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Summary

The thesis at hand is concerned with the study of some Markov-modulated processes,
where the underlying Markov chain (M,),>0 is aperiodic, positive recurrent and has a
countable state space ..

Chapter A is devoted to an analysis of Markov random walks (MRWs). A MRW is a
process (Sp)n>0, Sn =Y p—1 X for n > 1 and Sp := 0, where, conditioned on (My,)n>0, the
increments (X, ),>1 are independent and X,,, only depends on M,,_1, My, for allm > 1, i.e.
(Xn)n>1 is Markov-modulated. In the analysis, we dispense with moment assumptions on
the increments and focus on extending results from fluctuation theory of ordinary random
walks. After verifying a trichotomy for the almost sure asymptotic behaviour of a so-
called non-trivial MRW, emphasis will be placed on characterising MRWs diverging to oo
almost surely. In particular, equivalent conditions for the existence of power moments of
| ming>0Snl, 2n>11(s,<0} and the last exit time sup{n >0: S, <0} will be established,
whereas difficulties for finding an equivalent criterion for the existence of power moments
of the first passage time will be illustrated. Finally, the well-known arcsine law will be
extended to non-trivial MRWs.

Chapter B examines iterations of Markov-modulated random affine functions ¥,,(z) :=
Apz+ By, x € R, n>1, ie. (Ap,Bp)n>1 is Markov-modulated. Let Zy be a random
variable independent of all other occurring random variables given My and V., = Yo
..oV, for all k,n > 1. On the one hand, we study distributional convergence of the
forward iterations (V,,:1(Zp))n>1 and relate possible limit distributions to solutions to a
stochastic fixed point equation (SFPE). On the other hand, we characterise distributional
convergence of the backward iterations (V1.,(Zp))n>1, which does not reduce to the study
of distributional convergence of the forward iterations as in the ordinary setup, where
(Ap, Bn)n>1 are independent and identically distributed (i.i.d.). Moreover, necessary and
sufficient conditions will be obtained for Zu := Zn21(HZ;i Ay) By, called perpetuity, to
exist as the almost sure limit of (V1.,(0)),>1 and for its distribution to be a solution to
some SFPE.

In both chapters the regenerative structure included in Markov-modulation enables to
apply the classical results, i.e. on ordinary random walks and on iterations of i.i.d. affine
functions respectively, on some subsequences of the corresponding process to obtain first
insights. Nevertheless, great differences appear between the behaviour of this subsequences
and the one of the entire process, which arise when .# has countably infinitely many states.
Consequently, additional theory will be developed to accomplish the proofs.
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A. On Fluctuation Theory of
Markov Random Walks

1. An Overview of Fluctuation Theory of Random
Walks

Let (Xp)n>1 be an i.i.d. sequence of random variables. Without further mentioning, all
random variables in this work are real-valued. Set S, :=>"1_; X} for n > 1 and Sy := 0.
(Sn)n>0 is called random walk.

A random walk is one of the basic objects in probability theory and is already en-
countered when dealing with the most known results of probability theory, namely the
law of large numbers and the central limit theorem. Naturally, an additive process with
increments that are of some regenerative structure arises in many applications. The sim-
plest way of modulation is to assume i.i.d. increments, which leads to a random walk.
There are several examples, well-known is queuing theory, where the arrival process, i.e.
the sequence of arrivals of customers to the queue, is represented by a random walk with
positive increments in the simplest models (e.g., see [7, Chapter III]). Moreover, random
walks appear in the analysis of random difference equations (see Section ..

Although random walk theory is a relatively old topic (e.g., see [39], dating from 1921),
associated research is still ongoing. Results on aspects of the fluctuation behaviour of a
random walk are subsumed under the term fluctuation theory. This section is devoted to
introducing the reader to the topic of fluctuation theory and to state the main results. Si-
multaneaously, the latter form the set of theorems, which are at least partially generalised
in the remaining part of Chapter [A]

An introduction to fluctuation theory of random walks and proofs of the basic results
can be found in several books (e.g., [20, Chapter XII] and [12 Chapter §]).

1.1. The Fluctuation Type of Random Walks and Finiteness of
Fluctuation-Theoretic Quantities

A random walk with increments not degenerate in 0 is called non-trivial. It is well-known
that such a random walk exhibits one of the following fluctuation types:

Positive divergence: lim S, =00 a.s.
n—oo
Negative divergence: lim S, =—o a.s.
n—oo
Oscillation: liminf S, = —o0 and limsup S, =00 a.s.
n—oo

n—oo
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For the reader’s convenience, we dispense occasionally with subindices in the sense that
we write X instead of X ;. Similarly, we proceed with all other occurring random variables
in this thesis. If EX is well-defined, i.e. EXTAEX™ < 0o and EX :=EXtT —EX ", the
fluctuation type of a non-trivial random walk can be characterised by the mean in the
following form:

Positive divergence & EX > 0.
Negative divergence & EX <O0.
Oscillation & EX =0.

Kesten [30] established the following trichotomy for the case EXT =EX~ = occ:

Theorem 1.1 ([30], Corollary 3) Let (Sy)n>0 be a non-trivial random walk with
E|X|=o00. Then, exactly one of the following cases prevails:

(i) limy, oon 1S, =00 a.5. and (Sy)n>0 is positive divergent.
(ii) lim, soon 'S, = —00 a.s. and (Sn)n>0 is negative divergent.
(i3) liminf, .o n~1S, = —c0 a.s., limsup,,_,.o n 1S, =00 a.s. and (Sy)n>0 oscillates.

Further characterisations of the fluctuation type will be stated only for positive diver-
gent random walks. These can easily be translated into a negative divergent random walk
(Sn)n>0, since (—Sy)n>0 is positive divergent. Hence, a result on oscillating random walks
can be concluded by contraposition.

Let x € R>. In the study of the fluctuation behaviour of random walks, interesting
quantities are the level z first passage times

o7 (x) == inf{n>1:8, >z}, oS(—x) = inf{n>1:85, < -z},
the last level z exit time
p(x) = sup{n >0:S, <z},

the hitting time of the minimum

Omin = inf {n >1:5,= %1;1118;6}

and the renewal counting measure

A(l‘) = Zl{snﬁm}'

n>1

Set 0~ := 0~ (0) and o< :=¢<(0). That one can draw a conclusion on the fluctuation type
from information on these quantities is part of the next theorem. For y € R>, define

Aly) = E(XTAy)—E(X ™ Ay)
and
Jy) = JERTRy TR =0)<1,
y, fPXt=0)=1,

where 0/E(X T A0) := 1. The case P(XT =0) =1 is actually irrelevant for this work, but
J(y) is chosen in correspondence to [19].
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Theorem 1.2 Let (Sp)n>0 be a non-trivial random walk. The following conditions are
equivalent:

(i) (Sn)n>0 is positive divergent.

(i) A(y) >0 for all sufficiently large y and EJ(X ™) < cc.
(iii) Y p>1n T P(S, <) < oo for some (hence all) v € R>.
(iv) Eo”(x) < oo for some (hence all) x € R>.

Additionally, further equivalences to positive divergence are P(o0S(—z) = o0) > 0,
P(p(x) < 00) =1, P(omin < 00) =1, P(A(x) < 00) =1 and P(|min,>0S,| < o0) =1 for
some (hence all) z € R>, which follow directly from the definition of positive divergence
and the fluctuation type trichotomy.

Positive divergence is equivalent to E J(X ™) < oo if E| X | = 0o, which is due to Erickson
[19, Corollary 1]. In fact, condition (ii) reduces to EJ(X ™) < oo in this case, because
A(y) > 0 for all sufficiently large y is a consequence of positive divergence (see [33, Lemma
3.2]). If E|X| < oo, (ii) is equivalent to 0 < EX =limy_,o A(y), since EJ(X ™) is then of
magnitude EX ~, which is finite.

Kesten and Maller [33] showed that E.J(X ™) < oo can be replaced with

) —
/A(y)IP’(X edy) < oo.

Moreover, they have shown that under the assumption of positive divergence, J(y) and
y/A(y) are asymptotically of the same magnitude (see the proof of Lemma 3.1 from [33]),
which is why we also state the next theorems with J(y).

The criterion concerning the harmonic renewal series in (iii) goes back to Spitzer [44],
Theorem 4.1].

The main outcome of Kesten and Maller’s article [33] is a theorem giving equiva-
lent conditions for the finiteness of power moments of the above introduced fluctuation-
theoretic quantities. Given 0 < EX < E|X| < oo, this has already been done by many
authors, most notably Gut [26] and Janson [29]. For a good overview of the relevant
literature, the reader is referred to Chapter III of Gut’s monography [27].

Theorem 1.3 ([33], Theorem 2.1 and p. 27) Let (Sy)n>0 be a positive divergent ran-
dom walk and o> 0. The following conditions are equivalent:

(i) Ep(z)* < oo for some (hence all) v € R>.

(i) EJ(X )+ < .

(ii7) Eofs, < oo.

(iv) Eag(—x)o‘l{gg(_x)@o} < 0o for some (hence all) x € R>.
(v) EA(z)* < oo for some (hence all) x € R>.

(Vi) Yop>1 n®~1P(S, <z) < oo for some (hence all) v € R>.
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(vii) BEo” (2)'7Y < 0o for some (hence all) v € R>.
Another set of equivalent conditions is formed by the equivalences to finite power

moments of | min,>oSy|.

Theorem 1.4 ([33], Prop. 4.1) Let (Sp)n>0 be a positive divergent random walk and
a > 0. The following conditions are equivalent:

(i) E|min,>0S,|¢ < 0o.
(i) E[(X7)*J(X7)] < oc.
(71i) E|So<(—2)|* Lio<(—a)<oc} < 00 for some (hence all) x € R>.

(i) E(maxo<,<p() [Sn|)* < 0o for some (hence all) x € R>.

Obviously, Theorem [1.4] (ii) is stronger than Theorem [1.3)(ii), but, if 0 <EX <E|X| <
00, both conditions are equivalent and reduce to E (X _)“'0‘ < 00. Hence, as a corollary of
the previous results, we obtain Janson’s theorem, which has been published years before
[33].

Theorem 1.5 ([29], Theorem 1) Let (Sy,)n>0 be a positive divergent random walk with
0<EX <E|X| < o0 and a > 0. The conditions in Theorem and are equivalent
and the respective second condition reduces to E(X ~)1T% < oco.

Another result of Kesten and Maller specifies the rate of growth of certain quantities
from Theorem [I.3] which will be a basic ingredient for our results. For positive functions
on the negative half-line f and g and y — oo we denote f(y) < g(y) if there exists a
constant ¢ € R such that

fly) < cg(y) for all sufficiently large ,

and f(y) < g(y), if f(y) Sg(y) and f(y) Z g(y), ie.
0 < hyrggéfjgcgs < li?_}s;p% < 00

In particular, this notation is used for constant functions f and g, i.e. we abbreviate that
both are finite or infinite at the same time by f =<g.

Theorem 1.6 ([33], Theorem 2.2 and p. 28) Let (S,)n>0 be a non-trivial random
walk.
(i) If (Sn)n>0 is positive divergent, then
SRS, <y) < logJ(y) as y — 0.
n>1

(i) Suppose Ep(0)* < oo for some a > 0. Then,
Eo”(y)* =< > n*'P(S, <y) < EA(y)* =< Ep(y)* < J(y)* as y — 0.

n>1

Erickson [19] first showed that Y=, P(S, <y) =< J(y) for a random walk (Sy,)n>0 with
non-negative increments. For further remarks on this theorem we refer to those in [33].
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1.2. Arcsine Law for Random Walks

A result contradicting a person’s first intuition is the arcsine law for random walks. Con-
sider the coin tossing game between two players A and B where player A wins a round if
a fair coin shows heads, and player B wins otherwise. Let X,, be equal to 1 if player A
wins the n-th round, and —1 otherwise. Moreover, let (S,,)n>0 denote the random walk
with increments (X,,)p>1. By the symmetry of the game, one may expect that it is most
likely for large n that

n
Ay = 1igso0h
=1

the number of rounds player A has the lead, is approximately n/2. In contrast, the arcsine
law entails that n~!'A. is actually more likely to be close to 0 and 1. In other words, it is
more probable that one player is in lead most of the time.
The result for the above setting was first introduced by Lévy [35, Corollaire 2, p. 303],
which more detailly states
Ao g
— = AR(1/2),

where AR(1/2) is the classical arcsine distribution given by the distribution function
2
AR(1/2)((—o0,z]) = - arcsin(/z), z €[0,1].

More generally, we can introduce the family of arcsine distributions (AR(6))se(o1]- Set
AR(0) := 609 and AR(1) := 4;. For 6 € (0,1), AR(0) is defined by having the Lebesgue-
density
sin(m ) 1
7 a1 01—z L(o,1)(2)-

Lévy’s result is followed by several generalisations. The most important generalisations
have been given by Sparre Andersen and Spitzer. Sparre Anderson (see [43, Theorem 3])
showed that a non-trivial random walk (S),)n>0 with

30 €(0,1): Jim P(S, >0) = 0
entails n~tA> LN AR(0). Spitzer established an arcsine law under a weaker assumption.

We state his theorem including the trivial cases 6 € {0,1}.

Theorem 1.7 ([44], Theorem 7.1) Let (Sy)n>0 be a non-trivial random walk, which
fulfils

1 n
36 € [0,1] lim ~ > P(S,>0) = 0.
n—oon 1
Then,
> <
A4, AR(0)  and Av o4, AR(1-9),
n n

where AS :=n—A> =7, 1(s,<0}-
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2. Introduction of Markov Random Walks

It is self-evident that a random walk is not always the best choice for modelling sums of
increments of a regenerative structure. In the context of queuing theory one may think
about temporal bursts or seasonal fluctuations. This asks for a weakening of the i.i.d.
assumption. In order to implement dependency, the natural choice is Markovian depen-
dence, i.e. the increments are governed by a Markov chain. This motivation leads to the
study of the subsequent defined object.

Let (My,)n>0 be a positive recurrent, aperiodic Markov chain on some countable set .7
with transition matrix P = (p;;); je.» and unique stationary distribution 7 := (m;);c.o. Ad-
ditionally, consider a stochastic kernel K : (#2 x B) — [0,1] to define a bivariate Markov
chain (M, Xp)n>1 by

P((MnaXn) S (j7E>|(Mkan:)0§k§n—l) = P((Mn’Xn) = (j7E)|Mn—1)
= PM,_j K(Mp-1,5,E),

for all j €., n>1and F €8, where B denotes the Borel o-field on R. Hence,
KMn,an = K<MnflaMn7') = P(Xn € ‘|Mn71;Mn>-

Furthermore, (X1,...,X,) are conditionally independent, i.e.
n
P((Xl, ... ,Xn) € - |M0 =1g,..., M, = Zn) = ® Kikflik
k=1

for all n > 1 and 1y,...,i, € .. The dependence structure allows to say that (X,)n>1
is governed by the driving chain (My)n>0. We also call (X,)p>1 a Markov-modulated
sequence. Set Sp:=0 and Sy, :=>7_; Xi. (My,Sn)n>0 and often also (Sy,)n>0 are called
Markov random walk (MRW) or Markov additive process.

Fluctuation theory of MRWs has been examined by several authors. A classification
of MRWs in terms of the almost sure asymptotic behaviour is studied in the articles of
Prabhu et al. [40] and Newbould [36]. The latter particularly focused on MRWs with
(M,)n>0 having a finite state space. Although we focus on the case of . being countably
infinite, Section deals with the simpler case of a finite state space.

Further contributions are due to Alsmeyer. [3] deals with recurrence of MRWs given
an ergodic driving chain with general state space. [2] examines ladder times and ladder
chains under the assumption of a positive stationary mean in the case of an underlying
Harris chain. [4] has been worked out during this thesis and studies ladder chains in our
setup. Fuh and Lai [2I] as well study ladder variables, but the underlying Markov chain
is assumed to be uniformly ergodic.

A Wiener-Hopf factorisation for MRWs has been established by Asmussen (see [§]
or [7, Chapter XI]). The latter reference also contains applications of MRWs in queuing
theory. [13] provides further references for applications and early developments in Markov
renewal theory.
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2.1. Basic Results and Further Organisation

In the remainder of this chapter, (M, Sp)n>0 is always assumed to be a MRW. For a first
result, we make use of the following considerations.

Forie .7, let (7,())n>1 be the successive return times of (M, )n>0 to state i. Moreover,
set xn(7) :=Tn (1) —Tn—1(7), n > 1 and 79(¢) := 0. Due to its particular Markovian structure,
(M, Xp)n>1 splits into i.i.d. cycles

(X1 (8)s (Mo (6 ks X (6) 10 ) 1<k < gt (1) )0

under P; :=P(- | My =) and is stationary under Py :=37;c o m; ;. In particular, (S., (;))n>0
forms an ordinary random walk under P;.

Consider a measurable function f:.7 x R — R satisfying E, fT(X1) AE, f~(X1) < oo.
It is well-known (e.g., see [37, Lemma 5.2]) that

7(4)
E.f(X1) = ml&-(zf(Xk)). (21)
k=1

Given IE?TrXfr NE-X] < oo, we obtain
E. X1 = WZEZST(Z) (2.2)

It is a simple result to show that P;(S;;) = 0) =1 holds either for all i € . or none
(e.g., see Lemma [2.2). Excluding this degenerate case, we are able to state a first result
on the behaviour of MRWs. Since “Pr-a.s.” means the same as “IP;-a.s.” for all i € ., we
use “a.s.” synonymous for both.

Theorem 2.1 Let (M, Sp)n>0 be a MRW with Ex X{" AEx X7 < oo and Pi(S,;=0) <1
for all v e . The following assertions are true:

(1) (Sn)n>0 is either positive divergent, negative divergent or oscillating.
(i) (Sp)n>0 and (S, (i))n>0 have the same fluctuation type for alli € 7.
(7ii) (Sn)n>0 is positive divergent if and only if Ex X1 > 0.

(iv) lim, seon™ 1S, =E; X1 a.s.

Proof. If E;S; ;) =0, (S, ())n>0 oscillates, which naturally implies oscillation of (Sy,)n>0-
Consequently, assertion (i) to (iii) follow directly from the occupation measure formula
(2.2) if we prove (iv). Moreover, Birkhoff’s ergodic theorem entails (iv) if we show that
(Xn)n>1 is ergodic under Pr.

The stationarity is clear. Hence, let us consider an invariant set £ € B>, i.e.

E = {(Xn,Xn41,...) € B} forall n>1 and some B € B*.

Define the P,-independent o-algebras

Q(TL = U(XTH—I(?:)? (MTn(i)‘f'/f?XTn(i)+/€>1<k<Xn+1(i))’ n 2 0
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By Kolmogorov’s zero-one law >3 0(Up>kRAn) is Pr-trivial. Hence, it suffices to show
E € 0(Up>iQAy) for all k> 1. This follows from

E = U{m@) =n}nE=J{m6) =n, (X1, Xni2,...) € B}

n>k n>k

= U {Tk(z) = n7XTk(i)+17XTk(i)+27‘ : ) € B}
n>k

= {XTk(i)-‘rl?XTk(i)-‘rQ?“') € B} € O'( U an)

n>k

O

This theorem sums up most of the current knowledge of the fluctuation behaviour of a
MRW before this thesis. Besides, Prabhu et al. [40] examined the introduced degeneracy
condition and showed that the trichotomy in Theorem (i) remains true without any
moment assumptions (see their Theorem 7). Nevertheless, we prove this fluctuation type
trichotomy ourselves and widen the degeneracy discussion by the aspect of null-homology
in Section 2.2

The study of a MRW does not reduce to the study of its embedded random walks.
In fact, (S,)n>0 may be regarded as the countable union of (STn(i))nZO, 1€ .Y, but the
way these are intertwined cause several complications. For example, we will reveal the
intriguing fact that the assertion of Theorem (ii) does not necessarily hold if E, X;" =
E;X| =o00. As it turns out throughout this chapter, one always has to take the behaviour
of the excursions between successive return epochs into account.

Section [3|establishes solidarity results. Particularly, we show that all embedded random
walks have the same fluctuation type. Auxiliary results are also given in Section [5, which
deals with ladder chains. The task of finding equivalent conditions for finiteness of power
moments of the first level x passage time will remain unsolved, a discussion can be found
in Section [6.5] The main results are contained in the Sections [] and [6], which prove
partial generalisations of Theorems[I.IHI.6] Not all assertions can be generalised to MRWs,
Section [7| gathers some counterexamples.

Just recently, Alsmeyer, Tksanov and Meiners published an article [5] that studies
fluctuation behaviour of perturbed random walks. Some of their results can be translated
to MRWs and vice versa. Hence, we will extend some of their results and give different
proofs. See Section 8| for a comparison of both results.

Section @ aims at finding stronger versions of our main results for some special cases
(e.g. || < 00). Finally, Section [L0| generalises the arcsine law for ordinary random walks
to MRWs.

A useful object will be the dual of (M,,Sy)n>0, denoted (#Mn,#sn)nzo herafter,
which is again a MRW with (#Mn)nZO being the time reversal of (M, ),>0 under P, with
transition matrix

TP = (W> ]
T 1,j€S

Moreover,
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for all n > 1. Then, one easily infers
. . Tin . .
Py, (My =i1,..., My =1i,) = W#Pin(#Ml = ip1,..., 7 My, =) (2.3)
10

and
P((Xl,...,Xn> € ‘|M0 =10,...,Mpy, Iin)

n n
= ® Kiy i, = ® #Kikik—l (2.4)
k=1

(

for all n > 1 and ig,...,i, € .7.
Considering a doubly infinite extension (M, X,)nez of the stationary chain
(M, Xp)n>1 under P and putting Sp :=0 and S, := S,,—1 + X, for n # 0, thus

_H o

1
(* X, #X0) € [F Mo =i, # My, =ig)

Sp = 0, ifn=0,
—Xo—...— n+1; if’rLS—l,

one can easily verify that the Pr-laws of the dual and of (M_,,,—S_,)n>0 are the same.
Equivalently, (#Mna#Xn)nZI has the law of (M_,, X_p+1)n>1 under Pr.

For z € R>, we define 0 (), 0S(—x) etc. for MRWs in the same way as for ordinary
random walks. (#7,(1))n>1, 70~ (x), #oS(—z) etc. denote the corresponding quantities
for the dual MRW (#Mn,#Sn)nZO. Moreover, in the context of the dual MRW, we also
write P; for P(-|# My =1).

2.2. Null-Homologous Markov Random Walks
In Theorem 2.1 we have already seen that excluding the property

Pi(sr(i) = O) =1 for all 1 € .7 (2.5)

provides the usual fluctuation type trichotomy for MRWs with E,X; well-defined. Our
first aim is to validate this assertion even when the stationary mean is undefined. This will

take place in the next section, but we study MRWs fulfilling (2.5) before. These MRWs
have already been studied in [40] to some extent. Due to Lalley [34], we call a MRW
null-homologous if there exists a function g : . — R such that

Xn = g(My)—g(My_1)  as. (2.6)

Notice that such a function is not uniquely determined, because if ¢ satisfies (2.6)), then the
same holds for ¢'(i) := g(i) + ¢, ¢ € R. Our first result is that the class of null-homologous
MRWs and the class of MRWs fulfilling ([2.5]) coincide.

Lemma 2.2 The following conditions are equivalent:
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(1) (Mp,Sn)n>0 is null-homologous.
(ii) Pi(S;4 =0) =1 for some i€ ..
(iii) Pi(S;)=0)=1 forallie 7.

Proof. “(i)=(ii)” is trivial.
“(ii)=(iii)” Let ¢s; be the characteristic function of S.(;) under Py for s,j € .. Then,
with i € .% such that (S, (i ))n>0 has zero increments, we easily find that

z/11'81 (t) w8182 <t> Teeet 2ﬂsnfwn (t) Vspi (t) =1 (2'7)

forallte R, n>1and sy,...,s, € 7. In particular, ;57 s =1 for all s € . and n > 0.
Consequently, 155 =1 for all s € ., which proves (iii).

“(iii)=(1)” (2.7) implies |¢sj] =1 and ;15 =1 for all s,j € .7: Hence, ,;(t) =
(st for some function h :.#? — R and
1h]s _ sz() _ W _ efih(s,j)t.
This further yields h(j,s) = —h(s,j) and particularly h(s,s)=0. Fix some i € ., define
g(s) :=h(i,s) for s € ./ and use ;5115 = 1 to infer

ie. h(s,j) = g(j) —g(s) for all s,j € .. But the latter means that S.;y = g(j) — g(s)
Ps-a.s. and therefore

Ps(X1=g(M1)—g(Mp)) = > Po(X1=yg(j)—g(s), M1 =j)

je€SL
= Z PS(ST(j) = g(.]) —g(S), T(.]) = 1)
jes
= Z PS(T(j):l) =1
je€SL
for all 5,7 € . which shows that (M, Sp)n>0 is indeed null-homologous. ad

The following result uses of the regenerative structure of a null-homologous MRW.

Lemma 2.3 Let (M, Sp)n>0 be a null-homologous MRW. Then, (Sy)n>0 converges in
distribution.

Proof. Obviously, (M, Sy)n>0 is a Markov chain with
P;((M,,S,) = (i,0) i.0.) = Pi(M, =iio.) = 1.
Since P;(7(i) € -) is aperiodic,

¢() = mE ( Z 1{Ske })

is the unique stationary measure of (Sy)n>0 (e.g., see [7, Cor. VI.1.5 (i)]). 0

10
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Here is a classification result for null-homologous MRWs, the straightforward proof is
omitted.

Proposition 2.4 If (M, Sp)n>0 is null-homologous with g as in (2.6)), then exactly one
of the following alternatives is true:

(i) g=0 and S, =0 a.s. for all n > 0.
(i) 04 supie l9()] < 00 and

—o0o < liminf 5;,, < limsup S, < oo a.s.
n—0o0 n—00

(i7i) —oo = inf;c » g(i) < sup;c.» g(i) < 0o and

liminf S, = —o0 and limsup S,, < o0 a.s.
n—oo n—oo

(itv) —oo < inf;c o g(i) < sup;c o g(i) = 00 and

—o0 < liminf S, and limsup S,, = o0 a.s.
n—00 n—o00

(v) inf;c » g(i) = —00, sup;c.» g(i) =00 and

hnrgloréf S, = —oo and h;r;s;;p Sp = 00 a.s.
Notice that alternatives (iii)—(v) are only possible if . has infinitely many states.

In correspondence to ordinary random walks, we call a MRW non-trivial if is
not satisfied or equivalently if the MRW is not null-homologous. The following lemma is
a main ingredient for the proof of the fluctuation type trichotomy for non-trivial MRWs
in the next section.

Lemma 2.5 Suppose liminf,, -, S, € R or limsup,,_,., Sn € R Pj-a.s. for some i € .7,
then (My,, Sp)n>0 @s null-homologous.

Proof. Since liminf, . S, = —limsup,,_,o,(—Sy), suppose w.l.o.g. P;(limsup,,_,., Sn €
R) = 1. Then, let Y be a copy of limsup,,_,,, Sn under P;, which is independent of Sr()-

Since imsup,, oo (Sn — S7(3)) 2y under P;, we obtain the stochastic fixed point equation

y £ SroytY

under P;. The use of characterstic functions easily yields P;(S;; =0) =1, i.e. the MRW
is null-homologous. O

11



Chapter A. On Fluctuation Theory of Markov Random Walks

2.3. The Fluctuation Type Trichotomy for Non-Trivial Markov
Random Walks

The exclusion of null-homologous MRWs may raise the hope to have found a class of
MRWs whose behaviour is close to that of ordinary random walks. In fact, the same
fluctuation type trichotomy is satisfied for non-trivial MRWs and for non-trivial ordinary
random walks.

Theorem 2.6 A non-trivial MRW (My,,Sy)n>0 is either positive divergent, negative di-
vergent or oscillating.

Proof. It suffices to show that liminf,,_,~ S, and limsup,,_,., S, are a.s. constant and
take values in {£o0}. Using the argumentation from above, we can even restrict the proof
on examining limsup,,_,., Sy, . Fix some i € . and suppose p := P;(limsup,,_, ., Sp = 00) >
0. Since Lemma [2.5|entails P;(limsup,,_,o, Sy = £00) = 1, the proof is complete if we show
p = 1. Notice that

{limsupS = oo} = U { max Sg >z, limsup(S, — 57, 5)) :oo}

n—00 m>1 1<k<m n—00

for all x € R>. We obtain
p = lim P; (1%3%”5;{5 >z, hﬁfiso‘ép(s” = Sr.) = oo>

= p lim Pi<max Sk>x)

m—00 1<k<m

pP; <sup Sp > :L‘)

n>1

for all z € R>. Since we assumed p > 0, we derive IP;(sup,,>1 S, > x) =1 for all z € R>
and thus p=1. O

As a matter of fact, non-trivial MRWs and non-trivial ordinary random walks are
different in other aspects when the stationary mean is undefined. The following exam-
ple illustrates several of these. For the reader’s convenience, we dispense with modelling
aperiodicity in the examples.

Example 2.7 Let (My)n>0 be a Markov chain on Ny which, when in state 0, picks an
arbitrary ¢ € N with positive probability pg; and jumps back to 0 otherwise, thus p;p = 1.
With all pg; being positive, the chain is clearly irreducible and positive recurrent with

stationary probabilities my = % and

12
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Turning to the additive component, we define X,, by

X L _I)(;Ll7 if Mn_l == 0’ Mn == /[:7
|24yt if My =i, M, =0.

In other words, Kg; = 57p71 and K;p = 52+p71 for all 7 € N. Notice that ]EWXfL =E X =
(013 (013

00. By definition, we have

n, if n even,

Sp = -1 . .
n—1=poy,, ifnisodd,
under Py. Hence, S, tends almost surely to oo for n even, but since

0o = Zpom&l = EoX| = ZPO(X;(0)+1>2”)
€S n>0

and
{My =0, X041 > 2n infinitely often} = {Mo =0, S, (0)+1 <0 infinitely often},

the Borel-Cantelli lemma entails S,, < 0 infinitely often Pg-a.s. Consequently, the MRW
is oscillating, while (S, ))n>0 is positive divergent.

This example does also reveal further interesting properties. First of all, we note that
the MRW is oscillating and E;o0~ (z) < oo for all (z,i) € R> x .#. Secondly,

liminf n ! Sn <0 and limsup n! Sn, =1 a.s.

n—00 n—o0
Moreover, EgS; ) = 2 exists, but the stationary mean of X does not. In addition, the
fluctuation type of the MRW is different from the one of the dual MRW as it can be seen
by

#g n, if n even,
"\ nt 14y, ifnodd,

under Py.

The phenomenon that E;S;(;, i € ., exists, but the stationary mean of X does not,
has already been pointed out by Ney and Nummelin in a similar example (see [37, Example
6.3]). Our example already showed that Theorem , Kesten’s trichotomy, can not be
generalised to MRW with E|X;| = co. Under an additional assumption the trichotomy
is true again (see Section .

The mentioned phenomena in Example arise from an embedded null-homologous
MRW whose extreme values push the MRW into the opposite direction infinitely often.
Therefore, a study of a more restrictive class seems reasonable (see Section [9.2). Never-
theless, we will be able to generalise the results from fluctuation theory from ordinary
random walks to non-trivial MRW to a great extent.

13
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If we figure all © € N being placed on a circle around 0, the transition diagram of the
Markov chain looks like a flower with infinitely many petals, each of the petals representing
a transition from 0 to some i and back.

In most of our counterexamples the underlying Markov chain is a more general infinite
petal flower chain, where starting in 0 a deterministic cycle of length n is chosen with
probability P(I" = n), where I' will be adjusted for specific examples. We define this
general chain here for future use. Again, we dispense with modelling aperiodicity.

Example 2.8 Let I be a positive, integer-valued random variable with finite mean and
P(I" > 2) = 1. We construct a positive recurrent Markov chain (M,),>0 on .# C {0} UN?
by

IED(](Ml = (n,l), M2 = (n,2),..., Mn,1 = (n,n— 1), Mn = 0) =
for all n > 2. Hence, we have Py(7(0) € -) =P(I" € -).

3. Solidarity Results

In the previous section, we have seen that the fluctuation type of a MRW (S),),>0 can
be different from the one of (S, (;))n>0 for some i € . Our first result will be that the
embedded random walks share the same fluctuation type. Moreover, further solidarity
results will be given which are fundamental in future proofs.

For ¢ € .7, define
v(z) = v(z,i) = inf{n>1:9 4 >z}, r €R>,
the first level z passage time for (S, ;y)n>0, v :=v(0),
(i) == 7,(i) = inf{k>1:S5, >0, M}, =i}
and inductively
7y (i) o= inf{k > 77, (i) +1: S = S>>0, My, =i}
for n > 2.

Lemma 3.1 If (My,Sn)n>0 is non-trivial, then all (S, i))n>0, i € 7, are of the same
fluctuation type.

Proof. Non-triviality of the MRW implies liminf;, o S5, ;) and limsup,,_,, S;, (;) to be

almost surely equal to co or —oo for all i € .. Fix some distinct 7,5 € . and assume

w.l.o.g. limsup,,_, 57, ;) = 00 a.s. Hence, limy o0 ST,?(i) = o0 a.s. Now, pick m € N and

x > 0 such that P;(M,, = j,|Sm| < x) > 0. We infer from a geometric trials argument that
P; (MT,?(z‘)er =7, |S7’n>(z')—|—m — Sn?(z’)| < z infinitely often) =1

and thus limsup,,_,, 57, (j) = limsup,,_, Sy, ;) = 0 a.s. a

14



3. Solidarity Results

Additionally, one can show that the positive divergent embedded random walks share
the same finite power moments of fluctuation-theoretic quantities. The easiest way would
be to prove that the tails are of the same magnitude, i.e. IP’Z-(S;F(Z.) >y) =< IP’Z-(S;’(].) > 1) and

Pi(S_(i) > y) < IP’j(ST_(j) > y) as y — 00, and make use of the integral criteria, but this is

T

generally not possible. Referring to Example we see that ]P’O(ST(O) >y) =0 for y >2
while IP)Z'(ST(Z-) >y) >0 for all y € R> for any ¢ € N. However, we use will use a similar
approach.

For distinct 4,5 € ., define
v = v(i,7) = inf{n>1:70)>7(j)}

and notice that E;v'T® < oo for any a > 0 due to P;(v > n) = P;(7(i) < 7(j))" for all
n>1.

Lemma 3.2 Leti,j € . be some distinct states.
(i) There exists x € R> such that

Pj(Srgy>v) S Pi(Sr,a)>y—a)  asy— oo

(ZZ) Pj(ST(]') > 0) > 0 implies Pi(srv(i) > 0) > 0.
Proof. (i) We begin with
Pi(Szij) >y) = Pij(Sry) >y, 7(0) <7(4)) +Ps(S75) >y, 7(0) > 7(4))-
On the one hand, we obtain
Pi(Srjy >y, 7(1) <7(5)) = Pj(Sru) + (Sr) = Sr@) >y, 7(8) < 7(j))

= [Pi(Sr > y—2.7(0) < 7)) PilSr(;) € do)
< /]P’z'(STU(i) =S5y >y —x) Pi(Sr () € d)
= Pi(Sr,0) > )

This proves the assertion if P;(7(¢) > 7(j)) = 0. Otherwise, there exist z1,22 € R> with

p1 = ]P)i(Sr(j) > —x1,7(1) >71(j)) > 0 and po = ]Pj(ST(i) > —x9) > 0.
Set x :=2(x1 +x2). We infer

P;(S-j) >y, 7(i) > 7(5))
< [pr-pa] T PilSra) >y — /2, 7(1) > 72(4), Sr(j) = =1, Sr(i) = Srp(j) = —2)
S Pi(Sre) >y —2/2).

Furthermore, in this case,

Pi(STU(z') >y — 33)

15
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i(Sri) >y —x,v=1)+Pi(Sr) +(Sr,4) — Sru) >y —2,0>1)
i(Sr@) >y—x/2,v=1)
+Pi(Sri) + (Sry) — Sr() >y —2, 0> 1, (Sry) — Srp)) = —21 —22)
Pi(Sriy >y—2/2,v=1)+p1-p2-Pi(S;45) >y —x/2,v>1)
Pi(Sr) >y —2/2).
In conclusion, we obtain the assertion with 2 chosen as above if P;j(7(i) > 7(j)) > 0.

(ii) If P;(Sy(jy > 0,7(i) < 7(j)) > 0, the assertion follows immediately from the proof
in (i). Otherwise,

P
P

AV

VIV

Pj(Srjy>¢e 7(i) >7(j)) > 0

for some € > 0. Then, choosing z2 € R> and ps > 0 as in (i), the assertion follows from

Pi(Sr) > 0) = p2-Pj(Sr, ) > 22, 7(i) > Ta()))
> p2-Pj(Sy;) >¢e,7() >7(4))" > 0

for n = [zg/e].

We need further definitions. For i € .7, v € [0,1] and y € R>, introduce

Ai(y) = Ei( f(z-)/\y)—Ei(S;(i)/\y)
and

-y
Jin(y) = {[El(sﬁz)/\y)h’

where O/[]Ei(Sj(i) A0)]7:=1if v > 0. In addition, set J; := J; 1. Our main theorems will
contain integral criteria with powers of J;, as the integrand. The next lemma gathers
properties of J; , and A;.

Lemma 3.3 The following assertions are true for any v € [0,1]:
(1) Jin is subadditive and non-decreasing for all i € ..
(11) Jin(y) =< Jiy(x+y) asy— oo for all (x,i) e Rx 7.
(tit) Jin(y) < Jj~(y) asy — oo foralli,je.s.
If (S7,i))n>0 is positive divergent for some (hence all) i € 7, then furthermore:
(iv) A;i(y) >0 for all sufficiently large y for all i € ..
(v) Ai(y) < Ei(S;“(i) Ay) < Ei(Sr>)Ay) as y — oo for alli€ 7.

16



3. Solidarity Results

Proof. (i) Subadditivity is trivial and J; , being non-decreasing follows from the identity

yl yt
JZ’ = = , eR
W TR s T RS s ym

(cf. the proof of [5, Lemma 5.4 (a)]).

(ii) Follows immediately from the properties claimed in (i).

(i) Fix some 4,j € % and let € R> be the constant provided by Lemma [3.2] (i). The
assertion is obvious if we verify

]Ei(SJr(i) Ay) = Ej(Sj(].) AY) as y — 00.

T

We obtain

EJ(S:_(J) /\y) = Pj(ST( ) > Z) dz

J

J,
/()yJP’i(STU(i) >z—x)dz
)

AN

AN

< Y Piw=n) > Ei[(Sr)— S i) AW —x)‘v =n|,
n>1 k=1

where we used Lemma (ii) in the third step. Notice that assertion (ii) particularly
yields
Ei(Sj(i)A(y—x)) = Ei(S;“(Z.)/\y) as y — 00.

Now, observe

[E; {(ST (i) = Sr1) Ay —x)‘v = n} = ]Ei[s;’—(i) Ay —2)|7(i) > 7(5)]

and, given P;(7(i) < 7(j)) >0,

B[ (Sr(i) = Sry)) T A (=) | =n] = EilSF;A(y—2)|7() < 7(5)]
< Ei(S;“(i) AY) as y — 00

for 1 <k < n. Consequently,

Ej(Sj(j)/\y) S ZIPi(v:n)wEi(Sj(i)/\y) = EZ’U'EZ'(S;F(Z‘)/\Z/),
n>1

17
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which shows one part of the assertion. The other part follows by symmetry of the argu-
ment.

(iv) and (v) can be extracted from [33, Lemma 3.2, the proof of Lemma 3.1 and
(4.5)]. O

The following solidarity lemma contains the announced result that positive divergent
embedded random walks are of the same magnitude in terms of finiteness of power mo-
ments of fluctuation-theoretic quantities (cf. Theorems 1.4)).

Lemma 3.4 The following assertions hold either for all i € . or none:

(Z) EZ'JZ'(S;(Z-))IJFO‘ < Q0.

(i) Bil(S3))* i(S;)] < 0.

T

Proof. We will prove that EiJz‘,v(ST_( ))1+O‘ < 00, v € ]0,1], holds either for all i € . or

)
none. Since J; 1 = J; and

EiJi1/(1+a) (S;(i)>1+a = Eq[(S7 ;)" Ji(Sza)]s

this already shows (i) and (ii). Furthermore, as the proof works also in terms of

14+o
/<[E¢(S;§)/\y)p) ) Pi(S ;) € dy),

choosing v = 0 yields (iii).

Suppose EiJi77(ST(i))1+O‘ < 0o. Pick some arbitrary j € .\ {i}. An application of
Lemma (i) on (M, —Sp)n>0 ensures the existence of z € R> with

IP’j(S;(j) >y) S Pi(S;(i) >y—1) as y — 00.
Hence, by an appeal to Lemma (ii)—(iii), it suffices to prove

Subadditivity of J; 4 yields

v

1+«
EiJZ‘N(ST:}(i))1+a < ]EZLZ Ji,’y((STk(i)_STkl(i)) >1
=1
. ) N\ 1+«
< Eilv ];Ji,v(<s7'k(i)_s7'k1(i)) )

n —\ 1+«
= ZPi<U:n)naZEi[Ji,’y<<STk(i)_S'Tk—l(i)> >

n>1 k=1

18
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Now, we use

—\ 1+«
E; {Jm ( <5m(z‘) - STnl(i)> >

and, given P;(7(i) < 7(j)) >0,

—\ 14«
E; {Jiv'Y((STk(i)_STk—l(i)> )

for 1 <k < n to infer

U:n] = ]Ei(Jm(ST_(Z.))HO"T(i)>7'(j)> = <

U:n] = Ei(Jm(ST_(Z.))HO“T(z’)<7'(j)) = <

EiJijfy(S;(i))l—i—a < (01V62)Eivl+a < 00.

The next solidarity lemma provides sufficient conditions for the existence of power
moments of o~ . For a further discussion of these quantities we refer to Section [6.5]

Note that a geometric number of cycles marked by successive visits to a state ¢ contains
a visit to j € ., from which one easily concludes that E;7(i)1*® < oo is satisfied either
for all © € . or none.

Lemma 3.5 Let a > 0 and suppose E;7(i)1T% < co for some (hence all) i € /. The
following conditions are equivalent:

(1) EiTy(z) (i)1*® < 0o for some (hence all) (z,i) € R> x .7.
(ii) Ai(y) >0 for all sufficiently large y and EiJi(ST_(Z.))HO‘ < oo for some (hence all)
ieS.
In particular, these conditions imply
Eio” ()17 < oo for all (z,i) € Rs x .. (3.1)

Proof. By Lemma [3.1] Lemma and Theorem (i) holds either for all ¢ € . or
none. Moreover, the implication of follows from 7,,,(i) > o7 ().

Suppose E;7, (s ()17 < 0o for some (z,i) € R> x .. Since Tu(@) (1) > v(z), we obtain
E;v(z)1T® < 0o, which is equivalent to (ii) by Theorems [1.2}{1.3]

As we assumed E;7(i)'*® < oo, the reverse implication follows directly from
E;v(z)1*® < 0o and Theorem 1.5.4 from [27]. O

For i € .7, define

D% = max (Sk — S.,.n_l(l-))i, n>1,

Trn—1(8)<k<tn(i)

as the maximal downward excursion between 7,—1(¢) + 1 and 7,,(¢). Our main theorems
will contain integral criteria in terms of D' and the next lemma facilitates future proofs
by showing that these criteria hold either for all i € . or none. Notice that D* > S;(i) > 0.
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Lemma 3.6 The following assertions hold either for all i € . or none:

(Z) EZ'JZ'(Di)l—’_a < Q.

(it) E;[(D")* J;(D")] < oo
(iii) E;(D")1Te < oo.
Proof. As seen in the proof of Lemma it suffices to prove that E;Ji (D) < 00
holds either for all i € .% or none. Suppose E;.J; , (D)1 < oo for some i € . and 7 € [0, 1].
Define

D, =
Y 1<g<:n<a7?f,( )Sk

Using D, < > 74 D,i,, one obtains E;J;~(D,) T < oo analogous to the finiteness of
IEZ-JM(S;J@)H"X in the proof of Lemma

Then, define
vy = 11’1f{n 2 1: Tn<i) > T2<.])}
and
D,, =
v = pmax Sy

Now, notice
D, < D — )T
v = P +Tv<i>3}f§§ug(i)(5k S 0)
Either 7,(7) < 7y, (7) and the latter summand is an independent copy of D, or 7, (i) = Ty, (7)
and the latter summand summand is equal to 0. Hence, in both cases one easily obtains
EiJiry(Dy,)' T < 00. Pick 2 € R> with P;(S;() < x) > 0. By the use of Lemma E, we
finally derive

00 > Bilig(Du) ™ 2 [ Jia ()7 Bi(Duy €y S, < )
7OO
> 1+a ( S~ ed < >
/Ooo 77 rill?i{m k 4 ( ) =
> y)i+e P ( o L < )
/000 iy e k= Snp) T — e € dy| S s @

_/ y)1+ Py(D] — 2 € dy)

< ]Eij(DJ )”"‘-
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4. Characterisation of the Fluctuation Type of
Non-Trivial Markov Random Walks

4.1. The General Case

This section is devoted to investigating equivalences for a non-trivial MRW to be positive
divergent. As argued for ordinary random walks, these results entail criteria for negative
divergent and oscillating MRWs.

Theorem [I.2] can partially be generalised:

Theorem 4.1 Let (M, Sy)n>0 be a non-trivial MRW. Consider the following assertions:
(1) (Sn)n>0 is positive divergent.
(i) Ai(y) >0 for all sufficiently large y and E;J;(D?) < oo for some (hence all) i € ..
(i) Yp>1n T Pi(Sp <) < oo for all (x,i) € R x 7.
(iv) Eijo” (z) < oo for all (x,i) € R> X 7.
Then, (i) < (it) = (iii) = (iv).

We can consider an ordinary random walk as a MRW modulated by a constant Markov
chain, i.e. M,, =i for all n > 0 and some i. Then, S;F(Z.) = X7t and D' = X, which justifies
calling (ii) a generalisation of Theorem (ii).

Further equivalent conditions are P;(p(z) < 00) =1, Pj(omin < 00) =1, P;(A(z) < 00) =
1 and P;(] min,>0Sp| < 00) =1 for some (hence all) (z,7) € R> x ., which follow, as in
the ordinary random walk case, directly from the definition of positive divergence and the
fluctuation type trichotomy for non-trivial MRWs. In addition, P;(0S(—z) = 0o) > 0 for
some z € R> is another equivalent condition. Notice that for a positive divergent MRW
P;(0S(—) = o) > 0 is always satisfied for large x, but does not need to be for small x
(e.g. PZ‘(Xl < —x) = 1).

On the one hand, one can dispense with the condition A;(y) > 0 for all sufficiently large
y, when IEZ-|ST(Z-)| = 0o and hence EiSj(i) +E; D' = 00, as the proof will reveal. On the other
hand, if [E;[S7(;| < 0o, assertion (ii) does not reduce to A;(y) > 0 for all sufficiently large
y, since E; D’ = oo is not excluded.

Naturally, one may conjecture that all necessary information is incorporated in the
stationary increment distribution. Hence, one would rather like to have E;J;(D?) < oo
replaced with

Yy _
/EW(X1+ Ty PrXT e dy) <
but Example and the remark before will explain its falsity.

The missing reverse implications in Theorem [4.T]are generally not true. We pointed out
in Example[2.7|that E;o~ (z) < oo for all (z,i) € R> x .7 is satisfied, but (S, )n>0 oscillates.
In Section |6.4) we will give an equivalent criterion for (iii), which reduces to A;(y) > 0 for
all sufficiently large v, IEZ-JZ-(ST_( )) < oo and E;log J;(D?) < oo, when P;(7(i) < ¢) =1 for

1
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some ¢ € R~. This can be seen to be weaker than positive divergence by comparison with
Theorem (ii).

For ordinary random walks, the equivalence to (iii) follows from [44, Corollary 2], often
subsumed under Spitzer’s formulas. In particular, the cited result entails the equivalence
to (iv), too. In the MRW context, we do not have a generalised version of [44, Corollary
2] at hand and thus we will use a different approach for the implication of (iii).

We need a straightforward improvement of [19, Lemma 4] for the proof of Theorem
[.1] (e.g., see the proof of [23, Lemma 5.2]).

Lemma 4.2 Let (X,,,Y,)n>1 be an i.i.d. sequence of non-negative random variables with
EX +EY =o00. Then

Y,
limsupnni+1 =0 or = a.s.
n—00 Zk‘:le
according to
Y
— P(Y edy) < = 00.
/E(X/\y) Yedy < oo or 00

This enables us to prove a part of Theorem [4.1] Notice that the implication “(i)=>(ii)”
is adapted from the proof of Lemma 5.2 from [23]. Moreover, whenever i € .7 is fixed, we
use the notation

N(n) := N(i,n) := sup{k>0:7:(i) <n}.

Proof of Theorem “(i)<(ii)” and “(iii)=(iv)”. Pick some arbitrary i € .7.
“(ii)=(1)” We distinguish between two cases.
CASE 1. EiSj(i) +E; D" < co. Then, 0 < limy o Ai(y) = IEZ-ST(Z-) < 00 ensures positive

divergence of (S, (;))n>0 and limy, oo n=1S, (i) = EiSr(;) a.s. Moreover, E; D’ < oo implies
limsup nilDle =0 a.s.
n—oo

by the Borel-Cantelli lemma. Consequently,

g . 1 —_ >
STN(n)(z) ( STN(n)(i) N(n) o0

CASE 2. EZ'S;F(Z.) + ;D! = co. Due to Lemma , the finiteness of E;J;(D") is equivalent
to

lim —; ntl =0 a.s. (4.1)
n=0 3k 1 (Sro() = Sre_1 )T

Further, 41, Lemma 8.1] yields

k=1 Sy = Sh_ @)
lim =0 a.s. 4.2
n=%0 3k 1 (Sro() = Sre_y )T (42)
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Then, we obtain lim,, ,~ S, = 00 a.s. from

Sn 2 (STk(Z) Tk 1 Z: Tk 1( ))__D§V(n)+1
(7 _STk—l(i))+) (1—o(1)—o(1)) == a.s.,

“(i)=(ii)” As (55, (i))n>0 must also be positive divergent, Lemma (iv) yields A;(y) >0
for all sufficiently large y. Since S, ;) — D! =5, for an increasing sequence (i )n>0,

we conclude limy, 00 (S, () — Dhy 1) = 00 a.s. As a consequence,
hi1 sz+1
limsup < limsup <1 a.s.
n—0o0 Zk 1( ( ) Skal(i))_F n—00 S ( )

and thus E; J;(D') < oo by Lemma .
“(ili)=(iv)” The assumption implies

EZ( Z Tn(i)il 1{STn(1')§x}) =
n>1
and due to Lemma this term is of magnitude anﬂfl Pi(S5, (i) < z). Theorem
yields A;(y) > 0 for all sufficiently large y and E;J;(S:(;)) < oo. Therefore, Lemma
entails (iv). 0

We are only left with the proof of “(i)=-(iii)”. We embark on the use of

D> = max _ (Sp—S> ), n>liced,

77 (1) <k<Ty (i) Tn-1
the maximal downward excursion between 7,71 (i)+1 and 7,7 (7).

Lemma 4.3 (S),),>0 is positive divergent if and only if A;(y) >0 for all sufficiently large
y and .
Z ]P)Z(ST,?(Z) — D;j:l < CL’) < o0

n>1
for some (hence all) (x,i) € R> x ..

Proof. Fix some arbitrary i € .. Analogous to Theorem {4 - “(i)<(ii)” one proves the
equivalence to A;(y) > 0 for all sufficiently large y, which yields ]P’ (T (1) <o0) =1, and
Y >
— = Pi(D7" edy) < oo. 4.3
s 0 wa
Lemma [3.3] yields
Y T+y

= as — OO
Ei(Sr>mAy)  Ei(S>@A(@+y)) Y
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for all z € R>. Since Ejsup{n > 0: S5 > < 0} =0 < oo, Theorem (ii) entails the
equivalence of (4.3)) and
n>1

= Y PS>~ Dy <),

n>1

Now, we are able to complete the proof of Theorem [£.1]
Proof of Theorem “(i)=-(iii)”. Pick some arbitrary (z,i) € R> x.#. We estimate

Z n~! Pi(S, <)

n>1

77 (i)
=Y E > k;‘ll{s (s | })

n>1 \k=r>_ (i)+1

n—1

IN

DUE | (@) + 1) ! >0
> (0)+1 {Sr;_lu)‘D" S"”}

n>1 k=1~

77, (i)
-1
+ 3 E (H 2k 1{rs<i>r;1<i>>ril<i>})

n>1

IN

n>1 n>1 k=27>_,(i)+1

- n—1

2 (0)
, >0 ) -1
> PS> iy—Di' <)+ 3 Ei ( > M lge-e >T;1<i>}) )

where due to Lemma [£.3] we only need to show the finiteness of the last summand. Notice
that the proviso entails limy, o0 S5, (j) = 00 a.s. and hence E;77 (i) < co. Therefore,

7 (1)
—1
> Eq (k 2 >k 1{T5(i)T;1(i)>T;1(i)})

n>1 =272 (i)+1

n—1

<2 2B {(275‘1@”]{)_1 1{Ti(i)—75_1(i)>n—1+k}]
n>1k>1
< SN EPi(r7 () > k)
n>1k>n
= Y Pi(r7(i) >n) = Bim (i) < o0
n>1
as claimed. O
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4.2. The Case E; X{ AE;X; < o0

We revisit the case E, X;" AE;X] < 0o, where Theorem [2.1|presented first insights. Under
this assumption, the property that the MRW and the embedded random walks share the
same fluctuation type, enables us to strengthen the assertion of Theorem [4.1]

Theorem 4.4 Let (M, Sy)n>0 be a non-trivial MRW with ExX;” ANE;X{ < co. Then,
positive divergence is equivalent to

S ntPi(S, <7) < o0 for some (hence all) (z,i) € R> x.7. (4.4)

n>1

Proof. Assume (S))n>0 is not positive divergent. Theorem entails that (STn(i))nZ(b
i € ., is not positive divergent either. As a consequence, Theorem and Lemma
yield

Zn_llP’i(Sngx) > Ei(ZTn(i)_ll{Sm(i)gm}> = Zn_lPi(STn(i)gx) = o0

n>1 n>1 n>1

for all € R>, which finishes the proof. O

Unfortunately, we can neither prove nor disprove the sufficiency of condition Theorem
[.1] (iv) in the given context, since we can not rule out E;0” (z) < oo for all i € ., when
ErX =0 and || = co. See Section [9.1] for a discussion of the case .| < co.

4.3. The Case E;|S; ;)| = oo

Example revealed that E;|X;| = co is the wrong assumption to generalise Kesten'’s
trichotomy, i.e. Theorem[I.1] In this section, we prove that the trichotomy is true under the
assumption of E;[S; ;)| = oo for some (hence all) i € ./, which is stronger than E;| X[ = co.

Theorem 4.5 Suppose Ei]ST(i)| =00 for some i € .. Then, exactly one of the following
cases prevails:

(i) limy,_oon 1S, = 00 and (Sy)n>0 is positive divergent.

(i3) limy seon™ 1S, = —00 and (Sy)n>0 s negative divergent.

-1

(i3) liminf, .o n~1S, = —c0 a.s., limsup,,_,oo n 1S, =00 a.5. and (Sy)n>0 oscillates.

Proof. Since (X,,),>1 is an ergodic stationary sequence under Py, liminf,,_, n—1S, and
limsup,,_,,, 7~ 'S, are Pr-a.s. constant. Therefore, it suffices to prove only P;-a.s. equality
in (i)-(iii) for some fixed i € .. Moreover, we can restrict our effort on proving (i) and
(iii) as usual. The assumption of E;|S. ;)| = oo guarantees non-trivial MRWs and by the
fluctuation type trichtomy we only have to deal with the first part of the assertions.

(i) Suppose lim;, o Sy, = 00 a.s. and thus ]EiS;r(Z.) = o0o. Then, (4.1)), and Theorem
yield
Srati) — Dnsa

S,
liminf =% > liminf —= .
n—oo n n—00 7—”_|_1<Z>
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P(S =S )T
it " > k=1(S7.() = Sre_1 ()

n—oo Tn-i—l(i) n

(1—o(1))

(iii): Referring to the fluctuations of the embedded random walks, we obtain at
least either liminf,,_,oo n 1S, = —o00 or limsup,, o n~1S, =00 a.s. W.lo.g., we assume
limsup,, s~ n=1S, = oo a.s. If iminf,,,oo n 1S, = —c a.s. for some ¢ € R>, we derive

n—oo

liminf, oo n 71 [Sy +n(c+1)] =1 > 0. Consequently, S, +n(c+1) =% 0o a.s., but, as
shown in (i), this already implies

oo = liminf n ' [S, +n(c+1)] = liminf 1S, +c+1 a.s.,
n—oo n—oo
which is clearly not true. O

Example [2.7|also showed that limsup S, € R a.s. is possible, when E;| X7 | = co. Hence,
it may appear dubious whether lim,_,on~1S, = @€ R if and only if E;X; = p is true,
which would be a more general law of large numbers (e.g., [12, Theorem 5.4.2]). The
affirmation that this assertion is not true can be extracted from Section [7l

5. On the Ladder Chain (M, ),>o

Set 0 := 0~ and af := 0. Inductively define the n-th strictly ascending ladder epochs
by
o, = inf{k20571+1:5k>50>_1}, n>2.

In addition, o3 :=0 and 0§ :=0. Set M := M,> 1{aﬁ<oo} +M,> 1{05200}, where o] =
sup{n >1:0. < co}. Define #o.>, #M>, oS, MS ctc. analogously. Given a non-trivial
MRW, (M )n>0 forms a Markov chain on .~ C . if 0,7 < oo for all n > 1. i.e. if (Sy,)n>0
is either positive divergent or oscillating. In this case, we examine the existence of a
stationary distribution of (M, )n>0. The main result of this section, Theorem |5.3, will be

crucial for future proofs.

Lemma 5.1
miBioS = Y P(¥M; =i,%0; < o0) (5.1)
n>0

is true for all i € .. The assertion remains true, when replacing (J<,#M;,#0>) with
(0>, #MS,70S).

Proof. We begin with the obvious equation of

1—Eit0< o1
n
(e Efr(l{Mo:z'} 2, ! )
n=

for all t € (0,1) and i € .. Using (2.3 and (2.4]), we obtain

oS—1

Er (1{M0:i} 2—‘6 t”) —Pr(* My =1i)
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5. On the Ladder Chain (M, )n>0

= EW( Z t" 1{Mg=i,a<>n}>

n>1

= ]E7T( Z t" 1{M0:i,Sk>0 for 1§k§n})

n>1
= > "> Pr(My=i,M,=35,>0for1<k<n)
n>1 jev
=S "N Po(F My =3, "M, =14,%S, —#5S), >0 for 0<k <n)
n>1 jev
= S "N Po(Fop =n, F M, =1)
n>1  (>1
= Eﬂ< Z tnl{#Mizi,#aﬁ<oo})'
n>1
Finally, let ¢ tend to 1 to obtain the assertion. O

Proposition 5.2 Let (M, Sn)n>0 be a non-trivial MRW. The following assertions are
true:

(i) (M7 )n>0 is a recurrent Markov chain on /> C . if and only if B;# oS = oo for
some i € L.

(ii) Suppose S>> = {i € S B# oS =00} #0. Then, (M )n>o is irreducible on .#>
and P;(M; € %~ eventually) = 1 for alli € ..

Proof. (i) At the beginning, we point out that E;#0S = oo excludes negative diver-

gence of (Sp)n>0, because otherwise Sr(i) 4 #S#T(i) under P; yields negative divergence of

(#S#Tn(z‘))nzo, which implies E;#0S < 0o (cf. Lemma ﬁ for « =0). Therefore, (M, )n>0
)

forms a Markov chain on .~ C .. (M, )n,>0 has a recurrent state i € . if and only if
Y n>0Pr (M =1i) = oo, because

m S B(MF =) < Y Pe(M7 =)

n>0 n>0

= > mE; < > 1{Mn>_z'})

jeS n>0

EZ( > 1{M5—z‘}>

n>0

Slﬂi—i- Z Wij(T>(i)<OO)
jes\{i}

= > Pi(M; =)

n>0

Consequently, an appeal to Lemma proves (i).

(ii) Let .~ be the communicating class of i € .7~ corresponding to the transi-
tion mechanism of (M, )n,>0. We employ a coupling argument in order to show that
P;(M; € S >t eventually) = 1 for all j € .7, which proves our claim. Pick some j € .7
and let (M), S!)n>0, (M/!,S!) >0 be two independent MRWs with the same transition
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kernel as (M, Sp)n>0 and initial values M) = j, M}/ =i € .#>*. Note that P(M/> €
=" for all n > 0) = 1. Let T be the a.s. finite coupling time for the two driving chains,
ie. T=inf{n>0: M} = M}, and define the coupling process

— = |wx), ifn<T,
’ (M X", ifn>T,

which is a copy of (M!,X!),>0. It follows that Sy, — Ton = Sy — 57 for all n >0,
and from this it is easily inferred that the ladder epochs &, and o)~ will eventually be
synchronised in the sense that

~> >

O-H—J—n - O-I/—|—’I’L

for suitable finite random times x,v and all n > 0. As a consequence,

P.(M> e 7> eventually) = P M?> e 7> eventually
J n n
— P(M; €. eventually)
= P(M!> € > eventually) = 1.

We will point out in Section that E;#0S < 0o and E;#0% < 0o for all i € .7 is
possible for a MRW. Consequently, there does not need to be any recurrent ladder chain.
It is not clear whether (M, ),>0 can be null recurrent. There is one important case, when
we can rule out null-recurrency.

Let
> _ (DA — i >
P> = (Py(M7 =j,0” < oo))mey,
PS = <7”1P>j( My =i, %05 <oo)>
T i,jES
and I be the associated unity matrix. Asmussen’s Wiener-Hopf factorisation for MRWs
[8, Theorem 4.1] entails the useful identity

I-P = 1I-*PS)(I-P”). (5.2)
Theorem 5.3 Let (M,,Sp)n>0 be a MRW with positive divergent dual MRW. Then,
(M7 )n>0 is a Markov chain with unique stationary distribution 7= = (77 )icr given
by
> 7'('@]?1(#0< :OO)
T R (oS =)

Moreover, /> ={i € .7 : Pi(¥ oS = o0) > 0}, Py(M,;> € .7 eventually) =1 for alli € .
and

E,>0” = < 0. (5.3)
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Proof. Positive divergence of the dual MRW provides P, (#oS = 00) > 0. Hence,

7=

1-ope) = (HEom =)
1€

1
P, (#0S = o) m( P, (#0S = o)

defines a probability vector. Now, 7P =P and (5.2)) yield

™ (I-P~) = T(I-*PS)(I-P~) =

m(I-P) = 0.

1 1
P, (#0S = o) P (#0S = 00)

(5.3) takes more effort to prove so that we refer to [4, Corollary 2.5]. The remaining
assertions follow from Proposition O

6. On Fluctuation-Theoretic Quantities

We are well-prepared to study in how far we can generalise Theorems to MRWs.
In fact, we will find equivalent conditions for the finiteness of E;|min,>0.S,|¢ for some
i € . Moreover, we will show that the translated statements of Theorem are not
equivalent anymore and separate into four sets of equivalent conditions. Firstly, the set of
equivalences of E;p(0)* < oo for some i € ., secondly, those of

EA0)* < o0 for some i € .7, (6.1)
then equivalences of

ST IP(S, <0) < 0o for some i €. (6.2)
n>1

and lastly, E;0” (z)!7% < oo for all (z,i) € Rs x .#. In Section a discussion of the
latter condition will take place and an intriguing example will reveal the difficulty of
finding an equivalent condition. Furthermore, we will not be able to find an equivalent
integral criterion for in the case a € (0,1).

In the study of the power moments of the above-mentioned quantities, one can gen-
erally not dispense with the condition E;7(i)!T® < oo for some i € . given a > 0. For
example, consider a MRW with K; equal dg if j # 7 and unequal dp otherwise for all s € ..
In addition, Ky;, s € ., is chosen such that E;S, ;) > 0. Then, p(0)+1,A(0)+1,07(0) €
{mn(i) :n > 1} Pj-a.s., which entails that we need a moment assumption on 7(7).

Under the assumption of E;7(4)! 7% < 0o, a > 0, for some i € .# the following implica-
tions are true:

EZ’A(O)Q < o0

E;

minSn’a < oo = Ep0)* < o
n>0

7
Ny
Z no‘_l]P’i(Sn <0) < oo.

n>1
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The first implication will become clear by comparing the integral criteria in Theorem
and Theorem [6.6] while another follows directly from p(0) > A(0) a.s. The remaining
implication can be verified by

= > Pi(p(0) > n) > S IP(S, <0).

n>1 n>1

In contrast to ordinary random walks, and do not generally imply E;p(0)*
0. In particular, does not even require positive divergence for a < 1 as it will be
explained in Section . The dependencies between and will be discussed in
Proposition [6

Moreover given E;7(i)1+e

< oo and a > 0, the following assertions are true:
EiA(O)a < 0

Ny

E;o” (z)17® < oo for all (z,i) € Rs x.7.

Zna_lPi(SnSO) < 00

n>1
Both implications can be verified by the use of Theorem [I.3] Lemma [3.5 and the inequal-
ities N
EA0)" = Ei( > 1{Sm<i>so})
n>1

and
SRS, <0) 2 Y n (S (i) <0)

n>1 n>1

(see Lemma |C.3]).

6.1. Finiteness of Power Moments of |min,>(.Sy|

The counterpart of Theorem does not require a moment assumption on the return
times.

Theorem 6.1 Let (M,,Sy)n>0 be a positive divergent MRW and o > 0. The following
conditions are equivalent:

(1) Ei|ming,>0Sy|® < oo for some (hence all) i € 7.
(ii) B;[(DY)® J;(D%)] < oo for some (hence all) i € ..

In comparison to Theorem condition (i) of the latter theorem does still trivially
entail
|S< | 1{0\( z)<oo} < 0 for all ($,Z‘)€R2X§ﬂ,
but the reverse implication is generally not true (see Example [6.4)). Furthermore, (i) does
not imply

Ez( max |S |) < 00 for some (z,7) € R> x .77
0<n<p(z -
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(see Example [6.5).

Preliminarily, we give two auxiliary lemmata. Given the ladder chain (M, ),>0 being
recurrent on some set > C ., define 05" := 0 and

o7 = inf{kza;fl—i—l:Mk?:i}, n>1,

fori € ..

Lemma 6.2 Consider a MRW (My, Sp)n>0 with positive divergent dual MRW. Let i €
S de. with Py(FoS = 00) > 0, then

Ei(S,>iNy) =< Ei(Sj(i) AY) as y — oo.
Proof. On the one hand, use S, >, > ST>(Z-) > Sj(i) to infer
Ei(S])Ay) S Ei(Sp>iAy).

For the other side, set r :=inf{n >1:7(i) = 07 "'}. k is a stopping time with respect to
the filtration (F,)n>0,

Fo = (0 (0),. 7 (1), (M, Xi) <o (i) )-
Wald’s equation yields

Ei(Sy>iNy) = E{(Z(Sﬁ(i)—s > W)” =

= E;k- Ei(ST>(i) AY)

and, by an appeal to Lemma (v), it remains to show E;x < 0o to conclude
Ei(Sy>iNy) < Ei(Sj(i) AY) as y — 00.

By Theorem [5.3 (M, )n>0 is positive recurrent on .~ with stationary distribution 7~
and E;>0” < co. Notice that (M, 07 )n>0 forms a MRW with embedded random walk
(0,7 )n>0.. Therefore, the identity (2.2)) yields

Eix < B! < (77) - Eps0” < 0.

7

In this section, we need the following lemma only in the case P;(0S = 00) >0 and a =0,
which is much easier to prove. The general version is needed for the proof of Theorem
“(iv)=(ii)”.
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Lemma 6.3 Consider a positive divergent MRW with P;j(0S(—z) = 00) > 0 for some
x € R>. Then,

Ji (y)1+a S El( Z T (i) 1{an(i)§y7min1§k§7—n(i) Sk>—x}> as y — o0

n>1
for any o > 0.
Proof. Choose j € . with P;(¢S = 00) > 0. Observe that positive divergence ensures
the existence of such state, since otherwise P, (a\ =00) =0 and limy, Sag = —00 a.s.

Hence, j € #.#> and we can define (¥,77),>0 as the sequence of ladder epochs in j in
terms of the dual MRW. Since P;(0S(—z) = 00) > 0, there exists 71 € R> and nj,ng € N
such that

E = {1<r%1<q%15k> —, Sy < @1, My = Ty (1) < 11 < Ty (i) }

has positive probability under P;. We can estimate

Ez( Z Tn(i)a 1{STn(i)Sy’min1§k§rn(i) Sk>—x}>

n>1

Ve
> Ez( Z Tn(l) 1Eﬁ{5m(i)_sn1 Sy—xl,minn1<k<m(i)(Sk—Sn1)>O})
n>no+1 -

n>1

> > > moP; ( ) Sy—a1, Sk >0 for all 1 <k <7,(3), 7 (f) < 7ali) < Tm+1(j)).

n>1m>1

Using ([2.3) and ({2.4)), we derive
P (Spu) Sy—a1, S > 0 for all 1 <k < 70(i), 7 (§) < 70 (i) < Tinp1 (4) )
T .
= —ZPi(y—xl > #S#rm+1(j) > 7S, forall 0 < k < #Tm+1(]),

Ty
#ra1(i) < Frmsa (7) < (i)
m+1 ;
— — ZIP’( S# > <y-— 5171,#Tn 1()<# >’]<# (1), #Tm+1(j):#‘7£>’]>'
J =1

Insertion into the above term yields

S mOPi(Sp, ) S y—w1, S >0 for all 1< k < 7, (6), T () < 7 (i) < g1 (4) )

n>1m>1
m—+1

> Y Y 3 (=) Bi(*S,0 Sy—an P () < Fo7 ) < Fradi),

77] n>1m>1 (=1

#

i i1(j) = *o7 ”)
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= Zﬁapi(#S#U>,j S y—fbl).
>1 ¢

Now, choose x5 > 0 with P;(#Sx,>; < z2) =:p > 0 and use Theorem , Lemma
Lemma and 5.5 £ #S#T(j) under P; to infer

Zga S# >j<y xl >pz€a S# >]<y xl_xz)
>1 >1

Y I+a y 1+«
R (Ej(#5#0>,j /\y)) A (Ej(#s;,t . /\y))

7(5)
= Ji(y)'+,

which finishes the proof. O

Proof of Theorem [6.1l At the beginning, we point out that due to Lemma [3.4] condi-
tion (ii) holds either for all ¢ € . or none. Simultaneously, (i) holds either for all i € .7
or none, because

i(nzgl(if)l+1(5n—57<))+5 ) A0 s <

> p-Ej\(rgrllSner)Ao’a

where x € R> is chosen such that p:= IP’i(ST(j) < z) > 0. Consequently, it suffices to prove
the equivalence of (i) and (ii) for some fixed i € .7 with P;(6S = co) > 0. Define

m o= inf{k>1:5, 4 — Di <0},

N = inf{k >Mp—1+1: STk—1(i) — STnn71(i) — D}g < 0}, n>2,
and

k = inf{n>1:n,=o00}.

Since

‘mmS‘ < Z

7
B an

T, —1 (@) — STmcfl(i)

and (STnkfl(i) =S ) an)1§k<,‘£ are 1.i.d. under P;, it follows as in [29], (v)o < (vii)]
that (i) holds if and only if

E;|S

T»,7 1

)= Di% 1 00y < 00 (6.3)
We finish the proof by showing equivalence of (6.3) and (ii). Use Lemma to obtain

Fi(z) = Pi(-5;, ()+Dl>$ n < 00)
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SRS, o+ Dh 2 =n)

n>1

< Y Pi(Sy, i) 20, =S, i)+ D) 2 )
n>1

:/ Y P(0<S,, i) <y-— z) P;(D' € dy)
[,00) n>1

= J, o iW=2) P;(D' € dy)

for z € R>. Since J; is non-decreasing, we infer

ElSy, 1)~ Dyl Ligeoy =< [ 2°7 Fifa) da

</( / J-(,y—x)m(piedy))dx
< (/ O‘lj()dx>]P’i(Diedy)

= / Y Ji(y) Pi(D' € dy)
(D) J; (DZ)]
On the other hand, Lemma [6.3] delivers

P, <y—z, mi S>O>PiDi d
/guooZ (T”l =Y I1gkglrl,,?_1(i) k= (D" € dy)

n>1
> Ji(y—x) Py(D' € dy)
x,00)
and hence
EilSr, 10~ Dbl Lpeoe) 2 [ (m ) B(D e dy)) da

v

s~

2L Ji(y— ) dx) P;(D" € dy)

v

(4
(£

il(DY)* Ji(D")].

o\

21 Ji(y/2) dx) P;(D' € dy)

/
/

X

We close this section with the announced examples concerning
’S <( | 1{0\ z)<oo} < 0 for all (QS,Z) € RZ X .
being not sufficient and

EZ( max ]Sn|)a < oo for some (z,i) € R> x .
0<n<p(x) -

being not necessary for the conditions of Theorem to be true.
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6. On Fluctuation-Theoretic Quantities

Example 6.4 Let (M,,),>0 be the general infinite petal flower chain introduced in Ex-
ample with

Er20+l/e) o o EMNe < and Er+a)(+l/e) — o

for some a > 1. In particular, we have Eq7(0)!* < co. Define the increments (X, ),>1 by

v —kYe, if M, = (¢,k) for kL €N,
T e R i My = (0,0—1), M,, =0 for £ €N,

and hence 57 () = 1 Po-a.s. For verifying positive divergence of (Sn)n>0, it suffices to prove
EqD° < 0o, because J;(y) < y as y — co. Since

¢ ¢
> Ele = / 2V dx,
k=1 1

we infer

l
SokVe < e as 0o 0o
k=1

and thus D° = Z;(:Oi_l k' ~ 7(0)1*1/® Py-a.s. By construction, we have
]EODO < ]EO(DO)Q S ]EO,]_(O>2(1+1/05) < 00 = EoT(O)(1+a)(l+1/a) — EO(D0)1+Q.

Consequently, Theorem [6.1] entails

= 0.
Now, we prove Eg|S,<(_y)|* 1{g<(—z)<oo} < o0 for all z € R>. This does clearly imply
|S <( | 1{0\ z)<oo} < 0 for all (ﬁ,’b) € RZ X . 7.

Define
k(x) = inf{n>1:05(—x) <7(i)}

and notice that given oS(—x) < oo
’S <(— | < e )( )1/a Pp-a.s.
Consequently, Wald’s equation yields

EolSo<(—o)|* Lio<(ca)coor < EoTu(2)(0) Lin@)<oo) < Eo7(0) Eok(2) 1{x(z)<oo)
S Eoo S (=) 1< (—a)<oo}-

Applying Theorem from the next section, we obtain that the latter upper bound is
finite, since Eq(D)? < oo.
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Example 6.5 Consider an i.i.d. sequence (Z,),>1 such that E|min,>> 7_; Zx|* < oo for
some o >0 and P(Z =0) > 0. Then, let (M,),>0 be as in Example 2.7and the distribution
of the increments (X,,),>1 be defined by

v 4 P if My =0,M, =i,
" Zy—pyt, i My =i, M, =0.

Notice that EqX{" = 2121p(1),i_°‘ = oo for a > 1 regardless of the choice of (po;)ic.». For
a€(0,1), let c:= Zizli_l/(l_o‘) < 00 and put po; = ¢ 1i/(1-2) 5o that

1
Sot = Y - .
i>1 i>1 "t

By construction, it holds that
]Eo‘minSn’a = E‘minzn: Zk’a < 0.
n>0 n>0 i1

Nevertheless, we have

Eo( max [Sy])" > P(Z=0)EgX{ = oo.

0<n<p(x)

Moreover,

Ei(ogr;?;((m)ysn’)a > P(ZZO)'EO(O;??Q;(@)|—pOil-i-SnDa = EO(O;SS%|5”|)Q

for all 7 € N entails

EZ( max )|Sn|)a = 00 for all (z,i) € R> x ..

0<n<p(z

6.2. Finiteness of Power Moments of p(0)

As mentioned at the beginning of this section, not all equivalences of Theorem re-
main true, when the conditions are translated to the MRW context. The equivalences of
E;p(0)* < oo for some i € .¥ and a > 0 are gathered in the following theorem.

Theorem 6.6 Let (M,,S,)n>0 be a positive divergent MRW with E;7 (i)' < 00, a >0,
for some (hence all) i € .. The following conditions are equivalent:

(i) Eip(z)* < oo for some (hence all) (x,i) € R> x.7.
(ii) B J;(D)F* < 00 for some (hence all) i € ..
(iii) Eioqs, < oo for some (hence all) i € ..
(iv) Eiag(—x)o‘l{gg(meoo} < oo for some (hence all) (x,i) € R> x .7 satisfying
P;(0S(—x) = 00) > 0.
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6. On Fluctuation-Theoretic Quantities

Furthermore, if E;|S;;)| < oo for some (hence all) i € &, (i)~(iv) are equivalent to
E; (D) < 0o and to the conditions of Theorem .

Given the truth of the first part of the theorem, the last assertion is trivial, since then

y* Jiy) =< y”a = Ji(y)Ha as y — oo.

Some parts of the proof are accomplished in the subsequent two lemmata.

Lemma 6.7 Suppose E;p(x)® < oo for some (1,i) € R> x .7, then E;J;(D))1T* < oo for
allie 7.

Proof. Positive divergence ensures the existence of zg € R> with p:=P;(0S(—z0) = 00) >
0. In particular, we have E; p(—x¢)® < E;jp(z)* < co. Now, use

{p(=z0)>n/2} > |J {STI?(Z-) < D,?_’:l —xo}
n/2<k<n

2 /2L<Jk< {S’Tk>(’l) < D;J’rll —xg, (S¢— STk>+1(7;)) > —xq for all £ > Tk>—|—1 (Z)}

to conclude
Pi(p(—z0) > 1/2) > p-(n/3)-Pi(S,> ) < Dity — x0).
Hence, E;p(—x0)* < oo implies

> nOBi(S,z ) < Dy —0) < oo,

n>1

which is equivalent to

y— a0 )Ha P;(D> € dy) < oo
/[xo,oo) <Ei(ST>(i) A (y — o)) il v)

by Theorem (ii). Use Lemma and D> > D' to derive E;J;(D)'T® < oo. Finally,
by appeal to Lemma [3.6] the proof is complete. O

Lemma 6.8 Given the situation of Theorem (6.6, suppose E;J;(D')'*® < 0o for some
(hence all) i € 7. Then, Eip(x)* < oo for all (x,i) € R> x ..

Proof. Fix some i€ .¥. We distinguish between two cases. Under the stated assumptions,

either ' .
E;S}, < oo  and E;J;(D)T* < E;(DH)'T < oo (6.4)
or

EiJi(D')'F* < o0 = EiSf,. (6.5)
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At first, suppose ([6.4]) is true. In particular, we have
0 < yli_)IIolo Al(y) = Eer(z) < 00,
because (S, (j))n>0 is positive divergent. Set p :=E;S;;)/[2[E;7(i)]. Then,
0 < Ei(ST(i)—T(i)u) < oo.

1+«

Moreover, since E;7(7) < 00, we derive

' ; ) 1+a
Ei( D'+ 71(i)p < o0.

Consequently, (M, Sy, —np)n>0 forms a positive divergent MRW and an appeal to The-
orem [6.1] yields
>0 (S” —n )

plx)p < x—(Sp@)—p(fc)u) < z—min <Sn—nu)

shows E;p(x)® < oo for every x € R> (cf. 29, (i)=(ii)]).
Now, suppose ([6.5)) is true. Lemmayields Eip(z)® < 0o if and only if E;p(z) < oo,

where

e
< 0oQ.

Finally,

p(r) = sup{n >0:S; ;) — Dl <}
and
{p(x) >m(i)} = {p(z) = n}
for all n € N. Let (Y;,)n>1 be i.i.d. random variables, which are independent of all other
occurring random variables and fulfil P(Y; =0) =P(Y; =1) =1/2. Set

Con = (Srty = S 1) Ly — Di Liv,—1-0)

for € {0,1} and n > 1. Notice that (37_; (p.x)n>0 forms an ordinary random walk with
last level x exit time pg(z), which can be written as

po(x) = SUP{HZ()i ZC@,k—C(ZnHSUE}-

k=1
Since
Srai) = Dn1 = 2 (Z (G5 = (59 = 1) Livim1-0y) —D%Hl{ynﬂ—l—e})
0e{0,1} k=1
Z Z (Z C@ n+1>
0e{0,1} “k=1
we infer

Eip(z)* < Eilpo(x)Vp1(z)]* S Eipo(w)®.
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6. On Fluctuation-Theoretic Quantities

Obviously, E;J;(D)'T% < 0o implies

0= [(ghny) PG

to be finite for all 5 € [0,a]. Since (6.5) implies E;|(p 1| = oo, the finiteness of C(0) is
sufficient for positive divergence of (3}_1 (o.x)n>0 (cf. remark after Theorem [I.2). Conse-
quently, we derive from Theorem [1.3|that C(a) < oo implies E;pp(z)* < oo. O

The remaining part of the proof is relatively short, so we put it together:

Proof of Theorem [6.6. Lemma [6.7| and Lemma [6.8| have shown the equivalence of (i)
and (ii). Since these conditions hold either for all i € . or none, it suffices to prove the
remaining implications for some fixed i € ..
“(i)=(iii)” follows directly from p(S;(;) —7()
P;-a.s.
“(iii)=(iv)” follows directly from the inequality

4 p(0) under P; and p(ST(i)) 2 Omin

<
Uminl{g<(fx)<oo} > 0 <_l’)1{a<(f:c)<oo}

for all z € R>.
“(iv)=-(ii)” Observe that

EioS (=) Lip<(—p)co} = Ei

3
\%
=
ol
Il
3
=
+
—

AV
&=
= 7~ N 7 N 7N
3
M=
> [l
=
w
o
P
Q
N
B
|
N
o
~

Y
&=
N
7
3
—~
.
~—
Q
ok
—~—
3
3
A
Q
IN
|
&
INA
3
+
=
3
—
N———

Finally, an application of Lemma yields (ii). O

6.3. Finiteness of Power Moments of A(0)

In this section, we search for an equivalent criterion for finite power moments of A(0). For
i €. and a > 0, define

Ui == > Pi(Sr4)€-)

n>0

and let V& be the measure induced by

7 (1) «
Ve ((z,00)) = E,-(Zl{sk_>m}> . z€Rs.
k=1
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Theorem 6.9 Let (M, S,)n>0 be a positive divergent MRW and E; 7(i)1 % < oo for some
(hence all) i € .7, a > 0. Consider the following conditions:

(i) E;A(z)™ < oo for some (hence all) (x,i) € R> x.7.
(ii) E; Ji(S;(Z.))1+O‘ < 00 and
[ 5y Vildy) < oo (6.6)
for some (hence all) i € ..
Then, (i) and (ii) are equivalent if o > 1 and (i) implies (i) otherwise.

It is plausible to believe that the missing implication is also true, but the problem

is mainly a missing counterpart to the inequality [5] Lemma 5.6] for o < 1. As another
indication, [J;(y) V&(dy) < oo is weaker than E;J;(D")!*% < oo, which will be verified
after the proof of the theorem.

In preparation, we prove the following lemmata.

Lemma 6.10 Suppose E;7(i)* < oo for some (hence all) i € ., a> 0. E; A(x)* < oo is
either true for all (x,i) € R> x . or none.

Proof. Suppose E; A(0)® < oo for some ¢ € .. In particular, we have
[0
EZ(Z 1{57n(z')§0}> < 09,
n>1
which is equivalent to E;v(x)!*% < oo for all x € R>. Using [27, Theorem 1.5.1] for o € (0, 1)
and [27, Theorem 1.5.2] for v > 1, we obtain
E; Ty(m)(i)a 5 EiT(i)a -Eiu(x)lva < o0
for all z € R>. For arbitrary j € ./, choose 1 € R> such that
0 < p:= ]Pi(ST(j) <z, T(Z) > T(]))

Then, we obtain

«

o0 > EiTl/(m—s—m)(i)a 2 EiTV(m—Hm)(i)al{ST(j)SIhT(’i)ZT(j)} = pEjTV($)<i>
for all z € R>. Set

A(O) = Z ]‘{Sn_S-,— ( )(i)go}.
nle/(m) (Z)+1 o

Now, the assertion follows from the arbitrariness of j € .7,
Az) < 7)) +A0)  Pjas.

and E; A(0)* = E; A(0)~. O
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6. On Fluctuation-Theoretic Quantities

Lemma 6.11 Given the situation of Theorem W EiJZ-(ST_(Z.))HO‘ < 00 implies
) «
El( Z Xn (1) 1{STn_1(i)SO}> < 0.
n>1

Proof. The assertions can directly be concluded from an application of Theorem on
an auxiliary MRW. Let (M],)n>0 be the Markov chain introduced in Example with
P(I" € -) :=P;i(7(i) € -). Moreover, we define the increments (X}, )n,>1 by

P(X| e-|My=j, M| =s) = ]P)i(ST(i) €-r(i)=n), ifj=(mmn—-1),s=0,
dp, else,
for all n € N and j,s € .. Set S/, := Y¢_, X}, for n > 1, 7/ :=inf{n >1: M/, =0} and

D' = AR
o (S)

Since Pi(S,(;) € -) = P(S, € - [Mj = 0) and (SL,)~ £ D' under P(-|M} = 0), Theorem
yields

oo > E(sup{n >0:9) < 0}0"M6 = 0)

(07
2 E|(X 1s,z0p) [Mh=0]
n>0
' «
= Ei( > xn(d) 1{STn1(i>§0}>
n>1
as claimed. =

Proof of Theorem [6.9. Due to Lemma [6.10] it suffices to prove the equivalence of
E;A(0)* < oo and (ii) for some fixed i € .. Lemmal[C.6entails U;((0,y]) < Ji(y) as y — oo
and therefore

[ i) ey = U] Vi) = [ Ei(lﬁl{spy})a Ui(dy)

7(2)

= /R Ei(zl{5k<—y}> Ui(dy).
> \i—

As it is easier to work with, we use

7 () «@
| Y 152 y) Uildy) (6.7)
> k=1

instead of .
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CASE a < 1. “(ii)=-(i)” Use Lemma to derive that we only need to show

B(y S

[0
_ 1{Srn_1(¢)>075k§0}> < 0.
nzlk:Tnfl(Z)-l-l

The subadditivity of x — z® entails

7n (i) o
Z ( Z l{STn_l(i)>075k§O}) ]

n>1 \k=r,_1(i)+1

Tn () «
Ei (Z Z 1{STn_1(i)>OvSkS0}) < ]E’L

n>1k=r,_1(i)+1

7(9) a
= . EZ(Z 1{Sk§—y}) Ui(dy)
> k=1

CASE a > 1. “(i)=(ii)” On the one hand, we can obviously derive E;(3,>1 145 (i)go})a <

T .
n

oo, which is equivalent to ]EiJi(ST(i))1+a < 00. On the other hand, superadditivity of
i)+1

x — x yields
- «
1{Skso})
.l

(@)

1(8)+

n (%) [

2 1{Sk<o})
(i)+1

=Tp—1(%)

0o > EA0)® =
n>1k=r,_

=

k
7(9) a
> R Ei(zl{SkS—y}) Ui(dy).
> k=1

> E;

“(ii)=(i)” Preliminarily, notice that EiJi(ST_(i))2 < oo implies U;((—00,0]) < oo (cf. The-
orem [1.3| for « = 1) and hence

7 (1) «
f B (X tsesn) D) < Bl Di((-o0.0) < o0

Consequently, we have

7(i) 3
sup Ei(zl{sks—y}> Ui(dy)
n=1

Be(0,a] /R
_/ (21{5k< y}> Ui(dy) =: ¢ < oc.

In what follows, we use an induction argument (in m) from [5] (see their Theorem 3.7).
Suppose « =m+4d, m € N, § € (0,1], and that (ii) does imply

EAW0) < oo forall0< S <m. (6.8)
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Notice that we have already verified this assertion for a < 1. For n € Ny, define

An(l') = Z 1{Sk_5-rn(i)§x}’ reR,
k>mn(i)+1
and
7n (1)
Ly = >, Lse<op
k=mpn_1(1)+1
Hence,

Tn (1)

() -5 (3 )] <

n>1 n>1 “k=r,_1(i)+1

for all 0 < 8 < m. Observe that A,(0) and L, are independent and P;(A,(0) € ) =
P;(A(0) € -) for all n > 1. In addition, notice that

An(=S7,@) = Lot1+ M1 (=57, 4))
for all n € Ny. Making use of the inequality [5, Lemma 5.6], namely
()" < 2% +y* +a22 @y +a™y)
for all z,y € R>, we obtain

A(O)a = (L1+A1(—ST(i))>a
< L? +A1(—ST(i))a+Oé2a_1 [Ll -Al(—ST(i))a_l +L71n-A1(—ST(i))5}.

E;A(0) < oo and limy 00 Sy, ;) = 00 a.s. yields Ap (=S5, (;)) — 0 a.s. and thus an iteration
of the previous inequality shows

AO) < D Lo +a2* N3 Ly A(=Sp, ) + L An(=Sr0)°]

n>1 n>1
Furthermore, using

An (=55, (i))

X£+1 Xé+1

< Z Z {S‘I’[(’L +ET S'rn(z)< S‘rn( 'rn(z >0}+Z Z 'r/ () +k— S'rn()< S'rn( )7 ™ ( )<O}
>n k=1 >n k=1
<A + Z Xﬁ 1{ST NO) <0}>
>1

Lemma and taking means yields

Eido(0)* S c(1+a2°7! [EA0)* T +EA(0)]) < .
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It has already been noted that E;p(0)* < co implies E;A(0) for any a > 0, since
p(0) > A(0) a.s. This can also be verified on the basis of condition Theorem (ii).

Obviously, we only have to care about (6.6)), since EiJi(ST_(i))HO‘ <E;J;(D)H < 0. At

first, use
Y Pi(0< S, <y) = Jily) X U7 ((—oo,9)) == D PS> <y)  asy—o0
n>1 n>0

to derive that it makes no difference if we integrate with respect to U; instead of U; in
(6.7). Furthermore, let (75,)n>1 be a distributional copy of (S.>;))n>1, which is indepen-
dent of all other occurring random variables. Then, an appeal to Lemma [C.4and Theorem

yields

7(4) o
LE( X se ) U@ < [EaLipey, U7 (d)
> Ng=1

= EZ< Z Xn—l—l(i)a 1{Tn<Df«L+1}>

n>0
< Yo nPy(T, < D, q)
n>1

= E;J;(D)*e,

The following example illustrates that a MRW can behave so improperly within a cycle
that EiJi(ST_(Z.))HO‘ is not sufficient for E;A(0)* < oo for a > 1.

Example 6.12 Let (M,),>0 be defined as in Example[2.8| with state space .7 C {0} UN2,
We define the increments (X;,),>1 by

—0%,if My,_1 =0, M,, = (¢£,1) for some ¢ € N,
X = {1+0°, if M,y = (£, —1), M,, =0 for some ¢ € N,
0, else

for some 3 > 1. By construction, we have S; () =1 and DY = 7(0)” Py-a.s. and hence

El( Z 1{Srn(i)§0}> < ©

n>1

for any o > 0. Furthermore, we suppose EI'® = EqD? = ]EOT(O)B < 00, which guarantees
positive divergence of the MRW. Now, pick a > 1 and use superadditivity of x +— z% to
estimate

ElA(0)* = Eo( ¥ (0= Dlgs, o peny)

n>1

> EO( Z (xn(0) —1)* 1{STn_1(o)D9LS0})

n>1
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> Eo( > (xa(0)=1)" 1{D22n}>

n>1

Z Y0P Po(r(0)" = n)

n>1
= Eor(0)*°

and we can assume the latter to be infinite.

6.4. Finiteness of Certain Weighted Renewal Measures

In this section, we establish equivalent conditions for

ST P(S, <0) < oo (6.9)

n>1

Moreover, we will point out that this does actually require positive divergence only for
a>1.SetV,; = Vll.

Theorem 6.13 Let (M, S,)n>0 be a non-trivial MRW and B;7 (i) VE;[7(i) -log 7(i)] <

oo for some i €. and a > 0. The following conditions are equivalent:
(i) YSps1n*1Pi(Sy, < ) < 0o for some (hence all) (z,i) € R> x .7
)1+a

(i) Ai(y) >0 for sufficiently large y, EiJ,-(ST_(Z.)

< 00 and
a=0: /logJi(y) Vi(dy) < oo
a>0: /Ji(y)o‘ Vi(dy) < oo
for some (hence all) i € .7.

Proof. The necessity of A;(y) > 0 for all sufficiently large y and E;J; (S*( ))HO‘ < 00
follows from

> nTIPi(Sp <) 2 Ei( > (i) 1{Sm<i>5x}) = > 0 Pi(Sr, i < @)

n>1 n>1 n>1

(see Lemma |C.3)). Hence, by Theorem , it suffices to prove

S I P(S, <x) /Zna 'Pi(S Sty S x+y) Vi(dy). (6.10)

n>1 n>1
Moreover, we remark that
Xn (%)

/Zno‘ 1IP (i) ST ty) Vildy) < E; <Zno‘ 1 Z T +k<$})

n>1 n>1 =
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which can be concluded from

| X (S, S @) Vildy)

n>1
— Y e 1/[@(21{5@ y}> i(Sri) € dy)
n>1
Sgna I/E(le— o}>1{y o} PilSr, ) € dy)

n” 1/E(Zl{sk<x ) BilSro € )

< E Zno‘ 1IP> S <x +Zna 1/E<Zl{5k<m y}> i (S, ()Edy)

n>1 n>1

= Ez( Z no1 z l{STnl(i)Jrkal?})

(i)
S Zn" 1/[ 7(0) Liy<a) +Ei (Zl{sm ysk<0})] i(Sr.(0) € dY)

N

7 (i)
/Ez(z l{S‘Zyx}> Pi (S, ) € dy)

= /Zno‘ Ipi(s (i) < T+Yy) Vi(dy),

n>1

where we used that -,,>; n"‘_llP’i(STn(i) <)< oo.
The proof is separated into two cases.
CASE 0 < a < 1. Using (7,-1(i) +k)* 1 <n® ! for 1 <k < x,(i) and n > 1, we obtain

S S, <0) =B XS (a0 s, )

n>1 n>1 k=1
<E; <2>:1na 1 Z S sre))
= /Zna "Pi(Sn ) S w+y) Vil(dy)
n>1

For the other side, note first that

Xn(l)
Ez( S > (n+k)>! l{Tn_1(i)>2nEiT(i)}>

n>1 k=1

(an " Lz, o> 2nE, <>})

n>1
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= Eir(i) Y n® ' Pi(r-1(i) > 2nEir(i)),

n>1

which is finite by Lemma [C.I] In addition, we need

< Eir()HOVE[r(i) logr(i)] < oo,

~Y

where we used that

k k . _

> n® 1 = / 2 Ve < logk, if a=0,
1 ~ ]Ca

n=1 )

else,

and

S logh Pi(r(i) > k) = Eqlr(i) (logr(i) — 1)] = E|7(i)-log7(i)].

k>1

This enables us to make the following estimation

(Z Z Tn 1 "‘k? ar 11{5 +k<x})
n>1 k=1
Xn(l) 1
zEZ(Z > (1 +E)* s <ot @) <2nBirt )})
n>1 k=1
Xn (%) 1
ZE(X Y (4 s s
n>1 k=1
Xn (%) .
> Ei( (n+E)* " Lis, rasad ><n})
n>1 k=1
Xn (%) 1
2 Ez( n® (s, 1(1)+k<1’}>
n>1 k=1

CASE a > 1. Using (75,-1(1) + k)1 >n* ! for 1 <k < x,(i) and n > 1, we infer

i 1
El(,; g T-1(0) £ R)7 1{5711 1(i)+k<$})
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Xn (%)
> E <Zna 1 Z {ST” 10 )+k<a7}>

n>1 k=1
_ /Z”a 'Pi(Sy, ) < @ +y) Vildy).
n>1

For the reverse estimation, we begin with

Xn (7)
EZ( Z Z (Tn—1(2) + k)ail 1{5771—1(i)+k-§x}>

n>1 k=1

sm(Y "Z)

1
as1 = n+ka l{Sm 1)+ k<w}>

<Z Z Ta1(0) +F)* g, (‘)>2nEﬂ(¢)}>-

n>1 k=1

The first summand can be estimated by

Xn (i)
(Z Z (n+ k)" 11{5% 1(3) +k<x})

n>1 k=1

(i)
a—1 a—1
< 2% E; (Z 2 1 s, ese) Lol ><n})

n>1 k=1

xn(0)
E(Z; X_j (08" s, et L )>n}>

S [ ST RS Saty) Vildy) +E, (Z Z 2xn ()" Lt >n}>

n>1 n>1 k=1

= /Zna Ip;(s (i) ST +Yy) Vi(dy) +EiT(i i)t

n>1

= /Zna Ip;(s (i) < T +y) Vi(dy).

n>1

Concerning the second summand, we use

Xn(
(Z Z Tuo1 (i) + k)1, 1()>2nET()}>

n>1 k=1

which is finite by Lemma [C.2]
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Notice that _
Pi(D'>y) < Vi((y,00)) < Eim(i) 1{pisey

for all y € R>. In general, V;((y,00)) < P;(D? > y) fails, but this changes if we as-
sume P;(7(i) < ¢) =1 for some ¢ € Rs. Then, the third condition in (ii) is equivalent
to E;log J;(D') < co or E;J;(D")® < oo respectively. Therefore, for 0 < o < 1, positive
divergence is generally not required for (6.9)).

In fact, E;[7(7) -log7(i)] < 0o is required for the necessity of condition (ii) in the case
a = 0. For explanation, we give an example.

Example 6.14 Let (My,),>0 be the Markov chain introduced in Example [2.8 with E[I”-
log I'] = 0o. The increment distribution is given by

K(0,(n,1),+) == d_(n_1) and K((n,n—1),0,-) := 6,
for n>2 and K (i,7, ) := d¢ for any other i,7 € ..
Then, S () =1 Pp-a.s. and Ex|X;| < oo, which suffices for
S ntPy(S, <0) < o0

n>1
(cf. Theorem [2.1] and Theorem [4.4)). In contrast,

Xn(o)

/ log Jo(y) Vo(dy) = Eo(Z"_l > 1{Srn_1<o>+k50})

n>1 k=1

xn(0)
-1
= E0<Z" 2. 1{57,11<o>+k—sfn1(o>s—<n—1>}>

n>1 k=1

= EO(an kZ_:l Loy (0)=n}

n>1

As P;(A(0) < 00) =1 is equivalent to positive divergence, Theorem yields that
for a = 0 is weaker. The next result relates with E;A(0)* < oo for @ > 1. For
0 < a <1, we prove that is weaker than the conjectured equivalent integral criterion
for E;A(0)* < 0o. For a =1, the conditions are the same.

Proposition 6.15 Suppose E;7(i)'*® < oo, (Sru(i))n=0 being positive divergent and
IEZ-JZ-(ST_(Z.))HO‘ < oo for some i €. and some o> 0. Then, for alli € . :

D<a<l: /Ji(y) Vi(dy) < oo = Y n'Bi(S,<0) < oo

n>1
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a>1: > n® P;(S, <0) < oo = E,A(0)* < oo.

n>1

Proof. Both assertions are proved in terms of the integral criteria from Theorem and
Theorem [6.13l
We can assume that y — P;(S,(; > y) is a continuous function. For explanation, let

X;L = Xn + Un 1{Mn_1=i}7

where (Uy,)p>1 is an i.i.d. sequence of random variables, which are uniformly distributed on
(0,1) and are independent of all other occurring random variables. Clearly, y — IP’Z-(S;(Z.) >
y) is continuous. Furthermore,

Pi(Sriy) >y) < Pi(Sry>y) < Pi(Sriy >y—1)

for all y € R>. Analogous arguments relate P;(D? > y) and V$((y,00)) to the correspond-
ing ones in terms of (M, X/ )n>1. For a MRW with positive divergent embedded random
walks, these tails entirely contain the information of finiteness of the quantities exam-
ined in this section so far. It is simple to see that the integral criteria are satisfied for
(M, S})n>0 if and only if the same is true for (M, S),)n>0-

Hence, y — IE,-(S Ay) = JJP ( ) > x) dr, y € R, possesses a continuous deriva-

tive. In particular, a%J (y) is a contmuous function. For any 3 > 0,
foly) = [Diy) 1", yeRs,
is non-decreasing, has a continuous derivative on R and fulfils fg(0) = 0. Consequently,
[ 5 ) = [ S (i) = )PV (w00 d

for any 5, > 0.
CASE 0 < o < 1. We start with the observation of

Vi((y ))
(i)

11—« a
[(z son) (X tiseon) Tewzaon] HEEOLr0ss0)]
< Ji()' TV ((y,00)) Bl (8) Lz (iy> i () -

Using the preliminary considerations and integration by substitution, we obtain

= / Vi(dy)

20
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P _
< .y —Ji(y) - Vi ((y,00)) dy+JE( / ay W) Ly} dy)
N /Ji Y) V?(dy)+Ei<7i /1 Y sy dy>
= /Ji(y) VE (dy) +Eir (i)
CASE « > 1. Similar to above, we begin with
Vi ((y,00))
Ji(y) a—1 ,7(i) ,

< Jily)* 7t Vil(y,00)) + Bl (1) Lir(iy> gy )]

to derive
[ 9ity) veay)
_ 0

5-Ji(y) - Vi((y,00)) dy

R~ 8
a-1 d ]Ei< )1 d)
/R> ) Vil (e00)) d+ B (0" [ S0 L
< | Ji(y)? Vi(dy) + B, ( a/ 1{7(i)>y} dy)
= /J Vi (dy) + Eor (i) 1+

6.5. Finiteness of Power Moments of o~

In order to find an integral criterion for power moments of o~ , we have already made the
observation in Lemma [3.5] that

Ai(y) > 0 for all sufficiently large y and  E;J( ST_(z‘)>1+a < oo,

a > 0, is sufficient for
Eio” (z)1T* < o0 for all (z,7) € R> x .7 (6.11)

In particular, the MRW can be oscillating, but (6.11)) is true (see Example [2.7). It
turns out that it is a difficult task to find an equivalent criterion. In fact, the embedded
random walks can be of arbitrary fluctuation type, but (6.11) is true, as the following

example reveals. The last part of the example is close to the proof of Proposition 2.13
from [5].
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Example 6.16 For a >0, let (>}7_; Yx)n>0 be an ordinary integer-valued random walk
with

PY™ >n) = for all sufficiently large n € N,

nl—i—a

P(Y =0) >0 and P(Y* € -) such that Einf{n >1:3X}_,Y; > 01+ = co. In particular,
one can choose P(Y T € -) = §y for any a > 0. W.l.o.g., we suppose P(Y ™ =n) > 0 for all
n € N.

Define f:Rs — R by f(z):= 202" for some 6 > 1+a, hence f(z) >z for all z > 1.
By construction, we have

nh_}ngonIP’(f(Y_) >2"c) = nh—>Hol<>nP<Y_ > f_1(2"c)>
1/(14a)
= lim nP (Y— > <”+log20> ) (6.12)
n—r00 0

=0

for all c € R~.
Let (My)n>0 be a Markov chain on Ny with pgg := P(Y > 0), po; :=P(Y = —i) and
pio := 1 for all 7 € N. Furthermore, set

Ko = P(Ye€-[Y >0), Ko = dp; and  Kij = 6_s)

for all i € N. Consequently, Po(S;) € ) =P(Y € -) and Eginf{n >1: 5. ) > 0} = 0o.
Fixing any x € R, the following property of the MRW under [Py is essential for our
considerations, namely

Xe+1 ST = S50~ w0 = T
As a consequence of this property, we infer that
{(7>(Z') > T(O)a My = O} - {ST(O) > —x, My = O},
{07 (z) > 72(0), Mo =0} C {Sr(0) = —, Xr(0)41 < 22, My =0}
C {Sn0) = =3z, My =0}

and then inductively

{07 (x) > 7(0), Mo =0} € {S,,0) > —(2" = D, My = 0}

for all n € N.
Define x(x) :=inf{n > 1: X )41 > 2"2}. Note that ¢~ (z) < k(z) Pp-a.s. and

Eio” (2)4® < Eo[l+07 (z+ f(i) +4)]'H
for all i € N. Hence, we will show Egr(x)*® < oo for all & > f(1), which easily yields

(6.11]).
We start with

Eor(z)™ < Y n®Po(k(z) >n) = zzlno‘ ﬁ F(2Fz),
n> k=1

n>1
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where F(-) :=Py(X1 € -). Then, notice that (6.12)) yields
n[l—F@"z)] 222 9. (6.13)

Set ay, :=n*T[{_, F'(2¥z), which is positive, because x > f(1). Due to Raabe’s criterion,
Eg ki (2) < oo if
liminf ( In__ 1) > 1.

n—oo an+1

Therefore, we use the Taylor approximation
(1—-n"1H* = 1+an"t4o(n™)

and (6.13) to conclude

—(n+1)>F(2"H2)
(n+1)> F(2n+1g) ]
= liminfn[1—(14+n"")* F(2"" )]

e Qn .. n®
hmmfn( —1) = hmmfn{
n—o00 pi1 n—00
IR T B -1 -1 n+1
= I%Hi)%)%fn[l [14+an™" 4+o(n )| F(2 x)]
I FISNN . n+1 . n+1
= liminf [n[l F2" " x)]—aF(2 ZL‘)}
=0—a > 1,

thus Eg k()17 < oo for all z > f(1).

Obviously, the phenomenon of Example [6.16| arises from ST_(Z.) and H* being coupled

in a problematic way, where

H! = max (Sk— S,

Y, o n>1,
Tn—1(1)<k<tn(7) "

—1(4)

is the maximal upward excursion between 7,_1(i) +1 and 7,(i). It indicates that an
equivalent criterion for (6.11)) must include the dependency of S;(;) and H".

Moreover, when P(Y T € -) is chosen as &y, we obtain E;o0S < oo and E;0% < oo for all
i € .. Hence, there does not need to be any recurrent ladder chain (cf. Proposition |5.2)).

Just E;o0~ (z) < oo for some (z,i) € R> x ., does not imply (6.11)), since P;(c~ (x) =
n) =1 for n € N is possible and even regardless of the fluctuation type of the MRW. This
changes if one does additionally assume

q(i,x) = Pi(o” (x) > 7(1), S, <0) > 0.

Notice that q(i,x) is non-decreasing in = and, if P;(S;;) < 0) >0, ¢(i,2) > 0 for all suffi-
ciently large x. The following lemma provides sufficient conditions for (6.11]).

Lemma 6.17 Let (M, Sn)n>0 be a non-trivial MRW and oo > 0. The following conditions

are sufficient for (6.11)):

(i) Eijo” (2)'TY < oo for all z € R> for some i€ .7,
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(ii) Bio” (z)17 < 0o and q(i,x) > 0 for some (x,i) € R> x ..
(iii) Eio” (0)17Y < 0o and E;7 (i)' < oo for alli € ..
Proof. (i) For any j € ., there exists 9 € R> such that
p = Pi(o” (2x0) > 7(j), Sy(jy < wo) > 0

and thus
Pi(07 (22) > 7(j), Sr(jy <) = p

for all x > zq. For such x, we infer

><I>1—|—a'

0o > Eio” (22)1T% > ;o™ (22)H Lio>(22)>7(j), S, <z} = P Ejo

Then, use Ejo” (z0)1T® > E;j0” (2) for all 0 <z < x¢ to infer (6.11)).
(ii) By assumption, we can find € > 0 such that

p(x) = Pi(o” (x) > 7(i), S < —¢) > 0.
Consequently,

oo > Ei0>($)1+a1{g>($)>7() Sry<—e} > p( ) Ei0>($+€)l+a.

Since p(z +ne) > p(z+ (n—1)e) for all n € N, we obtain E;0” (z+ne)! ™ < oo for all

n € N by induction and then (6.11)) by an appeal to (i).

(iii) If P;(Sr(;) > 0) = 1 holds for some i € % and thus P;(S;;) > 0) > 0 by non-triviality,

the assertion follows easily from Lemma [3.5]

Now, suppose P;(S;(;y <0) >0 for all i € .. Fix some i € .. If q(i,0) > 0 the assertion
follows from (ii). Assume ¢(i,0) = 0 and hence P;(¢~(0) < 7(i),S-; < 0) > 0. We will
show that g,(j,0) :=P;(c7(0) > 7n(j),S7,(j) < 0) >0 for some n € N and j € .. Then,

analogous to (ii), (6.11) can be concluded.
Define
K = mf{O <n<7(i): S, = 0<r£§§( )Sk}
By assumption, there is j € .\ {i} such that

/

pi= Pi(My =g, k= Tn(j) 2 07(0), Srisy <0, Tinre(§) < 7(0) < Tinges1(4)) > 0
for some m, ¢ € Ng. Then,

P =Pi(Sru() > Sk for 0 <k < 1n(4), Sr(s) = St < —Srm(s)
Sty 4k — Srm(j) < 0 for 0 <k <7(0) = 7 (), Tm4e(J) <7(3) < Tm+£+1(]))
_/1@ ) < —, S <0 for 0< k < 7(0), 4(j) <7(1) < 7241(7))

P; (S, ()deS () > Sk for 0 <k <7 (j) < 7(4))
= P;(S,,,,() <0, Sk 0 for 0< k < 7(3), (j) < 7(i) < 701(4),
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Srsels) > Sr(ayik for 0< k < T (7) —7(0))
< Pi(07 > Tnie(4)s Sr o) <0) = dmye(5,0).

Suprisingly, one can not dispense with E;7(i)!*% < oo in (iii) as the following simple
example reveals. Consider the Markov chain as in Example with

K((n,n—1),0,-) = K((n,k),(n,k+1),-) = by,

for all 1 <k <n—2and n>2. Thus, 07 (0) =1 a.s. and 0~ (1) = 7(0) Pp-a.s.
Example and Lemmal6.17] (i) motivate to study the post-7(i) level z first passage
time
o7 (z) = inf{n>7(i): S, > x}, z €R>.
We will establish an equivalent criterion for @ (0) to possess power moments of order

greater than or equal to 1 given an embedded random walk tends stochastically to oo.
Preliminarily, we prove an adapted extension of Lemma 3.5 from [33] to MRWs, where

we use J;(y) instead of y/A;(y). Moreover, we assume S ;) L o for some i € .. Whether

the latter is a solidarity property or if it is equivalent to S, P, 50 is not known. As proofs
seem not to be simple and the benefit for our results is marginal, we refrained from
studying this aspect.

Lemma 6.18 Suppose S, ;) RN for some i € .. Then, for all j €. and y — oco:

Proof. We begin with showing that the assertion follows for all j € . if it is true for i.
Pick some arbitrary j € .. By Lemma [3.3] it suffices to find some x € R> such that

-1 -1
T (g Su<y=a) S St B (g S <yta).

Let x € R> be such that

p = Pj(lgrggi((i)Ska) > 0.

Then, we infer

P Zno‘_llE%-( max S Sy—m)

1<k<n

< Zna—l /(oo,x}Pi( max Skgy—z) IP’j< max SkEdz)

1<k<n 1<k<7(i)
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IA
S
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T(i)Jrlréll?%{T(i)an(Sk Sr(i) <9, 1&?3—%1) Ok < m)

S < S:. <
(i) +1<k<7(i)+n k=Y _maf(z) k= x>

A
g
3

i
)
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S

Q

L
. F F 4
~—~

=

IS

"

< Zno‘_llP’] ma;c Skéy—i-x)

for all y € R>.
Forie ., y€Rs and § € (0,1) define

ms(y) = inf{nzl:]}”i(lrg?g Sk<y) <1—(5}

with ms(y) T oo as y — oo. Moreover, S, () LN implies (S7,(;))n>0 being positive di-
vergent or oscillating and thus mg(y) < oo for all (y,d) € Rs x (0,1). Simple estimations
yield

Y)
Zna_lP(maX Sk<y> > 62 a” 1P<max Sk<y)

=i 1<k<n = 1<k<n
S logm5 (y), ifa=0,
~ (y), ifa>0.
It remains to show
Jity) S ms(y) as y — 00. (6.14)

Put Af (y) :== ]Ei(S;r(i) Ay). We assume that (6.14)) fails and infer that we find for all

e € (0,1) an increasing, non-negative sequence (y¢)¢>1, depending on ¢, such that

A+
sup 2mg(ye) (ye) < g, (6.15)
>1
which is equivalent to
(1—e)ye+2ms(ye) A (ye) < e for all £ > 1. (6.16)

For the sake of brevity, we set my :=mg(y;). It follows that

Pi<1<1§3%( %> w)

= B (S HE) S0 < S+ 1)

mé
— . i 7 i @
- Z P (1<I]£133L{_1(W2mg—n+1,k + H2mg—n—|—k—|—1) Sap < WQmK—n—&—l,n + H2mg—|—1> )
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where Wfﬁ,k =S (i) = Srm(s)- We have used that (Sp, ;) — S

S Tn_l(i),H}L)nzl forms a
.. . P; .
sequence of i.i.d. random variables under P;. S ;) — oo ensures that we can pick h >0

and ng € N such that

: J
Pi(H">h) < — and ¢ := inf Py(S, 3 >h) >
4 n>ng

DN | —

Choosing ¢ such that my > ng, we further estimate

]P).
i, s 5> we)

me . . . .
< Z P; [ ( max (W2ng—7L+1,k + H%mg—n—kk—kl) Sy < Wémg—n—l—l,n + H%mg—!—l)
n=1

1<k<n-—1
1
. EPi(STng—n-i-l(i) > h)
S - Z IP) <1<I]£1<a7>1< 1 ngg—n—i-l,k: +H§m¢—n+k+l) S Yo < ngg—n—kl,n +H§m5—|—17
Srgmé(i) + H%mg+1 > Yo+ h)
1 .
< EIP)’L‘(STQmK(’I:) + H%mg—l—l > Yo+ h)
1 .
< []P’i(Smmz(i) >yp) + Pi(H' > h)]

0
<2P(S ()>yg)—i—f.

Tng 2
Set (o= (Sr,() — Srk,l(z‘))Jr Ay, so that A (yy) =E; (1 . We obtain

2my

Pi(Sry,n, (1) > Ye) < Pi( > (Sr(iy = Sna@)” > W)
k=1
2my

<P (ZCkz>y£>+2mzP (i) > Ye)-
i(

Applying (6.16), Tschebychev’s inequality and y2 P Sy > ye) <E; ¢? ¢ yields

ng

Pi(Sr,,., () > Ye) < P (ZCM—QmNﬁ(W) (1- )y£>+2m519’¢(57(i)>y4)
=1
<7 2myP; .
ST y2+ myePi(Sra) > ye)
4nglC17£
T (1—-e)2y}

for all £ > 1. For sufficiently large ¢, we have E;¢? 0 < 3ye A (yg) by Lemma 3.2 from [33].
In combination with - we obtain for such ¢

12myp A (yr) Ge
P; < i < .
S0 200 = 70y = oep
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Thus, we have shown

<

(1—¢)2 2

P, max Sp >
Z<1§k§7—m[(z‘) k=l

for all £ € (0,1) and sufficiently large ¢ not depending on e. Finally, choose € with

12¢ - é
(1—¢)? 2

to obtain a contradiction of the definition of m, from

. > P,
o > Pl(lgkrg?j;(i)sk>y€> > PZ<1£]}%>T<WS;€>W)

for large /. ad
~(

Now, we give the announced result on ().

Proposition 6.19 Let (M, Sp)n>0 be a non-trivial MRW such that S; @ 5y 0 and
E;7(i)'7® < 00, a >0, for some i € .#. The following conditions are equivalent:

(i) EiJi(S;(i))HO‘ < oo for some (hence all) i € ..

(ii) Bz~ (z)17 < 0o for some (hence all) (r,i) € R> x.7.

and imply B;o” (x) < oo for all (,i) € Rs x ..

Proof. First of all, notice that EZ'JZ'(S;(Z.))HO‘ < oo is either true for all ¢ € . or none
due to Lemma B.4]
“(i)=(ii)” By Lemma (iv), A;i(y) > 0 for all sufficiently large y is satisfied. Hence,
Lemma yields EiTy () (1)1 7 < oo for all i € .7 and we obtain (ii) from Tu(@) (1) 277 (2).
“(ii)=>(1)” Suppose E;5~ (x)!** < oo for some i € .. The assertion follows from
Lemma [3.5] if P;(7(0) = 7(i)) = 1. Conversely, if P;(@(0) > 7(i)) =:p > 0, Lemma [6.1§
yields

0o > Eig” (2)F > Eio” (0)" Lig> (g)sr(iy)
=E; [T(i) +(@0)=7@)| >0
> [Eio” (1) PS5 € dy, Sy <0)

2 /Ji(y>1+a Pi(ST_(Z-) € dy, Sy < 0)
= Ei,]i<s7__(i))1+a.

]H—oz

The implication of E;o0” (2)!*% < oo for all (7,i) € Rs x . was already shown in
Lemma B.5l g
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Given E;o” (z)17% < oo and ¢(i,2) > 0, following the steps of the proof of “(ii)=-(i)”
yields

/J e p; ()Edy,H <) <

for all large # € R>. As Example [6.16| illustrated, IP)Z-(ST_(i) >y, H' < 2) and IP’Z-(ST_(Z.) > )
can be of a different magnitude.

6.6. Asymptotic Growth

We aim at a counterpart of Theorem [I.6] An important step is the verification of the
following lemma.

Lemma 6.20 Let (M,,S,)n>0 be a non-trivial MRW and o > 0. Suppose E;7(i)1T v
E;[7(i) log7(i)] < 00 and Y51 n* 'P;(S, <0) < oo are satisfied for some i € . Then,

_ log J;(y), ifa=0,
n>1 Ji(y)*, if a>0,
as y — oo for alli € .S .
Proof. Due to (6.10)) it suffices to show
/Zna Ip;(s () ST +y) Vi(dr) < foly) as y — 0o,
n>1
where

log Ji(y), if a=0,
faly) = & (yo)é .
Ji(y)®, ifa>0.

The assumption induces A;(y) > 0 for all sufficiently large y and EiJi(ST_(Z.))HO‘ < o0 by
Theorem |6.13, which implies

> nT Ipi(s (i) S T+Y) X falz+y) as Yy — 0o
n>1

for all x € R> (see Theorem [1.6]). Hence, one part follows easily from

/Zno‘ 'Pi(Sr, ) S z+y) Vildz) > 30T Pi(S,, ) < ).

n>1 n>1

For the other part, notice first that there exists a constant ¢, > 0 such that
falx+y) < colfal)+ fa(y)] for all x,y large enough. (6.17)

This follows from subadditivity of y — J;(y) and of y — log(y) for large values combined
with (z+y)* <, (z*+y®) for all 2,y € Ry and some constant ¢/, > 0. Consequently, an

appeal to (6.17)) yields

[ S n T RS Saty) Vilde) < [ falw+y) Vi(da)

n>1
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which finishes the proof. O

Theorem 6.21 Let (M, Sp)n>0 be a non-trivial MRW. The following assertions are true:

(i) If (Sn)n>0 is positive divergent and E;[7(7) logT(i)] < 0o, then

Z n_lPi(Sn <y) =< logJi(y) as y — 0o

n>1
forallie .

(ii) Suppose E; p(0)* < oo and E;7(i)1TY < oo for some i €. and a > 0. Then,

Eio”(y)* < > n* 'Pi(Sy<y) < EA(y)® < Eip(y)* < J;(y)°

n>1

as y — oo for allv e 7.

Proof. (i) Since positive divergence implies the finiteness of the harmonic renewal mea-
sures, the assertion results immeditately from Lemma [6.20]

(ii) Fix some arbitrary i € .. The lower approximation follows from Lemma [6.18]
o~ (y) <A(y)+1 and

E;o” Zn (max Sp<y) < > n*” 'Pi(S, <y) < Eiply)®

n>1 1skzn n>1
It remains to prove E; p(y)* < Ji(y)® as y — oo, because A(y) < p(y). Define
ﬁ(y) = Sup{n >0: S’TU(y) (#)+n — Sr (7) < O}

v(y)

Observe that E; p(y)* = E;p(0)* < co and
p(y) < Ty (@) +p(y)

entails E; p(y)* S Ei7,(,) (1) as y — oo. An appeal to Lemma entails

Eityi) () = 30 Pyl (1) > (i) < S0 RS, 0 <)

n>1 n>1
Furthermore, since E;p(0)* < oo implies anna*lPi(SM(i) <0) < o0, the assertion fol-
lows from Theorem [L.6l 0

Besides, one can generalise the assertion of Lemma to MRWs.
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Lemma 6.22 Suppose (S, ())n>0 i positive divergent for some (hence all) i € . Then

ZIP’i(OSSngy) = Ji(y) as Yy — 00

n>1

forallie 7.

Proof. One part follows directly from Lemma and

Y P(0<S,<y) = D Pi(0<S,, ) <)

n>1 n>1

For the other one, set U7 ((—00,y]) := U7 ([0,y]) :== Xp20Pi(S,> ;) < y) for y € R Then,
standard renewal techniques yield

0]
Y P(0<S, <y) = Ei( ) 1{0§Sk§y}>
n=1 nz1 k=77, (i)+1
7 (i)
= /E( > 1{0<Sk+$<y}> U7 (dx)
k=1
7 (i)
~ B 3 U7(-Su- 50|
k=1
7 (i)
< B[ 3 U7 (04)]
k=1

= Eim (i) - U7 ([0, 9)),

whereupon an application of Theorem entails the assertion. O

7. Further Counterexamples
In this section, we discuss briefly three assertions, which arise from seeking generalisations
of results from fluctuation theory of random walks.

We begin with a remark on a strong law of large numbers for MRWs. As noted in
Theorem .1 (iv), B X{ AE; X < oo implies lim, yoon 'S, = E;X] a.s. Additionally,
this assumption ensures

E X1 = E.X{ —E.X] = m [EZ(ZX;) —E,-(ZX,;)]

and

WZEZST(Z) = WZ(EZS;F(Z)—EZS;(Z)) (7.1)
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to be well-defined and equal. Given E;X;" AE;X] = oo, (7.1)) can still be well-defined
and thus limy, o0 70 () 71 Sy, ) = 1 € R aus., but B (S5 X)) — Eo(Sh0) X)) s not well-
defined. Hence, it appears dubious, whether it is true that lim,_oocn 'S, = 1 € R a.s.
implies E; X1 = p. It is generally known that the latter implication is true for ordinary
random walks. However, the subsequent example shows that it is wrong for MRWs.

Example 7.1 Let (M,,)n>0 be a birth-death chain on Ny with transition probabilities
142
=1 d i1 = l—pjip1 = ———, € N.
bo1 an Pii—1 Pii+1 2(i+ 1) ?
Using that the stationary distribution for birth-death chains is given by
i
B Hk:lpk:—lkw

= A 0, 1 €N,
[Th—1PrE—1

1

and my such that >7;>gm =1, we infer
1 1
(i+1)(i+2) i2
Define a null-homologous MRW by setting
X, = g(Mn)_g(Mn—l)a n>1,
where g(0) := 0 and
g(21) == —g(2i—1) =i

for ¢ € N. Then, since pg;_192; < % as 1 — 00, we obtain

Er X" > > moio1-poic12i- B(X1|My = 2i—1, My = 2i)

i>1
> L1,

= — 7 = O
= (2i)? 2

and E;X| = oo follows analogously. Notice that
1Sro)+kl < X 0)4kl <k Poass.
for all n € Ng and 1 < k < x,+1(0). Since Eo7(0) < oo, we infer

Sn
n
and then the same under P, where N(n) :=sup{0 <k <n: 7(0) <n}.

Choose any sequence (Zy)p>1 of i.i.d. random variables independent of (My,),>0 with
EZ; =€ R\{0} and set

< XN(n)+1(0)

0 Ppas.

n

X! = Zp+g(Mp)—g(Mn_1), n>1.

The associated MRW (M,,, 5] )n>0 is easily seen to be non-trivial with lim,, n~! Sl =1
P,-a.s., although E,X] does not exist.
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As mentioned before, one would rather like to have E;J;(D*)!* < 0o, a > 0, replaced
with

y 14+o
— P.(X] edy) < oc. 7.2
[(Grny) Bt <o (72)
Our example will show that
P (XT>y) < IP’Z-(S;F(Z.) > ) as y — 00 (7.3)
and particularly
Y

B, (X" Ay) 2 Ji(y) as y — 00

are generally not true. Since the corresponding MRW is non-negative, the example can be
adjusted by adding a 1-step path from 0 to 0 with Po(X; € -|M; =0) =Po(X; € - | M) =
0, X1 < 0) such that E;Jo(D°)* < 0o and (7.2) are not equivalent. Additionally, notice

that the example does again contain a dominating null-homologous MRW.

Example 7.2 Let 8 > 1 and (M,),>0 be a Markov chain on Ny with transition proba-
bilities .
7

B
) for 7 € N.
1+1

por =1 —and  piip1 = 1—pip = (
The Markov chain’s stationary distribution is given by
7(0)
T = C]EO(Z 1{Mk_i}) = CPO(T(O) > Z)
k=1

‘ c
= C Hpk—lk = -3
7
k=1

with ¢ =1/Eg7(0) < co. The increments are defined by X,, := M, n > 1, so that S;_F(O) =
i X = 7(0) (7(0) ~1)/2 Byras.

We obtain
1
IPO(S;L(O) >n) = IPo(T(O) ((0)—1) >2n) = Py(7(0) > vn) = 7
and 1
C
Pr(X] >n) = Pr(M; >n) = kgﬂk _ gﬂfﬁ <

as n — 0o, which shows (7.3). In particular, 5 can be chosen to be in (1,2) and thus
E;|X1] = o0.

There is a well-known result from fluctuation theory we have not dealt with so far.
[27, Theorem 3.3.1 (ii)] states that for a random walk with positive drift

EXDIT < 0 & E(SU>(QE))1+O‘ < 00 for some (hence all) z € R>
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is satisfied for any a > 0. Translated to MRWs, given 0 < E; X7 < oo, one would conjecture
an equivalence between

Ei(SU>(x))1+a < 00 for all (z,i) € R> x .

and -
E; xH)
’ ( 15?2}(@') k )

< o0 for all 1 € .&.
In fact, the latter assertion can be stronger, as the subsequent example reveals.

Example 7.3 Suppose a > 0. Let (M,)n>0 be the Markov chain with state space . C
{0} UN? from Example 2.8 with I" such that

1
P(FZH)XW as 1 — oQ.
We derive
Er2/e <« oo and  EI?etle — o (7.4)

Define the increments (Xy,),>1 by
X, = ke if M, = (0,k), or Mp_i = (k,k—1) and M,, =0 for k,¢ € N.
The MRW is non-negative and fulfils
0 < E.X1 = moEoS,) < mEI*TV* < oo

by (7.4). As X1 > 1 Pr-a.s., we infer 07 (z) < [z] a.s. for all i € . and thus

[] 1+«
14+« 14 14«
Ei(So> () T4 < Ei<k§:jlxk> < [x]'r lgrré%%mx;

< [l,“l—i—a.ﬁ_'_x“}i-a—kl/a < oo,

However, (7.4) yields

E X;F
of , nacx Xi

+a _ EF?—I—OH—l/Oc

1+« 1

8. Comparison with Perturbed Random Walks

Given an i.i.d. sequence (Zp,nn)n>1, (ZZ;% Zi+1Mn)n>1 is called perturbed random walk
(PRW). Naturally, MRWs and PRWs are different stochastic processes, but in some regards
and under additional assumptions their study reduces to the same object. Positive diver-
gence of MRWs is equivalent to positive divergence of (S, _ ;y— D), >1. Moreover, under
the assumption of E;7(i)!™® < oo, an application of Lemmayields that E;p(0)* < oo if
and only if the a-moment of the last exit time of (S, _ ;) — D!),>1 is finite. Analogously,
under an additional moment assumption on 7(i), a study of power moments of ¢~ under
P; reduces to a study of power moments of the first passage time of (San(i) + H)p>1.
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As these two processes are PRWs, we can translate corresponding results on PRWs into
the context of MRWs. In fact, the translation works also vice versa. W.l.o.g., one can as-
sume that P(n € Z) = 1, since the distribution of 7 has only an impact on the fluctuations

through its tails. Therefore, the approach in Example demonstrated that one can

construct a MRW such that Sy, g H L nt and D' 4 no.

Alsmeyer, Tksanov and Meiners have studied fluctuation theory of PRWs. The corre-
sponding article [5] has been published during this work. Their results on power moments
of the last level z exit time can be translated into the MRW context and therefore coin-
cides partially with Theorem We have added two more equivalences and have used
different proofs, where we explicitly used the structure of MRWs, namely the ladder chain
(M )n>0 and the reduction to the study of (ST,?,l(i) — D;*");>1. Another benefit of the

use of MRWs is an integral criterion for

mipsn] = [min(Sr 0 = D1

to possess power moments. However, we also have not found an equivalent condition for
the existence of power moments of the first level x passage times, but improved the insights
provided by their example (see [5, Proposition 2.13]) by another example (see Example

6.16)). Furthermore, for a PRW with >} Zy P % and (Z,n) being an independent pair
of random variables, the proof of Proposition [6.19] and the remark thereafter entails that
the existence of (14 a)-moments of the first level x passage time for the PRW is equivalent
to same finiteness in terms of the random walk (}>7_; Zx)n>0. Unfortunately, Z and n are
dependent in most examples.

In contrast to the above-mentioned fluctuation-theoretic quantities, the criteria for the
finiteness of power moments of A(0) and of the weighted renewal measures from Section
differ from the corresponding ones for PRWs, since these quantities are influenced by
the entire excursion within a cycle and the cycle length can be unbounded. Nevertheless,
our approach for dealing with power moments of A(0) is close to the one from [5].

9. Special Cases

The initial aim was to find a not too restrictive class of MRWs whose fluctuation behaviour
is close to that of random walks. In contrast to the canonical class of non-trivial MRWs,
one would rather like to have the fluctuation results expressed in terms of the embedded
random walks or the stationary increments.

To consider MRWs with a finite state space is very restrictive, but an important
example. Since such a MRW can be regarded as a finite union of its embedded random
walks, we can easily relate fluctuation-theoretic results on the MRW to those on the
embedded random walks. Moreover, it is possible to give integral criteria in terms of the
stationary increments (see Section .

In Section we will proceed with a study of certain stochastically bounded MRWs,
whose assumptions are motivated by our counterexamples for non-trivial MRWs. After-
wards, our focus lies on fluctuation theory for tail-homogeneous MRWs.
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9.1. The Case |.¥| < >

Under the assumption |.#| < 0o, one intuitively supposes that all assertions from fluctua-
tion theory of random walks can be generalised to MRWs. We will show the truth of this
intuition. In particular, even power moments of 0~ are manageable. Furthermore, we give
integral criteria in terms of the stationary increments.

A first lemma including the stationary increment distribution is the following one.

Lemma 9.1 Let (My, Sp)n>0 be a MRW with finite state space. The following assertions
are true for alli € & :

(i) There exists x € R> such that Pi(ST_(i) >y) 2 Pr(X{ >y+x) asy — 0.
(i) Erx|X1| < oo if and only if E;|S; ;)| < oo.

(iii) Suppose Ex X = o0o. Then, EZ(S:'( ) Ay) < Er(XT Ay) as y — oo.

)
Proof. (i) Fix some arbitrary i € .. Our aim is to show
IP’Z-(ST_(Z.) >vy) 2 Pi(X] >y+aj| M =s) as y — 00

for some x5 € R> for all j,s € . with p;s > 0. Then, by finiteness of ||, we can choose
T = maX; sc. Tjs < 00 and obtain

Pi(S iy >v) 2 D mipisPi(Xy >y+a|Mi=s) = Pr(Xy >y+a)
jes

as y — 0.
For u € .7, define
0(u) == inf{n>0: M, =u}.

Pick arbitrary j,s € . with p;s > 0. There exist m1,mo € Np, 2 € R> such that
p1 o= Py(r0(j) =my <7(i), [Sm,| < 2) > 0
and
P2 = IP’S(TO(i) =ma, |Sm,| < 2) > 0.
It follows that

PZ<57(Z) > y) Z ]IDZ(T()(.]) =my, |Sm1| S 2, Mm1+1 =S, T(Z> =m +m2+17

|Sm1+m2+1 - Sm1+1| <z, ST_(Z) > y)
> p1-p2-Pi(XT >y+22|My =5)
= P;(X] >y+2z|M; =s).

(ii) Notice that the assertion (i) is also valid for ( ;“(i),Xf ). Consequently, using as-

sertion (i) for the positive and the negative part, we derive that E;[S; ;)| < oo implies
E,|X1| < 0o. The reverse implication follows from ([2.2)).
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(iii) Let € R> be the constant provided by assertion (i) for (S*'(i),Xf'). We infer

-
+ Vo (ot > [Y +
Ei(S’T(i)/\y) = /0 Pi(ST(Z.) >z)dz 2 /0 P(X{ >z2+42) dz as y — 00.
E,X; = oo ensures that the latter term is positive and thus

Y Y+
/0 P.(X{ >z41)dz < /0 P.(X] >2) dz = E [ X{ A(y+2)] as y — 00.

Then, one side follows upon using E;[ X" A (y+ )] < Er (X7 Ay) (cf. Lemma [3.3] (ii)).
For the other side, we use the occupation measure formula (2.1)) to infer

7 (i) 7(i)
Er(X{ Ay) = WiEiL;(XIj/\y)] > WZ]EZKE:IX;)/\?/] > Wi]Ei(S:(i)/\y)

for all y € R>. O

The assumption EWXf' = oo is needed, since EiS;r( )= 0and 0 < I[*]WXlJr < 00 is possible

1
otherwise. In particular, a MRW with E; X" = oo and |.#| < oo is non-trivial.
For y € R>, define

Ax(y) = Ex(X{ Ay) —Ex (X7 Ay)
and

[Ex (X AY)]Y’

) ¥ P (X{ =0) <1,
my\Y) =
! y, i P(X;=0)=1,

where 0/[E.(X;" A0)]7:=1if v > 0. In particular, set J; := Jr 1.

The next lemma puts the corresponding integral criteria in relation. We will use the
well-known result that E;7(i)1T® < 00, i € .7, for all a >0 if |.¥| < oco.

Lemma 9.2 Let (M, Sy)n>0 be a non-trivial MRW with || < co. Then, for all a >0
and 7 € [0,1], the following conditions are equivalent:

(i) EiJm(S;(Z.))HO‘ < 0o for some (hence all) i € ..
(ii) E;Ji (D) < 00 for some (hence all) i € ..
(#ii) ErJr (X7 )1 < 0.

Proof. If E;X;" < oo, an appeal to the occupation measure formula (2.1)) shows

()
E X = m]&(ZX,j) > mEiST,
k=1
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and therefore J; ,(y) <y < J; »(y) as y — 0o. Otherwise, Er X" = 0o and Lemma|9.1| (iii)
entails Jr 4(y) < J; ,(y) as y — oo. Hence, it suffices to just compare the corresponding
integrals with integrand J%;O‘.

“(ii))=>(1)” follows directly from D’ > Sy

“(i)=(iii)” Let « € R> be the constant provided by Lemma9.1] (i). Jx (y— ) =< Jr 4 (y)
as y — oo yields

oo > EiJw,y(ST_(i))l—i_a 2 E’JTJW,’V((Xl_ _x)+)1+a = ETK‘JTI',’Y(Xl_)l—’_a'

“(iii)=-(ii)” Let Fjs be the distribution function of X given My = j and M; =s

and denote by F j_l its pseudo-inverse. Now, given an i.i.d. sequence (U,),>1, which is

,S
independent of all other occurring random variables and with Uy uniformly distributed on

(0,1), (Mn,FAj_,i_th(Un))nzl forms a distributional copy of (M, X, )n>1. Define X,, :=
Fﬂ}i_l,Mn(Un) and S, = >0, X}, for n. > 1. Moreover, set

1=Gly) = maxPj(Xy >y|M = s),

where G is a distribution function, since its right-continuity follows from the finiteness
of |.Z]. (Wp)n>1:= (G~ (Uy))n>1 is an i.i.d. sequence, which is independent of (M,),>0
and X, <W, for all n>1.

Back to the actual assertion, we use that J; 5 is a subadditive, non-decreasing function
to derive

) 7(i) 14+ N
EiJm(DZ)Ha < Eijm< X,;) = EiJﬂ,V(ST(i))HO‘
k=1
7(i) _ \l+a 7(i) l+a
<E ( > Jw,v(Xk)) < E( > Jm(”@)

k=1 k=1

and according to Theorem 1.5.4 from [27] the upper bound is finite if and only if
E;7(i)1T < 0o and EJ; (W) < 0o. As remarked before, we only have to verify the
latter finiteness, which follows from

00 > Bndrag(X7)F0 = 3 mpjaB(Jnn (X7)F0(0y = 5)
j,s€S

>c S [T BXT € dylMy =)
J,8€7:pjs>0

> cRJ, (W)
where ¢ :=min{m;pj;s: j,s € . and pjs > 0}. O

The following two theorems form generalisations of Theorems for the prevailing
case.

Theorem 9.3 Let (M, Sp)n>0 be a non-trivial MRW with || < co. The following con-
ditions are equivalent:
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(i) (Su)uso is positive divergent.
(ii) Ai(y) >0 for all sufficiently large y and EZ’Ji(S;(i)) < oo for some (hence all) i € .
(iii) Az(y) >0 for sufficiently large y and ErJ-(X] ) < 0o

(iv) Sps1n ' Pi( Sy <) < oo for all (z,i) € R> x .7

(v) Eijo” (z) < oo for all (x,i) € R> x .7

Proof. “(i)=(iv)=-(v)” can be concluded from Theorem[4.1]and “(ii)=-(v)” is also already
known from Lemma

“(v)=(ii)” The assumptmn entails that (M), >0 forms a Markov chaln on a finite state
space .~ . Hence, (M. ),>0 possesses a unique stationary distribution 7= and E;x < oo,
where k:=inf{n>1: M, =i} < oo and i € .¥~. Furthermore, (M, , 0, )n>0 forms a MRW
with E >0~ < 00, since || < oo. Finally, we use the occupation measure formula ({2.1)

to conclude ‘
Ei77 (i) < Ejoo" = E >0 -Ejk < o0,

which is equivalent to (ii).
"(ii)«>(iil)” Suppose E|X1| < co. By the second assertion of Lemmal9.1] (ii) and (iii)
reduce to the respective first condition. An application of (2.2) yields

U ylggoAz(y) = WZEZST(Z) = EﬂXl :yli_>IgoA7T(y)

and thus the equivalence of (i) and (ii).
Suppose E;|S ;)| = co. Then, as remarked after Theorem , (ii) and (iii) reduce to
the respective second condition and these are equivalent by Lemma [9.2] for v = 1.
"(ii)=(1)" (ii) states that (S, ;))n>0 is positive divergent for all i € .. Since |.'| < oo,
this does clearly imply positive divergence of (Sy,)n>0. ad

Theorem 9.4 Let (M, S,)n>0 be a positive divergent MRW with || < oo and o >
0. (a) and (b) contain sets of equivalent conditions, which themselves are equivalent to
Er(X7)'7F < 00 if Ex| X1 < 00.
(a) (i) Eilming>0Sp|* < oo for some (hence all) i € ..
(i1) Ei[(S_‘ ) Ji(S ())] < oo for some (hence all) i € ..
(ii) Ex[(X7)* Jr(X7)] <
() EilSo< ()| Lig<(—a)< }<oof0rall($,i)€R2><5ﬂ.
(v) Ei(maxo<,<p(z) [Sn|)* < 0o for some (hence all) (z,i) € R> x 7.
(b) (i) Eip(x)® < oo for some (hence all) (z,i) € R> x 7.
(i) EiJi(ST_(i))HO‘ < oo for some (hence all) i € ..

(i) B Jp (X7 < oo
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(iv) Eijol;, < oo.
(v) Eiag(—x)o‘l{ag(_w)@o} < oo for some (hence all) (x,i) € R> X .77 satisfying
P;(oS (=) = 00) > 0.
(vi) E;A(z)* < oo for some (hence all) (z,i) € R> x .7.
(vii) Yps1n 1Pi(Sy <) < oo for some (hence all) (z,i) € R> x ..

(viii) Bio” (z)'T% < oo for all x € R> for some (hence all) i € .7.

Proof. Concerning the additional comment on the case E;|X1| < oo, notice that the
respective third condition of (a) and (b) reduces to E; (X7 )T < oo.
(a) The equivalence of (i), (ii) and (iii) follows immediately from Theorem and

Lemma (9.2 for y=1/(1+«).
“(i)=(v)” As in [29] (vii)=-(viii)], we derive

P; (0;71112;((1,) Sp > y) <P (11?218(30>(y)+n — Sg>(y)) <xT-— y)

< Pi(

N (S 4) 10— S ()| > ¥~ 7)
for all y > x. Together with the obvious estimation

]P’i(ogfrfllgzi(m) —Sp>y) = Pi(ogglgig(x) Sp, < —y) < Pi({g{)‘sn < —y)
< Pi(

%1218 Sn’ >y — x)
(see also [33), p. 30]), || < oo implies

i, 150 0) <2 s iyl -2),
which easily yields (v) for all (z,i) € R> x ..
“(v)=-(ii)” Suppose (v) is true for some (z,i) € R> x.#. Use

pli] = sup{n>0:S5, ; <0} < p(x)

to infer

EZ(OSI%E%};[ZHST"(QDQ < Ei(()grrl}g;{(m)|sn|>a < 0.

An appeal to Theorem [1.4] yields (ii).

“(i)=(iv)” is obviously true.

“(iv)=>(i)” Let = € R> be large enough for minjc »Pj(0S(—z) < 00) =: p > 0. Set
ko=inf{n >1:05(—x) =00}, where P;(k = £+1) < (1 —p)’. We derive

’

V4
;(Sa,a—m_s < o)

k—1

> (Ss(cay = 5o (ca)

g
k=1 k-l

E;

. «
glzlgsn‘ < Ei[$+

X

Zpi(ﬁzf-i-l)Ei
>0

Ok—1
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< = p) N B (1S, Lo
—g)( p) 5%8};} ](la(x)H{a(ac)<oo}

< 0

(cf. 29, (v)p = (vii)]).

(b) By Theorem [6.6]and Lemma[0.2] (i)—(iii) are equivalent. Hence, the considerations
at the beginning of Section [0] entail that (i) is the strongest assertion in (b) and any
assertion in (b) implies (viii). Consequently, it remains to prove “(viii)=>(ii)".

Suppose (viii) is true. Positive divergence ensures .~ # () and Lemma yields

Eio” (2)'7 < oo for all (z,i) € R> x ..
Pick some i € .~ and set x :=inf{n >0:5, = Hi}. Using |.#~| < oo results in

E;o~ (0)1+

1+«
S ]E’Z <O'> l{HiZO} +/€1{Hi>0}+ Z 1{MH:].,H1.>0} lnf{n Z 1: S,{{_n_sn > 0})
jeS>
< (’y>‘+2)a <Ei(0>)1+a—|—EiT(i)l+a+ Z E]'(U>)1+a)
jes>
< 00,

which is equivalent to (ii) by Proposition [6.19] O

Notice that E;[Sy<(_)|" 1{g<(—z)<o0} < 0 for some (z,1) € R> x . can trivially hold,
when X = —x P;-a.s.
The proof revealed that a positive divergent MRW only needs |.#~| < oo for

Eio” (2)7 < oo for all (z,7) €e R> x .7

and EiJi(S;(Z.))1+°‘ < 00 to be equivalent for any a > 0.

9.2. Certain Markov Random Walks with Stochastically
Bounded Increments

Not all results from fluctuation theory of ordinary random walks can be generalised to non-
trivial MRWs, which mostly results from extremal excursion within a cycle being of greater
magnitude than the increment cumulated over a cycle. In our examples, this is caused by
an embedded null-homologous MRW with dominating extreme values. This motivates to
assume the increments of the MRW to be stochastically bounded. Unfortunately, we can
not dispense with a strong stochastic boundedness condition. However, we find out that in
regards to positive divergent MRWs it suffices to assume only some stochastic boundedness
of the positive increments. Referring to the integral criteria on positive divergent MRWs,
we strive for the validity of

P;(D'>y) < PZ’(ST_(@') > cy) as y — 00 (9.1)
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for some constant ¢ € Rs and thus E;J; ,(D*)1T® < 0o if and only if EiJw(S_(i))Ha < 00

-
for any (a,7) € R> x [0,1]. Recall that given a positive divergent MRW with E;7(i)1T* <
0o, a > 0, the following implications are true

EJ(D)T* <00 = EA0)* < oo = EJi(Sy;)tY < oo
Hence, (9.1)) does generally also require

Edi(Syp)* < 00 = [Uily) Vi) < o,

(cf. Theorem [6.9| and the remark after its proof). Example indicates that this impli-
cation can be false if some power moment of 7(i) is infinite. This motivates assumption
(A1) below. Our assumptions are:

(A1) Ei7(i)"F < oo for all >0,
(A2) there is a non-negative random variable W such that

sup Py(X >y|M;=35,X>0) < P(W>y) forallyeRs,
i,jeS

(A3) E(IW)® < oo for some € > 0.
Define S%) = Z;(:Z)l X ,j and ST@(i) = Z;(:Z)l X, . We will prove that even the tails of ST_(Z.)
and SS. are of the same magnitude under (A1)—(A3), but we are still not able to relate

the results to conditions in terms of the stationary increments. Moreover, the assumptions
do not enable us to find an equivalent condition for finiteness of power moments of o~

Our main theorems on MRWs fulfilling the aforementioned assumptions are:

Theorem 9.5 Let (My,Sn)n>0 be a non-trivial MRW fulfilling (A1)-(A3). Consider the
following assertions:

(i) (Sn)n>0 is positive divergent.

(i) Ai(y) >0 for all sufficiently large y and IEZ-JZ-(ST_(Z.)) < oo for some (hence all) i € ..
(ii) Yp>1n 1 Pi(Sy, <) < oo for some (hence all) (z,i) € Rs> X ..

(iv) Eijo” (z) < oo for all (x,i) € R> X 7.
Then, (i) < (ii) < (i) = (iv).

Theorem 9.6 Let (M, Sy)n>0 be a positive divergent MRW fulfilling (A1)-(A3). For
a >0, (a) and (b) contain sets of equivalent conditions, which themselves are equivalent
to Ei(ST_(i))Ha < oo if Ex| X1 < 0.

(a) (i) Eilmin,>0Sp|* < oo for some (hence all) i € ..
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(i) Ei[(S;(Z-))O‘Ji(ST‘(,-))] < oo for some (hence all) i € ..

(b) (i) Eip(x)® < oo for some (hence all) (z,i) € R> x .7
(ii) EiJi(ST_(Z.))Ha < oo for some (hence all) i € ..
(iii) Bios, < co.
(iv) Eiag(—x)al{ag(_xkoo} < oo for some (hence all) (z,7) € R> x .7 satisfying
P;(0S(—2) = 00) > 0.
(v) EiA(x)* < oo for some (hence all) (z,i) € R> x .7
(Vi) Y1 IPi(Sy, <) < oo for some (hence all) (z,i) € Rs> X ..
(vii) B;o (2)1T% < oo for some (hence all) (7,i) € R> x.7.

In regard to the latter two theorems, we can point out that the fluctuation behaviour
of the MRW, its embedded random walk and its dual MRW coincide. For the latter recall

that #S#r(i) 4 Sr(i) under P;.

The moment assumption on W is needed for the application of the following lemma.

Lemma 9.7 Let (T},)n>0 be an i.i.d. sequence of non-negative random variables with
ET* < oo for some € > 0. Then,

1 P
— T, = 0 (9.2)
=1

for some v € R+

Proof. Following [32, Theorem 2.4],
1 n
k=1
is satisfied if and only if

nE(T An") nfgﬂlP’(T>y) dY  n—oo 0
.y == ey 7 .

W.lo.g., suppose € < 1. ET® < oo entails P(7" > y) Sy~ ¢ as y — oo. Choose v:=2/e > 1
and thus lim,, ,son ! (n7)® = co. Then, (9.2) follows from

n” nY
P(T d °d
limsupnfO (T >y) dy < limsupw = limsup L

n—00 n” n—00 n” n—00 (nw)s

The crucial step for the proof of the above theorems is taken by the verification of the
subsequent lemma.
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Lemma 9.8 Let (My,Sn)n>0 be a mnon-trivial MRW  fulfilling (A1)-(A3) and
IEZ-(STG(Z.))HB =00 for some B3>0 and i€ .. Then,

P;(D' > 2y) < (Se( ) > 2y) < IPZ-(ST_(Z.) > ) as y — 0.

~

Proof. Obviously, it suffices to prove IP’i(ST@(i) >2y) < IP’i(S;(i) >y) asy — oo. Let (Wy)n>1
denote an i.i.d. sequence of copies of W, which is independent of all other occurring random
variables. At first, notice the existence of n(y) € N, n(y) 1 0o, such that

Pi(STe(i) >y) < P (Se() >y, 7(i) <n(y)) as y — 00.

For f e N, set Ip:={1 <k </{(:X, <0} and If:={1,...,£}\ I,. We infer from the inde-
pendence of (X1,...,X,,) given (My,...,M,) and (A2)

zm(s?() S > v 7(i) < n(2y))

n(2y)
=Y S R(X K- T X ) =l =m)

f=1 m=1 kely kely
n(2y) ¢
= [ o> Pi( DXy = XX >y (i) =L |1 —m‘Mm "aMn(2y)>1
=1 m=1 “kel, kels
n(2y) ¢ n(2y)
> Y SR X - Y Wesyri) =t 1l =m)
=1 m=1 “kel, k=1
n(2y)
> /IP’Z< 2 Wi < y> (Se()edx 7(7) §n(2y))
1 n(2y)
> IP’Z(y S W < 1) 1(5%, > 2y, 7() < n(2y))
k=1
n(2y)

1
= (yg::ka<l) (S@()>2y)

Consequently, it remains to show positiveness of the first factor for all large y. By (A3),
an appeal to Lemma [9.7] yields

1 & b
— > Wiy = 0 (9.3)
n”y
k=1
for some v € R>. W.lo.g., let v > 1. (Al) entails
/y P;( iy > 29, (i) > y"") dy < /yﬂpz‘(T(z’)7>y) dy < Eir(i)"0HF) < 0.

Then since [yPP;(SS i) > 2y) dy = 0o, we can suppose n(2y)” =y. A combination with

results in

1 (2y) 1 "2y s
IP’(ZWk<1> :1-]}»( sz1) I
k=1
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Proof of Theorem [9.5l Referring to Theorem [£.4] we only have to deal with the case

E,X{ = E;X; = oo. Notice that EiSr@(i) = 7TZ'_1E7TX1_. Therefore, Lemma yields
E;J;(D?) < oo if and only if EZ-JZ-(ST_(Z.)) < 00. Moreover, since the latter is an implica-

tion of condition (iii), the assertion follows from Theorem [4.1] O

Proof of Theorem 9.6l Preliminarily, notice that Ex|X;| < oo if and only if E;[S ;)| <
co. As mentioned before, it remains to show that Er X" VE; X]" = oo implies E;|S, ;)| =
oo. The occupation measure formula yields that E;|X;| = oo if and only if ]EiSf_a(i) +
IEZ'ST@(Z.) = 00, which already implies E;|S.(;)| = oo by an application of Lemma .
Suppose E;( T@(i))HB < oo for all > 0. Then, trivially
EiJi(Di)1+a 5 EZ[(DZ>Q JZ<D2)] < Ei(Di)lJra g Ez( S )1+a < 0.

~ 7(7)

Given Ei(ST@(i))Hﬁ = oo for some 8 > 0, an appeal to Lemma yields

E(D)*J;(D)] < 00 & Eil(S7,)i(S5;)] < oo

T

and ‘
EiJZ‘(Dz)1+a < o0 & EiJi(ST_(i))1+a < o0.

Moreover, remember that condition (v) and (vi) in (b) each imply EZ'JZ'(S;(Z. ) < .
The remaining parts follow from Theorem [6.1, Theorem [6.6] and Proposition @ O

9.3. Tail-Homogeneous Markov Random Walks

Another class of interest are tail-homogeneous MRWSs, whose fluctuation behaviour is
entirely determined by the stationary increments as we will see. A MRW (M, Sp)n>0 is
called tail-homogeneous if there exists distribution functions F' and G such that for all
yeR

sup Pi(X1 <y[Mi=j) < F(y) and sup Pi(X1>y|My=j) < 1-G(y)
ijES ijES
as well as 1 — F(y) < 1—G(y) and F(—y) < G(—y) as y — co. In other words, the positive
and negative tails of the conditional increments of the MRWs behave homogeneously.
This homogeneity entails directly some crucial properties. Either all increments are non-
negative or none, which makes the study of the first passage time simpler. Moreover, we
can directly conclude 1 — F(y) < Pr(X;" >y) and F(—y) <P.(X] >) as y — oc.

The proof does mainly rely on the subsequent Lemma (see also [I, Lemma 3.1]).
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Chapter A. On Fluctuation Theory of Markov Random Walks

Lemma 9.9 Given a tail-homogeneous MRW, there exists a distributional copy (X\n)n21
of (Xn)n>1 and i.i.d. sequences (Wy)n>1 and (W) )p>o with

W, < 5(\” < W/I a.s.,

where P(W > y) < P(W' > 9) < Po(X{ >vy) and P(W < —y) < P(W' < —y) <P (X] > )
for y — oo is satisfied.

Proof. By assumption, we have for any 7,5 € . and n > 1
Gy) < Qm’(@/) = Py X1 <y|My=j) < F(y) for all y € R.

Let (Uy)n>1 be an i.i.d. sequence of random variables uniformly distributed on (0, 1), which
is independent of all other occurring random variables. Now, it is standard knowledge that

X, = QJT/[ln,l, a,, (Un) 4 X, under any initial distribution and
Wn = F_l(Un) < 5(\n < G_l(Un) = WT/l Pi_a‘s‘

for all i € .. The remaining assertions are immediate. O

The following theorem gathers the main results on tail-homogeneous MRWs.

Theorem 9.10 Let (M, Sy)n>0 be a non-trivial, tail-homogeneous MRW. The following
assertions are true:

(i) Positive divergence of (Sp)n>0 s equivalent to Ax(y) > 0 for sufficiently large y and
ErJ-(X]) < o0.

If (Sp)n>0 is positive divergent and o > 0, then
(77) E;|ming,>0S,|“ < oo for some (hence all) i € 7 is equivalent to Ex[( X )* J=(X])] <
0.

(iii) Eip(0)* < oo for some (hence all) i € .7 is equivalent to B J (X7 ) < oo,

Proof. Lemma [9.9] entails that we can deal with S, := Y7, X}, instead of (Sp)n>0 and
further have

n n
ZWk < §n < ZW,Q a.s.
k=1 k=1

with (W,)n>1 and (W)),>1 as in Lemma . Since (X p—1 Wi)n>0 and (X3 W} )n>0
form ordinary random walks, the results follow easily from fluctuation theory of random
walks. ad

Similarly, one can derive a full generalisation of Theorems for tail-homogeneous
MRWs. For the sake of brevity, we just point out that even

Eio” (z)1T* < oo for some (hence all) (z,7) € R> x .7

is equivalent to positive divergence and E,.J, (X7 )1*® < oo for a > 0.
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10. Arcsine Law for Markov Random Walks

In the ordinary setup, the arcsine law is proved with the help of Spitzer’s formulas. As
mentioned before, we have to use a different approach for generalising it to the MRW
setup. Define

n n
AT>L = Zl{sk>0} and AE = Zl{SkSO} = TL—AT>L, n>1.
k=1 k=1

After we have learned that the extremal excursions within a cycle have a great influence
on the almost sure asymptotic behaviour of a MRW, it may appear a suprising that these
are irrelevant for the arcsine law. In fact, the proof bases on the validity of the arcsine
law for the embedded random walks.

Theorem 10.1 (Arcsine law for MRWs) Let (M, Sy)n>0 be a non-trivial MRW.
(i) Suppose the MRW fulfils

1
360 €[0,1] : nh—{goﬁ Z Pi(STk(i) >0) = 6, (10.1)
k=1

for some i € 7. Then,

Ay 4 AR()  and AL 4, AR(1-0)
n n
under any P, j € ..
(i7) is equivalent to
e, lim L3 PS> 0) = 0 (10.2)
Sy

for some i € .. Moreover, both conditions hold either for all i € . or none.

First of all, we need a generalisation of the arcsine law for ordinary random walks.

Lemma 10.2 Let (X, Zy)n>1 be an i.i.d. sequence with P(X =0) <1 and EZ = p e R.
Set Sy =311 Xk, n>1, and Sy :=0. If (Sp)n>0 fulfils

1 n
00,1 lim S P(S,>0) = 0, (10.3)
k=1

then
1z d
*ZZkl{SmPO} = uW
)

where W £ AR(6).
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Proof. W.lo.g.,, we assume 6 € (0,1], since otherwise one can proceed with

s, ZKlgs, <oy and use p—pW L W', where W' £ AR(1 —0). Hence, (Sp)n>0

is not negative divergent and A} :=3>7_; 1¢s, >0y tends to oo a.s. Moreover, define
k(n) = inf{k>1:A},=n}.

Then, (Zym)nz1 is still Lid. with Z,) £ Z; and

A/
1
Ail E ZK,(]C) TH—OO> % a.sS.
n 1

by the strong law of large numbers. Consequently,

1iZl = 1§Z —A;L 1%2 (10.4)
n = kE2{Sk-1>0} — n = w(k) = AL = r(k) :

and the arcsine law for ordinary random walks entail the distributional convergence to
uW. O

Proof of Theorem [10.1l (i) Again, let W be a AR(0)-distributed random variable. Be-

cause 1 — W < AR(1—0), we only deal with (n='A>),>1.
STEP 1. In the first step, we want to prove

1 X , d .
EZX’f(l)l{S%,l(i)*D}?O} — E;ir(i)-W (10.5)
k=1

under any P;. By Lemma and

1 n
E kz_:l Xk (Z) 1{S7'k71(i)>0}

1 & . 1 & .
== kZ::lxk(z) Ys., o-Di>0y T kz::le(z) Lo<s, o<Di)

it remains to show

d

k—10

12 ]
L, = *ZXk(l)1{0<ST
"=

for verifying (10.5) under P;. (10.6) follows under P;, if we prove E;L, =% 0, since
L, >0 and
E;L, > €Pi(Ln > E)

for all € > 0. It is well-known that the absolute value of a non-trivial random walk tends
stochastically to oo (e.g., see the second part of Theorem [BlfI.1| for P(A = 1) =1). Hence,

n

kzzl]P)z(O < STk_l(i) < y) <

n

> Pil(lSr_ @) <y) =0
k=1
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for all y € R>. Then, dominated convergence entails
1 & N
EiLy =~ [mPBi(0< S, <y Pil(7(0). D) € d(m.y))

_ /ikﬁjm]}" (0< Sy, ) <) Bal(7(i), D) € d(m,p)
=1

n—00
— 0.

For the truth of (10.5) under any P;, notice that one analogously obtains

”kZ::sz(l) {(STH@)*Sn(i>)*D2+5n<i>>0} - Z X Srp_1&) S (1)>0}

under any IP; and thus ((10.5) under any PP;.

In addition, one also obtains
nk:1Xk ' {8,y @y +H}>0} i

under any P; with the same approach.
STEP 2. We proceed with a proof of

7n (1)
1 d .
ﬁ Z 1{5k>0} — ]EiT(Z)W (10.7)
k=1
Observe that
1Tn(l) 1 n Xk
n 2 Lseoy =5 2 KZI (Sr,_yyee0)

1<n ; )
< 2R xk(9) 1{STk_1(i)+H}€>O}

vV

1 .

By STEP 1 the upper and lower bound converge in distribution to E;7(z) - W, which yields
(110.7)).
STEP 3. We start with

TN (n)+1 (%)
12 N( A 1, >0)

TN (n) (1)
EN” 15,50}
If the lower bound converges in distribution, so does the upper bound and the limit

distributions coincide, because E;7(i) < co. An application of n ! N(n) — m; = 1/E;7(i)
a.s., yields

1 n
— 1
n 2 L0

TN (n) (8) 7n (1)
., UNmen(m—e)n(mtal} S

Linm)em (ri—e)m (mite)ey — 0 a.s. (10.8)
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for all € > 0. We rewrite
1 TN (n) (Z)
Z 1{Sk>0}
1 1 TN(n
Tyl 1{sk>0} Linm)<n(mi-e)} T | 7 k= 1{sk>0} LiNm)2n(mi—e)}

1Zk T 1{sk>0} Linm)ysn(me)y T 1ZN(" Lis, >0y ) Linvm)<n (mite)}s

and the first summand of the both alternatives converges to 0 a.s. by ({10.8]). Moreover, it
follows by ((10.7)) and standard arguments that

n

( kZl 1{sk>0}> L{N(n)>n (m;—)}

. Tn (= (Z)
(n(m eﬂ 1 ( [n(mj—e)] )

9 (7 — ) Eir (i) - W,

Analogous steps for the other identity result in
TN (n) (1)
]P)Z(( e)E;7(7) - W<£L‘) < liminf P; < Z 1{Sk>0}<x)

TN(n)()
< limsup P; ( Z les, >0y <:I:>

n—oo

< Pi((mi+e)E; T< ) W<x)

for all € > 0. Hence, Zk 1{Sk>0} 4w,
(ii) By assertion () and (A /n)n>1 being obviously uniformly integrable, we derive

that (10.1]) implies
1 & A
nll—{%oﬁzp (S >0) = hmE<n> =40
for all j € .7.

It remains to prove that (10.2) implies ((10.1)). Suppose ((10.2) is true. By Lemma

C.7, (XN (n)+1(2))n>0 converges in distribution, hence n_lxN( )41(7) 4, 0. Moreover, the
Sequence is unlformly integrable due to being bounded by (n~!7;,11(i))>1, which implies
n- EZXN(n)—i—l( i) =22 0 and thus

1 n 7_N(n)(l)
i B S tsen) = (2 toon)
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Analogously, since

(n Z Xk (1) ( {0<s;, 1()<Dk}+ {Sr,_,@=0,5;, _ @&+H} >0}>>
k=1 n>1
converges in distribution to 0 and is uniformly integrable due to being bounded by
(n=127,(7))n>1, We obtain
nh_{g@E [ Z::le(Z ( {0<s,, 1(,)<D} { Tk—l(i)SO’STn1(i)+Hli'>0}):| = 0.

Combined with

7-N(n)(i)
Z Lis>03
k=1

IN

1 N(n) _
k=t X Lis v mis0)

SN
v

1 «N(n) _
=1 Xk(2) 1{5% ()~ Di>0}

we derive

TN (n) (2) 1 N(n)
JE&E( 2 1{sk>0}) = i B (n ,;Xk“)l{sm_wm)-

From here, we just remark that n=! N(n) — m; a.s. and Lemma further entail

1N Nn) 1 @
nlglgoE ( kzl Xk(l) 1{S‘fk1(i)>0}> - nlggoE < n N(TL) Z Xk Tk 1(i)>0}>
B 1 N(n)
= 7 Jlim K <N(n) ;;::1 Xk (1) 1{S'rk,_1(i)>0}>
1 n
= T nll_{{)loEz(n Z Xk (1) 1{STk1(i)>0})

Z]ETZ)]P’Z Th 1()>0)

7ZP Ti—1( >0)
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B. On Markov-Modulated Random
Difference Equations

1. An Overview of I.I.D. Random Difference

Equations
In applications a stochastic process (Z,)n>0 is often recursively defined by
Zn = ApZny_1+ By, n>1,

where (Ay, Bp)n>1 is an i.i.d. sequence and Zy a random variable which is independent
of all other occurring random variables. A random variable with the latter properties is
called admissable. Alternatively, we can write

Zn = \Ijn(Zn—l)7 n=>1,

where ¥, (z) := Apx+ By, x € R. This so-called random difference equation appears in
various settings. Mostly known are applications in insurance ruin theory and in financial
time series, e.g. in form of ARCH(1) and GARCH(1,1)-processes (e.g. see [38] and [1§]).

In order to find assumptions that guarantee distributional convergence of (Zy)n>0,
the continuous mapping theorem entails that possible limit distributions correspond to
random variables R solving the SFPE

R 4

VU(R) = AR+ B, (1.1)
where (A,B) and R are independent. In other words, the problem is associated with
finding assumptions for the existence of a distribution () which stays fixed under ¥, when
VU is interpreted as a map on Z(R), the set of probabilty measures on (R,*B).

For convenience, define

n
Iy =1, I, = HAk and Vi = Vpo...00, (1.2)
k=1

for all k,n € N. In particular, determine []j_, 1 A¢:=1 for all n > 0, and V1.9 and ¥g;
as the identity map on R.
The independence assumptions yield

n

n d n
U (Z0) = Z( 11 Az) BetllaZo & S Moy Byt Zo = Win(Zo),  (1.3)
k=1 “l=k+1 k=1
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Chapter B. On Markov-Modulated Random Difference Equations

where (Ay, Br)1<k<n is replaced with the distributional copy (Ap4+1—k, Bn+1—k)1<k<n-
Hence, in search for a distributional limit of the forward iterations (Vy.1(Z0))n>0 =
(Zn)n>0 one may as well study distributional convergence of the backward iterations
(U1.0(Z0))n>0- Given lim,, 5o I, =0 a.s., entails the natural limit candidate as the
distribution of ~

Zoo = Z 1,1 By,

n>1

if it exists.

Zso is called perpetuity, which is the actuarial notion of the present value of infinite
future payments (By)n>1, where (II,,),>1 denote the associated discount rates. Therefore,
Zoo being interpreted as the future financial obligations of a company motivates studying
its tail decay. This has been done by many authors, most notably by Kesten [3I] and
Goldie [22], by using that Zso solves . Further properties of the distribution of Zoo
extracted from can be found for example in [6] and [24].

Naturally, the asymptotic behaviour of (II,),>¢ has a major influence on the asymp-
totics of the backward iterations. Given P(B =0) =1, ¥1.,(Zy) =11, Zy a.s. and thus
convergence of (U1.,(Zp))n>0 reduces to convergence of (Il;,),>0. Given P(A=0) > 0, it
is easy to verify that > _; II,,_1 B), is the unique fixed point of , where x = inf{n >
1: A, =0}. Under the assumption of P(A=0) =0, S, := —log|II,|, n > 0, defines an ordi-
nary random walk with increments X, := —log|A,|, n > 1, which indicates the influence
of fluctuation theory of random walks. In this context, we define as before

y, ifP(XtT=0)=1,

for y € R>, where 0/E(X T A0) :=1.

Necessary and sufficient conditions for the existence of fixed points of have finally
been achieved by Vervaat [45], and Goldie and Maller [23], whose results are summarised
in Theorem below. The theorem is due to Vervaat [45, Theorem 1.5] except for the
case limy,, o II,, = 0 a.s., where he only proved that the law of ZOO is the only possible
solution to (L.I). In this case, Goldie and Maller [23, Theorem 2.1] succeeded establishing
necessary and sufficient conditions for Zoo t0 exist in the distributional sense, which we
state here in an adjusted version. Notice that we put log™ 0 := 0.

Theorem 1.1 Suppose P(A=0) =0 and P(B =0) < 1. The following conditions are
equivalent:

(1) limy, 00 U1.,(0) = oo = Son>11n—1 By a.s. and Zoo is a proper random variable.

(77) (V1:n(Z0))n>0 converges almost surely to a proper random variable for any admiss-
able 7.

(i4) limy, oo 1T, = 0 a.s. and E.J(log™ |B|) < oco.
(iv) P(|A] =1) <1 and limsup,, , |IIn—1 Byp| < o0 a.s.

(v) limy, oo I1,—1 B, =0 a.s.
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1. An Overview of I.I.D. Random Difference Equations

(vi) Yp>1 -1 Byl <00 a.s.

Moreover, if
P(B=c(1-A)) =1 for some c € R (1.4)

and (i) both fail, then

010 (Z0)| = o0

for any admissable Z.

Proof. We have adjusted the statement of Theorem 2.1 from [23] by adding the equiv-

b

alence to (i) and (ii). “(iii)=-(ii)” is already part of the original version and “(ii)=-(i)” is
trivially valid. Therefore, it suffices to verify the truth of “(i)=-(v)”. Due to the second
part of [22] Theorem 2.1], we only have to handle the degenerate case, i.e. when (|1.4)) is
true. In addition, we have ¢ # 0 by assumption. Hence,

Ui.,(0) = iﬂk_lc(l—Ak) = c(1-1I,) a.s.
k=1

converges almost surely to a proper random variable if either lim, ,.II, =0 a.s. or
P(A=1)=1. But P(A=1) =1 together with (1.4)) yields P(B = 0) =1, which is ruled
out in the assumptions of the theorem. Moreover, lim,,_,o I1,, = 0 a.s. combined with (|1.4))
shows

7Lli_>rréoﬂn_1 B, = cnli_{rolo(ﬂn_l —1I,) =0 a.s.,

ie. (v). 0

Here is the result on fixed points of (1.1)). Given P(A = 0) = 0, corresponding to the
fluctuation behaviour of the ordinary random walk (—log|Il,|)n>0, either lim;,_o II,, =0
a.s., P(JA|=1) =1 or limsup,,_,, |II,| = 00 a.s. prevails.

Theorem 1.2 ([23], Theorem 3.1) Suppose P(A =0) =0. There exists a fived point
Q€ Z(R) of (1.1)) if and only if one of the following conditions is satisfied:

(i) limy 001, =0 a.s. and E.J(log™ |B|) < 0o. Moreover, Q is given by the distribution
of Zo.-

(ii) P(|A|=1)=P(B=c(1—A)) =1 for some c € R and either

(ii.1) P(A=1) <1 and Q is some arbitrary distribution, which is symmetric about
¢, or

(ii.2) P(A=1)=1 and Q is arbitrary.

(#i) limsup,,_, [IIy] =00 a.s., P(B=c(1—A)) =1 and Q =J,.
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Chapter B. On Markov-Modulated Random Difference Equations

In addition, to draw the connection to distributional convergence of (V,.1(Zp))n>0, it
is easily seen that
PV (Zo) €-) = Q, (1.5)

@ as in Theorem [1.2] is true for any admissable Z if lim,, o II,, =0 a.s., 1 =P(J4| =1) >

P(A = —1), or limsup,,_,, |II,| = o0 a.s. and II,, o Conversely, for (1.5) to be true,
Zy — ¢ must be symmetric if P(A=—1) =1, and Zy = ¢ a.s. is necessary in case (iii) if

I, 2 0.

Another survey on random difference equations and perpetuites with a different range
of information can be found in [I7], but dates from before the publication of [23].

2. The Markov-modulation Setup and Further
Organisation

As in Chapter , let (Mpy)n>0 be a positive recurrent, aperiodic Markov chain on some
countable set . with transition matrix P = (p;;); je.» and unique stationary distribution
7= (m)icr. Let (7(i))n>0, (xn(7))n>1 and (N(n)),>1 be defined as before. Again, we
use “a.s.” synonymous for P;-a.s. for all i € .. Furthermore, let (A, By)n>1 be a Markov-
modulated sequence defined by a stochastic kernel K : (#2 x 82) — [0,1] in the way
that

KMn_an = K(Mn_l, M, ) = P((An,Bn) c - ‘Mn—b Mn)

Then, set
U, (z) == Anx+ By, reRn>1.

We will study convergence of the backward iterations (¥1.,(Zp))n>0, where Zj is an
admissable random variable. In this setup, a random variable is called admissable if it is
independent of all other occurring random variables given M.

Suppose lim,, o0 U1.,(0) = Zoo =>_n>11lp—1 By, exists in the distributional sense under
any P;, i € .. Then, we use the continuity of ¥; to infer from

A, W1in(0) = Wi fim, 2n(0)

that Z,, must satisfy

~ d ~ ~

Joo = \Ifl(Zéo) = A Zéo—l-Bl,
where Z’_ has the same distribution as Zs, and is independent of (A1, By) given (Mo, M7).
More precisely, the law of the perpetuity can be characterised as a fixed point of an action
on Z(.,R), which denotes the set of stochastic kernels @ : . x 8 — [0,1]. This action
is defined by

(V10Q)(i,-) == Pi(A1 R+ By €-), 1 €Y, (2.1)

where (A1, B1) and R; are independent given (Mg, M) and P(Ry € - |My =1, M1 =j) =
Q(j,-). We will give a full characterisation of the associated fixed points.
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Moreover, we will examine distributional convergence of the forward iterations
(V:1(Zp) )n>0 for some admissable Zy, i.e. a process (Z,)n>0 recursively defined by

Zn = ApZp_1+Bn, n>1. (2.2)

Hence, the recursive structure of (Z,),>0 is formed by Markov-modulated random differ-
ence equations. appears in the definition of Markov-switching autoregressive models,
which was initially proposed in [28] and is now a popular topic in econometrics.

In our Markovian setup, the distribution of the backward and the forward iterations
do not coincide. Besides studying distributional convergence of (Vy,.1(Zp))n>0 under some
P;, i € ., we will prove that possible limit distributions coincide with P, (Ry € -), where
(Rn)n>0 forms a proper stationary solution to (2.2). In general, a sequence (Ry)n>0 is
called a stationary solution to if it is stationary under P, and satisfies

Rn % AyRu_1+ By (2.3)

under P, for all n > 1. In our setup, we additionally demand independence of R, and
(Ak, Bk)k>n+1 given (Mo, My) for all n > 0, thus Ry being admissable. The proof of
this correspondence does mainly reduce to showing that if P;(U,.1(Z) € -) < Q, then
Q= Yicomi Q(i,-), where Q € Z(7,R) solves U1 xQ = Q. V1 xQ is defined by

(\DI*Q)(Za) = PW(A1R0+BI G'lMlzi)a iEy, (24)

where (Mj, A1, By) and Ry are independent given My and P(Ry € - |My =1) = Q(3,-) for
all i € 7.

The remainder of this chapter is structured as follows. Section [3| forms the basis for
the main results, where a degeneracy condition induced by is studied. Ruling out
the degenerate case, the backward iterations either converge stochastically or its modulus
tends stochastically to co. In contrast to the ordinary setup, stochastic convergence does
not imply almost sure convergence. This can be concluded from Sections [4 and [5], where
almost sure and distributional convergence of the backward iterations is examined. Section
@ characterises all fixed points of . The last section is devoted to the study of the
forward iterations, which will yield an equivalent criterion for distributional convergence
of (\Ijn:l(ZO))nZO-

Literature on Markov-modulated random difference equations with the above focus
reduces to articles of Brandt [10] and Elton [16]. Given a stationary, ergodic sequence
(Ap, Bp)n>1 with Elog|A1| < 0 and Elog™|B;| < oo, Brandt proved the existence of a
unique stationary process (Rp,)n>0 fulfilling . The same can be concluded from The-
orem 3 from [I6], since the assumption provides that (¥1.,(Z))n>0 has a negative (top)
Liapunov exponent. The associated assumption Elog|A;| < 0 and E,log™ |B;| < oo is
used in several works on Markov-modulated random difference equations. This has been
done explicitly in [I1], [I5], [42] and indirectly in [14]. In particular, [14], [15] and [42] study
the tail decay of Q(i,-) and of > ;¢ m Q(i,-) respectively, where @ solves W1 xQ = Q.

Again, the analysis differs with the asymptotic behaviour of (Il,),>0. Given Pr(A; =
0) =0, S, := —logl|Il,|, n > 0, defines a MRW, which emphasises the connection with
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Chapter B. On Markov-Modulated Random Difference Equations

the first chapter. Nevertheless, this chapter rather relies just on the basic results from
fluctuation theory of MRWs.

The forward and backward iterations contain subsequences that are of an easier re-
cursive structure. Here, we focus on an illustration for the backward iterations. For n > 1,
define

Tn(l) k—1

By, == U, (i1t = D < 11 AL’) By,
k=1p_1(8)+1 “l=7p_1(i)+1

and
Uh(z) == Vo rtm@ (@) = Apz+B,,  z€ER

Now, (A%, B ),>1 are independent and further identically distributed for n > 2 under any
initial distribution. Consequently, when studying almost sure convergence of the backward
iterations, we can conclude from

lplzTn(i)(ZO) = Hn(i) ZZn(ZO)+Bi

that (V5. (Zp))n>0 converges almost surely, which leads to Theorem In particular,
this leads to the degeneracy condition

Pi(B'=¢;(1—A;)) = 1 for some ¢; € R,

which is examined in the next section.

3. The Degeneracy Condition
Given degenerate (A%, BY),>1 under P;, namely
Pi(B'=c¢;(1—A4;)) = 1 for some ¢; € R, (3.1)

one supposes that (A}, BJ),>1 is degenerate under P; for any j € .. Besides confirm-
ing the latter conjecture, we will derive an equivalent degeneracy condition in terms of
(A1, By).

Lemma 3.1 (3.1) holds either for all i € . or none.

The proof is based on a few auxiliary lemmata.

Lemma 3.2 Suppose Pr(A1 =0) =0 and |.#| > 1. If there is a sequence (b;);c.r such
that
P;((A", B =(1,b;)) = 1  forallic ¥,

then b; =0 and (3.1)) are satisfied for alli € .
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3. The Degeneracy Condition

Proof. For all © € ., there exist j € . and ng,n1,n2 € N such that
Pi(T(i):nl,T(j)>n1) > 0 and Pj(T(j):no+n2,Mn0:i) > 0.

Notice that the first condition is guaranteed by aperiodicity of (M,,),>0. On Ey := {My =
7, 7(7) = ng +na}, the assumption provides

. no+n2
bj = B{ = Z Hk,1 Bk a.s.
k=1
Moreover, on Ey := {My = j, My, = Mpy4n, =i, 7(j) = no +n1 + na}, the assumption
entails
bj = Bi
nQ ) - ng k—1
= Z -1 B+ Hno B% + Hﬂo AZ2 Z ( H Ano+n1+€> Bﬂ0+n1+k
k=1 k=1 “¢=1
ny ,k—1
= Z Hk 1 Bk +Hn0 b +Hn0 Z ( H ATLU+7’L1+€> Bn0+n1+k a.s.
k=1 (=1
Markov-modulation results in
no k—1
(b - Z 1 By +Hn0 Z < H Ano+n1+€> Bno+n1+k‘E2>
k=1 k=1 /=1
no+na
= P(b = ZHk 1B+ Z I _ 1Bk‘E1> =1
k=ng+1
Consequently, II,,, b; = 0 Pj-a.s., which further yields b; = 0 by assumption. Now, (3.1)) for
all 7 € . is trivial. O

The assertion of Lemma3.1]and the subsequent results are trivial if |.’| = 1. Therefore,
|-#| > 1 is assumed in the proofs of this section without further mentioning of it.

Lemma 3.3 P;(A’ = 1) = 1 holds either for all i € .7 or none.

Proof. Suppose P;(A* =1) =1 for some i € . and thus I, =1 Pi-as. for all n > 1.
Set
15(1) == inf{n>1: M, =i,n>71(j)}

for 6 € {1,2} and some j € .. Using

T (2
Pi(HTl(j)' II AZG') = Pi(Ilz4 €-) = 1,

l=72(j)+1
we derive
; ; 73 (i)
A2 = HTl(j) 'AZ' H Ag = HTz*(Z) =1 Pi—a.s.,
t=m2(j)+1
which yields Pj(47 =1) = 1. 0

89



Chapter B. On Markov-Modulated Random Difference Equations

A fundamental result for the discussion of these degeneracy conditions is the following
result due to Grincevicius.

Proposition 3.4 ([25], Prop. 1) Let (A, Bp)n>1 be a sequence of i.i.d. random vari-
ables. The following conditions are equivalent:

a) B1+ A1 By = f(A1 A2) a.s. for some measurable function f.
b) Either B=c(1—A) or (A,B)=(1,¢) a.s. for some c € R.

Proof of Lemma B.1l Suppose (3.1]) holds for some i € .. Then,
7n (1)
Z Hk 1Bk = ZHTk 1( Cz (1—14Z ) i(l_HTn(i)> Pi—a.s.
k=1 k=1

for all n > 1. In other words, ZZ":(? )1 By = f(IL,,(;)) Pi-a.s. for some measurable func-
tion f. Pick some arbitrary j € .\ {i} and set

(i) = inf{n >1: M, =i,n>73(j)}.

We have ' , o
f(y) = B{+1L ) [Bi+ A B+ B*  Pras, (3.2)

where B* = ZZ*:(Q)) ()+1 ITy—1 By. The left-hand term is deterministic given Il ),
2 s 71 A;? and H;Z(g ()+1 Aj.. Trivially, this remains true, when one additionally con-

dltlons on B{ and B*. In this setting, we see that the term in the square brackets of ({3.2)
must be determistic. As this term is independent of the given random variables except for

Hk Tl Ak = A% Aé, we derive
Bj+ A, B = h(ALAL)  Pias.

for some measurable function h. An appeal to Proposition E yields that either B/ =
cj(1—A%) or (A7,B%) = (1,c¢;) Pj-a.s. for some c; € R. Since j was arbitrary, one of both
alternatives must hold for each j € .%.

If the first alternative is satisfied for all j € ./, there is nothing left to show. Now,
suppose the second alternative is true for some j € . and thus P; (A7 =1) =1 for all
j € . by Lemma Hence, regardless of the corresponding alternative, there exists a
sequence (bj);e.» such that

Pi((A7,BY)=(1,b;)) = 1  forall je.7.

Consequently, the proof finishes by an appeal to Lemma O

Now, we turn to results on structural implications of (3.1)) on (A, By)n>1. The cases
P;(Il;;y =1) <1 and P;(Il, ;) = 1) =1 are handled separately.
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3. The Degeneracy Condition

Proposition 3.5 Suppose P;(Il;) =1) <1 and (3.1)) are satisfied for some (hence all)
1€.Y. Then,
]P)W<Bl =CMy — Al CMl) =1 (33)

and, more generally,
Pr(Winlcar,) = cary) = 1 (3.4)
foralln>1.

Proof. Pick any i,j € % with p;; > 0. The assumptions entail that either 61 =P;(Il(; €
-), hence

PZ(HT(Z) S "Ml :]) 7£ 517
ord_1# Pi(Hr(i) € ) and

Pi(lrypy € -[M1 =) = /Pz’(ﬂf'HT(i) € |My =) Pi(Il,;) € dz) # 61.

For the subsequent proof, the two cases provide just notational differences. Hence, we
assume

Pi(Il ) € -[My1=j) # 01. (3.5)

On E:={M =1, My = M_;41=j}, the degeneracy condition implies Wy..(;(c;) = ¢; and
Wo.r(iy+1(cj) = ¢j a.s. and thus

Viley) =ei = WiWarralei)) = = Vi) (Ve (€)= Vi ()
- HT(@') (\117(7;)“(0]-) —Ci) a.s.

Given FE, U1(c;) 4 Vo i)41(¢5); Hrgy is unequal 1 with positive probability by (3.5) and
W~ (#)+1(cj) is independent of the other two random variables. Therefore, the above almost
sure equality can only be satisfied if

1 = Pi(Vi(ej) = il E) = Pi(Wi(ey) = ci| My = j) = Pi(Ar¢cj+Bi = ¢i| My = j),
which yields the first assertion. The second one follows by iteration. O
While (3.1) does determine (c¢;)ies uniquely if P;(IL.;) = 1) < 1, this fails when

P;(Il;;y = 1) = 1. That the assertion of the latter proposition is still true for some se-
quence (¢;)je. is our next result.

Proposition 3.6 Suppose P;(Il,;) =1) =1 and (3.1)) are satisfied for some (hence all)

1€ . The following assertions are true:

(i) There exist functions fa, fp: % — R? such that
(A1, B1) = (fa(Mo, My), f5(Mo, M) as.

(ii) There exists a group of affine functions ®;;, 1,7 € 7, such that ®;; = @;il, Di(zx)=2x
for all x € R and, if P;(M, =j) >0,

Pi(W1.p = @y| My =j) = 1.
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(iii) For each (c,j) € Rx .7, there exists a sequence (¢;)ie.r such that c; =c, (3.3) and
(13.4) are satisfied.

Proof. (i) P;(A’ =1, B'=0) =1 implies Vir i) () = 2 Pi-as. for all (z,7) € R x . and
n > 1. Again, pick any 4,j € . with p;; > 0 and define £ :={My =i, My = M ;)11 =j}.
Hence,

A1z +DBy = Vy(z) = ‘I’lzr(i)+1($) = ‘I’r(z’)+1($) = Arpyr12+ By a.8.

for all z € R on E. (A1, By) and (A7 ()41, Br(j)+1) being i.i.d. on E, yields the assertion.

(ii) For any ,j € .7, pick a path {My =1, My =1iy,..., M, = j} of positive probability
from 7 to j of minimal length n. Conditioned on this path, put ®;; := ¥y.,. Given any
path {My = j, M1 = j1,..., My, =i} of positive probability from j to ¢, we additionally
assume { My, 41 =11, ..., Mypyn = j} to derive

T = \Plzm(\pm+1:m+n($)) :\Ijlzm<q)ij(x)) a.s.

for all x € R, hence ¥q.,, = (I)i_jl a.s. The assertion follows now from the arbitrariness of
m.
(iii) For arbitrary (c,j) € R x .77, set ¢; := ®;;(c) for all i € .. Therefore, cpg, = Pagy;(c)
and
Arean +B1 = Paan (ean) = Pasonn (Paryj(e) = Pagile)  as.

shows ({3.3) and then (3.4]) by iteration. O

Consequently, the degeneracy condition yields
]P’W(Bl = CMy —Al CM1> =1 (36)
and
V1. (Zo) = ey +1n(Zo — ) a.s. for all n >1

for some not necessarily uniquely determined (¢;);c.. (3.6) also appears in [42, (1.6)].

4. Almost Sure Convergence of the Backward
Iterations

It is the aim of this section to shed some light on the almost sure asymptotic behaviour
of the backward iterations (V1.,(Z))n>0 in the Markov-modulated setup, where Zj is an
admissable random variable. In particular, we examine in how far Theorem can be
generalised.

We begin with a short note on the cases Pr(A; =0) >0 and P, (B; =0) = 1. Given
Pr(A; =0) >0, it is easily seen that (V1.,(Zp))n>0 converges almost surely to the proper
random variable > _; II,,_; By, where x:=inf{n >1: A, =0}.
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Given P;(B; =0) =1, V1.,(Zy) =11, Zp a.s. and its almost sure convergence relies on
the one of (II,,)n>0. If neither P;(A; =0) > 0 nor P(A; =1) =1, this reduces to positive
divergence of (S,)n>0 = (—log|I,|)n>0, Which is characterised in Theorem [AJ[4.1]

Since
\Ijlzn(o) = 1{T(i)<n} (Hr(z) \Ijr(i)—l—l:n(()) + BZ) + 1{7’(1')271}‘1]1:71(0)7

1i(i)<ny — 1 as. and W ;)14.,(0) is independent of (HT(i),Bi) given 7(i), almost sure
convergence of (U1.,(0)),>0 holds either under any P;, i € ., or none. The next theorem
shows that the same holds for (V1.,(Zp))n>0 given lim, I, =0as.

Suppose
Pr(A1=0) =0 and P.(B1=0) < 1. (4.1)

Then, observe that corresponding to the fluctuation behaviour of (S, ;))n>0, either
limy, 00 117, () = 0 a8, Pi(|IL (| = 1) =1 or limsup,,_, |1, (;)| = o0 a.s. and these con-
ditions hold either for all i € . or none.

We need further definitions. For ¢ € . and y € R>, introduce

— 4 ifPi(ST ., =0)<1,
Tiy) = BT 7(i)

Y, ifIP’,-(Sj(Z.) 0)=1,

where O/[]Ei(S;r(i) A0)]:=1, and

Wy = lgkmgi(i)|(Hrn(i)+k—1/ﬂrn_1(i))Bk|a n>1

In contrast to the ordinary setup, almost sure convergence of (¥1.,(0))p,>0 does not
imply almost sure convergence of (V1.,(Zp))n>0 for any admissable Zj.

Theorem 4.1 Suppose (4.1). The following conditions are equivalent:

(1) limy_s00 U1.,(0) = oo = Yon>11lh—1 By a.s. and Zoo is a proper random variable.
(%) limp 0 117, 5y = 0 a.s. and E;J;(log™ W?) < oo for some (hence all) i € ..
(@i) Pi([1L.;| = 1) <1 for some (hence all) i € & and limsup,,_, |Il,—1Bp| < 00 a.s.
(iv) limy, o0 I1,,—1 B, =0 a.s.

(v) Yp>1 -1 Byl <00 a.s.

Moreover, (W1:n(Z0))n>0 converges almost surely for any admissable Zy to a proper ran-
dom variable if andAonly if imy, oo Il, =0 a.s. and IETZ'JZ'(logJr W") < co. In this case,
limy 00 ¥1:0(Z0) = Zoo a.S.

Proof. Observe that the implications “(v)=-(i)=(iv)=-(iii)” are trivial. For the first part
of the theorem, it remains to show “(iii)=-(ii)” and “(ii)=(v)".

“(ili)=-(ii)” Suppose (Il (j))n>0 does not converge to 0 a.s. Consequently,
limsup,, o |11, ;)| = 00 a.s. is the only choice left, since P;(|Il ;)| =1) <1 is assumed.
W.lo.g., let ¢ be such that P;(B; =0) < 1. Then,

limsup |Il,—1 By| > limsup |l ;) B, ()41] = o0 a.s.,
n—o0 n—oo
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Chapter B. On Markov-Modulated Random Difference Equations

which contradicts (iii).

Conversely, if E;.J;(log™ W) = oo and thus E;log™ (W?) = oo, Lemma entails

1 + )
lim sup 08" (Wn 1) = 00 a.s.

n—oo > p—_1(5r, w(i) STk—l(i))+
and thus
' n 108§+( V1)
oo = limsup [ S; )+<_1 5
n—>00 kzzzl k1) Zk 1( STk—l(i))+
< liTILn_>sol<13p [ Sr(i) T1log™ ( ﬁﬂ)}
= limsup [lOng ‘H WéJrl” a.s.

n—oo

We infer limsup,, o, [T, ;) W4 1| = 00 a.s. and therefore limsup,, o, [I,—1By| =00 a.s.,
which contradicts (iii).
“(il)=-(v)” The implication of (v) is self-evident if one shows
lim eI, Bp+1 = 0 a.s. (4.2)

n—oo

for some ¢ € Rx. n/7y(,) (i) — 1 a.s. implies
e Hn Bn—l—l < eCm HTN(n)(z) W}V(n)+1 — eCTN(n)(Z) HTN(n)(Z) W;V(n)-&—l a.s.

as n — oco. Furthermore, since (¢ I %) Wi, )n>0 is a subsequence of
(e I1,, Bpt1)n>0, (4.2) is equivalent to

lim ¢“™ I, Wi, =0  as.

n—oo

for some ¢ € R~. A logarithmic transformation shows that it suffices to prove

Srai) —CTa(l ) —logt (Wi, ) %% o a.s.
for some ¢ € R+.
By assumption, limy,—00 Sr, 5y = o0 a.s. Hence, either 0 <E;S; ;) < 0o or E;[S,(;)| = o0
In the first case, we choose ¢ =E;S;; /2. In the second case, we pick ¢ = 1. Therefore,
Theorem [AJ[4.5] yields

lim (i) < i a.s.
n—00 STn(Z) 2¢
As seen in the proof of Theorem [Al4.1] “(ii)=-(i)”, (ii) yields
1 (2
limsup M =0 a.s.
n—oo S

7n(2)

Consequently,

i .. Tn(1 log+ Wfl
lim inf [S () — CTn(i ) —log™( n+1)] = liminf S, ;) <1_C (1) | |>

SralG)  Orali)
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5. Distributional Convergence of the Backward Iterations

o log™* ]Wﬂ)
> liminf S, (; (1/2_ =5 'nl
= 0 a.s.

Concerning the additional assertion, notice that almost sure convergence of
(¥1.0(0))n>0 and (¥1.,(Zp))n>0 for some admissable, non-zero Zy leads to (ii) being
satisfied and almost sure convergence of

llll:n(ZO)_\Plzn(O) - HnZO

to a proper random variable. Hence, either lim, o II,, =0 a.s. or P(A; =1) = 1. The
proof is complete if we exclude the second possibility. Given Pr(A; =1) =1, ¥y.,(0) =
> h—1 By forms a MRW, which converges almost surely to a proper random variable if and
only if Pr(B; =0) = 1, which is ruled out in (4.1)). O

Indeed, (iv) does not generally imply lim,, o I1, =0 a.s. Let (My,),>0 be the Markov
chain defined in Example where we dispense with modelling aperiodicity. In addition,
for all i € N and given (Mo, M1, M) = (0,4,0), we define

(A1,B1,42,B2) == (exp(pp;), 1, exp(—pgit) /2, exp(—po;))-

Obviously, lim,, HTn(O) =0 a.s. and lim,,_yo0o II;,—1 By, =0 a.s., but limsup,,_,, I, =00
a.s. (cf. Example [2.7)).

5. Distributional Convergence of the Backward
Iterations

In terms of distributional convergence, we will show that (U1.,(0))n,>0 and (V1.,(Zo))n>0
behave equally for any admissable Zg given limy, o0 11, ;) = 0 a.s. Moreover, when ruling
out (3.6), (¥1:n(Z0))n>0 either converges stochastically to a proper random variable or its
modulus tends stochastically to oo under any P;. Concerning the cases P (A; =0) > 0 and
P.(B1 =0) =1, the considerations in the previous section have shown that distributional
convergence coincides with almost sure convergence.

Before we state the theorem, we introduce
7(i) = inf{m, (i) : ) = 1}.

Theorem 5.1 Suppose (4.1) and let Zy be an admissable random variable. P;(V1.,(Zp) €
)5 Q>,-), i €.7, for some Q € P(.F ,R) is satisfied if and only if one of the following
conditions is fulfilled:

(i) limp—o0 Il 5y = 0 a.s. and E;J;(log™ |Bi|) < 0o. Then, Q(i,-) = Pi(Zs € -) and
U1 (Zo) 25 Zoo.
(i) Pi(|ll ;)| =1) =1, (3.6) is true and one of the following cases prevails:
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Chapter B. On Markov-Modulated Random Difference Equations

(11.1) Pi(7 (i) € -) is aperiodic.
(i.2) Pi(7(i) € +) is 2-periodic and

Jim Pi(H2n(Z0 — cap,,) € ) = 1im Pi(—T2n(Zo —casy,) € ).

(77i) limsup,,_,~ || =00 a.s. and one of the following cases prevails:

(ii.1) 11, B0 and (13.6) are true. Then, Q(i,-) = d0¢; and V1.,(Zp) B, CM, -
(77i.2) limsup,, ,~, Pi(|1I,] >0) >0, Pr(By=c(1—A41)) =1 and Zy = ¢ P;-a.s. for some
ceR. Then, Q(i,-) =6 and V1.,(Zy) = ¢ Pi-a.s. for all n > 0.

Moreover, if (3.6) and (i) both fail, then

Pr
’\I’l:n(ZO)‘ —r X

for any admissable Z.

Since V¥1.,(Zp) ELN Zoo in case (i), we infer that lim, Il ;) = 0 as. and
E;J;(log™ | B?|) < 0o are either true for all i € . or none.

The description of the limit distributions in (ii) is given in Section

We emphasise that (V1.,(Zy))n>0 converges in distribution either for all admissable Z
or none in the cases (i), (ii.1) and (iii.1). In contrast, we directly see that (V1.,(Zo))n>0
does not necessarily converge in distribution under P; if it does under P; in case (iii.2).
The same can be verified for the case (ii.2). Suppose P ((A1,B1) = (—1,¢)) =1 for some
c € R. As noted after Theorem , (V1.,(Z0))n>0 converges in distribution under P; if
and only Zy— ¢ is symmetric under P;. The latter does obviously not imply Zy — ¢ to be
symmetric under P;.

In the case of a finite state space ., when is ruled out, (V1.,(Zp))n>0 converges
in distribution if and only if it converges almost surely. This follows since Theorem (i)
entails almost sure convergence of (¥4, (Zo))ns0 t0 Zso for all i € 7.

The second part of the theorem particularly yields that the modulus of a non-trivial
MRW tends stochastically to co. For explanation, given P (A1 =1)=1, ¥1.,(0) =>}_; Bk
forms a MRW, where non-triviality is equivalent to the failure of .

Necessary conditions for distributional convergence will be obtained from an appli-
cation of Theorem on (V4.,(Zo))n>0 for some i € ., but we have to ensure that
Pi(B'=0)< 1.

Lemma 5.2 Suppose Pr(A1 =0)=0. The following assertions are true:
(i) P;(B' =0) =1 for some i € . implies (3.6).
(i) If P;(B'=0)=1 for alli € .7, then either Pr(By =0) =1 or P;(A' =1) =1 for all
i€S.
Proof. (i) P;(B'=0) =1 for some i € .7 is equivalent to P;(B* = ¢;(1— A%)) = 1 with
¢i =0, which yields (3.6)).
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5. Distributional Convergence of the Backward Iterations

(ii) By assumption, we have

7n ()

n
Z Hk—l Bk = Z Hrk,l(i) B% =0 Pi—a.s.
k=1 k=1

for all n >0 and i € .7. Assume P(B; =0) < 1 and P;(A* =1) < 1 for all i € .. Then,
we can find j,s € . such that ps; > 0 and

Ps(B1=0[M1=j) < L
Moreover, there exist ng,n; € N such that
P;(r(s) =ng) > 0 and  Py(Il,, #1,7(s) =n1) > 0.
Now, on Eq :={My = j, 7(s) = ng, Mpy+1 = j}, it holds that

no
0 = an—l By, +11, Bny+1 a.s.,
k=1

while on Ey := {Mo =7, 7’1(8) =ny, TQ(S) =ng+nq, Mn0+n1+1 :j},

no+ni+1 no
0 = Z Hk—].Bk = ZHK—IBK+HHO B§+Hn0 Aano-f—nl—‘rl
k=1 k=1
ng
== Z Hk‘_l Bk—i_A; HTLO Bn0+n1+1 a.s.
k=1

is satisfied. Markov-modulation yields

10
P( Z g1 By + A; Hno Bn0+n1+1 = O’E2>
k=1

=1

ng
= P( > My By + 1y, Bn0+1‘E1>
k=1

no
= P( > Mj—1 B+ g Brgtn+1 = O‘Ez)
k=1
Thus, P(Il,,, Brg+n,+1 (1 —A3) = 0| E2) = 1, but this is not possible by construction. O

We give a short example to show that P(B' =0) = 1 for some i € .% does not imply
Pj(BJ :O) =1 for aH] €.7. Set 5”:{()71’273}7 0<por=1—po2 <1, pag =p30 =p1o =1,
P.(B1=1),

P(Aj=—-1,A2=1|My=0,M;=1) = 1
and
P(A; =-3/2, Ao =—1/3, A3 =1|My=0,M; =2) = 1.
One easily computes B' = Z;(:Oi II_1 =0 a.s. just for : = 0.

The theorem will be proved separately for the cases limy, o I1;, (5 = 0 a.s., P; ([Tl ;| =
1) =1 and limsup,,_, |1l ;)| = o0 a.s.
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Chapter B. On Markov-Modulated Random Difference Equations

5.1. The Case lim,,_, Hrn(i) =0 a.s.

We begin with some simple implications of lim, o I, ;) = 0 a.s. By an appeal to Lemma
.7
( max ) |HTN(n) (i)-‘rk/HTN(n) (’L) ‘>

1SkSXN(n)+1(i n>1
and
l
max II Nar—1/11 y) B ; )
(1§€SXN(7L)+1('L') kgl( TN(n)(l)""k 1/ TN(n)(Z)) TN(n)(Z)'HC n>1

converge in distribution. As lim,, Hm(z’) =0 a.s. implies lim,, HTN(n) @) =0as., Slut-
sky’s theorem entails

Pr

M| = ’HTNm)(i)"1§k§glzva<§>+1(i)‘HTNm)(in/ Trym@l = 0,
Pr
thus II,, —/ 0, and
; P
1<t (i) I;HTN(n)(in*lBTN(m(in — 0. (5.1)

The following lemma uses the approach of [23, Lemma 5.5]. Furthermore, we make use

d
of the notation 7T}, ~Y;, as shorthand for sequences (7},)n,>1 and (Y;,)n>1 to have the same
distributional limit.

Lemma 5.3 Suppose (4.1) and limy, s U..;) =0 as. for some i € . If
E;J;(logt | Bi|) = oo, then |W1.,(Zo)] Iy for any admissable Zy.

Proof. Since II, Zy = 0, it suffices to consider (|W1.,(0)])n>0. Suppose |¥1.,(0)| does
not tend stochastically to oo under P;. Then, there exists 1 € R~ such that
0 < limsup P;(|¥1.,(0)| <z1) < limsup P;(¥1.,(0) < 2q)
n—00 n—00
and thus there is a sequence (n},);>1 of natural numbers such that (IP’Z-(|\I/1%;C (0)] <z1))k>1
and (IP;( Wy (0) <21))k>1 have a positive limit. By the usual diagonal sequence argument,
we obtain a subsequence (ny)g>1 such that (P;j(¥q.,, (0) <xy))r>1 converges for all £> 1,

where [ := {x1,x9,...} denotes a countable dense set in R. For € R, define the right-

continuous function
F(z) = lim lim P;(V1.,,(0) < 2),

ze€l,zlx k—oo

which exists since z +— limy_,oo Pj(V1.p, (0) < 2), 2 € I, is a non-decreasing, bounded func-
tion. In addition, put

F(o0) = lim F(z) and F(—00) = lim F(x).

xToo rl—00

98



5. Distributional Convergence of the Backward Iterations

Consequently, (V1.,,(0))r>1 converges in distribution to some Z, under P;, which has
the possibly unproper distribution function F' with

F(oo) = F(—o0) > lim Pi(|¥y.,, (0)] <z1) > 0.
k—o0 Tk
Using that (¥y,, —m+1:n,,(0))k>1 is a sequence of identically distributed random vari-
ables under P; and IL,, —, IED—’T> 0, we obtain

P;
|an—m\pnk—m+1:nk(0)| — 0.

Consequently,
d
qjl:nk—m(o) =~ qjl:nk—m(o) +an—m \an—m+1:nk (0) = \Ijlznk (O) — Zoo
for all m > 1 under P;. An application yields
]Pz(Zoo € ) = Pz( lim \Ijl:nk<0) S )
k—o00
= P (AZ Hm W) 41, (0) + B' € )
:/m(a lim W10, (0) +b € - [7(i) = m) Py((A", B, 7(i)) € d(a,b,m))
k—o00
:/Pi(a lim Wi - (0) +b € -) Pi((A%, B 7(i)) € d(a,b,m))
k—o0

- /uwzoo vhe ) Pi((AYBY) € d(a,b))

=P;(A"Zw+B' € ),
where Z, is independent of (A?, BY). Moreover, since {|Zy| < 00} = {|A" Zs + B*| < a},
we obtain that the proper random variable Z with distribution function G(z) := F(x) —
F(—00)/[F(00) — F(—00)] satisfies

7z L A7+ B,
where Z and (A*, BY) are independent. Due to Theorem , E;J;(logt | Bi|) < 0o must be
satisfied. O
The following lemma is essentially a reformulation of the assertion in Theorem [5.1| for

the present case.

Lemma 5.4 Suppose (4.1)), lim,,_, HTn(i) =0 a.s. and let Zy be an admissable random
variable. Pi(V1.,(Z) € -) = Q(i,-), i € ., for some Q € P(S,R) is satisfied if and

only if E;J;(log™ |B'|) < oo. Then, Q(i,-) = Pi(Zno € -) and V1i.,(Zp) I 70 for any
admissable Zj.
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Chapter B. On Markov-Modulated Random Difference Equations

Proof. Lemma entails the necessity of E;J;(log™ |B¥]) < co. Moreover, as argued be-
fore, it suffices to consider (¥1.,(0))n>0.
Suppose P;(B* =0) = 1. By Lemma , (3.6) is satisfied and thus

U1.,(0) = e — Iy e, a.s.

for all n > 1. Since (cpz, )n>1 is stationary under Py, we infer Wy, (0) Fro e M, - Additionally,
notice that E;J;(log™ | B!|) < co holds trivially if P;(B* = 0) = 1.

Suppose E;J;(log" |Bi|) < co and P;(B’ = 0) < 1. Then, Theorem implies al-
most sure convergence of (W%, (0)),>o and particularly almost sure convergence of

(\I/Zi:N(n)(O))nzo under P;. Using (5.1]) and

n

Ui (0) = Wiy (0)+ Z Iy By,
k=Tn (n) (i)+1

we obtain stochastic convergence of (V1.,,(0)),>0 under P;.
Since

U1(0) = Lriyent (o) Vo s 10(0) + BY) + L (y50y Y1 (0),
V- ()41:0(0) is independent of (HT(i),Bi) given 7(i) under P, and

Pw(‘yr(i)—&—l#(i)—i—n(o) € ) = Pi(\ylzn(o) S ')7

we derive Wy, (0) LNy 0

5.2. The Case P;(|ll;;)|=1)=1

First of all, given P;(|IL ;| = 1) =1 for some (hence all) i € ., (log|Il,|)n>0 forms a
null-homologous MRW and thus

In| = exp(g9(Mn)—g(Mo))  as.

for some function g : . — R. Remember that such function is not uniquely determined.
We fix such g and set
a; = exp(—g(i)), i€ (5.2)
and therefore |II,,| = aps, /an, a.s.
Further results on the structure of (IL,),>¢ will follow, but the current knowledge

already suffices to verify that P;(|IL ;)| =1) =1 implies [W¥1.,(Zp)| Iy 00 if (3.6]) is not
satisfied. This is the consequence of the next two lemmata.

Lemma 5.5 Suppose P;(|Il ;)| =1) =1 for some i € 7 is true and (3.6) is not satisfied.
If U1.,(0) = f(n, Mo, My,11,,) a.s. for some measurable function f for all n > 1, then

Pr
|\I/1;n(Z())| — OQ.
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5. Distributional Convergence of the Backward Iterations

Proof. The assertion is clear if we show |U1.,(Zp)| Fiy 5o for arbitrary i € .. Fix some
arbitrary ¢ € .. By the previous considerations, I1,, € {%a;/a;} a.s. on {My =14, M, = j}
for all n € N and j €. .. (M])n>0 := (My,I1,,)n>0 forms a Markov chain with countable
state space /" :={(j,a) € ¥ xR :a € {+a;/a;}} and initial distribution d; ;). Moreover,

7(j.a)
IP’( 1T Akzl'M(/):(j,a)> =1 for all (j,a) € ./, (5.3)
k=1
where (7,(j,a))n>1 denote the successive return times to (j,a). Given My =1, (Ap, Bp)n>1
is clearly a Markov-modulated sequence with driving chain (M) ),>0. Moreover, since
f(n, Mo, My, 11,,) = f'(n, M}, M],) for some measurable function f’ and are satisfied,
we can assume w.l.o.g. that P;(IL.; = 1) =1 for some (hence all) 7 € % and W1.,(0) =
f(n, My, M,,) a.s. for some measurable function f for all n > 1.
The assumption entails Vy.,,(0) = f(m,,7) a.s. on {My = M, =i} for all me I :=
{n € N:P;(M, =1i) > 0}. Fix some m; € I. Now, for any m € I, we derive that mim € I
and on {My = My, m =1}

\Ifl- (0) _ mf(ml,i,z'), if Mm1 :M2m1 = ... :Mmlm:’i,
S my f(m,i,i), if My, = Moy = ... = Mypym = i,

almost surely. Since W1.y,m(0) = f(m1m, My, My, m) a.s., we infer

flm,ii) = pym for all + € .7, (5.4)
where p; = f(mq,4,i)/my. The failure of implies p; # 0 and thus

E;B" = B0 (0) = wEir(i) # 0.

Hence,

01.,(0)] =

= |pi| (i) = o0 P;-a.s.

n .
> Bi
k=1

and particularly ‘
|\I]21N(n) (0)| — o0 Pi—a.S.

By Lemma [C.7] and admissibility of Zj,

Bzt 1= (| max Wi oak(Zo)l +170])

1<k<XN(n)+1(2) n>1

converges in distribution. Then, Pi(|HTN(n)(i)| =1)=1,
|\1121N(n)(0)| _B;; < |\Ijlzn(ZO)| < |\D§:N(n)(0)’+BZ IP’Z-—a.s,

and Slutsky’s theorem yield |Uy.,(Zp)| LSS 0

The proof of the next lemma is inspired by the proof of the corresponding assertion
in [23] (see their Lemma 5.8).
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Lemma 5.6 Suppose (4.1) is satisfied, but limy oIl ;) =0 a.s. and (3.6) both fail.
If there is some m € N such that V1.,(0) is not almost surely a measurable function of

(M();Mm,l_-[m), then |\I,1:n(ZO)| P_”) 0.

Proof. Notice that |U1.,n(Z0)| Iry 00 implies |V pi1.00mn(Z0)] Iry 00 and thus

P,
W itmn(Z0)| = [V1:0(0) + M Wpp1.04mn(Z0)| — 00

for all 1 < ¢ < m, which further yields |V1.,(Zo)| Pry 0. Hence, it suffices to prove that
the modulus of (\Il(m)(Zo))nzo = (V1:mn(Z0))n>0 tends stochastically to oo under P.

1n

Observe that (A%m) , BT(Lm) Jn>1s

A?(”Lm) — H Ak and B1(7,m) = \I](n—l)m—‘rl:nm(o)?
k=(n—1)m+1

is a Markov-modulated sequence with driving chain (M, )n>1 and

U (z) = A g4 B, reR,n>1.

n

Consequently, we can assume that B; is not almost surely a measurable function of
(Mo, My, A;) and prove

Pr
“I’I:n<ZO)’ — OQ.

For a € R and 7,5 € ./, define
Fi?j’a(x) = P(Bl < $’MO = i? Ml :j7 Al = CL)

and Fi_jla as its pseudo-inverse. Let (Uy)n>1 be an i.i.d. sequence of random variables,

which are uniformly distributed on (0,1) and independent of all other occurring random
variables. Setting B] := FA}}l_l,Mn,An(Un)’ (Ap, Bp)n>1 and (Ay, Bl)n>1 are identically
distributed. Moreover, Y71,...,Y),

Y, = B — B, k>1,
are independent and symmetric given My, (My, Ag)1<k<n. Suppose
Y1 = dy, —Aicyy, a.s. (5.5)

for some sequence () je.» of real numbers. Y1 being symmetric given Mo, My, Ay, implies
c;- =0 for all j € .7, hence P,(Y; =0) = 1. But as P;(Y7 =0) =1 is equivalent to By =
f (Mo, My, Ay) a.s. for some measurable function f, we infer that fails. Then, Lemma
(i) yields IF’Z(ZZ(:Z)l ;1Y =0) <1 for all i € ., whereupon an appeal to Theorem

entails |ZZ":(? g1 Y| B o forall i € .. Particularly, we obtain

Tn(2)
3 Hk_lyk) Iy . (5.6)
k=1
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5. Distributional Convergence of the Backward Iterations

Set b:=m;/2. By the elementary renewal theorem, we have
P:(N(n) > [nb]) — 1.
For n > 1, set

Trnb] (8) .
Wn = Z Hk*132+(\plin(0>_qulzfnb] (0))+Hn ZO
k=1

and
G, = U<Z(),M(),(Mk7Ak)1§k§na‘1’1:n(O)_‘yi:(nbl(o))

Using Jensen’s inequality and that V1., (Zp) and W), are i.i.d. given G,, and N(n) > [nb],
we infer for all x € R>

Trnb] (4) Trnb) (8)

P

Y MpaBr— ) Hk—lBl/c‘ <z,N(n)= Wﬂ)
k=1 k=1

Trnb) (8)

> Hk—lyk’ < :c) > ]P’w(

k=1

> Pﬂg;\plzn(z()) = Wh| <2, [Wh| < 2/2, N(n) = [nb])
(v mony Br(W1n(Z0)] < /2, |Wal < 2/21G0) )
= Ex (L ooty Pr(|¥1 (Z0)| < /216,
(1010(Z0)] < /2. N(n) = [nb])]
= [Pe(|¥10(2Z0)| < 2/2)]
which yields the assertion by . O
A combination of the preceding two lemmata shows the necessity of for distri-

butional convergence of (V1.,(Zp))n>0 in the prevailing case. Now, we turn to sufficient
conditions and proceed with further results on (II,,),>0.

Lemma 5.7 Suppose P;i(Il;) = 1) =1 for some i € /. There is a sequence of {+1}-
valued integers (0;);c.» such that

I, = O, ang, On,/an, a.s.

for alln > 0.
Proof. The assertion is immediate if we prove
SigH(Hn) = QMO QMn

for some sequence (0);c & as claimed.
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The argument is similar to the one used in the proof of Proposition (ii). For any
i,j €., pick a path {My =i, My =i1,..., My, = j} of positive probability from i to j
of minimal length n. Conditioned on this path, sign(Il,) is obviously deterministic and
denoted as 0*(i, 7). Given any path {My = j, M1 = j1,..., My, =i} of positive probability
from j to ¢, we additionally assume {M,,+1 =11, ..., My1n = j} to derive

1 = sign(Hm+n) = Slgn(Hm)g*(Za]>a

i.e. sign(Il,,) = 0*(i,7) "1 = 0*(4,5). More generally, we infer sign(Il,)) = 6*(Mp, My,) a.s.
for all n > 0. Furthermore, one easily verifies 0 (i, 7) = 0*(j,4) and 0*(i,7) = 0*(i,s)-0*(s,7)
for all 7,7,s € .. Now, define for all i € .

0; == 0%(s,1)
for some fixed s € .. As a consequence,
sign(Il,) = 0*(Mo,s)-0%(s,My) = O, -0, a.s.
for all n > 0. O
Lemma 5.8 Suppose P;(|Il.;| =1) =1 for some i € /. Then, Pi(7(i) € -) is either
aperiodic or 2-periodic.

Proof. Suppose P;(7(i) € -) is not aperiodic. Aperiodicity of P;(7(i) € -) implies the
existence of my,ma € N, m; even, ma odd, such that gcd(mj,mz) =1 and

Pi(Hml =1, Tl(i) =mi, Hm1+m2 = -1, TQ(i) =m +m2) > 0.

Then, my /2 and mg are coprime and Dirichlet’s prime number theorem provides an k € N
such that my /24 kmg is prime. Obviously, ged(my,m; +2kmsg) = 2 and thus

Pi(Hm1+2km2 - 17 Mm1+2k‘m2 - Z) > 0

entails the 2-periodicity of P;(7(7) € -). O

Of course, one can show that aperiodicity of P;(7(i) € -) is a solidarity property, but
this is of no further relevance.

We introduce the following notation for the case P;(|IL ;)| =1) = 1. I P;(Il; = 1) =1,
let (6;)je.» denote the sequence provided by Lemma 5.7} If P;(7(:) € -) is 2-periodic, then
P;(Ily = 1,inf{n > 1: My, =i} = {) = 1 and we define (0;);c.» as the corresponding
sequence provided by Lemma applied on (May, 2, )n>0-

Lemma 5.9 Suppose P;(|IL. ;| =1) =1, P;(Il; ;) = 1) <1 and aperiodicity of P;(7(i) € -)
for some i € .. Then,

) ) . ) ) . 1
T}grgopi(81gn(ﬂn) =1, M,=j) = nlLI&Pi(Slgn(Hn) =—-1,M,=j) = §7rj

for all y € 7.
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5. Distributional Convergence of the Backward Iterations

Proof. (M,,sign(Il,))n>0 is a regenerative process with regeneration times (7,,(%))n>0
under P;. The aperiodicity of P;(7(i) € -) implies distributional convergence of
(M,,,sign(1,))n>0 (e.g., see [7, Cor. VI.1.5 (i)]). Set 7*(7) :==inf{n >1: M,, =i, I1,, = —1}.
Then,

4 4
l{sign(Hn)zl,Mn:j} — 1{7*(i)<n} 1{—sign(Hn/HT*(i))zl,Mn:j} — l{sign(Hn):—l,anj}

under P;, which yields the assertion. O

Lemma 5.10 Suppose (4.1), Pi(|Il, ;)| =1) =1 for some i € & and let Zy be an admiss-
able random variable. Then, P;(V1.,(Zo) € -) = Q(i,-) for some Q € (7, R) is satisfied
if and only if (3.6) and one of the following cases prevails:

(1) Pi(7(i) € -) is aperiodic. Then,

Ql,-) = YjermiPilci+(0iai0;/a;)(Zo—cj) € -),  if Pi(ll ) =
’ YjermiPilci+(aifa;)Y; € ), if Pi(ll ) =

where Pi(Yj € -) = 2[Pi(Zo—cj € )+ Pi(—(Zo — ;) € -)].
(i1) Pi(7(2) € -) is 2-periodic and

nh_g)lopi(HQn(ZO —CM%) S ) = nh_{gopz‘(_HQn(ZO _CM2n) € ) (5.7)
Then, Q(i,-) = Y jer 7 Pi(ci+ (0ia; 05/ aj) (Zo —cj) € -).

Proof. By Lemma and Lemma , (V1.0(Z0))n>0 converges in distribution under P;
for some admissable Zj only if is satisfied. Now, suppose is true. We distinguish
between P;(7(i) € -) being aperiodic or 2-periodic.

Suppose P;(7(i) € ) is aperiodic. Then, for all n >0

\Ill;n(Z()) = ¢+ (sign(l_[n) ai/aMn) (Z() — CMn) P;-a.s.

As a consequence, ergodicity of (M, ),>0 combined with Lemma and Lemma entails
the identity of Q(7,-) as claimed.
Now, suppose P;(7(i) € -) is 2-periodic. Recalling

V1., (Z0) = eny+115 (Zo —cry,) a.s. for all n > 0,
(

we conclude that (¥i.,(Zp))n>0 converges in distribution under P; if and only if
(I, (Zo — cp1,,) )n>0 converges in distribution under P;. The assumed 2-periodicity en-
tails that (2, (Zo — ¢y, ))n>0 and (Il2nq1(Zo — cary,,y ) Jn>0 are regenerative processes
with aperiodic regeneration times and thus converge in distribution. Consequently, it re-
mains to show that their limit distributions coincide if and only if is satisfied. Set
7*(i) :=inf{n > 1: M,, =i,1I,, = —1} and notice that P;(7*(i) € 2Ny + 1) = 1. We infer
that under P;

2n+1

d
H2n+1 (ZO - CM2n+1) = 1{T*(i)<2n+1} (_ H Ak) (ZO - c]\42714—1)
k=7*(1)+1
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d 2n+1
= <_ H Ak) (ZO - CM2n+1)
k=1*(i)+1

d
~ —Ilo, (Zo —chy,, ),

which yields the necessity and sufficiency of (5.7). Then, since

¢ + 1o, (Z() — CMgn) = ¢+ (Qi a; 9M2n/aM2n) (Zo — CMM) a.s.

we obtain Q(i,-) as claimed. O

At first glance, condition appears unsatisfying. One may suspect necessity of the
convergence of (M, V1.,(Zp))n>0 under P; as in the other cases and thus symmetry of
Zp—cj for all j € . under P;, which further results in ¢; = ¢; for all j € .. The following
example reveals its falsity.

Example 5.11 Let a € R\ {0} and ¢p,c; € R. We define a Markov chain (My,),>0 with
state space {0,1,2} by

1 1
Por = poz = Poo = 5 and  pip = po = 1.

The Markov-modulated sequence (A, By)n>1 is given by

(—1,2¢p), ifi=j=0,
(a,co—acy), ifi=0,j=1,
(A1,B1) = (et e1—a"tey), ifi=1,5=0,
(—a,co+acy), ifi=0,j=2,
(—a Y er+atey), ifi=2,5=0.

Consequently, we have a degenerate (A, By)n>1 with Po(|IL- )| = 1) =1, Po(7(0) € -)
2-periodic, ¢1 = ¢y and 1 = my. Moreover, since Py(Ily, = 1|Mz, = 0) = 1, Lemma
shows that sign(Ilg,) and |II3,| are functions of My and My, thus

Po(oy, = —a|Ma, =1) = Po(Ilgy, = a| Mo, =2) = 1.
Therefore, if Zj is symmetric under Py one easily derives

nli_)IIgO]P)o(Co + 1oy, (Zo _CM2n> €-)
=mPolco—a(Zy—c1) €-)+mPo(co+a(Zyg—c1) €-)+mPo(Zp € -)
= 7T1P0(C()+a(Zo—Cl) € -)+7T2P0(CQ—Q(ZQ—01) € -)+7T0[P’0<—Z0 € )
= nli_{[éo]P)o(Co — 1y, (Zo _CMQn) S )

= lim Po(co+Tant1(Zo — crz, i) € ),

which suffices for distributional convergence of (V1.,(Zp))n>0 under Py.
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5.3. The Case limsup,,_, |IL. ;| = oo a.s.

For showing that |U1.,(Zp)| Iry 0o if imsup,, o0 |17, ()| = o0 a.s., but (3.6) fails, we
embark on the use of Lemma [5.6, The subsequent result states that the associated as-
sumptions are satisfied.

Lemma 5.12 Suppose limsup,,_, |1, ;)| = 00 a.s. for some (hence all) i € 7 is true
and (3.6 is not satisfied. Then, there exists m € N such that V1.,(0) is not almost surely
a measurable function of (Mo, My, I1,,).

Proof. Suppose there is a measurable function f such that
U1.9,(0) = f(My, Moy, Iay,) a.s. (5.8)
for some n € N with P;(M,, =) > 0. Hence,
U1 (0) + Hp Uny1:0n(0) = f(Mo, Man, l2n)  aus.

Proposition entails that on {My = M,, = M, =i} either ¥;.,(0) =c(1—1I,) a.s. or
(I1,,, ¥1.5,(0)) = (1,¢) a.s. for some ¢ € R. Consequently, it suffices to show the existence
of m € N such that P;(M,, =i, I, # 1) > 0 and

Pi(¥1.0n(0) = c(1=11)| My, =1) < 1 for all c e R.
Suppose there is ¢, € R such that P;j(V1.,(0) = ¢, (1 = 1I1,,) [ M, =3) = 1 for all m €
I'={neN:Py(M, =111, #1) > 0}.
By assumption, there is my € I with P;(M,,, =1, |IL,,,| # 1) > 0. Hence,
p = max{Py(My, =i, [Ty, | > 1), Pi( My, =1, |, | <1)} > 0.
For any other m € I, we derive mym € I, since
On {My= My, m =1}, we have ¥i.p,m(0) = cmym (1 = m) a.s., but also

Cmy (1 _Hmﬂn)a if Mm1 = M2m1 =...=Mmm= 2"
em (1 =Thnym),  if My = Moy = ... = My, = 1.

\Ijl:mlm(o) = {

Hence ¢, = ¢ for all m € I for some c € R.
By the above assumption and P;(B? = ¢(1 — A?)) < 1, there is ¢ € N with P;(M, =
i,1Ip=1) > 0 and
Pi(V1.0(0) = c(1=1IIp) [ My =4, 1, =1) < 1,

i.e.

Pi(U1.(0) #0[ My =i, 11, =1) > 0. (5.9)
However, P;(Myi,, =14, [y, # 1) > 0 for m € [ yields

\D1:€+m(0) = C(l—H4+m) ]P’Z-—a.s.
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given My, =i. Therefore, we infer that on {M; =4, 1l =1, My, =i, Upyp # 1}
U1.0(0) = Ur4m(0) =g Wri1:4m(0) = Wip4m(0) = Wip1:04m(0)

+m
= C(l—Hg+m)—C(1— H Ak) =0 Pi—a.s.,
k=0+1

which contradicts (5.9)). 0

. . . P; .
Given limsup,,_, I, ;)| = 0o a.s., either II,, = 0 or limsup,,_,, P;(|Il,| > 0) > 0.
Moreover, since I ;) is a proper random variable under Pr, it is easily seen that II,, —

and I, Lr 0 are equivalent.

Lemma 5.13 Suppose limsup,,_, [l ;| = 00 a.s. for some i € % and let Zy be an
admissable random variable. P;(V1.,(Z) € -) > Q(i,-) for some Q € P (.7, R) is satisfied
if and only if one of the following cases prevails:

(i) 11, I 0 and (13.6) are true. Then, Q(i,-) = 0¢; and Vi.,(Zy) LN CM, -

(i) limsup,,_, Pi(|Il,| > 0) > 0, Pr(B1 =c(1—A41)) =1 for some c € R and Zy=c
Pi-a.s. Then, Q(i,-) = 6. and V1.,(Zy) = ¢ P;j-a.s. for all n > 0.

Proof. By the previous considerations, (3.6]) is necessary for distributional convergence.
We infer from

d i
‘Ijlzn<ZO> = 1{T(i)<n}\p (‘IJT(Z')—H:n(ZO))

that a possible limit distribution Q(i,-) solves the SFPE R 4 U (R), where R and (A*, BY)
are independent. Hence, an appeal to Theorem (iii) shows Q(7,-) = d¢,-

Suppose I1,, LN Then, V1.,(Zo) = ey, + 11y (Zo — cur,,) = ey +11n Zo — 11, g, con-
verges stochastically to cpg, under P for all ¢ € . by Slutsky’s theorem, since (caz, )n>0
is stationary under P;.

Suppose limsup,,_, o, Pi(|II,| > 0) > 0. Then, there exists j € . and € > 0 with

limsup P;(|I1,,| > ¢, M,, =3) > 0.
n—oo

limsup,,_, o |11, (j)| = o a.s. ensures that for every z € R there exists some m(z) € N such
that P; (|11, )| > /e, My, () = j) > 0. Consequently, limsup,,_, ., Pi(|Il,| >z, My, =j) >0
for all z € R>, which is easily seen to imply
limsup P;(|I1,| >z, My, =3) > 0 for all (z,7) € R> x .7
n—oo
We infer from Q(i,-) = 4., that

P;
\Illzn(ZO)_Ci = Hn(ZO_CMn) — 0
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must be satisfied. Assume P;(Zy = ¢j) < 1 for some j € .. Then, we obtain a contradiction
from
0 = lim Pl (Zo —car, )| > €)
> limsup P;(|IL,, (Zo — ¢5)| > €, M, = j)
n—oo
= limsup P;(|I1,,| > ¢ /|Z0 —¢;|, Zo # ¢j, Mp=3) > 0.
n—oo

Consequently, P;(Zy = ¢;) =1 for all j € ., which implies all ¢;, j € .7, being equal to
some ¢ € R and Zy = ¢ P;-a.s. O

6. Fixed Points of V;e() = ()

This section is devoted to giving necessary and sufficient conditions for @ € Z(,R) to
solve

UieQ = Q (6.1)
defined in (2.1)).
The following observation is essential. Let @ be a fixed point of (6.1). Then,

Q) = Pi(Wi(R1) €) = 3 py [Bi(W1(r) €My =) QUdr)  (62)
jes
entails . .
RZ i \Ifl(RMl) = Z 1{M1:j} \Ifl(R]) under ]Pi
jes
for all i € .7, where R’ has distribution Q(j,-), j € .7, and is independent of all other

occurring random variables under P;. Furthermore, an iteration of the above argument
shows

R 2L vi(RY) £ AR+ B, (6.3)

where (Ai, Bi) and R’ are independent, and these fixed points are characterised in Theorem
1.2

Let (Zyn)n>0 be a sequence of random variables such that Z,, is independent of all other
occurring random variables given M,, and P(Z,, € -|M,, =1i) =P(Zy € - |My =1i). We call
such sequence admissable. Then, if P;(V1.,(Z,) € -) 2 Q(i,-), Q € P(.#,R), for some
(hence all) i € .7, @ is a fixed point of . That this convergence is a solidarity property
follows with the usual arguments from

Vin(Zn) = Lir(j)<ny ey Yrgysrn(Zn) + BY) + 1 (ysny Yin(Zn)
for all n > 1. Then, the fixed point characterisation results from

nlggo \Plzn(Zn) = U (nhﬁnéo \IIQ:n(Zn))-
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Conversely, let @) be a solution to (6.1)). Then, define

Rn = Z ]‘{Man} R%, n > O,
jes

where RJ, is independent of all other occurring random variables and has distribution

Q(j,"). Clearly, (Ry)n>0 is admissable and (/6.2)) shows that

d

Rn - \Ijn—i—l (Rn—H)

under any P; for all n > 0. Consequently,
Pi(V1pn(Ry) €-) = Pi(Ro€-) = Qi,)

converges weakly.

Suppose Pr(A; = 0) > 0. By the above characterisation, it follows immediately that
a unique fixed point of is given by @, where Q(i,-) :=P;(>F_1lx_1 B; € -) and
k:=inf{n >1: A, =0}.

Concerning the remaining cases, we formulate the next theorem.

Theorem 6.1 Suppose Pr(A; =0)=0. There exists a fized point Q € (<, R) of (6.1
if and only if one of the following conditions is satisfied for some (hence all) i € .7 :
(i) limp 001l 5y = 0 a.s. and E;Ji(log™ | BY|) < 0o. Then, Q(j,-) =Pj(Zs € -) for all
jes.
(i) Pi([ll;;5| =1) =1, (3.6) is true and one of the following cases prevails:
(i.1) Pi(Il.(;y = 1) < 1. Then, Q(j,") =P(cj +a;Y €-) for all j € % and some sym-
metric random variable Y .
(i4.2) Pi(Il.; = 1) = 1. Then, Q(j,-) =P(c; +a;0;Y € ) for all j € % and some
random variable Y, where (c;)je.» is not uniquely determined by (3.6)).
(i) limsup,,_,q [Ix| = 00 a.s. and (3.6) are satisfied. Then, Q(j,-) = ¢, for all j € 7.

Proof. CASE lim, Il ;) = 0 a.s. Suppose there is a fixed point ¢ and hence
that Q(i,-) solves (6.3). By Theorem [1.2, E;J;(log"|B) < oo and Q(i,-) =
P; (limy, 00 W5, (0) € -), which equals P;(Zs € -) by Theorem [5.1] (i) for all i € ..

Conversely, given E;J;(log™ |BY]) < 00, Q € Z(.#,R) defined by Q(i,-) := P;i(Zs € -)
is a fixed point of , because V1., (Zp) 4, Zoo for Zy, :=0 for all n > 0.

Suppose (Hm(i))nzo does not converge to 0 almost surely. Since a fixed point @) of
exists only if Q(4,-) solves (6.3)), we infer from Theorem that must be satisfied.
From now on, we assume to be valid and, given a fixed point Q, R’, i € .7, denotes
a random variable with law Q(7,-), which is independent of all other occurring random
variables.

CASE P;(|IL,(;)] = 1) = 1. Suppose Py(IL,;) = 1) < 1. Let @ be a fixed point of (6.1).
Theorem entails that Q(7,-) is symmetric about ¢;. Hence,

Yi = Ri—Ci
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is a symmetric random variable. An appeal to Proposition shows
YL Wy, (RM) — ¢ = Wi (RM) = Wi (eny,) = T, VM0
for all n > 0 under P;. In particular,

(6.4)

. YMn
Y| Ly = g

under P;

with (a;)je.» as in (5.2). Ergodicity of (M,),>0 implies distributional convergence of
([YMn| /aps, )n>0 to some Y, which is independent of My. Consequently,

Ri i ci+a;Y,
where Y is symmetric.
Conversely, we show that @ € Z(.¥,R) with
Q(],) = P(Cj—i-anE'), j€eS,

solves the SFPE (6.1]), where Y is symmetric, (¢j)jc.s given by (3.6) and (a;)jc» as
above. Let R; be a random variable with law P(R; € - |My =1, My = j) = Q(J,- ), which
is independent of (A1, By) given (My, M7). It holds that

\Ill(Rl) :A1R1+Ci—A10M1 = CZ‘+A1(R1—0M1) i Ci+|A1|(R1—CM1>
a;

d
(Ri—cpmy) = citaY
ang
under P; for all i € .&.

Suppose P;(IL.; =1) =1. Let Q € Z(,R) be a fixed point @ of (6.1). Theorem
entails that @Q(i,-) is arbitrary. By Proposition , there exists an infinite class of

sequences (¢;);e. such that Wi(cpr, ) = ey, a.s. For any such sequence

Yi = Ri—¢ £ 11,yM
remains true under P; (cf. (6.4])). Using Lemma we derive

. Opr,, Y Mn
yi 4 aieiL for all n > 0.
apr,

Again, ergodicity of (M,,),>0 implies distributional convergence of (037, YM" /aps, )n>0 to
some random variable Y. Thus,
R 4 ci+a;0;Y
for all 1 € 7.

Conversely, with R; having the same dependencies as above, but P(R; € - |My =1, M} =
j)=P(cj+a;0;Y € ), we obtain

Oar,

Ui(Ry) = CZ‘+A1(R1—CM1) = ¢ +a;0;

d
(Ri—cpy) = citaitY
an,
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under P; for all 1 € .&.
CASE limsup,,_, |11, (5| = o0 a.s. Due to Theorem a fixed point @) must satisfy
Q(i,-) = 0¢, for all i € .. The so-defined stochastic kernel does in fact solve the SFPE

(6.1) by Proposition [3.5 O

In a closing remark, we briefly discuss conditions on (Z,)n>0 that are necessary and
sufficient for distributional convergence of (V1.,,(Zy,))n>0, where we omit the proofs, which
are analogous to those of Theorem . We emphasise that (U1.,(Zy))n>0 converges in
distribution for arbitrary admissable (Z,)n>0 in the cases (i), Pi(|Il;;| = 1) =1 and

P;(7(i) € -) aperiodic, and limsup,,_,, [I;, ;)| = 0o a.s. and II,, I5y 0. In contrast, P(Z, €
| My, = 1) = d., must be satisfied in (iii) if (II,),>0 does not tend stochastically to 0.
Moreover, analogous to the proof of Lemma (ii), one verifies that

Jim Pi(Ilon (Z2n —cary,,) € ) = Jim Pi(—Tlon (Zon — casy,,) € ) (6.5)
is necessary and sufficient if P;(|IL.(;| = 1) = 1 and P;(7(i) € -) is 2-periodic. For example,
(6.5) is satisfied if Pj(Zy € -) =P(c;+Y € -) for all j € .7, where Y is symmetric.

7. On the Forward Iterations

The main result of this section is a theorem giving equivalent conditions for (V,.1(Zp))n>0
to converge in distribution under IP;, ¢ € ., for some admissable Zj. First of all, we mention
that (¥y,:1(Zo))n>0 can converge in distribution under P;, but not under P;, i,j € .7, as
we will see. Nevertheless, given (V,.1(Zp))n>0 converges in distribution under P,

d
U (ZO) = 1{7-(])<n} \Ijnzr(j)—l—l (qlr(j):l (ZO))

shows that (W,,.1(Z0))n>0 converges in distribution to the same limit under any P;, where
Zp is admissable and has conditional distribution

Pi(Vr(jya(2o0) €-), ifj#4,
Pi(Zoc-), ifj=i.

Pi(Zoe:) = {
Now, let (#An;#Bn>n21 be the dual process of (A, Bp)n>1, i.¢.

#Kij = P(FAL7By) €[ My =i, "My =j) == Ky,

where (#Mn)nzo is defined as in Chapter . Using
n n

= ® Ki, i, = ®#Kikik—1
k=1 k=1
= P((*Ap_s1,” Bnti1)1<ken € [T My =i, ..., " My, = ig)
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and
. . e . .
Pio(Mlzzl,n-,Mn:Zn) = L_Pin(#Ml:Zn—la---a#Mn:ZO)

’/T/LO

for all n > 1 and 1g,...,i, € ., we derive

P ((Zo, (Ag, Be)1<k<n) € ) = Pr((FZu, (F Ap_t41,7 Byt 1)1<k<n) € ),

where (7 Z,)n>0 is admissable in terms of the dual process, i.e. 7, is independent of all
other occurring random variables given #M,, and P(¥Z,, € -|#M,, = j) =P;(Zy € -). As
a consequence,

k=1 “f=k+1

=Y

N I F B+ 1L, 7 2, = #y,(F2Z,)

n n

\I]nzl(ZO) = Z H AK) Bk+HnZO

n
k=1

is true under P, where
#\Iln(x) = F A x+ 7B, reR,n>1.
Consequently, if (V,,.1(Zp))n>0 converges in distribution under P;, then

Jim Py(U1(Zo) €-) = lim Pr(Upa(Zo) €-) = lim Pr(F 01, (FZy) €-).  (T.1)

Hence, if Pr(A; =0) > 0, then

#

K
Pi(Upa1(Zo)€-) m(Z#Hkl#Bke-)
k=1

for any i € ., where #x :=inf{n >1: %A, = 0}.
Moreover, since limit distributions of (#W1.,,(Z,))n>0 correspond to fixed points of

#\Ill .Q = Qa
the possible limit distributions can easily be inferred from Theorem

Before stating the main theorem, we discuss some aspects of the dual process
(* Ap, 7 By)p>1. Let (FAL #Bl),>1 and # Zy, be the analogues of (A%, Bl ),>1 and Zn..
(#* Ay, By)p>1 being degenerate, namely

PW(#Bl = C# M, _#Alc#Ml) =1
for some sequence (c¢;);e.o, is equivalent to
IEDW(Bl = CM; _AchO) = 1. (72)

In addition, ([7.2) yields

\Ijnzl(ZO) = CMn+Hn (Z()—CMO) a.s.
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Theorem 7.1 Suppose Pr(A; =0) =0 and let Zy be an admissable random random vari-
able. Then, P;(V,.1(Zy) € -) 2 Q, i € .7, for some Q € P(R) is satisfied if and only if
one of the following conditions is fulfilled:

(i) limy 001l 5y =0 a.s. and E;J;(log™ |#B|) < 0o. Then, Q =Pr(¥Zy €-).
(i) Pi(|[Il(| =1) =1, (7.2) is true and one of the following cases prevails:
(ii.1) ]P’( (1) € -) s aperiodic. Then,

o = | TiermiPilei+(0iaib;/a;)(Zo—ci) € ), i Pilll) =
YjerTiPi(cj+(aifa;)Y €-), if Pi(Il ) =
where Pi(Y € -) = % [Pi(Zo—ci € )+ Pi(—(Zo—c;) €-)].
(ii.2) P;(7(i) € -) is 2-periodic and
nh_{%oPi(CM% +1o, (Zo—ci) €-) = nh_{goPi(CMZn —Ioy, (Zo—ci)€-). (7.3)

Then,
= > 7Pi(cj+ (0ia;0j/a;) (Zo—ci) € ).

jeS

(4) limsup,_,o |11, ()| = 00 a.s. and (7.2) are satisfied. Moreover, Zy = ¢; Pi-a.s. if
limsup,, o Pi(|IL,| > 0) > 0. In each case, Q@ =Pr(cpr, € -).

Proof. CASE limy, I, ;) = 0 a.s. Suppose (V1.,(Z0))n>0 converges in distribution
under P;. As II,, P, 0, we obtain

U1 (Z0) 2 W, (0)

Q) , )

d

£ Lrgyen /M) [ ( TT Ae) B + Wiy 0
k=1 “{=k+1

d
= \Ijn:T(j)+1(0)'

Therefore,
Jim Py(U1(Zp) €-) = lim Pr(Upa(0) €-) = lim Pr(FWy,,(0) €-)

so that the assertion follows from Theorem (i). The converse follows analogously.
Theorem (6 . yields that (7.2)) must be satlsﬁed if (IL;,, (4))n>0 does not converge to 0
almost surely. Therefore, we assume - to be true in the remainder of the proof.
CASE P;(|IL, ;)| = 1) = 1. Suppose P;(7(i) € -) is aperiodic. Using

Up1(Zo) = e, + (sign(Ily) ai/an,) (Zo — ¢i) P;-a.s.,

Lemma [5.7] and Lemma [5.9] entail the identity of Q.

Suppose P;(7(i) € -) is 2-periodic. 2-periodicity of P;(7(i) € -) implies that
(V1.20(Z0))n>0 and (Vi.2n+1(Z0))n>0 are regenerative processes with aperiodic re-
generation times and thus converge in distribution under P;. Therefore, the equality
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of their limit distribution is equivalent to distributional convergence of (¥1.,(Zp))n>0-
Analogous to the proof of Lemma (ii), one concludes that the latter holds if and only
if is satisfied and obtains the identity of ().

CASE limsup,,_,, |II,| = 00 a.s. We infer from the correspondence with fixed points
of #U, () = @ that the limit distribution equals Pr(car € -). The remaining assertion
follows easily from

\I’n:l(Z()) = ¢y, +1I, (Z()—Ci) P;-a.s.

In comparison with Theorem (i), notice that P;(c;+ (0;a;0;/a;) (Zo —¢;) € -)
corresponds with P;(c;+%a;#0;Y € ), Y :=0;a;(Zy — ¢;), where (¥a;) je.v and (#0;)je.»
are defined in terms of (#I1,),>0.

Moreover, notice that is always satisfied for some admissable Zjy. By Theo-
rem , there exists a sequence (#Zn)nzo admissable for the dual process such that
(#‘I’l:n(#Zn))nzo converges in distribution under P,. Hence, define

Pi(Zp€-) = PW(\IIT(i):l(ZO) €-),

where IP’j(Z() €-)=P;("Zp <€ ). and an appeal to (7.1) yields (7.3).

In conclusion, we verify a correspondence between proper stationary solutions to
and limit distributions of (V,,.1(Zp))n>0 under some P; for some admissable Zp.

Consider a proper stationary solution (Rj,)n>0 to . Then, (V,,.1(Ro))n>0 converges
naturally in distribution under P, because

R, 4 ApnRy—1+Bn = VY (Rp—1) under P,
for all n > 1. Furthermore, (Ry)n>0 being a stationary solution yields that R, is inde-

pendent of (Ag, By)g>r(i)+1- Together with

d
\I]nil(R()) = 1{T(i)<n}\I]nzr(i)+1(RT(i)>7

we obtain W,.1(Zp) LN Ry under P;, where Zj is admissable and P;(Zp € - ) = PW(RT(i) €-).
Conversely, suppose P;(U,.1(Zy) € -) % Q € P#(R). We will show that there is

a stationary solution (Rp)p>0 to with Pr(Rg € -) = Q. Due to (71), Q =
limy, 500 P (¥ V1., (7 Z,,) € +). Referring to Section 1@, we can define @ € Z(<,R) by
Q(i,) = lim, oo P (F V1., (¥ Z,) € ), i €.7. Then, Q satisfies *¥; ¢ Q = Q and the
subsequent lemma shows that this is equivalent to ¥ x Q) = Q.

Lemma 7.2 Suppose Q € Z(.7,R). U1xQ =Q if and only if " U1 eQ = Q.

Proof. Let Ry be a random variable independent of (My, Ay, By) given My and 7Ry a
random variable independent of (% Ay, 7 By) given (¥ My, # My). Furthermore, we suppose

P(Ry€-|My=j) = Q(j,) = P(*Ry €-|*My=1i,#M =)
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for all 7,5 € .. Then, the assertion follows from
Pr(A1 Ry+ By € - |My =1)
= Z EPj(AlR()-l—Bl €, My =1)

jES i

= Z TiPji P(A; Ry+ By € -| My =3, My =1)
jes T

= 3 #pi [ [ Leriye B(ALBY) € dlay)|Mo = .My =) Q(j.dr)
jes

= 3 i [ [ Varge BUFALFBY) € () # My = i, #30 = ) QU dr)
jes

= Y FpyP(F AL F R +# B € - [F My =i, % M = j)
jes

= Z Pi(#Al #R1 —l-#Bl €., #Ml =7)
jes

= Pi(#Al#Rl —l—#Bl €)

for all 1 € .¥7. O

Now, let (Ry)n>0 be a sequence of random variables such that R, is independent of
(A, Bi)g>n given M, and P(R, € -|M, =1) = Q(i,-) for all n > 0. Using U Q) = @, yields

Pr(ApRp1+Bn€-) = Pr(AiRy+ By € )

= Z 7TZ'IP>7T(A1R0+31 € -|M1 :i)
€S
€S

= P.(R,€")

foralln>1

As mentioned in Section , the corresponding assumption of Brandt [10] for the study
of a stationary solution to (2.2) is Elog|A;| < 0 and E;log™ |Bj| < co. The assumption
is equivalent to E;log|# A1| < 0 and E,log™ |# B1| < co. Consequently,

n
log | 10,| = Y log|#Ax| = —c0  as.
k=1

by Birkhoft’s ergodic theorem and

) log+|#Bn|
lim ————— =

n—oo n

0 a.s.

by the Borel-Cantelli lemma, which entail

Jgngo#ﬂn#Bn+1 =0 a.s.
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7. On the Forward Iterations

By Theorem , this yields that (¥ ¥y.,(0)),>0 converges almost surely and in particular
in distribution. Hence, we are in case (i) of Theorem and the unique solution is given
by Pr(#Zs € -). [10, Theorem 1] contains a different, expression of the limit distribution
in terms of the doubly infinite extension (A, By)nez-
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C. Appendix

C.1. Consequences of E;7(i)!™ < oo

This chapter gathers some technical results that are used frequently in Chapter [A]
(My,, Sn)n>0 denotes a MRW if not stated otherwise.

The lemma can easily be proved by applying Theorems |[1.2HI.3| on the random walks
(Sp—n(p+¢))n>0 and (Sy, —n(u—¢e))n>0. However, the result is already known (see [12]
Theorem 8.4.5] for =0 and [9, Theorem 1] for o > 0).

Lemma C.1 Let (Sy)n>0 be a random walk.

(i) Suppose a« =0. p:=EX € R if and only if

S tP(n S, —pl>e) < o0 for all e > 0.

n>1
(ii) Suppose y:=EX € R and a > 0. Then, E|X|'T* < oo if and only if

ST P(In S, —pl > ) < o0 for all e > 0.
n>1

Lemma C.2 Let a > 1 and suppose E;7(i)!T% < oo for some (hence all) i € .. Then,
Ez( S (i)t 1{T,L(¢)>(1Eﬁ(i)+5)n}> < 00 for all e >0
n>1

forallie .

Proof. Set b:=E;7(i) + . We begin with

Ez( S (i)t 1{Tn(i)>bn}>

n>1

o0
= Z/O 272 Py (1, (i) > bnV x) dx

n>1

= Z /Obn ma—QIP’i(Tn(i) > bn) dr + Z /bzo xa—ZPi(Tn(i) S CL’) da

n>1 n>1

(k-+1)
= Y P (i) > )+ > Y /bl; . 292 Py (1, (3) > z) do,

n>1 n>1k>n
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where the first summand of the last line is finite for all € > 0 by Lemma Concerning
the second summand, we infer

(k+1)

>3 / 22 Pi(ry i) > 7) da
n>1k>n
(k+1)
gzz/ 2P (7 (i) > bk) da
n>1k>n
= 3N KT Pi(ra(i) > bk)
n>1k>n
= ZZW 2P;i(7n (i) > bk)
k>1n=1
< ST EIPi(r(d) > bE),
k>1

where we used that (7,(7))n>0 is a renewal process. The upper bound is again finite by
Lemma [C]] O

Lemma C.3 Let a >0 and suppose E;7(i)!7% < oo for some (hence all) i € .. Then,

> nT 1P, (s L) SY) X Ei(ZTn(i)all{Sm(i)gy}> as y — 0o

n>1 n>1

forallie .

Proof. On the one hand, Lemma yields
EZ< > (i) 1{m( )>2nE;7(i)} > < > n® P (1, (i) > 2nEi7 (i) < oo
n>1 n>1

for a € [0,1] and, on the other hand, Lemma entails

00 > I&(Zm() ") >2nEr () ) > 3T 0 Pi(7(i) > 2nEi7(4))

n>1 n>1

for a > 1. Consequently,
( (i) 1{sTn(i>3y})
= Ez‘( S ()t 1{STn(i)<y,n<rn(i)<2n1En(z‘)}>

Z na*1 1{Sm(z‘) <y,n<7n(1)<2 nIEn(z)})

= > 0" 'Pi(S,, ;) <y)  asy— oo

as claimed. 0
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Lemma C.4 Let a >0 and suppose E;7(i)!T% < oo for some (hence all) i € .. Then,

<an 1{Xn >n}) < o0

n>1

forallie .

Proof. Analogous to the beginning of the proof of Lemma [C.2] one derives

(an Lt >n}> > nBi(r >“+ZZ/ 2 Py(r(i) > x) d

n>1 n>1 n>1k>n

and that

> / 2P (r (i) > 2) de < S n®Bi(r(i) > n).

n>1k>n n>1
Therefore, the assertion follows from
> nPi(r(i) >n) < Eir(d )Y < 0.
n>1

O

Lemma C.5 Let o >0 and suppose E;7(i)'+® < oo for some (hence all) i € 7. Then,
for any non-negative random variable T

E, T < o if and only if > n® I P;(T > 1,(i)) < oo.

n>1
Proof. As seen in the proof of Lemma [C.3] we have

ST P (7 (i) > 2nEi7 (i) < oo

n>1

and thus

E, T < Z nail]P)i(T > n)
n>1
= Y 1 Py(T > 2nE7(d))
n>1
= > T PU(T > 2nEi7(4), 7o (i) < 2nEi7 (i)
n>1

> n® L P(T > 7,(1)).

n>1

IN

Analogously, the reverse inequality can be obtained by using

ST Py (i) <27 nEiT (i) < oo

n>1
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C.2. Renewal-Theoretic Auxiliary Results

Lemma C.6 Let (Sy)n>0 be a positive divergent random walk. Then,

Y PO<S,<y) < J(y) asy— oo

n>1
Proof. Set U~ ((00,y]) := X0 P(S,> <y) for y € R>. By Theorem ,
U™ ((—o0,y]) = U7([0,9]) = J(y)  asy— co.
Consequently, one part follows directly from

S PO<S,<y) > U™([0,y)) -1

n>1
for y € R>. It is well-known from renewal theory that U~ ([—z,y — x]) < U~ (y) for all
z € R and y € R>. Hence, the second part follows from

>

Y. P0<S,<y) = > E ( GZ 1{03%@})

n>1 n>1 k:a‘i_lJrl

- /E <:z_>:11{0§5k+x§y}> U~ (dx)
~E [gW([—Sk,y—skD]

<E UZHP([O,yD]

k=1
— Eo” - U”([0,y)).

O

Lemma C.7 Let (My, Xy)n>0 be a Markov-modulated sequence, where Xy, is assumed to
be R? valued. Pick some i €. and define

Tl - f( i)+1r- XTn(Z))7 iGV,nZl,
for some measurable, real-valued function f. Then, (TN(n)+1)n21 converges in distribution.

Proof. Let (uy)n>0 denote the discrete renewal density associated with (7,(7))n>0, i.e.

= Y Pi(r(i) =

k>0

for n > 0. Since (My,)n>0 is aperiodic, thus P;(7(i) € -) 1-arithmetic, we have limy, o0 ttn, =
1/E;7(i). By the key renewal theorem,

Pi(Tymy41 <o) = D Pi(N(n)+1=k, T <x)
k>1
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S S B (i) = OPi(r(0) > n— £, T <)

k>14=0

= Y wPi(r(i) >n—0,T <)
/=0

converges to
1 _ BiT (1) 1{r<a)
, Pi(r(:) >¢,T<z) = ———F+—
]EZ'T(Z) g%) ( ( ) ) ]EZ'T(Z)

for all z € R as claimed.
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Acronyms

a.s. almost surely, also used synonymous for P;-a.s. for all 7 € .%.
i.i.d. independent and identically distributed.

MRW Markov random walk.

PRW perturbed random walk.

SFPE stochastic fixed point equation.

w.l.o.g. without loss of generality.
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