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1 Introduction

For d ∈ N, consider an R
d-valued random vector X (the original) defined on some proba-

bility space (Ω,A, P), and denote by µ = L(X) the law of X.
We consider the quantization problem, that is for a given natural number N ∈ N and

a loss function ρ : R
d × R

d → [0,∞) we ask for a codebook C ⊂ R
d consisting of at most

N elements and minimizing the average loss

Eρ(X, C),

where ρ(x, A) = infy∈A ρ(x, y), for all x ∈ R
d and A ⊂ R

d. The quantization problem
arises naturally when discretizing analog signals, and it first gained practical importance
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in the context of pulse-code-modulation. Research on it started in the 1940’s and one finds
numerous articles dedicated to the study of this problem in the engineering literature. For
an overview on these developments, one may consult Gray & Neuhoff (1998) (see also
Cover & Thomas (1991) and Gersho & Gray (1992)). The quantization problem is also
related to numerical integration (Pagès, Pham & Printems 2004), and, more recently,
the mathematical community became attracted by the field. In the last years a number
of new publications appeared treating finite dimensional as well as infinite dimensional
signals (see for instance Graf & Luschgy (2000), Gruber (2004) for vector quantization and
Luschgy & Pagès (2004), Dereich, Fehringer, Matoussi & Scheutzow (2003) for functional
quantization).

In this article, we consider asymptotic properties of the quantization problem when
the size N of the codebook tends to infinity, the high-resolution quantization problem.
First asymptotic formulae for vector quantization were found by Zador (1966, 1982) and
Bucklew & Wise (1982).

In the classical setting (norm based distortion), one considers

ρ(x, y) = ‖x − y‖p

for some norm ‖ · ‖ and a moment p > 1. As long as the distribution µ := L(X) has thin
tails (in an appropriate sense) one can describe asymptotically optimal codebooks via an
optimal point density function: the empirical measures associated to optimal codebooks
C(N) of size N

1

N

∑

x̂∈C

δx̂

converge to a continuous probability measure that has density proportional to
( dµc

dλd

)d/(d+p)
.

The density will be called optimal point density. Here and elsewhere, λd denotes d-
dimensional Lebesgue measure and µc denotes the absolutely continuous part of µ w.r.t.
λd. When considering point densities we will always assume that µc does not vanish.
Optimal codebooks for the uniform distribution can then be used to define asymptoti-
cally optimal codebooks for general X: roughly speaking, one partitions the space R

d

into appropriate cubes and chooses in each cube an optimal codebook for the uniform
distribution of appropriate size (according to the optimal point density). In particular,
the non-continuous part of µ has no effect on the asymptotic problem. The concept of
a point density will play a crucial role in the following discussion. Its importance in the
classical setting was firstly conjectured by Lloyd and Gersho (see Gersho (1979)). First
rigorous proofs are due to Bucklew (1984). For a recent account on the theory of high
resolution quantization and point density functions one may consult the monograph by
Graf & Luschgy (2000).

Nowadays, the asymptotic quantization problem is well understood for loss functions
ρ that are shift invariant and look locally like a power of a norm based distance, that is

ρ(x, y) = ρ(x − y, 0) and ρ(x, 0) = ‖x‖p + o(‖x‖p) as x → 0

for some norm ‖·‖ on R
d and a power p > 1 (see Delattre, Graf, Luschgy & Pagès (2004)).

Here and thereafter o and O denote the Landau symbols. For all these distortion measures
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one regains the same optimal point density as for the corresponding norm based distortion
measures. Since the optimal point density only depends on the behavior of ρ(·, 0) close to
0, quantization schemes based on this density may show bad performance for moderate N .
This will occur, when for the original X and the approximation X̂ the distances ρ(X, X̂)
and ‖X − X̂‖p differ significantly.

As a generalization of the above setting, we suggest to use Orlicz norms as a measure
for the loss inferred when approximating the original X by the closest point in a code-
book C. Orlicz norms offer a wide range of distortion measures. Let us introduce the main
notations.

Let ϕ : [0,∞) → [0,∞) be a monotonically increasing, left continuous function with
limt↓0 ϕ(t) = 0. Note that this implies that ϕ is lower semicontinuous. We assume that
ϕ 6= 0, let E = (Rd, ‖ · ‖) denote an arbitrary Banach space, and denote by d(·, ·) the
associated distance. For any R

d-valued r.v. Z, the Orlicz norm ‖ · ‖ϕ is defined as

‖Z‖ϕ = inf
{

t > 0 : E ϕ
(‖Z‖

t

)

6 1
}

,

with the convention that the infimum of the empty set is equal to infinity. Actually, the left
continuity of ϕ together with monotone convergence imply that the infimum is attained,
whenever the set is nonempty. We set

Lϕ(P) = {Z : Z R
d-valued r.v. with ‖Z‖ϕ < ∞}.

Note that ‖ · ‖ϕ defines a norm on Lϕ(P) when ϕ is convex, whereas otherwise, the
triangle inequality does not hold. For our analysis we do not require that ϕ be convex.
Nevertheless, with slight misuse of notation, we will allow ourselves to call ‖ · ‖ϕ an Orlicz
norm. Choosing ϕ(t) = tp, p > 1, yields the usual Lp(P)-norm, which will be denoted by
‖ · ‖p.

For N > 1, we consider the quantization error given by

δ(N |X, ϕ) = inf
X̂

‖X − X̂‖ϕ,

where the infimum is taken over all r.v.’s X̂ (reconstructions) satisfying the range con-
straint |range (X̂)| 6 N .

Let us compare the Orlicz norm distortion with the classical setting. Suppose that X̂
is an optimal N -point quantizer under the distortion ρ(x, y) = f(‖x − y‖), where f is a
left continuous and strictly increasing function with f(0) = limt↓0 f(t) = 0. Then one can

easily verify that X̂ is also an optimal N -point quantizer in the Orlicz norm setting when
choosing ϕ(t) = f(t)/∆ and ∆ = E[ρ(X, X̂)]. Thus optimal quantizers in the classical
setting correspond to optimal quantizers in the Orlicz-norm setting. As we will see later,
in most cases each choice of ∆ (or ϕ) leads to a unique optimal point density function.
Thus the optimal point density function in the classical setting is replaced by a whole
family of densities: good descriptions are now obtained by choosing the parameter ∆
accordingly. We believe that the optimal Orlicz point density is a favourable description
of good codebooks for moderate N . Let us illustrate this in the case where f(t) = ϕ(t) =
exp(t) − 1 (meaning that ∆ = 1). Whereas the Orlicz norm point density attains rather
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large values even at points where the density dµc

dλd is very small (see Example 1.3), the
classical setting neglects the growth of f and one retrieves the optimal density of the
norm based distortion to the power 1.

In our notation, the asymptotics under the classical Lp-norm distortion reads as follows
(see Graf & Luschgy (2000)): Let p > 1, U denote a uniformly distributed r.v. on [0, 1)d,
and set

q(E, p) = inf
N > 1

N1/d δ(N |U, p).

If for some p̃ > p, E‖X‖p̃ < ∞ (concentration assumption), then

lim
N→∞

N1/d δ(N |X, p) = q(E, p)
∥

∥

∥

dµc

dλd

∥

∥

∥

1/p

Ld/(d+p)(Rd)
, (1)

where µc denotes the absolutely continuous part of µ.
The analysis of the Orlicz norm setting is based on the concept of a point allocation

density. We shall see that an optimal point allocation density is given as a minimizer of
a variational problem. Unfortunately, in this context the minimization problem cannot
be solved in closed form. We will prove the existence and a dual characterization of the
solution. The quantity q(E, p) corresponds in the general setting to a convex decreasing
function g : (0,∞) → [0,∞) which may be defined via

g(η) = lim
N→∞

inf
C(N)

E ϕ
(

(N/η)1/d d(U, C(N))
)

, (2)

where the infima are taken over all finite sets C(N) ⊂ R
d with |C(N)| 6 N and U de-

notes a uniformly distributed r.v. on the unit cube [0, 1)d. Moreover, we set g(0) =
lim infη↓0 g(η) ∈ [0,∞]. The function g depends on the Banach space and the Orlicz
norm. It will be analyzed in Section 2. g can be represented as a particular integral in
the situations where E = ld∞ or E = l22. If ϕ induces the Lp(P)-norm (i.e. ϕ(t) = tp), then
due to (1)

g(η) = q(E, p)p η−p/d.

If the measure µ is not compactly supported, our analysis relies on a concentration
property. As in the Lp(P)-setting, this can be done by assuming the finiteness of an
integral EΨ(‖X‖) for some function Ψ satisfying a growth condition (Condition (G), see
Definition 7.2). If ϕ induces the usual Lp(P)-norm, admissible functions Ψ are, for instance,
all functions Ψ(t) = tp̃ with p̃ > p, and one recovers the classical result.
Let us state the main theorem.

Theorem 1.1. Assume that Ψ satisfies the growth condition (G) and that EΨ(‖X‖) < ∞.
Then

lim
N→∞

N1/d δ(N |X, ϕ) = I1/d,

where I is the finite minimal value in the point allocation problem. It is given by

I = inf
ξ

∫

ξ(x) dx, (3)
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where the infimum is taken over all non-negative Lebesgue integrable functions ξ with

∫

Rd

g(ξ(x)) dµc(x) 6 1.

Alternatively, one can represent I by the dual formula

I = sup
κ>0

1

κ

(

∫

Rd

ḡ
( κ

h(x)

)

dµc(x) − 1
)

,

where ḡ(t) = infη>0[g(η) + ηt] and h(x) = dµc

dλd (x). Moreover, one has I > 0 if and only if

µc(R
d) sup

t > 0
ϕ(t) > 1,

where we use the convention that 0 · ∞ = 0.

We keep I as the minimal value in the point allocation problem given by (3). If I is
strictly bigger than 0, we denote by M the set of probability measures on the Borel sets
of R

d associated to the minimizers of the point allocation problem, i.e.,

M =
{

ν :
dν

dλd
= ξ̄,

∫

Rd

g(I ξ̄(x)) dµc(x) = 1,

∫

Rd

ξ̄(x) dx = 1
}

. (4)

Theorem 1.2. Assume that I ∈ (0,∞) and denote by C(N), N ∈ N, asymptotically
optimal codebooks of size N , that is

lim sup
N→∞

N1/d ‖d(X, C(N))‖ϕ 6 I1/d.

Then the empirical measures νN given by

νN =
1

N

∑

x̂∈C(N)

δx̂

form a tight sequence of probability measures, and any accumulation point of (νN )N∈N lies
in M. If g is strictly convex, then the set M contains exactly one measure ν, and

lim
N→∞

νN = ν weakly.

As an example we present implications of our results for the standard normal distri-
bution under a particular ϕ growing exponentially fast:

Example 1.3. Let µ denote the standard normal distribution, (E, ‖ · ‖) = (R, | · |) and
ϕ : [0,∞) → [0,∞), x 7→ exp(x)−1. Then Ψ(x) = exp(x3/2) satisfies the growth condition
(G) (see Example 7.3), and Theorem 1.1 is thus applicable. Moreover, (see Remark 2.2
and Lemma 2.3)

g(η) = 2

∫ 1/2

0
ϕ(t/η) dt = ηe1/(2η) − 2η − 1.
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Note that g ist strictly convex, so that there has to exist a unique normalized optimal point
density ξ̄. In order to approximate the optimal value for κ, we used numerical methods
to obtain κ ≈ 0.699. Due to (23) and (24), the optimal point density is given by

ξ(x) = (−g′)−1
( κ

h(x)

)

, x ∈ R,

and I =
∫

R
ξ(x) dx ≈ 2.88 . Next, elementary calculus gives

(−g′)−1(t) =
1

2

1

log(t) − log(2 log t) + o(1)
as t → ∞

so that the normalized point density ξ̄ = ξ/I satisfies

ξ̄(x) ∼
1

I

1

x2
as |x| → ∞.

Hence, ξ̄ decays to zero much more slowly than in the classical setting.

The article is outlined as follows. In Section 2, we begin with an analysis of the function
g. In Section 3 we construct asymptotically good codebooks based on a given point
allocation measure. Up to this stage, we are restricting ourselves to absolutely continuous
measures with compact support. In Section 4, we turn things around and prove a lower
bound based on a given point density measure. This bound implies the lower bound in
Theorem 1.1 and proves a part of Theorem 1.2. The estimates of Sections 3 and 4 lead
to the variational problem characterising the point density, and this is treated in Section
5. In the last two sections, we treat the upper bounds in the quantization problem for
singular and non-compactly supported measures. In particular, we derive a concentration
analog which guarantees that the quantization error is of order O(N−1/d). Finally, we
combine the estimates and prove the general upper bound in Theorem 1.1.

It is convenient to use the symbols ∼, . and ≈. We write f ∼ g iff lim f
g = 1, while

f . g stands for lim sup f
g 6 1. Finally, f ≈ g means 0 < lim inf f

g 6 lim sup f
g < ∞ .

2 First estimates for the uniform distribution

In this section, X denotes a uniformly distributed r.v. on [0, 1)d. For η > 0 and N > 1,
we consider

fN (η) := inf
C(N)

E ϕ
(

(N/η)1/d min
x̂∈C(N)

‖X − x̂‖
)

, (5)

where the infimum is taken over all codebooks C(N) ⊂ R
d of size ⌊N⌋. Here and elsewhere,

⌊N⌋ denotes the largest integer smaller or equal to N . By a straightforward argument,
the lower semicontinuity of ϕ implies that the function

(

R
d
)⌊N⌋

∋ (x̂1, . . . , x̂⌊N⌋) 7→ E ϕ
(

(N/η)1/d min
i=1,...,⌊N⌋

‖X − x̂i‖
)

∈ [0,∞)
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is also lower semicontinuous. In the minimization problem (5), it suffices to allow for
codebook entries that are elements of a sufficiently large compact set. So the lower semi-
continuity implies the existence of an optimal codebook. We usually denote by X̂(N) or
X̂(N,η) an optimal reconstruction attaining at most N different values, that is X̂ = X̂(N)

is a minimizer of
E ϕ

(

(N/η)1/d ‖X − X̂‖
)

,

among all r.v.’s satisfying the range constraint |range (X̂)| 6 N . Now define the function
g by

g(η) = inf
N > 1

fN (η), η > 0.

We start with a derivation of the structural properties of g. In particular, we show the
validity of (2).

Theorem 2.1. The function g : R+ → [0,∞) is monotonically decreasing and convex,
and satisfies limη→∞ g(η) = 0 and limη↓0 g(η) = supt > 0 ϕ(t). Moreover, for η > 0,

lim
N→∞

E ϕ
(

(N/η)1/d ‖X − X̂(N)‖
)

= g(η). (6)

We will sometimes use the convention g(0) = limη↓0 g(η). Note that g(0) is finite iff ϕ
is bounded. Moreover, we set fN (η) = ∞ for N ∈ [0, 1).

Remark 2.2. In general, computing the function g explicitly constitutes a hard problem.
However, as for the classical Lq-norm distortion, one can calculate g when E = R

d is
endowed with supremum-norm, and in the case where E is the two dimensional Euclidean
space. In such cases, the same lattice quantizers can be used to construct asymptotically
optimal codebooks and to compute the function g. The case of the suremum-norm is
trivial since the unit ball is space filling.

Lemma 2.3. Let U be uniformly distributed on a centered regular hexagon V in R
2 having

unit area, and assume that E is the 2-dimensional Euclidean space. One has

g(η) = E ϕ
(

η−1/2 ‖U‖
)

.

The proof is similar as in the classical setting and therefore ommitted, see Graf &
Luschgy (2000, Theorem 8.15) and Fejes Tóth (1972).

In order to prove Theorem 2.1, we use the inequality below. It is essentially a conse-
quence of the self similarity of X.

Proposition 2.4. Let M ∈ {kd : k ∈ N}, η2 > η1 > 0 and let η = αη1 + βη2 be a convex
combination of η1 and η2. Then for any N > 1 one has

fN (η) 6 a(M) fN1/M (η1) + b(M) fN2/M (η2), (7)

where

• N1 = η1

η N and N2 = η2

η N ,
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• b(M) = ⌊βM⌋/M and a(M) = 1 − b(M).

Additionally, one has for N > 1 and η > 0,

fN (η) 6 fN/M (η). (8)

Proof. Fix N ∈ N and let η1, η2, α, β, N1, N2, M = kd be as in the proposition. Let
C1 = [0, 1/k)d. We decompose the cube [0, 1)d into an appropriate union

⋃M
i=1 Ci of

disjoint sets C1, . . . , CM , where each set C2, . . . , CM is a translate of C1. Moreover, let Xi

denote a uniformly distributed r.v. on Ci. Since U([0, 1)d) = 1
M

∑M
i=1 U(Ci), one has, in

analogy to Lemma 4.14 in Graf & Luschgy (2000),

fN (η) = E ϕ
(

(N/η)1/d ‖X − X̂(N)‖
)

6
1

M

M
∑

i=1

E ϕ
(

(N/η)1/d ‖Xi − X̂
(Ñi)
i ‖

)

for any [1,∞)-valued sequence (Ñi)i=1,...,M with
∑

i Ñi 6 N . Here, X̂
(Ñi)
i denotes an

optimal quantizer for Xi among all quantizers attaining at most Ñi different values. Since
the distributions U(Ci) can be transformed into U(C1) through a translation, one obtains

fN (η) 6
1

M

M
∑

i=1

E ϕ
(

(N/η)1/d ‖X1 − X̂
(Ñi)
1 ‖

)

.

Self similarity (L(X1) = L( 1
kX)) then implies that

fN (η) 6
1

M

M
∑

i=1

E ϕ
(

(N/η)1/d 1

k
‖X − X̂(Ñi)‖

)

.

Note that the assertion of the proposition is trivial if N1/M < 1, so that we may assume
N2/M > N1/M > 1. We now choose for ⌊βM⌋ indices Ñi = N2/M and for M − ⌊βM⌋
indices Ñi = N1/M . Then

∑

i Ñi 6 N , so that

fN (η) 6 a(M) E ϕ
(

(N/η)1/d 1

k
‖X − X̂(N1/M)‖

)

+ b(M) E ϕ
(

(N/η)1/d 1

k
‖X − X̂(N2/M)‖

)

= a(M) fN1/M (η1) + b(M) fN2/M (η2),

where b(M) = ⌊βM⌋/M and a(M) = 1 − b(M). Analogously, setting Ñi = N/M for
i = 1, . . . , M , we obtain that fN (η) 6 fN/M (η). �

Proof of Theorem 2.1. First we prove that for arbitrary η > 0,

g(η) 6 lim sup
N→∞

fN (η) 6 g−(η). (9)
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Fix ε > 0 and choose η0 ∈ (0, η) so that g(η0) 6 g−(η) + ε/2. Moreover, fix N0 > 1
with fN0(η) 6 g(η0) + ε/2. For N > N0, we decompose N into N = N0 kd + Ñ , where
k = k(N) ∈ N and Ñ = Ñ(N) ∈ N0 are chosen so that N < (k + 1)dN0. Then

fN (η) = E ϕ
(

(N/η)1/d ‖X − X̂(N)‖
)

6 E ϕ
(

(

N0 kd/(N0 kdη/N)
)1/d

‖X − X̂(N0 kd)‖
)

= fN0 kd(ηN0 kd/N),

and inequality (8) implies that for M = M(N) = kd:

fN (η) 6 fN0(ηN0M/N).

Note that N0k
d 6 N < N0(k + 1)d, hence: limN→∞ ηN0k

d/N = η. Consequently, there
exists N1 > N0 such that for all N > N1 one has: ηN0M/N > η0, and

fN (η) 6 fN0(ηN0M/N) 6 fN0(η0) 6 g−(η) + ε

for all N > N1. Since ε > 0 was arbitrary statement (9) follows.
We now prove that g− is convex. Let η2 > η1 > 0 and let η = αη1 + βη2 be a convex

combination of η1 and η2 and suppose that g−(η1) is finite. Fix k ∈ N and let M = kd,
a(M) and b(M) be as in Proposition 2.4. Moreover, for given N ∈ N we let N1 = N1(N)
and N2 = N2(N) be as in the previous proposition. Then inequality (7) implies that

fN (η) 6 a(M) fN1/M (η1) + b(M) fN2/M (η2).

Therefore, formula (9) and the left continuity of g− give

g(η) 6 lim sup
N→∞

fN (η) 6 a(M) g−(η1) + b(M) g−(η2).

Recall that M ∈ {kd : k ∈ N} was arbitrary. Since limM→∞ a(M) = α and limM→∞ b(M) =
β we conclude that

g(η) 6 α g−(η1) + β g−(η2).

For the general statement, observe that

g−(η) = lim
δ↓0

g(η − δ) 6 lim sup
δ↓0

[

α g−(η1 − δ) + β g−(η2 − δ)
]

= α g−(η1) + β g−(η2).

Consequently, g− is convex, and a fortiori it is continuous. Therefore, the functions g and
g− coincide, which proves (6).

It remains to prove the asymptotic statements for g. First note that

g(η) 6 f1(η) 6 E ϕ(η−1/d ‖X‖) 6 ϕ(η−1/d sup
x∈[0,1)d

‖x‖) −→ 0

as η → ∞. On the other hand, one has for η > 0, ε > 0 and N ∈ N,

fN (η) = E ϕ
(

(N/η)1/d ‖X − X̂(N)‖
)

> E

[

1{‖X−X̂(N)‖ > ε/N1/d} ϕ
(

(N/η)1/d ‖X − X̂(N)‖
)]

> (1 − N λd(B(0, ε/N1/d)))ϕ(ε/η1/d)

= (1 − λd(B(0, ε)))ϕ(ε/η1/d),
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so that

g(η) > (1 − λd(B(0, ε)))ϕ(ε/η1/d) −→
η↓0

(1 − λd(B(0, ε))) sup
t > 0

ϕ(t).

Since g(η) 6 supt > 0 ϕ(t) and ε > 0 was arbitrary, the assertion follows. �

3 The upper bound (1st step)

In this section, we consider an original X with law µ ≪ λd. Moreover, we assume that µ
is compactly supported and fix l > 0 large enough so that µ(C) = 1 for C = [−l, l)d.

Based on a given integrable function ξ : R
d → [0,∞) (point density), we define code-

books and control their efficiency.

Proposition 3.1. There exist codebooks C(N), N > 1, such that limN→∞
1
N |C(N)| =

‖ξ‖L1(Rd) and

lim sup
N→∞

E ϕ(N1/d d(X, C(N))) 6

∫

g(ξ(x)) dµ(x).

Proof. It suffices to prove the assertion for functions ξ that are uniformly bounded away
from 0 on C. If this is not the case, one can consider ξ̄ = ξ + ε 1C for some ε > 0.
Then the statement says that there exist codebooks Cε(N), N > 1, with |Cε(N)| ∼
N(‖ξ‖L1(Rd) + ε λd(C)) satisfying

lim sup
N→∞

E ϕ(N1/d d(X, Cε(N))) 6

∫

g(ξ̄(x)) dµ(x) 6

∫

g(ξ(x)) dµ(x),

and a diagonalization argument for ε ↓ 0 proves the general assertion.
Fix m ∈ N, let C1 = [0, l/2m)d and decompose C into a finite disjoint union

C =
M
⋃

i=1

Ci,

where M = 2(m+1)d and C2, . . . , CM are translates of C1. For i = 1, . . . , M , we denote by
Xi a uniformly distributed r.v. on Ci, and let µm =

∑M
i=1 µ(Ci)U(Ci). Moreover, we let

hm =
dµm

dλd
=

M
∑

i=1

µ(Ci)

λd(Ci)
· 1Ci ,

and denote by ν the measure given by ν(A) =
∫

A ξ dλd, A ∈ B(Rd).
We introduce the codebooks of interest. For some fixed κ > 0, let

C̃(N) = (κN−1/d
Z

d) ∩ C, N > 1,

and let Ci(N) denote codebooks of size Ni = Ni(N) = N ν(Ci) minimizing E ϕ(N1/d d(Xi, Ci(N))).
We consider the efficiency of the codebooks

C(N) = C̃(N) ∪
M
⋃

i=1

Ci(N), N > 1.

10



First, note that

|C̃(N)| 6
(

1 + 2
l

κ
N1/d

)d
∼

(2l

κ

)d
N, N → ∞,

hence:

|C(N)| .
(

‖ξ‖L1(Rd) +
(2l

κ

)d)

N, N → ∞. (10)

It remains to estimate the expectation E ϕ(N1/dd(X, C(N))) for large N > 1. Observe
that d(x, C̃(N)) 6 κN−1/d supx∈[0,1)d ‖x‖ for all x ∈ C so that

∣

∣

∣
E ϕ

(

N1/d d(X, C(N))
)

−

∫

ϕ
(

N1/d d(x, C(N))
)

dµm(x)
∣

∣

∣

=
∣

∣

∣

∫

ϕ
(

N1/d d(x, C(N))
)

(h(x) − hm(x)) dx
∣

∣

∣
6 ϕ(cκ) ‖h − hm‖L1(Rd),

(11)

where c = supx∈[0,1)d ‖x‖ is a universal constant. Moreover,

∫

ϕ(N1/d d(x, C(N)) dµm(x) =
M
∑

i=1

µ(Ci) E ϕ
(

N1/d d(Xi, C(N))
)

6

M
∑

i=1

µ(Ci) E ϕ
(

N1/d d(Xi, Ci(N))
)

.

Now let U denote a U([0, 1)d)-distributed r.v. Due to the optimality assumption on the
choice of Ci(N), a translation and scaling then yields

E ϕ
(

N1/d d(Xi, Ci(N))
)

= E ϕ
(

N1/d l

2m+1
‖U − Û (Ni)‖

)

,

where Û (Ni) denotes a reconstruction minimizing the latter expectation among all r.v.
with a range of size Ni. Next, rewriting the previous expectation as

E ϕ
(

N1/d l

2m+1
‖U − Û (Ni)‖

)

= fNi(ν(Ci)/λd(Ci)),

it follows that

∫

ϕ
(

N1/d d(x, C(N))
)

dµm(x) 6

M
∑

i=1

µ(Ci) fNi(ν(Ci)/λd(Ci)).

As N → ∞, every Ni, i = 1, . . . , M , converges to ∞, and one has

M
∑

i=1

µ(Ci) fNi(ν(Ci)/λd(Ci)) −→
M
∑

i=1

µ(Ci) g
( ν(Ci)

λd(Ci)

)

=

∫

g(ξm(x)) dµ(x),

11



where ξm =
∑M

i=1
ν(Ci)
λd(Ci)

· 1Ci . Putting everything together yields

lim sup
N→∞

E ϕ
(

N1/d d(X, C(N))
)

6

∫

g(ξm(x)) dµ(x) + κ ‖h − hm‖L1(Rd) sup
x∈[0,1)d

‖x‖.

The function ξm converges to ξ as m → ∞ in λd-a.a. points x (see Cohn (1980), Theorem
6.2.3). Recall that by construction ξm is bounded from below on C, and hence dominated
convergence gives

lim
m→∞

∫

g(ξm(x)) dµ(x) =

∫

g(ξ(x)) dµ(x).

Analogously, hm converges to h in λd-a.a. points x and due to Scheffé’s theorem (see
Billingsley (1979), Theorem 16.11) hm converges to h in L1(Rd) as m → ∞.

For arbitrary ε > 0, we can choose κ > 0 sufficiently large to ensure that the size of
C(N) (see (10)) satisfies

|C(N)| . (1 + ε) ‖ξ‖L1(Rd) N.

Finally, it remains to pick m ∈ N sufficiently large so that

lim sup
N→∞

E ϕ
(

N1/d d(X, C(N))
)

6

∫

g(ξ(x)) dµ(x) + ε,

and the general statement then follows from a diagonalization argument. �

4 The lower bound

From now on, let X be an arbitrary random vector on R
d with law µ. In this section, we

change our viewpoint: for an index set I ⊂ [1,∞) with sup I = ∞, we consider arbitrary
finite codebooks C(N), N ∈ I, and ask for asymptotic lower bounds of

E ϕ(N1/d d(X, C(N)))

as N → ∞. Our computations are based on the assumption that the empirical measures

νN =
1

N

∑

x̂∈C(N)

δx̂, N ∈ I,

associated to C(N) converge vaguely to some locally finite measure ν on R
d.

Proposition 4.1. Letting νc denote the absolutely continuous part of ν, one has

lim inf
N→∞

E ϕ
(

N1/d d(X, C(N))
)

>

∫

g
( dνc

dλd

)

dµc(x).

Proof. It suffices to prove that for an arbitrary l > 0:

lim inf
N→∞

E ϕ
(

N1/d d(X, C(N))
)

>

∫

[−l,l)d

g
( dνc

dλd

)

dµc(x).

12



Indeed, the assertion then follows immediately by monotone convergence. For a given
m ∈ N, just as in the proof of the upper bound, we decompose the set C = [−l, l)d into
a disjoint union C =

⋃M
i=1 Ci, where M = 2m+1, C1 = [0, l/2m)d, and C2, . . . , CM are

translates of C1. Again we consider the measure µm =
∑M

i=1 µc(Ci)U(Ci) and the density

hm =

M
∑

i=1

µc(Ci)

λd(Ci)
· 1Ci .

Analogously, we let ξm =
∑M

i=1
ν(C̄i)
λd(Ci)

·1Ci. For some fixed κ > 0, we extend the codebooks

C(N) to
C(1)(N) = C(N) ∪

(

(κN−1/d
Z

d) ∩ C
)

.

Then, just as in (11), one has

∣

∣

∣

∫

C
ϕ(N1/d d(x, C(1)(N))) dµc(x) −

∫

C
ϕ(N1/d d(x, C(1)(N))) dµm(x)

∣

∣

∣
6 ϕ(c κ) ‖h − hm‖L1(C),

(12)

where c = supx∈[0,1)d ‖x‖.

Next, we control the approximation efficiency of C(1)(N) for the measure µm. We fix
ε ∈ (0, l/2m+1) and consider for i = 1, . . . , M , the closed cubes

Cε
i = {x ∈ R

d : d2(x, (Ci)
c) > ε} ⊂ Ci.

Here d2 denotes the standard Euclidean metric on R
d. Now observe that there exists a

finite set K = K(ε) ⊂ R
d such that for x ∈ Cε

i , i = 1, . . . , M ,

d(x,K ∩ Ci) 6 d(x, (Ci)
c). (13)

We extend the codebooks C(1)(N) to C(2)(N) = C(1)(N)∪K and let Ci(N) = C(2)(N)∩Cε
i

for N ∈ I and i = 1, . . . , M . Note that property (13) guarantees that any point x in an
arbitrary cube Cε

i has as best C(2)(N)-approximant an element in Ci(N). Moreover, none
of the codebooks Ci(N) is empty, i.e. the number Ni = Ni(N) defined as Ni = |Ci(N)|,
is greater or equal to 1. Consequently, letting Xi denote U(Cε

i )-distributed r.v.’s, one
obtains

∫

ϕ(N1/dd(x, C(2)(N))) dµm(x) >

∫

SM
i=1 Cε

i

ϕ(N1/dd(x, C(2)(N))) dµm(x)

=
M
∑

i=1

µm(Cε
i ) E ϕ(N1/dd(Xi, Ci(N))).

(14)

Let U be a U([0, 1)d-distributed r.v., and fix an arbitrary i ∈ {1, . . . , M}. Note that the
cube Cε

i has side length 2−ml − 2ε, so that a shifting and rescaling yields

E ϕ(N1/dd(Xi, Ci(N))) > E ϕ(N1/d (2−ml − 2ε) ‖U − Û (Ni)‖)

= E ϕ((Nλd(Cε
i ))

1/d ‖U − Û (Ni)‖),

13



where Û (Ni) denotes an optimal approximation satisfying the range constraint |range (Û (Ni))| 6 Ni.
With fN (η) as in (5), we arrive at

E ϕ(N1/dd(Xi, Ci(N))) > fNi(Ni/(N λd(Cε
i ))).

We need to control the quantity Ni/N for N large. Recall that C(2)(N) is the union of
the sets C(N), K and (κN−1/d

Z
d)∩C, and the vague convergence of νN to ν implies that

lim sup
N→∞

|C(N) ∩ Ci|

N
6 ν(C̄i).

Moreover, the set (κN−1/d
Z

d) ∩ Ci contains at most
(

l 2−m

κN−1/d + 1
)d

elements, so that

lim sup
N→∞

Ni

N
6 ν(C̄i) +

λd(Ci)

κd
.

Consequently, Theorem 2.1 implies that

E ϕ(N1/dd(Xi, Ci(N))) & g
((

ν(C̄i) +
λd(Ci)

κd

)/

λd(Cε
i )

)

.

Combining this estimate with (12) and (14) yields
∫

C
ϕ(N1/d d(x, C)) dµc(x) >

∫

C
ϕ(N1/d d(x, C(1))) dµm(x) − ϕ(c κ) ‖h − hm‖L1(C)

&

M
∑

i=1

µm(Cε
i ) g

((

ν(C̄i) +
λd(Ci)

κd

)/

λd(Cε
i )

)

− ϕ(c κ) ‖h − hm‖L1(C)

as N → ∞. Since ε > 0 can be chosen arbitrarily small, it follows that

∫

C
ϕ(N1/dd(x, C(2))) dµc(x) &

M
∑

i=1

µc(Ci) g
( ν(Ci)

λd(Ci)
+

1

κd

)

− ϕ(c κ) ‖h − hm‖L1(C)

=

∫

C
g
(

ξm(x) +
1

κd

)

dµc(x) − ϕ(c κ) ‖h − hm‖L1(C)

As m → ∞, the densities ξm converge pointwise to ξ = dνc

dλd for λd-a.a. x, and hm converges
to h in L1(C). Consequently, Fatou’s Lemma implies that

lim inf
N→∞

∫

C
ϕ(N1/dd(x, C(2))) dµc >

∫

C
g
(

ξ(x) +
1

κd

)

dµc(x).

Finally, observing that κ > 0 was arbitrary and applying monotone convergence yields the
general result. �

The above proposition enables us to give a partial proof of Theorem 1.2. For the
remainder of this section, let I be given by (3), assume that I ∈ (0,∞), and denote by
M the set of measures associated to the minimizers of the point allocation problem as
defined in (4). So far we have not proven that M is non-empty.

14



Proposition 4.2. Suppose that the codebooks C(N), N ∈ N, are of size N and satisfy

lim sup
N→∞

N1/d ‖d(X, C(N))‖ϕ 6 I1/d, (15)

and consider the associated empirical measures

νN =
1

N

∑

x̂∈C(N)

δx̂, N ∈ N.

Then (νN)N∈N is a tight sequence of probability measures and any accumulation point of
(νN ) lies in M (in the weak topology).

Proof. Fix an arbitrary vaguely convergent subsequence (νN )N∈I of (νN )N∈N and denote
by ν its limiting measure. Let ε > 0. As long as the Orlicz norm ‖d(X, C(N))‖ϕ is finite,
one has in general

Eϕ
( d(X, C(N))

‖d(X, C(N))‖ϕ

)

6 1.

Note that (15) implies that for all sufficiently large N ∈ N

‖d(X, C(N))‖ϕ 6 ((1 + ε)I/N)1/d

so that
lim sup
N→∞

E ϕ((N/(1 + ε)I)1/d d(X, C(N))) 6 1.

We consider the codebooks C̃(Ñ) = C((1 + ε)ÑI) for

Ñ ∈ Ĩ := {N/((1 + ε)I) : N ∈ I}.

Then

lim sup
Ñ→∞

E ϕ(Ñ1/d d(X, C̃(Ñ))) 6 1. (16)

On the other hand, the empirical measures

ν̃Ñ :=
1

Ñ

∑

x̃∈C̃(Ñ)

δx̂ = (1 + ε)Iν(1+ε)ÑI

converge vaguely to (1 + ε)Iν so that by Theorem 4.1,

lim inf
Ñ→∞

E ϕ(Ñ1/d d(X, C̃(Ñ))) >

∫

g((1 + ε)I ξ(x)) dµc(x),

where ξ = dνc

dλd . Combining this with (16), and noticing that ε > 0 is arbitrary, one obtains

∫

g(I ξ(x)) dµc(x) 6 1.

15



Consequently, the point allocation ξ̃(x) = I ξ(x) solves the allocation problem:
∫

g(ξ̃(x)) dµc(x) 6 1 and

∫

ξ̃ dλd 6 I. (17)

Due to the definition of I, the right inequality is actually an equality.
Assume now that

∫

g(ξ̃(x)) dµc(x) < 1, and fix δ > 0 (small) so that the set A :=
{x ∈ R

d : ξ̃(x) > δ} has positive Lebesgue measure. Since g restricted to [δ/2,∞)
is Lipschitz continuous, we can lower the density ξ̃ on A in such a way that the point
allocation constraint remains valid, thus contradicting the optimality of I. Consequently,
the inequalities in (17) are even equalities, and we immediately obtain that νc ∈ M. Since
νc has mass 1, we also have that ν = νc ∈ M. Moreover, (νN)N∈I converges to ν in the
weak topology. We finish the proof by noticing that the sequence (νN) is tight, since it
has no vaguely convergent subsequence loosing some of its mass. �

5 The point allocation problem

We decompose the original measure µ into its absolutely continuous part µc = h dλd and
singular component µs. The singular component will have no influence on the asymptotics
of the quantization error.

In this section we use standard methods for convex optimization problems to treat the
point allocation problem, i.e. the minimization of

∫

Rd

ξ(x) dx (18)

over all positive integrable functions ξ : R
d → [0,∞) satisfying

∫

Rd

g(ξ(x)) dµc(x) 6 1. (19)

We shall use the convex conjugate of g, i.e.

g∗(a) = sup
η > 0

[aη − g(η)], a 6 0,

and the concave function ḡ : [0,∞) → [0,∞), a 7→ −g∗(−a). Alternatively, one can define
ḡ as ḡ(a) = infη > 0[aη + g(η)].

The function ḡ is continuous and satisfies ḡ(0) = infη > 0 g(η) = 0. The right conti-
nuity in 0 is a consequence of the lower semicontinuity of g∗. Moreover, since g is lower
semicontinuous, one has

g(η) = sup
a 6 0

[aη − g∗(a)] = sup
a > 0

[ḡ(a) − aη], η > 0. (20)

Theorem 5.1. 1. The minimal value I satisfies the dual formula

I = sup
κ>0

1

κ

(

∫

ḡ
( κ

h(x)

)

dµc(x) − 1
)

. (21)
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2. The optimization problem has an integrable solution iff the integral
∫

ḡ
( κ

h(x)

)

dµc(x) (22)

is finite for some κ > 0. In such a case there exists an optimal point density ξ.

3. Suppose that (22) is finite and that

µc(R
d) sup

t > 0
ϕ(t) > 1.

Then I > 0 and there exists an optimal point density. Moreover, all optimal point
densities ξ satisfy

∫

g(ξ(x)) dµc(x) = 1 and ḡ′+
( κ

h(x)

)

6 ξ(x) 6 ḡ′−
( κ

h(x)

)

for a.a. x ∈ R
d, (23)

where κ is a maximizer of the right hand side of (21). (Here we make use of the
convention that ḡ′+(∞) = ḡ′−(∞) = 0). In particular, the supremum in the dual
formula is attained.

4. If µc(R
d) supt > 0 ϕ(t) 6 1, then I = 0 and ξ = 0 is an optimal point density.

Remark 5.2. • It follows from the concavity of ḡ that the integral (22) is either finite
or infinite for all κ > 0.

• Assume that I > 0 and that (22) is finite. In that case, (23) gives an efficient
description of optimal point densities. In particular, if ḡ is differentiable, one obtains
a one parameter family of candidates. Note that by standard results from convex
analysis (see Rockafellar (1970), Theorem 26.3), ḡ is differentiable if and only if g is
strictly convex. Moreover, in that case ḡ′ is given by

ḡ′(a) = inf{b > 0 : −g′(b) 6 a}. (24)

Proof of Theorem 5.1. Let us first show the “ > ” inequality in the duality formula.
Note that by definition of ḡ, a b > ḡ(a) − g(b) for a, b > 0. Therefore, for κ > 0 and ξ
satisfying (19), it is true that

∫

ξ(x) dx >

∫

{h>0}
ξ(x) dx =

1

κ

∫

κ

h(x)
ξ(x) dµc(x)

>
1

κ

(

∫

ḡ
( κ

h(x)

)

dµc(x) −

∫

g(ξ(x)) dµc(x)
)

>
1

κ

(

∫

ḡ
( κ

h(x)

)

dµc(x) − 1
)

.

(25)

In order to have equalities in the above estimates, we need to find a density ξ and
κ > 0 such that

ξ(x) = 0 for λd a.a. x ∈ {h = 0}, (26)

ḡ
(

κ
h(x)

)

− g(ξ(x)) = κ
h(x) ξ(x), for µc a.a. x (27)
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and
∫

g(ξ(x)) dµc(x) = 1. (28)

In the case µc(R
d) supt > 0 ϕ(t) 6 1, it is easily seen that ξ = 0 is an optimal point

density so that I = 0 which proves assertion 4. Moreover, the term on the right hand side
of (21) tends to 0 when letting κ → ∞ so that the dual formula is valid in that case.

From now on, we assume that µc(R
d) supt > 0 ϕ(t) > 1. Next, we derive a density ξ

satisfying the three abovementioned conditions. Then estimate (25) implies optimality for
this choice of ξ which proves assertion 1.

Since the remaining arguments are standard in the treatment of convex optimization
problems, we will only give a sketch of the remaining proof. First one needs to verify that
for each κ > 0, the point densities

ξκ
+(x) = ḡ′+

( κ

h(x)

)

, x ∈ R
d,

and
ξκ
−(x) = ḡ′−

( κ

h(x)

)

, x ∈ R
d

meet requirements (26) and (27). Next, one notices that the integral on the left hand side
of (28) is increasing in κ when choosing ξ = ξκ

− or ξ = ξκ
+. Moreover, for ξ = ξκ

−, letting
κ ↓ 0 and κ → ∞, the integral converges to 0 and some value bigger than 1, respectively.
Finally, one proves that condition (28) is satified for an appropriate interpolation of ξκ

−

and ξκ
+, where κ > 0 is the largest value for which the integral in (28) is less than or equal

to 1 for ξ = ξκ
−. �

6 The singular case

In this section, we consider an original X with law µ⊥λd or, equivalently, µc = 0. Moreover,
we again assume that µ is compactly supported.

Proposition 6.1. There exist codebooks C(N), N > 1, with limN→∞
1
N |C(N)| = 0 such

that
lim

N→∞
E ϕ(N1/d d(X, C(N))) = 0.

Proof. We fix ε > 0. As the measure µ is singular with respect to the Lebesgue measure
λd, there exists an open set A ⊂ R

d with µ(A) = 1 and λd(A) 6 ε. Due to Lemma 1.4.2 in
Cohn (1980), one can represent the open set A as a countable disjoint union of half-open
cubes (Ci)i∈N in

⋃∞
m=1 Bm, where

Bm =
{

[i12
−m, (i1 + 1)2−m) × · · · × [id2

−m, (id + 1)2−m) : i1, . . . , id ∈ Z
}

⊂ R
d

for m ∈ N. Due to monotone convergence, we obtain that there exists M ∈ N with

µ
(

M
⋃

i=1

Ci

)

> µ(A) − ε = 1 − ε. (29)
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Set C =
⋃M

i=1 Ci.
Let us introduce the codebooks; fixing l > 0 such that supp (µ) ⊂ [−l, l)d, the con-

struction depends upon two parameters κ1, κ2 > 0:

C(N) =
(

(κ1 N−1/d
Z

d) ∩ C
)

∪
(

(κ2 N−1/d
Z

d) ∩ [−l, l)d
)

, N > 1.

We need to control the size of C(N). For i ∈ {1, . . . , M}, let mi ∈ N denote the unique
number with Ci ∈ Bmi , and observe that

|(κ1 N−1/d
Z

d) ∩ Ci| 6
( 2−mi

κ1 N−1/d
+ 1

)d
∼ λd(Ci) κ−d

1 N

as N → ∞. Analogously,

|(κ2 N−1/d
Z

d) ∩ [−l, l)d| 6
( 2l

κ2 N−1/d
+ 1

)d
∼ (2l)d κ−d

2 N.

Consequently,

|C(N)| 6

M
∑

i=1

|(κ1 N−1/d
Z

d) ∩ Ci| + |(κ2 N−1/d
Z

d) ∩ [−l, l)d|

.
(

λd(C) κ−d
1 + (2l)d κ−d

2

)

N 6
(

ε κ−d
1 + (2l)d κ−d

2

)

N.

Next, we estimate the approximation error. Suppose that N > 1 is sufficiently large so
that Ci ∩ C(N) 6= ∅ for all i = 1, . . . , M . Let c = supx∈[0,1)d ‖x‖, and observe that for all

x ∈ C, d(x, C(N)) 6 c κ1 N−1/d. Moreover, for any x ∈ [−l, l)d, d(x, C(N)) 6 c κ2 N−1/d.
Consequently,

E ϕ(N1/d d(X, C(N))) 6 µ(C) ϕ(c κ1) + (1 − µ(C))ϕ(c κ2)

6 ϕ(c κ1) + εϕ(c κ2).
(30)

Now, for δ > 0 arbitrary, pick κ1, κ2 > 0 satisfying ϕ(c κ1) 6 δ/2 and (2l)d/κd
2 6 δ/2,

and choose ε > 0 so that εκ−d
1 6 δ/2 and εϕ(c κ2) 6 δ/2. Then the corresponding

codebooks C(N) satisfy

|C(N)| . δ N and E ϕ(N1/d d(X, C(N))) . δ,

and the assertion of the lemma follows by a diagonalization argument.
�

7 Extension to the non-compact setting

In order to treat the non-compact quantization problem, we need to control the impact
of realizations lying outside large cubes. For Lp(P)-norm distortions, Pierce (1970) (see
also Graf & Luschgy (2000, Lemma 6.6)) discovered that the quantization error can be
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estimated against a higher moment p̃ > p of ‖X‖. His result can be easily extended to
the inequality

δ(N |X, p) 6 C E[‖X‖p̃]1/p̃N−1/d,

where X is an arbitrary original in R
d, N ∈ N and C is a universal constant depending

only on E, p and p̃. Pierce’s proof is based on a random coding argument. In contrast to
his approach, we will use ε-nets to establish a similar result.

The construction is based on several parameters. Let Ψ : [0,∞) → [0,∞) denote a
monotonically increasing function, (rn)n∈N0 an increasing sequence, and let (αn)n∈N be a
positive summable sequence.

Lemma 7.1. Let J ∈ N0 and denote by X a (B(0, rJ)c ∪ {0})-valued r.v. For N > 0
there exists a codebook C(N) of size 1 + N

∑∞
n=J αn satisfying

E ϕ
(

N1/d d(X, C(N))
)

6 E[Ψ(‖X‖)]
∞

∑

n=J

1

Ψ(rn)
ϕ(cE α−1/d

n rn+1), (31)

where cE is a finite constant depending on the norm ‖ · ‖ only.

Proof. First, observe that the sum in estimate (31) diverges whenever lim infn→∞ rn < ∞.
Thus we can assume without loss of generality that limn→∞ rn = ∞. Fix J ∈ N0 and
N ∈ N. For n ∈ N0, let Vn = B(0, rn) and Nn = αnN . Moreover, we denote by I ∈ N0 the
smallest index n with Nn < 1, and let for n ∈ N0 with J 6 n < I, Cn denote an optimal
ε-net for B(0, rn+1) consisting of Nn elements. As is well known there exists a constant cE

only depending on the norm ‖ · ‖ such that d(x, Cn) 6 cErn+1N
−1/d
n for all x ∈ B(0, rn+1).

Thus the codebook C = {0} ∪
⋃I−1

n=J Cn contains at most 1 + N
∑∞

n=J αn elements, we get

E ϕ
(

N1/d d(X, C)
)

=

∞
∑

n=J

E

[

1Vn+1\Vn
(X) ϕ

(

N1/d d(X, C)
)

]

6

∞
∑

n=J

P(X 6∈ Vn) ϕ
(

cE rn+1 N1/d/(1 ∨ Nn)1/d
)

6

∞
∑

n=J

P(X 6∈ Vn) ϕ(cE rn+1 α−1/d
n )

6 E[Ψ(‖X‖)]
∞

∑

n=J

1

Ψ(rn)
ϕ(cE rn+1 α−1/d

n ).

�

Definition 7.2. We say that an increasing function Ψ : [0,∞) → [0,∞) satisfies the
growth condition (G) for ϕ iff there exists a summable sequence (αn) and an increasing
sequence (rn) with

∞
∑

n=0

1

Ψ(rn)
ϕ(α−1/d

n rn+1) < ∞.
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Suppose that Ψ satisfies condition (G) for ϕ. We shall see that the condition that
EΨ(‖X‖) < ∞ is sufficient to conclude that the quantization problem for X under the
Orlicz norm induced by ϕ is of order N−1/d. Moreover, non-compact quantization can
then be approximated by the compact quantization.

Example 7.3. Suppose that ϕ satisfies ϕ(t) 6 c exp{tκ} for all t > 0, where c, κ ∈ R+

are appropriate constants. Then, for any κ̃ > κ, the function

Ψ(t) = exp{tκ̃}

satisfies (G) for ϕ, as can be verified easily for (αn)n∈N0 = ((n+2)−2)n∈N0 and (rn)n∈N0 =
((n + 1)s)n∈N0 for s > 0 with sκ̃ > ( 2

d + s)κ.

Remark 7.4. The proof of the upper bound in Theorem 1.1 relies on the assumption
that EΨ(‖X‖) < ∞ for some Ψ satisfying the growth condition (G). As we shall see
below, this assumption can be replaced by the equivalent condition that X ∈ LΨ(P) for
some Ψ satisfying (G). First, assume that EΨ(‖X‖) < ∞ for some Ψ satisfying (G). Then
Ψ̃ = 1[1,∞) Ψ satisfies (G), and since by monotone convergence

lim
κ→∞

EΨ(‖X‖/κ) = 0,

it follows that X ∈ LΨ̃(P). On the other hand, assuming that X ∈ LΨ(P) for some Ψ
satisfying (G) implies the existence of a κ > 0 for which

EΨ(‖X‖/κ) < ∞.

Now, let Ψ̃(t) = Ψ(t/κ), and denote by (αn) and (rn) sequences as in Definition 7.2. Then
EΨ̃(‖X‖) < ∞, and

∞
∑

n=0

1

Ψ̃(r̃n)
ϕ(α̃−1/d

n r̃n+1) =
∞

∑

n=0

1

Ψ(rn)
ϕ(α−1/d

n rn+1) < ∞

for α̃n = κdαn and r̃n = κrn, n ∈ N0.

We now combine the quantization results for continuous, singular, and unbounded
measures to finish the proof of the upper bound in Theorem 1.1.
Proof of Theorem 1.1. Let Ψ be a function satisfying (G). It is easy to see that there
exist also a summable sequence (αn) and an increasing sequence (rn) such that

∞
∑

n=0

1

Ψ(rn)
ϕ(cE α−1/d

n rn+1) < ∞,

where cE is as in Lemma 7.1. We denote by ξ an optimal point density, so that ξ satisfies

∫

Rd

g(ξ(x)) dµc(x) = 1 and

∫

Rd

ξ(x) dx = I
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or ξ = 0 (in the case I = 0). We fix ε > 0 and let ξ̃(x) = ξ(x) + εh(x), x ∈ R
d. This point

density satisfies
∫

Rd

g(ξ̃(x)) dµc(x) < 1

since g is strictly decreasing on {η > 0 : g(η) > 0}. Now fix J ∈ N0 such that

∫

Rd

g(ξ̃(x)) dµc(x) + E[Ψ(‖X‖)]
∞

∑

n=J

1

Ψ(rn)
ϕ(cE α−1/d

n rn+1) < 1 (32)

and
∑∞

n=J αn < ε. Next, decompose the measure µ into the sum µ = µ̃c + µ̃s + µu, where
µ̃c and µ̃s are the absolutely continuous and singular part of µ restricted to B(0, rJ),
respectively, and µu contains the rest of the mass of µ.

It remains to combine the former results. Due to Proposition 3.1 there exist codebooks
C1(N), N > 1, with limN→∞

1
N |C1(N)| and

lim sup
N→∞

∫

ϕ(N1/dd(x, C1(N))) dµ̃c 6

∫

Rd

g(ξ̃(x)) dµc(x).

Moreover, Proposition 6.1 implies the existence of codebooks C2(N), N > 1, with limN→∞
1
N |C2(N)| =

0 and

lim
N→∞

∫

ϕ(N1/dd(x, C2(N))) dµ̃s = 0.

Finally, Lemma 7.1 (applied to X̃ = 1B(0,rJ)c(X) · X) yields the existence of codebooks
C3(N), N > 1, for which

lim sup
N→∞

1

N
|C3(N)| 6

∞
∑

n=J

αn < ε

and

lim sup
N→∞

∫

ϕ(N1/dd(x, C3(N))) dµu 6 E[Ψ(‖X‖)]
∞
∑

n=J

1

Ψ(rn)
ϕ(C α−1/d

n rn+1).

Now consider the codebooks C(N) = C1(N)∪ C2(N)∪ C3(N). Due to the above estimates
and (32), one has

lim sup
N→∞

∫

ϕ(N1/dd(x, C(N))) dµ

6

∫

Rd

g(ξ̃(x)) dµc(x) + E[Ψ(‖X‖)]
∞

∑

n=J

1

Ψ(rn)
ϕ(C α−1/d

n rn+1) < 1,

so that for sufficiently large N it is true that ‖d(X, C(N))‖ϕ 6 N−1/d. On the other hand,

lim sup
N→∞

1

N
|C(N)| < (1 + ε)I + ε
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and, for sufficiently large N , it holds that |C(N)| 6 (I +εI +ε)N . Consequently, it follows
that for large N

δ((I + εI + ε)N |X, ϕ) 6 N−1/d.

Switching from N to M = (I + εI + ε)N one obtains

δ(M |X, ϕ) 6 (I + εI + ε)1/d M−1/d,

for M large. Since ε > 0 was arbitrary, it follows that

lim sup
M→∞

M1/d δ(M |X, ϕ) 6 I1/d

and we are done. �
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