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Summary. In this article we review asymptotic formulae for the three coding problems
induced by a range constraint (quantization), an entropy constraint (entropy coding) and
a mutual information constraint (distortion rate function) on the approximation X̂ to an
original signal X. We will consider finite dimensional random variables as well as stochastic
processes as original signal. A main objective of the article is to explain relationships between
the original problems and certain intermediate convex optimization problems (the point or
rate allocation problem). These intermediate optimization problems often build the basis
for the proof of asymptotic formulae.
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1 Introduction

In practice, discretization problems appeared for the first time in the context of Pulse-Code-
Modulation (PCM ). Provided that a source signal has limited bandwidth, it is possible to
reconstruct it perfectly, when knowing its values on an appropriate grid of time points. However,
in order to digitize the data, it still remains to quantize the signal at these time points.

Today the motivation for studying discretization problems is twofold. The information the-
oretic approach asks for a digital representation for an incoming random signal X. The digital
representation is typically a finite number of binary digits, which is thought of as the basis
for further reconstructions of the original signal. The digital representation is to be stored
on a computer or to be send over a channel, and one needs to find a good trade-off between
the quality of the reconstruction and the complexity of the describing representation. When
adopting the information theoretic viewpoint, the signal X describes a real world object that
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is to be translated into an approximation X̂ on the basis of measurements or a first very fine
discretization.

A second viewpoint is adopted in the context of simulation of random vectors. Often a
random object X is described implicitly via a probability distribution and one asks for discrete
simulations X̂ of X. In that case, one rather wants to approximate the distribution PX of X
(by some discrete distribution PX̂) than the random element X itself. Recently, the finding of
finitely supported approximations has attracted much attention since it can be used to define
cubature formulas: for a real function f defined on the state space of X, one approximates the
expectation Ef(X) by the expectation Ef(X̂). Provided one knows all possible outcomes of X̂
including the corresponding probability weights, one can explicitly express the latter expectation
as a finite sum. Now the aim is to find PX̂ that is supported on a small set and that is close to
PX in a Wasserstein metric.

Although both problems share a lot of similarities, there are also important differences: when
adopting the coding perspective, one is interested to have easily implementable mechanisms that
map X into its digital representation, and that reconstruct X̂ on the basis of the representation.
In this case the algorithm does not need to incorporate the exact probability distribution of X̂.
On the other hand, the simulation approach needs to be able to simulate a random vector with
law PX̂ at least. If the approximation is to be used as a cubature formula, one furthermore needs
to get hold of the probability weights of the approximation X̂. However, it is not necessary
to couple the simulated random element X̂ to an original signal, since one only ask for an
approximating distribution in that case.

The information theoretic viewpoint has been treated in an abundance of monographs and
articles. The most influential contributions were Shannon’s works on the Source Coding Theorem
(Shannon 1948). General accounts on this topic are for instance the monographs by Cover &
Thomas (1991) and by Ihara (1993). Surveys on the development of source coding theory and
quantization were published by Kieffer (1993) and by Gray & Neuhoff (1998) in the engineering
literature. Moreover, a mathematical account on finite dimensional quantization was provided
by Graf & Luschgy (2000).

Applications of discretization schemes in finance are described, for instance, in Pagès &
Printems (2004).

In this article, the discretization problem is formalized as a minimization problem of certain
objective functions (representing the approximation error) under given complexity constraints
on the approximation. Our main focus lies on the development of asymptotic formulae for the
best-achievable approximation error when the information content of the approximation tends
to infinity. Our problems will be described via non-convex optimization problem, and an explicit
evaluation of minimizers is typically not feasible. However, it is often possible to relate the orig-
inal problem to simpler convex optimization problems. Solving these intermediate optimization
problems, often leads to asymptotic formulae in the associated approximation problems. More-
over, the solutions give a crude description of “good” approximation schemes, and they can be
used for initializing numerical methods or to define close to optimal approximation schemes. In
this article we try to convey intuition on how intermediate optimization problems can be derived
and used to solve the asymptotic coding problems. In doing so we will survey several classical
and recent results in that direction. Our complexity constraints are given through constraints
on the disk space needed to save the binary representation or the number of points maximally
attained by the approximation. Note that these constraints do not incorporate the computa-
tional complexity of finding a closest representation or to compute the probability weights of the
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approximating random variable, so that the results presented here can only serve as benchmark
(which may show the optimality of certain schemes) or as a basis for the development of feasible
approximation schemes.

To be more precise, we think of a problem constituted of a source signal (the original),
modelled as a random variable X taking values in a measurable space E, and an error criterion
given as a product measurable map ρ : E × E → [0,∞] (the distortion measure). Then the
objective is to minimize the expectation

Eρ(X, X̂) (1)

over a set of E-valued random variables X̂ (the reconstruction) satisfying a complexity constraint
(also called information constraint). Often we shall also consider certain moments s > 0 of the
approximation error as objective function. In that case (1) is replaced by

E[ρ(X, X̂)s]1/s =
∥∥ρ(X, X̂)

∥∥
Ls(P). (2)

Mainly, we shall be working with norm-based distortion measures, that are distortions ρ admit-
ting the representation ρ(x, x̂) = ‖x− x̂‖.

The information constraints

We will work with three different complexity constraints that all depend on a parameter r ≥ 0
(called rate) and have been originally suggested by Kolmogorov (1968):

• log | range (X̂)| ≤ r (quantization constraint)

• H(X̂) ≤ r, where H denotes the entropy of X̂ (entropy constraint)

• I(X; X̂) ≤ r, where I denotes the Shannon mutual information of X and X̂ (mutual
information constraint).

Here and elsewhere, we use the standard notations for entropy and mutual information:

H(X̂) =

{
−∑

x px log px if X̂ is discrete with probability weights (px)
∞ otherwise

and

I(X, X̂) =

{∫
log

dPX,X̂

dPX⊗PX̂
dPX,X̂ if PX,X̂ ¿ PX ⊗ PX̂

∞ otherwise.

In general, we will denote by PZ the distribution function of a random variable Z indicated
in the subscript. Notice that the constraints do not incorporate the computational complexity
that is needed to find X̂. So the minimal values obtained in the minimization problem can be
conceived as a benchmark. As we shall explain later, the rigorous treatment of the minimization
problem often leads to simpler intermediate convex optimization problems. Often one can use
the intermediate optimization problem to construct feasible good coding schemes.

In order to code a countable set I, one typically uses prefix-free codes, these are maps
ψ : I → {0, 1}∗ ({0, 1}∗ denoting the strings of binary digits of finite length) such that for any
i 6= j in I the code ψ(i) is not a prefix of ψ(j). That means a prefix-free code is naturally
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related to a binary tree, where the leaves of the tree correspond to the elements of I and the
code describes the path from the root to the leaf (0 meaning left child, 1 meaning right child).
Clearly, such a code allows to decode the original message uniquely. Moreover, a concatenation
of prefix-free codes leads to a new prefix-free code.

Suppose for now that the logarithms are taken to the basis 2. Then the quantization con-
straint implies that the set C = range (X̂) ⊂ E (called codebook) is of size log |C| ≤ r. Hence,
there exists a prefix-free representation for X̂ (of for C) of length at most dre. The quantization
constraint is a worst-case constraint on the code length. Note that any finite set C ⊂ E with
log |C| ≤ r induces a quantizer X̂ for X of rate r via

X̂ = argmin
x̂∈C

ρ(X, X̂).

Next, suppose that X̂ satisfies the entropy constraint. Using Lempel-Ziv coding there exists a
code ψ for the range of X̂ such that

E length(ψ(X̂)) < r + 1.

Thus the entropy constraint is an average-case constraint on the bit length needed. The mutual
information constraint, is motivated by Shannon’s celebrated source coding theorem which will
be stated later (see Theorem 4.1). For a general account on information theory we refer the
reader to the monographs by Cover & Thomas (1991) and by Ihara (1993).

For a reconstruction X̂ the constraints are ordered as follows

I(X; X̂) ≤ H(X̂) ≤ log | range (X̂)|,

so that the mutual information constraint is the least restrictive. Moreover, our notions of
information satisfy the following additivity property : suppose that X̂1 and X̂2 are random vectors
attaining values in some Borel space and suppose that X̂ is given as ϕ(X̂1, X̂2) where ϕ is some
measurable function; then

• log | range (X̂)| ≤ log | range (X̂1)|+ log | range (X̂2)|,
• H(X̂) ≤ H(X̂1) + H(X̂2) and

• I(X; X̂) ≤ I(X; X̂1) + H(X̂2).

Essentially, these estimates state that when combining the information contained in two random
vectors X̂1 and X̂2 the resulting random vector has information content less than the sum of
the single information contents. Note that the mutual information is special in the sense that
the property I(X; X̂) ≤ I(X; X̂1) + I(X; X̂2) does not hold in general!

Now let us introduce the notation used for the minimal values in the minimization problems.
When minimizing (2) under the quantization constraint for a given rate r and moment s, the
minimal value will be denoted by D(q)(r, s):

D(q)(r, s) = inf
{∥∥‖X − X̂‖∥∥

Ls(P) : log | range (X̂)| ≤ r
}
.

Here the (q) in the upper index refers to the quantization constraint. Similarly, we will write
D(e)(r, s) and D(r, s) for the minimal values induced by the entropy and mutual information
constraint, respectively.
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Strictly speaking, the quantities D(e)(·) and D(·) depend on the underlying probability space.
Since we rather prefer a notion of complexity that only depends on the distribution µ of the
underlying signal X, we allow extensions of the probability space when minimizing over X̂ so
that the pair (X, X̂) can assume any probability distribution on the product space having first
marginal µ.

Sometimes the source signal or the distortion measure might not be clear from the context.
In that case we include this information in the notation. For instance, we write D(r, s|µ, ‖ · ‖)
when considering a µ-distributed original under the objective function

E[‖X − X̂‖s]1/s,

and we write D(r|µ, ρ) in order to refer to the objective function

E[ρ(X, X̂)].

Thereafter we write f ∼ g iff lim f
g = 1, while f . g stands for lim sup f

g ≤ 1. Finally, f ≈ g
means

0 < lim inf
f

g
≤ lim sup

f

g
< ∞ ,

and f - g means

lim sup
f

g
< ∞.

Moreover, we use the Landau symbols o and O.

Synopsis

The article is outlined as follows. In the next section, we provide asymptotic formulae for finite
dimensional quantization problems. Historically there the concept of an intermediate convex
optimization problem appeared for the first time. We proceed in Section 3 with a treatment
of Banach space valued Gaussian signals under norm based distortion measures. In Section 4
we encouter the next intermediate optimization problem when considering Hilbert space valued
Gaussian signals. Then it follows a treatment of 1-dimensional diffusions in Section 5. Here
again convex minimization problems will play a crucial role in the analysis. Finally, we conclude
the article in Section 6 with two further approaches for deriving (weak) asymptotic formulae.
One is applicable for 1-dimensional stochastic processes and the other one for Lévy processes.

2 Finite dimensional signals

This section is devoted to some classical and some recent results on finite dimensional quantiza-
tion. First we will introduce the concept of an intermediate optimization problem in the classical
setting. The following section then proceeds with a treatment of Orlicz norm distortions.

2.1 Classical setting

Suppose now that X is a Rd-valued original, where d denotes an arbitrary integer. Moreover,
fix a norm | · | on Rd, let ρ be the corresponding norm-based distortion and fix a moment s > 0.
We shall consider the asymptotic quantization problem under the additional assumptions that
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the absolutely continuous part µc of µ = L(X) (w.r.t. Lebesgue measure) does not vanish and
that E[|X|s̃] < ∞ for some s̃ > s.

Originally, this problem has been addressed by Zador (1966) and by Bucklew & Wise (1982).
More recently, Graf & Luschgy (2000) presented a slightly extended version of the original results
in their mathematical account on finite dimensional quantization. Let us state the asymptotic
formula:

Theorem 2.1.

lim
n→∞n1/d D(q)(log n, s) = c(| · |, s)

∥∥∥dµc

dλd

∥∥∥
1/s

Ld/(d+s)(λd)
.

Here, c = c(| · |, s) ∈ (0,∞) is a constant depending on the norm | · | and the moment s only.

Note that the singular part of µ has no influence on the asymptotic quantization problem.
Unfortunately, the constant c is known explicitly only in a few cases (e.g. when | · | denotes
2-dimensional Euclidean norm or a d-dimensional supremum norm). Notice that it is convenient
to state the result in the number of approximating points rather than in the rate.

A heuristic derivation of the point allocation problem

Let us shortly give the main ideas along which one can prove the theorem. First one considers a
[0, 1)d-uniformly distributed random variable X as original. Based on the self similarity of the
uniform distribution one can show that

lim
n→∞n1/d D(q)(log n, s) = inf

n∈N
n1/d D(q)(log n, s) = c, (3)

where the constant c lies in (0,∞) and agrees with the c in the asymptotic formula above.
In order to explain the findings for the general case, first assume that µ is absolutely contin-

uous w.r.t. Lebesgue measure and that its density h = dµ
dλd can be represented as

h(x) =
m∑

i=1

1lBi(x) hi, (4)

where m ∈ N and Bi ⊂ Rd (i = 1, . . . , m) denote disjoint cuboids having side length li and
(hi)i=1,...,m is a Rm

+ -valued vector. We want to analyze a quantization scheme based on a combi-
nation of optimal codebooks for the measures U(Bi), where in general U(B) denotes the uniform
distribution on the set B. We fix a function ξ : Rd → [0,∞) with

∫
ξ = 1 of the form

ξ(x) =
m∑

i=1

1lBi(x) ξi (5)

and denote by Ci an U(Bi)-optimal codebook of size n ξi λ
d(Bi) = n

∫
Bi

ξ. Here, n parametrizes
the size constraint of the global codebook C defined as C =

⋃m
i=1 Ci. Notice that the inferred

error Eminx̂∈C |X − x̂|s is for large n approximately equal to

m∑

i=1

lsi c
s(nξiλ

d(Bi))−s/d

︸ ︷︷ ︸
av. error in box i

hiλ
d(Bi)︸ ︷︷ ︸

P(X∈Bi)

=
( c

n1/d

)s
m∑

i=1

ξ
−s/d
i hiλ

d(Bi) =
( c

n1/d

)s
∫

ξ(x)−s/dh(x) dx.
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Here the average error in box i can be explained as follows: the terms cs(nξiλ
d(Bi))−s/d represent

the error obtained for the U([0, 1)d)-distribution when applying an optimal codebook of size
nξiλ

d(Bi) (due to (3)). The term lsi arises from the scaling needed to get from U([0, 1)d) to
U(Bi) and the fact that we consider the s-th moment.

We arrive at the minimization problem
∫

ξ(x)−s/dh(x) dx = min! (6)

where the infimum is taken over all non-negative ξ with
∫

ξ = 1. This convex optimization
problem has a unique solution that will be given explicitly below. In particular, its solution is
of the form (5) in our particular setting.

On the other hand, accepting that for “good” codebooks a typical realization of X that
has fallen into Bi is also approximated by an element of Bi allows one to conclude that the
above construction is close to optimal. In particular, one might correctly guess that the minimal
value of the minimization problem (6) leads to the optimal asymptotic rate in the quantization
problem.

The function ξ will be called point density and the minimization problem shall be called
point allocation problem.

Rigorous results related to the point allocation problem

The importance of the point allocation problem in the classical setting was firstly conjectured
by Lloyd and Gersho (see Gersho (1979)). First rigorous proofs are due to Bucklew (1984). In
the general setting (as introduced in the first lines of this section) one can prove rigorously the
following statement.

Result 2.2. For each n ∈ N fix a codebook C(n) ⊂ Rd with at most n elements and consider the
associated empirical measure

νn =
1
n

∑

x̂∈C(n)

δx̂.

Supposing that for some infinite index set I ⊂ N the measures (νn)n∈I converge vaguely to a
measure ν, one can prove that

lim inf
n→∞
n∈I

ns/d E[ min
x̂∈C(n)

|X − x̂|s] ≥ cs

∫

Rd

ξ(x)−s/d h(x) dx, (7)

where ξ = dνc

dλd and h = dµc

dλd . On the other hand, one can prove that for an arbitrary measurable
function ξ : Rd → [0,∞) with

∫
ξ ≤ 1,

lim sup
n→∞

ns/d D(q)(log n, s)s ≤ cs

∫

Rd

ξ(x)−s/d h(x) dx. (8)

Consequently, the solution of the point allocation problem leads to the asymptotics of the
quantization error. Equations (7) and (8) are even more powerful: they show that for an
asymptotically optimal family (C(n))n∈N of codebooks, in the sense that

|C(n)| ≤ n and E[ min
x̂∈C(n)

|X − x̂|s]1/s . D(q)(log n, s),
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any accumulation point of (νn)n∈N is a minimizer of the point allocation problem (more explicitly
ξ = dνc

dλd with νc denoting the continuous part of the accumulation point is a minimizer). This
follows from the fact that the set of non-negative finite measures on Rd with total mass less
or equal to 1 is compact in the vague topology. Since the objective function is even strictly
convex in ξ, the minimizer is unique up to Lebesgue null-sets. Together with the property that
the optimal ξ satisfies

∫
ξ = 1, one concludes that (νn)n∈N converges in the weak topology to a

measure having as density the solution ξ to the point allocation problem.
It remains to solve the point allocation problem. Applying the reverse Hölder inequality

with adjoint indices p = −d/s and q = d/(s + d) one gets for ξ with
∫

ξ ≤ 1
∫

Rd

ξ(x)−s/d h(x) dx ≥ ‖ξ−s/d‖Lp(Rd) ‖h‖Lq(Rd) = ‖ξ‖−s/d

L1(Rd)
‖h‖Lq(Rd) ≥

∥∥∥dµc

dλd

∥∥∥
Ld/(d+s)(Rd)

. (9)

The achievability of this lower bound can be easily verified for the optimal point density:

ξ(x) =
1∫

hd/(d+s)
h(x)d/(d+s). (10)

Consequently, it follows that for an asymptotically optimal family of codebooks (C(n))n∈N (in
the sense mentioned above) the empirical measures νn (n ∈ N) converge to a probability measure
having density ξ given by (10).

Moreover, estimate (7) gives immediately a lower bound for the efficiency of mismatched
codebooks: when using asymptotically optimal codebooks (C(n))n∈N for the moment s in the
case where the underlying distortion is taken to a different moment s′ > 0, one has:

lim inf
n→∞ n1/d E[ min

x̂∈C(n)
|X − x̂|s′ ]1/s′ ≥ c(| · |, s′)

(∫
hd/(d+s)

)1/d(∫
h1− s′

d+s

)1/s′
.

Interestingly, the latter integral is infinite when λd({h > 0}) = ∞ and s′ > d + s, so that in
that case the rate of convergence to zero is of a different order. For further reading concerning
mismatched codebooks, we refer to the article by Graf, Luschgy & Pagès (2006).

We have presented this classical quantization result in detail, since it represents a stereotype
of a coding result. Typically, the optimization problem (related to a coding problem) is non-
convex and it is not possible to give explicit solutions. In practice, one needs to apply numerical
or probabilistic methods to obtain good solutions. In order to analyze the problem, a powerful
tool is to relate the original problem to an intermediate convex minimization problem. Such
a relation then typically allows to derive rigorously asymptotic formulae. The intermediate
problem is also of practical interest: for instance in the above example, the optimal point
density can be used to initialize procedures used for generating close to optimal codebooks.

2.2 Orlicz norm distortion

In the classical setting, the objective function for the approximation loss is given as

E[|X − X̂|s]1/s.

Let now f : [0,∞) → [0,∞) be an increasing left continuous function with limt↓0 f(t) = 0. It is
natural to pose the question what happens when replacing the objective function by

E[f(|X − X̂|)].
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This problem has been treated by Delattre, Graf, Luschgy & Pagès (2004) in the case where f
behaves like a polynomial at 0, that means

lim
ε↓0

f(ε)
κεα

= 1,

for two parameters α, κ > 0. They found that under certain concentration assumptions on X,
the asymptotic quantization problem behaves as in the classical case with s = α. In particular,
the optimal point density does not differ from the one derived before.

Somehow this result is non-satisfying, in the sense that if f(ε) and κεα differ strongly in a
reasonable range (the approximation error one typically expects for a given point constraint),
then the corresponding optimal point density does not give a reasonable description of good
codebooks. A possibility to remedy this effect and to get a whole family of point density
functions is by considering Orlicz-norm distortions instead. Let us first introduce the necessary
notation.

Let ϕ : [0,∞) → [0,∞) be a monotonically increasing, left continuous function with limt↓0 ϕ(t) =
0. Note that this implies that ϕ is lower semicontinuous. We assume that ϕ 6= 0 and let | · |
denote an arbitrary norm on Rd. For any Rd-valued r.v. Z, the Orlicz norm ‖ · ‖ϕ is defined as

‖Z‖ϕ = inf
{

t ≥ 0 : Eϕ
( |Z|

t

)
≤ 1

}
,

with the convention that the infimum of the empty set is equal to infinity. Actually, the left con-
tinuity of ϕ together with monotone convergence implies that the infimum is attained, whenever
the set is nonempty. We set

Lϕ(P) = {Z : Z Rd-valued r.v. with ‖Z‖ϕ < ∞}.
Then ‖ · ‖ϕ defines a norm on Lϕ(P) when ϕ is convex (otherwise the triangle inequality fails
to hold). We will not assume convexity for ϕ. Nevertheless, with a slight abuse of notation, we
will allow ourselves to call ‖ · ‖ϕ an Orlicz norm. Choosing ϕ(t) = tp, p ≥ 1, yields the usual
Lp(P)-norm.

Now we choose as objective function

‖X − X̂‖ϕ

and we denote by D(q)(r) the corresponding minimal quantization error of rate r ≥ 0. The
concept of introducing an intermediate optimization problem is also applicable in the Orlicz-
norm setting. Let us quote the main results taken from Dereich & Vormoor (2005).

The constant c of the classical setting is now replaced by a convex decreasing function
g : (0,∞) → [0,∞) which may be defined via

g(ζ) = lim
n→∞ inf

C(n)
Eϕ

(
(n/ζ)1/d d(U, C(n))

)
, (11)

where the infima are taken over all finite sets C(n) ⊂ Rd with |C(n)| ≤ n and U denotes a
uniformly distributed r.v. on the unit cube [0, 1)d.

Theorem 2.3. Suppose that Eψ(|X|) < ∞ for some function ψ satisfying a growth condition
(G) depending on ϕ. Then

lim
n→∞n1/d D(q)(log n) = J1/d
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where J is the minimal value in the optimization problem
∫

Rd

ξ(x) dx = min!

among all non-negative ξ with ∫

Rd

g
(
ξ(x)

)
h(x) dx ≤ 1,

where h denotes again the density of µc.

The point allocation problem in the Orlicz norm setting

In the Orlicz-norm setting, the analogs of (7) and (8) are summarized in the following statement.

Result 2.4. Let I ⊂ (0,∞) denote an index set with sup I = ∞, and denote by (C(η))η∈I a
family of codebooks such that the associated measures

νη =
1
η

∑

x̂∈C(η)

δx̂

converge vaguely to a finite measure ν. Then one can prove that

lim inf
η→∞
η∈I

Eϕ
(
η1/d d(X, C(η))

) ≥
∫

g
(
ξ(x)

)
dµc(x) (12)

for ξ = dνc

dλd where νc denotes again the absolutely continuous part of ν. On the other hand, for
any non-negative ξ : Rd → [0,∞) with J :=

∫
ξ < ∞ there exists a family of codebooks (C(η))η≥1

such that lim supη→∞ |C(η)|/η ≤ J and

lim sup
η→∞

Eϕ
(
η1/d d(X, C(η))

) ≤
∫

g
(
ξ(x)

)
dµc(x). (13)

Similar as in the classical setting one can heuristically verify these two estimates for µ with
density h of the form (4).

Let us show how the estimate (13) can be used to prove the upper bound in the asymptotic
formula. Recall that J is the minimal value of

∫

Rd

ξ(x) dx = min!

where the infimum is taken among all non-negative ξ with
∫

Rd

g
(
ξ(x)

)
h(x) dx ≤ 1,

and where h denotes again the density of µc.
Fix ε > 0. As one can easily derive from (13) there exists a family of codebooks (C(η))η≥1

such that for sufficiently large η

|Cη| ≤ (J + ε)η and Eϕ
(
η1/d d(X, C(η))

) ≤ 1.
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Note that the latter estimate is equivalent to ‖d(X, C(η))‖ϕ ≤ η−1/d. Consequently, for suffi-
ciently large η one has

D
(
log

(
(J + ε)η

)) ≤ η−1/d

or equivalently switching from η to η̄ = (J + ε) η:

D
(
log η̄

) ≤ (J + ε)1/dη̄−1/d.

This proves the upper bound. The proof of the lower bound is similar and therefore omitted.

Solutions to the point allocation problem

Solutions to the point allocation problem can be represented in terms of the conjugate ḡ :
[0,∞) → [0,∞) defined as

ḡ(a) = inf
η≥0

[aη + g(η)], a ≥ 0.

The function ḡ is continuous, monotonically increasing and concave, and it satisfies ḡ(0) = 0.

Result 2.5. We suppose that
µc(Rd) sup

t≥0
ϕ(t) > 1.

(Otherwise J = 0 and ξ = 0 is an optimal point density.) The point allocation problem has an
integrable solution iff the integral

∫
ḡ
( ϑ

h(x)
)
dµc(x) (14)

is finite for some ϑ > 0. In such a case there exists a parameter ζ > 0 such that the optimal
point density ξ satisfies

∫
g(ξ(x)) dµc(x) = 1 and ḡ′+

( ζ

h(x)
) ≤ ξ(x) ≤ ḡ′−

( ζ

h(x)
)
, x ∈ Rd. (15)

Here, the functions ḡ′+ and ḡ′− denote the right hand side and left hand side derivative of ḡ,
respectively, and we denote ḡ′+(∞) = ḡ′−(∞) = 0. In particular, the optimal point density is
unique, whenever ḡ is differentiable or - expressed in terms of g - whenever g is strictly convex.

Back to the original problem

For simplicity we assume that ḡ is continuous, and, for any given ζ > 0, we let ξζ be the point
density ξζ(x) = ḡ′

( ζ
h(x)

)
(x ∈ Rd) and denote by ξ̄ζ(x) = ξζ(x)/‖ξ‖L1(λd) its normalized version.

Suppose now that X̂(n) is a quantizer of rate log n (assuming at most n different values) that
minimizes the objective function

Ef(|X − X̂(n)|).
We denote by δ its minimal value and set ϕ̄ = 1

δ f . Then X̂(n) is also an optimal quantizer for
the Orlicz-norm objective function

‖X − X̂(n)‖ϕ̄.

Using the ideas above we can link the problem to a point allocation problem and find an
normalized optimal point density ξ̄. Recall that the definition of ϕ̄ still depends on δ. However,
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a straight forward analysis shows that ξ̄ is also contained in the family (ξ̄ζ)ζ>0 when taking
ϕ = f .

Hence, one can relate, for given n ∈ N, the original quantization problem to a normalized
point density of the family (ξ̄ζ)ζ>0. We believe that this approach leads to more reasonable
descriptions of optimal codebooks for moderate n.

3 Gaussian signals

In this section we summarize results on the asymptotic coding problems for general Banach
space-valued (centered) Gaussian signals. Let us be more precise about our setting: we fix a
separable Banach space (E, ‖ · ‖) and call an E-valued (Borel measurable) random variable X
Gaussian signal iff for any f in the topological dual E′ of E the real-valued random variable
f(X) is a zero-mean normal distributed random variable. In this context, the Dirac measure
in 0 is also conceived as normal distribution. A typical example is, for instance, X being a
(fractional) Wiener process considered in the space of continuous functions E = C[0, 1] endowed
with supremum norm. In general, we will look at the norm-based distortion measure ρ(x, x̂) =
‖x− x̂‖ so that our objective function is again

E[‖X − X̂‖s]1/s.

3.1 Asymptotic estimates

As was firstly observed in the dissertation by Fehringer (2001) the quantization problem is linked
to the behavior of the so called small ball function, that is the function

ϕ(ε) = − logP(‖X‖ ≤ ε) (ε > 0).

We summarize the results in the following theorem.

Theorem 3.1. Suppose that the small ball function satisfies

ϕ−1(ε) ≈ ϕ−1(2ε) as ε ↓ 0,

where ϕ−1 denotes the inverse of ϕ. Then for all moments s ≥ 1 one has

ϕ−1(r) . D(r, s) ≤ D(q)(r, s) . 2ϕ−1(r/2), r →∞.

The lower and upper bounds were first proved for the quantization error in Dereich, Fehringer,
Matoussi & Scheutzow (2003). The remaining lower bound for the distortion rate function was
derived in Dereich (2005).

Remark 3.2. i) The upper and lower bound do not depend on s. This suggests that “good”
codebooks lead to a random approximation error that is concentrated around a typical
value or interval. The problem of proving such a result is still open in the general setting.
However, as we will see below one can get stronger results in several particular settings.

ii) The small ball function is a well studied object. Mostly, the small ball function of a
functional signal satisfies the assumptions of the theorem and the estimates provided by
the theorem agree asymptotically up to some factor. Thus one can immediately infer the
rate of convergence in the coding problems for several Gaussian processes. For a general
account on small deviations one might consult Li & Shao (2001).
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iii) The asymptotic behavior of the small ball function at zero is related to other quantities
describing the complexity such as entropy numbers (Kuelbs & Li (1993), Li & Linde
(1999)), Kolmogorov width and average Kolmogorov width. A general treatment of such
quantities together with the quantization problem can be found in the dissertation by
Creutzig (2002) (see also Carl & Stephani (1990)).

The proof of the main result relies heavily on the measure concentration features of Gaus-
sian measures exhibited by the isoperimetric inequality and the Ehrhard inequality. A further
important tool is the Cameron-Martin formula combined with the Anderson inequality.

3.2 Some examples

We summarize some results that can be extracted from the link to the small ball function. We
only give the results for the approximation problems. For a general account we refer the reader
to Li & Shao (2001).

First let X = (Xt)t∈[0,1] denote a Wiener process.

• When E is chosen to be C[0, 1] endowed with supremum norm, one gets

π√
8r

. D(r, s) ≤ D(q)(r, s) . π√
r

as r →∞.

• If E = Lp[0, 1] (p ≥ 1), then one has

cp√
r

. D(r, s) ≤ D(q)(r, s) .
√

8cp√
r

where
cp = 21/p√p

(λ1(p)
2 + p

)(2+p)/2p

and
λ1(p) = inf

{∫ ∞

−∞
|x|p f(x)2 dx +

1
2

∫ ∞

−∞
f ′(x)2 dx

}

where the infimum is taken over all differentiable f ∈ L2(R) with unit-norm.

• If E = Cα (α ∈ (0, 1/2)) is the space of α-Hölder continuous functions over the time [0, 1]
endowed with the standard Hölder norm

‖f‖Cα := sup
0≤s<t≤1

|f(t)− f(s)|
|t− s|α ,

then
cα

r(1−2α)/2
. D(r, s) ≤ D(q)(r, s) . 2(3−2α)/2 cα

r(1−2α)/2

for a constant cα > 0 not known explicitly.
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Next, let us consider a fractional Brownian sheet X = (Xt)t∈[0,1]d with parameter γ =
(γ1, . . . , γd) ∈ (0, 2)d as original signal. The process is characterized as the centered continuous
Gaussian process on [0, 1]d with covariance kernel

E[XtXu] =
1
2d

d∏

j=1

[|tj |γj + |uj |γj − |tj − uj |γj
]
, t, u ∈ [0, 1]d.

As underlying space we consider E = C([0, 1]d) the space of continuous functions endowed with
supremum norm.

If there is a unique minimum, say γ1, in γ = (γ1, . . . , γd), one has

D(r, s) ≈ D(q)(r, s) ≈ r−γ1/2, r →∞

(Mason & Shi 2001). Whereas, if there are two minimal coordinates, say γ1 and γ2, then

D(r, s) ≈ D(q)(r, s) ≈ r−γ1/2(log r)1+γ1/2

(Belinsky & Linde 2002, Talagrand 1994). For the case that there are more than two minimal
elements in the vector γ, it is still an open problem to find the weak asymptotic order of the
small ball function.

3.3 A particular random coding strategy

We will now introduce a random coding strategy that has been originally used to prove the
upper bound in Theorem 3.1. Let (Yi)i∈N be a sequence of independent random vectors with
the same law as X. We consider the random set C(r) = {Y1, . . . , Yberc} (r ≥ 0 indicating again
the rate) as codebook for X, and set

D(r)(r, s) = E[ min
i=1,...,berc

‖X − Yi‖s]1/s

A detailed analysis of this approximation error has been carried out in Dereich & Lifshits (2005):

Theorem 3.3. Assume that there exists κ < ∞ such that
(
1 +

1
κ

)
ϕ(2ε) ≤ ϕ(ε) ≤ κϕ(2ε)

for all sufficiently small ε > 0. Then there exists a continuous, strictly decreasing function
ϕ∗ : (0,∞) → (0,∞) such that

D(r)(r, s) ∼ ϕ−1
∗ (r)

for any s > 0.

The function ϕ∗ can be represented in terms of a random small ball function. Let

`ε(x) = − logP(‖X − x‖ ≤ ε) = − log µ(B(x, ε)) (x ∈ E, ε > 0);

then ϕ∗ can be chosen as ϕ∗(ε) = E`ε(X).
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The proof of the theorem relies on the following strong limit theorem: assuming that there
is a constant κ < ∞ such that ϕ(ε) ≤ κϕ(2ε) for sufficiently small ε > 0, one has

lim
ε↓0

`ε(X)
ϕ∗(ε)

= 1, a.s.

In information theory, the concept of proving a strong limit theorem in order to control the
efficiency of a coding procedure is quite common. For instance, the proof of Shannon’s Source
Coding Theorem can be based on such a result. Since `ε(X) is concentrated around a typical
value, the conditional probability P(d(X, C(r)) ≤ ε|X) almost does not depend on the realization
of X when ε > 0 is small. Moreover, for large rate r, there is a critical value εc for which the
probability decays fastly from almost 1 to almost 0. Around this critical value the approximation
error is highly concentrated, and the moment s does not have an influence on the asymptotics.
Such a strong limit theorem is often referred to as asymptotic equipartition property. For further
reading concerning the asymptotic equipartition problem in the context of Shannon’s Source
Coding Theorem, we refer the reader to Dembo & Kontoyiannis (2002).

Open Problem 3.4. Can one prove the equivalence of moments in the quantization problem
under weak assumption on the small ball function ϕ?

3.4 The fractional Wiener process

In this subsection we consider a fractional Wiener process X = (Xt)t∈[0,1] with Hurst index
H ∈ (0, 1) as underlying signal. Its distribution is characterized as the unique Gaussian measure
on C[0, 1] with covariance kernel:

E[Xu Xv] =
1
2
[
u2H + v2H − |u− v|2H

]
.

We state the main result.

Theorem 3.5. If E = Lp[0, 1] for some p ≥ 1, there exists a constant κ > 0 such that for any
s > 0

lim
r→∞ rH D(q)(r, s) = lim

r→∞ rH D(r, s) = κp. (16)

Additionally, if E = C[0, 1], there exists a constant κ > 0 such that for any s > 0

lim
r→∞ rH D(q)(r, s) = lim

r→∞ rH D(e)(r, s) = κ∞.

The results are proved for the entropy and quantization constraint in Dereich & Scheutzow
(2006). The extension to the distortion rate function is established in Dereich (2006a).

Remark 3.6. • In the artice the result is proved for 1-dimensional processes only. However,
having a careful look at the proof, the result remains true for the multi dimensional Wiener
process, too.

• The moment s and the choice of the complexity constraint do not influence the asymptotics
of the approximation error. Thus for good approximation schemes the approximation
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error is concentrated around a typical value: for fixed s > 0 let (C(r))r≥0 be a family of
asymptotically optimal codebooks in the sense that

log |C(r)| ≤ r and E[ min
x̂∈C(r)

‖X − x̂‖s]1/s ∼ D(q)(r, s);

then one has
min

x̂∈C(r)
‖X − x̂‖ ∼ D(q)(r, s), in probability,

in the sense that, for any ε > 0,

lim
r→∞P

(
(1− ε)D(q)(r, s) ≤ min

x̂∈C(r)
‖X − x̂‖ ≤ (1 + ε)D(q)(r, s)

)
= 1.

• The equivalence of moments and the equivalence in the coding quantities are very special,
and as we will see below more heterogeneous processes as the diffusion processes will not
share these features. In Dereich & Scheutzow (2006) one uses the equivalence of moments
to prove the equivalence of the entropy and quantization constraint, and both features
seem to be related in a general way.

Open Problem 3.7. It is still an open problem whether one can prove (16) in the case where
E = C[0, 1].

4 Hilbert space-valued Gaussian signals

Let now E = H denote a (separable) Hilbert space and X be a H-valued Gaussian signal. In
that case one can represent X in the Karhunen-Loève expansion, that is as the a.s. limit

X =
∑

i

√
λiξiei, (17)

where

• (λi) is a R+-valued sequence (the eigenvalues of the corresponding covariance operator),

• (ei) is a orthonormal system in H (the corresponding normalized eigenvalues) and

• (ξi) is an i.i.d. sequence of standard normals.

Then there is an isometric isomorphism π mapping the range of X (i.e. the smallest closed
set in H containing X a.s.) to l2 such that

π(X) = (
√

λ1ξ1,
√

λ2ξ2, . . . ).

One can prove that applying a contraction on the original signal does not increase its coding
complexity under either information constraint. Therefore, the coding quantities are the same
for X in H as for (

√
λiξi) in l2. Thus we can and will assume without loss of generality that X

is given in the form (
√

λiξi).
Before we treat the general coding problem, we first restrict our attention to the distortion

rate function D(r, 2). It is one of the few examples that can be given explicitly in terms of
a solution to a rate allocation problem. We start with providing some elementary results on
mutual information and distortion rate functions.
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4.1 The mutual information and Shannon’s source coding theorem

Let us introduce the notion of conditional mutual information. For random variables A, B and
C taking values in Borel spaces, we denote

I(A; B|C = c) = H(PA,B|C=c‖PA|C=c ⊗ PB|C=c),

where in general

H(P‖Q) =

{∫
log dP

dQ dP if P ¿ Q

∞ else

denotes the relative entropy. Then one denotes by I(A; B|C) =
∫

I(A;B|C = c) dPC(c) the
mutual information of A and B conditional on C.

The mutual information can be verified to satisfy the following properties (see for instance
Ihara (1993))

(i) I(A; B|C) ≥ 0 (positivity); I(A; B|C) = 0 iff A and B are independent given C

(ii) I(A; B|C) = I(B;A|C) (symmetry)

(iii) I(A1, A2; B|C) = I(A1;B|C)+I(A2;B|A1, C); in particular, I(A1; B|C) ≤ I(A1, A2; B|C)
(monotonicity)

(iv) I(A; B|C) ≥ I(ϕ(A);B|C) for a Borel measurable map ϕ between Borel spaces.

All above results remain valid for the (unconditional) mutual information.
The mutual information constraint has its origin in Shannon’s celebrated source coding

theorem (see Shannon (1948) for the original version):

Theorem 4.1 (Shannon’s Source Coding Theorem). Let µ be a probability measure on a Borel
space E and let ρ : E×E → [0,∞] be a product measurable map. If there exist x̄ ∈ E and s > 1
with

∫
ρ(x, x̄)s dµ(x) < ∞, then one has for any continuity point r of the associated distortion

rate function D(·|µ, ρ):

lim
m→∞

1
m

D(q)(mr|µ⊗m, ρm) = D(r|µ, ρ),

where ρm : Em ×Em → [0,∞] is defined as

ρm(x, x̂) =
m∑

i=1

ρ(xi, x̂i).

Remark 4.2. • As a consequence of the convexity of the relative entropy, the distortion rate
function is convex. Moreover, it is decreasing and bounded from below by 0. Consequently,
it has at most one discontinuity in which it jumps from ∞ to some finite value.

• For a given m ∈ N, the distortion measure ρm is called single letter distortion measure,
since its value can be expressed as a sum of the errors inferred in each single letter (here
the term letter refers to the single E-valued entries).
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• The distortion rate function can be evaluated explicitly in a few cases only. One of these
is the case where the original is normally distributed and the error criterion is given by
the mean squared error:

D(r|N (0, σ2), | · |2) = σ2e−2r.

In that case, there exists a unique minimizer (in the sense that the distribution of (X; X̂)
is unique) and the distribution can be given explicitly.

4.2 The derivation of the distortion rate function D(r, 2)

Let us denote by D(·) the distortion rate function of the Gaussian original X under the objective
function

E[‖X − X̂‖2],

that is D(r) = D(r, 2)2 (r ≥ 0). The distortion rate function will be given as a solution to a
rate allocation problem.

The lower bound

Suppose that X̂ is a reconstruction for X with I(X; X̂) ≤ r for a given rate r. For a, b ∈ N we
let Xb

a = (Xi)i=a,...,b with the natural extension when b = ∞ or a > b. With property (iii) one
gets

I(X; X̂) = I(X1; X̂) + I(X∞
2 ; X̂|X1) ≥ I(X1; X̂1) + I(X∞

2 ; X̂|X1).

Repeating the argument infinitely often yields

I(X; X̂) ≥
∞∑

i=1

I(Xi; X̂i|Xi−1
1 ). (18)

For each i ∈ N we conceive ri = I(Xi; X̂i|Xi−1
1 ) as the rate allocated to the i-th coordinate.

Note that one has
∑

i ri ≤ r.
Let us now fix i ∈ N and analyze E|Xi − X̂i|2. It can be rewritten as

E|Xi − X̂i|2 = E
[
E[|Xi − X̂i|2|Xi−1

1 ]
]

(19)

Note that conditional upon Xi−1
1 the random variable Xi is N (0, λi)-distributed so that

E[|Xi − X̂i|2|Xi−1
1 = xi−1

1 ] ≥ D
(
I(Xi; X̂i|Xi−1

1 = xi−1
1 )|N (0, λi), | · |2

)
. (20)

Together with (19) and the convexity of the distortion rate functions one gets

E|Xi − X̂i|2 ≥
∫

D
(
I(Xi; X̂i|Xi−1

1 = xi−1
1 )|N (0, λi), | · |2

)
dPXi−1

1
(xi−1

1 )

≥ D(ri|N (0, λi), | · |2) = λie
−2ri .

(21)

Altogether, we arrive at

E‖X − X̂‖2 ≥
∞∑

i=1

λie
−2ri and

∞∑

i=1

ri ≤ r.
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The upper bound

Now we fix a non-negative sequence (ri) with
∑

i ri ≤ r. As mentioned in Remark 4.2, for each
i ∈ N, there exists a pair (Xi, X̂i) (on a possibly enlarged probability space) satisfying

E[|Xi − X̂i|2] = λie
−2ri and I(Xi; X̂i) = ri.

These pairs can be chosen in such a way that (Xi, X̂i)i∈N form an independent sequence of
random variables. Fix N ∈ N and note that due to property (iii) of mutual information one has

I(XN
1 ; X̂N

1 ) = I(XN
2 ; X̂N

1 ) + I(XN
1 ; X̂N

1 |XN
2 )

= I(XN
2 ; X̂N

2 ) + I(XN
2 ; X̂1|X̂N

2 )︸ ︷︷ ︸
=0

+ I(X1; X̂N
2 |XN

2 )︸ ︷︷ ︸
=0

+ I(X1; X̂1|XN
2 , X̂N

2 )︸ ︷︷ ︸
=I(X1;X̂1)

.

Here the second and third term vanish due to the independence of the conditional distributions
(property (i)). Moreover, one can remove the conditioning in the last term, since (X1, X̂1) is
independent of (XN

2 , X̂N
2 ). Repeating the argument now gives

I(XN
1 ; X̂N

1 ) =
N∑

i=1

I(Xi; X̂i)

and a further argument (based on the lower semicontinuity of the relative entropy) leads to

I(X; X̂) = lim
N→∞

I(XN
1 ; X̂N

1 ) =
∞∑

i=1

I(Xi; X̂i) =
∞∑

i=1

ri ≤ r.

Moreover, E‖X − X̂‖2 =
∑

i λie
−2ri .

Kolmogorov’s inverse water filling principle

Due to the computations above, the value D(r) can be represented as the minimal value of the
strictly convex optimization problem

∑

i

λie
−2ri = min!

where the infimum is taken over all non-negative sequences (ri) with
∑

i ri = r. It is common
to restate the minimization problem in terms of the errors di = λie

−2ri inferred in the single
coordinates as ∑

i

di = min!

where (di) is an arbitrary non-negative sequence with

∑

i

1
2

log+

λi

di
= r. (22)

Using Lagrange multipliers one finds that the unique minimizer is of the form

di = κ ∧ λi,

19



��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

..... ......

represents D(r)

in box i

0

κ

λ2λ1 λ3

represents λ̃i

Figure 1: Inverse water filling principle

where κ > 0 is a parameter that needs to be chosen such that (22) is valid. This link between
r ≥ 0 and κ ∈ (0, λ1] provides a one-to-one correspondence. This result was originally derived
by Kolmogorov (1956) and the formula is often referred to as Kolmogorov’s inverse water filling
principle. As illustrated in Figure 1, one can represent each coordinate as a box of size λi; then
one fills water into the boxes until a level κ is reached for which the corresponding total rate is
equal to r. The white area of the boxes represents the coding error. As we will see later also
the striped area has an information theoretic meaning.

Résumé

Let us recall the main properties that enabled us to relate the coding problem of the process X
to that of a single normal random variable. In order to derive the lower estimate of the error
in one coordinate (see (20) and (21)) we used the independence of a single coordinate and the
remaining coordinates of X. Then in order to conclude back on the total approximation error,
we used that it is given as the sum of the approximation errors in the single coordinates (single
letter distortion measure), so we could exchange sum and expectation to derive the result. We
shall see later that the above ideas can be applied in similar settings provided one considers
independent letters under a single letter distortion measure.

Mostly, the eigenvalues (λi) are not known explicitly and thus the minimization problem
cannot be solved explicitly. However, the asymptotics of D(·) depend only on the asymptotic
behavior of (λi), and in the case where (λi) is regularly varying, both expressions can be linked
by an asymptotic formula: one has

D(r) ∼ αα

2α−1(α− 1)
rλdre, (23)

if the sequence (λi) is regularly varying with index −α < −1, i.e. there exists a continuous
function ` : [1,∞) → R such that

λi ∼ i−α`(i) as i →∞

and for any η > 1 one has `(ηt) ∼ `(t) as t →∞.
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4.3 Generalizations to other coding quantities (1st approach)

Let us now look at the quantization problem for s = 2. In this section we want to explain
an approach taken by Luschgy & Pagès (2004) (see also Luschgy & Pagès (2002)) to prove
the asymptotic equivalence of the quantization error D(q)(·, 2) and the distortion rate function
D(·, 2). We adopt a slightly more general setting than that of the original work. However, the
generalization can be carried out easily, and we prefer to give the more general assumptions since
we believe that these are the natural (most general) ones under which the following arguments
work.

Theorem 4.3. Assume that the eigenvalues are ordered by their size and that there is an in-
creasing N0-valued sequence (jk)k∈N with j1 = 0 such that

(i) limk→∞ jk+1 − jk = ∞ and

(ii) limk→∞
λjk+1

λjk+1
= 1.

Then one has
D(r, 2) ∼ D(q)(r, 2)

Since the quantization error is always larger than the distortion rate function, it suffices to
prove an appropriate upper bound for the quantization error.

Sketch of the proof

In the following, we still consider the single letter distortion measure ρ(x, x̂) = ‖x − x̂‖2 and
we call the minimal value of the objective function E[‖X − X̂‖2] the quantization error of an
approximation X̂.

Based on the sequence (jk) we decompose the process X into subbands

X
jk+1

jk+1 = (Xjk+1, . . . , Xjk+1
) (k ∈ N).

Note that due to property (ii), the eigenvalues corresponding to a subband do only differ by
a factor tending to 1 as k tends to ∞. By replacing the eigenvalues of each subband by their
largest value, one ends up with a process having a larger quantization error than the original
one. Actually, one can show rigorously that the approximation error on each subband increases
at most by the factor

λjk+1

λjk+1
. Since the values of finitely many eigenvalues do not effect the strong

asymptotics of the distortion rate function, it remains to show asymptotic equivalence of both
coding quantities for the modified process.

Each subband consists of an i.i.d. sequence of growing size and the distortion is just the
sum of the distortions in the single letters. Thus we are in a situation where the Source Coding
Theorem can be applied: similar to Proposition 4.4 in Luschgy & Pagès (2004) one can prove
that

η(m) := sup
r≥0,
σ2>0

D(q)(r|N (0, σ2)⊗m, | · |2)
D(r|N (0, σ2)⊗m, | · |2) (24)

is finite for all m ∈ N and satisfies limm→∞ η(m) = 1.
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Let us sketch the remaining proof of Theorem 4.3. For a given rate r ≥ 0 we denote by
(ri) the corresponding solution to the rate allocation problem. Then choose for each subband
X

jk+1

jk+1 an optimal codebook Ck ⊂ Rjk+1−jk of size exp(
∑jk+1

i=jk+1 ri) and denote by C the product
codebook C =

∏∞
k=1 Ck. It contains at most exp(

∑∞
i=1 ri) = exp(r) elements. Moreover, the

inferred coding error satisfies

E[min
x̂∈C

‖X − x̂‖2] =
∑

k∈N
E[min

x̂∈Ck

|Xjk+1

jk+1 − x̂|2]

≤
∑

k∈N
η(jk+1 − jk) D(

∞∑

i=1

ri|Xjk+1

jk+1, | · |2).

For arbitrary ε > 0 one can now fix k0 such that for all k ≥ k0 one has η(jk+1 − jk) ≤ 1 + ε;
then

∑

k≥k0

η(jk+1 − jk) D
( jk+1∑

i=jk+1

ri

∣∣∣Xjk+1

jk+1, | · |2
)
≤ (1 + ε) D(r|X, | · |2).

The remaining first k0− 1 summands are of lower order (as r →∞) and one retrieves the result
for the slightly modified process.

4.4 Generalizations to other coding quantities (2nd approach)

A second approach in the analysis of the asymptotic coding errors has been undertaken in
Dereich (2003a). The results can be stated as follows:

Theorem 4.4. If the eigenvalues satisfy

lim
n→∞

log log 1/λn

n
= 0,

then for any s > 0,
D(q)(r, s) ∼ D(r, s) ∼ D(r, 2).

The analysis of this result is more elaborate and we only want to give the very basic ideas of
the proof of the upper bound of the quantization error. A central role is played by an asymptotic
equipartition property.

The underlying asymptotic equipartition property

For a fixed rate r ≥ 0, the solution to the rate allocation problem is linked to a unique parameter
κ ∈ (0, λ1] (as explained above). Now set λ̃i = (λi − κ) ∧ 0 and denote by X̃(r) = (X̃(r)

i )i∈N
an l2-valued random variable having as entries independent N (0, λ̃i)-distributed r.v. X̃

(r)
i (the

variances λ̃i (i ∈ N) are visualized as striped boxes in Figure 1). The asymptotic equipartition
property states that for ε > 0 fixed and r going to infinity, the probability that

− logP
(‖X − X̃(r)‖2 ≤ (1 + ε)D(r)

∣∣X) ≤ r +
D(r)
−D′(r)

ε

tends to one. Here D′(·) denotes the right hand side derivative of the convex function D(·).
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The proof of the equipartition property relies on a detailed analysis of the random logarithmic
moment generating function

ΛX(θ) := logE
[
eθ‖X−X̃(r)‖2∣∣X]

=
∑

i∈N

[
−1

2
log(1− 2θλ̃i) +

θλi

1− 2θλ̃i

ξ2
i

]

(where (ξi) is the sequence of independent standard normals from representation (17)), and the
close relationship between − logP(‖X − X̃(r)‖2 ≤ ζ|X) and the random Legendre transform

Λ∗X(ζ) := sup
θ≤0

[θζ − ΛX(θ)]

given in Dereich (2003a, Theorem 3.4.1).
The asymptotic equipartition property implies that the random codebooks C(r) (r ≥ 0)

consisting of bexp(r + 2 D(r)
−D′(r)ε)c independent random copies of X̃(r) satisfy

lim
r→∞P

(
min

x̂∈C(r)
‖X − x̂‖2 ≤ (1 + ε)D(r)

)
= 1.

Moreover, D
(
r + 2 D(r)

−D′(r)ε
) ≥ (1− 2ε)D(r) (due to the convexity of D(·)) so that typically the

random approximation error satisfies

min
x̂∈C(r)

‖X − x̂‖2 ≤ 1 + ε

1− 2ε
D

(
log |C(r)|) (25)

for large r and fixed ε ∈ (0, 1/2). It remains to control the error inferred in the case when
estimate (25) is not valid.

4.5 A particular random quantization procedure

As before we want to compare the coding results quoted so far with the efficiency of the particular
random quantization strategy introduced above. Let (Yi)i∈N denote a sequence of independent
random vectors with the same law as X. We consider the quantization error inferred by the
random codebooks C(r) = {Y1, . . . , Yberc}. Let

D(r)(r, s) = E[ min
i=1,...,berc

‖X − Yi‖s]1/s.

As mentioned above the asymptotics of D(r)(·, s) are related to a randomly centered small ball
function. Let us again denote `ε(x) = − logP(‖X − x‖ ≤ ε) (x ∈ H, ε > 0). We quote the main
result of Dereich (2003b).

Theorem 4.5. One has

lim
ε↓0

`ε(X)
ϕ∗(ε)

= 1, a.s., (26)

where ϕ∗(ε) = Λ∗(ε2) = supθ∈R[ε2θ − Λ(θ)] is the Legendre transform of

Λ(θ) =
∑

i

[
−1

2
log(1− 2θλi) +

θλi

1− 2θλi

]

and log(z) = −∞ for z ≤ 0.
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Figure 2: Comparison of D(r)(·, s) and D(q)(·, s) in dependence on α.

Note that the theorem does not assume any assumptions on the eigenvalues. Given that
the eigenvalues are regularly varying it is possible to directly relate the function ϕ∗(ε) to the
standard small ball function ϕ(ε) = `ε(0) (ε > 0):

Theorem 4.6. If the eigenvalues are regularly varying with index −α < −1 (in the sense
described above), one has

lim
ε↓0

ϕ∗(ε)
ϕ(ε)

=
(α + 1

α

) α
α−1

.

Let us now compare the error induced by the random coding strategy with the optimal
quantization error in the case where the eigenvalues satisfy

λi ∼ c i−α

for two constants c > 0 and α > 1. Starting from the standard small ball function (see Sytaya
(1974) or Lifshits (1997) for a general treatment) one can deduce the asymptotics of the random
quantization error D(r)(·, s). A comparison with D(q)(·, s) then gives

lim
r→∞

D(r)(r, s)
D(q)(r, s)

=
[(α2 − 1)π

α3 sin(π
α)

]α/2
.

The limiting value on the right hand side is plotted in Figure 2.

4.6 Examples

• The most prominent example is X = (Xt)t∈[0,1] being a Wiener process in L2[0, 1]. In
that case the Karhunen-Loève expansion is known explicitly: the eigenvalues are given by
λi = (π(i− 1/2))−2 and the corresponding normalized eigenfunctions are

ei(t) =
√

2 sin(π(n− 1/2)t) (t ∈ [0, 1]).

Thus the eigenvalues are regularly varying with index −2 and one gets

lim
r→∞

√
r D(r, 2) =

√
2

π
.

• Next, let X = (Xt)t∈[0,1] be a γ-fractional Wiener process, that is the continuous Gaussian
process with

E[XtXu] =
1
2
[|t|γ + |u|γ − |t− u|γ ] (t, u ∈ [0, 1]).
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As underlying Hilbert space we consider again L2[0, 1].

In that case the Karhunen-Loéve expansion is not known explicitly and there exist only
suboptimal representations (Dzhaparidze & van Zanten 2004, Iglói 2005). However, the
asymptotic behavior of the ordered sequence of eigenvalues is known (Bronski 2003): one
has

λi ∼ sin(πγ/2) Γ(γ + 1)
(iπ)γ+1

,

where Γ is the Euler gamma function. Hence,

lim
r→∞ rγ/2 D(r, 2) =

√
(γ + 1)γ+1 sin(πγ/2) Γ(γ + 1)

2γ γ πγ+1
.

as r →∞.

• Next, let X = (Xt)t∈[0,1]d denote a d-dimensional fractional Brownian sheet with parameter
γ = (γ1, . . . , γ1). Then the sequence of ordered eigenvalues satisfies

λi ∼
(sin(πγ1/2)Γ(γ1 + 1)

πγ1+1

)d
((d− 1)!)−(γ1+1)

((log i)d−1

i

)γ1+1

so that

lim
r→∞

rγ1/2

(log r)(d−1)(γ1+1)/2
D(r, 2) =

√
(γ1 + 1)γ1+1

2γ1γ1((d− 1)!)γ1+1

(sin(πγ1/2)Γ(γ1 + 1)
πγ1+1

)d
.

5 Diffusions

The quantization complexity of diffusion processes was firstly treated in Luschgy & Pagès (2006).
There weak asymptotic estimates for the quantization problem were derived for a class of 1-
dimensional diffusions.

In the following we want to focus on one approach that has been developed in two articles by
the author (Dereich 2006b, 2006a). It leads to asymptotic formulae for several coding quantities.
Moreover, it is based on a rate allocation problem and we believe that it fits best into the context
of this article.

We consider as original signal an R-valued process X = (Xt)t∈[0,1] that solves the integral
equation

Xt = x0 +
∫ t

0
σ(Xu, u) dWu +

∫ t

0
b(Xu, u) du, (27)

where W = (Wt)t∈[0,1] denotes a standard Wiener process, x0 ∈ R denotes an arbitrary starting
point and σ, b : R× [0, 1] → R are continuous functions.

We impose the following regularity assumptions on the functions σ and b: there exist con-
stants β ∈ (0, 1] and L < ∞ such that for x, x′ ∈ R and t, t′ ∈ [0, 1]:

|b(x, t)| ≤ L(|x|+ 1) and

|σ(x, t)− σ(x′, t′)| ≤ L[|x− x′|β + |x− x′|+ |t− t′|β].
(28)
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Note that the assumptions do neither imply existence nor uniqueness of the solution. However,
the analysis does not rely on the uniqueness of the solution and we only need to assume the
existence of one solution which shall be fixed for the rest of this section.

To simplify notation, we will denote by (σt)t∈[0,1] and (bt)t∈[0,1] the stochastic processes
(σ(Xt, t)) and (b(Xt, t)), respectively. Let us first state the main results:

Theorem 5.1 (Dereich (2006b)). If E = C[0, 1], then for each s > 0 one has

lim
r→∞

√
r D(q)(r, s) = κ∞

∥∥‖σ·‖L2[0,1]

∥∥
Ls(P)

and
lim

r→∞
√

r D(e)(r, s) = κ∞
∥∥‖σ·‖L2[0,1]

∥∥
L2s/(s+2)(P),

where κ∞ is the real constant appearing in Theorem 3.5.

Theorem 5.2 (Dereich (2006a)). If E = Lp[0, 1] for p ≥ 1, then for every s > 0 one has

lim
r→∞

√
r D(q)(r, s) = κp

∥∥‖σ·‖L2p/(2+p)[0,1]

∥∥
Ls(P)

and
lim

r→∞
√

r D(r, s) = lim
r→∞

√
r D(e)(r, s) = κp

∥∥‖σ·‖L2p/(2+p)[0,1]

∥∥
L2s/(s+2)(P),

where κp is the constant from Theorem 3.5.

The analysis of the asymptotic coding problem is based on a decoupling argument. The
decoupling argument allows us to connect the complexity of the diffusion to that of the Wiener
process. After one has applied the decoupling techniques one can prove the asymptotic formulae
by considering certain rate allocation problems. In the next section we give a heuristic expla-
nation of the decoupling method. Then we use these results to derive heuristically the lower
bound. The solution of the corresponding rate allocation problem can also be used to define
asymptotically optimal quantizers or entropy coding schemes.

5.1 The decoupling method

Let us start with an intuitive explanation of the decoupling method. We fix s ≥ 1 and let the
underlying norm ‖ · ‖ be supremum norm over the interval [0, 1].

The main idea is to write the diffusion as the sum of a decoupled process and a remaining
term of negligible complexity. Let us first explain what we understand under negligible terms.

Negligible terms

The approximation error inferred of either complexity constraint leads to an asymptotic error
of order r−1/2, where r is and will be used to indicate the rate of the approximation. In order
to simplify the folowing discussion, we assume that changing the rate r by a term of order o(r)
does not have an influence on the strong asymptotics of the coding quantity of interest. This
property is valid for the diffusion under either information constraint as one can easily infer
from Theorems 5.1 and 5.2. However, the proof of this fact is non-trivial.

Suppose now that (Y (r))r≥0 is a family of processes such that there exist discrete approxi-
mations Â(r) to A(r) := X − Y (r) satisfying

log | range Â(r)| = o(r) and E[‖A(r) − Â(r)‖s]1/s = o(r−1/2).
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Then one can replace the process X by Y (r) (actually by the family (Y (r))r≥0) without changing
the strong asymptotics of either of the approximation errors. Indeed, one can relate approxima-
tions Ŷ (r) of Y (r) to approximations X̂(r) of X via X̂(r) = Ŷ (r) + Â(r) and gets

∣∣E[‖X − X̂(r)‖s]1/s − E[‖Y (r) − Ŷ (r)‖s]1/s
∣∣ = o(r−1/2). (29)

Moreover, reconstructions X̂(r) of rate r give rise to reconstructions Ŷ (r) of rate (1 + o(1))r
and vice versa (see the additivity properties listed on page 4). Here it does not matter which
complexity constraint we use. Moreover, the supremum norm is the strongest norm under
consideration and (29) remains valid for the same family (Y (r))r≥0 when ‖ · ‖ denotes an Lp-
norm. We call the term A(r) asymptotically negligible.

Relating X to a decoupled time change of a Wiener process

We represent X in its Doob-Meyer decomposition as a sum of a martingale

Mt =
∫ t

0
σ(Xu, u)︸ ︷︷ ︸

σu

dWu

and a drift term

At = x0 +
∫ t

0
b(Xu, u)︸ ︷︷ ︸

bu

du.

The drift term is much more regular than the martingale term and one can verify that it is
asymptotically negligible: we only need to consider the martingale part. It can be viewed as a
time change of a Wiener process:

(Mt) = (W̃ϕ(t)),

where (W̃t)t≥0 denotes a Wiener process and (ϕ(t))t∈[0,1] is given by ϕ(t) =
∫ t
0 σ2

u du. Un-
fortunately, the time change and the Wiener process are not independent so that one cannot
immediately apply the asymptotic formulae for the Wiener process. On the other hand, con-
ditional upon (ϕ(t)) the process (W̃t)t≥0 is no longer a Wiener process and the process might
even be deterministic up to time ϕ(1).

In order to bypass this problem we introduce an approximation ϕ̂ = (ϕ̂(t))t∈[0,1] (depending
on the rate r) to ϕ such that the approximation error

E[‖M· − W̃ϕ̂(·)‖s]1/s = o(r−1/2)

is negligible compared to the total coding error (which is of order r−1/2). On the other hand,
conditional upon ϕ̂ the process (W̃t)t≥0 should not significantly deviate from a Wiener process.
For controlling the influence of the conditioning, we view the additional information induced by
the approximation ϕ̂ as an initial enlargement of the canonical filtration (FW̃

t ) induced by the
process W̃ . Let us be more precise about the estimates used here.

For a weakly differentiable function f : [0,∞) → R with differential ḟ we set

‖f‖H =
(∫ ∞

0
|ḟ(u)|2 du

)1/2
.
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The Wiener process W̃ is now represented in its (Gt) = (FW̃
t ∨σ(ϕ̂))-Doob-Meyer decomposition

as
W̃t = W̄t + Āt.

Again recall that ϕ̂ and thus also W̄ and Ā depend on r. Now (W̄t) is a (Gt)-Wiener process that
is independent of (ϕ̂(t)). Supposing that the process (ϕ̂(t)) has finite range, one can conclude
that (W̃t) is indeed a (Gt)-semi martingale which justifies the Doob-Meyer decomposition above.
Moreover, there exists a constant c depending on s ≥ 1 only, such that

E[‖Ā‖2s
H ]1/s ≤ c (1 + log | range (ϕ̂)|)

(see Jeulin & Yor (1985), Ankirchner, Dereich & Imkeller (2004)). On the other hand, the
Sobolev spaceH (the space of weakly differentiable functions with finite ‖·‖H-norm) is compactly
embedded into C[0, T ] for a finite time horizon T > 0 and one can use analytic results on this
embedding to show the asymptotic negligibility of the term (Āϕ̂(t))t∈[0,1]. Altogether, one sees
that the coding complexity of X and (W̄ϕ̂(t))t∈[0,1] coincide. Here one needs to be aware of the
fact that the definition of (ϕ̂(t)) and thus of (W̄t) depend on the parameter r.

The main result

Let us state the precise decoupling result. Fix α ∈ (0, β/2) and denote by ϕ̂(n) = (ϕ̂(n)
t )t∈[0,1]

(n ∈ N) a random increasing and continuous function that is linear on each interval [i/n, i+1/n]
(i = 0, . . . , n− 1) and satisfies

ϕ̂(n)(i/n) = arg miny∈I(n)|ϕ(i/n)− y| (i = 0, . . . , n),

where I(n) is defined as

I(n) =
{

j
1

n1+α
: j ∈ N0, j ≤ n2(1+α)

}
.

Theorem 5.3. Fix ζ ∈ ((1+α)−1, 1), choose n ∈ N in dependence on r > 0 as n = n(r) = drζe,
and denote by W̃ = W̄ (n) + Ȳ (n) the (FW̃

t ∨ σ(ϕ̂(n)))-Doob-Meyer decomposition of W̃ . For
arbitrarily fixed s > 0 there exist C[0, 1]-valued r.v.’s R̄(n) and R̂(r) such that

• X = W̄
(n)

ϕ̂(n)(·) + R̄(n),

• W̄ (n) is a Wiener process that is independent of ϕ̂(n),

• E[‖R̄(n) − R̂(r)‖s]1/s = O(r−
1
2
−δ), for some δ > 0,

• log | range (R̂(r), ϕ̂(n))| = O(rγ), for some γ ∈ (0, 1).

5.2 The corresponding rate allocation problem

We only consider the case where where E = Lp[0, 1] for some p ≥ 1. Theorem 5.3 states that
the process X and the process (W̄ (n)

ϕ̂(n)(t)
)t∈[0,1] (actually the family of processes) have the same

asymptotic complexity. The number n is still related to r via drζe.

28



We adopt the notation of Theorem 5.3, and let for i ∈ {0, . . . , n− 1} and t ∈ [0, 1/n)

X̄
(n)
i
n

+t
:= X̄

(n,i)
t := W̄

(n)

ϕ̂(n)( i
n

+t)
− W̄

(n)

ϕ̂(n)( i
n

)
.

Note that r/n tends to infinity and one can verify that the difference between X̄(n) = (X̄(n)
t )t∈[0,1)

and W̄
(n)

ϕ̂(n)(·) is negligible in the sense explained above.

Conditional on ϕ̂(n) the process X̄(n) is a concatenation of n independent scaled Wiener
processes X̄(n,0), . . . , X̄(n,n−1) in the sense that each of the components equals (σ̂iWt)t∈[0,1/n) in
law, where σ̂i ≥ 0 is given via

σ̂2
i := n(ϕ̂(i/n)− ϕ̂((i− 1)/n)).

Concatenations of Wiener processes

First we suppose that ϕ̂(n) is deterministic and that s = p. The letters X̄(n,0), . . . , X̄(n,n−1) are
independent and the objective function

E[‖X̄(n) − X̂(r)‖p] = E
[∫ 1

0
|X̄t|p dt

]

can be understood as single letter distortion measure. Thus the discussion of Section 4.2 yields
that for an arbitrary rate r̄ ≥ 0 the DRF D(r̄|X̄(n), ‖·‖p) is naturally related to a rate allocation
problem. One has

D(r̄|X̄(n), ‖ · ‖p) = inf
(ri)

n−1∑

i=0

D(ri|σ̂iW, ‖ · ‖p
Lp[0,1/n))︸ ︷︷ ︸

=σ̂p
i D(ri|W,‖·‖Lp[0,1/n),p)p

, (30)

where the infimum is taken over all non-negative vectors (ri)i=0,...,n−1 with
∑n−1

i=0 ri = r̄. More-
over, the map

π : Lp[0, 1/n) → Lp[0, 1), (xt)t∈[0,1/n) 7→ (n−1/pxt/n)t∈[0,1)

is an isometric isomorphism so that

D(ri|W, ‖ · ‖Lp[0,1/n), p) = D(ri|n−
1
p
− 1

2
√

nWt/n, ‖ · ‖Lp[0,1), p) = n
− 1

p
− 1

2 D(ri|W, ‖ · ‖Lp[0,1), p)︸ ︷︷ ︸
∼κpr

−1/2
i

.

Supposing that the rates ri (i = 0, . . . , n−1) are large so that κpr
−1/2
i is a reasonable approxima-

tion to the latter DRF, one concludes together with (30) that D(r̄|X̄(n), ‖ ·‖, p) is approximately
equal to

κp inf
(ri)

( 1
n

n−1∑

i=0

σ̂p
i

(nri)p/2

)1/p
. (31)

The infimum can be evaluated explicitly by applying the reverse Hölder inequality analogously
to the computations in (9). It is equal to

( 1
n

n−1∑

i=0

|σ̂i|2p/(p+2)
)(p+2)/2p 1√

r̄
. (32)
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Next, let σ̂t := σ̂i for i = 0, . . . , n − 1 and t ∈ [i/n, (i + 1)/n) and observe that (32) can be
rewritten as

(∫ 1

0
|σ̂t|2p/(p+2) dt

)(p+2)/2p 1√
r̄
. (33)

Rigorously one can prove that one infers (asymptotically) the same error for the other infor-
mation constraints and for all other moments s. We quote the exact result:

Lemma 5.4. For fixed s ∈ (0,∞) there exists a real valued function h = hs.p : R+ → R+ with
limr̄→∞ h(r̄) = 1 such that the following statements are valid.

Suppose that ϕ̂(n) is deterministic and let X̂ be a reconstruction for X̄(n) of rate r̄ > 0. Then
there exists an [0,∞)-valued sequence (ri)i=0,...,n−1 with

∑n−1
i=0 ri ≤ r̄ such that for any r∗ > 0:

E[‖X̄(n) − X̂‖s]1/s ≥ h(r∗) κp

( 1
n

n−1∑

i=0

|σ̂i|p
(n(ri + r∗))p/2

)1/p
.

On the other hand, for any R+-valued vector (ri)i=0,...,n−1, there exists a codebook C ⊂ Lp[0, 1]
with log |C| ≤ ∑n−1

i=0 ri and

E[min
x̂∈C

‖X̄(n) − x̂‖s]1/s ≤ h(r∗) κp

( 1
n

n−1∑

i=0

|σ̂i|p
(nri)p/2

)1/p
,

where r∗ = mini=0,...,n−1 ri.

The lower bound

In the discussion above we have assumed that the time change ϕ̂(n) is deterministic. Now we
switch back to the original problem and suppose that ϕ̂(n) and X̄(n) (n ∈ N) are as introduced
in the beginning of this subsection. In particular, ϕ̂(n) is again assumed to be random. Again
the parameter n is linked to r > 0 via n = drζe.

We fix a family (X̂(r))r≥0 of reconstructions such that each reconstruction has finite mutual
information I(X̄(n); X̂(r)) to be finite, and we set r(φ) = I(X̄(n); X̂(r)|ϕ(n) = φ) and R = r(ϕ̂(n)).
The random variable R is to be conceived as the random rate reserved for coding X̄(n) given
the time change ϕ̂(n).

Using the (non-rigorous) lower bound (33) for the approximation error, one gets

E[‖X̄(n) − X̂(r)‖s]1/s = E
[
E[‖X̄(n) − X̂(r)‖s|ϕ̂(n)]

]1/s & E
[(∫ 1

0
|σ̂t|2p/(p+2) dt

)s(p+2)/2p 1
Rs/2

]1/s
.

It remains to translate a given information constraint into a condition onto the random rate R.

The quantization constraint

Let us now assume that the family (X̂(r)) satisfies the quantization constraint log | range X̂(r)| ≤
r. Then R ≤ r almost surely so that one gets the lower bound

E[‖X̄(n) − X̂(r)‖s]1/s & E
[(∫ 1

0
|σ̂t|2p/(p+2) dt

)s(p+2)/2p]1/s 1√
r
.
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Since
∫ 1
0 |σ̂t|2p/(p+2) dt converges to

∫ 1
0 |σt|2p/(p+2) dt one finally obtains

E[‖X̄(n) − X̂(r)‖s]1/s &
∥∥‖σ·‖L2p/(p+2)[0,1]

∥∥
Ls(P)

1√
r
.

The mutual information constraint

Now we assume that I(X̄; X̂(r)) ≤ r. Then

I(X; X̂|ϕ̂) ≤ I(X; X̂, ϕ̂(n)) ≤ I(X̄; X̂(r)) + log | range ϕ̂(n)| . r.

Therefore,

ER . r. (34)

and one gets an asymptotic lower bound for the distortion rate function when minimizing

E
[(∫ 1

0
|σ̂t|2p/(p+2) dt

)s(p+2)/2p 1
Rs/2

]1/s

under the constraint (34). Also in this rate allocation problem the Hölder inequality for negative
exponents solves the problem and one gets:

E[‖X̄(n) − X̂(r)‖s]1/s &
∥∥‖σ̂·‖L2p/(p+2)[0,1]

∥∥
L2s/(s+2)(P)

1√
E[R]

&
∥∥‖σ·‖L2p/(p+2)[0,1]

∥∥
L2s/(s+2)(P)

1√
r
.

6 Further results on asymptotic approximation of stochastic
processes

As mentioned before quantization of stochastic processes has been a vivid research area within
the last years. So far we have restricted ourselves to surveying results that lead to strong
asymptotic formulae and that are related to intermediate optimization problems. In this section
we want to complete the article with giving two further results which yield the correct weak
asymptotics in many cases.

6.1 Estimates based on moment conditions on the increments

Let us next describe a very general approach undertaken in Luschgy & Pagès (2007) to pro-
vide weak upper bounds for the quantization error. It is based on moment conditions on the
increments of a stochastic process. Let (Xt)t∈[0,1] denote a real-valued stochastic process, that
is X : Ω× [0, 1] → R is product measurable. We fix ζ > 0 and assume that the marginals of X
are in Lζ(P).

We state the main result.

Theorem 6.1. Let ϕ : [0, 1] → [0,∞) be a regularly varying function at 0 with index b > 0, that
is ϕ can be represented as ϕ(t) = tb`(t), where ` is continuous and satisfies `(αt) ∼ `(t) as t ↓ 0
for any α > 0 (` is called slowly varying). Moreover, we assume that for all 0 ≤ u ≤ t ≤ 1

E[|Xt −Xu|ζ ]1/ζ ≤ ϕ(t− u),
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in the case where ζ ≥ 1, and

E[ sup
v∈[u,t]

|Xv −Xs|ζ ]1/ζ ≤ ϕ(t− u),

otherwise. Then for p, s ∈ (0, ζ), one has

D(r, s|X, ‖ · ‖Lp[0,1]) - ϕ(1/r).

This theorem allows to translate moment estimates for the increments into upper bounds for
the quantization error. Let us demonstrate the power of this result by applying it to a class of
diffusion processes.

Let X = (Xt)t∈[0,1] satisfy

Xt = x0 +
∫ t

0
Gu du +

∫ t

0
Hu dWu,

where W = (Wt)t∈[0,1] denotes a Wiener process, and G = (Gt)t∈[0,1] and H = (Ht)t∈[0,1] are
assumed to be progressively measurable processes w.r.t. the canonical filtration induced by W .
Supposing that for some ζ ≥ 2

sup
t∈[0,1]

E[|Gt|ζ + |Ht|ζ ] < ∞,

one can infer that for a constant c ∈ R+ one has

‖Xt −Xu‖Lζ(P) ≤ c (t− u)1/2

for all 0 ≤ u ≤ t ≤ 1. Consequently,

D(r, s|X, ‖ · ‖Lp[0,1]) - 1√
r
.

As we have seen above this rate is optimal for the solutions to the autonomous stochastic
differential equations studied above.

Moreover, the main result can be used to infer upper bounds for stationary processes and
Lévy processes or to recover the weak asymptotics for fractional Wiener processes. For further
details we refer the reader to the article by Luschgy & Pagès (2007).

6.2 Approximation of Lévy processes

Let now X = (Xt)t∈[0,1] denote a càdlàg Lévy process. Due to the Lévy-Khintchine formula the
marginals Xt (t ∈ [0, 1]) admit a representation

EeiuXt = e−tψ(u) (u ∈ R),

where

ψ(u) =
σ2

2
u2 − iαu +

∫

R\{0}
(1− eiux + 1l{|x|≤1}iux) ν(dx),
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for parameters σ2 ∈ [0,∞), α ∈ R and a non-negative measure ν on R\{0} with
∫

R\{0}
1 ∧ x2 ν(dx) < ∞.

The complexity of Lévy processes has been analyzed recently in Aurzada & Dereich (2007)
when the underlying distortion measure is induced by the Lp[0, 1]-norm for a fixed p ≥ 1. Its
complexity is related to the function

F (ε) =
σ2

ε2
+

∫

R\{0}

[(x2

ε2
∧ 1

)
+ log+

|x|
ε

]
ν(dx) (ε > 0).

Let us state the main results.

Theorem 6.2 (Upper bound). There exist positive constants c1 = c1(p) and c2 such that for
any ε > 0 and s > 0

D(e)(c1F (ε), s) ≤ c2ε.

The constants c1 and c2 can be chosen independently of the choice of the Lévy process. Addi-
tionally, if for s > 0 one has

• E‖X‖s′
Lp[0,1] < ∞ for some s′ > s, and

• for some ζ > 0,

lim sup
ε↓0

∫
|x|>ε(|x|/ε)ζ ν(dx)

ν([−ε, ε]c)
< ∞,

then there exist constants c′1 and c′2 such that for all ε > 0,

D(q)(c′1F (ε), s) ≤ c′2ε.

For stating the lower bound we will need the function

F1(ε) =
σ2

ε2
+

∫

R\{0}

(x2

ε2
∧ 1

)
ν(dx) (ε > 0).

Theorem 6.3 (Lower bound). There exist constants c1, c2 > 0 depending on p ≥ 1 only such
that the following holds. For every ε > 0 with F1(ε) ≥ 18 one has

D(c1F (ε), p) ≥ c2 ε.

Moreover, if ν(R\{0}) = ∞ or σ 6= 0, one has for any s > 0,

D(c1F1(ε), s) & c2 ε

as ε ↓ 0.

The upper and lower bound often are of the same weak asymptotic order. Let, for instance,
X be a α-stable Lévy process (α being a parameter in (0, 2]). In that case, the bounds provided
above are sharp, and one gets for s1 > 0 and s2 ∈ (0, α), that

D(r, s1) ≈ D(e)(r, s1) ≈ D(q)(r, s2) ≈ 1
r1/α

.

For more details we refer the reader to the original article.
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