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Summary. In this article, we carry out a rough paths analysis for Banach space-valued
Wiener processes. We show that most of the features of the classical Wiener process pertain
to its rough path analog. To be more precise, the enhanced process has the same scaling
properties and it satisfies a Fernique type theorem, a support theorem and a large deviation
principle in the same Holder topologies as the classical Wiener process does. Moreover, the
canonical rough paths of finite dimensional approximating Wiener processes converge to the
enhanced Wiener process.

Finally, a new criterion for the existence of the enhanced Wiener process is provided which is
based on compact embeddings. This criterion is particularly handy when analyzing Kunita
flows by means of rough paths analysis which is the topic of a forthcoming article.
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1 Introduction

The notion rough path was coined by Terry Lyons in 1994 [20]. The corresponding theory pro-
vides an extension of Young integrals to less regular driving signals. In the context of probability
theory, it allows an alternative representation for solutions to Stratonovich differential equations
as solutions to rough path differential equations (RDE). The power of the approach is that once
the driving signal has been associated to a rough path, the solution can be written as continuous
function (/t6 map) of the rough path signal by Terry Lyons’ universal limit theorem [22]. In
general irregular controls admit several extensions to rough paths. Nontheless, in the context
of stochastic analysis there is one canonical choice which is uniquely defined up to a null set.
Since the null set does not depend on the choice of the RDE this allows one to pick a random



RDE depending on the path itself and, in particular, the concept of filtrations becomes obsolete
for the existence of solutions.

As eluded by Ledoux, Qian, and Zhang [18] the theory of rough paths leads to natural proofs
of support theorems (ST) and large deviation principles (LDP) since both properties behave
nicely under an application of the continuous It6 map. Consequently, it suffices to prove a
support theorem and a large deviation principle for the canonical rough path of the driving
signal and then to infer the corresponding results for the solution of the SDE. This approach
has been firstly carried out in [18] for the multi-dimensional Wiener process under the p-variation
topology for p > 2. Later on, analogous results were proved under fine Holder topologies by Friz
and Victoir [10] (see also [12]). General Banach space-valued Wiener processes were embedded
into the theory of rough paths by Ledoux et al. [17] in 2002. A series of articles by Inahama
and Kawabi [14, 15, 16] followed which was mainly motivated by its applicability to heat kernel
measures on loop spaces. Nowadays the theory of rough paths is well-established and we refer
the reader to the monographs [21], [23], and [11] for a general account on the topic.

Our results are manifold. First we establish a representation of the enhanced Wiener process as
limit of finite dimensional enhanced Wiener processes. This It6-Nisio type theorem implies that
the enhanced Wiener process has the same scaling properties as the classical Wiener process.
For finite dimensional Wiener processes there are various ways to define the canonical rough
path (either as solution to a Stratonovich stochastic differential equation or via the limit of
certain smooth approximations, see for instance [11]) and it is thus conceived as a universal
object. Since we can freely approximate the enhanced infinite dimensional Wiener process by
finite dimensional approximations, also the infinite dimensional canonical rough path can be
seen as a universal object.

We derive a support theorem and a large deviation principle in fine Holder topologies similar as
the one known for finite dimensional processes [10]. By doing so we extend results of [14] who
analyzed the problem under p-variation topology.

In general, the existence of the canonical rough path is not trivial (at least for projective tensor
products), and Ledoux et al. provide a sufficient criterion in [17]. We relate their concept of
finite dimensional approximation to entropy numbers of compact embeddings. Since these are
known for various embeddings [7, 8], we obtain a new sufficient criterion which can be easily
verified in many cases. We phrase its implications in the case where the state space of the
Wiener process is a Holder-Zygmund space. Our main interest in the theory developed here is
its applicability to stochastic flows generated by Kunita type SDEs. Indeed, we will establish a
support theorem and a large deviation principle for Brownian flows in a forthcoming article [5].

We start with summarizing the results of the article. Here we introduce some notation rather in
an informal way in order to enhance readability. All notation will be introduced in great detail
at the end of this section.

Results

Let (V,]-|v) be a separable Banach space, and let X = (Xi);c[0,1) denotes a V-valued Wiener
process on a probability space (2, F,P). More explicitly, X is measurable with respect to the
Borel sets of C'([0,1], V) and satisfies, for 0 < s <t <1,

e X; — X is independent of (X, : w < s) and



o L((t—s)"Y?(X; — X,)) = L(X,) is a centered Gaussian distribution.

We denote by (Hi,| - |m,) and (H, |- |g) the reproducing kernel Hilbert spaces of X; and X =
(Xt)tefo,1)- Note that H can be expressed in terms of H; as

H= {/0 frdt - f e L*([0, 1],H1)},

where the integral is to be understood as Bochner integral. For a general account on Gaussian
distributions we refer the reader to the books by Lifshits [19] and Bogachev [2].

We let ¢ : (0,1] — (0,00) denote an increasing function with
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and consider the geometric @-Hélder rough path space GS2,(V), which will be rigorously in-

troduced below. Moreover, X is assumed to possess a canonical rough path X in the sense of
assumption (E), see Section 2.

= 00 (1)

Theorem 1.1. X is almost surely an element of G2,(V) and its range in that space is the
closure of the lift of the reproducing kernel Hilbert space H of X into GQ,(V).

Theorem 1.2. The family {X® : e > 0} with X¢ being the canonical rough path of (¢ - Xt)iepo,1]
satisfies a LDP in GQ, (V) with good rate function

Lin32,  if 3he H withh = S(h
J(h):{2| bt wi (),
00 else,

where S denotes the canonical lift of H into GQ,(V).

Suppose now that the reproducing kernel Hilbert space H; of X7 is infinite dimensional and fix
a complete orthonormal system (e;);en of Hi. We represent X as the in C([0, 1], V') almost sure
limit

X, = lim > ¢ e;, (2)
=1

with {(ft(i))te[(m : 1 € N} being an appropriate family of independent standard Wiener processes.

Theorem 1.3. Each X = >y é}@ €i)telo,1] Possesses a canonical rough path X and one
has almost sure convergence
lim X™ =X in GQ,(V).

n—oo

Remark 1.4. The latter theorem can be proved in a more general setting. One can replace the
assumption that (e;) is a complete orthonormal system of the reproducing kernel Hilbert space
by the assumption that, for any h € Hq,

n

lim h,e;)m, e; = h.
n—oo 1
=1



We proceed with a sufficient criterion for the existence property (E) for Holder-Zygmund spaces.
For an open and bounded set D, for n € Ny, n € (0, 1], and v = n + 7, we denote by C’g(D,Rd)
the set of n-times differentiable functions f : R¢ — R? whose derivatives are 7-Hélder continuous
and satisfy the zero boundary condition

fl..=o.

The space is endowed with a canonical norm || - ||, see (14).

Theorem 1.5. Let 0 < v < 5 and D C D' be bounded and open subsets of R with D C D'.
Let p be a centered Gaussian measure on C’g(D,Rd). Then there exists a separable and closed
subset V.C CJ(D',R%) and a V-valued Wiener process X = (Xt)iep,1) satisfying the existence
property (E) and L(X1) = p. For instance, one may choose V as the closure of Hy.

Remark 1.6. In the theorem, the two Banach spaces Cg (D,R9) and Cy (D, R9) can be replaced
by arbitrary Banach spaces V7 and V5 for which V; is compactly embedded into V5 and for which
the entropy numbers of the embedding decay at least at a polynomial order, see Section 5 for
the details. In particular, one can use the results of Edmunds and Triebel [7, 8] on embeddings
of Sobolev and Besov spaces.

Dec

Let us summarize the implications in a language that does not incorporate rough paths. Let W
denote a further Banach space, let f : W — L(V,W) be a Lip(y)-function for a v > 2 in the
sense of [23, Def. 1.21]. For a fixed absolutely continuous path g : [0, 1] — V with differential in
L*([0,1], V), we consider the Young differential equation

dy; = f(y)dz +g],, wo=¢ (3)
By Picard’s theorem, the differential equation possesses a unique solution I4(x) for any x €
BV (V) (actually unique solutions exist under less restrictive assumptions).

For a V-valued Wiener process X and n € N, we denote by X(n) the dyadic interpolation
of X with breakpoints D,, = [0,1] N (27"Z). We call Y the Wong-Zakai solution of (3) for the
control X, if {I,(X(n)) : n € N} is a convergent sequence in Cy([0,1], W) with limit Y.

As is well known Wong-Zakai solutions are tightly related to stochastic differential equations in
the Stratonovich sense: If the state space W is an M-type 2 Banach space and if dg; = vdt
for some v € V, then the Wong-Zakai solution solves the corresponding Stratonovich stochastic
differential equation, see [3].

Theorem 1.7. Let X be a V-valued Wiener process with reproducing kernel Hilbert space H.
If property (E) is valid, then the following is true:

(I) X admits a Wong-Zakai solution' Y of (3).

(IT) Forn € N, let X ™) be as in Theorem 1.3 and denote by Y™ the corresponding Wong-Zakai
solution of (3). Then {Y™ :n € N} converges almost surely to Y in Cy([0,1], ).

(IITI) The range of Y in Cy([0,1], W) is the closure of I(H).

(IV) For e > 0, we let Y¢ denote the Wong-Zakai solution of (3) for the control e - X. Then
{Y® : e > 0} satisfies a large deviation principle in Cy([0,1], W) with speed (€?):>¢ and
good rate function

J(h) = mf{%uan v e HI(@) =y).

Here and elsewhere, the infimum of the empty set is defined as co.



Agenda

The article is organized as follows. Sections 3 and 4 are concerned with the derivation of
Theorems 1.1 and 1.2, respectively. Section 2 has rather preliminary character. Here, we prove
a preliminary version of the representation provided by Theorem 1.3 (see Remark 3.3 for the
extension to the stronger statement). Moreover, we derive a Fernique type theorem together
with Lévy’s modulus of continuity. Section 5 is concerned with the proof of Theorem 1.5. Finally,
we explain the implications of the theory of rough paths (Theorem 1.7) in Section 6.

Notation

We start with introducing the (for us) relevant notation of the theory of rough paths. For a
profound background on the topic we refer the reader to the textbooks [23] and [11]. For two
Banach spaces Vi and Vo we denote by Vi ®, Vo the algebraic tensor product of Vi and V5.
Moreover, we let V; ® Va denote the projective tensor product, that is the completion of Vi ®, Va
under the projective tensor norm | - |y, ov, given by

n
olviev, = inf > | filvilgilv,,
=1

where the infimum is taken over all representations
n
U:Zﬂ@gi (neN, fieVi,gieVafori=1,...,n).
i=1

From now on V' denotes a separable Banach space. For a (continuous) piecewise linear function
x :[0,1] — V, we may compute its iterated (Young) integrals

t
x;t = / dz, €V,
p (4)

2

_ ®2
X, = / dxy, ® dxy, € V°,
s<ul<ug<t

and set X,y = X}, +x2, € V& VS, where (s,t) € A:={(s,#) : 0 < s’ <t/ <1}. As is well
known the iterated integrals satisfy the Chen condition:

1 1 2 2 2 1 1
Xgt = Xgq +Xyp and X5, = X5, + X+ X5, Xy, for0<s<u<t<L

We need to consider the truncated tensor algebra. For ease of notation, we omit the real

component and set
V=VoV®

It is endowed with the standard addition and the multiplication
usv=u4+vi+?+vi+uleovi=ut+v+ulovh
Using the convention u ® v := u! ® v! we also write

uxv=u+v+u®v.



In terms of * the Chen condition can be rewritten as
Xst = Xsu * Xy t-
We endow V and C(A, V) with the norms

luly == [u'|y + [W’lvgy and [x] = sup [xs¢lv,
(s,t)eA

and call
QV) = {(xs,t)(s,)ea € C(A, V) : x satisfies the Chen condition}.

the set of multiplicative functionals on V. It is a closed subset of C'(A, V). In the following,
we shall reserve the notation x = (Xs,t)(&t)e A for V-valued multiplicative functionals. In the
context of rough path theory we mainly work with the following homogeneous norm on V

lull = [u'fy + V]u?[yee.

It enjoys the following properties, for u,v € V,

(i

(ii) ||0;ul| = |t|||u]| for the dilation operator §;u = tu' + t?u? (t € R)
(i
(i
We consider rough path spaces with Holder norm topologies: Let ¢ : (0,1] — (0,00) be an
increasing function, and set, for x € C'(A, V),

[ul =0 < u=0

)
)
) lalf = [ = ul
)

V) [lu+vif < aff + flv]-

Ixllp = sup el
0<s<t<1 P(t — 5)
We denote by
Qp (V) ={x € V) : [Ix[[, < o0}

the set of p-Hélder rough paths in V. It is equipped with the metric (x,y) — ||x—y|,. The set
is nontrivial whenever liminfso¢(d)/6 > 0 which we assume in the following without further
mentioning. Moreover, the set of geometric p-Hdélder rough paths is given by

GQ, (V) ={S(x) : = € C([0,1], V) piecewise linear} C Q,(V),

where S(z) = (Xs,t)(s1)ea With x5, as in (4), and the closure is taken with respect to || - [|,.

Analogously, we denote by C,([0, 1], V') the Hélder space induced by ¢ that is the space of all
functions z : [0,1] — V with finite H6lder norm

|z ¢|v
Tl = ||T + sup ———
[#]lo = llz]loo S e §



where we -as usual- denote x5y = ¥;— x5 and ||z{[occ = Supycpo 1] [2¢|v for functions z € C((0, 1], V).
Moreover, we denote by BV(V) the set of all functions € C([0,1],V) with finite bounded
variation norm

n
lelsve) = laloo+  swp S fen v
0<tp<--<tnp<1l =1

Interpreting the integrals in (4) as Young integrals allows us to assign each path z € BV(V) to
a path S(z) := x € Q(V). Furthermore, we call x € BV(V) absolutely continuous if it admits
@€ LY([0,1], V) with zos = [} i ds.

We will make use of the following three operators: The dilation operator, which appeared already
above, is given by
5 : V=V, §(u) =tu' +t?u?, fortcR,

and the logarithm which is defined by
1
log: V=V, vn—>v—§v®v.

Both operators naturally extend to continuous functions that map C(A, V) into itself via 6;(x) =
(0¢(Xs,u)) (s,upea and logx = (logXs1)(s,t)ea- Additionally, we consider the translation operator
on the set of multiplicative functionals which is defined for f € BV(V) by

t t t
Tf : Q(V) - Q(V)a Tf(X)s,t :Xs,t+fs,t+/ xs,u® dfu+/ fs,u® d$u+/ fs,u® dfu

All integrals are well-defined Young integrals and restricting the translation operator to more
regular paths allows to relax the assumption on f. Note that the definition of T’ is motivated
by the following property: for x € C([0,1], V) for which I'(z) exists (in the sense that the limit
converges in 2(V)) and f € BV(V) one has

Ty(T(z)) = L(z + f). (5)

Finally, we denote by 7y : V. — V and mye2 : V — V&2 the projections onto the V- and
V®2_component, respectively. In general, we use analogous notation for W-valued paths.

2 The canonical rough path

In this section, we introduce the canonical rough path (called enhanced Wiener process) as-
sociated to a Banach space-valued Wiener process. The main task will be to establish Lévy’s
modulus of continuity together with a Fernique type theorem.

As before we let X denote a Wiener process attaining values in a separable Banach space V.
Let D, = (27"Z)N0,1] (n € Ny) and denote by X (n) the linear interpolation of X with dyadic
breakpoints D,,. Moreover, let X(n) = S(X(n)). The definition of the enhanced Wiener process
relies on the following assumption:

(E) There exists a (V)-valued random element X such that

lim X(n) =X in LY(P;C(A,V)).

n—o0



A sufficient criterion for property (E) is provided in [17]:

Definition 2.1. Let u be a centered Gaussian measure on the Borel sets of the separable Banach
space V. For a fixed tensor product norm |- |y gy the measure pu is called ezact, if for independent
p-distributed random elements G, G; (I € N) and some constants C' and a < 1 one has

N
E‘ G é‘ < ON©
; L lV®V_

for all NV € N.

By [17, formula on page 566] property (E) is satisfied if the measure p is ezact with respect
to the projective tensor norm. From now on we assume that property (E) is satisfied without
further mentioning.

In general, we denote, for a path x € C([0, 1], V),

[(z) = lim S(z(n)), (6)

n—oo

provided that the limit exists in C(A, V). Here and elsewhere, we denote by z(n) the interpo-
lation of z with dyadic breakpoints D,,. The proposition below allows us to choose X = I'(X)
as the canonical rough path (enhanced Wiener process) of X.

Proposition 2.2. The family (log X(n))nen is a C(A, V)-valued martingale and one has
log X(n) = Ellog X|Gy],
where G, = o(Xy : t € D) = 0(X(n)). In particular,

lim X(n) =X, almost surely.

n—oo
The proof is based on the following lemma.

Lemma 2.3. Let f = (fi)iejo1) be a BV(V)-valued random element such that almost surely f
s a one dimensional excursion, that is dim(span(im(f))) =1, almost surely. If the distribution

of f is symmetric in the sense that f £ —f and if EHfH2BV(V) < 00, then for an arbitrary path
x € Q(V) we have
E[log Ty (x)]| = logx.

Proof. According to the definition of log and the shift operator we have (with £ = S(f))

log Ty(x)s,s =logx,; + logf;

1 t t t t
+§|:/ $s,u®dfu+/fs,u®dxu_/ d$u®fs,u_/ dfu®xs,u:|-

Due to the symmetry of the distribution of f we have

t t t t
E|:/ xs,u® dfu+/ fs,u® dxu_/ dxu®fs,u_/ dfu®$s,u:| :0



The expectation of the first component 7wy (log fs ;) vanishes for the same reason. The second
component of log f ; is identically zero since f takes values in an one dimensional subspace of V.
Indeed, we can write f; = & - v for a V-valued random vector v and a real valued process (&).
Correspondingly, fs: = &+ - v and therefore

t t
VRV (logfs,t) = % {/ fs,u® dfu _/ dfu@fs,u:|

:H/stfs,u dfu—/: dfufs,u]mv:o.

Proof of Proposition 2.2. Note that AX(n) := X(n+ 1) — X(n) can be written as the
sum of 2" independent symmetric one-dimensional excursions that are also independent of the
o-algebra G,. Applying Lemma 2.3 2™-times then gives that

g

Ellog X(n + 1)s4|Gn] = log X(n)s4- (7)
Hence, for general k € N, we have
Eflog X(n + k)s|Gn] = log X(n)s¢

so that by Assumption (E)
Eflog X|G,] = log X(n).

In particular, log X(n) converges almost surely to log X in C(A, V) (see for instance [6], Propo-
sition 5.3.20). The inverse of log (that is x — (x + 3x ® X)(s,t)ea) is continuous on C'(A, V),
and we also get that (X(n)),en converges to X. O

Finite dimensional approximation

Based on a complete orthonormal system (e;);cn of the reproducing kernel Hilbert space Hj, we
establish a limit theorem for certain finite dimensional approximations to X. We represent X
as the in C([0, 1], V') almost sure limit

Xt = i é.t(i)eiv
=1

where £() = (ft(i))te[o,l] (i € N) are independent Wiener processes. For m € N denote
X*(m)y =Y &es.
i=1
Proposition 2.4. For X*(m) =T(X*(m)) (m € N) one has

lim X*(m) =X, almost surely in Q(V). (8)

m—00



Remark 2.5. The theorem yields that, for the enhanced Wiener process X,
L
Xst = 0,7=5(Xo,1), for (s,1) € A,

where ¢ denotes the dilation operator. Indeed, this statement is true for R%valued Wiener
processes and it can be easily extended via (8).

Proof. We denote the n-th dyadic interpolation of X*(m) by X*(n,m) and let X*(n,m) =
S(X*(n,m)) and Gy ym = 0(X*(n,m)). By Lemma A.3, one has, for n,m € N,

[log X*(n,m)s; —log X(n)selv < 2772 X" (n,m) — X (n) oo (1 + [|X*(n, 1) [l + [| X (n) ]| 0)-

Thus the Cauchy-Schwarz inequality implies together with the equivalence of moments of Gaus-
sian measures that

lim log X*(n,m) =logX(n), in L*(P,C(A,V)).

m—00

As in the proof of Proposition 2.2 one verifies that (log X*(n, m))men is & (Gnm)men-martingale
for any fixed n € N. Hence,

log X*(n,m) = Ellog X(n)|Gn.m] = E[log X |Gy m].
Recall that X*(m) is a Wiener process for which

log X*(m) = lim log X*(n,m) = lim E[logX|G, ] = E[log X|Goom], in C(A,V),

n—oo

where goo,m = O-(UneN gn,m) -

Lévy’s modulus of continuity

In the rest of this section, we derive Lévy’s modulus of continuity for the enhanced Wiener
process, that is X is almost surely an element of Q4(V), where ¢ : (0,1] — (0,00) is a fixed
increasing function with

¢(9)

lim ——— =

510 /—d01nd
Theorem 2.6. The canonical rough path X of the Wiener process X is almost surely an element
of Q4(V) and one has

1.

2
EeXIE « oo
for some a > 0.

Remark 2.7. Fernique’s theorem is also proven in [14] for p-variation topology. Moreover, finite
dimensional analogs can be found in [9].

We remark that a Fernique type result is already known to hold for p-variation norm under
the exactness assumption [14]. The proof of this assertion parallels a variant of the proof of
the classical statement. Basically our approach relies on the isoperimetric inequality and the
Garsia-Rodemich-Rumsey inequality and it is similar to the approach taken in [10].

10



Lemma 2.8. For a multiplicative functional x € Q(V) and a function f € BV(V'), one has

1Ty (x)sell < 2[ sup _ [xunll + [ fllBV(say].  for (s,t) € A,

s<u<v<t

where || fllBv((s,g,v) := SUPs<ty< <t <t [Tt 1,0 V-

Proof. We set r(s,t) = Sup,<,<y<; |[Xu,0|| and observe that my (Tf(x)) = x* + f so that
v (Tr(x)s)lv < x5l + | fsilv < [xblv + L F V(-

It remains to analyze the terms in V®? (the second level):

t t
S R R
s s s,t

t
/ Tsu & dfu <
s VeV

) . . t
The same estimate is valid for | fs fu ® dzsy|vey. Moreover, one has

Note that

k(s,t) | flIBv(s,8,v)

S, u du
/s,tf’ ®df 14

< 2
v = Mlevsarv)

so that
e (Th(x)s) lvav < X2 vev + (5(s,t) + | fllv(sg )’

Finally, combining all estimates gives

1T (x)s,tll < x5l + (s, 8) + 2] fllBV (5,8,

U

Corollary 2.9. For an increasing function ¢ : (0,1] — (0,00) with 1 := infse (g 1) (8 )/V6 >0,

one has for all x € Qu(V) and f absolutely continuous with f € LQ([O, 1, V),

I1T¢ (%)l < 2[e %[l + 11l 22(0,17,7)]
and ‘
1Ty (ol <2[ sup |Ixsell + 1 Fllz2(po,1,v)]-
0<s<t<1
Proof. The proof is an immediate consequence of Lemma 2.8 and the estimate
I fllBv(sgr) < VE—sfllzqoay) < aet— ) 1fllzqoav)-

O

Next, we apply the isoperimetric inequality for Gaussian measures together with the above
estimates to infer the following Lemma.

11



Lemma 2.10. There exists o > 0 with
EelXo1l” < o

Moreover, if X is in Q4 (V) with positive probability, then there exists f > 0 such that

2
ELIXIE « oo,

Proof. Fix § > 0 sufficiently large such that
P(XeA)>1/2

for
A={z€C([0,1],V) : I'(z) exists and ||x|cc < d}.

Recall that H is the reproducing kernel Hilbert space of X, and thus we get with the isoperimetric
inequality that for » > 0

P(X € A+ Bg(0,7)) > ®(r),
—A,

where @ is the standard normal distribution function. By (5) and Corollary 2.9, we have for
z=x+he A, withxz € Aand h € Bg(0,7),
IT(z)oll = 1 Th(I'(@))o,1ll < 2[0 + o],

where o is the norm of the canonical embedding of H; into V. Hence, we can couple || Xq 1|
with a standard normal random variable N such that || X 1| < 2[d + (N Vv 0)] and Fernique’s
theorem implies the first assertion. The second assertion is proved analogously. O

Proposition 2.11. One has X € Q4(V), almost surely.

This proposition implies together with Lemma 2.10 the assertion of Theorem 2.6.

Proof. The proof is based on the Garsia-Rodemich-Rumsey Lemma [13] and since it is classical
we only focus on the crucial facts that allow us to apply the argument.

By Lemma A.1 in the appendix, || - || possesses an equivalent norm ||| - ||| which satisfies the
triangle inequality with respect to the group operation *. Moreover, one infers from the scaling
property of the Wiener process (Remark 2.5) and Lemma 2.10 that

Ee(t=5) " HIXstllI” — meallXoall® oo

for a @ > 0. The rest of the proof can be literally translated from classical proofs of that result
(see for instance [10]). O

12



3 Support Theorem

Again we assume the validity of property (E), and let ¢ : (0,1] — (0,00) be an increasing
function satisfying (1). The objective of this section is to prove the following support theorem
for the enhanced Wiener process:

Theorem 3.1. If X is a V-valued Wiener process satisfying Assumption (E), then X is almost
surely an element of G, (V) and its range (in GQ,(V)) is the closure of S(H), where H is
again the RKHS of X.

Again we denote by ¢, ¢ : (0,1] — (0,00) an increasing functions with lims o \/% = 1. For
x € C(A,V) we set

il = sup [oeelv Poalver
© 0<s<t<1 (P(t — s) (,O(t _ 8)2
and we consider the space

Co(A, V) ={(Xs)spea € C(A, V)« |[[x][[, < oo}

endowed with the norm ||| - [[|,. It is a (non-separable) Banach space. Clearly, the distances
| -1l, and ||| |||, generate the same topology on G, (V) C C,(A, V). The proof of Theorem 3.1
relies on the following theorem.

Theorem 3.2. One has almost sure convergence

lim X(n) =X in GQ,(V). 9)

n—oo

Remark 3.3. Theorem 3.2 is an extension of Proposition 2.2. With the same techniques we
can strengthen the statement of Proposition 2.4 in order to get Theorem 1.3.

The following criterion allows us to verify convergence in G2, (V) (see [10] for a similar criterion
in the finite dimensional setting).

Lemma 3.4. Let x(n) (n € N) and x be elements of Cy(A, V). If
® supyey [[[x(n)lllg < oo and
e (x(n))pen converges to x in C(A, V),

then (x(n))nen converges in Cy,(A, V) to x.

Proof. Set n(t) := ¢(t)/¢(t) (t € [0,1]) and note that for M = |||x]|||4 V sup,en ||[x(n)|||¢
[x(n)ss — xs4lv < 2Mo(t — 5) = 2Mn(t — s)(t — 5).

On the other hand,

1

[||x(n) — x|
|X(”)s,t - X;,t|V < t—OOSO(t — ),

p(t—s)
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where [||-[[|cc denotes the supremum norm ||[x|l[occ = sup( ;yea |Xs,¢|v. Recall that n(t) converges
to 0 for ¢ | 0 so that for arbitrary e > 0 there exists ¢ € (0,1) with n(¢) < e/(2M). We apply
the first estimate in the case where ¢ — s < ¢ and apply the second estimate otherwise:

lIx(n) = %[00
¢(C) el

[x(n)} e = xb] < [V

—s).

Thus

lim sup [|x(n)" — x|, < <.
n—oo

Analogously, one shows that limsup,_, . |||x(n)? — x?|||, < ¢ so that the assertion follows by
the triangle inequality and by noticing that € > 0 is arbitrary. O

From now on we denote for n € N by T,, the canonical embedding of C(D,,, V') into C([0,1], V)
which linearly interpolates the values at the breakpoints D,, = (27"Z)N[0, 1]. With slight misuse
of notation we sometimes also apply T, on functions in C([0, 1], V).

Proof of Theorem 3.2. By Proposition 2.2, one has
E[log X|G] = log X(n)
and we apply Jensen’s inequality [6, Thm. 5.1.15] to get
11 1og X(m)llly = lI1Eflog X (n + 1)|Gu]llly < Eflllog X(n + 1)llolga] < B[l logX]llolGn]. (10)
Hence, (||[1og X (n)|l|¢)nenufoc} is @ submartingale with
E|l|1og X(n)llls < Ellllog X[lly < EJIX]|ls + 2E[IX]|2 < oo.

Here, we used the general inequality [||logx|||s < [||x]||¢ + 2|Hx[|]§> and Theorem 2.6. Conse-
quently, the submartingale converges almost surely to a finite value so that sup,,cy ||| X(n)]||4 is
almost surely finite, and the statement is an immediate consequence of Lemma 3.4. O

Next, we consider X (—n) = X — X(n) for n € Ny together with its enhanced process

X(—n) =T xmX =T(X(n)).

Lemma 3.5. The sequence (log X(k))re—n, i a Cuo(A, V)-valued (Gy)-martingale, where Gy, =
o(X(k)) (k € —=Ng). Moreover, one has

lim X(k) =0, almost surely.

k——oc0

Proof. Set AX), = X(k+1)— X (k) and Gr = o(Xy). Notice that as in the proof of Lemma 3.2
the processes AX} are independent of G and they can be written as a finite sum of one dimen-
sional symmetric excursions so that

log X (k) = E[log X (k + 1)|Gy].

Hence, (log X (k))ke—n, defines a C,(A, V)-valued martingale. Applying a convergence theorem
for reversed martingales (see for instance [6, p. 213]) we obtain almost sure convergence

Jim log X(k) = Ellog X|G_o],

14



in Cy(A, V), where G_oo = (je_n k- Since G_o is a tail o-field it only contains 0-1-events.
Thus using the symmetry of log X the limit has to be zero. O

We are now in a position to prove the support theorem.

Proof of Theorem 3.1. Let X(n) and X (n) be as above. We use the standard notation for
their enhanced processes and abridge €2, = Q,(V). As a consequence of the standard support
theorem and Lemma A.3 one has

range o (X(n)) = range (5o Tu(X)) = 8o T, (H) * C S(H) *.
By Theorem 3.2, the family (X(n))nen converges almost surely in Q,(V) to X so that
range o (X) C S(H) *.

For the converse statement fix f € H and let f = S(f). Due to the continuity of Ty and T_;
(see Lemma A.2) one has
Ve >0: P(X € Bq,(f,e) >0

if and only if
Ve>0: P(T_;X € Bq,(0,¢)) > 0.

Due to the Cameron Martin Theorem the latter statement is equivalent to
Ve>0: P(X € Bq,(0,¢)) >0

On the other hand, we have X = Ty(,)(X(n)), and by Corollary 2.9 there exists a constant
¢ = ¢(p) such that for any £ > 0:

P(IX]lp < 2ce) > P(
P(

v

IX(n)lly < &, IX ()| 220,13, <€)
1X(n)[lp < &) PUIX ()l 20,13,y <€) -

-~

1

1 (n—o0) >0

In the last step we have used the independence of X (n) and X (n). O

4 Large deviations

Let again X denote a V-valued Wiener process satisfying Assumption (E) with enhanced pro-
cess X. For ¢ > 0 let X® = (X{)ep0,1] = (€ Xt)eejo,1] and recall that the family {X° : e > 0}
satisfies a large deviation principle in C([0, 1], V') with good rate function

Lip)2 ifhe H
00 else.

The aim of this section is to prove

Theorem 4.1. The family {X® : ¢ > 0} given by X = (6¢(X¢))iecjo1) = '(X®) satisfies a LDP
in G, (V) with good rate function

b — HRl3,  if 3h e H withh = S(h),
J(h) =
o0 else.

15



Similarly as in [17] and [10], the proof uses the concept of exponentially good approximations.
It mainly relies on the isoperimetric inequality and the following estimate.

Lemma 4.2. Let n € N, and denote by h : [0,1] — V a absolutely continuous function with
h € L*([0,1],V). Set f = Y,,(h) and g = h — f. There exists a universal constant C such that
for %,y € (V) and & = x|, + [yl one has

0 .
ITh(x) = Tr(y)ll, < (1+ 26—)(HXH¢ + [lylle) + 48l L2(0,11,v)

where 3 = SUPse(0,1 % and By, = SUDse (0, 1021 -7/2] % — 0 asn — 0.

Proof. We denote z = x', y =y, f = Tu(h) and g = h — f. By Jensen’s inequality
one has | fz2(0,13,v) < 1Pllz2(0,1),v) and thus the triangle inequality gives that [|glz2(j0,1,1) <

2Hh||L2([0,1],V)- Moreover,
t t
Th(x)&t - Tf(Y)s,t = Xst + S(f + g)s,t +/ (f + g)s,u ® dxy, +/ Tsu & d(f + g)u
[ e
- ys,t - S(f)s,t - / fs,u & dyu - / ys,t & dfu
St St
= Xst —Ysit + st + / hs,u ® dgu + / gsu & dfu
t ° t °
+/ fs,u ® d(l’ - y)u +/ Gsu &® d.Z'u (11)
t

t
+/ (‘T_y)s,u® dfu+/ xs,u® dgu

We need to control the norms of each single term above. We start with |fst hew ® dgulyez.

Clearly,
t
/ hs,u & dgu

For t — s > 27" one can refine this estimate as follows. Let s < tg < --- < tny < t with
{to,...,tn} = D, N [s,t], and observe that

t to N-1 = gy t
/s s © dgu v ®2 < ’/S s ® dgu v ®2 + z% ‘/t fsu ® dgu v ®2 T ‘/tN o ® dge
i= i

Since tg — s < 27" the first term is bounded by 2_”+1||h||%2([5 to,v): For v €V one has
ft“’l v ® dg, = 0 so that

t;
tit1 tit1
‘/tz hs’u © dgu V®2 - ’/tz hthu ? dgu

Moreover, the remaining term is bounded by

t
‘/ hs,u b2y dgu
tn

vor = Whsellee s, 191l (gs,0,v) < 26 = Al 2 (s 0.1

ve2

—n+1117.112
e 52 "Ry 000

ven = s llmoe(is.g.) 1901 1,) < 272 Al T2 0 1. v)-
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Combining the above estimates yields

<
su @ dgu ver =

227" + 27 ) Al Lo ) < 272 2RI 0,009

so that in general

<
su @ dgu ver =

2[(t —s) A 2172 1172 0.1,y

Similarly, one finds the same estimate for fst Gsu @ df, and

|gs.tlv < 23/t = 8) A2 1]l £2p0,13,v)-

We proceed with the next term in (11):

~Y)u V®2 Spt=s)Vi—s Hx_yH@”h”B([OJLV) < 2rp(t—s)Vi—s HhHLQ([O,l},V)a

where k := ||x[|, + ||y|lo. Analogously one finds that also the remaining three terms from
(11) have norm smaller or equal to 2k¢(t — s)v/'t — s||h||L2(j0,1],v)- We now combine the above
estimates:

ITh(%) s — Ty(y)sell < mp(t =) +2¢/(t = 8) A28 ||| p2(0.11,0)

+ 20/t = 5) A 22|20 4 1) + 26008 = SVE— 5 Il 2011

Next, we use that /(t — s) A 21=7/2 < B,0(t — s) to conclude that

| Th(x)s,t — Tp(y)stll < (Fé + 280l 12(0,1,v) + 2\/52HhHLz( 01 T 2/15“;1”9([0,1},‘/))90@ —5)

< [+ 20w+ 4Bl ooyl - )

O

Proof of Theorem 4.1. We will use the concept of exponentially good approximations. Recall
that by Lemma A.3, the map S oY, : C([0,1], E) — GQ,(F) is continuous. Therefore, the
processes X°(n) = S(X¢(n)) (¢ > 0) satisfy a large deviation principle with good rate function

Ju(h) = {%Hhufq if 3he H:h=S(h)and h =T, (h)

00 else.

It remains to show that the approximation is exponentially good ([4, Thm. 4.2.23]), in the sense
that for every § > 0,

lim lim sup e? log P(d,, (X%, X%(n)) > §) = —00 (12)

n—oo le
and that for every a > 0,

lim sup{d (S(x), S(Tu(2))) : z € H, ||z||x < a} —0. (13)

n—oo
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We start with verifying (12). Recall that we can fix x > 0 such that

P(X € A) >

N | =

for
A= {x € C([0,1],V) : 2o = 0, T() exists, |[[(z)]|, + sup | Tn(@)]ly < H}.
neN

With the isoperimetric inequality we conclude that P(X € A,) > ®(r) for the sets
A=A+ Bu(0,r) (r>0).

Here ® denotes again the standard normal distribution function. By Lemma 4.2 it follows that
forz=x+he€ A, (withz € Aand h € By(0,7)):

Iz — z(n)lly = | Th(x) — Ty (x(n))llp < CBaollblla + (1 + B/5n)],

where 3 and (8, — 0 are as in the lemma and o is the norm of the canonical embedding of
H; into V. Hence, we can find a standard normal random variable N (on a possibly larger
probability space) such that for any n € N:

X =X(n)llp < C[Bro Ny + k(1 + B8/5n)],

where N. = N V 0. Now choose o, = %(0202@%)_1. Then lim,, . o, = 00 and
O, := Eeon XXMl < Elexp{a,C?(Bno Ny + w(1 + 5/6n))?*}]
= E[exp{3N? + O(N4)}] < oc.
By Chebychev’s inequality we get for n > 0
—ann?
P(IX = X(n)[lp = n) < Cpe™*"
and hence

1
limsup — log P([|X — X(n)|ly, > 1) < —a, — —00 as n — oo.
n

—00

Now assertion (12) is a consequence of
X5 =X5(n) [ = [10:(X) = 0= (X(n))[lo = [10:(X = X(n))[lo = € [X = X(n)]l,

Finally note that (13) is an immediate consequence of Lemma 4.2. Indeed, for h € H and
f="T,(h) one gets

1S(h) = S(f)lle = 1Ta(0) = T30l < 3Bullllz2(o,11,) < 30Bnllilln

with limy,_ 00 By = 0. O
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5 A sufficient criterion for exactness

In this section we introduce a new sufficient criterion for the exactness of a Gaussian random
vector attaining values in a Holder-Zygmund space.
For n € N and for a n-times continuously differentiable function f : R¢ — R%, we set

1fler = 37 sup [0°f(@)]

‘a|§nx€R

where the sum is taken over all multiindices o with entries in {1,...,d} of length smaller or
equal to n. Moreover, for v = n +n with n € Ny and n € (0, 1], and an n-times continuously
differentiable function f : R — R%, we consider the Hélder-Zygmund norm of order ~y

0%f(x) — 0%
fllor = Il + 3 sup 220 =0T W]

T#yY ’CC - y|77

(14)

laf=n

and we denote by CJ(D,R%) (D C R? open) the set of n-times continuously differentiable
functions satisfying

f

It is endowed with the norm || - ||¢v.

pe =0 and |[[f]lcr < oo,

Theorem 5.1. Let 0 < v < 7 and let D, D" C R? denote bounded open sets with D C D'.
Every centered Gaussian measure pi on Cy (D, R%) is ezact and Bochner measurable when viewed
as Gaussian measure on Cj (D', RY).

The proof is based on the concept of finite dimensional approximation introduced in [17]. For
a Banach space V' (not necessarily separable) and a V-valued random vector Y, we denote the
linear average Kolmogorov widths of Y by

0a(Y) = 8V (Y) = inf{E\Y —To(Y)|y i To: V — V linear, tk(T},) < n} (n € N).

<n7¢ for

~

Lemma 5.2. Let Y be a V-valued Gaussian random vector and suppose that £,(Y")
some e > 0. Then Y is exact and Bochner measurable in V.

Proof. Since ¢,(Y) decays to zero Y is Bochner measurable. Without loss of generality we
assume that V' is infinite dimensional. Let G; be a p-distributed r.v. For fixed n € N there
exists a bounded operator 7}, : V' — V with n-dimensional range and

E|G1 — Tp(G1)| < 20,(Y) =: e(n).

Set Fy := T,(G1) and observe that there are n independent standard normals &1, ...,&L and n
vectors eq,...,e, € V such that
n
Py = Z &ei
i=1

Moreover, set Hy = G1 — F}.
Then for each i = 1,...,n one has

V2/7 |eslv = El¢te;| < E|Fy| < E|Gy1| + E|Hy| < C,
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where C':= C(Y') := 2(,(Y) + E[Y| does only depend on the distribution of Y.
Let now (Gy, £, Hy, (gzl‘)i:17---7n)122 and (G, Fi, Hy, (ff)z‘:l,...m)leN denote independent copies of
(G17 Fla Hla (gil)’i:l,,,_,n)- Then

N N N N N
Y GeG =Y Foh+Y FeH+Y HeF+» HeH (15)
=1 =1 =1 =1 =1

and
N . no o M
E\lzmm\vm < z;zlE\lzgff;( ei @ ¢5lyes.
=1 i=1 j= =1

Using that E‘El]\il {féﬂ < v/N we arrive at

N
- 2 12 T ~2 52
E’;Fl ®F,‘V®2 < VN max [off < 7PV, (16)
On the other hand,
N ~ ~
E’ZFI ® Hl’W < NE|F|E|H;| < Ne(n)E|Fy| < ONe(n) (17)
=1

The same estimate holds for E| Zf\il H® Fl’v®2- Finally, the last term in (15) is bounded by
N
; 2 2
E‘; H® HZIW < N(E|H;|)? < Ne(n) (18)

When choosing n = n(N) = | N'/#+29)| and letting n tend to infinity one obtains with (16),
(17) and (18) that

N
E(Z G ® él‘ < NUF+/(429) g N s oo,
=1

which implies exactness. O

In the forthcoming proof of Theorem 5.1, we use a result by Pisier [25] that provides an estimate
for the average Kolmogorov width against entropy numbers of generating operators. For two
Banach spaces F and V, and a compact operator p : E — V we define the n-th entropy number

as
2n—1

enlp) = mf{s > 0: u(Bp(0,1)) C | J By(bj,e) for some bi,... by 1 € V}.
j=1

Proof of Theorem 5.1. We denote by p the canonical embedding of the reproducing kernel
Hilbert space of Y into Cj (D, R%). By Pajor and Tomczak-Jaegermann [24], one has

en(p) 2 n~12,
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The asymptotic behavior of the entropy numbers for general Besov embeddings were studied by
Edmunds and Triebel [7, 8]. In particular, one has for the canonical embedding o : Cj (D, }Rd) —
Cq (D', R?) that

en(0) <n""a .
Combining the above estimates with the general estimate ex1;_1(00 p) < er(0) ei(p) (k,1 € Np)
gives -

enl0op) In7E 7T

Now note that gop generates the Gaussian random element Y on Cj (D', R%). In order to control
(YY) we use a result of Pisier ([25], Theorem 9.1, p.141) combined with the duality of metric
entropy found in [1]:
(V)< Cr Y kTP (logk)er(oo p)
k>Caon
for two universal constants C7,C > 0. Combining this estimate with the above result on the
entropy numbers gives i
h(Y) 32 n~"a logn.

6 Consequences of Lyons’ universal limit theorem

In this section, we use Lyons’ universal limit theorem together with our findings to derive
Theorem 1.7. Let V and W denote two Banach spaces and let f : W — L(V,W) a Lip(y)-
function for a v > 2 in the sense of [23, Def. 1.21]. As in the introduction, I, denotes the
solution operator for controls z € BV(V) to the differential equation

dy: = f(ye) dlx + glt,  yo =&,

where g € C([0,1],V) is an absolutely continuous function with g € L?([0,1], V).
Next, fix a real p € (2,3 A ) and an increasing function @ : (0,1] — (0, 00) that is dominated

by ¢ and satisfies limgs|o % = 0 such that @ is convex. By Lemma A.4, there always exists

an appropriate ¢ and since Cy([0,1], W) is continuously embedded into C,,([0, 1], W), it suffices
to prove Theorem 1.7 in Cx([0, 1], W).

By choice of ¢ the space GQ5(V) is continuously embedded into G$2,(V), where GQ,(V) denotes
the space of all geometric rough paths induced by the p-variation norm. Hence, the universal
limit theorem (see for instance [23, Thm. 5.3]) implies that the rough path differential equation

dy: = f(y¢) dx¢, yo =1dp

induces a continuous solution operator I : GQz(V) — GQu(W) (Ité6 map) and the following
diagram commutes for any piecewise linear V-valued path «:

X y
S] lf-&-ﬂw(')
x d Yy



Assuming Assumption (E), the processes {X(n) : n € N} converge in GQz(V') to X. By the
continuity of T, : GQz(V) — GQz(V) (Lemma A.2), I: GQp(V) — GQz(W) (Lyons’ universal
limit theorem), and & 4+ mw (-) : GQz(W) — Cz([0,1], W), we conclude that {Y(n) : n € N}
converges to & + my o Ip o Tg(X) which is statement (I) of the theorem. Assertions (II), (III),
and (IV) are now immediate consequences of Theorems 1.3, 1.1, and 1.2, respectively.

A Preliminary results

For u € V we set

[[ufl| = inf Y i, (19)
1=1

where the infimum is taken over all representations u = [[" ; u; withn € Nand uy,...,u, € V
arbitrary.
Lemma A.1. o ||| - ||| satisfies the triangle inequality with respect to .

e Fort € R and u €V, one has |||0:u]|| = [t] |||u]l]-

e Moreover, || - || and ||| - ||| are equivalent:

[ITalll < ffal] < 2]f]x]]l

Proof. The proof of the first two statements is straight forward and we only present the proof of

the third statement. Let u =[], u;. Then u! =3  ul and [ul|ly < Y7, |[u}|v. Moreover,
since u? = Y31 uf + 37, uj @ uj we get

n
Vv lyey = ‘Zuf +Zu2‘1 ®u}‘V®V
i1

1<j

IN

n n

S ey + (O utly)?

=1 =1
n n

<Y (flv + (/2 lveyv) = lwl
=1 i=1

so that |Ju]| < 2[|ull|. O

Lemma A.2. Let f € C([0,1],V) be absolutely continuous with f € L*([0,1],V) and let ¢ :
(0,1] — (0,00) be an increasing function with infse(o ) % > 0. Then the shift operator

Ty : Qp(V) — Qp(V)

1S continuous.
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Proof. For x,y € Q,(V), one has

t t
Tf(x)s,t - Tf(y)s,t = Xst — Ysit + / fs,u X d(l’ - y)u + / (1' - y)s,u ® de7

where x = 7y (x) and y = my (y). The process f is of bounded variation, and one has

[ Fowe a -,

<|If su x — .
Vev = HfHLl([o,l],V) sgugggt’ up — Yuplv

Next, recall that ||f||L1([s,t},V) < Vit - 5||f‘||L2([071]7V) and that, by assumption, there exists a
constant ¢ = c(p) with /t —s < cp(t — s). Consequently,

< el fllzzqo vy IIx = yllo ot — )%,

/: fsu ® d(z = y)u

VeV

and

t
[() e a@=u) ] < Velflzgan Ix =i

Analogously one finds the same estimate for || (fst($ —Ysu ® dfu)(s t)eAHS" so that

174(0) — Tr) o < lx = ¥llo + 2y e Fll2qo0.00) 1% — ¥l

Lemma A.3. Forn € N, the maps
SoY, :C(Dyn,V) = GQ(V) and logoSoT,:C(D,,V)— C,(A,V)
are continuous. Moreover, for z,y € C([0,1],V), x =S oY, (x), andy = S o Y, (y), one has
[log xs —logyselv < 2"z — ylloo (1 + 2[|z[|oo + 2ylloo) (t — ), for (s,t) € A
The proof is straight-forward and therefore omitted.

Lemma A.4. For any p > 2 and ¢ : (0,1] — (0,00) increasing with /—dlogd < ¢(0) there
exists a function ¢ : (0,1] — (0,00) such that @P is conver and

Vv —0logd < @(d) < (), ford € (0,1].
Proof. Set ¢(0) = /—dlogd and define ¢y, 4, : (0,1] — [0,00) for m € N and u > 0 via

{m¢p(5) if § < u

5) =
P, (6) m P (u) + (me@P) (u) (§ —u)  otherwise.

)

As one easily verifies by taking derivatives, ¢P is convex on an appropriate set (0,). Hence,
b is convex provided that u < e. Moreover, one can check that, for every m € N, there exists
u(m) € (0,¢) such that Omum) < . Consequently, taking ¢ = sup,,en @m,u(m) finishes the

proof. O
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