ϕ .

Specializing to X=Rd with the Euclidean metric, any motion is the composition
of a translation and an orthogonal map and Lebesgue measure λλ d the unique motion
invariant measure with λλ d([0,1]d) = 1 [+ [13, Thms. 8.1 and 8.3]]. One can easily
verify that 0<Hd([0,1]d)<∞ and hence dimH [0,1]d = d by Proposition D.6 holds
true. Consequently, Hd = κdλλ d for some positive κd . It can further be shown that
Hk for k ∈ {1, ...,d− 1} and up to a positive scalar equals k-dimensional volume
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measure (length if k = 1, and surface area if k = 2) on k-dimensional manifolds. The
behavior of Hα under dilations ψt : (x1, ...,xd) 7→ (tx1, ..., txd), t ∈ R\{0}, is stated
in the next result and again immediate when observing that diam(tA) = |t|diam(A)
for any real t.

Proposition D.8. If X= Rd with Euclidean metric ρ(x,y) = |x− y|, then

Hα(ψt(A)) = Hα(tA) = |t|α Hα(A) (D.3)

for all α ≥ 0, t ∈ R\{0} and A⊂ Rd .

Given a second metric space (Y,χ), a function f : (X,ρ) → (Y,χ) is called
Hölder continuous of order β > 0 if

χ( f (x), f (y)) ≤ κ ρ(x,y)β

for all x,y∈X and a constant κ ∈R>. If β = 1, f is also called Lipschitz continuous.
In the following, we will use the same symbol Hα for the α-dimensional Hausdorff
measure on (X,ρ) and on (Y,χ).

Proposition D.9. Let f : (X,ρ) → (Y,χ) be a Hölder continuous function
of order β and A ⊂ X. Then Hα/β ( f (A)) ≤ κα/β Hα(A) and dimH f (A) ≤
β−1 dimH A. If f is injective on A with both f and f−1 : ( f (A),χ)→ (A,ρ)
being Lipschitz continuous, then dimH f (A) = dimH A.

Proof. Let ε > 0 be arbitrary and (An)n≥1 an ε-covering of A. Since

diam( f (A∩An))≤ κ diam(An)
β ≤ δ (ε) := κε

β ,

we see that ( f (A∩An))n≥1 forms a δ (ε)-covering of f (A), and

∑
n≥1

diam( f (A∩An))
α/β ≤ κ

α/β
∑
n≥1

diam(An)
α .

Hence, Hα/β ,δ (ε)( f (A)) ≤ κα/β Hα,ε(A). By letting ε tend to 0, the first two as-
sertions follow. But the last assertion is now easily obtained, because dimH A =
dimH f−1( f (A))≤ dimH f (A)≤ dimH A. ut

As a direct consequence of this proposition, we note that the Hausdorff dimen-
sions of a set under equivalent metrics are equal, where two metrics ρ1,ρ2 on X are
called equivalent if

κ1ρ1(x,y) ≤ ρ2(x,y) ≤ κ2ρ1(x,y)
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for all x,y ∈ X and suitable κ1,κ2 ∈ R>. For example, on Rd the `p-metrics

ρp(x,y) :=

{(
∑

d
i=1 |xi− yi|p

)1/p
, if 1≤ p< ∞,

max1≤i≤d |xi− yi|, if p = ∞

are all equivalent.

Generally, the Hausdorff dimension provides only very limited information about
the topological structure of a set A. Only when dimH A < 1, the distribution of the
elements of A is so coarse that no two of them belong to the same connected com-
ponent of A, in which case the set is called totally disconnected.

Proposition D.10. Any subset A of Rd with dimH A < 1 is totally discon-
nected.

Proof. Pick two distinct elements x,y of A and define f : (Rd , | · |)→ (R, | · |) by
f (z) := |x− z|. Then f is Lipschitz continuous, for

| f (z)− f (w)| =
∣∣∣|x− z|− |x−w|

∣∣∣ ≤ |z−w|

for all z,w ∈Rd . Consequently, dimH f (A)≤ dimH A< 1 by Proposition D.9 which
in turn implies λλ ( f (A)) = H1( f (A)) = 0 and thus that f (A)c forms a dense subset
of R. By now picking some r ∈ f (A)c∩ (0, f (y)), it follows that

A = {z ∈ A : |x− z|< r}∪{z ∈ A : |x− z|> r},

that is, A is contained in two disjoint open sets with x being an element of the first
and y being an element of the second set. In particular, x and y belong to distinct
connected components of A. ut

Calculating Hausdorff dimensions. We close this excursion into geometric mea-
sure theory with a quick look at the question of how to calculate Hausdorff dimen-
sions in applications. Working directly with the definition is typically difficult if not
impossible. In this regard, FALCONER [49, p. 54] writes

Rigorous dimension calculations often involve pages of complicated manipulations and es-
timates that provide little intuitive enlightenment.

While an upper bound for dimH A is often obtained in a relatively easy manner by
calculation of ∑n≥1 diam(An)

α for special coverings (An)n≥1 of A, a lower bound
usually requires the estimation of ∑n≥1 diam(An)

α for all ε-coverings of A which, in
view of the generally enormous number of such coverings, raises the question for an
alternative approach. Such an alternative does indeed exist in situations where the
elements of A are sufficiently dispersed so that no small set, in terms of its diameter,
can cover too much of A. The following mass distribution principle makes this idea
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precise: find a mass distribution on A, namely a measure Λ on A with 0<Λ(A)<∞,
such that the mass Λ(B) covered by B is bounded with respect to diam(B)α for any
sufficiently small set B. The following result is again taken from [49, p. 55].

Proposition D.11. Let A ∈ B(X) and suppose there exists a measure Λ on
(X,B(X)) and c,α,ε > 0 such that

Λ(B) ≤ cdiam(B)α

for all B ∈B(X) with diam(B)≤ ε . Then Hα(A)≥Λ(A)/c.

Proof. Given an arbitrary, w.l.o.g. measurable [+ remark after (D.2)] ε-covering
(An)n≥1 of A, we infer

Λ(A) ≤ Λ

(
⋃

n≥1

An

)
≤ ∑

n≥1
Λ(An) ≤ c ∑

n≥1
diam(An)

α

and hence Hα(A)≥Hα,ε(A)≥Λ(A)/c ut

Example D.12. We illustrate the procedure by another look at the Cantor ternary set
C which may be defined as follows: Let T2 =

⋃
n≥0{1,2}n be the homogeneous tree

of order 2 in Ulam-Harris labeling, define [+ also Section 5.2]

J∅ := [0,1],
J1 := [0,1/3], J2 := [2/3,1],
J11 := [0,1/9], J12 := [2/9,1/3], J21 := [2/3,7/9], J22 := [8/9,1],

...

and then
C :=

⋂

n≥1

⋃

v∈{1,2}n
Jv.

For each n∈N, the family (Jv)v∈{1,2}n consists of 2n intervals of length (= diameter)
3−n and thus forms an ε-covering for ε = 3−n. Since

Hα,3−n(C) ≤ ∑
v∈{1,2}n

diam(Jv)α =
2n

3αn = en(log2−α log3)

and the last term tends to 0 for α > log2/ log3, we infer Hα(C) = 0 for these α

and therefore dimH C≤ log2/ log3.
Now we turn to a proof of dimH C ≥ log2/ log3 by making use of the mass

distribution principle. Let Λn be the uniform distribution on
⋃

v∈{1,2}n Jv. Then it is
a well-known fact that Λn converges weakly to the ”uniform distribution” Λ on C,
called Cantor distribution. This distribution is continuous but singular with respect
to λλ , and it satisfies Λ(Jv) = Λn(Jv) = (3/2)|v|λλ (Jv) = 2−|v| for each n≥ |v|. Now
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let n ∈ N be arbitrary and B ∈B([0,1]) be any set with 3−(n+1) ≤ diam(B) < 3−n.
Then B intersects at most one interval In, say, of the Jv for v∈ {1,2}n. Consequently,

Λ(B) ≤ Λ(In) = 2−n =
(
3−n)log2/ log3 ≤

(
3diam(B)

)log2/ log3

and the asserted inequality follows by Proposition D.11. ut

Problems

Problem D.13. Prove that ηε defined by the general construction scheme after The-
orem D.2 is indeed an outer measure for any ε > 0.

Problem D.14. For any 0 < a < 1/2, consider the Cantor set Ca obtained by first
removing the interval ((1− a)/2,(1+ a)/2) from the unit interval [0,1] and then
proceeding indefinitely in the obvious manner. Find the Hausdorff dimension of Ca
by making use of the mass distribution principle.
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Hölder continuous, 284
Horton-Strahler number, 24

inequality
Burkholder, 167, 177, 183, 273
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lattice-type, 70

lemma
Choquet-Deny, 58
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preface, v



Index 297

process
autoregressive, 17
Galton-Watson, 7
Lindley, 6, 88
point, 30
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standard, 34
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pseudo-inverse, 112, 158
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quasi-partition, 153
queue
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algorithm, 10
distribution, 14
equation, 14, 191
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random difference equation, 16, 87, 124
random logistic map, 89
random m-ary search tree, 246

size, 249
total path length, 246

random recursive construction, 153, 196
random recursive tree, 236
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Zagreb index, 260

random walk, 17, 29
d-arithmetic/nonarithmetic, 36

completely, 36
lattice-span, 36
multiplicative, 17
negative divergent, 72
oscillating, 72
positive divergent, 72
recurrence, 45

recurrence time
forward/backward, 54

recursive tree, 235
recursive tree process, 23

invariant, 23
renewal

density, 33
equation, 39, 55

defective, 55
excessive, 55
proper, 55

standard, 55
two-sided, 113, 115

function, 30
second order approximation, 64

measure, 30
uniform local boundedness, 37

process, 29

smoothing transform(ation), 145
homogeneous, 147

stable law
one-sided, 4
symmetric, 4

standard model, 29
stationary sequence, 265

doubly infinite extension, 266
ergodic, 266

Stirling number of the first kind, 258
stochastic fixed-point

equation, 1
stopping time

copy sums, 67
formal copy, 67
randomized, 79

Strahler number, 24
Strahler stream order, 24
superposition

of Poisson processes, 35
symbols, list of, xiii, xv

theorem
Banach’s fixed point, 276

for quasi-contractions, 277
Birkhoff’s ergodic, 267
Blackwell’s renewal, 42, 76
Chung-Fuchs, 70, 71
elementary renewal, 31
implicit renewal, 110, 123
key renewal, 52, 76

Topchii-Vatutin inequality, 166, 176, 271
transformation

ergodic, 94, 266
homogeneous smoothing, 147
measure-preserving, 94, 265
smoothing, 145

tree
binary search, 14, 245

random, 246
m-ary search, 245

random, 246
recursive, 235
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Wald’s equations, 67
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process, 148
tree, 147

Zagreb index, 260


