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Summary. In this article, we carry out a rough paths analysis for Banach space-valued
Wiener processes. We show that most of the features of the classical Wiener process pertain
to its rough path analog. To be more precise, the enhanced process has the same scaling
properties and it satisfies a Fernique type theorem, a support theorem and a large deviation
principle in the same Hölder topologies as the classical Wiener process does. Moreover, the
canonical rough paths of finite dimensional approximating Wiener processes converge to the
enhanced Wiener process.
Finally, a new criterion for the existence of the enhanced Wiener process is provided which is
based on compact embeddings. This criterion is particularly handy when analyzing Kunita
flows by means of rough paths analysis which is the topic of a forthcoming article.
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1 Introduction

The notion rough path was coined by Terry Lyons in 1994 [20]. The corresponding theory pro-
vides an extension of Young integrals to less regular driving signals. In the context of probability
theory, it allows an alternative representation for solutions to Stratonovich differential equations
as solutions to rough path differential equations (RDE). The power of the approach is that once
the driving signal has been associated to a rough path, the solution can be written as continuous
function (Itô map) of the rough path signal by Terry Lyons’ universal limit theorem [22]. In
general irregular controls admit several extensions to rough paths. Nontheless, in the context
of stochastic analysis there is one canonical choice which is uniquely defined up to a null set.
Since the null set does not depend on the choice of the RDE this allows one to pick a random
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RDE depending on the path itself and, in particular, the concept of filtrations becomes obsolete
for the existence of solutions.

As eluded by Ledoux, Qian, and Zhang [18] the theory of rough paths leads to natural proofs
of support theorems (ST) and large deviation principles (LDP) since both properties behave
nicely under an application of the continuous Itô map. Consequently, it suffices to prove a
support theorem and a large deviation principle for the canonical rough path of the driving
signal and then to infer the corresponding results for the solution of the SDE. This approach
has been firstly carried out in [18] for the multi-dimensional Wiener process under the p-variation
topology for p > 2. Later on, analogous results were proved under fine Hölder topologies by Friz
and Victoir [10] (see also [12]). General Banach space-valued Wiener processes were embedded
into the theory of rough paths by Ledoux et al. [17] in 2002. A series of articles by Inahama
and Kawabi [14, 15, 16] followed which was mainly motivated by its applicability to heat kernel
measures on loop spaces. Nowadays the theory of rough paths is well-established and we refer
the reader to the monographs [21], [23], and [11] for a general account on the topic.

Our results are manifold. First we establish a representation of the enhanced Wiener process as
limit of finite dimensional enhanced Wiener processes. This Itô-Nisio type theorem implies that
the enhanced Wiener process has the same scaling properties as the classical Wiener process.
For finite dimensional Wiener processes there are various ways to define the canonical rough
path (either as solution to a Stratonovich stochastic differential equation or via the limit of
certain smooth approximations, see for instance [11]) and it is thus conceived as a universal
object. Since we can freely approximate the enhanced infinite dimensional Wiener process by
finite dimensional approximations, also the infinite dimensional canonical rough path can be
seen as a universal object.

We derive a support theorem and a large deviation principle in fine Hölder topologies similar as
the one known for finite dimensional processes [10]. By doing so we extend results of [14] who
analyzed the problem under p-variation topology.

In general, the existence of the canonical rough path is not trivial (at least for projective tensor
products), and Ledoux et al. provide a sufficient criterion in [17]. We relate their concept of
finite dimensional approximation to entropy numbers of compact embeddings. Since these are
known for various embeddings [7, 8], we obtain a new sufficient criterion which can be easily
verified in many cases. We phrase its implications in the case where the state space of the
Wiener process is a Hölder-Zygmund space. Our main interest in the theory developed here is
its applicability to stochastic flows generated by Kunita type SDEs. Indeed, we will establish a
support theorem and a large deviation principle for Brownian flows in a forthcoming article [5].

We start with summarizing the results of the article. Here we introduce some notation rather in
an informal way in order to enhance readability. All notation will be introduced in great detail
at the end of this section.

Results

Let (V, | · |V ) be a separable Banach space, and let X = (Xt)t∈[0,1] denotes a V -valued Wiener
process on a probability space (Ω,F , P). More explicitly, X is measurable with respect to the
Borel sets of C([0, 1], V ) and satisfies, for 0 ≤ s < t ≤ 1,

• Xt − Xs is independent of σ(Xw : w ≤ s) and
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• L((t − s)−1/2(Xt − Xs)) = L(X1) is a centered Gaussian distribution.

We denote by (H1, | · |H1
) and (H, | · |H) the reproducing kernel Hilbert spaces of X1 and X =

(Xt)t∈[0,1]. Note that H can be expressed in terms of H1 as

H =
{∫ ·

0
ft dt : f ∈ L2([0, 1], H1)

}

,

where the integral is to be understood as Bochner integral. For a general account on Gaussian
distributions we refer the reader to the books by Lifshits [19] and Bogachev [2].

We let ϕ : (0, 1] → (0,∞) denote an increasing function with

lim
δ↓0

ϕ(δ)√
−δ log δ

= ∞ (1)

and consider the geometric ϕ-Hölder rough path space GΩϕ(V), which will be rigorously in-
troduced below. Moreover, X is assumed to possess a canonical rough path X in the sense of
assumption (E), see Section 2.

Theorem 1.1. X is almost surely an element of GΩϕ(V) and its range in that space is the
closure of the lift of the reproducing kernel Hilbert space H of X into GΩϕ(V).

Theorem 1.2. The family {Xε : ε > 0} with Xε being the canonical rough path of (ε ·Xt)t∈[0,1]

satisfies a LDP in GΩϕ(V) with good rate function

J(h) =

{
1
2 |h|2H if ∃h ∈ H with h = S(h),

∞ else,

where S denotes the canonical lift of H into GΩϕ(V).

Suppose now that the reproducing kernel Hilbert space H1 of X1 is infinite dimensional and fix
a complete orthonormal system (ei)i∈N of H1. We represent X as the in C([0, 1], V ) almost sure
limit

Xt = lim
n→∞

n∑

i=1

ξ
(i)
t ei, (2)

with {(ξ(i)
t )t∈[0,1] : i ∈ N} being an appropriate family of independent standard Wiener processes.

Theorem 1.3. Each X(n) = (
∑n

i=1 ξ
(i)
t ei)t∈[0,1] possesses a canonical rough path X(n), and one

has almost sure convergence
lim

n→∞
X(n) = X in GΩϕ(V).

Remark 1.4. The latter theorem can be proved in a more general setting. One can replace the
assumption that (ei) is a complete orthonormal system of the reproducing kernel Hilbert space
by the assumption that, for any h ∈ H1,

lim
n→∞

n∑

i=1

〈h, ei〉H1
ei = h.
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We proceed with a sufficient criterion for the existence property (E) for Hölder-Zygmund spaces.
For an open and bounded set D, for n ∈ N0, η ∈ (0, 1], and γ = n + η, we denote by Cγ

0 (D, Rd)
the set of n-times differentiable functions f : R

d → R
d whose derivatives are η-Hölder continuous

and satisfy the zero boundary condition

f
∣
∣
Dc = 0.

The space is endowed with a canonical norm ‖ · ‖Cγ , see (14).

Theorem 1.5. Let 0 < γ < γ̄ and D ⊂ D′ be bounded and open subsets of R
d with D̄ ⊂ D′.

Let µ be a centered Gaussian measure on C γ̄
0 (D, Rd). Then there exists a separable and closed

subset V ⊂ Cγ
0 (D′, Rd) and a V -valued Wiener process X = (Xt)t∈[0,1] satisfying the existence

property (E) and L(X1) = µ. For instance, one may choose V as the closure of H1.

Remark 1.6. In the theorem, the two Banach spaces C γ̄
0 (D, Rd) and Cγ

0 (D′, Rd) can be replaced
by arbitrary Banach spaces V1 and V2 for which V1 is compactly embedded into V2 and for which
the entropy numbers of the embedding decay at least at a polynomial order, see Section 5 for
the details. In particular, one can use the results of Edmunds and Triebel [7, 8] on embeddings
of Sobolev and Besov spaces.

Let us summarize the implications in a language that does not incorporate rough paths. Let W
denote a further Banach space, let f : W → L(V, W ) be a Lip(γ)-function for a γ > 2 in the
sense of [23, Def. 1.21]. For a fixed absolutely continuous path g : [0, 1] → V with differential in
L2([0, 1], V ), we consider the Young differential equation

dyt = f(yt) d
[
x + g

]

t
, y0 = ξ. (3)

By Picard’s theorem, the differential equation possesses a unique solution Ig(x) for any x ∈
BV(V ) (actually unique solutions exist under less restrictive assumptions).

For a V -valued Wiener process X and n ∈ N, we denote by X(n) the dyadic interpolation
of X with breakpoints Dn = [0, 1] ∩ (2−n

Z). We call Y the Wong-Zakai solution of (3) for the
control X, if {Ig(X(n)) : n ∈ N} is a convergent sequence in Cϕ([0, 1], W ) with limit Y .

As is well known Wong-Zakai solutions are tightly related to stochastic differential equations in
the Stratonovich sense: If the state space W is an M -type 2 Banach space and if dgt = v dt
for some v ∈ V , then the Wong-Zakai solution solves the corresponding Stratonovich stochastic
differential equation, see [3].

Theorem 1.7. Let X be a V -valued Wiener process with reproducing kernel Hilbert space H.
If property (E) is valid, then the following is true:

(I) X admits a Wong-Zakai solution Y of (3).

(II) For n ∈ N, let X(n) be as in Theorem 1.3 and denote by Y (n) the corresponding Wong-Zakai
solution of (3). Then {Y (n) : n ∈ N} converges almost surely to Y in Cϕ([0, 1], W ).

(III) The range of Y in Cϕ([0, 1], W ) is the closure of I(H).

(IV) For ε > 0, we let Y ε denote the Wong-Zakai solution of (3) for the control ε · X. Then
{Y ε : ε > 0} satisfies a large deviation principle in Cϕ([0, 1], W ) with speed (ε2)ε>0 and
good rate function

J(h) = inf
{1

2
‖x‖H : x ∈ H, Ig(x) = y

}
.

Here and elsewhere, the infimum of the empty set is defined as ∞.
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Agenda

The article is organized as follows. Sections 3 and 4 are concerned with the derivation of
Theorems 1.1 and 1.2, respectively. Section 2 has rather preliminary character. Here, we prove
a preliminary version of the representation provided by Theorem 1.3 (see Remark 3.3 for the
extension to the stronger statement). Moreover, we derive a Fernique type theorem together
with Lévy’s modulus of continuity. Section 5 is concerned with the proof of Theorem 1.5. Finally,
we explain the implications of the theory of rough paths (Theorem 1.7) in Section 6.

Notation

We start with introducing the (for us) relevant notation of the theory of rough paths. For a
profound background on the topic we refer the reader to the textbooks [23] and [11]. For two
Banach spaces V1 and V2 we denote by V1 ⊗a V2 the algebraic tensor product of V1 and V2.
Moreover, we let V1 ⊗V2 denote the projective tensor product, that is the completion of V1 ⊗a V2

under the projective tensor norm | · |V1⊗V2
given by

|v|V1⊗V2
= inf

n∑

i=1

|fi|V1
|gi|V2

,

where the infimum is taken over all representations

v =
n∑

i=1

fi ⊗ gi (n ∈ N, fi ∈ V1, gi ∈ V2 for i = 1, . . . , n).

From now on V denotes a separable Banach space. For a (continuous) piecewise linear function
x : [0, 1] → V , we may compute its iterated (Young) integrals

x1
s,t =

∫ t

s
dxu ∈ V,

x2
s,t =

∫

s<u1<u2<t
dxu1

⊗ dxu2
∈ V ⊗2,

(4)

and set xs,t = x1
s,t + x2

s,t ∈ V ⊕ V ⊗2, where (s, t) ∈ ∆ := {(s′, t′) : 0 ≤ s′ ≤ t′ ≤ 1}. As is well
known the iterated integrals satisfy the Chen condition:

x1
s,t = x1

s,u + x1
u,t and x2

s,t = x2
s,u + x2

u,t + x1
s,u ⊗ x1

u,t, for 0 ≤ s ≤ u ≤ t ≤ 1.

We need to consider the truncated tensor algebra. For ease of notation, we omit the real
component and set

V = V ⊕ V ⊗2.

It is endowed with the standard addition and the multiplication

u ∗ v = u1 + v1 + u2 + v2 + u1 ⊗ v1 = u + v + u1 ⊗ v1.

Using the convention u ⊗ v := u1 ⊗ v1 we also write

u ∗ v = u + v + u⊗ v.
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In terms of ∗ the Chen condition can be rewritten as

xs,t = xs,u ∗ xu,t.

We endow V and C(∆,V) with the norms

|u|V := |u1|V + |u2|V ⊗V and ‖x‖∞ = sup
(s,t)∈∆

|xs,t|V,

and call
Ω(V) = {(xs,t)(s,t)∈∆ ∈ C(∆,V) : x satisfies the Chen condition}.

the set of multiplicative functionals on V. It is a closed subset of C(∆,V). In the following,
we shall reserve the notation x = (xs,t)(s,t)∈∆ for V-valued multiplicative functionals. In the
context of rough path theory we mainly work with the following homogeneous norm on V

‖u‖ = |u1|V +
√

|u2|V ⊗2 .

It enjoys the following properties, for u,v ∈ V,

(i) ‖u‖ = 0 ⇔ u = 0

(ii) ‖δtu‖ = |t|‖u‖ for the dilation operator δtu = tu1 + t2u2 (t ∈ R)

(iii) ‖u‖ = ‖ − u‖

(iv) ‖u + v‖ ≤ ‖u‖ + ‖v‖.

We consider rough path spaces with Hölder norm topologies: Let ϕ : (0, 1] → (0,∞) be an
increasing function, and set, for x ∈ C(∆,V),

‖x‖ϕ = sup
0≤s<t≤1

‖xs,t‖
ϕ(t − s)

.

We denote by
Ωϕ(V) = {x ∈ Ω(V) : ‖x‖ϕ < ∞}

the set of ϕ-Hölder rough paths in V. It is equipped with the metric (x,y) 7→ ‖x−y‖ϕ. The set
is nontrivial whenever lim infδ↓0 ϕ(δ)/δ > 0 which we assume in the following without further
mentioning. Moreover, the set of geometric ϕ-Hölder rough paths is given by

GΩϕ(V) = {S(x) : x ∈ C([0, 1], V ) piecewise linear} ⊂ Ωϕ(V),

where S(x) = (xs,t)(s,t)∈∆ with xs,t as in (4), and the closure is taken with respect to ‖ · ‖ϕ.

Analogously, we denote by Cϕ([0, 1], V ) the Hölder space induced by ϕ that is the space of all
functions x : [0, 1] → V with finite Hölder norm

‖x‖ϕ = ‖x‖∞ + sup
0≤s<t≤1

|xs,t|V
ϕ(t − s)

,
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where we -as usual- denote xs,t = xt−xs and ‖x‖∞ = supt∈[0,1] |xt|V for functions x ∈ C([0, 1], V ).
Moreover, we denote by BV(V ) the set of all functions x ∈ C([0, 1], V ) with finite bounded
variation norm

‖x‖BV(V ) = ‖x‖∞ + sup
0≤t0<···<tn≤1

n∑

l=1

|xtl−1,tl |V .

Interpreting the integrals in (4) as Young integrals allows us to assign each path x ∈ BV(V ) to
a path S(x) := x ∈ Ω(V). Furthermore, we call x ∈ BV(V ) absolutely continuous if it admits
ẋ ∈ L1([0, 1], V ) with x0,t =

∫ t
0 ẋs ds.

We will make use of the following three operators: The dilation operator, which appeared already
above, is given by

δt : V → V, δt(u) = tu1 + t2u2, for t ∈ R,

and the logarithm which is defined by

log : V → V, v 7→ v − 1

2
v ⊗ v.

Both operators naturally extend to continuous functions that map C(∆,V) into itself via δt(x) =
(δt(xs,u))(s,u)∈∆ and logx = (logxs,t)(s,t)∈∆. Additionally, we consider the translation operator
on the set of multiplicative functionals which is defined for f ∈ BV(V ) by

Tf : Ω(V) → Ω(V), Tf (x)s,t = xs,t + fs,t +

∫ t

s
xs,u ⊗ dfu +

∫ t

s
fs,u ⊗ dxu +

∫ t

s
fs,u ⊗ dfu.

All integrals are well-defined Young integrals and restricting the translation operator to more
regular paths allows to relax the assumption on f . Note that the definition of Tf is motivated
by the following property: for x ∈ C([0, 1], V ) for which Γ(x) exists (in the sense that the limit
converges in Ω(V)) and f ∈ BV(V ) one has

Tf (Γ(x)) = Γ(x + f). (5)

Finally, we denote by πV : V → V and πV ⊗2 : V → V ⊗2 the projections onto the V - and
V ⊗2-component, respectively. In general, we use analogous notation for W -valued paths.

2 The canonical rough path

In this section, we introduce the canonical rough path (called enhanced Wiener process) as-
sociated to a Banach space-valued Wiener process. The main task will be to establish Lévy’s
modulus of continuity together with a Fernique type theorem.

As before we let X denote a Wiener process attaining values in a separable Banach space V .
Let Dn = (2−n

Z)∩ [0, 1] (n ∈ N0) and denote by X(n) the linear interpolation of X with dyadic
breakpoints Dn. Moreover, let X(n) = S(X(n)). The definition of the enhanced Wiener process
relies on the following assumption:

(E) There exists a Ω(V)-valued random element X such that

lim
n→∞

X(n) = X in L1(P; C(∆,V)).
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A sufficient criterion for property (E) is provided in [17]:

Definition 2.1. Let µ be a centered Gaussian measure on the Borel sets of the separable Banach
space V . For a fixed tensor product norm |·|V ⊗V the measure µ is called exact, if for independent
µ-distributed random elements Gl, G̃l (l ∈ N) and some constants C and α < 1 one has

E

∣
∣
∣

N∑

l=1

Gl ⊗ G̃l

∣
∣
∣
V ⊗V

≤ CNα

for all N ∈ N.

By [17, formula on page 566] property (E) is satisfied if the measure µ is exact with respect
to the projective tensor norm. From now on we assume that property (E) is satisfied without
further mentioning.
In general, we denote, for a path x ∈ C([0, 1], V ),

Γ(x) = lim
n→∞

S(x(n)), (6)

provided that the limit exists in C(∆,V). Here and elsewhere, we denote by x(n) the interpo-
lation of x with dyadic breakpoints Dn. The proposition below allows us to choose X = Γ(X)
as the canonical rough path (enhanced Wiener process) of X.

Proposition 2.2. The family (logX(n))n∈N is a C(∆,V)-valued martingale and one has

logX(n) = E[logX|Gn],

where Gn = σ(Xt : t ∈ Dn) = σ(X(n)). In particular,

lim
n→∞

X(n) = X, almost surely.

The proof is based on the following lemma.

Lemma 2.3. Let f = (ft)t∈[0,1] be a BV(V )-valued random element such that almost surely f
is a one dimensional excursion, that is dim

(
span(im(f))

)
= 1, almost surely. If the distribution

of f is symmetric in the sense that f
L
= −f and if E‖f‖2

BV(V ) < ∞, then for an arbitrary path

x ∈ Ω(V) we have
E
[
log Tf (x)

]
= logx.

Proof. According to the definition of log and the shift operator we have (with f = S(f))

log Tf (x)s,t = logxs,t + log fs,t

+
1

2

[∫ t

s
xs,u ⊗ dfu +

∫ t

s
fs,u ⊗ dxu −

∫ t

s
dxu ⊗ fs,u −

∫ t

s
dfu ⊗ xs,u

]

.

Due to the symmetry of the distribution of f we have

E

[∫ t

s
xs,u ⊗ dfu +

∫ t

s
fs,u ⊗ dxu −

∫ t

s
dxu ⊗ fs,u −

∫ t

s
dfu ⊗ xs,u

]

= 0.
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The expectation of the first component πV (log fs,t) vanishes for the same reason. The second
component of log fs,t is identically zero since f takes values in an one dimensional subspace of V .
Indeed, we can write ft = ξt · v for a V -valued random vector v and a real valued process (ξt).
Correspondingly, fs,t = ξs,t · v and therefore

πV ⊗V (log fs,t) =
1

2

[∫ t

s
fs,u ⊗ dfu −

∫ t

s
dfu ⊗ fs,u

]

=
1

2

[∫ t

s
ξs,u dξu −

∫ t

s
dξu ξs,u

]

v ⊗ v = 0.

�

Proof of Proposition 2.2. Note that ∆X(n) := X(n + 1) − X(n) can be written as the
sum of 2n independent symmetric one-dimensional excursions that are also independent of the
σ-algebra Gn. Applying Lemma 2.3 2n-times then gives that

E[logX(n + 1)s,t|Gn] = logX(n)s,t. (7)

Hence, for general k ∈ N, we have

E[logX(n + k)s,t|Gn] = logX(n)s,t

so that by Assumption (E)
E[logX|Gn] = log X(n).

In particular, log X(n) converges almost surely to logX in C(∆,V) (see for instance [6], Propo-
sition 5.3.20). The inverse of log (that is x 7→ (x + 1

2x ⊗ x)(s,t)∈∆) is continuous on C(∆,V),
and we also get that (X(n))n∈N converges to X. �

Finite dimensional approximation

Based on a complete orthonormal system (ei)i∈N of the reproducing kernel Hilbert space H1, we
establish a limit theorem for certain finite dimensional approximations to X. We represent X
as the in C([0, 1], V ) almost sure limit

Xt =
∞∑

i=1

ξ
(i)
t ei,

where ξ(i) = (ξ
(i)
t )t∈[0,1] (i ∈ N) are independent Wiener processes. For m ∈ N denote

X∗(m)t =
m∑

i=1

ξ
(i)
t ei.

Proposition 2.4. For X∗(m) = Γ(X∗(m)) (m ∈ N) one has

lim
m→∞

X∗(m) = X, almost surely in Ω(V). (8)
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Remark 2.5. The theorem yields that, for the enhanced Wiener process X,

Xs,t
L
= δ√t−s(X0,1), for (s, t) ∈ ∆,

where δ denotes the dilation operator. Indeed, this statement is true for R
d-valued Wiener

processes and it can be easily extended via (8).

Proof. We denote the n-th dyadic interpolation of X∗(m) by X∗(n, m) and let X∗(n, m) =
S(X∗(n, m)) and Gn,m = σ(X∗(n, m)). By Lemma A.3, one has, for n, m ∈ N,

| logX∗(n, m)s,t − logX(n)s,t|V ≤ 2n+2‖X∗(n, m) − X(n)‖∞(1 + ‖X∗(n, m)‖∞ + ‖X(n)‖∞).

Thus the Cauchy-Schwarz inequality implies together with the equivalence of moments of Gaus-
sian measures that

lim
m→∞

logX∗(n, m) = logX(n), in L1(P, C(∆,V)).

As in the proof of Proposition 2.2 one verifies that (logX∗(n, m))m∈N is a (Gn,m)m∈N-martingale
for any fixed n ∈ N. Hence,

logX∗(n, m) = E[logX(n)|Gn,m] = E[logX|Gn,m].

Recall that X∗(m) is a Wiener process for which

logX∗(m) = lim
n→∞

logX∗(n, m) = lim
n→∞

E[logX|Gn,m] = E[logX|G∞,m], in C(∆,V),

where G∞,m = σ(
⋃

n∈N
Gn,m). �

Lévy’s modulus of continuity

In the rest of this section, we derive Lévy’s modulus of continuity for the enhanced Wiener
process, that is X is almost surely an element of Ωφ(V), where φ : (0, 1] → (0,∞) is a fixed
increasing function with

lim
δ↓0

φ(δ)√
−δ ln δ

= 1.

Theorem 2.6. The canonical rough path X of the Wiener process X is almost surely an element
of Ωφ(V) and one has

Eeα‖X‖2
φ < ∞

for some α > 0.

Remark 2.7. Fernique’s theorem is also proven in [14] for p-variation topology. Moreover, finite
dimensional analogs can be found in [9].

We remark that a Fernique type result is already known to hold for p-variation norm under
the exactness assumption [14]. The proof of this assertion parallels a variant of the proof of
the classical statement. Basically our approach relies on the isoperimetric inequality and the
Garsia-Rodemich-Rumsey inequality and it is similar to the approach taken in [10].
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Lemma 2.8. For a multiplicative functional x ∈ Ω(V) and a function f ∈ BV(V ), one has

‖Tf (x)s,t‖ ≤ 2
[

sup
s≤u≤v≤t

‖xu,v‖ + ‖f‖BV([s,t],V )

]
, for (s, t) ∈ ∆,

where ‖f‖BV([s,t],V ) := sups≤t0<···<tn≤t |xtl−1,tl |V .

Proof. We set κ(s, t) = sups≤u≤v≤t ‖xu,v‖ and observe that πV (Tf (x)) = x1 + f so that

|πV (Tf (x)s,t)|V ≤ |x1
s,t|V + |fs,t|V ≤ |x1

s,t|V + ‖f‖BV([s,t],V ).

It remains to analyze the terms in V ⊗2 (the second level):

x2
s,t +

∫ t

s
fs,u ⊗ dxu +

∫ t

s
xs,u ⊗ dfu +

∫

s,t
fs,u ⊗ dfu.

Note that
∣
∣
∣

∫ t

s
xs,u ⊗ dfu

∣
∣
∣
V ⊗V

≤ κ(s, t) ‖f‖BV([s,t],V )

The same estimate is valid for |
∫ t
s fu ⊗ dxs,u|V ⊗V . Moreover, one has

∣
∣
∣

∫

s,t
fs,u ⊗ dfu

∣
∣
∣
V ⊗V

≤ ‖f‖2
BV([s,t],V )

so that
|πV ⊗2(Tf (x)s,t)|V ⊗V ≤ |x2

s,t|V ⊗V + (κ(s, t) + ‖f‖BV([s,t],V ))
2.

Finally, combining all estimates gives

‖Tf (x)s,t‖ ≤ ‖xs,t‖ + κ(s, t) + 2‖f‖BV([s,t],V ).

�

Corollary 2.9. For an increasing function ϕ : (0, 1] → (0,∞) with 1
α := infδ∈(0,1] ϕ(δ)/

√
δ > 0,

one has for all x ∈ Ωϕ(V) and f absolutely continuous with ḟ ∈ L2([0, 1], V ),

‖Tf (x)‖ϕ ≤ 2
[
α ‖x‖ϕ + ‖ḟ‖L2([0,1],V )

]

and
‖Tf (x)0,1‖ ≤ 2

[
sup

0≤s≤t≤1
‖xs,t‖ + ‖ḟ‖L2([0,1],V )

]
.

Proof. The proof is an immediate consequence of Lemma 2.8 and the estimate

‖f‖BV([s,t],V ) ≤
√

t − s ‖ḟ‖L2([0,1],V ) ≤ α ϕ(t − s) ‖ḟ‖L2([0,1],V ).

�

Next, we apply the isoperimetric inequality for Gaussian measures together with the above
estimates to infer the following Lemma.
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Lemma 2.10. There exists α > 0 with

Eeα‖X0,1‖2

< ∞.

Moreover, if X is in Ωφ(V) with positive probability, then there exists β > 0 such that

Eeβ‖X‖2
φ < ∞.

Proof. Fix δ > 0 sufficiently large such that

P(X ∈ A) ≥ 1/2

for
A =

{
x ∈ C([0, 1], V ) : Γ(x) exists and ‖x‖∞ ≤ δ

}
.

Recall that H is the reproducing kernel Hilbert space of X, and thus we get with the isoperimetric
inequality that for r ≥ 0

P(X ∈ A + BH(0, r)
︸ ︷︷ ︸

=:Ar

) ≥ Φ(r),

where Φ is the standard normal distribution function. By (5) and Corollary 2.9, we have for
z = x + h ∈ Ar with x ∈ A and h ∈ BH(0, r),

‖Γ(z)0,1‖ = ‖Th(Γ(x))0,1‖ ≤ 2[δ + σr],

where σ is the norm of the canonical embedding of H1 into V . Hence, we can couple ‖X0,1‖
with a standard normal random variable N such that ‖X0,1‖ ≤ 2[δ + σ(N ∨ 0)] and Fernique’s
theorem implies the first assertion. The second assertion is proved analogously. �

Proposition 2.11. One has X ∈ Ωφ(V), almost surely.

This proposition implies together with Lemma 2.10 the assertion of Theorem 2.6.

Proof. The proof is based on the Garsia-Rodemich-Rumsey Lemma [13] and since it is classical
we only focus on the crucial facts that allow us to apply the argument.
By Lemma A.1 in the appendix, ‖ · ‖ possesses an equivalent norm ||| · ||| which satisfies the
triangle inequality with respect to the group operation ∗. Moreover, one infers from the scaling
property of the Wiener process (Remark 2.5) and Lemma 2.10 that

Eeα(t−s)−1|||Xs,t|||2 = Eeα|||X0,1|||2 < ∞

for a α > 0. The rest of the proof can be literally translated from classical proofs of that result
(see for instance [10]). �
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3 Support Theorem

Again we assume the validity of property (E), and let ϕ : (0, 1] → (0,∞) be an increasing
function satisfying (1). The objective of this section is to prove the following support theorem
for the enhanced Wiener process:

Theorem 3.1. If X is a V -valued Wiener process satisfying Assumption (E), then X is almost
surely an element of GΩϕ(V) and its range (in GΩϕ(V)) is the closure of S(H), where H is
again the RKHS of X.

Again we denote by ϕ, φ : (0, 1] → (0,∞) an increasing functions with limδ↓0
φ(δ)√
−δ log δ

= 1. For

x ∈ C(∆,V) we set

|||x|||ϕ = sup
0≤s<t≤1

[ |x1
s,t|V

ϕ(t − s)
+

|x2
s,t|V ⊗2

ϕ(t − s)2

]

and we consider the space

Cϕ(∆,V) = {(xs,t)(s,t)∈∆ ∈ C(∆,V) : |||x|||ϕ < ∞}

endowed with the norm ||| · |||ϕ. It is a (non-separable) Banach space. Clearly, the distances
‖·‖ϕ and ||| · |||ϕ generate the same topology on GΩϕ(V) ⊂ Cϕ(∆,V). The proof of Theorem 3.1
relies on the following theorem.

Theorem 3.2. One has almost sure convergence

lim
n→∞

X(n) = X in GΩϕ(V). (9)

Remark 3.3. Theorem 3.2 is an extension of Proposition 2.2. With the same techniques we
can strengthen the statement of Proposition 2.4 in order to get Theorem 1.3.

The following criterion allows us to verify convergence in GΩϕ(V) (see [10] for a similar criterion
in the finite dimensional setting).

Lemma 3.4. Let x(n) (n ∈ N) and x be elements of Cφ(∆,V). If

• supn∈N |||x(n)|||φ < ∞ and

• (x(n))n∈N converges to x in C(∆,V),

then (x(n))n∈N converges in Cϕ(∆,V) to x.

Proof. Set η(t) := φ(t)/ϕ(t) (t ∈ [0, 1]) and note that for M = |||x|||φ ∨ supn∈N |||x(n)|||φ

|x(n)1s,t − x1
s,t|V ≤ 2Mφ(t − s) = 2Mη(t − s)ϕ(t − s).

On the other hand,

|x(n)1s,t − x1
s,t|V ≤ |||x(n) − x|||∞

ϕ(t − s)
ϕ(t − s),
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where |||·|||∞ denotes the supremum norm |||x|||∞ = sup(s,t)∈∆ |xs,t|V. Recall that η(t) converges
to 0 for t ↓ 0 so that for arbitrary ε > 0 there exists ζ ∈ (0, 1) with η(ζ) ≤ ε/(2M). We apply
the first estimate in the case where t − s ≤ ζ and apply the second estimate otherwise:

|x(n)1s,t − x1
s,t| ≤

[

ε ∨ |||x(n) − x)|||∞
ϕ(ζ)

]

ϕ(t − s).

Thus
lim sup

n→∞
|||x(n)1 − x1|||ϕ ≤ ε.

Analogously, one shows that lim supn→∞ |||x(n)2 − x2|||ϕ ≤ ε so that the assertion follows by
the triangle inequality and by noticing that ε > 0 is arbitrary. �

From now on we denote for n ∈ N by Υn the canonical embedding of C(Dn, V ) into C([0, 1], V )
which linearly interpolates the values at the breakpoints Dn = (2−n

Z)∩[0, 1]. With slight misuse
of notation we sometimes also apply Υn on functions in C([0, 1], V ).

Proof of Theorem 3.2. By Proposition 2.2, one has

E[logX|Gn] = logX(n)

and we apply Jensen’s inequality [6, Thm. 5.1.15] to get

||| logX(n)|||φ = |||E[logX(n + 1)|Gn]|||φ ≤ E[||| logX(n + 1)|||φ|Gn] ≤ E[||| logX|||φ|Gn]. (10)

Hence, (||| logX(n)|||φ)n∈N∪{∞} is a submartingale with

E||| logX(n)|||φ ≤ E||| logX|||φ ≤ E|||X|||φ + 2E|||X|||2φ < ∞.

Here, we used the general inequality ||| logx|||φ ≤ |||x|||φ + 2|||x|||2φ and Theorem 2.6. Conse-
quently, the submartingale converges almost surely to a finite value so that supn∈N |||X(n)|||φ is
almost surely finite, and the statement is an immediate consequence of Lemma 3.4. �

Next, we consider X̄(−n) = X − X(n) for n ∈ N0 together with its enhanced process

X̄(−n) = T−X(n)X = Γ(X̄(n)).

Lemma 3.5. The sequence (log X̄(k))k∈−N0
is a Cϕ(∆,V)-valued (Ḡk)-martingale, where Ḡk =

σ(X̄(k)) (k ∈ −N0). Moreover, one has

lim
k→−∞

X̄(k) = 0, almost surely.

Proof. Set ∆Xk = X(k +1)−X(k) and Ḡk = σ(X̄k). Notice that as in the proof of Lemma 3.2
the processes ∆Xk are independent of Ḡk and they can be written as a finite sum of one dimen-
sional symmetric excursions so that

log X̄(k) = E[log X̄(k + 1)|Ḡk].

Hence, (log X̄(k))k∈−N0
defines a Cϕ(∆,V)-valued martingale. Applying a convergence theorem

for reversed martingales (see for instance [6, p. 213]) we obtain almost sure convergence

lim
k→−∞

log X̄(k) = E[logX|Ḡ−∞],
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in Cϕ(∆,V), where Ḡ−∞ =
⋂

k∈−N
Ḡk. Since Ḡ−∞ is a tail σ-field it only contains 0-1-events.

Thus using the symmetry of logX the limit has to be zero. �

We are now in a position to prove the support theorem.

Proof of Theorem 3.1. Let X(n) and X̄(n) be as above. We use the standard notation for
their enhanced processes and abridge Ωϕ = Ωϕ(V ). As a consequence of the standard support
theorem and Lemma A.3 one has

range Ωϕ
(X(n)) = range Ωϕ

(S ◦ Υn(X)) = S ◦ Υn(H)
Ωϕ ⊂ S(H)

Ωϕ
.

By Theorem 3.2, the family (X(n))n∈N converges almost surely in Ωϕ(V) to X so that

range Ωϕ
(X) ⊂ S(H)

Ωϕ
.

For the converse statement fix f ∈ H and let f = S(f). Due to the continuity of Tf and T−f

(see Lemma A.2) one has
∀ε > 0 : P (X ∈ BΩϕ(f , ε)) > 0

if and only if
∀ε > 0 : P (T−fX ∈ BΩϕ(0, ε)) > 0.

Due to the Cameron Martin Theorem the latter statement is equivalent to

∀ε > 0 : P (X ∈ BΩϕ(0, ε)) > 0

On the other hand, we have X = TX(n)(X̄(n)), and by Corollary 2.9 there exists a constant
c = c(ϕ) such that for any ε > 0:

P(‖X‖ϕ ≤ 2cε) ≥ P(‖X̄(n)‖ϕ ≤ ε, ‖Ẋ(n)‖L2([0,1],V ) ≤ ε)

≥ P(‖X̄(n)‖ϕ ≤ ε)
︸ ︷︷ ︸

→1 (n→∞)

P(‖Ẋ(n)‖L2([0,1],V ) ≤ ε)
︸ ︷︷ ︸

>0

.

In the last step we have used the independence of X(n) and X̄(n). �

4 Large deviations

Let again X denote a V -valued Wiener process satisfying Assumption (E) with enhanced pro-
cess X. For ε > 0 let Xε = (Xε

t )t∈[0,1] = (εXt)t∈[0,1] and recall that the family {Xε : ε > 0}
satisfies a large deviation principle in C([0, 1], V ) with good rate function

J(h) =

{
1
2‖h‖2

H if h ∈ H

∞ else.

The aim of this section is to prove

Theorem 4.1. The family {Xε : ε > 0} given by Xε = (δε(Xt))t∈[0,1] = Γ(Xε) satisfies a LDP
in GΩϕ(V) with good rate function

J(h) =

{
1
2‖h‖2

H if ∃h ∈ H with h = S(h),

∞ else.
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Similarly as in [17] and [10], the proof uses the concept of exponentially good approximations.
It mainly relies on the isoperimetric inequality and the following estimate.

Lemma 4.2. Let n ∈ N, and denote by h : [0, 1] → V a absolutely continuous function with
ḣ ∈ L2([0, 1], V ). Set f = Υn(h) and g = h − f . There exists a universal constant C such that
for x,y ∈ Ωϕ(V) and κ = ‖x‖ϕ + ‖y‖ϕ, one has

‖Th(x) − Tf (y)‖ϕ ≤
(
1 + 2

β

βn

)
(‖x‖ϕ + ‖y‖ϕ) + 4βn‖ḣ‖L2([0,1],V ),

where β = supδ∈(0,1]

√
δ

ϕ(δ) and βn = supδ∈(0,1∧21−n/2]

√
δ

ϕ(δ) → 0 as n → ∞.

Proof. We denote x = x1, y = y1, f = Υn(h) and g = h − f . By Jensen’s inequality
one has ‖ḟ‖L2([0,1],V ) ≤ ‖ḣ‖L2([0,1],V ) and thus the triangle inequality gives that ‖ġ‖L2([0,1],V ) ≤
2‖ḣ‖L2([0,1],V ). Moreover,

Th(x)s,t − Tf (y)s,t = xs,t + S(f + g)s,t +

∫ t

s
(f + g)s,u ⊗ dxu +

∫ t

s
xs,u ⊗ d(f + g)u

− ys,t − S(f)s,t −
∫ t

s
fs,u ⊗ dyu −

∫ t

s
ys,t ⊗ dfu

= xs,t − ys,t + gs,t +

∫ t

s
hs,u ⊗ dgu +

∫ t

s
gs,u ⊗ dfu

+

∫ t

s
fs,u ⊗ d(x − y)u +

∫ t

s
gs,u ⊗ dxu

+

∫ t

s
(x − y)s,u ⊗ dfu +

∫ t

s
xs,u ⊗ dgu.

(11)

We need to control the norms of each single term above. We start with |
∫ t
s hs,u ⊗ dgu|V ⊗2 .

Clearly,

∣
∣
∣

∫ t

s
hs,u ⊗ dgu

∣
∣
∣
V ⊗2

≤ ‖hs,·‖L∞([s,t],V )‖ġ‖L1([s,t],V ) ≤ 2(t − s)‖ḣ‖2
L2([s,t],V ).

For t − s ≥ 2−n one can refine this estimate as follows. Let s ≤ t0 ≤ · · · ≤ tN ≤ t with
{t0, . . . , tN} = Dn ∩ [s, t], and observe that

∣
∣
∣

∫ t

s
hs,u ⊗ dgu

∣
∣
∣
V ⊗2

≤
∣
∣
∣

∫ t0

s
hs,u ⊗ dgu

∣
∣
∣
V ⊗2

+
N−1∑

i=0

∣
∣
∣

∫ ti+1

ti

hs,u ⊗ dgu

∣
∣
∣
V ⊗2

+
∣
∣
∣

∫ t

tN

hs,u ⊗ dgu

∣
∣
∣
V ⊗2

Since t0 − s ≤ 2−n the first term is bounded by 2−n+1‖ḣ‖2
L2([s,t0],V ). For v ∈ V one has

∫ ti+1

ti
v ⊗ dgu = 0 so that

∣
∣
∣

∫ ti+1

ti

hs,u ⊗ dgu

∣
∣
∣
V ⊗2

=
∣
∣
∣

∫ ti+1

ti

hti,u ⊗ dgu

∣
∣
∣
V ⊗2

≤ 2−n+1‖ḣ‖2
L2([ti,ti+1],V ).

Moreover, the remaining term is bounded by

∣
∣
∣

∫ t

tN

hs,u ⊗ dgu

∣
∣
∣
V ⊗2

≤ ‖hs,·‖L∞([s,t],V )‖ġ‖L1([tN ,t],E) ≤ 2−n/2+1‖ḣ‖2
L2([0,1],V ).
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Combining the above estimates yields

∣
∣
∣

∫ t

s
hs,u ⊗ dgu

∣
∣
∣
V ⊗2

≤ 2(2−n + 2−n/2)‖ḣ‖2
L2([0,1],V ) ≤ 2−n/2+2‖ḣ‖2

L2([0,1],V )

so that in general

∣
∣
∣

∫ t

s
hs,u ⊗ dgu

∣
∣
∣
V ⊗2

≤ 2
[
(t − s) ∧ 21−n/2

]
‖ḣ‖2

L2([0,1],V ).

Similarly, one finds the same estimate for
∫ t
s gs,u ⊗ dfu and

|gs,t|V ≤ 2
√

(t − s) ∧ 21−n ‖ḣ‖L2([0,1],V ).

We proceed with the next term in (11):

∣
∣
∣

∫ t

s
fs,u⊗ d(x−y)u

∣
∣
∣
V ⊗2

≤ ϕ(t−s)
√

t − s ‖x−y‖ϕ‖ḣ‖L2([0,1],V ) ≤ 2κϕ(t−s)
√

t − s ‖ḣ‖L2([0,1],V ),

where κ := ‖x‖ϕ + ‖y‖ϕ. Analogously one finds that also the remaining three terms from
(11) have norm smaller or equal to 2κϕ(t − s)

√
t − s ‖ḣ‖L2([0,1],V ). We now combine the above

estimates:

‖Th(x)s,t − Tf (y)s,t‖ ≤ κϕ(t − s) + 2
√

(t − s) ∧ 21−n ‖ḣ‖L2([0,1],V )

+ 2
√

[(t − s) ∧ 21−n/2]‖ḣ‖2
L2([0,1],V )

+ 2κϕ(t − s)
√

t − s ‖ḣ‖L2([0,1],V ).

Next, we use that
√

(t − s) ∧ 21−n/2 ≤ βnϕ(t − s) to conclude that

‖Th(x)s,t − Tf (y)s,t‖ ≤
(

κ + 2βn‖ḣ‖L2([0,1],V ) + 2
√

β2
n‖ḣ‖2

L2([0,1],V )
+ 2κβ‖ḣ‖L2([0,1],V )

)

ϕ(t − s)

≤
[(

1 + 2
β

βn

)
κ + 4βn‖ḣ‖L2([0,1],V )

]

ϕ(t − s).

�

Proof of Theorem 4.1. We will use the concept of exponentially good approximations. Recall
that by Lemma A.3, the map S ◦ Υn : C([0, 1], E) → GΩϕ(E) is continuous. Therefore, the
processes Xε(n) = S(Xε(n)) (ε > 0) satisfy a large deviation principle with good rate function

Jn(h) =

{
1
2‖h‖2

H if ∃h ∈ H : h = S(h) and h = Υn(h)

∞ else.

It remains to show that the approximation is exponentially good ([4, Thm. 4.2.23]), in the sense
that for every δ > 0,

lim
n→∞

lim sup
ε↓0

ε2 log P(dϕ(Xε,Xε(n)) > δ) = −∞ (12)

and that for every α > 0,

lim
n→∞

sup
{

dϕ(S(x), S(Υn(x))) : x ∈ H, ‖x‖H ≤ α
}

= 0. (13)
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We start with verifying (12). Recall that we can fix κ > 0 such that

P(X ∈ A) ≥ 1

2

for
A =

{

x ∈ C([0, 1], V ) : x0 = 0, Γ(x) exists, ‖Γ(x)‖ϕ + sup
n∈N

‖Υn(x)‖ϕ ≤ κ
}

.

With the isoperimetric inequality we conclude that P(X ∈ Ar) ≥ Φ(r) for the sets

Ar = A + BH(0, r) (r ≥ 0).

Here Φ denotes again the standard normal distribution function. By Lemma 4.2 it follows that
for z = x + h ∈ Ar (with x ∈ A and h ∈ BH(0, r)):

‖z − z(n)‖ϕ = ‖Th(x) − Tf (x(n))‖ϕ ≤ C
[
βnσ‖h‖H + κ(1 + β/βn)

]
,

where β and βn → 0 are as in the lemma and σ is the norm of the canonical embedding of
H1 into V . Hence, we can find a standard normal random variable N (on a possibly larger
probability space) such that for any n ∈ N:

‖X− X(n)‖ϕ ≤ C
[
βnσN+ + κ(1 + β/βn)

]
,

where N+ = N ∨ 0. Now choose αn = 1
3(C2σ2β2

n)−1. Then limn→∞ αn = ∞ and

Cn := Eeαn‖X−X(n)‖2
ϕ ≤ E[exp{αnC2(βnσN+ + κ(1 + β/βn))2}]

= E[exp{1
3N2

+ + O(N+)}] < ∞.

By Chebychev’s inequality we get for η ≥ 0

P(‖X− X(n)‖ϕ ≥ η) ≤ Cne−αnη2

and hence

lim sup
η→∞

1

η2
log P(‖X− X(n)‖ϕ ≥ η) ≤ −αn → −∞ as n → ∞.

Now assertion (12) is a consequence of

‖Xε − Xε(n)‖ϕ = ‖δε(X) − δε(X(n))‖ϕ = ‖δε(X −X(n))‖ϕ = ε ‖X − X(n)‖ϕ

Finally note that (13) is an immediate consequence of Lemma 4.2. Indeed, for h ∈ H and
f = Υn(h) one gets

‖S(h) − S(f)‖ϕ = ‖Th(0) − Tf (0)‖ϕ ≤ 3βn‖ḣ‖L2([0,1],E) ≤ 3σβn‖ḣ‖H

with limn→∞ βn = 0. �
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5 A sufficient criterion for exactness

In this section we introduce a new sufficient criterion for the exactness of a Gaussian random
vector attaining values in a Hölder-Zygmund space.
For n ∈ N and for a n-times continuously differentiable function f : R

d → R
d, we set

‖f‖Cn =
∑

|α|≤n

sup
x∈Rd

|∂αf(x)|,

where the sum is taken over all multiindices α with entries in {1, . . . , d} of length smaller or
equal to n. Moreover, for γ = n + η with n ∈ N0 and η ∈ (0, 1], and an n-times continuously
differentiable function f : R

d → R
d, we consider the Hölder-Zygmund norm of order γ

‖f‖Cγ = ‖f‖Cn +
∑

|α|=n

sup
x6=y

|∂αf(x) − ∂αf(y)|
|x − y|η . (14)

and we denote by Cγ
0 (D, Rd) (D ⊂ R

d open) the set of n-times continuously differentiable
functions satisfying

f
∣
∣
Dc ≡ 0 and ‖f‖Cγ < ∞.

It is endowed with the norm ‖ · ‖Cγ .

Theorem 5.1. Let 0 ≤ γ < γ̄ and let D, D′ ⊂ R
d denote bounded open sets with D ⊂ D′.

Every centered Gaussian measure µ on C γ̄
0 (D, Rd) is exact and Bochner measurable when viewed

as Gaussian measure on Cγ
0 (D′, Rd).

The proof is based on the concept of finite dimensional approximation introduced in [17]. For
a Banach space V (not necessarily separable) and a V -valued random vector Y , we denote the
linear average Kolmogorov widths of Y by

ℓn(Y ) = ℓV
n (Y ) = inf

{

E|Y − Tn(Y )|V : Tn : V → V linear, rk(Tn) ≤ n
}

(n ∈ N).

Lemma 5.2. Let Y be a V -valued Gaussian random vector and suppose that ℓn(Y ) - n−ε for
some ε > 0. Then Y is exact and Bochner measurable in V .

Proof. Since ℓn(Y ) decays to zero Y is Bochner measurable. Without loss of generality we
assume that V is infinite dimensional. Let G1 be a µ-distributed r.v. For fixed n ∈ N there
exists a bounded operator Tn : V → V with n-dimensional range and

E|G1 − Tn(G1)| ≤ 2ℓn(Y ) =: ε(n).

Set F1 := Tn(G1) and observe that there are n independent standard normals ξ1
1 , . . . , ξ

1
n and n

vectors e1, . . . , en ∈ V such that

F1 =

n∑

i=1

ξ1
i ei.

Moreover, set H1 = G1 − F1.
Then for each i = 1, . . . , n one has

√

2/π |ei|V = E|ξ1ei| ≤ E|F1| ≤ E|G1| + E|H1| ≤ C,
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where C := C(Y ) := 2ℓ1(Y ) + E|Y | does only depend on the distribution of Y .
Let now (Gl, Fl, Hl, (ξ

l
i)i=1,...,n)l≥2 and (G̃l, F̃l, H̃l, (ξ̃

l
i)i=1,...,n)l∈N denote independent copies of

(G1, F1, H1, (ξ
1
i )i=1,...,n). Then

N∑

l=1

Gl ⊗ G̃l =
N∑

l=1

Fl ⊗ F̃l +
N∑

l=1

Fl ⊗ H̃l +
N∑

l=1

Hl ⊗ F̃l +
N∑

l=1

Hl ⊗ H̃l (15)

and

E

∣
∣
∣

N∑

l=1

Fl ⊗ F̃l

∣
∣
∣
V ⊗2

≤
n∑

i=1

n∑

j=1

E

∣
∣
∣

N∑

l=1

ξl
iξ̃

l
j

∣
∣
∣ |ei ⊗ ej |V ⊗2 .

Using that E
∣
∣
∑N

l=1 ξl
iξ̃

l
j

∣
∣ ≤

√
N we arrive at

E

∣
∣
∣

N∑

l=1

Fl ⊗ F̃l

∣
∣
∣
V ⊗2

≤ d2
√

N max
i=1,...,n

|ei|2V ≤ π

2
C2d2

√
N. (16)

On the other hand,

E

∣
∣
∣

N∑

l=1

Fl ⊗ H̃l

∣
∣
∣
V ⊗2

≤ NE|F1|E|H̃1| ≤ Nε(n)E|F1| ≤ CNε(n) (17)

The same estimate holds for E|
∑N

l=1 Hl ⊗ F̃l|V ⊗2 . Finally, the last term in (15) is bounded by

E

∣
∣
∣

N∑

l=1

Hl ⊗ H̃l

∣
∣
∣
V ⊗2

≤ N(E|H1|)2 ≤ Nε(n)2 (18)

When choosing n = n(N) = ⌊N1/(4+2ε)⌋ and letting n tend to infinity one obtains with (16),
(17) and (18) that

E

∣
∣
∣

N∑

l=1

Gl ⊗ G̃l

∣
∣
∣ - N (4+ε)/(4+2ε), as N → ∞,

which implies exactness. �

In the forthcoming proof of Theorem 5.1, we use a result by Pisier [25] that provides an estimate
for the average Kolmogorov width against entropy numbers of generating operators. For two
Banach spaces E and V , and a compact operator ρ : E → V we define the n-th entropy number
as

en(ρ) = inf
{

ε > 0 : u(BE(0, 1)) ⊂
2n−1

⋃

j=1

BV (bj , ε) for some b1, . . . , b2n−1 ∈ V
}

.

Proof of Theorem 5.1. We denote by ρ the canonical embedding of the reproducing kernel
Hilbert space of Y into C γ̄

0 (D, Rd). By Pajor and Tomczak-Jaegermann [24], one has

en(ρ) - n−1/2.
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The asymptotic behavior of the entropy numbers for general Besov embeddings were studied by
Edmunds and Triebel [7, 8]. In particular, one has for the canonical embedding ̺ : C γ̄

0 (D, Rd) →
Cγ

0 (D′, Rd) that

en(̺) ≍ n− γ̄−γ
d .

Combining the above estimates with the general estimate ek+l−1(̺ ◦ ρ) ≤ ek(̺) el(ρ) (k, l ∈ N0)
gives

en(̺ ◦ ρ) - n− 1

2
− γ̄−γ

d .

Now note that ̺◦ρ generates the Gaussian random element Y on Cγ
0 (D′, Rd). In order to control

ℓ(Y ) we use a result of Pisier ([25], Theorem 9.1, p.141) combined with the duality of metric
entropy found in [1]:

ℓn(Y ) ≤ C1

∑

k≥C2n

k−1/2(log k)ek(̺ ◦ ρ)

for two universal constants C1, C2 > 0. Combining this estimate with the above result on the
entropy numbers gives

ℓn(Y ) - n− γ̄−γ
d log n.

�

6 Consequences of Lyons’ universal limit theorem

In this section, we use Lyons’ universal limit theorem together with our findings to derive
Theorem 1.7. Let V and W denote two Banach spaces and let f : W → L(V, W ) a Lip(γ)-
function for a γ > 2 in the sense of [23, Def. 1.21]. As in the introduction, Ig denotes the
solution operator for controls x ∈ BV(V ) to the differential equation

dyt = f(yt) d[x + g]t, y0 = ξ,

where g ∈ C([0, 1], V ) is an absolutely continuous function with ġ ∈ L2([0, 1], V ).
Next, fix a real p ∈ (2, 3 ∧ γ) and an increasing function ϕ̄ : (0, 1] → (0,∞) that is dominated
by ϕ and satisfies limδ↓0

−δ log δ
ϕ̄(δ) = 0 such that ϕ̄p is convex. By Lemma A.4, there always exists

an appropriate ϕ̄ and since Cϕ̄([0, 1], W ) is continuously embedded into Cϕ([0, 1], W ), it suffices
to prove Theorem 1.7 in Cϕ̄([0, 1], W ).

By choice of ϕ̄ the space GΩϕ̄(V) is continuously embedded into GΩp(V), where GΩp(V) denotes
the space of all geometric rough paths induced by the p-variation norm. Hence, the universal
limit theorem (see for instance [23, Thm. 5.3]) implies that the rough path differential equation

dyt = f(yt) dxt, y0 = idD

induces a continuous solution operator I : GΩϕ̄(V) → GΩϕ̄(W) (Itô map) and the following
diagram commutes for any piecewise linear V -valued path x:

x
Tg // xg

I0 // y

ξ+πW (·)
��

x

S

OO

I // y
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Assuming Assumption (E), the processes {X(n) : n ∈ N} converge in GΩϕ̄(V ) to X. By the
continuity of Tg : GΩϕ̄(V ) → GΩϕ̄(V ) (Lemma A.2), I : GΩϕ̄(V ) → GΩϕ̄(W ) (Lyons’ universal
limit theorem), and ξ + πW (·) : GΩϕ̄(W ) → Cϕ̄([0, 1], W ), we conclude that {Y (n) : n ∈ N}
converges to ξ + πW ◦ I0 ◦ Tg(X) which is statement (I) of the theorem. Assertions (II), (III),
and (IV) are now immediate consequences of Theorems 1.3, 1.1, and 1.2, respectively.

A Preliminary results

For u ∈ V we set

|||u||| = inf
n∑

i=1

‖ui‖, (19)

where the infimum is taken over all representations u =
∏n

i=1 ui with n ∈ N and u1, . . . ,un ∈ V

arbitrary.

Lemma A.1. • ||| · ||| satisfies the triangle inequality with respect to ∗.

• For t ∈ R and u ∈ V, one has |||δtu||| = |t| |||u|||.

• Moreover, ‖ · ‖ and ||| · ||| are equivalent:

|||u||| ≤ ‖u‖ ≤ 2|||x|||.

Proof. The proof of the first two statements is straight forward and we only present the proof of
the third statement. Let u =

∏n
i=1 ui. Then u1 =

∑n
i=1 u1

i and |u1|V ≤
∑n

i=1 |u1
i |V . Moreover,

since u2 =
∑n

i=1 u2
i +

∑

i<j u1
i ⊗ u1

j we get

√

|u2|V ⊗V =

√
√
√
√

∣
∣

n∑

i=1

u2
i +

∑

i<j

u1
i ⊗ u1

j

∣
∣
V ⊗V

≤

√
√
√
√

n∑

i=1

|u2
i |V ⊗V +

(
n∑

i=1

|u1
i |V

)2

≤
n∑

i=1

(
|u1

i |V +
√

|u2
i |V ⊗V

)
=

n∑

i=1

‖ui‖

so that ‖u‖ ≤ 2|||u|||. �

Lemma A.2. Let f ∈ C([0, 1], V ) be absolutely continuous with ḟ ∈ L2([0, 1], V ) and let ϕ :

(0, 1] → (0,∞) be an increasing function with infδ∈(0,1]
ϕ(δ)√

δ
> 0. Then the shift operator

Tf : Ωϕ(V) → Ωϕ(V)

is continuous.
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Proof. For x,y ∈ Ωϕ(V), one has

Tf (x)s,t − Tf (y)s,t = xs,t − ys,t +

∫ t

s
fs,u ⊗ d(x − y)u +

∫ t

s
(x − y)s,u ⊗ dfu,

where x = πV (x) and y = πV (y). The process f is of bounded variation, and one has

∣
∣
∣

∫ t

s
fs,u ⊗ d(x − y)u

∣
∣
∣
V ⊗V

≤ ‖ḟ‖L1([0,1],V ) sup
s≤u≤v≤t

|xu,v − yu,v|V .

Next, recall that ‖ḟ‖L1([s,t],V ) ≤
√

t − s‖ḟ‖L2([0,1],V ) and that, by assumption, there exists a

constant c = c(ϕ) with
√

t − s ≤ c ϕ(t − s). Consequently,

∣
∣
∣

∫ t

s
fs,u ⊗ d(x − y)u

∣
∣
∣
V ⊗V

≤ c ‖ḟ‖L2([0,1],V ) ‖x − y‖ϕ ϕ(t − s)2,

and
∥
∥
∥

(∫ t

s
fs,u ⊗ d(x − y)u

)

(s,t)∈∆

∥
∥
∥

ϕ
≤

√

c ‖ḟ‖L2([0,1],V ) ‖x− y‖ϕ.

Analogously one finds the same estimate for ‖
(∫ t

s (x − y)s,u ⊗ dfu

)

(s,t)∈∆
‖ϕ so that

‖Tf (x) − Tf (y)‖ϕ ≤ ‖x − y‖ϕ + 2
√

c ‖ḟ‖L2([0,1],V ) ‖x − y‖ϕ.

�

Lemma A.3. For n ∈ N, the maps

S ◦ Υn : C(Dn, V ) → GΩϕ(V) and log ◦S ◦ Υn : C(Dn, V ) → Cϕ(∆,V)

are continuous. Moreover, for x, y ∈ C([0, 1], V ), x = S ◦ Υn(x), and y = S ◦ Υn(y), one has

| logxs,t − log ys,t|V ≤ 2n+1‖x − y‖∞(1 + 2‖x‖∞ + 2‖y‖∞)(t − s), for (s, t) ∈ ∆.

The proof is straight-forward and therefore omitted.

Lemma A.4. For any p > 2 and ϕ : (0, 1] → (0,∞) increasing with
√
−δ log δ ≪ ϕ(δ) there

exists a function ϕ̄ : (0, 1] → (0,∞) such that ϕ̄p is convex and
√

−δ log δ ≪ ϕ̄(δ) ≤ ϕ(δ), for δ ∈ (0, 1].

Proof. Set φ(δ) =
√
−δ log δ and define φm,u : (0, 1] → [0,∞) for m ∈ N and u > 0 via

φp
m,u(δ) =

{

m φp(δ) if δ ≤ u

m φp(u) + (mφp)′(u) (δ − u) otherwise.

As one easily verifies by taking derivatives, φp is convex on an appropriate set (0, ε). Hence,
φp

m,u is convex provided that u ≤ ε. Moreover, one can check that, for every m ∈ N, there exists
u(m) ∈ (0, ε) such that φm,u(m) ≤ ϕ. Consequently, taking ϕ̄ = supm∈N φm,u(m) finishes the
proof. �
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