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1 Introduction

In this article we use a decoupling method derived in a former article by the author to solve
the high resolution quantization and entropy coding problem for diffusions X (original) under
Lp[0, 1]-norm ‖ · ‖ = ‖ · ‖Lp[0,1]. We will keep p > 0 fixed in the whole article. Sometimes we also
need to evaluate different Ls-norms. We shall write ‖ · ‖Ls[a,b) and ‖ · ‖Ls(P) for the Ls-norm on
the interval [a, b) and the Ls-norm induced by the measure P, respectively. We also will use this
notation for s ∈ (0, 1). Moreover, let D[a, b] denote the space of real-valued cadlag functions
defined on [a, b]. We shall use analog notation for open and half-open intervals.

The article is devoted to the analysis of the quantization error

D(q)(r|s) = inf{E[‖X − X̂‖s]1/s : X̂ D[0, 1]-valued with | range X̂| ≤ er},
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the entropy coding error

D(e)(r|s) = inf{E[‖X − X̂‖s]1/s : X̂ D[0, 1]-valued with H(X̂) ≤ r},
and the distortion rate function

D(r|s) = inf{E[‖X − X̂‖s]1/s : X̂ D[0, 1]-valued with I(X; X̂) ≤ r}.
Here and elsewhere H(X̂) denotes the entropy of X̂ in the natural basis that is

H(X̂) =

{∑
x∈ range (X̂) px log(1/px) if X̂ is discrete

∞ otherwise,

where (px) denote the probability weights of X̂, and I denotes the Shannon mutual information
defined as

I(X; X̂) =

{∫
log

dPX,X̂

dPX⊗PX̂
dPX,X̂ if PX,X̂ ¿ PX ⊗ PX̂

∞ otherwise.

Strictly speaking the values of the distortion rate function depend on the underlying probability
space. We shall assume the existence of a [0, 1]-uniformly distributed random variable, that is
independent of X. (In this case the distortion rate function attains its minimal value.)

If the original X = (Xt)t∈[0,1] is a Wiener process the approximation quantities satisfy

lim
r→∞

√
r D(q)(r|s) = lim

r→∞
√

r D(e)(r|s) = lim
r→∞

√
r D(r|p) = Kp (1)

for some constant Kp ∈ (0,∞) that does not depend on the moment s > 0 (Theorems 1.3 and
6.1 of [3]). So far the only explicitly known value for Kp is K2 =

√
2

π (see [5], [1])
Our proofs are based on a decoupling argument introduced in [2] to analyze the supremum

norm distortion setting. As pointed out in [2] the decoupling method may also be proven for
d-dimensional diffusions as long as the diffusion coefficient is scalar. However, we only treat the
1-dimensional setting here.

Let us now fix the notation. Let (Ω,F , (Ft)t≥0,P) be a complete filtered probability space
that satisfies the usual hypotheses, that is F0 contains all P-null sets of F and (Ft) is right
continuous. Let (Wt)t≥0 be a 1-dimensional (Ft)-Wiener process. We denote by σ : R×[0,∞) →
R and b : R×[0,∞) → R two deterministic functions, and assume that (Xt)t≥0 is an (Ft)-adapted
semimartingale solving the integral equation

Xt =
∫ t

0
b(Xs, s) ds +

∫ t

0
σ(Xs, s) dWs (t ≥ 0). (2)

For ease of notation, we abridge bt := b(Xt, t) and σt := σ(Xt, t) for t ≥ 0. (Xt)t∈[0,1] represents
the original process which is to be approximated by some r.v. X̂, the reconstruction.

We assume the following technical assumption:
Assumption (C): There exist constants β ∈ (0, 1] and L < ∞ such that for x, x′ ∈ R and
t, t′ ∈ [0, 1]:

|b(x, t)| ≤ L(|x|+ 1) , |σ(0, 0)| ≤ L and

|σ(x, t)− σ(x′, t′)| ≤ L[|x− x′|β + |x− x′|+ |t− t′|β].
(3)
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As a consequence of assumption (C) all moments E[‖X‖s] (s ≥ 1) are finite. We shall use
this fact without further mentioning. Additionally, we assume that the process (σt)t∈[0,1] is not
indistinguishable from the constant 0-function, since otherwise the problem is trivial.

Note that assumption (C) does neither ensure existence nor uniqueness of the solution of the
stochastic differential equation (2). More information on existence and uniqueness of stochastic
differential equations can be found for instance in [6].

Sometimes we need to consider the above approximation numbers for other originals than X
and for different time horizons: For T > 0, a D[0, T ]-valued random vector Z, s > 0 and r ≥ 0,
let

D(q)(r|Z, T, s) = inf
Ẑ
E[‖Z − Ẑ‖s

Lp[0,T ]]
1/s,

where the infimum is taken over all discrete, D[0, T ]-valued r.v.’s Ẑ with

| range (Ẑ)| ≤ er.

We call D(q)(r|Z, Ts) the s-th moment quantization error for the rate r, source Z and time
horizon T . We use analog notation for the entropy coding error and the distortion rate function,
and we will often omit parameters in the notation that are obvious from the context.

The high resolution formula for diffusion reads as follows:

Theorem 1.1. For s > 0 one has

lim
r→∞

√
r D(q)(r|s) = Kp

∥∥‖σ·‖L2p/(2+p)[0,1]

∥∥
Ls(P)

and
lim

r→∞
√

r D(r|s) = lim
r→∞

√
r D(e)(r|s) = Kp

∥∥‖σ·‖L2p/(2+p)[0,1]

∥∥
L2s/(s+2)(P).

The proof of the theorem is based on a decoupling method which we introduce in the fol-
lowing. Let (ϕ(t))t∈[0,1] = (

∫ t
0 σ2

u du)t∈[0,1]. Based on a fixed parameter α ∈ (0, β/2) we consider

approximations ϕ̂(n) = (ϕ̂(n)
t )t∈[0,1] for ϕ = (ϕt)t∈[0,1] that are monotonically increasing, linear

on each intervall [i/n, (i + 1)/n] (i = 1, . . . , n) and satisfy

ϕ̂(n)(i/n) = argmin
y∈I(n)

|ϕ(i/n)− y| (i = 0, . . . , n),

where I(n) is defined as

I(n) =
{

j
1

n1+α
: j ∈ N0, j ≤ n2(1+α)

}
.

Theorem 1.2. Fix p > 0, α ∈ (0, β/2) and γ1 ∈ ((1 + α)−1, 1). Moreover, let ϕ̂(n) be as above,
relate n and r > 0 via n = n(r) = drγ1e.
Then there exist D[0, 1]-valued random elements R̄(n), R̂(r) and W̄ (n) such that

• X = W̄
(n)

ϕ̂(n)(·) + R̄(n),

• W̄ (n) is a Wiener process that is independent of ϕ̂(n)

• E[‖R̄(n) − R̂(r)‖s]1/s = O(r−
1
2
−δ) as r →∞, for some δ > 0.
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• log | range (R̂(r), ϕ̂(n))| = O(rγ), for some γ ∈ (0, 1),

The article is outlined as follows. In Section 2 we treat the asymptotic coding problem for
the Wiener process. The new result is a slight extension of the main result of [3] which we will
need later to prove the lower bound of the main theorem. In the proof of the main theorem
we relate the coding problem for the diffusion to that of a concatenation of Wiener processes
that is a process that is a concatenation of n independent Wiener processes on time intervals of
length 1/n with possibly different diffusion coefficient on each time interval. The proof is based
on a asymptotic analysis for the concatenations that is contained on Section 3. In Section 4 the
article concludes with the proof of the main result.

Thereafter we write f ∼ g iff lim f
g = 1, while f . g stands for lim sup f

g ≤ 1. Finally, f ≈ g
means

0 < lim inf
f

g
≤ lim sup

f

g
< ∞ ,

and f - g means

lim sup
f

g
< ∞.

Moreover, we use the Landau symbols o and O.

2 Coding the Wiener processes

In order to prove the lower bounds we need to strengthen the high resolution estimates for the
Wiener process from [3]:

Theorem 2.1. For any s ∈ (0,∞)

D(r|W, s) ∼ D(q)(r|W, s) ∼ Kp
1√
r
.

Remark 2.2. The proof works equally well when replacing W by a fractional Brownian motion.

Proof. It remains to show that for s < p

D(r|W, s) & Kp
1√
r
.

Let Ŵ (1) = Ŵ (1,r) (r ≥ 0) denote an arbitrary family of reconstructions in D[0, 1] such that
PW,Ŵ (1) ¿ PW ⊗ PŴ (1) . Moreover, denote by Cr ⊂ D[0, 1] codebooks with at most er elements
that satisfy

E[min
ŵ∈Cr

‖W − ŵ‖2p]1/2p . Kp
1√
r
,

and let
Ŵ (2) = Ŵ (2,r) = argmin

ŵ∈Cr

‖W − ŵ‖.

Next, let

J =





1 if log
dP

W,Ŵ (1)

dPW⊗P
Ŵ (1)

≤ r and ‖W − Ŵ (1)‖ ≤ (1− ε) Kp
1√
r

2 otherwise
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and consider the reconstruction Ŵ = Ŵ (J). Then

I(W ; Ŵ ) ≤ I(W ; Ŵ , J) ≤ log 2 +
∫

{J=1}
log

dPW,Ŵ (1)

dPW ⊗ PŴ (1)

dP+
∫

{J=2}
log

dPW,Ŵ (2)

dPW ⊗ PŴ (2)

dP

≤ log 2 + P(J = 1)r + P(J = 2)r = r + log 2.

Due to the equivalence of norms in the quantization problem for the Wiener process (see (1)),
it follows that the rescaled random error

√
r‖W − Ŵ (2)‖ converges to Kp in L2p(P) (see also the

proof of Lemma A.1 in [3]). Consequently,

E‖W − Ŵ‖p . (P(J = 1)(1− ε) + P(J = 2))
(
Kp

1√
r

)p
.

On the other hand, due to (1) the estimate I(W ; Ŵ ) . r implies that

E‖W − Ŵ‖p &
(
Kp

1√
r

)p
.

Consequently, limr→∞ P(J = 1) = 0. Let now F denote the family of [0,∞]2-valued random
variables of the form

(A,B) =
(
‖W − Ŵ (1)‖s, log+

dPW,Ŵ (1)

dPW ⊗ PŴ (1)

)
,

where Ŵ (1) is an arbitary D[0, 1]-valued random variable such that PW,Ŵ (1) ¿ PW ⊗PŴ (1) . The
above argument implies that

lim
r→∞ sup

(A,B)∈F
P(A ≤ (

(1− ε)Kp
1√
r

)s
, B ≤ r) = 0.

Note that for general Ŵ (1) it is true that

I(W ; Ŵ (1)) =
∫ dPW,Ŵ (1)

dPW ⊗ PŴ (1)

log
dPW,Ŵ (1)

dPW ⊗ PŴ (1)

dPW ⊗ PŴ (1)

≥
∫ dPW,Ŵ (1)

dPW ⊗ PŴ (1)

log+

dPW,Ŵ (1)

dPW ⊗ PŴ (1)

dPW ⊗ PŴ (1) − 1
e

so that an application of Lemma A.3 of [3] implies that

D(r|W, s)s ≥ inf
(A,B)∈F :
EB≤r+1/e

EA &
(
(1− ε)Kp

1√
r

)s
,

and the assertion follows since ε > 0 is arbitrary. ¤
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3 Concatenation of Wiener processes under Lp[0, 1]-distortion

Now we treat the coding problem for concatenations of Wiener processes with non-constant
diffusion coefficients. For n ∈ N, let (Z(i)

t )t∈[0,1/n) (i = 0, . . . , n− 1) denote independent Wiener
processes with diffusion coefficients σi and set

Yt+i/n = Z
(i)
t

for i = 0, . . . , n−1 and t ∈ [0, 1/n). We shall call the process Y = (Yt)t∈[0,1) a (σi)-concatenation
of Wiener processes or short (σi)-concatenation.

Lemma 3.1. For fixed s ∈ (0,∞) there exists a function g = gs,p : R+ → R+ with limt→∞ g(t) =
1 such that the following statement is valid.

For a (σi)i=0,...,n−1-concatenation Y and an R+-valued vector (ri)i=0,...,n−1, there exists a
codebook C ⊂ D[0, 1) with log |C| ≤ ∑n−1

i=0 ri and

E[min
ŷ∈C

‖Y − ŷ‖s]1/s ≤ g(r∗) Kp

( 1
n

n−1∑

i=0

|σi|p
(nri)p/2

)1/p
,

where r∗ = mini=0,...,n−1 ri.

Proof. Due to the monotonicity of the coding error in the moment s, it suffices to consider
the case s ≥ p. For r̃ ≥ 0, s̃ > 0, σ ∈ R and T ∈ [0, 1] let

f(r̃, s̃;σ, T ) = D(q)(r̃|σW, [0, T ], s̃) and f(r̃, s̃) = D(q)(r̃|W, s̃),

and set
h(r∗) = sup

r̃≥r∗
max

( f(r̃, s)
Kp/

√
r̃
,
f(r̃, s)
f(r̃, p)

)(
1 +

1
r∗

)
.

Due to Theorem 2.1 one has limr∗→∞ h(r∗) = 1. Now fix n ∈ N, (σi) and (ri) and let r∗ =
mini=0,...,n−1 ri. Furthermore, fix codebooks Ci ⊂ D[0, 1/n) of size eri with

E[min
ẑ∈Ci

‖Z(i) − ẑ‖s
Lp[0,1/n)]

1/s ≤
(
1 +

1
ri

)
f(ri, s; σ, 1/n).

Based on the codebooks Ci we define

C = C0 ∗ · · · ∗ Cn−1,

where ∗ denotes the concatenation of the functions of the codebooks. Certainly, the codebook
C satisfies

log |C| ≤
n−1∑

i=0

ri.

Next, denote by Ŷ an Lp[0, 1) optimal approximation from C for Y and denote

∆i = E
[∫ (i+1)/n

i/n
|Yt − Ŷt|p ds

]1/p
and ∆ =

(n−1∑

i=1

∆p
i

)1/p
= E[‖Y − Ŷ ‖p

Lp[0,1)]
1/p

6



Due to Jensen’s inequality

E[‖Y − Ŷ ‖s
Lp[0,1)] = ∆s E

[(n−1∑

i=0

∆p
i

∆p

1
∆p

i

∫ (i+1)/n

i/n
|Yt − Ŷt|p dt

)s/p]

≤ ∆s E
[n−1∑

i=0

∆p
i

∆p

( 1
∆p

i

∫ (i+1)/n

i/n
|Yt − Ŷt|p dt

)s/p]

≤ ∆s
n−1∑

i=0

∆p
i

∆p

((
1 +

1
r∗

)f(ri, s; σi, 1/n)
∆i

)s
.

(4)

As a consequence of a standard scaling argument one obtains that in general

f(r̃, s̃; σ, T ) = |σ|T (2+p)/2pf(r̃, s̃), (5)

so that
f(ri, s;σi, 1/n)

∆i
≤ f(ri, s)

f(ri, p)
.

Consequently, equation (4) gives

E[‖Y − Ŷ ‖s
Lp[0,1)]

1/s ≤ h(r∗)∆,

and together with

∆i ≤
(
1 +

1
ri

)
f(ri, s; σi, 1/n) =

(
1 +

1
ri

)
|σi| 1

n(2+p)/2p
f(ri, s)

≤ h(r∗)|σi| 1
n1/p

Kp√
nri

we arrive at

E[‖Y − Ŷ ‖s
Lp[0,1)]

1/s ≤ h(r∗)2 Kp

( 1
n

n−1∑

i=0

|σi|p
(nri)p/2

)1/p
.

¤
Next, we derive a converse estimate for concatenations of Wiener processes.

Lemma 3.2. For fixed s ∈ (0,∞) there exists a real valued function g = gs.p : R+ → R+ with
limr∗→∞ g(r∗) = 1 such that the following statement is valid.

Let Y be a (σi)-concatenation, and let Ŷ denote some reconstruction with I(Y ; Ŷ ) ≤ r. Then
there exists an [0,∞)-valued sequence (ri)i=0,...,n−1 with

∑n−1
i=0 ri ≤ r such that for any r∗ > 0:

E[‖Y − Ŷ ‖s]1/s ≥ g(r∗) Kp

( 1
n

n−1∑

i=0

|σi|p
(n(ri + r∗))p/2

)1/p
.

The proof uses the concept of conditional mutual information (see for instance [4] for basic
results): For three random elements A,B and C attaining values in standard measurable spaces
one defines

I(A;B|C = c) =
∫

dPA,B|C=c

dPA|C=c ⊗ PB|C=c
dPA,B|C=c
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which is uniquely defined up to PC-null sets, and lets

I(A;B|C) =
∫

I(A;B|C = c)PC(dc).

Proof. It suffices to prove the assertion for s ∈ (0, p]. For r̃ ≥ 0, s̃ > 0, σ ∈ R and T ≥ 0 let

f(r̃, s̃; σ, T ) = D(r̃|σW, [0, T ], s̃) and f(r̃, s̃) = D(r̃|W, s̃),

and set
h(r∗) = inf

r̃≥r∗
min

(f(r̃, s)
f(r̃, p)

,
f(r̃, p)
Kp

√
r̃

)
.

Note that limr∗→∞ h(r∗) = 1. Next, represent Ŷ as the concatenation of n processes Ẑ(0), . . . , Ẑ(n−1),
denote Ri(z(i+1), . . . , z(n−1)) = I(Z(i); Ẑ(i)|Z(i+1) = z(i+1), . . . , Z(n−1) = z(n−1)) and let ri =
ERi(Z(i+1), . . . , Z(n−1)). From the independence of the sequence (Z(i))i=0,...,n−1 and the con-
vexity of the distortion rate function (see for instance [4], Theorem 1.7.1), it follows that

E[‖Z(i) − Ẑ(i)‖s
Lp[0,1/n)] = E

[
E[‖Z(i) − Ẑ(i)‖s

Lp[0,1/n)|Z(i+1), . . . , Z(n−1)]
]

≥ E[
f(R(Z(i+1), . . . , Z(n−1)), s; σi, 1/n)s]

] ≥ f(ri, s; σi, 1/n)s.

Moreover, for i = 0, . . . , n − 1 let ∆i = f(ri + r∗, p;σi, 1/n) and ∆ =
(∑n−1

i=0 ∆p
i

)1/p. As in
(4) one gets that

E[‖Y − Ŷ ‖s] ≥ ∆s
n−1∑

i=0

∆p
i

∆p

( 1
∆s

i

E[‖Y − Ŷ ‖s
Lp[i/n,(i+1)/n)]

)s
.

The same scaling argument from before gives that in general

f(r̃, s̃; σ, T ) = |σ|T (2+p)/2pf(r̃, s̃),

so that E[‖Y − Ŷ ‖s
Lp[i/n,(i+1)/n)]/∆s

i ≥ h(r∗)s. Therefore,

E[‖Y − Ŷ ‖s]1/s ≥ h(r∗)∆ ≥ h(r∗)2Kp

( 1
n

n−1∑

i=0

|σi|p
(n(ri + r∗))p/2

)1/p
.

It remains to show that
∑n−1

i=0 ri ≤ I(Y ; Ŷ ): one has

I(Y ; Ŷ ) = I(Z(0), . . . , Z(n−1); Ẑ(0), . . . , Ẑ(n−1)) = I(Z(1), . . . , Z(n−1); Ẑ(0), . . . , Ẑ(n−1))

+ I(Z(0); Ẑ(0), . . . , Ẑ(n−1)|Z(1), . . . , Z(n−1))

≥ I(Z(1), . . . , Z(n−1); Ẑ(1), . . . , Ẑ(n−1))

+ I(Z(0); Ẑ(0)|Z(1), . . . , Z(n−1))

so that by induction

r = I(Y ; Ŷ ) ≥
n−1∑

i=0

I(Z(i); Ẑ(i)|Z(i+1), . . . , Z(n−1)) =
n−1∑

i=0

ri.
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¤
Next, we consider the rate allocation problem for concatenations of Wiener processes. It

amounts to studying the convex minimization problem

( 1
n

n−1∑

i=0

|σi|p
(nri)p/2

)1/p
= min! (6)

under the constraint that
∑n−1

i=0 ri ≤ r for some given rate r > 0.

Lemma 3.3. The minimum in (6) is attained for

ri =
|σi|2p/(p+2)

∑n−1
j=0 |σj |2p/(p+2)

r,

and it is equal to
( 1

n

n−1∑

i=0

|σi|2p/(p+2)
)(p+2)/2p 1√

r
.

Proof. Applying the Hölder inequality (for negative exponents) for a = −2/p and a∗ =
2/(p + 2) gives

1
n

n−1∑

i=0

|σi|p
(nri)p/2

≥ ( 1
n

n−1∑

i=0

|σi|2p/(p+2)
)(p+2)/2 (n−1∑

i=0

ri

)−p/2
,

and it is now straightforward to verify that the minimum is attained for the above (ri). ¤

4 Proof of Theorem 1.1

In this section we prove Theorem 1.1. We will need the notion of conditional entropy. For two
discrete r.v.’s Z and G, let

H(Z|G = g) = E[log 1/pZ|g|G = g] and H(Z|G) = E[log 1/pZ|G],

where pz|g denotes the conditional probability P(Z = z|G = g), which is well defined for PG-a.a.
g. For basic properties of the conditional entropy one might consult [4].

In the rest of this section s > 0, α ∈ (0, β/2) and γ1 ∈ ((1 + α)−1, 1) are fixed. Moreover,
relate n and r > 0 via n = drγ1e and let ϕ̂ = ϕ̂(n), W̄ = W̄ (n), R̄ = R̄(n), R̂ = R̂(r) be as in
Theorem 1.2. For simplicity we omit the parameters n and r in the notations for the stochastic
processes. We first turn to be proof of the upper bounds.

Proof of the upper bounds. For i = 0, . . . , n− 1 and t ∈ [i/n, (i + 1)/n) let

Yt = Y
(n)
t = W̄ϕ̂(t) − W̄ϕ̂(i/n) and St = S

(n)
t = W̄ϕ̂(t)

and write W̄ as the sum
W̄ = Y + S.
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We start with introducing a coding scheme for S. Let J = J(r) = 1
rZ ∩ [−r, r] and denote by

Ŝ = Ŝ(r) a reconstruction for S that is piecewise constant on the time intervals [i/n, (i + 1)/n)
and satisfies

Ŝi/n = argmin
x∈J

|Si/n − x|.

Note that
log | range (Ŝ)| ≤ n log(r2 + 1) = O(r(1+γ1)/2),

and that by straightforward computations:

E[‖S − Ŝ‖s]1/s . 1
r
.

Now consider the coding scheme for Y in the quantization setting. For i = 0, . . . , n − 1
denote σ̂i = [n(ϕ̂((i + 1)/n) − ϕ̂(i/n))]1/2, and observe that given ϕ̂ the process Y is a (σ̂i)-
concatenation. Choose γ2 > 0 with γ1 + γ2 < 1. Due to Lemma 3.1 there exist approximations
Ŷ = Ŷ (r) such that conditional upon ϕ̂ the r.v. Ŷ attains at most exp{r +nrγ2} different values
and satisfies

E[‖Y − Ŷ ‖s|ϕ̂]1/s ≤ g(rγ2)KpZn
1√
r
, (7)

where Zn is defined as Zn =
(

1
n

∑n−1
i=0 |σ̂i|2p/(p+2)

)(p+2)/2p and g is as in the lemma. Next, define
σ̄t = σ̂i for t ∈ [i/n, (i + 1)/n) and i = 0, . . . , n − 1 and rewrite Zn in terms of the process
(σ̄t)t∈[0,1) as

Zn =
(∫ 1

0
|σ̄t|2p/(p+2) dt

)(p+2)/2p
.

The definition of ϕ̂ implies that the process (σ̄t) converges pointwise to (σt). Moreover, one has

‖σ̄·‖L∞[0,1] ≤ ‖σ·‖L∞[0,1] + 2

so that the dominated convergence theorem applied to (7) implies

E[‖Y − Ŷ ‖s]1/s . KpE
[(∫ 1

0
|σt|2p/(p+2) dt

)s(p+2)/2p]1/s 1√
r
.

We consider the process X̂ := X̂(r) = Ŷ +Ŝ+R̂ as reconstruction for X. Certainly, log | range (X̂)| .
r. Moreover, if s ≥ 1 the triangle inequality gives

E[‖X−X̂‖s]1/s ≤ E[‖Y−Ŷ ‖s]1/s+E[‖S−Ŝ‖s]1/s+E[‖R−R̂‖s]1/s . Kp

∥∥‖σ·‖s
L2p/(p+2)[0,1]

∥∥
Ls(P)

1√
r
.

The case s < 1 follows by the estimation

E[‖X − X̂‖s] ≤ E[‖Y − Ŷ ‖s] + E[‖S − Ŝ‖s] + E[‖R− R̂‖s] . Ks
p

∥∥|σ·‖s
L2p/(p+2)[0,1]

∥∥s

Ls(P)
1√
r
s .

In the entropy coding setting the reconstruction Ŷ = Ŷ (r) is chosen such that

log | range (Ŷ |ϕ̂)| ≤ Z
2s/(s+2)
n

EZ
2s/(s+2)
n

+ nrγ2

10



and

E[‖Y − Ŷ ‖s|ϕ̂]1/s ≤ g(rγ2)KpZn

( Z
2s/(s+2)
n

EZ
2s/(s+2)
n

r
)−1/2

.

Then
E[‖Y − Ŷ ‖s]1/s ≤ g(rγ2)KpE[Z2s/(s+2)

n ](s+2)/2s 1√
r

and
H(Ŷ , Ŝ, R̂, ϕ̂) ≤ H(Ŷ |ϕ̂)︸ ︷︷ ︸

≤r+nrγ2

+H(Ŝ, R̂, ϕ̂)︸ ︷︷ ︸
=O(rγ3 )

for some γ3 < 1. Therefore, H(X̂) . r and again by dominated convergence

E[‖Y − Ŷ ‖s]1/s . Kp

∥∥‖σ·‖L2p/(p+2)[0,1]

∥∥
L2s/(s+2)(P)

1√
r
.

¤
Proof of the lower bounds. Let X̂ = X̂(r) denote arbitrary reconstructions for X

satisfying the quantization constraint log | range (X̂)| ≤ r and set

Ŷt = X̂t − Ŝt − R̂t

where Ŝ = Ŝ(r) and R̂ = R̂(r) are as in the proof of the converse inequality. Then

r̃ = r̃(r) = log | range (Ŷ )| ≤ r +O(rγ4)

for some appropriate constant γ4 < 1. Again we let γ2 ∈ (0, γ1) and Zn =
(

1
n

∑n−1
i=0 |σ̂i|2p/(p+2)

)(p+2)/2p.
Observe that conditional on ϕ̂ the process Y is a (σ̂i)-concatenation where (σ̂i)i=0,...,n−1 is defined
as before. Hence, Lemmas 3.2 and 3.3 imply that

E[‖Y − Ŷ ‖s|ϕ̂]1/s ≥ g(rγ2)KpZn
1√

r̃ + nrγ2

so that

E[‖Y − Ŷ ‖s]1/s ≥ g(rγ2)KpE[Zs
n]1/s 1√

r̃ + nrγ2
& Kp

∥∥‖σ·‖L2p/(p+2)[0,1]

∥∥
Ls(P)

1√
r
.

Thus the lower bound follows with

E[‖X − X̂‖s]1/s ≥ E[‖Y − Ŷ ‖s]1/s − E[‖S − Ŝ‖s]1/s − E[‖R̄− R̂‖s]1/s

It remains to prove the lower bound for the distortion rate function. Let now X̂ = X̂(r)

denote arbitrary reconstructions with I(X; X̂) ≤ r and let Ŷt = X̂t − Ŝt − R̂t Then

I(Y ; Ŷ ) ≤ I(Y ; X̂, Ŝ, R̂, ϕ̂) ≤ I(Y ; X̂) +H(Ŝ, R̂, ϕ̂)

and
I(Y ; X̂) ≤ I(X, Y ; X̂) = I(X; X̂) + I(Y ; X̂|X) = I(X; X̂) ≤ r,

11



since Y is σ(X)-measurable. Hence

r̃(ξ) = I(Y ; Ŷ |ϕ̂ = ξ) + nrγ2

satisfies Er̃(ϕ̂) ≤ I(Y ; Ŷ ) + nrγ2 . r. Moreover,

E[‖Y − Ŷ ‖s|ϕ̂]1/s ≥ g(rγ2)KpZn
1√
r̃(ϕ̂)

so that
E[‖Y − Ŷ ‖s]1/s ≥ g(rγ2)KpE

[(
Zn

1√
r̃(ϕ̂)

)s]1/s

Applying the inverse Hölder inequality as in Lemma 3.3 leads to

E[‖Y − Ŷ ‖s]1/s ≥ g(rγ2)KpE[Z2s/(s+2)
n ](s+2)/2s 1√

Er̃(ϕ̂)
& Kp

∥∥‖σ·‖L2p/(p+2)[0,1]

∥∥
L2s/(s+2)(P).

¤

References

[1] Steffen Dereich. High resolution coding of stochastic processes and small ball probabilities.
Ph.D. Dissertation, TU Berlin,
URL: http://edocs.tu-berlin.de/diss/2003/dereich steffen.htm, 2003.

[2] Steffen Dereich. The coding complexity of diffusion processes under supremum norm distor-
tion. Preprint, 2006.

[3] Steffen Dereich and Michael Scheutzow. High-resolution quantization and entropy coding
for fractional Brownian motion. To appear in Electronic Journal of Probability, 2006.

[4] Shunsuke Ihara. Information theory for continuous systems. Singapore: World Scientific,
1993.

[5] Harald Luschgy and Gilles Pagès. Sharp asymptotics of the functional quantization problem
for Gaussian processes. Ann. Probab., 32(2):1574–1599, 2004.

[6] Bernt Øksendal. Stochastic differential equations. Springer-Verlag, Berlin, sixth edition,
2003.

12


