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1 Introduction

1.1 Statement of the problem

This article deals with the so-called one-sided exit problem – also called one-sided barrier prob-
lem. For a real-valued stochastic process (At)t > 0 one investigates whether there is a θ > 0 such
that

P( sup
t∈[0,T ]

At 6 1) = T−θ+o(1), as T → ∞. (1)

If such an exponent θ exists it is called the survival exponent. The function B(s) ≡ 1 acts as a
barrier, which the process must not pass. We also discuss other barriers B below.
If the process is self-similar, i.e. (Act) and (cHAt) have the same finite-dimensional distributions
for some H > 0, the problem is equivalent to the so-called lower tail probability problem:

P( sup
t∈[0,1]

At 6 ε) = εθ/H+o(1), as ε → 0. (2)

Apart from this, we also look at the discrete version of (1):

P( sup
n=1,...,N

An 6 1) = N−θ+o(1), as N → ∞, (3)

where (An)n∈N0 is a discrete time random process.
Obviously, problems (1), (2), and (3) are classical questions. They are relevant in a number of
quite different applications (see Section 1.5). It is therefore surprising that very little seems to
be known about them.
In fact, for (1) the exponent is known in the following cases: Brownian motion (θ = 1/2, trivially
obtained via the reflection principle), integrated Brownian motion (θ = 1/4, [23, 10, 14, 32], see
also [12, 15]), fractional Brownian motion (θ = 1 − H, [24, 25, 18]), and some Lévy processes
(see e.g. [2, 4]).
It is even more surprising that for the discrete version (3) yet less seems to be known. The
only cases where the exponent was calculated are general random walks (e.g. θ = 1/2 if the
increments are centered, see for example [9]) and the integrated simple random walk (θ = 1/4,
[32]). Bounds for general integrated random walks are given in [5], polynomial bounds for
integrated Gaussian random walks can be obtained from [18]. It was conjectured ([5]) that for
any integrated random walk the exponent is θ = 1/4.
The focus of the present article is on integrated processes and integrated random walks: i.e.
A = I(X) with I some integration operator and X a Lévy martingale or centered random
walk. The main motivation for this work was that the exponent was known for integrated
Brownian motion, but not for general integrated random walks. We will show that indeed the
exponent is θ = 1/4 under mild assumptions. We stress that the processes that we considered
are non-Markovian.

1.2 Main results

The goal of this article is to investigate the asymptotics of

P( sup
t∈J∩[0,T ]

At 6 1), as T → ∞, (4)

for J = N0 or J = [0,∞). We show the following:
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• For a fixed integration operator I, the asymptotics of this probability for A = I(X) is
universal over the class of Lévy processes and random walks X. The reason for this is
that all of these processes can be coupled with a suitable Brownian motion. The resulting
order of (4) can then be inferred from Brownian motion or any other process in this class,
such as the simple random walk.

• The existence of the survial exponent can be established for the case of fractionally in-
tegrated processes. This survival exponent is shown to be decreasing with respect to
higher integration. As a byproduct we show that the survival exponent of fractionally
integrated Brownian motion (also called Riemann-Liouville process) is not the same as for
the corresponding fractional Brownian motion (FBM).

• We show a certain robustness concerning the change of the barrier, which is equivalent to
adding a drift to the process. In fact, adding a drift to a Gaussian process that is in its
reproducing kernel Hilbert space, does not change the survival exponent of that process.

• We exploit the connection of the one-sided exit problem to random polynomials established
in [8, 18] in order to improve the knowledge of the crucial constant appearing there.

Let us be more precise. We let X denote the class of all (non-deterministic, right-continuous)
martingales (Xt)t > 0 with independent and stationary increments, X0 = 0, satisfying

E[eβ|X1|] < ∞, for some β > 0.

If the martingale is only defined on N0, we set Xt := X⌊t⌋ for all t > 0.
Let us further specify the type of functionals I that we consider. We let I be a functional of
the following convolution type:

I(X)t =

∫ t

0
K(t − s)Xs ds, t > 0,

where K : [0,∞) → [0,∞) is a measurable function satisfying

K(s) 6 k[sα−1 + sβ−1] (5)

for positive constants k, α, and β with α > β. Additionally, we need to impose a regularity
assumption on the tail behavior of K. Here, we assume that either K is weakly equivalent to
a regularly varying function or it is assumed to be ultimately decreasing. We remark that this
technical assumption can be further relaxed.
The main example is the integration operator:

I1(X)t :=

∫ t

0
Xs ds, t > 0,

where K(s) ≡ 1, but our definition also includes fractional integration operators

Iα(X)t :=

∫ t

0

1

Γ(α)
(t − s)α−1Xs ds, t > 0, (6)
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where α > 0 and Γ denotes Euler’s Gamma function. In particular, if α is an integer, Iα(X)
is the α-times integrated process. For completeness we set I0 to be the identity; and we recall
that Iα ◦ Iβ = Iα+β for α, β > 0.
Finally, in order to formulate the main result we call functions f, g : I → R weakly-log-equivalent,
if there exists a δ > 0 such that

(log T )−δg(T ) - f(T ) - (log T )δg(T ).

In that case we briefly write f ≍log g. Note that ≍log defines an equivalence relation. Here and
below we use f - g (or g % f) if lim sup f/g < ∞ and f ≈ g if f - g and g - f . Further, f . g
(or g & f) means lim sup f/g 6 1, and f ∼ g means that f . g and g . f .

Using this notation, our main theorem reads as follows.

Theorem 1.1. Let (Xt)t > 0 and (Yt)t > 0 be two processes from the class X . Then, for either
J = N0 or J = [0,∞),

P( sup
t∈J∩[0,T ]

I(X)t 6 1) ≍log P( sup
t∈J∩[0,T ]

I(Y )t 6 1).

That means the asymptotics of all processes in the class X are equivalent with respect to ≍log.

This is the mentioned universality result. In particular, the survival exponent (if it exists) is
universal over the class X . The proof of Theorem 1.1 is given in Section 2.3. In fact, we shall
prove a more precise result that gives us control on the logarithmic loss between two processes.

A particularly important case is when I is the usual integration operator. Then the rate of the
survival probability is known for X being Brownian motion or X being the simple random walk.
Our main result entails the following corollary for general random walks.

Corollary 1.2. Let X1, X2, . . . be a random walk started in 0 with E[eβ|X1|] < ∞ for some β > 0
and with E[X1] = 0. Set An =

∑n
i=1 Xi. Then, as N → ∞,

(log N)−4N−1/4 - P( sup
n=1,...,N

An 6 1) - (log N)4N−1/4.

Similarly, we obtain the result for integrated Lévy processes.

Corollary 1.3. Let (Xt)t > 0 be a real-valued Lévy process with E[eβ|X1|] < ∞ for some β > 0
and with E[X1] = 0. Set At :=

∫ t
0 Xs ds. Then, as T → ∞,

(log T )−4T−1/4 - P( sup
t∈[0,T ]

At 6 1) - (log T )4T−1/4.

Theorem 1.1 implies that the survival exponent θ is the same for any process from the class X .
Of course, it is not clear that the exponent exists, but if it does for one process from the class X
so it does for any process from that class. Now we prove that the survival exponent does indeed
exist for the particularly important case of the α-fractional integration operator (6) and that it
is decreasing in α.
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Theorem 1.4. There is a non-increasing function θ : [0,∞) → (0, 1/2], θ : α 7→ θ(α), such that
for any process X from the class X and any α > 0

P( sup
t∈[0,T ]

Iα(X)t 6 1) = T−θ(α)+o(1), as T → ∞.

We recall that θ(0) = 1/2 and θ(1) = 1/4.

The proof of Theorem 1.4 is given in Section 3.3. Theorem 1.4 does not yield new values for θ,
so it remains a challenge to calculate θ(α), e.g. for integers α. A lower bound for θ is obtained
in Corollary 1.5.

The connection to random polynomials is discussed in Section 1.3. We give some further remarks
in Section 1.4. In Section 1.5, we comment on some related work. The proof of the main result,
Theorem 1.1, is given in Section 2.3. Sections 2.1 and 2.2 may be of independent interest: the
former contains an a priori estimate for I being the identity; the latter a version of the FKG
inequality for processes with independent increments. In Section 3, we show that adding a drift
of a certain strength to the process X does not influence the survival exponent. This newly
developed drift argument also allows to change the barrier B. Using this drift argument, the
proof of Theorem 1.4 is an easy consequence.

1.3 Random polynomials having few or no real zeros

Let us now give an application of our results to the study of zeros of random polynomials. The
connection to the one-sided exit problem was established in [8, 18]. It was shown in [8] that for
ξi i.i.d. Gaussian random variables

P(
2n
∑

i=0

ξix
i 6 0 ∀x ∈ R) = n−b+o(1), n → ∞,

where

b := −4 lim
T→∞

1

T
log P( sup

t∈[0,T ]
Y ∞

t 6 0)

and Y ∞ is the stationary Gaussian process with correlation function

corr∞(τ) := E[Y ∞
0 Y ∞

τ ] =
2e−τ/2

1 + e−τ
.

It was shown that 0.4 < b < 1.29 (see [8, 18]). Here we show the following connection to our
problem and an improvement for the numerical value of b.

Corollary 1.5. For the decreasing function θ defined in Theorem 1.4 we have

θ(α) > b/4, for all α > 0.

In particular, b 6 4 · θ(1) = 1.
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This fact gives a further motivation to find values for θ(α), α /∈ {0, 1}.
Proof. Note that it is sufficient to show the lemma for integer α, since θ is decreasing. Consider
the Lamperti transforms of the processes Rn = In(W ) normalized by the square root of its
variance:

Y n
t := n!

√
2n + 1 e−(n+1/2)tRn

et .

This is a stationary Gaussian process. One can calculate its correlation function (τ > 0):

corrn(τ) := E[Y n
0 Y n

τ ] = n!2(2n + 1)e−(n+1/2)τ
E[Rn

1Rn
eτ ]

= (2n + 1)e−(n+1/2)τ

∫ 1

0
(eτ − u)n(1 − u)n du.

It is elementary to see that

(2n + 1)e−(n+1/2)τ

∫ 1

0
(eτ − u)n(1 − u)n du 6

2e−τ/2

1 + e−τ
, τ > 0, n > 1,

with equality at τ = 0. Indeed, note that

e−nτ

∫ 1

0
(eτ − u)n(1− u)n du =

∫ 1

0
(
√

(1 − e−τu)(1 − u))2n du 6

∫ 1

0

(

1 − e−τu + 1 − u

2

)2n

du.

Integrating the latter expression gives

1

2n + 1

2

e−τ + 1

(

1 −
(

1 − e−τ + 1

2

))2n+1

) 6
2

e−τ + 1
.

This implies that, for all n > 1,

corrn(0) = corr∞(0), and corrn(τ) 6 corr∞(τ), τ > 0.

Therefore, by Slepian’s lemma,

b = −4 lim
T→∞

1

T
log P( sup

t∈[0,T ]
Y ∞

t 6 0)

6 − 4 lim
T→∞

1

T
log P( sup

t∈[0,T ]
Y n

t 6 0)

= −4 lim
T→∞

1

T
log P( sup

t∈[0,T ]
Rn

et 6 0)

= −4 lim
T→∞

1

T
log P( sup

t∈[1,eT ]

Rn
t 6 0)

= −4 lim
T→∞

1

log T
log P( sup

t∈[1,T ]
Rn

t 6 0)

= 4 · θ(n),

where the last step follows from Corollary 3.5. �
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1.4 Further remarks

Let us consider fractional Brownian motion (FBM) with Hurst parameter H ∈ (0, 1). It is a
close relative of the α-fractionally integrated Brownian motion (also called Riemann-Liouville
process) with α := H − 1/2 > 0 defined by:

Rα
t := Iα(W )t =

1

Γ(α)

∫ t

0
(t − s)α−1Ws ds, t > 0, (7)

where W is a Brownian motion. For completeness we set R0 := W . Let furthermore

Xα := Rα + Mα, where Mα
t :=

1

Γ(H − 1/2)

∫ 0

−∞

(

(t − s)H−1/2 − (−s)H−1/2
)

dWs.

Then Xα is a fractional Brownian motion with Hurst parameter H = α + 1/2.
For α-fractionally integrated Brownian motion the survial exponent is given in Theorem 1.4.
Further, we recall that the survival exponent for FBM with Hurst parameter H is known to be
θFBM = 1−H, see [24]. In view of Theorem 1.4 (the function θ is decreasing and θ(1) = 1/4 for
the α-fractionally integrated Brownian motion), it is clear that the survival exponents of both
processes cannot coincide. This fact may come as a surprise since often properties of Xα are
the same as those of Rα.

Corollary 1.6. For α ∈ (1/4, 1/2), the survival exponent of α-fractionally integrated Brownian
motion Rα = Iα(W ) is not equal to the survival exponent of FBM with the corresponding Hurst
parameter H := α + 1/2.

As a last remark, note that our main theorem considers the behavior of

P( sup
t∈J∩[0,T ]

I(X)t 6 1)

where in the supremum either J = [0,∞) or J = N0. The question arises, whether is it true
that, for any process X from the class X ,

P( sup
t∈[0,T ]

I(X)t 6 1) ≈ P( sup
t∈N0∩[0,T ]

I(X)t 6 1).

One can answer this question affirmatively for the case that I is the usual integration, since
(I(X)t)t > 0 is the linear interpolation of (I(X)t)t∈N0 , which gives:

P( sup
t∈N0∩[0,⌈T ⌉]

I(X)t 6 1) 6 P( sup
t∈[0,T ]

I(X)t 6 1) 6 P( sup
t∈N0∩[0,T ]

I(X)t 6 1), T > 0.

We conjecture that it also holds under suitable conditions on I.

1.5 Related work

Let us comment on some further related work and the relevance of the questions (1), (2), and
(3) for other problems.
Li and Shao [18, 19] are the first who aim at building a theory for a whole class of processes. In
the mentioned works, the lower tail probability problem (2) is studied for Gaussian processes.
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It is shown that the decrease in (2) is indeed on the polynomial scale for many one-dimensional
Gaussian processes. However, the technique does not yield values for the survival exponent. An
important tool in the study of the above problems for Gaussian processes is the Slepian lemma
[34] and a comparable opposite inequality from [17].
The survival exponent is unknown for the integrated fractional Brownian motion, see [27]. A
related question for the Brownian sheet is solved in [7, 6]. Further references with partial results
are [33, 22, 1].
We further mention a recent work of Simon [30], where the problem is studied for certain
integrated stable Lévy processes. Even though we also study integrated Lévy processes in this
paper, the results and techniques are completely disjoint.
We finally mention that the survival exponent has a deeper meaning in several models, in partic-
ular, in statistical physics when studying the fractal nature of the solution of Burgers’ equation,
see [32, 29, 3, 24, 25, 26, 31]. Apart from this, the exponent plays a role in connection with
pursuit problems (see [18] and references therein), in the study of most visited sites of a process
(see e.g. [1]), and in the investigation of zeros of random polynomials (see [8] and references
therein and Section 1.3 above). We refer to [18] for a recent overview of the applications. The
question can also be encountered in the physics literature, see [21] for a summary. The discrete
version (3) is studied in connection with random polymers, see [5].

2 Proof of the universality result

2.1 A priori estimate via Skorokhod embedding

In the proof of Theorem 1.1, we need an a priori estimate for X from the class X of the form

P( sup
t∈[0,T ]

Xt 6
1

Tα
) > c T−δ, T > T0, (8)

for some δ > 0 and T0 > 0. Here we provide a way of obtaining such an estimate. We do not
require finite exponential moments in this context.

Proposition 2.1. Let X be either a Lévy martingale or a random walk with centered increments
with V(X1) = σ2 > 0. Let (bt)t > 0 be such that b2

t /t → 0 and bt % t−δ, as t → ∞, for some
δ > 0. Suppose that E|X1|2p < ∞ for some p > 2δ + 1. Then we have

P( sup
s∈[0,t]

Xs 6 bt) &

√

2b2
t

πσ2t
as t → ∞.

Remark 2.2. Note that the estimate is sharp in the sense that one gets ∼ instead of & if X is
a Brownian motion.

Proof. Fix p such that p > 2δ + 1 and E|X1|2p < ∞, where δ is as in the statement of the
proposition.
Embedding. We apply a Monroe [28] embedding. On an appropriate filtered probability space
(possibly one needs to enlarge the underlying probability space), one can define a (right-
continuous) family of finite minimal stopping times (τ(t))t > 0 and a Brownian motion (Wt)
such that almost surely

Xt = Wτ(t)
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for all times t ∈ I. By minimality of τ(1), we conclude that (Wt∧τ(1)) is uniformly integrable.
Hence, E[τ(1)] = E[W 2

τ(1)] = E[X2
1 ] = σ2 < ∞. Moreover, by the Burkholder-Davis-Gundy

inequality (BDG inequality), one has

E[τ(1)p] = E
[

[W ]pτ1

]

6 c1E[ sup
s∈[0,τ(1)]

|Ws|2p],

where c1 = c1(p) is a constant that depends only on p. Since (Wt∧τ(1)) is a uniformly integrable
martingale, we get with Doob’s inequality that

E[τ(1)p] 6 c2 E[|Wτ(1)|2p] = c2 E[|X1|2p] < ∞, (9)

where c2 = c2(p) is an appropriate constant.
Since (Xt) has stationary and independent increments, the embedding can be established such
that (τ(t))t∈I itself has stationary and independent increments, see [28]. Hence, (τ(t) − σ2t) is
a martingale and we conclude with the BDG inequality that

E[(τ(t) − σ2t)p] 6 E[ sup
s∈[0,⌈t⌉]

(τ(s) − σ2s)p] 6 c3 E
[

[τ(·) − σ2·]p/2
⌈t⌉

]

,

where c3 = c3(p) is an appropriate constant. Here, [·] denotes the classical bracket process.
Next, we apply the triangle inequality together with the stationarity of (τ(t)− σ2t) to conclude
that

E[(τ(t) − σ2t)p] 6 c3 ⌈t⌉p/2
E
[

[τ(·) − σ2·]p/2
1

]

.

It remains to verify the finiteness of the latter expectation. First observe that by the BDG
inequality

E
[

[τ(·) − σ2·]p/2
1

]

6 c4 E
[

sup
s∈[0,1]

|τ(s) − σ2s|p
]

6 2pc4

(

E[τ(1)p] + σ2p
)

,

where c4 = c4(p) is an appropriate constant. By (9), E[τ(1)p] is finite, and there exists a constant
c5 depending on p and the 2p-th moment of X1 such that for all t > 0

E[(τ(t) − σ2t)p] 6 c5 ⌈t⌉p/2. (10)

Estimate of the probability. Fix ε > 0 and observe that

P( sup
s∈[0,t]

Xs 6 bt) > P( sup
s∈[0,(1+ε)tσ2]

Ws 6 bt) − P(τ(t) > (1 + ε)σ2t). (11)

Note that the first term on the right hand side of the latter equation can be computed explicitly:

P( sup
s∈[0,(1+ε)tσ2]

Ws 6 bt) =

√

2

π

∫
bt√

(1+ε)tσ2

0
e−

y2

2 dy ∼
√

2

π

bt
√

(1 + ε)tσ2
.

In the last step, we used that b2
t /t → 0. Conversely, the second term in (11) can be controlled

via the Chebyshev inequality and (10):

P(τ(t) − σ2t > εσ2t) 6
E[|τ(t) − σ2t|p]

(εσ2t)p
6 c5

⌈t⌉p/2

(εσ2t)p
≈ t−p/2.

By the choice of p, the second term on the right hand side of (11) is of lower order than the first
term. We obtain the lower bound in the proposition by letting ε tend to zero. �
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Remark 2.3 (Polynomial behavior of the survival probability). Let X be either a Lévy martin-
gale or a random walk with centered increments. Let α be as in (5) and note that there exists
a constant c ∈ (0,∞) such that

∫ t
0 K(s) ds 6 c tα for all t > 1. We conclude that for T > 1

sup
t∈[0,T ]

I(X)t 6 c Tα sup
t∈[0,T ]

Xt;

so that, by Proposition 2.1,

P( sup
t∈[0,T ]

I(X)t 6 1) > P( sup
t∈[0,T ]

Xt 6 (c Tα)−1) % T−(α+ 1
2
),

if E|X1|2p is finite for some p > 2α + 1. In particular, the survival probability cannot decay
faster than polynomially in our general setting.

The estimate from the previous remark is far from optimal in general. We shall use it as an a
priori estimate.
Finally, we also recall the following result for Brownian motion with drift. It can be obtained
from the distribution of the first hitting time of Brownian motion with a line, which is explicitly
known, see e.g. [35], p. 217.

Lemma 2.4. Let σ > 0 and W be a Brownian motion. Then

P(σWt 6 1 − t√
T

, ∀t 6 T ) % T−1/2.

2.2 The FKG inequality

We will use a version of the FKG inequality for processes with independent increments. Even
though the proof follows the standard method (see e.g. [11]), we were unable to find this result
in the literature.
We call a function f : R

n → R increasing (decreasing, respectively) if for any vectors x =
(x1, . . . , xn) and y = (y1, . . . , yn) with x1 > y1 and (xi − yi)

n
i=1 increasing we have f(x) > f(y)

(f(x) 6 f(y), respectively). Note that if f is increasing (decreasing) in each component then it
is increasing (decreasing) in this sense.

Theorem 2.5. Let (Xt)t > 0 be a stochastic process with independent increments. Fix n ∈ N0

and let f, g : R
n → R be measurable functions that are either increasing or decreasing (in the

sense defined above). Then, for any choice of 0 6 t1 6 . . . 6 tn such that E[|f(Xt1, . . . , Xtn) ∧
0|] < ∞ and E[|g(Xt1, . . . , Xtn) ∧ 0|] < ∞, we have

E[f(Xt1, . . . , Xtn)g(Xt1, . . . , Xtn)] > E[f(Xt1, . . . , Xtn)] E[g(Xt1, . . . , Xtn)].

Proof. Set
f̃(x1, . . . , xn) := f(x1, x1 + x2, . . . , x1 + . . . + xn).

Since f is increasing in the sense defined above, f̃ is increasing in each component. Analogously,
we define g̃. Note that

f(Xt1 , . . . , Xtn) = f̃(Xt1 , Xt2 − Xt1 , . . . , Xtn − Xtn−1).

Due to this observation and the fact that (Xt1, Xt2 − Xt1 , . . . , Xtn − Xtn−1) is a vector with
independent components, the usual FKG inequality for the product measure (as it can be proved
using the technique in e.g. [11]) gives us the assertion. �
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2.3 Proof of Theorem 1.1

Here we give the proof of Theorem 1.1. In fact, we shall prove the following more precise result
that gives us control on the logarithmic loss. Theorem 1.1 immediately follows from it.

Theorem 2.6. Let X be a process from the class X , W be a Brownian motion, and I a functional
as specified above. Then we have

(log T )−2(1+α) -
P(supt∈[0,T ] I(X)t 6 1)

P(supt∈[0,T ] I(W )t 6 1)
- (log T )2(1+α), as T → ∞. (12)

This suggests the question up to which order the two expressions can differ over the class X .

Proof of Theorem 2.6. For an arbitrary fixed process X from the class X and a Wiener
process W , we shall show that

P( sup
t∈J∩[0,T ]

I(X)t 6 1) > c (log T )−2(α+1)
P( sup

t∈J∩[0,T ]
I(W )t 6 1), (13)

for T large enough and some constant c > 0. The opposite bound follows by the same method
when exchanging the roles of W and X.

Step 1: In the first step, we derive one of the key techniques used in the proof (an appropriate
coupling of X and σW with σ > 0 and σ2 = V(X1)) from the Komlós-Major-Tusnády coupling.
Since X1 has finite exponential moments in a neighborhood of zero, one can couple the process
X with σW , by the KMT theorem [13], for each fixed T ∈ N0 such that there exist positive
constants β1, β2 not depending on T with

E
[

exp(β1 sup
t∈{0,...,T}

|Xt − σWt|)
]

6 exp(β2 log(T ∨ e)). (14)

As we indicate next, we can take the supremum in the last equation equally well over the interval
[0, T ] with T ∈ (0,∞) (possibly with different constants β1, β2). If X is a Lévy martingale, then
we get with Doob’s inequality for β3 > 0 that

E
[

exp(β3 sup
t∈[0,1]

|Xt|)
]

= E

[(

sup
t∈[0,1]

e
β3
2
|Xt|

)2]

6 4 E
[

eβ3|X1|].

Consequently,

E

[

sup
t∈{1,...,T}

exp(β3 sup
s∈[t−1,t]

|Xs − Xt−1|)
]

6 T E
[

exp(β3 sup
t∈[0,1]

|Xt|)
]

6 4 E
[

eβ3|X1|];

and the right hand side is finite as long as β3 is sufficiently small. One gets an analogous estimate
when replacing the Lévy process by the Wiener process. Now, an application of the triangle in-
equality together with straightforward calculations yield the mentioned stronger version of (14).
We fix ρ > α + 1/2. By the exponential Chebyshev inequality, we get for T > e and arbitrary
a > 0

P( sup
t∈[0,T ]

|Xt − σWt| > a) 6 e−β1a T β2

which implies for aT := β2+ρ
β1

log T that

P
(

sup
t∈[0,T ]

|Xt − σWt| > aT

)

6 T−ρ. (15)
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Step 2: In order to prove (13), we consider a particular scenario for which supt∈[0,T ] I(X)t 6 1
is satisfied. We couple X an σW on the time interval [0, T0] as described above. Moreover,
we apply the same coupling for the two processes (Xt − XT0)t∈[T0,T ] and (σWt − σWT0)t∈[T0,T ].
Certainly, both couplings can be established on a common probability space in such a way that
the random variables involved in the first coupling are independent from the ones involved in
the second coupling.
We fix δ1, δ2 > 0 with δ2

∫ δ1
0 K(s) ds > 1 and consider the barriers

ḡT (t) := 1 − t√
T0

+ aT and gT (t) := 1 − t√
T0

,

where T0 = T0(T ) = ⌈
(

2aT + δ2σ + 1)2⌉. Then ḡT (T0) 6 − aT − δ2σ.
As we will show next, for any sufficiently large T , the event {supt∈J∩[0,T ] I(X)t 6 1} occurs at
least if all of the following events occur:

E1 = {X 6 ḡT on [0, T0]}, E2 = { sup
t∈[0,T0]

Xt 6 c1 T−α
0 },

E3 = { sup
t∈J∩[0,T−T0]

I(W·+T0 − WT0) 6 1}, and E4 = { sup
t∈[T0,T ]

|Xt − XT0 − σ(Wt − WT0)| 6 aT },

where c1 > 0 is a finite constant with
∫ t
0 K(s) ds 6 c1t

α for all t > 1. Indeed, E1 and E2 imply
(together with the regularity assumption on K) that

∫ T0−δ1

0
K(t − s)Xs ds 6 0 for t > T0 and X 6 − δ2σ on [T0 − δ1, T0], (16)

as long as T (or equivalently T0) is sufficiently large. Moreover, given that also E4 occurs, one
has for t ∈ [T0, T ],

Xt 6 XT0 + σ(Wt − WT0) + aT 6 − δ2σ + σ(Wt − WT0),

so that
∫ t

T0

K(t − s)Xs ds 6 σ

∫ t

T0

K(t − s)
[

Ws − WT0 − δ2

]

ds.

Assuming additionally E3, we conclude with (16) that, for all t ∈ J ∩ [T0, T ],

I(X)t =

∫ T0−δ1

0
K(t − s)Xs ds +

∫ T0

T0−δ1

K(t − s)Xs ds +

∫ t

T0

K(t − s)Xs ds

6 0 +

∫ T0

T0−δ1

K(t − s)(−δ2σ) ds + σ

∫ t

T0

K(t − s)
[

Ws − WT0 − δ2

]

ds

= −σδ2

∫ t

T0−δ1

K(t − s) ds + σ

∫ t−T0

0
K(t − T0 − s)

[

Ws+T0 − WT0

]

ds

6 − σδ2

∫ δ1

0
K(s) ds + σ · 1

6 − σ + σ 6 1,

as long as T is sufficiently large. Note that I(X)t 6 1 also holds on J ∩ [0, T0] due to E2, see
Remark 2.3.
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Step 3: It remains to estimate the probability of E1 ∩ · · · ∩ E4. First we estimate P(E1 ∩ E2).
Note that 1lE1 and 1lE2 can both be written as limits of decreasing functions in the sense of
Section 2.2. Hence, by Theorem 2.5, we have P(E1 ∩ E2) > P(E1) · P(E2). By Remark 2.3, we

have P(E2) % T
−α−1/2
0 . Moreover, the event E1 occurs whenever the events

E′
1 = {∀t ∈ [0, T0] : σWt 6 gT } and E′′

1 = { sup
t∈[0,T0]

|Xt − σWt| 6 aT }

occur; and we thus have

P(E1) > P(E′
1 ∩ E′′

1 ) > P(E′
1) − P(E′′

1
c
).

By Lemma 2.4 and by inequality (15), one has P(E′
1) % T

−1/2
0 and P(E′′

1
c) - T−ρ

0 , respectively,

so that P(E1) % T
−1/2
0 . Altogether we thus obtain

P(E1 ∩ E2) % T
−(α+1)
0 ≈ (log T )−2(α+1). (17)

Moreover, E3 ∩ E4 is independent of E1 ∩ E2 and

P(E3 ∩ E4) > P(E3) − P(Ec
4) % P( sup

t∈J∩[0,T ]
I(W )t 6 1),

since P(Ec
4) 6 T−ρ is of lower order than P(E3) & T−(α+1/2), see Remark 2.3. Combining this

with (17) finishes the proof. �

3 Drift and barriers

3.1 The influence of a drift on Gaussian processes

In this section, we study the influence of a drift on the survival exponent. We show that one can
safely add a drift of a certain strength without changing the survival exponent. However, the
technique can be formulated rather generally in terms of the reproducing kernel Hilbert space
of the Gaussian process.

Proposition 3.1. Let X be some centered Gaussian process attaining values in the Banach
space E with reproducing kernel Hilbert space H. Denote by ‖.‖ the norm in H. Then, for each
f ∈ H and each measurable S such that P(X ∈ S) > 0, we have

e−
√

2‖f‖2 log(1/P(X∈S))− ‖f‖2

2 6
P(X + f ∈ S)

P(X ∈ S)
6 e

√
2‖f‖2 log(1/P(X∈S))− ‖f‖2

2 .

This statement allows to estimate P(X + f ∈ S) by the respective probability without drift. Of
course, we are interested in the set

S := ST := {(xt)0 6 t 6 T : sup
t∈[0,T ]

I(x)t 6 1},

where I is a functional as specified above. If the order of P(X ∈ ST ), when T → ∞, is polynomial
with exponent θ then, by Proposition 3.1, the same holds for P(X +f ∈ ST ). Below we will give
some examples.
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Proof of Proposition 3.1. Using the notation from [20], the Cameron-Martin formula says
that

P(X + f ∈ S) = E

[

1l{X∈S}e
〈z,X〉− ‖f‖2

2

]

. (18)

where z in the L2-completion of the dual of E is the functional belonging to the admissable shift
f , see [20].
Upper bound. Let p > 1 and 1/p + 1/q = 1. We use the Hölder inequality in (18) to get

P(X + f ∈ S) 6 (E[ 1lp{X∈S}])
1/p(E[eq〈z,X〉])1/qe−

‖f‖2

2 ,

Recall that 〈z, X〉 is a centered Gaussian random variable with variance ‖f‖2. Therefore, we
get

P(X + f ∈ S) 6 P(X ∈ S)1/peq
‖f‖2

2
− ‖f‖2

2 . (19)

Optimizing in p shows that the best choice is

1/p := 1 −

√

‖f‖2

2 log(1/P(X ∈ S))
< 1.

Plugging this into (19) shows the upper bound in the proposition.
Lower bound. Here we let p > 1 and use the reverse Hölder inequality in (18) to get

P(X + f ∈ S) > (E[ 1l
1/p
{X∈S}])

p(E[e
− 1

p−1
〈z,X〉

])−(p−1)e−
‖f‖2

2 ,

As above, we can calculate the second expectation, optimize in p to find that the best choice is

p := 1 +

√

‖f‖2

2 log(1/P(X ∈ S))
> 1.

Using this shows the lower bound. �

3.2 Examples

Our first example is Brownian motion.

Corollary 3.2. Let W be a Brownian motion, I be a functional as specified above, f ′ : [0,∞) →
R be a measurable function with

∫ ∞
0 f ′(s)2 ds < ∞, and set f(t) :=

∫ t
0 f ′(s) ds. Let θ > 0. Then

P( sup
t∈[0,T ]

I(W )t 6 1) = T−θ+o(1) if and only if P( sup
t∈[0,T ]

I(W + f)t 6 1) = T−θ+o(1).

Also, upper (lower) bounds imply upper (lower) bounds.

Let us discuss some important examples of drift functions.

Example 3.3. The first example is f(t) = t/
√

T . Then Proposition 3.1 yields

cT−1/2 > P(∀t 6 T : Wt 6 1 − t√
T

) % T−1/2e−
√

log T = T−1/2+o(1).

Actually, a slightly stronger result holds, cf. Lemma 2.4.
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Example 3.4. It is interesting that one can add drift functions up to |f(t)| - tγ , t → ∞, with
γ < 1/2. Namely, Corollary 3.2 yields that for any c ∈ R and 0 6 γ 6 1

2 :

P( sup
t∈[0,T ]

(Wt + ctγ) 6 1) = T−1/2+o(1)

and

P( sup
t∈[0,T ]

(

∫ t

0
Ws ds + ct1+γ) 6 1) = T−1/4+o(1).

We remark that the latter statement improves Sinai’s result [32] who showed the statement for
γ = 0.

As a further example for a Gaussian process, let us consider the α-fractionally integrated Brow-
nian motion defined in (7). Here, one can add drift functions up to |f(t)| � tγ , γ < H = α+1/2.

Corollary 3.5. Let Rα = Iα(W ) be an α-fractionally integrated Brownian motion, and let
f ′ : [0,∞) → R be a function with

∫ ∞
0 f ′(s)2 ds < ∞. Let θ > 0 and define

g(t) :=
1

Γ(α + 1)

∫ t

0
(t − s)αf ′(s) ds, t > 0.

Then

P( sup
t∈[0,T ]

Rα
t 6 1) = T−θ+o(1) if and only if P( sup

t∈[0,T ]
(Rα

t + g(t)) 6 1) = T−θ+o(1).

Also, upper (lower) bounds imply upper (lower) bounds.

We remark that these results are extremely useful when dealing with different ‘barriers’. As a
‘barrier’ we consider a function B : [0,∞) → (−∞,∞] and ask when

P(∀t 6 T : Xt 6 B(t)), as T → ∞,

has the same asymptotics as

P(∀t 6 T : Xt 6 1), as T → ∞.

Note that e.g. Corollary 3.5 states the following: it is allowed to replace the barrier B(t) :=
1− g(t) if g is from the reproducing kernel Hilbert space. Estimates can be obtained if one can
find g in the reproducing kernel Hilbert space such that B(t) > 1 − g(t) or B(t) 6 1− g(t). We
demonstrate this method with the following important example.

Example 3.6. Let us consider the barrier

B(t) :=

{

∞ 0 6 t < 1,

0 1 6 t 6 T,

for the process Rα = Iα(W ) defined in (7).
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Corollary 3.7. Let Rα be the α-fractionally integrated Brownian motion. Then, for a θ > 0,

P( sup
t∈[1,T ]

Rα
t 6 0) = T−θ+o(1)

if and only if
P( sup

t∈[0,T ]
Rα

t 6 1) = T−θ+o(1).

Also, upper (lower) bounds imply upper (lower) bounds.

Proof. We can e.g. use the function f ′ := 1l[0,1]Γ(α + 1)(α + 1), for which
∫ ∞
0 f ′(s)2 ds < ∞.

Then g(t) = Γ(α + 1)(α + 1)Iα+1(1l[0,1])t = tα+1 − (t− 1)α+1 > 1 for all t > 1 and all α > 0, i.e.

B(t) > 1 − g(t), for all t ∈ [0, T ];

and thus

P(∀t ∈ [0, T ] : Rα
t + g(t) 6 1) 6 P(∀t ∈ [0, T ] : Rα

t 6 B(t)) = P( sup
t∈[1,T ]

Rα
t 6 0).

Corollary 3.5 therefore implies one bound in the assertion.
The opposite estimate can be obtained via Slepian’s lemma (see the version in Corollary 3.12 in
[16]):

P( sup
t∈[0,T ]

Rα
t 6 1) > P( sup

t∈[0,1]
Rα

t 6 1) P( sup
t∈[1,T ]

Rα
t 6 1) > P( sup

t∈[0,1]
Rα

t 6 1) P( sup
t∈[1,T ]

Rα
t 6 0).

�

3.3 Proof of Theorem 1.4

Here we give the proof of Theorem 1.4. Due to Theorem 1.1 it is sufficient to consider the
question of the survival exponent in the case when X is a Brownian motion. Therefore, we
consider Rα = Iα(X), where X is a Brownian motion.
Proof of the existence: We use the approach from [18] involving the Lamperti transform. How-
ever, we employ the new drift argument developed in Example 3.6 rather than calculations
involving the Slepian lemma from [18], which do not seem to be easily transferable to the
present situation. Note that the Lamperti transform of Rα,

Yt := e−t(α+1/2)Rα
et , t > 0,

is a continuous, zero mean, stationary Gaussian process with positive correlations E[YtY0] > 0.
Therefore, Slepian’s lemma and the standard subadditivity argument (see Proposition 3.1 in
[18]) show that the following limit exists and equals the supremum:

lim
T→∞

1

T
log P( sup

t∈[0,T ]
Yt 6 0) = sup

T>0

1

T
log P( sup

t∈[0,T ]
Yt 6 0). (20)

We shall prove that this limit is actually a representation for θ(α). To see this, note that

P( sup
t∈[0,log T ]

Yt 6 0) = P( sup
t∈[0,log T ]

e−t(α+1/2)Rα
et 6 0) = P( sup

t∈[0,log T ]
Rα

et 6 0) = P( sup
t∈[1,T ]

Rα
t 6 0).
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Therefore, the limit in (20) equals

lim
T→∞

1

T
log P( sup

t∈[0,T ]
Yt 6 0) = lim

T→∞
1

log T
log P( sup

t∈[1,T ]
Rα

t 6 0).

It remains to be shown that

P( sup
t∈[1,T ]

Rα
t 6 0) = T−θ+o(1) implies P( sup

t∈[0,T ]
Rα

t 6 0) = T−θ+o(1).

However, this was already shown in Corollary 3.7.
Proof of the monotonicity: Let γ > 0 and 0 < α < 1. We will show that θ(γ) > θ(γ + α).
If Rγ

s 6 1l[0,1](s), for all s ∈ [0, T ], then

Rα+γ
t = Iα(Rγ)t 6

{

1
Γ(α)

∫ t
0 α(t − s)α−1 ds = tα

αΓ(α) 6 1
αΓ(α) t 6 1

1
Γ(α)

∫ 1
0 α(t − s)α−1 ds = tα−(t−1)α

αΓ(α) 6 1
αΓ(α) t > 1,

since α < 1. Therefore, using also the self-similarity (set λ := (αΓ(α))1/(α+γ+1/2)),

P(∀s 6 T : Rγ
s 6 1l[0,1](s))

6 P(∀s 6 T : Rα+γ
s 6

1

αΓ(α)
) = P(∀s 6 λT : Rα+γ

s 6 1) = T−θ(α+γ)+o(1).

The left-hand side is treated with Corollary 3.5 (f ′ = (γ + 1)Γ(γ + 1)1l[0,1]) showing that it

behaves as T−θ(γ)+o(1). This shows the monotonicity of the survival exponent.

References

[1] Richard F. Bass, Nathalie Eisenbaum, and Zhan Shi. The most visited sites of symmetric
stable processes. Probab. Theory Related Fields, 116(3):391–404, 2000.

[2] Glen Baxter and Monroe D. Donsker. On the distribution of the supremum functional
for processes with stationary independent increments. Trans. Amer. Math. Soc., 85:73–87,
1957.

[3] Jean Bertoin. The inviscid Burgers equation with Brownian initial velocity. Comm. Math.
Phys., 193(2):397–406, 1998.

[4] Nick H. Bingham. Maxima of sums of random variables and suprema of stable processes.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 26:273–296, 1973.

[5] Francesco Caravenna and Jean-Dominique Deuschel. Pinning and wetting transition for
(1+1)-dimensional fields with Laplacian interaction. Ann. Probab., 36(6):2388–2433, 2008.
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