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1 Introduction

The objective of this article is to derive a support theorem and a large deviation principle for
Brownian flows generated by Kunita stochastic differential equations. These type of SDE’s
are indispensable when studying stochastic flows from the perspective of their generating SDE.
The study of stochastic flows has been going along two main directions - in the probabilistic
one stochastic flows have been observed mainly through the SDE which generates them. The
other approach is rooted back in the ergodic theory and the theory of dynamical systems and
deals mainly with iterated random functions having certain properties independently of their
generation. If one confines oneself to stochastic differential equations driven by a finite number
of Brownian motions (or more generally continuous martingales) there appears a gap between
the two lines since there are Brownian stochastic flows (i.e. having infinitesimally independent
Gaussian increments) which cannot be generated via a finite dimensional noise SDE. A notorious
example are the isotropic Brownian flows studied among others by Baxendale and Harris [1], Le
Jan [9] and Yaglom [12]. To retain a proper one-to-one relationship between Brownian stochastic
flows in continuous time and SDEs one has to consider Kunita-type SDEs driven by possibly
infinitely many Brownian motions. The interested reader can find an in-depth treatment of this
relationship in the monograph by Kunita [8].

Our approach is based on recent results from the theory of rough paths [4] (see also [10, 5, 7]).
To be more precise we show that the latter results can be applied to the localized flow and we
then deduce our results by an approximation argument.

Let (Ω,F , (Ft),P) denote a filtered probability space satisfying the usual conditions and denote
by Cα(Rd,Rd) (α ≥ 0) the Fréchet space of bαc-times continuously differentiable functions
f : Rd → Rd whose differentials are locally α − bαc-Hölder continuous. As driving process we
consider a Cγ(Rd,Rd)-valued Wiener process X = (Xt)t∈[0,1] : Ω× Rd × [0, 1]→ Rd with γ > 2
being fixed throughout the article. The reproducing kernel Hilbert spaces of X and X1 will be
denoted by (H, | · |H) and (H1, | · |H1) respectively. We consider the flow Y generated by the
Kunita SDE

Yt(ξ) = ξ +
∫ t

0
X(Yt(ξ), ◦dt) +

∫ t

0
a(Yt(ξ)) dt, ξ ∈ Rd, t ∈ [0, 1], (1)

where a ∈ Cγ(Rd,Rd) is an additional drift term.
Our assumptions guarantee the existence of a unique maximal solution for one trajectory (for
each fixed ξ) up to a possibly finite explosion time and we need to impose as additional assump-
tions that none of the trajectories explodes in finite time, Assumption (A1), see [8, Theorem
4.5.1] for sufficient conditions for (A1).

The Kunita flow is closely related to the ordinary differential equation

ẏt(ξ) = ẋt(yt(ξ)) + a(yt(ξ)), y0(ξ) = ξ, (2)

where ẋt(ξ) denotes the time derivative in ξ ∈ Rd of a sufficiently smooth Cγ(Rd,Rd)-valued
process x = (xt)t∈[0,1]. In the case where x has compact support and is of bounded variation,
the Theorem of Picard-Lindelöf [11, Thm. 1.3] implies the existence of a unique solution of the
corresponding integral equation quoted explicitly in Section 2. Its solution operator will be
denoted by I. Note that for non-compactly supported x this solution operator is well defined
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only up to some explosion time and we need to impose further assumptions to ensure global
existence. We will see that Assumption (A2) below is sufficient to guarantee non-explosion of
the solution when applied to elements from the reproducing kernel Hilbert space H.

We consider W = Cm(Rd,Rd) as state space of the solution Y of (1), where m ∈ N0 with
m+ 2 < γ. Moreover, let ϕ : (0, 1]→ (0,∞) be a monotonically increasing function with

lim
δ↓0

ϕ(δ)√−δ log δ
=∞. (3)

Then we view Y as Cϕ([0, 1],W )-valued random element, where Cϕ([0, 1],W ) denotes the Fréchet
space of ϕ-Hölder continuous W -valued paths, see below for an exact definition.

Theorem 1.1. Suppose Assumptions (A1) and (A2) are satisfied. Every h ∈ H admits a unique
solution I(h) of the Young integral equation related to (2) and

rangeCϕ([0,1],W )(Y ) = I(H).

For the large deviation principle, we consider the family {Xε : ε > 0} as driving signals, where
Xε = (ε ·Xt)t∈[0,1]. The corresponding flows are denoted by Y ε.

Theorem 1.2. Under Assumptions (A1) and (A2), the family {Y ε : ε > 0} satisfies a large
deviation principle in Cϕ([0, 1],W ) of speed (ε2) with good rate function

J(y) = inf
{1

2
|h|2H : h ∈ H with I(h) = y

}
. (4)

Here and elsewhere the infimum of the empty set is assumed to be infinity.

In general, the rate of a path y is related to an integral equation, and, in general, it is a hard
problem to find minimizers on a given set. However, if the set is triggered by the evolution
of one particular trajectory y·(ξ), one can find the minimizer for the single evolution and then
conclude back on the rate minimizing evolution for the whole flow.

Theorem 1.3. Suppose that Assumption (A2) is valid. For a path γ ∈ C([0, 1],Rd), we consider

Aγ = {y ∈ C([0, 1],W ) : γt = yt(γ0) for all t ∈ [0, 1]}.
If Aγ contains an element with finite J-energy, then it possesses a unique J-minimizer y which
admits the following representation: For almost all t ∈ [0, 1], γ̇t − a(γt) lies in the image of the
covariance kernel K(γt, γt) of X1 (see (8)) and we denote by K−1(γt, γt) (γ̇t−a(γt)) the element
v ∈ Rd with minimal Euclidean norm that satisfies

K(γt, γt) v = γ̇t − a(γt).

Then y = I(f), where f ∈ H is given by

ḟt(ξ) = K(ξ, γt)K−1(γt, γt) γ̇t − a(γt), for ξ ∈ Rd. (5)

In particular, the minimal energy is

J(y) =
1
2

∫ 1

0
〈γ̇t − a(γt),K−1(γt, γt) γ̇t − a(γt)〉Rd dt. (6)

Remark 1.4. If we only consider the evolution of a single particle, say ξ ∈ Rd, then the
classical large deviation principle for (Y ε· (ξ) : ε > 0) associates the evolution (γt)t∈[0,1] with the
rate quoted in (6) (provided that (γt) is absolutely continuous with derivative in the image of
the kernel). Theorem 1.3 additionally gives a representation for the corresponding minimizing
flow as solution of an integral equation via (5).

3



Topologies

Let us now introduce the relevant spaces together with their topologies. Note that we consider
the Fréchet space Cγ(Rd,Rd) of all bγc-times continuously differentiable functions f : U → Rd
with all differentials of order bγc being locally γ − bγc-Hölder continuous as state space for the
driving signal. It is equipped with the semi-norms

‖f‖Cγζ := ‖ζ · f‖Cγ (ζ ∈ C∞c ),

where C∞c denotes the class of infinitely often differentiable real functions that are compactly
supported and ‖ · ‖Cγ is a canonical norm defined as follows: for n ∈ N and for a n-times
continuously differentiable function f ∈ Cn(U,Rd) (U ⊂ Rd domain), we set

‖f‖Cn =
∑

|α|≤n
sup
x∈U
|∂αf(x)|.

Moreover, for γ = n+ η with n ∈ N0 and η ∈ (0, 1), and f ∈ Cn(U,Rd), we set

‖f‖Cγ = ‖f‖Cn +
∑

|α|=n
sup
x6=y
|∂αf(x)− ∂αf(y)|

|x− y|η . (7)

Clearly, these seminorms can be used to define a general Fréchet space Cγ(U,Rd) for each domain
U ⊂ Rd. Moreover, if U is bounded, then the space Cγ(U,Rd) is even a Banach space and we
can directly work with the norm ‖ · ‖Cγ .
With Cγ0 (U,Rd) we define the subset of Cγ(Rd,Rd) comprising all functions vanishing outside
U . Again, if U is bounded, then the space Cγ0 (U,Rd) is even a Banach space.

Conversely, the flow Y is viewed as a ϕ-Hölder continuous W -valued random process with
W = Cm(Rd,Rd). We now give the precise definition of the corresponding space Cϕ([0, 1],WU )
for WU := Cm(U,Rd) and a general open set U ⊂ Rd. It is the subspace of continuous WU -valued
paths y : [0, 1]→WU that is induced by the seminorms y 7→ ‖ζ · y‖ϕ (ζ ∈ C∞c ), where

‖y‖ϕ = sup
0≤t≤1

‖y‖Cm + sup
0≤s<t≤1

‖yt − ys‖Cm
ϕ(t− s) .

If U is bounded, Cϕ([0, 1],WU ) is again a Banach space and we can directly work with the norm
‖ · ‖ϕ. Let us remark that the seminorms

y 7→ ∥∥y∣∣
U

∥∥
ϕ

(U ⊂ Rd bounded and open)

are an alternative family of seminorms that induce the space Cγ([0, 1],W ).

Assumptions related to the Kunita SDE

When analyzing the Kunita flow the driving signal (Xt)t∈[0,1] is a continuous Wiener process
attaining elements from the Fréchet space Cγ(Rd,Rd), with γ > 2. Since Cγ(Rd,Rd) is a
subspace of C(Rd,Rd) the distribution of the process is characterized by the covariance kernels
Ki,j (i, j = 1, . . . , d) given by

Ki,j(ξ1, ξ2) = EXi
1(ξ1)Xj

1(ξ2) (ξ1, ξ2 ∈ Rd). (8)
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Now fix γ′ = n+ η ≥ 2 with n ∈ N and η ∈ [0, 1), and note that by Kunita [8, Thm. 3.1.2 and
3.1.3] the assumption that the process X attains values in Cγ(Rd,Rd) for some γ > γ′ can be
rephrased in terms of the covariance kernel: Equivalently one may demand that for i = 1, . . . , d
the covariance kernel (ξ1, ξ2) 7→ Ki,i(ξ1, ξ2) is n-times continuously differentiable with respect
to each variable ξ1 and ξ2 and satisfies for a fixed δ > η, all compact sets K ⊂ Rd and any
multiindex α with |α| = n that

sup
ξ1,ξ′1,ξ2,ξ

′
2∈K

ξ1 6=ξ′1,ξ2 6=ξ′2

∂αξ1∂
α
ξ2
Ki,i(ξ1, ξ2)− ∂αξ1∂αξ2Ki,i(ξ′1, ξ2)− ∂αξ1∂αξ2Ki,i(ξ1, ξ

′
2) + ∂αξ1∂

α
ξ2
Ki,i(ξ′1, ξ

′
2)

|ξ1 − ξ′1|δ|ξ2 − ξ′2|δ
<∞ .

The conditions that we have imposed so far imply unique existence of a solution to (1) up to
some possibly finite explosion time ([8], Theorem 3.4.7), and we shall in the following assume
Assumption (A1):

(A1) X generates a flow Y that does not explode in finite time. See [8, Theorem 4.5.1] for
sufficient conditions for (A1).

For ξ0, ξ1 ∈ Rd we set

J(ξ0, ξ1) = inf
(γt)

∫
〈γ̇t,K−1(γt, γt) γ̇t〉Rd dt,

where the infimum is taken over all absolutely continuous paths (γt) ∈ C([0, 1],Rd) (in the sense
that it admits a representation γt − γ0 =

∫ t
0 γ̇s ds for a γ̇ ∈ L1([0, 1],Rd)) with γi = ξi (i = 0, 1)

and γ̇t ∈ imK(γt, γt) for Lebesgue almost all t ∈ [0, 1]. In the definition of J , K−1(γt, γt) γ̇t
denotes the element v ∈ Rd with minimal Euclidean norm that satisfies K(γt, γt) v = γ̇t.
When dealing with Kunita flows we furthermore impose the following assumption.

(A2) One has for all bounded sets U ⊂ Rd

lim
κ→∞ inf

ξ0∈U
inf

ξ1∈B(0,κ)c
J(ξ0, ξ1) =∞.

Agenda

The article is organized as follows. In the next section we show that in the case the driving noise
X is compactly supported the flow Y generated by (1) admits a Wong-Zakai approximation. In
Section 3 we use a localization argument in order to lift the implications of Section 2 to general
X. In this section the main results - a support theorem and a large deviation principle for
stochastic flows generated by Kunita SDE are proved.

2 Stochastic flows viewed as Wong-Zakai solutions

Throughout this section we confine ourselves on the analysis of evolutions starting in points
ξ ∈ U with U ⊂ Rd being a bounded, open and convex set. Moreover, we restrict attention to
Cγ(Rd,Rd)-valued Wiener processes X that have compact support. We also confine ourselves
with sufficiently smooth, i.e. Cγ(Rd,Rd), and compactly supported drift terms a. Hence both
the driving process X and the solution Y can be viewed as Banach space-valued processes and
we choose V0 = Cγ0 (Ũ ,Rd) and WU = Cm(U,Rd) as state spaces for X and Y respectively. In
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this section, we write V and W for V0 and WU , respectively, for ease of notation.
Again we assume that γ > m + 2. Later on we will relate the general case to this restricted
setting via a localization argument.
As we see below the stochastic flow Y is closely related to the solution operator of the following
Young differential equation

dyt = f(yt) d[xt + t a], y0 = idU , (9)

where

f : WU → L(V ;WU ), y 7→ Ty and Ty(x)(ξ) = x(y(ξ)), for y ∈WU , x ∈ V, ξ ∈ U.

By Picard’s theorem [11, Thm. 1.28], for f being a Lip(α)-function for a α > 1 in the sense
of [11, Def. 1.21] the differential equation possesses a unique solution I(x) for any function
x : [0, 1]→ V0 of bounded variation.
The Lipschitz property of f is also needed for the application of Lyons’ universal limit theorem
and therefore we verify it in the following lemma. Before proceeding with the statement of the
lemma let us briefly introduce some prerequisites on the projective tensor product of Banach
spaces:
For two Banach spaces V1 and V2 we denote by V1 ⊗a V2 the algebraic tensor product of V1 and
V2 and we let V1 ⊗ V2 denote the projective tensor product, that is the completion of V1 ⊗a V2

under the projective tensor norm | · |V1⊗V2 given by

|v|V1⊗V2 = inf
n∑

i=1

|fi|V1 |gi|V2 ,

where the infimum is taken over all representations

v =
n∑

i=1

fi ⊗ gi (n ∈ N, fi ∈ V1, gi ∈ V2 for i = 1, . . . , n).

For Banach spaces V1, . . . , Vn,W we denote by L(V1, . . . , Vn;W ) the set of multilinear functionals
g with

|g|L(V1,...,Vn;W ) := sup
|v1|,...,|vn|≤1

|g(v1, . . . , vn)|W <∞

Note that any g admits a canonical extension ḡ : L(V1 ⊗ · · · ⊗ Vn;W ) which has equal norm.
The extension will in the following also be denoted by g.

Lemma 2.1. The operator f is of class Lip(γ−m) in the sense of [11, Def. 1.21] and its Fréchet
derivatives are

djf : W → L(W j , V ;W ) = y 7→ T jy , for j ∈ N ∩ [0, γ −m],

where

T jy (z1, . . . , zj ;x)(ξ) := ∇jx(y(ξ))(z1(ξ), . . . , zj(ξ)), for x ∈ V, z1, . . . , zj ∈W, ξ ∈ Rd

and ∇jx denotes the j-th total derivative of x.
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Proof. We write γ −m = n+ η with n ∈ N0 and η ∈ (0, 1]. It suffices to show that, for j ≤ n,
w1, w2 ∈W , w ∈W⊗j and v ∈ V ,

∣∣T jw2
(w; v)−

n−j∑

l=0

1
l!
T j+lw1

(w ⊗ (y2 − y1)⊗l; v)
∣∣
W
≤ const |w2 − w1|γ−m−jW |w|W⊗j |v|V . (10)

Now a multiindex α = i1 . . . im of length less than or equal tom is associated to w̄ = ei1⊗· · ·⊗eim ,
where (e1, . . . , ed) denotes the standard basis of Rd. We compute, for ξ ∈ U ,

∂αT jw2
(w; v)(ξ) = ∂α∇jv(w2(ξ))(w(ξ)) = ∇j+mv(w2(ξ))(w(ξ)⊗ w̄).

Similarly one can rewrite the other terms in (10) and one gets

∂α
[
T jw2

(w; v)−
n−j∑

l=0

1
l!
T j+lw1

(w ⊗ (y2 − y1)⊗l; v)
]
(ξ)

= ∇j+mv(w2(ξ))(w(ξ)⊗ w̄)−
n−j∑

l=0

1
l!
∇j+m+lv(w1(ξ))(w(ξ)⊗ w̄ ⊗ (w2(ξ)− w1(ξ))⊗l).

By Taylor, the k-th coordinate (k ∈ {1, . . . , d}) of the latter expression coincides with the k-th
coordinate of

1
(n− j)!

(∇m+nv(w′k)−∇m+nv(w1(ξ))
)
(w(ξ)⊗ w̄ ⊗ (w2(ξ)− w1(ξ))⊗(n−j)),

where w′k is an appropriate element on the segment joining w1(ξ) and w2(ξ). Moreover,
∣∣∣ 1
(n− j)!

(∇m+nv(w′k)−∇m+nv(w1(ξ))
)
(w(ξ)⊗ w̄ ⊗ (w2(ξ)− w1(ξ))⊗(n−j))

∣∣∣

≤ 1
(n− j)! |v|V |w2 − w1|ηW |w|W⊗j |w2 − w1|n−jW

=
1

(n− j)! |w2 − w1|γ−m−jW |w|W⊗j |v|V .

Consequently,

∣∣∣∂α
[
T jw2

(w; v)−
n−j∑

l=0

1
l!
T j+lw1

(w ⊗ (y2 − y1)⊗l; v)
]
(ξ)
∣∣∣ ≤ d

(n− j)! |w2 − w1|γ−m−jW |w|W⊗j |v|V

which proves (10). �
We now show the link between the solution operator I(x) of (9) and the flow Y . Consider the
dyadic piecewise linear interpolation X(n) of X with breakpoints Dn = [0, 1] ∩ 2−nZ and the
corresponding solution Y (n) = I(X(n)) of (9) with respect to the interpolated Brownian noise
X(n). If (Y (n))n∈N converges almost surely in Cϕ([0, 1],WU ) to a random process Y WZ , we call
Y WZ the Wong-Zakai solution of (9) with control X.

By Lemma 2.1 and [4, Thm. 1.5], X induces a Wong-Zakai solution Y WZ and the solution
admits a support theorem and a large deviation principle, see [4, Thm. 1.7]. As we show next
the Wong-Zakai solution Y WZ of (9) is precisely the flow generated by (1). In other words the
infinite dimensional stochastic flow admits a Wong-Zakai approximation and we immediately
have a support theorem and a large deviation principle.
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Theorem 2.2. Let X be a V0 valued Wiener process. Then the Kunita type Stratonovich SDE
(1) with driving noise X possesses a continuous pathwise unique solution Y coinciding with the
Wong-Zakai solution Y WZ of (9).

Proof. The existence and the pathwise uniqueness of the solution to the Kunita SDE (1) follows
from Theorem 3.4.1 in [8].
If X was a finite dimensional Brownian noise the statement would boil down to a standard
Wong-Zakai theorem. Our approach is to truncate the noise to a finite dimensional one and
then let the number of dimensions grow to infinity.
Let X =

∑∞
i=1 ξ

iei, with (ξi) being independent real-valued Wiener processes and (ei) being
a complete orthonormal system of the reproducing kernel Hilbert space H1 of X1. Consider
the truncated sum X(m) =

∑m
i=1 ξ

iei (m ∈ N) and its dyadic piecewise-linear interpolations
X(n,m).
Additionally, we denote by Y Strat(m) and Y Strat(n,m) the solutions to the Stratonovich differ-
ential equation with driving noise X(m) and X(n,m), respectively.
The Wong-Zakai solutions of (9) with respect to controls X(m) and X are denoted by Y WZ(m)
and Y WZ respectively.
The following diagram represents the identification steps in the proof. On the left hand side
we find the solutions of the (possibly truncated) SDE (1), while on the right hand side are the
Wong-Zakai solutions of (9) with respect to the various truncations of the Wiener process X:

Y = Y WZ

Y Strat(m)

(5) m→∞

OO

(4)
= Y WZ(m)

(3) m→∞
OO

Y Strat(n,m)

(2) n→∞
OO

(1)
= I(X(n,m))

(3) n→∞
OO

(1) We obviously have I(X(n,m) = Y Strat(n,m) since X(n,m) is of bounded variation and
therefore the Stratonovich and the random differential equations coincide trivially.

(2) The convergence Y Strat(n,m) → Y Strat(m) for n → ∞ is a standard Wong-Zakai type
result - see for instance Theorem 7.2 on p. 410 of [6] for a very general version. The
convergence mode is the standard convergence in probability uniformly in time on compact
sets (sometimes referred to as the UCP convergence).

(3) According to Theorem 1.7 in [4], the smoothness of the Banach space-valued Wiener
processes X(m) and X implies, that the equation (9) with control X(m) admits a Wong-
Zakai solution, that is (I(X(n,m)))n∈N converges in Cϕ([0, 1],WU ) to a random process
Y WZ(m), which itself converges to Y WZ when letting m tend to infinity.

(4) Clearly, identifying the elements of the sequences implies the identification of the corre-
sponding limits.

(5) The convergence of the solutions Y Strat(m) of the truncated SDE to the solution Y of the
original SDE (1) follows with a standard argument involving the Burkholder-Davis-Gundy
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inequality and the Gronwall Lemma. It can also be verified as a consequence of the much
more general result in [8] (Theorem 5.3.6).

�

Remark 2.3. The convergences on the right hand side of the diagram is where the Lyons’
universal limit theorem enters the picture. The Wong-Zakai solutions of the random differential
equation (9) with controls X, X∗(m) and X∗(n,m) are the first coordinates of the solutions
of the corresponding rough path equations whose Itô maps are continuous according to this
celebrated result.

3 Applications to Kunita’s stochastic differential equation

In the following, X = (Xt)t∈[0,1] denotes a general C γ̄(Rd,Rd)-valued Wiener processes with
γ̄ > 2, that satisfies the non-explosion assumptions (A1) and (A2). Moreover, we choose W =
Cm(Rd,Rd) with m ∈ N0 and m + 2 < γ̄, and let Y denote a solution to the Kunita SDE (1).
We need to apply a localization in order to be able to apply the results from before.

Localization

For each n ∈ N, we choose a real-valued compactly supported function ζn : Rd → R with
ζn|B(0,n) = 1, and we call

Xζn := Dζn(X) := (ζn ·Xt)t∈[0,1]

the ζn-localized control. Suppose ζn is supported on a bounded and open set Ũn. Then Xζn is a
C γ̄0 (Ũn,Rd)-valued Wiener process with reproducing kernel Hilbert space Hζn = Dζn(H). Note
that the embedding Dζn has norm one and admits for each h ∈ Hζn an element h̄ ∈ H with

Dζn(h̄) = h and |h̄|H = |h|Hζn ,

see [2, Thm. 3.7.3]. The corresponding ζn-localized solutions are denoted by Y ζn that is

Y ζn
t (ξ) =

∫ t

0
Xζn(Y ζn

s (ξ), ◦ds) +
∫ t

0
aζn(Y ζn

s (ξ)) ds, ξ ∈ Rd, t ∈ [0, 1], (11)

where we briefly write aζn = Dζn(a).

Furthermore, we choose a bounded, open and convex set U and we consider the U -confined
solution Y U of Y which is Y U := Y |U . Similarly, we write Y ζn,U for the U -confined solution of
Y ζn . By the previous section Y ζn,U is just the Wong-Zakai solution in the sense of [4] and, in
particular, Theorem 1.7 of [4] is applicable for Y ζn,U .

So far we have not yet defined the Itô-map I(x) for general elements x ∈ H. We use the same
localization technique: We denote by Iζn,U (x) = yζn,U the U -confined solution of the Young
analog of (11) and we set

IU (x) := lim
n→∞ Iζn,U (x)
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provided the limit exists. Finally, I(x) is defined as the W -valued path whose restrictions to
all spatial domains U coincide with IU (x). As the following theorem shows, Assumption (A2)
guarantees that the approximating solutions do not explode and that the approximations again
become identical for sufficiently large n. Hence, I(x) is well-defined for all x ∈ H.
Note that the following statement also comprises Theorem 1.3.

Theorem 3.1. Under Assumption (A2) the following statement is true:

• For x ∈ H and a bounded, open and convex set U ⊂ Rd, the sequence (Iζn,U (x))n∈N
becomes constant for sufficiently large n so that I(x) (see above) is well-defined. Moreover,
for ξ ∈ Rd and y = I(x), the path y·(ξ) is absolutely continuous and satisfies

yt(ξ) = ξ +
∫ t

0
ẋs(ys(ξ)) ds+

∫ t

0
a(ys(ξ)) ds.

• For a path γ ∈ C([0, 1],Rd), we consider

Aγ = {y ∈ C([0, 1],W ) : γt = yt(γ0) for all t ∈ [0, 1]}, (12)

If Aγ ∩ I(H) is non-empty, then there exists a unique minimal element f ∈ H with I(f) ∈
Aγ. It admits the following representation: For almost all t ∈ [0, 1], γ̇t − a(γt) lies in
the image of K(γt, γt) and we denote by K−1(γt, γt) (γ̇t − a(γt)) the element v ∈ Rd with
minimal Euclidean norm that satisfies

K(γt, γt) v = γ̇t − a(γt).

Then f ∈ H satisfies

ḟt(ξ) = K(ξ, γt)K−1(γt, γt) (γ̇t − a(γt)), for ξ ∈ Rd and a.a. t ∈ [0, 1]

and

|f |2H =
∫ 1

0
〈γ̇t − a(γt),K−1(γt, γt) (γ̇t − a(γt))〉Rd dt.

Proof. Fix x ∈ H, a bounded, open and convex set U , ξ ∈ U and n ∈ N, and consider
yζn,U = Iζn,U (x), γt := yζn,Ut (ξ) and x̄t = xζnt + taζn for t ∈ [0, 1]. By definition of the Young
integral, one has

γt − γ0 = lim
m→∞

m−1∑

i=0

x̄tmi ,tmi+1
(γti) = lim

m→∞

∫ t

0

m−1∑

i=0

1l[tmi ,tmi +1)(s) ˙̄xs(γtmi ) ds, (13)

where the limit is taken over a sequence of partitions 0 = tm0 < · · · < tmm = t with mesh tending
to zero. Due to the localization, the path (γt) does not leave an appropriately chosen open and
bounded set Ũ and there exists a constant c = c(Ũ ,H1) such that

| ˙̄xs(ξ1)− ˙̄xs(ξ2)| ≤ (c |ẋs|H1 + |a|Cγ(U,Rd)) |ξ1 − ξ2|, for s ∈ [0, 1] and ξ1, ξ2 ∈ Ũ .

Hence, by the continuity of (γt) the integrand in (13) converges for Lebesgue almost all times s
to ˙̄xζnt (yζnt (ξ)) and it is straight forward to verify via Lebesgue’s dominated convergence theorem
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that yζn(ξ) is absolutely continuous with ẏζn,Ut (ξ) = γ̇t = ẋζnt (yζn,Ut (ξ))+aζn(yζn,Ut (ξ)) for almost
all t.

Next, we derive a lower bound for |x|H solely by looking at (γt). Let us denote by 〈·, ·〉 the inner
product on Hζn

1 . We use that for φ ∈ Hζn
1 and v, w ∈ Rd

〈φ,Kn(·, w) v〉 = 〈φ(w), v〉Rd , (14)

where Kn denotes the covariance kernel that belongs to the Gaussian random element Xζn
1 .

Choose v ∈ Rd orthogonal to imKn(w,w). SinceKn(w,w) is symmetric, we have v ∈ kerKn(w,w)
so that by (14)

〈Kn(·, x) v,Kn(·, x) v〉 = 〈Kn(x, x) v, v〉Rd = 0.

Hence, 〈φ(w), v〉Rd = 〈φ,Kn(·, w) v〉 = 0, and φ(w) is in the image of Kn(w,w). Therefore,
K−1
n (γt, γt) (γ̇t − a(γt)) is well defined in the sense explained above. We set ˙̄γt = γ̇t − a(γt) and

choose
ġt(ξ′) = Kn(ξ′, γt)K−1

n (γt, γt) ˙̄γt, for ξ′ ∈ Rd.
Then again by (14)

|ġt|2Hζn
1

= 〈Kn(·, γt)K−1
n (γt, γt) ˙̄γt,Kn(·, γt)K−1

n (γt, γt) ˙̄γt)〉
= 〈 ˙̄γt,K−1

n (γt, γt) ˙̄γt〉Rd .
(15)

On the other hand, we have for almost all t ∈ [0, 1] that

|ẋt|H1 ≥ |ẋζnt |Hζn
1
≥ 〈ẋ

ζn
t , ġt〉
|ġt|Hζn

1

=
〈ẋζnt (γt),K−1

n (γt, γt) ˙̄γt〉Rd
|ġt|Hζn

1

= |ġt|Hζn
1
, (16)

since ˙̄γt = ẋζnt (γt) a.e. Note that the second inequality is a strict inequality, whenever ġt 6= ẋζnt
(and ˙̄γt = ẋζnt (γt)). Consequently,

|x|2H ≥
∫ 1

0
〈 ˙̄γt,K−1

n (γt, γt) ˙̄γt〉Rd dt (17)

and the inequality is a strict inequality, whenever ẋζnt 6= ġt on a set of nonvanishing Lebesgue
measure or equivalently, if xζn 6= g.
Next, fix n0 ∈ N and suppose that yζn(ξ) leaves B(0, n0) for some n ≥ n0 and ξ ∈ U . We set
γt = yζnt (ξ) and denote by T the first exit time. We get

|x|2H ≥
∫ T

0
〈γ̇t,K−1

n (γt, γt) γ̇t〉Rd dt =
∫ T

0
〈γ̇t,K−1(γt, γt) γ̇t〉Rd dt

≥ inf
ξ1∈U

inf
ξ2∈B(0,n0)c

J(ξ1, ξ2).

Here we used that K and Kn coincide on B(0, n) ⊃ B(0, n0). Thus, Assumption (A2) guarantees
that for given x ∈ H, the corresponding solutions (yζn)n∈N coincide on U for all sufficiently large
n ∈ N. This proves the first statement of the lemma.

Now the second statement follows easily from part one. Indeed, all estimates (15), (16), and
(17) remain valid for the nonlocalized controls. �

11



The support theorem for flows

Theorem 3.2. Under Assumptions (A1) and (A2), one has

rangeCϕ([0,1],W )(Y ) = I(H),

where the closure is taken in Cϕ([0, 1],W ) and ϕ : (0, 1]→ (0,∞) is increasing and satisfies (3).

Proof. For open and bounded sets, we interpret ‖ · ‖Cm(U,Rd) as semi-norms on Cm(Rd,Rd).
Since these semi-norms generate the topology of the Fréchet space, it suffices to prove the support
theorem for a fixed set U and the U -confined solution Y U .
By [4] and Theorem 2.2, the localized solution Y ζn,U admits the following representation of its
range (note that Hζn = Dζn(H)):

range (Y ζn,U ) = Iζn,U (H). (18)

We start with proving IU (H) ⊂ range (Y U ). We fix f = IU (h) with h ∈ H, and note that

I(f) := {ft(ξ) : ξ ∈ U, t ∈ [0, 1]} (19)

is a bounded set by Theorem 3.1 and Assumption (A2). Next, we fix n ∈ N large enough such
that I(f) ⊂ B(0, n− ϕ(1)). Then, f = Iζn,U (h) ∈ Iζn,U (H) and we conlude with (18) that, for
each ε ∈ (0, 1),

P(‖Y U − f‖ϕ < ε) = P(‖Y ζn,U − f‖ϕ < ε) > 0.

For the opposite direction, we fix f ∈ range (Y U ) and let n ∈ N again be large enough such that
I(f) ⊂ B(0, n− ϕ(1)). Then, for all ε ∈ (0, 1), one has

0 < P(‖Y U − f‖ϕ < ε) = P(‖Y ζn,U − f‖ϕ < ε).

By equation (18), one has f ∈ Iζn,U (H) and we fix a sequence (fk)k∈N = (Iζn,U (hk)) such that
‖fk − f‖ϕ converges to 0 and is always less than one. Then Iζn,U (hk) = IU (hk) and f ∈ IU (H).

�

The large deviation principle for flows

Theorem 3.3. Under Assumptions (A1) and (A2), the family (Y ε : ε > 0) of processes satisfies
in Cϕ([0, 1],W ) a large deviation principle with good rate function

J(y) = inf
{1

2
|h|2H : h ∈ H with I(h) = y

}
,

where ϕ : (0, 1]→ (0,∞) is increasing and satisfies (3).

Before we prove the theorem, we recall the consequences of Theorem 1.7 of [4] and the previous
section. Let U be a bounded, open and convex set, let ε > 0 and n ∈ N, and consider the
U -confined flows Y ζn,U,ε which one gets when applying a ζn-localization and choosing Xε = ε ·X
as control. Then the family (Y ζn,U,ε : ε > 0) satisfies a LDP with good rate function

Jζn,U (y) = inf
{1

2
|Dζn(h)|2Hζn : h ∈ H with Iζn,U (h) = y

}
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Lemma 3.4. If n ∈ N satisfies I(y) ∈ B(0, n), then

Jζn,U (y) = inf
{1

2
|h|2H : h ∈ H with IU (h) = y

}
=: JU (y). (20)

Proof. For given y, we choose h ∈ H with Iζn,U (h) = y. Then there exists h̄ ∈ H with
Dζn(h̄) = Dζn(h) and |h̄|H = |Dζn(h)|Hζn . By assumption, IU (h̄) = Iζn,U (h) so that the right
hand side of (20) is not larger than the left hand side. The opposite direction follows similarly
when recalling that Dζn : H → Hζn is a contraction. �

Proof of Theorem 3.3. By the Dawson-Gärtner theorem [3, Thm. 4.6.1] it suffices to consider
a cofined solution Y U for a bounded, open and convex set U , and to prove a large deviation
principle for the family (Y U,ε : ε > 0) with rate function JU . We start with proving the upper
bound. Let A0 ⊂ Cϕ([0, 1],WU ) be a closed subset and set

m = inf
y∈A0

JU (y),

if the infimum is finite, and otherwise we pick m > 0 arbitrarily large. By Assumption (A2) and
Theorem 3.1, there exists a sufficiently large n ∈ N such that for any y ∈ Cϕ([0, 1],WU ), one of
the following two properties is valid:

• I(y) ⊂ B(0, n) or

• JU (y) ≥ m,

where I is as in (19). We consider

A = {y ∈ Cϕ([0, 1],WU ) : y ∈ A0 or I(y) 6⊂ B(0, n)}.
Certainly, A is a closed set including A0 and one has

P(Y U,ε ∈ A0) ≤ P(Y U,ε ∈ A) = P(Y ζn,U,ε ∈ A).

Consequently, the LDP stated above implies that

lim sup
ε↓0

ε2 logP(Y U,ε ∈ A) ≤ − inf
y∈A

Jζn,U (y). (21)

On the one hand a path y ∈ A with I(y) 6⊂ B(0, n) satisfies Jζn,U (y) ≥ m by assumption. On
the other hand, one has for a path y ∈ A0 with I(y) ⊂ B(0, n)

Jζn,U (y) = JU (y) ≥ m
by the previous lemma. This proves the upper bound.

For the converse direction, we choose f = I(h) ∈ I(H), fix ε > 0, and set A = BCϕ([0,1],WU )(f, ε).
Again, we and choose n ∈ N such that, for all y ∈ A, I(y) ⊂ B(0, n). Then

P(Y U,ε ∈ A) = P(Y ζn,U,ε ∈ A),

and
lim inf
ε↓0

ε2 logP(Y U,ε ∈ A) ≥ −Jζn,U (y).

Since I(y) ⊂ B(0, n), we conclude again by Lemma 3.4 that Jζn,U (y) = JU (y). �
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[11] T. L. Lyons, M. J. Caruana, and T. Lévy. Differential equations driven by rough paths.
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