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Summary
The thesis at hand is concerned with the study of some Markov-modulated processes,
where the underlying Markov chain (Mn)n≥0 is aperiodic, positive recurrent and has a
countable state space S .

Chapter A is devoted to an analysis of Markov random walks (MRWs). A MRW is a
process (Sn)n≥0, Sn :=∑n

k=1Xk for n≥ 1 and S0 := 0, where, conditioned on (Mn)n≥0, the
increments (Xn)n≥1 are independent andXm only depends onMm−1,Mm for allm≥ 1, i.e.
(Xn)n≥1 is Markov-modulated. In the analysis, we dispense with moment assumptions on
the increments and focus on extending results from fluctuation theory of ordinary random
walks. After verifying a trichotomy for the almost sure asymptotic behaviour of a so-
called non-trivial MRW, emphasis will be placed on characterising MRWs diverging to∞
almost surely. In particular, equivalent conditions for the existence of power moments of
|minn≥0Sn|,

∑
n≥1 1{Sn≤0} and the last exit time sup{n≥ 0 : Sn ≤ 0} will be established,

whereas difficulties for finding an equivalent criterion for the existence of power moments
of the first passage time will be illustrated. Finally, the well-known arcsine law will be
extended to non-trivial MRWs.

Chapter B examines iterations of Markov-modulated random affine functions Ψn(x) :=
Anx+Bn, x ∈ R, n ≥ 1, i.e. (An,Bn)n≥1 is Markov-modulated. Let Z0 be a random
variable independent of all other occurring random variables given M0 and Ψk:n := Ψk ◦
. . . ◦Ψn for all k,n ≥ 1. On the one hand, we study distributional convergence of the
forward iterations (Ψn:1(Z0))n≥1 and relate possible limit distributions to solutions to a
stochastic fixed point equation (SFPE). On the other hand, we characterise distributional
convergence of the backward iterations (Ψ1:n(Z0))n≥1, which does not reduce to the study
of distributional convergence of the forward iterations as in the ordinary setup, where
(An,Bn)n≥1 are independent and identically distributed (i.i.d.). Moreover, necessary and
sufficient conditions will be obtained for Ẑ∞ := ∑

n≥1(∏n−1
k=1Ak)Bn, called perpetuity, to

exist as the almost sure limit of (Ψ1:n(0))n≥1 and for its distribution to be a solution to
some SFPE.

In both chapters the regenerative structure included in Markov-modulation enables to
apply the classical results, i.e. on ordinary random walks and on iterations of i.i.d. affine
functions respectively, on some subsequences of the corresponding process to obtain first
insights. Nevertheless, great differences appear between the behaviour of this subsequences
and the one of the entire process, which arise when S has countably infinitely many states.
Consequently, additional theory will be developed to accomplish the proofs.
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A. On Fluctuation Theory of
Markov Random Walks

1. An Overview of Fluctuation Theory of Random
Walks

Let (Xn)n≥1 be an i.i.d. sequence of random variables. Without further mentioning, all
random variables in this work are real-valued. Set Sn := ∑n

k=1Xk for n ≥ 1 and S0 := 0.
(Sn)n≥0 is called random walk.

A random walk is one of the basic objects in probability theory and is already en-
countered when dealing with the most known results of probability theory, namely the
law of large numbers and the central limit theorem. Naturally, an additive process with
increments that are of some regenerative structure arises in many applications. The sim-
plest way of modulation is to assume i.i.d. increments, which leads to a random walk.
There are several examples, well-known is queuing theory, where the arrival process, i.e.
the sequence of arrivals of customers to the queue, is represented by a random walk with
positive increments in the simplest models (e.g., see [7, Chapter III]). Moreover, random
walks appear in the analysis of random difference equations (see Section B.1).

Although random walk theory is a relatively old topic (e.g., see [39], dating from 1921),
associated research is still ongoing. Results on aspects of the fluctuation behaviour of a
random walk are subsumed under the term fluctuation theory. This section is devoted to
introducing the reader to the topic of fluctuation theory and to state the main results. Si-
multaneaously, the latter form the set of theorems, which are at least partially generalised
in the remaining part of Chapter A.

An introduction to fluctuation theory of random walks and proofs of the basic results
can be found in several books (e.g., [20, Chapter XII] and [12, Chapter 8]).

1.1. The Fluctuation Type of Random Walks and Finiteness of
Fluctuation-Theoretic Quantities

A random walk with increments not degenerate in 0 is called non-trivial. It is well-known
that such a random walk exhibits one of the following fluctuation types:

Positive divergence: lim
n→∞Sn =∞ a.s.

Negative divergence: lim
n→∞Sn =−∞ a.s.

Oscillation: liminf
n→∞ Sn =−∞ and limsup

n→∞
Sn =∞ a.s.

1



Chapter A. On Fluctuation Theory of Markov Random Walks

For the reader’s convenience, we dispense occasionally with subindices in the sense that
we write X instead of X1. Similarly, we proceed with all other occurring random variables
in this thesis. If EX is well-defined, i.e. EX+∧EX− <∞ and EX := EX+−EX−, the
fluctuation type of a non-trivial random walk can be characterised by the mean in the
following form:

Positive divergence ⇔ EX > 0.
Negative divergence ⇔ EX < 0.

Oscillation ⇔ EX = 0.

Kesten [30] established the following trichotomy for the case EX+ = EX− =∞:

Theorem 1.1 ([30], Corollary 3) Let (Sn)n≥0 be a non-trivial random walk with
E|X|=∞. Then, exactly one of the following cases prevails:
(i) limn→∞n

−1Sn =∞ a.s. and (Sn)n≥0 is positive divergent.

(ii) limn→∞n
−1Sn =−∞ a.s. and (Sn)n≥0 is negative divergent.

(iii) liminfn→∞ n−1Sn =−∞ a.s., limsupn→∞ n−1Sn =∞ a.s. and (Sn)n≥0 oscillates.
Further characterisations of the fluctuation type will be stated only for positive diver-

gent random walks. These can easily be translated into a negative divergent random walk
(Sn)n≥0, since (−Sn)n≥0 is positive divergent. Hence, a result on oscillating random walks
can be concluded by contraposition.

Let x ∈ R≥. In the study of the fluctuation behaviour of random walks, interesting
quantities are the level x first passage times

σ>(x) := inf{n≥ 1 : Sn > x}, σ6(−x) := inf{n≥ 1 : Sn ≤−x},

the last level x exit time
ρ(x) := sup{n≥ 0 : Sn ≤ x},

the hitting time of the minimum

σmin := inf
{
n≥ 1 : Sn = min

k≥1
Sk
}

and the renewal counting measure

Λ(x) :=
∑
n≥1

1{Sn≤x}.

Set σ> := σ>(0) and σ6 := σ6(0). That one can draw a conclusion on the fluctuation type
from information on these quantities is part of the next theorem. For y ∈ R≥, define

A(y) := E(X+∧y)−E(X−∧y)
and

J(y) :=


y

E(X+∧y) , if P(X+ = 0)< 1,
y, if P(X+ = 0) = 1,

where 0/E(X+∧0) := 1. The case P(X+ = 0) = 1 is actually irrelevant for this work, but
J(y) is chosen in correspondence to [19].
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1. An Overview of Fluctuation Theory of Random Walks

Theorem 1.2 Let (Sn)n≥0 be a non-trivial random walk. The following conditions are
equivalent:

(i) (Sn)n≥0 is positive divergent.

(ii) A(y)> 0 for all sufficiently large y and EJ(X−)<∞.

(iii) ∑n≥1n
−1P(Sn ≤ x)<∞ for some (hence all) x ∈ R≥.

(iv) Eσ>(x)<∞ for some (hence all) x ∈ R≥.

Additionally, further equivalences to positive divergence are P(σ6(−x) = ∞) > 0,
P(ρ(x) <∞) = 1, P(σmin <∞) = 1, P(Λ(x) <∞) = 1 and P(|minn≥0Sn| <∞) = 1 for
some (hence all) x ∈ R≥, which follow directly from the definition of positive divergence
and the fluctuation type trichotomy.

Positive divergence is equivalent to EJ(X−)<∞ if E|X|=∞, which is due to Erickson
[19, Corollary 1]. In fact, condition (ii) reduces to EJ(X−) <∞ in this case, because
A(y)> 0 for all sufficiently large y is a consequence of positive divergence (see [33, Lemma
3.2]). If E|X|<∞, (ii) is equivalent to 0 < EX = limy→∞A(y), since EJ(X−) is then of
magnitude EX−, which is finite.

Kesten and Maller [33] showed that EJ(X−)<∞ can be replaced with∫ y

A(y) P(X− ∈ dy) < ∞.

Moreover, they have shown that under the assumption of positive divergence, J(y) and
y/A(y) are asymptotically of the same magnitude (see the proof of Lemma 3.1 from [33]),
which is why we also state the next theorems with J(y).

The criterion concerning the harmonic renewal series in (iii) goes back to Spitzer [44,
Theorem 4.1].

The main outcome of Kesten and Maller’s article [33] is a theorem giving equiva-
lent conditions for the finiteness of power moments of the above introduced fluctuation-
theoretic quantities. Given 0 < EX ≤ E|X| <∞, this has already been done by many
authors, most notably Gut [26] and Janson [29]. For a good overview of the relevant
literature, the reader is referred to Chapter III of Gut’s monography [27].

Theorem 1.3 ([33], Theorem 2.1 and p. 27) Let (Sn)n≥0 be a positive divergent ran-
dom walk and α > 0. The following conditions are equivalent:

(i) Eρ(x)α <∞ for some (hence all) x ∈ R≥.

(ii) EJ(X−)1+α <∞.

(iii) Eσαmin <∞.

(iv) Eσ6(−x)α1{σ6(−x)<∞} <∞ for some (hence all) x ∈ R≥.

(v) EΛ(x)α <∞ for some (hence all) x ∈ R≥.

(vi) ∑n≥1n
α−1P(Sn ≤ x)<∞ for some (hence all) x ∈ R≥.

3



Chapter A. On Fluctuation Theory of Markov Random Walks

(vii) Eσ>(x)1+α <∞ for some (hence all) x ∈ R≥.
Another set of equivalent conditions is formed by the equivalences to finite power

moments of |minn≥0Sn|.

Theorem 1.4 ([33], Prop. 4.1) Let (Sn)n≥0 be a positive divergent random walk and
α > 0. The following conditions are equivalent:
(i) E |minn≥0Sn|α <∞.

(ii) E [(X−)αJ(X−)]<∞.

(iii) E |Sσ6(−x)|α1{σ6(−x)<∞} <∞ for some (hence all) x ∈ R≥.

(iv) E(max0≤n≤ρ(x) |Sn|)α <∞ for some (hence all) x ∈ R≥.
Obviously, Theorem 1.4 (ii) is stronger than Theorem 1.3 (ii), but, if 0<EX ≤E |X|<

∞, both conditions are equivalent and reduce to E(X−)1+α <∞. Hence, as a corollary of
the previous results, we obtain Janson’s theorem, which has been published years before
[33].

Theorem 1.5 ([29], Theorem 1) Let (Sn)n≥0 be a positive divergent random walk with
0 < EX ≤ E|X| <∞ and α > 0. The conditions in Theorem 1.3 and 1.4 are equivalent
and the respective second condition reduces to E(X−)1+α <∞.

Another result of Kesten and Maller specifies the rate of growth of certain quantities
from Theorem 1.3, which will be a basic ingredient for our results. For positive functions
on the negative half-line f and g and y →∞ we denote f(y) . g(y) if there exists a
constant c ∈ R> such that

f(y) ≤ cg(y) for all sufficiently large y,

and f(y)� g(y), if f(y) . g(y) and f(y) & g(y), i.e.

0 < liminf
y→∞

f(y)
g(y) ≤ limsup

y→∞

f(y)
g(y) < ∞.

In particular, this notation is used for constant functions f and g, i.e. we abbreviate that
both are finite or infinite at the same time by f � g.

Theorem 1.6 ([33], Theorem 2.2 and p. 28) Let (Sn)n≥0 be a non-trivial random
walk.
(i) If (Sn)n≥0 is positive divergent, then∑

n≥1
n−1P(Sn ≤ y) � logJ(y) as y→∞.

(ii) Suppose Eρ(0)α <∞ for some α > 0. Then,

Eσ>(y)α �
∑
n≥1

nα−1P(Sn ≤ y) � EΛ(y)α � Eρ(y)α � J(y)α as y→∞.

Erickson [19] first showed that ∑n≥1P(Sn ≤ y)� J(y) for a random walk (Sn)n≥0 with
non-negative increments. For further remarks on this theorem we refer to those in [33].

4



1. An Overview of Fluctuation Theory of Random Walks

1.2. Arcsine Law for Random Walks
A result contradicting a person’s first intuition is the arcsine law for random walks. Con-
sider the coin tossing game between two players A and B where player A wins a round if
a fair coin shows heads, and player B wins otherwise. Let Xn be equal to 1 if player A
wins the n-th round, and −1 otherwise. Moreover, let (Sn)n≥0 denote the random walk
with increments (Xn)n≥1. By the symmetry of the game, one may expect that it is most
likely for large n that

Λ>n :=
n∑
k=1

1{Sk>0},

the number of rounds player A has the lead, is approximately n/2. In contrast, the arcsine
law entails that n−1Λ>n is actually more likely to be close to 0 and 1. In other words, it is
more probable that one player is in lead most of the time.

The result for the above setting was first introduced by Lévy [35, Corollaire 2, p. 303],
which more detailly states

Λ>n
n

d−→ AR(1/2),

where AR(1/2) is the classical arcsine distribution given by the distribution function

AR(1/2)((−∞,x]) := 2
π

arcsin(
√
x), x ∈ [0,1].

More generally, we can introduce the family of arcsine distributions (AR(θ))θ∈[0,1]. Set
AR(0) := δ0 and AR(1) := δ1. For θ ∈ (0,1), AR(θ) is defined by having the Lebesgue-
density

sin(πθ)
π

1
x1−θ (1−x)θ 1(0,1)(x).

Lévy’s result is followed by several generalisations. The most important generalisations
have been given by Sparre Andersen and Spitzer. Sparre Anderson (see [43, Theorem 3])
showed that a non-trivial random walk (Sn)n≥0 with

∃θ ∈ (0,1) : lim
n→∞P(Sn > 0) = θ

entails n−1Λ>n
d−→ AR(θ). Spitzer established an arcsine law under a weaker assumption.

We state his theorem including the trivial cases θ ∈ {0,1}.

Theorem 1.7 ([44], Theorem 7.1) Let (Sn)n≥0 be a non-trivial random walk, which
fulfils

∃θ ∈ [0,1] : lim
n→∞

1
n

n∑
k=1

P(Sk > 0) = θ.

Then,
Λ>n
n

d−→ AR(θ) and Λ6
n

n
d−→ AR(1− θ),

where Λ6
n := n−Λ>n =∑n

k=1 1{Sk≤0}.
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Chapter A. On Fluctuation Theory of Markov Random Walks

2. Introduction of Markov Random Walks
It is self-evident that a random walk is not always the best choice for modelling sums of
increments of a regenerative structure. In the context of queuing theory one may think
about temporal bursts or seasonal fluctuations. This asks for a weakening of the i.i.d.
assumption. In order to implement dependency, the natural choice is Markovian depen-
dence, i.e. the increments are governed by a Markov chain. This motivation leads to the
study of the subsequent defined object.

Let (Mn)n≥0 be a positive recurrent, aperiodic Markov chain on some countable set S
with transition matrix P = (pij)i,j∈S and unique stationary distribution π := (πi)i∈S . Ad-
ditionally, consider a stochastic kernel K : (S 2×B)→ [0,1] to define a bivariate Markov
chain (Mn,Xn)n≥1 by

P((Mn,Xn) ∈ (j,E)|(Mk,Xk)0≤k≤n−1) := P((Mn,Xn) = (j,E)|Mn−1)
:= pMn−1 jK(Mn−1, j,E),

for all j ∈S , n≥ 1 and E ∈B, where B denotes the Borel σ-field on R. Hence,

KMn−1Mn := K(Mn−1,Mn, ·) = P(Xn ∈ ·|Mn−1,Mn).

Furthermore, (X1, . . . ,Xn) are conditionally independent, i.e.

P((X1, . . . ,Xn) ∈ ·|M0 = i0, . . . ,Mn = in) =
n⊗
k=1

Kik−1ik

for all n ≥ 1 and i0, . . . , in ∈ S . The dependence structure allows to say that (Xn)n≥1
is governed by the driving chain (Mn)n≥0. We also call (Xn)n≥1 a Markov-modulated
sequence. Set S0 := 0 and Sn := ∑n

k=1Xk. (Mn,Sn)n≥0 and often also (Sn)n≥0 are called
Markov random walk (MRW) or Markov additive process.

Fluctuation theory of MRWs has been examined by several authors. A classification
of MRWs in terms of the almost sure asymptotic behaviour is studied in the articles of
Prabhu et al. [40] and Newbould [36]. The latter particularly focused on MRWs with
(Mn)n≥0 having a finite state space. Although we focus on the case of S being countably
infinite, Section 9.1 deals with the simpler case of a finite state space.

Further contributions are due to Alsmeyer. [3] deals with recurrence of MRWs given
an ergodic driving chain with general state space. [2] examines ladder times and ladder
chains under the assumption of a positive stationary mean in the case of an underlying
Harris chain. [4] has been worked out during this thesis and studies ladder chains in our
setup. Fuh and Lai [21] as well study ladder variables, but the underlying Markov chain
is assumed to be uniformly ergodic.

A Wiener-Hopf factorisation for MRWs has been established by Asmussen (see [8]
or [7, Chapter XI]). The latter reference also contains applications of MRWs in queuing
theory. [13] provides further references for applications and early developments in Markov
renewal theory.

6



2. Introduction of Markov Random Walks

2.1. Basic Results and Further Organisation
In the remainder of this chapter, (Mn,Sn)n≥0 is always assumed to be a MRW. For a first
result, we make use of the following considerations.

For i∈S , let (τn(i))n≥1 be the successive return times of (Mn)n≥0 to state i. Moreover,
set χn(i) := τn(i)−τn−1(i), n≥ 1 and τ0(i) := 0. Due to its particular Markovian structure,
(Mn,Xn)n≥1 splits into i.i.d. cycles

(χn+1(i),(Mτn(i)+k,Xτn(i)+k)1≤k≤χn+1(i))n≥0

under Pi :=P(· |M0 = i) and is stationary under Pπ :=∑
i∈S πiPi. In particular, (Sτn(i))n≥0

forms an ordinary random walk under Pi.
Consider a measurable function f : S ×R→R satisfying Eπf+(X1)∧Eπf−(X1)<∞.

It is well-known (e.g., see [37, Lemma 5.2]) that

Eπf(X1) = πiEi
( τ(i)∑
k=1

f(Xk)
)
. (2.1)

Given EπX+
1 ∧EπX−1 <∞, we obtain

EπX1 = πiEiSτ(i). (2.2)

It is a simple result to show that Pi(Sτ(i) = 0) = 1 holds either for all i ∈S or none
(e.g., see Lemma 2.2). Excluding this degenerate case, we are able to state a first result
on the behaviour of MRWs. Since “Pπ-a.s.” means the same as “Pi-a.s.” for all i ∈S , we
use “a.s.” synonymous for both.

Theorem 2.1 Let (Mn,Sn)n≥0 be a MRW with EπX+
1 ∧EπX−1 <∞ and Pi(Sτ(i) = 0)< 1

for all i ∈S . The following assertions are true:

(i) (Sn)n≥0 is either positive divergent, negative divergent or oscillating.

(ii) (Sn)n≥0 and (Sτn(i))n≥0 have the same fluctuation type for all i ∈S .

(iii) (Sn)n≥0 is positive divergent if and only if EπX1 > 0.

(iv) limn→∞n
−1Sn = EπX1 a.s.

Proof. If EiSτ(i) = 0, (Sτn(i))n≥0 oscillates, which naturally implies oscillation of (Sn)n≥0.
Consequently, assertion (i) to (iii) follow directly from the occupation measure formula
(2.2) if we prove (iv). Moreover, Birkhoff’s ergodic theorem entails (iv) if we show that
(Xn)n≥1 is ergodic under Pπ.

The stationarity is clear. Hence, let us consider an invariant set E ∈B∞, i.e.

E = {(Xn,Xn+1, . . .) ∈B} for all n≥ 1 and some B ∈B∞.

Define the Pπ-independent σ-algebras

An := σ
(
χn+1(i),(Mτn(i)+k,Xτn(i)+k)1≤k≤χn+1(i)

)
, n≥ 0.

7



Chapter A. On Fluctuation Theory of Markov Random Walks

By Kolmogorov’s zero-one law ⋂
k≥1σ(⋃n≥kAn) is Pπ-trivial. Hence, it suffices to show

E ∈ σ(⋃n≥kAn) for all k ≥ 1. This follows from

E =
⋃
n≥k
{τk(i) = n}∩E =

⋃
n≥k
{τk(i) = n,(Xn+1,Xn+2, . . .) ∈B}

=
⋃
n≥k
{τk(i) = n,Xτk(i)+1,Xτk(i)+2, . . .) ∈B}

= {Xτk(i)+1,Xτk(i)+2, . . .) ∈B} ∈ σ
( ⋃
n≥k

An

)
.

ut

This theorem sums up most of the current knowledge of the fluctuation behaviour of a
MRW before this thesis. Besides, Prabhu et al. [40] examined the introduced degeneracy
condition and showed that the trichotomy in Theorem 2.1 (i) remains true without any
moment assumptions (see their Theorem 7). Nevertheless, we prove this fluctuation type
trichotomy ourselves and widen the degeneracy discussion by the aspect of null-homology
in Section 2.2.

The study of a MRW does not reduce to the study of its embedded random walks.
In fact, (Sn)n≥0 may be regarded as the countable union of (Sτn(i))n≥0, i ∈S , but the
way these are intertwined cause several complications. For example, we will reveal the
intriguing fact that the assertion of Theorem 2.1 (ii) does not necessarily hold if EπX+

1 =
EπX−1 =∞. As it turns out throughout this chapter, one always has to take the behaviour
of the excursions between successive return epochs into account.

Section 3 establishes solidarity results. Particularly, we show that all embedded random
walks have the same fluctuation type. Auxiliary results are also given in Section 5, which
deals with ladder chains. The task of finding equivalent conditions for finiteness of power
moments of the first level x passage time will remain unsolved, a discussion can be found
in Section 6.5. The main results are contained in the Sections 4 and 6, which prove
partial generalisations of Theorems 1.1–1.6. Not all assertions can be generalised to MRWs,
Section 7 gathers some counterexamples.

Just recently, Alsmeyer, Iksanov and Meiners published an article [5] that studies
fluctuation behaviour of perturbed random walks. Some of their results can be translated
to MRWs and vice versa. Hence, we will extend some of their results and give different
proofs. See Section 8 for a comparison of both results.

Section 9 aims at finding stronger versions of our main results for some special cases
(e.g. |S |<∞). Finally, Section 10 generalises the arcsine law for ordinary random walks
to MRWs.

A useful object will be the dual of (Mn,Sn)n≥0, denoted (#Mn,
#Sn)n≥0 herafter,

which is again a MRW with (#Mn)n≥0 being the time reversal of (Mn)n≥0 under Pπ with
transition matrix

#P :=
(
πj pji
πi

)
i,j∈S

.

Moreover,
#K#Mn−1#Mn

:= P(#Xn ∈ ·|#Mn−1,
#Mn) := K#Mn

#Mn−1

8



2. Introduction of Markov Random Walks

for all n≥ 1. Then, one easily infers

Pi0(M1 = i1, . . . ,Mn = in) = πin
πi0

Pin(#M1 = in−1, . . . ,
#Mn = i0) (2.3)

and

P((X1, . . . ,Xn) ∈ ·|M0 = i0, . . . ,Mn = in)

=
n⊗
k=1

Kik−1ik =
n⊗
k=1

#Kikik−1 (2.4)

= P
(
(#Xn, . . . ,

#X1) ∈ ·|#M0 = in, . . . ,
#Mn = i0

)
for all n≥ 1 and i0, . . . , in ∈S .

Considering a doubly infinite extension (Mn,Xn)n∈Z of the stationary chain
(Mn,Xn)n≥1 under Pπ and putting S0 := 0 and Sn := Sn−1 +Xn for n 6= 0, thus

Sn :=


X1 + . . .+Xn, if n≥ 1,

0, if n= 0,
−X0− . . .−Xn+1, if n≤−1,

one can easily verify that the Pπ-laws of the dual and of (M−n,−S−n)n≥0 are the same.
Equivalently, (#Mn,

#Xn)n≥1 has the law of (M−n,X−n+1)n≥1 under Pπ.
For x ∈ R≥, we define σ>(x), σ6(−x) etc. for MRWs in the same way as for ordinary

random walks. (#τn(i))n≥1, #σ>(x), #σ6(−x) etc. denote the corresponding quantities
for the dual MRW (#Mn,

#Sn)n≥0. Moreover, in the context of the dual MRW, we also
write Pi for P(· |#M0 = i).

2.2. Null-Homologous Markov Random Walks
In Theorem 2.1 we have already seen that excluding the property

Pi(Sτ(i) = 0) = 1 for all i ∈S (2.5)

provides the usual fluctuation type trichotomy for MRWs with EπX1 well-defined. Our
first aim is to validate this assertion even when the stationary mean is undefined. This will
take place in the next section, but we study MRWs fulfilling (2.5) before. These MRWs
have already been studied in [40] to some extent. Due to Lalley [34], we call a MRW
null-homologous if there exists a function g : S → R such that

Xn = g(Mn)−g(Mn−1) a.s. (2.6)

Notice that such a function is not uniquely determined, because if g satisfies (2.6), then the
same holds for g′(i) := g(i)+ c, c ∈R. Our first result is that the class of null-homologous
MRWs and the class of MRWs fulfilling (2.5) coincide.

Lemma 2.2 The following conditions are equivalent:

9



Chapter A. On Fluctuation Theory of Markov Random Walks

(i) (Mn,Sn)n≥0 is null-homologous.

(ii) Pi(Sτ(i) = 0) = 1 for some i ∈S .

(iii) Pi(Sτ(i) = 0) = 1 for all i ∈S .

Proof. “(i)⇒(ii)” is trivial.
“(ii)⇒(iii)” Let ψsj be the characteristic function of Sτ(j) under Ps for s,j ∈S . Then,

with i ∈S such that (Sτn(i))n≥0 has zero increments, we easily find that

ψis1(t)ψs1s2(t) · ... ·ψsn−1sn(t)ψsni(t) = 1 (2.7)

for all t∈R, n≥ 1 and s1, ..., sn ∈S . In particular, ψisψnssψsi ≡ 1 for all s∈S and n≥ 0.
Consequently, ψss ≡ 1 for all s ∈S , which proves (iii).

“(iii)⇒(i)” (2.7) implies |ψsj | ≡ 1 and ψsj ψjs ≡ 1 for all s,j ∈ S : Hence, ψsj(t) =
eih(s,j) t for some function h : S 2→ R and

eih(j,s) t = ψjs(t) = ψsj(t) = e−ih(s,j) t.

This further yields h(j,s) =−h(s,j) and particularly h(s,s) = 0. Fix some i ∈S , define
g(s) := h(i,s) for s ∈S and use ψisψsj ψji ≡ 1 to infer

0 = h(i,s) +h(s,j) +h(j, i) = h(i,s) +h(s,j)−h(i, j) = g(s) +h(s,j)−g(j),

i.e. h(s,j) = g(j)− g(s) for all s,j ∈ S . But the latter means that Sτ(j) = g(j)− g(s)
Ps-a.s. and therefore

Ps(X1 = g(M1)−g(M0)) =
∑
j∈S

Ps(X1 = g(j)−g(s), M1 = j)

=
∑
j∈S

Ps(Sτ(j) = g(j)−g(s), τ(j) = 1)

=
∑
j∈S

Ps(τ(j) = 1) = 1

for all s,j ∈S which shows that (Mn,Sn)n≥0 is indeed null-homologous. ut

The following result uses of the regenerative structure of a null-homologous MRW.

Lemma 2.3 Let (Mn,Sn)n≥0 be a null-homologous MRW. Then, (Sn)n≥0 converges in
distribution.

Proof. Obviously, (Mn,Sn)n≥0 is a Markov chain with

Pi((Mn,Sn) = (i,0) i.o.) = Pi(Mn = i i.o.) = 1.

Since Pi(τ(i) ∈ ·) is aperiodic,

ζ(·) := πiEi
( τ(i)−1∑

k=0
1{Sk∈·}

)
,

is the unique stationary measure of (Sn)n≥0 (e.g., see [7, Cor. VI.1.5 (i)]). ut
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2. Introduction of Markov Random Walks

Here is a classification result for null-homologous MRWs, the straightforward proof is
omitted.

Proposition 2.4 If (Mn,Sn)n≥0 is null-homologous with g as in (2.6), then exactly one
of the following alternatives is true:

(i) g ≡ 0 and Sn = 0 a.s. for all n≥ 0.

(ii) 0 6= supi∈S |g(i)|<∞ and

−∞ < liminf
n→∞ Sn ≤ limsup

n→∞
Sn < ∞ a.s.

(iii) −∞= infi∈S g(i)< supi∈S g(i)<∞ and

liminf
n→∞ Sn = −∞ and limsup

n→∞
Sn < ∞ a.s.

(iv) −∞< infi∈S g(i)< supi∈S g(i) =∞ and

−∞< liminf
n→∞ Sn and limsup

n→∞
Sn = ∞ a.s.

(v) infi∈S g(i) =−∞, supi∈S g(i) =∞ and

liminf
n→∞ Sn = −∞ and limsup

n→∞
Sn = ∞ a.s.

Notice that alternatives (iii)–(v) are only possible if S has infinitely many states.
In correspondence to ordinary random walks, we call a MRW non-trivial if (2.5) is

not satisfied or equivalently if the MRW is not null-homologous. The following lemma is
a main ingredient for the proof of the fluctuation type trichotomy for non-trivial MRWs
in the next section.

Lemma 2.5 Suppose liminfn→∞Sn ∈ R or limsupn→∞Sn ∈ R Pi-a.s. for some i ∈S ,
then (Mn,Sn)n≥0 is null-homologous.

Proof. Since liminfn→∞Sn = − limsupn→∞(−Sn), suppose w.l.o.g. Pi(limsupn→∞Sn ∈
R) = 1. Then, let Y be a copy of limsupn→∞Sn under Pi, which is independent of Sτ(i).
Since limsupn→∞(Sn−Sτ(i))

d= Y under Pi, we obtain the stochastic fixed point equation

Y
d= Sτ(i) +Y

under Pi. The use of characterstic functions easily yields Pi(Sτ(i) = 0) = 1, i.e. the MRW
is null-homologous. ut
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2.3. The Fluctuation Type Trichotomy for Non-Trivial Markov
Random Walks

The exclusion of null-homologous MRWs may raise the hope to have found a class of
MRWs whose behaviour is close to that of ordinary random walks. In fact, the same
fluctuation type trichotomy is satisfied for non-trivial MRWs and for non-trivial ordinary
random walks.

Theorem 2.6 A non-trivial MRW (Mn,Sn)n≥0 is either positive divergent, negative di-
vergent or oscillating.

Proof. It suffices to show that liminfn→∞Sn and limsupn→∞Sn are a.s. constant and
take values in {±∞}. Using the argumentation from above, we can even restrict the proof
on examining limsupn→∞Sn . Fix some i∈S and suppose p := Pi(limsupn→∞Sn =∞)>
0. Since Lemma 2.5 entails Pi(limsupn→∞Sn =±∞) = 1, the proof is complete if we show
p= 1. Notice that{

limsup
n→∞

Sn =∞
}

=
⋃
m≥1

{
max

1≤k≤m
Sk > x, limsup

n→∞
(Sn−Sτm(i)) =∞

}

for all x ∈ R≥. We obtain

p = lim
m→∞Pi

(
max

1≤k≤m
Sk > x, limsup

n→∞
(Sn−Sτm(i)) =∞

)
= p lim

m→∞Pi
(

max
1≤k≤m

Sk > x
)

= pPi
(

sup
n≥1

Sn > x

)

for all x ∈ R≥. Since we assumed p > 0, we derive Pi(supn≥1Sn > x) = 1 for all x ∈ R≥
and thus p= 1. ut

As a matter of fact, non-trivial MRWs and non-trivial ordinary random walks are
different in other aspects when the stationary mean is undefined. The following exam-
ple illustrates several of these. For the reader’s convenience, we dispense with modelling
aperiodicity in the examples.

Example 2.7 Let (Mn)n≥0 be a Markov chain on N0 which, when in state 0, picks an
arbitrary i ∈ N with positive probability p0i and jumps back to 0 otherwise, thus pi0 = 1.
With all p0i being positive, the chain is clearly irreducible and positive recurrent with
stationary probabilities π0 = 1

2 and

πi = 1
2 E0

τ(0)−1∑
k=0

1{Mk=i}

 = 1
2 P0(M1 = i) = p0i

2 .
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Turning to the additive component, we define Xn by

Xn :=

 −p−1
0i , if Mn−1 = 0,Mn = i,

2 +p−1
0i , if Mn−1 = i,Mn = 0.

In other words, K0i = δ−p−1
0i

and Ki0 = δ2+p−1
0i

for all i ∈N. Notice that EπX+
1 = EπX−1 =

∞. By definition, we have

Sn =

 n, if n even,
n−1−p−1

0Mn
, if n is odd,

under P0. Hence, Sn tends almost surely to ∞ for n even, but since

∞ =
∑
i∈S

p0i p
−1
0i = E0X

−
1 �

∑
n≥0

P0(X−τn(0)+1 > 2n)

and

{M0 = 0, X−τn(0)+1 > 2n infinitely often} = {M0 = 0, Sτn(0)+1 < 0 infinitely often},

the Borel-Cantelli lemma entails Sn < 0 infinitely often P0-a.s. Consequently, the MRW
is oscillating, while (Sτn(0))n≥0 is positive divergent.

This example does also reveal further interesting properties. First of all, we note that
the MRW is oscillating and Eiσ>(x)<∞ for all (x,i) ∈ R≥×S . Secondly,

liminf
n→∞ n−1Sn ≤ 0 and limsup

n→∞
n−1Sn = 1 a.s.

Moreover, E0Sτ(0) = 2 exists, but the stationary mean of X1 does not. In addition, the
fluctuation type of the MRW is different from the one of the dual MRW as it can be seen
by

#Sn =

 n, if n even,
n+ 1 +p−1

0#Mn
, if n odd,

under P0.

The phenomenon that EiSτ(i), i ∈S , exists, but the stationary mean of X1 does not,
has already been pointed out by Ney and Nummelin in a similar example (see [37, Example
6.3]). Our example already showed that Theorem 1.1, Kesten’s trichotomy, can not be
generalised to MRW with Eπ|X1| =∞. Under an additional assumption the trichotomy
is true again (see Section 4.3).

The mentioned phenomena in Example 2.7 arise from an embedded null-homologous
MRW whose extreme values push the MRW into the opposite direction infinitely often.
Therefore, a study of a more restrictive class seems reasonable (see Section 9.2). Never-
theless, we will be able to generalise the results from fluctuation theory from ordinary
random walks to non-trivial MRW to a great extent.

13
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If we figure all i ∈ N being placed on a circle around 0, the transition diagram of the
Markov chain looks like a flower with infinitely many petals, each of the petals representing
a transition from 0 to some i and back.

In most of our counterexamples the underlying Markov chain is a more general infinite
petal flower chain, where starting in 0 a deterministic cycle of length n is chosen with
probability P(Γ = n), where Γ will be adjusted for specific examples. We define this
general chain here for future use. Again, we dispense with modelling aperiodicity.

Example 2.8 Let Γ be a positive, integer-valued random variable with finite mean and
P(Γ ≥ 2) = 1. We construct a positive recurrent Markov chain (Mn)n≥0 on S ⊂ {0}∪N2

by

P0(M1 = (n,1), M2 = (n,2), . . . , Mn−1 = (n,n−1), Mn = 0) := P0(M1 = (n,1))
:= P(Γ = n)

for all n≥ 2. Hence, we have P0(τ(0) ∈ ·) = P(Γ ∈ ·).

3. Solidarity Results
In the previous section, we have seen that the fluctuation type of a MRW (Sn)n≥0 can
be different from the one of (Sτn(i))n≥0 for some i ∈S . Our first result will be that the
embedded random walks share the same fluctuation type. Moreover, further solidarity
results will be given which are fundamental in future proofs.

For i ∈S , define

ν(x) := ν(x,i) := inf{n≥ 1 : Sτn(i) > x}, x ∈ R≥,

the first level x passage time for (Sτn(i))n≥0, ν := ν(0),

τ>1 (i) := τν(i) = inf{k ≥ 1 : Sk > 0, Mk = i}

and inductively

τ>n (i) := inf{k ≥ τ>n−1(i) + 1 : Sk−Sτ>n−1(i) > 0, Mk = i}

for n≥ 2.

Lemma 3.1 If (Mn,Sn)n≥0 is non-trivial, then all (Sτn(i))n≥0, i ∈S , are of the same
fluctuation type.

Proof. Non-triviality of the MRW implies liminfn→∞ Sτn(i) and limsupn→∞ Sτn(i) to be
almost surely equal to ∞ or −∞ for all i ∈S . Fix some distinct i, j ∈S and assume
w.l.o.g. limsupn→∞Sτn(i) =∞ a.s. Hence, limn→∞Sτ>n (i) =∞ a.s. Now, pick m ∈ N and
x > 0 such that Pi(Mm = j, |Sm| ≤ x)> 0. We infer from a geometric trials argument that

Pi
(
Mτ>n (i)+m = j, |Sτ>n (i)+m−Sτ>n (i)| ≤ x infinitely often

)
= 1

and thus limsupn→∞ Sτn(j) = limsupn→∞ Sτn(i) =∞ a.s. ut
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Additionally, one can show that the positive divergent embedded random walks share
the same finite power moments of fluctuation-theoretic quantities. The easiest way would
be to prove that the tails are of the same magnitude, i.e. Pi(S+

τ(i) > y)� Pi(S+
τ(j) > y) and

Pi(S−τ(i) > y)� Pj(S−τ(j) > y) as y→∞, and make use of the integral criteria, but this is
generally not possible. Referring to Example 2.7, we see that P0(Sτ(0) > y) = 0 for y > 2
while Pi(Sτ(i) > y) > 0 for all y ∈ R≥ for any i ∈ N. However, we use will use a similar
approach.

For distinct i, j ∈S , define

υ := υ(i, j) := inf{n≥ 1 : τn(i)> τ(j)}

and notice that Eiυ1+α <∞ for any α ≥ 0 due to Pi(υ > n) = Pi(τ(i) < τ(j))n for all
n≥ 1.

Lemma 3.2 Let i, j ∈S be some distinct states.

(i) There exists x ∈ R≥ such that

Pj(Sτ(j) > y) . Pi(Sτυ(i) > y−x) as y→∞.

(ii) Pj(Sτ(j) > 0)> 0 implies Pi(Sτυ(i) > 0)> 0.

Proof. (i) We begin with

Pj(Sτ(j) > y) = Pj(Sτ(j) > y,τ(i)< τ(j)) +Pj(Sτ(j) > y, τ(i)> τ(j)).

On the one hand, we obtain

Pj(Sτ(j) > y,τ(i)< τ(j)) = Pj(Sτ(i) + (Sτ(j)−Sτ(i))> y, τ(i)< τ(j))

=
∫
Pj(Sτ(i) > y−x, τ(i)< τ(j)) Pi(Sτ(j) ∈ dx)

≤
∫
Pi(Sτυ(i)−Sτ(j) > y−x) Pi(Sτ(j) ∈ dx)

= Pi(Sτυ(i) > y).

This proves the assertion if Pj(τ(i)> τ(j)) = 0. Otherwise, there exist x1,x2 ∈ R≥ with

p1 := Pi(Sτ(j) ≥−x1, τ(i)> τ(j)) > 0 and p2 := Pj(Sτ(i) ≥−x2) > 0.

Set x := 2(x1 +x2). We infer

Pj(Sτ(j) > y, τ(i)> τ(j))
≤ [p1 ·p2]−1Pi(Sτ(i) > y−x/2, τ(i)> τ2(j), Sτ(j) ≥−x1, Sτ(i)−Sτ2(j) ≥−x2)
. Pi(Sτ(i) > y−x/2).

Furthermore, in this case,

Pi(Sτυ(i) > y−x)

15
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= Pi(Sτ(i) > y−x, υ = 1) +Pi(Sτ(i) + (Sτυ(i)−Sτ(i))> y−x, υ > 1)
≥ Pi(Sτ(i) > y−x/2, υ = 1)

+Pi(Sτ(i) + (Sτυ(i)−Sτ(i))> y−x, υ > 1, (Sτυ(i)−Sτ(i))≥−x1−x2)
≥ Pi(Sτ(i) > y−x/2, υ = 1) +p1 ·p2 ·Pi(Sτ(i) > y−x/2, υ > 1)
& Pi(Sτ(i) > y−x/2).

In conclusion, we obtain the assertion with x chosen as above if Pj(τ(i)> τ(j))> 0.
(ii) If Pj(Sτ(j) > 0, τ(i) < τ(j)) > 0, the assertion follows immediately from the proof

in (i). Otherwise,
Pj(Sτ(j) > ε, τ(i)> τ(j)) > 0

for some ε > 0. Then, choosing x2 ∈ R≥ and p2 > 0 as in (i), the assertion follows from

Pi(Sτυ(i) > 0) ≥ p2 · Pj(Sτn(j) > x2, τ(i)> τn(j))
≥ p2 ·Pj(Sτ(j) > ε, τ(i)> τ(j))n > 0

for n= dx2/εe.
ut

We need further definitions. For i ∈S , γ ∈ [0,1] and y ∈ R≥, introduce

Ai(y) := Ei(S+
τ(i)∧y)−Ei(S−τ(i)∧y)

and

Ji,γ(y) :=


y

[Ei(S+
τ(i)∧y)]γ , if Pi(S+

τ(i) = 0)< 1,

y, if Pi(S+
τ(i) = 0) = 1,

where 0/[Ei(S+
τ(i)∧ 0)]γ := 1 if γ > 0. In addition, set Ji := Ji,1. Our main theorems will

contain integral criteria with powers of Ji,γ as the integrand. The next lemma gathers
properties of Ji,γ and Ai.

Lemma 3.3 The following assertions are true for any γ ∈ [0,1]:

(i) Ji,γ is subadditive and non-decreasing for all i ∈S .

(ii) Ji,γ(y)� Ji,γ(x+y) as y→∞ for all (x,i) ∈ R×S .

(iii) Ji,γ(y)� Jj,γ(y) as y→∞ for all i, j ∈S .

If (Sτn(i))n≥0 is positive divergent for some (hence all) i ∈S , then furthermore:

(iv) Ai(y)> 0 for all sufficiently large y for all i ∈S .

(v) Ai(y)� Ei(S+
τ(i)∧y)� Ei(Sτ>(i)∧y) as y→∞ for all i ∈S .
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Proof. (i) Subadditivity is trivial and Ji,γ being non-decreasing follows from the identity

Ji,γ(y) = y1−γ

[y−1 ∫ y
0 Pi(S+

τ(i) > x) dx]γ
= y1−γ

[
∫ 1
0 Pi(Sτ(i) > yx) dx]γ

, y ∈ R≥

(cf. the proof of [5, Lemma 5.4 (a)]).
(ii) Follows immediately from the properties claimed in (i).
(iii) Fix some i, j ∈S and let x ∈R≥ be the constant provided by Lemma 3.2 (i). The

assertion is obvious if we verify

Ei(S+
τ(i)∧y) � Ej(S+

τ(j)∧y) as y→∞.

We obtain

Ej(S+
τ(j)∧y) =

∫ y

0
Pj(Sτ(j) > z) dz

.
∫ y

0
Pi(Sτυ(i) > z−x) dz

.
∫ y−x

0
Pi(Sτυ(i) > z) dz

= Ei[S+
τυ(i)∧ (y−x)]

=
∑
n≥1

Pi(υ = n)Ei[S+
τn(i)∧ (y−x)|υ = n]

≤
∑
n≥1

Pi(υ = n)
n∑
k=1

Ei
[
(Sτk(i)−Sτk−1(i))+∧ (y−x)

∣∣∣υ = n
]
,

where we used Lemma 3.2 (ii) in the third step. Notice that assertion (ii) particularly
yields

Ei(S+
τ(i)∧ (y−x)) � Ei(S+

τ(i)∧y) as y→∞.

Now, observe

Ei
[
(Sτn(i)−Sτn−1(i))+∧ (y−x)

∣∣∣υ = n
]

= Ei[S+
τ(i)∧ (y−x)|τ(i)> τ(j)]

. Ei[S+
τ(i)∧ (y−x)]

� Ei(S+
τ(i)∧y) as y→∞

and, given Pi(τ(i)< τ(j))> 0,

Ei
[
(Sτk(i)−Sτk−1(i))+∧ (y−x)

∣∣∣υ = n
]

= Ei[S+
τ(i)∧ (y−x)|τ(i)< τ(j)]

. Ei(S+
τ(i)∧y) as y→∞

for 1≤ k < n. Consequently,

Ej(S+
τ(j)∧y) .

∑
n≥1

Pi(υ = n)n ·Ei(S+
τ(i)∧y) = Eiυ ·Ei(S+

τ(i)∧y),
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which shows one part of the assertion. The other part follows by symmetry of the argu-
ment.

(iv) and (v) can be extracted from [33, Lemma 3.2, the proof of Lemma 3.1 and
(4.5)]. ut

The following solidarity lemma contains the announced result that positive divergent
embedded random walks are of the same magnitude in terms of finiteness of power mo-
ments of fluctuation-theoretic quantities (cf. Theorems 1.3–1.4).

Lemma 3.4 The following assertions hold either for all i ∈S or none:

(i) EiJi(S−τ(i))
1+α <∞.

(ii) Ei[(S−τ(i))
αJi(S−τ(i))]<∞.

(iii) Ei|Sτ(i)|<∞.

Proof. We will prove that EiJi,γ(S−τ(i))
1+α <∞, γ ∈ [0,1], holds either for all i ∈S or

none. Since Ji,1 = Ji and

EiJi,1/(1+α)(S−τ(i))
1+α = Ei[(S−τ(i))

αJi(S−τ(i))],

this already shows (i) and (ii). Furthermore, as the proof works also in terms of
∫ ( y

[Ei(S−τ(i)∧y)]γ
)1+α

Pi(S+
τ(i) ∈ dy),

choosing γ = 0 yields (iii).
Suppose EiJi,γ(S−τ(i))

1+α <∞. Pick some arbitrary j ∈ S \ {i}. An application of
Lemma 3.2 (i) on (Mn,−Sn)n≥0 ensures the existence of x ∈ R≥ with

Pj(S−τ(j) > y) . Pi(S−τυ(i) > y−x) as y→∞.

Hence, by an appeal to Lemma 3.3 (ii)–(iii), it suffices to prove

EiJi,γ(S−τυ(i))
1+α < ∞.

Subadditivity of Ji,γ yields

EiJi,γ(S−τυ(i))
1+α ≤ Ei

[
υ∑
k=1

Ji,γ

((
Sτk(i)−Sτk−1(i)

)−)]1+α

≤ Ei
[
υα

υ∑
k=1

Ji,γ

((
Sτk(i)−Sτk−1(i)

)−)1+α]

=
∑
n≥1

Pi(υ = n)nα
n∑
k=1

Ei
[
Ji,γ

((
Sτk(i)−Sτk−1(i)

)−)1+α∣∣∣∣υ = n
]
.

18
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Now, we use

Ei
[
Ji,γ

((
Sτn(i)−Sτn−1(i)

)−)1+α∣∣∣∣υ = n
]

= Ei
(
Ji,γ(S−τ(i))

1+α
∣∣∣τ(i)> τ(j)

)
=: c1 < ∞

and, given Pi(τ(i)< τ(j))> 0,

Ei
[
Ji,γ

((
Sτk(i)−Sτk−1(i)

)−)1+α∣∣∣∣υ = n
]

= Ei
(
Ji,γ(S−τ(i))

1+α
∣∣∣τ(i)< τ(j)

)
=: c1 < ∞

for 1≤ k < n to infer

EiJi,γ(S−τυ(i))
1+α ≤ (c1∨ c2)Eiυ1+α < ∞.

ut

The next solidarity lemma provides sufficient conditions for the existence of power
moments of σ>. For a further discussion of these quantities we refer to Section 6.5.

Note that a geometric number of cycles marked by successive visits to a state i contains
a visit to j ∈S , from which one easily concludes that Eiτ(i)1+α <∞ is satisfied either
for all i ∈S or none.

Lemma 3.5 Let α ≥ 0 and suppose Eiτ(i)1+α <∞ for some (hence all) i ∈ S . The
following conditions are equivalent:

(i) Eiτν(x)(i)1+α <∞ for some (hence all) (x,i) ∈ R≥×S .

(ii) Ai(y) > 0 for all sufficiently large y and EiJi(S−τ(i))
1+α <∞ for some (hence all)

i ∈S .

In particular, these conditions imply

Eiσ>(x)1+α < ∞ for all (x,i) ∈ R≥×S . (3.1)

Proof. By Lemma 3.1, Lemma 3.4 and Theorem 1.2, (ii) holds either for all i ∈S or
none. Moreover, the implication of (3.1) follows from τν(x)(i)≥ σ>(x).

Suppose Eiτν(x)(i)1+α <∞ for some (x,i) ∈ R≥×S . Since τν(x)(i)≥ ν(x), we obtain
Eiν(x)1+α <∞, which is equivalent to (ii) by Theorems 1.2–1.3.

As we assumed Eiτ(i)1+α < ∞, the reverse implication follows directly from
Eiν(x)1+α <∞ and Theorem 1.5.4 from [27]. ut

For i ∈S , define

Di
n := max

τn−1(i)<k≤τn(i)

(
Sk−Sτn−1(i)

)−
, n≥ 1,

as the maximal downward excursion between τn−1(i) + 1 and τn(i). Our main theorems
will contain integral criteria in terms of Di and the next lemma facilitates future proofs
by showing that these criteria hold either for all i∈S or none. Notice that Di≥ S−τ(i)≥ 0.
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Lemma 3.6 The following assertions hold either for all i ∈S or none:

(i) EiJi(Di)1+α <∞.

(ii) Ei[(Di)αJi(Di)]<∞.

(iii) Ei(Di)1+α <∞.

Proof. As seen in the proof of Lemma 3.4, it suffices to prove that EiJi,γ(Di)1+α <∞
holds either for all i∈S or none. Suppose EiJi,γ(Di)1+α<∞ for some i∈S and γ ∈ [0,1].
Define

Dυ := max
1≤k≤τυ(i)

S−k .

Using Dυ ≤
∑υ
k=1D

i
k, one obtains EiJi,γ(Dυ)1+α < ∞ analogous to the finiteness of

EiJi,γ(S−τυ(i))
1+α in the proof of Lemma 3.4.

Then, define
υ2 := inf{n≥ 1 : τn(i)> τ2(j)}

and
Dυ2 := max

1≤k≤τυ2(i)
S−k .

Now, notice
Dυ2 ≤ Dυ + max

τυ(i)<k≤τυ2(i)
(Sk−Sτυ(i))−.

Either τυ(i)<τυ2(i) and the latter summand is an independent copy ofDυ or τυ(i) = τυ2(i)
and the latter summand summand is equal to 0. Hence, in both cases one easily obtains
EiJi,γ(Dυ2)1+α <∞. Pick x ∈ R≥ with Pi(Sτ(j) ≤ x) > 0. By the use of Lemma 3.3, we
finally derive

∞ > EiJi,γ(Dυ2)1+α &
∫

(0,∞)
Ji,γ(y)1+α Pi(Dυ2 ∈ dy |Sτ(j) ≤ x)

≥
∫

(0,∞)
Ji,γ(y)1+α Pi

(
max

τ1(j)<k≤τ2(j)
S−k ∈ dy

∣∣∣∣Sτ1(j) ≤ x
)

≥
∫

(0,∞)
Ji,γ(y)1+α Pi

(
max

τ1(j)<k≤τ2(j)
(Sk−Sτ1(j))−−x ∈ dy

∣∣∣∣Sτ1(j) ≤ x
)

=
∫

(0,∞)
Ji,γ(y)1+α Pj(Dj

1−x ∈ dy)

� EjJj,γ(Dj)1+α.

ut
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4. Characterisation of the Fluctuation Type of
Non-Trivial Markov Random Walks

4.1. The General Case
This section is devoted to investigating equivalences for a non-trivial MRW to be positive
divergent. As argued for ordinary random walks, these results entail criteria for negative
divergent and oscillating MRWs.

Theorem 1.2 can partially be generalised:

Theorem 4.1 Let (Mn,Sn)n≥0 be a non-trivial MRW. Consider the following assertions:

(i) (Sn)n≥0 is positive divergent.

(ii) Ai(y)> 0 for all sufficiently large y and EiJi(Di)<∞ for some (hence all) i ∈S .

(iii) ∑n≥1n
−1Pi(Sn ≤ x)<∞ for all (x,i) ∈ R≥×S .

(iv) Eiσ>(x)<∞ for all (x,i) ∈ R≥×S .

Then, (i) ⇔ (ii) ⇒ (iii) ⇒ (iv).

We can consider an ordinary random walk as a MRW modulated by a constant Markov
chain, i.e. Mn = i for all n≥ 0 and some i. Then, S+

τ(i) =X+ and Di =X−, which justifies
calling (ii) a generalisation of Theorem 1.2 (ii).

Further equivalent conditions are Pi(ρ(x)<∞) = 1, Pi(σmin <∞) = 1, Pi(Λ(x)<∞) =
1 and Pi(|minn≥0Sn| <∞) = 1 for some (hence all) (x,i) ∈ R≥×S , which follow, as in
the ordinary random walk case, directly from the definition of positive divergence and the
fluctuation type trichotomy for non-trivial MRWs. In addition, Pi(σ6(−x) =∞) > 0 for
some x ∈ R≥ is another equivalent condition. Notice that for a positive divergent MRW
Pi(σ6(−x) =∞) > 0 is always satisfied for large x, but does not need to be for small x
(e.g. Pi(X1 ≤−x) = 1).

On the one hand, one can dispense with the condition Ai(y)> 0 for all sufficiently large
y, when Ei|Sτ(i)|=∞ and hence EiS+

τ(i) +EiDi =∞, as the proof will reveal. On the other
hand, if Ei|Sτ(i)|<∞, assertion (ii) does not reduce to Ai(y)> 0 for all sufficiently large
y, since EiDi =∞ is not excluded.

Naturally, one may conjecture that all necessary information is incorporated in the
stationary increment distribution. Hence, one would rather like to have EiJi(Di) <∞
replaced with ∫ y

Eπ(X+
1 ∧y)

Pπ(X−1 ∈ dy) < ∞,

but Example 7.2 and the remark before will explain its falsity.
The missing reverse implications in Theorem 4.1 are generally not true. We pointed out

in Example 2.7 that Eiσ>(x)<∞ for all (x,i)∈R≥×S is satisfied, but (Sn)n≥0 oscillates.
In Section 6.4 we will give an equivalent criterion for (iii), which reduces to Ai(y)> 0 for
all sufficiently large y, EiJi(S−τ(i)) <∞ and Ei logJi(Di) <∞, when Pi(τ(i) ≤ c) = 1 for
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some c ∈R>. This can be seen to be weaker than positive divergence by comparison with
Theorem 4.1 (ii).

For ordinary random walks, the equivalence to (iii) follows from [44, Corollary 2], often
subsumed under Spitzer’s formulas. In particular, the cited result entails the equivalence
to (iv), too. In the MRW context, we do not have a generalised version of [44, Corollary
2] at hand and thus we will use a different approach for the implication of (iii).

We need a straightforward improvement of [19, Lemma 4] for the proof of Theorem
4.1 (e.g., see the proof of [23, Lemma 5.2]).

Lemma 4.2 Let (Xn,Yn)n≥1 be an i.i.d. sequence of non-negative random variables with
EX+EY =∞. Then

limsup
n→∞

Yn+1∑n
k=1Xk

= 0 or = ∞ a.s.

according to ∫ y

E(X ∧y) P(Y ∈ dy) < ∞ or = ∞.

This enables us to prove a part of Theorem 4.1. Notice that the implication “(i)⇒(ii)”
is adapted from the proof of Lemma 5.2 from [23]. Moreover, whenever i ∈S is fixed, we
use the notation

N(n) := N(i,n) := sup{k ≥ 0 : τk(i)≤ n}.

Proof of Theorem 4.1 “(i)⇔(ii)” and “(iii)⇒(iv)”. Pick some arbitrary i ∈S .
“(ii)⇒(i)” We distinguish between two cases.

Case 1. EiS+
τ(i) +EiDi <∞. Then, 0< limy→∞Ai(y) = EiSτ(i) <∞ ensures positive

divergence of (Sτn(i))n≥0 and limn→∞n
−1Sτn(i) = EiSτ(i) a.s. Moreover, EiDi <∞ implies

limsup
n→∞

n−1Di
n+1 = 0 a.s.

by the Borel-Cantelli lemma. Consequently,

Sn ≥ SτN(n)(i)−D
i
N(n)+1

= SτN(n)(i)

(
1− N(n)

SτN(n)(i)

Di
N(n)+1
N(n)

)
n→∞−−−→ ∞ a.s.

Case 2. EiS+
τ(i) +EiDi =∞. Due to Lemma 4.2, the finiteness of EiJi(Di) is equivalent

to
lim
n→∞

Di
n+1∑n

k=1(Sτk(i)−Sτk−1(i))+ = 0 a.s. (4.1)

Further, [41, Lemma 8.1] yields

lim
n→∞

∑n
k=1(Sτk(i)−Sτk−1(i))−∑n
k=1(Sτk(i)−Sτk−1(i))+ = 0 a.s. (4.2)
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Then, we obtain limn→∞Sn =∞ a.s. from

Sn ≥
N(n)∑
k=1

(Sτk(i)−Sτk−1(i))+−
N(n)∑
k=1

(Sτk(i)−Sτk−1(i))−−Di
N(n)+1

=
(N(n)∑
k=1

(Sτk(i)−Sτk−1(i))+
)

(1−o(1)−o(1)) n→∞−−−→ ∞ a.s.,

“(i)⇒(ii)” As (Sτn(i))n≥0 must also be positive divergent, Lemma 3.3 (iv) yields Ai(y)> 0
for all sufficiently large y. Since Sτn(i)−Di

n+1 = Sκn for an increasing sequence (κn)n≥0,
we conclude limn→∞(Sτn(i)−Di

n+1) =∞ a.s. As a consequence,

limsup
n→∞

Di
n+1∑n

k=1(Sτk(i)−Sτk−1(i))+ ≤ limsup
n→∞

Di
n+1

Sτn(i)
< 1 a.s.

and thus EiJi(Di)<∞ by Lemma 4.2.
“(iii)⇒(iv)” The assumption implies

Ei
(∑
n≥1

τn(i)−1 1{Sτn(i)≤x}

)
< ∞

and due to Lemma C.3 this term is of magnitude ∑n≥1n
−1Pi(Sτn(i) ≤ x). Theorem 1.2

yields Ai(y) > 0 for all sufficiently large y and EiJi(Sτ(i)) <∞. Therefore, Lemma 3.5
entails (iv). ut

We are only left with the proof of “(i)⇒(iii)”. We embark on the use of

D>,i
n := max

τ>n−1(i)<k≤τ>n (i)

(
Sk−Sτ>n−1(i)

)−
, n≥ 1, i ∈S ,

the maximal downward excursion between τ>n−1(i) + 1 and τ>n (i).

Lemma 4.3 (Sn)n≥0 is positive divergent if and only if Ai(y)> 0 for all sufficiently large
y and ∑

n≥1
Pi(Sτ>n (i)−D

>,i
n+1 ≤ x) < ∞

for some (hence all) (x,i) ∈ R≥×S .

Proof. Fix some arbitrary i ∈S . Analogous to Theorem 4.1 “(i)⇔(ii)” one proves the
equivalence to Ai(y)> 0 for all sufficiently large y, which yields Pi(τ>(i)<∞) = 1, and∫ y

Ei(Sτ>(i)∧y) Pi(D>,i ∈ dy) < ∞. (4.3)

Lemma 3.3 yields
y

Ei(Sτ>(i)∧y) �
x+y

Ei(Sτ>(i)∧ (x+y)) as y→∞
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for all x ∈ R≥. Since Ei sup{n ≥ 0 : Sτ>n (i) ≤ 0} = 0 <∞, Theorem 1.6 (ii) entails the
equivalence of (4.3) and

∞ >
∫ ∑
n≥1

Pi(Sτ>n (i) ≤ x+y) Pi(D>,i ∈ dy)

=
∑
n≥1

Pi(Sτ>n (i)−D
>,i
n+1 ≤ x).

ut

Now, we are able to complete the proof of Theorem 4.1.

Proof of Theorem 4.1 “(i)⇒(iii)”. Pick some arbitrary (x,i) ∈ R≥×S . We estimate∑
n≥1

n−1Pi(Sn ≤ x)

=
∑
n≥1

Ei

 τ>n (i)∑
k=τ>n−1(i)+1

k−1 1{
S
τ>
n−1(i)+

(
Sk−Sτ>

n−1(i)

)
≤x
}


≤
∑
n≥1

Ei

(τ>n−1(i) + 1)−1
2τ>n−1(i)∧τ>n (i)∑
k=τ>n−1(i)+1

1{
S
τ>
n−1(i)−D

>,i
n ≤x

}


+
∑
n≥1

Ei

 τ>n (i)∑
k=2τ>n−1(i)+1

k−1 1{τ>n (i)−τ>n−1(i)>τ>n−1(i)}



≤
∑
n≥1

Pi(Sτ>n−1(i)−D
>,i
n ≤ x) +

∑
n≥1

Ei

 τ>n (i)∑
k=2τ>n−1(i)+1

k−1 1{τ>n (i)−τ>n−1(i)>τ>n−1(i)}

 ,
where due to Lemma 4.3, we only need to show the finiteness of the last summand. Notice
that the proviso entails limn→∞Sτn(i) =∞ a.s. and hence Eiτ>(i)<∞. Therefore,

∑
n≥1

Ei

 τ>n (i)∑
k=2τ>n−1(i)+1

k−1 1{τ>n (i)−τ>n−1(i)>τ>n−1(i)}


≤

∑
n≥1

∑
k≥1

Ei
[
(2τ>n−1(i) +k)−1 1{τ>n (i)−τ>n−1(i)≥n−1+k}

]
≤

∑
n≥1

∑
k≥n

k−1Pi(τ>(i)≥ k)

=
∑
n≥1

Pi(τ>(i)≥ n) = Eiτ>(i) < ∞

as claimed. ut
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4.2. The Case EπX+
1 ∧EπX−1 <∞

We revisit the case EπX+
1 ∧EπX−1 <∞, where Theorem 2.1 presented first insights. Under

this assumption, the property that the MRW and the embedded random walks share the
same fluctuation type, enables us to strengthen the assertion of Theorem 4.1.

Theorem 4.4 Let (Mn,Sn)n≥0 be a non-trivial MRW with EπX+
1 ∧EπX−1 <∞. Then,

positive divergence is equivalent to∑
n≥1

n−1Pi(Sn ≤ x) < ∞ for some (hence all) (x,i) ∈ R≥×S . (4.4)

Proof. Assume (Sn)n≥0 is not positive divergent. Theorem 2.1 entails that (Sτn(i))n≥0,
i ∈S , is not positive divergent either. As a consequence, Theorem 1.2 and Lemma C.3
yield∑

n≥1
n−1Pi(Sn ≤ x) ≥ Ei

(∑
n≥1

τn(i)−1 1{Sτn(i)≤x}

)
�

∑
n≥1

n−1Pi(Sτn(i) ≤ x) = ∞

for all x ∈ R≥, which finishes the proof. ut

Unfortunately, we can neither prove nor disprove the sufficiency of condition Theorem
4.1 (iv) in the given context, since we can not rule out Eiσ>(x)<∞ for all i ∈S , when
EπX = 0 and |S |=∞. See Section 9.1 for a discussion of the case |S |<∞.

4.3. The Case Ei|Sτ(i)|=∞
Example 2.7 revealed that Eπ|X1| =∞ is the wrong assumption to generalise Kesten’s
trichotomy, i.e. Theorem 1.1. In this section, we prove that the trichotomy is true under the
assumption of Ei|Sτ(i)|=∞ for some (hence all) i∈S , which is stronger than Eπ|X1|=∞.

Theorem 4.5 Suppose Ei|Sτ(i)|=∞ for some i ∈S . Then, exactly one of the following
cases prevails:

(i) limn→∞n
−1Sn =∞ and (Sn)n≥0 is positive divergent.

(ii) limn→∞n
−1Sn =−∞ and (Sn)n≥0 is negative divergent.

(iii) liminfn→∞ n−1Sn =−∞ a.s., limsupn→∞ n−1Sn =∞ a.s. and (Sn)n≥0 oscillates.

Proof. Since (Xn)n≥1 is an ergodic stationary sequence under Pπ, liminfn→∞ n−1Sn and
limsupn→∞ n−1Sn are Pπ-a.s. constant. Therefore, it suffices to prove only Pi-a.s. equality
in (i)–(iii) for some fixed i ∈S . Moreover, we can restrict our effort on proving (i) and
(iii) as usual. The assumption of Ei|Sτ(i)| =∞ guarantees non-trivial MRWs and by the
fluctuation type trichtomy we only have to deal with the first part of the assertions.

(i) Suppose limn→∞Sn =∞ a.s. and thus EiS+
τ(i) =∞. Then, (4.1), (4.2) and Theorem

1.1 yield

liminf
n→∞

Sn
n
≥ liminf

n→∞
Sτn(i)−Di

n+1
τn+1(i)

25



Chapter A. On Fluctuation Theory of Markov Random Walks

= liminf
n→∞

n

τn+1(i)

∑n
k=1(Sτk(i)−Sτk−1(i))+

n
(1−o(1))

= ∞ a.s.

(iii): Referring to the fluctuations of the embedded random walks, we obtain at
least either liminfn→∞ n−1Sn =−∞ or limsupn→∞ n−1Sn =∞ a.s. W.l.o.g., we assume
limsupn→∞ n−1Sn =∞ a.s. If liminfn→∞ n−1Sn = −c a.s. for some c ∈ R≥, we derive
liminfn→∞ n−1 [Sn+n(c+ 1)] = 1> 0. Consequently, Sn+n(c+ 1) n→∞−−−→∞ a.s., but, as
shown in (i), this already implies

∞ = liminf
n→∞ n−1 [Sn+n(c+ 1)] = liminf

n→∞ n−1Sn+ c+ 1 a.s.,

which is clearly not true. ut

Example 2.7 also showed that limsup Sn ∈R a.s. is possible, when Eπ|X1|=∞. Hence,
it may appear dubious whether limn→∞n

−1Sn = µ ∈ R if and only if EπX1 = µ is true,
which would be a more general law of large numbers (e.g., [12, Theorem 5.4.2]). The
affirmation that this assertion is not true can be extracted from Section 7.

5. On the Ladder Chain (M>
n )n≥0

Set σ>1 := σ> and σ61 := σ6. Inductively define the n-th strictly ascending ladder epochs
by

σ>n := inf
{
k ≥ σ>n−1 + 1 : Sk > Sσ>n−1

}
, n≥ 2.

In addition, σ>0 := 0 and σ60 := 0. Set M>
n :=Mσ>n

1{σ>n<∞}+Mσ>∗
1{σ>n =∞}, where σ>∗ :=

sup{n ≥ 1 : σ>n <∞}. Define #σ>n , #M>
n , σ6n , M6

n etc. analogously. Given a non-trivial
MRW, (M>

n )n≥0 forms a Markov chain on S > ⊂S if σ>n <∞ for all n≥ 1. i.e. if (Sn)n≥0
is either positive divergent or oscillating. In this case, we examine the existence of a
stationary distribution of (M>

n )n≥0. The main result of this section, Theorem 5.3, will be
crucial for future proofs.

Lemma 5.1
πiEiσ6 =

∑
n≥0

Pπ(#M>
n = i,#σ>n <∞) (5.1)

is true for all i ∈S . The assertion remains true, when replacing (σ6,#M>
n ,

#σ>) with
(σ>,#M6

n ,
#σ6).

Proof. We begin with the obvious equation of

πi
1−Eitσ

6

1− t = Eπ
(

1{M0=i}

σ6−1∑
n=0

tn
)

for all t ∈ (0,1) and i ∈S . Using (2.3) and (2.4), we obtain

Eπ
(

1{M0=i}

σ6−1∑
n=0

tn
)
−Pπ(#M>

0 = i)
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= Eπ
(∑
n≥1

tn1{M0=i,σ6>n}

)

= Eπ
(∑
n≥1

tn1{M0=i,Sk>0 for 1≤k≤n}

)
=

∑
n≥1

tn
∑
j∈S

Pπ(M0 = i, Mn = j, Sk > 0 for 1≤ k ≤ n)

=
∑
n≥1

tn
∑
j∈S

Pπ(#M0 = j, #Mn = i, #Sn−#Sk > 0 for 0≤ k < n)

=
∑
n≥1

tn
∑
`≥1

Pπ(#σ>` = n, #Mn = i)

= Eπ
(∑
n≥1

tn1{#M>
n =i,#σ>n<∞}

)
.

Finally, let t tend to 1 to obtain the assertion. ut

Proposition 5.2 Let (Mn,Sn)n≥0 be a non-trivial MRW. The following assertions are
true:

(i) (M>
n )n≥0 is a recurrent Markov chain on S > ⊂S if and only if Ei#σ6 =∞ for

some i ∈S .

(ii) Suppose S > := {i ∈ S : Ei#σ6 =∞} 6= ∅. Then, (M>
n )n≥0 is irreducible on S >

and Pi(M>
n ∈S >eventually) = 1 for all i ∈S .

Proof. (i) At the beginning, we point out that Ei#σ6 =∞ excludes negative diver-
gence of (Sn)n≥0, because otherwise Sτ(i)

d= #S#τ(i) under Pi yields negative divergence of
(#S#τn(i))n≥0, which implies Ei#σ6 <∞ (cf. Lemma 3.5 for α= 0). Therefore, (M>

n )n≥0
forms a Markov chain on S > ⊂S . (M>

n )n≥0 has a recurrent state i ∈S if and only if∑
n≥0Pπ(M>

n = i) =∞, because

πi
∑
n≥0

Pi(M>
n = i) ≤

∑
n≥0

Pπ(M>
n = i)

=
∑
j∈S

πjEj
(∑
n≥0

1{M>
n =i}

)

≤
[
πi+

∑
j∈S \{i}

πj Pj(τ>(i)<∞)
]
Ei
(∑
n≥0

1{M>
n =i}

)
=

∑
n≥0

Pi(M>
n = i).

Consequently, an appeal to Lemma 5.1 proves (i).
(ii) Let S >,i be the communicating class of i ∈ S > corresponding to the transi-

tion mechanism of (M>
n )n≥0. We employ a coupling argument in order to show that

Pj(M>
n ∈S >,i eventually) = 1 for all j ∈S , which proves our claim. Pick some j ∈S

and let (M ′n,S′n)n≥0, (M ′′n ,S′′n)n≥0 be two independent MRWs with the same transition
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kernel as (Mn,Sn)n≥0 and initial values M ′0 = j, M ′′0 = i ∈ S >,i. Note that P(M ′′>n ∈
S >,i for all n≥ 0) = 1. Let T be the a.s. finite coupling time for the two driving chains,
i.e. T = inf{n≥ 0 :M ′n =M ′′n}, and define the coupling process

(M̂n, X̂n) :=

(M ′n,X ′n), if n≤ T,
(M ′′n ,X ′′n), if n > T,

which is a copy of (M ′n,X ′n)n≥0. It follows that ŜT+n−S′′T+n = S′T −S′′T for all n ≥ 0,
and from this it is easily inferred that the ladder epochs σ̂>m and σ′>n will eventually be
synchronised in the sense that

σ̂>κ+n = σ′>ν+n

for suitable finite random times κ,ν and all n≥ 0. As a consequence,

Pj(M>
n ∈S >,i eventually) = P(M ′>n ∈S >,i eventually)

= P(M̂>
n ∈S >,i eventually)

= P(M ′′>n ∈S >,i eventually) = 1.

ut

We will point out in Section 6.5 that Ei#σ6 <∞ and Ei#σ> <∞ for all i ∈S is
possible for a MRW. Consequently, there does not need to be any recurrent ladder chain.
It is not clear whether (M>

n )n≥0 can be null recurrent. There is one important case, when
we can rule out null-recurrency.

Let
P> :=

(
Pi(M>

1 = j, σ> <∞)
)
i,j∈S

,

?P6 :=
(
πj
πi

Pj(#M6
1 = i, #σ6 <∞)

)
i,j∈S

and I be the associated unity matrix. Asmussen’s Wiener-Hopf factorisation for MRWs
[8, Theorem 4.1] entails the useful identity

I−P = (I− ?P6)(I−P>). (5.2)

Theorem 5.3 Let (Mn,Sn)n≥0 be a MRW with positive divergent dual MRW. Then,
(M>

n )n≥0 is a Markov chain with unique stationary distribution π> := (π>i )i∈S given
by

π>i = πiPi(#σ6 =∞)
Pπ(#σ6 =∞) .

Moreover, S > = {i ∈S : Pi(#σ6 =∞)> 0}, Pi(M>
n ∈S >eventually) = 1 for all i ∈S

and
Eπ> σ> = 1

Pπ(#σ6 =∞) < ∞. (5.3)
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Proof. Positive divergence of the dual MRW provides Pπ(#σ6 =∞)> 0. Hence,

π> := 1
Pπ(#σ6 =∞) π (I− ?P6) =

(
πiPi(#σ6 =∞)
Pπ(#σ6 =∞)

)
i∈S

defines a probability vector. Now, πP = P and (5.2) yield

π> (I−P>) = 1
Pπ(#σ6 =∞) π (I− ?P6)(I−P>) = 1

Pπ(#σ6 =∞) π (I−P) = 0.

(5.3) takes more effort to prove so that we refer to [4, Corollary 2.5]. The remaining
assertions follow from Proposition 5.2. ut

6. On Fluctuation-Theoretic Quantities
We are well-prepared to study in how far we can generalise Theorems 1.3–1.6 to MRWs.
In fact, we will find equivalent conditions for the finiteness of Ei|minn≥0Sn|α for some
i ∈ S . Moreover, we will show that the translated statements of Theorem 1.3 are not
equivalent anymore and separate into four sets of equivalent conditions. Firstly, the set of
equivalences of Eiρ(0)α <∞ for some i ∈S , secondly, those of

EiΛ(0)α < ∞ for some i ∈S , (6.1)

then equivalences of ∑
n≥1

nα−1Pi(Sn ≤ 0) < ∞ for some i ∈S (6.2)

and lastly, Eiσ>(x)1+α <∞ for all (x,i) ∈ R≥×S . In Section 6.5, a discussion of the
latter condition will take place and an intriguing example will reveal the difficulty of
finding an equivalent condition. Furthermore, we will not be able to find an equivalent
integral criterion for (6.1) in the case α ∈ (0,1).

In the study of the power moments of the above-mentioned quantities, one can gen-
erally not dispense with the condition Eiτ(i)1+α <∞ for some i ∈S given α > 0. For
example, consider a MRW withKsj equal δ0 if j 6= i and unequal δ0 otherwise for all s∈S .
In addition, Ksi, s ∈S , is chosen such that EiSτ(i) > 0. Then, ρ(0) + 1,Λ(0) + 1,σ>(0) ∈
{τn(i) : n≥ 1} Pi-a.s., which entails that we need a moment assumption on τ(i).

Under the assumption of Eiτ(i)1+α <∞, α > 0, for some i ∈S the following implica-
tions are true:

EiΛ(0)α < ∞

Ei
∣∣∣min
n≥0

Sn
∣∣∣α < ∞ ⇒ Eiρ(0)α < ∞ =⇒=⇒ ∑

n≥1
nα−1Pi(Sn ≤ 0) < ∞.
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The first implication will become clear by comparing the integral criteria in Theorem
6.1 and Theorem 6.6, while another follows directly from ρ(0)≥ Λ(0) a.s. The remaining
implication can be verified by

Eiρ(0)α �
∑
n≥1

nα−1Pi(ρ(0)> n) ≥
∑
n≥1

nα−1Pi(Sn ≤ 0).

In contrast to ordinary random walks, (6.1) and (6.2) do not generally imply Eiρ(0)α <
∞. In particular, (6.2) does not even require positive divergence for α < 1 as it will be
explained in Section 6.4. The dependencies between (6.1) and (6.2) will be discussed in
Proposition 6.15.

Moreover, given Eiτ(i)1+α <∞ and α > 0, the following assertions are true:

EiΛ(0)α < ∞

⇐=
⇐=

Eiσ>(x)1+α < ∞ for all (x,i) ∈ R≥×S .

∑
n≥1

nα−1Pi(Sn ≤ 0) < ∞

Both implications can be verified by the use of Theorem 1.3, Lemma 3.5 and the inequal-
ities

EiΛ(0)α ≥ Ei
(∑
n≥1

1{Sτn(i)≤0}

)α
and ∑

n≥1
nα−1Pi(Sn ≤ 0) &

∑
n≥1

nα−1Pi(Sτn(i) ≤ 0)

(see Lemma C.3).

6.1. Finiteness of Power Moments of |minn≥0Sn|
The counterpart of Theorem 1.4 does not require a moment assumption on the return
times.

Theorem 6.1 Let (Mn,Sn)n≥0 be a positive divergent MRW and α > 0. The following
conditions are equivalent:

(i) Ei|minn≥0Sn|α <∞ for some (hence all) i ∈S .

(ii) Ei[(Di)αJi(Di)]<∞ for some (hence all) i ∈S .

In comparison to Theorem 1.4, condition (i) of the latter theorem does still trivially
entail

Ei|Sσ6(−x)|α1{σ6(−x)<∞} < ∞ for all (x,i) ∈ R≥×S ,

but the reverse implication is generally not true (see Example 6.4). Furthermore, (i) does
not imply

Ei
(

max
0≤n≤ρ(x)

|Sn|
)α

< ∞ for some (x,i) ∈ R≥×S
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(see Example 6.5).
Preliminarily, we give two auxiliary lemmata. Given the ladder chain (M>

n )n≥0 being
recurrent on some set S > ⊂S , define σ>,i0 := 0 and

σ>,in := inf{k ≥ σ>,in−1 + 1 :M>
k = i}, n≥ 1,

for i ∈S >.

Lemma 6.2 Consider a MRW (Mn,Sn)n≥0 with positive divergent dual MRW. Let i ∈
S >, i.e. with Pi(#σ6 =∞)> 0, then

Ei(Sσ>,i ∧y) � Ei(S+
τ(i)∧y) as y→∞.

Proof. On the one hand, use Sσ>,i ≥ Sτ>(i) ≥ S+
τ(i) to infer

Ei(S+
τ(i)∧y) . Ei(Sσ>,i ∧y).

For the other side, set κ := inf{n≥ 1 : τ>n (i) = σ>,i1 }. κ is a stopping time with respect to
the filtration (Fn)n≥0,

Fn := σ
(
τ>1 (i), . . . , τ>n (i), (Mk,Xk)1≤k≤τ>n (i)

)
.

Wald’s equation yields

Ei(Sσ>,i ∧y) = Ei
[( κ∑

k=1
(Sτ>k (i)−Sτ>k−1(i))

)
∧y
]
≤ Ei

[
κ∑
k=1

(Sτ>k (i)−Sτ>k−1(i))∧y
]

= Eiκ ·Ei(Sτ>(i)∧y)

and, by an appeal to Lemma 3.3 (v), it remains to show Eiκ <∞ to conclude

Ei(Sσ>,i ∧y) . Ei(S+
τ(i)∧y) as y→∞.

By Theorem 5.3, (M>
n )n≥0 is positive recurrent on S > with stationary distribution π>

and Eπ>σ> <∞. Notice that (M>
n ,σ

>
n )n≥0 forms a MRW with embedded random walk

(σ>,in )n≥0.. Therefore, the identity (2.2) yields

Eiκ ≤ Eiσ>,i ≤ (π>i )−1 ·Eπ>σ> < ∞.

ut

In this section, we need the following lemma only in the case Pi(σ6 =∞)> 0 and α= 0,
which is much easier to prove. The general version is needed for the proof of Theorem 6.6
“(iv)⇒(ii)”.
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Lemma 6.3 Consider a positive divergent MRW with Pi(σ6(−x) = ∞) > 0 for some
x ∈ R≥. Then,

Ji(y)1+α . Ei
(∑
n≥1

τn(i)α1{Sτn(i)≤y,min1≤k≤τn(i)Sk>−x}

)
as y→∞

for any α≥ 0.

Proof. Choose j ∈ S with Pj(σ6 =∞) > 0. Observe that positive divergence ensures
the existence of such state, since otherwise Pπ(σ6 =∞) = 0 and limn→∞Sσ6n = −∞ a.s.
Hence, j ∈ #S > and we can define (#σ>,jn )n≥0 as the sequence of ladder epochs in j in
terms of the dual MRW. Since Pi(σ6(−x) =∞)> 0, there exists x1 ∈ R≥ and n1,n2 ∈ N
such that

E :=
{

min
1≤k≤n1

Sk >−x,Sn1 ≤ x1,Mn1 = j,τn2(i)≤ n1 < τn2+1(i)
}

has positive probability under Pi. We can estimate

Ei
(∑
n≥1

τn(i)α1{Sτn(i)≤y,min1≤k≤τn(i)Sk>−x}

)

≥ Ei
( ∑
n≥n2+1

τn(i)α1E∩{Sτn(i)−Sn1≤y−x1,minn1<k≤τn(i)(Sk−Sn1)>0}

)

≥ Pi(E)Ej
(∑
n≥1

τn(i)α1{Sτn(i)≤y−x1,min1≤k≤τn(i)Sk>0}

)
&

∑
n≥1

∑
m≥1

mαPj
(
Sτn(i) ≤ y−x1, Sk > 0 for all 1≤ k ≤ τn(i), τm(j)≤ τn(i)< τm+1(j)

)
.

Using (2.3) and (2.4), we derive

Pj
(
Sτn(i) ≤ y−x1, Sk > 0 for all 1≤ k ≤ τn(i), τm(j)≤ τn(i)< τm+1(j)

)
= πi
πj

Pi
(
y−x1 ≥ #S#τm+1(j) >

#Sk for all 0≤ k < #τm+1(j),

#τn−1(i)≤ #τm+1(j)< #τn(i)
)

= πi
πj

m+1∑
`=1

Pi
(

#S#σ>,j`
≤ y−x1,

#τn−1(i)≤ #σ>,j` < #τn(i), #τm+1(j) = #σ>,j`

)
.

Insertion into the above term yields∑
n≥1

∑
m≥1

mαPj
(
Sτn(i) ≤ y−x1, Sk > 0 for all 1≤ k ≤ τn(i), τm(j)≤ τn(i)< τm+1(j)

)

≥ πi
πj

∑
n≥1

∑
m≥1

m+1∑
`=1

(`−1)αPi
(

#S#σ>,j`
≤ y−x1,

#τn−1(i)≤ #σ>,j` < #τn(i),

#τm+1(j) = #σ>,j`

)
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�
∑
`≥1

`αPi(#S#σ>,j`
≤ y−x1).

Now, choose x2 > 0 with Pi(#S#σ>,j ≤ x2) =: p > 0 and use Theorem 1.6, Lemma 3.3,
Lemma 6.2 and Sτ(j)

d= #S#τ(j) under Pj to infer∑
`≥1

`αPi(#S#σ>,j`
≤ y−x1) ≥ p

∑
`≥1

`αPj(#S#σ>,j`
≤ y−x1−x2)

�
(

y

Ej(#S#σ>,j ∧y)

)1+α
�
(

y

Ej(#S+
#τ(j)∧y)

)1+α

� Ji(y)1+α,

which finishes the proof. ut

Proof of Theorem 6.1. At the beginning, we point out that due to Lemma 3.4 condi-
tion (ii) holds either for all i ∈S or none. Simultaneously, (i) holds either for all i ∈S
or none, because

Ei
∣∣∣min
n≥0

Sn
∣∣∣α = Ei

∣∣∣min
n≥1

Sn∧0
∣∣∣α

≥ Ei
∣∣∣( min
n≥τ(j)+1

(Sn−Sτ(j)) +Sτ(j)
)
∧0
∣∣∣α1{Sτ(j)≤x}

≥ p ·Ej
∣∣∣(min
n≥1

Sn+x
)
∧0
∣∣∣α

� Ej
∣∣∣min
n≥0

Sn
∣∣∣α,

where x ∈R≥ is chosen such that p := Pi(Sτ(j) ≤ x)> 0. Consequently, it suffices to prove
the equivalence of (i) and (ii) for some fixed i ∈S with Pi(σ6 =∞)> 0. Define

η1 := inf{k ≥ 1 : Sτk−1(i)−Di
k < 0},

ηn := inf{k ≥ ηn−1 + 1 : Sτk−1(i)−Sτηn−1(i)−Di
k < 0}, n≥ 2,

and
κ := inf{n≥ 1 : ηn =∞}.

Since ∣∣∣min
n≥0

Sn
∣∣∣ ≤ κ−1∑

k=1

∣∣∣∣Sτηk−1(i)−Sτηk−1(i)−Di
ηk

∣∣∣∣
and (Sτηk−1(i)−Sτηk−1(i)−Di

ηk
)1≤k<κ are i.i.d. under Pi, it follows as in [29, (v)0⇔(vii)]

that (i) holds if and only if

Ei|Sτη−1(i)−Di
η|α1{η<∞} < ∞. (6.3)

We finish the proof by showing equivalence of (6.3) and (ii). Use Lemma C.6 to obtain

Fi(x) := Pi(−Sτη−1(i) +Di
η ≥ x, η <∞)
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=
∑
n≥1

Pi(−Sτn−1(i) +Di
n ≥ x, η = n)

≤
∑
n≥1

Pi(Sτn−1(i) ≥ 0,−Sτn−1(i) +Di
n ≥ x)

=
∫

[x,∞)

∑
n≥1

Pi(0≤ Sτn−1(i) ≤ y−x) Pi(Di ∈ dy)

�
∫

[x,∞)
Ji(y−x) Pi(Di ∈ dy)

for x ∈ R≥. Since Ji is non-decreasing, we infer

Ei|Sτη−1(i)−Di
η|α1{η<∞} �

∫ ∞
0

xα−1Fi(x) dx

.
∫ ∞

0

(
xα−1

∫
[x,∞)

Ji(y−x) Pi(Di ∈ dy)
)
dx

≤
∫ (∫ y

0
xα−1Ji(y) dx

)
Pi(Di ∈ dy)

�
∫
yαJi(y) Pi(Di ∈ dy)

= Ei[(Di)αJi(Di)].

On the other hand, Lemma 6.3 delivers

Fi(x) =
∫

[x,∞)

∑
n≥1

Pi
(
Sτn−1(i) ≤ y−x, min

1≤k≤τn−1(i)
Sk ≥ 0

)
Pi(Di ∈ dy)

&
∫

(x,∞)
Ji(y−x) Pi(Di ∈ dy)

and hence

Ei|Sτη−1(i)−Di
η|α1{η<∞} &

∫ ∞
0

(
xα−1

∫
[x,∞)

Ji(y−x) Pi(Di ∈ dy)
)
dx

≥
∫ (∫ y/2

0
xα−1Ji(y−x) dx

)
Pi(Di ∈ dy)

≥
∫ (∫ y/2

0
xα−1Ji(y/2) dx

)
Pi(Di ∈ dy)

� Ei[(Di)αJi(Di)].

ut

We close this section with the announced examples concerning

Ei|Sσ6(−x)|α1{σ6(−x)<∞} < ∞ for all (x,i) ∈ R≥×S

being not sufficient and

Ei
(

max
0≤n≤ρ(x)

|Sn|
)α

< ∞ for some (x,i) ∈ R≥×S

being not necessary for the conditions of Theorem 6.1 to be true.
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Example 6.4 Let (Mn)n≥0 be the general infinite petal flower chain introduced in Ex-
ample 2.8 with

EΓ 2(1+1/α) < ∞, EΓ 1+α < ∞ and EΓ (1+α)(1+1/α) = ∞

for some α > 1. In particular, we have E0τ(0)1+α <∞. Define the increments (Xn)n≥1 by

Xn :=

 −k1/α, if Mn = (`,k) for k,` ∈ N,
1 +∑`−1

k=1k
1/α, if Mn−1 = (`,`−1), Mn = 0 for ` ∈ N,

and hence Sτ(0) = 1 P0-a.s. For verifying positive divergence of (Sn)n≥0, it suffices to prove
E0D0 <∞, because Ji(y)� y as y→∞. Since

∑̀
k=1

k1/α �
∫ `

1
x1/α dx,

we infer ∑̀
k=1

k1/α � `1+1/α as `→∞

and thus D0 =∑τ(0)−1
k=1 k1/α ≈ τ(0)1+1/α P0-a.s. By construction, we have

E0D
0 ≤ E0(D0)2 . E0τ(0)2(1+1/α) < ∞ = E0τ(0)(1+α)(1+1/α) � E0(D0)1+α.

Consequently, Theorem 6.1 entails

Ei
∣∣∣min
n≥0

Sn
∣∣∣α = ∞.

Now, we prove E0|Sσ6(−x)|α1{σ6(−x)<∞} <∞ for all x ∈ R≥. This does clearly imply

Ei|Sσ6(−x)|α1{σ6(−x)<∞} < ∞ for all (x,i) ∈ R≥×S .

Define
κ(x) := inf{n≥ 1 : σ6(−x)≤ τn(i)}

and notice that given σ6(−x)<∞

|Sσ6(−x)| ≤ τκ(x)(0)1/α P0-a.s.

Consequently, Wald’s equation yields

E0|Sσ6(−x)|α1{σ6(−x)<∞} ≤ E0τκ(x)(0)1{κ(x)<∞} ≤ E0τ(0) ·E0κ(x)1{κ(x)<∞}

. E0σ
6(−x)1{σ6(−x)<∞}.

Applying Theorem 6.6 from the next section, we obtain that the latter upper bound is
finite, since E0(D0)2 <∞.
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Example 6.5 Consider an i.i.d. sequence (Zn)n≥1 such that E|minn≥0
∑n
k=1Zk|α<∞ for

some α> 0 and P(Z = 0)> 0. Then, let (Mn)n≥0 be as in Example 2.7 and the distribution
of the increments (Xn)n≥1 be defined by

Xn
d=

 p−1
0i , if Mn−1 = 0,Mn = i,

Z1−p−1
0i , if Mn−1 = i,Mn = 0.

Notice that E0Xα
1 = ∑

i≥1 p
1−α
0i =∞ for α ≥ 1 regardless of the choice of (p0i)i∈S . For

α ∈ (0,1), let c :=∑
i≥1 i

−1/(1−α) <∞ and put p0i = c−1 i−1/(1−α) so that

∑
i≥1

p1−α
0i �

∑
i≥1

1
i

= ∞.

By construction, it holds that

E0
∣∣∣min
n≥0

Sn
∣∣∣α = E

∣∣∣min
n≥0

n∑
k=1

Zk
∣∣∣α < ∞.

Nevertheless, we have

E0
(

max
0≤n≤ρ(x)

|Sn|
)α
≥ P(Z = 0) ·E0X

α
1 = ∞.

Moreover,

Ei
(

max
0≤n≤ρ(x)

|Sn|
)α
≥ P(Z = 0) ·E0

(
max

0≤n≤ρ(x)
|−p−1

0i +Sn|
)α
� E0

(
max

0≤n≤ρ(x)
|Sn|

)α
for all i ∈ N entails

Ei
(

max
0≤n≤ρ(x)

|Sn|
)α

= ∞ for all (x,i) ∈ R≥×S .

6.2. Finiteness of Power Moments of ρ(0)
As mentioned at the beginning of this section, not all equivalences of Theorem 1.3 re-
main true, when the conditions are translated to the MRW context. The equivalences of
Eiρ(0)α <∞ for some i ∈S and α > 0 are gathered in the following theorem.

Theorem 6.6 Let (Mn,Sn)n≥0 be a positive divergent MRW with Eiτ(i)1+α <∞, α > 0,
for some (hence all) i ∈S . The following conditions are equivalent:

(i) Eiρ(x)α <∞ for some (hence all) (x,i) ∈ R≥×S .

(ii) EiJi(Di)1+α <∞ for some (hence all) i ∈S .

(iii) Eiσαmin <∞ for some (hence all) i ∈S .

(iv) Eiσ6(−x)α1{σ6(−x)<∞} < ∞ for some (hence all) (x,i) ∈ R≥ ×S satisfying
Pi(σ6(−x) =∞)> 0.
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Furthermore, if Ei|Sτ(i)| < ∞ for some (hence all) i ∈ S , (i)–(iv) are equivalent to
Ei(Di)1+α <∞ and to the conditions of Theorem 6.1.

Given the truth of the first part of the theorem, the last assertion is trivial, since then

yαJi(y) � y1+α � Ji(y)1+α as y→∞.

Some parts of the proof are accomplished in the subsequent two lemmata.

Lemma 6.7 Suppose Eiρ(x)α <∞ for some (x,i) ∈ R≥×S , then EiJi(Di)1+α <∞ for
all i ∈S .

Proof. Positive divergence ensures the existence of x0 ∈R≥ with p :=Pi(σ6(−x0) =∞)>
0. In particular, we have Ei ρ(−x0)α ≤ Eiρ(x)α <∞. Now, use

{ρ(−x0)> n/2} ⊇
⋃

n/2<k≤n

{
Sτ>k (i) ≤D

>,i
k+1−x0

}
⊇

⋃
n/2<k≤n

{
Sτ>k (i) ≤D

>,i
k+1−x0, (S`−Sτ>k+1(i))>−x0 for all ` > τ>k+1(i)

}

to conclude

Pi(ρ(−x0)> n/2) ≥ p · (n/3) ·Pi(Sτ>n (i) ≤D
>,i
n+1−x0).

Hence, Eiρ(−x0)α <∞ implies∑
n≥1

nαPi(Sτ>n (i) ≤D
>,i
n+1−x0) < ∞,

which is equivalent to
∫

[x0,∞)

(
y−x0

Ei(Sτ>(i)∧ (y−x0))

)1+α
Pi(D>,i ∈ dy) < ∞

by Theorem 1.6 (ii). Use Lemma 3.3 and D>,i ≥Di to derive EiJi(Di)1+α <∞. Finally,
by appeal to Lemma 3.6 the proof is complete. ut

Lemma 6.8 Given the situation of Theorem 6.6, suppose EiJi(Di)1+α <∞ for some
(hence all) i ∈S . Then, Eiρ(x)α <∞ for all (x,i) ∈ R≥×S .

Proof. Fix some i∈S . We distinguish between two cases. Under the stated assumptions,
either

EiS+
τ(i) < ∞ and EiJi(Di)1+α � Ei(Di)1+α < ∞ (6.4)

or
EiJi(Di)1+α < ∞ = EiS+

τ(i). (6.5)
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At first, suppose (6.4) is true. In particular, we have

0 < lim
y→∞Ai(y) = EiSτ(i) < ∞,

because (Sτn(i))n≥0 is positive divergent. Set µ := EiSτ(i)/[2Eiτ(i)]. Then,

0 < Ei
(
Sτ(i)− τ(i)µ

)
< ∞.

Moreover, since Eiτ(i)1+α <∞, we derive

Ei
(
Di+ τ(i)µ

)1+α
< ∞.

Consequently, (Mn,Sn−nµ)n≥0 forms a positive divergent MRW and an appeal to The-
orem 6.1 yields

Ei
∣∣∣∣min
n≥0

(
Sn−nµ

)∣∣∣∣α < ∞.

Finally,
ρ(x)µ ≤ x−

(
Sρ(x)−ρ(x)µ

)
≤ x−min

n≥0

(
Sn−nµ

)
shows Eiρ(x)α <∞ for every x ∈ R≥ (cf. [29, (i)⇒(ii)]).

Now, suppose (6.5) is true. Lemma C.5 yields Eiρ(x)α <∞ if and only if Eiρ̂(x)α <∞,
where

ρ̂(x) := sup{n≥ 0 : Sτn(i)−Di
n+1 ≤ x}

and
{ρ(x)> τn(i)} = {ρ̂(x)≥ n}

for all n ∈ N. Let (Yn)n≥1 be i.i.d. random variables, which are independent of all other
occurring random variables and fulfil P(Y1 = 0) = P(Y1 = 1) = 1/2. Set

ζθ,n := (Sτn(i)−Sτn−1(i))+ 1{Yn=θ}−Di
n1{Yn=1−θ}

for θ ∈ {0,1} and n≥ 1. Notice that (∑n
k=1 ζθ,k)n≥0 forms an ordinary random walk with

last level x exit time ρθ(x), which can be written as

ρθ(x) = sup
{
n≥ 0 :

n∑
k=1

ζθ,k− ζ−θ,n+1 ≤ x
}
.

Since

Sτn(i)−Di
n+1 =

∑
θ∈{0,1}

( n∑
k=1

(
ζ+
θ,k− (Sτk(i)−Sτk−1(i))−1{Yk=1−θ}

)
−Di

n+1 1{Yn+1=1−θ}

)

≥
∑

θ∈{0,1}

( n∑
k=1

ζθ,k− ζ−θ,n+1

)
,

we infer
Eiρ̂(x)α ≤ Ei[ρ0(x)∨ρ1(x)]α . Eiρ0(x)α.

38



6. On Fluctuation-Theoretic Quantities

Obviously, EiJi(Di)1+α <∞ implies

C(β) :=
∫ ( y

Ei(ζ+
0,1∧y)

)1+β
Pi(ζ−0,1 ∈ dy)

to be finite for all β ∈ [0,α]. Since (6.5) implies Ei|ζ0,1| =∞, the finiteness of C(0) is
sufficient for positive divergence of (∑n

k=1 ζ0,k)n≥0 (cf. remark after Theorem 1.2). Conse-
quently, we derive from Theorem 1.3 that C(α)<∞ implies Eiρ0(x)α <∞. ut

The remaining part of the proof is relatively short, so we put it together:

Proof of Theorem 6.6. Lemma 6.7 and Lemma 6.8 have shown the equivalence of (i)
and (ii). Since these conditions hold either for all i ∈S or none, it suffices to prove the
remaining implications for some fixed i ∈S .

“(i)⇒(iii)” follows directly from ρ(Sτ(i))− τ(i) d= ρ(0) under Pi and ρ(Sτ(i)) ≥ σmin
Pi-a.s.

“(iii)⇒(iv)” follows directly from the inequality

σmin 1{σ6(−x)<∞} ≥ σ6(−x)1{σ6(−x)<∞}

for all x ∈ R≥.
“(iv)⇒(ii)” Observe that

Eiσ6(−x)α1{σ6(−x)<∞} = Ei
(∑
n≥1

nα1{σ6(−x)=n}

)

≥ Ei
(∑
n≥1

τn+1(i)∑
k=τn(i)+1

kα1{σ6(−x)=k}

)

≥ Ei
(∑
n≥1

τn(i)α1{τn(i)<σ6(−x)≤τn+1(i)}

)

=
∫
Ei
(∑
n≥1

τn(i)α1{Sτn(i)≤y−x,min1≤k≤τn(i)Sk>−x}

)
Pi(Di ∈ dy).

Finally, an application of Lemma 6.3 yields (ii). ut

6.3. Finiteness of Power Moments of Λ(0)
In this section, we search for an equivalent criterion for finite power moments of Λ(0). For
i ∈S and α > 0, define

Ui :=
∑
n≥0

Pi(Sτn(i) ∈ ·)

and let Vαi be the measure induced by

Vαi ((x,∞)) := Ei
( τ(i)∑
k=1

1{S−k >x}
)α
, x ∈ R≥.
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Theorem 6.9 Let (Mn,Sn)n≥0 be a positive divergent MRW and Ei τ(i)1+α<∞ for some
(hence all) i ∈S , α > 0. Consider the following conditions:

(i) EiΛ(x)α <∞ for some (hence all) (x,i) ∈ R≥×S .

(ii) EiJi(S−τ(i))
1+α <∞ and ∫

Ji(y) Vαi (dy) < ∞ (6.6)

for some (hence all) i ∈S .

Then, (i) and (ii) are equivalent if α≥ 1 and (ii) implies (i) otherwise.

It is plausible to believe that the missing implication is also true, but the problem
is mainly a missing counterpart to the inequality [5, Lemma 5.6] for α < 1. As another
indication,

∫
Ji(y) Vαi (dy) <∞ is weaker than EiJi(Di)1+α <∞, which will be verified

after the proof of the theorem.
In preparation, we prove the following lemmata.

Lemma 6.10 Suppose Ei τ(i)α <∞ for some (hence all) i ∈S , α > 0. EiΛ(x)α <∞ is
either true for all (x,i) ∈ R≥×S or none.

Proof. Suppose EiΛ(0)α <∞ for some i ∈S . In particular, we have

Ei
(∑
n≥1

1{Sτn(i)≤0}

)α
< ∞,

which is equivalent to Eiν(x)1+α<∞ for all x∈R≥. Using [27, Theorem 1.5.1] for α∈ (0,1)
and [27, Theorem 1.5.2] for α≥ 1, we obtain

Ei τν(x)(i)α . Eiτ(i)α ·Eiν(x)1∨α < ∞

for all x ∈ R≥. For arbitrary j ∈S , choose x1 ∈ R≥ such that

0 < p := Pi(Sτ(j) ≤ x1, τ(i)≥ τ(j)).

Then, we obtain

∞ > Eiτν(x+x1)(i)α ≥ Eiτν(x+x1)(i)α1{Sτ(j)≤x1, τ(i)≥τ(j)} ≥ pEjτν(x)(i)α

for all x ∈ R≥. Set
Λ̃(0) :=

∑
n≥τν(x)(i)+1

1{Sn−Sτν(x)(i)≤0}.

Now, the assertion follows from the arbitrariness of j ∈S ,

Λ(x) ≤ τν(x)(i) + Λ̃(0) Pj-a.s.

and Ej Λ̃(0)α = EiΛ(0)α. ut
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Lemma 6.11 Given the situation of Theorem 6.9, EiJi(S−τ(i))
1+α <∞ implies

Ei
(∑
n≥1

χn(i)1{Sτn−1(i)≤0}

)α
< ∞.

Proof. The assertions can directly be concluded from an application of Theorem 6.6 on
an auxiliary MRW. Let (M ′n)n≥0 be the Markov chain introduced in Example 2.8 with
P(Γ ∈ ·) := Pi(τ(i) ∈ ·). Moreover, we define the increments (X ′n)n≥1 by

P(X ′1 ∈ ·|M ′0 = j, M ′1 = s) =

Pi(Sτ(i) ∈ ·|τ(i) = n), if j = (n,n−1), s= 0,
δ0, else,

for all n ∈ N and j,s ∈S ′. Set S′n :=∑n
k=1X

′
k for n≥ 1, τ ′ := inf{n≥ 1 :M ′n = 0} and

D′ := max
0<k≤τ ′

(S′k)−.

Since Pi(Sτ(i) ∈ ·) = P(S′τ ′ ∈ ·|M ′0 = 0) and (S′τ ′)−
d= D′ under P(· |M ′0 = 0), Theorem 6.6

yields

∞ > E
(

sup{n≥ 0 : S′n ≤ 0}α
∣∣∣M ′0 = 0

)
& E

[(∑
n≥0

1{S′n≤0}

)α∣∣∣∣M ′0 = 0
]

= Ei
(∑
n≥1

χn(i)1{Sτn−1(i)≤0}

)α

as claimed. ut

Proof of Theorem 6.9. Due to Lemma 6.10, it suffices to prove the equivalence of
EiΛ(0)α <∞ and (ii) for some fixed i∈S . Lemma C.6 entails Ui((0,y])� Ji(y) as y→∞
and therefore

∫
Ji(y) Vαi (dy) �

∫
Ui((0,y]) Vαi (dy) =

∫
R>

Ei
( τ(i)∑
k=1

1{S−k ≥y}
)α

Ui(dy)

=
∫
R>

Ei
( τ(i)∑
k=1

1{Sk≤−y}
)α

Ui(dy).

As it is easier to work with, we use

∫
R>

Ei
( τ(i)∑
k=1

1{Sk≤−y}
)α

Ui(dy) (6.7)

instead of (6.6).
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Case α≤ 1. “(ii)⇒(i)” Use Lemma 6.11 to derive that we only need to show

Ei
(∑
n≥1

τn(i)∑
k=τn−1(i)+1

1{Sτn−1(i)>0,Sk≤0}

)α
< ∞.

The subadditivity of x 7→ xα entails

Ei

∑
n≥1

τn(i)∑
k=τn−1(i)+1

1{Sτn−1(i)>0,Sk≤0}

α ≤ Ei

∑
n≥1

 τn(i)∑
k=τn−1(i)+1

1{Sτn−1(i)>0,Sk≤0}

α
=
∫
R>

Ei
( τ(i)∑
k=1

1{Sk≤−y}
)α

Ui(dy)

Case α≥ 1. “(i)⇒(ii)” On the one hand, we can obviously derive Ei(
∑
n≥1 1{Sτn(i)≤0})α <

∞, which is equivalent to EiJi(S−τ(i))
1+α <∞. On the other hand, superadditivity of

x 7→ xα yields

∞ > EiΛ(0)α = Ei

∑
n≥1

τn(i)∑
k=τn−1(i)+1

1{Sk≤0}

α

≥ Ei

∑
n≥1

( τn(i)∑
k=τn−1(i)+1

1{Sk≤0}

)α
≥
∫
R>

Ei
( τ(i)∑
k=1

1{Sk≤−y}
)α

Ui(dy).

“(ii)⇒(i)” Preliminarily, notice that EiJi(S−τ(i))
2 <∞ implies Ui((−∞,0]) <∞ (cf. The-

orem 1.3 for α = 1) and hence

∫
R≤

Ei
( τ(i)∑
k=1

1{Sk≤−y}
)α

Ui(dy) ≤ Eiτ(i)α ·Ui((−∞,0]) < ∞.

Consequently, we have

sup
β∈(0,α]

∫
R
Ei
( τ(i)∑
n=1

1{Sk≤−y}
)β

Ui(dy)

=
∫
R
Ei
( τ(i)∑
n=1

1{Sk≤−y}
)α

Ui(dy) =: c < ∞.

In what follows, we use an induction argument (in m) from [5] (see their Theorem 3.7).
Suppose α =m+ δ, m ∈ N, δ ∈ (0,1], and that (ii) does imply

EiΛ(0)β < ∞ for all 0≤ β ≤m. (6.8)
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Notice that we have already verified this assertion for α≤ 1. For n ∈ N0, define

Λn(x) :=
∑

k≥τn(i)+1
1{Sk−Sτn(i)≤x}, x ∈ R,

and

Ln :=
τn(i)∑

k=τn−1(i)+1
1{Sk≤0}.

Hence,

Ei
(∑
n≥1

Lβn

)
= Ei

[∑
n≥1

( τn(i)∑
k=τn−1(i)+1

1{Sk≤0}

)β]
< c

for all 0 ≤ β ≤ m. Observe that Λn(0) and Ln are independent and Pi(Λn(0) ∈ ·) =
Pi(Λ(0) ∈ ·) for all n≥ 1. In addition, notice that

Λn(−Sτn(i)) = Ln+1 + Λn+1(−Sτn+1(i))

for all n ∈ N0. Making use of the inequality [5, Lemma 5.6], namely

(x+y)α ≤ xα+yα+α2α−1(xyα−1 +xm yδ)

for all x,y ∈ R≥, we obtain

Λ(0)α =
(
L1 + Λ1(−Sτ(i))

)α
≤ Lα1 + Λ1(−Sτ(i))α+α2α−1

[
L1 ·Λ1(−Sτ(i))α−1 +Lm1 ·Λ1(−Sτ(i))δ

]
.

EiΛ(0)<∞ and limn→∞Sτn(i) =∞ a.s. yields Λn(−Sτn(i))→ 0 a.s. and thus an iteration
of the previous inequality shows

Λ(0)α ≤
∑
n≥1

Lαn +α2α−1 ∑
n≥1

[
Ln ·Λn(−Sτn(i))α−1 +Lmn ·Λn(−Sτn(i))δ

]

Furthermore, using

Λn(−Sτn(i))

≤
∑
`≥n

χ`+1(i)∑
k=1

1{Sτ`(i)+k−Sτn(i)≤−Sτn(i), Sτn(i)>0}+
∑
`≥n

χ`+1(i)∑
k=1

1{Sτ`(i)+k−Sτn(i)≤−Sτn(i), Sτn(i)≤0}

≤ Λn(0) +
∑
`≥1

χ`(i)1{Sτ`−1(i)≤0},

Lemma 6.11, (6.8) and taking means yields

EiΛ0(0)α . c
(
1 +α2α−1

[
EiΛ(0)α−1 +EiΛ(0)δ

])
< ∞.

ut

43



Chapter A. On Fluctuation Theory of Markov Random Walks

It has already been noted that Eiρ(0)α <∞ implies EiΛ(0)α for any α > 0, since
ρ(0) ≥ Λ(0) a.s. This can also be verified on the basis of condition Theorem 6.9 (ii).
Obviously, we only have to care about (6.6), since EiJi(S−τ(i))

1+α ≤ EiJi(Di)1+α <∞. At
first, use∑
n≥1

Pi(0< Sτn(i) ≤ y) � Ji(y) � U>i ((−∞,y]) :=
∑
n≥0

Pi(Sτ>n (i) ≤ y) as y→∞

to derive that it makes no difference if we integrate with respect to U>i instead of Ui in
(6.7). Furthermore, let (Tn)n≥1 be a distributional copy of (Sτ>n (i))n≥1, which is indepen-
dent of all other occurring random variables. Then, an appeal to Lemma C.4 and Theorem
1.6 yields

∫
R>

Ei
( τ(i)∑
k=1

1{Sk≤−y}
)α

U>i (dy) ≤
∫
Eiτ(i)α1{Di≥y} U>i (dy)

= Ei
(∑
n≥0

χn+1(i)α1{Tn≤Din+1}

)
.

∑
n≥1

nαPi(Tn ≤Di
n+1)

� EiJi(Di)1+α.

The following example illustrates that a MRW can behave so improperly within a cycle
that EiJi(S−τ(i))

1+α is not sufficient for EiΛ(0)α <∞ for α≥ 1.

Example 6.12 Let (Mn)n≥0 be defined as in Example 2.8 with state space S ⊂{0}∪N2.
We define the increments (Xn)n≥1 by

Xn :=


−`β, if Mn−1 = 0, Mn = (`,1) for some ` ∈ N,

1 + `β, if Mn−1 = (`,`−1), Mn = 0 for some ` ∈ N,
0, else

for some β > 1. By construction, we have Sτ(0) = 1 and D0 = τ(0)β P0-a.s. and hence

Ei
(∑
n≥1

1{Sτn(i)≤0}

)α
< ∞

for any α > 0. Furthermore, we suppose EΓ β = E0D0 = E0τ(0)β <∞, which guarantees
positive divergence of the MRW. Now, pick α ≥ 1 and use superadditivity of x 7→ xα to
estimate

E0Λ(0)α = E0

(∑
n≥1

(χn(0)−1)1{Sτn−1(0)−D0
n≤0}

)α
≥ E0

(∑
n≥1

(χn(0)−1)α1{Sτn−1(0)−D0
n≤0}

)

44



6. On Fluctuation-Theoretic Quantities

≥ E0

(∑
n≥1

(χn(0)−1)α1{D0
n≥n}

)
&

∑
n≥1

nα/β P0(τ(0)β ≥ n)

� E0τ(0)α+β

and we can assume the latter to be infinite.

6.4. Finiteness of Certain Weighted Renewal Measures
In this section, we establish equivalent conditions for∑

n≥1
nα−1Pi(Sn ≤ 0) < ∞. (6.9)

Moreover, we will point out that this does actually require positive divergence only for
α≥ 1. Set Vi := V1

i .

Theorem 6.13 Let (Mn,Sn)n≥0 be a non-trivial MRW and Eiτ(i)1+α∨Ei[τ(i) · logτ(i)]<
∞ for some i ∈S and α≥ 0. The following conditions are equivalent:

(i) ∑n≥1n
α−1Pi(Sn ≤ x)<∞ for some (hence all) (x,i) ∈ R≥×S .

(ii) Ai(y)> 0 for sufficiently large y, EiJi(S−τ(i))
1+α <∞ and

α = 0 :
∫

logJi(y) Vi(dy) < ∞

α > 0 :
∫
Ji(y)α Vi(dy) < ∞

for some (hence all) i ∈S .

Proof. The necessity of Ai(y) > 0 for all sufficiently large y and EiJi(S−τ(i))
1+α <∞

follows from∑
n≥1

nα−1Pi(Sn ≤ x) ≥ Ei
(∑
n≥1

τn(i)α−1 1{Sτn(i)≤x}

)
�

∑
n≥1

nα−1Pi(Sτn(i) ≤ x)

(see Lemma C.3). Hence, by Theorem 1.6 , it suffices to prove
∑
n≥1

nα−1Pi(Sn ≤ x) �
∫ ∑
n≥1

nα−1Pi(Sτn(i) ≤ x+y) Vi(dy). (6.10)

Moreover, we remark that

∫ ∑
n≥1

nα−1Pi(Sτn(i) ≤ x+y) Vi(dy) � Ei
(∑
n≥1

nα−1
χn(i)∑
k=1

1{Sτn−1(i)+k≤x}

)
,

45



Chapter A. On Fluctuation Theory of Markov Random Walks

which can be concluded from∫ ∑
n≥1

nα−1Pi(Sτn(i) ≤ x+y) Vi(dy)

=
∑
n≥1

nα−1
∫
Ei
( τ(i)∑
k=1

1{−S−k ≤x−y}
)
Pi(Sτn(i) ∈ dy)

≤
∑
n≥1

nα−1
∫
Ei
( τ(i)∑
k=1

1{S−k =0}

)
1{y=x} Pi(Sτn(i) ∈ dy)

+
∑
n≥1

nα−1
∫
Ei
( τ(i)∑
k=1

1{Sk≤x−y}
)
Pi(Sτn(i) ∈ dy)

≤ Eiτ(i)
∑
n≥1

nα−1Pi(Sτn(i) ≤ x) +
∑
n≥1

nα−1
∫
Ei
( τ(i)∑
k=1

1{Sk≤x−y}
)
Pi(Sτn(i) ∈ dy)

� Ei
(∑
n≥1

nα−1
χn(i)∑
k=1

1{Sτn−1(i)+k≤x}

)

.
∑
n≥1

nα−1
∫ [

Eiτ(i)1{y≤x}+Ei
( τ(i)∑
k=1

1{Sk≤x−y,Sk<0}

)]
Pi(Sτn(i) ∈ dy)

.
∫
Ei
( τ(i)∑
k=1

1{S−k ≥y−x}
)
Pi(Sτn(i) ∈ dy)

=
∫ ∑
n≥1

nα−1Pi(Sτn(i) ≤ x+y) Vi(dy),

where we used that ∑n≥1n
α−1Pi(Sτn(i) ≤ x)<∞.

The proof is separated into two cases.
Case 0≤ α≤ 1. Using (τn−1(i)+k)α−1 ≤ nα−1 for 1≤ k ≤ χn(i) and n≥ 1, we obtain

∑
n≥1

nα−1Pi(Sn ≤ x) = Ei
(∑
n≥1

χn(i)∑
k=1

(τn−1(i) +k)α−11{Sτn−1(i)+k≤x}

)

≤ Ei
(∑
n≥1

nα−1
χn(i)∑
k=1

1{Sτn−1(i)+k≤x}

)

�
∫ ∑
n≥1

nα−1Pi(Sτn(i) ≤ x+y) Vi(dy)

For the other side, note first that

Ei
(∑
n≥1

χn(i)∑
k=1

(n+k)α−1 1{τn−1(i)>2nEiτ(i)}

)

≤ Ei
(∑
n≥1

χn(i)nα−1 1{τn−1(i)>2nEiτ(i)}

)
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= Eiτ(i)
∑
n≥1

nα−1Pi
(
τn−1(i)> 2nEiτ(i)

)
,

which is finite by Lemma C.1. In addition, we need

Ei
(∑
n≥1

χn(i)∑
k=1

nα−1 1{χn(i)>n}

)

= Ei
(∑
n≥1

n∑
k=1

nα−1 1{χn(i)>n}

)
+Ei

(∑
n≥1

∑
k≥n

nα−1 1{χn(i)>k}

)

≤
∑
n≥1

nαPi(τ(i)> n) +
∑
k≥1

k∑
n=1

nα−1Pi(τ(i)> k)

. Eiτ(i)1+α∨Ei[τ(i) · logτ(i)] < ∞,

where we used that

k∑
n=1

nα−1 �
∫ k

1
xα−1 dx .

logk, if α = 0,
kα, else,

and ∑
k≥1

logk ·Pi(τ(i)> k) � Ei[τ(i)(logτ(i)−1)] � Ei[τ(i) · logτ(i)].

This enables us to make the following estimation

Ei
(∑
n≥1

χn(i)∑
k=1

(τn−1(i) +k)α−11{Sτn−1(i)+k≤x}

)

≥ Ei
(∑
n≥1

χn(i)∑
k=1

(τn−1(i) +k)α−1 1{Sτn−1(i)+k≤x}1{τn−1(i)≤2nEiτ(i)}

)

& Ei
(∑
n≥1

χn(i)∑
k=1

(n+k)α−1 1{Sτn−1(i)+k≤x}

)

≥ Ei
(∑
n≥1

χn(i)∑
k=1

(n+k)α−1 1{Sτn−1(i)+k≤x}1{χn(i)≤n}

)

& Ei
(∑
n≥1

χn(i)∑
k=1

nα−1 1{Sτn−1(i)+k≤x}

)

�
∫ ∑
n≥1

nα−1Pi(Sτn(i) ≤ x+y) Vi(dy).

Case α > 1. Using (τn−1(i) +k)α−1 ≥ nα−1 for 1≤ k ≤ χn(i) and n≥ 1, we infer

Ei
(∑
n≥1

χn(i)∑
k=1

(τn−1(i) +k)α−11{Sτn−1(i)+k≤x}

)
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≥ Ei
(∑
n≥1

nα−1
χn(i)∑
k=1

1{Sτn−1(i)+k≤x}

)

�
∫ ∑
n≥1

nα−1Pi(Sτn(i) ≤ x+y) Vi(dy).

For the reverse estimation, we begin with

Ei
(∑
n≥1

χn(i)∑
k=1

(τn−1(i) +k)α−1 1{Sτn−1(i)+k≤x}

)

. Ei
(∑
n≥1

χn(i)∑
k=1

(n+k)α−1 1{Sτn−1(i)+k≤x}

)

+Ei
(∑
n≥1

χn(i)∑
k=1

(τn−1(i) +k)α−1 1{τn−1(i)>2nEiτ(i)}

)
.

The first summand can be estimated by

Ei
(∑
n≥1

χn(i)∑
k=1

(n+k)α−1 1{Sτn−1(i)+k≤x}

)

≤ 2α−1Ei
(∑
n≥1

χn(i)∑
k=1

nα−1 1{Sτn−1(i)+k≤x}1{χn(i)≤n}

)

+Ei
(∑
n≥1

χn(i)∑
k=1

(n+k)α−1 1{Sτn−1(i)+k≤x}1{χn(i)>n}

)

.
∫ ∑
n≥1

nα−1Pi(Sτn(i) ≤ x+y) Vi(dy) +Ei
(∑
n≥1

χn(i)∑
k=1

(2χn(i))α−1 1{χn(i)>n}

)

�
∫ ∑
n≥1

nα−1Pi(Sτn(i) ≤ x+y) Vi(dy) +Eiτ(i)1+α

�
∫ ∑
n≥1

nα−1Pi(Sτn(i) ≤ x+y) Vi(dy).

Concerning the second summand, we use

Ei
(∑
n≥1

χn(i)∑
k=1

(τn−1(i) +k)α−1 1{τn−1(i)>2nEiτ(i)}

)

≤ (2α−2∨1)Ei
(∑
n≥1

χn(i)∑
k=1

(τn−1(i)α−1 +χn(i)α−1)1{τn−1(i)>2nEiτ(i)}

)

. 2Eiτ(i)αEi
(∑
n≥1

τn(i)α−1 1{τn(i)>2nEiτ(i)}

)
,

which is finite by Lemma C.2. ut
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Notice that
Pi(Di > y) ≤ Vi((y,∞)) ≤ Eiτ(i)1{Di>y}

for all y ∈ R≥. In general, Vi((y,∞)) . Pi(Di > y) fails, but this changes if we as-
sume Pi(τ(i) ≤ c) = 1 for some c ∈ R>. Then, the third condition in (ii) is equivalent
to Ei logJi(Di) <∞ or EiJi(Di)α <∞ respectively. Therefore, for 0 ≤ α < 1, positive
divergence is generally not required for (6.9).

In fact, Ei[τ(i) · logτ(i)]<∞ is required for the necessity of condition (ii) in the case
α = 0. For explanation, we give an example.

Example 6.14 Let (Mn)n≥0 be the Markov chain introduced in Example 2.8 with E[Γ ·
logΓ ] =∞. The increment distribution is given by

K(0,(n,1), ·) := δ−(n−1) and K((n,n−1),0, ·) := δn

for n≥ 2 and K(i, j, ·) := δ0 for any other i, j ∈S .
Then, Sτ(0) = 1 P0-a.s. and Eπ|X1|<∞, which suffices for∑

n≥1
n−1P0(Sn ≤ 0) < ∞

(cf. Theorem 2.1 and Theorem 4.4). In contrast,
∫

logJ0(y) V0(dy) � E0

(∑
n≥1

n−1
χn(0)∑
k=1

1{Sτn−1(0)+k≤0}

)

= E0

(∑
n≥1

n−1
χn(0)∑
k=1

1{Sτn−1(0)+k−Sτn−1(0)≤−(n−1)}

)

= E0

(∑
n≥1

n−1
χn(0)−1∑
k=1

1{χn(0)≥n}

)

= E0

(∑
n≥1

n−1∑
k=1

n−1 1{χn(0)≥n}

)
+E0

(∑
n≥1

∑
k≥n

n−1 1{χn(0)>k}

)

� E0τ(0) +
∑
k≥1

k∑
n=1

n−1P0(τ(0)> k)

� E0τ(0) +E0[τ(0) · logτ(0)] = ∞.

As Pi(Λ(0) <∞) = 1 is equivalent to positive divergence, Theorem 4.1 yields that
(6.9) for α = 0 is weaker. The next result relates (6.9) with EiΛ(0)α <∞ for α > 1. For
0<α< 1, we prove that (6.9) is weaker than the conjectured equivalent integral criterion
for EiΛ(0)α <∞. For α = 1, the conditions are the same.

Proposition 6.15 Suppose Eiτ(i)1+α < ∞, (Sτn(i))n≥0 being positive divergent and
EiJi(S−τ(i))

1+α < ∞ for some i ∈S and some α≥ 0. Then, for all i ∈S :

0< α < 1 :
∫
Ji(y) Vαi (dy) < ∞ ⇒

∑
n≥1

nα−1Pi(Sn ≤ 0) < ∞.

49



Chapter A. On Fluctuation Theory of Markov Random Walks

α > 1 :
∑
n≥1

nα−1Pi(Sn ≤ 0) < ∞ ⇒ EiΛ(0)α < ∞.

Proof. Both assertions are proved in terms of the integral criteria from Theorem 6.9 and
Theorem 6.13.

We can assume that y 7→ Pi(Sτ(i) > y) is a continuous function. For explanation, let

X ′n := Xn+Un1{Mn−1=i},

where (Un)n≥1 is an i.i.d. sequence of random variables, which are uniformly distributed on
(0,1) and are independent of all other occurring random variables. Clearly, y 7→ Pi(S′τ(i) >

y) is continuous. Furthermore,

Pi(Sτ(i) > y) ≤ Pi(S′τ(i) > y) ≤ Pi(Sτ(i) > y−1)

for all y ∈R≥. Analogous arguments relate Pi(Di > y) and Vαi ((y,∞)) to the correspond-
ing ones in terms of (Mn,X

′
n)n≥1. For a MRW with positive divergent embedded random

walks, these tails entirely contain the information of finiteness of the quantities exam-
ined in this section so far. It is simple to see that the integral criteria are satisfied for
(Mn,S

′
n)n≥0 if and only if the same is true for (Mn,S

′
n)n≥0.

Hence, y 7→ Ei(S+
τ(i)∧ y) =

∫ y
0 Pi(S+

τ(i) > x) dx, y ∈ R>, possesses a continuous deriva-
tive. In particular, ∂

∂yJi(y) is a continuous function. For any β > 0,

fβ(y) := [Ji(y)−1]β, y ∈ R≥,

is non-decreasing, has a continuous derivative on R> and fulfils fβ(0) = 0. Consequently,∫
fβ(y) Vγi (dy) �

∫
R>

∂

∂y
Ji(y) · (Ji(y)−1)β−1 ·Vγi ((y,∞)) dy

for any β,γ > 0.
Case 0< α < 1. We start with the observation of

Vi((y,∞))

≤ Ei
[(Ji(y)∑

k=1
1{S−k >y}

)1−α
·
( τ(i)∑
k=1

1{S−k >y}
)α

1{τ(i)≤Ji(y)}

]
+Ei[τ(i)1{τ(i)>Ji(y)}]

≤ Ji(y)1−α ·Vαi ((y,∞)) +Ei[τ(i)1{τ(i)>Ji(y)}].

Using the preliminary considerations and integration by substitution, we obtain∫
Ji(y)α Vi(dy)

�
∫

(Ji(y)−1)α Vi(dy)

�
∫
R>

∂

∂y
Ji(y) ·Ji(y)α−1 ·Vi((y,∞)) dy
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≤
∫
R>

∂

∂y
Ji(y) ·Vαi ((y,∞)) dy+Ei

(
τ(i)

∫
R>

∂

∂y
Ji(y) ·Ji(y)α−1 1{τ(i)>Ji(y)} dy

)
.
∫
Ji(y) Vαi (dy) +Ei

(
τ(i)

∫ ∞
1

yα−1 1{τ(i)>y} dy
)

�
∫
Ji(y) Vαi (dy) +Eiτ(i)1+α

Case α > 1. Similar to above, we begin with

Vαi ((y,∞))

≤ Ei
[(Ji(y)∑

k=1
1{S−k >y}

)α−1
·
( τ(i)∑
k=1

1{S−k >y}
)

1{τ(i)≤Ji(y)}

]
+Ei[τ(i)α1{τ(i)>Ji(y)}]

≤ Ji(y)α−1 ·Vi((y,∞)) +Ei[τ(i)α1{τ(i)>Ji(y)}]

to derive∫
Ji(y) Vαi (dy)

�
∫
R>

∂

∂y
Ji(y) ·Vαi ((y,∞)) dy

≤
∫
R>

∂

∂y
Ji(y) ·Ji(y)α−1 ·Vi((y,∞)) dy+Ei

(
τ(i)α

∫
R>

∂

∂y
Ji(y)1{τ(i)>Ji(y)} dy

)
.
∫
Ji(y)α Vi(dy) +Ei

(
τ(i)α

∫ ∞
1

1{τ(i)>y} dy
)

�
∫
Ji(y)α Vi(dy) +Eiτ(i)1+α.

ut

6.5. Finiteness of Power Moments of σ>

In order to find an integral criterion for power moments of σ>, we have already made the
observation in Lemma 3.5 that

Ai(y)> 0 for all sufficiently large y and EiJi(S−τ(i))
1+α < ∞,

α≥ 0, is sufficient for

Eiσ>(x)1+α < ∞ for all (x,i) ∈ R≥×S . (6.11)

In particular, the MRW can be oscillating, but (6.11) is true (see Example 2.7). It
turns out that it is a difficult task to find an equivalent criterion. In fact, the embedded
random walks can be of arbitrary fluctuation type, but (6.11) is true, as the following
example reveals. The last part of the example is close to the proof of Proposition 2.13
from [5].
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Example 6.16 For α ≥ 0, let (∑n
k=1Yk)n≥0 be an ordinary integer-valued random walk

with
P(Y − > n) = 1

n1+α for all sufficiently large n ∈ N,

P(Y = 0)> 0 and P(Y + ∈ ·) such that E inf{n≥ 1 :∑n
k=1Yk > 0}1+α =∞. In particular,

one can choose P(Y + ∈ ·) = δ0 for any α≥ 0. W.l.o.g., we suppose P(Y − = n)> 0 for all
n ∈ N.

Define f : R>→R> by f(x) := 2θx1+α for some θ > 1+α, hence f(x)≥ x for all x≥ 1.
By construction, we have

lim
n→∞nP(f(Y −)> 2nc) = lim

n→∞nP
(
Y − > f−1(2nc)

)
= lim
n→∞nP

Y − > (n+ log2 c

θ

)1/(1+α) (6.12)

= θ

for all c ∈ R>.
Let (Mn)n≥0 be a Markov chain on N0 with p00 := P(Y ≥ 0), p0i := P(Y = −i) and

pi0 := 1 for all i ∈ N. Furthermore, set

K00 := P(Y ∈ ·|Y ≥ 0), K0i := δf(i) and Ki0 := δ−f(i)−i

for all i∈N. Consequently, P0(Sτ(0) ∈ ·) = P(Y ∈ ·) and E0 inf{n≥ 1 : Sτn(0) > 0}1+α =∞.
Fixing any x ∈ R≥, the following property of the MRW under P0 is essential for our
considerations, namely

Xτn(0)+1 ≤ x ⇒ Sτn+1(0)−Sτn(0) ≥ −x.

As a consequence of this property, we infer that

{σ>(x)> τ(0), M0 = 0} ⊂ {Sτ(0) ≥−x, M0 = 0},
{σ>(x)> τ2(0), M0 = 0} ⊂ {Sτ(0) ≥−x, Xτ(0)+1 ≤ 2x, M0 = 0}

⊂ {Sτ2(0) ≥−3x, M0 = 0}
and then inductively

{σ>(x)> τn(0), M0 = 0} ⊂
{
Sτn(0) ≥−(2n−1)x, M0 = 0

}
for all n ∈ N.

Define κ(x) := inf{n≥ 1 :Xτn(0)+1 > 2nx}. Note that σ>(x)≤ κ(x) P0-a.s. and

Eiσ>(x)1+α ≤ E0[1 +σ>(x+f(i) + i)]1+α

for all i ∈ N. Hence, we will show E0κ(x)1+α <∞ for all x > f(1), which easily yields
(6.11).

We start with

E0κ(x)1+α �
∑
n≥1

nαP0(κ(x)> n) =
∑
n≥1

nα
n∏
k=1

F (2kx),
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where F (·) := P0(X1 ∈ ·). Then, notice that (6.12) yields

n [1−F (2n+1x)] n→∞−−−→ θ. (6.13)

Set an := nα
∏n
k=1F (2kx), which is positive, because x > f(1). Due to Raabe’s criterion,

E0κ(x)1+α <∞ if
liminf
n→∞

( an
an+1

−1
)
> 1.

Therefore, we use the Taylor approximation

(1−n−1)α = 1 +αn−1 +o(n−1)

and (6.13) to conclude

liminf
n→∞ n

(
an
an+1

−1
)

= liminf
n→∞ n

[
nα− (n+ 1)αF (2n+1x)

(n+ 1)αF (2n+1x)

]
= liminf

n→∞ n [1− (1 +n−1)αF (2n+1x)]

= liminf
n→∞ n

[
1− [1 +αn−1 +o(n−1)]F (2n+1x)

]
= liminf

n→∞

[
n [1−F (2n+1x)]−αF (2n+1x)

]
= θ−α > 1,

thus E0κ(x)1+α <∞ for all x > f(1).

Obviously, the phenomenon of Example 6.16 arises from S−τ(i) and Hi being coupled
in a problematic way, where

Hi
n := max

τn−1(i)<k≤τn(i)
(Sk−Sτn−1(i))+, n≥ 1,

is the maximal upward excursion between τn−1(i) + 1 and τn(i). It indicates that an
equivalent criterion for (6.11) must include the dependency of Sτ(i) and Hi.

Moreover, when P(Y + ∈ ·) is chosen as δ0, we obtain Eiσ6 <∞ and Eiσ> <∞ for all
i ∈S . Hence, there does not need to be any recurrent ladder chain (cf. Proposition 5.2).

Just Eiσ>(x)<∞ for some (x,i) ∈ R≥×S , does not imply (6.11), since Pi(σ>(x) =
n) = 1 for n ∈N is possible and even regardless of the fluctuation type of the MRW. This
changes if one does additionally assume

q(i,x) := Pi(σ>(x)> τ(i),Sτ(i) < 0) > 0.

Notice that q(i,x) is non-decreasing in x and, if Pi(Sτ(i) < 0) > 0, q(i,x) > 0 for all suffi-
ciently large x. The following lemma provides sufficient conditions for (6.11).

Lemma 6.17 Let (Mn,Sn)n≥0 be a non-trivial MRW and α≥ 0. The following conditions
are sufficient for (6.11):

(i) Eiσ>(x)1+α <∞ for all x ∈ R≥ for some i ∈S .
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(ii) Eiσ>(x)1+α <∞ and q(i,x)> 0 for some (x,i) ∈ R≥×S .

(iii) Eiσ>(0)1+α <∞ and Eiτ(i)1+α <∞ for all i ∈S .

Proof. (i) For any j ∈S , there exists x0 ∈ R≥ such that

p := Pi(σ>(2x0)> τ(j), Sτ(j) ≤ x0) > 0

and thus
Pi(σ>(2x)> τ(j),Sτ(j) ≤ x) ≥ p

for all x≥ x0. For such x, we infer

∞ > Eiσ>(2x)1+α ≥ Eiσ>(2x)1+α1{σ>(2x)>τ(j),Sτ(j)≤x} ≥ p ·Ejσ>(x)1+α.

Then, use Ejσ>(x0)1+α ≥ Ejσ>(x)1+α for all 0≤ x≤ x0 to infer (6.11).
(ii) By assumption, we can find ε > 0 such that

p(x) := Pi(σ>(x)> τ(i),Sτ(i) ≤−ε) > 0.

Consequently,

∞ > Eiσ>(x)1+α1{σ>(x)>τ(i),Sτ(i)≤−ε} ≥ p(x) ·Eiσ>(x+ ε)1+α.

Since p(x+nε) ≥ p(x+ (n− 1)ε) for all n ∈ N, we obtain Eiσ>(x+nε)1+α <∞ for all
n ∈ N by induction and then (6.11) by an appeal to (i).

(iii) If Pi(Sτ(i)≥ 0) = 1 holds for some i∈S and thus Pi(Sτ(i)> 0)> 0 by non-triviality,
the assertion follows easily from Lemma 3.5.

Now, suppose Pi(Sτ(i) < 0)> 0 for all i∈S . Fix some i∈S . If q(i,0)> 0 the assertion
follows from (ii). Assume q(i,0) = 0 and hence Pi(σ>(0) < τ(i),Sτ(i) < 0) > 0. We will
show that qn(j,0) := Pj(σ>(0) > τn(j),Sτn(j) < 0) > 0 for some n ∈ N and j ∈S . Then,
analogous to (ii), (6.11) can be concluded.

Define
κ := inf

{
0≤ n≤ τ(i) : Sn = max

0≤k≤τ(i)
Sk
}
.

By assumption, there is j ∈S \{i} such that

p′ := Pi(Mκ = j, κ= τm(j)≥ σ>(0), Sτ(i) < 0, τm+`(j)< τ(i)< τm+`+1(j)) > 0

for some m,` ∈ N0. Then,

p′ = Pi
(
Sτm(j) > Sk for 0≤ k < τm(j), Sτ(i)−Sτm(j) <−Sτm(j),

Sτm(j)+k−Sτm(j) ≤ 0 for 0< k ≤ τ(i)− τm(j), τm+`(j)< τ(i)< τm+`+1(j)
)

=
∫
Pj
(
Sτ(i) <−x, Sk ≤ 0 for 0< k ≤ τ(i), τ`(j)< τ(i)< τ`+1(j)

)
Pi(Sτm(j) ∈ dx, Sτm(j) > Sk for 0≤ k < τm(j)< τ(i))

= Pj
(
Sτm+`(j) < 0, Sk ≤ 0 for 0< k ≤ τ(i), τ`(j)< τ(i)< τ`+1(j),
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Sτm+`(j) > Sτ(i)+k for 0≤ k ≤ τm+`(j)− τ(i)
)

≤ Pj(σ> > τm+`(j), Sτm+`(j) < 0) = qm+`(j,0).

ut

Suprisingly, one can not dispense with Eiτ(i)1+α <∞ in (iii) as the following simple
example reveals. Consider the Markov chain as in Example 2.8 with

K((n,n−1),0, ·) := K((n,k),(n,k+ 1), ·) := δ1/n

for all 1≤ k ≤ n−2 and n≥ 2. Thus, σ>(0) = 1 a.s. and σ>(1) = τ(0) P0-a.s.
Example 6.16 and Lemma 6.17 (ii) motivate to study the post-τ(i) level x first passage

time
σ>(x) := inf{n≥ τ(i) : Sn > x}, x ∈ R≥.

We will establish an equivalent criterion for σ>(0) to possess power moments of order
greater than or equal to 1 given an embedded random walk tends stochastically to ∞.

Preliminarily, we prove an adapted extension of Lemma 3.5 from [33] to MRWs, where
we use Ji(y) instead of y/Ai(y). Moreover, we assume Sτn(i)

P−→∞ for some i∈S . Whether
the latter is a solidarity property or if it is equivalent to Sn Pπ−→∞ is not known. As proofs
seem not to be simple and the benefit for our results is marginal, we refrained from
studying this aspect.

Lemma 6.18 Suppose Sτn(i)
Pi−→∞ for some i ∈S . Then, for all j ∈S and y→∞:

α = 0 : logJj(y) .
∑
n≥1

n−1Pj
(

max
1≤k≤n

Sk ≤ y
)
.

α > 0 : Jj(y)α .
∑
n≥1

nα−1Pj
(

max
1≤k≤n

Sk ≤ y
)
� Ejσ>(y)α.

Proof. We begin with showing that the assertion follows for all j ∈S if it is true for i.
Pick some arbitrary j ∈S . By Lemma 3.3, it suffices to find some x ∈ R≥ such that∑

n≥1
nα−1Pi

(
max

1≤k≤n
Sk ≤ y−x

)
.

∑
n≥1

nα−1Pj
(

max
1≤k≤n

Sk ≤ y+x
)
.

Let x ∈ R≥ be such that

p := Pj
(

max
1≤k≤τ(i)

Sk ≤ x
)
> 0.

Then, we infer

p
∑
n≥1

nα−1Pi
(

max
1≤k≤n

Sk ≤ y−x
)

≤
∑
n≥1

nα−1
∫

(−∞,x]
Pi
(

max
1≤k≤n

Sk ≤ y− z
)
Pj
(

max
1≤k≤τ(i)

Sk ∈ dz
)
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≤
∑
n≥1

nα−1Pj
(
Sτ(i) + max

τ(i)+1≤k≤τ(i)+n
(Sk−Sτ(i))≤ y, max

1≤k≤τ(i)
Sk ≤ x

)
≤

∑
n≥1

nα−1Pj
(

max
τ(i)+1≤k≤τ(i)+n

Sk ≤ y, max
1≤k≤τ(i)

Sk ≤ x
)

≤
∑
n≥1

nα−1Pj
(

max
1≤k≤τ(i)+n

Sk ≤ y+x
)

≤
∑
n≥1

nα−1Pj
(

max
1≤k≤n

Sk ≤ y+x
)

for all y ∈ R≥.
For i ∈S , y ∈ R> and δ ∈ (0,1) define

mδ(y) := inf
{
n≥ 1 : Pi

(
max

1≤k≤n
Sk ≤ y

)
< 1− δ

}

with mδ(y) ↑ ∞ as y→∞. Moreover, Sτn(i)
Pi−→∞ implies (Sτn(i))n≥0 being positive di-

vergent or oscillating and thus mδ(y) <∞ for all (y,δ) ∈ R>× (0,1). Simple estimations
yield

∑
n≥1

nα−1Pi
(

max
1≤k≤n

Sk ≤ y
)
≥

mδ(y)∑
n=1

nα−1Pi
(

max
1≤k≤n

Sk ≤ y
)

&

(1− δ) logmδ(y), if α = 0,
(1− δ)mδ(y)α, if α > 0.

It remains to show
Ji(y) . mδ(y) as y→∞. (6.14)

Put A+
i (y) := Ei(S+

τ(i) ∧ y). We assume that (6.14) fails and infer that we find for all
ε ∈ (0,1) an increasing, non-negative sequence (y`)`≥1, depending on ε, such that

sup
`≥1

2mδ(y`)
A+
i (y`)
y`

≤ ε, (6.15)

which is equivalent to

(1− ε)y`+ 2mδ(y`)A+
i (y`) ≤ y` for all `≥ 1. (6.16)

For the sake of brevity, we set m` :=mδ(y`). It follows that

Pi
(

max
1≤k≤τm`(i)

Sk > y`
)

=
m∑̀
n=1

Pi
(

max
1≤k≤n−1

(Sτk−1(i) +Hi
k)≤ y` < Sτn−1(i) +Hi

n

)

=
m∑̀
n=1

Pi
(

max
1≤k≤n−1

(W i
2m`−n+1,k +Hi

2m`−n+k+1)≤ x` <W i
2m`−n+1,n+Hi

2m`+1

)
,
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where W i
m,k := Sτm+k−1(i)−Sτm(i). We have used that (Sτn(i)−Sτn−1(i),H

i
n)n≥1 forms a

sequence of i.i.d. random variables under Pi. Sτn(i)
Pi−→∞ ensures that we can pick h > 0

and n0 ∈ N such that

Pi(Hi > h) ≤ δ

4 and c := inf
n≥n0

Pi(Sτn(i) > h) ≥ 1
2 .

Choosing ` such that m` > n0, we further estimate
Pi
(

max
1≤k≤τm`(i)

Sk > y`
)

≤
m∑̀
n=1

Pi
[(

max
1≤k≤n−1

(W i
2m`−n+1,k +Hi

2m`−n+k+1)≤ y` <W i
2m`−n+1,n+Hi

2m`+1

)

· 1
c
Pi(Sτ2m`−n+1(i) > h)

]

≤ 1
c

m∑̀
n=1

Pi
(

max
1≤k≤n−1

(W i
2m`−n+1,k +Hi

2m`−n+k+1)≤ y` <W i
2m`−n+1,n+Hi

2m`+1,

Sτ2m`(i)
+Hi

2m`+1 > y`+h

)

≤ 1
c
Pi(Sτ2m`(i)

+Hi
2m`+1 > y`+h)

≤ 1
c

[
Pi(Sτ2m`(i)

> y`) + Pi(Hi > h)
]

≤ 2Pi(Sτ2m`(i)
> y`) + δ

2 .

Set ζk,` := (Sτk(i)−Sτk−1(i))+∧y`, so that A+
i (y`) = Ei ζ1,`. We obtain

Pi(Sτ2m`(i)
> y`) ≤ Pi

(2m∑̀
k=1

(Sτk(i)−Sτk−1(i))+ > y`

)

≤ Pi
(2m∑̀
k=1

ζk,` > y`

)
+ 2m`Pi(Sτ(i) > y`).

Applying (6.16), Tschebychev’s inequality and y2
` Pi(Sτ(i) > y`)≤ Ei ζ2

1,` yields

Pi(Sτ2m`(i)
> y`) ≤ Pi

( 2m∑̀
k=1

ζk,`−2m`A
+
i (y`)> (1− ε)y`

)
+ 2m`Pi(Sτ(i) > y`)

≤
2m`Eiζ2

1,`
(1− ε)2 y2

`

+ 2m`Pi(Sτ(i) > y`)

≤
4m`Ei ζ2

1,`
(1− ε)2 y2

`

for all `≥ 1. For sufficiently large `, we have Eiζ2
1,` ≤ 3y`A+

i (y`) by Lemma 3.2 from [33].
In combination with (6.15), we obtain for such `

Pi(Sτ2m`(i)
> y`) ≤

12m`A
+
i (y`)

(1− ε)2 y`
≤ 6ε

(1− ε)2 .
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Thus, we have shown

Pi
(

max
1≤k≤τm`(i)

Sk > y`
)
≤ 12ε

(1− ε)2 + δ

2

for all ε ∈ (0,1) and sufficiently large ` not depending on ε. Finally, choose ε with

12ε
(1− ε)2 <

δ

2

to obtain a contradiction of the definition of m` from

δ > Pi
(

max
1≤k≤τm`(i)

Sk > y`
)
≥ Pi

(
max

1≤k≤m`

Sk > y`
)

for large `. ut

Now, we give the announced result on σ>(x).

Proposition 6.19 Let (Mn,Sn)n≥0 be a non-trivial MRW such that Sτn(i)
Pi−→ ∞ and

Eiτ(i)1+α <∞, α≥ 0, for some i ∈S . The following conditions are equivalent:

(i) EiJi(S−τ(i))
1+α <∞ for some (hence all) i ∈S .

(ii) Eiσ>(x)1+α <∞ for some (hence all) (x,i) ∈ R≥×S .

and imply Eiσ>(x)1+α <∞ for all (x,i) ∈ R≥×S .

Proof. First of all, notice that EiJi(S−τ(i))
1+α <∞ is either true for all i ∈S or none

due to Lemma 3.4.
“(i)⇒(ii)” By Lemma 3.3 (iv), Ai(y)> 0 for all sufficiently large y is satisfied. Hence,

Lemma 3.5 yields Eiτν(x)(i)1+α <∞ for all i∈S and we obtain (ii) from τν(x)(i)≥ σ>(x).
“(ii)⇒(i)” Suppose Eiσ>(x)1+α < ∞ for some i ∈ S . The assertion follows from

Lemma 3.5 if Pi(σ>(0) = τ(i)) = 1. Conversely, if Pi(σ>(0) > τ(i)) =: p > 0, Lemma 6.18
yields

∞ > Eiσ>(x)1+α ≥ Eiσ>(0)1+α1{σ>(0)>τ(i)}

= Ei
[
τ(i) + (σ>(0)− τ(i))

]1+α
1{σ>(0)>τ(i)}

≥
∫
Eiσ>(y)1+α Pi(S−τ(i) ∈ dy,Sτ(i) ≤ 0)

&
∫
Ji(y)1+α Pi(S−τ(i) ∈ dy,Sτ(i) ≤ 0)

� EiJi(S−τ(i))
1+α.

The implication of Eiσ>(x)1+α <∞ for all (x,i) ∈ R≥×S was already shown in
Lemma 3.5. ut

58



6. On Fluctuation-Theoretic Quantities

Given Eiσ>(x)1+α <∞ and q(i,x) > 0, following the steps of the proof of “(ii)⇒(i)”
yields ∫

Ji(y)1+α Pi(S−τ(i) ∈ dy,H
i ≤ x) < ∞

for all large x ∈ R≥. As Example 6.16 illustrated, Pi(S−τ(i) > y,Hi ≤ x) and Pi(S−τ(i) > y)
can be of a different magnitude.

6.6. Asymptotic Growth
We aim at a counterpart of Theorem 1.6. An important step is the verification of the
following lemma.

Lemma 6.20 Let (Mn,Sn)n≥0 be a non-trivial MRW and α ≥ 0. Suppose Eiτ(i)1+α ∨
Ei[τ(i) logτ(i)]<∞ and ∑n≥1n

α−1Pi(Sn ≤ 0)<∞ are satisfied for some i ∈S . Then,

∑
n≥1

nα−1Pi(Sn ≤ y) �

logJi(y), if α = 0,
Ji(y)α, if α > 0,

as y→∞ for all i ∈S .

Proof. Due to (6.10) it suffices to show∫ ∑
n≥1

nα−1Pi(Sτn(i) ≤ x+y) Vi(dx) � fα(y) as y→∞,

where

fα(y) :=

logJi(y), if α = 0,
Ji(y)α, if α > 0.

The assumption induces Ai(y) > 0 for all sufficiently large y and EiJi(S−τ(i))
1+α <∞ by

Theorem 6.13, which implies∑
n≥1

nα−1Pi(Sτn(i) ≤ x+y) � fα(x+y) as y→∞

for all x ∈ R≥ (see Theorem 1.6). Hence, one part follows easily from∫ ∑
n≥1

nα−1Pi(Sτn(i) ≤ x+y) Vi(dx) ≥
∑
n≥1

nα−1Pi(Sτn(i) ≤ y).

For the other part, notice first that there exists a constant cα > 0 such that

fα(x+y) ≤ cα [fα(x) +fα(y)] for all x,y large enough. (6.17)

This follows from subadditivity of y 7→ Ji(y) and of y 7→ log(y) for large values combined
with (x+y)α ≤ c′α(xα+yα) for all x,y ∈ R> and some constant c′α > 0. Consequently, an
appeal to (6.17) yields∫ ∑

n≥1
nα−1Pi(Sτn(i) ≤ x+y) Vi(dx) �

∫
fα(x+y) Vi(dx)
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.
∫
fα(x) +fα(y) Vi(dx)

�
∫
fα(x) Vi(dx) +fα(y) � fα(y),

which finishes the proof. ut

Theorem 6.21 Let (Mn,Sn)n≥0 be a non-trivial MRW. The following assertions are true:

(i) If (Sn)n≥0 is positive divergent and Ei[τ(i) logτ(i)]<∞, then∑
n≥1

n−1Pi(Sn ≤ y) � logJi(y) as y→∞

for all i ∈S .

(ii) Suppose Ei ρ(0)α <∞ and Eiτ(i)1+α <∞ for some i ∈S and α > 0. Then,

Eiσ>(y)α �
∑
n≥1

nα−1Pi(Sn ≤ y) � EiΛ(y)α � Eiρ(y)α � Ji(y)α

as y→∞ for all i ∈S .

Proof. (i) Since positive divergence implies the finiteness of the harmonic renewal mea-
sures, the assertion results immeditately from Lemma 6.20.

(ii) Fix some arbitrary i ∈ S . The lower approximation follows from Lemma 6.18,
σ>(y)≤ Λ(y) + 1 and

Eiσ>(y)α �
∑
n≥1

nα−1Pi( max
1≤k≤n

Sk ≤ y) ≤
∑
n≥1

nα−1Pi(Sn ≤ y) . Ei ρ(y)α.

It remains to prove Ei ρ(y)α . Ji(y)α as y→∞, because Λ(y)≤ ρ(y). Define

ρ̃(y) := sup{n≥ 0 : Sτν(y)(i)+n−Sτν(y)(i) ≤ 0}.

Observe that Ei ρ̃(y)α = Eiρ(0)α <∞ and

ρ(y) ≤ τν(y)(i) + ρ̃(y)

entails Ei ρ(y)α . Eiτν(y)(i)α as y→∞. An appeal to Lemma C.5 entails

Eiτν(y)(i)α �
∑
n≥1

nα−1Pi(τν(y)(i)> τn(i)) ≤
∑
n≥1

nα−1Pi(Sτn(i) ≤ y).

Furthermore, since Eiρ(0)α <∞ implies ∑n≥1n
α−1Pi(Sτn(i) ≤ 0) <∞, the assertion fol-

lows from Theorem 1.6. ut

Besides, one can generalise the assertion of Lemma C.6 to MRWs.
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Lemma 6.22 Suppose (Sτn(i))n≥0 is positive divergent for some (hence all) i ∈S . Then
∑
n≥1

Pi(0≤ Sn ≤ y) � Ji(y) as y→∞

for all i ∈S .

Proof. One part follows directly from Lemma C.6 and∑
n≥1

Pi(0≤ Sn ≤ y) ≥
∑
n≥1

Pi(0≤ Sτn(i) ≤ y).

For the other one, set U>i ((−∞,y]) := U>i ([0,y]) :=∑
n≥0Pi(Sτ>n (i) ≤ y) for y ∈R≥. Then,

standard renewal techniques yield

∑
n≥1

Pi(0≤ Sn ≤ y) =
∑
n≥1

Ei
( τ>n (i)∑
k=τ>n−1(i)+1

1{0≤Sk≤y}
)

=
∫
Ei
( τ>(i)∑
k=1

1{0≤Sk+x≤y}

)
U>i (dx)

= Ei
[ τ>(i)∑
k=1

U>i ([−Sk,y−Sk])
]

≤ Ei
[ τ>(i)∑
k=1

U>i ([0,y])
]

= Eiτ>(i) ·U>i ([0,y]),

whereupon an application of Theorem 1.6 entails the assertion. ut

7. Further Counterexamples
In this section, we discuss briefly three assertions, which arise from seeking generalisations
of results from fluctuation theory of random walks.

We begin with a remark on a strong law of large numbers for MRWs. As noted in
Theorem 2.1 (iv), EπX+

1 ∧EπX−1 <∞ implies limn→∞n
−1Sn = EπX1 a.s. Additionally,

this assumption ensures

EπX1 = EπX+
1 −EπX−1 = πi

[
Ei
( τ(i)∑
k=1

X+
k

)
−Ei

( τ(i)∑
k=1

X−k

)]

and
πiEiSτ(i) = πi (EiS+

τ(i)−EiS−τ(i)) (7.1)
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to be well-defined and equal. Given EπX+
1 ∧EπX−1 =∞, (7.1) can still be well-defined

and thus limn→∞ τn(i)−1Sτn(i) = µ ∈R a.s., but Ei(
∑τ(i)
k=1X

+
k )−Ei(

∑τ(i)
k=1X

−
k ) is not well-

defined. Hence, it appears dubious, whether it is true that limn→∞n
−1Sn = µ ∈ R a.s.

implies EπX1 = µ. It is generally known that the latter implication is true for ordinary
random walks. However, the subsequent example shows that it is wrong for MRWs.

Example 7.1 Let (Mn)n≥0 be a birth-death chain on N0 with transition probabilities

p01 := 1 and pi i−1 := 1−pi i+1 := i+ 2
2(i+ 1) , i ∈ N.

Using that the stationary distribution for birth-death chains is given by

πi =
∏i
k=1 pk−1k∏i
k=1 pkk−1

π0, i ∈ N,

and π0 such that ∑i≥0πi = 1, we infer

πi �
1

(i+ 1)(i+ 2) �
1
i2
.

Define a null-homologous MRW by setting

Xn := g(Mn)−g(Mn−1), n≥ 1,

where g(0) := 0 and
g(2i) := −g(2i−1) := i

for i ∈ N. Then, since p2i−12i � 1
2 as i→∞, we obtain

EπX+
1 ≥

∑
i≥1

π2i−1 ·p2i−12i ·E(X1|M0 = 2i−1,M1 = 2i)

�
∑
i≥1

1
(2i)2 ·

1
2 ·2i = ∞

and EπX−1 =∞ follows analogously. Notice that

|Sτn(0)+k| ≤ |Xτn(0)+k| ≤ k P0-a.s.

for all n ∈ N0 and 1≤ k < χn+1(0). Since E0τ(0)<∞, we infer∣∣∣∣Snn
∣∣∣∣ ≤ χN(n)+1(0)

n
n→∞−→ 0 P0-a.s.

and then the same under Pπ, where N(n) := sup{0≤ k ≤ n : τk(0)≤ n}.
Choose any sequence (Zn)n≥1 of i.i.d. random variables independent of (Mn)n≥0 with

EZ1 =: µ ∈ R\{0} and set

X ′n := Zn+g(Mn)−g(Mn−1), n≥ 1.

The associated MRW (Mn,S
′
n)n≥0 is easily seen to be non-trivial with limn→∞n

−1S′n = µ
Pπ-a.s., although EπX ′1 does not exist.
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As mentioned before, one would rather like to have EiJi(Di)1+α <∞, α≥ 0, replaced
with ∫ ( y

Eπ(X+
1 ∧y)

)1+α
Pπ(X−1 ∈ dy) < ∞. (7.2)

Our example will show that

Pπ(X+ > y) . Pi(S+
τ(i) > y) as y→∞ (7.3)

and particularly
y

Eπ(X+∧y) & Ji(y) as y→∞

are generally not true. Since the corresponding MRW is non-negative, the example can be
adjusted by adding a 1-step path from 0 to 0 with P0(X1 ∈ ·|M1 = 0) = P0(X1 ∈ ·|M1 =
0, X1 < 0) such that EiJ0(D0)1+α <∞ and (7.2) are not equivalent. Additionally, notice
that the example does again contain a dominating null-homologous MRW.

Example 7.2 Let β > 1 and (Mn)n≥0 be a Markov chain on N0 with transition proba-
bilities

p01 := 1 and pi i+1 := 1−pi0 :=
(

i

i+ 1

)β
for i ∈ N.

The Markov chain’s stationary distribution is given by

πi = cE0

( τ(0)∑
k=1

1{Mk=i}

)
= cP0(τ(0)> i)

= c
i∏

k=1
pk−1k = c

iβ

with c= 1/E0τ(0)<∞. The increments are defined by Xn :=Mn, n≥ 1, so that S+
τ(0) =∑τ(0)

k=1X
+
k = τ(0)(τ(0)−1)/2 P0-a.s.

We obtain

P0(S+
τ(0) > n) = P0

(
τ(0)(τ(0)−1)> 2n

)
� P0(τ(0)>

√
n) � 1

nβ/2

and
Pπ(X+

1 > n) = Pπ(M1 > n) =
∑
k>n

πk =
∑
k>n

c

kβ
� 1

nβ−1

as n→∞, which shows (7.3). In particular, β can be chosen to be in (1,2) and thus
Eπ|X1|=∞.

There is a well-known result from fluctuation theory we have not dealt with so far.
[27, Theorem 3.3.1 (ii)] states that for a random walk with positive drift

E(X+)1+α < ∞ ⇔ E(Sσ>(x))1+α < ∞ for some (hence all) x ∈ R≥
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is satisfied for any α≥ 0. Translated to MRWs, given 0<EπX1 <∞, one would conjecture
an equivalence between

Ei(Sσ>(x))1+α < ∞ for all (x,i) ∈ R≥×S

and
Ei
(

max
1≤k≤τ(i)

X+
k

)1+α
< ∞ for all i ∈S .

In fact, the latter assertion can be stronger, as the subsequent example reveals.

Example 7.3 Suppose α > 0. Let (Mn)n≥0 be the Markov chain with state space S ⊂
{0}∪N2 from Example 2.8 with Γ such that

P(Γ = n) � 1
n3+α+1/α as n→∞.

We derive
EΓ 2+1/α < ∞ and EΓ 2+α+1/α = ∞. (7.4)

Define the increments (Xn)n≥1 by

Xn := k1+1/α, if Mn = (`,k), or Mn−1 = (k,k−1) and Mn = 0 for k,` ∈ N.

The MRW is non-negative and fulfils

0 < EπX1 = π0E0Sτ(0) ≤ π0EΓ 2+1/α < ∞

by (7.4). As X1 ≥ 1 Pπ-a.s., we infer σ>(x)≤ dxe a.s. for all i ∈S and thus

Ei(Sσ>(x))1+α ≤ Ei
( dxe∑
k=1

Xk

)1+α
≤ dxe1+α max

1≤k≤dxe
EiX1+α

k

≤ dxe1+α · di+xe2+α+1/α < ∞.

However, (7.4) yields

E0
(

max
1≤k≤τ(0)

X+
k

)1+α
= E0X

1+α
τ(0) = EΓ 2+α+1/α = ∞.

8. Comparison with Perturbed Random Walks
Given an i.i.d. sequence (Zn,ηn)n≥1, (∑n−1

k=1Zk + ηn)n≥1 is called perturbed random walk
(PRW). Naturally, MRWs and PRWs are different stochastic processes, but in some regards
and under additional assumptions their study reduces to the same object. Positive diver-
gence of MRWs is equivalent to positive divergence of (Sτn−1(i)−Di

n)n≥1. Moreover, under
the assumption of Eiτ(i)1+α <∞, an application of Lemma C.5 yields that Eiρ(0)α <∞ if
and only if the α-moment of the last exit time of (Sτn−1(i)−Di

n)n≥1 is finite. Analogously,
under an additional moment assumption on τ(i), a study of power moments of σ> under
Pi reduces to a study of power moments of the first passage time of (Sτn−1(i) +Hi

n)n≥1.
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As these two processes are PRWs, we can translate corresponding results on PRWs into
the context of MRWs. In fact, the translation works also vice versa. W.l.o.g., one can as-
sume that P(η ∈ Z) = 1, since the distribution of η has only an impact on the fluctuations
through its tails. Therefore, the approach in Example 6.16 demonstrated that one can
construct a MRW such that Sτ(i)

d= Z, Hi d= η+ and Di d= η−.
Alsmeyer, Iksanov and Meiners have studied fluctuation theory of PRWs. The corre-

sponding article [5] has been published during this work. Their results on power moments
of the last level x exit time can be translated into the MRW context and therefore coin-
cides partially with Theorem 6.6. We have added two more equivalences and have used
different proofs, where we explicitly used the structure of MRWs, namely the ladder chain
(M>

n )n≥0 and the reduction to the study of (Sτ>n−1(i)−D>,i
n )n≥1. Another benefit of the

use of MRWs is an integral criterion for∣∣∣min
n≥0

Sn
∣∣∣ =

∣∣∣min
n≥1

(Sτn−1(i)−Di
n)
∣∣∣

to possess power moments. However, we also have not found an equivalent condition for
the existence of power moments of the first level x passage times, but improved the insights
provided by their example (see [5, Proposition 2.13]) by another example (see Example
6.16). Furthermore, for a PRW with ∑n

k=1Zk
P−→∞ and (Z,η) being an independent pair

of random variables, the proof of Proposition 6.19 and the remark thereafter entails that
the existence of (1+α)-moments of the first level x passage time for the PRW is equivalent
to same finiteness in terms of the random walk (∑n

k=1Zk)n≥0. Unfortunately, Z and η are
dependent in most examples.

In contrast to the above-mentioned fluctuation-theoretic quantities, the criteria for the
finiteness of power moments of Λ(0) and of the weighted renewal measures from Section
6.4 differ from the corresponding ones for PRWs, since these quantities are influenced by
the entire excursion within a cycle and the cycle length can be unbounded. Nevertheless,
our approach for dealing with power moments of Λ(0) is close to the one from [5].

9. Special Cases
The initial aim was to find a not too restrictive class of MRWs whose fluctuation behaviour
is close to that of random walks. In contrast to the canonical class of non-trivial MRWs,
one would rather like to have the fluctuation results expressed in terms of the embedded
random walks or the stationary increments.

To consider MRWs with a finite state space is very restrictive, but an important
example. Since such a MRW can be regarded as a finite union of its embedded random
walks, we can easily relate fluctuation-theoretic results on the MRW to those on the
embedded random walks. Moreover, it is possible to give integral criteria in terms of the
stationary increments (see Section 9.1).

In Section 9.2, we will proceed with a study of certain stochastically bounded MRWs,
whose assumptions are motivated by our counterexamples for non-trivial MRWs. After-
wards, our focus lies on fluctuation theory for tail-homogeneous MRWs.
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9.1. The Case |S |<∞
Under the assumption |S |<∞, one intuitively supposes that all assertions from fluctua-
tion theory of random walks can be generalised to MRWs. We will show the truth of this
intuition. In particular, even power moments of σ> are manageable. Furthermore, we give
integral criteria in terms of the stationary increments.

A first lemma including the stationary increment distribution is the following one.

Lemma 9.1 Let (Mn,Sn)n≥0 be a MRW with finite state space. The following assertions
are true for all i ∈S :

(i) There exists x ∈ R≥ such that Pi(S−τ(i) > y) & Pπ(X−1 > y+x) as y→∞.

(ii) Eπ|X1|<∞ if and only if Ei|Sτ(i)|<∞.

(iii) Suppose EπX+ =∞. Then, Ei(S+
τ(i)∧y)� Eπ(X+

1 ∧y) as y→∞.

Proof. (i) Fix some arbitrary i ∈S . Our aim is to show

Pi(S−τ(i) > y) & Pj(X−1 > y+xjs|M1 = s) as y→∞

for some xjs ∈R≥ for all j,s ∈S with pjs > 0. Then, by finiteness of |S |, we can choose
x := maxj,s∈S xjs <∞ and obtain

Pi(S−τ(i) > y) &
∑
j∈S

πj pjsPj(X−1 > y+x|M1 = s) = Pπ(X−1 > y+x)

as y→∞.
For u ∈S , define

τ0(u) := inf{n≥ 0 :Mn = u}.

Pick arbitrary j,s ∈S with pjs > 0. There exist m1,m2 ∈ N0, z ∈ R≥ such that

p1 := Pi(τ0(j) =m1 < τ(i), |Sm1 | ≤ z) > 0

and
p2 := Ps(τ0(i) =m2, |Sm2| ≤ z) > 0.

It follows that

Pi(S−τ(i) > y) ≥ Pi(τ0(j) =m1, |Sm1 | ≤ z, Mm1+1 = s, τ(i) =m1 +m2 + 1,
|Sm1+m2+1−Sm1+1| ≤ z, S−τ(i) > y)

≥ p1 ·p2 ·Pj(X−1 > y+ 2z|M1 = s)
� Pj(X−1 > y+ 2z|M1 = s).

(ii) Notice that the assertion (i) is also valid for (S+
τ(i),X

+
1 ). Consequently, using as-

sertion (i) for the positive and the negative part, we derive that Ei|Sτ(i)| <∞ implies
Eπ|X1|<∞. The reverse implication follows from (2.2).
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(iii) Let x ∈ R≥ be the constant provided by assertion (i) for (S+
τ(i),X

+
1 ). We infer

Ei(S+
τ(i)∧y) =

∫ y

0
Pi(S+

τ(i) > z) dz &
∫ y

0
Pπ(X+

1 > z+x) dz as y→∞.

EπX+
1 =∞ ensures that the latter term is positive and thus

∫ y

0
Pπ(X+

1 > z+x) dz �
∫ y+x

0
Pπ(X+

1 > z) dz = Eπ[X+
1 ∧ (y+x)] as y→∞.

Then, one side follows upon using Eπ[X+
1 ∧ (y+x)]� Eπ(X+

1 ∧y) (cf. Lemma 3.3 (ii)).
For the other side, we use the occupation measure formula (2.1) to infer

Eπ(X+
1 ∧y) = πiEi

[ τ(i)∑
k=1

(X+
k ∧y)

]
≥ πiEi

[( τ(i)∑
k=1

X+
k

)
∧y
]
≥ πiEi(S+

τ(i)∧y)

for all y ∈ R≥. ut

The assumption EπX+
1 =∞ is needed, since EiS+

τ(i) = 0 and 0<EπX+
1 <∞ is possible

otherwise. In particular, a MRW with EπX+
1 =∞ and |S |<∞ is non-trivial.

For y ∈ R≥, define

Aπ(y) := Eπ(X+
1 ∧y)−Eπ(X−1 ∧y)

and

Jπ,γ(y) :=


y

[Eπ(X+
1 ∧y)]γ , if Pπ(X+

1 = 0)< 1,

y, if Pπ(X+
1 = 0) = 1,

where 0/[Eπ(X+
1 ∧0)]γ := 1 if γ > 0. In particular, set Jπ := Jπ,1.

The next lemma puts the corresponding integral criteria in relation. We will use the
well-known result that Eiτ(i)1+α <∞, i ∈S , for all α≥ 0 if |S |<∞.

Lemma 9.2 Let (Mn,Sn)n≥0 be a non-trivial MRW with |S | <∞. Then, for all α ≥ 0
and γ ∈ [0,1], the following conditions are equivalent:

(i) EiJi,γ(S−τ(i))
1+α <∞ for some (hence all) i ∈S .

(ii) EiJi,γ(Di)1+α <∞ for some (hence all) i ∈S .

(iii) EπJπ,γ(X−1 )1+α <∞.

Proof. If EπX+
1 <∞, an appeal to the occupation measure formula (2.1) shows

EπX+
1 = πiEi

( τ(i)∑
k=1

X+
k

)
≥ πiEiS+

τ(i)
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and therefore Jπ,γ(y)� y � Ji,γ(y) as y→∞. Otherwise, EπX+
1 =∞ and Lemma 9.1 (iii)

entails Jπ,γ(y) � Ji,γ(y) as y→∞. Hence, it suffices to just compare the corresponding
integrals with integrand J1+α

π,γ .
“(ii)⇒(i)” follows directly from Di ≥ S−τ(i).
“(i)⇒(iii)” Let x∈R≥ be the constant provided by Lemma 9.1 (i). Jπ,γ(y−x)� Jπ,γ(y)

as y→∞ yields

∞ > EiJπ,γ(S−τ(i))
1+α & EπJπ,γ((X−1 −x)+)1+α � EπJπ,γ(X−1 )1+α.

“(iii)⇒(ii)” Let Fj,s be the distribution function of X−1 given M0 = j and M1 = s
and denote by F−1

j,s its pseudo-inverse. Now, given an i.i.d. sequence (Un)n≥1, which is
independent of all other occurring random variables and with U1 uniformly distributed on
(0,1), (Mn,F

−1
Mn−1,Mn

(Un))n≥1 forms a distributional copy of (Mn,X
−
n )n≥1. Define X̂n :=

F−1
Mn−1,Mn

(Un) and Ŝn =∑n
k=1 X̂k for n≥ 1. Moreover, set

1−G(y) := max
j,s∈S

Pj(X−1 > y|M1 = s),

where G is a distribution function, since its right-continuity follows from the finiteness
of |S |. (Wn)n≥1 := (G−1(Un))n≥1 is an i.i.d. sequence, which is independent of (Mn)n≥0
and X̂n ≤Wn for all n≥ 1.

Back to the actual assertion, we use that Jπ,γ is a subadditive, non-decreasing function
to derive

EiJπ,γ(Di)1+α ≤ EiJπ,γ
( τ(i)∑
k=1

X−k

)1+α
= EiJπ,γ(Ŝτ(i))1+α

≤ Ei
( τ(i)∑
k=1

Jπ,γ(X̂k)
)1+α

≤ E
( τ(i)∑
k=1

Jπ,γ(Wk)
)1+α

and according to Theorem 1.5.4 from [27] the upper bound is finite if and only if
Eiτ(i)1+α <∞ and EJπ,γ(W )1+α <∞. As remarked before, we only have to verify the
latter finiteness, which follows from

∞ > EπJπ,γ(X−1 )1+α =
∑
j,s∈S

πj pjsEj(Jπ,γ(X−1 )1+α|M1 = s)

≥ c
∑

j,s∈S :pjs>0

∫
Jπ,γ(y)1+α Pj(X−1 ∈ dy|M1 = s)

≥ cEJπ,γ(W )1+α,

where c := min{πj pjs : j,s ∈S and pjs > 0}. ut

The following two theorems form generalisations of Theorems 1.2–1.4 for the prevailing
case.

Theorem 9.3 Let (Mn,Sn)n≥0 be a non-trivial MRW with |S |<∞. The following con-
ditions are equivalent:
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(i) (Sn)n≥0 is positive divergent.

(ii) Ai(y)> 0 for all sufficiently large y and EiJi(S−τ(i))<∞ for some (hence all) i∈S .

(iii) Aπ(y)> 0 for sufficiently large y and EπJπ(X−1 )<∞.

(iv) ∑n≥1n
−1Pi(Sn ≤ x)<∞ for all (x,i) ∈ R≥×S .

(v) Eiσ>(x)<∞ for all (x,i) ∈ R≥×S .

Proof. “(i)⇒(iv)⇒(v)” can be concluded from Theorem 4.1 and “(ii)⇒(v)” is also already
known from Lemma 3.5.

“(v)⇒(ii)” The assumption entails that (M>
n )n≥0 forms a Markov chain on a finite state

space S >. Hence, (M>
n )n≥0 possesses a unique stationary distribution π> and Eiκ <∞,

where κ := inf{n≥ 1 :M>
n = i}<∞ and i∈S >. Furthermore, (M>

n ,σ
>
n )n≥0 forms a MRW

with Eπ>σ> <∞, since |S >|<∞. Finally, we use the occupation measure formula (2.1)
to conclude

Eiτ>(i) ≤ Eiσ>,i = Eπ> σ> ·Eiκ < ∞,

which is equivalent to (ii).
”(ii)⇔(iii)” Suppose Eπ|X1|<∞. By the second assertion of Lemma 9.1, (ii) and (iii)

reduce to the respective first condition. An application of (2.2) yields

πi lim
y→∞Ai(y) = πiEiSτ(i) = EπX1 = lim

y→∞Aπ(y)

and thus the equivalence of (i) and (ii).
Suppose Ei|Sτ(i)| =∞. Then, as remarked after Theorem 1.2, (ii) and (iii) reduce to

the respective second condition and these are equivalent by Lemma 9.2 for γ = 1.
”(ii)⇒(i)” (ii) states that (Sτn(i))n≥0 is positive divergent for all i∈S . Since |S |<∞,

this does clearly imply positive divergence of (Sn)n≥0. ut

Theorem 9.4 Let (Mn,Sn)n≥0 be a positive divergent MRW with |S | < ∞ and α >
0. (a) and (b) contain sets of equivalent conditions, which themselves are equivalent to
Eπ(X−1 )1+α <∞ if Eπ|X1|<∞.

(a) (i) Ei|minn≥0Sn|α <∞ for some (hence all) i ∈S .
(ii) Ei[(S−τ(i))

αJi(S−τ(i))]<∞ for some (hence all) i ∈S .

(iii) Eπ[(X−1 )αJπ(X−1 )]<∞.
(iv) Ei|Sσ6(−x)|α1{σ6(−x)<∞} <∞ for all (x,i) ∈ R≥×S .
(v) Ei(max0≤n≤ρ(x) |Sn|)α <∞ for some (hence all) (x,i) ∈ R≥×S .

(b) (i) Eiρ(x)α <∞ for some (hence all) (x,i) ∈ R≥×S .
(ii) EiJi(S−τ(i))

1+α <∞ for some (hence all) i ∈S .

(iii) EπJπ(X−1 )1+α <∞.
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(iv) Eiσαmin <∞.
(v) Eiσ6(−x)α1{σ6(−x)<∞} <∞ for some (hence all) (x,i) ∈ R≥×S satisfying

Pi(σ6(−x) =∞)> 0.
(vi) EiΛ(x)α <∞ for some (hence all) (x,i) ∈ R≥×S .
(vii) ∑n≥1n

α−1Pi(Sn ≤ x)<∞ for some (hence all) (x,i) ∈ R≥×S .
(viii) Eiσ>(x)1+α <∞ for all x ∈ R≥ for some (hence all) i ∈S .

Proof. Concerning the additional comment on the case Eπ|X1| <∞, notice that the
respective third condition of (a) and (b) reduces to Eπ(X−1 )1+α <∞.

(a) The equivalence of (i), (ii) and (iii) follows immediately from Theorem 6.1 and
Lemma 9.2 for γ = 1/(1 +α).

“(i)⇒(v)” As in [29, (vii)⇒(viii)], we derive

Pi
(

max
0≤n≤ρ(x)

Sn > y
)
≤ Pi

(
min
n≥0

(Sσ>(y)+n−Sσ>(y))< x−y
)

≤ Pi
(∣∣∣min
n≥0

(Sσ>(y)+n−Sσ>(y))
∣∣∣> y−x

)
for all y > x. Together with the obvious estimation

Pi( max
0≤n≤ρ(x)

−Sn > y) = Pi
(

min
0≤n≤ρ(x)

Sn <−y
)
≤ Pi

(
min
n≥0

Sn <−y
)

≤ Pi
(∣∣∣min
n≥0

Sn
∣∣∣> y−x

)
(see also [33, p. 30]), |S |<∞ implies

Pi
(

max
0≤n≤ρ(x)

|Sn|> y
)
≤ 2 max

j∈S
Pj
(∣∣∣min
n≥0

Sn
∣∣∣> y−x

)
,

which easily yields (v) for all (x,i) ∈ R≥×S .
“(v)⇒(ii)” Suppose (v) is true for some (x,i) ∈ R≥×S . Use

ρ[i] := sup{n≥ 0 : Sτn(i) ≤ 0} ≤ ρ(x)

to infer
Ei
(

max
0≤n≤ρ[i]

|Sτn(i)|
)α
≤ Ei

(
max

0≤n≤ρ(x)
|Sn|

)α
< ∞.

An appeal to Theorem 1.4 yields (ii).
“(i)⇒(iv)” is obviously true.
“(iv)⇒(i)” Let x ∈ R≥ be large enough for minj∈S Pj(σ6(−x) <∞) =: p > 0. Set

κ := inf{n≥ 1 : σ6n (−x) =∞}, where Pi(κ= `+ 1)≤ (1−p)`. We derive

Ei
∣∣∣min
n≥0

Sn
∣∣∣α ≤ Ei

[
x+

∣∣∣∣κ−1∑
k=1

(
Sσ6k (−x)−Sσ6k−1(−x)

)∣∣∣∣]α

�
∑
`≥0

Pi(κ= `+ 1)Ei
∣∣∣∣ ∑̀
k=1

(
Sσ6k (−x)−Sσ6k−1(−x)

)∣∣∣∣α
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≤
∑
`≥0

(1−p)` `α∧1
[

max
j∈S

Ej(|Sσ6(−x)|α|1{σ6(−x)<∞}

]
< ∞

(cf. [29, (v)0⇒(vii)]).
(b) By Theorem 6.6 and Lemma 9.2, (i)–(iii) are equivalent. Hence, the considerations

at the beginning of Section 6 entail that (i) is the strongest assertion in (b) and any
assertion in (b) implies (viii). Consequently, it remains to prove “(viii)⇒(ii)”.

Suppose (viii) is true. Positive divergence ensures S > 6= ∅ and Lemma 6.17 yields

Eiσ>(x)1+α < ∞ for all (x,i) ∈ R≥×S .

Pick some i ∈S > and set κ := inf{n≥ 0 : Sn =Hi
1}. Using |S >|<∞ results in

Eiσ>(0)1+α

≤ Ei
(
σ>1{Hi

1=0}+κ1{Hi>0}+
∑

j∈S>

1{Mκ=j,Hi
1>0} inf{n≥ 1 : Sκ+n−Sκ > 0}

)1+α

≤ (|S >|+ 2)α
(
Ei(σ>)1+α+Eiτ(i)1+α+

∑
j∈S>

Ej(σ>)1+α
)

< ∞,

which is equivalent to (ii) by Proposition 6.19. ut

Notice that Ei|Sσ6(−x)|α1{σ6(−x)<∞} <∞ for some (x,i)∈R≥×S can trivially hold,
when X1 =−x Pi-a.s.

The proof revealed that a positive divergent MRW only needs |S >|<∞ for

Eiσ>(x)1+α < ∞ for all (x,i) ∈ R≥×S

and EiJi(S−τ(i))
1+α <∞ to be equivalent for any α > 0.

9.2. Certain Markov Random Walks with Stochastically
Bounded Increments

Not all results from fluctuation theory of ordinary random walks can be generalised to non-
trivial MRWs, which mostly results from extremal excursion within a cycle being of greater
magnitude than the increment cumulated over a cycle. In our examples, this is caused by
an embedded null-homologous MRW with dominating extreme values. This motivates to
assume the increments of the MRW to be stochastically bounded. Unfortunately, we can
not dispense with a strong stochastic boundedness condition. However, we find out that in
regards to positive divergent MRWs it suffices to assume only some stochastic boundedness
of the positive increments. Referring to the integral criteria on positive divergent MRWs,
we strive for the validity of

Pi(Di > y) . Pi(S−τ(i) > cy) as y→∞ (9.1)
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for some constant c ∈R> and thus EiJi,γ(Di)1+α <∞ if and only if EiJi,γ(S−τ(i))
1+α <∞

for any (α,γ) ∈R≥× [0,1]. Recall that given a positive divergent MRW with Eiτ(i)1+α <
∞, α > 0, the following implications are true

EiJi(Di)1+α < ∞ ⇒ EiΛ(0)α < ∞ ⇒ EiJi(S−τ(i))
1+α < ∞.

Hence, (9.1) does generally also require

EiJi(S−τ(i))
1+α < ∞ ⇒

∫
Ji(y) Vαi (dy) < ∞,

(cf. Theorem 6.9 and the remark after its proof). Example 6.12 indicates that this impli-
cation can be false if some power moment of τ(i) is infinite. This motivates assumption
(A1) below. Our assumptions are:

(A1) Eiτ(i)1+β <∞ for all β ≥ 0,

(A2) there is a non-negative random variable W such that

sup
i,j∈S

Pi(X > y|M1 = j,X > 0) ≤ P(W > y) for all y ∈ R>,

(A3) E(W )ε <∞ for some ε > 0.

Define S⊕τ(i) :=∑τ(i)
k=1X

+
k and S	τ(i) :=∑τ(i)

k=1X
−
k . We will prove that even the tails of S−τ(i)

and S	τ(i) are of the same magnitude under (A1)–(A3), but we are still not able to relate
the results to conditions in terms of the stationary increments. Moreover, the assumptions
do not enable us to find an equivalent condition for finiteness of power moments of σ>.

Our main theorems on MRWs fulfilling the aforementioned assumptions are:

Theorem 9.5 Let (Mn,Sn)n≥0 be a non-trivial MRW fulfilling (A1)–(A3). Consider the
following assertions:

(i) (Sn)n≥0 is positive divergent.

(ii) Ai(y)> 0 for all sufficiently large y and EiJi(S−τ(i))<∞ for some (hence all) i∈S .

(iii) ∑n≥1n
−1Pi(Sn ≤ x)<∞ for some (hence all) (x,i) ∈ R≥×S .

(iv) Eiσ>(x)<∞ for all (x,i) ∈ R≥×S .

Then, (i) ⇔ (ii) ⇔ (iii) ⇒ (iv).

Theorem 9.6 Let (Mn,Sn)n≥0 be a positive divergent MRW fulfilling (A1)–(A3). For
α > 0, (a) and (b) contain sets of equivalent conditions, which themselves are equivalent
to Ei(S−τ(i))

1+α <∞ if Eπ|X1|<∞.

(a) (i) Ei|minn≥0Sn|α <∞ for some (hence all) i ∈S .
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(ii) Ei[(S−τ(i))
αJi(S−τ(i))]<∞ for some (hence all) i ∈S .

(b) (i) Eiρ(x)α <∞ for some (hence all) (x,i) ∈ R≥×S .
(ii) EiJi(S−τ(i))

1+α <∞ for some (hence all) i ∈S .

(iii) Eiσαmin <∞.
(iv) Eiσ6(−x)α1{σ6(−x)<∞} <∞ for some (hence all) (x,i) ∈ R≥×S satisfying

Pi(σ6(−x) =∞)> 0.
(v) EiΛ(x)α <∞ for some (hence all) (x,i) ∈ R≥×S .
(vi) ∑n≥1n

α−1Pi(Sn ≤ x)<∞ for some (hence all) (x,i) ∈ R≥×S .
(vii) Eiσ>(x)1+α <∞ for some (hence all) (x,i) ∈ R≥×S .

In regard to the latter two theorems, we can point out that the fluctuation behaviour
of the MRW, its embedded random walk and its dual MRW coincide. For the latter recall
that #S#τ(i)

d= Sτ(i) under Pi.
The moment assumption on W is needed for the application of the following lemma.

Lemma 9.7 Let (Tn)n≥0 be an i.i.d. sequence of non-negative random variables with
ET ε <∞ for some ε > 0. Then,

1
nγ

n∑
k=1

Tk
P−→ 0 (9.2)

for some γ ∈ R>.

Proof. Following [32, Theorem 2.4],

1
nγ

n∑
k=1

Tk
P−→ 0

is satisfied if and only if

nE(T ∧nγ)
nγ

= n
∫ nγ
0 P(T > y) dy

nγ
n→∞−−−→ 0.

W.l.o.g., suppose ε < 1. ET ε <∞ entails P(T > y) . y−ε as y→∞. Choose γ := 2/ε > 1
and thus limn→∞n

−1 (nγ)ε =∞. Then, (9.2) follows from

limsup
n→∞

n
∫ nγ
0 P(T > y) dy

nγ
. limsup

n→∞

n
∫ nγ
1 y−ε dy

nγ
� limsup

n→∞

n

(nγ)ε = 0.

ut

The crucial step for the proof of the above theorems is taken by the verification of the
subsequent lemma.
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Lemma 9.8 Let (Mn,Sn)n≥0 be a non-trivial MRW fulfilling (A1)–(A3) and
Ei(S	τ(i))

1+β =∞ for some β ≥ 0 and i ∈S . Then,

Pi(Di > 2y) . Pi(S	τ(i) > 2y) . Pi(S−τ(i) > y) as y→∞.

Proof. Obviously, it suffices to prove Pi(S	τ(i)> 2y).Pi(S−τ(i)>y) as y→∞. Let (Wn)n≥1
denote an i.i.d. sequence of copies ofW , which is independent of all other occurring random
variables. At first, notice the existence of n(y) ∈ N, n(y) ↑∞, such that

Pi(S	τ(i) > y) � Pi(S	τ(i) > y, τ(i)≤ n(y)) as y→∞.

For ` ∈ N, set I` := {1≤ k ≤ ` : Xk ≤ 0} and Ic` := {1, . . . , `}\ I`. We infer from the inde-
pendence of (X1, . . . ,Xn) given (M0, . . . ,Mn) and (A2)

Pi(S−τ(i) > y)

≥ Pi
(
S	τ(i)−S

⊕
τ(i) > y, τ(i)≤ n(2y)

)
=

n(2y)∑
`=1

∑̀
m=1

Pi
( ∑
k∈I`

X−k −
∑
k∈Ic`

X+
k > y, τ(i) = `, |I`|=m

)

= Ei
[n(2y)∑
`=1

∑̀
m=1

Pi
( ∑
k∈I`

X−k −
∑
k∈Ic`

X+
k > y, τ(i) = `, |I`|=m

∣∣∣∣M0, . . . ,Mn(2y)

)]

≥
n(2y)∑
`=1

∑̀
m=1

Pi
( ∑
k∈I`

X−k −
n(2y)∑
k=1

Wk > y, τ(i) = `, |I`|=m
)

≥
∫
Pi
(n(2y)∑
k=1

Wk < x−y
)
Pi
(
S	τ(i) ∈ dx, τ(i)≤ n(2y)

)

≥ Pi
(1
y

n(2y)∑
k=1

Wk < 1
)
·Pi

(
S	τ(i) > 2y, τ(i)≤ n(2y)

)

� P
(1
y

n(2y)∑
k=1

Wk < 1
)
·Pi(S	τ(i) > 2y).

Consequently, it remains to show positiveness of the first factor for all large y. By (A3),
an appeal to Lemma 9.7 yields

1
nγ

n∑
k=1

Wk
P−→ 0 (9.3)

for some γ ∈ R>. W.l.o.g., let γ > 1. (A1) entails∫
yβ Pi(S	τ(i) > 2y, τ(i)> y

1/γ) dy ≤
∫
yβ Pi(τ(i)γ > y) dy ≤ Eiτ(i)γ(1+β) < ∞.

Then, since
∫
yβ Pi(S	τ(i) > 2y) dy =∞, we can suppose n(2y)γ = y. A combination with

(9.3) results in

P
(1
y

n(2y)∑
k=1

Wk < 1
)

= 1−P
( 1
n(2y)γ

n(2y)∑
k=1

Wk ≥ 1
)

y→∞−−−→ 1.
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ut

Proof of Theorem 9.5. Referring to Theorem 4.4, we only have to deal with the case
EπX+

1 = EπX−1 = ∞. Notice that EiS	τ(i) = π−1
i EπX−1 . Therefore, Lemma 9.8 yields

EiJi(Di) <∞ if and only if EiJi(S−τ(i)) <∞. Moreover, since the latter is an implica-
tion of condition (iii), the assertion follows from Theorem 4.1. ut

Proof of Theorem 9.6. Preliminarily, notice that Eπ|X1|<∞ if and only if Ei|Sτ(i)|<
∞. As mentioned before, it remains to show that EπX+

1 ∨EπX−1 =∞ implies Ei|Sτ(i)|=
∞. The occupation measure formula yields that Eπ|X1| =∞ if and only if EiS⊕τ(i) +
EiS	τ(i) =∞, which already implies Ei|Sτ(i)|=∞ by an application of Lemma 9.8.

Suppose Ei(S	τ(i))
1+β <∞ for all β ≥ 0. Then, trivially

EiJi(Di)1+α . Ei[(Di)αJi(Di)] . Ei(Di)1+α . Ei(S	τ(i))
1+α < ∞.

Given Ei(S	τ(i))
1+β =∞ for some β ≥ 0, an appeal to Lemma 9.8 yields

Ei[(Di)αJi(Di)] < ∞ ⇔ Ei[(S−τ(i))
αJi(S−τ(i))] < ∞

and
EiJi(Di)1+α < ∞ ⇔ EiJi(S−τ(i))

1+α < ∞.

Moreover, remember that condition (v) and (vi) in (b) each imply EiJi(S−τ(i))
1+α <∞.

The remaining parts follow from Theorem 6.1, Theorem 6.6 and Proposition 6.19. ut

9.3. Tail-Homogeneous Markov Random Walks
Another class of interest are tail-homogeneous MRWs, whose fluctuation behaviour is
entirely determined by the stationary increments as we will see. A MRW (Mn,Sn)n≥0 is
called tail-homogeneous if there exists distribution functions F and G such that for all
y ∈ R

sup
i,j∈S

Pi(X1 ≤ y|M1 = j) ≤ F (y) and sup
i,j∈S

Pi(X1 > y|M1 = j) ≤ 1−G(y)

as well as 1−F (y)� 1−G(y) and F (−y)�G(−y) as y→∞. In other words, the positive
and negative tails of the conditional increments of the MRWs behave homogeneously.
This homogeneity entails directly some crucial properties. Either all increments are non-
negative or none, which makes the study of the first passage time simpler. Moreover, we
can directly conclude 1−F (y)� Pπ(X+

1 > y) and F (−y)� Pπ(X−1 ≥ y) as y→∞.
The proof does mainly rely on the subsequent Lemma (see also [1, Lemma 3.1]).
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Lemma 9.9 Given a tail-homogeneous MRW, there exists a distributional copy (X̂n)n≥1
of (Xn)n≥1 and i.i.d. sequences (Wn)n≥1 and (W ′n)n≥0 with

Wn ≤ X̂n ≤ W ′n a.s.,

where P(W >y)� P(W ′ > y)� Pπ(X+
1 > y) and P(W <−y)� P(W ′ <−y)� Pπ(X−1 > y)

for y→∞ is satisfied.

Proof. By assumption, we have for any i, j ∈S and n≥ 1

G(y) ≤ Qi,j(y) := Pi(X1 ≤ y|M1 = j) ≤ F (y) for all y ∈ R.

Let (Un)n≥1 be an i.i.d. sequence of random variables uniformly distributed on (0,1), which
is independent of all other occurring random variables. Now, it is standard knowledge that
X̂n :=Q−1

Mn−1,Mn
(Un) d=Xn under any initial distribution and

Wn := F−1(Un) ≤ X̂n ≤ G−1(Un) =: W ′n Pi-a.s.

for all i ∈S . The remaining assertions are immediate. ut

The following theorem gathers the main results on tail-homogeneous MRWs.

Theorem 9.10 Let (Mn,Sn)n≥0 be a non-trivial, tail-homogeneous MRW. The following
assertions are true:

(i) Positive divergence of (Sn)n≥0 is equivalent to Aπ(y)> 0 for sufficiently large y and
EπJπ(X−1 )<∞.

If (Sn)n≥0 is positive divergent and α > 0, then

(ii) Ei|minn≥0Sn|α<∞ for some (hence all) i∈S is equivalent to Eπ[(X−1 )αJπ(X−1 )]<
∞.

(iii) Eiρ(0)α <∞ for some (hence all) i ∈S is equivalent to EπJπ(X−1 )1+α <∞.

Proof. Lemma 9.9 entails that we can deal with Ŝn :=∑n
k=1 X̂k instead of (Sn)n≥0 and

further have
n∑
k=1

Wk ≤ Ŝn ≤
n∑
k=1

W ′k a.s.

with (Wn)n≥1 and (W ′n)n≥1 as in Lemma 9.9. Since (∑n
k=1Wk)n≥0 and (∑n

k=1W
′
k)n≥0

form ordinary random walks, the results follow easily from fluctuation theory of random
walks. ut

Similarly, one can derive a full generalisation of Theorems 1.2–1.4 for tail-homogeneous
MRWs. For the sake of brevity, we just point out that even

Eiσ>(x)1+α < ∞ for some (hence all) (x,i) ∈ R≥×S

is equivalent to positive divergence and EπJπ(X−1 )1+α <∞ for α≥ 0.
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10. Arcsine Law for Markov Random Walks
In the ordinary setup, the arcsine law is proved with the help of Spitzer’s formulas. As
mentioned before, we have to use a different approach for generalising it to the MRW
setup. Define

Λ>n :=
n∑
k=1

1{Sk>0} and Λ6
n :=

n∑
k=1

1{Sk≤0} = n−Λ>n , n≥ 1.

After we have learned that the extremal excursions within a cycle have a great influence
on the almost sure asymptotic behaviour of a MRW, it may appear a suprising that these
are irrelevant for the arcsine law. In fact, the proof bases on the validity of the arcsine
law for the embedded random walks.

Theorem 10.1 (Arcsine law for MRWs) Let (Mn,Sn)n≥0 be a non-trivial MRW.

(i) Suppose the MRW fulfils

∃θ ∈ [0,1] : lim
n→∞

1
n

n∑
k=1

Pi(Sτk(i) > 0) = θ, (10.1)

for some i ∈S . Then,

Λ>n
n

d−→ AR(θ) and Λ6
n

n
d−→ AR(1− θ)

under any Pj, j ∈S .

(ii) (10.1) is equivalent to

∃θ ∈ [0,1] : lim
n→∞

1
n

n∑
k=1

Pi(Sk > 0) = θ (10.2)

for some i ∈S . Moreover, both conditions hold either for all i ∈S or none.

First of all, we need a generalisation of the arcsine law for ordinary random walks.

Lemma 10.2 Let (Xn,Zn)n≥1 be an i.i.d. sequence with P(X = 0)< 1 and EZ = µ ∈ R.
Set Sn :=∑n

k=1Xk, n≥ 1, and S0 := 0. If (Sn)n≥0 fulfils

∃θ ∈ [0,1] : lim
n→∞

1
n

n∑
k=1

P(Sk > 0) = θ, (10.3)

then
1
n

n∑
k=1

Zk 1{Sk−1>0}
d−→ µW,

where W d= AR(θ).
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Proof. W.l.o.g., we assume θ ∈ (0,1], since otherwise one can proceed with
1
n

∑n
k=1Zk1{Sk≤0} and use µ− µW d= µW ′, where W ′

d= AR(1− θ). Hence, (Sn)n≥0
is not negative divergent and Λ′n :=∑n

k=1 1{Sk−1>0} tends to ∞ a.s. Moreover, define

κ(n) := inf{k ≥ 1 : Λ′k = n}.

Then, (Zκ(n))n≥1 is still i.i.d. with Zκ(1)
d= Z1 and

1
Λ′n

Λ′n∑
k=1

Zκ(k)
n→∞−−−→ µ a.s.

by the strong law of large numbers. Consequently,

1
n

n∑
k=1

Zk 1{Sk−1>0} = 1
n

Λ′n∑
k=1

Zκ(k) = Λ′n
n

1
Λ′n

Λ′n∑
k=1

Zκ(k) (10.4)

and the arcsine law for ordinary random walks entail the distributional convergence to
µW . ut

Proof of Theorem 10.1. (i) Again, letW be a AR(θ)-distributed random variable. Be-
cause 1−W d= AR(1− θ), we only deal with (n−1Λ>n )n≥1.

Step 1. In the first step, we want to prove

1
n

n∑
k=1

χk(i)1{Sτk−1(i)−Dik>0}
d−→ Eiτ(i) ·W (10.5)

under any Pj . By Lemma 10.2 and

1
n

n∑
k=1

χk(i)1{Sτk−1(i)>0}

= 1
n

n∑
k=1

χk(i)1{Sτk−1(i)−Dik>0}+ 1
n

n∑
k=1

χk(i)1{0<Sτk−1(i)≤Dik}
,

it remains to show
Ln := 1

n

n∑
k=1

χk(i)1{0<Sτk−1(i)≤Dik}
d−→ 0 (10.6)

for verifying (10.5) under Pi. (10.6) follows under Pi, if we prove EiLn
n→∞−−−→ 0, since

Ln ≥ 0 and
EiLn ≥ εPi(Ln > ε)

for all ε > 0. It is well-known that the absolute value of a non-trivial random walk tends
stochastically to ∞ (e.g., see the second part of Theorem B.1.1 for P(A= 1) = 1). Hence,

1
n

n∑
k=1

Pi(0< Sτk−1(i) ≤ y) ≤ 1
n

n∑
k=1

Pi(|Sτk−1(i)| ≤ y) n→∞−−−→ 0
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for all y ∈ R≥. Then, dominated convergence entails

EiLn = 1
n

n∑
k=1

∫
mPi(0< Sτk−1(i) ≤ y) Pi((τ(i),Di) ∈ d(m,y))

=
∫ 1
n

n∑
k=1

mPi(0< Sτk−1(i) ≤ y) Pi((τ(i),Di) ∈ d(m,y))

n→∞−−−→ 0.

For the truth of (10.5) under any Pj , notice that one analogously obtains

1
n

n∑
k=2

χk(i)1{(Sτk−1(i)−Sτ1(i))−Dik+Sτ1(i)>0}
d' 1
n

n∑
k=2

χk(i)1{Sτk−1(i)−Sτ1(i)>0}

d−→ Eiτ(i) ·W

under any Pj and thus (10.5) under any Pj .
In addition, one also obtains

1
n

n∑
k=1

χk(i)1{Sτk−1(i)+Hi
k>0}

d−→ Eiτ(i) ·W

under any Pj with the same approach.
Step 2. We proceed with a proof of

1
n

τn(i)∑
k=1

1{Sk>0}
d−→ Eiτ(i)W. (10.7)

Observe that

1
n

τn(i)∑
k=1

1{Sk>0} = 1
n

n∑
k=1

χk(i)∑
`=1

1{Sτk−1(i)+`>0}
≤ 1

n

∑n
k=1χk(i)1{Sτk−1(i)+Hi

k>0}

≥ 1
n

∑n
k=1χk(i)1{Sτk−1(i)−Dik>0}.

By Step 1 the upper and lower bound converge in distribution to Eiτ(i) ·W , which yields
(10.7).

Step 3. We start with

1
n

n∑
k=1

1{Sk>0}

 ≤ 1
n

∑τN(n)+1(i)
k=1 1{Sk>0}

≥ 1
n

∑τN(n)(i)
k=1 1{Sk>0}.

If the lower bound converges in distribution, so does the upper bound and the limit
distributions coincide, because Eiτ(i) <∞. An application of n−1N(n)→ πi = 1/Eiτ(i)
a.s., yields

τN(n)(i)
n

1{N(n)∈[n(πi−ε),n(πi+ε)]c} ≤
τn(i)
n

1{N(n)∈[n(πi−ε),n(πi+ε)]c} → 0 a.s. (10.8)
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for all ε > 0. We rewrite

1
n

τN(n)(i)∑
k=1

1{Sk>0}

=


(

1
n

∑τN(n)(i)
k=1 1{Sk>0}

)
1{N(n)<n(πi−ε)}+

(
1
n

∑τN(n)(i)
k=1 1{Sk>0}

)
1{N(n)≥n(πi−ε)}(

1
n

∑τN(n)(i)
k=1 1{Sk>0}

)
1{N(n)>n(πi+ε)}+

(
1
n

∑τN(n)(i)
k=1 1{Sk>0}

)
1{N(n)≤n(πi+ε)},

and the first summand of the both alternatives converges to 0 a.s. by (10.8). Moreover, it
follows by (10.7) and standard arguments that

(
1
n

τN(n)(i)∑
k=1

1{Sk>0}

)
1{N(n)≥n(πi−ε)}

≥ dn(πi− ε)e
n

1
dn(πi− ε)e

( τdn(πi−ε)e(i)∑
k=1

1{Sk>0}

)
1{N(n)≥n(πi−ε)}

d−→ (πi− ε)Eiτ(i) ·W.

Analogous steps for the other identity result in

Pi
(
(πi− ε)Eiτ(i) ·W ≤ x

)
≤ liminf

n→∞ Pi
(

1
n

τN(n)(i)∑
k=1

1{Sk>0} ≤ x
)

≤ limsup
n→∞

Pi
(

1
n

τN(n)(i)∑
k=1

1{Sk>0} ≤ x
)

≤ Pi
(
(πi+ ε)Eiτ(i) ·W ≤ x

)
for all ε > 0. Hence, 1

n

∑τN(n)(i)
k=1 1{Sk>0}

d−→W .
(ii) By assertion (i) and (Λ>n /n)n≥1 being obviously uniformly integrable, we derive

that (10.1) implies

lim
n→∞

1
n

n∑
k=1

Pj(Sk > 0) = lim
n→∞Ej

(
Λ>n
n

)
= θ

for all j ∈S .
It remains to prove that (10.2) implies (10.1). Suppose (10.2) is true. By Lemma

C.7, (χN(n)+1(i))n≥0 converges in distribution, hence n−1χN(n)+1(i) d−→ 0. Moreover, the
sequence is uniformly integrable due to being bounded by (n−1 τn+1(i))n≥1, which implies
n−1EiχN(n)+1(i) n→∞−−−→ 0 and thus

lim
n→∞Ei

( 1
n

n∑
k=1

1{Sk>0}

)
= lim

n→∞Ei
(

1
n

τN(n)(i)∑
k=1

1{Sk>0}

)
.
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Analogously, since
(

1
n

N(n)∑
k=1

χk(i)
(
1{0<Sτk−1(i)≤Dik}

+ 1{Sτk−1(i)≤0,Sτn−1(i)+Hi
k>0}

))
n≥1

converges in distribution to 0 and is uniformly integrable due to being bounded by
(n−1 2τn(i))n≥1, we obtain

lim
n→∞Ei

[ 1
n

N(n)∑
k=1

χk(i)
(
1{0<Sτk−1(i)≤Dik}

+ 1{Sτk−1(i)≤0,Sτn−1(i)+Hi
k>0}

)]
= 0.

Combined with

1
n

τN(n)(i)∑
k=1

1{Sk>0}


≤ 1

n

∑N(n)
k=1 χk(i)1{Sτk−1(i)+Hi

k>0}

≥ 1
n

∑N(n)
k=1 χk(i)1{Sτk−1(i)−Dik>0},

we derive

lim
n→∞Ei

(
1
n

τN(n)(i)∑
k=1

1{Sk>0}

)
= lim

n→∞Ei
(

1
n

N(n)∑
k=1

χk(i)1{Sτk−1(i)>0}

)
.

From here, we just remark that n−1N(n)→ πi a.s. and Lemma 10.2 further entail

lim
n→∞Ei

(
1
n

N(n)∑
k=1

χk(i)1{Sτk−1(i)>0}

)
= lim

n→∞Ei
(
N(n)
n

1
N(n)

N(n)∑
k=1

χk(i)1{Sτk−1(i)>0}

)

= πi lim
n→∞Ei

(
1

N(n)

N(n)∑
k=1

χk(i)1{Sτk−1(i)>0}

)

= πi lim
n→∞Ei

( 1
n

n∑
k=1

χk(i)1{Sτk−1(i)>0}

)

= πi
1
n

n∑
k=1

Eiτ(i)Pi(Sτk−1(i) > 0)

= 1
n

n∑
k=1

Pi(Sτk−1(i) > 0).

ut
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B. On Markov-Modulated Random
Difference Equations

1. An Overview of I.I.D. Random Difference
Equations

In applications a stochastic process (Zn)n≥0 is often recursively defined by

Zn = AnZn−1 +Bn, n≥ 1,

where (An,Bn)n≥1 is an i.i.d. sequence and Z0 a random variable which is independent
of all other occurring random variables. A random variable with the latter properties is
called admissable. Alternatively, we can write

Zn = Ψn(Zn−1), n≥ 1,

where Ψn(x) := Anx+Bn, x ∈ R. This so-called random difference equation appears in
various settings. Mostly known are applications in insurance ruin theory and in financial
time series, e.g. in form of ARCH(1) and GARCH(1,1)-processes (e.g. see [38] and [18]).

In order to find assumptions that guarantee distributional convergence of (Zn)n≥0,
the continuous mapping theorem entails that possible limit distributions correspond to
random variables R solving the SFPE

R
d= Ψ(R) = AR+B, (1.1)

where (A,B) and R are independent. In other words, the problem is associated with
finding assumptions for the existence of a distribution Q which stays fixed under Ψ, when
Ψ is interpreted as a map on P(R), the set of probabilty measures on (R,B).

For convenience, define

Π0 := 1, Πn :=
n∏
k=1

Ak and Ψk:n := Ψk ◦ . . .◦Ψn (1.2)

for all k,n ∈ N. In particular, determine ∏n`=n+1A` := 1 for all n ≥ 0, and Ψ1:0 and Ψ0:1
as the identity map on R.

The independence assumptions yield

Ψn:1(Z0) =
n∑
k=1

( n∏
`=k+1

A`

)
Bk + ΠnZ0

d=
n∑
k=1

Πk−1Bn+ ΠnZ0 = Ψ1:n(Z0), (1.3)
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where (Ak,Bk)1≤k≤n is replaced with the distributional copy (An+1−k,Bn+1−k)1≤k≤n.
Hence, in search for a distributional limit of the forward iterations (Ψn:1(Z0))n≥0 =
(Zn)n≥0 one may as well study distributional convergence of the backward iterations
(Ψ1:n(Z0))n≥0. Given limn→∞Πn = 0 a.s., (1.3) entails the natural limit candidate as the
distribution of

Ẑ∞ :=
∑
n≥1

Πn−1Bn

if it exists.
Ẑ∞ is called perpetuity, which is the actuarial notion of the present value of infinite

future payments (Bn)n≥1, where (Πn)n≥1 denote the associated discount rates. Therefore,
Ẑ∞ being interpreted as the future financial obligations of a company motivates studying
its tail decay. This has been done by many authors, most notably by Kesten [31] and
Goldie [22], by using that Ẑ∞ solves (1.1). Further properties of the distribution of Ẑ∞
extracted from (1.1) can be found for example in [6] and [24].

Naturally, the asymptotic behaviour of (Πn)n≥0 has a major influence on the asymp-
totics of the backward iterations. Given P(B = 0) = 1, Ψ1:n(Z0) = ΠnZ0 a.s. and thus
convergence of (Ψ1:n(Z0))n≥0 reduces to convergence of (Πn)n≥0. Given P(A = 0) > 0, it
is easy to verify that ∑κ

n=1 Πn−1Bn is the unique fixed point of (1.1), where κ= inf{n≥
1 :An = 0}. Under the assumption of P(A= 0) = 0, Sn :=− log |Πn|, n≥ 0, defines an ordi-
nary random walk with increments Xn :=− log |An|, n≥ 1, which indicates the influence
of fluctuation theory of random walks. In this context, we define as before

J(y) :=


y

E(X+∧y) , if P(X+ = 0)< 1,
y, if P(X+ = 0) = 1,

for y ∈ R≥, where 0/E(X+∧0) := 1.
Necessary and sufficient conditions for the existence of fixed points of (1.1) have finally

been achieved by Vervaat [45], and Goldie and Maller [23], whose results are summarised
in Theorem 1.2 below. The theorem is due to Vervaat [45, Theorem 1.5] except for the
case limn→∞Πn = 0 a.s., where he only proved that the law of Ẑ∞ is the only possible
solution to (1.1). In this case, Goldie and Maller [23, Theorem 2.1] succeeded establishing
necessary and sufficient conditions for Ẑ∞ to exist in the distributional sense, which we
state here in an adjusted version. Notice that we put log+ 0 := 0.

Theorem 1.1 Suppose P(A = 0) = 0 and P(B = 0) < 1. The following conditions are
equivalent:

(i) limn→∞Ψ1:n(0) = Ẑ∞ =∑
n≥1 Πn−1Bn a.s. and Ẑ∞ is a proper random variable.

(ii) ((Ψ1:n(Z0))n≥0 converges almost surely to a proper random variable for any admiss-
able Z0.

(iii) limn→∞Πn = 0 a.s. and EJ(log+ |B|)<∞.

(iv) P(|A|= 1)< 1 and limsupn→∞ |Πn−1Bn|<∞ a.s.

(v) limn→∞Πn−1Bn = 0 a.s.
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(vi) ∑n≥1 |Πn−1Bn|<∞ a.s.

Moreover, if
P(B = c(1−A)) = 1 for some c ∈ R (1.4)

and (i) both fail, then
|Ψ1:n(Z0)| P−→ ∞

for any admissable Z0.

Proof. We have adjusted the statement of Theorem 2.1 from [23] by adding the equiv-
alence to (i) and (ii). “(iii)⇒(ii)” is already part of the original version and “(ii)⇒(i)” is
trivially valid. Therefore, it suffices to verify the truth of “(i)⇒(v)”. Due to the second
part of [22, Theorem 2.1], we only have to handle the degenerate case, i.e. when (1.4) is
true. In addition, we have c 6= 0 by assumption. Hence,

Ψ1:n(0) =
n∑
k=1

Πk−1 c(1−Ak) = c(1−Πn) a.s.

converges almost surely to a proper random variable if either limn→∞Πn = 0 a.s. or
P(A = 1) = 1. But P(A = 1) = 1 together with (1.4) yields P(B = 0) = 1, which is ruled
out in the assumptions of the theorem. Moreover, limn→∞Πn = 0 a.s. combined with (1.4)
shows

lim
n→∞Πn−1Bn = c lim

n→∞(Πn−1−Πn) = 0 a.s.,

i.e. (v). ut

Here is the result on fixed points of (1.1). Given P(A = 0) = 0, corresponding to the
fluctuation behaviour of the ordinary random walk (− log |Πn|)n≥0, either limn→∞Πn = 0
a.s., P(|A|= 1) = 1 or limsupn→∞ |Πn|=∞ a.s. prevails.

Theorem 1.2 ([23], Theorem 3.1) Suppose P(A = 0) = 0. There exists a fixed point
Q ∈P(R) of (1.1) if and only if one of the following conditions is satisfied:

(i) limn→∞Πn = 0 a.s. and EJ(log+ |B|)<∞. Moreover, Q is given by the distribution
of Ẑ∞.

(ii) P(|A|= 1) = P(B = c(1−A)) = 1 for some c ∈ R and either
(ii.1) P(A = 1) < 1 and Q is some arbitrary distribution, which is symmetric about

c, or
(ii.2) P(A= 1) = 1 and Q is arbitrary.

(iii) limsupn→∞ |Πn|=∞ a.s., P(B = c(1−A)) = 1 and Q= δc.
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In addition, to draw the connection to distributional convergence of (Ψn:1(Z0))n≥0, it
is easily seen that

P(Ψn:1(Z0) ∈ ·) w−→ Q, (1.5)

Q as in Theorem 1.2, is true for any admissable Z0 if limn→∞Πn = 0 a.s., 1 = P(|A|= 1)>
P(A = −1), or limsupn→∞ |Πn| =∞ a.s. and Πn

P−→ 0. Conversely, for (1.5) to be true,
Z0− c must be symmetric if P(A = −1) = 1, and Z0 = c a.s. is necessary in case (iii) if
Πn 6

P−→ 0.
Another survey on random difference equations and perpetuites with a different range

of information can be found in [17], but dates from before the publication of [23].

2. The Markov-modulation Setup and Further
Organisation

As in Chapter A, let (Mn)n≥0 be a positive recurrent, aperiodic Markov chain on some
countable set S with transition matrix P = (pij)i,j∈S and unique stationary distribution
π := (πi)i∈S . Let (τn(i))n≥0, (χn(i))n≥1 and (N(n))n≥1 be defined as before. Again, we
use “a.s.” synonymous for Pi-a.s. for all i∈S . Furthermore, let (An,Bn)n≥1 be a Markov-
modulated sequence defined by a stochastic kernel K : (S 2×B2)→ [0,1] in the way
that

KMn−1Mn := K(Mn−1, Mn, ·) := P((An,Bn) ∈ ·|Mn−1, Mn).

Then, set
Ψn(x) := Anx+Bn, x ∈ R,n≥ 1.

We will study convergence of the backward iterations (Ψ1:n(Z0))n≥0, where Z0 is an
admissable random variable. In this setup, a random variable is called admissable if it is
independent of all other occurring random variables given M0.

Suppose limn→∞Ψ1:n(0) = Ẑ∞=∑
n≥1 Πn−1Bn exists in the distributional sense under

any Pi, i ∈S . Then, we use the continuity of Ψ1 to infer from

lim
n→∞Ψ1:n(0) = Ψ1( lim

n→∞Ψ2:n(0))

that Ẑ∞ must satisfy
Ẑ∞

d= Ψ1(Ẑ ′∞) = A1 Ẑ
′
∞+B1,

where Ẑ ′∞ has the same distribution as Ẑ∞ and is independent of (A1,B1) given (M0,M1).
More precisely, the law of the perpetuity can be characterised as a fixed point of an action
on P(S ,R), which denotes the set of stochastic kernels Q : S ×B→ [0,1]. This action
is defined by

(Ψ1 •Q)(i, ·) := Pi(A1R1 +B1 ∈ ·), i ∈S , (2.1)

where (A1,B1) and R1 are independent given (M0,M1) and P(R1 ∈ ·|M0 = i, M1 = j) =
Q(j, ·). We will give a full characterisation of the associated fixed points.
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Moreover, we will examine distributional convergence of the forward iterations
(Ψn:1(Z0))n≥0 for some admissable Z0, i.e. a process (Zn)n≥0 recursively defined by

Zn = AnZn−1 +Bn, n≥ 1. (2.2)

Hence, the recursive structure of (Zn)n≥0 is formed by Markov-modulated random differ-
ence equations. (2.2) appears in the definition of Markov-switching autoregressive models,
which was initially proposed in [28] and is now a popular topic in econometrics.

In our Markovian setup, the distribution of the backward and the forward iterations
do not coincide. Besides studying distributional convergence of (Ψn:1(Z0))n≥0 under some
Pi, i ∈S , we will prove that possible limit distributions coincide with Pπ(R0 ∈ ·), where
(Rn)n≥0 forms a proper stationary solution to (2.2). In general, a sequence (Rn)n≥0 is
called a stationary solution to (2.2) if it is stationary under Pπ and satisfies

Rn
d= AnRn−1 +Bn (2.3)

under Pπ for all n ≥ 1. In our setup, we additionally demand independence of Rn and
(Ak,Bk)k≥n+1 given (M0,Mn) for all n ≥ 0, thus R0 being admissable. The proof of
this correspondence does mainly reduce to showing that if Pi(Ψn:1(Z0) ∈ ·) w−→ Q̂, then
Q̂=∑

i∈S πiQ(i, ·), where Q ∈P(S ,R) solves Ψ1 ?Q=Q. Ψ1 ?Q is defined by

(Ψ1 ?Q)(i, ·) := Pπ(A1R0 +B1 ∈ ·|M1 = i), i ∈S , (2.4)

where (M1,A1,B1) and R0 are independent given M0 and P(R0 ∈ ·|M0 = i) = Q(i, ·) for
all i ∈S .

The remainder of this chapter is structured as follows. Section 3 forms the basis for
the main results, where a degeneracy condition induced by (1.4) is studied. Ruling out
the degenerate case, the backward iterations either converge stochastically or its modulus
tends stochastically to ∞. In contrast to the ordinary setup, stochastic convergence does
not imply almost sure convergence. This can be concluded from Sections 4 and 5, where
almost sure and distributional convergence of the backward iterations is examined. Section
6 characterises all fixed points of (2.1). The last section is devoted to the study of the
forward iterations, which will yield an equivalent criterion for distributional convergence
of (Ψn:1(Z0))n≥0.

Literature on Markov-modulated random difference equations with the above focus
reduces to articles of Brandt [10] and Elton [16]. Given a stationary, ergodic sequence
(An,Bn)n≥1 with E log |A1| < 0 and E log+ |B1| <∞, Brandt proved the existence of a
unique stationary process (Rn)n≥0 fulfilling (2.3). The same can be concluded from The-
orem 3 from [16], since the assumption provides that (Ψ1:n(Z0))n≥0 has a negative (top)
Liapunov exponent. The associated assumption Eπ log |A1| < 0 and Eπ log+ |B1| <∞ is
used in several works on Markov-modulated random difference equations. This has been
done explicitly in [11], [15], [42] and indirectly in [14]. In particular, [14], [15] and [42] study
the tail decay of Q(i, ·) and of ∑i∈S πiQ(i, ·) respectively, where Q solves Ψ1 ?Q=Q.

Again, the analysis differs with the asymptotic behaviour of (Πn)n≥0. Given Pπ(A1 =
0) = 0, Sn := − log |Πn|, n ≥ 0, defines a MRW, which emphasises the connection with
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the first chapter. Nevertheless, this chapter rather relies just on the basic results from
fluctuation theory of MRWs.

The forward and backward iterations contain subsequences that are of an easier re-
cursive structure. Here, we focus on an illustration for the backward iterations. For n≥ 1,
define

Ain :=
τn(i)∏

k=τn−1(i)+1
Ak,

Bi
n := Ψτn−1(i)+1:τn(i)(0) =

τn(i)∑
k=τn−1(i)+1

( k−1∏
`=τn−1(i)+1

A`

)
Bk

and
Ψi
n(x) := Ψτn−1(i)+1:τn(i)(x) = Ainx+Bi

n, x ∈ R.

Now, (Ain,Bi
n)n≥1 are independent and further identically distributed for n≥ 2 under any

initial distribution. Consequently, when studying almost sure convergence of the backward
iterations, we can conclude from

Ψ1:τn(i)(Z0) = Πτ1(i) Ψi
2:n(Z0) +Bi

1

that (Ψi
2:n(Z0))n≥0 converges almost surely, which leads to Theorem 1.1. In particular,

this leads to the degeneracy condition

Pi(Bi = ci (1−Ai)) = 1 for some ci ∈ R,

which is examined in the next section.

3. The Degeneracy Condition
Given degenerate (Ain,Bi

n)n≥1 under Pi, namely

Pi(Bi = ci (1−Ai)) = 1 for some ci ∈ R, (3.1)

one supposes that (Ajn,Bj
n)n≥1 is degenerate under Pj for any j ∈S . Besides confirm-

ing the latter conjecture, we will derive an equivalent degeneracy condition in terms of
(A1,B1).

Lemma 3.1 (3.1) holds either for all i ∈S or none.

The proof is based on a few auxiliary lemmata.

Lemma 3.2 Suppose Pπ(A1 = 0) = 0 and |S | > 1. If there is a sequence (bi)i∈S such
that

Pi((Ai,Bi) = (1, bi)) = 1 for all i ∈S ,

then bi = 0 and (3.1) are satisfied for all i ∈S .
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Proof. For all i ∈S , there exist j ∈S and n0,n1,n2 ∈ N such that

Pi(τ(i) = n1, τ(j)> n1) > 0 and Pj(τ(j) = n0 +n2, Mn0 = i) > 0.

Notice that the first condition is guaranteed by aperiodicity of (Mn)n≥0. On E1 := {M0 =
j, τ(j) = n0 +n2}, the assumption provides

bj = Bj
1 =

n0+n2∑
k=1

Πk−1Bk a.s.

Moreover, on E2 := {M0 = j, Mn0 = Mn0+n1 = i, τ(j) = n0 + n1 + n2}, the assumption
entails

bj = Bj
1

=
n0∑
k=1

Πk−1Bk + Πn0B
i
2 + Πn0A

i
2

n2∑
k=1

(k−1∏
`=1

An0+n1+`

)
Bn0+n1+k

=
n0∑
k=1

Πk−1Bk + Πn0 bi+ Πn0

n2∑
k=1

(k−1∏
`=1

An0+n1+`

)
Bn0+n1+k a.s.

Markov-modulation results in

P
(
bj =

n0∑
k=1

Πk−1Bk + Πn0

n2∑
k=1

(k−1∏
`=1

An0+n1+`

)
Bn0+n1+k

∣∣∣∣E2

)

= P
(
bj =

n0∑
k=1

Πk−1Bk +
n0+n2∑
k=n0+1

Πk−1Bk

∣∣∣∣E1

)
= 1

Consequently, Πn0 bi = 0 Pj-a.s., which further yields bi = 0 by assumption. Now, (3.1) for
all i ∈S is trivial. ut

The assertion of Lemma 3.1 and the subsequent results are trivial if |S |= 1. Therefore,
|S |> 1 is assumed in the proofs of this section without further mentioning of it.

Lemma 3.3 Pi(Ai = 1) = 1 holds either for all i ∈S or none.

Proof. Suppose Pi(Ai = 1) = 1 for some i ∈S and thus Πτn(i) = 1 Pi-a.s. for all n ≥ 1.
Set

τ∗θ (i) := inf{n≥ 1 :Mn = i, n > τθ(j)}
for θ ∈ {1,2} and some j ∈S . Using

Pi
(

Πτ1(j) ·
τ∗2 (i)∏

`=τ2(j)+1
A` ∈ ·

)
= Pi(Πτ∗1 (i) ∈ ·) = δ1,

we derive

Aj2 = Πτ1(j) ·A
j
2 ·

τ∗2 (i)∏
`=τ2(j)+1

A` = Πτ∗2 (i) = 1 Pi-a.s.,

which yields Pj(Aj = 1) = 1. ut
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A fundamental result for the discussion of these degeneracy conditions is the following
result due to Grincevičius.

Proposition 3.4 ([25], Prop. 1) Let (An,Bn)n≥1 be a sequence of i.i.d. random vari-
ables. The following conditions are equivalent:

a) B1 +A1B2 = f(A1A2) a.s. for some measurable function f .

b) Either B = c(1−A) or (A,B) = (1, c) a.s. for some c ∈ R.

Proof of Lemma 3.1. Suppose (3.1) holds for some i ∈S . Then,

τn(i)∑
k=1

Πk−1Bk =
n∑
k=1

Πτk−1(i) ci (1−Ain) = ci (1−Πτn(i)) Pi-a.s.

for all n≥ 1. In other words, ∑τn(i)
k=1 Πk−1Bk = f(Πτn(i)) Pi-a.s. for some measurable func-

tion f . Pick some arbitrary j ∈S \{i} and set

τ∗(i) := inf{n≥ 1 :Mn = i, n > τ3(j)}.

We have
f(Πτ∗(i)) = Bj

1 + Πτ1(j)
[
Bj

2 +Aj2B
j
3
]
+B∗ Pi-a.s., (3.2)

where B∗ := ∑τ∗(i)
k=τ3(j)+1 Πk−1Bk. The left-hand term is deterministic given Πτ1(j),∏τ3(j)

k=τ1(j)+1Ak and ∏τ∗(i)k=τ3(j)+1Ak. Trivially, this remains true, when one additionally con-
ditions on Bj

1 and B∗. In this setting, we see that the term in the square brackets of (3.2)
must be determistic. As this term is independent of the given random variables except for∏τ3(j)
k=τ1(j)+1Ak = Aj2A

j
3, we derive

Bj
2 +Aj2B

j
3 = h(Aj2A

j
3) Pi-a.s.

for some measurable function h. An appeal to Proposition 3.4 yields that either Bj =
cj (1−Aj) or (Aj ,Bj) = (1, cj) Pj-a.s. for some cj ∈ R. Since j was arbitrary, one of both
alternatives must hold for each j ∈S .

If the first alternative is satisfied for all j ∈ S , there is nothing left to show. Now,
suppose the second alternative is true for some j ∈ S and thus Pj(Aj = 1) = 1 for all
j ∈S by Lemma 3.3. Hence, regardless of the corresponding alternative, there exists a
sequence (bj)j∈S such that

Pj((Aj ,Bj) = (1, bj)) = 1 for all j ∈S .

Consequently, the proof finishes by an appeal to Lemma 3.2. ut

Now, we turn to results on structural implications of (3.1) on (An,Bn)n≥1. The cases
Pi(Πτ(i) = 1)< 1 and Pi(Πτ(i) = 1) = 1 are handled separately.
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3. The Degeneracy Condition

Proposition 3.5 Suppose Pi(Πτ(i) = 1) < 1 and (3.1) are satisfied for some (hence all)
i ∈S . Then,

Pπ(B1 = cM0−A1 cM1) = 1 (3.3)
and, more generally,

Pπ
(
Ψ1:n(cMn) = cM0

)
= 1 (3.4)

for all n≥ 1.

Proof. Pick any i, j ∈S with pij > 0. The assumptions entail that either δ−1 = Pi(Πτ(i) ∈
·), hence

Pi(Πτ(i) ∈ ·|M1 = j) 6= δ1,

or δ−1 6= Pi(Πτ(i) ∈ ·) and

Pi(Πτ2(i) ∈ ·|M1 = j) =
∫
Pi(x ·Πτ(i) ∈ ·|M1 = j) Pi(Πτ(i) ∈ dx) 6= δ1.

For the subsequent proof, the two cases provide just notational differences. Hence, we
assume

Pi(Πτ(i) ∈ ·|M1 = j) 6= δ1. (3.5)
On E := {M0 = i, M1 =Mτ(i)+1 = j}, the degeneracy condition implies Ψ1:τ(i)(ci) = ci and
Ψ2:τ(i)+1(cj) = cj a.s. and thus

Ψ1(cj)− ci = Ψ1 (Ψ2:τ(i)+1(cj))− ci = Ψ1:τ(i) (Ψτ(i)+1(cj))−Ψ1:τ(i)(ci)
= Πτ(i)

(
Ψτ(i)+1(cj)− ci

)
a.s.

Given E, Ψ1(cj) d= Ψτ(i)+1(cj), Πτ(i) is unequal 1 with positive probability by (3.5) and
Ψτ(i)+1(cj) is independent of the other two random variables. Therefore, the above almost
sure equality can only be satisfied if

1 = Pi(Ψ1(cj) = ci|E) = Pi(Ψ1(cj) = ci|M1 = j) = Pi(A1 cj +B1 = ci|M1 = j),

which yields the first assertion. The second one follows by iteration. ut

While (3.1) does determine (ci)i∈S uniquely if Pi(Πτ(i) = 1) < 1, this fails when
Pi(Πτ(i) = 1) = 1. That the assertion of the latter proposition is still true for some se-
quence (ci)i∈S is our next result.

Proposition 3.6 Suppose Pi(Πτ(i) = 1) = 1 and (3.1) are satisfied for some (hence all)
i ∈S . The following assertions are true:
(i) There exist functions fA, fB : S 2→ R2 such that

(A1,B1) =
(
fA(M0, M1), fB(M0, M1)

)
a.s.

(ii) There exists a group of affine functions Φij, i, j ∈S , such that Φij = Φ−1
ji , Φii(x) = x

for all x ∈ R and, if Pi(Mn = j)> 0,

Pi(Ψ1:n = Φij |Mn = j) = 1.

91



Chapter B. On Markov-Modulated Random Difference Equations

(iii) For each (c,j) ∈ R×S , there exists a sequence (ci)i∈S such that cj = c, (3.3) and
(3.4) are satisfied.

Proof. (i) Pi(Ai = 1, Bi = 0) = 1 implies Ψ1:τn(i)(x) = x Pi-a.s. for all (x,i) ∈ R×S and
n≥ 1. Again, pick any i, j ∈S with pij > 0 and define E := {M0 = i, M1 =Mτ(i)+1 = j}.
Hence,

A1x+B1 = Ψ1(x) = Ψ1:τ(i)+1(x) = Ψτ(i)+1(x) = Aτ(i)+1x+Bτ(i)+1 a.s.

for all x ∈ R on E. (A1,B1) and (Aτ(i)+1,Bτ(i)+1) being i.i.d. on E, yields the assertion.
(ii) For any i, j ∈S , pick a path {M0 = i, M1 = i1, . . . , Mn = j} of positive probability

from i to j of minimal length n. Conditioned on this path, put Φij := Ψ1:n. Given any
path {M0 = j, M1 = j1, . . . , Mm = i} of positive probability from j to i, we additionally
assume {Mm+1 = i1, . . . , Mm+n = j} to derive

x = Ψ1:m(Ψm+1:m+n(x)) = Ψ1:m(Φij(x)) a.s.

for all x ∈ R, hence Ψ1:m = Φ−1
ij a.s. The assertion follows now from the arbitrariness of

m.
(iii) For arbitrary (c,j)∈R×S , set ci := Φij(c) for all i∈S . Therefore, cM0 = ΦM0j(c)

and
A1 cM1 +B1 = ΦM0M1(cM1) = ΦM0M1(ΦM1j(c)) = ΦM0j(c) a.s.

shows (3.3) and then (3.4) by iteration. ut

Consequently, the degeneracy condition yields

Pπ(B1 = cM0−A1 cM1) = 1 (3.6)

and
Ψ1:n(Z0) = cM0 + Πn(Z0− cMn) a.s. for all n≥ 1

for some not necessarily uniquely determined (ci)i∈S . (3.6) also appears in [42, (1.6)].

4. Almost Sure Convergence of the Backward
Iterations

It is the aim of this section to shed some light on the almost sure asymptotic behaviour
of the backward iterations (Ψ1:n(Z0))n≥0 in the Markov-modulated setup, where Z0 is an
admissable random variable. In particular, we examine in how far Theorem 1.1 can be
generalised.

We begin with a short note on the cases Pπ(A1 = 0) > 0 and Pπ(B1 = 0) = 1. Given
Pπ(A1 = 0)> 0, it is easily seen that (Ψ1:n(Z0))n≥0 converges almost surely to the proper
random variable ∑κ

n=1 Πn−1Bn, where κ := inf{n≥ 1 : An = 0}.
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Given Pπ(B1 = 0) = 1, Ψ1:n(Z0) = ΠnZ0 a.s. and its almost sure convergence relies on
the one of (Πn)n≥0. If neither Pπ(A1 = 0)> 0 nor Pπ(A1 = 1) = 1, this reduces to positive
divergence of (Sn)n≥0 = (− log |Πn|)n≥0, which is characterised in Theorem A.4.1.

Since

Ψ1:n(0) = 1{τ(i)<n}
(
Πτ(i) Ψτ(i)+1:n(0) +Bi

)
+ 1{τ(i)≥n}Ψ1:n(0),

1{τ(i)<n} → 1 a.s. and Ψτ(i)+1:n(0) is independent of (Πτ(i),B
i) given τ(i), almost sure

convergence of (Ψ1:n(0))n≥0 holds either under any Pi, i ∈S , or none. The next theorem
shows that the same holds for (Ψ1:n(Z0))n≥0 given limn→∞Πτn(i) = 0 a.s.

Suppose
Pπ(A1 = 0) = 0 and Pπ(B1 = 0) < 1. (4.1)

Then, observe that corresponding to the fluctuation behaviour of (Sτn(i))n≥0, either
limn→∞Πτn(i) = 0 a.s, Pi(|Πτ(i)| = 1) = 1 or limsupn→∞ |Πτn(i)| =∞ a.s. and these con-
ditions hold either for all i ∈S or none.

We need further definitions. For i ∈S and y ∈ R≥, introduce

Ji(y) :=


y

Ei(S+
τ(i)∧y) , if Pi(S+

τ(i) = 0)< 1,

y, if Pi(S+
τ(i) = 0) = 1,

where 0/[Ei(S+
τ(i)∧0)] := 1, and

W i
n := max

1≤k≤χn(i)
|(Πτn(i)+k−1/Πτn−1(i))Bk|, n≥ 1.

In contrast to the ordinary setup, almost sure convergence of (Ψ1:n(0))n≥0 does not
imply almost sure convergence of (Ψ1:n(Z0))n≥0 for any admissable Z0.

Theorem 4.1 Suppose (4.1). The following conditions are equivalent:
(i) limn→∞Ψ1:n(0) = Ẑ∞ =∑

n≥1 Πn−1Bn a.s. and Ẑ∞ is a proper random variable.
(ii) limn→∞Πτn(i) = 0 a.s. and EiJi(log+W i)<∞ for some (hence all) i ∈S .
(iii) Pi(|Πτ(i)|= 1)< 1 for some (hence all) i ∈S and limsupn→∞ |Πn−1Bn|<∞ a.s.
(iv) limn→∞Πn−1Bn = 0 a.s.
(v) ∑n≥1 |Πn−1Bn|<∞ a.s.
Moreover, (Ψ1:n(Z0))n≥0 converges almost surely for any admissable Z0 to a proper ran-
dom variable if and only if limn→∞Πn = 0 a.s. and EiJi(log+W i) <∞. In this case,
limn→∞Ψ1:n(Z0) = Ẑ∞ a.s.

Proof. Observe that the implications “(v)⇒(i)⇒(iv)⇒(iii)” are trivial. For the first part
of the theorem, it remains to show “(iii)⇒(ii)” and “(ii)⇒(v)”.

“(iii)⇒(ii)” Suppose (Πτn(i))n≥0 does not converge to 0 a.s. Consequently,
limsupn→∞ |Πτn(i)| =∞ a.s. is the only choice left, since Pi(|Πτ(i)| = 1) < 1 is assumed.
W.l.o.g., let i be such that Pi(B1 = 0)< 1. Then,

limsup
n→∞

|Πn−1Bn| ≥ limsup
n→∞

|Πτn(i)Bτn(i)+1| = ∞ a.s.,

93



Chapter B. On Markov-Modulated Random Difference Equations

which contradicts (iii).
Conversely, if EiJi(log+W i) =∞ and thus Ei log+(W i) =∞, Lemma A.4.2 entails

limsup
n→∞

log+(W i
n+1)∑n

k=1(Sτk(i)−Sτk−1(i))+ = ∞ a.s.

and thus

∞ = limsup
n→∞

[
n∑
k=1

(Sτk(i)−Sτk−1(i))+
(
−1 + log+(W i

n+1)∑n
k=1(Sτk(i)−Sτk−1(i))+

)]

≤ limsup
n→∞

[
−Sτn(i) + log+(W i

n+1)
]

= limsup
n→∞

[
log+ |Πτn(i)W

i
n+1|

]
a.s.

We infer limsupn→∞ |Πτn(i)W
i
n+1|=∞ a.s. and therefore limsupn→∞ |Πn−1Bn|=∞ a.s.,

which contradicts (iii).
“(ii)⇒(v)” The implication of (v) is self-evident if one shows

lim
n→∞e

cnΠnBn+1 = 0 a.s. (4.2)

for some c ∈ R>. n/τN(n)(i)→ 1 a.s. implies

ecnΠnBn+1 ≤ ecnΠτN(n)(i)W
i
N(n)+1 � ecτN(n)(i) ΠτN(n)(i)W

i
N(n)+1 a.s.

as n → ∞. Furthermore, since (ecτn(i) Πτn(i)W
i
n+1)n≥0 is a subsequence of

(ecnΠnBn+1)n≥0, (4.2) is equivalent to

lim
n→∞e

cτn(i) Πτn(i)W
i
n+1 = 0 a.s.

for some c ∈ R>. A logarithmic transformation shows that it suffices to prove

Sτn(i)− cτn(i)− log+(W i
n+1) n→∞−−−→ ∞ a.s.

for some c ∈ R>.
By assumption, limn→∞Sτn(i) =∞ a.s. Hence, either 0<EiSτ(i) <∞ or Ei|Sτ(i)|=∞.

In the first case, we choose c = EiSτ(i)/2. In the second case, we pick c = 1. Therefore,
Theorem A.4.5 yields

lim
n→∞

τn(i)
Sτn(i)

≤ 1
2c a.s.

As seen in the proof of Theorem A.4.1 “(ii)⇒(i)”, (ii) yields

limsup
n→∞

log+(W i
n+1)

Sτn(i)
= 0 a.s.

Consequently,

liminf
n→∞

[
Sτn(i)− cτn(i)− log+(W i

n+1)
]

= liminf
n→∞ Sτn(i)

(
1− c τn(i)

Sτn(i)
− log+ |W i

n|
Sτn(i)

)

94



5. Distributional Convergence of the Backward Iterations

≥ liminf
n→∞ Sτn(i)

(
1/2− log+ |W i

n|
Sτn(i)

)
= ∞ a.s.

Concerning the additional assertion, notice that almost sure convergence of
(Ψ1:n(0))n≥0 and (Ψ1:n(Z0))n≥0 for some admissable, non-zero Z0 leads to (ii) being
satisfied and almost sure convergence of

Ψ1:n(Z0)−Ψ1:n(0) = ΠnZ0

to a proper random variable. Hence, either limn→∞Πn = 0 a.s. or Pπ(A1 = 1) = 1. The
proof is complete if we exclude the second possibility. Given Pπ(A1 = 1) = 1, Ψ1:n(0) =∑n
k=1Bk forms a MRW, which converges almost surely to a proper random variable if and

only if Pπ(B1 = 0) = 1, which is ruled out in (4.1). ut

Indeed, (iv) does not generally imply limn→∞Πn = 0 a.s. Let (Mn)n≥0 be the Markov
chain defined in Example 2.7, where we dispense with modelling aperiodicity. In addition,
for all i ∈ N and given (M0,M1,M2) = (0, i,0), we define

(A1,B1,A2,B2) := (exp(p−1
0i ), 1, exp(−p−1

0i )/2, exp(−p−1
0i )).

Obviously, limn→∞Πτn(0) = 0 a.s. and limn→∞Πn−1Bn = 0 a.s., but limsupn→∞ Πn =∞
a.s. (cf. Example 2.7).

5. Distributional Convergence of the Backward
Iterations

In terms of distributional convergence, we will show that (Ψ1:n(0))n≥0 and (Ψ1:n(Z0))n≥0
behave equally for any admissable Z0 given limn→∞Πτn(i) = 0 a.s. Moreover, when ruling
out (3.6), (Ψ1:n(Z0))n≥0 either converges stochastically to a proper random variable or its
modulus tends stochastically to∞ under any Pi. Concerning the cases Pπ(A1 = 0)> 0 and
Pπ(B1 = 0) = 1, the considerations in the previous section have shown that distributional
convergence coincides with almost sure convergence.

Before we state the theorem, we introduce

τ̂(i) := inf{τn(i) : Πτn(i) = 1}.

Theorem 5.1 Suppose (4.1) and let Z0 be an admissable random variable. Pi(Ψ1:n(Z0)∈
·) w−→Q(i, ·), i ∈S , for some Q ∈P(S ,R) is satisfied if and only if one of the following
conditions is fulfilled:
(i) limn→∞Πτn(i) = 0 a.s. and EiJi(log+ |Bi|) < ∞. Then, Q(i, ·) = Pi(Ẑ∞ ∈ ·) and

Ψ1:n(Z0) Pπ−→ Ẑ∞.
(ii) Pi(|Πτ(i)|= 1) = 1, (3.6) is true and one of the following cases prevails:
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(ii.1) Pi(τ̂(i) ∈ ·) is aperiodic.
(ii.2) Pi(τ̂(i) ∈ ·) is 2-periodic and

lim
n→∞Pi(Π2n(Z0− cM2n) ∈ ·) = lim

n→∞Pi(−Π2n(Z0− cM2n) ∈ ·).

(iii) limsupn→∞ |Πn|=∞ a.s. and one of the following cases prevails:
(iii.1) Πn

Pπ−→ 0 and (3.6) are true. Then, Q(i, ·) = δci and Ψ1:n(Z0) Pπ−→ cM0.
(iii.2) limsupn→∞ Pi(|Πn|> 0)> 0, Pπ(B1 = c(1−A1)) = 1 and Z0 = c Pi-a.s. for some

c ∈ R. Then, Q(i, ·) = δc and Ψ1:n(Z0) = c Pi-a.s. for all n≥ 0.
Moreover, if (3.6) and (i) both fail, then

|Ψ1:n(Z0)| Pπ−→ ∞

for any admissable Z0.

Since Ψ1:n(Z0) Pπ−→ Ẑ∞ in case (i), we infer that limn→∞Πτn(i) = 0 a.s. and
EiJi(log+ |Bi|)<∞ are either true for all i ∈S or none.

The description of the limit distributions in (ii) is given in Section 5.3.
We emphasise that (Ψ1:n(Z0))n≥0 converges in distribution either for all admissable Z0

or none in the cases (i), (ii.1) and (iii.1). In contrast, we directly see that (Ψ1:n(Z0))n≥0
does not necessarily converge in distribution under Pj if it does under Pi in case (iii.2).
The same can be verified for the case (ii.2). Suppose Pπ((A1,B1) = (−1, c)) = 1 for some
c ∈ R. As noted after Theorem 1.2, (Ψ1:n(Z0))n≥0 converges in distribution under Pi if
and only Z0− c is symmetric under Pi. The latter does obviously not imply Z0− c to be
symmetric under Pj .

In the case of a finite state space S , when (3.6) is ruled out, (Ψ1:n(Z0))n≥0 converges
in distribution if and only if it converges almost surely. This follows since Theorem 5.1 (i)
entails almost sure convergence of (Ψi

1:n(Z0))n≥0 to Ẑ∞ for all i ∈S .
The second part of the theorem particularly yields that the modulus of a non-trivial

MRW tends stochastically to∞. For explanation, given Pπ(A1 = 1) = 1, Ψ1:n(0) =∑n
k=1Bk

forms a MRW, where non-triviality is equivalent to the failure of (3.6).
Necessary conditions for distributional convergence will be obtained from an appli-

cation of Theorem 1.1 on (Ψi
1:n(Z0))n≥0 for some i ∈ S , but we have to ensure that

Pi(Bi = 0)< 1.

Lemma 5.2 Suppose Pπ(A1 = 0) = 0. The following assertions are true:
(i) Pi(Bi = 0) = 1 for some i ∈S implies (3.6).
(ii) If Pi(Bi = 0) = 1 for all i ∈S , then either Pπ(B1 = 0) = 1 or Pi(Ai = 1) = 1 for all

i ∈S .

Proof. (i) Pi(Bi = 0) = 1 for some i ∈S is equivalent to Pi(Bi = ci(1−Ai)) = 1 with
ci = 0, which yields (3.6).
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5. Distributional Convergence of the Backward Iterations

(ii) By assumption, we have
τn(i)∑
k=1

Πk−1Bk =
n∑
k=1

Πτk−1(i)B
i
n = 0 Pi-a.s.

for all n≥ 0 and i ∈S . Assume Pπ(B1 = 0) < 1 and Pi(Ai = 1) < 1 for all i ∈S . Then,
we can find j,s ∈S such that psj > 0 and

Ps(B1 = 0|M1 = j) < 1.

Moreover, there exist n0,n1 ∈ N such that

Pj(τ(s) = n0) > 0 and Ps(Πn1 6= 1, τ(s) = n1) > 0.

Now, on E1 := {M0 = j, τ(s) = n0,Mn0+1 = j}, it holds that

0 =
n0∑
k=1

Πk−1Bk + Πn0Bn0+1 a.s.,

while on E2 := {M0 = j, τ1(s) = n0, τ2(s) = n0 +n1, Mn0+n1+1 = j},

0 =
n0+n1+1∑
k=1

Πk−1Bk =
n0∑
k=1

Πk−1Bk + Πn0B
s
2 + Πn0A

s
2Bn0+n1+1

=
n0∑
k=1

Πk−1Bk +As2 Πn0Bn0+n1+1 a.s.

is satisfied. Markov-modulation yields

P
( n0∑
k=1

Πk−1Bk +As2 Πn0Bn0+n1+1 = 0
∣∣∣∣E2

)
= 1

= P
( n0∑
k=1

Πk−1Bk + Πn0Bn0+1

∣∣∣∣E1

)

= P
( n0∑
k=1

Πk−1Bk + Πn0Bn0+n1+1 = 0
∣∣∣∣E2

)
Thus, P(Πn0Bn0+n1+1 (1−As2) = 0|E2) = 1, but this is not possible by construction. ut

We give a short example to show that P(Bi = 0) = 1 for some i ∈S does not imply
Pj(Bj = 0) = 1 for all j ∈S . Set S = {0,1,2,3}, 0< p01 = 1−p02 < 1, p23 = p30 = p10 = 1,
Pπ(B1 = 1),

P(A1 =−1, A2 = 1|M0 = 0 ,M1 = 1) = 1
and

P(A1 =−3/2, A2 =−1/3, A3 = 1|M0 = 0, M1 = 2) = 1.

One easily computes Bi =∑τ(0)
k=1 Πk−1 = 0 a.s. just for i= 0.

The theorem will be proved separately for the cases limn→∞Πτn(i) = 0 a.s., Pi(|Πτ(i)|=
1) = 1 and limsupn→∞ |Πτn(i)|=∞ a.s.
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5.1. The Case limn→∞Πτn(i) = 0 a.s.
We begin with some simple implications of limn→∞Πτn(i) = 0 a.s. By an appeal to Lemma
C.7, (

max
1≤k≤χN(n)+1(i)

|ΠτN(n)(i)+k/ΠτN(n)(i)|
)
n≥1

and (
max

1≤`≤χN(n)+1(i)

∣∣∣∣ ∑̀
k=1

(ΠτN(n)(i)+k−1/ΠτN(n)(i))BτN(n)(i)+k

∣∣∣∣)
n≥1

converge in distribution. As limn→∞Πτn(i) = 0 a.s. implies limn→∞ΠτN(n)(i) = 0 a.s., Slut-
sky’s theorem entails

|Πn| ≤ |ΠτN(n)(i)| · max
1≤k≤χN(n)+1(i)

|ΠτN(n)(i)+k/ΠτN(n)(i)|
Pπ−→ 0,

thus Πn
Pπ−→ 0, and

max
1≤`≤χN(n)+1(i)

∣∣∣∣ ∑̀
k=1

ΠτN(n)(i)+k−1BτN(n)(i)+k

∣∣∣∣ Pπ−→ 0. (5.1)

The following lemma uses the approach of [23, Lemma 5.5]. Furthermore, we make use
of the notation Tn

d' Yn as shorthand for sequences (Tn)n≥1 and (Yn)n≥1 to have the same
distributional limit.

Lemma 5.3 Suppose (4.1) and limn→∞Πτn(i) = 0 a.s. for some i ∈ S . If
EiJi(log+ |Bi|) =∞, then |Ψ1:n(Z0)| Pπ−→∞ for any admissable Z0.

Proof. Since ΠnZ0
Pπ−→ 0, it suffices to consider (|Ψ1:n(0)|)n≥0. Suppose |Ψ1:n(0)| does

not tend stochastically to ∞ under Pi. Then, there exists x1 ∈ R> such that

0 < limsup
n→∞

Pi(|Ψ1:n(0)| ≤ x1) ≤ limsup
n→∞

Pi(Ψ1:n(0)≤ x1)

and thus there is a sequence (n′k)k≥1 of natural numbers such that (Pi(|Ψ1:n′k
(0)| ≤ x1))k≥1

and (Pi(Ψ1:n′k
(0)≤ x1))k≥1 have a positive limit. By the usual diagonal sequence argument,

we obtain a subsequence (nk)k≥1 such that (Pi(Ψ1:nk(0)≤ x`))k≥1 converges for all `≥ 1,
where I := {x1,x2, . . .} denotes a countable dense set in R. For x ∈ R, define the right-
continuous function

F (x) := lim
z∈I,z↓x

lim
k→∞

Pi(Ψ1:nk(0)≤ z),

which exists since z 7→ limk→∞Pi(Ψ1:nk(0)≤ z), z ∈ I, is a non-decreasing, bounded func-
tion. In addition, put

F (∞) := lim
x↑∞

F (x) and F (−∞) := lim
x↓−∞

F (x).
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5. Distributional Convergence of the Backward Iterations

Consequently, (Ψ1:nk(0))k≥1 converges in distribution to some Z∞ under Pi, which has
the possibly unproper distribution function F with

F (∞)−F (−∞) ≥ lim
k→∞

Pi(|Ψ1:n′k
(0)| ≤ x1) > 0.

Using that (Ψnk−m+1:nk(0))k≥1 is a sequence of identically distributed random vari-
ables under Pπ and Πnk−m

Pπ−→ 0, we obtain

|Πnk−mΨnk−m+1:nk(0)| Pi−→ 0.

Consequently,

Ψ1:nk−m(0) d' Ψ1:nk−m(0) + Πnk−mΨnk−m+1:nk(0) = Ψ1:nk(0) d−→ Z∞

for all m≥ 1 under Pi. An application yields

Pi(Z∞ ∈ ·) = Pi( lim
k→∞

Ψ1:nk(0) ∈ ·)

= Pi
(
Ai lim

k→∞
Ψτ(i)+1:nk(0) +Bi ∈ ·

)
=
∫
Pi
(
a lim
k→∞

Ψm+1:nk(0) + b ∈ ·|τ(i) =m
)
Pi((Ai,Bi, τ(i)) ∈ d(a,b,m))

=
∫
Pi
(
a lim
k→∞

Ψ1:nk−m(0) + b ∈ ·
)
Pi((Ai,Bi, τ(i)) ∈ d(a,b,m))

=
∫
Pi(aZ∞+ b ∈ ·) Pi((Ai,Bi) ∈ d(a,b))

= Pi(AiZ∞+Bi ∈ ·),

where Z∞ is independent of (Ai,Bi). Moreover, since {|Z∞|<∞}= {|AiZ∞+Bi|<∞},
we obtain that the proper random variable Z with distribution function G(x) := F (x)−
F (−∞)/[F (∞)−F (−∞)] satisfies

Z
d= AiZ+Bi,

where Z and (Ai,Bi) are independent. Due to Theorem 1.2, EiJi(log+ |Bi|)<∞ must be
satisfied. ut

The following lemma is essentially a reformulation of the assertion in Theorem 5.1 for
the present case.

Lemma 5.4 Suppose (4.1), limn→∞Πτn(i) = 0 a.s. and let Z0 be an admissable random
variable. Pi(Ψ1:n(Z0) ∈ ·) w−→ Q(i, ·), i ∈ S , for some Q ∈P(S ,R) is satisfied if and
only if EiJi(log+ |Bi|) <∞. Then, Q(i, ·) = Pi(Ẑ∞ ∈ ·) and Ψ1:n(Z0) Pπ−→ Ẑ∞ for any
admissable Z0.
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Proof. Lemma 5.3 entails the necessity of EiJi(log+ |Bi|)<∞. Moreover, as argued be-
fore, it suffices to consider (Ψ1:n(0))n≥0.

Suppose Pi(Bi = 0) = 1. By Lemma 5.2, (3.6) is satisfied and thus

Ψ1:n(0) = cM0−Πn cMn a.s.

for all n≥ 1. Since (cMn)n≥1 is stationary under Pπ, we infer Ψ1:n(0) Pπ−→ cM0 . Additionally,
notice that EiJi(log+ |Bi|)<∞ holds trivially if Pi(Bi = 0) = 1.

Suppose EiJi(log+ |Bi|) < ∞ and Pi(Bi = 0) < 1. Then, Theorem 1.1 implies al-
most sure convergence of (Ψi

1:n(0))n≥0 and particularly almost sure convergence of
(Ψi

1:N(n)(0))n≥0 under Pi. Using (5.1) and

Ψ1:n(0) = Ψi
1:N(n)(0) +

n∑
k=τN(n)(i)+1

Πk−1Bk,

we obtain stochastic convergence of (Ψ1:n(0))n≥0 under Pi.
Since

Ψ1:n(0) = 1{τ(i)<n} (Πτ(i) Ψτ(i)+1:n(0) +Bi) + 1{τ(i)≥n}Ψ1:n(0),

Ψτ(i)+1:n(0) is independent of (Πτ(i),B
i) given τ(i) under Pπ and

Pπ(Ψτ(i)+1:τ(i)+n(0) ∈ ·) = Pi(Ψ1:n(0) ∈ ·),

we derive Ψ1:n(0) Pπ−→ Ẑ∞. ut

5.2. The Case Pi(|Πτ(i)|= 1) = 1
First of all, given Pi(|Πτ(i)| = 1) = 1 for some (hence all) i ∈ S , (log |Πn|)n≥0 forms a
null-homologous MRW and thus

|Πn| = exp(g(Mn)−g(M0)) a.s.

for some function g : S → R. Remember that such function is not uniquely determined.
We fix such g and set

ai := exp(−g(i)), i ∈S (5.2)

and therefore |Πn|= aM0/aMn a.s.
Further results on the structure of (Πn)n≥0 will follow, but the current knowledge

already suffices to verify that Pi(|Πτ(i)| = 1) = 1 implies |Ψ1:n(Z0)| Pπ−→∞ if (3.6) is not
satisfied. This is the consequence of the next two lemmata.

Lemma 5.5 Suppose Pi(|Πτ(i)|= 1) = 1 for some i ∈S is true and (3.6) is not satisfied.
If Ψ1:n(0) = f(n,M0,Mn,Πn) a.s. for some measurable function f for all n ≥ 1, then
|Ψ1:n(Z0)| Pπ−→∞.
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Proof. The assertion is clear if we show |Ψ1:n(Z0)| Pi−→∞ for arbitrary i ∈S . Fix some
arbitrary i ∈S . By the previous considerations, Πn ∈ {±ai/aj} a.s. on {M0 = i,Mn = j}
for all n ∈ N and j ∈S . (M ′n)n≥0 := (Mn,Πn)n≥0 forms a Markov chain with countable
state space S ′ := {(j,a) ∈S ×R : a ∈ {±ai/aj}} and initial distribution δ(i,1). Moreover,

P
( τ(j,a)∏
k=1

Ak = 1
∣∣∣∣M ′0 = (j,a)

)
= 1 for all (j,a) ∈S ′, (5.3)

where (τn(j,a))n≥1 denote the successive return times to (j,a). GivenM0 = i, (An,Bn)n≥1
is clearly a Markov-modulated sequence with driving chain (M ′n)n≥0. Moreover, since
f(n,M0,Mn,Πn) = f ′(n,M ′0,M ′n) for some measurable function f ′ and (5.3) are satisfied,
we can assume w.l.o.g. that Pi(Πτ(i) = 1) = 1 for some (hence all) i ∈S and Ψ1:n(0) =
f(n,M0,Mn) a.s. for some measurable function f for all n≥ 1.

The assumption entails Ψ1:m(0) = f(m,i, i) a.s. on {M0 = Mm = i} for all m ∈ I :=
{n ∈ N : Pi(Mn = i)> 0}. Fix some m1 ∈ I. Now, for any m ∈ I, we derive that m1m ∈ I
and on {M0 =Mm1m = i}

Ψ1:m1m(0) =

mf(m1, i, i), if Mm1 =M2m1 = . . .=Mm1m = i,

m1 f(m,i, i), if Mm =M2m = . . .=Mm1m = i,

almost surely. Since Ψ1:m1m(0) = f(m1m,M0,Mm1m) a.s., we infer

f(m,i, i) = µim for all i ∈S , (5.4)

where µi = f(m1, i, i)/m1. The failure of (3.6) implies µi 6= 0 and thus

EiBi = EiΨi(0) = µiEiτ(i) 6= 0.

Hence,

|Ψi
1:n(0)| =

∣∣∣∣ n∑
k=1

Bi
k

∣∣∣∣ = |µi|τn(i) → ∞ Pi-a.s.

and particularly
|Ψi

1:N(n)(0)| → ∞ Pi-a.s.
By Lemma C.7 and admissibility of Z0,

(B∗n)n≥1 :=
(

max
1≤k≤χN(n)+1(i)

|ΨτN(n)(i)+1:τN(n)(i)+k(Z0)|+ |Z0|
)
n≥1

converges in distribution. Then, Pi(|ΠτN(n)(i)|= 1) = 1,

|Ψi
1:N(n)(0)|−B∗n ≤ |Ψ1:n(Z0)| ≤ |Ψi

1:N(n)(0)|+B∗n Pi-a.s,

and Slutsky’s theorem yield |Ψ1:n(Z0)| Pi−→∞. ut

The proof of the next lemma is inspired by the proof of the corresponding assertion
in [23] (see their Lemma 5.8).
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Lemma 5.6 Suppose (4.1) is satisfied, but limn→∞Πτn(i) = 0 a.s. and (3.6) both fail.
If there is some m ∈ N such that Ψ1:m(0) is not almost surely a measurable function of
(M0,Mm,Πm), then |Ψ1:n(Z0)| Pπ−→∞.

Proof. Notice that |Ψ1:mn(Z0)| Pπ−→∞ implies |Ψ`+1:`+mn(Z0)| Pπ−→∞ and thus

|Ψ1:`+mn(Z0)| = |Ψ1:`(0) + Π`Ψ`+1:`+mn(Z0)| Pπ−→ ∞

for all 1 ≤ ` < m, which further yields |Ψ1:n(Z0)| Pπ−→∞. Hence, it suffices to prove that
the modulus of (Ψ(m)

1:n (Z0))n≥0 := (Ψ1:mn(Z0))n≥0 tends stochastically to ∞ under Pπ.
Observe that (A(m)

n ,B
(m)
n )n≥1,

A(m)
n :=

nm∏
k=(n−1)m+1

Ak and B(m)
n := Ψ(n−1)m+1:nm(0),

is a Markov-modulated sequence with driving chain (Mnm)n≥1 and

Ψ(m)
n (x) := A(m)

n x+B(m)
n , x ∈ R, n≥ 1.

Consequently, we can assume that B1 is not almost surely a measurable function of
(M0,M1,A1) and prove

|Ψ1:n(Z0)| Pπ−→ ∞.

For a ∈ R and i, j ∈S , define

Fi,j,a(x) := P(B1 ≤ x|M0 = i, M1 = j, A1 = a)

and F−1
i,j,a as its pseudo-inverse. Let (Un)n≥1 be an i.i.d. sequence of random variables,

which are uniformly distributed on (0,1) and independent of all other occurring random
variables. Setting B′n := F−1

Mn−1,Mn,An
(Un), (An,Bn)n≥1 and (An,B′n)n≥1 are identically

distributed. Moreover, Y1, . . . ,Yn,

Yk := Bk−B′k, k ≥ 1,

are independent and symmetric given M0,(Mk,Ak)1≤k≤n. Suppose

Y1 = c′M0−A1 c
′
M1 a.s. (5.5)

for some sequence (c′j)j∈S of real numbers. Y1 being symmetric given M0,M1,A1, implies
c′j = 0 for all j ∈S , hence Pπ(Y1 = 0) = 1. But as Pπ(Y1 = 0) = 1 is equivalent to B1 =
f(M0,M1,A1) a.s. for some measurable function f , we infer that (5.5) fails. Then, Lemma
5.2 (i) yields Pi(

∑τ(i)
k=1 Πk−1Yk = 0) < 1 for all i ∈S , whereupon an appeal to Theorem

1.1 entails |∑τn(i)
k=1 Πk−1Yk|

Pi−→∞ for all i ∈S . Particularly, we obtain

∣∣∣∣ τn(i)∑
k=1

Πk−1Yk

∣∣∣∣ Pπ−→ ∞. (5.6)
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Set b := πi/2. By the elementary renewal theorem, we have

Pπ(N(n)≥ dnbe) → 1.

For n≥ 1, set

Wn =
τdnbe(i)∑
k=1

Πk−1B
′
k + (Ψ1:n(0)−Ψi

1:dnbe(0)) + ΠnZ0

and
Gn := σ

(
Z0,M0,(Mk,Ak)1≤k≤n,Ψ1:n(0)−Ψi

1:dnbe(0)
)
.

Using Jensen’s inequality and that Ψ1:n(Z0) and Wn are i.i.d. given Gn and N(n)≥ dnbe,
we infer for all x ∈ R≥

Pπ
(∣∣∣∣
τdnbe(i)∑
k=1

Πk−1Yk

∣∣∣∣≤ x) ≥ Pπ
(∣∣∣∣
τdnbe(i)∑
k=1

Πk−1Bk−
τdnbe(i)∑
k=1

Πk−1B
′
k

∣∣∣∣≤ x, N(n)≥ dnbe
)

= Pπ(|Ψ1:n(Z0)−Wn| ≤ x, N(n)≥ dnbe)
≥ Pπ(|Ψ1:n(Z0)−Wn| ≤ x, |Wn| ≤ x/2, N(n)≥ dnbe)

≥ Eπ
(

1{N(n)>dnbe}Pπ(|Ψ1:n(Z0)| ≤ x/2, |Wn| ≤ x/2|Gn)
)

= Eπ
(

1{N(n)>dnbe}Pπ(|Ψ1:n(Z0)| ≤ x/2|Gn)2
)

≥
[
Pπ(|Ψ1:n(Z0)| ≤ x/2, N(n)≥ dnbe)

]2
�
[
Pπ(|Ψ1:n(Z0)| ≤ x/2)

]2
,

which yields the assertion by (5.6). ut

A combination of the preceding two lemmata shows the necessity of (3.6) for distri-
butional convergence of (Ψ1:n(Z0))n≥0 in the prevailing case. Now, we turn to sufficient
conditions and proceed with further results on (Πn)n≥0.

Lemma 5.7 Suppose Pi(Πτ(i) = 1) = 1 for some i ∈ S . There is a sequence of {±1}-
valued integers (θi)i∈S such that

Πn = θM0 aM0 θMn/aMn a.s.

for all n≥ 0.

Proof. The assertion is immediate if we prove

sign(Πn) = θM0 θMn

for some sequence (θ)i∈S as claimed.
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The argument is similar to the one used in the proof of Proposition 3.6 (ii). For any
i, j ∈ S , pick a path {M0 = i, M1 = i1, . . . , Mn = j} of positive probability from i to j
of minimal length n. Conditioned on this path, sign(Πn) is obviously deterministic and
denoted as θ∗(i, j). Given any path {M0 = j, M1 = j1, . . . , Mm = i} of positive probability
from j to i, we additionally assume {Mm+1 = i1, . . . , Mm+n = j} to derive

1 = sign(Πm+n) = sign(Πm) · θ∗(i, j),

i.e. sign(Πm) = θ∗(i, j)−1 = θ∗(i, j). More generally, we infer sign(Πn) = θ∗(M0,Mn) a.s.
for all n≥ 0. Furthermore, one easily verifies θ∗(i, j) = θ∗(j, i) and θ∗(i, j) = θ∗(i,s) ·θ∗(s,j)
for all i, j,s ∈S . Now, define for all i ∈S

θi := θ∗(s, i)

for some fixed s ∈S . As a consequence,

sign(Πn) = θ∗(M0, s) · θ∗(s,Mn) = θM0 · θMn a.s.

for all n≥ 0. ut

Lemma 5.8 Suppose Pi(|Πτ(i)| = 1) = 1 for some i ∈ S . Then, Pi(τ̂(i) ∈ ·) is either
aperiodic or 2-periodic.

Proof. Suppose Pi(τ̂(i) ∈ ·) is not aperiodic. Aperiodicity of Pi(τ(i) ∈ ·) implies the
existence of m1,m2 ∈ N, m1 even, m2 odd, such that gcd(m1,m2) = 1 and

Pi(Πm1 = 1, τ1(i) =m1, Πm1+m2 =−1, τ2(i) =m1 +m2) > 0.

Then, m1/2 and m2 are coprime and Dirichlet’s prime number theorem provides an k ∈N
such that m1/2 +km2 is prime. Obviously, gcd(m1,m1 + 2km2) = 2 and thus

Pi(Πm1+2km2 = 1, Mm1+2km2 = i) > 0

entails the 2-periodicity of Pi(τ̂(i) ∈ ·). ut

Of course, one can show that aperiodicity of Pi(τ̂(i) ∈ ·) is a solidarity property, but
this is of no further relevance.

We introduce the following notation for the case Pi(|Πτ(i)|= 1) = 1. If Pi(Πτ(i) = 1) = 1,
let (θj)j∈S denote the sequence provided by Lemma 5.7. If Pi(τ̂(i) ∈ ·) is 2-periodic, then
Pi(Π2` = 1, inf{n ≥ 1 : M2n = i} = `) = 1 and we define (θj)j∈S as the corresponding
sequence provided by Lemma 5.7 applied on (M2n,Π2n)n≥0.

Lemma 5.9 Suppose Pi(|Πτ(i)|= 1) = 1, Pi(Πτ(i) = 1)< 1 and aperiodicity of Pi(τ̂(i)∈ ·)
for some i ∈S . Then,

lim
n→∞Pi(sign(Πn) = 1, Mn = j) = lim

n→∞Pi(sign(Πn) =−1, Mn = j) = 1
2 πj

for all j ∈S .
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5. Distributional Convergence of the Backward Iterations

Proof. (Mn,sign(Πn))n≥0 is a regenerative process with regeneration times (τ̂n(i))n≥0
under Pi. The aperiodicity of Pi(τ̂(i) ∈ ·) implies distributional convergence of
(Mn,sign(Πn))n≥0 (e.g., see [7, Cor. VI.1.5 (i)]). Set τ∗(i) := inf{n≥ 1 :Mn = i, Πn =−1}.
Then,

1{sign(Πn)=1,Mn=j}
d' 1{τ∗(i)<n}1{−sign(Πn/Πτ∗(i))=1,Mn=j}

d' 1{sign(Πn)=−1,Mn=j}

under Pi, which yields the assertion. ut

Lemma 5.10 Suppose (4.1), Pi(|Πτ(i)|= 1) = 1 for some i ∈S and let Z0 be an admiss-
able random variable. Then, Pi(Ψ1:n(Z0)∈ ·) w−→Q(i, ·) for some Q∈P(S ,R) is satisfied
if and only if (3.6) and one of the following cases prevails:
(i) Pi(τ̂(i) ∈ ·) is aperiodic. Then,

Q(i, ·) =


∑
j∈S πj Pi(ci+ (θiai θj/aj)(Z0− cj) ∈ ·), if Pi(Πτ(i) = 1) = 1,∑

j∈S πj Pi(ci+ (ai/aj)Yj ∈ ·), if Pi(Πτ(i) = 1)< 1,

where Pi(Yj ∈ ·) = 1
2 [Pi(Z0− cj ∈ ·) +Pi(−(Z0− cj) ∈ ·)].

(ii) Pi(τ̂(i) ∈ ·) is 2-periodic and

lim
n→∞Pi(Π2n(Z0− cM2n) ∈ ·) = lim

n→∞Pi(−Π2n(Z0− cM2n) ∈ ·). (5.7)

Then, Q(i, ·) =∑
j∈S πj Pi(ci+ (θiai θj/aj)(Z0− cj) ∈ ·).

Proof. By Lemma 5.5 and Lemma 5.6, (Ψ1:n(Z0))n≥0 converges in distribution under Pi
for some admissable Z0 only if (3.6) is satisfied. Now, suppose (3.6) is true. We distinguish
between Pi(τ̂(i) ∈ ·) being aperiodic or 2-periodic.

Suppose Pi(τ̂(i) ∈ ·) is aperiodic. Then, for all n≥ 0

Ψ1:n(Z0) = ci+ (sign(Πn)ai/aMn)(Z0− cMn) Pi-a.s.

As a consequence, ergodicity of (Mn)n≥0 combined with Lemma 5.7 and Lemma 5.9 entails
the identity of Q(i, ·) as claimed.

Now, suppose Pi(τ̂(i) ∈ ·) is 2-periodic. Recalling

Ψ1:n(Z0) = cM0 + Πn (Z0− cMn) a.s. for all n≥ 0,

we conclude that (Ψ1:n(Z0))n≥0 converges in distribution under Pi if and only if
(Πn (Z0− cMn))n≥0 converges in distribution under Pi. The assumed 2-periodicity en-
tails that (Π2n (Z0− cM2n))n≥0 and (Π2n+1 (Z0− cM2n+1))n≥0 are regenerative processes
with aperiodic regeneration times and thus converge in distribution. Consequently, it re-
mains to show that their limit distributions coincide if and only if (5.7) is satisfied. Set
τ∗(i) := inf{n ≥ 1 : Mn = i, Πn = −1} and notice that Pi(τ∗(i) ∈ 2N0 + 1) = 1. We infer
that under Pi

Π2n+1 (Z0− cM2n+1) d' 1{τ∗(i)<2n+1}

(
−

2n+1∏
k=τ∗(i)+1

Ak

)
(Z0− cM2n+1)
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d'
(
−

2n+1∏
k=τ∗(i)+1

Ak

)
(Z0− cM2n+1)

d' −Π2n (Z0− cM2n),

which yields the necessity and sufficiency of (5.7). Then, since

ci+ Π2n (Z0− cM2n) = ci+ (θiai θM2n/aM2n)(Z0− cM2n) a.s.

we obtain Q(i, ·) as claimed. ut

At first glance, condition (5.7) appears unsatisfying. One may suspect necessity of the
convergence of (Mn,Ψ1:n(Z0))n≥0 under Pi as in the other cases and thus symmetry of
Z0−cj for all j ∈S under Pi, which further results in cj = ci for all j ∈S . The following
example reveals its falsity.

Example 5.11 Let a ∈ R\{0} and c0, c1 ∈ R. We define a Markov chain (Mn)n≥0 with
state space {0,1,2} by

p01 = p02 = 1
4 , p00 = 1

2 and p10 = p20 = 1.

The Markov-modulated sequence (An,Bn)n≥1 is given by

(A1,B1) =



(−1, 2c0), if i= j = 0,
(a, c0−ac1), if i= 0, j = 1,

(a−1, c1−a−1 c0), if i= 1, j = 0,
(−a, c0 +ac1), if i= 0, j = 2,

(−a−1, c1 +a−1 c0), if i= 2, j = 0.

Consequently, we have a degenerate (An,Bn)n≥1 with P0(|Πτ(0)| = 1) = 1, P0(τ̂(0) ∈ ·)
2-periodic, c1 = c2 and π1 = π2. Moreover, since P0(Π2n = 1|M2n = 0) = 1, Lemma 5.7
shows that sign(Π2n) and |Π2n| are functions of M0 and M2n thus

P0(Π2n =−a|M2n = 1) = P0(Π2n = a|M2n = 2) = 1.

Therefore, if Z0 is symmetric under P0 one easily derives

lim
n→∞P0(c0 + Π2n (Z0− cM2n) ∈ ·)

= π1P0(c0−a(Z0− c1) ∈ ·) +π2P0(c0 +a(Z0− c1) ∈ ·) +π0P0(Z0 ∈ ·)
= π1P0(c0 +a(Z0− c1) ∈ ·) +π2P0(c0−a(Z0− c1) ∈ ·) +π0P0(−Z0 ∈ ·)
= lim

n→∞P0(c0−Π2n (Z0− cM2n) ∈ ·)

= lim
n→∞P0(c0 + Π2n+1 (Z0− cM2n+1) ∈ ·),

which suffices for distributional convergence of (Ψ1:n(Z0))n≥0 under P0.
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5.3. The Case limsupn→∞ |Πτn(i)|=∞ a.s.

For showing that |Ψ1:n(Z0)| Pπ−→ ∞ if limsupn→∞ |Πτn(i)| =∞ a.s., but (3.6) fails, we
embark on the use of Lemma 5.6. The subsequent result states that the associated as-
sumptions are satisfied.

Lemma 5.12 Suppose limsupn→∞ |Πτn(i)| =∞ a.s. for some (hence all) i ∈S is true
and (3.6) is not satisfied. Then, there exists m ∈N such that Ψ1:m(0) is not almost surely
a measurable function of (M0,Mm,Πm).

Proof. Suppose there is a measurable function f such that

Ψ1:2n(0) = f(M0,M2n,Π2n) a.s. (5.8)

for some n ∈ N with Pi(Mn = i)> 0. Hence,

Ψ1:n(0) + ΠnΨn+1:2n(0) = f(M0,M2n, Π2n) a.s.

Proposition 3.4 entails that on {M0 = Mn = M2n = i} either Ψ1:n(0) = c(1−Πn) a.s. or
(Πn,Ψ1:n(0)) = (1, c) a.s. for some c ∈ R. Consequently, it suffices to show the existence
of m ∈ N such that Pi(Mm = i, Πm 6= 1)> 0 and

Pi(Ψ1:m(0) = c(1−Πm)|Mm = i) < 1 for all c ∈ R.

Suppose there is cm ∈ R such that Pi(Ψ1:m(0) = cm (1−Πm)|Mm = i) = 1 for all m ∈
I := {n ∈ N : Pi(Mn = i, Πn 6= 1)> 0}.

By assumption, there is m1 ∈ I with Pi(Mm1 = i, |Πm1| 6= 1)> 0. Hence,

p := max
{
Pi(Mm1 = i, |Πm1|> 1), Pi(Mm1 = i, |Πm1|< 1)

}
> 0.

For any other m ∈ I, we derive m1m ∈ I, since

Pi(Mm1m = i, |Πm1m| 6= 1) ≥ pm > 0.

On {M0 =Mm1m = i}, we have Ψ1:m1m(0) = cm1m (1−Πm1m) a.s., but also

Ψ1:m1m(0) =

cm1 (1−Πm1m), if Mm1 =M2m1 = . . .=Mm1m = i,

cm (1−Πm1m), if Mm =M2m = . . .=Mm1m = i.

Hence cm = c for all m ∈ I for some c ∈ R.
By the above assumption and Pi(Bi = c(1−Ai)) < 1, there is ` ∈ N with Pi(M` =

i,Π` = 1)> 0 and
Pi(Ψ1:`(0) = c(1−Π`) |M` = i, Π` = 1) < 1,

i.e.
Pi(Ψ1:`(0) 6= 0 |M` = i, Π` = 1) > 0. (5.9)

However, Pi(M`+m = i, Π`+m 6= 1)> 0 for m ∈ I yields

Ψ1:`+m(0) = c(1−Π`+m) Pi-a.s.
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given M`+m = i. Therefore, we infer that on {M` = i, Π` = 1, M`+m = i, Π`+m 6= 1}

Ψ1:`(0) = Ψ1:`+m(0)−Π`Ψ`+1:`+m(0) = Ψ1:`+m(0)−Ψ`+1:`+m(0)

= c(1−Π`+m)− c
(

1−
`+m∏
k=`+1

Ak

)
= 0 Pi-a.s.,

which contradicts (5.9). ut

Given limsupn→∞ |Πτn(i)| =∞ a.s., either Πn
Pi−→ 0 or limsupn→∞Pi(|Πn| > 0) > 0.

Moreover, since Πτ(i) is a proper random variable under Pπ, it is easily seen that Πn
Pi−→ 0

and Πn
Pπ−→ 0 are equivalent.

Lemma 5.13 Suppose limsupn→∞ |Πτn(i)| =∞ a.s. for some i ∈ S and let Z0 be an
admissable random variable. Pi(Ψ1:n(Z0)∈ ·) w−→Q(i, ·) for some Q∈P(S ,R) is satisfied
if and only if one of the following cases prevails:

(i) Πn
Pπ−→ 0 and (3.6) are true. Then, Q(i, ·) = δci and Ψ1:n(Z0) Pπ−→ cM0.

(ii) limsupn→∞ Pi(|Πn| > 0) > 0, Pπ(B1 = c(1−A1)) = 1 for some c ∈ R and Z0 = c
Pi-a.s. Then, Q(i, ·) = δc and Ψ1:n(Z0) = c Pi-a.s. for all n≥ 0.

Proof. By the previous considerations, (3.6) is necessary for distributional convergence.
We infer from

Ψ1:n(Z0) d' 1{τ(i)<n}Ψi (Ψτ(i)+1:n(Z0))

that a possible limit distribution Q(i, ·) solves the SFPE R
d= Ψi(R), where R and (Ai,Bi)

are independent. Hence, an appeal to Theorem 1.2 (iii) shows Q(i, ·) = δci .
Suppose Πn

Pπ−→ 0. Then, Ψ1:n(Z0) = cM0 +Πn (Z0−cMn) = cM0 +ΠnZ0−Πn cMn con-
verges stochastically to cM0 under Pπ for all i ∈S by Slutsky’s theorem, since (cMn)n≥0
is stationary under Pπ.

Suppose limsupn→∞ Pi(|Πn|> 0)> 0. Then, there exists j ∈S and ε > 0 with

limsup
n→∞

Pi(|Πn|> ε, Mn = j) > 0.

limsupn→∞ |Πτn(j)|=∞ a.s. ensures that for every x∈R> there exists somem(x)∈N such
that Pj(|Πm(x)|>x/ε, Mm(x) = j)> 0. Consequently, limsupn→∞ Pi(|Πn|>x, Mn = j)> 0
for all x ∈ R≥, which is easily seen to imply

limsup
n→∞

Pi(|Πn|> x, Mn = j) > 0 for all (x,j) ∈ R≥×S .

We infer from Q(i, ·) = δci that

Ψ1:n(Z0)− ci = Πn (Z0− cMn) Pi−→ 0
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must be satisfied. Assume Pi(Z0 = cj)< 1 for some j ∈S . Then, we obtain a contradiction
from

0 = lim
n→∞Pi(|Πn (Z0− cMn)|> ε)

≥ limsup
n→∞

Pi(|Πn (Z0− cj)|> ε, Mn = j)

= limsup
n→∞

Pi(|Πn|> ε/|Z0− cj |, Z0 6= cj , Mn = j) > 0.

Consequently, Pi(Z0 = cj) = 1 for all j ∈S , which implies all cj , j ∈S , being equal to
some c ∈ R and Z0 = c Pi-a.s. ut

6. Fixed Points of Ψ1 •Q = Q

This section is devoted to giving necessary and sufficient conditions for Q ∈P(S ,R) to
solve

Ψ1 •Q = Q (6.1)

defined in (2.1).
The following observation is essential. Let Q be a fixed point of (6.1). Then,

Q(i, ·) = Pi(Ψ1(R1) ∈ ·) =
∑
j∈S

pij

∫
Pi(Ψ1(r) ∈ ·|M1 = j) Q(j,dr) (6.2)

entails
Ri

d= Ψ1(RM1) =
∑
j∈S

1{M1=j}Ψ1(Rj) under Pi

for all i ∈S , where Rj has distribution Q(j, ·), j ∈S , and is independent of all other
occurring random variables under Pi. Furthermore, an iteration of the above argument
shows

Ri
d= Ψi(Ri) d= AiRi+Bi, (6.3)

where (Ai,Bi) andRi are independent, and these fixed points are characterised in Theorem
1.2.

Let (Zn)n≥0 be a sequence of random variables such that Zn is independent of all other
occurring random variables given Mn and P(Zn ∈ ·|Mn = i) = P(Z0 ∈ ·|M0 = i). We call
such sequence admissable. Then, if Pi(Ψ1:n(Zn) ∈ ·) w−→ Q(i, ·), Q ∈P(S ,R), for some
(hence all) i∈S , Q is a fixed point of (6.1). That this convergence is a solidarity property
follows with the usual arguments from

Ψ1:n(Zn) = 1{τ(j)<n} (Πτ(j) Ψτ(j)+1:n(Zn) +Bj
1) + 1{τ(j)≥n}Ψ1:n(Zn)

for all n≥ 1. Then, the fixed point characterisation results from

lim
n→∞Ψ1:n(Zn) = Ψ1( lim

n→∞Ψ2:n(Zn)).

109



Chapter B. On Markov-Modulated Random Difference Equations

Conversely, let Q be a solution to (6.1). Then, define

Rn :=
∑
j∈S

1{Mn=j}R
j
n, n≥ 0,

where Rjn is independent of all other occurring random variables and has distribution
Q(j, ·). Clearly, (Rn)n≥0 is admissable and (6.2) shows that

Rn
d= Ψn+1(Rn+1)

under any Pi for all n≥ 0. Consequently,

Pi(Ψ1:n(Rn) ∈ ·) = Pi(R0 ∈ ·) = Q(i, ·)

converges weakly.
Suppose Pπ(A1 = 0) > 0. By the above characterisation, it follows immediately that

a unique fixed point of (6.1) is given by Q, where Q(i, ·) := Pi(
∑κ
k=1 Πk−1Bk ∈ ·) and

κ := inf{n≥ 1 : An = 0}.
Concerning the remaining cases, we formulate the next theorem.

Theorem 6.1 Suppose Pπ(A1 = 0) = 0. There exists a fixed point Q ∈P(S ,R) of (6.1)
if and only if one of the following conditions is satisfied for some (hence all) i ∈S :
(i) limn→∞Πτn(i) = 0 a.s. and EiJi(log+ |Bi|) <∞. Then, Q(j, ·) = Pj(Ẑ∞ ∈ ·) for all

j ∈S .
(ii) Pi(|Πτ(i)|= 1) = 1, (3.6) is true and one of the following cases prevails:

(ii.1) Pi(Πτ(i) = 1) < 1. Then, Q(j, ·) = P(cj +aj Y ∈ ·) for all j ∈S and some sym-
metric random variable Y .

(ii.2) Pi(Πτ(i) = 1) = 1. Then, Q(j, ·) = P(cj + aj θj Y ∈ ·) for all j ∈ S and some
random variable Y , where (cj)j∈S is not uniquely determined by (3.6).

(iii) limsupn→∞ |Πn|=∞ a.s. and (3.6) are satisfied. Then, Q(j, ·) = δcj for all j ∈S .

Proof. Case limn→∞Πτn(i) = 0 a.s. Suppose there is a fixed point Q and hence
that Q(i, ·) solves (6.3). By Theorem 1.2, EiJi(log+ |Bi|) < ∞ and Q(i, ·) =
Pi(limn→∞Ψi

1:n(0) ∈ ·), which equals Pi(Ẑ∞ ∈ ·) by Theorem 5.1 (i) for all i ∈S .
Conversely, given EiJi(log+ |Bi|) <∞, Q ∈P(S ,R) defined by Q(i, ·) := Pi(Ẑ∞ ∈ ·)

is a fixed point of (6.1), because Ψ1:n(Zn) d−→ Ẑ∞ for Zn := 0 for all n≥ 0.
Suppose (Πτn(i))n≥0 does not converge to 0 almost surely. Since a fixed point Q of (6.1)

exists only if Q(i, ·) solves (6.3), we infer from Theorem 1.2 that (3.6) must be satisfied.
From now on, we assume (3.6) to be valid and, given a fixed point Q, Ri, i ∈S , denotes
a random variable with law Q(i, ·), which is independent of all other occurring random
variables.

Case Pi(|Πτ(i)| = 1) = 1. Suppose Pi(Πτ(i) = 1) < 1. Let Q be a fixed point of (6.1).
Theorem 1.2 entails that Q(i, ·) is symmetric about ci. Hence,

Y i := Ri− ci
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is a symmetric random variable. An appeal to Proposition 3.5 shows

Y i
d= Ψ1:n(RMn)− ci = Ψ1:n(RMn)−Ψ1:n(cMn) = ΠnY

Mn (6.4)

for all n≥ 0 under Pi. In particular,

|Y i| d= |Πn| |YMn| = ai
|YMn|
aMn

under Pi

with (aj)j∈S as in (5.2). Ergodicity of (Mn)n≥0 implies distributional convergence of
(|YMn|/aMn)n≥0 to some Y ′, which is independent of M0. Consequently,

Ri
d= ci+aiY,

where Y is symmetric.
Conversely, we show that Q ∈P(S ,R) with

Q(j, ·) := P(cj +aj Y ∈ ·), j ∈S ,

solves the SFPE (6.1), where Y is symmetric, (cj)j∈S given by (3.6) and (aj)j∈S as
above. Let R1 be a random variable with law P(R1 ∈ ·|M0 = i, M1 = j) = Q(j, ·), which
is independent of (A1,B1) given (M0,M1). It holds that

Ψ1(R1) = A1R1 + ci−A1 cM1 = ci+A1 (R1− cM1) d= ci+ |A1|(R1− cM1)

= ci+
ai
aM1

(R1− cM1) d= ci+aiY

under Pi for all i ∈S .
Suppose Pi(Πτ(i) = 1) = 1. Let Q ∈P(S ,R) be a fixed point Q of (6.1). Theorem

1.2 entails that Q(i, ·) is arbitrary. By Proposition 3.6, there exists an infinite class of
sequences (ci)i∈S such that Ψ1(cM1) = cM0 a.s. For any such sequence

Y i := Ri− ci
d= ΠnY

Mn

remains true under Pi (cf. (6.4)). Using Lemma 5.7, we derive

Y i
d= ai θi

θMn Y
Mn

aMn

for all n≥ 0.

Again, ergodicity of (Mn)n≥0 implies distributional convergence of (θMn Y
Mn/aMn)n≥0 to

some random variable Y . Thus,

Ri
d= ci+ai θiY

for all i ∈S .
Conversely, withR1 having the same dependencies as above, but P(R1 ∈ ·|M0 = i, M1 =

j) = P(cj +aj θj Y ∈ ·), we obtain

Ψ1(R1) = ci+A1 (R1− cM1) = ci+ai θi
θM1

aM1
(R1− cM1) d= ci+ai θiY
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under Pi for all i ∈S .
Case limsupn→∞ |Πτn(i)| =∞ a.s. Due to Theorem 1.2 a fixed point Q must satisfy

Q(i, ·) = δci for all i ∈S . The so-defined stochastic kernel does in fact solve the SFPE
(6.1) by Proposition 3.5. ut

In a closing remark, we briefly discuss conditions on (Zn)n≥0 that are necessary and
sufficient for distributional convergence of (Ψ1:n(Zn))n≥0, where we omit the proofs, which
are analogous to those of Theorem 5.1. We emphasise that (Ψ1:n(Zn))n≥0 converges in
distribution for arbitrary admissable (Zn)n≥0 in the cases (i), Pi(|Πτ(i)| = 1) = 1 and
Pi(τ̂(i) ∈ ·) aperiodic, and limsupn→∞ |Πτn(i)|=∞ a.s. and Πn

Pπ−→ 0. In contrast, P(Zn ∈
·|Mn = i) = δci must be satisfied in (iii) if (Πn)n≥0 does not tend stochastically to 0.
Moreover, analogous to the proof of Lemma 5.10 (ii), one verifies that

lim
n→∞Pi(Π2n (Z2n− cM2n) ∈ ·) = lim

n→∞Pi(−Π2n (Z2n− cM2n) ∈ ·) (6.5)

is necessary and sufficient if Pi(|Πτ(i)|= 1) = 1 and Pi(τ̂(i)∈ ·) is 2-periodic. For example,
(6.5) is satisfied if Pj(Z0 ∈ ·) = P(cj +Y ∈ ·) for all j ∈S , where Y is symmetric.

7. On the Forward Iterations
The main result of this section is a theorem giving equivalent conditions for (Ψn:1(Z0))n≥0
to converge in distribution under Pi, i∈S , for some admissable Z0. First of all, we mention
that (Ψn:1(Z0))n≥0 can converge in distribution under Pi, but not under Pj , i, j ∈S , as
we will see. Nevertheless, given (Ψn:1(Z0))n≥0 converges in distribution under Pi,

Ψn:1(Z0) d' 1{τ(j)<n}Ψn:τ(j)+1(Ψτ(j):1(Z0))

shows that (Ψn:1(Z̃0))n≥0 converges in distribution to the same limit under any Pj , where
Z̃0 is admissable and has conditional distribution

Pj(Z̃0 ∈ ·) =

Pi(Ψτ(j):1(Z0) ∈ ·), if j 6= i,

Pi(Z0 ∈ ·), if j = i.

Now, let (#An,#Bn)n≥1 be the dual process of (An,Bn)n≥1, i.e.

#Kij := P((#A1,
#B1) ∈ ·|#M0 = i, #M1 = j) := Kji,

where (#Mn)n≥0 is defined as in Chapter A. Using

P((Ak,Bk)1≤k≤n ∈ ·|M0 = i0, . . . ,Mn = in)

=
n⊗
k=1

Kik−1ik =
n⊗
k=1

#Kikik−1

= P((#An−k+1,
#Bn−k+1)1≤k≤n ∈ ·|#M0 = in, . . . ,

#Mn = i0)
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and
Pi0(M1 = i1, . . . ,Mn = in) = πin

πi0
Pin(#M1 = in−1, . . . ,

#Mn = i0)

for all n≥ 1 and i0, . . . , in ∈S , we derive

Pπ((Z̃0,(Ak,Bk)1≤k≤n) ∈ ·) = Pπ((#Zn,(#An−k+1,
#Bn−k+1)1≤k≤n) ∈ ·),

where (#Zn)n≥0 is admissable in terms of the dual process, i.e. #Zn is independent of all
other occurring random variables given #Mn and P(#Zn ∈ ·|#Mn = j) = Pj(Z̃0 ∈ ·). As
a consequence,

Ψn:1(Z̃0) =
n∑
k=1

( n∏
`=k+1

A`

)
Bk + Πn Z̃0

d=
n∑
k=1

#Πk−1
#Bk + #Πn

#Zn = #Ψ1:n(#Zn)

is true under Pπ, where
#Ψn(x) := #Anx+ #Bn, x ∈ R, n≥ 1.

Consequently, if (Ψn:1(Z0))n≥0 converges in distribution under Pi, then

lim
n→∞Pi(Ψn:1(Z0) ∈ ·) = lim

n→∞Pπ(Ψn:1(Z̃0) ∈ ·) = lim
n→∞Pπ(#Ψ1:n(#Zn) ∈ ·). (7.1)

Hence, if Pπ(A1 = 0)> 0, then

Pi(Ψn:1(Z0) ∈ ·) w−→ Pπ
( #κ∑
k=1

#Πk−1
#Bk ∈ ·

)

for any i ∈S , where #κ := inf{n≥ 1 : #An = 0}.
Moreover, since limit distributions of (#Ψ1:n(Z̃n))n≥0 correspond to fixed points of

#Ψ1 •Q = Q,

the possible limit distributions can easily be inferred from Theorem 6.1.
Before stating the main theorem, we discuss some aspects of the dual process

(#An,#Bn)n≥1. Let (#Ain,
#Bi

n)n≥1 and #Ẑ∞ be the analogues of (Ain,Bi
n)n≥1 and Ẑ∞.

(#An,#Bn)n≥1 being degenerate, namely

Pπ(#B1 = c#M0−
#A1 c#M1) = 1

for some sequence (ci)i∈S , is equivalent to

Pπ(B1 = cM1−A1 cM0) = 1. (7.2)

In addition, (7.2) yields

Ψn:1(Z0) = cMn + Πn (Z0− cM0) a.s.
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Theorem 7.1 Suppose Pπ(A1 = 0) = 0 and let Z0 be an admissable random random vari-
able. Then, Pi(Ψn:1(Z0) ∈ ·) w−→ Q, i ∈S , for some Q ∈P(R) is satisfied if and only if
one of the following conditions is fulfilled:
(i) limn→∞Πτn(i) = 0 a.s. and EiJi(log+ |#Bi|)<∞. Then, Q= Pπ(#Ẑ∞ ∈ ·).
(ii) Pi(|Πτ(i)|= 1) = 1, (7.2) is true and one of the following cases prevails:

(ii.1) Pi(τ̂(i) ∈ ·) is aperiodic. Then,

Q =


∑
j∈S πj Pi(cj + (θiai θj/aj)(Z0− ci) ∈ ·), if Pi(Πτ(i) = 1) = 1,∑

j∈S πj Pi(cj + (ai/aj)Y ∈ ·), if Pi(Πτ(i) = 1)< 1,

where Pi(Y ∈ ·) = 1
2 [Pi(Z0− ci ∈ ·) +Pi(−(Z0− ci) ∈ ·)].

(ii.2) Pi(τ̂(i) ∈ ·) is 2-periodic and

lim
n→∞Pi(cM2n + Π2n (Z0− ci) ∈ ·) = lim

n→∞Pi(cM2n−Π2n (Z0− ci) ∈ ·). (7.3)

Then,
Q =

∑
j∈S

πj Pi(cj + (θiai θj/aj)(Z0− ci) ∈ ·).

(iii) limsupn→∞ |Πτn(i)| =∞ a.s. and (7.2) are satisfied. Moreover, Z0 = ci Pi-a.s. if
limsupn→∞ Pi(|Πn|> 0)> 0. In each case, Q= Pπ(cM0 ∈ ·).

Proof. Case limn→∞Πτn(i) = 0 a.s. Suppose (Ψ1:n(Z0))n≥0 converges in distribution
under Pi. As Πn

Pπ−→ 0, we obtain

Ψn:1(Z0) d' Ψn:1(0)

d' 1{τ(j)<n}

[
(Πn/Πτ(j))

[ τ(j)∑
k=1

( τ(j)∏
`=k+1

A`

)
Bk

]
+ Ψn:τ(j)+1(0)

]
d' Ψn:τ(j)+1(0).

Therefore,

lim
n→∞Pi(Ψn:1(Z0) ∈ ·) = lim

n→∞Pπ(Ψn:1(0) ∈ ·) = lim
n→∞Pπ(#Ψ1:n(0) ∈ ·)

so that the assertion follows from Theorem 5.1 (i). The converse follows analogously.
Theorem 6.1 yields that (7.2) must be satisfied if (Πτn(i))n≥0 does not converge to 0

almost surely. Therefore, we assume (7.2) to be true in the remainder of the proof.
Case Pi(|Πτ(i)|= 1) = 1. Suppose Pi(τ̂(i) ∈ ·) is aperiodic. Using

Ψn:1(Z0) = cMn + (sign(Πn)ai/aMn)(Z0− ci) Pi-a.s.,

Lemma 5.7 and Lemma 5.9 entail the identity of Q.
Suppose Pi(τ̂(i) ∈ ·) is 2-periodic. 2-periodicity of Pi(τ̂(i) ∈ ·) implies that

(Ψ1:2n(Z0))n≥0 and (Ψ1:2n+1(Z0))n≥0 are regenerative processes with aperiodic re-
generation times and thus converge in distribution under Pi. Therefore, the equality
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of their limit distribution is equivalent to distributional convergence of (Ψ1:n(Z0))n≥0.
Analogous to the proof of Lemma 5.10 (ii), one concludes that the latter holds if and only
if (7.3) is satisfied and obtains the identity of Q.

Case limsupn→∞ |Πn| =∞ a.s. We infer from the correspondence with fixed points
of #Ψ1 •Q = Q that the limit distribution equals Pπ(cM0 ∈ ·). The remaining assertion
follows easily from

Ψn:1(Z0) = cMn + Πn (Z0− ci) Pi-a.s.

ut

In comparison with Theorem 6.1 (ii), notice that Pi(cj + (θiai θj/aj)(Z0 − ci) ∈ ·)
corresponds with Pi(cj+#aj#θj Y ∈ ·), Y := θiai (Z0−ci), where (#aj)j∈S and (#θj)j∈S

are defined in terms of (#Πn)n≥0.
Moreover, notice that (7.3) is always satisfied for some admissable Z0. By Theo-

rem 6.1, there exists a sequence (#Zn)n≥0 admissable for the dual process such that
(#Ψ1:n(#Zn))n≥0 converges in distribution under Pπ. Hence, define

Pi(Z0 ∈ ·) := Pπ(Ψτ(i):1(Z̃0) ∈ ·),

where Pj(Z̃0 ∈ ·) = Pj(#Z0 ∈ ·). and an appeal to (7.1) yields (7.3).
In conclusion, we verify a correspondence between proper stationary solutions to (2.2)

and limit distributions of (Ψn:1(Z0))n≥0 under some Pi for some admissable Z0.
Consider a proper stationary solution (Rn)n≥0 to (2.2). Then, (Ψn:1(R0))n≥0 converges

naturally in distribution under Pπ, because

Rn
d= AnRn−1 +Bn = Ψn(Rn−1) under Pπ

for all n≥ 1. Furthermore, (Rn)n≥0 being a stationary solution yields that Rτ(i) is inde-
pendent of (Ak,Bk)k>τ(i)+1. Together with

Ψn:1(R0) d' 1{τ(i)<n}Ψn:τ(i)+1(Rτ(i)),

we obtain Ψn:1(Z0) d−→R0 under Pi, where Z0 is admissable and Pi(Z0 ∈ ·) = Pπ(Rτ(i) ∈ ·).
Conversely, suppose Pi(Ψn:1(Z0) ∈ ·) w−→ Q̂ ∈ P(R). We will show that there is

a stationary solution (Rn)n≥0 to (2.2) with Pπ(R0 ∈ ·) = Q̂. Due to (7.1), Q̂ =
limn→∞Pπ(#Ψ1:n(#Zn) ∈ ·). Referring to Section 6, we can define Q ∈ P(S ,R) by
Q(i, ·) := limn→∞Pi(#Ψ1:n(#Zn) ∈ ·), i ∈ S . Then, Q satisfies #Ψ1 •Q = Q and the
subsequent lemma shows that this is equivalent to Ψ1 ?Q=Q.

Lemma 7.2 Suppose Q ∈P(S ,R). Ψ1 ?Q=Q if and only if #Ψ1 •Q=Q.

Proof. Let R0 be a random variable independent of (M1,A1,B1) given M0 and #R1 a
random variable independent of (#A1,#B1) given (#M0,#M1). Furthermore, we suppose

P(R0 ∈ ·|M0 = j) = Q(j, ·) = P(#R1 ∈ ·|#M0 = i, #M1 = j)
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for all i, j ∈S . Then, the assertion follows from

Pπ(A1R0 +B1 ∈ ·|M1 = i)

=
∑
j∈S

πj
πi

Pj(A1R0 +B1 ∈ · , M1 = i)

=
∑
j∈S

πj pji
πi

P(A1R0 +B1 ∈ ·|M0 = j, M1 = i)

=
∑
j∈S

#pij

∫ ∫
1{xr+y∈·} P((A1,B1) ∈ d(x,y)|M0 = j,M1 = i) Q(j,dr)

=
∑
j∈S

#pij

∫ ∫
1{xr+y∈·} P((#A1,

#B1) ∈ d(x,y)|#M0 = i, #M1 = j) Q(j,dr)

=
∑
j∈S

#pij P(#A1
#R1 + #B1 ∈ ·|#M0 = i, #M1 = j)

=
∑
j∈S

Pi(#A1
#R1 + #B1 ∈ · , #M1 = j)

= Pi(#A1
#R1 + #B1 ∈ ·)

for all i ∈S . ut

Now, let (Rn)n≥0 be a sequence of random variables such that Rn is independent of
(Ak,Bk)k>n givenMn and P(Rn ∈ ·|Mn = i) =Q(i, ·) for all n≥ 0. Using Ψ?Q=Q, yields

Pπ(AnRn−1 +Bn ∈ ·) = Pπ(A1R0 +B1 ∈ ·)
=

∑
i∈S

πiPπ(A1R0 +B1 ∈ ·|M1 = i)

=
∑
i∈S

πiQ(i, ·)

= Pπ(Rn ∈ ·)

for all n≥ 1
As mentioned in Section 2, the corresponding assumption of Brandt [10] for the study

of a stationary solution to (2.2) is Eπ log |A1| < 0 and Eπ log+ |B1| <∞. The assumption
is equivalent to Eπ log |#A1|< 0 and Eπ log+ |#B1|<∞. Consequently,

log |#Πn| =
n∑
k=1

log |#Ak| → −∞ a.s.

by Birkhoff’s ergodic theorem and

lim
n→∞

log+ |#Bn|
n

= 0 a.s.

by the Borel-Cantelli lemma, which entail

lim
n→∞

#Πn
#Bn+1 = 0 a.s.
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By Theorem 4.1, this yields that (#Ψ1:n(0))n≥0 converges almost surely and in particular
in distribution. Hence, we are in case (i) of Theorem 7.1 and the unique solution is given
by Pπ(#Ẑ∞ ∈ ·). [10, Theorem 1] contains a different expression of the limit distribution
in terms of the doubly infinite extension (An,Bn)n∈Z.
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C. Appendix

C.1. Consequences of Eiτ (i)1+α <∞
This chapter gathers some technical results that are used frequently in Chapter A.
(Mn,Sn)n≥0 denotes a MRW if not stated otherwise.

The lemma can easily be proved by applying Theorems 1.2–1.3 on the random walks
(Sn−n(µ+ε))n≥0 and (Sn−n(µ−ε))n≥0. However, the result is already known (see [12,
Theorem 8.4.5] for α = 0 and [9, Theorem 1] for α > 0).

Lemma C.1 Let (Sn)n≥0 be a random walk.
(i) Suppose α = 0. µ := EX ∈ R if and only if∑

n≥1
n−1P(|n−1Sn−µ|> ε) < ∞ for all ε > 0.

(ii) Suppose µ := EX ∈ R and α > 0. Then, E|X|1+α <∞ if and only if∑
n≥1

nα−1P(|n−1Sn−µ|> ε) < ∞ for all ε > 0.

Lemma C.2 Let α > 1 and suppose Eiτ(i)1+α <∞ for some (hence all) i ∈S . Then,

Ei
(∑
n≥1

τn(i)α−1 1{τn(i)>(Eiτ(i)+ε)n}

)
< ∞ for all ε > 0

for all i ∈S .

Proof. Set b := Eiτ(i) + ε. We begin with

Ei
(∑
n≥1

τn(i)α−1 1{τn(i)>bn}

)

�
∑
n≥1

∫ ∞
0

xα−2Pi(τn(i)> bn∨x) dx

=
∑
n≥1

∫ bn

0
xα−2Pi(τn(i)> bn) dx+

∑
n≥1

∫ ∞
bn

xα−2Pi(τn(i)> x) dx

�
∑
n≥1

nα−1Pi(τn(i)> bn) +
∑
n≥1

∑
k≥n

∫ b(k+1)

bk
xα−2Pi(τn(i)> x) dx,
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where the first summand of the last line is finite for all ε > 0 by Lemma C.1. Concerning
the second summand, we infer

∑
n≥1

∑
k≥n

∫ b(k+1)

bk
xα−2Pi(τn(i)> x) dx

≤
∑
n≥1

∑
k≥n

∫ b(k+1)

bk
xα−2Pi(τn(i)> bk) dx

�
∑
n≥1

∑
k≥n

kα−2Pi(τn(i)> bk)

=
∑
k≥1

k∑
n=1

kα−2Pi(τn(i)> bk)

≤
∑
k≥1

kα−1Pi(τk(i)> bk),

where we used that (τn(i))n≥0 is a renewal process. The upper bound is again finite by
Lemma C.1. ut

Lemma C.3 Let α≥ 0 and suppose Eiτ(i)1+α <∞ for some (hence all) i ∈S . Then,∑
n≥1

nα−1Pi(Sτn(i) ≤ y) � Ei
(∑
n≥1

τn(i)α−1 1{Sτn(i)≤y}

)
as y→∞

for all i ∈S .

Proof. On the one hand, Lemma C.1 yields

Ei
(∑
n≥1

τn(i)α−1 1{τn(i)>2nEiτ(i)}

)
≤

∑
n≥1

nα−1Pi(τn(i)> 2nEiτ(i)) < ∞

for α ∈ [0,1] and, on the other hand, Lemma C.2 entails

∞ > Ei
(∑
n≥1

τn(i)α−1 1{τn(i)>2nEiτ(i)}

)
≥

∑
n≥1

nα−1Pi(τn(i)> 2nEiτ(i))

for α > 1. Consequently,

Ei
(∑
n≥1

τn(i)α−1 1{Sτn(i)≤y}

)

� Ei
(∑
n≥1

τn(i)α−1 1{Sτn(i)≤y,n≤τn(i)≤2nEiτ(i)}

)

� Ei
(∑
n≥1

nα−1 1{Sτn(i)≤y,n≤τn(i)≤2nEiτ(i)}

)
�

∑
n≥1

nα−1Pi(Sτn(i) ≤ y) as y→∞

as claimed. ut
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Lemma C.4 Let α≥ 0 and suppose Eiτ(i)1+α <∞ for some (hence all) i ∈S . Then,

Ei
(∑
n≥1

χn(i)α1{χn(i)>n}

)
< ∞

for all i ∈S .

Proof. Analogous to the beginning of the proof of Lemma C.2, one derives

Ei
(∑
n≥1

χn(i)α1{χn(i)>n}

)
�

∑
n≥1

nαPi(τ(i)> n) +
∑
n≥1

∑
k≥n

∫ k+1

k
xα−1Pi(τ(i)> x) dx

and that ∑
n≥1

∑
k≥n

∫ k+1

k
xα−1Pi(τ(i)> x) dx .

∑
n≥1

nαPi(τ(i)> n).

Therefore, the assertion follows from∑
n≥1

nαPi(τ(i)> n) . Eiτ(i)1+α < ∞.

ut

Lemma C.5 Let α > 0 and suppose Eiτ(i)1+α <∞ for some (hence all) i ∈S . Then,
for any non-negative random variable T

EiTα < ∞ if and only if
∑
n≥1

nα−1Pi(T > τn(i)) < ∞.

Proof. As seen in the proof of Lemma C.3, we have∑
n≥1

nα−1Pi(τn(i)> 2nEiτ(i)) < ∞

and thus

EiTα �
∑
n≥1

nα−1Pi(T > n)

�
∑
n≥1

nα−1Pi(T > 2nEiτ(i))

�
∑
n≥1

nα−1Pi(T > 2nEiτ(i), τn(i)≤ 2nEiτ(i))

≤
∑
n≥1

nα−1Pi(T > τn(i)).

Analogously, the reverse inequality can be obtained by using∑
n≥1

nα−1Pi(τn(i)≤ 2−1nEiτ(i)) < ∞.

ut
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C.2. Renewal-Theoretic Auxiliary Results
Lemma C.6 Let (Sn)n≥0 be a positive divergent random walk. Then,∑

n≥1
P(0≤ Sn ≤ y) � J(y) as y→∞.

Proof. Set U>((∞,y]) :=∑
n≥0P(Sσ>n ≤ y) for y ∈ R≥. By Theorem 1.6,

U>((−∞,y]) = U>([0,y]) � J(y) as y→∞.

Consequently, one part follows directly from∑
n≥1

P(0≤ Sn ≤ y) ≥ U>([0,y])−1

for y ∈ R≥. It is well-known from renewal theory that U>([−x,y− x]) ≤ U>(y) for all
x ∈ R and y ∈ R≥. Hence, the second part follows from

∑
n≥1

P(0≤ Sn ≤ y) =
∑
n≥1

E
( σ>n∑
k=σ>n−1+1

1{0≤Sk≤y}
)

=
∫
E
(
σ>∑
k=1

1{0≤Sk+x≤y}

)
U>(dx)

= E
[
σ>∑
k=1

U>([−Sk,y−Sk])
]

≤ E
[
σ>∑
k=1

U>([0,y])
]

= Eσ> ·U>([0,y]).

ut

Lemma C.7 Let (Mn,Xn)n≥0 be a Markov-modulated sequence, where Xn is assumed to
be Rd valued. Pick some i ∈S and define

Tn = f(Xτn−1(i)+1, . . . ,Xτn(i)), i ∈S , n≥ 1,

for some measurable, real-valued function f . Then, (TN(n)+1)n≥1 converges in distribution.

Proof. Let (µn)n≥0 denote the discrete renewal density associated with (τn(i))n≥0, i.e.

µn :=
∑
k≥0

Pi(τk(i) = n)

for n≥ 0. Since (Mn)n≥0 is aperiodic, thus Pi(τ(i)∈ ·) 1-arithmetic, we have limn→∞µn =
1/Eiτ(i). By the key renewal theorem,

Pi(TN(n)+1 ≤ x) =
∑
k≥1

Pi(N(n) + 1 = k, Tk ≤ x)
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=
∑
k≥1

n∑
`=0

Pi(τk−1(i) = `)Pi(τ(i)> n− `, T ≤ x)

=
n∑
`=0

µ`Pi(τ(i)> n− `, T ≤ x)

converges to
1

Eiτ(i)
∑
`≥0

Pi(τ(i)> `, T ≤ x) =
Eiτ(i)1{T≤x}

Eiτ(i)

for all x ∈ R as claimed.
ut
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Acronyms

a.s. almost surely, also used synonymous for Pi-a.s. for all i ∈S .
i.i.d. independent and identically distributed.
MRW Markov random walk.
PRW perturbed random walk.
SFPE stochastic fixed point equation.
w.l.o.g. without loss of generality.
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List of Symbols

. f(y) . g(y): ⇔ f(y)≤ cg(y) for all sufficiently large y > 0 for some c ∈ R>. � f(y)� g(y) :⇔ f(y) & g(y) and f(y) . g(y). d= equal in distribution. d' the distributional limits are equal. d−→ distributional convergence. w−→ weak convergence. P−→ stochastic convergence under the measure P. # denotes the corresponding dual object. dxe dxe := inf{y ∈ Z : x≤ y}.
A(y) A(y) := E(X+∧y)−E(X−∧y). Ai(y) Ai(y) := Ei(S+

τ(i)∧y)−Ei(S−τ(i)∧y). Aπ(y) Aπ(y) := Eπ(X+
1 ∧y)−Eπ(X−1 ∧y). Ain

∏τn(i)
k=τn−1(i)+1Ak. (ai)i∈S see (5.2).

B Borel σ-algebra on R. Bi
n Bi

n :=∑τn(i)
k=τn−1(i)+1(∏k−1

`=τn−1(i)+1A`)Bk.
χn(i) χn(i) := τn(i)− τn−1(i).
Di
n Di

n := maxτn−1(i)<k≤τn(i)(Sk−Sτn−1(i))−. Di,>
n Di,>

n := maxτ>n−1(i)<k≤τ>n (i)(Sk−Sτ>n−1(i))−. δa Dirac measure in a ∈ R.
Ei expectation symbol of Pi. Eπ expectation symbol of Pπ.
Hi
n Hi

n := maxτn−1(i)<k≤τn(i)(Sk−Sτn−1(i))+.
J J(y) := y

E(X+∧y) . Ji,γ Ji,γ(y) := y
[Ei(S+

τ(i)∧y)]γ . Ji Ji := Ji,1. Jπ,γ Jπ,γ(y) := y
[Eπ(X+

1 ∧y)]γ . Jπ Jπ := Jπ,1.

Kij conditional distribution of X1 (Chapter A) or (A1,B1) (Chapter B) given M0 = i,M1 = j.
Λ(x) Λ(x) :=∑

n≥1 1{Sn≤x}. Λ>n Λ>n :=∑n
k=1 1{Sn>0}. Λ6

n Λ6
n :=∑n

k=1 1{Sn≤0}.
N positive integers. N0 N0 := N∪{0}. N(n) N(n) :=N(i,n) := sup{k ≥ 0 : τk(i)≤ n}. ν(x) ν(x) := ν(i,x) := inf{n≥ 1 : Sτn(i) > x}. ν ν := ν(0).
P P := (pij)i,j∈S . pij pij := Pi(M1 = j). π stationary distribution of (Mn)n≥0. π> stationary distribution of (M>

n )n≥0. Πn Πn :=∏n
k=1Ak. Pi Pi = P(· |M0 = i) or Pi := P(· |#M0 = i). Pπ Pπ :=∑

i∈S πiPi. P(R) set of probability measures on (R,B). P(S ,R) set of stochastic kernels Q : S ×B→ [0,1]. Ψk:n Ψk:n := Ψk ◦ . . .◦Ψn. Ψi
k:n Ψi

k:n := Ψi
k ◦ . . .◦Ψi

n. Ψn Ψn(x) := Anx+Bn. Ψi
n Ψi

n(x) := Ainx+Bi
n.

R≥ non-negative real numbers. R> positive real numbers. ρ(x) ρ(x) := sup{n≥ 0 : Sn ≤ 0}.
S state space of (Mn)n≥0. S > state space of (M>

n )n≥0. σ>1 (x) σ>1 (x) := inf{n≥ 1 : Sn > x}. σ>1 σ>1 := σ>1 (0). σ>n σ>n := inf{k ≥ σ>n−1 + 1 : Sn > Sσ>n−1
}. σ61 (−x) σ61 (−x) := inf{n≥ 1 : Sn ≤−x}. σ61 σ61 := σ6(0). σ>,i1 σ>,i1 := inf{n≥ 1 :M>

n = i}. σ>,in σ>,in := inf{k ≥ σ>,in−1 + 1 :M>
k = i}. σmin σmin := inf{n≥ 1 : Sn = mink≥1Sk}.

(τn(i))n≥1 sequence of return times to i. τ̂(i) τ̂(i) := inf{τn(i) : Πτn(i) = 1}. τ>(i) τ>(i) := inf{n≥ 1 : Sn > 0, Mn = i}. (θi)i∈S see the remark before Lemma 5.9.
Ui Ui :=∑

n≥0Pi(Sτn(i) ∈ ·). υ υ := υ(i, j) := inf{n≥ 1 : τn(i)> τ(j)}.
Vαi the measure induced by Vαi ((x,∞)) := Ei(

∑τ(i)
k=1 1{S−k >x})

α. Vi Vi := V1
i .

W i
n W i

n := maxτn−1(i)<k≤τn(i) |(Πk−1/Πτn−1(i))Bk|.
Ẑ∞ Ẑ∞ :=∑

n≥1 Πn−1Bn.
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