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1. Introduction

The market for interest rate derivatives is one of the biggest financial markets in the
world and is easily bigger than the stock market. A huge part of the market for op-
tions on interest rates is the over-the-counter (OTC) market. Different from stock
exchanges where prices of products are publicly quoted on consent, in the OTC mar-
ket the involved parties negotiate over prices only between themselves behind closed
doors without making them public. In the global OTC derivatives market positions of
almost 600 trillion USD were outstanding in 2013 [39] and all of those derivatives can
be found as positions in the balance sheets of financial institutions. To evaluate those
positions and to set prices in OTC trades sophisticated models are needed.

The main underlyings for products in the world of interest rate derivatives are for-
ward rates. Roughly speaking, those rates give the interest rate as of today for some
future time period. The most famous forward rates are the Libor/Euribor forward
rates. Those rates dictate the conditions to which big and liquid financial institutions
lend money to each other. A majority of the derivatives that have to be priced depend
on more than one forward rate.
In 1997 the first Libor Market Models (LMMs) to describe a set of forward rates con-
sistent with each other were published in [2] and [11]. This was a real breakthrough,
because, firstly, the forward rates are modeled directly and, secondly, it enabled market
participants to evaluate whole books of options depending on a range of forward rates
in arbitrage free manners. One drawback in the early simple LMM is the incapably to
incorporate the observable smile effect due to the deterministic volatility structure. So
the model is only capable to evaluate European options on those strikes which are used
for the model calibration and, even worse, it can only be used to evaluate a European
options for exactly one strike. In most cases this strike is at the money. Obviously a
reasonable model should be able to price options on any strike.
A simple model for forwards rates that is capable to incorporate the smile effect is the
SABR model and was introduced by Hagan [18]. It is popular since, because it easy
to understand and to calibrate at the same time. The SABR model is a one asset
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1. Introduction

model with stochastic volatility and thus gives a way to incorporate the market smile.
Therefore, it is possible to evaluate a book of European options on more than one
strike – at least for books depending on only one underlying. The model is a step in
the right direction, but for the sake of evaluating whole balance sheets consisting of
options on more than one underlying it is not enough.
Rebonato proposed in [36] the SABR-LMM, which is a hybrid of the SABR model and
the LMM. The SABR-LMM is a market model which can do both, it incorporates the
market smile and it describes the dynamics of a set of forward rates. Simultaneously,
it tries to preserve the simple SABR dynamics for the single assets as close as possible.
A main issue is to calibrate the SABR-LMM to the market to reflect the dynamics
of the real world. The goal of this work is to tackle this problem by giving the right
frameworks for an implicit calibration to current market prices. We will focus on the
calibration to cap and swaption prices and on the calibration to cap and constant
maturity swap (CMS) spread option prices. The first was introduced in [36] and is
revised thoroughly in this work. For the second calibration approach we extend the
work of Kienitz & Wittke [22] to our SABR-LMM environment.
A subproblem in the calibration task is to find an appropriate parametrization of the
model coefficients and structures. A stylized parametrization is required to guarantee
a stable implementation. To describe the correlation-structure of the SABR-LMM
through a proper parametrization we will research the two approaches coming from
Lutz [29] and Schoenmakers & Coffey [25].
In addition, we will test the calibration methods and the different parameterizations
on two different data sets consisting of real market prices from two different dates.

The work is organized as follows. In chapter 2 we introduce basic products, derivatives
and bootstrapping techniques. Then, in chapter 3 we explain the simple SABR model
and the SABR-LMM. In addition we calculate the involved asset dynamics under com-
mon measures. In chapter 4 we approximate the induced swap rate dynamics for the
SABR-LMM in a simple SABR framework. The parametrization of the SABR-LMM
is covered in chapter 5 were we explain how we stylize the model volatilities and cor-
relations. The implicit model calibration to cap and swaption prices is explained in
chapter 6. Afterwards, we introduce in chapter 7 the concept CMS spread options and
describe their dynamics in the SABR-LMM model. Further, we show how to calibrate
the correlation structure to CMS spread option prices. In chapter 8 we outline the
out-carried implementations of all calibration procedures explained in the previous
chapters and test the calibration methods by reprising the involved products using
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Monte Carlo simulations. Here we use market prices from two different dates. Last,
chapter 9 concludes the results of this works.
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2. Preliminaries

This work discusses the calibration of a market model for forward rates. To understand
the model we first need to understand the concept of forwards and to comprehend the
calibration processes we first have to grasp the concept behind derivatives on forward
rates. For this we give a proper mathematical environment and explain all the needed
concepts. Amongst others we give definitions for basic financial instruments and show
how to bootstrap the needed market data. This data will be essential in the calibration
part. Further we give a method to evaluate options market consistent.

2.1. Forward Rates and Swaps

In this section we first introduce two basic instruments that will be the basis of this
work. We show how they are related and give important formulas that will accompany
us throughout this thesis. After that, we establish derivatives on these products and
give evaluations formulas for pricing. This section follows [7] and [8].

2.1.1. Basic Definitions

To talk about financial requires a concept of time and time steps. A tenor structure
(Ti)i∈{0,...,N} is a set of real numbers consists of all time points of interest to the model.
Usually the structure starts at T0 = 0 which can be interpreted as the valuation date
we are looking at. At this point in time all market prices are known. Formally a tenor
structure can be defined as

9



2. Preliminaries

Definition 1 (Tenor Structure).
A tenor structure (Ti)i∈{0,...,N} is a finite, strictly monotonously increasing sequence
of non-negative real numbers, hence

0 ≤ T0 < T1 < · · · < TN <∞.

Further we define

δi := Ti+1 − Ti, i ∈ {0, . . . ,N − 1}

as the i-th time step.

The Ti don’t have to be equally spaced in general, so we do not force δi to be constant.
But in fact, when it comes to implementation it seems possible (and in fact turns out
to be possible) to set δi = δ constant without getting to inflexible.
The most basic product in market is the zero coupon bond and can be defined as
follows

Definition 2 (Zero Coupon Bond).
A zero coupon bond, pays at some tenor point T its notional N and has no other
payments in between. We write B(t,T ) for its price at time t ≤ T , where B(T ,T ) = N

and call T maturity and T − t time to maturity of the zero coupon bond.

In most cases we just write bond instead of zero coupon bond. In this work it holds
N = 1 throughout and the bond price is assumed to be positive all the time, which
means B(t,T ) > 0 for all t. In addition we assume the price process B(t,T ) is
decreasing in T . Hence, it holds B(t,S) < B(t,T ), if and only if S > T . That means
the longer the time to the payment the less worth is the bond. This agrees with our
intuition about pricing.
Further, we define bond prices B(t,T ) as the discount factors for the periods [0,T ].
This makes sense, since a bond pays in T exactly one and therefore gives today’s value
of one unit of money in T .
One of the most important concepts for this work is the forward rate. A forward rate
F it for the time interval [Ti,Ti+1] at time t gives the current interest rate for that
time interval, which is consistent with the bond prices (B(t,Ti))i∈{Ti | Ti≥t}. Here F it
is normalized linear to one year, that means over the period [Ti,Ti+1] the occurring
interest rate is (1 + δiF

i
t ). This strange definition comes from market convention.

Mathematically the rate is defined as

10



2.1. Forward Rates and Swaps

Definition 3 (Forward Rate).
The forward rate at time t over time [Ti,Ti+1] is defined as

F it :=
1
δi

B(t,Ti)−B(t,Ti+1)

B(t,Ti+1)
. (2.1)

Remark. In particular, our assumptions about the bond prices imply F it ≥ 0 for all
t < Ti and i ∈ 0, . . . ,N − 1. For clarification we emphasis: The forward rate F i over
the period [Ti,Ti+1] has the expiry date Ti, which means that the rate is fixed to a
certain value after this time, and that any payments are done a time step later, at the
settlement date Ti+1.

To check the interpretation of a forward rate as an interest rate for a certain period
define the value

rt,T :=
( 1
B(t,T )

)1/(T−t)
− 1 ≥ 0

This is the risk-less interest rate the bond pays until maturity. If we consider a bond
with maturity Ti, i > 1, the risk-less rate r0,Ti is an interest rate over more than one
time period.
Following the mentioned intution about forwards it seems equally plausible to follow
one of the two following strategies of which one is equivalent to the other. The first
is to buy a bond with maturity Ti+1 and get for (Ti+1 − t) periods the interest rate
rt,Ti+1 . The second is to buy a bond with maturity Ti and a forward rate agreement for
the period [Ti,Ti+1]. A forward rate agreement (FRA) is a contract that guarantees at
time t an interest rate of exactly F it over the period [Ti,Ti+1]. Both strategies should
have the same payoff in the end. To verify this claim we calculate both portfolio payoffs
in Ti+1 and obtain

(1 + rt,Ti)
(Ti−t)(1 + δiF

i
t ) =

1
B(t,Ti)

(
1 + B(t,Ti)−B(t,Ti+1)

B(t,Ti+1)

)
=

1
B(t,Ti+1)

= (1 + rt,Ti+1)
(Ti+1−t).

Another important financial product is the swap. A swap over a time horizon [Tm,Tn]
is a contract between two parties – the long and short party – which exchanges the
forward rates F i, i ∈ {m, . . . ,n− 1}, in each period against a fixed rate K. In a payer
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2. Preliminaries

swap the long party pays the fixed rate K and has to receives the floating rates F i.
In a receiver swap the long party receives the fixed rate K and pays the floating rates
F i.
A swap over the period [Tm,Tn] expires in Tm. On that date all rates are fixed to the
value F iTm and don’t change over the exchange time from Tm to Tn. The difference
Tn− Tm is the tenor of the swap and describes the length of the exchange period. For
the long party a payer swap at time t ≤ Tm has the value

Swapm,n
t :=

m−1∑
i=n

δiB(t,Ti+1)(F
i
t −K)

=
m−1∑
i=n

B(t,Ti)−B(t,Ti+1)− δiB(t,Ti+1)K

= B(t,Tm)−B(t,Tm)−
m−1∑
i=n

δiB(t,Ti+1)K, (2.2)

since the B(t,Ti+1) are the discount factors and the forward rate F i is paid in Ti+1.
In the market the value of K is chosen such that the expression in (2.2) is equal to
zero. In this case K is called swap rate. Since it holds

0 = B(t,Tm)−B(t,Tm)−
m−1∑
i=n

δiB(t,Ti+1)K

⇔ K =
B(t,Tn)−B(t,Tm)∑m−1

i=n δiB(t,Ti+1)
, (2.3)

we define the following:

Definition 4 (Swap Rate).
The swap rate at time t ≤ Tm over the period [Tm,Tn] is given as

Sm,n
t :=

B(t,Tm)−B(t,Tn)
Am,n
t

, (2.4)

where we define the swap numéraire as

Am,n
t :=

n−1∑
i=m

δiB(t,Ti+1).

12



2.1. Forward Rates and Swaps

Remark. A swap rate over a time interval can be interpreted, due to the relation in
(2.3), as the average interest rate over this period.

An important feature of a swap rate is that it can be written as a weighted sum
of the involved forward rates. To realize this we write

Sm,n
t =

B(t,Tm)−B(t,Tn)
Am,n
t

=

∑n−1
i=mB(t,Ti)−B(t,Ti+1)

Am,n
t

=
n−1∑
i=m

δiB(t,Ti+1)

Am,n
t

F it

=:
n−1∑
i=m

ωm,n
i (t)F it , (2.5)

where the weights are defined as

ωm,n
i (t) :=

δiB(t,Ti+1)

Am,n
t

. (2.6)

The last equations (2.5) and (2.6) are extremely important since they enable us to see
the direct link between forward rates, which we are planing to describe in a market
model, and swaps, one of the most liquid products in the market. Further the sum
structure shows that swaps depend on the interplay of the forwards. This will be
relevant in the calibration part of this thesis.

2.1.2. Basic Derivatives

Later we want to calibrate our model to market prices. It is practice to use call or
put-like derivatives for this purpose, since these simple products are the most liquid
ones. High liquidity favors the reliability of the observed prices since the associated
products are more likely traded on a census price. We will start with derivatives one
forwards and then come to options on swaps.
The most simple derivative on a forward rate is a caplet, which is a simple call option.
It enables to hedge against rising interest rates for a period of length δi.

13



2. Preliminaries

Definition 5 (Payoff of a Caplet).
A caplet on a forward rate F i with strike K pays in Ti+1 the following

δi(F
i
Ti
−K)+. (2.7)

So a caplet payment at the settlement date Ti+1 is fixed one period earlier at the
expiry date Ti.
However, in the market almost no caplets are quoted directly. They are quoted in
whole portfolios of caplets which are called caps. A cap over the period [Tm,Tn] is
a sum of caplets with expiry dates Ti, i ∈ {m, . . . ,n− 1}, where each caplet has the
same strike K. This implies the following proposition:

Proposition 1 (Cap Price).
The cap price of a cap ranging from Tm to Tn and strike K is given as

Cm,n(K) :=
n−1∑
i=m

Ci(K), (2.8)

where Ci(K) is defined as the value of the caplet on Fi with strike K.

Remark. As for swaps the difference Tn − Tm is the tenor and Tm the expiry date of
the cap.

Apart from caplets, floorlets which form the counterparts of the caplets and are puts
on forward rates exists. Therefore we can define the payoff of a floorlet as:

Definition 6 (Payoff of a Floorlet).
A floorlet on a forward rate F i with strike K pays in Ti+1 the following

δi(K − F iTi)
+. (2.9)

Again those derivatives are not quoted directly in the market. There are only floors –
a sum of floorlets – quoted. Floors can be seen as the counterpart of caps. The price
of a floorlet is given as:

Proposition 2 (Floor Price).
The floor price of a floor ranging from Tm to Tn and strike K is given as

Pm,n(K) :=
n−1∑
i=m

P i(K), (2.10)

where P i(K) is defined as the value of the floorlet on Fi with strike K.
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2.2. Bootstrapping Market Data

Remark. Similar to caps the difference Tn − Tm is the tenor and Tm the expiry date
of the floor.

Up to now we have discussed derivatives on forward rates. Now we want introduce
options on swap rates. Those options are often referred to as swaptions. A swaption
with strike K gives the right to enter a payer swap or receiver swap, respectively, with
strike K. In our case, the swaption and swap have the same expiry dates all the time.
Therefore, because of (2.2), the payoff of a payer swaption in Tn is given as

( n−1∑
i=m

δiB(Tm,Ti+1)(F
i
Tm −K)

)+
.

With the result in (2.5) we are able to rewrite this payoff in the following proposition:

Proposition 3 (Payoff of a Swaption).
The payoff of a swaption on a payer swap Sm,n at time Tn is given as

Am,n
Tm

(Sm,n
Tm
−K)+, (2.11)

where Am,n is the swap numéraire from definition 4.

We want to emphasize that, unlike as in the case for caps it is not possible to decompose
the payment (2.11) nor the value of a swaption in more elementary payoffs or prices.
This is a huge distinguish feature of caps/floors and swaptions.

2.2. Bootstrapping Market Data

In the calibration part we will rely on some fundamental data which we will assume
as given. This includes the prices of caplets and floorlets in any given tenor as well
as prices for swaptions with any expiry date and any tenor. Further, we will need the
current forward rates at the valuation date. Unfortunately, those cannot be obtained
directly and have to be stripped as well.

2.2.1. The Bootstrapping of Forward Rates

To calculate the current forward rate which are consistent with the corresponding
swap prices we are going to rely on the definition of forward rates as a quotient of
bond prices (2.1) and on the definition of swap rates as in (2.4). Our plan is to
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calculate the forward rates based on a set of swap rates starting at the valuation date
and having growing tenors up to the maximal tenor TN − T0. Those swaps are quoted
for a very long tenors up to 50 years. Therefore they provide the right environment
to calculate all the needed forward rates.
We want to calculate the forward prices basing on bond prices. To achieve this we
now calculate the needed bond prices iteratively.
It is clear that the first forward rate F 0

0 starting at the valuation date and settling in
T1 corresponds to the swap rate S0,1

0 . From this we get

B(0,T1) =
1

1 + δ0F 0
0

. (2.12)

This is our initial value. Next, let us consider definition 4, namely

S0,n
0 =

B(0,T0)−B(0,Tn)
A0,n

0
=

1−B(0,Tn)
A0,n

0
,

which is equivalent to

S0,n
0 A0,n

0 = 1−B(0,Tn)

⇔ S0,n
0
(
A0,n−1

0 + δn−1B(0,Tn)) = 1−B(0,Tn)

⇔ B(0,Tn) =
1− S0,n

0 A0,n−1
0

1 + δn−1S
0,n
0

⇔ B(0,Tn) =
1− S0,n

0
∑n−2
i=0 δiB(0,Ti+1)

1 + δn−1S
0,n
0

. (2.13)

On the left hand side of (2.13) we find the n-th bond price and on the right hand side
we find a function depending on the n-th swap rate and the first n− 1 bond prices.
Therefore, the formula gives us a way to calculate the bond prices one by one by just
knowing the swap rates S0,n

0 for each tenor point Tn. If we calculated all bond prices,
we can calculate the forward rates through the formula in (2.1)

F i0 =
1
δi

B(0,Ti)−B(0,Ti−1)

B(0,Ti−1)
.

However, not all needed swap rates can be found in the market and have to be in-
terpolated. We decided to interpolate linear. This method doesn’t guarantee positive
forwards, but in our case we did not get any.
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Figure 2.1.: The stripped forward rates following the approach above. On the left
we used linear interpolation and get shape that is in [14] reffered to as
a saw tooth shape. On the right we used spline interpolation and got a
smoother shape, but a smaller maximal forward rate. The data is from
the 21.07.2014 and was obtained from Bloomberg. The stripping was
implemented in F# and the plot was done in Matlab.

Still, there are other possibilities. In [14] the (C1/C2) spline interpolation is suggested
and explained, but this method doesn’t guarantee positive forwards either. Another
possibility is the Forward Monoton Convex Spline introduced in [33]. This method
incorporates the idea of occurred interest, meaning that a forward rate F i is paid over
the interval [Ti,Ti+1] and not only at Ti+1.
All the above methods work only in an environment of greater certainty about the
input data. If the validity of the data is questionable one could build a swap curve by
using a Nelson-Siegel or Svensson curve as described in [1] and [16]. Those curves have
a parametrization that forces them in a range of idealized swap curves. Since those in-
terpolation methods are behind the scope of this work we stick to linear interpolation.

2.2.2. The Stripping of Caplet Volatilities

Caplet volatilities will be one of the corner stones of our calibration procedure later
on. As described in section 2.1.2 caplets are not directly quoted in the market, but
indirectly as caps. In this section we will describe a stable approach to calculate caplet
volatilities from cap volatilities. This procedure is called caplet stripping. For the gen-
eral framework we rely on [24].
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In the market we find for each set of strikes (Ki)i a set of cap prices, for caps(
C1,j(Ki)

)
i,{1<j≤N} with expiry date T1 growing tenors up to TN −T1, given in Black

volatilities σcap(j,Ki). So in the market caps are quoted indirectly. The cap price can
be obtained via

C1,j(Ki) =

j−1∑
k=1

Ck(Ki)

=

j−1∑
k=1

Ck(F k0 ,Ki,σcap(j,Ki),Tk), (2.14)

where Ck(F k0 ,Ki,σ(j,Ki),Tk) is the price of the k-th caplet assuming that F kt follows
Black’s model [10]. Therefore, it holds due to (2.7)

Ck(F k0 ,Ki,σ(j,Ki),Tk) = δkB(0,Tk+1)(F
k
0N (d1)−KiN (d2)), (2.15)

where

d1/2 :=
ln
(Fk0
Ki

)
± 1

2 (σ(j,Ki))2Tk

σ(j,Ki)
√
Tk

.

So a cap is priced by using an all in volatility σcap(j,Ki) for all caplets. Knowing this
we want to calculate the caplet prices for all caplets

(
Cj(Ki)

)
j,i in Black volatilities(

σcpl(j,Ki)
)
j,i at any tenor point Tj and strike Ki.

To achieve this, we first fix a strike Ki and therefore only consider the set of caps(
C1,j(Ki)

)
{1<j≤N}. As in the case for forward rates the stripping of caplet volatilities

is done iteratively as follows: It is clear from (2.8) that the cap price C1,2(Ki) agrees
with the caplet price C1(Ki). This is our initial value. Then we solve iteratively the
following equations for 1 < k < N

Ck(F k0 ,Ki,σcpl(j,Ki),Tk) = C1,k+1(Ki)−
k−1∑
j=1

Cj(F j0 ,Ki,σcpl(j,Ki),Tj) (2.16)

to obtain all caplet volatilities σcpl(j,Ki). We do this for all strikes and get the whole
caplet volatility surface.
Similar as in the bootstrapping of forward rates not all cap volatilities for all tenors
we are interested in may exist in the market. We gain the missing tenors by spline
interpolation, since we want a smooth volatility surface.
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2.2. Bootstrapping Market Data

Remark. It is clear from the definition of the payoff of a floorlet (2.9) and from
the definition of the price of a floor (2.10): It is possible to strip floorlet volatilities(
σflt(j,Ki)

)
j,i in the same fashion as stripping caplet volatilities. The floorlet volatil-

ities σflt(j,Ki) then agree with the caplet volatilities σcpl(j,Ki) for the same strikes,
underlying prices and expiries, because of the call-put parity.
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Figure 2.2.: The volatility surface stripped from Euro caps as of the 21.07.2014 with a
half year tenor (δi ≡ 0.5) and a time horizon of over 20 years. We obtained
the data from Bloomberg. The implemention was carried out in F# and
the plot was done in Matlab.
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3. The SABR and SABR-LMM model

The main goal of this work is to provide an environment to price options depending
on a range of forward rates consistently. To achieve that we set up a model that can
do both. It will incorporate the observable smile effect and provide a dependency
structure for the modeled assets. We will develop the model in two steps. In the
first one we give a simple model that can only handle one asset, but is capable of
incorporating the smile effect. Further, the model provides a analytic formula that
translates the coefficients which are describing the model into an implied model smile.
This feature will come in handy later on, since it will enable us to calibrate efficiently
to given prices. Then we extend the model to a full market model. By doing so we
try to preserve the dynamics from the simpler model as well as possible.

3.1. The SABR Model

The SABR (σ, α, β, ρ) model is a model of stochastic volatility and can describe
exactly one asset F . It was first published by Hagan [18] and it has been popular since,
because it easy to understand and to calibrate. The stochastic volatility gives a way
to incorporate the market smile. Further there exists a formula that gives depending
of the model parameters the smile generated by the model, whereas a change of model
parameters can be directly interpreted in changes of the model induced smile in a
logical way. In addition there exist very effective simulation schemes which reduce the
pricing procedure through Monte Carlo simulations drastically [6]. For this reason it
is a perfect tool to manage a book of options on a single asset. Theoretically F can
be any asset but in our context F will be only a forward rate or a swap rate.
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3. The SABR and SABR-LMM model

Definition 7. (The SABR Model)
In the SABR model the dynamics of an asset F maturing at time T is given by

dFt = σtF
β
t dWt, F0 = F (0), t ≤ T

dσt = ασtdZt, σ0 = σ(0) (3.1)

d〈W•,Z•〉t = ρdt,

where σ, α ∈ R+ und β ∈ [0, 1], ρ ∈ [−1, 1]. Further W and Z are one dimensional
Wiener processes. To be consistent we define dFt ≡ 0 for t > T .

The process σt is the volatility of the model and σ0 as the level of the volatility. The
coefficient α is named the vol-vol, that’s short for the volatility of volatility and ρ is
the so called correlation or skew.
The coefficient β is the CEV parameter. In the special case β = 0 we get a normal
model, since in this case Ft is approximately normally distributed. With this choice for
β the process (Ft)t can get negative and in Asian markets practitioners often choose
this parametrization to model forwards, since they tend to be negative in this markets
from time to time [18]. If we set β = 1, we obtain a log-normal model. If β ∈ (0, 1),
we get a CEV model. The choice of beta will be important in the calibration part
later in this work.
We do not favor the SABR model only because of the simple structure above other
ones like Heston [26] or Bates [37], which also could be extended to a full Libor-
Market-Model [12]. The main advantage of the SABR model over the other ones is
the analytic function for implied Black volatility depending on strike and underlying
price. If this volatility is put in to Blacks pricing formula, it yields the model price for
a call. To describe the implied Black volatility closer, we first consider Black’s Model
[10] in which an asset F follows the SDE

dFt = σimpFtdWt, F0 = F (0),

where σimp > 0 is a real number and W a Wiener process. It is well known [10] that
the call price for a call with strike K, expiry date Tex and settlement date Tset can be
calculated as

C(F0,K) = B(0,Tset)
[
F0N (d1)−KN (d2)

]
(3.2)
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and, respectively the put price for a put with strike K, expiry date Tex and settlement
date Tset can be calculated as

P (F0,K) = B(0,Tset)
[
KN (−d2)− F0N (−d1)

]
,

where

d1/2 =
ln
(F0
K

)
± (σimp)2Tex

σimp√Tex
(3.3)

and B(0,Tset) is the discount factor for the time interval [0,Tset]. The volatility σimp

which yields in (3.2) and (3.3) the same price for a call and put the SABR model
would produce is called implied (Black) volatility. It is well known that in real market
situations the implied volatility depends on the underlying price and strike. Thus,
a volatility surface can be observed which reduces to a volatility smile, if we fix the
underlying price F0 to some value. In the SABR model exists a formula to calculate the
implied volatility surface based on the model parameters σ0, α, β and ρ. The formula
is given in [18] and was improved in [23]. The improved formula goes as follows

σI(F ,K,β,α, ν, ρ,Texp) :=I0
H(F ,K,β,α, ν, ρ)

× (1 + I1
H(F ,K,β,α, ν, ρ)Texp), (3.4)

where

I1
H(F ,K,β,α, ν, ρ) :=

(β − 1)2α2

24(F0K)1−β +
ρναβ

4(F0K)(1−β)/2 +
2− 3ρ2

24 ν2

and

I0
H(F ,K,β,α, ν, ρ) :=



αKβ−1 , if F0
K = 1

ln(F0/K)α(1−β)
F 1−β

0 −K1−β , if ν = 0

ν ln(F0
K )
/

ln
(√1−2ρz1+z2

1+z1−ρ
1−ρ

)
, if β = 1

ν ln(F0
K )
/

ln
(√1−2ρz2+z2

2+z2−ρ
1−ρ

)
, if β < 1

,

where

z1 :=
ν ln(F0/K)

α
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3. The SABR and SABR-LMM model

and

z2 :=
ν

α

F 1−β
0 −K1−β

1− β .

All the above expressions are purely analytic and no numerical integrations or some
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Figure 3.1.: The graphic shows how the implied volatility σI changes with changes of
the SABR model parameters. α has an impact on the level the smile,
whereas a higher ν produces a more pronounced shape. A change in β
effects the left end of the smile, that is in the area with small strikes. The
parameter ρ has a general impact on the skew of the smile. The plots give
the impression that changes in ν and ρ can substitute changes in β very
well. The plot was done in Matlab.
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similar cumbersome procedures are needed. This makes this formula highly tractable
and efficient.
However, we want to emphasis that there exist other approximation for the implied
volatility. For example, other formulations are given in [38], [30] and [27], whereas the
formulation in the last source is the most exact one according to market opinion. But,
the implementation of those significant more complicate formulas is behind the scope
of this work. Note however that it was shown in [18] and [23] that the above version
in (3.4) works quite well.
Clearly, the formula enables us to calculate prices, which our model produces, for puts
and calls with different strikes and underlying prices without doing cumbersome Monte
Carlo simulations. Further, the formula enables us to calculate prices on portfolios of
put and calls, like straddles, butterfly spreads, covered calls, protective puts, etc.
But, we can go the other way around as well. It is market practice to quote prices of
calls and put in Black volatilities indirectly. Hence, if we observe implied volatilities
of European options we can easily calibrate the SABR model to market prices by
minimizing the difference of quoted volatilities and implied model volatilities depending
on the model parameters α, β, ν and ρ.
However, in this work we will fix β to 0.5 or 1.0, depending on the assets we are
looking at. So we only have to estimate the three parameters α, ν and ρ. We have two
reasons to do so. First, the impact of β and ρ, in combination with ν, on the shape
of the curve is very similar as can be seen in figure 3.1. By fixing β we obtain a more
unique solution. Second, we want to model forward rates and to set β = 0.5 seems
to be market conform, as argued in [36]. Discussion with traders showed that most of
them indeed choose β = 0.5 in their CEV models and β fixed at this value leads to a
lower variation of the other parameters over time. So the model calibration is longer
approximately valid and a longer validity speaks in favor of a fixed β.
To estimate the SABR model parameters we simply minimize the square of the sum
over the squared errors between market prices and model prices. That implies our
estimated parameters α̂, ρ̂ and ν̂ are obtained by

(α̂, ρ̂, ν̂) = arg min
α,ρ,ν

√∑
i

[
σM(F0,Ki)− σI(F0,Ki,β,α, ν, ρ,Ti)

]2, (3.5)

where σM(F0,Ki) is the in the market quoted Black volatility for a call or put with
strike Ki, underlying price F0 and expiry date Ti. The minimization problem in (3.5)
can be tailored to ones needs by multiplying a weights. This technique can be used to
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weight uncertain data lower than certain one or to emphasis on a range of strikes. In
this case the minimization problem becomes

(α̂, ρ̂, ν̂) = arg min
α,ρ,ν

√∑
i

ωi
[
σM(F0,Ki)− σI(F0,Ki,β,α, ν, ρ,Ti)

]2. (3.6)

For example, by choosing (ωi)i = (σM(F0,Ki)−1)i the relative differences will be
minimized. If not written differently we will use (3.5).

3.2. The SABR-LMM Model

In this chapter we will combine the simple SABR model with the classic Libor market
model (LMM) under deterministic volatility as developed in [11] and [2]. In a LMM a
number of forward rates with a dependency structure are modeled. The dependency
structure is given through the correlation which describes the comovement of the assets
in the model. The problematic part in a simple LMM is the lack of possibility to model
smile effect which is observable in the real market. This means we are only able to
evaluate caplets or swaptions on those strikes which are used for the model calibration
and, even worse, it is only possible to evaluate caplets or swaptions for exactly one
strike. In most cases those strikes are at the money. Obviously a reasonable model
should be able to price options on any strike. The SABR model can reproduce the
smile, but since it is a one-asset model no dependency of two or more processes can
be considered. It is definitely no good solution to model a number of assets simply
by taking a number of uncorrelated SABR processes. For example, this shows the
valuation of swaptions based on forward rates.
So the LMM and the SABR together have the needed features plus the SABR model
gives us the useful formula for the implied volatility. In the following we will combine
both models and develop two stable calibration methods. The first method will be a
calibration on caplets and swaptions and the second will be a calibration on caplets
and CMS spread options. In both cases we will heavily depend on the formula for
implied volatility to hit quoted market prices. The overall goal in both approaches
will be to keep the SABR dynamics for the forward rates as close as possible, since
that model has so many good characteristics. The SABR-LMM is defined as follows:
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Definition 8. (The SABR-LMM Model for Forward Rates)
In a N -dimensional SABR-LMM model the N forward rates (F i)i∈{1,...,N−1} have
under their individual forward measure Pi the following dynamics:

dF it = σit(F
i
t )
βdW i

t , t < Ti, F0 = F (0) (3.7)

σit = gitk
i
t (3.8)

dkit = hitk
i
tdZ

i
t , t < Ti, k0 = k(0) (3.9)

d〈W i,W j〉t = ρijdt, i, j ∈ {1, . . . ,N − 1} (3.10)

d〈Zi,Zj〉t = rijdt, i, j ∈ {1, . . . ,N − 1} (3.11)

d〈W i,Zj〉t = Rijdt, i, j ∈ {1, . . . ,N − 1}, (3.12)

where β ∈ [0, 1], ρi,j , ri,j ,Ri,j ∈ [−1, 1] for all i, j ∈ {1, . . . ,N − 1} and the determin-
istic functions g,h : R+ → R fulfill∫ T

0
g2
i (s)ds <∞ and

∫ T

0
h2
i (s)ds <∞ for all i ∈ {1, . . . ,N − 1} and 0 < T ≤ Ti.

Further, we set for completeness

F it = F iTi for all t > Ti.

We define the super correlation matrix of the model as

P :=

(
ρ R

RT r

)
. (3.13)

The Matrix (ρij)i,j consists of all forward/forward correlations, the entries of (rij)i,j
are the volatility/volatility correlations and (Rij)i,j carries all the forward/volatility
correlations. Notice, only P , (ρij)i,j and (rij)i,j are symmetric. The matrix (Rij)i,j

is asymmetric in general.

Remark. From time to time we will use the forward rate F 0 which is not contained in
the SABR-LMM above. This forward rate is the interest rate for the period [T0,T1].
Since we assume that all prices in T0 are known F 0 is not stochastic. Obviously, its
dynamics doesn’t have to be modeled.

The SABR-LMM incorporates not only the SABR into the LMM model it has even
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time dependent parameters given through gi and hi. The stochastic volatilities σi of
the forward rates F i can be separated into a deterministic part gi and in a stochas-
tic part ki. Therefore gi is often called the deterministic volatility of F i and ki the
stochastic volatility, respectively. Further, the function hi describes the deterministic
volatility of volatility.
We would like to highlight the following feature: If ki is constant for all i, e.g. hi ≡ 0
for all i, we obtain an ordinary LMM. This is because the stochastic volatility vanishes.

3.3. The SABR-LMM Dynamics under any Forward
Measure Pl

To simulate option prices in a Monte Carlo setup or to examine the model it is necessary
to express all asset dynamics in the model under one common measure. A possible
choice for such a measure is the forward measure Pl for some l. In the special case
l = N − 1 we call PN−1 the terminal measure and in most cases we use this measure
for our simulation. In the following, we always assume that our modeled assets are
forward rates with dynamics as given in definition 8. The idea is to calculate the
change of measures by change of numéraire techniques.

Theorem 1 (SABR-LMM Dynamics under different Pl).
In the SABR-LMM model, as in definition 8, the dynamics under a certain forward
measure Pl of the forward rates F j and the stochastic volatilities kj are given as

dF jt = σjt (F
j
t )
β ×


−
∑
j+1≤i≤l

ρi,jδiσit(F
i
t )
β

1+δiF it
dt+ dW j

t , if j < l

dW j
t , if j = l∑
l+1≤i≤j

ρi,jδiσit(F
i
t )
β

1+δiF it
dt+ dW j

t , if j > l

(3.14)

and

dkjt = hjtk
j
t ×


−
∑
j+1≤i≤l

Rj,iδiσit(F
i
t )
β

1+δiF it
dt+ dZjt , if j < l

dZjt , if j = l∑
l+1≤i≤j

Rj,iδiσit(F
i
t )
β

1+δiF it
dt+ dZjt , if j > l

(3.15)

where σjt = hjtk
j
t stays the same.
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Proof. We will carry out the proof with by means of induction. First, we concentrate
on the dynamics of the F i. It holds per definition, since F i is a forward rate:

F it =
1
δi

(B(t,Ti)−B(t,Ti+1)

B(t,Ti+1)

)
for all t ≤ Ti,

where the B(t,Ti) are strictly positive bond prices at time t for bonds which pay at
maturity Ti exactly one unit of money. Further, the F i are local martingales under Pi.
Therefore the probability measure Pi can be seen as the measure under which every
tradeable asset relative to the numéraire B(t,Ti+1) is a local martingale. In the first
step we calculate the dynamics of F it under Pi−1 and therefore relatively to B(t,Ti).
For this we need the Bayes formula. We give the formula without proof.

Proposition 4. (Bayes’ Formula)
Let (Ω,A) be a measurable space with probability measures P and Q. Further let
B ⊆ A be a sub-σ-algebra. Then it holds for an integrable and A measurable random
variable Y

EQ
[
Y | B

]
= EP

[dQ

dP
Y | B

] (
EP
[dQ

dP
| B
])−1

P-a.s. . (3.16)

It follows that

dPi−1

dPi

∣∣
Ft

=
B(t,Ti)
B(t,Ti+1)

B(0,Ti+1)

B(0,Ti)
Pi-a.s. , (3.17)

since the expression is a probability measure, because (1 + δiF
i
t )

B(0,Ti)
B(0,Ti+1)

= dPi−1

dPi

∣∣
Ft

is positive Pi+1-martingale with an expected value of 1. Further, let
(

Xt
B(t,Ti)

)
0≤t≤Ti

be a Pi−1 martingale. Then it holds with the Base formula (3.16) for t ≤ Ti

EPi
[(dPi−1

dPi

) XTi

B(Ti,Ti)
| Ft

]
= EPi

[( B(Ti,Ti)
B(Ti,Ti+1)

B(0,Ti+1)

B(0,Ti)

) XTi

B(Ti,Ti)
| Ft

]
= EPi−1

[ XTi

B(Ti,Ti)
| Ft

]
×EPi

[ B(Ti,Ti)
B(Ti,Ti+1)

B(0,Ti+1)

B(0,Ti)
| Ft

]
=

Xt

B(t,Ti)

This shows, that the measure implied by density in (3.17) agrees with the probability
measure Pi−1. Therefore the notation dPi−1

dPi

∣∣
Ft

is justified. Now it follows with the
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3. The SABR and SABR-LMM model

Ito-Formulas [9] and by considering the SABR-LMM model dynamics from definition
8:

d
[

ln
(dPi−1

dPi

∣∣
Ft

)]
= d ln((1 + δiF

i
t )

B(0,Ti)
B(0,Ti+1)

)

= d ln(1 + δiF
i
t )

=
δi

1 + δiF
i
t

dF it −
1
2

δ2
i

1 + δiF
i
t

d〈F i〉t

=
δi

1 + δiF
i
t

σit(F
i
t )
βdW i

t −
1
2

δ2
i

1 + δiF
i
t

(σit)
2(F it )

2βdt. (3.18)

According to Girsanow’s Theorem [40] is X a local Pi-martingale if and only if

Y := X − 〈X, ln
(dPi−1

dPi

∣∣
F•

)
〉 (3.19)

is a local Pi−1-martingale. A change of measure produces a drift that maintains
the martingale property. In the finance literature this drift is often called Convexity
Correction.
If we use (3.19) on F i, we get, with the help of (3.18) and (3.10), the following dynamics
under Pi−1

dF̂ i = dF i − d〈F i, ln
(dPi−1

dPi

∣∣
F•

)
〉

= σi(F i)βdW i − σi(F i)β δi
1 + δiF i

σi(F i)β . (3.20)

Now we want to calculate the dynamics of F i under Pi−2. In analogy (3.18) to follows

d
[

ln
(dPi−2

dPi−1
∣∣
Ft

)]
= d ln(1 + δi−1F

i−1
t )

=
δi−1

1 + δi−1F
i−1
t

σi−1
t (F i−1

t )βdW i−1
t

− 1
2

δ2
i−1

1 + δi−1F
i−1
t

(σi−1
t )2(F i−1

t )2βdt. (3.21)

30



3.3. The SABR-LMM Dynamics under any Forward Measure Pl

Together with (3.20) follows for F i under Pi−2 by considering dPi−2

dPi
= dPi−2

dPi−1
dPi−1

dPi

dF̃ i = dF i − d〈F i, ln
(dPi−2

dPi

∣∣
F•

)
〉

= dF̂ i − d〈F̂ i, ln
(dPi−2

dPi−1
∣∣
F•

)
〉

= σi(F i)β
(
dW i −

( δi
1 + δiF i

σi(F i)βρi,i +
δi−1

1 + δi−1F
i−1
t

σi−1
t (F i−1

t )βρi−1,i
))

Now follows the theorem for F j in the case of j > l. The case l < j follows in the
same way and we only note: It holds

dPi

dPi−1
∣∣
Ft

=
(dPi−1

dPi

∣∣
Ft

)−1
=
( B(t,Ti)
B(t,Ti+1)

B(0,Ti+1)

B(0,Ti)

)−1
Pi−1-a.s. .

The dynamics of the stochastic volatilies ki under the forward measure Pi is through
(3.9) as

dki = hikidZi.

In the same fashion as for the forward rates we first calculate the stochastic differential
equation of ki under the measure Pi−1 and Pi−2.
With Girsanow (3.19) follows, with the help of (3.18), for the dynamics of ki under
the measure Pi−1

dk̂i = dki − d〈ki, ln
(dPi−1

dPi

∣∣
F•

)
〉

= hikidZi − hiki δi
1 + δiF i

σi(F i)βRi,i.

Therefore, we obtain by considering (3.21) for the dynamics of ki under Pi−2

dk̃i = dki − d〈ki, ln
(dPi−2

dPi

∣∣
F•

)
〉

= hiki
(
dZi −

( δi
1 + δiF i

σi(F i)βRi,i +
δi−1

1 + δi−1F i−1σ
i−1(F i−1)βRi,i−1

))
.

Again, per induction follows the theorem for kj in the case of j > l. The case l < j

follows analogously and therefore is omitted.
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3. The SABR and SABR-LMM model

Remark. Notice that the calculated model dynamics in Theorem 1 don’t agree with
the ones in [36]. There we find in the dynamics of kj instead of Ri,j the Term Ri,iρi,j

and the function gj . However our version coincides with the dynamics in [17].

3.4. The SABR-LMM Dynamics under the Spot
Measure Pspot

Another measure under which we can calculate the dynamics of the Forwardrates is the
Spot Measure Pspot. In this measure processes of the form (XtGt )t are local martingales,

where Gt :=
B(t,Tγ(t)−1)∏

1≤i≤γ(t)−1 B(Ti−1,Ti)
, and γ(t) := inf

{
k ∈ N | T0 +

∑k−1
i=0 δi > t

}
=

inf
{
k ∈N | Tk ≥ t

}
.

Theorem 2 (SABR-LMM Dynamics under Pspot).
Under Pspot the SABR-LMM dynamics given in definition 8 are the following:

dF jt = σjt (F
j
t )
β
( ∑
γ(t)≤i≤j

ρi,jδiσit(F
i
t )
β

1 + δiF
i
t

+ dW j
t

)
, (3.22)

and

dkjt = hjtk
j
t

( ∑
γ(t)≤i≤j

rj,iδigith
i
tk
i
t(F

i
t )
β

1 + δiF
i
t

dt+ dZjt

)
, (3.23)

where σjt = hjtk
j
t stays the same.

Proof. A proof can be found in [7]. Alternatively one can carry out the proof in
analogy to Theorem 1. Since the numéraires of Pspot and Pl are known one can
calculate the density for the change of measure, like in (3.17). Then just the drifts
comming from Grisanovs theorem have to be calculated to obtain the dynamics under
the spot measure.
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3.4. The SABR-LMM Dynamics under the Spot Measure Pspot

To interpret Pspot we write Gt in a different way. It holds

Gt =
B(t,Tγ(t)−1)∏

1≤i≤γ(t)−1 B(Ti−1,Ti)

=
∏

1≤i≤γ(t)−1

(1 + δi−1F
i−1
Ti−1

)B(t,Tγ(t)−1).

So Gt can be seen as the time value process of a portfolio with the following strategy:
The portfolio value in the beginning is exactly one. Then, from period to period, the
portfolio reinvests its capital with the actual one period spot rate. To get the time
value at time t the portfolio value is discounted by B(t,Tγ(t)−1).

The reason for considering different measures is the effort of calculating the drifts
terms in simulations. Almost half of the simulation time comes from the drift calcu-
lation the other half comes from generating random numbers. In the spot measure
the processes F jt and kjt have drifts consisting of (j − γ(t) + 1) summands as shown
in (3.22) and (3.23), respectively. In the terminal forward measure the processes F jt
and kjt have drifts consisting of (N − j) summands as shown in (3.14) and (3.15). It is
natural to choose the measure with the minimal cost of drift calculation. We conclude
the following thumb rule: If only forwards with short expiries have to be simulated, we
choose the spot measure and if forwards with longer expiries are involved, we choose
the terminal forward measure.
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4. Swaps Rates in the SABR-LMM

Swap rates depend directly on underlying forward rates, since we can write them as
sum of forwards as shown in Section 2.1.1 in equation (2.5). This structure particularly
yields a direct dependence of the swap rate on the interplay of the forward rates. We
want to analyze how the dependence of the interplay can be described in terms of the
super correlation matrix P which we defined in (3.13).
To achieve this, we first give a way to model the swap rate dynamics in a SABR envi-
ronment. Then we approximate the swap’s SABR coefficients by taking the structure
as a sum of forward rates into account. Here we assume that the forward rate dynamics
are governed by the SABR-LMM. The approximated SABR coefficients will depend
on P . By doing this we find a proper way to describe a swap rate dependent on P ,
which we will later use to estimate the matrix implicitly by using market quotes of
swaption prices. More on this can be found in chapter 6 which covers calibration to
swaptions.

4.1. A SABR model for Swap Rates

A swap rate depends directly on forward rates, because of (2.5). Since we chose SABR-
like dynamics for all the forwards it makes sense to assume that a swap rate does not
evolve in a completely different style and can be described by a SABR model under
the swap measure Pm,n as well. For this section we depend on [36]. We define the
swap rate dynamics as follows:
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4. Swaps Rates in the SABR-LMM

Definition 9 (The SABR model for Swap Rates).
The SABR dyanamic of a swap rate Sm,n with expiry Tm and tenor Tn− Tm is under
the swap measure Pm,n defined as

dSm,n
t = Σm,n

t

(
Sm,n
t

)βm,n
dWm,n

t , Sm,n
0 = Sm,n(0) (4.1)

dΣm,n
t = Σm,n

t V m,ndZm,n
t , Σm,n

0 = Σm,n(0) (4.2)

d〈Wm,n
• ,Zm,n

• 〉t = Rm,ndt, (4.3)

where V m,n, Σm,n
0 ∈ R+ and Rm,n ∈ [−1, 1]. Further, Wm,n and Zm,n are onedimen-

sional Wiener processes.

Remark. Notice, we write for the swap SABR coefficients capital letters, whereas
we write for the SABR-LMM coeffcients, except for the forward/volatility correlation
matrix R, small letters.

4.2. Swap Rates Dynamics in the SABR-LMM

We want to estimate the swap rate dynamics in a SABR-LMM framework, where we
assume that the swap rate evolves under the swap measure Pm,n governed by a simple
SABR model as in definition 9 above. There the swap process has the deterministic
volatility V m,n. Now, the challenging part is the following: If in a LMM the forward
rates have deterministic volatility under the forward measures Pi the swap rates have
in general stochastic ones under any Pi. This simply comes from the sum-weights
ωm,n
i (t) in the sum representation (2.5), because they are quotients of stochastic pro-

cesses. This even happens in the case of a LMM with deterministic volatility only.
To circumvent the problem we will simply freeze the weights to their initial values to
make them deterministic again.
The approximation will be done step by step. First, we approximate the initial level
of the swap volatility Σm,n

0 and the vol/vol V m,n. Then, the correlation Rm,n is ap-
proximated. In this section we rely on Rebonato [36], but have thoroughly revised the
derivations.

For a start, we describe the swap rate Sm,n dynamics as

dSm,n
t = Φm,n

t

(
Sm,n)βm,n

dWm,n
t , (4.4)
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4.2. Swap Rates Dynamics in the SABR-LMM

where

Φm,n
t := Φm,n

t ({ F 0
t , . . . ,FN−1

t }, {σ0
t , . . . ,σN−1

t }, (ρij)i,j),

is a stochastic volatility depending on the SABR-LMM parameters. Now, our goal
is to approximate Φm,n and get an idea of its general structure. If we calculate the
swap rate dynamics using Ito’s formula [9] we get by keeping in mind the SABR-LMM
dynamics for forwards (3.7)

dSm,n
t =

n−1∑
l=m

∂Sm,n
t

∂F lt
dF lt +

1
2

n−1∑
j,l=m

∂Sm,n
t

∂F jt ∂F
l
t

d〈F j• ,F l•〉t

≈
n−1∑
l=m

∑n−1
j=m ω

m,n
j (0)F jt
∂F lt

+
1
2

n−1∑
j,l=m

∂Sm,n
t

∂F jt ∂F
l
t

σjtσ
l
tF

j
t F

l
tρjldt (4.5)

=
n−1∑
l=m

ωm,n
l (0)dF lt +

1
2

n−1∑
j,l=m

∂Sm,n
t

∂F jt ∂F
l
t

σjtσ
l
tF

j
t F

l
tρjldt. (4.6)

Here we used in (4.5) the sum formula (2.5) and freezed the weights ωm,n
j to their

initial values. This is a common technique in financial mathematics and is a quite good
approximation for flat underlying yield curves. The [. . . ]dt term can be interpreted as
the drift correction from Girsanow [40] due to the change of measures from the forward
measures Pj to the swap measure Pm,n. We calculate the quadratic covariation of (4.6)
as

d〈Sm,n
• 〉t = d〈

n−1∑
l=m

ωm,n
l (0)dF l•〉t

= d〈
n−1∑
l=m

ωm,n
l (0)σl•

(
F l•
)β
dW l

t 〉t (4.7)

Now (4.7) is, because of (4.4), equivalent to

(
Sm,n
t

)2βm,n(
Φm,n
t

)2
=

n−1∑
j,l

ωm,n
j (0)ωm,n

l (0)
(
F jt
)β(

F lt
)β
σjtσ

l
tρjl

⇔
(
Φm,n
t

)2
=

n−1∑
j,l

ωm,n
j (0)(

Sm,n
t

)βm,n
ωm,n
l (0)(

Sm,n
t

)βm,n
(
F jt
)β(

F lt
)β
σjtσ

l
tρjl (4.8)
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4. Swaps Rates in the SABR-LMM

We define

Wm,n
l (t) :=

ωm,n
l (0)

(
F lt
)β(

Sm,n
t

)βm,n (4.9)

and rewrite (4.8) as

(
Φm,n
t

)2
=

n−1∑
j,l

Wm,n
j (t)Wm,n

l (t)σjtσ
l
tρjl

≈
n−1∑
j,l

Wm,n
j (0)Wm,n

l (0)σjtσ
l
tρjl, (4.10)

where we froze the ratios (4.9), which results only in a small lose of precision. This
comes from the observation that the ratio(

F lt
)β(

Sm,n
t

)βm,n

is only slowly varying over time due to the high correlation of swaps and forwards, as
Hull and White argued in [21]. Now (4.10) leads to

Φm,n
t ≈

√√√√n−1∑
j,l

Wm,n
j (0)Wm,n

l (0)σjtσltρjl. (4.11)

Therefore, the swap rate dynamics in (4.4) can be approximated as

dSm,n
t ≈

√√√√n−1∑
j,l

Wm,n
j (0)Wm,n

l (0)σjtσltρjl
(
Sm,n
t

)βm,n
dWm,n

t .

With the help of this representation we plan to approximate the SABR coefficients
Σm,n(0) and V m,n. From (4.11) we obtain, by writing Em,n for the expected value
under Pm,n

Em,n[ ∫ Tm

0

(
Φm,n
t

)2
dt
]
≈ Em,n[ ∫ Tm

0

n−1∑
j,l

Wm,n
j (0)Wm,n

l (0)σjtσ
l
tρjldt

]
. (4.12)
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4.2. Swap Rates Dynamics in the SABR-LMM

For the right hand side of this equation we obtain

Em,n[ ∫ Tm

0

(
Φm,n
t

)2
dt
]
≈ Em,n[ ∫ Tm

0

(
Σm,n
t

)2
dt
]
. (4.13)

Now, from the definition of the quadratic variation

〈X•〉t = X2
t + 2

∫ t

0
XtdXt

we get, by knowing Σm,n
t has a bounded variation since V m,n ∈ R+ and our time

horizon is finite what implies that the expected value of
∫ t

0 XtdXt vanishes,

d

dt
Em,n[(Σm,n

t

)2]
=

d

dt

(
V m,n)2 ∫ t

0
Em,n[(Σm,n

s

)2]
ds

=
(
V m,n)2Em,n[(Σm,n

t

)2].
Hence,

Em,n[(Σm,n
t

)2]
=
(
Σm,n

0
)2 exp

(
V m,nt

)
and therefore∫ Tm

0
Em,n[(Σm,n

s

)2]
ds =

∫ Tm

0

(
Σm,n

0
)2 exp

(
V m,nt

)
dt

=
(Σm,n

V m,n

)2(
exp

(
(V m,n)2Tm

)
− 1
)

, (4.14)

which gives us the right hand side of (4.13). Now, we come back to (4.12) and use our
last equation (4.14) together with the definition of the σlt in the SABR-LMM (3.8).
This leads to

(Σm,n

V m,n

)2(
exp

(
(V m,n)2Tm

)
− 1
)
≈

n−1∑
j,l=m

ρjlW
m,n
j (0)Wm,n

l (0)

×
∫ Tm

0
gj(t)gl(t)Em,n[kjt klt]dt. (4.15)

Further, the definition of the quadratic covariation gives in the same fashion as above

Em,n[kjt klt] ≈ kj0kl0 exp
(
rjlĥjlt

)
, (4.16)
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4. Swaps Rates in the SABR-LMM

where we neglected any drift terms for the kl coming from the change of measures
from Pl to Pm,n and

ĥjlt :=

√
1
t

∫ t

0
hjshlsds.

Overall we get with (4.16) together with (4.15)

(Σm,n

V m,nTm
)2(

exp
(
(V m,n)2)− 1

)
≈

n−1∑
j,l=m

ρjlW
m,n
j (0)Wm,n

l (0)kj0k
l
0

×
∫ Tm

0
gj(t)gl(t) exp

(
rjlĥjlt

)
dt.

A Taylor approximation from second order of both sides and equating the terms of the
same order gives

Σm,n ≈

√√√√ 1
Tm

n−1∑
j,l=m

ρjlW
m,n
j (0)Wm,n

l (0)kj0kl0
∫ Tm

0
gjt g

l
tdt (4.17)

and

V m,n ≈ 1
Σm,nTm

√√√√2
n−1∑
j,l=m

ρjlrjlW
m,n
j (0)Wm,n

l (0)kj0kl0
∫ Tm

0
gjt g

l
t

(
ĥjlt
)2
tdt. (4.18)

This gives a good approximation for two of the four SABR parameters in the swap
model in definition 9. Further, those equation will be from major importance in the
calibration part, when it comes to estimating the two correlation ρ and r of the SABR-
LMM model.
To describe the swap correlation Rmn in an environment of a SABR-LMM Rebonato
approximates in [36]

Rm,n ≈
n−1∑
j,l

ΩjlRjl, (4.19)
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where he defined the matrix (Ωjl)jl as

Ωjl :=
2ρjlrjlWm,n

j (0)Wm,n
l (0)kj0kl0

∫ TM
0 gjt g

l
t

(
ĥjl
)2
tdt(

V m,nΣm,nTm
)2 .

Notice that,
∑n−1
j,l=m Ωjl ≈ 1 due to equation (4.18). Further we define

βm,n :=
n−1∑
l=m

ωm,n
l (0)β. (4.20)

This choice is reasonable since is exact for β = 0 and β = 1. In the case β ∈ (0, 1) [4]
implies that the error we produce is very small and can be neglected.

In his book [36] Rebonato showed that the approximations in the equations (4.18)
to (4.19) works with great precision. He tested his approach by evaluating swaptions
with different strikes. The accuracy gets better the longer the tenor of the swap is. In
the case of swaptions on swaps with expiry 5 years and tenor 15 years or with expiry
10 years and tenor 10 years the approximations are working almost perfect for all
strikes. If the expiry becomes shorter the derivations in terms of the volatility smile
grow slightly for higher strikes.
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5. Parametrization of the SABR-LMM
Model

The acceptance of a market model stands and falls with its tractability, the quality
of its produced prices and the valuation time needed for pricing. One huge factor for
the tractability is the parametrization of the model, since it determines the amount of
required parameters and, in terms of calibration, the calibration time and the calibra-
tion stability.
A parametrization reduces the describing model parameters drastically by using ide-
alized functions to catch the relevant characteristics. In our case for the SABR-LMM,
the underlying functions that parametrize certain model coefficients or structures, like
correlation, belonging to a certain forward rate F i is the same for all forwards and is
individualized by using some dependency on the expiry or similar. For example, this
techniques allows us to reduce the needed parameters for the correlation matrix ρ from
(N−1)N

2 to 5, or even 2, numbers. Another example is the use of the same underlying
function gt to describe all the N − 1 functions git by shifting the time parameter t
depending on the expiry of F i.
In the following chapters we will first describe how to chose the parameterizations
for the functions gi and hi, respectively. Second, we give parameterizations for the
correlation structure consisting of ρ, r and R.

5.1. The Volatility Structure

If we want to parametrize the volatility functions gi and hi in a reasonable way, we
have to take into account the basic properties and general shapes volatilities empirically
have depending on time. According to [35] the parametrization for the volatility should
be time-homogeneous, because empirically the volatilities of forward rates develop all
in the same way when expiry gets smaller. That means if we are currently at time
point Ti and go one time step to Ti+1 the k-th forward rate should have roughly the
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5. Parametrization of the SABR-LMM Model

same volatility as the (k− 1)-th forward rate one step back at Ti. Therefore, we want
to parametrize the deterministic volatility and the vol-vol of the SABR-LMM as

git := g(Ti − t) (5.1)

and

hit := ζih(Ti − t) (5.2)

for some functions g and h and coefficients ζi will are close to 1. Further, a typical
volatility structure over time either has its maximum in a range of 1.5 years to 4
years to expiry or falls monotonously and concavely with rising times to expiry. In
addition, it is observable that the volatilities have a certain terminal level. To describe
all this behavior we define as in [35] the underlying functions g and h for gi and hi,
respectively, as

g(t) := (ag + bgt) exp(−cgt) + dg (5.3)

and analogously

h(t) := (ah + bht) exp(−cht) + dh, (5.4)

where ag + dg, ah + bh > 0 and dg, dh > 0 some real numbers. Note that, the instan-
taneous volatilities are given as

lim
t→0

g(t) = ag + dg (5.5)

and

lim
t→0

h(t) = ah + dh. (5.6)

Further, the terminal volatilities are given as

lim
t→∞

g(t) = dg (5.7)

and

lim
t→∞

h(t) = dh. (5.8)

44



5.2. The Correlation Structure

The extrema of g and h are given at

t =
1
cg
− ag

bg
(5.9)

and

t =
1
ch
− ah

bh
, (5.10)

respectively.
Notice, that the gi and hi are square integrable, as required in definition 8 for the
SABR-LMM. Furthermore, closed form solutions exists for those integrals, which will
valuable when it comes to calibration since we can solve the integrals analytically
rather then by cumbersome numerical integration.
We will use the knowledge about instantaneous and terminal volatilities to choose
initial value for the calibration later on. In addition, we will incorporate the stylized
fact about extrema occurring in a range of 1.5 years to 4 years to expiry.

5.2. The Correlation Structure

The heart of the SABR-LMM is the super correlation matrix P . The correlations are
describing the direct dependence of the forward rates on each other and the volatilities.
A part of P describes the cross skew of the model, that is the correlation between
forward rates and volatilities. Altogether, the super correlation matrix is the main
difference and biggest advantage over the standard LMM model [2], [11]. The matrix
does not carry the level of the model volatility, but most of the other informations over
the shape of the volatility surface, like its skew and how strongly it is pronounced.
As in definition 8 of the SABR-LMM we write

P =

(
ρ R

RT r

)
,

and notice that the Matrix consists of 4(N − 1)2 parameters, from which we only have
to estimate N(N − 1) due to symmetry. Since this number is way to big we want give
some stylized parametrization depending on maximal 9 parameters and minimal 6, for
the whole super correlation matrix P . We we do this in the same fashion as for the
volatilities in chapter 5.1.
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a = 0.07,b = 0.2, c = 0.6, d = 0.075
a = −0.17, b = 0.37, c = 1.12, d = 0.3
a = −0.02, b = 2.6, c = 2.2, d = 0.07
a = −0.05, b = 0.7, c = 1.5, d = 0.1
a = 0.30, b = 1.5, c = 5, d = 0.15

Figure 5.1.: Here a range of possible shapes for the function g and h are shown. The
parametrization can be classified in two groups. In the first group are the
ones that produce a real humped shape and in the second group are those
parametrization where the volatility falls strictly. According to Rebonato
in [36] and [35] the humped shaped volatility functions are characteristic
for normal market situations and the falling volatility functions occur in
excited market. The terminal volatility is clearly visible and agrees with
the parameter d. The parameters are from [36] and the plot was done in
Matlab.
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We will give for each sub matrix of P a parametrization and glue them together in the
end. For the gluing we will need an optimization algorithm that gives us the nearest
correlation matrix, since just sticking together three parameterizations for ρ, r and R
do not give a well-defined correlation matrix because the eigenvalues of the resulting
matrix can be negative.
The most important part of P is the sub matrix ρ, which directly governs the interplay
between the forward rates. In this way ρ has the most impact on the pricing quality
of our model. Therefore, we put special emphasis in modeling the forward/forward
correlation.

In the later, we discuss correlation matrices in general and refer to a correlation matrix
using the symbol ρ. Obviously, all the discussions will hold for the volatility/volatility
correlation r as well.

To give proper parameterizations we first have to give some criteria which proper-
ties a correlation matrix must have and which it should have. According to Lutz [29]
and [36] for the correlation matrix (ρij)ij has to hold

(A1) ρ has to be real and symmetric,

(A2) ρi,i = 1 for all i ∈ {1, . . . ,N},

(A3) ρ has to be positve semi-definite.

In addition, we demand two further properties, which describe empirical observations
and whose validity is market consents.

(B1) j 7→ ρij should fall strong monotonously for j > i,

(B2) i 7→ ρi+p,i grows for fixed p ∈ {1, . . . ,N − 2}.

The first property assures that two forward rates whose expiry is farther apart a less
correlated then two rates who expire closely together. The second property assures
that, if we have two pairs of assets and in each pair the distance between the expiries is
the same, then the pair of assets which overall expiry is further in the future is stronger
correlated then the other one. For example, lets consider two pairs of forwards. The
first pair consists of forward rates expiring in 1 and 3 years and the second pair consists
of forwards expiring in 20 and 22 years. Intuitively, it is clear that the last two forwards
should be more strongly correlated than the first two.
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5. Parametrization of the SABR-LMM Model

The simplest matrix that fulfills the properties (A1)–(A3) is given through

ρij = exp(−β|i− j|), (5.11)

where β > 0 is the decorrelation coefficient. It is obvious that this matrix does not
obey (B1) and (B2), since only the index distance of the tenor points (Ti)i matters.
The simple structure and the dependence on only one parameter β is nevertheless
attractive. This is especially useful in situations where we have to set up a matrix
under high uncertainty or we believe the correlations behave uniformly. We want to
further develop the approach in (5.11) in a trivial way. For this, we first notice that,
if (ρij)i,j is a correlation matrix then (ρ̃ij)i,j defined through
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Figure 5.2.: Some examples for the correlation matrix in (5.13). The simple structure
is obvious. On the left the parameters are β(1) = 0.03 and ρ(1)∞ = 0.8 on
the right the parameters are β(2) = 0.1 and ρ(2)∞ = 0.0. The plot was done
in Matlab.

ρ̃ij := ρ∞ + (1− ρ∞)ρij (5.12)

is a correlation matrix as well, where ρ∞ ∈ [0, 1). The coefficient ρ∞ describes the
terminal correlation and it holds

ρ̃ij −−−→
j→∞

ρ∞.

Now we enhance (5.11) to

ρij = ρ∞ + (1− ρ∞) exp(−β|i− j|), (5.13)
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where ρ∞ ∈ [0, 1). Indeed, we will use the above parametrization to model the corre-
lation between the volatility processes, hence we will use it for the submatrix r.
However the parametrization in (5.13) is way to simple and inflexible to model the
correlation of forward rates. The reason for this is the uniform correlation coefficient
β. Empirically, forward rates with shorter expiry are way less correlated with other
forward rates then forwards with larger expiry. This means we need a way to model
the correlations on the short end of the tenor structure more independently from the
long end. The first step in this direction is the Doust parametrization [31]. This
parametrization gives a general framework for matrices that fulfill (A1)–(A3) and
therefore for correlation matrices.
A matrix (ρij)ij obeys the Doust parametrization if there exists a set

{ak | ak ∈ [−1, 1], k ∈ {1, . . . ,N − 2}}

such that

ρi,i = 1, for all i ∈ {1, . . . ,N − 2}

ρ1,j =
j−1∏
k=1

ak = ρj,1

ρi,j =
ρ1,j
ρi,1

=

j−1∏
k=i

ak (5.14)

and therefore ρ can be written as

ρ =


1 a1 a1a2 · · · a1 . . . aN−2

a1 1 a2 · · · a2 . . . aN−2
...

. . . . . . . . .
...

a1 . . . aN−1 · · · · · · · · · 1

 .

This implies ρ has the Cholesky decomposition

ρ = LLT ,

49



5. Parametrization of the SABR-LMM Model

where

L :=



1 0 · · · · · · · · · 0

a1

√
1− a2

1 0
. . . · · ·

...

a1a2 a2

√
1− a2

1

√
1− a2

2 0
. . .

...
...

...
...

. . . . . .
...

a1 . . . aN−1 a2a3 . . . aN−2

√
1− a2

1 · · · · · · · · ·
√

1− a2
N−2


.

which yields for ρ the correlation matrix property. However, this representation cannot
grantee that either (B1) or (B2) holds. Another problem is the dependence on N − 2
coefficients, which is simply too much since in practice N lies in the range of 20 to 40.
Schoenmakers and Coffey further developed in [25] the approach from Doust. They
gave a parametrization, which gives a correlation matrix that fulfills (B1) and (B2)
as well. In its most common formulation it depends on N parameters, but the number
can be efficiently reduced to two parameters. A correlation matrix (ρij)ij follows the
Schoenmakers & Coffey parametrization if and only if there exists a growing sequence

1 = b1 < b2 < · · · < bN (5.15)

such that

b1
b2
<
b2
b3
< · · · < bN−2

bN−1
(5.16)

and

ρij =
bj
bi

, for all 1 ≤ j ≤ i ≤ N − 1 (5.17)

with

ρij = ρji.

Here the definition of the entries in ρ via fractions (5.17) corresponds to the definition
of the Doust parametrization (5.14). The two additional requirements (5.15) and
(5.16) yield the desired properties (B1) and (B2). Further, it was shown in [25] that a
matrix ρ obeys the Schoenmakers & Coffey parametrization, if there exists a sequence
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5.2. The Correlation Structure

(bi)i∈{1,...,N−1} such that (5.17) holds and

bi = exp
(N−1∑
j=1

min(j, i)∆j
)
, (5.18)

for a real sequence ∆1, . . . , ∆N .
With the help of equation (5.18) it is possible to generate correlation matrices with
properties (5.16) and (5.17) without non linear bounded parameters bi. This is an
important fact for the implementation since it fastens up the computation time. Let’s
choose in (5.18) the following parameters

∆i := α
(N − i− 2

N − 4

)
, for 1 ≤ i < N − 1 and ∆N−1 :=

γ

N − 2 −
α

6 (N − 3) (5.19)

where

α :=
6η

(N − 2)(N − 3) ,

This gives the optimal two parametric correlation matrix (ρij)ij from Schoenmakers
& Coeffey [25] with

ρij = exp
[
− |j − i|
N − 2

(
γ + ηh(i, j)

)]
for all i, j ∈ {1, . . . ,N − 1}, (5.20)

where

h(i, j) :=
( i2 + j2 + ij − 3(N − 1)i− 3(N − 1)j + 3i+ 3j + 2(N − 1)2 −N − 5

(N − 3)(N − 4)

)
and

η ≥ 0, γ ≥ 0, γ − η ≥ 0. (5.21)

Here the parameter exp(−γ) is the terminal correlation just like in (5.12). From here on
we will refer to the above parametrization as the (2SC) parametrization. Schoenmakers
& Coffey claim in [25] that the representation in (5.20) is flexible enough to describe
a wide range of different correlation matrices.
However, we found in the empirical work in chapter 8 that the parametrization works
quit well, but may be too inflexible. This is due to the high dependency between the
shape of the short end of the matrix – the area for assets with shorter maturity –
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Figure 5.3.: Here different (2SC) parametrizations are shown. From the left to the right
the coefficients are given in table 5.1. The limitation of the parametriza-
tion is clearly visible, since the back of the matrix heavily depends on the
front. The plot was done in Matlab.

and the long end of the matrix – the area for assets with longer maturity. The strong
dependency of those two areas comes from property (5.16), which says that the last
row of the matrix ρi,N = bi

bN
is almost inverse proportional to the first row of the

matrix ρi,1 = 1
bi
. We believe that the two parameters of the (2SC) representation

are simply not enough to give the flexibility which we desire. Especially not if, we try
to describe the correlation of assets whose prices highly depend on the correlations
between the underlying assets, like Constant Maturity Swaps Spreads (CMS spreads).
Nevertheless, the (2SC) parametrization is very good since it works highly efficient
with only two parameters, which allows for a very fast calibration and, particularly, a
very stable one. Further, it reduces the risk of over-fitting, because it does not react
to every minor disturbance in the data and rather keeps a general textbook shape.
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5.2. The Correlation Structure

Table 5.1.: Parameters for Figure 5.3

Plot No. 1 2 3 4
γ 0.6 3.5 2.0 8.0
η 0.5 3.4 1.0 1.0

To get a more flexible parametrization we chose to incorporate more parameters. A
good parametrization which can reproduce a wide range of stylized shapes is given by
Lutz in [29]. His correlation matrix depends on 5 parameters and the representation
is derived by its Cholesky decomposition. For this, he first gave a general framework
for the decomposition:

Theorem 3 (Lutz’ Cholesky Decomposition for Correlation Matrices).
Let ρ be a N ×N correlation matrix with full rank. Further define I2 := {2, . . . ,N} and
I1 := {1, . . . ,N}. Then there exists functions f : I1 −→ [−1, 1] and g : I2 × I2 −→ R,
such that

ρij = f(i)f(j) +
(1− f(i)2)(1− f(j)2)

aiaj

min(i,j)∑
k=2

h(i, j)h(j, k) for all i, j ∈ I1

and the Cholesky decomposition L of ρ can be written as

Lij =


f(i) , for j = 1

h(i, j)
√

1−f (i)2

ai
, for 1 < j ≤ i

0 , otherwise

,

with

a1 = 1, ai =
i∑

k=2
h(i, k)2, i ∈ I.

Proof. The proof is simple, but doesn’t give any new insights. We refer to [29].

Remark. The correlation matrix of Schoenmakers & Coffey can be retained by setting

f(i) =
1
bi

and h(i, j) =
√
b2
j − b2

j−1, i, j ∈ I2,
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5. Parametrization of the SABR-LMM Model

where we choose bi according to (5.18) and with ∆i given in (5.19).

If we choose in Theorem 3

f(i) = exp(−βiα), for α,β > 0, i ∈ I1

and

h(i, j) = exp
[
−
( i− 1
N − 2γ +

N − 1− i
N − 2 δ

)(j
i
− 1
)]

and combine the resulting matrix with the terminal correlation extension as in (5.12)
we get Lutz’ 5 parametric form (5L). The parametrization is the following

ρij = ρ∞ + (1− ρ∞)
[

exp(−β(iα + jα)) +H(i, j,α,β)
]
, ρ∞ ∈ [0, 1) (5.22)

with

H(i, j,α,β) :=
θij√
θiiθjj

√
(1− exp[−2βiα])(1− exp[−2βjα])

for α,β > 0 and i, j ∈ I1 and with

θij :=


1 , if min(i, j) = 1

min(i, j)− 1 , if min(i, j) > 1, ξiξj = 1
(ξiξj )

min(i,j)−1−1
1−1/(ξiξj )

, if min(i, j) > 1, ξiξj 6= 1

,

where

ξi := exp
(
− 1
i

( i− 1
N − 2γ +

N − i− 1
N − 2 δ

))
, γ, δ ∈ R.

Notice, the parametrization for ρ given above in (5.22) need not necessarily fulfill
the desired requirements (B1) and (B2) since Lutz’ Theorem only affects the general
correlation matrix properties (A1)–(A3). This could be a possible problem, when
it comes to calibration, because we lose some control over the general shape of the
matrix. In [29] Lutz argues that, given good enough input data for the calibration
procedure the resulting shape should fulfill the properties (B1) and (B2). His opinion
comes from empirical studies of correlation matrices for forward rates from the years
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Figure 5.4.: Here are possible shapes of the (5L) parametrization shown. We kept ρ∞
fixed at 0.2. Observe the high independency of the back end of the matrix
from the front end and flexibility comparing with the (2SC) parametriza-
tion in figure 5.3. The parameters for this plot are from [29] and can be
found in table 5.2 . The plot was done in Matlab.

2004 to 2008. There, without given any parametrization for the matrix, the average
resulting shape fulfilled (B1) and (B2). In addition, in our empirical work we gain the
same opinion, because all our estimated correlation matrices for different dates and
parametrized through (5L) obeyed all desired properties. Further in this work we will
use the parameterizations (2SC) (5.20) and (5L) (5.22) to model the correlation ρ of
the forward rates in the SABR-LMM. We will compare both approaches visually and
by the accuracy of produced prices.
Further, we model the correlation of the volatilities with the simple parametrization
given in (5.13).
The last structure we have to define is the one of the cross skew R, which describes
the correlation between forward rates and volatilities. Here, we follow Rebonato [36]
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Table 5.2.: Parameters for Figure 5.4

Plot No. 1 2 3 4
α 1.0 1.0 2.2 0.5
β 0.1 0.1 0.006 0.8
γ -3.7 0.0 0.95 3.0
η -0.3 0.0 3.6 -0.2

and choose

Rij = sgn(Rii)
√
|RiiRjj | exp

(
− λ1(Ti − Tj)+ + λ2(Tj − Ti)+

)
, λ1,λ2 > 0. (5.23)

We will see in the calibration part that, the Rii are the individual forward/volatility
correlations for each forward rate F i. Overall, we have given a piecewise parametriza-
tion of whole super correlation matrix

P =

(
ρ R

RT r

)
.

5.3. Approximation of P through a proper Correlation
Matrix

In chapter 5.2 we have shown how to parametrize the pieces of the super correlation
matrix P . But, by simply sticking those pieces together it is not guaranteed that we
really obtain a correlation matrix by definition, since the eigenvalues can be negative.
This is extremely problematic, because we need to be able to do a Cholesky decom-
position of P for a Monte Carlo simulation. To fix this problem, we approximate the
matrix P through the nearest correlation matrix P̂ . Hence, we solve the problem

P̂ = arg min
A∈C

√∑
ij

ωij(Aij − Pij)2, (5.24)

where C is the set of all correlation matrices and the ωij ≥ 0 are weights. In most cases
we won’t retain P as a solution, but the weights enable us to put special emphasis on
some areas of P to maintain the most crucial characteristics.
Obviously, in the SABR-LMM the matrix for the forward/forward correlation ρ is of
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major importance because it describes the direct interplay of the rates. Another impor-
tant part of P is the diagonal of R, since it consists of the individual forward/volatility
correlations, which have an huge impact on the individual model smile of a the rate
F i. Rebonato stressed in [36] the importance of the Rii and our empirical studies
confirmed him. The impact of the changes in the skew were visualized in figure 3.1.
So we decided to use the ωij to overweight ρ by 8 and (Rii)i by 80.
The minimization algorithm is behind the scope of this work. More on this topic can
be found in the Cresnik’s thesis [28], where he used the majorization technique, de-
scribed in [34]. Further, the algorithm in [34] can solve the problem (5.24) extended
to

P̂ = arg min
A∈Ck

√∑
ij

ωij(Aij − Pij)2, (5.25)

where now Ck is the set of all correlation matrices of rang k ≤ 2(N − 1).
This enables us to reduce the simulation time immensely since there is a one to one
relation between rank and number processes we have to simulate for pricing. In this
work we will use k = 10.
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6. Calibration of the SABR-LMM to
Swaptions

Now that the theoretical foundation for the SABR-LMM is given, we want to show
how the model can be calibrated to the market. We will give a method to calibrate
implicitly to current market prices and which is not based on historical prices for some
past period. Historic prices have a certain backwards character and do not carry more
information than current market prices. These already incorporate all relevant expec-
tation of future price developments. Therefore, historic prices cannot help to estimate
the future any better.
The basis for the calibration will be the prices in Black volatilities of caps and swap-
tions. The goal is to calibrate the induced model prices as close as possible to the
observed market prices. To calculate the induced model prices fast and with satisfac-
tory accuracy, we will use the formula for the implied Black volatility for the simple
SABR model (3.4) together with the results in chapter 4. There we demonstrated how
to transfer the swap dynamics from the SABR-LMM to the SABR model, where we
can use the implied volatility formula.
This chapter is split into three parts. In the first part we explain what kind of data we
need and how it can be stripped. The second describes the calibration of the volatility
structure, that is the estimation of the parametrization for the gi and hi, which is done
solely based on caplets. This part of the calibration will be exactly the same when we
calibrate the model to CMS spread options later in chapter 7.3. The third part of this
chapter concerns the calibration of the correlation structure to swaption prices.
In the following, by using four parameters in our notation we will only slightly rely on
the parameterizations of the gi and hi. The parametrization of the super correlation
matrix does not matter either, because we will give all formulas only depending on the
entries of P . So the described procedures can easily used with other parametrizations
then the ones introduced in chapter 5.
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6.1. Preparation for the Calibration

For the calibration we need certain basic data. Here, I want explain in short how to
obtain it. First, we need the initial values F i0 for the forward processes. Those can be
obtained by a forward bootstrapping as explained in chapter 2.2.1. Further, we have
to get the bond prices. Those are necessary to calculate the swap numéraires Am,n

0
when it comes to calibration on swaps. We calculate the bond prices by using the
forward rates as

B(0,Ti) =
i−1∏
j=0

(1 + δjF
j
0 )
−1,

where we obtained the formula by simple iteration of the definition for forward rates
(2.1).

6.2. The Calibration of the Volatility Structure

One of the big objectives of the calibration of the SABR-LMM is to keep the dynamics
of the forward rates as close to the simple SABR model as possible. If this works
the SABR-LMM’s acceptance will be highly strengthened since the SABR model has
already been approved in practice. In particular, the following calibration procedure
will assure that we can use the formula for implied volatility (3.4) of the SABR model
to approximate prices of European options on forward rates and swaps even in the
SABR-LMM as well.
The first step in the calibration of the volatility functions is to bootstrap the implied
caplet volatilities from quoted cap volatilities as described in the preliminary chapter
2.2.2. Then we calibrate for each forward rate F i a simple SABR model by using the
formula from (3.5)

(σi, ρi, νi) = arg min
α,ρ,ν

√∑
j

[
σM(F i0,Ki

j)− σI(F i0,Ki
j ,βj ,α, ν, ρ,Ti)

]2, (6.1)

where the σM(F i0,Ki
j) are the stripped caplet volatilities, the (Ki

j)j the available strikes
for the i-th caplet and the βj are the betas of forward rates in the simple SABR models.
In our case holds βj ≡ 0.5, but other choices are possible, as explained in [36]. We
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would like to emphasize that, the set

(σi, ρi, νi)i (6.2)

will play a central role in all calibration procedures from here on.
The functions gi can be interpreted as the deterministic volatility of F i. Since we
chose hi square integrable the stochastic volatility ki is on average k0 as can be seen
in (3.8). Therefore, we follow [36] and calibrate the gi like in the simple LMM with
deterministic volatility [3]. We define

ĝi :=

√
1
Ti

∫ Ti

0

(
git
)2
dt

as the average squared volatility and then use the minimization problem from (3.6)

min
(ag ,bg ,cg ,dg)∈C

√√√√ N∑
i=1

ωi
(
σi − ĝi

)2, (6.3)

where C is defined as

C :=
{
(a, b, c, d) ∈ R4 | a+ b > ε1, d > ε2

}
, (6.4)

with ε1 and ε2 representing some believes about instantaneous and terminal volatility,
as explained in (5.5) and (5.7). The weights ωi are defined as

ωi := (0.2 + 0.5Ti) exp(−0.2Ti) + 0.2

and overweight the σi for the range 1.5 years to 5 years. If the parametrization is able
to fit today’s volatility structure perfectly the weights shouldn’t have any impact.
With (6.3) we are able to calibrate the deterministic volatility averaged over all forward
rates. The derivation for the validity of the formula is exactly as in the LMM with
deterministic volatility, if we approximate kit ≈ ki0 ≈ 1. The last approximation is
valid, because to achieve that the SABR volatility σi agrees with the SABR-LMM
volatility σit on average for each forward rate, we calculate the initial value ki0 of the
stochastic volatility as

ki0 =
σi
ĝi

.
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So the ki0 should be near to one if the fits of the gi are adequate. To estimate the
parameters for h we follow [36] and define

ĥit :=

√
1
t

∫ t

0

[
(ah + bh(Ti − s)) exp(−ch(Ti − s)) + dh

]2
ds

and set up the optimization problem

min
(ah,bh,ch,dh)∈C

√√√√ N∑
i=1

νi −
ki0
σiTi

[
2
∫ Ti

0

(
git
)2(

ĥit
)2
tdt
]1/2

. (6.5)

In addition, we go a step further then in [36] and calculate the correction factors ζi,
in order to hit the vol-vol for each forward rate exactly, as

ζi = νi
/( ki0
σiTi

[
2
∫ Ti

0

(
git
)2(

ĥit
)2
tdt
]1/2)

.

Again, the ζi should be near to one if the fit is good. Notice, in (6.5) the calibration of
the vol-vol functions hi depends on the gi as well. So the vol-vol implied by the hi is
higher weighted if the general volatility level, given by the gi, is higher and vice versa.

6.3. The Calibration of the Correlation to Swaps

Similar to the case of the calibration of the volatility structure in chapter 6.2, we
use for the calibration some coefficient from the simple SABR model as target values.
The correlation is calibrated on a set of coterminal swaps {Si,N}i. Those swaps have
different expiry dates Ti and tenors TN − Ti, but all mature in TN . So a set of
coterminal swaps can be seen as a set of swaps in which all swaps end at the same
date.
We choose coterminal swaps, because, depending on the picked expiry dates, we can
take almost every entry of correlation matrices ρ, r and R into account during the
calibration. To realize this we remember the sum structure of swaps from (2.5)

Si,Nt =
N−1∑
i=1

ωmi,NF i.
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Hence, in a swap rate the forward rates with index in {i, . . . ,N − 1} and, especially,
all the correlations

d〈W l
•,W j

• 〉t = ρlj , d〈Zl•,Zj•〉t = rlj and d〈W l
•,Zj•〉t = Rlj .

for l, j ∈ {i, . . . ,N − 1} are involved. If we consider all possible expiries for cotermi-
nal swap rates we imply for all entries of the super correlation matrix P a condition.
However in practice it is enough to choose only the quoted expiry dates.
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Figure 6.1.: This graphic shows the entries of ρ which are involved in coterminal swap
dynamics. Black means involved and white means not involved. On the
right we see the case if we use every possible coterminal swap and on the
left we see the case in which we only used the coterminal swaps whose
expires are quoted in the market. Here the tenor structure is (T0, . . . ,T40)
with δi ≡ 0.5. The plot was done in Matlab.

The first step in the calibration is to calibrate the SABR model for swaps from defi-
nition (9) in chapter 4.1 to swaption prices of coterminal swaps. Those prices quoted
in implied volatility. Here we use an extended version of the minimization problem in
(3.5)

(σSi , ρSi , νSi ) = arg min
α,ρ,ν

(√∑
j

1(ε3,∞)

[
σM(Si,N0 ,Ki

j)− σI(S
i,N
0 ,Ki

j ,βSi ,α, ν, ρ,Ti)
]2

+ ϕ(σ, ρ, ν)
)

, (6.6)

where ε3 > 0 is the required accuracy of the general optimization problem and ϕ

a penalty function for the possible solutions. The σM (Si,N0 ,Ki
j) are the observed

swaption volatilities in the market, the strikes (Ki
j)j are the available strikes for the

i-th coterminal swap and the swap betas βSi are calculated as in (4.20). The penalty
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6. Calibration of the SABR-LMM to Swaptions

function controls the freedom given through ε3 > 0. In practice ε3 is in dimension of
10−6 to 10−5, so we disturb the optimization problem only slightly.
Basing on the estimated parameters in (6.6) we will setup an optimization problems
for each submatrix of P . In chapter 4.2 we approximated the dynamics of swaps in
the SABR-LMM assuming that the swaps follow a SABR model. Now, we will use the
results therein. Approximation (4.17) leads to

ρ̂ = arg min
ρ

(∑
i

(
σSi −

[ 1
Tmi

N−1∑
k,l=mi

ρklW
mi,N
k (0)Wmi,N

l (0)

× kk0kl0
∫ Tmi

0
gkt g

l
tdt
]1/2)2

)1/2

(6.7)

as a way to estimate ρ. Next we use (4.18) to set up the following minimization
problem, where we assume that ρ was already estimated:

r̂ = arg min
r

(∑
i

[
νSi −

1
σSi Tmi

[
2

N−1∑
k,l=mi

ρklrklW
mi,N
k (0)Wmi,N

l (0)kk0kl0

×
∫ Tmi

0
gkt g

l
t

(
ĥklt
)2
tdt
]1/2]2

)1/2

, (6.8)

where

ĥklt :=

√
1
t

∫ t

0
hksh

l
sds.

Our last optimization problem to estimate the cross skew matrix R is obtained by
using (4.19) and the idea of we wanting to regain the SABR dynamics as close as
possible, is the following

R̂ = arg min
R

√√√√∑
i

(
ρSi −

N−1∑
k,l=mi

Ωi
klRkl

)2
, (6.9)

where

Ωi
kl :=

2ρklrklWmi,N
j (0)Wmi,N

l (0)kj0kl0
∫ Tmi

0 gjt g
l
t

(
ĥjl
)2
tdt(

νSi σ
S
i Tmi

)2 .
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6.3. The Calibration of the Correlation to Swaps

and we force

Rii = ρi, (6.10)

where ρi is the skew from (6.2) of the forward rate F i. The step (6.10) forces the
correlation of each forward rate and its volatility exactly to the same level as in the
simple SABR model. By doing this, we once more try to keep the dynamics of the F i

in the SABR-LMM as closely as possible to the simple SABR model.
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7. CMS Spread Options and Swaps

A constant maturity swap (CMS) is a swap consisting of floating legs given by swap
rates of constant length and some fixed leg. In those contracts the long party is
obligated to pay a fixed amount F at each settlement date Ti and to receive a swap
rate S fixed at time Tj over some predefined period. From the long party’s point of
view, and thus similar to a simple swap, the CMS over the period [Ti,Tj ] has a value
of

j∑
l=i

τlB(0,Tl)El
[
Sl,l+cTl

− F
]
,

where c is the constant length of all swaps. A CMS can be seen as a normal swap where
swap rates with constant length are exchanged instead of forwards. Constant maturity
swaps, and options on those, enable market participants to hedge for certain periods
against risks due to changes in the general shape of the underlying forward-curve for
the swaps. For example, CMS can be used to hedge against changes of the 10 year
swap rates by buying a call, put or straddle on a CMS.
An extension of CMS is a CMS spread, where one swap rate is exchanged for another
one. The exchanged swap rates have the same expiry and underlying forward curve
but different lengths. If the CMS spread consists of two swap rates of length c1 and
c2, both expiring in Ti, the contract has the following payoff profile for the long-party

Si,c1,c2
Ti

:= Si,i+c1Ti
− Si,i+c2Ti

− F , (7.1)

where F is some fixed rate and has to be paid by the long-party. Therefore, today’s
abstract, undiscounted value under the CMS measure PCMSs, under which the spread
Si,c1,c2 is a martingale, is

ECMSs
[
Si,c1,c2
Ti

]
− F = ECMSs

[
Si,i+c1Ti

− Si,i+c2Ti
− F

]
.
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7. CMS Spread Options and Swaps

CMS spread prices depend more strongly on the correlation between the underlying
forward rates than ordinary swaps [29]. If we are able to evaluate spreads in the
SABR-LMM context, we are capable of calibrating the correlation structure which is
induced by spread market prices. We hope that this calibration is qualitatively better
than the calibration on swaps due to the higher sensitivity of CMS spread prices to
correlation forwards .
First we observe: The CMS spread dynamics of Si,c1,c2 can be written in direct de-
pendency on forward rates. By assuming without limitation c1 > c2 we write

Si,c1,c2
t = Si,i+c1t − Si,i+c2t − F

=
i+c1−1∑
l=i

ωi,i+c1
l (t)F lt −

i+c2−1∑
l=i

ωi,i+c2
l (t)F lt − F ,

where ωi,i+c1
l (t) := τkP (t,Tl+1)

Ai,i+c1
t

are the well-known stochastic weights from (2.6). Now
we define

ωi,i+c2
l := 0 for all l > i+ c2 − 1

and

vi,c1,c2
l (t) := ωi,i+c1

l (t)− ωi,i+c2
l (t) for all l ∈ {i, . . . , i+ c1− 1}.

Hence, for the CMS spread we can write

Si,c1,c2
t =

i+c1−1∑
l=i

vi,c1,c2
l (t)F lt − F . (7.2)

Therefore, a CMS spread is a portfolio of several forward rates and each rate is weighted
with vi,c1,c2

l . This notation further reveals the possibility of gaining insights into the
correlation of forwards through CMS.
In this section we want to show how the correlation structure can be calibrated on
prices of European options on CMS spreads. First, we analyze the dynamics of CMS
and give approximations for those in a SABR-like environment under the abstract
spread measure. Second, we show how to transform CMS prices evaluated under the
spread measure to prices under a forward measure. Finally, we explain the calibration
in detail.
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7.1. Markovian Projections of CMS spreads

If we want to examine the CMS dynamics (7.2), we first have to simplify it. The reason
for that is that the process in (7.2) is the sum of correlated SABR processes, which
are weighted stochastically. Therefore, the resulting process may again be a SABR
process, as foreshadowed in [4], but it is impossible to calculate the exact distribution
or dynamics.
In the following we will project a portfolio dynamics driven by a number of random
processes (7.2) on a displaced SABR-proces. Here an important tool is the technique
of Markovian Projection, which was developed by Gyöngy in [19]. This technique
was extended by Brunick and Shreve in [15]. We use the latter to give the following
proposition

Proposition 5. (Markovian Projection)
Let (Ω,F , (Ft)t≥0, P) be a filtrated probability space fulfilling the usual conditions and
on which (Wt)t≥0 is a d-dimensional Wiener-process. Further, let b and (σt)t adapted
processes with values in Rd and Rd×d, respectively.
Let X be a Rd-valued process given through the SDE

dXt = btdt+ σtdWt, t ≥ 0, X0 = x. (7.3)

Then there exists a Rd-valued measurable function b̂, a Rd×d-valued measurable func-
tion σ̂ and a Lebesgue-null-set N , so that

b̂(t,Xt) = E
[
bt

∣∣∣ Xt

]
(7.4)

σ̂(t,Xt)σ̂
tr(t,Xt) = E

[
σtσ

tr
t

∣∣∣ Xt

]
P-a.s. and all t ∈ N (7.5)

holds. Here •tr is the trace operator. Furthermore, there exits a filtrated probabil-
ity space (Ω̂, F̂ , (F̂t)t≥0, P̂) that supports a Rd-valued adapted process X̂ and a d-
dimensional Wiener-process Ŵ , satisfying

dX̂t = b̂(t, X̂t)dt + σ̂(t,Xt)dŴt, t ≥ 0, X̂0 = x (7.6)

and such that for all t ≥ 0 the distribution of X̂t under P̂ agrees with the distribution
of Xt under P .

Proof. A proof can be found in [15].
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7. CMS Spread Options and Swaps

The proposition enables us to project a process of the form (7.3) on a process of the
form (7.6) with coefficients given through (7.4) and (7.5). This new process is then
in every case weak Markovian. Further, the distribution of Xt and X̂t is the same for
each t. However, it is not the case that the distribution of individual paths coincide.
So the distribution of (Xt)t∈I and (X̂t)t∈I for some index set I may not agree. For
this reason, the Markovian Projection is not suited to simplify a process first and then
evaluating a path dependent options afterwards. In the case of European options we
don’t face those problems since they only depend on the distribution of the underlying
process at some fixed point T . So, we don’t run into any problems if we simplify a
CMS spread to evaluate European options.

The coefficients in (7.4) and (7.5) obtained by using the proposition on CMS spreads
can be easier understood and approximated then the original ones. Our goal is not to
calculate the resulting process in (7.6) accurately. For that the process under which
we have to condition will be too complicated. We rather want to approximate condi-
tion expectations in the frame of another model, the displaced SABR model. We will
introduce this model in the following, but first let’s take a look at a simple example for
a Markovian Projection to get a better feeling for it. In addition, the example shows
that not every projected process is strong Markovian.

Example (From Brunick and Shreve [15]).
Let in proposition 5 the parameters be d = 1, b = 0 and the initial process dXt = σtdWt

with

σt := 1(1,∞)1{W1>0},

and X0 = 0. Clearly it holds

Xt = 1(1,∞)(t)1{W1>0}
[
Wt −W1

]
.

Now we calculate the Markovian Projection as

σ̂2
t (t,Xt) = E

[
σ2
t

∣∣∣ Xt

]
=

1, falls Xt 6= 0

0, falls Xt = 0.
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7.1. Markovian Projections of CMS spreads

It follows

X̂
(1)
t ≡ 0

and

X̂
(2)
t = 1(1,∞)(t)

[
Wt −W1

]
agree with X on {X1 < 0} and {X1 > 0}, respectively. However, X̂1

t and X̂2
t don’t

have the right distribution to be a projection of X on both subsets. To obtain a proper
projection consider Y ∼ Ber(0, 1

2 ) independent of (Wt)t≥0 and F0 measurable. So F0

is non-trivial. Define

X̂t := Y X̂
(1)
t + (1− Y )X̂

(2)
t .

Taking into account W1 ∼ N (0, 1) and therefore P(W1 < 0) = 1
2 follows X̂t

d
= Xt for

all t ≥ 0.
However, X̂ is not strong Markovian. This can be seen by defining the stopping time

τ2 := inf{t ≥ 2 | Xt > 0}

This stopping time is not independent from F0 because of Y and therefore (X̂τ2+s)s≥0

conditioned on τ2 <∞ is not independent from F0.

Now that we we have a better understanding for the Markovian Projection we use the
technique on CMS spreads. The following theorem gives a approximation of the spread
dynamics (7.2) in a context of a displaced SABR model in dependence of forward rates
F i which follow a SABR-LMM model. The displaced SABR model coefficients depend
on the correlation matrix P and therefore the theorem gives the link between forward
correlations and spread dynamics.
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7. CMS Spread Options and Swaps

Theorem 4 (The Displaced SABR Model for CMS spreads).
For a strike price F = 0 the dynamics of the CMS spread

Si,c1,c2
t =

i+c1−1∑
l=i

vi,c1,c2
l (t)F lt . (7.7)

can be approximated under the spread measure PCMSs via

dSi,c1,c2
t = utG(S

i,c1,c2
t )dŴt, Si,c1,c2

0 =
i+c1−1∑
l=i

vi,c1,c2
l F l0 (7.8)

dut = Ap,v(ρ, r)dZ̃t, u0 = 1 (7.9)

d〈Si,c1,c2
• ,u•〉t = X (ρ, r,R)dt, (7.10)

where G is defined via

G(x) = (x− Si,c1,c2
0 +

pi,c1,c2

qi,c1,c2
)qi,c1,c2 . (7.11)

The coefficient a given in the proof at (7.40), (7.41), (7.36), (7.37), (7.42), (7.43),
(7.33) and (7.34).

The proof is split into several parts. The first step is to project the dynamics (7.7)
with the help of the Markovian Projection on a simpler process. The coefficients of the
projection are then approximated such that we are able to express the spread dynamics
in a displaced SABR model. This model is defined as

Definition 10. (Displaced SABR model)
The displaced SABR model is given through

dSt = utG(St)dWt, für alle t ≥ 0, S0 = x,

dut = ηutdZt, für alle t ≥ 0, u0 = 1, (7.12)

d〈W ,Z〉t = γdt,

where η > 0 and γ ∈ [−1, 1]. The processes W and Z are one-dimensional Wiener
processes. Further, G : R −→ R is a Borel measurable function.

In the proof the form of G is given through the approximation of the projections pa-
rameters. Then the dynamics of u and therefore the parameter η and γ, respectively,
are calculated. We will see that all parameters will depend on the correlation structure
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of the SABR-LMM model.

The theorem 4 was originally proven by Kienitz and Wittke in [22] for a simpler
SABR-LMM model with constant parameters with methods from [41]. The version
stated here is a real extension, since we approximate the spread dynamics in a SABR-
LMM environment with time-dependent parameters git and hit. Further we deal with
the more complicated volatility processes σit = gitk

i
t.

Remark. In the proof we will assume that the gi and hi are already calibrated to
caplets as in chapter 6. So the parametrization of the gi fulfill (6.3) and the one of
the hi (6.5). This doesn’t limitate our approach, since we only want to calibrate the
suppercorrelation matrix P based on CMS spreads. As in the case for the calibration
to swaptions, the volatility structure is calibrated to caplets.

Proof of Theorem 4. First, we define

ult :=
σlt
σl0

for all l ∈ {1, . . . ,N − 1}

and

ϕ(F lt ) := σl0(F
l
t )
β for all l ∈ {1, . . . ,N − 1}.

Therefore ul0 = 1 and dF lt = µltdt + ultϕ(F
l
t )dW

l
t under the measure PCMSs - the

measure under which the CMS spread is a local martingale - for all l ∈ {1, . . . ,N − 1},
where µlt are drifts coming from the change of measures. Further we set

pk := ϕ(F l0) = σk0 (F
l
0)
β

qk := ϕ(F l0)
′ = σk0β(F

l
0)
β−1.

Now, we use the dynamics in (7.7) and freeze the weights vi,c1,c2
l at their initial values
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in t = 0. Under PCMSs we obtain

dSi,c1,c2
t = d

i+c1−1∑
l=1

vi,c1,c2
l (t)F lt

≈
i+c1−1∑
l=1

vi,c1,c2
l (0)dF lt

≈
i+c1−1∑
l=1

vi,c1,c2
l (0)ultϕ(F lt )dW l

t ,

where in the last approximation the drifts µlt are neglected. Now define

dŴt := σ−1
t

i+c1−1∑
l=i

vi,c1,c2
l (0)ultϕ(F lt )dW l

t (7.13)

and

σ2
t :=

i+c1−1∑
l=i

(
vi,c1,c2
l (0)

)2(
ult
)2
ϕ(F lt )

2

+ 2
i+c1−1∑
k<l=i+1

vi,c1,c2
k (0)vi,c1,c2

l (0)ukt ultϕ(F kt )ϕ(F lt ).

Hence, the Levy characterisation [20] gives us: Ŵ is a Wiener-Process, since Ŵ0 = 0,
〈Ŵ 〉t = t and Ŵ is continuous. The spread dynamics can now be written as

dSi,c1,c2
t = σtdŴt. (7.14)

Our goal is to describe the function G in (7.12) using (7.2). In order to achieve that
we define

u2
t :=

1
p2

[ i+c1−1∑
k=i

(
vlk(0)

)2
p2
k

(
ukt
)2 (7.15)

+ 2
i+c1−1∑
k<l=i+1

pkplu
k
t u

l
tv
i,c1,c2
k (0)vi,c1,c2

l (0)ρkl
]
,
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with

p :=
[ i+c1−1∑

k=i

(
vlk(0)

)2
p2
k + 2

i+c1−1∑
k<l=i+1

pkplv
i,c1,c2
k (0)vi,c1,c2

l (0)ρkl
] 1

2 .

In particular, this implies u0 = 1 as needed in the displaced SABR model. If we apply
proposition 5 to (7.14), we get

σ̂(t,x) = ECMSs
[
σ2
t

∣∣∣ Si,c1,c2
t = x

]
(7.16)

and on the other hand, if we assume that G(Si,c1,c2
t ) and u2

t are under σ(Si,c1,c2
t )

approximately stochastic independent, we get for the projection of our displaced SABR
dynamics

σ̂(t,x) = ECMSs
[
u2
t

∣∣∣ Si,c1,c2
t = x

]
G2(x). (7.17)

For (7.16) and (7.17) being equivalent it has to hold

G2(x) =
ECMSs

[
σ2
t

∣∣∣ Si,c1,c2
t = x

]
ECMSs

[
u2
t

∣∣∣ Si,c1,c2
t = x

] , (7.18)

which implies the exact structure of G. Our next goal will be to approximate the
conditional expectations in (7.18) as well as possible. For that we will rewrite σ2

t and
u2
t . We define

fk,l := ϕ(F kt )ϕ(F
l
t )u

k
t u

l
t

and

gk,l(t) :=
pkplu

k
t u

l
t

p2 .

Hence

σ2
t =

i+c1−1∑
l=i

fl,l(t)
(
vi,c1,c2
l (0)

)2
+ 2

i+c1−1∑
k<l=i+1

fk,lv
i,c1,c2
k (0)vi,c1,c2

l (0)ρkl (7.19)
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and

u2
t =

i+c1−1∑
l=i

gk,k(t)
(
vi,c1,c2
l (0)

)2
+ 2

i+c1−1∑
k<l=i+1

gk,lv
i,c1,c2(0)
k vi,c1,c2

l (0)ρkl. (7.20)

If we interpret fk,l as a function depending on F kt ,F lt ,ukt and ult we get

fk,l(t) = f(F kt ,F lt ,ukt ,ult),

with f(x, y, z,w) = ϕ(x)ϕ(y)zw. Therefore a Taylor series extension around the point
(F l0,F k0 , 1, 1) in direction of (F lt ,F kt ,ult,ukt ) gives

fk,l(t) ≈ pkpl
(
1 + qk

pl
(F kt − F k0 ) +

ql
pl
(F lt − F l0) + (ukt − 1) + (ult − 1)

)
(7.21)

and it follows in the same manners that

gk,l ≈
pkpl
p2
(
1 + (ukt − 1) + (ult − 1)

)
. (7.22)

To calculate the conditional expectations in (7.18) we just need to handle expressions
of the form

ECMSs
[
F lt − F l0

∣∣∣ Si,c1,c2
t = x

]
(7.23)

and

ECMSs
[
ult − 1

∣∣∣ Si,c1,c2
t = x

]
. (7.24)

Our plan is to calculate (7.23) via the definition of the conditional expectation as a
orthogonal projection. For that we approximate our SABR-LMM like in [22] as follows

dF it = pidW̃
i
t , F i0 = F i(0)

duit = νidZ̃
i
t , ui0 = 1

d〈W̃ i
•, W̃ j

• 〉t = ρijdt (7.25)

d〈Z̃i•, Z̃j•〉t = rijdt

d〈W̃ i
•, Z̃j•〉t = Rijdt,

where the (νi)i∈{1,...,N−1} are the vol-vol parameters for the forwards obtained from
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ordinary SABR fitting and the (W̃ i)i∈{1,...,N−1}, (Z̃i)i∈{1,...,N−1} Wiener processes. In
addition, we approximate the spread dynamic as

dSi,c1,c2
t = pdW̃t.

So we just freeze the coefficients in (7.14) at t = 0. That implies

dW̃t = σ−1
0

i+c1−1∑
l=i

vi,c1,c2
l (0)ul0ϕ(F l0)dW̃ l

t

= p−1
i+c1−1∑
l=i

vi,c1,c2
l (0)pldW̃ l

t . (7.26)

Now we get

d〈W̃•, W̃ i
•〉t = p−1

i+c1−1∑
l=i

νi,c1,c2
l plρlidt

=: ρWi (ρ)dt (7.27)

and

d〈W̃•, Z̃i•〉t = p−1
i+c1−1∑
l=i

νi,c1,c2
l plRlidt

=: ρZi (R)dt. (7.28)

We estimate (7.23) with the help of (7.27) and while keeping (7.25) in mind as

ECMSs
[
F lt − F l0

∣∣∣ Si,c1,c2
t = x

]
=

〈F i•,S
i,c1,c2
• 〉t

〈Si,c1,c2
• ,Si,c1,c2

• 〉t
(x− Si,c1,c2

t )

=
piρ

W
i (ρ)

p
(x− Si,c1,c2

t ) (7.29)

and with the help of (7.28) we get

ECMSs
[
ult − 1

∣∣∣ Si,c1,c2
t = x

]
=

〈ui•,S
i,c1,c2
• 〉t

〈Si,c1,c2
• ,Si,c1,c2

• 〉t
(x− Si,c1,c2

t )

=
νiρ

Z
i (R)

p
(x− Si,c1,c2

t ). (7.30)
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With (7.19) and (7.21) in addition with the help of (7.29) and (7.30) it follows

ECMSs
[
σ2
t

∣∣∣ Si,c1,c2
t = x

]
≈
i+c1−1∑
l=i

vi,c1,c2
l (0)2p2

l

[
1 + 2 ql

pl

plρ
W
l (ρ)

p
(x− Si,c1,c2

0 )

+ 2
νlρ

Z
l (R)

p
(x− Si,c1,c2

t )
]

+ 2
i+c1−1∑
j<l=i+1

ρjlv
i,c1,c2
l (0)vi,c1,c2

j (0)pjpl

×
[
1 +

qj
pj

pjρ
W
j (ρ)

p
(x− Si,c1,c2

0 )

+
ql
pl

plρ
W
l (ρ)

p
(x− Si,c1,c2

0 ) +
νjρ

Z
j (R)

p
(x− Si,c1,c2

t )

+
νlρ

Z
l (R)

p
(x− Si,c1,c2

t )
]

=
i+c1−1∑
l=i

vi,c1,c2
l (0)2p2

l

+ 2
i+c1−1∑
j<l=i+1

ρjlv
i,c1,c2
l (0)vi,c1,c2

j (0)pjpl

+

[
i+c1−1∑
l=i

2p2
l v
i,c1,c2
l (0)2(Al(ρ) +Bl(ρ))

+ 2
i+c1−1∑
j<l=i+1

ρjlv
i,c1,c2
j (0)vi,c1,c2

l (0)pjpl
(
Aj(ρ)

+Al(ρ) +Bj(ρ) +Bl(ρ)
)]

(x− Si,c1,c2
0 ), (7.31)

where we define

Al(ρ) :=
qlρ

W
l (ρ)

p
(7.32)

and

Bl(ρ) :=
νlρ

Z
l (R)

p
(x− Si,c1,c2

t ).
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Further we set

A0(ρ) :=
i+c1−1∑
l=i

2p2
l v
i,c1,c2
l (0)2(Al(ρ) +Bl(ρ))

+ 2
i+c1−1∑
j<l=i+1

vi,c1,c2
j (0)vi,c1,c2

l (0)pjpl

×
(
Aj(ρ) +Al(ρ) +Bj(ρ) +Bl(ρ)

)
. (7.33)

Overall, we get

ECMSs
[
σ2
t

∣∣∣ Si,c1,c2
t = x

]
≈ p2 +Ao(ρ)(x− Si,c1,c2

0 ).

Now we have evaluated the enumerator of equation (7.18). To approximate the de-
nominator we use (7.20) and (7.22) together with (7.30) and obtain

ECMSs
[
u2
t

∣∣∣ Si,c1,c2
t = x

]
≈
i+c1−1∑
l=i

vi,c1,c2
l (0)2 p

2
l

p2

(
1 + 2

νiρ
Z
i (R)

p
(x− Si,c1,c2

0 )
)

+ 2
i+c1−1∑
j<l=i+1

ρjlv
i,c1,c2
j (0)vi,c1,c2

l (0)
pjpl
p2

×

[
1 +

νiρ
Z
i (R)

p
(x− Si,c1,c2

0 ) +
νiρ

Z
i (R)

p
(x− Si,c1,c2

0 )

]

=
i+c1−1∑
l=i

vi,c1,c2
l (0)2 p

2
k

p2

+ 2
i+c1−1∑
j<l=i+1

ρjlv
i,c1,c2
j (0)vi,c1,c2

l (0)
pjpl
p2

+

[
i+c1−1∑
l=i

vi,c1,c2
l (0)2 p

2
k

p2 2Bl

+ 2
i+c1−1∑
j<l=i+1

ρjlv
i,c1,c2
j (0)vi,c1,c2

l (0)
pjpl
p2

[
Bj(ρ) +Bl(ρ)

]]
× (x− Si,c1,c2

0 )

= 1 +Au(ρ)(x− Si,c1,c2
0 ),
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where

Au(ρ) :=

[
i+c1−1∑
l=i

vi,c1,c2
l (0)2 p

2
k

p2 2Bl(ρ)

+ 2
i+c1−1∑
j<l=i+1

ρjlv
i,c1,c2
j (0)vi,c1,c2

l (0)
pjpl
p2

[
Bj(ρ) +Bl(ρ)

]]
. (7.34)

Now we can use (7.18) to get the form of G. We get

G2(x) ≈
p2 +Ao(ρ,R)(x− Si,c1,c2

0 )

1 +Au(ρ,R)(x− Si,c1,c2
0 )

. (7.35)

Hence

G2(Si,c1,c2
0 ) ≈ p2 (7.36)

and for the derivative

d

dx
G(Si,c1,c2

0 ) =
Ao(ρ,R)− p2Au(ρ)

2p

= p−1
( i+c1−1∑

l=i

p2
l v
i,c1,c2
l (0)2Al(ρ)

+
i+c1−1∑
j<l=i+1

vi,c1,c2
j (0)vi,c1,c2

l (0)pjpl

×
(
Aj(ρ) +Al(ρ)

))
. (7.37)

Now we will calculate the dynamic of ut, while approximating ujtu
l
t

ut
and (ult)

2

ut
via

their expectation values as in [22]. The expectation values are ECMSs
[
ujtu

l
t

ut

]
≈ 1 ≈

ECMSs
[
(ult)

2

ut

]
. We obtain using

dult =
1
σl0
dσ ≈ glt

σl0
dklt

=
glt
σl0
kltζlh

l
tdZ

l
t ≈ ultνldZlt
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the following

du2
t =

1
p2

(
2
i+c1−1∑
j<l=i+1

pjplv
i,c1,c2
j (0)vi,c1,c2

l (0)ρjl
[
ujtdu

l
t + ultdu

k
t

]
+ 2

i+c1−1∑
l=i

(
vi,c1,c2
l (0)

)2
p2
l u
l
tdu

l
t

)

≈ 1
p2

(
2
i+c1−1∑
j<l=i+1

ρjlpjplv
i,c1,c2
j (0)vi,c1,c2

l (0)ujtu
l
t

[
νldZ

l
t + νjdZ

j
t

]

+ 2
i+c1−1∑
l=i

(
vi,c1,c2
l (0)

)2
p2
l

(
ult
)2
νldZ

l
t

)

=
2
p2

[
i+c1−1∑
l=i

[(
vi,c1,c2
l (0)

)2
p2
l +

i+c1−1∑
l 6=j=i

pjplv
i,c1,c2
j (0)vi,c1,c2

l (0)ρjlujtu
l
t

]
νldZ

l
t

]
.

Since u0 > 0 and ul never changes its sign we obtain

dut
ut

=
d
√
u2
t

ut

≈ 1
2

1
u2
t

du2
t

≈ 1
p2

[
i+c1−1∑
l=i

[(
vi,c1,c2
l (0)

)2
p2
l

+
i+c1−1∑
l 6=j=i

pjplv
i,c1,c2
j (0)vi,c1,c2

l (0)ρjl
]
νldZ

l
t

]
. (7.38)

Now (7.38) leads to

dut
ut
≈ Ap,v(ρ, r)dZ̃t,
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where

Z̃t =
1

Ap,v(ρ, r)p2

[
i+c1−1∑
l=i

[(
vi,c1,c2
l (0)

)2
p2
l

+
i+c1−1∑
l 6=j=i

pjplv
i,c1,c2
j (0)vi,c1,c2

l (0)ρjl
]
νldZ

l
t

]

=
1

Ap,v(ρ, r)p2

i+c1−1∑
l=i

λl(ρ)νldZ
l
t, (7.39)

with

λl(ρ) :=
(
vi,c1,c2
l (0)

)2
p2
l +

i+c1−1∑
l 6=j=i

pjplv
i,c1,c2
j (0)vi,c1,c2

l (0)ρjl.

The variable Ap,v(ρ, r) is calculated such that Z̃ is a Wiener process

(
Ap,v(ρ, r)

)2
:=

1
t
〈 1
p2

i+c1−1∑
l=i

εl(ρ)νldZ
l
•〉t

=
1
p4

i+c1−1∑
j,l=i

λj(ρ)λl(ρ)rjlνjνl. (7.40)

Our last step is to calculate the correlation between Si,c1,c2
t and ut. We get using

(7.13), (7.39) and σ0 = p

d〈Ŵ , Z̃〉t =
1

Ap,v(ρ, r)
1
σt

1
p2 〈

i+c1−1∑
l=i

vi,c1,c2
l (0)ul•ϕ(F l•)dW l

•,
i+c1−1∑
l=i

λl(ρ)νldZ
l
•〉t

≈ 1
Ap,v(ρ, r)p3 〈

i+c1−1∑
l=i

vi,c1,c2
l (0)σlF l0dW l

•,
i+c1−1∑
l=i

λl(ρ)νldZ
l
•〉t

=
1

Ap,v(ρ, r)p3

i+c1−1∑
j,l=i

vi,c1,c2
j (0)σjF j0λl(ρ)νlRjl

=: X (ρ, r,R). (7.41)

Therefore we have approximative for the CMS spread dynamics with the results in
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(7.40), (7.41), (7.36), (7.37), (7.33) and (7.34)

dSi,c1,c2
t = utG(S

i,c1,c2
t )dŴt, Si,c1,c2

0 =
i+c1−1∑
l=i

vi,c1,c2
l F l0

dut = Ap,v(ρ, r)dZ̃t, u0 = 1

d〈Si,c1,c2
• ,u•〉t = X (ρ, r,R)dt,

where

G(Si,c1,c2
0 ) = p =: pj,c1,c2 (7.42)

and

d

dx
G(Si,c1,c2

0 ) = p−1
( i+c1−1∑

l=i

p2
l v
i,c1,c2
l (0)2Al(ρ)

+
i+c1−1∑
j<l=i+1

vi,c1,c2
j (0)vi,c1,c2

l (0)pjpl

×
(
Aj(ρ) +Al(ρ)

))
=: qj,c1,c2 . (7.43)

So G can be approximated via

G(x) = (x− Si,c1,c2
0 +

pj,c1,c2

qj,c1,c2
)qj,c1,c2 .

Remark. In Theorem 4 the coefficients pj,c1,c2 and qj,c1,c2 are obtained by using a
freezing procedure to approximate the expected values as in Theorem 5. For short
terms the approximation is valid, but the longer the expiry of the spread the more
inaccurate the approximation gets. Further, the parameters Ap,v

t and X (ρ, r,R) are
tailored to our SABR-LMM with time-dependent coefficients and a volatility structure
calibrated to caplets.
Similar to the case of the approximation of the swap dynamics in chapter 4.2 we froze
in the beginning of the proof the CMS spread weights vi,c1,c2

j (0). The freezing is needed
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since the volatility of CMS spreads in the SABR-LMM is stochastic again, because
the weights are clearly random, and we want to have deterministic volatility for the
displaced SABR model in the end.

7.2. Convexity Correction for CMS spreads
In Theorem 4 we approximate the dynamics of CMS spreads under the spread measure
PCMSs under which we assume a spread as drift-free. However our goal is to estimate
the correlation of forward rates under the forward measure Pi to be consistent with
our estimations. Since we don’t assume deterministic volatilities for the processes of
interest, the measure under which we calculate the correlations indeed matters. In
addition, a spread option fixed in Ti pays in Ti+1. Therefore we want to discount this
payment by the numéraire B(t,Ti+1) which belongs to Pi.
The market quotes prices of CMS spread options and we model the underlying pro-
cesses as drift-less under PCMSs. Hence, the quoted prices are not calculated under Pi

and we have to do a so-called convexity correction, which helps us to transfer prices
gained under one measure to another measure.
Historically a convexity correction is understood as an adjustment to the risk expo-
sure of an asset to changes of the forward or yield curve. The idea was: If the forward
curve changes over time, the value of the asset somehow comoves and therefore the
expected future price of an asset depends on the yield curve of interest. We will use
this idea to calculate the convexity correction for CMS spreads. But first we introduce
the mathematical way of thinking about those corrections.
A convexity correction enables us to transform prices in one measure into prices in
an other measure by adding a correction term. The correction term is then called
convexity correction. The added term can be interpreted as some drift correction due
to a measure change, just as in Girsanovs Theorem [40]. To describe the convexity
correction in formulas we remember that if we have to random variables X and Y then
and all integrals are well defined, it holds that

Cov(X,Y ) = E[XY ]−E[X ]E[Y ]

⇔E[XY ] = E[X ]E[Y ] + Cov(X,Y ).

Now, let’s consider two different measures P and Q with numéraire B and A, respec-
tively. Then it holds due to the change of numéraire technique, like in the proof of the
forwardrate dynamics under different measures in Theorem 1, for a claim ST which
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pays in T that

EP
[
ST
]
=
A0
B0

EQ
[
ST

BT
AT

]
=
A0
B0

EQ
[BT
AT

]
EQ
[
ST
]
+
A0
B0

CovQ
[
ST , BT

AT

]
= EQ

[
ST
]
+
A0
B0

CovQ
[
ST , BT

AT

]
. (7.44)

Here the term

A0
B0

CovQ
[
ST , BT

AT

]
is the convexity correction.
To calculate the convexity correction for an CMS spread Sj,c1,c2 we first want to set
up a general framework. For a spread Sj,c1,c2 with zero strike we can write

Sj,c1,c2 = S(1) − S(2),

where the S(i) are swap rates over the time interval [Tj ,Tj+ci ], where j ∈ N is some
index and ci ∈ N the tenor of the j-th swap rate. Let PCMSs be the spread mea-
sure with numéraire SN , let Pj,j+ci the swap measures for the i’-th swap rate with
numéraire Aj,j+ci and define Pj as the forward measure belonging to the rate F j . We
want to evaluate the spread under Pj at time Tj , since we have to price European
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options expiring at Tj later on. By following [22] we write

Ej
[
Sj,c1,c2
Tj

]
= ECMSs

[
Sj,c1,c2
Tj

B(Tj ,Tj+1)

SNTj

SN0
B(0,Tj+1)

]
= S

(1)
0 − S(2)

0

+

(
Ej,j+c1

[
S
(1)
Tj

(B(Tj ,Tj+1)

Aj,j+c1
Tj

Aj,j+c1
0

B(0,Tj+1)
− 1
)]

−Ej,j+c2
[
S
(2)
Tj

(B(Tj ,Tj+1)

Aj,j+c2
Tj

Aj,j+c2
0

B(0,Tj+1)
− 1
)])

−

(
Ej,j+c1

[
S
(1)
Tj

( SNTj

Aj,j+c1
Tj

Aj,j+c1
0
SN0

− 1
)]

−Ej,j+c2
[
S
(2)
Tj

( SNTj

Aj,j+c2
Tj

Aj,j+c2
0
SN0

− 1
)])

≈ Ej,j+c1
[
S
(1)
Tj

]
−Ej,j+c2

[
S
(2)
Tj

]
+

(
Ej,j+c1

[
S
(1)
Tj

(B(Tj ,Tj+1)

Aj,j+c1
Tj

Aj,j+c1
0

B(0,Tj+1)
− 1
)]

−Ej,j+c2
[
S
(2)
Tj

(B(Tj ,Tj+1)

Aj,j+c2
Tj

Aj,j+c2
0

B(0,Tj+1)
− 1
)])

, (7.45)

where we used the martingale property of S(i) under Pj,j+ci and neglected in the last
approximation the difference

Ej,j+c1
[
S
(1)
Tj

( SNTj

Aj,j+c1
Tj

Aj,j+c1
0
SN0

− 1
)]
−Ej,j+c2

[
S
(2)
Tj

( SNTj

Aj,j+c2
Tj

Aj,j+c2
0
SN0

− 1
)]

. (7.46)

According to [22] the term (7.46) is almost zero, since the swap measure and the spread
measure evaluate the spreads nearly identical. In order to calculate Ej

[
STj
]
we just

have to approximate the convexity corrections

Ej,j+ci
[
S
(i)
Tj

(B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

− 1
)]

(7.47)
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as well as possible. Using the definition of (•)+ we obtain a alternative form for (7.47).
We get

Ej,j+ci
[
S
(i)
Tj

(B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

− 1
)]

= S
(i)
0

(B(0,Tj+1)

Aj,j+ci0

Aj,j+ci0
B(0,Tj+1)

− 1
)

+ Ej,j+ci
[(
S
(i)
Tj
− S(i)

0

)+(B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

− 1
)]

−Ej,j+ci
[(
S
(i)
0 − S

(i)
Tj

)+(B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

− 1
)]

= Ej,j+ci
[(
S
(i)
Tj
− S(i)

0

)+(B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

− 1
)]

−Ej,j+ci
[(
S
(i)
0 − S

(i)
Tj

)+(B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

− 1
)]

.

(7.48)

So we find there a call part and a put part. Further, if we apply the call-put parity
with strike S(i)

0 on the asset S(i)
Tj

, we get

Ej,j+ci
[
S
(i)
Tj

]
= S

(i)
0 + Ej,j+ci

[
(S

(i)
Tj
− S(i)

0 )+
]
−Ej,j+ci

[
(S

(i)
0 − S

(i)
Tj

)+
]
. (7.49)

Together with (7.45) and (7.48) we can conclude the following: To evaluate the con-
vexity correction we just have to calculate the expected values of call/put like options.
The call like options are

Ej,j+ci
[(
S
(i)
Tj
− S(i)

0

)+(B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

)]
= Ej,j+ci

[
(S

(i)
Tj
− S(i)

0 )+
]

+ Ej,j+ci
[(
S
(i)
Tj
− S(i)

0

)+(B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

− 1
)]

(7.50)
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and the put like options are

Ej,j+ci
[(
S
(i)
0 − S

(i)
Tj

)+(B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

)]
= Ej,j+ci

[
(S

(i)
0 − S

(i)
Tj

)+
]

+ Ej,j+ci
[(
S
(i)
0 − S

(i)
Tj

)+(B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

− 1
)]

, (7.51)

where

B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

− 1

vanishes on average and goes, according to Hagan [32], to zero linearly with the vari-
ance of the swap rate S(i). Therefore the second expected value in (7.50) and (7.51),
respectively, should be much smaller than the first one. To evaluate the expressions
in (7.50) and (7.51) we have to do two things. First, we have to express the moving
of the underlying forward curve in terms of the swap rate S(i). Then we have to use
this dependency to evaluate the expected values. Here, the SABR formula for implied
volatility will play a major role.

To tackle the first problem we want to write

B(t,Tj+1)

Aj,j+cit

= H(S
(i)
t ) (7.52)

for some function H. To obtain a proper form for H we assume that there are only
parallel shifts in the yield curve and, by following [32], we obtain

Aj,j+cit =

j+ci∑
k=j+1

δkB(t,Tk)

= B(t,Tj)
j+ci∑
k=j+1

δkB(t,Tk)
B(t,Tj)

.
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If we assume δk = δ for all k and interpret S(i)
t as the average discount rate over the

period [Tj ,Tj+c1 ], we get

Aj,j+cit ≈ B(t,Tj)
j+ci∑
k=j+1

δ

(1 + δS
(i)
t )k−j

= B(t,Tj)
ci∑
k=1

δ

(1 + δS
(i)
t )k

.

Hence with the formula for geometric sum and some calculations it follows that

Aj,j+cit ≈
B(t,Tj)

S
(i)
t

(
1− 1

(1 + δS
(i)
t )ci

)
.

In a similar way we estimate

B(t,Tj+1) ≈
B(t,Tj)

1 + δS
(i)
t

.

To achieve (7.52) it makes now sense to define

H(S
(i)
t ) :=

S
(i)
t

(1 + δS
(i)
t )(1− 1

(1+δS(i)
t )ci

)
. (7.53)

Hence

H ′(S
(i)
t ) =

(δS
(i)
t + 1)ci−2((δS

(i)
t + 1)ci − ciδS

(i)
t − 1)

((δS
(i)
t + 1)ci − 1)2

.

Using (7.53) we are able to evaluate the expected values in (7.50). We write

Ej,j+ci
[(
S
(i)
Tj
− S(i)

0

)+(B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

− 1
)]

= Ej,j+ci
[(
S
(i)
Tj
− S(i)

0

)+(H(S
(i)
Tj

)

H(S
(i)
0 )
− 1
)]

(7.54)
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To evaluate (7.54) we define the smooth function

f(x) := (x− S(i)
0 )
(H(S

(i)
Tj

)

H(S
(i)
0 )
− 1
)

(7.55)

and calculate by using partial integration

f ′(S
(i)
0 )(S

(i)
Tj
− S(i)

0 )+ +

∫ ∞
S
(i)
0

(S
(i)
Tj
− x)+f ′′(x)dx =

f(S
(i)
Tj

) , if S(i)
Tj
≥ S(i)

0

0 , if S(i)
Tj

< S
(i)
0

.

If we use this on (7.54), we obtain

Ej,j+ci
[(
S
(i)
Tj
− S(i)

0

)+(H(S
(i)
Tj

)

H(S
(i)
0 )
− 1
)]

=

f ′(S
(i)
0 )Ej,j+ci

[
(S

(i)
Tj
− S(i)

0 )+
]
+

∫ ∞
S
(i)
0

Ej,j+ci
[
(S

(i)
Tj
− x)+

]
f ′′(x)dx. (7.56)

Now we define

C(K) := Ej,j+ci
[
(S

(i)
t −K)+

]
(7.57)

and get for (7.50) by using (7.56)

Ej,j+ci
[(
S
(i)
Tj
− S(i)

0

)+(B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

)]
=
(

1 + f ′(S
(i)
0 )
)
C(S

(i)
0 ) +

∫ ∞
S
(i)
0

C(x)f ′′(x)dx. (7.58)

Therefore (7.58) gives us the expected value of a call under P j with strike S(i)
0 on the

underlying S(i)
t by integration of all possible call prices greater then the strike. To see

that, just remember

Ej,j+ci
[(
S
(i)
Tj
− S(i)

0

)+(B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

)]
= Ej

[(
S
(i)
Tj
− S(i)

0

)+]
.
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In the same fashion follows for (7.51)

Ej,j+ci
[(
S
(i)
0 − S

(i)
Tj

)+(B(Tj ,Tj+1)

Aj,j+ciTj

Aj,j+ci0
B(0,Tj+1)

)]
= Ej

[(
S
(i)
0 − S

(i)
Tj

)+]
=
(

1 + f ′(S
(i)
0 )
)
P (S

(i)
0 )−

∫ S
(i)
0

−∞
P (x)f ′′(x)dx, (7.59)

where

P (K) := Ej,j+ci
[
(K − S(i)

t )+
]
. (7.60)

Up to now the function f depends through H on the swap rate S(i) at time Ti. This
is highly problematic when it comes to implementation since S(i)

Ti
is random. To

circumvent this issue we use a Tailor-expansion on H at S(i)
0 in direction of x. Hence

H(x) ≈ H(S
(i)
0 ) +H ′(S

(i)
0 )(x− S(i)

0 ) + . . . (7.61)

and therefore

f(x) ≈
H ′(S

(i)
0 )

H(S
(i)
0 )

(x− S(i)
0 )2. (7.62)

Further we obtain

f ′(x) ≈ 2
H ′(S

(i)
0 )

H(S
(i)
0 )

(x− S(i)
0 ) (7.63)

and

f ′′(x) ≈ 2
H ′(S

(i)
0 )

H(S
(i)
0 )

. (7.64)

According to Hagan [32] is the approximation in (7.61) fairly good since H is a smooth
function which varies very slowly.
The following Theorem summarizes the results in this chapter.
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Theorem 5 (Convexity Correction for CMS spreads).
Let Sj,c1,c2 be a CMS spread with zero strike defined via

Sj,c1,c2
t = Sj,j+c1

t − Sj,j+c2
t .

Then the expected value Ej
[
Sj,c1,c2
Tj

]
under the forward measure Pj can be approxi-

mated as

Ej
[
Sj,c1,c2
Tj

]
= Sj,c1,c2

0 + Ej
[(
Sj,j+c1
Tj

− Sj,j+c1
0

)+]
−Ej

[(
Sj,j+c1

0 − Sj,j+c1
Tj

)+]
−Ej

[(
Sj,j+c2
Tj

− Sj,j+c2
0

)+]
+ Ej

[(
Sj,j+c2

0 − Sj,j+c2
Tj

)+]
= Sj,c1,c2

0 +
(

1 + f ′(Sj,j+c1
0 )

)
C(Sj,j+c1

0 ) +

∫ ∞
S
j,j+c1
0

C(x)f ′′(x)dx

−
(

1 + f ′(Sj,j+c1
0 )

)
P (Sj,j+c1

0 ) +

∫ S
j,j+c1
0

−∞
P (x)f ′′(x)dx

−
(

1 + f ′(Sj,j+c2
0 )

)
C(Sj,j+c2

0 )−
∫ ∞
S
j,j+c2
0

C(x)f ′′(x)dx

+
(

1 + f ′(Sj,j+c2
0 )

)
P (Sj,j+c2

0 )−
∫ S

j,j+c2
0

−∞
P (x)f ′′(x)dx,

where f is defined in (7.55).

Proof. The general structure of the approximation is given at (7.45) and the call/put
splits are shown in (7.48) and (7.49). The approximation through the integration over
expected call and put values for different strikes is given in (7.58) and (7.59), where
we approximate f through (7.62), (7.63) and (7.64).

The convexity correction can be seen as a measure for the skew difference of Pj and
PCMSs. The skew of a probability measure describes where it has most of its mass.
Under martingale measure PCMSs belonging to Sj,c1,c2 it holds

ECMSs
[
(Sj,j+c1
Tj

− Sj,j+c1
0 )+

]
−ECMSs

[
(Sj,j+c1
Tj

− Sj,j+c1
0 )−

]
=ECMSs

[
Sj,j+c1
Tj

− Sj,j+c1
0

]
= 0. (7.65)

If Pj and PCMSs have the same skew and shape we would obtain Ej
[
Sj,c1,c2
Tj

]
=

Sj,c1,c2
0 , since the integrals in theorem 5 would cancel each other out as well. However

in most cases the size of the expected values under the two measures is nonzero. This
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means that Pj values undiscounted calls or put different from PCMSs. So under Pj

high payoffs are more likely or less likely then under PCMSs. Therefore the measures
differ in their skew, which is expressed by the value of the correction.

For completeness we mention that is possible to calculate the drift correction the
intuitive way given at (7.44), but it is rather difficult and unknown if the accuracy
can be improved significantly. However the interested reader can find more about this
approach in [5].

7.3. Calibration to CMS Spread Options

With Theorem 4 from chapter 7.1 and Theorem 5 from chapter 7.2 we have everything
together to calibrate our supercorrelation matrix P – which contains all the correla-
tions of the processes in the SABR-LMM model – on CMS spread options. Theorem
4 gives us a proper dynamic for the spreads in a SABR-like environment, whereas
Theorem 5 enables us to evaluate under the forward measures Pj .
We will use the formula for implied volatility (3.4) to calculate the integrals in Theorem
5. To use the formula or some other workaround is necessary for two reasons. First,
only call and put prices for strikes K in a certain range [Kmin,Kmax] are quoted in the
market. Second, there is only a finite amount of strikes, whereas we need a continuum.

In the model calibration based on CMS spreads the very first step is the same as
in the model calibration based on Swaps. The volatility functions gj and hj are cali-
brated to caps, just as the coefficients kj0 and ζj . We refer to chapter 6.2.

However, to calibrate the correlation we first focus on how to solve the integrals for
the convexity correction in Theorem 5 and how to model the dynamics of the involved
swaps. We assume that under the swap measure Pj,j+ci the swap rate Sj,j+ci evolves
like a SABR process. Therefore, the dynamics are

dSj,j+cit = σj,j+cit

(
Sj,j+ci

)βj,j+ci
dW j,j+ci

t , Sj,j+ci0 = Sj,j+ci(0)

dσj,j+cit = σj,j+cit νj,j+cidZj,j+cit , σj,j+ci0 = σj,j+ci(0) (7.66)

d〈W j,j+ci
• ,Zj,j+ci• 〉t = ρj,j+cidt,

93



7. CMS Spread Options and Swaps

where as usually βj,j+ci ∈ [0, 1], νj,j+ci ,σj,j+ci(0) > 0 and ρj,j+ci ∈ [−1, 1]. From
this we get the implied Black volatility (3.4) basing on the model parameters

σj,j+ciB (K) := σI(S
j,j+ci(0),K,βj,j+ci ,σ

j,j+ci(0), νj,j+ci , ρj,j+ci ,Tj), (7.67)

which gives us the right volatility to price calls and puts with strikeK on the underlying
Sj,j+ci . With that we can write for the expected values in (7.57) and (7.60)

C(K) = Sj,j+ci(0)N (d1)−KN (d2) (7.68)

and

P (K) = KN (−d2)− Sj,j+ci(0)N (−d1), (7.69)

where

d1 =
ln
(
Sj,j+ci (0)

K

)
+ 1

2 (σ
j,j+ci
B (K))2Tj

σj,j+ciB (K)
√
Tj

and

d2 = d1 − σj,j+ciB (K)
√
Tj .

As suggested and tested in [13] we can use (7.68) and (7.69) together with (7.67)
to evaluate the integrals in Theorem 5 from Sj,j+ci(0) to ∞ and −∞ to Sj,j+ci(0),
respectively.
To incorporate the market data and to obtain the model parameters of the swap
dynamics in (7.66) we solve an ordinary, unweighted least-square problem (3.5)

min
σj,j+ci (0),νj,j+ci ,ρj,j+ci

√∑
K

(
σj,j+ciB (K)− σM(K)

)2
, (7.70)

where σM(K) is the implied volatility quoted in the market for the strike K of a call or
put. As in chapter 6, which treated the calibration of the SABR dynamics to swaps,
we set

βj,j+ci =
j+ci−1∑
k=j

ωj,j+cik βk, (7.71)
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where βk are the betas in the SABR dynamics of the forward rates F k. The techniques
above enable us to calculate the convexity corrections properly.

The CMS spread dynamic for the spread Sj,c1,c2 is modeled equivalent to Theorem 4
as

d
(
Sj,c1,c2
t +Bi,c1,c2

)
= ut(S

j,c1,c2
t +Bi,c1,c2)dW i,c1,c2

t

dut = utA
p,ν
j,c1,c2

(ρ, r)dZi,c1,c2
t , u0 = qj,c1,c2 (7.72)

d〈W i,c1,c2
• ,Zi,c1,c2

• 〉t = X j,c1,c2(ρ, r,R)dt,

where

Bj,c1,c2 :=
pj,c1,c2

qj,c1,c2
− Sj,c1,c2(0)

and pj,c1,c2 , qj,c1,c2 are given in the proof of the Theorem at (7.42) and (7.43). The
parameterization of Ap,ν

j,c1,c2
(ρ, r) is given in (7.40) whereas the one of X j,c1,c2(ρ, r,R)

is given in (7.41). To see the equivalence of both formulation for the spread dynamics
in definition (4) and this one here just notice

d
(
Sj,c1,c2
t +Bi,c1,c2

)
= dSj,c1,c2 ,

since Bi,c1,c2 is constant and that we just multiplied ut by qi,c1,c2 .

Before we can start with the calibration of the correlation to CMS spreads we have to
consider the way how the market quotes options on spreads. Different to swaptions,
which are quoted in implied Black volatilities, options on CMS spreads are quoted in
implied normal volatilities. This is because CMS spreads can get negative as differ-
ences of two swap rates. If the price is given in normal volatility σn, it is assumed that
the underlying S follows a Bachelier model. That is

dS = σndWt, S0 = S(0)
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for σn > 0 and a Wiener process (Wt)t. Therefore a call on a underlying S with strike
K, expiry Texp can be evaluated as [42]

E
[
(S −K)+

]
= (S0 −K)N

( S0 −K
σn
√
Texp

)
+ σn

√
Texpϕ

( S0 −K
σn
√
Texp

)
,

where ϕ is the density function of the normal distribution. In the same fashion as
for implied Black volatility there exists a analytic formula for the implied normal
volatility σn of the SABR model (3.1). Again, the formula depends only on the current
underlying price, strike of the call or put and the model parameters. In [17] Hagan
approximates the implied normal volatility as follows

σnI (F ,K,β,α, ν, ρ,Texp) := α
(
FK

)β/2

×
1 + 1

24 log2 ( F
K

)
+ 1

1920 log4 ( F
K

)
1 + (1−β)2

24 log2 ( F
K

)
+ (1−β)2

1920 log4 ( F
K

)( ζ

X(ζ)

)
×
[
1 +

(−β(2− β)α2

24(FK)1−β +
ρανβ

4(FK)1−β/2

+
2− 3ρ2

24 ν2
)
Texp

]
, (7.73)

where

ζ :=
ν

α
(FK)(1−β)/2 log(F/K)

and

X(ζ) := log
(√1− 2ρζ + ζ2 − ρ+ ζ

1− ρ

)
.

As in the case of the formula for the implied Black volatility the formula in (7.73) is
purely analytic and highly tractable in regards of implementation.

Now, in order to fit the correlations under the forward measure Pj basing on Eu-
ropean options on CMS we define

σjn(K) := σnI

(
B(0,Tj+1)E

j [Sj,c1,c2
Tj

] +Bi,c1,c2 ,K +Bi,c1,c2 ,

1, qj,c1,c2 ,Ap,ν
j,c1,c2

(ρ, r),X j,c1,c2(ρ, r,R),Tj
)

. (7.74)
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This makes sense since the price of a call option with expiry Ti and settlement date
Tj on a CMS Si,c1,c2 is

B(0,Tj)Ei
[
(Si,c1,c2
Ti

−K)+
]

= B(0,Tj)Ei
[
((Si,c1,c2

Ti
+Bi,c1,c2)− (K +Bi,c1,c2))+

]
.

In (7.74) we calculate Ej [Sj,c1,c2
Tj

] with the convexity correction as shown above. Now,
we take calls and puts on CMS spreads for different expiry dates and strikes into
account to calibrate to market data. Our goal is to calibrate the CMS spread dynamics
(7.72) as close as possible to all market prices. We do this by an ordinary least-square
problem and using (7.74)

min
qj,c1,c2 ,Ap,ν

j,c1,c2
(ρ,r),X j,c1,c2 (ρ,r,R)

∑
j

√√√√∑
Kj

(
σjn(Kj)− σjM(Kj)

)2
, (7.75)

where we sum over all expiry dates Tj and available strikes Kj for this date. Here
σjM(Kj) is the implied normal volatility observed in the market for a call or put on
Sj,c1,c2 with underlying price Sj,c1,c2

0 and strike Kj . Since all the variables in the
minimization problem depend on P through ρ, r or R we achieve our goal to calibrate
the supercorrelation matrix.

Remark. In the same fashion as above it is possible to calibrate the CMS spread
dynamics on straddles on CMS spreads. A straddle is the sum of a call and put option
with the same strike. A straddle with strike K on Si,c1,c2 has in Ti+1 the payoff

|Si,c1,c2
Ti

−K|. (7.76)

Now let’s denote by C(Si,c1,c2
0 ,K) the expected value of a call and P (Si,c1,c2

0 ,K) the
expected value of a put with underlying price Si,c1,c2

0 and strike K. From the definition
we know that the expected value of a straddle can be calculated as

E
[
Straddle

]
:= C(Si,c1,c2

0 ,K) + P (Si,c1,c2
0 ,K)

= 2C(Si,c1,c2
0 ,K)− Si,c1,c2

0 +K (7.77)

where we used the call put parity. By assuming that Si,c1,c2 follows a Bachlier model
with volatility σn > 0, the representation in (7.77) leads to the following expected
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value

E
[
Straddle

]
= 2(Si,c1,c2

0 −K)N
(Si,c1,c2

0 −K
σn
√
Ti

)
+ 2σn

√
Tiϕ
(Si,c1,c2

0 −K
σn
√
Ti

)
− Si,c1,c2

0 +K. (7.78)

Now, CMS spread straddles are quoted in implied normal volatility consistent with
formula (7.78) and the implied normal volatility belongs to a call/put on Si,c1,c2 with
strike K and exipiry Ti. This enables us indeed to calibrate on CMS straddle prices
in the same way as we calibrate to calls and puts to CMS spreads.
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8. Implementation and Empirical
Study

8.1. Implementation
The implementation of the calibration on swaps and CMS spreads was carried out
by the author himself, for which the programming language F# was used. F# is a
free, functional .NET language, which is supported by a great number of routines pro-
vided by packages like Math.Net and Microsoft’s Solver Foundation. All minimization
problems from chapter 6 and chapter 7.3 were solved by the Nelder-Mead algorithm
from the Solver Foundation package and for numerical integrations as in the case of
generating random numbers the Numerics package from Math.Net was used.

8.2. Empirical Study
The calibration was tested for the Euribor as underlying yield curve. We used data
from two different dates and carried out the calibration for a SABR-LMM which
covers 20 years. We set δi ≡ 0.5 and used the tenor structure (Ti)i∈{0,...,40}. Hence,
we calibrated the dynamic for half year forward rates whose first expiring date is in
0.5 years and the last in 19.5 years. Afterwards we tested the quality of the calibration
by doing Monte Carlo simulations. The simulation was implemented by Cresnik [28],
where discretization of the model SDE’s was done by using the Milstein scheme.

8.2.1. The Data

The calibration of the SABR-LMM was tested for the calibration on swaptions and
CMS spread options. In both cases we compared the (2SC) and (5L) parametrization
for ρ. Further, for the swaptions we compared two dates. The first data set is from the
04.06.2006 and represents quiet market situation in an environment of low volatility
and high interest rates. The second data set is from the 21.07.2014 and represents a
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rough market with high uncertainty and low interest rates. The calibration on CMS
spreads was carried out on data as of 21.07.2014. For the calibration we followed
the methods described in chapter 6 and chapter 7.3. The swaption prices are from
Bloomberg. We thank Peter Krierer for providing the CMS spread option prices from
BGC Market Data.

8.2.2. Calibration to Swaption Prices as of 04.06.2006

For this date we used a cap cube with 18 strikes ranging from ATM over 1% to up
to 14% and maturities given in full years starting from 1 year and ranging up to 20
years. We interpolated the missing half-year maturities by using spline interpolation
for the volatilities and strikes.
The given swaption cube for coterminal swaps consists of 22 strikes, ranging from
ATM-2% to ATM+3%, and expiry dates in 1

2 , 1, 2,. . . , 10, 12 and 15 years. However
not all tenors for coterminal swaps were available. For example, there are no options
on 9x11 swaptions. We got the missing tenors by spline interpolation for strikes and
volatilities.
After setting up the data we followed chapter 6 to calibrate first the volatility structure
to caplet volatilities and second the correlations, based on the swaption prices. The
parameters of the calibration and plots of the supercorrelation matrices can be found
in the appendix.

To describe the distinction between the supercorrelation matrices P by using the two
different parameterizations for ρ, lets focus first on the difference in the ρ’s itself. The
general shape of ρ using the different parameterizations almost the same. Neverthe-
less, there are differences, which are visualized in figure 8.1. First, the wings of the
matrices differ. The (5L) matrix goes in areas for the correlation of rates more then 20
years apart down to 50% and therefore around 10% lower then the (2SC) parametrized
matrix. Second, the correlation for rates which are less than 20 years apart is a little
bit higher.
However, the other submatrices of P under the different approaches for ρ cannot be
distinguished, since the parameters are almost the same. That is a bit surprising since
the differences in the outer areas of ρ are pronounced.

To analyze the quality of our calibration we repriced the target products, which were
used in the calibration process, and calculated the relative pricing errors. First, we
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used the gluing algorithm from chapter 5.3 to estimate the nearest correlation matrix
P̂ of rang k = 10. Then, in each simulation we did 300.000 runs with 1000 Steps
for the whole time interval [T0,T39]. Plots of the relative errors can be found in the
appendix.

We repriced all caplets on all strikes. It did not matter, if we used the supercor-
relation matrix basing on (5L) or (2SC). In both cases, the picture was the same.
Overall the results are satisfying and getting more accurate with higher expiry, as can
be seen on the mean errors in table 8.1. For caplets with any expiry we observed, that
the relative error for strikes greater then 6% explodes. In this area the errors begin to
sky rock starting at 20% and went up to 50%. Therefore, we excluded strikes greater
then 6% from table 8.1.
One way to explain the errors is as follows: We tried to preserve the simple SABR
model for forward rates in the SABR-LMM as well as possible. Further, caplets are
almost not effected by the correlations of forward rates given through the submatrices
ρ and r of P , but they rely on the skews given through R. The diagonal of R plays
the role of the ρ’s from the simple SABR model, since it holds Rii = ρi. If ρi in the
simple SABR is slightly disturbed the implied model volatility for this forward rate is
disturbed. As figure 3.1 shows the relative error gets bigger with greater strikes and
the induced relative pricing error through Black’s formula is even higher in this area.
Now, to be able to do the Monte Carlo simulation we need to approximation model
supercorrelation matrix P by a real correlation matrix P̂ . In general P and P̂ will
deviate by a small amount and therefore the diagonals of R will slightly differ as well.
This leads to differences of the individual skews for each forward rate in the simple
SABR compared with the SABR-LMM. The approximation of P was introduced in
chapter 5.3.
A similar explanation holds for caplets with small expiry and strikes away from the
money. The market prices of those options are in the area from 0.001bp to 10bp and
therefore really low. If the implied model volatility is disturbed slightly, the effect on
the prices is tremendous and explains the relative errors in a area of 100%.

To verify the correlation structure we repriced all used coterminal swaptions. We
compared the results we get by using the two different parameterizations (5L) and
(2SC) for ρ. As in the case for caplets the results are overall satisfying. The absolute
relative mean-pricing errors in table 8.2 show, that the (5L) parametrization works
slightly better then the (2SC) parametrization. However, in both cases we face huge
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Table 8.1.: Absolute Relative Pricing Errors for Caplets with Strikes in {1%, . . . , 6%}
as of 04.06.2006.

i max min mean i max min mean
1 1.0058 0.0000 0.1484 21 0.0242 0.0066 0.0139
2 1.1960 0.0142 0.2023 22 0.0174 0.0022 0.0105
3 0.1196 0.0208 0.0600 23 0.0140 0.0046 0.0091
4 0.1860 0.0046 0.0654 24 0.0416 0.0000 0.0127
5 0.3150 0.0273 0.0912 25 0.0359 0.0052 0.0129
6 0.2507 0.0256 0.0798 26 0.0292 0.0073 0.0139
7 0.3381 0.0253 0.0940 27 0.0260 0.0069 0.0136
8 0.0542 0.0004 0.0353 28 0.0243 0.0058 0.0128
9 0.1369 0.0137 0.0422 29 0.0278 0.0039 0.0109
10 0.1667 0.0114 0.0470 30 0.0920 0.0046 0.0183
11 0.2541 0.0076 0.0595 31 0.0792 0.0049 0.0165
12 0.0914 0.0003 0.0194 32 0.0768 0.0038 0.0155
13 0.0722 0.0039 0.0204 33 0.0736 0.0029 0.0142
14 0.0912 0.0071 0.0258 34 0.0712 0.0014 0.0130
15 0.0921 0.0090 0.0271 35 0.0714 0.0003 0.0121
16 0.0693 0.0108 0.0278 36 0.0700 0.0001 0.0116
17 0.0684 0.0114 0.0287 37 0.0647 0.0000 0.0106
18 0.0522 0.0112 0.0262 38 0.0652 0.0004 0.0112
19 0.0429 0.0095 0.0218 39 0.0573 0.0001 0.0100
20 0.0290 0.0010 0.0148

pricing errors for swaptions with small expiry and strikes far out-the-money – this
visible in the plots in the appendix. In the end of chapter 4.2 we mentioned that
Rebonato found that the used approximation for the swap dynamics breaks down in
exactly those cases. The SABR-LMM does not reproduce the implied smile for the
swap dynamics correctly which leads to tremendous pricing errors for high strikes, if
the real prices and expiries of the options is low.
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Table 8.2.: Absolute Relative Pricing Errors for Coterminal Swaptions with Strikes in
{ATM− 2%, . . . ,ATM+ 3%} as of 04.06.2006.

P basing on (5L) P basing on (2SC)
i max min mean i max min mean
1 1.0000 0.0013 0.4038 1 1.0000 0.0011 0.3987
2 0.9967 0.0018 0.3149 2 0.9557 0.0027 0.3178
4 0.6592 0.0035 0.1866 4 0.7009 0.0035 0.1885
6 0.2906 0.0027 0.0816 6 0.3499 0.0028 0.0891
8 0.0352 0.0002 0.0107 8 0.0628 0.0001 0.0116
10 0.0421 0.0017 0.0200 10 0.0490 0.0022 0.0237
12 0.0744 0.0053 0.0415 12 0.0821 0.0070 0.0469
14 0.1295 0.0090 0.0641 14 0.1329 0.0111 0.0696
16 0.1023 0.0112 0.0605 16 0.1033 0.0130 0.0639
18 0.0982 0.0134 0.0625 18 0.0948 0.0142 0.0618
20 0.1016 0.0151 0.0649 20 0.0946 0.0155 0.0615
24 0.0672 0.0114 0.0493 24 0.0590 0.0119 0.0445
30 0.0834 0.0036 0.0350 30 0.0897 0.0058 0.0393

8.2.3. Calibration to Market Prices as of 21.07.2014

Calibration of the Volatility Structure

To calibrate the volatility as explained in chapter 6.2 we again used a cap cube with
18 strikes ranging from ATM over 1% to up to 14% and maturities given in full years
starting from 1 year and ranging up to 20 years. We interpolated the missing half year
maturities by using spline interpolation for the volatilities and strikes, as well. The
parameters for the volatility functions can be found in the appendix.

Calibration of the Correlation Structure to Swaption Prices

For the calibration of the correlations we used a swaption cube consisting of 13 strikes,
ranging from ATM-0.3% to ATM+2.5% and swaptions with expiries in 1

2 , 1, 2,. . . ,
10, 12 and 15 years. Again, not all tenors for coterminal swaps were available and
calculated the missing tenors by spline interpolation for strikes and volatilities. The
parameters for the correlation matrices and the plots can be found in the appendix.

103



8. Implementation and Empirical Study

0
10

20
30

40

0

10

20

30

40
−0.15

−0.1

−0.05

0

0.05

Figure 8.1.: Here we see the difference of Lutz’ (5L) parameterization and Schoen-
makers & Coffey’s (2SC) parametrization for 04.06.2006. The (5L)
parametrized matrix is lower at the wings and higher near the main diag-
onal. Notice, the curved difference surface shows the higher flexibility of
the (5L) parametrization as well. The plot was done in Matlab.

In contrary to the calibration on the data from year 2006 the shapes of the cor-
relation matrix ρ by a great amount depending on the parametrization. The (5L)
matrix goes down to zero in the front and yields a tiny correlation only for forward
rates with small expiries to any other forward rate. For these correlation the situation
is differently under the (2SC) parametrization. Here the correlation of the short-term
rates is bounded downwards by roughly 30%. This phenomena can be explained by the
higher inflexibility of the parametrization. For the (2SC) parametrization holds: If the
correlation in the front goes down the correlation in the back is drawn down as well.
Therefore, in the calibration process some trade off between high correlations in the
back and low in the front has to be found and the boundary is the result. In this case
the impact is even visible in the submatrix r. In the case of the (5L) parametrization
the minimum of r is 90%, whereas in case of the (2SC) parametrization r is almost
constant one. But, R is in both cases the same.
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Numerical Results for Caplets

To verify the calibrations we repriced again the target options via Monte Carlo Sim-
ulations. Here we doubled the number of runs to 600.000, because the simulations
converged slower. We sticked to 1000 steps for the whole time interval [T0,T39]. Here
we choose the parameterization for ρ and calibration approach whose resulting model
supercorrelation matrix P with the lowest distance to the approximated supercorrela-
tion matrix P̂ from chapter 5.3. Thus, we used the correlation matrix based on (5L)
and calibrated to swaption prices.

We simulated caplet prices with strikes in a range of {1%, . . . , 14%}. Differently from
2006, the relative error for strikes over 6% went up to only 20%. But again, a gradual
increase of the error for those strikes was observable and the explanation is the same
as for the previous data. For this reason, we only consider strikes of maximal 6% in
table 8.3. The pricing errors for short expiries are more pronounced than in 2006.
We believe this is a numerical issue resulting from the higher overall volatility and
much lower initial forward rates F 0, which are below one percent. The problematic is
further amplified by the missing drift or reflection barrier in the SABR-LMM. In 2006
the initial rates were above two percent whereas in 2014 there were by around 0.3%.
A plot of the error surface can be found in the appendix.

Numerical Results for Swaptions when Calibrated to Swaps

The simulation of swaption prices shows that the parametrization of ρ really matters.
In the case of a (5L) parametrization of ρ the relative errors are only a little bit higher
than 2006 as can be seen in table 8.4 and is on a satisfying level if we consider the in-
crease of pricing errors of the caplets. However, in the case of a (2SC) parametrization
for ρ the relative error sky rocks. One explanation for this phenomena could be the
higher correlations between forward rates with longer expiry, when we use the (5L)
parametrization. Further, in the case of a (2SC) parametrization for ρ the distance
of the approximating matrix P̂ for P and P was almost twice as high as for the (5L)
parametrization for ρ. The approximation of P was explained in chapter 5.3.
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Table 8.3.: Absolute relative Pricing Errors for Caplets with Strikes in {1%, . . . , 6%}
as of 21.07.2014.

i max min mean i max min mean
1 0.0000 0.0000 0.0000 21 0.0904 0.0349 0.0574
2 0.9578 0.0000 0.1709 22 0.0574 0.0315 0.0447
3 0.5413 0.0000 0.2160 23 0.0597 0.0297 0.0443
4 0.6608 0.1574 0.4379 24 0.0493 0.0118 0.0342
5 0.7654 0.1925 0.5397 25 0.0539 0.0063 0.0361
6 0.6191 0.0777 0.3832 26 0.0613 0.0303 0.0502
7 0.6957 0.0184 0.3385 27 0.0663 0.0516 0.0600
8 0.3275 0.0162 0.1520 28 0.0678 0.0523 0.0635
9 0.3764 0.0223 0.1717 29 0.0670 0.0476 0.0599
10 0.3583 0.0068 0.1464 30 0.1229 0.0064 0.0558
11 0.3688 0.0010 0.1311 31 0.0906 0.0073 0.0497
12 0.1537 0.0065 0.0571 32 0.0650 0.0064 0.0452
13 0.1098 0.0117 0.0434 33 0.0635 0.0133 0.0424
14 0.1173 0.0121 0.0470 34 0.0617 0.0031 0.0403
15 0.1316 0.0169 0.0551 35 0.0640 0.0108 0.0465
16 0.0629 0.0210 0.0340 36 0.0673 0.0388 0.0572
17 0.0516 0.0219 0.0320 37 0.0694 0.0581 0.0640
18 0.0541 0.0243 0.0359 38 0.0666 0.0582 0.0645
19 0.1026 0.0291 0.0553 39 0.0670 0.0557 0.0630
20 0.0581 0.0335 0.0459

Calibration of the Correlation Structure to CMS Spread Option Prices

The calibration to CMS spread option was done by using European call and put prices
in normal volatility on 10 year vs. 2 year (10y/2y) CMS spreads with strikes ranging
from ATM-0.25% to ATM+1.5% and expiries of 1, 2, 3, 4, 5, 7 and 10 years. We
interpolated the data linear in volatilities and strikes to get half year expiries starting
at 1/2 years. To calibrate the two SABR models for swaps to calculate the convexity
correction derived in chapter 7.2, we used quoted market data for swaptions. Those
swaptions had the standard expiries 1

2 , 1, 2,. . . , 10, 12 and 15 years and were available
for 13 strikes, ranging from ATM-0.3% to ATM+2.5% and tenors of 2 years and 10
years, respectively. We interpolated the market data by spline interpolation to get the
volatilities and strikes for options with half yearly-expiry dates. For the calibration
procedure we then followed chapter 7.3.
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Table 8.4.: Absolute Relative Pricing Errors for Coterminal Swaptions with Strikes
in {ATM − 0.3%, . . . ,ATM + 2.5%} as of 21.07.2014., if the correlation
structure is calibrated to swaps.

P basing on (5L) P basing on (2SC)
i max min mean i max min mean
1 0.9999 0.0253 0.3889 1 1.0000 0.0041 0.4640
2 0.2908 0.0162 0.1488 2 0.6093 0.0102 0.1467
4 0.0731 0.0027 0.0209 4 0.4179 0.0193 0.1654
6 0.5651 0.0028 0.1693 6 0.6877 0.0258 0.2606
8 0.5217 0.0015 0.1669 8 0.6289 0.0296 0.2435
10 0.0347 0.0004 0.0163 10 0.1865 0.0605 0.1034
12 0.0395 0.0154 0.0262 12 0.1651 0.0565 0.0929
14 0.0429 0.0194 0.0305 14 0.1564 0.0572 0.0909
16 0.0643 0.0569 0.0587 16 0.1902 0.0697 0.1150
18 0.0824 0.0655 0.0749 18 0.1991 0.0774 0.1269
20 0.0870 0.0730 0.0820 20 0.1976 0.0836 0.1327
24 0.1042 0.0744 0.0877 24 0.2240 0.0856 0.1405
30 0.1106 0.0789 0.0913 30 0.2479 0.0914 0.1514

Numerical Results for Swaptions when Calibrated to CMS spreads

As in the case for the calibration to swaption prices we calculated swaption prices
via Monte Carlo simulations using 600000 runs and 1000 steps. For both possible
parameterizations for ρ we got errors similar to the case of the calibration to swaptions,
if we choose the (2SC) parametrization for ρ. This is a bit surprising since in the case
of a (5L) parametrization for ρ the calibrated supercorrelation matrix has the same
characteristics like the supercorrelation matrix obtained by calibrating to swaptions
and using the same parametrization. However, as in the case of the calibration to
swaptions the (5L) parametrization works much better then the (2SC) parametrization.
A plot of the relative pricing errors can be found in the appendix.
One reason for the high errors may be the unusual high distance of the estimated
correlation matrix P̂ , which is used for the simulations, and the model correlation
matrix P . Another reason could be that, different to coterminal swaps, CMS spread
options alone do not induce a condition on each entry of P . In chapter 8.2.4 we discuss
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this issue thoroughly.
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Figure 8.2.: This plot visualizes the difference between Lutz’ and Schoenmakers & Cof-
fey’s (2SC) parametrization, if we calibrate on swaption prices. The dif-
ference shows: The (5L) matrix dictates a higher correlation of long-term
forward rates and a much stronger decorrelation of short-term forwards.
The plot was done in Matlab.
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Table 8.5.: Absolute Relative Pricing Errors for Coterminal Swaptions with Strikes
in {ATM− 0.3%, . . . ,ATM+ 2.5%} as of 21.07.2014, if P is calibrated to
CMS spread options.

P basing on (5L) P basing on (2SC)
i max min mean i max min mean
1 1.0000 0.0066 0.4602 1 1.0000 0.0798 0.7178
2 0.6055 0.0003 0.1394 2 1.0000 0.1523 0.7012
4 0.3460 0.0082 0.1231 4 0.9818 0.2108 0.6639
6 0.6328 0.0062 0.2192 6 0.9750 0.2281 0.6339
8 0.5775 0.0076 0.2032 8 0.9423 0.2419 0.5992
10 0.0952 0.0400 0.0557 10 0.8000 0.2633 0.5171
12 0.0989 0.0410 0.0623 12 0.7339 0.2500 0.4684
14 0.0849 0.0447 0.0577 14 0.6488 0.2281 0.4112
16 0.1513 0.0592 0.0975 16 0.5830 0.2167 0.3742
18 0.1783 0.0674 0.1119 18 0.5045 0.1953 0.3276
20 0.1870 0.0776 0.1242 20 0.4272 0.1739 0.2820
24 0.2353 0.0850 0.1454 24 0.3431 0.1397 0.2217
30 0.2645 0.0939 0.1599 30 0.2802 0.1035 0.1700
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8.2.4. Critique on Calibration Solely to CMS Spread Options

CMS spreads depend stronger on correlation between the underlying forward rates
than swaps [29], [22] but nevertheless we do not recommend to calibrate to spreads
alone. If we consider the general structure of a 10y/2y spread and δi ≡ 0.5, which was
given in (7.2) as

Si,20,4
t =

i+19∑
l=i

vi,20,4
l (t)F lt ,

it is obvious that in each spread only 20 forward rates are involved. Now we assume
that, we have for each tenor point Ti the prices for a range of European options on
CMS spreads. Then, for each i it is only possible to estimate 20 of the 39− i+ 1
possible correlations of the forward rates expiring in i or later. Therefore, only the
first 20 left and right main-diagonals of the correlation matrices ρ and r are directly
affected by the spread dynamics. This means during the calibration on spreads no
conditions for the wings are given, that is a quarter of both matrices. The behavior
of the outer areas of the matrix have to be extrapolated from the middle part. This
can lead to overall lower correlations for forward rates which are further apart. This
is because, the correlation for forward rates with expiries close to each other goes
down rapidly in the beginning and induces, if we do not know any terminal minimal
correlation, too low correlations for the out part of the matrix.
For calibration to a set of coterminal swaptions on {Si,40}ithe situation is different.
According to (2.5) a coterminal swap expiring in Ti can be written as

Si,40
t =

39∑
k=i

ωi,40
k (t)F kt .

This shows, that the swap depends on all forward rates that expire in Ti or later
and not, as in the case of a CMS expiring in Ti, on only a small part. Hence, using
swaption prices on a coterminal swap Si,40 we can induces a condition on each entry
of both the i-th row and column of the correlation matrix ρ and r, respectively. If
the correlation of the forward rates fall rapidly around the main diagonal, a terminal
minimal correlation is still given through the condition on the outer entries.
To incorporate CMS spreads in a general calibration to dynamics implied by the mar-
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Figure 8.3.: Here we see which entries of ρ and r, respectively, are governed by options
on coterminal swaps or CMS spreads. On the right, we see the entries
which depend on a set of coterminal swaptions with the expiries which are
quoted in the market. On the right, we see the entries which depend on a
set of CMS spreads options with expires every half year. Notice the wings
– the entries without any condition.

ket, we suggest a joint calibration to swaptions and CMS spread options, to grantee a
reliable calibration. In the calibration process the options should be weighted, say 80%
swaptions and 20% CMS spread options, since derivatives on swaps are more liquid
then on CMS spreads.
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9. Conclusion

We introduced the SABR-LMM to give a market model that can describe the dynam-
ics of a number of forward rates in an arbitrage free framework. The Libor-Market
model has its origin in the simple SABR model introduced by Hagan [17]. The goal of
this work was to calibrate the SABR-LMM, effectively that means we had to estimate
the volatility structures as well as the correlations between the volatility processes and
the forward rates.

For the volatility calibration we kept the dynamics of the single forward rates as close
to the SABR-models’ as possible. We achieved this with special calibration techniques
to calibrate the time-dependent volatility functions to caplet prices.
For the calibration of the correlation structure we followed two approaches. In one
approach we used swaps and the other one we used CMS spreads as target products.
In both cases we estimated the assumed SABR dynamics depending on the correla-
tion matrix P . To estimate the swap dynamics we followed the classical approach of
freezing swap weights [36], whereas in the case of CMS spreads we used Markovian
Projection to simplify the target processes. Here we extended the work of Kienitz &
Wittke [22] to our SABR-LMM with time-dependent coefficients.

In the empirical part we got supporting evidence for that the calibration to swap
dynamics works quite well. This is because we almost obtained the real prices of
swaptions by Monte Carlo Simulations. Our target was to capture the assumed simple
SABR swap dynamics in the SABR-LMM as accurately as possible. The low deviation
of the swaption prices show that we hit the smile for swaps very well. Now, since the
smile is directly linked to SABR dynamics via formula for implied volatility, this shows
we regain the swap dynamics in the SABR-LMM with the desired accuracy.
In contrast, the calibration to CMS spread option prices alone did not provide the
desired accuracy, because the deviations of simulated swaption prices were too big.
We explained possible reasons for this.
Further, we saw that, at least in an environment of high volatility, the parametriza-
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tion of ρ can have a big impact on the quality of the calibration. This is what we can
conclude from that the parametrization of Lutz worked much better than the one of
Schoenmakers & Coeffey.

In this work we did not take a look at the hedging performance of the SABR-LMM or,
in general, how hedging works. The SABR-LMM is strongly linked to simple SABR
models due to its calibration. It would be interesting to compare the performance of
SABR-LMM hedges with hedges done in the simpler SABR environment. For exam-
ple hedges of derivatives on swaps, CMS or forwards could be researched. Note that
for those underlyings we already gave an approximation for the SABR dynamics in a
SABR-LMM world. So everything is provided.
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A. Appendix

A.1. Parameters Obtained from the Calibration on Data
as of 06.04.2006

Table A.1.: The Parameters for g and h

Function a b c d
g -0.0067 0.0183 0.6990 0.0265
h 0.4544 0.0000 0.9098 0.1781

Table A.2.: The Parameters ki0

i ki0 i ki0 i ki0 i ki0

1 0.9128 11 1.0322 21 0.9634 31 0.9119
2 1.1153 12 1.0252 22 0.9469 32 0.8999
3 1.1010 13 1.0253 23 0.9396 33 0.8858
4 1.1028 14 1.0243 24 0.9404 34 0.8736
5 1.0848 15 1.0124 25 0.9471 35 0.8570
6 1.0537 16 0.9965 26 0.9481 36 0.8451
7 1.0391 17 0.9935 27 0.9487 37 0.8316
8 1.0541 18 1.0029 28 0.9456 38 0.8171
9 1.0650 19 1.0060 29 0.9373 39 0.8030
10 1.0514 20 0.9853 30 0.9269
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Table A.3.: The Parameters ζi

i ζi i ζi i ζi i ζi

1 1.0297 11 1.1219 21 0.9930 31 0.9863
2 0.9631 12 1.0549 22 0.9958 32 0.9982
3 0.9450 13 0.9948 23 0.9944 33 1.0137
4 0.9678 14 1.0279 24 0.9848 34 1.0226
5 1.0485 15 1.0217 25 0.9608 35 1.0484
6 1.0450 16 0.9121 26 0.9594 36 1.0575
7 1.0035 17 0.8507 27 0.9476 37 1.0699
8 0.9868 18 0.9096 28 0.9474 38 1.0857
9 1.0185 19 0.9494 29 0.9587 39 1.1013
10 1.0852 20 0.9848 30 0.9649

Table A.4.: The Parameters of the Submatrices of P , if the (5L) Parametrization is
used for ρ

Submatrix α β γ η ρ∞
ρ 1.3551 0.0113 -0.1976 6.3000 0.3876

β ρ∞
r 0.35 0.4760166428

λ1 λ2
R 15.30546563 1.611796712

Table A.5.: The Parameters of the Submatrices of P , if the (2SC) Parametrization is
used for ρ

Submatrix γ η
ρ 0.4660 0.0000

β ρ∞
r 0.35 0.4831

λ1 λ2
R 20.0 1.6349
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Figure A.1.: The correlation matrices from the calibration for 04.06.2006, if we use
Lutz’ (5L) parametrization for ρ. The plot was done in Matlab.
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Figure A.2.: The correlation matrices from the calibration for 04.06.2006, if we use
Schoenmakers & Coffey’s (2SC) parametrization for ρ. The plot was
done in Matlab.
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Figure A.3.: The relative pricing errors for caplets. The pricing error for high strikes
and short expiries is clearly visible. The plot was done in Matlab.
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Figure A.4.: The relative pricing errors for swaptions of if for ρ the (5L) parametriza-
tion is used. The swaption prices are reproduced well. Only swpations
with short expiry and high strikes are problematic. The plot was done in
Matlab.

118



A.1. Parameters Obtained from the Calibration on Data as of 06.04.2006

0
2

4
6

8
10

12
14−2%

−1%
ATM

+1%
+3%

−0.5

0

0.5

1

ExpiryStrike

R
el

at
iv

e 
P

ric
in

g 
E

rr
or

Figure A.5.: The relative pricing errors for swaptions of if for ρ the (2SC) parametriza-
tion is used. The errors look identical to the one obtained by using the
(5L) parametrization. The plot was done in Matlab.
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A.2. Parameters Obtained from the Calibration on Data
as of 21.07.2014

Table A.6.: The Parameters for g and h

Function a b c d
g -0.0473 0.0479 1.2295 0.0472
h 0.4494 0.3829 1.8611 0.2543

Table A.7.: The Parameters ki0

i ki0 i ki0 i ki0 i ki0

1 1.1519 11 1.2188 21 0.9361 31 0.8656
2 0.8285 12 1.2132 22 0.9186 32 0.8634
3 0.8166 13 1.1916 23 0.9178 33 0.8612
4 0.9520 14 1.1605 24 0.8867 34 0.8593
5 1.0989 15 1.1228 25 0.8912 35 0.8569
6 1.2382 16 1.0656 26 0.8970 36 0.8538
7 1.2767 17 1.0415 27 0.9031 37 0.8488
8 1.3575 18 1.0049 28 0.9085 38 0.8431
9 1.3617 19 0.9892 29 0.9121 39 0.8351
10 1.2820 20 0.9473 30 0.8685
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Table A.8.: The Parameters ζi

i ζi i ζi i ζi i ζi

1 1.0664 11 0.3975 21 0.9408 31 0.9224
2 0.6803 12 0.7351 22 0.9494 32 0.9212
3 1.1407 13 0.8114 23 0.9587 33 0.9164
4 1.3548 14 0.8358 24 0.9511 34 0.9103
5 1.3911 15 0.8370 25 0.9599 35 0.9038
6 1.2991 16 0.8239 26 0.9635 36 0.8972
7 0.5837 17 0.8534 27 0.9623 37 0.8925
8 1.0161 18 0.8796 28 0.9593 38 0.8864
9 0.8904 19 0.9137 29 0.9540 39 0.8836
10 0.6476 20 0.9212 30 0.9231

Table A.9.: The Parameters of the Submatrices of P for the Calibration to Swaptions,
if the (5L) Parametrization is used for ρ

Submatrix α β γ η ρ∞
ρ 2.1313 0.0111 10.000 -5.3416 0.0000

β ρ∞
r 0.1000 0.8842

λ1 λ2
R 20.0 20.0

Table A.10.: The Parameters of the Submatrices of P for the Calibration to Swaptions,
if the (2SC) Parametrization is used for ρ

Submatrix γ η
ρ 1.3310 1.3309

β ρ∞
r 0.2000 0.9933

λ1 λ2
R 20.0 20.0
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Table A.11.: The Parameters of the Submatrices of P for the Calibration to CMS
Spread Options, if the (5L) Parametrization is used for ρ

Submatrix α β γ η ρ∞
ρ 7.3128 0.0111 6.2121 -2.4125 0.0260

β ρ∞
r 0.03504 0.5767

λ1 λ2
R 0.1 0.4017

Table A.12.: The Parameters of the Submatrices of P for the Calibration to CMS
Spread Options, if the (2SC) Parametrization is used for ρ

Submatrix γ η
ρ 9.4933 9.4933

β ρ∞
r 0.3000 0.7500

λ1 λ2
R 0.7294 0.3000
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Figure A.6.: The calibrated correlation matrices, if we use Lutz’ (5L) parametrization
for ρ and calibrate to swaptions. Observe how the general shape relative
to 2006 has changed. The short-term forward rates are now way less
correlated then before. The plot was done in Matlab.
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Figure A.7.: The calibrated correlation matrices, if we use the simpler Schoenmakers
& Coffey’s (2SC) parametrization for ρ and calibrate to swaptions. As for
the (5L) parametrization the short term forward rates are less correlated
then in 2006, but the level of correlation is around 30%. This is a result
of the inflexibility of the (2SC) parametrization. The plot was done in
Matlab.

123



A. Appendix

0
20

40

0
20

40
−0.5

0

0.5

1

R

0
20

40

0
20

40
0.6

0.8

1

r

0
20

40

0
20

40
0

0.5

1

ρ (5L)

0
50

0

50

0

0.5

1

Supercorrelation Matrix based on (5L)

Figure A.8.: The calibrated correlation matrices, if we use Lutz’ (5L) parametrization
for ρ and calibrate to CMS spread options. The shape of ρ is almost
identical to the shape from the calibration to swaptions. How ever the
volatility/volatility correlation is in general lower and the surface of R
seems a little bit smoother. The plot was done in Matlab.
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Figure A.9.: The calibrated correlation matrices, if we use the simpler Schoenmakers &
Coffey’s (2SC) parametrization for ρ and calibrate to CMS spread options.
The forward rates in generally are less correlated compared with the (5L)
parametrization. The plot was done in Matlab.
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Figure A.10.: The relative pricing errors for caplets. Similar to 04.06.2006 the error
becomes lower with growing expiry. The plot was done in Matlab.
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Figure A.11.: The relative pricing errors for swaptions, if the model is calibrated to
swaptions and for ρ the (5L) parametrization is used. Besides the error
peak for coterminal swaptions with expiries of 2 years and 3 years the
surfaces looks similar to the one from 2006. The plot was done in Matlab.
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Figure A.12.: The relative pricing errors for swaptions, if the model is calibrated to
swaptions and for ρ the (2SC) parametrization is used. The level of
errors is higher than for the (5L) parametrization. The plot was done in
Matlab.
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Figure A.13.: The relative pricing errors for swaptions, if the model is calibrated to
CMS spread options and the (5L) parametrization is used for ρ. The
surface looks almost like the one obtained by calibration to swaps, but
the general level is a bit higher. The plot was done in Matlab.
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Figure A.14.: The relative pricing errors for swaptions, if the model is calibrated to
CMS spread options and for ρ the (2SC) parametrization is used. The
plot was done in Matlab.
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