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. . def
Let (Mp)pn>0 be anonnegative submartingale and M} = maxo<p<n Mg,

n > 0 the associated maximal sequence. For nondecreasing convex func-
tions ¢ : [0,00) — [0,00) with ¢(0) = 0 (Orlicz functions) we provide
various inequalities for E¢(M;") in terms of E®,(My) where, for a > 0,

x S ’
D, (z) def / / ¢'(r) dr ds, z>0.
r

Of particular interest is the case ¢(x) = = for which a variational argu-
ment leads us to

M,V1 1/2
EM; < [1+ <E</ log = dx))
1

A further discussion shows that the given bound is better than Doob’s
classical bound =5 (1+EM, logt™ M,,) whenever E(M,, —1)T > e—2~
0.718.
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1. INTRODUCTION

Let (M,)n>0 be a nonnegative submartingale and M} def maxo<k<n Mg, n > 0 the
associated maxima. Moment inequalities for the sequence (M;),>o in terms of (M,,),>0 are

usually based on Doob’s maximal inequality which states that

1
PM: > t) < —/ M, dP (1.1)
(Mg>1)

forn >0 and t > 0. If p > 1, a combination of (1.1) with Holder’s inequality shows

p
EM? < (L) EMP (1.2)

p—1

for n > 0 [4, p. 255f], the constant being sharp (see [3, p. 14]). In case p = 1 one finds with

(1.1) that

EMF < —©

- (1 + EM,, log* Mn) (1.3)
e —

for n > 0. Clearly, these results apply to (|M,|)n>0 if (My)n>0 is a martingale.

ORLICZ AND YOUNG FUNCTIONS. (1.2) and (1.3) are only special cases within a whole
class of convex function inequalities based on Doob’s inequality which is the main topic of this
paper. Let € denote the class of Orlicz functions, that is unbounded, nondecreasing convex
functions ¢ : [0,00) — [0,00) with ¢(0) = 0. If the right derivative ¢’ is also unbounded
then ¢ is called a Young function and we denote by € the subclass of such functions. Given
any probability space (2,2, P), each ¢ € € induces the semi-Banach space (£(P),]| - ||4) of
¢-integrable random variables X on (2,2, P), where

1X]ls < inf{A>0: ED(X]|/N) <1}

defines the underlying semi-norm. (£?(P),]|-||,) is called an Orlicz space and equals the space
of a-times integrable functions (£%(P), || - ||«) in case ¢(x) = z* for some «a € [1,0).
Since ¢(z) = [y ¢(s)ds < x¢/(x) by convexity, the numbers
def . :L‘gZﬁ/(I) * % def x¢,($)
p =py = inf and p* = pj = sup 1.4
¢ z>0 @(x) ¢ >0 ¢(x) (14)

are both in [1,00]. ¢ is called moderate [5, p. 162] if p* < oo or, equivalently [7, Thm. 3.1.1],

if for some (and then all) A > 1 there exists a finite constant ¢y such that
o(Ax) < eag(z), x>0. (1.5)

This property is shared by all ¢ € € which are also regularly varying at infinity at order o > 1
[2], thus including ¢(x) = z* for a € [1,00). Examples of non-moderate Orlicz functions are
¢(x) = exp(z®) — 1 for any a > 1.



Given a Young function ¢, the right continuous inverse ¢’(x) o inf{y : ¢'(y) > x} of ¢/

is also unbounded and thus v (z) o Jy ¥'(s)ds again an element of @', called the conjugate
Young function to ¢. Obviously, this conjugation is reflexive. A simple geometric argument
shows [5, p. 163] that

¢’ (x)
z¢'(z) = o) + /0 P(s)ds = ¢(z) + (¢ (), ==0. (1.6)

and, by reflexivity, the same identity holds true with the roles of ¢ and v interchanged. With
the help of (1.6), ¥ (z) > pi*mp’(x) and 1/ (¢'(x)) > x we infer as in [5, p. 169] that
P

1 1
z¢'(z) = ¢(z) +¥(¢'(z)) > é(z) + p—*¢'<x>w’(¢’<x>) > ¢(z) + p—*w’(a:)
¥ P
for x > 0 and thus py, = inf;¢ x(f(,g) > pf Tﬁl. The reverse inequality can also be shown [7,
P
Thm. 3.1.1] so that we have the identity
My 1 1
Dy = *pw , orequivalently — 4 — = 1. (1.7)
Dy — 1 Py Dy

As further results stated in [7, Thm. 3.1.1] we mention that for any ¢ € € with p = p, the

assertions

d(Ax) > NPp(x) for all A > 1 and x > 0; (1.8)
%), (1.9
x

hold true, and that for moderate ¢ with p* = P furthermore

d(Mx) < AP ¢(x) forall A\ >1 and z > 0; (1.10)
2@) | (1.11)
xP

The following two inequalities, the first of which may also be found in [5, p. 169], are easily
deduced from another inequality stated as (2.12) in the next section. This latter inequality
emerges as a special case of one of our results, see Corollary 2.2, but can also be derived by
different arguments based on Doob’s inequality and the Choquet representation of a function

in €. For the interested reader this is briefly demonstrated in Appendix 1.

PROPOSITION 1.1. Let ¢ be an Orlicz function with p = py > 1 and (My)n>0 be a

nonnegative submartingale. Then

. p
My < —2—||M, 1.12
M6 p—l” P (1.12)
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for each n > 0. If ¢ is also moderate, i.e. p* = p; < 00, then furthermore

Bo(M;) < (pi) Eé(M,) (1.13)

for each n > 0.

2. MAIN RESULTS

Inequalities of type (1.13) are also the content of our main results to be presented in this
section. They are based upon integration of a variational variant of Doob’s inequality (1.1) to

be proved in Proposition 3.2, namely

0o +
= A R e Gl B

forallm > 0,¢ > 0 and A € (0,1). Under additional contraints on ¢ we will see that by

good choices of A the constant in (1.13) can be improved considerably. We will also derive an

P(M} >t)

inequality for EM* in terms of EM, logt M, which in many situations strictly beats (1.3).
The following two subclasses of € will be of interest hereafter. We shall denote by €* the

set of all differentiable ¢ € € whose derivative is concave or convex, and by € the set of ¢ € €

such that @ is integrable at 0 and thus in particular ¢’(0) = 0. Put &} eoner.

Given ¢ € € and a > 0, define

B, (x) /: /a T e ds, w0 (2.2)

r

and note that ®,1, o) € € for a > 0. If ¢ € €y the same holds true for ® def ®, whereas
® = oo otherwise. The function & will be of great importance in our subsequent analysis.
If ¢ € €y then ® is obviously again an element from this class. If in addition ¢’ is concave
or convex the same holds true for ®'(z) = | A dr, hence ¢ € € implies & € €. Use

0 r
O () = %‘f) to see that ¢ and ® are related through the differential equation

r® (x) — ®(z) = P(x), >0 (2.3)

under the initial conditions ¢(0) = ¢'(0) = ®(0) = &'(0) = 0. If ¢(z) = 2P for some p > 1,
then ®(z) = ﬁxp, in particular ® = ¢ in case ¢(z) = 22. If ¢(z) = x then & = oo, but we
have ®(x) = (xlogz — x + 1). Further properties of ® and its relation to ¢ are collected in
Lemma 3.1 at the beginning of Section 3 where it will be seen particularly that ® and ¢ grow

at the same order of magnitude unless ¢ or its conjugate are non-moderate.

THEOREM 2.1. Let (My,)n>0 be a nonnegative submartingale and ¢ € €. Then

Bo(M;) < 6(a) + o BOu(M, /A (2.4)



for alla >0, X € (0,1) and n > 0, in particular (A = 1)
E¢(M;) < ¢(a) + EPa(2M,) (2.5)

for alla >0 andn > 0. If (M,)n>0 s a positive martingale with M, 11 < cM,, for some ¢ > 0
and allm > 0, and if E®,(My) < oo, then

E¢(M;) > ¢ (By(M,) — E®q(Mp)) (2.6)

n

for allmn > 0.

Of course, inequality (2.4) with a = 0 is of interest only when ®y < oo, thus for ¢ € €.
The conditions on (M, ),>0 implying (2.6) were given by Gundy [6] to demonstrate that the
bound in (1.3) cannot be much improved, see (2.17) below and also [8, p. 71f].

If ¢(x) = aP for some p > 1, then ®(x) = ﬁxp implies in (2.4) with a =0

EMP < AT
T (1= -1)

for all n > 0 and A € (0,1). Elementary calculus shows that

EM? (2.7)

A*(p) o argmin N el
re(0,1) (1—=2A) P

With this value of A in (2.7) Doob’s £P-inequality (1.2) comes out again. For an extension of
it consider nonnegative increasing functions ¢ on [0, c0) such that #'/7 is also convex for some
v > 1. As before let (M,,),>0 be a nonnegative submartingale. Then the same holds true for
(/7 (M,,))n>0, the associated sequence of maxima being (¢'/7(M;)),>o. Consequently, (1.2)
implies
%l
* Y

pobiry) < (-15) o) (2.9
for each n > 0. Interesting examples are ¢(z) = zPlog" (1 + x) for p > 1 and r > 0 (choose
v = p), as well as ¢(x) = e for r > 0. For the latter example any v > 0 will do and since

(557)" decreases to e as v — oo, we obtain
EerMn < e Eem™Mn (2.9)

for all m >0 and r > 0.
We will show in the next section that ®(x) < p%lqb(x) for each ¢ € € with p =py > 1
(= ¢ € €). With this at hand the subsequent corollary follows from Theorem 2.1.

COROLLARY 2.2.  Given the situation of Theorem 2.1, let ¢ € € be such thatp = py > 1.
Then \
E¢(My) <
M) = TNe -1

5

E¢(M, /) (2.10)



for all X\ € (0,1) and n > 0. If ¢ is also moderate (p* < 00) then

* * p*
po0r) < D () Boan) (2.11)

for each n > 0.

A comparison of the constants going with E¢(M,,) in (2.11) and (1.13) shows that the one
in (2.11) is strictly better unless p = p* (see Lemma A.2 in Appendix 2 for a rigorous proof).
For large p, p* and (3 def p*/p we also have that p*_l( P )?" x Be, while (-£-)P" ~ ef.

p—1 \p*—1 p—1
Putting ¢ = ]% and choosing \ = % in (2.10), we obtain
E¢(My) < E¢(qM,) (2.12)

for each n > 0 and any ¢ € € with p > 1. It is this inequality which will easily give the
assertions of Proposition 1.1 (see Section 3).

By a similar argument as the one leading to (2.8), Doob’s inequality (1.2) can be used
to get refinements of (1.13) and (2.11) for functions ¢ € €*. However, the main tool for this
is not (2.1) but rather a suitable Choquet representation of ¢ exploited in a similar manner as

in [1] for the special case of ¢ € €* with concave derivative.

THEOREM 2.3. Given the situation of Theorem 2.1, let ¢ € €, k > 1 and ¢'¥) the k-th
order derivative of ¢. Then ¢\F) € € (= ¢ € €*) implies

1\ FH
potnry) = (S1) Bo) (2.13)
as well as
. k+1
1Melle = ——1Mally (2.14)

for each n > 0.

In case ¢(z) = xP for integral p > 1 we have ¢P~1) € € and thus that (2.13) coincides
with (1.2).

We finally turn to the case ¢(x) = x for which ® = co but ®1(z) = zlogz — z + 1 as
mentioned earlier. A more general version of inequality (2.4) proved in Section 3 (Proposition

3.2) will be used to derive the following alternative to Doob’s £1-inequality (1.3).

THEOREM 2.4. If (My,)n,>0 is a nonnegative submartingale, then

b M,V1
EM: < b+ b—lE(/ log x dm) (2.15)
- 1



for all b > 1 and n > 1. The value of b which minimizes the right hand side equals b* def

14 (E( anv1 log x alx))l/2 and gives

B < ( (o [ s dx))“)Q 210

If (My,)n>0 is a positive martingale with My1 < ¢M,, for some ¢ > 0 and all n > 0, and if
EM, 10g+ My < oo, then

1
EM* > - <EMn log™ M, — EMjlog™ Mo> (2.17)
C
for allm > 0.

Since flm logydy = xlog™ x — (x — 1) for > 1, inequality (2.15) may be restated as

b
EM; < b4 — (EMn log™ M, — E(M, — 1)+> (2.18)
for all n > 1 and b > 1. For the special choices b = F(M,, — 1)* + 1 and b = e, this yields for
eachn >1

1+ E(M, —1)* n
EM* < EM, log* M, 2.19
and
EM* < e+ S : (EMn log™ M,, — E(M,, — 1)+), (2.20)
=

respectively, where the right hand side of (2.19) is to be interpreted as 1 if M,, <1 a.s. Note
that even the choice b = e, though only suboptimal, leads to a better bound for EM; than in
(1.3) whenever E(M,, —1)T > e —2 ~ 0.718.

The previous upper bounds for EM,, may be further improved if m def EMy > 1. To

see this note that (M, )n>0 Lt (1, %, %, ...) forms again a nonnegative submartingale whose

maxima M, satisfy

for n > 1. Consequently, (2.15) and (2.18) for (M,,)n>0 give

COROLLARY 2.5. If (My,)n>0 is a nonnegative submartingale with m = EMy > 1, then

- b—1

congty (e () ()

for allb>1 and n > 1, in particular

. b (M, /m)V1
EM, < EM, ; < b+—E(/ log z d.r)
' (2.21)

(M, /m)V1 1/2\ 2
EM: < (1 + <E(/ log x dm)) > (2.22)
1
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when choosing the minimizing b* (compare (2.16)).

3. PROOFS

We begin with a collection of some useful properties of the function & = &y in (2.2)

associated with an element ¢ of €.

LEMMA 3.1.  For each ¢ € €y with p = py > 1 the function ® satisfies

1
O(x) < —1¢(x), x> 0. (3.1)
p —_—
If ¢ is moderate, i.e. p* = p;; < 00, then
1
O(r) > — 1(;5(96), x> 0. (3.2)
p J—
Finally, for each ¢ € &y the inequality
lim inf @) > 0 (3.3)
z—oo xlogx

holds true.

The final inequality shows that lim,_, ., @ = 0o whenever ¢ € € is a function ”close to
the identity” in the sense that ¢(x) = o(x log x) as © — co. Another class of examples comprises
d(z) = rzlog” H(1 + x) —log" (1 + z) for r > 1 in which case ®(z) = (1 + z)log" (14 z) (use

the differential equation (2.3)).

PRrOOF. Using z¢'(x) > pop(x), we obtain by partial integration
S / S S /
LT Iy P LU
0 T S 0 r S P Jo r

and thus fos @ dr < p%lm < ﬁ(b’ (s) for s > 0. An integration of this inequality with

S

respect to s obviously implies (3.1). The second inequality (3.2) is obtained analogously when
utilizing that p* < oo implies z¢'(z) < p*¢(x) for all x > 0. As to (3.3), choose a > 0 such
that ¢'(a) > 0. Then

D(x) > P,u(x) = /:/:@ dr ds = ¢’(a)<xlog(x/a)—a:+a>
for all z > a. &

The proofs of Theorem 2.1 and 2.4 are based on the following more general proposition.

8



PROPOSITION 3.2. Let (M,)n>0 be a nonnegative submartingale and ¢ € €. Then
inequality (2.1) holds true and furthermore

E6(43) < o)+ {Mn/m}(@a(%) -, - o) (=) G

for alln >0, a,b >0 and X € (0,1). If @ is integrable at 0, i.e. ¢ € €y, then (3.4) remains
valid for b= 0.

PROOF. Doob’s maximal inequality gives

1
P(M: >1t) < —/ M, dP
tJMz>t)

_ E/ P(M* > t,M, > s) ds
0

1 )\t 1 o0
:—/ P(M;>t)ds+—/ P(M, > s) ds
t Jo U Jat

IN

AP(M: >1) + %/OO P(M,/\ > s) ds (3.5)

and thus

POM: > 1) < (1—AA)t /tOOP(Mn/)\>s) ds

foralln >0,t>0and X € (0,1), which is (2.1). With this result we further infer

E¢(M;)

n

IA

o(b) + /boo &' (t) P(M > t) dt

(b) + 1fA/bOO (bllft) /tOOP(Mn/)\>s) ds dt

IN

= ¢(b)+$ boo (/b@ dt)P(Mn/)\>s) ds

= $(b) + % boo (@4(5) = @, (0) ) P(M /A > 5) ds

= o)+ 1o {Mn/bb}(@a(%) — B,(b) — B, (0) (MT - b)) aP

forallm >0, b,t >0, A € (0,1) and a > 0, where a = 0 may also be chosen if @ is integrable
at 0. %

PROOF OF THEOREM 2.1. Inequality (2.4) follows directly from Proposition 3.2 if we
choose b = a and recall that ®,(a) = ¢/ (a) = 0. Hence we are left with the proof of (2.6). If

(M,,)n>0 is a positive martingale satisfying M, 41 < cM,, for all n > 0 and some ¢ > 0, then

1 1
P(M;;>t)z—/ M, dP — — Mo dP
t Jimy>ty ct J{my>t}



for all n > 0 and ¢t > 0, see [8, p. 72]. Consequently,

1
P(M} > 1) > — MdP——/ My dP
{M, >t} {My>t}

:_/ P(M, > 5) = P(My > ) ds
+ (P(M > 1) = P(My > t)) (3.6)

for all n > 0 and ¢ > 0. Assuming E®,(My) < oo, and also E¢(M,;) < oo (there is nothing
to prove otherwise), (2.6) now follows upon integration over (0, 00) with respect to ¢ of both
sides of (3.6) multiplied with ¢'(¢). We must only note that

| o (P08 > ) POL > 1) dt = Bo(M,) - Eo(M) = 0

0

because ¢ is convex and E¢(My) < E¢(M,,) < oo for 0 < k < n. &
We continue with a short proof of Proposition 1.1 stated in the Introduction.

PROOF OF PROPOSITION 1.1. Let ¢ € € with p = pg > 1, put ¢ def I% and recall from
(2.12) that E¢(M;) < E¢(qM,,) for each n > 0. Setting 7, of | My ||, this inequality implies

E¢(M:;/q>\n) < E¢(Mn/)‘n) =1
as well as (use also (1.10))
E¢(My;) < E¢(¢My) < " E¢(M,).

The second inequality proves (1.13) while the first one yields ||M]|s < ¢\, and thus assertion
(1.12). &

PROOF OF THEOREM 2.3. The basic tool for the proof of Theorem 2.3 is to convert the
assumption of smooth convexity (¢*) € €) into a suitable Choquet decomposition of ¢. Each

¢ € € can be written as
6@ = [ @-0" Qulan
[0,00)

where Q4 (dt) = ¢'(0)do + ¢'(dt). Hence, if ¢’ € €, then

o) = [ "Wy dy
- [ [ w-0*Quana
- /OOO)/ — 1) dy Qui(dt)

B r—t)")? /
_ /[O’OO) S Qi)

10



An inductive argument now gives that

— )Tkt
o) = /[0 )%Qd,(k)(dw (3.7)

for each ¢ € € with ¢*) € €. Put ¢y, () def %
,t/ t(kH) is convex for each t. Thus we infer with the help of (3.7) and the argument which

proved (2.8) that

for k > 1 and t € [0,00). Note that

Eo(M;) = /[ Fpna(M7) Qe )

k1)
< (T) /[ BpraMn) Qo (@)
0,00

k+1
E+1
- (5F) wewn)
for each n > 0. Replacing M* with M /v, in the previous estimation, where v, et B M|,
further gives (2.14) by a similar argument as in the proof of Proposition 1.1. O

PROOF OF THEOREM 2.4. If ¢(x) = x, then ®;(x) = xlogz — z + 1 and ®)(x) = logz
for z > 0. Inequality (3.4) with these functions reads

A M, M, M, M,
EM: < b+ —— 1 ) - 4+b—logh—=) dP
R {Mn>>\b}()‘ Og()\> NoTTs A)
1
= bt (MnlogMn—Mn(log)\+logb+1)+)\b> dP
L= A Jiata>an)

for all b > 0 and A € (0,1). Choose b > 1 and A = 7 to obtain (2.15) in its equivalent form
(2.18). (2.16) follows by elementary calculus. Finally, if (M,,),>0 is a positive martingale with
M, +1 < cM, for some ¢ > 0 and all n > 0, and if EM, logJr My < oo, then a use of the first

inequality in (3.6) gives after partial integration

<1
EM;z/ —(/ MndP—/ ModP)dt

1\ J{m,>t) {(Mo>t}
1 M,V1 1 MyVv1 1

= —E(Mn/ - dt - M()/ - dt>
C 1 t 1 t
1

— - (EMn logt M,, — EM;log* M0>
c

for all n > 1 and hence the asserted inequality (2.17). &

APPENDIX 1

Inequality (2.12) from which Proposition 1.1 was deduced may be viewed as a special-
ization of inequality (A.2) below to the pair (X,Y) = (M,, M}). The purpose of this short

11



appendix is to provide a proof of (A.2) based upon a Choquet representation of the involved

convex function ¢.

LEMMA A.1. Let X,Y be nonnegative random variables satisfying Doob’s inequality

tP(Y >t) < El{th}X (A1)
for allt > 0. Then
E¢(Y) < E¢(qX) (4.2)
holds for each Orlicz function ¢, where q def dep = pfil.

Proor. If p = py = 1, thus ¢ = oo, there is nothing to prove. So let p > 1 and put
V = ¢X. Write ¢ in Choquet decomposition, that is

b(z) = /[ ) g, 2o

Then we obtain

Eo(V) - Eo(Y) = E /[ Wty ¢>’(dt)>

[0,Y]

= B(Lyer / (V=) '(dt) + 1oy /
(Y,V] (V,Y}

(t— V) ¢'<dt>)

It is easily seen that I; > 0. So it remains to prove that Iy = EV¢'(V) — EY¢'(Y) > 0. To

this end write
BYS(Y) = pE(Y) = B [ _o-or )

— pEYOY) ~ pE( /{ oan)

Y >t}

which, after rearranging terms and using (A.1), leads to

pvov) < qB( [ eon) < ap( [ x @) - o)
{y>t} {y>t}
and thus the desired conclusion. &

12



APPENDIX 2

We claimed in Section 2 that

1) < (=)

holds true for all y > = > 1 and that the inequality is strict unless x = y. (A.3) may be
z—1\""! )Y
1) =0)
y—1 Y

(y — 1)<10g(w —1) —log(y — 1)) < y<log:c—logy)-

rewritten as

Taking logarithms we arrive at

The desired conclusion is now an immediate consequence of the following lemma.

LEMMA A.2.  For eachy > 1, the function f, : (1,y] — IR,

fylz) = (y— 1)<10g(56 — 1) —log(y — 1)) - y(logx — log y)

is strictly increasing with f,(y) = 0.

PRroor. It suffices to note that

for all x € (1,y). o
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