Übungen

Abgabetermin: Dienstag 2.7. um 10 Uhr, Briefkästen 131-134

THEMEN: (faktorisierter) bedingter Erwartungswert und regulär bedingte Verteilungen

Aufgabe 44 (2+2 Punkte)

Es sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum, \mathscr{F} eine Unter- σ -Algebra von $\mathfrak{A}, X \in \mathfrak{L}^2(\mathfrak{A})$ und

$$\mathbb{V}ar(X|\mathscr{F}) := \mathbb{E}\left(\left(X - \mathbb{E}\left(X|\mathscr{F}\right)\right)^{2}|\mathscr{F}\right)$$

die bedingte Varianz von X unter \mathscr{F} . Zeigen Sie:

- (a) $\mathbb{V}ar(X|\mathscr{F}) = \mathbb{E}(X^2|\mathscr{F}) \mathbb{E}(X|\mathscr{F})^2$.
- (b) $\mathbb{V}ar(X) = \mathbb{E}(\mathbb{V}ar(X|\mathscr{F})) + \mathbb{V}ar(\mathbb{E}(X|\mathscr{F})).$

Aufgabe 45 (1+3+2 Punkte)

Es sei $(X_n)_{n\in\mathbb{N}}$ eine Folge stochastisch unabhängiger, identisch $Exp(\lambda)$, $\lambda > 0$, verteilter ZG und $Y_n := \min_{1 \le i \le n} X_i$, $n \in \mathbb{N}$.

- (a) Bestimmen Sie die Verteilung von Y_n .
- (b) Zeigen Sie $\mathbb{P}(X_1=Y_n|X_1=x)=e^{-\lambda x(n-1)}$ für \mathbb{P}^{X_1} f.a. $x\in[0,\infty)$, und bestimmen Sie damit $\mathbb{P}(X_1=Y_n)$.
- (c) Bestimmen sie eine Version von $\mathbb{E}(Y_n|Y_k=x)$ für k < n.

Aufgabe 46 (2+2 Punkte)

(a) Zeigen Sie, dass es sich bei der folgenden Funktion um eine λ^2 -Dichte handelt:

$$f(x,y) = \frac{1}{y\sqrt{2\pi}} e^{-y^2(x-y)^2/2} \mathbb{1}_{\mathbb{R}\times[1,\infty)}(x,y)$$

(b) Es sei (X,Y) ein Zufallsvektor mit der \mathbb{A}^2 -Dichte f aus Teil (a). Zeigen Sie, dass $\mathbb{E}(X|Y=y)=y$ für \mathbb{P}^Y -fast alle y gilt.

Aufgabe 47 (1+2+3 Punkte)

Es sei $(X_n)_{n\in\mathbb{N}_0}$ eine Folge von ZG mit Werten in $(S,\mathcal{S})=(\{1,2,3\},\mathfrak{P}(\{1,2,3\}))$ und $\mathbb{P}(X_n=s)>0$ für alle $n\in\mathbb{N}_0$ und $s\in S$. Sei weiter für $n\in\mathbb{N}$

$$K_n: S^n \times \mathcal{S} \to [0, \infty], \quad ((s_0, \dots, s_{n-1}), A) \mapsto \sum_{s \in A} p(s_{n-1}, s)$$

mit einer Matrix $P = (p(r,s))_{r,s \in S} \in [0,1]^{3\times 3}$, deren Zeilensummen 1 ergeben.

- (a) Zeigen Sie, dass K_n für jedes $n \in \mathbb{N}$ einen stochastischen Kern bildet.
- (b) Für $n \in \mathbb{N}$ und $s \in S$ sei $K_n(\cdot, \{s\})$ eine Version von $\mathbb{P}(X_n = s | (X_{n-1}, ..., X_0) = \cdot)$. Zeigen Sie, dass $p(\cdot, s)$ dann auch eine Version von $\mathbb{P}(X_n = s | X_{n-1} = \cdot)$ ist für alle $n \in \mathbb{N}$ und $s \in S$.
- (c) Gegeben die Voraussetzungen aus (b) sei nun konkret

$$P = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}.$$

Bestimmen Sie \mathbb{P}^{X_n} für beliebiges $n \geq 1$ in Abhängigkeit von \mathbb{P}^{X_0} und P und untersuchen Sie diese Verteilung auf schwache Konvergenz.

Zusatzaufgabe (3* Punkte)

Wie in Aufgabe 18(b) werde im Innern des Würfels $[0,1]^3$ zufällig ein Punkt (X,Y,Z) ausgewählt.

- (a) Bestimmen Sie für ein beliebig vorgegebenes $x \in [0, 1]$ eine Menge $A \in \mathcal{B}(\mathbb{R})^2$, für die $\mathbb{P}(X \leq Y \leq Z | X = x) = \lambda^2(A)$ gilt. Kann dieses A als $A_1 \times A_2, A_i \in \mathcal{B}(\mathbb{R}), i = 1, 2,$ geschrieben werden?
- (b) Bestimmen Sie die Wahrscheinlichkeit aus (a) graphisch (geometrische Wahrscheinlichkeiten) und analytisch (Berechnung des Integrals).