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Chapter 1
Introduction

Probabilists are often facing the task to determine the asymptotic behavior of a given
stochastic sequence (X,),>0, more precisely, to prove its convergence (in a suitable
sense) to a limiting variable X, as n — oo, and to find or at least provide informa-
tion about the distribution (law) of X.., denoted as .Z(X.). Of course, there is no
universal approach to accomplish this task, but in situations where (X,,),>0 exhibits
some kind of recursive structure, expressed in form of a so-called random recursive
equation, one is naturally prompted to take advantage of this fact in one way or an-
other. Often, one is led to a distributional equation for the limit variable X., of the
form

LX) = L (P(Xo(1),Xn(2),...)) (1.1)

where Xw(1),Xw(2), ... are independent copies of X.. and ¥ denotes a random func-
tion independent of these variables. (1.1) constitutes the general form of a so-called
stochastic fixed-point equation (SFPE), also called recursive distributional equa-
tion by ALDOUS & BANDYOPADHYAY in [1]. The distribution of X is then called
a solution to the SFPE (1.1).

To provide an introduction of a collection of interesting equations of this kind,
some of them related to very classical problems in probability theory, and of the
methods needed for their analysis is the main goal of this course. The present chapter
is devoted to an informal discussion of a selection of examples that will help the
reader to gain a first impression of what is lying ahead.

1.1 A true classic: the central limit problem

Every student with some basic knowledge in theoretical probability knows that,
given a sequence of iid real-valued random variables X, X, X>, ... with mean 0 and
variance 1, the associated sequence of standardized partial sums

g o Xi+...+X,

n o= T, l’lZl
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converges in distribution to a standard normal random variable Z as n — oo. This is
the classic version of the central limit theorem (CLT) and most efficiently proved by
making use of characteristic functions (Fourier transforms). Namely, let ¢ denote
the chf of X and note that a second order Taylor expansion of ¢ at 0 gives
2
o) = 1— E—I—o(tz) ast — 0.

Since S? has chf (1) = ¢ (n~'/1)", we now infer

2 2\\" 2/
lim yi,(1) = ,}ﬂ(lz,ﬁ"(zia)) o

for all # € R and thus the asserted convergence by Lévy’s continuity theorem com-
bined with the fact that e"/2 is the chf of the standard normal distribution.

Having solved the central limit problem for good in the classical setup of iid
random variables the reader may wonder so far about its connection with random
recursive equations. Let us therefore narrow our perspective by assuming that the
weak convergence of .Z(S}) to a limit law Q with mean 0 and unit variance has al-
ready been settled. Then the problem reduces to giving an argument that shows that
O must be the standard normal distribution. To this end, we make the observation

that
. St S

2n — 21/2 ) (12)

where S, , 1= n V2 (X1 4 ... + Xa,) for n > 1. Since S, » is an independent copy
of S, it follows that

(Sn>Sn.n) 4 (2,Z) asn— o

for two independent random variables Z,Z’ with common distribution Q and then
from (1.2), by the continuous mapping theorem, that

d Z+7
= W7 (1.3)
where < means equality in distribution. In terms of the chf @, say, of Z, this equation

becomes
N2
o) = ¢(57) » 1€k (1.4)

which via iteration leads to

. t N 2 2\ ep
o) = limo(55) = lim (15 +o(gar) ) =

for all + € R, when noting that ¢ satisfies the same Taylor expansion as ¢ given
above. Hence we have proved that Q is the standard normal law.
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The random recursive equation (1.2) that has worked for us here may also be
written as

Siy = WSS5) with P(ry) =20

Although stated in terms of random variables, it should be noticed that its recursive
property is rather in terms of distributions: The distribution of S5, is expressed as
a functional of the distribution of S, (recalling that S} , is an independent copy of
this variable). Then, by taking the limit n — oo and using the continuity of ¥, the
limiting distribution has been identified as a solution to the SFPE (1.3), viz.

A A

d /
zZ=Y2Z2727) = i

Under the proviso that Z (or Q) has mean 0 and unit variance, we have shown that
the standard normal distribution forms the unique solution to (1.3). We note in pass-
ing that, by a simple scaling argument, Normal(0, ), the normal distribution with
mean 0 and variance 62 > 0, is found to be the unique solution to the very same
SFPE within the class of distributions with mean 0 and variance 2.

Generalizing in another direction, fix any N > 2 and positive integers ki, ...,ky
satisfying k; + ... +ky = N. Define s; := ky,s2 := k1 +kp,...,sny :== k1 +... + ky and
then

for j=1,...,N. The latter random variables are clearly independent with .Z(S;; (j)) =
Z (S,tjn) for each j =1,...,N. Moreover, the random recursive equation

N
Svn = Y, T;Si(j) (1.5)
j=1

with T; := (k;/N)'/? for j = 1,...,N holds true. Hence, the distribution of S}, is a
functional of the distributions of S,’:ln, ...,S,’:N - By another appeal to the continuous
mapping theorem, we obtain upon passing to the limit # — oo that (under the same
proviso as before)

N
z LY 12 (1.6)
j=1

where Z1, ..., Zy are independent copies of Z. Equivalently,
N
o(t) = [To(Tj1), teR
j=1

holds for the chf ¢ of Z, and a similar argument as before may be employed to
conclude that the standard normal law forms the unique solution to (1.6) within the



4 1 Introduction

class of distributions with mean O and unit variance. We close this section with the
following natural question:

Under which conditions on (N, T, ..., Ty), the parameters of the SFPE (1.6), does
the previous uniqueness statement remain valid?

The restriction imposed by our construction is that N is finite and that T]2, e TA% are
positive rationals summing to unity. The last property is clearly necessary, for (1.6)
in combination with VarZ = 1 entails

N N
1 =VarZ = Y Var(1jZ;) = Y T/
j=1 j=1

more general framework. This means that N may even be infinite and 71,75, ..., Ty
any real numbers such that leyzl sz =1.

Problems

Problem 1.1. For any o € (0,2] and b > 0, the function ¢(¢) = exp(—b|t|*) is the
chf of a (symmetric) distribution .’ (@, b) on R, called symmetric stable law with
index & and scaling parameter b. Note that . (2,b) = Normal(0,2b) and .7 (1,b) =
Cauchy(b), the symmetric Cauchy distribution with A-density % b_ . Prove that

b2+x
Z(a,b) forms a solution to the SFPE

d Xit+..+X,

X nl/a

1.7)

for any n > 2, where X, ..., X, are independent copies of X.

Problem 1.2. Prove the following assertions for any b > 0:

(a)  The function R> o7 @(t) =exp(—bt?*) is the LT of a distribution .7, (o, b)
on R, called one-sided stable law with index & and scaling parameter b, iff
a € (0,1].

(b) i (o,b) forms a nonnegative solution to the SFPE (1.7).

Problem 1.3. Let N € NU{oo} and Ty, ..., Ty > 0. Find conditions on N, Ti,..., Ty
such that . (a, b) and ., (@, b) are solutions to the SFPE (1.6).
1.2 A prominent queuing example: the Lindley equation

In a single-server queuing system, the Lindley equation for the waiting time of a cus-
tomer before receiving service provides another well-known example of a random
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recursive equation. To set up the model, suppose that an initially idle server is facing
(beginning at time 0) arrivals of customers at random epochs 0 <7y <71 <15 < ...
with service requests of (temporal) size By, Bj,... Customers who find the server
busy join a queue and are served in the order they have arrived (first in, first out).
Typical performance measures are quantities like workload, queue length or waiting
times of customers in the system. They may be studied over time (transient analysis)
or in the long run (steady state analysis). Here we will focus on the time a customer
spends in the queue (if there is one) before receiving service and will do so for the
so-called G/G/I-queue specified by the following assumptions [E=¥ also [5]]:

(G/G/1-1)  The sequence of arrival epochs (7,),>0 has iid positive increments
Ay,A,,... with finite mean A and thus forms a renewal process with
finite drift.

(G/G/1-2)  The service times By, By, ... are iid with finite positive mean L.

(G/G/1-3)  The sequences (T;,),>0 and (B,),>0 are independent.

(G/G/1-4)  There is one server and a waiting room of infinite capacity.

(G/G/1-5)  The queue discipline is FIFO (“first in, first out”).

The Kendall notation “G/G/1”, which may be expanded by further symbols when
referring to more complex systems, has the following meaning: The first letter refers
to the arrival pattern, the second one to the service pattern, and the number in the
third position to the number of servers (or counters). The letter “G” stands for “gen-
eral” and is sometimes replaced with “GI” for “general independent”. It means that
both, interarrival times and service times are each iid with a general distribution.
Let W, denote the quantity in question, that is, the waiting time of the n" arriving
customer before receiving service and notice that Wy = 0, for the server is supposed
to be idle before Tp. In order to derive Lindley’s equation for W, (n > 1), we point
out the following: Either W,, = 0, which happens if the n'" customer arrives after his
predecessor has already left the system, or W, equals the time spent in the system
by the predecessor, i.e. W,,_1 + B,_1, minus the time A, that elapses between the
arrival of that customer and his own arrival. The first case occurs if 7, > T, | +
W,—1+ B, or, equivalently, W,_; + B,_; — A, < 0, while the second one occurs if
Wu—1+ Bn—1 — A, > 0. Consequently, the Lindley equation [47] takes the form

Wy = Womi +X0) " (1.8)

for each n > 1, where X, := B,,_1 —A,. Put also Sp :=0 and S, = X; + ... + X,, for
n > 1. Then (S,),>0 forms an ordinary zero-delayed random walk with drift u — A.
It is now an easy exercise [I¥° Problem 1.5] to prove via iteration that

W, = max (S,—Sk) < max Sy (1.9)
0<k<n 0<k<n

for each n > 0 and then to deduce the following result about the asymptotic behavior
of W,,.
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Theorem 1.4. Under the stated assumptions, the waiting time W, converges
in distribution to We, := maxg>0 Sy iff £ < A. In this case

W £ (Woot X)7, (1.10)

where X denotes a generic copy of X1,Xa, ... independent of We.. Furthermore,

lim, o W, =0 a.s. if u > A,
and
0 = liminf,, . W, < limsup,_,., W, = a.s. if L = A.

Proof. Problem 1.5 a

It is intuitively obvious (and indeed true) that asymptotic stability of waiting
times, i.e. distributional convergence of the W,,, is equivalent to the asymptotic sta-
bility of the whole system in the sense that other relevant functionals like queue
length or workload approach a distributional limit as well. Adopting a naive stand-
point by simply ignoring random fluctuations of system behavior, we expect this to
be true iff the mean service time is smaller than the mean time between two arriv-
ing customers, for then the server works faster on average than the input rate. The
previous result tells us that naive thinking does indeed lead to the correct answer.

Further dwelling on the stable situation, thus assuming g < A, it is natural to
strive for further information on the distribution of W.,, which in general cannot be
determined explicitly [B¥° Problem 1.7 for an exception]. For this purpose, the queu-
ing background no longer matters so that we may just assume to be given a general
nonnegative sequence (W, ),>o, called Lindley process, of the recursive form (1.8)
with iid random variables X1, X5, ... with negative mean. The reader is asked in Prob-
lem 1.6 to show that then W, always converges in distribution to We. = maxy>o Sk,
regardless of the distribution of Wy. This implies that the SFPE (1.10) determines
the distribution G, say, of W., uniquely. Implicit renewal theory, to be developed in
Chapter 4, will enable us to determine the asymptotic behavior of the tail probabili-
ties P(W > t) as t — oo with the help of (1.10). At this point we finally note that the
latter may be stated in terms of G(z) = P(W <¢) as

Glt) = /(_M]G(H) P(X €dx), >0, (1.11)

called Lindley’s integral equation.

Problems

Problem 1.5. Given a G/G/1-queue as described above, prove that W, satisfies (1.9)
and then Theorem 1.4.
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Problem 1.6. Given a sequence of iid real-valued random variables X, X;,X>, ...
with associated SRW (S,,),>0, consider the Lindley process

W, = (Wn—l +Xn)+a n>1

with arbitrary initial value Wy > 0 independent of X|,X>,... Prove the following
assertions:

(a) Foreachn>1,W, 4 M,_1V (Wo+S,), where M,, = maxo<g<, Sk for n > 0.

(b) IfEX <0, then W, < Wi, = maxi= Sk
(¢) IfEX <0, then .Z(W.) forms the unique solution to the SFPE (1.10) in the
class of distributions on R>.

Problem 1.7. In the previous problem, suppose that X is integer-valued with nega-
tive mean and .Z (X ) = Bern(p) for some p > 0. Prove that W., has a geometric
distribution. [Hint: Consider the strictly descending ladder epochs (0, ),>0, recur-
sively defined by o := 0 and

o = inf{k >06° 18 < SG<_1}

for n > 1, where inf( := co. Then write W, in terms of the associated ladder heights
Sa,,< 1 {07 <o} and use that, given 0, < oo, the random vectors

< <
(Gk _Gk717S6k< _Sckil> , k=1,...n,

are conditionally iid [#= Subsec. 2.2.1 in [2] for further information].]

Problem 1.8. Here is a version of the continuous mapping theorem that will fre-
quently be used hereafter:

Let 61,65,... be iid R?-valued (d > 1) random variables with generic copy 6 and
independent of Xy. Suppose further that X,, = y(X,,_1,6,) for all n > 1 and a con-
tinuous function y : R¥*! — R. Prove that, if X, converges in distribution to X.,
then

Y(Xoo1.6,) 5 W(Xe,0) and  Xeo £ y(Xeo, 6),

where X.. and 6 are independent.

1.3 A rich pool of examples: branching processes

Consider a population starting from one ancestor (generation 0) in which individu-
als of the same generation produce offspring independently and also independent of
the current generation size. The offspring distribution, denoted as (py)n>0, is sup-
posed to be the same for all population members and to have finite mean m. Under
these assumptions, the generation size process (Z,),>0, thus Zy = 0, forms a so-
called (simple) Galton-Watson (branching) process (GWP) and satisfies the random
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recursive equation

Zy—1
Zo= Y X n>1, (1.12)
k=1

where {X,Lk :n,k > 1} forms a family of iid integer-valued random variables with
common distribution (p,),>0. Here Z, denotes the size of the n'h generation and
Xy, x the number off children of the k" member of this generation (under an arbitrary
labeling of these members). To exclude the trivial case Zp = Z; = ... = 1, we make
the standing assumption p; < 1.

A classical result, known as the extinction-explosion principle, states that the
population either dies out (Z, = 0 eventually) or explodes (Z, — ), i.e.

P({Z, =0 eventually} U{Z, — oo}) = 1.

Moreover, extinction occurs almost surely if m < 1 (subcritical case) or m = 1 (criti-
cal case), while g := P(Z, =0 eventually) < 1 if m > 1 (supercritical case). Defining
the offspring gf f(s) := ¥,,>0 pas” for s € [0,1], g equals the minimal fixed point of
fin[0,1].

It is easily verified that the normalized sequence W, = m~"Z,, n > 0, constitutes a
nonnegative mean one martingale which therefore converges to a nonnegative limit
W with EW <1 by the martingale convergence theorem [= Problem 1.9]. If m < 1,
then clearly W = 0 a.s. holds true, but if m > 1 we may hope for W > 0 a.s. on the
survival event {Z,, — o} giving that Z, grows like a random constant times m" on
that event as n — oco. A famous result by KESTEN & STIGUM [43] states that this
holds true iff

EZ logZ, = Z panlogn < oo (ZlogZ)
n>1
which we will assume hereafter. Then (W,),>0 is ui and thus E|W, — W| — 0, in
particular EW = EW, = 1.

What can be said about the distribution of W? The following argument shows
that once again its distribution satisfies a SFPE. First notice that, besides (1.12), we

further have
Zi

Zy =Y Zya(j), n>1, (1.13)
j=1
where (Z,(j))n>0 denotes the generation size process of the subpopulation stem-
ming from the j individual in the first generation of the whole population. In fact,
we can define (Z,(j))n>0 for any j > 1 in such a way that these processes are inde-
pendent copies of (Z,),>0 and also independent of Z;. Then, defining W,,(j) in an
obvious manner, we infer

1 &
Wo ==Y Wou(j), n>1
m =

and then, by letting n — oo, that
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14
W = %;W(]) as., (1.14)

where W (j) denotes the almost sure limit of the martingale (W,(j)),>0. By what
has been pointed out before, the W (j) are independent copies of W and independent
of Z; so that (1.14) does indeed constitute an SFPE for .Z(W). In terms of the LT
@(t) := Ee™W of W, it may be restated as

t
o) = foq)(f), 1>0, (1.15)
m
as one can readily verify. With the help of this equation, one can further show (under
(ZlogZ)) that ¢ is the unique solution with right derivative ¢’(0+) = —EW = —1
at 0 [®== Problem 1.10]. Since distributions are determined by their LT’s we hence
conclude that £ (W) is the unique solution to (1.14).

There are many other functionals in connection with GWP’s that can be described
by a random recursive equation. Here we confine ourselves to two further examples
in the case when m < 1 in which almost certain extinction occurs. First, consider the
total population size process

n
Y, =Y Z, n>0
k=0

which satisfies

Z
Yy =1+ Y Ya(j), n>1, (1.16)
=1

where (¥,(j))n>0 denotes the total population size process associated with the GWP
(Z4(J))n>0 defined above. Plainly, ¥, increases to an a.s. finite limit Y. which, by
(1.16), satisfies the SFPE

Zy
Yo = 14+ ) Ya()). (1.17)
j=1

Problem 1.11 shows that this equation characterizes the distribution of Y., uniquely.
It is not obvious at all but has been shown by DWASS [24] that .Z(Y..) can be
obtained explicitly, namely

; 1 .
PYo =) = SPin Iz
where p;; :=P(Z; = j|Zy = i) for i, j > 0. The proof is based on a clever analysis
of the random recursive equation (1.16) in terms of gf’s.

As a second example, still assuming m < 1, we mention the extinction time of
(Zp)n>0, viz.
T :=inf{n>1:Z,=0}.



10 1 Introduction

If T(j) denotes the corresponding random variable for the GWP (Z,(j)),>o for each
J = 1, then the following SFPE follows immediately:

Z
T =14\ T()) (1.18)
j=1

with the convention that \/(,?:1 xj:=0.

Problems

Problem 1.9. Given a GWP (Z,),,>0 with one ancestor and finite offspring mean m,
prove that W,, = m™"Z, for n > 0 forms a nonnegative martingale.

Problem 1.10. Prove (1.15) and then, assuming (ZlogZ), that ¢ is the unique solu-
tion with right derivative at 0 satisfying |¢’(0+)| = 1.

Problem 1.11. Suppose m < 1 and let ¢ denote the LT of the final total population
size Y. Prove that @ satisfies the functional equation ¢(z) = ™" f o ¢(¢) equivalent
to (1.17) and that it forms the unique solution in the class of LT’s of distributions.
[Hint: Use the convexity of f.]

1.4 The sorting algorithm Quicksort

Quicksort, first introduced by HOARE [39, 40], is probably the nowadays most
commonly used, so called divide-and-conquer algorithm to sort a list of n real num-
bers and serves as the standard sorting algorithm in UNIX-systems. Based on the
general idea to successively divide a given task into subtasks of the same kind but
smaller dimension, it forms a random recursive algorithm that may be briefly de-
scribed as follows: Given n distinct reals ay, ..., a,, which are to be sorted in increas-
ing order, the first step is to create two sublists by first choosing an element x from
the list, called pivot, and then to put all a; smaller than x in the first sublist and all
ay. bigger than x in the second sublist. The same procedure is then applied to the two
sublists and all further on created ones as long as these contain at least two elements.
Hence, the algorithm terminates when all sublists consist of only one element which
are then merged to yield ay, ...,a, in increasing order. The way the pivots are chosen
throughout the performance of the algorithm may be deterministic or at random,
e.g. by picking any element of a given sublist with equal probability. Notice that the
particular values of ay, ..., a, do not matter for the algorithm so that we may assume
w.Lo.g. that (ay,...a,) is a permutation of the numbers 1, ...n. When picking such a
permutation at random, the number of key comparisons needed by Quicksort to
output the ordered sample becomes a random variable X,,, and our goal hereafter is
to study the distribution of X,,. But before proceeding we give an example first.
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Example 1.12. In order to illustrate how Quicksort may perform on a given sam-
ple, we have depicted a permutation of the numbers 1,2,...,12. The table below
shows that the algorithm needs four rounds to output the ordered sample. Each round
consists of the further subdivisions of the currently given sublists with more than
one element with respect to previously chosen pivots (shown in boldface). The final
column of the table displays how many key comparisons are needed to complete the
round.

List to be sorted | 63925128 1 10 4 11 7 | # key comparisons

Round 1 3251469128 1011 7 11
Round 2 21354 ¢ 87 9121011 9
Round 3 1245 ¢ 78 o 101112 5
Round 4 leedeo o7 ¢ o 1011 o 1

The reader may wonder about the necessity of Round 4 because the sample appears
to be in correct order already after Round 3. The simple explanation is that after
Round 3 we still have one sublist of length > 2, namely (10, 11) which in the final
round is assessed to be in correct order by choosing 10 as the pivot and making the
one necessary comparison with the other element 11 [#¥ also Figure 1.1 below].

Fig. 1.1 Example 1.12: Left and right nodes of the tree are representing the respective sublists as
created in the successive rounds by comparison with the pivot (shown in boldface) in the previous
node.

As already announced, our performance analysis of Quicksort will be based
on the number of key comparisons X, needed to sort a random permutation of length
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n. It seems plausible that this number is essentially proportional to the performance
time and therefore the appropriate quantity to analyze.
To provide a rigorous model for X, let

Q, = {re{l,.,n}":m#mfori#j}

be the permutation group of 1,...,n, here the set of possible inputs, and IP,, the (dis-
crete) uniform distribution on £2,,. The discrete random variable X, : 2, — Ny then
maps any 7 on the number of key comparisons needed by Quicksort to sort ©
in increasing order where, for simplicity, we assume that pivots are always chosen
as first elements in the appearing sublists'. Consequently, Z, (1) := 7, denotes the
pivot in the input list and has a uniform distribution on {1,...,n}. It also gives the
rank of this element in the list. The derivation of results about the distribution of
X, will be heavily based on the recursive structure of Quicksort which we are
now going to make formally more explicit. Denote by L,, R, the rank tuples of the
left and right sublist, respectively, created in the first round via key comparison with
Z,. Observe that these lists have lengths Z, — 1 and n — Z,, respectively, so that
Ly(7) € Qz,(z)-1 and Ry (%) € Q,_7 () for any 7 € Q. After these settings the
crucial random recursive equation for X, takes the form

X, = Xz, 10L, + Xy z,0R, + n—1 (1.19)

for any n > 1, where Xy(0) := 0. It follows by a combinatorial argument that, given
Z, =1, L, and R, are conditionally independent and uniformly distributed on £2;_
and Q,_;, respectively [F¥° Problem 1.14]. Setting Py(Xp € -) := &y, it hence follows
that

™=

P,(Xy€:) = ) Pu(Z, =) Pu(X, €2, =1)

Py(Xz,—10Ly+Xy—z,0R +n—1€+Z, =)

S|= I|=
™= I -

I
-

Po(Xz, 1 0Ly € -|Zy = i) ¥ Pp(Xy_z, 0 Ry € -|Zy = i) % 8,1

=

Pio1(Xim1 € )Py i(Xp—i € ) x 61

S| =
T

for each n > 1. From now on, we assume that all X,,Z,, n > 1, are defined on just
one sufficiently large probability space (2,21, ) which further carries independent
random variables X;, X, X{, X/, ..., which are also independent of (X, Z,),>1, such
that

X)=X/:=0 and X, <X £Xx" forn>1.

Then equation (1.19) provides us with the distributional relation

! this version is sometimes referred to as vanilla Quicksort
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d "

Xo = Xz, + Xz, + n—1 (1.20)
foralln > 1.
normalization of X,, converges in distribution to some X., and to characterize .2 (X..)
as the solution to a certain SFPE. At this point, we must contend ourselves with
some preliminary considerations towards this result due to ROSLER [53] including
a heuristic derivation of the SFPE.

In order to gain an idea about a suitable normalization of X,,, we first take a look
at its expectation. Let H, := Y}, % be the 1" harmonic sum and

v := lim (H, —logn) = 0.5772...
n—yoo

denote Euler’s constant.

Lemma 1.13. For eachn > 1,
EX, = 2(n+1)H,—4n (1.21)
holds true and, furthermore,
1
EX, = 2(n+1)10gn+(2y—4)n+2}/+1+0(—) (1.22)
n

as n — oo,

Proof. Taking expectations in (1.20), we obtain

EX,

n—1+Y P(Z,=j) (EXj—1 +EX,;)
j=1
n

1
n—1+ - Y (EX; 1 +EX, )
j=1

2}171
—14+-) EX;
n +nj; g

and then upon division by n+ 1 and a straightforward calculation that

EX, EX, 1  2(n-1)
n+l  n n(n+1)

(1.23)

for all n > 1. We leave it to the reader [/=° Problem 1.15] to verify this recursion
and to derive (1.21) from it. The asymptotic expansion (1.22) then follows directly
when using that H, = logn+7v+ (2n) "' + O(n™2) as n — oo. O
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The reader is asked to show in Problem 1.16 that VarX,, ~ 62n? as n — oo, where
o2:=7— %7172. In view of this fact it is now reasonable to study the asymptotic
behavior of the normalization
X, —EX,

. .

X, =

The contraction argument due to ROSLER [53] that proves convergence in distri-
bution of X, to a limit X.. with mean 0 and variance o will be postponed to

distribution, may again be characterized by an SFPE.
The argument embarks on the distributional equation (1.20), which after normal-
ization becomes

n—=2n =y

anzn + gn(Zn) (1.24)

~ Z —1 ~
X, L%+
n
for n > 2, where Xy = X; := 0 and gn:1{1,...,n} = Ris defined by

11
gn(k) = "n + = (EXi1 +EX, 4 ~EX,). (1.25)

Notice that the X’, X", n > 0, continue to be independent of (X,,Z,),>1. The reader

n»“*n >

can easily verify [B¥° Problem 1.17] that Z,/n N Unif(0,1), and we will prove in

r}i_r}rologn(fnt]) = g(t) = 1+2tlogr+2(1—1)log(l—1)

for all ¢ € (0,1) uniformly on compact subsets, where [x] :=inf{n € Z : x < n}.

By combining these facts and 5(\,1 i> }Z,O, it can be deduced from (1.24) that .¥ (}/(\m)
solves the SFPE S R
Xo = UXL+(1-U)X.+g(U) (1.26)

where X, X" and U are independent with X! 4 X 42X, andU < Unif(0,1). This

~

its unique solution within the class of zero mean distributions with finite variance.

Binary search trees. A binary search tree (BST) of size n is a labeled binary tree
with n internal nodes generated from a permutation 7 = (7, ..., 7T,) € £,. One way
to construct it is as follows: Start with 7, store it in the root of the tree and attach to
it two empty nodes, called external. Then 7, is compared with 7; and becomes the
left descendant if m, < 7, and the right descendant otherwise. Attach two empty
nodes to the now internal node occupied by . Proceed with any 7 in the same
manner by moving it along internal nodes until an external one is reached where it
is stored. At each internal node with value x, say, where x € {7y, ..., T;_ }, move left
if m, < x and right otherwise. Finish step k by attaching two external nodes to the
node now occupied by 7. After n steps all keys have been stored, giving a binary
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tree with n internal and n 4 1 external nodes. This is exemplified in Fig. 1.2 with
the permutation from Example 1.12. As one can see, the same tree as in Fig. 1.1
is obtained when ignoring external nodes. In fact, an application of Quicksort
always leads to the same result as the procedure just described when only storing
the leading element of each sublist (the pivot) in the nodes.

Fig. 1.2 The permutation (6,3,9,2,5,12,8,1,10,4,11,7) from Example 1.12 stored in a binary
search tree. External nodes are shown as empty circles.

Problems

Problem 1.14. Prove that, given Z,, = i, the rank tuples L, and R, are conditionally
independent with a discrete uniform distribution on £;_; and £,_;, respectively.

Problem 1.15. Complete the proof of Lemma 1.13 by verifying (1.23) and then
deriving (1.21) from it.

Problem 1.16. Prove that 6 := VarX,, satisfies

2 o, 2 5
o = lim — = 7— 27" = 0.4203... 1.27)
n—eo 1 3
by doing the following parts:
(a)  Use (1.20) to show that
2 n—1
o2 = cn—(n—1)2+220,3 (1.28)
k=1

forall n > 1, where t, := EX, and ¢, := L Y7 (t—1 + i — tn)*.
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(b)  Use (1.28) to derive the recursion

dn N dn—l 2 (Cnfl — (n — 2)2)

n+l  n + n(n+1) (1.29)

for any n > 2, where d, := 07 + (n— 1) — ¢, for n > 1. Note that 67 = ¢| =
d;=0.
(¢) Use Lemma 1.13 to show that

-1 ((2) (D)

as n — o and thereby

10 2
lim &= ¢ = —O—gnz. (1.30)

n—oo 12 3
(d)  Finally, combine the previous parts to infer
2
o,
lim =& = 3(c—1)

n—seo 12

which is easily seen to be the same as (1.27).
(e)  Those readers who want to work harder should prove the stronger assertion
[stated by FILL & JANSON in [31]]

o’ 21 1
O~ 3e-1)- Og”+0(>

n n n

as n — oo,

Problem 1.17. Prove that Z, /n 4 Unif (0,1) if Z, has a discrete uniform distribu-
tion on {1,...,n} for each n > 1.

Problem 1.18. Let D, denote the depth or height of a random BST with » internal
nodes, thus Do = D{ = 0. Prove that

L1+ VD!,

for each n > 1, where D;(,D;(’ , k>0, and Z, are independent random variables such
that £ (Dy) = £ (D) = £ (D)) for each k and £ (Z,) = Unif ({1,...,n}).
1.5 Random difference equations and perpetuities

A random difference equation (RDE) is probably the simplest nontrivial example
of a random recursive equation, the recursion being defined by a random affine



1.5 Random difference equations and perpetuities 17

linear function ¥ (x) = Mx+ Q for a pair (M, Q) of real-valued random variables.
More precisely, let (M,,,0,,),>1 be a sequence of independent copies of (M, Q), Xy
a further random variable independent of this sequence, and define the sequence
(X )n>0 recursively by

X, = M, X, +Qna n= 1. (131)

This is the general form of a (one-dimensional) RDE and has been used in many
applications to model a quantity that is subject to an intrinsic random increase or
decay, given by M,, for the time interval (n — 1,n], and an external random in- or
output of size Q, right before time n for any n > 1. Here are some special cases:

e The choice M = 1 leads to the classical random walk (RW)
n
Xy = Xo+) O, n>0
k=1

with initial value (delay) Xy, which constitutes one of the most fundamental
type of a random sequence.
e If O =0, then we obtain its multiplicative counterpart

n
Xy = XOHM/(’ nZOa
k=1

called multiplicative RW.
e If M = « for some constant @ # 0, then

n
Xp = 0Xy 140y =..= a"Xo+ Y. 0" FQ, n>1
k=1

is a so-called autoregressive process of order 1, usually abbreviated as AR(1),
and one of the simplest examples of a linear times series.

e Asaparticular case of an AR(1)-process consider the situation where @ € (0, 1),
Xo =0and 0, = aé, with £ (&,) = Bern(p) for some p € (0,1). Then we have

n n

d ~

Xy = Zakém—l—k = Zakék = Xy
k=1 k=1

for each n > 0, and since X, increases a.s. to the limit

X = Za"é‘n,

n>1

we infer that X, i> X... The law of X, is called a Bernoulli convolution and has
received considerable interest with regard to the question when it is nonsingular
with respect to Lebesgue measure. The interested reader may consult the survey
by PERES, SCHLAG & SOLOMYAK [52] and the references given there.
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Returning to the general situation, we first note that an iteration of (1.31) leads to

Xy = M, X, 1 +Qn
MnMn71Xn72 +M11Qn71 + Qn
= MM, My >X, 3+M,M,_, Qn72 +MnQn71 + Qn

n
= MM,—1-...- M1 Xo+ ZMn e 'Mk+1Qk
k=1

for each n > 1. Now use the independence assumptions and replace (My, Qk)1<k<n
with the copy (My+1—k, Qnt1-k)1<k<n to see that

d
Xn = IL,Xo+ Z IT; 1Ok (1.32)

n
k=1

for any n > 1, where (IT,),>o is the multiplicative RW associated with (M,,),>1 and

starting at ITy = 1.

We are interested in finding conditions that ensure the convergence in distribution
of X),, but confine ourselves at this point to some basic observations. By an appeal
to the continuous mapping theorem [as stated in Problem 1.8], we infer from (1.31)

that X, 4 X, implies the SFPE

X. £ MX.+0, (1.33)

naturally the independence of (M, Q) and X... Furthermore, by (1.32), it entails that
Xoo 4 )Zx,, where

n
Xo = lim (HnX0+ Y Hk—le)
n—yoo

k=1

exists in the sense of distributional convergence.
It is natural to ask whether .2’ (X..) depends on the initial value Xj. Consider the
bivariate RDE

(XVHX);) = (MI’LXVL*] +Ql’l7ManIL—] +Qn)7 n Z 1
with two distinct initial values Xp and X{. Then
X=X, = My(Xy1—X,_1) =...= IT,(Xo—X{)

for each n > 1. Consequently, sufficient for .#(X..) to be independent of X is that

limII, = 0 a.s. (1.34)

n—oo
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and X = Y I _10¢ existsas.inR. (1.35)
=1

The infinite series } ;> ITx_1Qx is called perpetuity which is an actuarial notion
for the present value of a infinite payment stream, here Q1,Q>,..., at times 1,2,...
discounted by the random products II;, I, ... The reader is asked in Problem 1.20
to show that (1.34) and (1.35) are valid if Elog |M| < 0, E|M|? < co and E|Q|® < o
for some 6 > 0. On the other hand, these conditions are far from being necessary.
RDE’s and perpetuities will be further discussed in Subsections 3.1.4 and 4.4.1.

Problems

Problem 1.19. Suppose that M > 0 a.s. and that Elog M exists, i.e. Elog™ M < oo
or Elog™ M < . Prove that exactly one of the following cases occurs for the mul-
tiplicative RW (IT,),>o and characterize them in terms of M.

I, =1 as.foralln>0

Iim I, = o a.s.

n—soo
IimII, = 0 a.s.
n—soo
0 = liminfIl, < limsuplIl, = o as.

n—oo Nn—yo0

Problem 1.20. Assuming Elog |M| < 0, E|M|® < e and E|Q|® < o for some 6 > 0,
prove the following assertions:

(a)  There exists k¥ € (0,0] such that E|M|* < 1. [Hint: Consider the function
s+— E|M|* for s € [0, 6].]
(b) |II,| — O a.s. and

Y 0,0k

k>1

< Y ML 1Qk] < = as.
k=1

(c)  The last assertion remains valid if Elog™ |Q| < o [use a Borel-Cantelli argu-
ment].

Problem 1.21. Given an RDE X,, = M, X,,_| + Q,, for n > 1, prove that, if X}, con-
verges in distribution and P(Q = 0) < 1, then P(M = 0) = 0.

Problem 1.22. Assuming M and Q to be constants, find all solutions to the SFPE
(133),ie. X L MX + 0.
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1.6 A nonlinear time series model

Motivated by its relevance for the modeling of financial data, BORKOVEC & KLUP-
PELBERG [16] studied the limit distribution of the following nonlinear time series
model, designed to allow conditional variances to depend on past information (con-
ditional heteroscedasticity) and reflecting the observations of early empirical work
by MANDELBROT [51] and FAMA [28] which had shown that “that large changes
in equity returns and exchange rates, with high sampling frequency, tend to be fol-
lowed by large changes settling down after some time to a more normal behavior”
[== [16, p. 1220]]. This leads to models of the form

X, = Gpen, n>1, (1.36)

where the g,, called innovations, are iid symmetric random variables and the o,
called volatilities, describe the change of the (conditional) variance. If 0',% is a linear
function of the p prior squared observations, viz.

P
o = B+ Y MX2, n>1, (1.37)
k=1
where 8,4, > 0and Ay,...,A4,_1 > 0, we are given an autoregressive conditionally

heteroscedastic (ARCH) model of order p as introduced by ENGLE [26]. Here we
focus on the simplest case p = 1 and note that a combination of (1.36) and (1.37)
then leads to the random recursive equation

X, = (B+Ax2 )6, n>1, (1.38)

for some 3,4 > 0, naturally assuming that Xy and (&,),>1 are independent. It may
further be extended by adding an autoregressive term, viz.

Xy = aXy 1+ (B+AXE) Pe, n>1, (1.39)

with o € R, to give an AR(1)-model with ARCH(1) errors. This is the model actually
studied in [16] and belongs to a larger class of autoregressive models with ARCH
errors introduced by WEISS [61].

If X,, converges in distribution to a random variable X.., the latter may obviously
again be described by an SFPE, namely

Xo L aXet (B+Ax2) e (1.40)

where € is a copy of the g, and independent of X... The intersting questions are,
for which parameter triples (o, 3,4) convergence in distribution actually occurs,
whether in this case the SFPE characterizes . (X ), and what information the SFPE
provides about the tail behavior of .%(X..).
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We close this section with some observations of a more general kind, exemplified
by the present model. Writing (1.39) in the form

Xy = ¢(Xn—la8n); n>1,

where ¢ (x,y) = @g g2 (x,y) = ax+ (B + Ax?)!/2y, we immediately infer, by using
the independence of X,,—1, &, and the identical distribution of the innovations, that
(Xn)n>0 forms a temporally homogeneous Markov chain (MC) with state space R
and transition kernel

P(x,A) = P((ax+ (B+Ax>)?e € A), AcBR).

The continuity of ¢(-,y) for any y € R further shows that (X,),>o forms a Feller
chain, defined by the property that

X PA) = [ F0) Pledy) = Ef(or+ (B+22)Pe) € G(R)

whenever f € €5(R). In other words, a Feller kernel P maps bounded continuous
functions to bounded continuous functions. Next we point out that 7 forms a so-

lution to the SFPE (1.40), i.e. X 4 (X, €), iff it is a a stationary distribution for
(X1)n>0- The latter means that

TP = /P(x,-) a(dx) = n

and therefore that .Z(X,,—1) = & implies -£(X,) = m. Thus, to determine all so-
lutions to the SFPE means to find all stationary distributions of the MC (X,,),>o0.
Here is a lemma that sometimes provides a simple tool to check the existence of a
stationary distribution for a Feller chain on R.

Lemma 1.23. Let (X;,),>0 be a Feller chain on R.
(a) IfX, 4 X, then £ (Xw) is a stationary distribution.

(b)  If (X)n>0 is tight, then there exists a stationary distribution.

Proof. Problem 1.24 a

Problems

Problem 1.24. Prove Lemma 1.23. [Hint for part (b): Show that tightness implies
that (n~! Yioi WP*),>1, contains a weakly convergent subsequence, where P* de-
notes the k-step transition kernel of the chain and y := P(Xp € -). Then verify that
the weak limit is necessarily a stationary distribution.]
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Problem 1.25. Given the random recursive equation (1.38) with € (0,1), Ee?> = 1
and ]EX(% < oo, prove the following assertions:

(@) (Xu)n>0 is L*-bounded, that is sup,~o EX? < co.
(b)  (Xi)n>0 possesses a stationary distribution which is nondegenerate.

Problem 1.26. Consider the random recursive equation (1.39) with o # 0, E|g| < oo
(thus Ee = 0) and E|Xp| < co.

(a)  Prove that (0t "X,),>0 is a martingale.
(b)  Assuming Ee? < oo and ]EX& < oo, find a necessary and sufficient condition
on (o, B,A) € (R\{0}) x R>. x R, for (X,),>0 to be L>-bounded.

1.7 A noisy voter model on a directed tree

Let T3(n) = U{_y{1,2,3}* be the rooted homogenous tree of order 3 and height n
in Ulam-Harris labeling and T3 = T3(oo) its infinite height counterpart. This means
that {1,2,3}° consists of the root @ and that each vertex v = (vy,...,v¢) € {1,2,3}
at level k (< n for T3(n)) has exactly 3 children, labeled (vy,...,v,i) for i =1,2,3
[*=" Fig. 1.3 below]. Let us write vj...v; as shorthand for (vi,...,v;), |v| for the
length of v, and uv as the concatenation of u and v. Note that u is the parent node of
ul,u2,u3.

For any fixed n > 1, let {X,(v) : v € {1,2,3}"} be a family of iid Bern(p)-va-
riables (p > 0) and {&(v) : v € T3(n— 1)} a second family of iid Bern(g)-variables
(& > 0 small) independent of the former one. As in ALDOUS & BANDYOPADHYAY
[1, Example 13], we now define recursively

Xu(u) := &(u) + Ly, (u1) X, (02)+ X, (u3)=2} MOd 2 (1.41)

and X,, := X,,(@). A possible interpretation, reflecting the title of this subsection, is
the following: Each parent node adopts the majority opinion, which can be 0 or 1,
of its children, except with a small probability € adopting the opposite opinion.

Fig. 1.3 The rooted homogenous tree T3(3) with Ulam-Harris labeling
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Following [1], we call the process (X,(V))ycr,(n) @ recursive tree process (RTP)
of depth n and note that the recursion is bottom-up because the value of X, (v) is
defined via the values of the corresponding variables of the children vi fori = 1,2,3.
Hence, the terminal or output value is X, (9).

The reader is asked in Problem 1.27 to verify the basic recursive relation

d
X, = §+1{Xn71+X,§,1+X,§L122} mod 2 (1.42)

"_1,X)_, are iid and independent of & 2 Bern(g), and
Z(Xo(2)) = Bern(p). This constitutes again a random recursive equation for the
X,,, but only in terms of their distributions. In other words, we are given here a map-
ping that maps the distribution of X,,_; to the distribution of X,,. Now it is readily
seen that, if Z(X,,—) = Bern(q), then .Z(X,) = Bern(g(q)), where

for n > 1, where X,_1,X’

gls) == (1—&)(s>+352(1—5))+ (1 —s* =35> (1 —5)) (1.43)

for s € [0, 1]. As Fig. 1.4 shows, the function g has three fixed points p(€), 3, 1— p(&)
with p(€) — 0 as € — 0. Hence, if £ (Xo) = Bern(q) with g being one of these fixed
points, then .Z(X,,) = Bern(q) for all n > 1. The asymptotic behavior of X, when
£ (Xo) = Bern(q) for q & {p(€), 5,1 — p(€)} is discussed in Problem 1.28.

Returning to the RTP (X,,(v))yer,(») defined above, it follows that the marginal
distributions of all X, (v) are the same whenever Bern(q) for g € {p(€),1,1—p(e)}
is chosen as the distribution of the variables at the bottom of the tree (level n).
In this case the RTP is called invariant, and it may be extended to an invariant
RTP (X, (v))veT, on the infinite tree T3 with the help of Kolmogorov’s consistency
theorem.

oF

0 0.2 0.4 0.6 0.8 1

Fig. 1.4 The function g(s) = (1 —&)(s> +3s>(1 —s)) + (1 — s> — 35(1 — 5)) with £ = 0.05.
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Problems

Problem 1.27. Prove (1.42) under the stated assumptions.

Problem 1.28. Let (X;),>0 be a sequence of Bernoulli variables satisfying (1.42)
with Z (&) = Bern(€) for any small € and £ (X) = Bern(q) for any g € [0,1]. Let
g be defined by (1.43) with fixed points p(g), 1,1 — p(&). Prove that

320
Bern(p(€)), ifg< %,
X, % X.., where Z(X..) = Bern(1/2), ifg=1,

Bern(1—p(g)), ifq> 3.

Problem 1.29. Here is a simpler variation of the noisy voter model on the binary
trees Ta(n) = Ug_o{1,2}", n > 1: Consider an RTP (X, (v)) e, () of depth n with a
family {X,(v) : v € {1,2}}" of iid Bern(p)-variables (0 < p < 1). For any parental
vertex u € Tp(n— 1), define

X, (u) :== &E(u)+X,(uf(u)) mod 2,

where {(&(u),&(u)) : u € To(n— 1)} is independent of {X,(v) :v € {1,2}}" and
consisting of iid random vectors with common distribution Bern(€) ® Unif({1,2})
for some € € (0,1). This means that u adopts the opinion of the randomly chosen
child u{(u), except with probability € adopting the opposite opinion. Put X, :=
X, (&) for n > 0, where .Z(Xo(@)) = Bern(p), and prove:

(@ Foralln>1,X,<E+X, 1 mod2.
(b)  Forany p € [0, 1], X,, converges in distribution to Bern(1/2).
(c)  The RTP’s defined above are invariant iff p = 1/2.

1.8 An excursion to hydrology: the Horton-Strahler number

The Strahler number* or Horton-Strahler number was first developed by two Amer-
icans, the ecologist and soil scientist HORTON [41] and the geoscientist STRAHLER
[56, 57], as a measure in hydrology for stream size based on a hierarchy of tribu-
taries® In this context, it is also referred to as the Strahler stream order. It further
arises in the analysis of hierarchical biological structures (like biological trees) and
of social networks. BENDER in his introductory book [11] on mathematical mod-
eling has a nicely written section on stream networks which provides a little more
background information.

2 in German called Fluss- oder Gewdisserordnungszahl nach Strahler

3 defined as a river which flows into a parent river or lake instead of directly flowing into a sea or
ocean.
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In mathematics, the Strahler number is simply a numerical measure of the bran-
ching complexity of a finite (mathematical) tree and defined as follows (when using
Ulam-Harris labeling as in the previous section): Starting at the bottom, all leaves
(the sources in the hydrological context) get Strahler number 1. For any other vertex
v, suppose it has children v1, ..., vk with respective Strahler numbers S(v1),...,S(vk)
having maximal value s, say. Then the Strahler number S(v) at v is recursively de-
fined as

e  sif this value is attained uniquely among the S(vi), i = 1...,k.
e s+ 1if S(vi) = S(vj) for at least two distinct i,j € {1,...,k}.

Finally, the Strahler number or index of the tree is defined as S(&).

In the river network context, the trees are typically binary and the numbers are
assigned to the edges leaving a node upwards rather than the node itself [#¥ Fig.
1.5]. Of course, the nodes represent the points where two streams come together.
When two streams of the same order k meet, they form a stream of order k + 1,
whereas if one of them has a lower order it is viewed as subordinate to the higher
stream, the order of which thus remains unchanged. The index of a stream or river
may range from 1 (a stream with no tributaries) to 12 (the most powerful river, the
Amazon, at its mouth). The Ohio River is of order eight and the Mississippi River
is of order 10. 80% of the streams and rivers on the planet are first or second order
[ http://en.wikipedia.org/wiki/Strahler_number].

Fig. 1.5 U.S. Corps of Engineer diagram showing the Strahler stream order.
[license by http://creativecommons.org/licenses/by-sa/3.0/deed.en]

Now let us return to the mathematical framework. Given a finite tree 7, the above
definition of the (S(v))ver provides us with another example of a RTP of finite depth
which becomes stochastic as soon as 7 is chosen by some random mechanism. For
instance T may be the realization of a Galton-Watson tree up to some finite genera-
tion. In this case, with (Z,),>0 denoting the associated GWP, one can easily derive
the following random recursive equation for the Strahler index S, of the Galton-
Watson tree up to generation n:

Sn = 1{z1:0}+1{z.21}(131§1 Sn-1<k)+1{Nn>1}), (1.44)
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where S, (k) denotes the Strahler index of the subtree rooted at the k" member
of the first generation and N, := |[{1 <k < Z; : §,—1 (k) = max<ij<z, Sy—1(i)}|. In
this formulation, only S,_1(1),...,S,—1(Z;) are specified and, given Z;, condition-
ally i.i.d. with the same distribution as S,_;. However, we can also define an infinite
sequence (S,—1(k))x>1 of independent copies of S,_; which are unconditionally
independent of Z;. This does not affect the validity of (1.44). Since N, is then obvi-
ously a measurable function of Z;,S,_1(1),S,-1(2), ..., we see that (1.44) fits into
the general form
Sn = ¥Y(Z1,8,-1(1),8,-1(2),...)

for some measurable function ¥ (not depending on n).

As another example, one may consider (S(v)),cr when 7 is drawn at random from
the set of binary trees with n nodes. This was done by DEVROYE & KRUSCZEWSKI
[21] who showed that, if S,, := S(&), then

ES, = logyn+0O(1) asn— oo
and P(|S, —logyn| >x) < c47™*

for all x > 0, n > 1 and some ¢ > 0. Therefore, the distribution of §,, exhibits

Fig. 1.6 The binary tree with 5 internal nodes having minimal Strahler number 1. Due to its shape
when including external nodes (those with numbers 0) it is sometimes called “gourmand de la
vigne”.

very sharp concentration about its mean which is approximately equal to log, n. In
connection with this result it is worthwhile to point out that the binary trees with
extremal Strahler numbers are

e  the single-stranded tree with n nodes and Strahler number 1 [ Fig. 1.6],
° the complete tree with k levels, n = 2 — 1 nodes and Strahler number S, =
k=1log,(n+1) [*= Fig. 1.7].
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Fig. 1.7 The binary tree with 2* — 1 = 15 internal nodes and maximal Strahler number 4.
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Chapter 2
Renewal theory

Terminology. An additive sequence (S;),>0 of real-valued random variables with
increments X1, X5, ... is called

random walk (RW) if X1,X>, ... are iid and independent of Sy;

renewal process (RP) if it is a RW such that Sy, X1, X5, ... are nonnega-
tive and P(X; > 0) > 0;

standard random walk (SRW) if it is a RW with Sy = 0. It is also called zero-
delayed RW;

standard renewal process (SRP) if it is a RP with So = 0. It is also called zero-
delayed RP.

Given aRW (S,),>0, we use X for a generic copy of its increments. The initial vari-
able Sy is also called delay, the mean of X, if it exists, the drift of (S,),>0. Finally,
we are given a standard model (2,21, (Sp)n>0, (P2) ez ®)) if (Sn)n>0, defined on
(Q,20), constitutes a RW under each P, with the same increment distribution F,
say, and P; (Sp € -) = A, hence Py (S, € -) = A « F*" for each n € N, where F*"
denotes n-fold convolution of F'.

2.1 An introduction and first results

Let us begin with a short description of the classical renewal problem: Suppose we
are given an infinite supply of light bulbs which are used one at a time until they
fail. Their lifetimes are denoted as X, X5, ... and assumed to be iid random variables
with positive mean p. If the first light bulb is installed at time So := 0, then

n
S, = ZXk forn>1
k=1

denotes the time at which the n" bulb fails and is replaced with a new one. In
other words, each S, marks a renewal epoch. Due to this interpretation, a sequence

29



30 2 Renewal theory

(Sn)n>0 with iid nonnegative increments having positive mean is called renewal
process (RP). Let N(t) denote the number of renewals up to time 7, that is

N(t) := sup{n>0:S,<r} fort>0. 2.1)

An equivalent definition is

and has the advantage that it immediately extends to general measurable subsets A
of R> by putting
N(A) == Y 1a(Sy) = Y &, (A). (2.2)
n>1 n>1
We see that N is in fact a random counting measure, also called point process, on
(R>, 2(R>)). By further defining its intensity measure

U(A) := EN(A) = Y P(S,€4), AcBR:), (2.3)

n>1

we arrive at the so-called renewal measure of (S,),>1 which measures the expected
number of renewals in a set and is one of the central objects in renewal theory. Its
“distribution function”

[0700) 51— U(t) = U([Oat]) = ZP(SnSZ) (2.4)

n>1

is called renewal function of (S,),>1 and naturally of particular interest.

N(t)
31 o
21 o
14 -
0 S s 5 ,

Fig. 2.1 The renewal counting process (N(z)),>o with renewal epochs S}, 52, ...

Natural questions to be asked now are ...

(Q1l)  Is the number of renewals up to time ¢, denoted as N(¢), almost surely finite
for all 7 > 0? And what about its expectation EN(z)?
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(Q2) What is the asymptotic behavior of 7~'N(¢) and its expectation as 7 — oo,
that is the long run average (expected) number of renewals per unit of time?

(Q3) What can be said about the long run behavior of E(N (¢ + k) — N(¢)) for any
fixed h > 0?

... with partial answers provided by the following lemma. Given a distribution F,
let F*" denote its n-fold convolution for n € N and F*0 := §,.

Lemma 2.1. Let (S,),>0 be a RP with So = 0, increment distribution F, drift
pu =ES; € (0,c0] and renewal measure U=Y,~, P(S, € -). Then the following
assertions hold true:

(a) N(t) <ooa.s. forallt >0.

(b) P(N(t)=n) = F*(t) — F*"*)(¢) for all n € Ny and t > 0.
(c) U=Y,>F™, inparticular U(t) = Y,~1 F*"(t) for any t > 0.
(d)  EeNO < oo forallt > 0 and some a > 0.

(e) t'N(t) — u~" a.s. with the usual convention that e~ := 0.
(/)  [Elementary Renewal Theorem] lim; ..t 'U(t) = pu~'.

Proof. (a) follows immediately from S,, — o a.s.
(b) follows when noting that

{N@) =nt={Sy <t <Sp1} = {8 <\ {81 <1}

foralln € Ny andr > 0.

(c) Here it suffices to note that £ (S,) = F*" for all n € Ny.

(d) Since u =ES; > 0, there exists b > 0 such that F(b) < 1. Consider the RP
(8)n>0 with increments given by X;, := b1y, for n € N and renewal counting
process (N'(¢))r>0. Then S, < S, for all n € Ny implies N(r) < N'(¢) for all ¢ > 0.
Now observe that, forn € Nand 0 <t < b,

P(N'(t) > n) = P(X] =...=X| =0) = F(b)"

implying Ee®N() < Ee®N' () < oo for any a < —logF(b) as one easily see. We leave
it as an exercise [ Problem 2.3] to extend the last assertion to all ¢ > b.

(e) Since N(r) — oo a.s., the SLLN implies N(t) 'Sy () — it a.s. By combining
this with the obvious inequality Sy(;) <7 < Sy(;)4+1 [use (2.1)] we find

SN() < t < N(@)+1 Sypy+1

N(E) — N() — N(@#) N(@)+1

and then obtain 1 "' N(¢) — u a.s. by letting 7 tend to o in this inequality.
(f) Use U(¢) = EN(¢), (e) and Fatou’s lemma to infer

1iminf@ > E (liminf NEI)) > l

t—o0 t—o0 u
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Towards a reverse estimate, notice that
N(t)+1=1(t):=inf{n>0:S, >1}

and thus U(¢) + 1 = Ez(¢) for all # > 0. If X, X5, ... are bounded by some ¢ > 0, in
particular giving it < oo, then we obtain with the help of Wald’s identity [®=" Prop.
2.53]

_ EST<,) I+E(Sr<t)—l‘) < t+c

1 u "
U(t)

limsup —= < limsup
f—3o0 f—>o0 u

Et(t)

and thereby
Et(r) < 1

as required. Otherwise, consider the RP (S ,),>0 with generic increment X A c, drift
He :=E(X Ac¢) > 0 and renewal measure U,. Plainly, U(r) < U,(r) for all + > 0,

whence U U |
t t

1imsupﬁ < 1imsup£ < —

f—yo0 1 t—o0 t He

for any ¢ > 0. Finally, use lim.—,. U = U to arrive at

Ut 1
limsup Q < —
f—yoo 4 u
which completes the proof of the lemma. a

Remark 2.2. The reader is asked in Problem 2.4 below to verify that all assertions
of the previous lemma except for (b) remain valid if (S,),>0 has arbitrary delay
distribution Fy :=P(Sp € -). As for part (b), it must be modified as

P(N(1) =n) = Fp+F*"D(t) = R« F*" (1)

forneNandz >0, and P(N(¢) =0) = 1 — Fp(r).

Problems

Problem 2.3. Let (S,,),>0 be a RP with Sy = 0, increment distribution Bern(p) for
some p € (0,1) and renewal counting process (N(¢));>0. Prove the following asser-
tions:

(@ Z(N(n)) =NBin(n+1,p) for each n € Ny.
(b)  Forany >0, Ee™() < ooiff a < —log(1— p).

Problem 2.4. Prove Lemma 2.1, with part (b) modified in the form stated in Rem.
2.2, for a general delayed RP with delay distribution Fp.
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2.2 An important special case: exponential lifetimes

A case of particular interest occurs when the RP (S,),>0 has exponential incre-
ments, i.e. F = Exp(1/u) for some i > 0. Then S, has a Gamma distribution with
parameters n and 1/u, i.e. F*" =I"(n,1/u), the A-density of which equals

xn—l

w(n—1)!

for each n € N. Since U = },>1 F*", we find that its A-density u, called renewal
density, equals

falx) = e Mgy (x)

n—1 1
O WO W s il
n> n>1 ‘

for all x > 0, hence U= u~!' A", where A+ := &(-NR-). Equivalently, the ex-
pected number of renewals in an interval [z, 4+ h] C R> of length i > 0 always
equals 1~ 'h. The reason lurking behind this phenomenon is of course the lack of
memory property of the exponential distribution. Here is a heuristic argument: Sup-
pose we start observing the RP at a time 7 > 0 and reset our clock to 0. Then renewals
oceur at Sy, —1,8¢()41 —1,... with interrenewal times Xy 1,X¢()42, .. after the
delay R(t) := S(;) — . Proposition ?? will show that R(¢) and X1, X¢()42, - are
independent and the latter sequence further iid with £ (X;(;);.1) = Exp(1/u). Con-
sequently, we will see the same arrival pattern as someone who starts observing the
system at time 0 if .Z(R(¢)) = Exp(1/u) as well. But this is indeed intuitively clear
by the lack of memory property and may also formally be proved fairly easily [/
Problem 2.6].

Turning to the associated renewal counting process (N(#));>o, the previous con-
siderations entail that £ (N(t+h) —N(t)) = L (N(h)) for any t > 0 and 2 > 0
which means that (N(t));>0 has stationary increments. They further provide some
evidence (though not a proof) that the numbers of renewals in [0,7] and [¢,7 + A]
are independent. In fact, one can more generally show that, for any choice 0 =7y <
] < ...<ty <o and n €N, the random variables N(#;) —N(tx_1), k= 1,...,n, are
independent which means that (N(¢)),>0 has independent increments. It remains
to find the distribution of N(¢) for any ¢ > 0. By Lemma 2.1(b), it follows that
pn(t) :=P(N(t) = n) satisfies

palt) = F™(t) = F*" ()
for all > 0 and n € Ny. If n = 0, this yields
po(t) = 1=F(t) = ¢ '/*, 1>0.

For n > 1, p,(-) is differentiable with
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n—1 n
) = 0 fin) = e (s - ) v,

and p,(0) = 0. Consequently,

e t/H M

YRR t>0,

pa(t) =

and we have arrived at the following result.

Theorem 2.5. If (S,),>0 is a SRP having exponential increments with param-
eter 1/, then the associated renewal counting process (N(t));>0 forms a
homogeneous Poisson process with intensity (rate) 1/, that is:

(PPI)  N(0)=0.

(PP2)  (N(t));>0 has independent increments, ie.,

N(t1), N(12) =N(t1), s N(tn) = N(tn-1)

are independent random variables for each choice of n € N and
0<H<H<...<ty <o,

(PP3)  (N(t));>0 has stationary increments, i.e., N(s+1t) —N(s) CA N(z) for
all s,t > 0.

(PP4)  N(z) 4 Poisson(t/ L) for each t > 0.

If u =1, then (N(t));>0 is also called standard Poisson process.

Poisson processes have many nice properties some of which are stated in the
Problem section below.

Problems

Problem 2.6. Let (S,),>0 be a RP with Sy = 0, increment distribution Exp(1/u) for
some 1 > 0 and renewal measure U =Y, P(S, € -). Let also R(t) = S;(;) — ¢ for
t > 0. Prove the following assertions:

(@) P(R(r) >s)=e 6t/ 4 Jio e~ =9/H U (dx) for all s > 0.
(b)  Z(R(t))=Exp(1/u) forall t > 0. [Use (a).]

Problem 2.7. Let (N(7)),;>0 be a homogeneous Poisson process with intensity 6.
Find the conditional distribution of N(s) given N(¢) =n forany 0 < s <t and n € Ny.

Problem 2.8 (Superposition of Poisson processes). Given two independent homo-
geneous Poisson processes (N (¢));>0 and (Na(t))r>o with intensities 6; and 6,,
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respectively, prove that the superposition N(t) := N;(t) + N(t) for t > 0 forms a
homogeneous Poisson process with intensity 6, + 6.

Problem 2.9 (Thinning of Poisson processes). Given a homogeneous Poisson pro-
cess (N(1));>o with associated SRP (S,),>0 of arrival epochs, let (£,),>1 be an
independent sequence of iid Bern(p) variables for some p € (0,1). Let (N;(¢));>0
be the thinning or p-thinning of (N(t)),>0, defined by

Ni(t) =) &6s,((0,1]), >0,

n>1
and put N (¢t) = N(t) — Ni(¢) fort > 0.

Problem 2.10 (Conditional equidistribution of points). Let (N(7)),;>0 be a homo-
geneous Poisson process with intensity 6 and associated SRP (Sy,),>0. Let further
(Un)n>1 be a sequence of iid Unif(0, 1) variables. Prove that

g((S],...,Sn”N(I) = n) = g((Z‘U(I),...,IU(n)))

for all # > 0 and n € N, where (U(y),...,U,)) denotes the increasing order statis-
tic of the random vector (Uj,...,U,). This means that, given N(t) = n, a sample
of S1,...,5, may be generated by throwing n points uniformly at random into the
interval [0,¢].

2.3 Lattice-type

A more profound analysis of the renewal measure U of a SRP (S,,),>0 must take
into account the fact that, if X takes values only in a closed discrete subgroup of R,
thus in G, := dZ for some d > 0, then U puts only mass on this subgroup as well
and consequently looks very different from Lebesgue measure encountered in the
previous section. The subsequent definitions provide the appropriate specifications
of the lattice-type of a distribution F on R and of a RW (S,,),,>0.

Definition 2.11. For a distribution F on R, its lattice-span d(F) is defined as
d(F) := sup{d € [0,e0] : F(G,) = 1}.

Let {F, : x € R} denote the translation family associated with F, i.e., F;(B) :=
F(x+ B) for all Borel subsets B of R. Then F is called

— nonarithmetic, if d(F) =0 and thus F(G,) < 1 for all d > 0.
— completely nonarithmetic, if d(F,) =0 for all x € R.
— d-arithmetic, ifd eR- and d(F) =d.

— completely d-arithmetic,  if d € Rs and d(F,) = d for all x € G,.
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If X denotes any random variable with distribution F, thus . (X —x) = F; for
each x € R, then the previous attributes are also used for X, and we also write
d(X) instead of d(F) and call it the lattice-span of X.

For our convenience, a nonarithmetic distribution is sometimes referred to as
O-arithmetic hereafter, for example in the lemma below. A random variable X is
nonarithmetic iff it is not a.s. taking values only in a lattice G4, and it is completely
nonarithmetic if this is not either the case for any shifted lattice x+ Gy, i.e. any affine
closed subgroup of R. As an example of a nonarithmetic, but not completely nonar-
ithmetic random variable we mention X = 7w 4 Y with a standard Poisson variable
Y. Thend(X —7)=d(Y)=1.1fX=1+Y,thend(X)=J andd(X — ) =1.In
this case, X is %—arithmetic, but not completely %—arithmetic. The following simple
lemma provides the essential property of a completely d-arithmetic random variable
(d >0).

Lemma 2.12. Let X,Y be two iid random variables with lattice-span d > 0.
Then d < d(X —Y) with equality holding iff X is completely d-arithmetic.

Proof. Let F denote the distribution of X,Y. The inequality d < d(X —Y) is trivial,
andsince (X +z)— (Y +z)=X—Y,wealsohave d(X +z) <d(X —Y) forallze R.
Suppose X is not completely d-arithmetic. Then d(X +z) > d for some z € G, and
hence also ¢ := d(X —Y) > d. Conversely, if the last inequality holds true, then

| = P(X Y €G.) = / P(X —y € G.) F(dy)
Gy
implies
P(X—yeG,) =1 forall F-almostally € Gy

and thus d(X —y) > ¢ > d for F-almost all y € G,. Therefore, X cannot be com-
pletely d arithmetic. d

Definition 2.13. A RW (S,),>0 with increments X;,X>, ... is called

— (completely) nonarithmetic  if X; is (completely) nonarithmetic.
— (completely) d-arithmetic if d >0, P(So € Gy) =1, and X, is (com-
pletely) d-arithmetic.

Furthermore, the lattice-span of X; is also called the lattice-span of (S,),>0 in
any of these cases.

The additional condition on the delay in the d-arithmetic case, which may be
restated as d(So) = kd for some k € NU {0}, is needed to ensure that (S,),>0 is
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really concentrated on the lattice G,4. The unconsidered case where (S,),>0 has d-
arithmetic increments but non- or c-arithmetic delay for some ¢ ¢ G4 U {e} will not
play any role in our subsequent analysis.

2.4 Uniform local boundedness and stationary delay distribution

Given aRP (S,),>0 with renewal measure U =Y,~(P(S, € -) and renewal counting
measure N =}~ s, , We now turn to question (Q3) about the asymptotic behavior
of U((z,r +h]) =E(N(t+h) — N(z)) for any fixed & > 0. Notice that, unlike in the
previous sections, summation in the definitions of U and N now ranges over n > 0.
Denoting by A and F the distribution of Sy and X, we thus have

U= Y A«F" = A% Y F" = AxUj, (2.5)

n>0 n>0

where Uy is the renewal measure of the SRP (S, — So),>0. Assuming a standard
model, (2.5) may in fact also be stated as Uy = A « Uy for any A € Z(R>) if Uy
denotes the renewal measure under P, and U, is used for Us .

2.4.1 Uniform local boundedness

The first step towards our main results in the next sections is the following lemma
which particularly shows uniform local boundedness of U, , defined by

sup U([t,t+h]) < e forall h> 0.
teR

Lemma 2.14. Let (S,,),>0 be a RP in a standard model. Then

sup P (N([t,t +h]) > n) < Po(N(h) > n) (2.6)

forallh>0,n € Ngand A € Z(R>). In particular,

sup Uy ([t,2 +h]) < Uo(h) 2.7)
1€R

and {N([t,t +h]) : t € R} is uniformly integrable under each Py, for all h > 0.

Proof. If (2.6) holds true, then the uniform integrability of {N([r,r+h]) :z € R} is
a direct consequence, while (2.7) follows by summation over n. So (2.6) is the only
assertion to be proved. Fix t € R, & > 0, and define 7 :=inf{n > 0:S, € [t,t + h}.
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Then

N([t t+h]) _ Zkzol[t,t+h](ST+k)a ifT<°°7
’ 0, otherwise.

The desired estimate now follows from

Py(N([t,t+h]) 2n) = P, <T < oo, Z L i) (St4k) 2 ”)
k>0

Y P (T = s Y Vo (Sja) > n)

j=0 k=0
<Y P (T =J, Y Lou(Sise—S)) = n>
720 k>0
= ) Pi(t=j)Po(N(h) > n)
Jj=0
= Py (1 <o) Po(N(h) > n)
foralln € Nand A € Z(R>). O

2.4.2 Finite mean case: the stationary delay distribution

As already explained in the previous section, the behavior of U((¢,#+ A]) is expected
to be different depending on whether the underlying RP (S,),>¢ is arithmetic or
not. We make the standing assumption hereafter that (S,),>0 has either lattice-span
d =0 or d = 1. The latter is no restriction in the arithmetic case because one may
otherwise switch to the RP (d’]Sn),,Zo. Recall that G; = dZ for d > 0 and put
also Gop = R as well as G4 o := G4 NRy for a € {>,>}. Let Ay denote Lebesgue
measure, thus A9 = A, and A; counting measure on Z. Since U is concentrated on
Z in the 1-arithmetic case, it is clear that convergence of U((z,7 + h|) in this case
can generally take place only as t — oo through Z. This should be kept in mind for
the following discussion.

Intuitively, the asymptotic behavior of U((z,7 + h]) should not depend on where
the RP started, that is, on the delay distribution. In a standard model, this means that
the limit of Uy ((¢,¢ + h]), if it exists, should be independent of A € Z(Gy,). If we
can find a delay distribution v such that U, may be computed explicitly, in particular
Uy ((¢,¢ + h]) for any h > 0 and t — oo through G, then we may hope for being
able to provide a coupling argument that shows |Uj ((¢,7+h]) — Uy ((¢,t +h])| = 0
for any A € #?(G,,>) and thus confirm the afore-mentioned intuition. For a quick
assessment of what the limit of g(h) = limg, /.. Uy ((¢,7 4 h]) for any & > 0 looks
like, observe that

g(h1+h2) = Glim U;L((t,tJrh]]) + lim U;L((t+h1,t+h1+h2])

42t—0 Gyot—e0
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= g(h)+g(hy) for all positive hy,h, € Gy

which shows that ¢ must be linear on G, >. In combination with the elementary
renewal theorem, this entails that g(h) = h/p forall h € G4, thus g = 0 if p = oo,

Suppose now we are given a RP (S,),>0 in a standard model with finite drift y
and increment distribution F. The first thing to note is that U = A x Uy satisfies the
convolution equation

U, = A+Fx*U, forany A€ Z(R>)

which in terms of the renewal function becomes a so-called renewal equation to be
studied in more detail in Section 2.7, namely

U () = A(1) + /[Oll]F(t—x) Up(dx) forany A€ Z(Rs)  (2.8)

The goal is to find a A such that Uy (1) = p~ 't for all # € R (thus Uy = p~'A})
and we will now do so by simply plugging the result into (2.8) and solving for A ().
Then, with F :=1—F,

a) = L - L Fe—xa
= — - — —x) dx
ITRERTIN,
| R - | R -
= — F(t—x)dx:—/F(x)dx forall ¢ > 0.
wJo HJo

We thus see that there is only one A, now called F*, that gives the desired property
of Uy, viz.

! !
F(t) = l/F()c) dx = l/ P(X >x)dx forallr >0,
uJo uJjo

which is continuous and requires that u is finite. To all those who prematurely lean
back now let is be said that this is not yet the end of the story because there are
questions still open, viz. “Is this really the answer we have been looking for if the
RP is arithmetic?” and “What about the infinite mean case?”

If (Sp)n>0 is l-arithmetic a continuous delay distribution appears to be inappro-
priate because it gives a continuous renewal measure. In fact, the stationary delay
distribution F* must now rather be concentrated on N, but only give Ups(t) = u~ 't
for t € Ny. By pursuing the same argument as above, but for ¢ € Ny only, one finds
[==" Problem 2.18] that F** must satisfy

n—1 n
Fi(n) = %Zf(k) = %ZIF’(XZk) foralln € N
k=0 k=1

as the unique solution among all distributions concentrated on N. We summarize
our findings as follows.
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Proposition 2.15. Let (Sy,)n>0 be a RP in a standard model with finite drift |1
and lattice-span d € {0, 1}. Define its stationary delay distribution F* on R~
by
Lot .
= JoP(X >x) dx, ifd=0,
P {,,Lfo (X >x)dv, if 00

LY O P k), ifd=1

fort € R., wheren(t) := [t] =sup{n € Z:n <t}. Then Ups = p~'A}.

Now observe that the integral equation (2.8) remains valid if A is any locally
finite measure on R> and U, is still defined as A * Up. This follows because (2.8)
is linear in A. Hence, if we drop the normalization u~! in the definition of F*, we
obtain without further ado the following extension of the previous proposition.

Corollary 2.16. Let (S,)n>0 be a RP in a standard model with lattice-span
d € {0,1}. Define the locally finite measure & on R~ by
[oP(X >x) dx, ifd=0,
@) == 3 S : (2.10)
TOPX > k), ifd=1

fort € R-. and n(t) as in Prop. 2.15. Then Ug = 4.

2.4.3 Infinite mean case: restricting to finite horizons

There is no stationary delay distribution if (S,),>0 has infinite mean g, but Cor. 2.16
helps us to provide a family of delay distributions for which stationarity still yields
when restricting to finite horizons, that is to time sets [0,«] for a € R~.. As a further
ingredient we need the observation that the renewal epochs in [0,4] of (Sy),>0 and
(San)n>0, Where Sy, := So+ Yj_; (Xx Aa), are the same. As a trivial consequence
they also have the same renewal measure on [0, a|, whatever the delay distribution
is. But by choosing the latter appropriately, we also have a domination result on
(a,o0) as the next result shows.

Proposition 2.17. Let (S,)n>0 be a RP in a standard model with drift @ =
oo and lattice-span d € {0,1}. With & given by (2.10) and for a > 0, define
distributions F;; on R~ by

S(tna)

Bl =y

fort €R-. 2.11)
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Then, for all a € R, Ups < &(a)~' & with equality holding on [0, a].
Proof. Noting that F* can be written as F = & (a)'& — A,, where A, € Z(Rs) is

given by

§() =&lant)
&(a)

we infer with the help of Cor. 2.16 that

Aa(t) = = 1(%&)@)7)“ forall € R,

Uy = &(a)'Ug =A% U < &(a)'Ug = &(a) 'Ry onR.

as claimed. O

Problems

Problem 2.18. Given a 1-arithmetic RP (S,),>0 in a standard model with finite drift
U and increment distribution F, prove that F* as defined in (2.9) for d = 1 is the
unique distribution on N such that Ups = u’llf .

Problem 2.19. Under the assumptions of Prop. 2.15, let 1, and p;, for p > 0 denote
the p' moment of F and F*, respectively. Prove that

Hp+1 .
——, ifd=0
(p+ip ’

u = /zP Pl =4 2.12)
E( n!’>, ifd=1.
m

it

and in the 1-arithmetic case furthermore

Bt Lol ) o M EXHD)P
el o < + . (2.13)
(p+Dp — u > (p+1Du u

n=1

Hence, u? < o iff 1 < o=. Note also that u* = u; satisfies
Uy, Hp+ n =ty

A

IJ:

EX(X+d)  w d _ o*+p* d
2u 2u 2 21 2

, (2.14)

where 62 := VarX.
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2.5 Blackwell’s renewal theorem

Blackwell’s renewal theorem first obtained by ERDOS, FELLER & POLLARD [27]
for arithmetic RP’s and by BLACKWELL [15] for nonarithmetic ones, may be right-
fully called the mother of all deeper results in renewal theory. Not only it provides
an answer to question (Q3) stated in the first section of this chapter on the expected
number of renewals in a finite remote interval, but is also the simpler, yet equivalent
version of the key renewal theorem discussed in the next section that allows us to de-
termine the asymptotic behavior of many interesting quantities in applied stochastic
models.

The following notation is introduced so as to facilitate a unified formulation of
subsequent results for the arithmetic and the nonarithmetic case. For d € {0,1},
define

lim f(¢), ifd=0,
d-lim f(r) = {17 ,
t—vo0 lgnf(n), ifd=1.
Nn—roo

Recall that Ay denotes Lebesgue measure on Go = R, while A, is counting measure
on G| =7Z.

Theorem 2.20. [Blackwell’s renewal theorem] Let (S,),>0 be a RP in a
standard model with lattice-span d € {0, 1} and positive drift . Then

d-lim Uy ([t +4)) = w1 24([0,A]) (2.15)

forallh>0and A € 2(Gy ), where p=' :=0if p = oo.

The result, which actually extends to RW’s with positive drift as will be seen later,
has been proved by many authors and using various methods. The interested reader
is referred to the monography [2, Ch. 3] for a detailed historical account. Here we
will employ a coupling argument which to some extent forms a blend of the proofs
given by LINDVALL [48], ATHREYA, MCDONALD & NEY [6], THORISSON [58]
and finally by LINDVALL & ROGERS [49], all based on coupling as well. The proof
is split into several steps given in separate subsections.

2.5.1 First step of the proof : shaking off technicalities

Ist reduction: Sy = 0.
It is no loss of generality to prove (2.15) for zero-delayed RP’s only. Indeed, if S
has distribution A € (G > ), then

Up ([t +1]) = /Uo([t—x,t—x+h])7t(dx)
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together with sup, g Uo([7,7 4+ h]) < Ug([—h,h]) < o [¥ Lemma 2.14] implies by
an appeal to the dominated convergence theorem that (2.15) is valid for U, if so for
Up.

2nd reduction: (S,)n>0 is completely d-arithmetic (d € {0,1}).

The second reduction that will be useful hereafter is to assume that the increment
distribution is completely d-arithmetic so that, by Lemma 2.12, its symmetrization
has the the same lattice-span.

Lemma 2.21. Let (S,),>0 be a SRP with lattice-span d € {0,1} and renewal
measure U. Let (py)n>0 a SRP independent of (S,)n>0 and with geometric
increments, viz. P(p; = n) = (1 —6)""'0 for some 6 € (0,1) and n € N.
Then (Sp, )n>0 is a completely d-arithmetic SRP with renewal measure U(P)
satisfying UP) = (1—6)8 + 6 T.

Proof. First of all, let (I,),>1 be a sequence of iid Bernoulli variables with param-
eter 0 independent of (S,),>0. Each I, may be interpreted as the outcome of a coin
tossing performed at time n. Let (J,,),>0 be the SRP associated with (I,;),>; and let
(Pn)n>0 be the sequence of copy sums associated with p = py :=inf{n > 1:1,=1}.
Then (p,),>0 satisfies the assumptions of the lemma, and one can easily verify [F=°
Problem 2.24] that (S, )n>0 forms a SRP. Next observe that, for each A € Z(R),

UP(A)—&(A) = E (Z 1,,1A(s,,)> = K (U(A)féo(A))

n>1

which proves the relation between U®) and U, for EI; = 6.

It remains to show that (Sp, ),>0 is completely d-arithmetic. Let (S}, p;)n>0 be
an independent copy of (S,,p,),>0 and put p’ := p{. By Lemma 2.12, it suffices to
show that the symmetrization S, — S;), is d-arithmetic. Since ¢ :=d(Sp — S;)/) >d,
we must only consider the case ¢ > 0 and then show that P(X; € ¢Z) = 1. But

1 =PSpy—SyccZ) = Y 6°(1—-6)""2P(S,—S, €cZ)

mn>1
clearly implies P(S,, — S, € ¢Z) = 1 for all m,n € N. Hence
0< ]P(Sl _S/l = 0) = P(Sz —S/l € cZ,8, —Sll = O) = IP(X] € CZ)P(Sl —Sll = 0)

giving P(X; € ¢Z) = 1 as asserted. O
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2.5.2 Setting up the stage: the coupling model

Based on the previous considerations, we now assume that (S, ),>o is a zero-delayed
completely d-arithmetic RP with drift y. As usual, the increment distribution is
denoted by F and a generic copy of the increments by X. The starting point of
the coupling construction is to consider this sequence together with a second one
(8!)n>0 such that the following conditions are satisfied:

(C1)  (Su,S),)n>0 is a bivariate RP with iid increments (X,,X,), n > 1.
(C2) (S, —Sh)n0 % (Sy)nz0 and thus X' £ X.
(C3) Sf)iF“ifu<oo,and56iF;forsomea>Oifu:oo.

Here F* and F; denote the stationary delay distribution and its truncated variant
defined in (2.9) and (2.11), respectively. By the results in Section 2.5, the renewal
measure U’ of (S)),>0 satisfies U'([t,z +h]) = u~'R4([0,h]) for all £,h € R if
p < oo, and U'([t,t + h]) < E(a) "' R4([0,h)) for all t,h € R if g = oo where & (a)
tends to oo as a — oo, Hence U’ satisfies (2.15) in the finite mean case and does
so approximately for sufficiently large a if yt = oo. The idea is now to construct a
third RP (S))),>0 from the given two which is a copy of (S),),>0 and such that S
is equal or at least almost equal to S, for all n > T, T an a.s. finite stopping time
for (Sy,S),)n>0, called coupling time. This entails that the coupling process (S))n>0
has renewal measure U’ while simultaneously being close to U on remote intervals
because with high probability such intervals contain only renewal epochs S for
n>T.

Having outlined the path towards the asserted result we must now complete the
specification of the above bivariate model so as to facilitate a successful coupling.
But the only unspecified component of the model is the joint distribution of (X,X")
for which the following two alternatives will be considered:

(C4a) X and X' are independent or, equivalently, (S,),>0 and (S),),>0 are inde-
pendent.

(C4b) X' =Y154(|X —Y[) +X1(0)(|X —Y[), where Y is an independent copy
of X an b is chosen so large that G, :=P(X —Y € ||[X - Y| <) is d-
arithmetic (and thus nontrivial).

The existence of b with d(Gj,) = d follows from the fact that G:=P(X —Y € -) is
d-arithmetic together with G, = G.

Condition (C4a) is clearly simpler than (C4b) and will serve our needs in the
finite mean case in which the symmetrization X; — X is integrable with mean zero
and also d-arithmetic. Hence we infer from Thm. 2.22 below that (S, — S),),>0 is
(topologically) recurrent on G.

On the other hand, if y = oo, the difference of two independent X, X’ fails to
be integrable, while under (C4b) we have X — X' = (X —Y)1j_;, ;) (X —Y) which is
again symmetric with mean zero and d-arithmetic by choice of b. Once again we
hence infer the recurrence of the symmetric RW (S, — S/,),>0 on G.
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We close this subsection with the recurrence theorem for centered RW’s needed
here to guarantee successful coupling. The proof is omitted because it cannot be
given shortly and is of no importance for our purposes. It may be found e.g. in [2,
Ch. 2].

Theorem 2.22. Any SRW (S,)n>0 with lattice-span d € {0,1} and drift zero
is (topologically) recurrent on Gy, that is

P(|S, — x| < € infinitely often) = 1

forany x € Gz and € > 0.

2.5.3 Getting to the point: the coupling process

In the following suppose that (C1-3) and (C4a) are valid if 4 < oo, while (C4a) is
replaced with (C4b) if u = . Fix any € > 0 if F is nonarithmetic, while € = 0
if F has lattice-span d > 0. Since (S, — S,,),>0 is recurrent on G, (recall that the
delay distribution of 56 is also concentrated on G,) we infer the a.s. finiteness of the
&-coupling time

T :=inf{n>0:15,—S,| <€}

and define the coupling process (S, )n>0 by

S ifn<T
§1 = 0w "= forne N, (2.16)
Su— (S —5%), ifn>T

which may also be stated as

S ifn<T
Sy =0 BSD 0 porneN. 2.17)
ST +Zk=T+1Xk’ 1fl’l>T

The subsequent lemma accounts for the intrinsic properties of this construction.

Lemma 2.23. Under the stated assumptions, the following assertions hold
true for the coupling process (S)n>0:

(@ (S0 < (S)nz0.
(b) |S/—S,| <eforalln>T.

Proof. We only need to show (a) because (b) is obvious from the definition of the
coupling process and the coupling time. Since 7 is a stopping time for the bivariate
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RP (Sy,S),)n>0, Problem 2.25 shows that X711,Xr+2, ... are iid with the same dis-
tribution as X and further independent of 7', (S,,S),)o<n<r- But this easily seen to
imply assertion (a), namely

P(Sy € Bo, X} € Bj for 1 < j<n)
= y P(T =k, Sy € Bo,Xj € Bj for 1 < j <k)P(X; € B fork < j <n)
k=0
+P(T >n,S; € Bo,X; € Bjfor 1 < j<n)

_y P(T =k, Sy € Bo,Xj € Bj for 1 < j <k)P(X} € B fork < j <n)

k=0

+P(T >n,S € By,X; € Bj for 1 < j<n)

= P(Sp € Bo,Xj € Bj for 1 < j <n)
forall n € Nand By,...,B, € Z(R>). O

Before moving on to the finishing argument, let us note that a coupling with
a.s. finite O-coupling time is called exact coupling, while we refer to an €-coupling
otherwise.

2.5.4 The final touch

As usual, let N(I) denote the number of renewals S, in I, and let N”(I) be the
corresponding variable for the coupling process (S ),>0. Define further Ny (I) :=
Z];:o 1;(S,) and N/(I) in a similar manner. Fix any & > 0, € € (0,h/2), and put
I:=10,h], I := [e,h — €], and I® := [—€,h + €]. The following proof of (2.15)
focusses on the slightly more difficult nonarithmetic case, i.e. d = 0 hereafter. We
first treat the case { < oo.

A. The finite mean case. By Lemma 2.23(a), (S))),,>0 has renewal measure U’ which
in turn equals ,u’]ZtL(;r by our model assumption (C3). It follows from the coupling
construction that

{Syet+l} C {Saet+I} C {S, et+1°}
forallt € R> and n > T. Consequently,
N"(t+1) —Nr(t+1) < N(t+1) < N'(t+15)+Nr(t+1)
and therefore, by taking expectations,

U(t+1) —ENr(t+1) < U@r+1) < U(t+1°)+ENr(t+1) (2.18)
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forall t € Rs. But U'(t +1¢) = = (h—2€) and U (¢t + I¢) = u~' (h+2¢) for all
t > €. Moreover, the uniform integrability of {N(z+1) : r € R} [#¥ Lemma 2.14] in
combination with N7 (r +1) < N(t+1) and lim,_, Ny (t +1) = 0 a.s. entails

lim EN7(t +1) = 0.
t—ro0

Therefore, upon letting ¢ tend to infinity in (2.18), we finally arrive at

h—2 h+2
£ < liminfU(t+1) < limsupU(r+1) < —; £

[—beo t—ro0

As € can be made arbitrarily small, we have proved (2.15).

B. The infinite mean case. Here we have U’ < &(a) ' where a may be chosen
so large that &(a)~! < e. Since validity of (2.18) remains unaffected by the drift
assumption, we infer by just using the upper bound

limsupU(r +1) < E(a)"'(h+2¢) < e(h+2¢)

[—ro0

and thus again the assertion, for € can be made arbitrarily small. This completes our
coupling proof of Blackwell’s theorem. a

Problems

Problem 2.24. Let (S,,),>0 and (p,)n>0 be two independent SRP’s such that py, pa, ...
take values in Njy.

(a)  Prove that (Sp,).>0 forms a SRP as well.
(b)  Find the distribution of S, if (S, ),>0 has exponential increments and . (p1) =
Geom(6) for some 6 € (0,1).

Problem 2.25. Let (S,),>0 be a RW adapted to a filtration (.%,),>0 such that .%, is
independent of (X )i, for each n € Ny. Let T be an a.s. finite stopping time with
respect to (F)n>0-

(a)  Prove that X7 is independent of .%7 and X7 4 X.
(b)  Use (a) and an induction to infer that (X7.,),>1 is a sequence of iid random
variables independent of .Fr.

2.6 The key renewal theorem

Given a RP (S,),>0 in a standard model with drift p and lattice-span d, the simple
observation
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Up(ft—h,t]) = _/l[o,h](f—x) U (dx) = L *Upn(t)

forallz e R,h € R. and A € Z(R>) shows that the nontrivial part of Blackwell’s
renewal theorem may also be stated as

. 1
Hlim Loy < U 1) = / 10,y R4 (2.19)

forall h € R. and A € #(Gy ), in other words, as a limiting result for convolu-
tions of indicators of compact intervals with the renewal measure. This raises the
question, supported further by numerous applications [F< e.g. [2, Ch. 1]], to which
class Z of functions g : R — R an extension of (2.19) in the sense that

dr-limg*U;L (1) = ﬁ/g dA,; forallge# (2.20)
—yo0

is possible. Obviously, all finite linear combinations of indicators of compact inter-
vals are elements of %. By taking monotone limits of such step functions, one can
further easily verify that & contains any g that vanishes outside a compact interval
I and is Riemann integrable on /. On the other hand, in view of applications a re-
striction to functions with compact support appears to be undesirable and calls for
appropriate conditions on g that are not too difficult to check in concrete examples.
In the nonarithmetic case one would naturally hope for Ag-integrability as being a
sufficient condition, but unfortunately this is not generally true. The next subsection
specifies the notion of direct Riemann integrability, first introduced and thus named
by Feller [30], and provides also a discussion of necessary and sufficient conditions
for this property to hold. Assertion (2.20) for functions g of this kind, called key
renewal theorem, is proved in Subsection 2.6.2.

2.6.1 Direct Riemann integrability

Definition 2.26. Let g be a real-valued function on R and define, for 6 > 0
andn € Z,

Iy = (6n,8(n-+1)],
m,§ ‘= inf{g(x) :xeln,ﬁ}v Mn,é = Sup{g(x) :xeln,S}
o(6) = 62’""75 and G(9) = SZMM;.

nez nez

The function g is called directly Riemann integrable (dRi) if 0(6) and G(9)
are both absolutely convergent for all 6 > 0 and
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lim ((8) — o(8)) = 0.

The definition reduces to ordinary Riemann integrability if the domain of g is
only a compact interval instead of the whole line. In the case where [~ g(x)dx

may be defined as the limit of such ordinary Riemann integrals [* ,8(x)dx with a,b
tending to infinity, the function g is called improperly Riemann integrable. An ap-
proximation of g by upper and lower step functions having integrals converging to a
common value is then still only taken over compact intervals which are made bigger
and bigger. However, in the above definition such an approximation is required to
be possible directly over the whole line and therefore of a more restrictive type than
improper Riemann integrability.

The following lemma, partly taken from [5, Prop. V.4.1], collects a whole bunch
of necessary and sufficient criteria for direct Riemann integrability.

Proposition 2.27. Let g be an arbitrary real-valued function on R. Then the
following two conditions are necessary for direct Riemann integrability:

(dRi-1) g is bounded and Ry-a.e. continuous.
(dRi-2) g is Ay-integrable for all d > 0.

Conversely, any of the following conditions is sufficient for g to be dRi:

(dRi-3)  For some 6 >0, 0(8) and ©(8) are absolutely convergent, and g
satisfies (dRi-1).

(dRi-4) g has compact support and satisfies (dRi-1).

(dRi-5) g satisfies (dRi-1) and f < g < h for dRi functions f,h.

(dRi-6) g vanishes on R, is nonincreasing on R> and Ry-integrable.

(dRi-7) g = g1 — &2 for nondecreasing functions g1,g> and f < g < h for
dRi functions f,h.

(dRi-8) g' and g~ are dRi.

Proof. (a) Suppose that g is dRi. Then the absolute convergence of o(1) and (1)
ensures that g is bounded, for

suplg(x)| < sup(|my| +[M,]) < .
xeR nez

That g must also be A¢-a.e. continuous is a standard fact from Lebesgue integration
theory but may also be quickly assessed as follows: If g fails to have this property
then, with g, (x) := liminfy_,, g(y) and g*(x) := limsup,._,, g(y), we have

o = A({g" > g.+¢€}) >0 forsomee >0.
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As m, s < g.(x) < g*(x) < M, 5 for all x € (nd,(n+1)8), n € Z and 6 > 0, it
follows that

c(0)—0o(6) > /(g*(x)—g*(x)) Ap(dx) > eor forall § >0

which contradicts direct Riemann integrability. We have thus proved necessity of
(dRi-1).
As for (dRi-2), it suffices to note that, with

0(8) =8 |m,5| and 8¢(8) := ) [M,sl,

ne7z nez

we e g9 Aa(dx) < 0(1)+(1) and J1g(s)] ) < 9(d)+9() for ach
> 0.

(b) Turning to the sufficient criteria, put

gs = Y musly; and g° = Y M,s1, ; ford>0. (2.21)
nez nez !

If (dRi-3) holds true, then g5 1 g and g% | g Ap-a.e. as 8 | 0 by the Ag-a.e. conti-
nuity of g. Hence the monotone convergence theorem implies (using —eo < 0(8) <

G(0) < o0)

0(8) = [ssdho 1 [gaRe and O(3) = [¢Pamo 1 [gdRo

proving that g is dRi.

Since each of (dRi-4) and (dRi-5) implies (dRi-3), there is nothing to prove under
these conditions.

Assuming (dRi-6), the monotonicity of g on R> gives

M,s=g(ndé+) and m,s=g((n+1)8)>M,;s forallnec Ny, é>0.

Consequently,
0<0(6) < [ glx)dx <)
< 5¢(0)+0(8) < [ s(v)dr + 5g(0) < =

and therefore 6(6)— o(6) < 6g(0) - 0asd — 0.

Assuming (dRi-7) the monotonicity of g; and g, ensures that g has at most count-
ably many discontinuities and is thus A¢-a.e. continuous. g is also bounded because
f < g < hfordRi function f, . Hence (dRi-5) holds true.

Finally assuming (dRi-8), note first that g~, g™ both satisfy (dRi-1) because this
is true for g. Moreover,
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0<g" < (@) +(s) < Y (Mysl+Imys)) 1,5 forall§>0
nez

whence g~, g" both satisfy (dRi-5). O

For later purposes, we give one further criterion for direct Riemann integrability,
but leave the simple proof to the reader [&=¥° Problem 2.35 and also Problem 4.8 for
an extension].

Lemma 2.28. Let g be a function on R that vanishes on R and is nonde-
creasing on R. Then gg(x) := e%*g(x) is dRi for any 8 € R such that gg is
Ay-integrable.

Given a measurable function f : R — R and a standard exponential random vari-
able X, define the exponential smoothing of f by

() = /(700‘,] e 6 £(x) Ao(dx) = Ef(t—X), 1€R, (2.22)

whenever this function is well-defined, which is obviously the case if f € L' It then
also has the same integral because

./?dzaﬂ - E(/f(t—X) d%) - /fdzao. (2.23)

In Chapter 4, we will use the fact that exponential smoothing of a L'-function always
provides us with a dRi function. This is stated as Lemma 2.30 after the following
auxiliary result.

Lemma 2.29. Suppose that f € L' satisfies f > 0 and f(t +¢€) > r(e) f(t) for
allt € R, € > 0 and a function r : Rs. — R satisfying limg o r(€) = 1. Then
fis dRi.

Proof. W.l.o.g. let r be nonincreasing. Then

f((n+1)8) _ f((n+1)§)

r(8)f(nd) <r(x—nd)f(nd) < f(x) < T (5)

foralln € Z, § > 0 and x € I, 5 implies
1
r(8)f(nd) <m, s < 5/1 fdRo <M, 5 <r(8) ' f((n+1)8)
n,6

and therefore
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51(3) ¥, 108) < 0(6) < [ faBo < 5(08) < -5 T 1(00)

nez nez

for any 6 > 0. Hence, 8 Y,z f(nd) stays bounded as 6 | 0 and so

5(8)—a(8) < (r(l(,s)—r(5)> 5Y f(nd) 2% 0

nez

as required. O

Lemma 2.30. For each f € L', its exponential smoothing f is dRi.

Proof. By considering f* and f~, we may assume w.l.o.g. that f > 0. Then

Flite) = ¢ /( e =9 £(x) Ro(dx)
et [0 Bolan) = e T

for all t € R and € > 0, whence we may invoke the previous lemma to infer that f
is dRi. O

2.6.2 The key renewal theorem: statement and proof

We are now ready to formulate and prove the announced extension of Blackwell’s
renewal theorem. In allusion to its eminent importance in applications Smith [54]
called it key renewal theorem. The proof presented here is essentially due to FELLER
[30].

Theorem 2.31. [Key renewal theorem] Let (Sy,),>0 be a RP with drift [,
lattice-span d € {0, 1} and renewal measure U. Then

dlim g+ U() = = / g dAy (2.24)
HJRs

t—roo

for every dRi function g : R — R vanishing on the negative halfline.

Listing non- and d-arithmetic case separately, (2.24) takes the form

d-lim gxU(r) = %/Ng(x) dx (2.25)
0

t—roo
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if d = 0 where the right-hand integral is meant as an improper Riemann integral. In
the case d = 1, we have accordingly

r}grolog*U — Z g(n (2.26)

n>0

and, furthermore, for any a € R,

d-lim g+« U(nd +a) = — Zg n+a), (2.27)
= n>0

because g(- + a) is clearly dRi as well.

Proof. We restrict ourselves to the more difficult nonarithmetic case. Given a dRi
function g vanishing on R, let g5, g% beasin (2.21) for § > 0. Plainly, these func-
tions vanish on R as well, so that we have

e<e<e’ o®)= [ gswdr and )= [ ¢ dx

Fix any § € (0,1) and m € N large enough such that }',,-, |M, 5| < 6. Then, using
inequality (2.7), we infer

g xU(t) = Y M, sU(t—1,5) < ZM,,SIUt—né Ips) + 8U(1)

n>0

and therefore with Blackwell’s theorem

limsupg® «U(r) < ZM"3 11mU(t—n5 Iys) + 6U(1)

f—yo0 —0
:ﬁfM5+5U()
o= (2.28)
S—/g dx+i+5IU()
52
:u o) + o + 8U().

Consequently, as gxU < g5 xU for all § > 0,

limsupg*U(r) < 11m11msupg *U(¢ / g(x

t—so0 010 t—oo

Replace g with —g in the above estimation to obtain

liminfg+«U(r) > 7/ glx

[—roo
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This completes the proof of (2.24). O

Remark 2.32. In the 1-arithmetic and thus discrete case, the convolution g * U may
actually be considered as a function on the discrete group Z and thus requires g to be
considered on this set only which reduces it to a sequence (g, )necz. Doing so merely
absolute summability, i.e. ¥,,c7 |gn| < o0, is needed instead of direct Riemann inte-
grability. With this observation the result reduces to a straightforward consequence
of Blackwell’s renewal theorem and explains that much less attention has been paid
to it in the literature.

Remark 2.33. The following counterexample shows that in the nonarithmetic case
Ap-integrability of g does not suffice to ensure (2.24). Consider a distribution F
on R> with positive mean y = [xF(dx) and renewal measure U = },>o F*". The
function g := ¥,,>17'/?1}, ., ,2) is obviously Ro-integrable, but

gxU(n) = Y g«F™*(n) > g«F(n) = g(n) = n'/?
k>0

diverges to o as n — co. Here the atom at 0, which any renewal measure of a SRP
possesses, already suffices to demonstrate that g(x) must not have unbounded oscil-
lations as x — co. But there are also examples of renewal measures with no atom
at O (thus pertaining to a delayed RP) such that the key renewal theorem fails
to hold for Ag-integrable g. FELLER [30, p. 368] provides an example of a Ag-
continuous distribution F with finite positive mean such that U =Y, F*" satisfies
limsup,_,, g *U(¢) = o for some Ay-integrable g.

Example 2.34. [Forward and backward recurrence times] Let (S,,),>0 be a SRP
with increment distribution F, lattice-span d € {0, 1} and finite drift u. For r > 0, let
7(t) :=inf{n > 0: S, >t} denote the first passage time beyond level 7 and consider
the first renewal epoch after # and the last renewal epoch before ¢, more precisely

R(t) =Sy —t and R(t):=1—Sg)

called forward and backward recurrence time, respectively. Other names for R(t),
depending on the context in which it is discussed, are overshoot, excess (over the
boundary) or residual waiting time. Other names for ﬁ(t) are age and spent waiting
time. We are interested in the asymptotic behavior of R(¢) and R(1). It follows by a
standard renewal argument that

PIRW > 1) = [ PX>t4r—2) Uldy)

and PR(1)>r) = /[OJ]IP(X>t—x)1(,,w)(r—x) U(dx)

for all r,# > 0. To both right-hand expressions the key renewal theorem applies and
yields that

R(t) S R() and R(t)+d % R() (2.29)
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as t — oo (through Z if d = 1), where .Z(R(c0)) = F*. Details are left as an exercise
to the reader [*= Problem 2.36].

Problems

Problem 2.35. Prove Lemma 2.28.

Problem 2.36. Under the assumptions of Example 2.34, prove (2.29) by filling in
the details of the argument outlined there. Then proceed in a similar manner to find
the asymptotic joint distribution of (R(¢),R(r)) and of Xe(r) = R(2) +R(t) as t — oo
(through Z if d = 1). Do the results persist if the distribution of Sy is arbitrarily
chosen from Z(Gy>)?

Problem 2.37. Still in the situation of Example 2.34, suppose that F' = Exp(0) for
some 6 > 0. Compute the asymptotic joint distribution of (R(¢),R()) and of X; ;) =

R(t) + R(¢) in this case.

2.7 The renewal equation

Almost every renewal quantity may be described as the solution to a convolution
equation of the general form

Y =y + ¥xQ, (2.30)

where Q is a given locally finite measure and y a given locally bounded function on
R (standard case) or R (general case). For reasons that will become apparent soon
it is called renewal equation. If y = 0, then (2.30) is also a well-known object in
harmonic analysis where its solutions are called Q-harmonic functions. It has been
studied in the more general framework of Radon measures on separable locally com-
pact Abelian groups by CHOQUET & DENY [19] and is therefore also known as the
Choquet-Deny equation. Here we will focus on the standard case where functions
and measures vanish on the negative halfline. Eq. (2.30) then takes the form

P(x) = yx) + 0 ]‘P(x—y) 0(dy), xeRs, (2.31)

and is called standard renewal equation because it is the one encountered in most
applications. Regarding the total mass of Q, a renewal equation is called defective if
|0l < 1, proper if || Q]| = 1, and excessive if ||Q| > 1.
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2.7.1 Getting started

Some further notation is needed hereafter and therefore introduced first. Recall that
Q is assumed to be locally finite, thus Q(7) = O([0,¢]) < e for all 7 € R>. We denote
its mean value by u(Q) and its mgf by ¢y, that is

u(©@) = [ ol

>

and

60(6) == [ € 0(dx).
R>
The latter function is nondecreasing and convex on its natural domain
DQ = {6 eR: ¢Q(9) < °°}
for which one of the four alternatives
Dy = 0, (—o,0%), (—,0"], or R

with 8% € R must hold. If Dy has interior points, then ¢ is infinitely often differ-
entiable on int(Dg) with n'" derivative given by

¢én)(3) = / X" Q(dx) forallneN.
R>

In the following we will focus on measures Q on R, called admissible, for which
1(Q) >0, 0(0) < 1 and Dy # 0 holds true. Note that the last condition is par-
ticularly satisfied if ||Q|| < e or, more generally, Q is uniformly locally bounded,
ie.

sup (1,1 +1]) < o,

>0
Moreover, @¢ is increasing and strictly convex for such Q. Hence, there exists at
most one value ¥ € Dy such that ¢ () = 1. It is called the characteristic exponent
of Q hereafter.

LetU:=Y,5( Q0" with 0*0 := &, be the renewal measure of Q. Put further

Qo (dx) = ¢ Q(dx)

again a locally finite measure for any 8 € R, and let Uq be its renewal measure.
Then
Ug(dx) = Y 0'(dx) = Y ¥ 0™ (dx) = " U(dx). (2.32)

n>0 n>0

! The reader will notice here a notational conflict because in all previous and almost all subsequent
sections Ug = Jg * U. On the other hand, whenever the current definition is meant, this will be
clearly pointed out and should therefore not lead to any confusion.
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Moreover, ¢g, = ¢o(-+ 0) and ¢y, = ¢py(-+6).

Lemma 2.38. Given an admissible measure Q on R, the following asser-
tions hold true for any 6 € R:

(a) Qp'is admissible for all n € N.
(b) Uy is locally finite, that is Ug(t) < oo for all t € R>.
(¢) lim,_e Q" (t) =0 forallt € R>.

Proof. Assertion (a) is trivial when noting that Qy"(0) = Q*(0) = Q(0)" for all
6 € R and n € N. As for (b), it clearly suffices to show that Uy is locally finite for
some 0 € R. To this end note that Dy # 0 implies ¢p(r) — 0 as t — —co and thus the
existence of 6 € R such that ||Qg|| = ¢o(6) < 1. Hence Uy is the renewal measure
of the defective probability measure Qg and thus finite, for

1
Ul = 211961 = L IQ6ll" = ————75 < o=
,Eo ? E{) 1—00(6)
Finally, the local finiteness of U = Uy gives U(7) = Y50 0™ (t) < oo for all r € R>
from which (c) directly follows. a

2.7.2 Existence and uniqueness of a locally bounded solution

We are now ready to prove the fundamental theorem about existence and uniqueness
of solutions in the standard case (2.31) under the assumption that the measure Q is
regular and the function  is locally bounded on R, i.e.

sup |y(x)| < o forallz € Rs.
x€[0,t]

Before stating the result let us note that n-fold iteration of equation (2.31) leads to
W) = Y yr0t) + 0 ()
k=0

which in view of part (c) of the previous lemma suggests that ¥ = y U forms the
unique solution of (2.31).

Theorem 2.39. Let Q be an admissible measure on R> and v : R> — R a
locally bounded function. Then there exists a unique locally bounded solution
W of the renewal equation (2.31), viz.
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() =yl = [ W) U@), xeRs

where U denotes the renewal measure of Q. Moreover, ¥ is nondecreasing if
the same holds true for .

Proof. Since U is locally finite, the local boundedness of y entails the same for the
function y x U, and the latter function satisfies (2.31) as

yilU = yxdy + (Z wQ’*"”) xQ = ¥ + (yxU)=Q.
n>1

Moreover, ¥ * U is nondecreasing if y has this property.

Turning to uniqueness, suppose we have two locally bounded solutions ¥;, ¥ of
(2.31). Then its difference A, say, satisfies the very same equation with y = 0, that
is A = A % Q. By iteration,

A = AxQ" forallneN.

Since A is locally bounded, it follows upon setting [|A [|x. := supyc[ q |A (x)| and
an appeal to Lemma 2.38(c) that

|A(x)] = lim [A%* Q" (x)| < ||Allxe lim Q™(x) = 0 forallx € R>
n—roo n—roo -

which proves V| = ¥. O

The following version of the Choquet-Deny lemma is a direct consequence of
the previous result.

Corollary 2.40. If Q is an admissible measure on R>, then ¥ = 0 is the only
locally bounded solution to the Choquet-Deny equation ¥ = ¥ x Q.

2.7.3 Asymptotics

Continuing with a study of the asymptotic behavior of solutions y * U a distinction
of the cases ||Q]| < 1, Q|| = 1, and ||Q|| > 1 is required. Put I; := {0} if d = 0, and
I;:=10,d) if d > 0.

We begin with the defective case when ¢ (0) = ||Q|| < 1 and thus U is finite with
total mass ||U|| = (1 — ¢0(0))~".
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Theorem 2.41. Given a defective renewal equation of the form (2.31) with
locally bounded y such that y(eo) := limy_,e Y(x) € [—o0, 0| exists, the same
holds true for ¥ = y x U, namely

y(e)
) = T ge0r

Proof. If y(eo) = oo, then the local boundedness of y implies infy>q y(x) > —oo.
Consequently, by an appeal to Fatou’s lemma,

X—oo X—oo

liminf ¥(x) = liminf /[ =) Ul
0,x

> [ liminf 1 4(y)y(x—y) U(dy)
RZ X—r00
= (o) IU] = .
A similar argument shows limsup,_, ., ¥(x) = —oo if (o) = —oo. But if y(eo) is

finite then v is necessarily bounded and we obtain by the dominated convergence
theorem that

) = [ lim o0yt U@ = v U = ¥
as claimed. .

Turning to the case where Q # & is a probability distribution on R> (proper
case) a statement about the asymptotic behavior of solutions y U can be directly
deduced with the help of the key renewal theorem 2.31.

Theorem 2.42. Given a proper renewal equation of the form (2.31) with dRi
function V, it follows for all a € 1; that

d-lim ¥(x+a) = @/R y(x+a) Ay(dx), (2.33)

X—o0
where d denotes the lattice-span of Q.

Our further investigations will rely on the subsequent lemma which shows that a
renewal equation preserves its structure under the exponential transform Q(dx) —

Qo (dx) = e%*Q(dx) for any 6 € R. Plainly, Qg is a probability measure iff 6 equals
the characteristic exponent of Q. Given a function y on R, put

Yo (x) = ™ y(x), xeR>
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for any 6 € R.

Lemma 2.43. Let Q be an admissible measure on R>, v : R> — R a locally
bounded function and ¥ any solution to the pertinent renewal equation (2.31).
Then, for any 6 € R, ¥y forms a solution to (2.31) for the pair (Wy,Qp), i.e.

Yo = Yo+ ¥ *Qp. (2.34)

Moreover, if ¥ = y*U, then Wo = g x Ug, is the unique locally bounded
solution to (2.34).

Proof. For the first assertion, it suffices to note that ¥ = y + ¥ * Q obviously im-
plies (2.34), for

() = Y00+ [ ) o o)
0,x

for all x € R>. Since Qp is admissible for any 6 € R, the second assertion follows
by Thm. 2.39. a

With the help of this lemma we are now able to derive the following general
result on the asymptotic behavior of y x U for a standard renewal equation of the
form (2.31). It covers the excessive as well as the defective case.

Theorem 2.44. Given a renewal equation of the form (2.31) with admissible
Q with lattice-span d and locally bounded function y, the following assertions
hold true for its unique locally bounded solution ¥ = y xU:

(a) If 6 € Ris such that ||Qg|| < 1 and yg(co) exists, then

lim 87 (x) = % (2.35)

(b) If Q possesses a characteristic exponent ¥, then

d-lim e?* ¥ (x+a) =

1
i = /R P y(xtra) Ag(dx)  (236)

forall a € 1 if yy is dRi.

Proof. All assertions are direct consequences of the previous results. a

Remark 2.45. If 1 < ||Q|| < oo in the previous theorem, then Dy D (—oo,0] and the
continuity ¢p together with limg_, .. §o(0) = 0 always ensures the existence of
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¥ < 0 with ¢p(9) = ||Qy|| = 1 by the intermediate value theorem. On the other
hand, if Q is an infinite admissible measure, then it is possible that ¢p(0) < 1 for
all 6 € ]D)Q.

There is yet another situation uncovered so far where further information on the
asymptotic behavior of y U may be obtained. Suppose that, for some 6 € R, Wy (co)
exists but is nonzero and that Qg is defective. Then Thm. 2.41 provides us with

Fp(e) = lim W) = % 40

which in turn raises the question whether the rate of convergence of ¥ (x) to ¥y (co)
may be studied by finding a renewal equation satisfied by the difference '1’90 =
Wy (o) — Py. An answer is given by the next theorem for which 6 = 0 is assumed
without loss of generality. For d € R> and 6 € R, let us define

o itd=0
4,6) == " ’ 2.37
e(d,9) {@W—1y¢ if d > 0. 237

which is a continuous function on R> x R.

Theorem 2.46. Given a defective renewal equation of the form (2.31) with
locally bounded v such that (=) # 0, it follows that ¥° := ¥ (o) — ¥ forms
the unique locally bounded solution to the renewal equation ¥° = §+¥°x Q

with
0((x,%))
1—¢0(0)’
Furthermore, if Q has characteristic exponent ¥ (necessarily positive) and
lattice-span d, then

Y(x) = yO(x)+ (o) xeR.

Ya
. 0 _ e Y(eo) By 10
dim ¥x+a) = 0 (e(d’ﬁﬁ/ﬂbe YO+ a) Mdy)) (2.38)

for any a € I; provided that Wy is dRi.

Proof. A combination of

o [ e 0] — Bl Of(nee)) = VLD oy
W)= [ Wlem) QL) = (em) O((xe) = FTTE TS = 900~y

and ¥ = y + ¥ * Q shows the asserted renewal equation for ¥°. By the previous

results, we then infer under the stated conditions on ¥ and Q that

X—ro

d-lim W) (x+a) = @/R> Vy(y+a) Ay(dy) foranya € [0,d).
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Hence it remains to verify that the right-hand side equals the right-hand side of
(2.38).
Let us first consider the case d = 0: Using ¢ () = 1, we find that

/Rz e (W) —v°(y) Ro(dy) = 11’1‘5’:20)/& e™Q((y, %)) Ao(dy)

_ Y(o) _ _ ¥
= S g o € D 0@ = 55

which is the desired result.
Ifd >0anda € [0,d), use Q((y+a,)) = Q((y,o0)) for any y € dZ to see that

/ eﬁymwa)fwo(m))Mdy):M [ () agtay)
dNy dNy

1—00(0)
— 19nd kd
l_¢Q nz>:0/§1 { }
— kd vnd
17% ];Q{ }Z

B )Z = A
v

o °°) Okd (°°)
= = 00(0)ed. ) ,§o( O{kd}) = Sa oy

The proof is herewith complete. a

It is worthwile to give the following corollary that provides information on the
behavior of the renewal function U(r) pertaining to an admissible measure Q that
possesses a characteristic exponent % # 0. The proper renewal case ¥ = 0 will be
considered more carefully later in the upcoming section.

Corollary 2.47. Let Q be an admissible measure on R with lattice-span d
and characteristic exponent . Then its renewal function U(x) satisfies

(a)  in the defective case (¥ > 0):

o X 1 = i = 1
i e (g5 =09 ) = i Om) = s

(b)  in the excessive case (O < 0):

1
dlim ¥ Ux) = ——
im eV = S Ga)e@ )
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Proof. Since U(x) = I(x) + U* Q(x) for x € R> with [ := 1., we infer from
Thm. 2.46 that in the defective case U°(x) = |U|| — U((x,)) satisfies the renewal
equation

V) = 1)+ U7+ Q(x) with 1(x) := ||U] Q((x,)).

The function Iy is dRi by Lemma 2.28 because Iis nondecreasing on R> and
I 9™ 0((y,0))dy = ¢o() — 9o(0) < . Hence we obtain the asserted result
by an appeal to (2.38) of Thm. 2.46.

In the excessive case, ¥ < 0 implies that Iy (x) = eﬂxl[o,m) (x) is dRi so that, by
(2.36) of Thm. 2.44(b),

1
1(Qv)le(d, d)|

as claimed. O

1
d-lim > U(x) =
x—yoo ) u(Qv)

/ % Au(dx) =
R>

2.8 Renewal function and first passage times

Let (S,)n>0 be a RP in a standard model with increment distribution F, lattice-
span d € {0, 1}, finite drift u and renewal measure U, under P, . Recall that 7(¢) =
inf{n>0:S, >t} denotes the associated first passage time beyond level 7 for ¢ > 0.
The rather crude asymptotic ¢~ 'Uq(¢) — u~!, known as the elementary renewal
theorem [¥ Lemma 2.1(f)], in combination with d-lim;_,e(Up(t + k) — Up(r)) =
' 24((0,4)) for any h > 0 from Blackwell’s theorem 2.20 provides some evidence
for the assertion that

t
Up(r) = E—i—A +o(l) ast — oo through Gy,

where A denotes a suitable constant depending on F'. This will now in fact be de-
rived via another standard renewal equation and requires the assumption that F' has
finite variance 62 = E(X — u)z. The result will also lead to an asymptotic expan-
sion of Eo7() up to vanishing terms as t — oo because of the simple but important
relationship between renewal function and mean first passage times.

Lemma 2.48. Given a RP (S,)n>0 in a standard model with associated first
passage times T(t), the identity

Up (1) = Eyt(t) (2.39)

holds true for anyt > 0 and A € Z(R>).

Proof. Tt suffices to note that
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Ext(t) = Y Pa(e(t) >n) = Y Pa(Su<t) = Up(r)

n>0 n>0
forany s > 0and A € Z(R>). O
Observe that, by an appeal to Wald’s identity [ Prop. 2.53],

1 t 1 t

Uo(r) = m EoSz¢) = m + m E(Szp)—1) > m
for all + > 0. Therefore, the function ¥ (¢) := Uy (z) — Ups(¢) is nonnegative, locally
bounded, vanishes on R and equals Up(r) — u'tforr e Gg,>. By (2.8), it satisfies
the renewal equation

Y(r) = y(t) + 0 ]‘P(t—x) F(dx), t>0,
where
y(t) = &) —F(1) = F(1) 120,

is clearly locally bounded. Consequently, ¥ forms the unique locally bounded solu-
tion to the renewal equation by Thm. 2.39 and must hence equal y *Uy. The function
v is dRi by (dRi-6) of Prop. 2.27, for it is nonincreasing on R> and satisfies
o’+u’> d

Z <o 2.4
o +2< (2.40)

/ F'(t)dt = p* =
0

by (2.14). The following result, giving the announced second order approximation
of the renewal function, is now easily inferred with the help of Thm. 2.42.

Theorem 2.49. Let (S,),>0 be a RP in a standard model with lattice-span
d € {0,1}, drift u and finite increment variance 2. Then

: t\ _d  prto?
dt-l}gl <Ul(l‘)—l—l) = ﬁ+2—112_ﬂ (2.41)

forany A € P (R>) having finite mean L.

Proof. The result follows from the previous considerations if A = § and for general
A with finite mean o upon using U, = A x Ug. Details are left to the reader [t
Problem 2.51]. a

Regarding the forward recurrence time R(z) = St(r) — 1, let us finally point out
that a combination of the previous result with (2.39), (2.40) and Wald’s identity [
Prop. 2.53] implies

d-lim BoR(r) = d-lim (,LLEOT(I)—I) = dlim (,LLUO(I)—t) _—

[—ro0



2.9 An intermezzo: random walks, stopping times and ladder variables 65

But we further know from (2.29) that R(r) converges in distribution to F*, whence
the following result is immediate.

Corollary 2.50. Let (Sy,),>0 be a RP in a standard model with lattice-span d €
{0, 1}, drift i and finite increment variance . Then the family of forward
recurrence times {R(t) : t > 0} is ui.

Problems

Problem 2.51. Prove Thm. 2.49.

2.9 An intermezzo: random walks, stopping times and ladder
variables

Before giving a brief account of the most important extensions of previous results to
random walks on the line with positive drift, we collect some important facts about
random walks and stopping times including the crucial concept of ladder variables.
We skip some of the proofs and refer instead to [2].

In the following, let (S,),>0 be a RW in a standard model with increments
X1,X5, ... and increment distribution F. For convenience, it may take values in any
R4, d > 1. We will use PP for probabilities that do not depend on the distribution of
So. Let further (.%,),>0 be a filtration such that

(F1)  (Sp)n>0 is adapted to (%) n>0, i.e., 6(So,...,Sn) C %, for all n € Ny.
(F2) %, is independent of (X;,1+)k>1 for each n € Ny.

Let also .%. be the smallest o-field containing all .%,. Condition (F2) ensures that
(Sn)u>0 is a temporally homogeneous Markov chain with respect to (-%,),>0, Viz.

P(Sy1 € Bl.F) = P(Spi1 €B|Sy) = F(B—S,) Pj-as.

for all n € No, A € Z(R) and B € Z(R?). A more general, but in fact equivalent
statement is that

P((Sn+i)i=0 € C|Fn) = P((Spik)i=0 € CISy) = P(S,,C) Py-as.
for all n € Ny, 2 € Z(R) and C € B(R)™o, where

P(x,C) := P((St)iz0 €C) = Po((Si)i=0 € C—x) forx e R
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Let us recall that, if 7 is any stopping time with respect to (.%,),>0, also called
(%,)-time hereafter, then

Fr = {Ae Zu  ANn{t <n} € %, foralln € Np},

and the random vector (7,Sy, ..., S¢) Loy is Zr-measurable. The following basic
result combines the strong Markov property and temporal homogeneity of (S,),>0
as a Markov chain with its additional spatial homogeneity owing to its iid incre-
ments.

Proposition 2.52. Under the stated assumptions, let T be a (Fy)-time. Then,
forall A € 2 (RY), the following equalities hold P -a.s. on {T < «}:

P((Sr+n _Sr)n20 S |yr) = P((Sn _SO)nEO S ) = PO((Sn)nEO € ) (2.42)
P((X‘H—n)nZl S |yr) = IP)((Xn)nZI € ) (2-43)

IfP) (7 < ) = 1, then furthermore (under Py )

(@)  (Stin— St)n>0 and F; are independent.

d
(b) (Sr+n - Sr)nZO = (Sn - SO)nZO'
(¢) Xi+1,Xg42,... are iid with the same distribution as X;.

Proof. Tt suffices to prove (2.43) for which we pick any k € Ng,n € N, By,...,B,, €
B(R?) and A € F;. Using AN {7 = k} € F; and (F2), it follows for each A €
2(RY) that

PA(AO{T :kan+l € Blv"'7Xk+n EBn})
= ]P)A(Aﬂ{‘f = k})P(XkJr] €By,.... X0 € Bn)
= ]PA(AQ{T = k})P(Xl €By,...X, € Bn),

and this yields the desired conclusion. a

We continue with a statement of two very useful identities originally due to A.
WALD [60] for the first and second moment of stopped sums S; for finite mean
stopping times 7, known as Wald’s equations or Wald’s identities. The first of these
has already been used before.

Proposition 2.53. [Wald’s equations] Let (S,),>0 be a SRW adapted to a
filtration (%) >0 satisfying (F1) and (F2). Let further T be an a.s. finite (%,,)-
time and suppose that [l := EX exists. Then

ES;: = uEz (Wald’s equation)
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provided that either the X, are a.s. nonnegative, or T has finite mean. If the X,
have also finite variance 6>, then furthermore

E(S; —ut)? = 6’Et (Wald’s 2nd equation)

for any (F,)-time T with finite mean.

Proof. ¥ [2, Prop. 2.11 and 2.12]. a

Assuming Sy = 0 hereafter, let us now turn to the concept of formally copying a
stopping time 7 for (S, ),>1. The latter means that there exist B, € Z(R"™) forn > 1
such that

T = inf{n>1:(Sy,...,S:) € By}, (2.44)

where as usual inf( := co. With the help of the B,, we can copy this stopping rule to
the post-t process (St4n — St)n>1 if T < co. For this purpose put S, x 1= Sy4x — Sns
Sn,k = (Sn+1 —Sny ooy Stk —Sn) = (Sn,17~-~>Sn,k) and
Xn,k = (Xl’l+17"'7Xl’l+k)

for k € Nand n € Ny.

Definition 2.54. Let T be a stopping time for (S,),>1 as in (2.44). Then the
sequences (T, ),>1 and (0,),>0, defined by oy := 0 and

inf{k >1:8 €B if 0,1 < oo &
Ty = k= o1k € Bil, - ol and o, == ) %
oo, if Oy_1 =@ k=1
for n > 1 (thus 71 = 7) are called the sequence of formal copies of T and its
associated sequence of copy sums, respectively.

The following proposition summarizes the most important properties of the 7, 6,
and So, 1(5, <co} -

Proposition 2.55. Given the previous notation, put further 3 :=P(T < ) and
Z, = (%,Xs, ,.1,) for n € N. Then the following assertions hold true:

(a) ©p,01,... are stopping times for (Sp)n>0-

(b) T, is a stopping time with respect to (Fg,
measurable for each n € N.

(c) P(t,€-|Fs, ) =P(t <o) as. on{0,_1 <oo} foreachn € N.

(d) P(1, <) =P(0, <oo)=p"forallneN.

k0 and Fg -
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(e) P(Zy€ -1 <oo|Fs, ) =P(Z €71 <) as. on {0,_1 < oo} for
alln € N.

(f)  Given 0, < o, the random vectors L1, ..., L, are conditionally iid with
the same distribution as Z conditioned upon T < oo.

(g) IfG:=P((1,5¢) € |t < ), then P((0,,Ss,) € :|0y < ) = G a.s.
foralln € N.

In the case where T is a.s. finite (f = 1), this implies further:

(h) Z, and F, | are independent for each n € N.
(i) Z,,Z,,... areiid.
(j) (OnsSa, )n>0 forms a SRW taking values in Ny x RA.

Proof. The simple proof of (a) and (b) is left to the reader. Assertion (c) and (e)
follow from (2.42) when observing that, on {0, < e},

k
Tn = Zl{‘fn>k} = Z HIB(]“-(S%—IJ) and Zn1{7n<w}
k>0 k>0 j=1

are measurable functions of (Sg, | x)k>0. Since P(7, < o) =P(7] < o0,..., T, < o),
we infer (d) by an induction over n and use of (c¢). Another induction in combination
with (d) gives assertion (f) once we have proved that

]P)((le-wzn) EAmZn-H € B7Gn+1 < °°)
= P((Zy,....,2Z,) €Ap, 0, <o)P(Z; € B,T < o)

for all n € N and A,,, B from the o-fields obviously to be chosen here. But with the
help of (e), this is inferred as follows:

P((Z1,...,2,) € An,Zpi1 € B, 0y y1 < )

= P((Zl,...,Zn) eAmZn-H €B,0, <o, T4 < °°)
P(Zy11 € B, Tyy1 < 0| Fs,) dP
= P((Zy,...,2Z,) € Ap,0, < o)P(Z; € B,T < o0).

Assertion (g) is a direct consequence of (f), and the remaining assertion (h),(i) and
(j) in the case B = 1 are just the specializations of (e),(f) and (g) to this case. O

The most prominent sequences of copy sums in the theory of RW’s are obtained
by looking at the record epochs and record values of a RW (S,),>0, or its reflec-
tion (—Sy),>0. They also provide a key tool for the extension of renewal theory to
random walks with positive drift
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Definition 2.56. Given a SRW (S,,),>0, the stopping times

o =inf{n>1:8,>0}, o=:=inf{n>1:8,>0},
o< :=inf{n>1:5,<0}, o=:=inf{n>1:5, <0},
are called first strictly ascending, weakly ascending, strictly descending and
weakly descending ladder epoch, respectively, and
Sl> = SG> 1{6><°<,}, SIZ = SgZ 1{0.2<°°},
ST i=So<l{g<cm}y St i=Spligccm)

their respective ladder heights. The associated sequences of copy sums

(6,7)n>0» (62)n>0, (6,5 )n>0 and (0=),>0 are called sequences of strictly as-

cending, weakly ascending, strictly descending and weakly descending ladder
epochs, respectively, and

Sy =Serligr <o}y 120, S7:=8_>1

Sy = Soxlgr e} 120, S5 =S <1

foz<ep 120,

(o5 <o} 20

the respective sequences of ladder heights.

Plainly, if (S, ),>0 has nonnegative (positive) increments, then 6= =n (o, =n)
for all n € N. Moreover, 6 = 0, and 0= = 0, a.s. for all n € N in the case where
the increment distribution is continuous, for then P(S,, = S,) = 0 for all m,n € N.

The following proposition provides some basic information on the ladder vari-
ables and is a consequence of the SLLN and Prop. 2.55.

Proposition 2.57. Let (S,)n>0 be a nontrivial SRW. Then the following asser-
tions are equivalent:

(@) (0F,S%),~0 is a SRW taking values in No x R for any a € {>,>}
(resp. {<,<}).

(b) o%<oas forae{>>} (resp.{<,<}).

(c) limsup, .S, =oa.s. (resp.liminf, .S, = —a.s.)

Proof. Tt clearly suffices to prove equivalence of the assertions outside parenthe-
ses. The implications “(a)=-(b)” and “(c)=-(b)” are trivial, while “(b)=-(a)” follows
from Prop. 2.55(j). This leaves us with a proof of “(a),(b)=-(c)”. But ES” > 0 in
combination with the SLLN applied to (S, ),>0 implies

limsupS, > limS, = as.
NS00 n—soo



70 2 Renewal theory

and thus the assertion. O

Sn

Fig. 2.2 Path of a RW with strictly ascending ladder epochs 6" = 3, 6;” =4 and 65 = 10, and
strictly descending ladder epochs 6;~ = 1, 65 =5 and 05 = 12.

If EX; > 0 (resp. < 0) we thus have that 6>, (resp. 6<,0°5) are a.s. finite
whence the associated sequences of ladder epochs and ladder heights each constitute
nondecreasing (resp. nonincreasing) zero-delayed RW’s. Much deeper information,
however, is provided by Prop. 2.59 below which discloses a quite unexpected duality
between ascending and descending ladder epochs that will enable us to derive a
further classification of RW’s as to their asymptotic behavior including the Chung-
Fuchs theorem on the asymptotic behavior of a RW with drift zero. We pause for
the following lemma about the lattice-type of a ladder height.

Lemma 2.58. Let (S,,),>0 be a nontrivial SRW and & an a.s. finite first ladder
epoch. Then d(X,) = d(S5).

Proof. ¥ [2, Lemma 2.33] or Problem 2.62. O

Proposition 2.59. Given a SRW (S,,),>0 with first ladder epochs 6=, 67, 0=,
o<, the following assertions hold true:

1 1
]EGZ = m and Eo~ = M7 (2.45)

P(6= =) = (1-k)P(c~ =), (2.46)
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where

kK= Y P(51>0,...8,-1>0,5,=0) = Y P(c==n,57 =0).
n>1

n>1

Proof. ¥ [2, Prop. 2.15]. O

We close this section with the announced classification of RW’s that provides us
with a good understanding of their long-run behavior.

Theorem 2.60. Let (S,,),>0 be a nontrivial SRW. Then exactly one of the fol-
lowing three cases holds true:

(i) ©=,0° are both defective and Ec=,Ec™ are both finite.
(ii) 02,0 are both defective and Ec<,Ec< are both finite.
(iii) ©2,067,065,06< are all a.s. finite with infinite expectation.

In terms of the asymptotic behavior of S, as n — oo, these three alternatives
are characterized as follows:

(i) lim,, e S;, =0 a.s.
(ii) lim,_eS, = —c0 a.s.
(iii) liminf, ;. S, = —o and limsup,,_,., S, = a.s.

Finally, if L := EX) exists, thus EX" < o or EX~ < oo, then (i), (ii), and (iii)
are equivalent to L > 0, U < 0, and u = 0, respectively.

The last stated fact that alternative (iii) occurs for any SRW with drift u =0 is
usually referred to as the Chung-Fuchs theorem.

Proof. Notice first that P(X; = 0) < 1 is equivalent to k < 1, whence (2.46) ensures
that 6~,0= as well as 6<,0= are always defective simultaneously in which case
the respective dual ladder epochs have finite expectation by (2.45). Hence, if neither
(a) nor (b) holds true, the only remaining alternative is that all four ladder epochs
are a.s. finite with infinite expectation. By combining the three alternatives for the
ladder epochs just proved with Prop. 2.57, the respective characterizations of the
behavior of S, for n — o are immediate.

Suppose now that (1 = EX; exists. In view of Prop. 2.57 it then only remains to
verify that (iii) holds true in the case pt = 0. But any of the alternatives (i) or (ii)
would lead to the existence of a ladder epoch & such that Ec < o and Sy is a.s.
positive or negative. On the other hand, ES; = 1 [Ec = 0 would follow by an appeal
to Wald’s identity which is impossible. Hence u = 0 entails (iii). a

The following definition gives names to the three above alternatives (i), (ii) and
(iii) that may occur for a RW (S,,),>0.
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Definition 2.61. A RW (S,),>0 is called

— positive divergent  if lim,_, S, = oo a.s.

— negative divergent if lim,_. S, = —oo a.s.
— oscillating if liminf,, ;. S, = —c0 and limsup,,_,., S, = o a.s.
Problems

Problem 2.62. Prove Lemma 2.58.

2.10 Two-sided renewal theory: a short path to extensions

Now we are ready to extend some of the previously stated renewal theorems to RW’s
with positive drift. The basic idea is as simple as effective and based upon the use
of the embedded RP of strictly ascending ladder heights.

For most of the following derivations it suffices to consider the zero-delayed case
when So = 0, for the result in the general case then usually follows by a straight-
forward argument. So let (S,),>0 be a SRW with increment distribution F', positive
drift u and embedded SRP (S ),>0 of strictly ascending ladder heights the drift of
which we denote by u~ = ES7 . Since Ec~ is finite, Wald’s equation implies

uo = ES; = ESy> = uEo~

even if jL = co. As before, let U=}, F*" = Y,>¢P(S, € -) be the renewal measure
of (S,)n>0 so that U(A) gives the expected number of visits of the RW to A € A(R).
We remark that it is not clear at this point whether U(A) is always finite for any
bounded B as in the renewal case. The renewal measure of (S, ),>o is denoted U~.

2.10.1 The key tool: cyclic decomposition

Let o be an a.s. finite stopping time for (Sy,),> with associated sequence (0;),>0
of copy sums. Denote by U(°) the renewal measure of the RW (Ss, )n>0 and define
the pre-o occupation measure of (S,)n>0 by

o—1
V@A) = E (Z IA(S,,)> for A € B(R), (2.47)
n=0
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which has total mass ||V(°)|| = Ec and is hence finite if ¢ has finite mean. The next
lemma shows that U and U(®), V(®) are related in a nice way and holds true even
without any assumption on the drift of (Sy),>0.

Lemma 2.63. [Cyclic decomposition formula] Under the stated assump-
tions,
U = vyl

for any a.s. finite stopping time o for (Sp)n>1-

Proof. Using cyclic decomposition with the help of the ¢,,, we obtain

Opy1—1
UA) = E (Z IA(Sk)> =YE ( Y 1A(Sk)>
k>0 n>0 k=0,
o'n+171
-y / E(Y 14 o(Si—50,)|Se, =x | P(So, €d)
n>07/R k=0,
-y / V®) (A —x) P(S, € dx)
n>0 R
= V@ %U©)(A) forall A c B(R),
where (2.42) of Prop. 2.52 has been utilized in the penultimate line. a

Specializing to ¢ = 6~ and writing V> for V(¢7)

formula takes the form

, the cyclic decomposition

U = V> %U. (2.48)

We thus have a convolution formula for the renewal measure U that involves a finite
measure concentrated on R<, viz. V7, and the renewal measure of a SRP, namely
U=, for which the asymptotic behavior has been found in the previous sections.
Various results for RP’s including Blackwell’s theorem and the key renewal theorem
will now easily be extended to RW’s with positive drift with help of this formula.

If (S,)n>0, given in a standard model, has arbitrary initial distribution A, then
Lemma 2.63 in combination with U, = A * Uy immediately implies

Uy = 2xV@50©@ = v,y (2.49)

where V() U(°) are defined as before under P.
Returning to the zero-delayed situation, let us further note that a simple compu-
tation shows that
V© = Y P(o>n,S,€") (2.50)
n>0

[==" Problem 2.69] and that, for any real- or complex-valued function f
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o—1
[rave =¥ [ jspar =E (Z f(Sn>> 2.51)
n>0 {O‘>n}

whenever one of the three expressions exist.

2.10.2 Uniform local boundedness and stationary delay
distribution

The following lemma showing uniform local boundedness of the renewal measure
for any random walk with positive drift is the partial extension of Lemma 2.14. A
full extension by extending the argument given there is stated as Problem 2.71.

Lemma 2.64. Let (S,),>0 be a RW with positive drift in a standard model.
Then U, is uniformly locally bounded for each A € & (R), in fact

sup Uy ([t,t +h]) < Eo” Ug (k) (2.52)
teR

forall h > 0.

Proof. Forany A € Z(R) and h > 0, the cyclic decomposition formula (2.49) with
0 = 0~ in combination with |V~ || = Ec~ and

sup Uy ([r,1+h]) < Ug (h)
teR

by Lemma 2.14 yields

Unlte +4)) = V> U3 ([0 4 1)
/Ui([t—)@t—x—kh}) V> (dx)
Eo~ Uy (h)

IN

as claimed. O

Cyclic decomposition also allows us to generalize the results from Subections
2.4.2 and 2.4.3 about the stationary delay distribution. This is accomplished by
considering F*,F; and & as defined there, but for the associated ladder height RP
(S, )n>0- Hence we put

1 (o> g
£0) { fonIF;)(S‘ > x) d, ?fd =0, 253
L0 P(ST > k), ifd=1
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for t € R> (with n(¢) as in Prop. 2.15) and then again F; by (2.11) for a € R».
If ST has finite mean u~ and hence & is finite, then let F* be its normalization, i.e.
FS = (u~)'&. Recall from Lemma 2.58 that S7 and X; are of the same lattice-type.

Theorem 2.65. Let (Sy,)n>0 be a RW in a standard model with positive drift |t
and lattice-span d € {0, 1}. Then the following assertions hold with &, F; and
F* as defined in (2.53) and thereafter.

(a) Ug =FEo~ Zl;.

(b) Uj <&(a)'Ec” & foralla € R.

(c) If wis finite, then Uf, = u='A.

Proof. First note that u > 0 implies EG~ < eo [ Thm. 2.60] and u~ = ES7 =
puEc~ by Wald’s identity. By (2.49), Uy = V= U5 for any distribution A and this
obviously extends to arbitrary locally finite measures A. Therefore,

Ug(4) = V>« UZ (4) = /R<U§>(Afx) V> (dx)

_ /]R AL (A—x) V> (dx) = V> (Re) R (A)

<

= Eo” A;(A) forallAc B(R>)

where Cor. 2.16, the translation invariance of A; and A —x C R> for all x € R< have
been utilized. Hence assertion (a) is proved. As (b) and (c) are shown in a similar
manner, we omit supplying the details again and only note for (c) that, if yu < oo,
Uf, = (u”)'Ec” & really equals '} because u~ = uEc~ as mentioned
above. a

2.10.3 Extensions of Blackwell’s and the key renewal theorem

Extensions of the two main renewal theorems to RW’s with positive drift are now
obtained in a straightforward manner by combination of these results for the ladder
height RP with cyclic decomposition.

Theorem 2.66. [Blackwell’s renewal theorem] Let (S,),>0 be a RW in a
standard model with lattice-span d > 0 and positive drift (L. Then

d-lim Uy ([t +h]) = w'24([0,h]) and (2.54)
Jim Uy ([r,r+h])) = 0 (2.55)
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forallh > 0and A € P(Gy), where u=" := 0 if y = oo.

Proof. By another use of cyclic decomposition in combination with Lemma 2.64,
Blackwell’s theorem for Uy and of u||[V7|| = uEc” = pu~ if u < o, it follows
with the help of the dominated convergence theorem that

dtiimU,l([t,tJrh]) = /dhmIU;L ([t —x,t —x+h]) V~ (dx)

VP Ra(0.H) _ Ba((0,h])
u> u

for any h > 0, i.e. (2.54). But (2.55) follows analogously, for U~ vanishes on the
negative halfline giving lim; , .. U7 ([t,z +h]) = 0. O

Theorem 2.67. [Key renewal theorem] Let (S,),>0 be a RW with positive
drift W, lattice-span d € {0,1} and renewal measure U. Then

dlim g+ U(t) = ~ / Gy @i (2.56)
oo u
lim g+ U(r) = 0 2.57)

for every dRi function g : R — R.

Proof. Given a dRi function g : R — R, we leave it to the reader [/ Problem 2.72]
to verify that Thm. 2.31 still applies and yields

0o

d-lim g U~ (1) = 7mg(x) Ay(dx)

t—o0 u>

as well as
lim g+U”(t) = 0.
t——oo

In particular, g« U~ is a bounded function. Then use cyclic decomposition and the
dominated convergence theorem to infer that

g+ U(t) = /g*U>(t—x) V> (dx)
has the asserted limits as t — oo (through G,) and t — —oo. O

We finish with a brief look at the renewal function U(r) = U((—e0,t]) for a SRW
(Su)n>0 with positive drift . We know that (u>) "'t <U>(¢) < (u”)~ 't +C for
all #+ > 0 and a suitable constant C € R, whence cyclic decomposition provides us
with the estimate
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Y N > > u't + fg_ x| V7 (dx)
u() = /RSU (t —x) V> (dx) {< Wl 4 WV (dy) + CEo>

for all > 0. As a consequence, U(#) < oo for some/all # € R holds iff (use (2.51))

/ x| V> (dx) = E(Gilm |> (Gfbls> < o,

A nontrivial result not derived here states [B¥ [2, Cor. 6.25]] that this is equivalent
to the moment condition

2.10.4 An application: Tail behavior of sup, - S, in the negative
drift case

In Applied Probability, the supremum of a SRW with negative drift (or, equivalently,
the minimum of a SRW with positive drift) pops up in various contexts like the ruin
problem in insurance mathematics or the asymptotic analysis of queuing models.
An instance already encountered is Lindley’s equation

WL W+x)*t

for a random variable X with negative mean and independent of W. As explained in
Section 1.2, the law of W equals the equilibrium distribution of a customer’s waiting
time in a G/G/1-queue before proceeding to the server if X = B — A, the difference
of a generic service time B and a generic interarrival time A. If (S,),>0 denotes a
SRW with increments X1, X5, ... which are copies of X, then

w 4 sup S,

n>0
as stated in Theorem 1.4 [B¥° also Problem 1.6(b)]. The following classical result,
which may already be found in FELLER’s textbook [30, Ch. XII, (5.13)], provides

the exact first-order asymptotics for P(W > t) as t — oo under an exponential mo-
ment condition.

Theorem 2.68. Let (S,),>0 be a SRW with negative drift 1, lattice-span d €
{0,1}, Ee?St = 1 and py = Eeﬂsf5f1{6><w} < oo for some ¥ > 0. Then

d-lim el”ﬁv(supsn >t> = — 7/ R, (2.58)
e

[—>o0 n>0
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with e(d,0) as defined in (2.37). If [ty = oo, the result remains true when
interpreting the right-hand side of (2.58) as 0.

For an alternative approach to this result via implicit renewal theory, we refer to
Subsection 4.4.2. Let us further point out that the increments of (S,),>0 may take
values in RU {—co} as one can readily see from the following proof. In this case,

—oo

e~ :=0as usual.

Proof. By Prop. 2.59, P(6” = o) = (E6=)~! > 0, for y < o implies EG= < oo,
Further, P(6” = o) < 1 and g > 0, for Ee®$! = 1 ensures (S > 0) > 0. Conse-
quently, Q- :=P(S7 € -,067 < o) is nonzero and defective, i.e. 0 < ||Q~ | < 1, and
the associated renewal measure

U = Y B(S; €407 <) = ¥ 0

n>0 n>0

[use Prop. 2.55(g) for the second equality] a finite measure.

Since Ee?S1 = 1, the sequence (e%5"),>( constitutes a nonnegative martingale
with mean one. Let (.#,),>0 denote its natural filtration and .Z. := &(S, : n > 0).
Define a new probability measure Pon (Q,%.) by

]IA"(A) :=Ee?"1, forA €.%, and n > 0.

As one easily see, /)\(1 ,X2, ... are still iid under P with the same lattice-span d, com-
mon distribution Q(B) := Ee?S115(S)) for B € %(R), and mean [ := Ee?515.
Equivalently, (S,),>0 is still a SRW with drift {i. The latter is positive because
0(8) := Ee?1 is a convex function on [0,9] with ¢(0) = ¢(®) = 1 and negative
(right) derivative u at 0. We further infer that

1 =P(6” <w) = Y Po”=n) = Y Ee® 15,y = Ee".

n>1 n>1
Now observe that, with g(x) := 1(_¢)(x),

P (supSn > t) = Y B(S; 51,07 <o, 004 — 67 = o)

n>0

implying
P (supS,, > t) = P(0” =) gy x U5 (1),

n>0
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where, as in Section 2.7, gy (x) = e®g(x) and U3 (dx) = e®*U> (dx), the latter

being the renewal measure of (S, ),>0 under P. Since gv 1s easily seen to be dRi,

the assertion finally follows by an appeal to the key renewal theorem 2.67. a

Problems

Problem 2.69. Prove (2.50).

Problem 2.70. Prove that the cyclic decomposition formula remains true for any a.s.
finite o that is independent of (S,),>o and called randomized stopping time for this
RW. [Hint: Consider a SRP (0, ),>0 independent of (S,,),>o with Z(01) = Z(0).]

Problem 2.71. Let (S,),>0 be a RW with positive drift in a standard model. As in
the renewal case, put N(A) := Y50 14(S,) for A € Z(R). Then

sup B, (N([11-+4]) 2 ) < Bo(¥([-h.]) = ) (2.59)

forallh>0,n € Npand A € Z(R). In particular,

sup Uy ([t +4]) < Uo([—h,A]) (2.60)
teR

and {N([t,t +h]) : t € R} is uniformly integrable under each P, for all 4 > 0. [Hint:
Generalize the proof of Lemma 2.14.]

Problem 2.72. Prove that the (one-sided) key renewal theorem 2.31 remains valid if
g is dRi, but not necessarily vanishing on the negative halfline, and that g« U(z) — 0
as t — —oo holds true in this case as well.






Chapter 3
Iterated random functions

This chapter is devoted to a rather short introduction of the general theory of itera-
tions of iid random Lipschitz functions, also called iterated function systems. They
may be viewed as a particular class of Markov chains on a topological state space for
which stability results are usually deduced via appropriate contraction conditions on
the occurring class of random functions.

3.1 The model, definitions, some basic observations and
examples

In order to provide an appropriate framework for the subsequent considerations, we
begin with a formal definition of the special class of Markov chains to be studied
here. The relevance in connection with random recursive equations, the actual topic
of this course, becomes immediately apparent by the way these chains are defined
in (3.1) below.

Although all examples encountered so far have been Markov chains on R or R,
we have chosen to take a more general approach here by allowing the state space
to be any complete separable metric space (X,d) endowed with the Borel o-field
2% (X). The reader will hopefully acknowledge that this appears to be quite natural
and does not make our life more complicated. Nevertheless it may be useful to point
out the following facts:

Convergence in distribution for random elements X, X}, X, ... in (X, (X)) is still
defined in the usual manner, i.e. X, i) X if

lim Ef(X,) = Ef(X) forall f €%, (X),

n—oo

where %5(X) denotes the space of bounded continuous functions f : X — R.
Uniqueness of the limit distribution is guaranteed by the fact that this space is
measure-determining, i.e., two bounded measures 41,4, on (X, Z(X)) are equal

81
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whenever
/ F00) A (dx) = / F(6) 2a(dx) forall f € %(X).
X X

Finally, the Portmanteau theorem remains valid as well. For further information
on convergence of probability measures on metric spaces we refer to the classic
monograph by BILLINGSLEY [12].

3.1.1 Definition of an iterated function system and its canonical
model

The formal definition of an iterated function system is first, followed by the discus-
sion of some measurability aspects and the specification of a canonical model.

Definition 3.1. Let (X,d) be a complete separable metric space with Borel-
o-field $B(X). A temporally homogeneous Markov chain (X,),>0 with state
space X is called iterated function system (IFS) of iid Lipschitz maps if it
satisfies a recursion of the form

X, =¥ (6, X 1) 3.1)

for n > 1, where

(IFS-1) Xp, 61, 6,,... are independent random elements on a common prob-
ability space (2,2, P);

(IFS-2) 01,6,,... are identically distributed with common distribution A
and taking values in a measurable space (0, );

(IFS-3) Y:(0xX,o®AX)) = (X,%4(X)) is jointly measurable and
Lipschitz continuous in the second argument, that is

d(T(Q,x),E{’(G,y)) < C(-)d(xvy)

forall x,y € X, 6 € © and a suitable Cg € R>.

A natural way to generate an IFS is to first pick an iid sequence ¥;,%,... of
random elements from the space %7, (X) of Lipschitz self-maps on X and to then
produce a Markov chain (X, ),>0 by picking an initial value Xy and defining

X, = W0...0¥(Xo) (3.2)

for each n > 1. In the context of the above definition, ¥, = ¥(6,,-), but it becomes
a measurable object only if we endow €7, (X) with a suitable o-field. Therefore we



3.1 The model, definitions, some basic observations and examples 83

continue with a short description of what could be called the canonical model of an
IFS which particularly meets the last requirement.

Let Xg := {x1,x2,...} be a countable dense subset of X and .2 (X, X) the “se-
quence” space of all mappings from X to X. The latter clearly forms a complete
separable metric space, for instance, when choosing

i d(llfl (xn)v IVZ(xn))
=120 T+ d (Wi (), ya(xn))

p(vi, ) =

for y1, ¥ € Z(Xp,X) as a metric. We endow .2 (Xo,X) with the product o-field
A (X)*0 generated by the product topology. Finally, we define the Lipschitz constant

of v as
d(y(x),
L(y) ==  sup d(y(x), y(v)) (3.3)
x,yEX, x#y d(xvy)
with the convention L(y) := 0 if y is constant. The following lemma is taken from
[22].

Lemma 3.2. Given the previous notation, the following assertions hold true:

(a) 61ip(X) is a Borel subset of £ (Xo,X).
(b)  The mapping y — L(y) is a Borel function on 67;,(X).
(c)  The mapping (y,x) — y(x) is a Borel function on €1;p(X) x X.

Proof. The map Ly : £ (Xo,X) — [0, 0], defined by

N R 70)
LO(W) o x,yESXOI,)x;ﬁy d(xvy)

is clearly a Borel function, for it is the supremum of countably many continuous
functions, namely
d(y(x), ¥(y))
ZL(Xo,X) 5y —2 2
d(x,y)

for (x,y) € X3, x #y. Now observe that, if Lo(y) < o, then ¥ has a unique exten-
sion to a Lipschitz function on X with L(y) = Lo(y) because X is dense in X. Con-
versely, the restriction of any Lipschitz continuous y to X satisfies Lo(y) = L(y)
whence we conclude

CLip(X) = {w:Lo(y) <} € BX)™

(by unique embedding) as well as the measurability of ¥ — L(y).
In oder to prove (c), let x1,x3,... be an enumeration of the elements of X and
B¢ (x) the open g-ball with center x. For n,k € N, define
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k—1
Apt = Bl/n(xl) and A, ;:= Bl/n(xk) N U Bl/n(Xj)C fork > 2.
=1

Then each (A, x)r>1 forms a measurable partition of X. For any y : X — X, put

W (x) = Z V(xe)1a,,(x) forn>1.
k>1

Then the mapping (Y, x) — y,(x) is measurable from £ (Xp,X) x X to X and its
retraction to 67, (X) x X converges pointwise to the evaluation map (y,x) — y/(x)
which gives the desired result. ad

In view of the previous lemma we can choose the following canonical model
for an IFS of iid Lipschitz maps: Let </ be the Borel o-field on © := €7;,(X),
more precisely o := Z(X)*0 N %, (X), and let (Xo,0) = (Xo, 61,65, ...) be the
identity map on the product space (X x €7;,(X)N, B(X) ® &), so that 6, de-
notes the n'" projection for each n, taking values in (@,.<7). If we choose an in-
finite product distribution AN on (%7;,(X)N, &N) and P, := §, ® AN on (Q,2) :=
(X x 61ip(X)N, B(X) ® 7N), these projections are iid with common distribution
F and independent of Xy under any P, := [P, A(dx), A € Z(X). Finally, define
¥ (6Lip(X) x X, o @ B(X)) by ¥(0,x) := 0(x) and X, := ¥(6,,Xp). Then

(2,2, (Xn)n>0, (Pa)2co(x)) (3.4)
provides a canonical model for the IFS (X,,),>¢ of iid Lipschitz maps in which
¥ =%¥(6,,"), n>0

is a sequence of iid random elements in €7,,(X) independent of Xy under each ;.
As a Markov chain, (X,),>0 has one-step transition kernel

P(x,B) = P.(¥(6,,X)) €B) = A(P(-.x)€B), BeB(X), (3.5)

which is easily seen to be Fellerian [¥¥ Problem 3.12]. In the following, we will
always assume a standard model of the afore-mentioned type be given and write ¥,
for ¥(6,,-), thus

Xy, = an(anl) = Yo0..1Y (X())

as already stated in (3.2). We further put L, := L('F,) for n > 1, by Lemma 3.2(b)
a random variable taking values in R>, and note that L, Ly, ... are iid under each
P, with a distribution independent of A. Therefore we use P for probabilities not
depending on the initial distribution of the Markov chain.
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3.1.2 Lipschitz constants, contraction properties and the top

Liapunov exponent

In view of the fact that (%7;,(X),0) forms a multiplicative semigroup and thus
Wi =Wo...0¥ € €Lip(X) forany n > 1 and 1 < k < n, it is natural to ask about
how the Lipschitz constant L(\F,.;) of .1 relates to those of its factors ¥, ..., ',.
The following simple lemma is basic for our analysis.

Lemma 3.3. For any w1,y € 67;,(X),

L(yioy,) <L(y1) L(ya).

Proof. Problem 3.13. a

As an immediate consequence of this lemma, we infer that

L(W1) < L(¥uks1) L(Wey) forany 1 <k <n (3.6)
n

and L(¥.1) < [JL« foranyn>1. 3.7)
k=1

An important consequence of (3.6) is that it entails the existence of the so-called
(top) Liapunov exponent with the help of Kingman’s subadditive ergodic theorem,
the latter being stated without proof in an Appendix to this chapter. The following
result is due to FURSTENBERG & KESTEN [32] for linear maps and to ELTON [25]
for Lipschitz maps.

Theorem 3.4. [Furstenberg-Kesten, Elton] Let (X,),>0 be an IF'S of iid Lip-
schitz maps with Lipschitz constants Ly, Ly, ... satisfying Elog"™ Ly < oo. Then

ElogL(%:1) — 0 s
n

.1 .
Jiry g (%) = Jof
where £ € RU{—co} is called (top) Liapunov exponent of (X,)n>0. If £ is
finite, then the convergence holds in L' as well.

Proof. By (3.6), the triangular scheme (Ykﬁ)glf”, defined by

Y = log L(Wkt1),

is subadditive in the sense that Yy , < Yy + Yy, a.s. for all 0 < k < n. It also satisfies
all other conditions of the subadditive ergodic theorem A.5 in the Appendix as the
reader can readily check, leading to the conclusion that
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.1
,}E}o - logL(¥,:1) = Yo as.
for some random variable Y., with mean ¢ if ¢ is finite, and Y., = —oo otherwise. And
in the first case, the convergence is also in L'. Finally, the fact that Y., actually a.s.
equals its mean value ¢ follows by an appeal to the Kolmogorov zero-one law, for
Y., is measurable with respect to the terminal o-field of ¥}, 5, ... a

A combination of the previous result with (3.7) and the SLLN further provides
us with:

Corollary 3.5. Let (X;,)n>0 be an IFS of iid Lipschitz maps with Lipschitz con-
stants Ly, Ly, ... satisfying Elog™ Ly < oo. Then its Liapunov exponent { satis-

fies
¢ < ElogL;. (3.8)

Proof. It suffices to note that (Y}_, logLy),>o forms a SRW with drift ElogL; and
that log L(¥,.1) < Y}_,logL; for eachn > 1. O

It should not be surprising that the Lipschitz constants L(%¥,.;) play an important
role in the stability analysis of (X,),>0. This will already become quite clear in the
next section when studying strongly contractive IFS to be defined below along with
other contraction conditions. Recall that a Lipschitz map v is called contractive or
a contraction if L(y) < 1.

Definition 3.6. An IFS (X,),>¢ of iid Lipschitz maps is called

— strongly contractive iflogL; < —I a.s. for some [ € R-.
— strongly mean contractive of order p  if log ELY < 0. (p>0)
— mean contractive if ElogL; < 0.

— contractive if it has Liapunov exponent ¢ < 0.

It is obvious that strong contraction implies contraction and strong mean contrac-
tion of any order, while an application of Jensen’s inequality shows that the latter
implies mean contraction; for a converse see Problem 3.14. Moreover, strong mean
contraction of order p may always be reduced to the case p = 1 by switching the
metric [ Problem 3.15].

3.1.3 Forward versus backward iterations

The recursive character of an IFS naturally entails that its state X,, at any time n is
obtained via forward iteration or left multiplication of the random Lipschitz func-
tions ¥, ..., ¥,. This means, we first apply V| to Xp, then ¥ to ¥ (Xp), and so on
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until we finally apply ¥, to ¥,_1 o...0 ¥ (Xp). On the other hand, since

d
(lIIl,’lIln) = (%’.'.7%)’

the distribution of the forward iteration X, is at all times »n the same as of the back-
ward iteration or right multiplication X,, := ¥} o ...o ¥,(Xp), that is

X, L x, foralln>0. (3.9)

-~

Consequently, we may also study the sequence of backward iterations (X;),>0

when trying to prove asymptotic stability of (X,),>0, i.e. X, 4 1 for some T €
Z(X). The usefulness of this observation relies on the fact that in the stable case the
)?n exhibit a stronger pathwise convergence as we will see, which particularly shows
that the joint distributions of (X,,),>0 and ()?n) n>0 are generally very different. Most
notably, ()?n)nzo is not a Markov chain except for trivial cases.

In the following, we put ¥, := ¥, o...0 ¥, for 1 <k < n and note as direct
counterparts of (3.6) and (3.7) that

LW.) < L(Wi4)L(Ws1:) forany 1 <k<n (3.10)

n
and L(¥,) < [[L« foranyn>1. (3.11)
k=1

Also Theorem 3.4 and its corollary remain valid when replacing L(%¥,.;) with
L(¥.,) in (3.8).

3.1.4 Examples

At the end of this section we present a collection of examples some of which we
have already encountered before.

Example 3.7 (Random difference equations). Tterations of iid linear functions ¥, (x) =
M,x+ Q, on R, with Lipschitz constants L, = |M,|, constitute one of the basic ex-
amples of an IFS and lead back to the one-dimensional random difference equation
(RDE)

Xn == MpXp—1+0n, n>1, (3.12)

discussed in Section 1.5. Recall from there that

n

Xy = W1 (Xo) = IXo+ Y Ty 1:0Qk (3.13)
k=1

for each n € N, where Iy, := My -...-M, for | <k <n, Il,+1.,:=1and I, := 1.y,
which shows that
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L(IP - |Hn‘ HLk

for each n € N. The distributional equality (3.9) of forward and backward iteration
at any time n was also stated there in (1.32), viz.

d L >
X, = MXo+ ) I 10 = Wia(Xo) = X,
k=1

From these facts we see that (X,,),>0 is

— strongly contractive iflog|M;| < —I a.s. for some [ € R..
— strongly mean contractive of order p  if log E|M;|P < 0. (p>0)
— mean contractive if Elog|M;| < 0.

In the multivariate case, the RDE (3.12) is defined on R™ for some m > 2 with
Xo,X1,... and Q1,0Q», ... being column vectors and M1, M,, ... being m x m real ma-
trices. For x € R™ and a m x m matrix A, let |x| be the usual Euclidean norm and

|A]] := max|Ax]|
[x[=1

the usual operator norm of A. Contraction conditions must now be stated in terms of
||M; || but look the same as before otherwise. Hence, (X,,),>0 is

— strongly contractive if log||M|| < —I a.s. for some [ € R-..
— strongly mean contractive of order p  if log E||M; ||? < 0. (p>0)
— mean contractive if Elog||M;]| <O.

Example 3.8 (Lindley processes). Lindley processes were introduced in Section 1.2
in connection with the G/G/1-queue and have the general form

X, = K1 +E)Y, n>1, (3.14)

for a sequence (&,),>1 of iid real-valued random variables which are not a.s. van-
ishing. This is an example of an IFS of iid Lipschitz functions on X = R> having
Lipschitz constants L, = 1, namely ¥, (x) := (x+ &)™ for n > 1. Denote by (S, )n>0
the SRW associated with the &,, thus So =0and S,, = & +...+ &, for n > 1. Forward
and backward iterations are easily computed as

Xn - an:I(XO) = max{07sn*SnflaSn*Sn727'--aSn7S17XO+Sn}
and 5(\n = lPl:n(XO) = maX{07SIaS2a"'7Sn—1aXO+Sn}7

and the latter sequence is obviously nondecreasing. Furthermore, it converges a.s.
to a finite limit, viz. X., := Sup,~o Sn» iff (Sy)n>0 is negatively divergent, which
particularly holds if EE < 0 [2%° Thm. 1.4]. In this case, X, converges to the same
limit in distribution by (3.9). Notice that despite this stability result none of the
above contraction conditions is valid, for L; = 1.
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Example 3.9 (AR(1)-model with ARCH(1) errors). As another recurring example of
an IFS we mention the AR(1)-model with ARCH(1) errors, defined by

X, = aX 1+ (B+AX2 ) Pe, n>1, (3.15)

for (a,B,A) € R x R? and a sequence (&,),>; of iid symmetric random variables.
Here ¥, (x) := ox+ (B + Ax?)'/2¢g, for n > 1 and therefore

()~ _ A2 (x+y)e, "
=yl =" T BIAT D P (BAT D) < o+A g

for all x,y € R. By combining this with

lim [#0(x) —Fa ()] = la+21"2g,,
=

it follows easily that L(%¥,) = a + A'/?|g,|. Hence, the IFS is mean contractive if
Elog(a +A'/2|e|) < 0. On the other hand, neither forward nor backward iterations
are easily computed here so that stability can only be analyzed by more sophisticated
tools than in the previous two examples.

Example 3.10 (Random logistic maps). The logistic map x — 0x(1 —x) is a self-
map of the unit interval [0,1] if 0 < 6 < 4. Therefore, we obtain an IFS of i.i.d.
Lipschitz functions on [0, 1] by defining

Xy = &EXo1(1-X,21), n>1, (3.16)

for a sequence (&,),>1 of iid random variables taking values in [0,4]. Hence
¥, (x) = &,x(1 —x), which has Lipschitz constant L, = &, as one can easily ver-
ify. Contraction conditions as introduced before are thus to be formulated in terms
of moments of £, but it should be noted that the Markov chain (X,),>0 possesses a
stationary distribution in any case by Lemma 1.23 because the state space is compact
which trivially ensures tightness of (X,,),>o. In fact, if the chain is mean contractive,
i.e. Elog& < 0 holds, then X,, converges a.s. to zero under any initial distribution and
geometrically fast [I=° Problem 3.15] which appears to be fairly boring and leaves
us with the real challenge to find out what happens if mean contraction fails to hold
and to provide conditions under which a stationary distribution 7 # &y exists. These
questions have been addressed in a number of articles by DAI [20], STEINSALTZ
[55], ATHREYA & DAI [7, 8], and ATHREYA & SCHUH [9]. We will return to this
question in Subsection ??.
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Problems

Problem 3.11. Let (X,,),>0 be an IFS of iid Lipschitz maps in a canonical model as
stated in (3.4). Prove that, under each P, and for each n € Ny, X,, and (¥ )~ are
independent with

Py(Xn €, (Bsn€-) = Py, (Xo €, (H)i=1 € ),

where A, :=P; (X, € -).

Problem 3.12. Prove that the transition kernel P defined in (3.5) is Fellerian, i.e. it
maps bounded continuous functions on X to functions of the same type [F¥ Section
1.6].

Problem 3.13. Prove Lemma 3.3.

Problem 3.14. Let (X,),>0 be a mean contractive IFS of iid Lipschitz maps. Prove
that, if EL‘;’ < oo for some p > 0, then (X;),>0 is also strongly mean contractive of
some order g < p.

Problem 3.15. Let (X, ),>0 be an IFS of iid Lipschitz maps which is strongly mean
contractive of order p # 1. Prove that there exists a complete separable metric d’ on
X generating the same topology as d such that (X, ),>0 is strongly mean contractive
of order one under d’, that is, when using the Lipschitz constants defined with the
help of d’.

Problem 3.16. Consider the IFS (X,),>¢ of random logistic maps introduced in Ex-
ample 3.10. Prove that, if Elog & < 0, then y"X,, — 0 a.s. for any p < 1 such that
logu > Elog&. What happens if Elogé = 0?

3.2 Geometric ergodicity of strongly contractive IFS

Aiming at an ergodic theorem for mean contractive IFS, we first study the simpler
strongly contractive case for which we are going to prove geometric ergodicity, i.e.
convergence to a stationary distribution at a geometric rate (under a mild moment
condition). The distance between probability distributions on X is measured by the
Prokhorov metric associated with d (the metric on X) and denoted by the same letter.
Given 41,4, € #(X), it is defined as the infimum of the & > 0 such that

MA) < (A% +8 and Ay(A) <A (A%)+6

for all A € Z(X), where A% := {x € X : d(x,y) < & for some y € A}. We note that
d(A1,22) < 1 and without proof that convergence in the Prokhorov metric is equiv-
alent to weak convergence, that is

dA,A) =0 iff A, 5 A.
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The following simple coupling lemma provides a useful tool to derive an estimate
for d(A1,12).

Lemma 3.17. Let X|,Xp be two X-valued random elements on the same
probability space (Q2,A,P) such that £(X;) = Ay and £ (Xp) = A». Then
P(d(X1,X2) > 6) < O implies d(A1,12) < 0.

Proof. The assertion follows from the obvious inequality
max{P(X; € A,X, ¢ A%), P(X; ¢ A%, X, € A)} < P(d(Xi,X2) > 5)
forall A € #(X) and 6 > 0. O

After these preliminary remarks we are ready to state the announced ergodic
theorem.

Proposition 3.18. Given a strongly contractive IFS (Xy)n>0 of iid Lipschitz
maps in a standard model such that logL| < —I for some | € R~ and

Elog™ d(x0, i (x0)) < ee, (3.17)

for some xy € X, the following assertions hold true:

(a)  Foranyx € X, the backward iteration 5(\,, converges Px-a.s. to a random
element X, with distribution T which does not depend on x and satsifies
the SFPE R _

X =¥ (X)) (3.18)
where X, is a copy of X.. independent of V.

(b) ForanyxcXandyec (1,é),

lim 7" d(X,,X..) =0 P.-a.s. (3.19)

n—oo

(c) Forany x € X, the forward iteration X,, converges to T in distribution
under Py, and 7 is the unique stationary distribution of (X,)n>0-
(d)  Under Pr, (X,)n>0 forms an ergodic stationary sequence, i.e.

IB(X07X17-~-) = IB(XI,Xz,...) Pﬂ-a.s.

implies Pr((X,)n>0 € B) € {0,1}.
(e) If (3.17) is sharpened to

Ed(xo, ¥ (x0))” < o, (3.20)
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for some p > 0 and xo € X, then geometric ergodicity in the sense that

lim " d(Py(X, € ), ) =0 (3.21)

n—soo

for some r > 1 holds true.

Before we turn to the proof of this result, some comments are in order.

Remark 3.19. A fundamental conclusion from this result is that forward and back-
ward iterations, despite having the same one-dimensional marginals, exhibit a dras-
tically different behavior. While backward iterations converge a.s. at a geometric
rate to a limit having distribution 7, the convergence of the forward iterations, nat-
urally to the same limit, occurs in the distributional sense only. Their trajectories,
however, typically oscillate wildly in space due to the ergodicity which ensures that
every T-positive subset is visited infinitely often. This is illustrated in Figure 3.1
below.

T T T T T T T T
o 50 100 150 o 50 100 150

Fig. 3.1 Ergodic behavior of the forward iterations (left panel) versus pathwise convergence of
the backward iterations (right panel), illustrated by a simulation of 150 iterations of the IFS which
picks the function y; (x) = 0.5x+ 2 with probability 0.75 and the function Y, (x) = 2x+ 0.5 with
probability 0.25 at each step.

Remark 3.20. The extra moment conditions (3.17) — in which log™ x may be re-
placed with the subadditive majorant log* x := log(1 + x) — and (3.20), frequently
called jump-size conditions hereafter, are needed beside strong contraction to en-
sure that the chain is not carried away too far in one step when moving in space.
The reader should realize that this is indeed a property not guaranteed by contrac-
tion, which rather ensures forgetfulness of initial conditions. Let us further point out
that, if any of these jump-size conditions is valid for one xy € X, then it actually
holds for all xg € X. This follows from
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d(x,%i(x)) < d(x,x0)+d(x0,i(x0)) +d(¥i(x0), ¥ (x))
(1+Ly)d(x,x0) +d(x0, ¥ (x0))

(1+e 1Y d(x,x0) +d(x0, ¥ (x0))

IAIA

IN

for all x € X.

In the following we will use P for probabilities that do not depend on the initial
distribution of (X,,),>0. For instance,

P.(X,€-) = P(¥:(x) €-)
because ¥}, ¥, ... are independent of Xj. Note also that, for any x,y € X,
(X;faxﬁ) = (l-yn:l(x)a%:l(y))a n>0

provides a canonical coupling of two forward chains starting at x and y. A similar
coupling is naturally given by (X, X3)) := (¥.n(x), ¥1.n(y)), n > 0, for the backward
iterations.

Proof (of Prop. 3.18). We leave it as an exercise [I¥° Problem 3.21] to verify that
Y'd(X,,Xe) =0 Pr-as.
for Y > 1 and a random variable X, if

Y 7' d(X), Xui1) <o Pras. (3.22)

n>0
Strong contraction implies for any y € [1,¢')

V' d(Xn, Xi1) = V' d(Pin(Xo), Vim0 Fr1 (X))
< B"d(Xo,%¥+1(Xo))

= B"d(x,¥41(x)) Pr-as.

A

for any x € X, where 8 := ye~' € (0,1]. Now use (3.17), by Remark 3.20 valid for
any x € X, to infer

Y BV AR K1) > €) < Y B(B"d(x, W1 () > €)

n>0 n>0
= Y P(logd(x, % (x)) > loge +nlog(1/B))
n>0
_ log(1/e) +Elog"d(x,¥i(x)) _ _
- log(1/B)

for any € > 0 and thus Z,(y) := y"d(X,,X,+1) — 0 Py-a.s. for any y € [1,¢') by an
appeal to the Borel-Cantelli lemma. But the last conclusion further implies (3.22),
because
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Y VdE %) < ¥ (g)’znw) < w

n>0 n>0

for any 1 <y < B < é!. This completes the proof of (b) and the first part of (a). As
d(X}. X)) = d(Prn(x), () < € "d(x,y) P-as,

we see that X, and its distribution are the same under every Py. Also, (W5 )n>2 being
a copy of (Wi:n)n>1, we find that ¥.,(x) converges a.s. to some X/, not depending
on x and with the same law as X... Finally, the asserted SFPE (3.18) follows from

X = lim ¥ (%4 () = % (

n—soo

lim ¥,,(x)) = W(XL) Pas.
where the continuity of ¥; enters in the second equality. This completes the proof
of (a).

As for part (c), the first assertion is obvious from (a) because X, 4 )?n under each
P, and therefore each Py, A € &2 (X). But this also implies that £ must be the unique
stationary distribution of (X,),>0. Indeed, any stationary 7’ satisfies

[ wdn) = Eer() "5 [ £ a(dx)

for all f € €,(X) and thus 7’ = 7 because the class 6},(X) is measure-determining.

The proof of (d) forces us to make an excursion into ergodic theory and fol-
lows the argument given by ELTON [25, p. 43]. First of all, we may w.l.o.g. ex-
tend (¥,),>0 to a doubly infinite sequence (¥,),cz of iid Lipschitz maps. This se-
quence is ergodic [ Prop. A.1], which in the terminology of ergodic theory means
that the shift .7} : (..., w_1, W0, ¥1,...) = (..., Wo, Y1, V2, ...) consitutes a measure-
preserving ergodic transformation on (61, (X)Z, 7%, A%). Next, fix any x € X and
define the doubly infinite stationary sequence

Y, =lmY¥;,(x), ncZ
k—yoo

which is clearly a function ¢, say, of (¥,),cz and does not depend on the choice
of x (by part (a)). Let I' denote its distribution and notice that ¥} = X.. as well
as P((Yy)n>0 € -) = Pr((Xn)n>0 € ). The stationarity of (¥,),cz means that the
shift . : (...,x_1,X0,x1,...) = (..., X0,X1,X2,...) is @ measure-preserving transfor-
mation on (X%, 2(X)%,I"). Now the ergodicity of .#5, and thus of (¥,),cz, fol-
lows because %3 is a factor of A1, viz. o .S = S o ¢ a.s. for the measure-
preserving map @ : (67;,(X)Z, 2, AZ) — (X2, B(X)2,I'), defined by (Wp)nez —
(Hmsupy_,e W_kin(x))nez [*¥ Prop. A.2 in the Appendix and before for further in-
formation].

Turning to (e), assume (3.20) for some p > 0, w.l.o.g. p < 1. Then it follows with
the help of the subadditivity of x — x” on R> that, for any s > 0,
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Po(d(X,,X0) > 5") < §PE d(X,,X0)?

< 5" Y Ed(Xe, Xt
k>n

= " Y Ed(Pia(x), Prar1 (x)?
k>n

< (se”)PEd(x, ¥ (x))" Y e MP

k>0
_ (Se—l)and(xv'yl(x))p

1—elp

The last expression is ultimately bounded by o(1)s™" as n — oo if (se~!)? < s~ or,
equivalently, 1 < s < e? with g := p/(p+1). Hence, for any such s we have shown
that

lim 5" Py (d (X, Xeo) > s7") =0,

n—oo

and this entails (3.21) for r € (1,s) by an appeal to Lemma 3.17, for (X, X..) con-
stitutes a coupling of Py (X, € -) and & under P,. a

Problems

Problem 3.21. Given a sequence (X,),>0 of random variables taking values in a
complete metric space (X,d), prove that

Z d(Xy,Xnt1) <o P-as.

n>0

implies the a.s. convergence of X, to a random variable X... More generally, if

Zan (X, Xnt1) <o P-as.
n>0

holds true for a nondecreasing sequence (a,),>0 in R, then

lim a,d(X,,X-) = 0.

n—soo
Problem 3.22. The proof of part (e) of Prop. 3.18 has shown that (3.21) holds true
for any r € (1,eP!/(P*1) provided that p < 1 in the jump-size condition (3.20).
Show that this remains valid in the case p > 1 as well. [Hint: Show first that

(Ed(x, ¥ (x))7) "
1

(Ed(X,, X)?) 7 < el

1—e"

and then argue as in the afore-mentioned proof.]
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Problem 3.23. Suppose that ¥, ¥, ¥, ... are iid Lipschitz maps on a complete met-
ric space (X, d) such that, for

for some xo € X. Define ¢ :=inf{n > 1: ¥, = x¢} and then the pre-G-occupation
measure

E(A) = E <GZ] IA('Pn;l(xo))> s A€ M,
n=0

where ¥ (x) = x. Show that 7 is the unique stationary distribution of the strongly
contractive IFS generated by (¥,)n>1.

3.3 Ergodic theorem for mean contractive IFS

We will now proceed with the main result of this chapter, an ergodic theorem for
mean contractive IFS of iid Lipschitz maps. The basic idea for its proof is taken
from [3] and combines our previous result for strongly contractive IFS with a re-
newal argument based on the observation that any weakly contractive IFS contains
a strongly contractive one. Before dwelling on this further, let us state the result we
are going to prove in this section.

Theorem 3.24. Given a mean contractive IFS (X,)n>0 of iid Lipschitz maps
in a standard model which also satisfies the jump-size condition (3.17) for
some and thus all xo € X, the following assertions hold true:

(a) Foranyx € X, the backward iteration 5(\,, converges Py-a.s. to a random
element X.. with distribution T which does not depend on x and satisfies
the SFPE (3.18).

(b)  For some y> 1 and any x € X, (3.19) holds true, that is

lim Y d(X,,X.) =0 Py-a.s.
n—yoo
(c) For any x € X, the forward iteration X, converges to T in distribution
under Py, and 7 is the unique stationary distribution of (X,)n>0-
(d)  Under Pg, (X,)n>0 forms an ergodic stationary sequence.
(e) If, for some p > 0, (X,)n>0 is even strongly mean contractive of order p
and satisfies the sharpened jump-size condition (3.20), then geometric
ergodicity in the sense of (3.21) for some r > 1 holds true.

Remark 3.25. In view of Problem 3.14, the assumptions of (e) could be relaxed to

EL <o and Ed(xo, ¥ (x0))” < oo (3.23)
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for some xo € X and p > 0.

For the rest of this section, the assumptions of Theorem 3.24 will always be in
force without further mention. We embark on the crucial observation that, given
a weakly contractive IFS (X, ),>0 of iid Lipschitz maps with Lipschitz constants
Li,L,,..., the SRW

n
So:=0 and S :zZlong forn>1
k=1

has negative drift. Hence we may fix any / > 0 and consider the SRP of a.s. finite
level —I ladder epochs, defined by oy := 0 and

0, :=inf{k >0, 1: 8 —S;s,_, < -1}

for n > 1. For simplicity, we choose [ such that P(o; = 1) > 0 and thus (G,)x>0 is
1-arithmetic. The following lemma is basic.

Lemma 3.26. The embedded sequence (Xg, )n>0 forms a strongly contractive
IFS of iid Lipschitz maps satisfying (3.17), and the same holds true for the
sequence (Y,)n>0, defined by Yy := Xy and

Yn = 'ZPG,,—I‘FI:Gn © 000 ® llll:o-l (XO)
forn>1.
Proof. Plainly, Xo, = @1 (Xo) With @y := o, , 11 € ©1ip(X) for n > 1. Since

(0n)n>0 has iid increments, one can readily check that @, ®,, ... are iid as well.
Moreover, by (3.7),

logL(®1) = logL(¥5,0...0¥) < S5, < —I

which a confirms the strong contraction property. In order to verify the jump-size
condition (3.17), i.e.
Elog+d(x0,‘f’61;1(xo)) < o0

for some and thus all xp € X, we will use log" x < log*x := log(1 +x) and the
subadditivity of the latter function. With S} := Z/;: log” L; for k > 1, we infer

n=1

o1—1
log d(xo,%¥s,:1(x0)) < log <d(xo,‘1’crl (x0)) + Z d("Pclthrl(x0)7q161:n(x0))>

IN

O]
log (Z 59175 d (xo, ‘E,(xo))>
n=1

< log (esgl i d(Xo,‘f’n(xo))>

n=1
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O
< Sg + Y log*d(xo, ¥(x0)), (3.24)

n=1

whence, by using Wald’s equation,
Elog* d(x0, ¥y (x0)) < (Elog" Ly +Elog"d(x0, ¥ () ) Eoy < e

as claimed.

Turning to the sequence (Y,),>0, it suffices to point out that it is obtained from
(X5, )n>0 by reversing the iteration order within, and only within, the segments
determined by the o, [ Fig. 3.2]. In other words, the &, are substituted for
d =% | i1.,, Which are still iid and satisfy L(®;~) < —[ a.s. Again, the bound
(3.24) is obtained, when embarking on

10g d(anlPl:Gl (xO)) < log (d(XOalPl(xO» + i d(lPl:n—l(XO)ylPl:n(xO))> .

n=2
The rest is straightforward. a
Xoyi | o, | [Bo oyt | o[ Boy |
Y, : ‘lp(,"ﬁ]...lp%‘ 'f/qlfﬁl...'f/,,”fl’ "I’l...lf’c]‘
¥, =%, : ’lfq...%l ‘%ﬂfﬁl...q@nil‘ ’%HH...%"‘

Fig. 3.2 Schematic illustration of how the blocks of ¥}’s determined by the ¢, are composed in
the definition of Xs,,Y, and ¥, = X, .

The reason for introducing (¥}, ),>0 becomes apparent when observing the follow-
ing twist: the backward iterations of (X,),>o at the ladder epochs oy, i.e. ()?G,,)nzo’
are not given by the backward iterations of the IFS (X,,),>0 but rather of (¥;),>o0,
thus (17”)”20. By the previous lemma in combination with Prop. 3.18, we infer the
P,-a.s. convergence of Y, to a limit not depending on x, which is clearly the candi-
date for the a.s. limit of )?n and therefore denoted X...

Let us define 7(n) := inf{k > 0: o} > n} forn > 0, and
Cp = d(Xo, Py (Xo))V max {d(¥, ,+1x(X0), %, ,+1:0,(X0))}
0,1 <k<0op
= distance between @, (Xo) = ¥, ,+1:5,(Xo) and the set
{X0, ¥, ,+1(X0), ¥, ,+1:6,_ 1+2(X0), -, ¥5,_+1:0,—1(X0)}  (3.25)

for n > 1. By the elementary renewal theorem [/ Lemma 2.1(e) and ()],

n't(n) > u™' aswellas n 'Et(n) - pu !,
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where it = (1) := Eoy. Under each P, the C,, are clearly iid, and a standard renewal
argument shows that Cy(,) converges in distribution to a random variable C. [5<°
Problem 3.30]. However, the really needed piece of information about Cy(,) will be
a consequence of the following lemma.

Lemma 3.27. For any x € X, E,log" C| < o and hence n~'log™ C, — 0 as
well as e " C,, — 0 Py-a.s. for each € > 0.

Indeed, as T(n) — oo, the last assertion particularly implies

lime "™ Cpy =0 Pyeas. (3.26)

n—soo
forall x € X and € > 0.

Proof. Fix any x € X. By proceeding as for (3.24), we find

logCy < log (d(xo7‘f’1(xo)) + i d('ﬂ:n—1(Xo),‘P1:n(Xo))>
n=2

IN

log ()G:' esﬂd(Xo,%(Xo)))
n=1

IN

O
So, + Z log*d(Xo,¥,(X0)) Py-as.
n=1

and the last expression has finite expectation under PP, by an appeal to Wald’s equa-
tion. As a consequence, n~ ' log* C, — 0 P,-a.s., and this is readily seen to also give
e €"C, — 0P-a.s. forall € > 0. O

The crucial estimate of d ()?,,,)?oo) in terms of the previously introduced variables
is provided in a further lemma.

Lemma 3.28. For alln > 0 and x € X, the inequality

~ ~

d(Xn, X)) < ei(T(n)il)ZCT(n)-l-d(?f(n),}/(\oo) Py-a.s.

holds, where Cy := 0.

Proof. Using the strong contraction property of (17”),,20 and ¥, — X., Py-as., we
obtain

o~

d(Xn, Ye() +d (Vi) Xeo)
1

d(X, Xer) :
)=1) CT(">+d(?T(n>’§°°) P.-a.s.

IN

< e (tn

and this is the asserted inequality. a
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Proof (of Theorem 3.24). (a) Recall that X., equals the P,-a.s. limit of ¥, = X,
for each x € X. By combining this with (3.26) and the previous lemma, the a.s.
convergence )?n — X., under each P, follows. The SFPE for X.. is obtained in the
same manner as in the proof of Prop. 3.18.

(b) First note that, by Prop. 3.18(b),

lim 7" d(¥r),X) =0 Preas
for some B > 1. Since n~'7(n) — u~! P-a.s., we can pick € > 0 and y > 1 such that
y"/*n) < B and y"e~ (*W=1) < ¢=€7(") P_a 5. for all sufficiently large n (depending
on the realization of the 7(n)). By another use of Lemma 3.28, we then infer

-~

Y'd(X, Xeo) < y"e TN Oy 4 (y/7 )T d(?‘r(n)a)?w)
< el —l—ﬁrn)d( (n),)/(\w> P.-a.s.

for all sufficiently large n and any x € X, and this yields (3.19) upon letting n tend
1o oo,

(c) and (d) follow again in the same way as in the proof of Prop. 3.18.

(e) Now assume strong mean contraction of order p, w.l.o.g. 0 < p < 1, and
(3.20). Put p := (EL?)!/P = (EeP®1)!/P. Using the independence of S, and ¥, 1 (x)
for all n € Ny and x € X, a similar estimation as in the proof of part (e) of Prop. 3.18
leads to

AN
%
ﬁ
S:
“><>
"»3

Px(d()?m}?w) > an) S

IN
5
&
=
=
U
~
T
=~
+
-
<

IN

S Y EePhd(Wa(x), Yras (x)”

k>n

(sp)""Ed(x, Wi (x))” Y p**
k>0

np Ed(x, W1 (x))P
1—p?

IN

= (sp)

for s > 0. It follows that

-~

lim 5" Py (d (X, Xo0) > 57") =0

n—oo

for 1 < s < p~P/(*1)_and once again this entails (3.21) for r € (1,s) by an appeal
to Lemma 3.17. ad
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We close this section with a result on the existence of moments of 7, more pre-
cisely of

o~

/X d(x0,%)” m(dx) = Ed(xo,X.)"

for any fixed xp € X and p > 0. In the case of Euclidean space X = R™ for some
m > 1 with the usual norm d(x,y) = |x — y| and xo = 0, this means to consider

/ x? 7(dx) = E[X.|?.

Rm

The following theorem is due to BENDA [10, Prop. 2.2] for p > 1; for a weaker
version see [3, Theorem 2.3(d)]. It does not only complement the main result of

this section, but will also be useful in connection with the implicit renewal theory
developed in Chapter 4.

Theorem 3.29. If (X,),>0 is strongly mean contractive of order p > 0 and
satisfies the corresponding sharpened jump-size condition (3.20), i.e. EL’I’ <1
and Ed(xo, ¥ (x0))? < o for some/all xg € X, then

Ed(x0,X..)" — / d(x0,x)” m(dx) < oo
X

for some and then all xy € X.

Proof. Put B := JELf =EePS1. If p < 1, we infer by using the subadditivity of x — x”
and the model assumptions that, for any xy € X,

p
Ed(x0,X)" < E <d(XO,‘P1(XO)) + Y d(Fe1 (x0), oy 1 (XO)))

n>1

IA

Ed (xo, ¥ (x0))” + Y, Ee?>"d (x0, W1 (x0))”
n>1
< Ed(xo, % (x0))" Y Eel™
n>0
- Ed(xgﬂf’l(xo))p
= 7" T <L oo
1-B

In the case p > 1 we can use Minkowski’s inequality, which also holds for infinitely
many summands, to obtain in a similar manner

ld(x0, X[, < d(x07‘1’1(x0))+Zd(%:l(xo),%ﬂﬂ(xo))
n>1 p
< ld(xo, i (x0) [l + Y, lle®d(xo, W1 (x0) I

n>1
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< Jld(xo, ¥ (x0)llp Y lle™ 1,
n>0
_ Ed(x(),lpl(x()))p
= —— " < oo,
1-Bl/r
This completes the proof. a

Problems

Problem 3.30. Use a renewal argument to prove that C,, defined in (3.25) converges
in distribution to a random variable C., with cdf

1
Pi(Cuo<t) = — Y Pi(o1 >n,Ci <1), tE€Rs.

n>0

[Recall that / in the definition of ; was chosen such that o; is 1-arithmetic.]



Chapter 4

Power law behavior of stochastic fixed points
and implicit renewal theory

The previous chapter has shown that any mean contractive IFS (X,,),>o of iid Lips-
chitz maps ¥, ¥, ... converges in distribution to a unique stationary limit 77 which
is characterized as the unique solution to the SFPE

X £ w(x) (4.1)

where ¥ denotes a generic copy of the ¥, independent of X. In the following, we
will deal with the problem of gaining information about the tail behavior of & =
P(X € -), more precisely, the behavior of

P(X >¢) and/lor P(X < —t) ast— co.

If they are asymptotically equal to a nonzero constant times a power |t|® for some
© > 0, we say that X (or 7r) exhibits a power law behavior.' For the case when ¥ (x),
for x large, is approximately Mx for a random variable M, GOLDIE [34] developed
a method he called implicit renewal theory, which allows to establish power law
behavior of X under appropriate moment conditions on M. The present chapter is
devoted to a presentation of his main results.

4.1 Goldie’s implicit renewal theorem

Given an SFPE of type (4.1) with ¥ (x) ~ Mx for a random variable M if x is large,
Goldie’s basic idea to study the asymptotics of P(X > ) and P(X < —f) ast — oo is
to consider the differences

P(X >1)—P(MX >t) and PX < —1)—PMX < —1)

! In some papers like [22] it is alternatively said that X has algebraic tails.

103
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as t tends to co. Additionally assuming that M is nonnegative, the renewal-theoretic
character of this approach becomes immediately apparent after a logarithmic trans-
form. Put Y :=logX ™, & :=logM and G(t) :==P(Y >1) forr € R. Since M and X
are independent, we infer for A(¢) :=P(X > e') — P(MX > ') that

Ar) = G(r) —/G(t—x) P& edx), teR, 4.2)

or, equivalently, the renewal equation G = A + G x Q with Q := P(& € -) holds.
However, unlike the usual situation [5=¥" Section 2.7], the function A is also unknown
here and indeed an integral involving G. That renewal-theoretic arguments still work
to draw conclusions about G is the key feature of the approach and the following
result in particular. It will be made more precise in the next section.

Theorem 4.1. [Implicit renewal theorem] Let M, X be independent random
variables such that, for some ¥ > 0,

(IRT-1) E|M|® =1.

(IRT-2) E|M|?log" M| < oo.

(IRT-3)  The conditional law P(log|M| € -|M # 0) of log |M| given M # 0 is
nonarithmetic, in particular, P(|M| =1) < 1.

Then —oo < Elog|M| <0, 0 < py := E|M|®log|M| < oo, and the following
assertions hold true:

(a) Suppose M is a.s. nonnegative. If
/ IP(X > 1) —P(MX >1)[t° ' dt < = (4.3)
0

or, respectively,

/ IP(X < —1) —P(MX < —1)|t° " dt < oo, (4.4)
0
then

lim " P(X > 1) = C, 4.5)
respectively

lim P P(X < —1) = C_, (4.6)

where C and C_ are given by the equations

C. = [T (P& > 1)~ PMX > 1)) di, @.7)
Uy Jo

c = — [T(Bx<-t)-BMX <-0)*Tdr.  @48)

My Jo
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(b) IfP(M < 0)>0and (4.3), (4.4) are both satisfied, then (4.5) and (4.6)
hold with Cy = C_ = C/2, where

1 5}

C = —
Uy Jo

(P(X| > 1) —P(|MX| >1)) > dr.  (4.9)

The proof of this result naturally requires some work which will be carried out
in the Section 4.3. Let us rather point here as in [34] that the theorem has real
content only if E|X|? = oo, because otherwise, by the independence of M and X and
condition (IRT-1),

1

€= (E|x|l’—E|Mx|l’) - %ME|X|19<1—IE|M|’9> -

in which case (4.5) and (4.6) take the form

lim P P(|X| > 1) = 0,
t—>oo

Naturally, this follows also directly from ¥ P(|X| > 1) < E1{|X‘>,}|X|ﬂ — 0. We
thus see that the “right” choice of M and ¥ is crucial.

The next corollary specializes to the situation where X additionally satisfies the
SFPE (4.1) for a Borel-measurable random function V.

Corollary 4.2. Let (Q,2,P) be any probability space, ¥ : Q xR - R a
AR HB(R)-measurable function and X , M further random variables on Q such
that X solves (4.1) and is independent of (¥',M). Suppose also that M satis-
fies (IRT-1)-(IRT-3). Then, in Theorem 4.1, conditions (4.3) and (4.4) may be
replaced by (the generally stronger)

E|(®(X)")? — (MX)")?] < e (4.10)

and
E[(P(X)")? - (MX)")?| <o 4.11)

respectively, and the formulae in (4.7), (4.8) and (4.9) by

c, = ﬁE((W(X)*)l’—«MXW’), @.12)
1 _ _
c. = ﬂ—ME(woc) )’ = ((Mx)7)?), 4.13)

and
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1

cC=—
Bly

E(|®(X))° - MX]?), (4.14)

respectively.

The proof with the help of Theorem 4.1 is quite simple and provided after the
following lemma.

Lemma 4.3. Let X,Y be two real-valued random variables and © > 0. Then

1

/0w|]P’(X>t)—}P’(Y>t)|tﬂ_1 dr < 5H«:’(;ﬁ)l’—(xﬁ)ﬂ . (4.15)

finite or infinite. If finite, absolute value signs may be removed to give

/Ow (P(X >1)—P(¥ > 1)) dr = %E((X*)” —(Y*)l’). 4.16)

Proof. Problem 4.6. a

Remark 4.4. The previous lemma bears a subtlety that is easily overlooked at first
reading (and has actually been done so also in [34]). If F, G denote the df’s of X, Y,
then (4.15) may be restated as

/OW\F(;)—G(t)]zl’*‘ dt < %E (xH? —(r")? (4.17)

and holds true for every (F, G)-coupling (X,Y) on some probability space (2,2, P),
which means that £ (X) = F and .Z(Y) = G. Moreover, any such coupling having
E|(XT)? — (Y*)?| < oo leads to the same value when removing the absolute value
signs, namely the left-hand integral in (4.16), i.e.

/Om (F(1)— G(1))1*~" dr.

This is trivial if E((XT)? and E((Y*)? are finite individually, but requires a proof
otherwise.

Concerning inequality (4.17), it is natural to ask whether equality can be achieved
by choosing a special (F,G)-coupling (X,Y). This is indeed the case when X =
F~Y(U) and Y = G~'(U), where U is a Unif(0,1) random variable and F~!,G~!
the pseudo-inverses of F,G, defined by F~!(u) := inf{x € R: F(x) > u} for u €
(0,1). The reader is asked for a proof in Problem 4.6.

Proof (of Corollary 4.2). By combining the SFPE (4.1) with the previous lemma,
we see that (4.3) turns into
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oo > / P(P(X) >1)—P(MX >1)|t° " dt
0
= E[(¥(X)")” — (MX)")”]

which is condition (4.10). Since all other asserted replacements follow in the same
manner, the result is proved. a

Problems

Problem 4.5. Prove that, if at least one of (4.3) and (4.4) is valid, then these condi-
tions hold together iff

/ IP(X| > 1)~ P(MX| > )| > dr < . (4.18)
0
Problem 4.6. Prove Lemma 4.3 and, furthermore, that
- 1
/ F(t)— G(t)| " dr = 5E‘(F—l(u)ﬂﬂ‘—(G—l(u)+)ﬁ (4.19)
0

where F~!, G~ and U are as stated in Remark 4.4.

4.2 Making explicit the implicit

Let us take as a starting point a two-sided renewal equation of the form

G(r) = A(r) + / G(t—x) 0(dx), tER,
asin (4.2), where G, A : R — R are unknown bounded functions vanishing at oo, i.e.

limG(t)=0 and limA(¢)=0,

—ro0 t—oo
and Q is a given probability measure with mean g < 0. Let U:= Y ,~( Q™" denote its
renewal measure. The goal is to determine the precise asymptotic behavior of G(t)
as t — oo. Although we have studied only standard renewal equations in Section 2.7,
where G,A and Q vanish on R, it is reasonable to believe and sustained by an
iteration argument that G = A = U. In fact, if A U exists, this only takes to verify
that lim,, . G*x Q™" (¢t) =0 for all > 0, as

n—1
G(t) = Y A«0™*(t) + GxQ™(r), teR
k=0
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for each n € N. But with (S,),>0 denoting a SRW with increment distribution Q and
thus negative drift, it follows indeed that

lim Gx Q™ (t) = limEG(r—S,) = 0

n—oo n—oo

by an appeal to the dominated convergence theorem and G(¢) — 0 as 1 — eo.

So far we have not really gained any new insight because an application of the
key renewal theorem 2.67 to G(r) = A xU(z), if possible, only reconfirms what
we already know, namely that G(f) — 0 as t — oo. On the other hand, defining
Go(t) := ¥ G(t), Ag(t) := ¥ A(t) and Qg (dx) := e%*Q(dx) for 6 € R, we find as
in Lemma 2.43 that Gg solves a renewal equation as well, viz.

Golt) = A6()+ [ Golt—x) Qold), 1eR.

Hence, if Q possesses a characteristic exponent 1, defined by the unique (if it exists)
value # 0 such that ¢ () = [e?* Q(dx) = 12, it appears to be natural to use this
renewal equation with & = ¥ which should lead to Gy = Ay * Uy, Uy :=},~0 OF'»
and then to the conclusion that G (¢) converges to a constant as t — o by an appeal
to the key renewal theorem, thus

lime¥' G(r) =C

t—eo
for some C € R which in the best case is # 0. Naturally, further conditions must
be imposed to make this work for us. They are stated in the following proposition
together with the expected conclusion. Let us mention that 9, if it exists, is neces-
sarily positive and that Q» has positive, possibly infinite mean. This follows from
the fact that the mgf of Q, i.e. 9o(8) = [ €%  Q(dx), is convex on its natural domain
Dy and that ¢’(0) = [xQ(dx) < 0.

Proposition 4.7. In addition to the assumptions on G,A and Q stated at the
beginning of this section suppose that Q is nonarithmetic and possesses a
characteristic exponent & > 0 and let [y = [xe®* Q(dx) denote the (posi-
tive) mean of Qy. Also assume that A is dRi and

/ " e A()| dx < oo. (4.20)

—oo

Then G=A+ G+ Q implies G= A «U and

1 00
lime”'G(t) = — [ e A(x) dx, (4.21)
t—>oo ”19 —

which, by our usual convention, equals O if [Ly = oo.

2 In Subsection 2.7.1, a slightly different definition has been used for bounded measures on R
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Proof. First note that, since A is dRi and (4.20) holds, the function Ay is dRi as well
[*=" Problem 4.8]. This in combination with the uniform local boundedness of Uy
[*=" Lemma 2.64] implies that Ay *x Uy is everywhere finite. We have already argued
above that G = A U so that Gy = Ay * Uy. Therefore, assertion (4.21) follows by
an appeal to the (nonarithmetic version of the) key renewal theorem 2.67. O

The previous result should be kept in mind as a kind of general version of what
is actually derived for special triples G, A and Q in the proof of the implicit renewal
theorem we are now going to prove.

Problems

Problem 4.8. [¥¥ also Lemma 2.28] Let g : R — R be a dRi function and 6 € R be
such that gg (x) = e%*g(x) is Ag-integrable. Prove that gg is then dRi as well.

Problem 4.9. [Two-sided renewal equation] Prove that, given a two-sided renewal
equation G = g+ G * Q with a dRi function g and a probability measure Q on R, the
set of solutions equals

{a—i—g*U ta € R},

where U denotes the renewal measure of Q.

4.3 Proof of the implicit renewal theorem

It suffices to show (4.5) and the formula for C in the respective parts (a) and (b)
because the other assertions follow by considering —X instead of X. The proof will
be carried out for the three cases

M>0as., PM>0)APM<0)>0 and M <O0as.

separately and frequently make use of the following notation most of which has
already been used earlier. Let X, M, M}, M>, ... be independent random variables on
a common probability space (£2,2(,IP) such that M, M|, M5, ... are further identically
distributed. Then

n
Ih:=1 and II,:=][][M; forn>1,
k=1

§:=logM|, Q:=2(S),

n
& :=log|M,|, So:=0 and S,:=log|Il,|=)Y & forn>1,
k=1

U:=) 0"=Y P(Sac-), Up(dx):= ¥ U(dx),

n>0 n>0
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P(X >¢'), Go(t):=e"G(r),
Alt):=P(X > ) —P(MX >¢'), Ag(t):=e”A(r) for6,rcR,

F):= /(;m t] =79 £(x) Ro(dx) = Ef(t—Z) for suitable f: R — R,

where Z is a standard exponential random variable. The function f has already been
introduced in Subsection 2.6.1 and called exponential smoothing of f. Recall from
Lemma 2.30 there that f is dRi whenever f € L!. The next simple lemma further
shows that exponential smoothing is preserved under convolutions with measures.

Lemma 4.10. Let f : R — R be a measurable function and 'V a finite measure
on R such that f as well as f*V exist as real-valued functions on R. Then

f*V=FxV. (4.22)
and f = g+ f*V for a measurable function g with exponential smoothing g
implies f =g+ f V.
Proof. W.l.o.g. suppose that |V|| = 1. Let ¥,Z be independent random variables
such that £ (Y) =V and .Z(Z) = Exp(1). For (4.22), it then suffices to note that
fxV(@t) = Ef(t—Y—2Z) = f=V(t)

for all ¢+ € R, while the last assertion then follows from

f=gt+tf*xV =g+f*xV =g+ fx*V.
having used that exponential smoothing is a linear operation. a

By combing this lemma with next one, we will be able to use exponential smooth-
ing when studying the asymptotic properties of the function Gy in the proof of the
implicit renewal theorem.

Lemma 4.11. [Smoothing lemma] If P(X > t) satisfies

1 1
lim =~ [ x’P(X >x)dx = Cy

t—=oo f Jo

for some ¥ > 0.and C;. € R, then (4.5) holds true as well.

In other words, if the Césaro smoothing of % P(X > t) converges to some C.,,
then so does the function e? P(X > 1) itself as 1 — oo,
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Proof. Fixing any b > 1, we infer
bt t
Ci(b—1)t ~ / XU P(X > x) dx — / xPP(X > x) dx
0 0
bt
= / xPP(X > x) dx
t

bt
< ]P’(X>t)/ x? dx
t

_ - 1ﬂ”'IP’(X >1)
O+
and thereby
b—1
PP -
htrgglft PX>t) > CL(O0+ 1)b19+1 1

Now let b tend to 1 and use

im2 1 !
bl BT —1 9 +1

to conclude liminf, ,.t® P(X > ) > C,.
By an analogous argument for 0 < b < 1, one finds that

t 1 _b19+1
Cr(1—b) =~ / PPX > x)dx >~ FIP(X > 1)
bt v+ 1
which upon letting b again tend to 1 yields limsup,_,..t° P(X > ) <C,. O

In view of this lemma, it suffices to verify t ! [ x® P(X > x)dx — C; ast — oo
instead of (4.5), and since

1 rt 1 [logr
;/ X P(X > x) dx = ;/ PTUYP(Y > &%) dx
0 C

1 logt
A L " Gy (x) dx

logt
= / ¢~ 102 G o (x) dx

J —oo

Gy (logr)

this means to show that o
lim Gﬁ(f) = C+.

t—o0
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4.3.1 The case when M > 0 a.s.

Rewriting (IRT-1)-(IRT3) in terms of & = log M, we have

(IRT-1)  [|Qs]| = Ee®® =1.
(RT-2) [ xQy(dx)= EeP$E+ < oo

[thus 0 < py = [xQy(dx) = EePS & < oo as explained before Prop. 4.7].
(IRT-3) Qg is nonarithmetic.

We have already argued for this case that G = A+ G+ Q, G = A U and thus
Gy =AsxUy. As

/ s (x)| di = / IP(X > ¢*) — B(MX > &")| ™ dx
= / IP(X > 1) —P(MX >1)[t°"" df,
we see that Ay € L! by (4.3), and also (when removing absolute values)
: / T As(x)dx = C
—_— 9\ X)ax = .
Uy J—eo ’
By Lemma 2.30 and (2.23), Ay is dRi and py' [7 Ag(x)dx = C; as well. Now

use Lemma 4.10, the smoothing lemma 4.11 and the key renewal theorem 2.67 to
conclude

. R J— 1 o
lim Gy () = lim Gy(r) = lim Ay x Uy (1) = oy _wAﬂ(x) dx = Cy
as claimed.

4.3.2 The case when P(M > 0) A\P(M < 0) >0

The main idea for the proof of the remaining two cases is to reduce it to the first
case by comparison of X with II;X, where

. 1 it My >0,
c:=inf{n>1:1, >0} = 1. i
inf{n >2:M, <0}, otherwise.

Plainly, o is a.s. finite, and we may thus hope to be successful in our endeavor if Il
satisfies (IRT-1)-(IRT-3).

The reader should keep in mind that, besides (IRT-1)-(IRT-3) for M, we are now
always assuming (4.3) and (4.4), or, equivalently [ Problem 4.5],

/ A% (x) dx :/ IP(X| > 1)~ P(MX| > 1)|*V dr < oo,
—oo 0
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where A*(x) := e%*A*(x) as usual and
A*(x):=P(X| > ") —P(|MX| > ¢*), x€R.

We begin with a lemma that verifies (IRT-1)-(IRT-3) for I1,.
Lemma 4.12. The stopped product Iy = 5 satisfies the conditions (IRT-1)-
(IRT-3), i.e.

EIZ =Ee¥o =1, EIZlog" Iy = Ee?So S < oo,
and the law of log Il given Ils # 0 is nonarithmetic. Moreover,

EITZ logIT; = Ee?So S5 = 2.

Proof. First note that (|IT,|?),> constitutes a nonnegative mean one product martin-
gale with respect to the filtration .%, := o (Ily,Mj,...,M,) for n > 0. As usual, put
Foo = 0(Up>0-%n). As in the proof of Theorem 2.68, define a new probability

measure P on (Q2,%.) by
P(A) := E|IT,|°14 = Ee®®1, forA € .%, andn > 0.
Then M|, M5, ... are still iid under P with common distribution
P(M; € B) =E|M,|®15(M;), B < B(R).
Equivalently, (S,),>0 remains a SRW under P with increment distribution
P(& € B) =Ee®®115(8) ,Be A(R),

and drift E&; = Ee®$1&, = py. It is shown in Problem 4.15 that ¢ is a.s. finite and
has finite moments of any order under IP. The almost sure finiteness ensures that, for
any A € %,

P(A)= Y. P(AN{o =n}) = Y B[ 1an(on} = ElT5|"14,

n>1 n>1

for AN{oc =n} € %, for each n > 1. Choosing A = Q, we particularly find that
E|Hg|’9 = 1. Next, use the .%s-measurability of S5 and Wald’s equation to infer

[

Beest - fss < B (y;) _ Ref o
k=1

which is finite because Eo < oo and I@éf =E[M|?log" |M| < e by (IRT-2). But
then, by another use of Wald’s equation,
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Ee?S0Ss = ESy = E&Ec = usEo = 2uy,

where Eo = 2 is again shown as a part of Problem 4.15.
Finally, use [and prove as part (c) of Problem 4.15] that

P(So €I #0) = pO-+(1—p)* ¥ p" 07«07, (4.23)

n>0

where p:=P(M > 0), Q- :=P(£ € -|M > 0) and Q. :=P(§ € -|]M < 0). Since,
by (IRT-3), at least one of Q. or Q- is nonarithmetic, the same must hold for the
conditional law P(Ss € -|II5 # 0) as one may easily deduce with the help of FT’s
[=" again Problem 4.15]. O

Lemma 4.13. If (4.3), (4.4), and thus (4.18) are valid, then
/ IP(X| > 1) — P(ToX| > )| 1% dr < oo, (4.24)
0

holds true as well and, furthermore,
1 5]
—/ (P(X|>1)—P(X| >1))*Vdt = C  (425)
2us Jo

for C as defined in (4.9).
Proof. First observe that, for all # > 0,
IP(1X| > 1) —P(|sX| >1)]

= lim |P(|X| > t) = P({HonmX| > 1)]
m—oo

o/A\m
E ( Y 1) (1 X]) - l(t.,oo)(HnX)> ‘

n=1

(Zl{0'>n}( (t,00) |Hn 1X[) - t°°)(|H”X|))>|

y ’]P’ (6 >n,|[IT,_1X| > 1) —P(c > n, |IT,X| >t)‘.

n>1

= lim
m—soo

= lim
m—yoo

IN

Consequently, defining P, (ds) :=P(c > n,IT,_; € ds) for n > 1, we obtain
/ IP(X| > 1) = P(/ToX| > )| £~ ar (4.26)
Jo

< Z/ ‘IP’ o >n, |, (X|>1)— IP’(GZn,|H,,X|>t)’ﬂ9*' dt

n>1

WA

n>1

|X\ > ) —IP(|MX| > 2) P.(ds)| ® " dr
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) ! AN
g/u«/o P (x> 3) =2 (x> )] (5) ars® 'y
</ow [P(X] > 1) = P(MX]| > )] dt) Y Elggon M,

n>1

IN

where the independence of ({¢ > n},IT,_1) € o(ITy,M},...,M,_1) and (M,,X) has
been utilized for the third line and the change of variables 7 /s ~~ ¢ for the last one.
In view of the fact that (4.18) holds true, it remains to verify for (4.24) that the last
series, which may also be written as E(Y.°_, |IT,_|?), is finite. To this end, let P be
defined as in the proof of Lemma 4.12. Then

an = E1{6>}1}|IIII 1| (G >n)

for each n > 1, because {0 > n} € %, and therefore [F5 Problem 4.15(b)]

Zan:EG:Z,

n>1

which completes the proof of (4.24). But by now repeating the calculation in (4.26)
without absolute value signs, all inequalities turn into equalities, giving

/OOO(MIXI > 1) = P(|oX| > 1)) 1"~ dr
= (/Ow( (1X[>1) ]P’(|MX|>t))t’9‘‘du)n;l1[51{(,>,,}|Hn_1|19

= 2/ P(IX| > 1) —P(|MX| >1))® " dt

and so (4.25) upon multiplication with (2u,)~'. O

Finally, we must verify condition (4.3) when substituting M for Il; and provide
the formula that replaces (4.7) in this case.

Lemma 4.14. Under the same assumptions as in the previous lemma,

/ IP(X > 1) —P(IIeX >1)[t° " dt < oo (4.27)
0
as well as
L/m (P(X > 1) —P(II:X >1))t° ' dt = ¢ (4.28)
Z,uﬂ 0 2

Proof. We leave it as an exercise to first verify (4.27) along similar lines as in (4.26)
[==" Problem 4.16]. Keeping the notation of the proof of the previous lemma, we
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then obtain (using I,y = —|IT,_1| on {c >n} forany n > 2 and ¥, > a, = 1)
/ (P(X > 1) —P(ITeX > 1))t~ dt
0

= Z/ (IP’(O‘Zn,Hn_lX>t)—[P’(0'2n,HnX>t)> 12 ar
n>1 0

/0 (P(X > 1) —P(MX >1))1° " dt

+) / (IP’(G > n, |, 1|X < —t) —P(c > n,|I[T,_1|M,X < —t)) P ar
n>2"0

/0 (P(X > 1) —P(MX >1))t* " dt

L[t ploen ) () o
n>2 >

/Ow (P(X > 1) —P(MX >1))t° " dt

+ </Ow (P(X < —1) —P(MX < —1))1°~! dt) Y a

n>2

/0oo (P(X| > 1) —P(|MX| >1))t°~ " ar

and therefore

1 0 C
— P(X >1)—P(IIsX >t))t% tar = =
5 ) (B >0 B >1) =

as claimed. O

Taking a deep breath, we are finally able to settle the present case by using part
(a) of the theorem upon replacing M with Il > 0. Lemma 4.12 ensures validity
of (IRT-1)-(IRT-3) under this replacement and also that 21y takes the place of L.
Condition (4.3) now turns into (4.27), which has been verified as part of Lemma
4.14. Therefore, we conclude

Ci = lim’P(X >1) = ﬁ/ (P(X >t)—P(ITs >1))t° " dt,
9 J0

=300

and, by (4.28), the last expression equals C/2 as asserted.

4.3.3 The case when M <0 a.s.

This case is handled by the same reduction argument as the previous one, but is
considerably simpler because of the obvious fact that ¢ = 2 holds true here. We
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leave it to the reader to check all necessary conditions as well as to show that (4.25)
and (4.28) remain valid [*= Problem 4.17].

Problems

Problem 4.15. Given the assumptions of Subsection 4.3.2, prove the following as-
sertions:

(@ P(o—-2€:0>2)=Geom(0) with 8 =P(M <0).
(b) P(o—2€ [0 >2)=Geom() with 6 = E[M|’1(,.¢y, and Eo = 2.
(¢)  The conditional law under P of S given Il # O satisfies (4.23).

(d)  Compute the FT of P(Ss € -|I15 # 0) in terms of those of O, O~ and use it
to show that this law is nonarithmetic.

Problem 4.16. Give a proof of (4.27) under the assumptions of Lemma 4.14.
Problem 4.17. Give a proof of the implicit renewal theorem for the case M < 0 a.s.

Problem 4.18. [Tail behavior at 0] Prove the following version of the implicit re-

newal theorem:

Let M, X be independent random variables taking values in R\{0} such that, for

some 1% > 0,

(IRT2-1) E|M|7? =1.

(IRT2-2) E|M| ?log™ M| < oo.

(IRT2-3) The conditional law P(log |M| € -||M| < o) of log |M| given [M| < oo is
nonarithmetic, in particular, P(|M| =1) < 1.

Then 0 < Elog|M| < e, 0 < ty := —E|M| % log |M| < o, and the following asser-
tions hold true:

(a) Suppose M is a.s. positive. If
/ IP(X <1)—P(MX <t)|t " P dt < oo (4.29)
0

or, respectively,

/ IP(X > —t) —P(MX > —1)[t 7P dt < oo, (4.30)
0
then
lim "?P0<X <1) = Cy, 4.31)
t—0+
respectively
lim (PP(—r <X <0) = C_, (4.32)
t—0+

where C and C_ are given by the equations
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1 oo

Cp = — | (PX<t)-PMX <))t ar, (4.33)
Uy Jo

c o= (P(X > —1) —P(MX > —1))t """ dr. (4.34)
Ky Jo

(b) IfP(M < 0) >0 and (4.29), (4.30) are both satisfied, then (4.31) and (4.32)
hold with C; = C_ = C/2, where

1 o
C .

= oy PUXISO=P(MX| <) P dr @39)
(7

4.4 Applications

We will proceed with an application of the previously developed results to a number
of examples some of which are also discussed in [34]. In view of the fact that im-
plicit renewal theory deals with the tail behavior of solutions to SFPE’s of the form
(4.1) and embarks on linear approximation of the random function ¥ involved, the
simplest and most natural example that comes to mind is a RDE and therefore stud-
ied first.

4.4.1 Random difference equations and perpetuities

Returning to the situation described in Section 1.5, let (M, Q), (M1,01),(M>,03), ...
be iid two-dimensional random variables and (X,),>0 recursively defined by the
(one-dimensional) RDE

Xy = MpXy 1+0n, n>1

As usual, let Il :== 0 and II, :== M; -...- M, for n > 1. If Elog|M| < 0 and
Elog™ |Q| < oo, then (X,),>0 is a mean contractive IFS on R satisfying the jump-
size condition (3.17) (with xo = 0 and d(x,y) = |]x —y|). By Theorem 3.24, it is then
convergent in distribution (under any initial distribution) to the unique solution of
the SFPE

x < mx +0, X independent of (M, Q), (4.36)

which is (the law of) the perpetuity X := Y, II,_1 0, and in turn is obtained as the
a.s. limit (under any initial distribution) of the backward iterations. By applying the
same arguments to the RDE

Yn:|Mn|Yn71+‘Qn‘a n>1,

we see that Y := Y~ |[IT,_1Q,| is a.s. finite as well and its law the unique solution
to the SFPE
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Y = |M|Y +10], Y independent of (M, Q).

An application of the implicit renewal theorem provides us with the following
result about the tail behavior of X under appropriate conditions on M and Q. Its far
more difficult extension to the multidimensional situation is a famous result due to
KESTEN [42].

Theorem 4.19. Suppose that M satisfies (IRT-1)-(IRT-3) and that E|Q|? < oo.
Then there exists a unique solution to the SFPE (4.36), given by the law of the
perpetuity X := Y~ I, 10O,. This law satisfies (4.5) as well as (4.6), where

E +\9%
Ci:]E(((MX+Q)19);L : (MX)*)?) @37

if M > 0 a.s., while

E(|MX +Q|° — |MX|?)

C,=C_ = 4.38
+ 5T (4.38)

if P(M < 0) > 0. Furthermore,
C.+C_>0 iff P(Q=c(1-M))<1 forallceR. 4.39)

A crucial ingredient to the proof of this theorem is the following moment result
that will enable us to verify validity of (4.3) and (4.4) of the implicit renewal theo-
rem. For a.s. nonnegative M, Q and k > 1, it was obtained by VERVAAT [59]; for a
stronger version see [4] and Problem 4.33.

Proposition 4.20. Suppose that E|M|* < 1 and E|Q|* < oo for some k > 0.
ThenY =Y~ |IT,—1Q,| satisfies EY? < oo for any p € (0,K).

Proof. This is actually a direct consequence of the more general Theorem 3.29, but
we repeat the argument for the present situation because it is short and simple.

As argued earlier, E|M|? < 1 for any p € (0,x). If p < 1, the subadditivity of
x +— xP implies that

p
_ _Elg

BY? < YEIM Q.0 < Bl LEMY) < g <

n>1 n>1

whereas in the case p > 1 a similar estimation with the help of Minkowski’s in-
equality yields



120 4 Power law behavior of stochastic fixed points and implicit renewal theory

_ 12|l
¥l < ¥ MTea@illy = lQl, ¥ Ml = ;e < o
n>1 n>1 ” ”P
This completes the proof. O

GRINCEVICIUS [35] provided the following extension of Lévy’s symmetrization
inequalities that will be utilized in the proof of (4.39). Under the assumptions of
Theorem 4.19, define m := med(X),

n
I = HM/ for1 <k<n,
=k

N

X, =Y I 1O, Xin ::ZHk:jlej for 1 <k <n,
1 j=k

»
Il

)?6‘ 1= my, )/(\:[ =X, +Imy forn> 1,
Ry 1:fk+Hkmed(§k+1:n+Hk+1:nY) forl1 <k<mn, ycR
Up:=IT,—1 (Qn —mo(1—M,)) forn>1.

where )?,H_m :=0and Il;1., := 1 in the definition of R,,. The 5(\,, are obviously the
backward iterations when X = 0 and hence a.s. convergent to X =Y~ I1,_1Q,.

Lemma 4.21. [Grincevicius] With the given notation,

IP’<max Ry >x> < ZIF’()?n+Hny>x)

1<k<n
forall x,y € R.
Specializing to y = 0, we obtain

P(max ()?k+Hkmed()?k+1;n)> >x> < 2P(X, > x)
1<k<n

for any x € R and then upon letting n — oo

P <sup)?,;‘ > x> =P (sup ()?n +11, mo) > x) < 2P(X >x), (4.40)

n>1 n>1

becauseA lim,Hw)?kH:n 4 AX for any k > 1. The same inequality holds, of course,
with —X,,, —X instead of X,,, X whence

P<sup|)?;| >x> < 2P(|X| > x) (4.41)
n>1

forall x € R>.
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Proof. Fixing any x,y € R, define

Ap:={R; <x,..,Ri_| <x, R >x},

By := {??kﬂzn + 11y 2 med()?kﬂ:n +I1ny) }

for k =1,...,n. Observe that A and By, are independent events with P(B;) > 1/2 for
each k and that

n
{max (Xk—f—Hkmed(XkH;n+Hk+1;ny)) >x} = ZAk,
1<k<n =1

n
{Xn+Hny >x} > Y AnBy.
k=1
For the last inclusion we have used that, on A; N By,
X < Ry < X +1I, ()?Hl:n +Hk+1:ny) = X, +1Ly

foreachk =1,...,n. Now

R n n 1
> > — —
P(X, + IT,y > x) > Z‘lP(Ak)P(Bk) > 2]§1P(Ak) 5P (1@%& >x>

proves the assertion. a

Proof (of Theorem 4.19). We first prove (4.5) and (4.6) for which, by Corollary 4.2,
it suffices to verify (4.10) and (4.11). But since —X satisfies the same SFPE as X
when replacing (M, Q) with (M, —Q), it is further enough to consider only the first
of these two conditions, viz. E|(MX + Q) )% — (MX)*)?| < eo.

By making use of the inequality

(427 <o+ p2P (P y+ ) 4P, (4.42)
valid for all x,y € R> and p > 1, we find that
(MX+0)")” = ((MX)")” < (MX)"+0%)" = ((MX)")?
_Jeh?, if 9 € (0,1],
@) Hes ((MX)F)P10F + (MX)F ()P, if© > 1,

where ¢y := 92!, A combination of (MX )" < |MX]|, the independence of X and
(M,Q), E|M|? < o0, E|Q|? < o, and of E|X|?~! < e if ® > 1 [by Prop. 4.20] hence
implies that

E((Mx+0)")° — (x)")?) " <en

Indeed, if ¥ > 1, the obtained bound is
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E(Q")” +co E(IMPTTQNEIX [P +ea E(IM|(Q1)° ) EIX|
and the finiteness of E(|M[?~'Q%), E(|M|(Q*)?~") follows by an appeal to Holder’s

inequality.
In order to get

E(((MX+0)")" = (MX)")?) <o
one can argue in a similar manner when using the estimate

(MX)")? —(MX+0Q)") < (MX+0)"+07)’ —((MX+0)*")?

_Jee, if & € (0,1],
O Hes (MX +Q)H)P10™ +(MX + Q) (07)°"), if o> 1.

The straightforward details are again left as an exercise [F¥ Problem 4.34].

Turning to the proof of (4.39), suppose that Q = ¢(1 — M) a.s. for some ¢ € R.
Then X = c a.s. forms the unique solution to (4.36) so that C; = C_ = 0. For the
converse, let P(Q = ¢(1 —M)) < 1 for all ¢ € R. Since

— T1im Y
Cy+C. = lims P(|X| > 1),

we must verify that the limit on the right-hand side is positive. To this end, we start
by noting that, by our assumption, we can pick € > 0 such that

p:=P(0—my(1-M)| >¢)>0.
Next, observe that
Xy + Uy =Xyt + Iy ymo + I, 1 (O — mo(1 — M,)) = X'
for each n > 1, which implies
sup |X;| > sup|X;| > sup|U,| —sup|X;]
n>0 n>1 n>1 n>0
and therefore

~ 1
sup|X;| > 2 sup|U,|.
n>0 n>1

Since )?6‘ = my, we thus find for any ¢ > |mp| that

{sup|)?;|>z} = {sup|)?;>t} > {sup|Un|>2t}
n>1 n>0 n>1

and then in combination with Grincevicius’ inequality (4.41)
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1
P(X|>1) > = (Sup|X |>t)
2 n>1
1
> —P | sup|Uy,| > 2t
2 n>1
1
25): — 1,100 —mo(1 —M,)| > €)
n>1
2t
v (Wn -2y
2 n>0

where 7 :=inf{n > 0: |IT,| > 2t/€} and
|Un| = [Thi-1(Qn —mo(1 = M,))| > 2t on{T=n—1,|0, —mo(1—M,)| > &}
for each n > 1 has been utilized for the penultimate line. Finally,
hmt P (sup |IT,| > t> = lim e?1°¢’ P <supS,, > 10gt> =K, >0,
n>0 f=ree n>0
by Theorem 2.68 leads to the desired conclusion. a

Formula (4.38) may be used to derive further information on C+ or C; 4+ C_ like
upper bounds or alternative formulae. We refrain from dwelling on this further and
refer to Problems 4.36-4.38.

It is usually impossible to determine the law of a perpetuity explicitly, but there
are exceptions. One such class is described in Proposition 4.23 below. Recall that a
beta distribution with parameters a,b > 0 has A-density

1

8ap(x) == mxkl(l—x)bfll(o,l)(x%

where the normalizing constant

B(a,b) := /le“*(l—xy’*ldx - m

equals the so-called complete beta integral at (a,b). The substitution lyTy for x pro-
vides us with the equivalent formula

Blab) = [ 3 (14y) " dx

for all a,b € R~. As a consequence,

T4 R (1)

g:;,b(x) = B(CLb) X
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for a,b > 0 defines the A-density of another distribution $*(a,b), say, called beta
distribution of the second kind. Here is a useful (multiplicative) convolution property
of these distributions that is crucial for the proof of the announced proposition.

Lemma 4.22. If X and Y are two independent random variables with £ (X) =
B*(a,b) and Z(Y) = B*(c,a+b) for a,b,c € R, then

L((14X)Y) = B*(c,b).

Proof. For s € (—c,b), we obtain

s Tlatbtc) [ s ~((e+s)+(a+bs))
B =7 c)F(a+b)/0 ) Ay

(
I'(c+s)['(a+b—ys)
L'(e)[(a+b)

and further in a similar manner

E(l1+X)*" = ﬁ(%;f;) /wa“fl(l—l—x)f(“*b*s) dx
I'(a+Db)'(b—s)
(

rI(a+b—s)

Consequently, the independence of X,Y implies

I'(c+s)L'(b—ys)

B1+X)Y) = EQ+XPEY® =~ Sr0s

But the last expression also equals ¢(s) = EZ* if £ (Z) = B*(c,b). The function
¢ is called the Mellin transform of Z and is the same as the mgf of logZ (as Z is
positive). But the mgf, if not only defined at 0, determines the distribution of logZ
and thus of Z uniquely, giving f*(c,b) = Z(Z) = £ ((1+X)Y) as claimed. O

Here is the announced result, again taken from [34]. The cases m = 1,2 are due
to CHAMAYOU & LETAC [18].

Proposition 4.23. For m € N and positive reals ay,...,an,b, let X ,Y1,....Y,
be independent random variables such that £ (X) = B*(a;,b) and £ (Yy) =
B*(aks1,ar+b) fork=1,...,m, where a1 := a;. Then X satisfies the SFPE

(4.36), i.e. X 4 MX + O, for the pair (M, Q) defined by

m—1 k

m—1
M= [[Ynsk and Q=Y [[Yn )
k=0 k=0 j=0
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Furthermore,

1
lim’P(X >1) =

lim PG D) (4.43)

Proof. WeputX;:=X and X, := (14+X,_1)Y,—; forn=2,...,m. A simple induction
in combination with the previous lemma shows that .-Z(X,,) = B*(ay,b) for n =
1,...,m. Moreover,

(14+X)Y, = Yo+ XY, = (1+X,_1)Y,1Y, =..= Q+MX

and Z((1+X,)Y,) = B*(amn+1,b) = B*(a1,b) by another appeal to Lemma 4.22.
Left with the proof of (4.43) and using .Z(X) = B*(ai,b), we infer

1 00
PX>1) = —— [ x"(14x)7 "4
(X >1) B(a],b)/t (1 4x) "

1 oo X a;—1 X b+1
dx.
B(al,b)/t <1+x) <l—|—x) *

Since the last integral is easily seen to behave like [, x bl dx=bt7 ast — oo, we
arrive at the desired conclusion. a

We leave it as an exercise [ Problem 4.39] to verify that (M, Q) satisfies the
assumptions of the implicit renewal theorem 4.1 with ¥ = b and so, by this result,

1 E((MX + Q)% — (MX))

bB(ay,b) by,

holds true.

4.4.2 Lindley’s equation and a related max-type equation

If we replace addition in (4.36) by the max-operation, we get a new SFPE, namely

x < mxvo, (4.44)

where X and (M, Q) are as usual independent. We make the additional assumption
that M > 0 a.s. If ElogM < 0 and Elog™ Q" < oo, it has a unique solution which is
the unique stationary distribution of the mean contractive IFS of iid Lipschitz maps
with generic copy ¥ (x) := MX V Q [*¥ Problem 4.40] and the law of

X :=supll,_10,.

n>1
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Notice that IT, — 0 a.s. in combination with the stationarity of the O, entails
II,_ 10, — 01in probability and thus X > 0 a.s. In other words, only the right tail of X
needs to be studied hereafter. Theorem 4.24 below constitutes the exact counterpart
of Theorem 4.19 for (4.44), but before stating it we want to point out the direct rela-
tion of this SFPE with Lindley’s equation, which is revealed after a transformation.
Namely, if Q = 1, then taking logarithms in (4.44) yields

Y L(r+&)vo = (Y+&)*
for Y =logX, where & := logM, and the unique solution is given by the law of

logX = suplogIl, = supS$,,
n>0 n>0

a fact already known from Problem 1.6.

Theorem 4.24. Suppose M satisfies (IRT-1)-(IRT-3) and E(QT)? < oo. Then
there exists a unique solution to the SFPE (4.44), given by the law of X =
sup, > I,—1Qy. This law satisfies (4.5) with

+\O _ +\?9
C+:IE(((MX\/Q)19)”19 (Mx))?) (4.45)

Moreover, C.. is positive iff P(Q > 0) > 0.

Proof. Problem 4.40 shows that (the law of) X = sup,~ I[T,—1Q, provides the
unique solution to the SFPE (4.44) under the assumptions stated here. (4.5) with
C. given by (4.45) is now directly inferred from Corollary 4.2 because
E[((MX v Q)*")? — ((MX)*")”|
= E’Qﬁ - ((MX)+)19| Liyx<0,050)
< E@QF) < e

[which is (4.10) in that corollary] holds true.

Turning to the asserted equivalence, one implication is trivial, for O < 0 a.s.
entails X = 0 a.s. and thus C;. = 0. Hence, suppose P(Q > 0) > 0 and fix any ¢ > 0
such that P(Q > ¢) > 0. Defining the predictable first passage time

1(t) == inf{n >1:IT,_; >t/c}, t>0,

we note that
P (supHn_l > ) = P(1(t) < o) (4.46)

t
n>1 c

and claim that
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P (supHlen > t) > P(Q>c)P(t(t) < o). (4.47)

n>1

For a proof of the latter claim, just note that

IP’(supHn_lQ,, >t) > Y P(t(t) =n, 0L, 10, > 1)

n>1 n>1
> Z P(t(t) =n, 0y >c)
n>1

= P(Q>c)P(1(1) <o),

where the last line follows by the independence of {t(¢) = n} € o(Il,...,IT,—1)
and Q,. Now we infer upon using (4.46) and (4.47) that

t
PX>t) =P (supH,l_lQn > t) > P(O>c)P (supHn_l > )
n>1 n>1 c
and thereby the desired result C+ > 0, for P(Q > ¢) > 0 and

\? t
lim <7) P <supHn1 > ) = limemIP(supSn >t) > 0
c

I N C n>1 f—heo n>0

by invoking once again Theorem 2.68. a

4.4.3 Letac’s max-type equation X < m (NVX)+0

A more general example of a max-type SFPE studied by GOLDIE in [34] was first
introduced by LETAC [45, Example E], namely

XL MNVX)+0Q (4.48)

for a random triple (M,N, Q) independent of X such that M > 0 a.s. As usual, this
equation characterizes the unique stationary law of the pertinent IFS of iid Lipschitz
maps, defined by

X, = Mn(Nn\/Xn—l)""Qm n>1,

provided that mean contractivity and the jump-size condition (3.17) hold. The
(My,,N,,Qn), n > 1, are of course independent copies of (M,N,Q). We leave it as
an exercise [I¥° Problem 4.42] to verify that mean contraction holds if ElogM < 0
and (3.17) holds if, furthermore, Elog™ N* < o Elog™ |Q| < e°. By computing the
backward iterations, one then finds as in [34, Prop. 6.1] that

n
X := max ZHn,lQn,sup ZHk_le—H_I,,Nn
n>1 nzl \ k=1
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is a.s. finite and its law the unique solution to (4.48). But IT,N, — 0 in probability
in combination with

n
X > lim (an_leJanNn) = ZanlQn
k=1

n—
oo n>1

obviously implies that

X = sup (Z IT,_, O +HnNn> . (4.49)

n>1 \ k=1

The following result determines the right tail behavior of X with the help the implicit
renewal theorem. As for the left tail behavior see Remark 4.27 below.

Theorem 4.25. Suppose that M satisfies (IRT-1)-(IRT-3) and
E(NT)? <o, E|Q|” <o and EMN')? < co. (4.50)

Then the SFPE (4.48) has a unique solution given by the law of X in (4.49).
This law satisfies (4.5) with

S [
¢, — Bl VXH?;);) P, 4.51)

Furthermore, C is positive iff P(Q =c(1—M)) < 1 forall c € R, or 0 =
c(1—M) a.s. and P(M(N — ¢) > 0) > 0 for some ¢ € R.

Remark 4.26. In [34, Theorem 6.2] only a sufficient condition for C. > 0 was given,
namely that Q — c(1 —M) > 0 a.s. and

P(Q—c(1-M)>0)+PM(N—c)>0)>0 (4.52)
for some constant ¢ € R.

Remark 4.27. Concerning the left tail of X in Theorem 4.25, let us point out the
following: Since M(NV X)+Q > MN + Q1p0}, We have

E(X™)” = E(M(NVX)")? < E(MN)®+E(Q™)”

and thus C_ = lim, ,.tY P(X < —¢) = 0 if the last moment assumption in (4.50) is
sharpened to EM|N|? < oo,

Proof (of Theorem 4.25). By what has been stated before the theorem and is shown
in Problem 4.42(a), (4.50) ensures that the IFS pertaining to the SFPE (4.48) is mean
contractive and satisfies (3.17). Therefore the law of X, defined in (4.49), forms the
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unique solution to (4.48). In order to infer (4.5) for its right tails by Corollary 4.2,
we must verify
E|(M(NVX)+Q)")? — ((MX)*)?] < e

or, a fortiori,
E|(M(NVX)+0)")" = (M(NVX)")?| <o
and E|(M(NVX)")? — ((MX)")?] < oo

If © € (0, 1], the desired conclusion is obtained by the usual subadditivity argument
[*=" proof of Theorem 4.19], namely

E[(M(NVX)+Q)")? = ((MX)")?] < E[Q” < eo.

Left with the case ¥ > 1, we first point out that the sharpened jump-size condition
(3.20) (with p = ¥, xo = 0 and d(x,y) = |x — y|) holds, namely

E(MN* +Q+)ﬂ < oo,

This is an obvious consequence of (4.50). Therefore E|X |? < oo for any p € (0,1)
by Theorem 3.29. By another use of inquality (4.42), we find that

(M(NVX)+0)")” = (M(NVX)")”
(Q+)19_~_1921971 < M(N\/X)+)1971Q+ —I—M(N\/X)+(Q+)1971>

IA

IN

(
(Q+)19+19219_1 ((MN+\/X)+)19—1Q+ +M(N\/X)+(Q+)ﬁ_l)
(

IN

(Q+)19_~_1921971< (MN+)1971+(X+)1971)Q++((MN+)1971
+(mMx+)?)()" ).

But the last expression has finite expectation as one can see by using E|X |P71 < o,
our moment assumptions (4.50) and the independence of X and (M, N, Q). We refer
to the proof of Theorem 4.19 for a very similar argument spelled out in greater

detail. Having thus shown
E((MNVX) +0)7)° — (MNVX)")?) " <o

we leave it to the reader to show by similar arguments that the corresponding neg-
ative part has finite expectation, too, and that E|(M(N Vv X)™)? — (MX)")?| < e
[t=" Problem 4.43].

Turning to the equivalence assertion, recall from above that

X2>Y:=) 1,10,

n>1
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so that P(X > ¢) > P(Y > r). But Theorem 4.19 tells us that, under the given as-
sumptions, Y P(Y > t) converges to a positive limit if P(Q = ¢(1 —M)) < 1 for
all ¢ € R, whence the same must then hold for % P(X > t). On the other hand, if
0 =c(1 —M) as. for some c, then a simple calculation shows that

X = sup(c(1—1II,)+II,N,) = c+sup(IL,_M,(N,—c)).

n>1 n>1

By Theorem 4.24, X — c then forms the unique solution to the SFPE (4.44) when
choosing Q = M(N — c) there. Consequently,

C, = limPP(X >1) = lim®P(X —c>1) > 0
[—>o0 {—yo0
iff P(M(N —c¢) > 0) > 0 as claimed. O

Writing (4.48) in the form X 4 (MN)V MX + Q, we see that an SFPE of type
(4.44), which has been discussed in the previous subsection, yields as a special case
when choosing Q = 0. However, as P(MN = 0) > P(M = 0), the statement fails to

hold for those equations X L MX v Q with P(Q' =0) < P(M = 0) [*= Problem
4.44 for further information].

Further specializing to the situation when Q =0 and N > 0 a.s., Letac’s equation
(4.48) after taking logarithms turns into

YLevy +E, (4.53)

where Y :=logX, & :=logM and ¢ := logN. Upon choosing the usual notation for
the associated IFS (¥,),>0, say, of iid Lipschitz maps with generic copy ¥(x) :=
¢ Vx+ &, backward iterations can be shown to satisfy [¥° Problem 4.45(a)]

~

Y, = max {Sn +x, llgilgn(Sk + Ck)} (4.54)

if Yo = x and (Su)n>0 denotes the SRW associated with the &;,&;, ... Provided that &
has negative mean and thus (S, ),>0 negative drift, we infer a.s. convergence of the
Y, to
Y = sup(Sy+Gn)
n>1

the law of which then constitutes the unique solution to (4.53). However, P(Y = )
may be positive. In order to rule out this possibility, it is sufficient to additionally
assume Elog™ { < oo [1=F Problem 4.45(c)].

HELLAND & NILSEN [38] have studied a random recursive equation leading to
a special case of (4.53), namely

Y, = (Yn—l_Dn)VUn = (Yn—lv(Un+Dn))_Dn7 n>1,



4.4 Applications 131

for independent sequences (D, ),>1 and (Uy,),>1 of iid random variables which are
also independent of Y. The model had been suggested earlier by GADE [33] (with
constant D,)) and HELLAND [37] in an attempt to describe the deep water exchanges
in a sill fjord, i.e., an inlet containing a relatively deep basin with a shallower sill at
the mouth. The water exchanges are described by the following simple mechanism:
If, in year n, U, denotes the density of coastal water adjacent to the fjord and ¥,
the density of resident water in the basin, then fresh water running into the fjord
causes the resident water density to decrease by an amount D,, from year n — 1 to
n. Nothing happens if this water is still heavier than the coastal water, but resident
water is completely replaced with water of density U, otherwise [¥¥ [33] and [38]
for further information]. Obviously, the distributional limit of ¥;,, if it exists, satisfies
(4.53) with § := U + D and & := —D, where as usual (D,U) denotes a generic copy
of the (D,,U,) independent of Y.

4.4.4 The AR(1)-model with ARCH(1) errors

We return to the nonlinear time series model first introduced in Section 1.6 and
briefly discussed further in Example 3.9, namely the AR(1)-model with ARCH(1)
errors

X, = aXy1+(B+AX2 )" ey, n>1, (4.55)

where €, €1, &, ..., called innovations, are iid symmetric random variables indepen-
dent of Xy and (@, 8,A) € R x R2. This is an IFS of iid Lipschitz maps of generic
form ¥ (x) := ax+ (B +Ax?)'/%e. As pointed out in 3.9, ¥ has Lipschitz constant
L(¥) = || + A'/2|¢|. The following result is therefore immediate when using The-
orem 3.24.

Proposition 4.28. The IFS (X,)n>0 stated above is mean contractive and sat-
isfies the jump-size condition (3.17) if Elog(|ot| + A'/?|€|) < 0. In this case it
possesses a unique stationary distribution, which is symmetric and the unique
solution to the SFPE

X L aX+(B+Ax2)" 2%, (4.56)

where X, € are independent.

Proof. We only mention that, if (4.56) holds, then

4

-X 4 Ot(—X)—|—(‘B +)~X2)1/2(—8) a(—X)+(B+/I(—X)2)1/ze,

the second equality by the symmetry of €. Hence the law of —X also solves (4.56)
implying .2 (X) = .Z(—X) because this SFPE has only one solution. O
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Remark 4.29. [®= also [16, Remark 2]] Let us point out that, if X, is given by (4.55),
then X := (—1)"X,, satisfies the same type of random recursive equation, viz.

Xi = —aX; +(B+A(X,)") ey

with € := (—1)"g, for n > 1. But the &) are again independent copies of &, for
€ is symmetric. In terms of distributions, the IFS (X,),>0 and (X;),>o thus differ
merely by a sign change for the parameter ¢, and under the assumptions of the
previous result we further have that X} converges in distribution to the same limit
X. It is therefore no loss of generality to assume o > 0.

The symmetry of the law of X, giving
1 1 2 2
PX>1) = P(X<—1) = 5IP>(|X\>t) = E]P’(X >17)

for all t € R>, allows us to subsequently focuson Y = X 2, which satisfies the distri-
butional equation

Y L (a2 +2€2)Y +20eX (B +AY)"/2+ Be.
This is not a SFPE as X is not a function of Y, but when observing that €X 4 nix|,

where 1] is a copy of € independent of |X| =Y 1/2 and satisfying %> = £2, we are led
to

v < (a+ll/2n)2Y+2anY1/2((ﬁ+Ay)1/2_()Ly)l/2>+ﬁn2
20B8nY!/?
_ 1/2.,,\2 )
(a+A'7) Y+(B+”)1/2+(M)l/2+/3n L DY), (457

with Y and n being independent. Observe that
D.(y) = My—cn|+Bn* < ®(y) < My+cn|+Bn’ = () (4.58)

forall y € R, where M := (a4 A'/?n)? and ¢ := afA /2. As a consequence, we
obtain the following lemma which will be useful to prove our main result, Theorem
4.31 below.

Lemma 4.30. Suppose that ElogM < 0 and let (Ps, Py, Pn)n>1 be a se-
quence of iid copies of (P., P*, D), defined on the same probability space as
Y. Then the following assertions hold true:

(a) (P*J:n <Py, < (I’ik;nfor alln> 1.
(b) DY) =Y, and Df,(Y) = Y* a.s. for random variables Y, < Y*
satisfying
Y, Lo, and v* L@ (v7). (4.59)
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(c) Yi<aqY<uY'ie
PY,>t) < PY>r) < PY*>1)

forallt e R.

Proof. Part (a) follows directly from (4.58). Since ElogM < 0 implies Elog™ |n| <
oo, we see that the IFS generated by the (P; ,),>1 and (P, ),>1 are mean contractive
and satisfying (3.17). Therefore, their backward iterations are a.s. convergent under
any initial condition to limiting variables solving the SFPE’s stated in (4.59). This
proves (b). Finally, as Y satisfies the SFPE (4.57), we infer

4y

¢1:n (Y)
and thus @, 1.,(Y) <4 Y <y @7, (Y) for all n > 1. Taking the limit n — oo yields the
assertion. a

The quintessential outcome of the previous lemma is that ¥ can be sandwiched
in the sense of stochastic majorization (<) by two perpetuities, ¥, and Y*. The
following result is now derived very easily with the help of the implicit renewal
theorem.

Theorem 4.31. Suppose that M = (ot + ll/zn)z satisfies (IRT-1)-(IRT-3) and
let Y be a nonnegative solution to the SFPE (4.57). Then its law satisfies (4.5)
with
E(@(Y)” - (MY)?)
C, = 4.60
4+ Slly (4.60)

which is positive if ¥ > 2.

Remark 4.32. In all previous applications, the random variable M that appeared in
the respective tail result happened to be also the Lipschitz constant of the generic
Lipschitz function ¥ in the SFPE under consideration, i.e. M = L('¥). In the present
situation, however, this is no longer true. We have L(¥) = |&| 4+ A'/?|n| which,
after squaring, would suggest M’ = (|| + A'/2|n|)? in the above theorem. But
M' > M = (a4 A'/?1)? as. even if « is positive. What this essentially tells us
is that mean contraction with respect to global Lipschitz constants, albeit consti-
tuting a sufficient condition for the distributional convergence of a given IFS of
iid Lipschitz maps to a unique limit law, fails to be necessary in general. For the
AR(1)-model with ARCH(1) errors, BORKOVEC & KLUPPELBERG [16, Theorem
1] show that ElogM < 0 in combination with some additional conditions on .£ (1)
(beyond symmetry) already ensures convergence to a unique symmetric stationary
distribution. Earlier results in this direction under the second moment condition
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a?+ AEn? =EM? < 1 were obtained by GUEGAN & DIEBOLT [36] and MAER-
CKER [50].

Proof. Note that (IRT-1) for (ot + A'/21)? ensures E|n|*? < . Under the assump-
tions of the theorem und with the notation of the previous lemma, the IFS gen-
erated by (P, ,)n>1 and (P*),>; are strongly contractive of order ¥ and satisfy
the sharpened jump-size condition (3.20) for p = ©. Hence, the perpetuities Y, and
Y*, have moments of all orders p € (0,%) [ Prop. 4.20]. Using Lemma 4.30(c),
E|Y|? < E|Yi|? +E|Y*|? < o for all p € (0,8). Now it follows in a meanwhile
routine manner that

E|(Y)” — (MY)°| < Eleln|+Bn?” < o
if ¥ < 1, and [use again (4.42) and put cy := 92771]
E‘qb(y)ﬁ—(MY)ﬁ} < ]E‘cp*(y)ﬁ‘—(MY)l”
< Elcn|+pn*"
+co (EY*~'Eeln|+Bn?| +EYEcn|+Bn*|" ") < =

if 9 > 1. Hence, by Corollary 4.2, the right tails of Y satisfy (4.5) with C as stated.
Left with the proof of C; > 0 if ® > 2, a Taylor expansion of &(¥)? about MY
yields

@(Y)? = (MY)? +8(MY)?'h(Y,n) + (8 —1)Z°2h(y,n)?

> (MY)? +9(MY)° h(Y,n),
where v
o 2a8nY 2

and Z is an intermediate (random) point between MY and @(Y) = MY +h(Y,n) and
thus > 0. As a consequence,

E(@(Y)l’—(MY)ﬁ) > 9EMY)° h(Y,n) = 9BER? > 0,

having utilized En = 0 and the independence of Y and 7. a

Problems

Problem 4.33. Prove the following converse of Proposition 4.20: If EY? < o for
some p > 1 and P(|Q| > 0) > 0, then E|M|” < 1 and E|Q|? < e. [Hint: Use that
anl |Hn—1Qn‘p < Yp~]
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Problem 4.34. Complete the proof of Theorem 4.19.

Problem 4.35. Given the assumptions of Theorem 4.19, suppose additionally that
¥ > 1 and E|Q|* < oo for some Kk € [1, 7). Prove that

" n
EX" = E(M*Q" %) Ex* 4.61
IHECES on
for all integers n < k. [This was first shown by VERVAAT [59].]

Problem 4.36. Given the assumptions of Theorem 4.19 and M > 0 a.s., prove that,
if0< <1,

1 »
C++C7 S TM]E|Q| ’
while, if 9 > 1,
corc < 2 (E|QW+]E(M““—1|Q|)E|X|ﬂ—1)
T Oy
2 (e, 20 s )
T Yy 1= [Ml[p-1)°-" ]

If P(M < 0) > 0 and thus C; = C_, the same bounds with an additional factor 1/2
and M replaced by |M| hold for C and C_.

Problem 4.37. Given the assumptions of Theorem 4.19, M,Q > 0 a.s. and ¢ € N,
prove that C_ = 0 and

C, = Lﬂi (0)E(MkQ’9_k) EXx* (4.62)
YUy =0 k

with EX* being determined by (4.61) for k = 1,...,7% — 1. Show further that

E
]EMlc?gM’ it =1,

© - 1 1EQ%LQEMQ ifo=2 o
Uy \ 2 1—-EM )’ T

Problem 4.38. Given the assumptions of Theorem 4.19 and ¥ € 2N, prove the fol-
lowing assertions:

(a) IfM >0as., then (4.62) holds for C; + C_ instead of C,..
(b)y IfP(M <0)>0,then

c.=c = ﬁf <6>E(MkQﬁ‘k)EXk
20 Uy =0 k

with EX* being determined by (4.61) fork=1,...,9% — 1.
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(c) If ¥ =2, then the respective formula in (4.63) holds for C; + C_ instead of
Cy.

Problem 4.39. Prove that (M, Q) defined in Proposition 4.23 satisfies the conditions

of the implicit renewal theorem 4.1 with ¥ = b.

Problem 4.40. Let (X;,),>0 be an IFS generated by iid Lipschitz maps of generic
form ¥(x) := MxV Q and suppose that Elog |M| < 0 and Elog™ |Q| < . Prove that
(Xn)n>0 has a unique stationary distribution 7 which forms the unique solution to
the SFPE (4.44) and is the distribution of sup,,~ IT,—1Q, (in the usual notation).

Problem 4.41. As a variation of (4.44), consider the SFPE

X< mxvo, (4.64)

where as usual X and (M, Q) are independent and

x, if x| >y,
XYy = .
y, otherwise.

Prove the following counterpart of Theorem 4.24:
If M satisfies (IRT-1)-(IRT-3) and E|Q|? < oo, then (4.64) has a unique solution X
(in terms of its law) and (4.5), (4.6) hold true. If M > 0 a.s., then

. - E((MX Y 0)")" — (MX)7)”)
+ — 19‘1119 )

and if P(M < 0) > 0, then

E((1QI° —Mx]°)*)

CL=C_=
i By

Moreover, Cy + C_ is positive iff P(Q # 0) > 0.

Problem 4.42. (Letac’s example E in [45]) Consider the IFS, defined by the ran-
dom recursive equation

X, = MH(NHVXH71)+QH7 n>1,

for iid random triples (M, N,, Q,), n > 1, in R> x R? with generic copy (M,N, Q).

Show that

(@)  (Xu)n>0 is mean contractive if Elog M < 0 and satisfies the jump-size condi-
tion (3.17) if, furthermore, Elog™ N < eo and Elog™ |Q| < oo.

(b) Ifthe pievious conditions hold, the a.s. limit of the associated backward iter-
ations X,, is given by

X = max{z IT, 1Qy,sup (inlek+HnNn> }7

n>1 nzl \ k=1
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where I, has the usual meaning. [Hint: Use induction over 7 to verify that

n m
lPn:l(l‘) = max { Z Il Ok + It 1122-);" (Z IT 1 O +HmNn1> }
=7=" \k=1

k=1
for any € R, where ¥,(¢) := M,,(N,, V) + Q, forn € N.]

Problem 4.43. Complete the proof of Theorem 4.25 by showing along similar lines
as in the proof of Theorem 4.19 that, for the case ¥ > 1,

E((MVVX)+0))” = (MNVX)T)?) <o

as well as
E[(M(NVX)")? — (MX)")?] < eo.

Problem 4.44. Prove that, if M, Q are real-valued random variables such that M >
0 a.s. and P(Q = 0) > P(M = 0), then there exist random variables M’ N’ (on a
suitable probability space) such that (M’,M'N") forms a copy of (M, Q).

Problem 4.45. Consider an IFS (Y;),>0 of iid Lipschitz maps with generic copy
Y(x) =& Vx+E&andlet (S,),>0 denote the SRW with increments &;,&,, ... (in the
usual notation). Prove the following assertions:

(@)  The backward iterations Y,, when starting at Yo = x, are given by (4.54).
(b) IfEE <O0,thenY, =Y as., where Y = sup,~ (S, + ).
(c) If, furthermore, E{ ™ < oo, then Y is a.s. finite.
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Appendix A

A quick look at some ergodic theory and
theorems

A.1 Measure-preserving transformations and ergodicity

Given a probability space (Y, .</,P), a measurable mapping 7 : Y — Y is called
measure-preserving transformation of (Y, | P) if P(T € -) = P. The iterations
(T™(y))n>0 for any initial value y € Y provide an orbit or trajectory of the dynamical
system generated by T. If y is picked according to P and thus formally replaced with
arandom element ¥ : (2,2, P) — (Y, o) having law P, then

Y,=T"Yp), n>0
forms a stationary sequence, the defining property being that

Yoo Yorm) 2 (Yo,....Y,) forall m,n € Ny. (A.1)

When studying the statistical properties of an orbit (7" (y)),>0, for instance by
looking at absolute or relative frequencies

Nrard) = Y 14(TH0)) or hra(rA) = —— ¥ 14(T()),
k=0 nt+1:=

respectively, for A € o7, the notion of T-invariance arises quite naturally. A set
A € o is called T-invariant or invariant under T if T~1(A) = A. Their collection
S forms a o-field, called o-field of T -invariant sets or just invariant c-field of T
Its completion ¥, say, within .o consists of all sets A € 7 for which T-invariance
holds P-a.s., thus

Ir={Aco/: T '(A)=AP-as.}

Obviously, y € A for a [P-a.s.] T-invariant set A entails 7"(y) € A [P-a.s.] for all
n € N. As a consequence , if #7 contains a set A having 0 < P(A4) < 1, then the
distribution of ¥ = (¥,),>0 under P may be decomposed as

P(Ye.) = PA)P(Y e -[YgcA)+(1—P(A)P(Y € -|Yp € AY) (A.2)

141
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and Y remains stationary under both, P(:|Yp € A) and P(:|Yp € A€) [*¥ Problem ??].
If no such decomposition exists or, equivalently, .7 is P-trivial, then the sequence
Y as well as the associated transformation T are called ergodic.

In probability theory, a stationary sequence Y = (¥,),>0 of Y-valued random
variables on a probability space (2,2, P) is simply defined by property (A.1) and
hence does not require the ergodic-theoretic setting of a measure-preserving trans-
formation. On the other hand, when considering the associated coordinate model
(YNo o7No A) with A :=P(Y € -) and X = (X,,),>0 denoting the identical mapping
on this space, so that A(X € -) =P(Y € -), the stationarity of Y is equivalent to the
property that the shift S on YN0, defined by

S(y()vylv"') = (y17y27~~')a

is measure-preserving. Therefore it appears to be natural to call ¥ ergodic if . is
ergodic. Defining the invariant o-field associated with Y by

Sy {B € ™0 15(Y) = 15(SoY) IP—a.s.},

we further see that .#y = Y~ !(.%s) and that ergodicity of Y holds iff .#y is P-trivial.

By Kolmogorov’s consistency theorem, any stationary sequence ¥ = (¥,,),,>0 has
a doubly infinite extension Y* = (Y,,),cz with distribution I'*, say, which in turn is
associated with the measure-preserving shift map S* on the doubly infinite product
space (YZ,.o7% I'*), defined by

S* (s Y10, Y15 +) 1= (Y0, V1532, )

Plainly, S* is invertible, and the inverse S*~! is also measure-preserving. It should
not take one by surprise that both transformations are further ergodic if this is true
for S. The following lemma shows that sequences of iid random variables are er-
godic.

Proposition A.1. Any sequence () et of iid random variables, where T =N
or =1, is ergodic.

Proof. This follows from Kolmogorov’s zero-one law if T = N and extends to T =7Z
by the above remark about the ergodicity of * and §*~!. ad

As an example of a non-ergodic stationary sequence one can take any stationary
positive recurrent (and thus irreducible) periodic discrete Markov chain.

Let us finally introduce the ergodic theoretic notion of a factor which appeared
in the proof of Prop. 3.18. Given two measure-preserving transformations 77,7, of
probability spaces (Y, < ,P;) and (Y, 2%, P,), respectively, T is called a factor
of T if there exists a measure-preserving map ¢ : Y; — Y, (i.e. Pi(¢p € 1) =Py)
such that oo 7Ty =T 0 ¢ Py-ass.
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Proposition A.2. If T; is a factor of an ergodic transformation Ty, then Tj is
ergodic as well.

Proof. With the notation introduced above, choose any A; € #7, and put A :=
¢~ '(A2). Then p o Ty = T 0 @ Py-a.s. implies

Ty (A1) = (9oTi) (A1) = (Tho@) ' (A2) = 9 (A1) =A; Pj-as,,

thatis A| € J7,. Since T; is ergodic and P (¢ € -) = P,, we hence infer

Py(A2) =Py(9 ' (A))) =P1(A)) € {0,1},

which proves that 75 is ergodic. a

A.2 Birkhoff’s ergodic theorem

The following theorem due to BIRKHOFF [13] [&¥ also [14] by the same author]
is one of the fundamental results in ergodic theory and may also be viewed as the
extension of the classical SLLN for sums of iid random variables to stationary se-
quences. We provide two versions of the result, the first one formulated in terms of
a measure-preserving transformation as in [13], the second more probabilistic one
in terms of a stationary sequence.

Theorem A.3. [Birkhoff’s ergodic theorem for measure-preserving trans-
formations] Let T be a measure-preserving transformation of a probability
space (Y, o/ ,P) and g : Y — R be a P-integrable function, i.e. g € L'(P).
Then

Z goT*=E(g|-#r) P-as. andinL'(P), (A3)
k=0

lim
n—eo 11+

and the a.s. convergence ramins valid if g is quasi-P-integrable. As a particu-
lar consequence,

lim hr,(-A) =P(A|.97) P-as. (A.4)

forany A € o .

Clearly, the conditional expectations in (A.3) and (A.4) reduce to unconditional
ones if T is ergodic and thus #1 P-trivial.
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Theorem A .4. [Birkhoff’s ergodic theorem for stationary sequences] Let
Y = (Ya)n>0 be a stationary sequence of Y-valued random variables on a
probability space (2,A,P) and g: Y — R be such that g oY, is integrable.
Then

Z go¥, =E(goYy|#y) P-as. andin L' (P), (A.5)
k=0

lim
n—oo p +

and the a.s. convergence remains valid if g is quasi-P-integrable. As a partic-
ular consequence,
1 n

lim — k;)u (Vi) =P(Yo €A|%) P-as. (A.6)

forany A € .

Excellent introductions to the theory of stationary sequences from a probabilist’s
viewpoint, including a proof of Theorem A.4, may be found in the textbooks by
BREIMAN [17] and DURRETT [23].

A.3 Kingman’s subadditive ergodic theorem

A sequence of real numbers (¢, ),> is called subadditive if
Cimtn < Cm+Cn

for all m,n € N. An old lemma by FEKETE [29] states that every such sequence
converges, Viz.

. . . C
limc, = inf = € RU{—oo}.
n—oo n>1ln

The subadditive ergodic theorem for triangular schemes (Xkﬁ,,)ggf" of real-valued

random variables, first obtained by KINGMAN [44] and later improved by LIGGETT
[46], builds upon this property together with a certain type of stationarity. Here we
present the more general version by LIGGETT.

Theorem A.5. [Subadditive ergodic theorem] Let (Xk7n)2§’1‘<" be a family of
real-valued random variables which satisfies the following conditions:

(SA-1) X0 < Xon+Xpp a.s. forall 0 <m < n.
(SA-2)  (Xuk,(nt-1)k)n>1 is a stationary sequence for each k > 1.
(SA-3)  The distribution of (Xy m+n)n>1 does not depend on m > 0.
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(SA-4) EX;| <ooand i :=inf,>1n 'EXp, > —c.
Then

(a) lim,wn 'EXy, = u.

(b) n_lXo’,, converges a.s. and in L' to a random variable X with mean L.
(c¢)  If all stationary sequences in (SA-2) are ergodic, then X = |l a.s.

(d) Ifu=—coin(SA-4), thenn 'Xy, — — a.s.

We note that Kingman assumed also (SA-4), but instead of (SA-1)-(SA-3) the
stronger conditions

(SA-5)  Xipn < Xgm+Xppas. forall0 <k <m<n.
(SA-6)  The distribution of (X4 n-+k)o<m<n does not depend on k > 0.

A proof of the result may be found in the original article [46] or in the textbook
by DURRETT [23, Ch. 6], the latter also containing a good collection of interesting
applications including the Furstenberg-Kesten theorem for products of random ma-
trices [==¥° Theorem 3.4]. The reader is asked in Problem A.6 to deduce Birkhoff’s
ergodic theorem A.4 from the result.

Problems

Problem A.6. Give a proof of Birkhoff’s ergodic theorem A.4 with the help of the
subadditive ergodic theorem.
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acronyms, list of, xi
AR-model, 17

with ARCH errors, 20, 89, 130
ARCH-model, 20

backward recurrence time, 54
asymptotic distribution, 54
beta
distribution, 123

distribution of the second kind, 123

integral, 123
binary search tree, 14

characteristic exponent, 56, 108
conditional heteroscedasticity, 20
continuous mapping theorem, 7
contraction, 86
coupling

(F,G)-, 106

e-, 46

exact, 46

process, 44, 45

time, 44, 45
cyclic decomposition formula, 73

directly Riemann integrable, 48
distribution

0-arithmetic, 36

arithmetic/nonarithmetic, 35

completely, 35

beta, 123

lattice-span, 35

lattice-type, 35

second kind beta, 123
dynamical system, 139

orbit, 139

equation

Choquet-Deny-, 55

defective renewal, 55

excessive renewal, 55

Lindley, 4, 5, 77, 125

proper renewal, 55

Quicksort, 14

random difference, 16, 87, 118

random recursive, 1

recursive distributional, 1

renewal, 39, 55

standard renewal, 55

stochastic fixed-point, 1

two-sided renewal, 107, 109
ergodic theorem

for mean contractive IFS, 96

for strongly contractive IFS, 91
ergodic transformation, 94

exponential smoothing of a function, 51, 110

factor, 140
Feller
chain, 21
kernel, 21
first passage time, 54
forward recurrence time, 54
asymptotic distribution, 54
uniform integrability, 65

Galton-Watson process, 7
Horton-Strahler number, 24

intensity, 34
measure, 30
invariant
set, 139
o-field, 139
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iterated function system, 82
backward iteration, 87
canonical model, 84
contractive, 86
forward iteration, 86
mean contractive, 86
strongly contractive, 86
strongly mean contractive of order p, 86

jump-size condition, 92
Kendall notation, 5

ladder epoch
strictly/weakly ascending, 69
strictly/weakly descending, 69
ladder height, 69
lattice-type, 70
lemma
Choquet-Deny, 58
smoothing, 110
Liapunov exponent, 85
Lindley
equation, 4, 5, 77, 125
integral equation, 6
process, 6, 88
Lipschitz
constant, 83
continuous, 82
function or map, 81
contractive, 86

measure
admissible, 56
characteristic exponent, 56
intensity, 30
occupation
pre-o, 72
random counting, 30
renewal, 30
uniform local boundedness, 37
measure-preserving transformation, 94, 139
Mellin transform, 124

occupation measure
pre-o, 72

perpetuity, 19, 118

Poisson process
homogeneous, 34
standard, 34
superposition of, 35
thinning of, 35

power law behavior, 103

preface, v
process
autoregressive, 17
Galton-Watson, 7
Lindley, 6, 88
point, 30
Poisson, 34
standard, 34
recursive tree, 23
invariant, 23
renewal, 29
Prokhorov metric, 90
pseudo-inverse, 106

queue
G/G/1-,5
Quicksort
-distribution, 14
-equation, 14
algorithm, 10

random difference equation, 16, 87, 118
random logistic map, 89
random walk, 17, 29
d-arithmetic/nonarithmetic, 36
completely, 36
lattice-span, 36
multiplicative, 17
negative divergent, 72
oscillating, 72
positive divergent, 72
recurrence, 45
recurrence time
forward/backward, 54
recursive tree process, 23
invariant, 23
renewal
density, 33
equation, 39, 55
defective, 55
excessive, 55
proper, 55
standard, 55
two-sided, 107, 109
function, 30
second order approximation, 64
measure, 30
uniform local boundedness, 37
process, 29

stable law
one-sided, 4
symmetric, 4

standard model, 29
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stationary sequence, 139
doubly infinite extension, 140
ergodic, 140

stochastic fixed-point
equation, 1

stopping time
copy sums, 67
formal copy, 67
randomized, 79

Strahler number, 24

Strahler stream order, 24

superposition
of Poisson processes, 35

symbols, list of, xi, xiii

theorem
Birkhoff’s ergodic, 141
Blackwell’s renewal, 42, 75
Chung-Fuchs, 70, 71
elementary renewal, 31
implicit renewal, 104, 117
key renewal, 52, 76
transformation
ergodic, 94, 140
measure-preserving, 94, 139
tree
binary search, 14

‘Wald’s equations, 66
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