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1 Introduction

In this article, we study the high resolution quantization and entropy coding problem for R-
valued stochastic processes X (original) that are solutions of stochastic differential equations.
For t > 0 we let C[0, t] denote the set of real-valued continuous functions defined on [0, t], and
let ‖ · ‖[0,t] denote the corresponding supremum norm that is ‖f‖[0,t] = supu∈[0,t] |f(u)|. Mostly
we will consider ‖ · ‖ = ‖ · ‖[0,1]. Moreover, we shall write ‖ · ‖Ls[0,t] and ‖ · ‖Ls(P) for the Ls-norm
on the interval [0, t] and the Ls-norm induced by the measure P, respectively.

The article is devoted to the analysis of the quantization error

D(q)(r|s) = inf{E[‖X − X̂‖s]1/s : X̂ C[0, 1]-valued with | range X̂| ≤ er},
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and the entropy coding error

D(e)(r|s) = inf{E[‖X − X̂‖s]1/s : X̂ C[0, 1]-valued with H(X̂) ≤ r}.

Both approximation quantities depend on two parameters: the rate r ≥ 0 and the moment
s > 0. Here and elsewhere H(X̂) denotes the entropy of X̂ in the natural basis, that is

H(X̂) =

{∑
x∈ range (X̂) px log(1/px) if X̂ is discrete

∞ otherwise,

where (px) denote the probability weights of X̂. Former research on quantization and entropy
coding comprises the construction of efficient approximation schemes, properties of optimal
schemes and asymptotic formulas for the corresponding approximation quantities. The quanti-
zation problem and entropy coding problem appear naturally in information theory for instance
when digitizing analog signals or for reducing the amount of information due to a given channel
capacity constraint. Beside these applications good quantization schemes can be used to carry
out a variance reduction for certain Monte-Carlo methods or to obtain quasi Monte-Carlo algo-
rithms (see for instance [19]). In this article we investigate the asymptotic behavior of the above
approximation quantities when the rate tends to infinity: the high resolution coding problem.
Our analysis is intended to shed new light on the functional coding problems and to provide
benchmarks for the efficiency of particular coding schemes.

An overview on quantization can be found in the monograph by Graf and Luschgy [10] (see
also [9] and [11]). For a general account on information theory one might consult the books by
Cover and Thomas [2] and by Ihara [12].

The functional quantization problem has firstly been investigated by Fehringer and coauthors
([7] and [5]) in 2001: For Gaussian originals on separable (typically infinite dimensional) Banach
spaces, the quantization- and entropy coding errors are typically weakly equivalent to the inverse
of the small ball function

ϕ(ε) = − logP(‖X‖ ≤ ε) (ε > 0).

Moreover, the moment has no influence on the weak asymptotics (see [4]). Thanks to the research
on small ball probabilities, the weak asymptotics are known for many Gaussian processes (see
for instance [16]). Moreover, the above approximation numbers are related to several other
approximation quantities describing the complexity of Gaussian processes or of the generating
operators (see for instance [3]).

In the particular case where X is a Brownian motion in C[0, 1] stronger results are known
due to [6]. In that case one has

lim
r→∞

1√
r
D(q)(r|s) = lim

r→∞
1√
r
D(e)(r|s) = K (1)

for some constant K ∈ [ π√
8
, π] not depending on the moment s > 0.

Let us now focus on the coding complexity of solutions (Xt)t∈[0,1] of stochastic differential
equations. Luschgy and Pagès [17] considered autonomous 1-dimensional diffusions with con-
tinuously differentiable diffusion coefficients. Their coding strategy is based on the Lamperti
transform which maps the original (Xt) onto a process (X̃t) being a Brownian motion plus drift
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term. Approximating the process X̃ by some close process ˆ̃X and inverting the Lamperti trans-
form for ˆ̃X leads to a ”good” reconstruction of the original. Under a regularity assumption on
the Lamperti transform (assumption (3.8)) and the assumption that the diffusion coefficient is
strictly bounded away from 0, they are able to prove that

D(q)(r|s) ≈ 1√
r
, r →∞,

for any s ∈ [1,∞).
In contrast to [17], we use the Doob-Meyer decomposition to decompose the diffusion X

into a bounded variation term and a martingale which we represent as time changed Wiener
process. Our approach leads to an explicit formula for the asymptotics in the quantization and
entropy coding problem in terms of the average diffusion coefficient seen by the process. The
techniques rely on the above representation. Since such decompositions may also be presented
for multidimensional diffusions having a scalar diffusion coefficient, this setting is also covered
by the present investigations. However, we shall only carry out the proof in the 1-dimensional
setting for the sake of notational simplicity.

Let us now fix the notations. Let (Ω,F , (Ft)t≥0,P) be a complete filtered probability space
satisfying the usual hypotheses, i.e. F0 contains all P-null sets of F and (Ft) is right continuous.
Let (W̃t)t≥0 be a 1-dimensional (Ft)-Wiener process. We denote by σ : R × [0,∞) → R and
b : R × [0,∞) → R two measurable functions, and assume that (Xt)t≥0 is an (Ft)-adapted
semimartingale solving the integral equation

Xt =
∫ t

0
b(Xu, u) du +

∫ t

0
σ(Xu, u) dW̃u (t ≥ 0). (2)

For ease of notation, we abridge bt := b(Xt, t) and σt := σ(Xt, t) for t ≥ 0. (Xt)t∈[0,1] represents
the original process which is to be approximated by some discrete r.v. X̂, the reconstruction.

We need to introduce the above approximation numbers also for other processes than the
original diffusion. Moreover, we shall also use random distortion measures, defined in the fol-
lowing way: For a C[0,∞)-valued random vector Z, a [0,∞)-valued r.v. τ , s > 0, and r ≥ 0,
let

D(q)(r|Z, τ, s) = inf
Ẑ
E[‖Z − Ẑ‖s

[0,τ ]]
1/s,

where the infimum is taken over all discrete, C[0,∞)-valued r.v. Ẑ with

| range (Ẑ)| ≤ er.

We call D(q)(r|Z, τ, s) the s-th moment quantization error for the rate r, source Z and time τ .
We use analogous notations for the entropy coding error.

From now on, we make the following technical assumption:

Assumption (C): There exist constants β ∈ (0, 1] and L < ∞ such that for x, x′ ∈ R and
t, t′ ∈ [0, 1]:

|b(x, t)| ≤ L(|x|+ 1) , |σ(0, 0)| ≤ L and

|σ(x, t)− σ(x′, t′)| ≤ L[|x− x′|β + |x− x′|+ |t− t′|β].
(3)
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As a consequence of assumption (C) all moments E[‖X‖s] (s ≥ 1) are finite, which we
shall use without further mentioning. Additionally, we assume that the process (σt)t∈[0,1] is not
indistinguishable from the constant 0-function, since otherwise the problem is trivial.

Note that assumption (C) does neither ensure existence nor uniqueness of the solution of the
stochastic differential equation (2). More information on existence and uniqueness of stochastic
differential equations can be found for instance in [18]. Our main objective is to prove

Theorem 1.1. For each s > 0 one has

lim
r→∞

√
r D(q)(r|s) = K

∥∥‖σ·‖L2[0,1]

∥∥
Ls(P)

and
lim

r→∞
√

r D(e)(r|s) = K
∥∥‖σ·‖L2[0,1]

∥∥
L2s/(s+2)(P),

where K is the real constant appearing in (1).

Let us now describe the coding scheme. We write (Xt) in its Doob-Meyer decomposition
Xt = Mt + At, where

Mt =
∫ t

0
σ(Xs, s) dW̃s and At =

∫ t

0
b(Xs, s) ds.

We shall see that the dominant term in the quantization problem is the continuous martingale
M . As is well known, we can represent M as a time change of a Wiener process. Let

ϕ(t) =
∫ t

0
σ2

u du.

and observe that one can ensure that limt→∞ ϕ(t) = ∞ by changing the diffusion coefficient
outside the time window [0, 1] without changing (Xt)t∈[0,1]. Then Wt = Mϕ−1(t) is a (FW

t )-
Wiener process, where

ϕ−1(t) := inf
{

u ≥ 0 :
∫ u

0
σ2

v dv ≥ t
}

.

Now the coding scheme for M can be decomposed in the following two steps:

1. approximate the real time transform ϕ by some random monotone, continuous function
ϕ̂ ∈ C[0, 1], and

2. approximate (Wt)t∈[0,τ ] (τ := ϕ̂(1)) by (Ŵt)t∈[0,τ ].

Then M̂ = Ŵϕ̂(·) is considered as the reconstruction for M , and the coding error can be controlled
by

‖M − M̂‖[0,1] ≤ ‖Wϕ(·) −Wϕ̂(·)‖[0,1] + ‖Wϕ̂(·) − Ŵϕ̂(·)‖[0,1]

= ‖Wϕ(·) −Wϕ̂(·)‖[0,1] + ‖W − Ŵ‖[0,τ ].

We shall see that the first term in the above sum is asymptotically negligible, so that the
asymptotics are governed by the second term. We need strong estimates for the second term,
whereas weak estimates suffice for the first term.
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Remark 1.2. Our analysis works equally well when X is a d-dimensional diffusion with scalar
diffusion coefficient σ. In that case X can be written as a sum of a finite variation term and
a time changed d-dimensional Wiener process. The same techniques can be applied and thus
Theorem 1.1 is also valid for d-dimensional diffusions with scalar diffusion coefficient with a
different constant K ∈ (0,∞).

The article is outlined as follows. The proof of Theorem 1.1 relies on a particular representa-
tion given in Theorem 7.1. Once we have proven Theorem 7.1 we use it to conclude all assertions.
However, the proof of Theorem 7.1 requires a couple of preliminary estimates. Section 2 starts
with an upper bound for the quantization error based on entropy numbers of compact embed-
dings. This estimate enables us to control some of the asymptotically negligible terms. Next,
we provide an estimate for the moments of the α-Hölder norm of continuous martingales. The
coding scheme for ϕ is introduced and analyzed in Section 4. The next section is devoted to
the analysis of E[‖Wϕ(·) −Wϕ̂(·)‖s]1/s for “good” reconstructions ϕ̂ of ϕ. Finally, results in the
theory of enlargements of filtrations are used to decouple the approximate time transform ϕ̂ and
the Wiener process W .

Thereafter we write f ∼ g iff lim f
g = 1, while f . g stands for lim sup f

g ≤ 1. Finally, f ≈ g
means

0 < lim inf
f

g
≤ lim sup

f

g
< ∞ ,

and f - g means

lim sup
f

g
< ∞.

Moreover, we use the Landau symbols o and O.

2 Entropy numbers and the quantization problem

In this section we construct codebooks based on appropriate ε-nets and control their asymp-
totic efficiency. The corresponding estimate provides the main technique for controlling the
complexity of the asymptotically negligible terms when coding diffusions.

Let (E, ‖·‖E) and (F, ‖·‖F ) denote normed vector spaces such that E is compactly embedded
into F . We endow E with its Borel σ-field and denote by en = en(E,F ) the entropy numbers
of the embedding, that is

en(E, F ) := inf
{

ε > 0 : ∃x1, . . . , x2n−1 ∈ F s.t. BE(0, 1) ⊂
2n−1⋃

i=1

BF (xi, ε)
}

.

Lemma 2.1. Let α > 0, and assume that E is compactly embedded into F with

en(E,F ) - n−α, n →∞. (4)

Then for all s̃ > s > 0, there exists a constant c = c(s, s̃) < ∞ such that for all E-valued r.v.’s
Z and r ≥ 0, one has

D(q)(r|s) ≤ cE[‖Z‖s̃
E ]1/s̃ 1

1 + rα
, (5)

where D(q)(r|s) denotes the s-th moment quantization error of Z under the ‖ · ‖F -norm based
distortion.
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Proof. Fix s̃ > s > 0. Notice that it suffices to prove the existence of a constant c < ∞
such that for any E-valued r.v. Z with E[‖Z‖s̃

E ]1/s̃ = 1:

D(q)(r|s) ≤ c
1

1 + rα
,

since the general statement then follows by a scaling argument.
Notice that en = en(E, F ) is bounded by the norm ‖id : E → F‖ =: ξ and, using assumption

(4), there exists c1 < ∞ with

en ≤ c1 n−α (n ∈ N). (6)

Let U = BE(0, 1) and

N(ε,A) = min
{|C| : A ⊂ C + BF (0, ε)

}
(A ⊂ F, ε > 0).

Due to (6) one has

log N(2c1 n−α, vU) ≤ v log N(2en, U) ≤ (n− 1)v log 2

so that for any ε, v > 0

log N(ε, vU) ≤ c2 v1/α

ε1/α
, (7)

where c2 = (2c1)1/α log 2. Now fix η > 0 such that (1 + η)s < s̃, let ε > 0 arbitrary and consider
εi := εi(ε) := ε e(1+η)i and vi = ei for i ∈ N0 and v−1 = 0. We use εi-nets of the sets viU to
generate an appropriate codebook. Note that εi ≥ ξvi, if

i ≥
⌈1
η

log(ξ/ε)
⌉
∨ 0 =: M.

For i = 1, . . . , M − 1 let Ci(ε) denote optimal εi-nets of viU . Since ξ‖x‖E ≥ ‖x‖F for x ∈ E, the
set {0} is an optimal εi-net of viU for i ≥ M and we consider the codebook

C(ε) = {0} ∪
M−1⋃

i=0

Ci(ε).

Then

E[dF (Z, C(ε))s] ≤
∞∑

i=0

E[1[vi−1,vi)(‖Z‖E) d(Z, Ci(ε))s]

≤
∞∑

i=0

P(‖Z‖E ≥ vi−1) εs
i

= εs +
∞∑

i=1

P
(‖Z‖s̃

E

vs̃
i−1

≥ 1
)

εs
i

≤ εs + E[‖Z‖s̃
E ]

∞∑

i=1

εs
i

vs̃
i−1

= εs
(
1 +

∞∑

i=1

es̃−(s̃−(1+η)s)i
)
.
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Since s̃ > (1 + η)s, the series converges and we obtain

E[dF (Z, C(ε))s]1/s ≤ c3 ε

for some constant c3 = c3(s, s̃) < ∞. It remains to compute an upper bound for the size of C(ε).
If ε ≥ ξ, then M = 0 and |C(ε)| = 1. For ε < ξ, equation (7) implies

|C(ε)| ≤ 1 +
M−1∑

i=0

|Ci(ε)| ≤ 1 +
M−1∑

i=0

exp
{
c2 (vi/εi)1/α

}

= 1 +
M−1∑

i=0

exp
{
c2

1
ε1/α

e−iη/α
}

≤ 1 + M exp
{
c2

1
ε1/α

}

≤ 1 +
(
1 +

1
η

log(ξ/ε)
)

exp
{
c2

1
ε1/α

}
,

so that there exists a constant c4 = c4(ξ, s, s̃) < ∞ for which

|C(ε)| ≤ exp
{
c4

1
ε1/α

}
.

For an arbitrary rate r > 0, one chooses ε = (c4/r)α and applies the estimates above:

D(q)
(
r|s) ≤ c3 (c4/r)α.

Note that D(q)
(
r|s) ≤ ξE[‖Z‖s̃]1/s̃ = ξ now implies the assertion. ¤

3 Hölder continuity of M

In this section, we provide estimates for the moments of the α-Hölder norm of continuous
martingales. The analysis uses a Sobolev embedding type argument based on the GRR inequality
(see [8]).

Let M = (Mt)t∈[0,1] be an R-valued, (Ft)-adapted continuous martingale given as Mt =∫ t
0 σu dW̃u, where (σt) is an (Ft)-adapted process with

∫ 1

0
σ2

u du < ∞, a.s.

In this section we do not require that (σt) be given by σt = σ(Xt, t).
We denote by | · |α the α-Hölder semi-norm over the interval [0, 1], that is

|f |α := sup
0≤s<t≤1

|f(t)− f(s)|
|t− s|α .

Based on the GRR inequality (see [8]) we derive an upper bound for the moments of |M |α:
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Theorem 3.1. Let α ∈ (0, 1/2) and κ > 2/(1 − 2α). Then there exists a constant c = c(κ, α)
such that

E[|M |κα] ≤ c

∫ 1

0
E[|σu|κ] du.

The constant c may be chosen independently of the martingale M .

Proof. Fix α ∈ (0, 1/2). Let f : [0, 1] → R be a continuous function and let β, γ > 0 with
α = γ − 2/β. We consider Ψ(x) = |x|β and p(x) = |x|γ , x ∈ R. Then the GRR lemma states
that for

B := B(f) :=
∫ 1

0

∫ 1

0
Ψ

(f(s)− f(t)
p(s− t)

)
ds dt =

∫ 1

0

∫ 1

0

|f(s)− f(t)|β
|s− t|βγ

ds dt, (8)

one has

|f(s)− f(t)| ≤ 8
∫ |s−t|

0
Ψ−1

(4B

ξ2

)
dp(ξ)

= 8
∫ |s−t|

0

(4B)1/β

ξ2/β
dp(ξ)

= 8γ(4B)1/β

∫ |s−t|

0
ξγ−1−2/β dξ

= 8
γ

γ − 2/β
(4B)1/β |s− t|γ−2/β

for all s, t ∈ [0, 1]. Consequently,
|f |α ≤ 41/β8

γ

α
B1/β .

Now consider M instead of f , define B := B(M) in analogy to (8), and let κ ≥ β ∨ 2.
In order to control the κ-th moment of |M |α we derive an upper bound for EBκ/β. Due to
Jensen’s inequality and the Burkholder-Davis-Gundy (BDG) inequality,there exists a constant
c1 = c1(κ) < ∞ such that

E[Bκ/β] ≤ E
[∫ 1

0

∫ 1

0

|M i
u −M i

t |κ
|u− t|κγ

du dt
]

≤
∫ 1

0

∫ 1

0

E[|Mu −Mt|κ]
|u− t|κγ

du dt

≤
∫ 1

0

∫ 1

0

c1 E[| ∫ t
u σ2

vdv|κ/2]
|u− t|κγ

du dt

= 2c1

∫ 1

0

∫ 1−δ

0

E[(
∫ u+δ
u σ2

vdv)κ/2]
δκγ

du dδ.

Applying again Jensen’s inequality leads to

E[Bκ/β] ≤ 2c1

∫ 1

0
δ−κγ+κ/2

∫ 1−δ

0
E

[∫ u+δ

u
δ−1|σv|κdv

]
du dδ.
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Next, applying Fubini’s Theorem on the inner two integrals yields for any δ ∈ (0, 1):

∫ 1−δ

0

∫ u+δ

u
δ−1E[|σv|κ] dv du ≤

∫ 1

0
E[|σu|κ] du

so that

E[Bκ/β] ≤ 2c1

∫ 1

0
δ−κγ+κ/2 dδ ·

∫ 1

0
E[|σu|κ] du.

Thus if −κγ + κ/2 > −1, there exists a constant c2 = c2(κ, γ) < ∞ for which

E[|M |κα] ≤ c2

∫ 1

0
E[|σu|κ] du. (9)

It remains to determine the values of κ ∈ R+ for which there exist appropriate values of β and
γ yielding inequality (9) for a finite c2: β and γ need to satisfy

(i) γ − 2/β = α , (ii) κ ≥ β ∨ 2 and (iii) − κγ + κ/2 > −1.

When choosing γ ∈ (1/2,∞), conditions (i) to (iii) are equivalent to

κ ≥ 2
γ − α

∨ 2 and κ <
1

γ − 1/2
,

and elementary analysis implies the existence of an estimate like (9) for each

κ >
2

1− 2α
.

¤

Remark 3.2. The condition κ > 2/(1 − 2α) is necessary for the validity of the lemma. If
the condition is not satisfied, a counterexample is obtained as follows: fix ε ∈ (0, 1] and let
σt := 1[0,ε](t)ε−1/κ (t ∈ [0, 1]); then the right hand side of the inequality is equal to c, whereas
E[|M |κα] tends to infinity when letting ε to zero.

4 Codingscheme for ϕ

We assume again the setting of section 1. In this section we introduce the coding schemes used
for the random time transform ϕ. The construction depends on a parameter α ∈ (0, β/2).

For n ∈ N denote by ϕ̂(n) = (ϕ̂(n)
t )t∈[0,1] a random monotonically increasing function that is

linear on each interval [i/n, i + 1/n] (i = 0, . . . , n− 1) and satisfies

ϕ̂(n)(i/n) = arg miny∈I(n)|ϕ(i/n)− y| (i = 0, . . . , n),

where I(n) is defined as

I(n) =
{

j
1

n1+α
: j ∈ N0, j ≤ n2(1+α)

}
.
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Proposition 4.1. There exists a constant C < ∞ such that

log | range (ϕ̂(n))| ≤ Cn(1 + log n)

and
E[‖ϕ(·)− ϕ̂(n)(·)‖s

[0,1]]
1/s ≤ C

1
n1+α

The proof of the proposition relies on the following regularity result for (σ2
t ) which is essen-

tially a consequence of assumption (C), Theorem 3.1 and the finiteness of all moments E[‖X‖s
[0,1]]

(s > 1).

Lemma 4.2. One has
E[|σ2

· |pα] < ∞.

Proof. By Theorem 3.1, it is true that for every α′ ∈ (0, 1/2)

E[|M |2s
α′ ] < ∞.

Moreover, by assumption (C)

E[|A|2s
α′ ]

1/2s ≤ E[|A|2s
1 ]1/2s ≤ E[‖b·‖2s]1/2s ≤ L + L E[‖X‖2s]1/2s < ∞

and hence

E[|X|2s
α′ ]

1/2s ≤ E[|M |2s
α′ ]

1/2s + E[|A|2s
α′ ]

1/2s < ∞. (10)

Since in general |σ2· |α ≤ 2‖σ·‖|σ·|α, one also has:

E[(|σ2
· |α)s] ≤ 2s E[‖σ·‖s|σ·|sα],

and due to the Cauchy-Schwarz inequality it suffices to establish the finiteness of E[‖σ·‖2s] and
E[|σ·|2s

α ]. First note that by assumption (C)

E[‖σ·‖2s]1/2s ≤ 3L + 2LE[‖X‖2s]1/2s < ∞.

On the other hand, elementary analysis implies that

|σ·|α ≤ L
(|X|βα/β + |X|α + 2

)
,

so that (10) and the inequality α/β < 1/2 imply that E[|σ·|2s
α ] is finite. ¤

Proof of Proposition 4.1. First note that

log | range (ϕ̂(n))| ≤ n log |I(n)| ≤ n log(2n2(α+1))

which immediately implies the first estimate. Now let ϕ(n,int) denote the interpolation of ϕ with
supporting points {0, 1/n, . . . , 1} that is

ϕ(n,int)(t) = ϕ(i/n) + n(ϕ((i + 1)/n)− ϕ(i/n))(t− i/n)

for i ∈ {0, . . . , n− 1} and t ∈ [i/n, (i + 1)/n]. An elementary analysis shows that

E[‖ϕ(·)− ϕ(n,int)(·)‖s
[0,1]]

1/s ≤ 1
n1+α

E[|σ2
· |sα]1/s.
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Consequently,

E[‖ϕ(·)− ϕ̂(n)(·)‖s
[0,1]]

1/s

≤ E[‖ϕ(·)− ϕ(n,int)(·)‖s
[0,1]]

1/s + E[‖ϕ(n,int)(·)− ϕ̂(n)(·)‖s
[0,1]]

1/s

≤ 1
n1+α

E[|σ2
· |sα]1/s +

1
n1+α

+ E[1{ϕ(1)>n1+α}ϕ(1)s]1/s.

Due to the Cauchy-Schwarz inequality and Jensen’s inequality one has

E[1{ϕ(1)>n1+α}ϕ(1)s]1/s ≤ P(ϕ(1) > n1+α)1/2s E[ϕ(1)2s]1/2s

≤ E[ϕ(1)2s]1/s 1
n1+α

,

and the second assertion follows. ¤

5 An estimate for E[‖Wϕ(·) −Wϕ̂(·)‖s
[0,1]]

In the previous section, we introduced and analyzed an approximation used for the time-change
ϕ. It remains to study the behavior of E[‖Wϕ(·)−Wϕ̂(·)‖s

[0,1]] for “good” reconstructions ϕ̂ of ϕ.
The following analysis relies heavily on concentration properties of Gaussian measures.

Lemma 5.1. Let T , ρ, ε > 0 with ε ≥ √
2ρ. We have

P
(

sup
{u,t∈[0,T ]:
|u−t|≤ρ}

|Wt −Wu| ≤ 3ε
)
≥

(
1− 2 e

− ε2

2ρ

)n
,

where n := dT/ρe.
Proof. Let T, ρ, ε and n be as in the lemma. Set ti = iρ, i = 0, . . . , n−1, and tn = T . Then

sup
{u,t∈[0,T ]:
|u−t|≤ρ}

|Wt −Wu| ≤ 3 max
i=0,...,n−1

sup
u∈[ti,ti+1]

|Wu −Wti |.

Note that for Mi = supu∈[ti,ti+1] |Wu −Wti | (i = 0, . . . , n− 1) one has

P
(

sup
{u,t∈[0,T ]:
|u−t|≤ρ}

|Wt −Wu| ≤ 3ε
)
≥ P( max

i=0,...,n−1
Mi ≤ ε).

Since the r.v. M0, . . . , Mn−1 are independent it follows that

P( max
i=0,...,n−1

Mi ≤ ε) =
n−1∏

i=0

P(Mi ≤ ε),

so that

P(Mi > ε) ≤ 2P( sup
u∈[ti,ti+1]

(Wu −Wti) > ε)

= 4P(Wti+1 −Wti) > ε)

= 4P
( 1√

ti+1 − ti
(Wti+1 −Wti) >

ε√
ti+1 − ti

)

= 4Ψ
( ε√

ti+1 − ti

)
≤ 2 e

− ε2

2(ti+1−ti) ,

11



where Ψ(t) := (2π)−1/2
∫∞
t exp{−x2/2} dx (t ∈ R). By assumption, the last term is less than 1

and

P( max
i=0,...,n−1

Mi ≤ ε) ≥
n−1∏

i=1

(
1− 2 e

− ε2

2(ti+1−ti)

)
≥

(
1− 2 e

− ε2

2ρ

)n
.

¤
Notice that C0[0, T ] equipped with the norm

‖f‖ρ,T := sup
u,t∈[0,T ]:
|u−t|≤ρ

|f(t)− f(u)|

is a separable Banach space, say Cρ,T . Thus, we can interpret (Wt)t∈[0,T ] as a centered Gaus-
sian random vector in this space. Let mρ,T ∈ R+ denote the 7/8-quantile of ‖W‖ρ,T . Using
elementary analysis together with Lemma 5.1, we obtain:

Lemma 5.2. There exists a constant c < ∞ such that for all T, ρ > 0 one has

mρ,T ≤ c

√
ρ
(
1 + log+

T

ρ

)
.

Lemma 5.3. For any A ∈ F and s > 0, one has

E[1A ‖W‖s
ρ,T ]1/s ≤ 2

√
2 mρ,T

[
2

∫ ∞

0∨Ψ−1(P(A))

(x + 1)s

√
2π

e−x2/2 dx
]1/s

,

where Ψ(t) :=
∫∞
t

√
2π

−1
exp{−x2/2} dx (t ∈ R).

Proof. Due to [15] (p. 99) (see also [14], p. 202, 210) one has

σ := sup
f∈C∗ρ,T ,‖f‖C∗

ρ,T
≤1
E[f2(W )]1/2 ≤ 2

√
2 mρ,T ,

where C∗
ρ,T is the topological dual of Cρ,T . As a consequence of the isoperimetric inequality, one

obtains
P(‖W‖ρ,T ≥ mρ,T + tσ) ≤ Ψ(t) (t ≥ 0).

Therefore, we can find a standard normal random variable N on a sufficiently large probability
space such that

‖W‖ρ,T ≤ 2
√

2 mρ,T [1 + N+],

where N+ = N ∨ 0. Consequently,

E[1A ‖W‖s
ρ,T ]1/s ≤ 2

√
2 mρ,T E[1A (N+ + 1)s]1/s.

¤

Lemma 5.4. For s > 0 there exists a constant c = c(s) such that for all A ∈ F , T, ρ > 0 one
has

E[1A‖W‖s
ρ,T ] ≤ c

(
ρ
(
1 + log+

T

ρ

) (
1 + log(1/q)

))s/2
q,

where q := P(A).

12



Proof. By elementary analysis one obtains
∫ ∞

x
(y + 1)s e−u2/2 du ∼ xs Ψ(x), x →∞,

and thus ∫ ∞

Ψ−1(ε)
(u + 1)s e−u2/2 du ∼ ε Ψ−1(ε)s ∼ ε

√
2 log(1/ε)

s
, ε ↓ 0.

Consequently, there exists a constant c1 = c1(s) < ∞ such that for all ε ∈ (0, 1]
∫ ∞

0∨Ψ−1(ε)
(u + 1)s e−u2/2 du ≤ c1 ε

√
1 + log(1/ε)

s

Applying the two previous lemmas yields

E[1A‖W‖s
ρ,T ] ≤ c2

(
ρ
(
1 + log+

T

ρ

) (
1 + log(1/q)

))s/2
q,

where q := P(A) and c2 = c2(s) is a constant only depending on s. ¤

Lemma 5.5. Suppose that ϕ̂(r) (r ≥ 0) are reconstructions for ϕ such that

lim
r→∞E[‖ϕ− ϕ̂(r)‖2s

[0,1]]
1/2s = 0.

Then for any s ≥ 1,

E[‖Wϕ(·) −Wϕ̂(r)(·)‖s
[0,1]]

1/s = O
(√

d(r) log(1/d(r))
)

,

where d(r) = E[‖ϕ− ϕ̂(r)‖2s
[0,1]]

1/2s.

Proof. Consider the r.v.’s ε := ε(r) := ‖ϕ− ϕ̂(r)‖ and τ := ϕ(1). Notice that

‖Wϕ(·) −Wϕ̂(r)(·)‖ ≤ ‖W‖ε,τ+ε.

Let now I := {ei : i ∈ N0},
ε̄ := ε̄(r) := min([ε,∞) ∩ d(r) I) and τ̄ := τ̄(r) := min([τ,∞) ∩ I).

ε̄ and τ̄ are discrete r.v.’s dominating ε and τ and satisfying

ε̄ ≤ eε + d(r) and τ̄ ≤ eτ + 1. (11)

Denote by (pρ,t) the probability weights of (ε̄, τ̄). Then Lemma 5.4 yields

E[‖W‖s
ε,τ+ε] ≤ E[‖W‖s

ε̄,τ̄+ε̄]

≤
∑
ρ,t

E[1{(ε,τ)=(ρ,t)}‖W‖s
ρ,t+ρ]

≤ c1 E
[(

ε̄
(
1 + log(1 +

τ̄

ε̄
)
)(

1 + log(1/pε̄,τ̄ )
))s/2]

≤ c1 E
[
ε̄s

(
1 + log(1 +

τ̄

ε̄
)
)s

]1/2
E

[(
1 + log(1/pε̄,τ̄ )

)s
]1/2

=: c1 Σ1 · Σ2

(12)

13



for some appropriate constant c1 = c1(s). Notice that the second term can be controlled by

Σ2
2 ≤ 2s (Hs(ε̄, τ̄) + 1),

where Hs denotes the generalized entropy

Hs(ε̄, τ̄) :=
∑
ρ,t

pρ,t

(
log(1/pρ,t)

)s
.

Now choose ρ = E[ε2s]1/2sei and t = ej (i, j ∈ N0). If i, j ∈ N, one obtains with (11) and the
Cauchy-Schwarz inequality

pρ,t ≤ E[ε̄τ̄ ]
E[ε2s]1/2sei+j−2

≤ E[(eε + E[ε2s]1/2s)(τ + 1)]
E[ε2s]1/2sei+j−2

≤ (e + 1)E[(τ + 1)2]1/2

ei+j−2
.

If i = 0 and j ∈ N, then

pρ,t ≤ E[τ̄ ]
ej−1

≤ E[eτ + 1]
ej−1

≤ E[(τ + 1)2]1/2

ej−2
,

whereas for i ∈ N and j = 0, one obtains

pρ,t ≤ E[ε̄]
E[ε2s]1/2sei−1

≤ E[eε + E[ε2s]1/2s]
E[ε2s]1/2sei−1

≤ e + 1
ei−1

.

Note that the above estimates for pρ,t do not depend on the rate r ≥ 0 and decrease sufficiently
fast to zero in order to provide the finiteness of Hs(ε̄, τ̄). Moreover, Hs(ε̄, τ̄) is uniformly
bounded for all r ≥ 0 by some constant c3 < ∞ depending on E[(τ +1)2]1/2 only. Consequently,
Σ2 is uniformly bounded.

It remains to analyze the first expression Σ1. Recall that τ̄ ≥ 1. Hence, (11) and the
Cauchy-Schwarz inequality yield

Σ2/s
1 = E

[
ε̄s(1 + log(1 +

τ̄

ε̄
))s

]1/s
≤ E

[
ε̄s(1 + log τ̄ + log(1 +

1
ε̄
))s

]1/s

≤ E[
ε̄2s

]1/2sE
[(

1 + log(1 + eτ) + log
(
1 +

1
ε̄

))2s]1/2s

≤ (e + 1)d(r)E
[(

1 + log(1 + eτ) + log
(
1 +

1
d(r)

))2s]1/2s

Consequently, combining this with (12) leads to

E[‖Wϕ(·) −Wϕ̂(r)(·)‖s]1/s = O
(√

d(r) log(1/d(r))
)

.

¤
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6 Decoupling (Wt)t∈[0,τ ] and the approximate time-change ϕ̂

We need some more notations. For f ∈ C0[0,∞), let

‖f‖H :=

{
‖df

dt‖L2[0,∞) if f is weakly differentiable
∞ else.

Moreover, for T > 0 and f ∈ C0[0, T ], let ‖f‖HT
= ‖df

dt‖L2[0,T ] if f is weakly differentiable and
‖f‖HT

= ∞, otherwise. The corresponding Hilbert spaces are denoted by H and HT .
We recall some results of the theory of enlargements of filtrations (see [13], [1]). Let (FW

t ) be
the filtration generated by the Wiener process (Wt) and denote by G a discrete random variable
with probability weights (pg). We consider the enlarged filtration (Gt)t≥0 = (FW

t ∨ σ(G))t≥0

and assume that for some fixed s ≥ 1 the generalized entropy

Hs(G) := E
[(

log
1
pG

)s]

is finite. Then the process (Wt) is a (Gt)-semimartingale, and its Doob-Meyer decomposition
Wt = W̄t + Ȳt comprises a (Gt)-Wiener process (W̄t) and a process of bounded variation (Ȳt)
(which we call information drift) satisfying

E[‖Ȳ ‖2s
H ] ≤ κs (Hs(G) + 1). (13)

Here, the constant κs depends on s only.
We recall that H1 is compactly embedded into C[0, 1], and that its entropy numbers satisfy

en(H1, C[0, 1]) ≈ 1
n

, n →∞.

Lemma 6.1. Let s̃ > s > 0. There exists a constant c = c(s, s̃) such that

D(q)(r|Y, T, s) ≤ c
√

T E[‖Y ‖s̃
HT

]1/s̃ 1
r + 1

for all T > 0, r ≥ 0 and HT -valued r.v. Y .

Proof. By Lemma 2.1, the statement holds for fixed time T = 1 for an appropriate constant
c > 0. Notice that for T > 0 the maps

π
(1)
T : HT → H1, f 7→ 1√

T
f(T ·) and

π
(2)
T : C[0, T ] → C[0, 1], f 7→ f(T ·)

are isometric isomorphisms. Consequently,

D(q)(r|Y, T, s) = D(q)(r|π(2)
T (Y ), 1, s)

≤ cE[‖π(2)
T (Y )‖s̃

H1
]1/s̃ 1

r + 1

= cE[‖
√

T π
(1)
T (Y )‖s̃

H1
]1/s̃ 1

r + 1

= c
√

T E[‖Y ‖s̃
HT

]1/s̃ 1
r + 1

.

¤
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Lemma 6.2. For any s ≥ 1, there exists a constant c < ∞ such that

D(q)(r|Ȳ , τ, s) ≤ c (Hs(Z) + 1)1/2s
[√

T
1
r

+ T
1
2
(1− q

s
)E[τ q]1/2s

]

for all q ≥ s, T > 0, r ≥ 1, all [0,∞)-valued r.v.’s τ and arbitrary side information G.

Proof. Fix T > 0 and r ≥ 1. The previous lemma and equation (13) imply

D(q)(r|Ȳ , T, s) ≤ c1

√
T E[‖Ȳ ‖2s

H ]1/2s 1
r + 1

≤ c1 κ1/2s
s

√
T (Hs(G) + 1)1/2s 1

r + 1

= c2
2

√
T (Hs(G) + 1)1/2s 1

r + 1
,

for some appropriate constants c1 and c2 depending on s only. Consequently, there exists a
codebook C ⊂ C[0,∞) of size berc containing the constant function 0 and satisfying

E[min
ŷ∈C

‖Ȳ − ŷ‖s
[0,T ]]

1/s ≤ c2

√
T (Hs(G) + 1)1/2s 1

r
. (14)

Next denote by Ŷ a ‖ · ‖[0,τ ]-optimal reconstruction for Ȳ from C, and observe that

E[‖Ȳ − Ŷ ‖s
[0,τ ]]

1/s ≤ E[1{τ≤T}‖Ȳ − Ŷ ‖s
[0,T ]]

1/s + E[1{τ>T}‖Ȳ ‖s
[0,τ ]]

1/s

=: I1 + I2.

It remains to analyze I2. Due to the Cauchy Schwarz inequality one has

I2 ≤ E[1{τ>T}
√

τ
s‖Ȳ ‖s

Hτ
]1/s

≤ E[1{τ>T}τ s]1/2s E[‖Ȳ ‖2s
H ]1/2s

≤ (
T s−qE[τ q]

)1/2s
κ1/2s

s (Hs(G) + 1)1/2s.

Combining this with estimate (14) leads to the assertion. ¤
Now we apply the above results to the case where the enlarging random variable is G = ϕ̂(n),

with ϕ̂(n) defined as in Section 4. Recall that the definition of ϕ̂(n) depends on a parameter
α ∈ (0, β/2). For fixed α we can now control the coding complexity of the related information
drift Ȳ (n):

Proposition 6.3. Let γ1, γ2 > 0, relate r > 0 and n ∈ N via n = n(r) = drγ1e and denote by
Ȳ (n) the information drift of W under the enlarged filtration FW

t ∨ σ(ϕ̂(n)). Then for any ε > 0

D(q)(rγ2 |Ȳ (n), τ, s) = O(r
γ1
2
−γ2+ε),

where τ (n) := ϕ̂(n).

Proof. First note that one can choose c1 ≥ 0 such that the function

f : [1,∞) → [0,∞), x 7→ (log x)s + c1 log x

16



is concave. Consequently, it follows that for any Z with finite range

Hs(Z) = E
[
(log 1/pZ)s] ≤ Ef(1/pZ) ≤ f(E[1/pZ ]) = f(| range (Z)|).

Due to Proposition 4.1 there exists a constant C such that for all n

log | range (ϕ̂(n))| ≤ Cn(1 + log n).

Hence,
(Hs(ϕ̂(n)) + 1)1/2s = O(

√
rγ1 log r)

as r →∞. Fix ε > 0 and consider T = T (r) = rε and q = 2
εγ2s. Then

√
T

rγ2
+ T

1
2
(1− q

s
)E

[(
τ (n)

)q]1/2s =
1

rγ2− ε
2

(
1 + E

[(
τ (n)

)q]1/2s)
. (15)

Since supn∈N E
[(

τ (n)
)q]

< ∞ we conclude that (15) is of the order O(r−γ2+ε/2), so that due to
Lemma 6.2

D(q)(rγ2 |Ȳ (n), τ (n), s) = O(r
γ1
2
−γ2+ε).

¤

7 Main representation of the diffusion

In this section we make use of all the previous results and establish the fundamental represen-
tation of the diffusion. This will enable us to compute the coding complexity of the diffusion
process.

Theorem 7.1. Fix α ∈ (0, β/2) and γ1 ∈ ((1 + α)−1, 1). Moreover, let ϕ̂(n) be as in Section 4,
relate n and r > 0 via n = n(r) = drγ1e, and let Wt = W̄

(n)
t + Ȳ

(n)
t denote the FW

t ∧ σ(ϕ̂(n))
Doob-Meyer decomposition of W .
For fixed s > 0 there exist C[0, 1]-valued r.v.’s R̄(n) and R̂(r) such that

• X = W̄
(n)

ϕ̂(n)(·) + R̄(n),

• W̄ (n) is a Wiener process that is independent of ϕ̂(n)

• E[‖R̄(n) − R̂(r)‖s
[0,1]]

1/s = O(r−
1
2
−δ), for some δ > 0.

• log | range (R̂(r), ϕ̂(n))| = O(rγ), for some γ ∈ (0, 1),

Proof. Due to Proposition 4.1,

E[‖ϕ− ϕ̂(n)‖2
[0,1]]

1/2 = O(n−(1+α)) = O(r−(1+α)γ1).

Now Lemma 5.5 implies the existence of a constant δ1 > 0 with

E[‖Wϕ(·) −Wϕ̂(n)(·)‖s
[0,1]]

1/s = O(r−
1
2
−δ1). (16)
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Next, denote by W = W̄ (n) + Ȳ (n) the Doob-Meyer decomposition of W under the additional
information ϕ̂(n) and choose γ2 ∈ (0, 1) with γ1

2 − γ2 < −1
2 . Due to Proposition 6.3, there exist

C[0,∞)-valued reconstructions Ŷ (r) satisfying

log | range Ŷ (r)| ≤ rγ2 and E[‖Ȳ (n) − Ŷ (r)‖s
[0,ϕ̂(n)(1)]

]1/s = O(r−
1
2
−δ2) (17)

for a fixed δ2 ∈ (0,−(γ1

2 − γ2)− 1
2).

The bounded variation part A of the diffusion X satisfies E[‖A‖2s
H1

] < ∞, so that Lemma
6.1 yields the existence of reconstructions Â(r) for which

log | range (Â(r))| ≤ r2/3 and E[‖A− Â(r)‖s
[0,1]]

1/s = O(r−2/3). (18)

Now we rewrite X in terms of the newly introduced r.v.’s:

Xt = At + Mt = At + Wϕ(t) = At + (Wϕ(t) −Wϕ̂(n)(t)) + Wϕ̂(n)(t)

= At + (Wϕ(t) −Wϕ̂(n)(t)) + Ȳ
(n)

ϕ̂(n)(t)︸ ︷︷ ︸
=:R̄

(n)
t

+W̄
(n)

ϕ̂(n)(t)
.

Due to (16), (17) and (18) it follows that the process R̂
(r)
t := Â

(r)
t + Ŷ

(r)

ϕ̂(n)(t)
satisfies for δ :=

min(δ1, δ2, 1/6) > 0

E[‖R̄(n) − R̂(r)‖s]1/s ≤ E[‖A− Â(r)‖s]1/s + E[‖Wϕ(·) −Wϕ̂(n)(·)‖s]1/s

+ E[‖Ȳ (n)

ϕ̂(n)(·) − Ŷ
(r)

ϕ̂(n)(·)‖
s]1/s = O(r−

1
2
−δ).

Moreover, Proposition 4.1 implies that

log | range (ϕ̂(n))| = O(n log n) = O(rγ1 log r) = O(r(1+γ1)/2).

Combining this with the range estimates for Ŷ (r) and Â(r), we obtain

log | range (R̂(r), ϕ̂(n))| = O(rγ),

where γ = max((1 + γ1)/2, γ2, 2/3) < 1. ¤

8 The coding complexity of X in C[0, 1]

In this section we prove Theorem 1.1. We will need the notion of conditional entropy. For two
discrete r.v. Z and G, let

H(Z|G = g) = E[log 1/pZ|g|G = g] and H(Z|G) = E[log 1/pZ|G],

where pz|g denotes the conditional probability P(Z = z|G = g), which is well defined for PG-a.a.
g. For basic properties of the conditional entropy one might consult [12].

In the rest of this section s > 0, α ∈ (0, β/2) and γ1 ∈ ((1 + α)−1, 1) are fixed. Moreover,
relate n and r > 0 via n = drγ1e and let ϕ̂ = ϕ̂(n), R̄ = R̄(n), R̂ = R̂(r) be as in Theorem 7.1. We
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also let τ = τ (n) = ϕ̂(n)(1), and for simplicity we omit the parameters n and r in the notations
for the stochastic processes.

We first turn to be proof of the upper bounds.
Proof of the upper bounds. We start by proving the upper asymptotic bound for the

quantization formula. Choose a discrete r.v. Ŵ = Ŵ (r) such that, conditional upon τ , the
process Ŵ has range of size berc and satisfies

E[‖W̄ − Ŵ‖s
[0,τ ]|τ ]1/s ≤ (1 + 1/r)

√
τD(q)(r|W, s).

Then

E[‖W̄ − Ŵ‖s
[0,τ ]]

1/s ≤ (1 + 1/r)E[
√

τ
s]1/s D(q)(r|W, s),

and the reconstruction X̂ := X̂(r) := Ŵϕ̂(·) + R̂ satisfies

E[‖X − X̂‖s]1/s ≤ E[‖W̄ − Ŵ‖s
[0,τ ]]

1/s + E[‖R̄− R̂‖s]1/s

. K E[‖σ·‖s
L2[0,1]]

1/s 1√
r

since limr→∞ E[
√

τ
s]1/s = E[‖σ·‖s

L2[0,1]]
1/s. Moreover, X̂ has range of size e(1+o(1))r and the first

asymptotic estimate is proven.
Now we focus on the entropy coding problem. Let

rt = r
(r)
t = r ts/(s+2)/E[τ s/(s+2)] +

√
r (t ≥ 0)

and let Ŵ = Ŵ (r) denote a reconstruction for W̄ such that for any t ∈ range (τ) one has
H(Ŵ |τ = t) ≤ rt and

E[‖W̄ − Ŵ‖s
[0,τ ]|τ = t]1/s ≤ (1 + 1/r)

√
tD(e)(rt|W, s).

Since r· converges uniformly to ∞ on range (τ), we conclude that

E[‖W̄ − Ŵ‖s
[0,τ ]]

1/s . KE[τ s/2 r−s/2
τ ]1/s

∼ KE[τ s/(s+2)](s+2)/2s r−1/2

∼ K
∥∥‖σ·‖L2[0,1]

∥∥
L2s/(s+2)(P)

1√
r
.

Analogously to the above, the same estimate remains valid for E[‖X − X̂‖s
[0,1]]

1/s. On the other

hand the entropy of X̂ can be controlled by

H(X̂) ≤ H(Ŵ , R̂, ϕ̂) ≤ H(R̂) +H(ϕ̂) +H(Ŵ |τ)

Note that H(R̂) and H(ϕ̂) are of order o(r) and

H(Ŵ |τ) ≤ E[rτ ] = r +
√

r ∼ r,

and the second assertion follows. ¤
Now we turn to the proof of the lower bounds.
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Proof of the lower bounds. First consider the quantization setting. Denote by X̂ = X̂(r)

arbitrary reconstructions for X that have range of size berc, and let

Ŵt := Ŵ
(r)
t := X̂ϕ̂−1(t) − R̂ϕ̂−1(t) (t ∈ [0, τ ]),

where ϕ̂−1(t) := inf{s ≥ 0 : ϕ̂(s) ≥ t}. Since W̄t = Xϕ̂−1(t) − R̄ϕ̂−1(t) for t ∈ [0, τ ] one has

E[‖W̄ − Ŵ‖s
[0,τ ]]

1/s ≤ E[‖Xϕ̂−1(·) − X̂ϕ̂−1(·)‖s
[0,τ ]]

1/s + E[‖R̄ϕ̂−1(·) − R̂ϕ̂−1(·)‖s
[0,τ ]]

1/s

≤ E[‖X − X̂‖s
[0,1]]

1/s + E[‖R̄− R̂‖s
[0,1]]

1/s.
(19)

On the other hand, Ŵ satisfies the range constraint

log | range (Ŵ )| ≤ log | range (X̂, R̂, ϕ̂)| ≤ r +O(rγ) ∼ r.

With
E[‖W̄ − Ŵ‖s

[0,τ ]|ϕ̂]1/s ≥ √
τD(q)(log | range (Ŵ )||W, s),

it follows that

E[‖W̄ − Ŵ‖s
[0,τ ]]

1/s & K E[τ s/2]1/s 1√
r
∼ K E[‖σ·‖s

L2[0,1]]
1/s 1√

r
.

Since E[‖R̄− R̂‖s]1/s is of order o(1/
√

r) the assertion is a consequence of (19).
Let now X̂ = X̂(r) denote arbitrary reconstructions for X with H(X̂) ≤ r and define Ŵ =

Ŵ (r) as above. For t ∈ range (τ) let rt = r
(r)
t = H(Ŵ |τ = t) +

√
r. Since

H(Ŵ |τ) ≤ H(X̂) +H(R̂) +H(ϕ̂) ≤ r +O(rγ) ∼ r.

we have
E[rτ ] = H(Ŵ |τ) +

√
r . r.

Note that r· converges on range (τ) uniformly to infinity. Combining this property with equation
(1) and the estimate

E[‖W̄ − Ŵ‖s
[0,τ ]|τ = t]1/s ≥

√
tD(e)(rt|W, s)

leads to

E[‖W̄ − Ŵ‖s
[0,τ ]]

1/s & K E
[√τ

s

√
r
s
τ

]1/s = 〈τ s/2, r−s/2
τ 〉1/s

L2(P).

Applying Hölder’s inequality (for exponents less than one) with q = −2/s and adjoint coefficient
q∗ = 2/(s + 2) gives

〈τ s/2, r−s/2
τ 〉L2(P) ≥ E[τ s/(s+2)](s+2)/2E[rτ ]−s/2.

Together with the above estimates we obtain

E[‖W̄ − Ŵ‖s
[0,τ ]]

1/s & K E[τ s/(s+2)](s+2)/2sE[rτ ]−1/2

& K E[‖σ·‖2s/(s+2)
L2[0,1]

](s+2)/2s 1√
r
,

which finishes the proof. ¤
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