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Abstract. We study numerical integration of Lipschitz functionals on a Banach space by

means of deterministic and randomized (Monte Carlo) algorithms. This quadrature problem is

shown to be closely related to the problem of quantization and to the average Kolmogorov widths

of the underlying probability measure. In addition to the general setting we analyze in particular

integration w.r.t. Gaussian measures and distributions of diffusion processes. We derive lower

bounds for the worst case error of every algorithm in terms of its cost, and we present matching

upper bounds, up to logarithms, and corresponding almost optimal algorithms. As auxiliary

results we determine the asymptotic behaviour of quantization numbers and Kolmogorov widths

for diffusion processes.

1. Introduction

Let µ be a Borel probability measure on a Banach space (X, ‖ · ‖) such that
∫

X
‖x‖µ(dx) < ∞.

Moreover, let F denote the class of all Lipschitz continuous functionals f : X → R with Lipschitz
constant at most one, i.e.,

|f(x)− f(y)| ≤ ‖x− y‖, x, y ∈ X.

We wish to compute

S(f) =
∫

X
f(x) µ(dx)

for f ∈ F by means of deterministic or randomized (Monte Carlo) algorithms that use the values
f(x) of the functional f at a finite number of sequentially (adaptively) chosen points x ∈ X.

The classical instance of this quadrature problem is given by X = Rd and µ being the uniform
distribution on [0, 1]d, say, or the d-dimensional standard normal distribution. In the present
paper we are mainly interested in infinite-dimensional spaces X, and in particular we study
Gaussian measures µ and distributions µ of diffusion processes. Infinite-dimensional quadrature
is applied, e.g., in mathematical finance and quantum physics, and moreover it is used as a
computational tool to solve parabolic or elliptic partial differential equations.

We study the information cost of algorithms, which only takes into account the evaluations of
the integrand f , and we consider three different cost models. In addition to full space sampling,
which permits evaluation of f at any point x ∈ X at cost one and which is commonly studied
in the literature, we introduce two variants of subspace sampling. Hereby we restrict the set
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of admissible sampling points and we increase the cost per evaluation in order to obtain more
realistic results for infinite-dimensional quadrature problems.

For fixed subspace sampling, f may only be evaluated at the points from a finite-dimensional
subspace X0 ⊂ X. For variable subspace sampling we have an increasing sequence of finite-
dimensional subspaces Xi ⊂ X, and evaluation is possible at any point x ∈ ⋃∞

i=1 Xi. The cost
per evaluation is defined by dim(X0) in the fixed subspace case and inf{dim(Xi) : x ∈ Xi} in the
variable subspace case. The subspace or sequence of subspaces, resp., may be chosen arbitrarily,
but it is fixed for a specific algorithm.

To give an example we consider the approximation of S(f) in the diffusion case by means of
a weak Itô Taylor scheme together with piecewise linear interpolation. These schemes are most
commonly used with a uniform step-size 1/k, which corresponds to fixed subspace sampling.
The dimension of the subspace X0, which consists of piecewise linear functions, is proportional
to k, and the overall information cost of the algorithm is proportional to the product of the
number of replications of the scheme and the number of time steps. The latter parameter would
be completely disregarded in the full space sampling model. Heinrich (1998) and Heinrich and
Sindambiwe (1999) have introduced multilevel Monte Carlo methods for computation of global
solutions of integral equations and for parametric integration, respectively. A multilevel algo-
rithm uses dependent samples in a hierarchy X1 ⊂ . . . ⊂ Xm of finite-dimensional subspaces
with only a small proportion taken from high-dimensional spaces. In the context of quadrature
problems for diffusion processes multilevel Itô Taylor schemes have been introduced by Giles
(2006), and here the subspaces consist of piecewise linear functions on a nested sequence of time
grids. The analysis in a fixed subspace model corresponding to Xm would be inadequate, since it
does not capture the fact that a large proportion of samples is taken in low-dimensional spaces.

In this paper we present a worst case analysis of the quadrature problem on the Lipschitz
class F , and we optimally relate the error and the cost of algorithms. For each of the three cost
models we let edet

N,samp and eran
N,samp with samp ∈ {fix, var, full} denote the smallest worst case

error that can be achieved by any deterministic or randomized algorithm, resp., whose worst
case cost is bounded by N . We wish to determine the asymptotic behaviour of the minimal
errors edet

N,samp and eran
N,samp, and we want to find algorithms with cost close to N and error close

to the corresponding minimal error. Hereby we can, for instance, answer the question whether
suitable multilevel Monte Carlo algorithms are superior to arbitrary randomized algorithms that
sample in a fixed subspace.

In the sequel we present our main results for Gaussian measures and distributions of diffusion
processes. We write aN ³ bN for sequences of positive real numbers aN and bN if

0 < inf
N∈N

aN/bN ≤ sup
N∈N

aN/bN < ∞.

Moreover, aN
log³ bN means that there exists γ > 0 such that

lim sup
N→∞

aN

bN
(lnN)−γ < ∞ and lim sup

N→∞
aN

bN
(lnN)γ > 0,

which is used to simplify the presentation at this point. Note that
log³ defines a non-symmetric

relation, which, roughly speaking, means the following for sequences converging to zero: Up
to powers of lnN , aN converges to zero at least as fast as bN and subsequences aNk

and bNk

converge to zero at the same rate.
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Suppose that µ is a zero mean Gaussian measure on a separable Banach space X, whose small
ball function

ϕ(ε) = − lnµ({x ∈ X : ‖x‖ ≤ ε})
satisfies

ϕ(ε) ³ ε−α · (ln ε−1)β

for some constants α > 0 and β ∈ R as ε tends to zero. This asymptotic behaviour typically holds
for Gaussian measures on infinite-dimensional spaces, see, e.g., the review article by Li, Shao
(2001). Consider, for instance, the distribution µ of the fractional Brownian motion with Hurst
parameter H ∈ ]0, 1[ on the space X = C([0, 1]) or X = Lp([0, 1]) with p ∈ [1,∞[. Then α = 1/H
and β = 0. A non-zero constant β appears, for example, in case of µ being the distribution of
the d-dimensional Brownian sheet on the space X = L2([0, 1]d). Then α = 2 and β = 2(d − 1),
see Csáki (1984) and Fill, Torcaso (2004). Given the above small ball asymptotics, the minimal
errors satisfy

(1) edet
N,full ³ (lnN)−1/α · (ln lnN)β/α,

see Theorem 1 and Proposition 2, and

(2)

eran
N,full

log³ N−1/2,

eran
N,var

log³ N−min(1/2,1/α),

eran
N,fix

log³ N−1/(2+α),

see Theorems 8–10 for more precise upper and lower bounds involving β, too, via powers of lnN
and ln lnN .

Suppose that µ is the distribution of an m-dimensional diffusion process on the space X =
C([0, 1],Rm), equipped with the supremum norm, or on a space X = Lp([0, 1],Rm) with 1 ≤ p <
∞. Under mild assumptions on the drift and diffusion coefficients the estimates (1) and (2) with
α = 2 and β = 0 are valid, too, in the diffusion case, see Theorem 11.

We conclude that randomization helps substantially both in the Gaussian and the diffusion
case, as it turns a logarithmic decay for minimal errors even for full space sampling into a
polynomial decay already for fixed subspace sampling. Moreover, for randomized algorithms,
variable subspace sampling is as powerful as full space sampling if 0 < α ≤ 2 and always
superior to fixed subspace sampling.

Note that the asymptotic analysis of minimal errors in the sense of
log³ only provides lower

bounds that hold for infinitely many integers N . However, lower bounds that hold for every N
are available in the Gaussian case with α ≥ 2, where

lim
N→∞

ln eran
N,var/ lnN−1/α = 1

according to Theorem 10, and in the diffusion case on the space X = C([0, 1],Rm), where

lim
N→∞

ln eran
N,var/ ln N−1/2 = 1,

lim
N→∞

ln eran
N,fix/ ln N−1/4 = 1

according to Theorem 12.
The upper bounds for eran

N,fix are achieved by classical Monte Carlo methods using independent
and identically distributed samples. The latter are drawn according to a normal distribution on
a suitable finite-dimensional subspace in the Gaussian case and by means of a weak Euler scheme



4

in the diffusion case. The same kinds of distributions are used as building blocks for multilevel
Monte Carlo methods, which yield the upper bounds for eran

N,var. In view of the lower bounds,
these algorithms are almost optimal in the corresponding cost model.

The results in the Gaussian and in the diffusion case are derived from general theorems
that relate minimal errors for the quadrature problem to best approximation of the underlying
distribution µ with respect to a Wasserstein distance, where two kinds of constraints concerning
the support of the approximating measures turn out to be relevant. For the quantization problem
these measures are discrete, and the n-th quantization number q

(1)
n gives the distance of µ to the

class of all probability measures on X with support of size at most n. The average Kolmogorov
widths d

(1)
k is defined as the distance of µ to the class of all probability measures on X that

are concentrated on finite-dimensional subspaces of dimension at most k. See, e.g., Chen, Fang
(2004), Creutzig (2002), Dereich (2003, 2007a, 2007b), Dereich et al. (2003), Dereich, Scheutzow
(2005), Graf, Luschgy (2000), Luschgy, Pagès (2004, 2006), Mathé (1990), Pagès, Printems
(2005), and Ritter (2000) for results and references concerning the quantization problem and
Kolmogorov widths.

As a well-known fact,

edet
N,full = q

(1)
N ,

see Theorem 1. In this paper we establish the lower bounds

eran
N,full ≥ 1

8 ·N1/2 · sup
m≥4N

(q(1)
m−1 − q(1)

m ),

eran
N,fix ≥ inf

n·k≤N
max(eran

n,full, d
(1)
k ),

eran
N,var ≥ max(eran

N,full,
1
2 · d

(1)
2N )

for the minimal errors of randomized algorithms in the different cost models, see Theorems 3,
5, and 7. Upper bounds in terms of quantization numbers and average Kolmogorov widths are
available as well, see Theorems 2, 4, and 6.

This paper is organized as follows. In Sections 2 and 3 we introduce the basic concepts and
definitions. Full space sampling is studied in Section 4, which contains general results, and
Section 5, where we briefly discuss quadrature problems on finite-dimensional spaces. Sections 6
and 7 are devoted to the analysis of randomized algorithms in the fixed subspace and the variable
subspace model. In Sections 8 and 9 we study Gaussian measures and diffusion processes, resp.,
and we apply the general results from Sections 4, 6, and 7. As auxiliary results we determine the
asymptotic behaviour of the quantization numbers and the Kolmogorov widths in the diffusion
case, see Proposition 3.

2. Algorithms, Error, and Cost

2.1. Functional Evaluation and Cost Model. We assume that algorithms for approximation
of S(f) have access to the functionals f ∈ F via an oracle (subroutine) that provides values
f(x) for points x ∈ X or a subset thereof. The cost per evaluation (oracle call) is modelled by a
measurable function

(3) c : X → N ∪ {∞},
and we are interested in three particular such models, which will be presented in increasing
generality.
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For fixed subspace sampling evaluations are possible only at the points from a given finite-
dimensional subspace

{0} ( X0 ⊂ X,

and the cost for each oracle call coincides with the dimension of X0. Thus,

(4) c(x) =

{
dim(X0), if x ∈ X0

∞, otherwise.

For variable subspace sampling we consider a sequence of finite-dimensional subspaces

{0} ( X1 ⊂ X2 ⊂ . . . ⊂ X,

and the cost function is defined by

(5) c(x) = inf{dim(Xi) : x ∈ Xi}.
Finally, for full space sampling, we have

(6) c = 1,

i.e., evaluation of functionals f ∈ F is possible at any point x ∈ X at cost one.

Remark 1. If dim(X) < ∞ then it is most natural to allow full space sampling, with the constant
one possibly being replaced by dim(X). This is no longer the case for infinite-dimensional spaces,
where full space sampling is mainly used to derive lower bounds for all of the cost models.

For both kinds of subspace sampling we think of bases associated to the subspaces, so that
c(x) is the (minimal) number of real coefficients needed to represent x and this representation
is actually submitted to the oracle.

Example 1. Let us illustrate fixed and variable subspace sampling by means of variants of
the weak Euler scheme, which is used here for quadrature with respect to the distribution of a
diffusion process with values in X = C([0, 1],R). See also Remark 8.

With a uniform step-size 1/k and piecewise linear interpolation this scheme randomly gener-
ates elements x of the k + 1-dimensional subspace X0 of piecewise linear functions with break-
points at `/k. Hence we have an instance of fixed subspace sampling with an oracle that computes
f(x) at a cost c(x) = k + 1.

Sometimes extrapolation techniques are used to reduce the bias of the Euler scheme. In this
case we deal with variable subspace sampling, where Xi consists of piecewise linear functions
with breakpoints at `/2i−1, say, so that dim(Xi) = 2i−1 + 1. See, e.g., Talay, Tubaro (1990) and
Bally, Talay (1996). The multilevel Euler scheme, which simultaneously reduces the variance
and the bias, is based on variable subspace sampling, too, see Section 7.

2.2. Deterministic Algorithms. Any deterministic sequential evaluation of functionals f ∈ F
is formally defined by a point

x1 ∈ X

and a sequence of mappings

ψ` : R`−1 → X, ` ≥ 2.

For every f ∈ F the evaluation starts at the point x1, and the mappings ψ` determine the
subsequent evaluation points. More precisely, after n steps the functional values

y1 = f(x1)

and
y` = f(ψ`(y1, . . . , y`−1)), ` = 2, . . . , n,
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are known. A decision to stop or to further evaluate f is made after each step. This is formally
described by a sequence of mappings

τ` : R` → {0, 1}, ` ≥ 1,

and the total number n(f) of evaluations is given by

n(f) = min{` ≥ 1 : τ`(y1, . . . , y`) = 1},
which is finite for every f ∈ F by assumption. Finally, an approximation

(7) Ŝ(f) = φn(f)(y1, . . . , yn(f))

to S(f) is defined by a sequence of mappings

φ` : R` → R, ` ≥ 1.

The tuple Ŝ = (x1, (ψ`), (τ`), (φ`)) will be considered as a deterministic algorithm, with algo-
rithm being understood in a broad sense, and the corresponding mapping Ŝ : F → R given by
(7) will be called the mapping induced by Ŝ. The class of all deterministic algorithms is denoted
by Sdet.

In every cost model (3) the cost for applying the algorithm Ŝ to f ∈ F is defined by

costc(Ŝ, f) = c(x1) +
n(f)∑

`=2

c(ψ`(y1, . . . , y`−1)).

Example 2. Note that Sdet contains in particular all quadrature formulas. Here we have

Ŝ(f) =
n∑

`=1

a` · f(x`)

with a` ∈ R and x` ∈ X. Clearly Ŝ is induced by Ŝ = (x1, (ψ`), (τ`), (φ`)) with constant mappings
ψ2 = x2, . . . , ψn = xn, τ1 = . . . = τn−1 = 0, and τn = 1, i.e., all functionals f ∈ F are evaluated
non-sequentially at the same set of n points. Furthermore, φn(y1, . . . , yn) =

∑n
`=1 a` · y`. Any

such algorithm Ŝ will be called a quadrature formula with nodes x` and weights a`. We obtain

costc(Ŝ, f) =
n∑

`=1

c(x`).

For instance, in a fixed subspace model (4) with X0 = span{x1, . . . , xn} we have costc(Ŝ, f) =
n · dim(X0).

2.3. Randomized Algorithms. A randomized (or Monte Carlo) algorithm based on sequential
evaluation is formally defined by a probability space (Ω, A, P ) and a mapping

Ŝ : Ω → Sdet,

which induces a mapping
Ŝ : Ω× F → R.

We require that

(i) Ŝ(·, f) is measurable for every f ∈ F ,
(ii) ω 7→ costc(Ŝ(ω), f) is measurable for every f ∈ F and every cost function c.



7

We refer to Nemirovsky, Yudin (1983) and Wasilkowski (1989) for this and an equivalent
definition of randomized algorithms. In the sequel the random variable from (i) is denoted by
Ŝ(f), and we use Sran to denote all randomized algorithms Ŝ with properties (i) and (ii) on any
probability space. Clearly, Sdet ( Sran.

Example 3. Let a1, . . . , an ∈ R and X1, . . . , Xn be random variables on a probability space
(Ω, A, P ) taking values in X. Consider a randomized algorithm Ŝ : Ω → Sdet such that Ŝ(ω) is a
quadrature formula with nodes X`(ω) and weights a` ∈ R for every ω ∈ Ω, see Example 2. Then
Ŝ induces the mapping

Ŝ(ω, f) =
n∑

`=1

a` · f(X`(ω))

and we have

costc(Ŝ(ω), f) =
n∑

`=1

c(X`(ω)),

so that (i) and (ii) are satisfied. The algorithm Ŝ ∈ Sran will be called a randomized quadrature
formula with random nodes X` and deterministic weights a`.

Taking a1 = . . . = an = 1/n as well as X1, . . . , Xn being independent and distributed ac-
cording to a Borel probability measure ν on X, we obtain randomized quadrature formulas such
that

Ŝn,ν(f) = 1/n ·
n∑

`=1

f(X`).

Thus Sran contains in particular the classical Monte Carlo method. By a slight abuse of notation,
we use Ŝn,ν to denote any such randomized quadrature formula. Clearly, costc(Ŝn,ν , f) = n in
the full space model. However, costc(Ŝn,ν , f) = ∞ in every fixed or variable subspace model if
ν(X0) = 0 for every finite-dimensional subspace X0 ⊂ X, and this excludes the most natural
choice of ν = µ in many cases.

The weak Euler scheme with uniform step-size 1/k, see Example 1, leads to a method Ŝn,ν with
ν 6= µ in all non-trivial cases. In the corresponding fixed subspace model we have costc(Ŝn,ν , f) =
n·(k+1). In other words, the cost is essentially given by the product of the number of replications
and the number of time steps.

2.4. The Worst Case Setting. The worst case error of Ŝ ∈ Sran is defined by

e(Ŝ) = sup
f∈F

(
E|S(f)− Ŝ(f)|2

)1/2
,

which in particular for Ŝ ∈ Sdet reads

e(Ŝ) = sup
f∈F

|S(f)− Ŝ(f)|.

The worst case cost of Ŝ ∈ Sran is defined by

costc(Ŝ) = sup
f∈F

E(costc(Ŝ, f)),

which in particular for Ŝ ∈ Sdet reads

costc(Ŝ) = sup
f∈F

costc(Ŝ, f).
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3. Minimal Errors and Approximation of Distributions

A typical question that will be addressed in this paper is as follows: what is the minimal error
e(Ŝ) that can be achieved by any randomized algorithm Ŝ using any kind of fixed subspace
sampling such that costc(Ŝ) is bounded by N?

3.1. Minimal Errors. To formally pose this question together with obvious modifications we
use the following notation. Let Cfix denote the set of all cost functions given by (4) with any
finite-dimensional subspace {0} ( X0 ⊂ X, let Cvar denote the set of all cost functions given
by (5) with any increasing sequence of finite-dimensional subspaces {0} ( Xi ⊂ X, and let Cfull

consist of the constant cost function one, see (6). For

alg ∈ {det, ran}, samp ∈ {fix, var, full},
and N ∈ N we introduce the N -th minimal error

ealg
N,samp = inf{e(Ŝ) : Ŝ ∈ Salg, ∃ c ∈ Csamp : costc(Ŝ) ≤ N}.

At the beginning of this section we have therefore asked to determine eran
N,fix. We add that

minimal errors are key quantities in information-based complexity, see, e.g., Traub, Wasilkowski,
Woźniakowski (1988), Novak (1988), and Ritter (2000).

Remark 2. Note that
ealg
N,full ≤ ealg

N,var ≤ ealg
N,fix.

3.2. Quantization and Average Kolmogorov Widths. We relate minimal errors for the
quadrature problem with respect to µ to best approximation of µ by means of

• probability measures with a finite support,
• probability measures supported on finite-dimensional subspaces.

In this way we determine upper and lower bounds for the minimal errors and construct almost
optimal algorithms for the quadrature problem.

For both variants of the approximation problem we consider the Wasserstein distance ∆(r)(·, ·)
of order r > 0 on the space of Borel probability measures on X, i.e.,

∆(r)(ρ1, ρ2) = inf
ρ

(∫

X×X
‖x1 − x2‖r ρ(d(x1, x2))

)1/r

,

where the infimum is taken over all Borel probability measures ρ on X×X with marginals ρi. If
X is separable then ∆(r) is a metric for r ≥ 1, and

∆(1)(ρ1, ρ2) = sup
f∈F

∣∣∣∣
∫

X
f(x) ρ1(dx)−

∫

X
f(x) ρ2(dx)

∣∣∣∣

according to the Kantorovich-Rubinstein Theorem. See Rachev (1991).
For the measure µ the n-th quantization number q

(r)
n of order r > 0 is defined as

q(r)
n = inf{∆(r)(µ, µ̃) : | supp(µ̃)| ≤ n},

and we have
q(r)
n = inf

x1,...,xn∈X
q(r)(x1, . . . , xn),

where

q(r)(x1, . . . , xn) =
(∫

X
min

`=1,...,n
‖x− x`‖r µ(dx)

)1/r

.
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See, e.g., Graf, Luschgy (2000). In this context a collection of points x1, . . . , xn ∈ X is called a
codebook for quantization of the probability measure µ. Note that q

(1)
n < ∞, and furthermore

limn→∞ q
(1)
n = 0 if X is separable.

For the measure µ the k-th average Kolmogorov width of order r > 0 is defined by

d
(r)
k = inf{∆(r)(µ, µ̃) : dim(span(supp(µ̃))) ≤ k},

and we have

d
(r)
k = inf

dim(X0)=k

(∫

X
inf

x0∈X0

‖x− x0‖r µ(dx)
)1/r

.

See, e.g., Ritter (2000, Sec. VII.2.5) and Creutzig (2002) for results and references.

4. General Results for Full Space Sampling

Recall that full space sampling corresponds to the cost model defined by c = 1, see (6).

4.1. Deterministic Algorithms. The quantization problem and the quadrature problem by
means of deterministic algorithms using full space sampling are equivalent in the following sense.
Since S is a real-valued linear mapping on a convex and symmetric set F , it follows that

(8) edet
N,full = inf{e(Ŝ) : Ŝ ∈ Sdet is a quadrature formula, cost1(Ŝ) ≤ N},

see Smolyak (1965), Bakhvalov (1971), and also Traub, Wasilkowski, Woźniakowski (1988, Chap.
4.5). Furthermore, for F and S as studied in this paper we have

inf{e(Ŝ) : Ŝ ∈ Sdet is a quadrature formula with nodes x1, . . . , xN} = q(1)(x1, . . . , xN )

for every codebook x1, . . . , xN ∈ X, see Kantorovich, Rubinstein (1958) and Gray, Neuhoff,
Shields (1975). The latter infimum is attained by a quadrature formula with induced mapping

(9) Ŝ(f) =
N∑

`=1

µ(V`) · f(x`),

if V1, . . . , VN is a corresponding Voronoi partition of X. An (almost) optimal codebook therefore
yields an (almost) optimal quadrature formula, and the N -th minimal error edet

N,full coincides with
the N -th quantization number of order one.

Theorem 1. For every N ∈ N
edet
N,full = q

(1)
N .

4.2. Randomized Algorithms. We first state an upper bound for the minimal error eran
N,full in

terms of the quantization number q
(2)
N , which is a consequence of a well-known variance reduction

technique based on quantization, see Pagès, Printems (2005). Note that limN→∞ q
(2)
N = 0 if X

is separable and
∫
X ‖x‖2 µ(dx) < ∞. Under the latter assumption the classical Monte Carlo

method ŜN,µ without variance reduction, see Example 3, only yields errors of order N−1/2 in all
non-trivial cases.

Theorem 2. For every N ∈ N
eran
2N,full ≤ 2 ·N−1/2 · q(2)

N .
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Proof. Consider x1, . . . , xN ∈ X as well as a corresponding Voronoi partition V1, . . . , VN of X.
For f ∈ F let J(f) denote the interpolation of f at the points x` that is constant on the
corresponding cells V`, i.e.,

J(f) =
N∑

`=1

f(x`) · 1V`
.

Thus a deterministic algorithm with induced mapping given by (9) approximates S(f) by
S(J(f)). Consider a randomized algorithm Ŝ ∈ Sran with cost1(Ŝ) ≤ 2N and induced map-
ping given by

Ŝ(f) = S(J(f)) + 1/N ·
N∑

`=1

(f − J(f))(X`),

where X1, . . . , XN are independent and distributed according to µ. Hence the non-deterministic
part of Ŝ consists of applying the classical Monte Carlo method ŜN,µ to f̃ = f −J(f). It follows
that

e(Ŝ) = N−1/2 · sup
f∈F

(∫

X

(
f̃(x)− S(f̃)

)2
µ(dx)

)1/2

.

Since |f̃(x)| ≤ min`=1,...,N ‖x− x`‖, we obtain
(∫

X

(
f̃(x)− S(f̃)

)2
µ(dx)

)1/2

≤
(∫

X
f̃2(x) µ(dx)

)1/2

+ |S(f̃)|

≤ q(2)(x1, . . . , xN ) + q(1)(x1, . . . , xN )

≤ 2 · q(2)(x1, . . . , xN ),

which completes the proof. ¤

We now turn to lower bounds for randomized algorithms. In this setting a result analogous
to (8) is not available in general, and therefore considerations cannot a priori be restricted to
randomized quadrature formulas. We use the following tool, which is due to Bakhvalov (1959)
and Novak (1988) and which holds for integration problems in general, see Novak (1988, Sec.
2.2.10).

Proposition 1. Let m ≥ 4N , and suppose there are functionals f1, . . . , fm : X → R such that

(10) {x ∈ X : fi(x) 6= 0} ∩ {x ∈ X : fj(x) 6= 0} = ∅
for all i 6= j and

(11)
m∑

i=1

δi · fi ∈ F

for all δ1, . . . , δm ∈ {±1}. Then

eran
N,full ≥ 1

4 ·N1/2 · min
i=1,...,m

S(fi).

A proper choice of the functionals fi in Proposition 1 yields a lower bound for the minimal
error eran

N,full in terms of consecutive differences of quantization numbers of order one.

Theorem 3. For every N ∈ N
eran
N,full ≥ 1

8 ·N1/2 · sup
m≥4N

(q(1)
m−1 − q(1)

m ).
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Proof. For ε ∈ ]0, 1[ and m ≥ 4N choose x1, . . . , xm ∈ X with

(12) q(1)(x1, . . . , xm) ≤ ε · q(1)
m−1 + (1− ε) · q(1)

m + ε,

and consider the functionals

fi(x) = 1
2 ·max(0,min

j 6=i
‖x− xj‖ − ‖x− xi‖), i = 1, . . . ,m.

Clearly (10) is satisfied and f1, . . . , fm ∈ F . Consequently (11) holds, too.
We claim that

(13) S(fi) ≥ 1− ε

2
· (q(1)

m−1 − q(1)
m )− ε.

It suffices to prove the statement for i = m. To this end consider a Voronoi partition V1, . . . , Vm

corresponding to x1, . . . , xm, and let U1, . . . , Um−1 be a Voronoi partition corresponding to
x1, . . . , xm−1. If j ≤ m− 1 and x ∈ Vm ∩ Uj then

fm(x) = 1
2 · (‖x− xj‖ − ‖x− xm‖) .

Hence ∫

X
fm(x) µ(dx) =

∫

Vm

fm(x) µ(dx)

= 1
2 ·

m−1∑

j=1

∫

Vm∩Uj

‖x− xj‖µ(dx)− 1
2 ·

∫

Vm

‖x− xm‖µ(dx)

= 1
2 ·

m−1∑

j=1

∫

(Vm∩Uj)∪Vj

‖x− xj‖µ(dx)− 1
2 ·

m∑

j=1

∫

Vj

‖x− xj‖µ(dx).

Note that the sets (Vm ∩ Uj) ∪ Vj with j ≤ m − 1 form a partition of X as well, and every
x ∈ (Vm ∩ Uj) ∪ Vj satisfies

min
k=1,...,m−1

‖x− xk‖ = ‖x− xj‖.
Thus

S(fm) = 1
2 · (q(1)(x1, . . . , xm−1)− q(1)(x1, . . . , xm))

and (13) follows from (12).
It remains to apply Proposition 1 and to let ε tend to zero. ¤

The following consequence of Theorem 3 is useful, in particular, for finite-dimensional spaces X,
see Section 5. Recall that a sequence of positive real numbers an is regularly varying with index
−α < 0 if limn→∞ abκnc/an = κ−α for every κ > 0.

Corollary 1. If the sequence (q(1)
n )n∈N is regularly varying with index −α < 0 then

lim inf
N→∞

eran
N,full ·N1/2/q

(1)
N ≥ α

25+2α
.

Proof. Let qn = q
(1)
n for notational convenience, and put

g(m) = sup
`≥m

(q`−1 − q`)

for m ∈ N \ {1} and let κ > 1. Clearly,

g(m) ≥ qm − qdκme
dκme −m

= qm · 1− qdκme/qm

dκme −m
.
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Since limm→∞ qdκme/qm = κ−α it follows that

lim inf
m→∞ g(m) ·m/qm ≥ 1− κ−α

κ− 1
.

Letting κ tend to one yields
lim inf
m→∞ g(m) ·m/qm ≥ α.

Combining the latter estimate and Theorem 3 completes the proof. ¤

Corollary 1 is not applicable if the quantization numbers are slowly varying, which often holds
true in infinite-dimensional spaces X, see Sections 8 and 9. Instead, one may use the following
result.

Corollary 2. Let f : [0,∞[ → ]0,∞[ be a convex and differentiable function. If

lim sup
n→∞

q(1)
n /f(n) ≥ 1

and
lim

n→∞ q(1)
n = 0

then
lim sup
N→∞

eran
N,full/

(
N1/2 · |f ′|(4N + 3)

)
≥ 1/8.

Proof. Fix ε ∈ ]0, 1[, and put qn = q
(1)
n . By assumption

qm−1 ≥ (1− ε) · f(m− 1) = (1− ε) ·
∫ ∞

m−1
−f ′(s) ds

holds for infinitely many integers m. Since qm−1 =
∑∞

k=m(qk−1 − qk), we also have

qm−1 − qm ≥ (1− ε) ·
∫ m

m−1
−f ′(s) ds ≥ −(1− ε) · f ′(m)

infinitely often. To every such m we associate N = bm/4c. Then m ∈ [4N, 4N+3] and Theorem 3
implies

eran
N,full ≥ −(1− ε)/8 ·N1/2 · f ′(4N + 3).

Letting ε tend to zero finishes the proof. ¤

5. Application to Finite-Dimensional Spaces X

There are numerous results on edet
N,full or q

(1)
N for finite-dimensional spaces X = Rs, see, e.g.,

Novak (1988), Graf, Luschgy (2000), Wasilkowski, Woźniakowski (1996, 2001). Assume r ≥ 1.
Then, under rather mild assumptions on µ, and in particular for the uniform distribution on
[0, 1]s, the quantization numbers satisfy

(14) lim
N→∞

q
(r)
N ·N1/s = γ(r)

with some constant γ(r) = γ(r)(µ, s, ‖ · ‖) > 0, see Graf, Luschgy (2000, Thm. 6.2).
Suppose that (14) is satisfied. Then Corollary 1 is applicable with α = 1/s, and we obtain

lim inf
N→∞

eran
N,full ·N1/2+1/s ≥ γ(1)

s · 25+2/s
.

A matching upper bound is provided by Theorem 2, so that we end up with the well-known fact

eran
N,full ³ N−1/2−1/s,
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see Novak (1988, Sec. 2.2.6) for the case of the uniform distribution µ on [0, 1]s.
We conclude that, up to multiplicative constants, neither the upper bound in Theorem 2 nor

the lower bound in Theorem 3 can be improved in general.

6. General Results for Fixed Subspace Sampling

Throughout this section we consider randomized algorithms in a cost model defined by (4)
with any choice of a fixed subspace. Furthermore, we assume that µ has a finite second moment,
i.e.,

(15) K =
(∫

X
‖x‖2 µ(dx)

)1/2

< ∞.

We immediately get an upper bound for the error of the classical Monte Carlo method Ŝn,ν ,
see Example 3.

Lemma 1. For every n ∈ N,

e(Ŝn,ν) ≤
(
(∆(2)(µ, ν))2 · (1 + 2/n) + 2K2/n

)1/2
.

Proof. Take k = 1 in Lemma 2 below. ¤

Consequently we obtain an upper bound for the minimal errors in terms of the Kolmogorov
widths of order two.

Theorem 4. Let γ > max(
√

2K,
√

3). Then, for every N ∈ N,

eran
N,fix ≤ γ · inf

n·k≤N

(
n−1 +

(
d

(2)
k

)2
)1/2

.

Proof. Suppose that n, k ∈ N with n · k ≤ N and take a Borel probability measure ν on X such
that

dim(span(supp(ν))) ≤ k, ∆(2)(ν, µ) ≤ γ/
√

3 · d(2)
k .

Then

e(Ŝn,ν) ≤ γ ·
(
n−1 +

(
d

(2)
k

)2
)1/2

by Lemma 1, and it remains to observe that costc(Ŝn,ν) ≤ N for the fixed subspace model
corresponding to X0 = span(supp(ν)). ¤

The following lower bound for the minimal errors corresponds to the extremal cases, where
either the dimension k of the subspace or the number n of evaluations may be arbitrarily large.
A corollary to this lower bound involves quantization numbers, too, via Theorem 3.

Theorem 5. For every N ∈ N
eran
N,fix ≥ inf

n·k≤N
max(eran

n,full, d
(1)
k ).

Proof. Consider any randomized algorithm Ŝ with costc(Ŝ) ≤ N in some fixed subspace model.
Let X0 denote the corresponding subspace, and assume that dim(X0) = k. Define a functional
f0 ∈ F by f0 = dist(·, X0). Since Ŝ evaluates f0 only at points from X0 with probability one, we
have

Ŝ(f0) = Ŝ(−f0)
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for the induced mapping, and consequently

e(Ŝ) ≥ 1
2 ·

((
E|S(f0)− Ŝ(f0)|2

)1/2
+

(
E|S(−f0)− Ŝ(−f0)|2

)1/2
)
≥ S(f0).

Hence

e(Ŝ) ≥
∫

X
inf

x0∈X0

‖x− x0‖µ(dx) ≥ d
(1)
k .

On the other hand, put n = cost1(Ŝ) to obtain

e(Ŝ) ≥ eran
n,full.

We conclude that e(Ŝ) ≥ max(eran
n,full, d

(1)
k ) for some k, n ∈ N such that k · n ≤ N . ¤

7. General Results for Variable Subspace Sampling

Throughout this section we consider randomized algorithms in a cost model defined by (5)
with any choice of an increasing sequence of subspaces. As in Section 6 we assume that µ has a
finite second moment, see (15).

Instead of a classical Monte Carlo method, which is based on independent and identically
distributed sampling, we employ a multilevel Monte Carlo algorithm to derive an upper bound
for the minimal error eran

N,var. This algorithm is defined as follows. Consider a sequence

ρ = (ρ(1), . . . , ρ(k))

of probability measures on X× X, and assume that the marginals ρ
(j)
1 and ρ

(j)
2 of the measures

ρ(j) satisfy
ρ
(j)
2 = ρ

(j+1)
1 , j = 1, . . . , k − 1.

Furthermore, let
n = (n1, . . . , nk) ∈ Nk

and consider an independent sequence of X× X-valued random variables

X
(j)
` =

(
X

(j)
`,1 , X

(j)
`,2

)
, ` = 1, . . . , nj , j = 1, . . . , k,

with X
(j)
1 , . . . , X

(j)
nj being distributed according to ρ(j).

A corresponding multilevel Monte Carlo algorithm is a randomized quadrature rule with
random nodes X

(j)
`,i and deterministic weights a

(j)
`,i = (−1)i/nj for j + i ≥ 3. Slightly abusing

notation, we use Ŝn,ρ to denote any such algorithm. Thus, Ŝn,ρ induces the mapping

Ŝn,ρ(f) =
1
n1

n1∑

`=1

f
(
X

(1)
`,2

)
+

k∑

j=2

1
nj

nj∑

`=1

(
f
(
X

(j)
`,2

)− f
(
X

(j)
`,1

))
,

and we have

E(Ŝn,ρ(f)) =
∫

X
f(x) ρ

(k)
2 (dx).

For the analysis of Ŝn,ρ we put

D(x) = (x, x), x ∈ X,

and we use the Wasserstein distance ∆(2)
2 of order two on the space of Borel probability measures

on X × X equipped with the norm ‖(x1, x2)‖2 = (‖x1‖2 + ‖x2‖2)1/2. As a generalization of
Lemma 1 we have the following estimate.
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Lemma 2. Every multilevel algorithm Ŝn,ρ satisfies

e(Ŝn,ρ) ≤
((

∆(1)(µ, ρ
(k)
2 )

)2 +
1
n1
· (∆(2)(µ, ρ

(1)
2 ) + K

)2 +
k∑

j=2

1
nj

(
∆(2)

2 (D(µ), ρ(j))
)2

)1/2

.

Proof. Let f ∈ F . Clearly,

|S(f)− E(Ŝn,ρ(f))| =
∣∣∣∣
∫

X
f(x) µ(dx)−

∫

X
f(x) ρ

(k)
2 (dx)

∣∣∣∣ ≤ ∆(1)(µ, ρ
(k)
2 )

for the bias of Ŝn,ρ(f). Since
(∫

X×X
‖x1 − x2‖2 ρ(j)(d(x1, x2))

)1/2

≤ ∆(2)
2 (D(µ), ρ(j))

and (∫

X
‖x‖2 ρ

(1)
2 (dx)

)1/2

≤ ∆(2)(µ, ρ
(1)
2 ) + K,

we obtain

V(Ŝn,ρ(f)) ≤ 1
n1

∫

X
‖x‖2 ρ

(1)
2 (dx) +

k∑

j=2

1
nj

∫

X×X
‖x1 − x2‖2 ρ(j)(d(x1, x2))

≤ 1
n1
· (∆(2)(µ, ρ

(1)
2 ) + K

)2 +
k∑

j=2

1
nj

(
∆(2)

2 (D(µ), ρ(j))
)2

for the variance of Ŝn,ρ(f), which completes the proof. ¤
We apply Lemma 2 in the following way. Consider a probability space (Y, B, Q) as well as

measurable mappings π : Y → X and πj : Y → X such that

µ = π(Q)

and

(16) 0 < dim(span(πj(Y))) ≤ j, j ∈ N.

Let k ∈ N and consider a multilevel algorithm

(17) Ŝ(k) = Ŝn,ρ

by taking
ρ(j) = (π2j−1 , π2j )(Q), nj = d2k−j/(3k)e

for j = 1, . . . , k.

Lemma 3. Let γ = 4
√

6 max(K, 1). Then every multilevel algorithm Ŝ(k) satisfies

e(Ŝ(k)) ≤ γ · k1/2 · 2−(k+3)/2 ·
(

1 +
k∑

j=1

2j ·
∫

Y
‖π(y)− π2j (y)‖2 Q(dy)

)1/2

and
costc(Ŝ(k)) ≤ 2k+3

in the variable subspace model corresponding to the increasing sequence of subspaces

Xj = span
( j⋃

`=1

π2`(Y)
)

.
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Proof. Put θj =
∫
Y ‖π − π2j‖2 dQ for notational convenience. We have

∆(1)(µ, ρ
(k)
2 ) ≤ θ

1/2
k , ∆(2)(µ, ρ

(1)
2 ) ≤ θ

1/2
1 ,

and
∆(2)

2 (D(µ), ρ(j)) ≤ (θj + θj−1)1/2.

Hence, by Lemma 2,

e2(Ŝ(k)) ≤ θk + (θ1/2
1 + K)2 · 3k

2k−1
+

k∑

j=2

(θj + θj−1) · 3k

2k−j

≤ 6 ·K2 · k

2k−1
+ 12 · k

2k
·

k∑

j=1

2j · θj

≤ γ2 · k

2k+3
·
(

1 +
k∑

j=1

2j · θj

)
.

Use dim(Xj) ≤ 2j+1 − 2 to obtain

costc(Ŝ(k)) ≤ n1 · dim(X1) +
k∑

j=2

nj · (dim(Xj) + dim(Xj−1))

≤ 2k/(3k) + 2 +
k∑

j=2

(2k−j/(3k) + 1) · 3 · 2j

= 2k · (3k − 2)/(3k) + 2 + 3 · (2k+1 − 4)

≤ 2k+3.

¤

Remark 3. Multilevel Monte Carlo methods taking values in infinite-dimensional Banach spaces
have been introduced by Heinrich (1998) and Heinrich and Sindambiwe (1999) for computation
of global solutions of integral equations and for parametric integration, respectively. Moreover,
the authors have shown that suitable multilevel algorithms turned out to be (almost) optimal
in both cases. See Heinrich (2001) for further results and references.

In the context of quadrature problems for diffusion processes multilevel algorithms have been
studied by Giles (2006), while a two level algorithm has already been considered by Kebaier
(2005). Both papers also include numerical examples from computational finance.

A suitable multilevel algorithm yields the following upper bound for the minimal errors in
terms of the Kolmogorov widths of order two.

Theorem 6. Let γ > 2
√

6 max(K, 1). Then, for every N ≥ 16,

eran
N,var ≤ γ · (log2 N/N)1/2 ·

(
1 +

blog2 Nc∑

j=1

2j · (d(2)

2j

)2
)1/2

.

Proof. Let ε > 0. Take a sequence of subspaces X̃j ⊂ X such that dim(X̃j) ≤ j and
(∫

X
inf

x̃∈X̃j

‖x− x̃‖2 µ(dx)

)1/2

≤ (1 + ε) · d(2)
j .
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Thanks to the Kuratowski and Ryll-Nardzewski selection theorem there exist measurable selec-
tions πj : X → X for the metric projection onto X̃j . Hence

(∫

X
‖x− πj(x)‖2 µ(dx)

)1/2

≤ (1 + ε) · d(2)
j .

Apply Lemma 2 with Y = X, Q = µ, π = id, and k = blog2(N/8)c to complete the proof. ¤

Similar to Theorem 5 we obtain a lower bound for the minimal errors.

Theorem 7. For every N ∈ N
eran
N,var ≥ max(eran

N,full,
1
2 · d

(1)
2N ).

Proof. The lower bound eran
N,var ≥ eran

N,full is already stated in Remark 2. Next, suppose that
a randomized algorithm Ŝ is based on an increasing sequence of subspaces Xi and satisfies
costc(Ŝ) ≤ N in the corresponding sampling model. Put

i0 = max{i ∈ N : dim(Xi) ≤ 2N}
and f0 = dist(·, Xi0) as well as

A = {ω ∈ Ω : costc(Ŝ(ω), f0) ≤ 2N}.
Clearly P (A) ≥ 1/2, and for ω ∈ A the algorithm Ŝ(ω) evaluates f0 only at points from Xi0 .
Now, proceed as in the proof of Theorem 5 to obtain

e(Ŝ) ≥ P (A) · S(f0) ≥ 1
2 · d

(1)
2N ,

which completes the proof. ¤

8. Application to Gaussian Measures on Infinite-Dimensional Spaces

In this section we consider zero mean Gaussian measures µ on separable Banach spaces X,
and throughout we assume that the corresponding small ball function

ϕ(ε) = − lnµ({x ∈ X : ‖x‖ ≤ ε})
satisfies

(18) ϕ(ε) ³ ε−α · (ln ε−1)β

for some constants α > 0 and β ∈ R as ε tends to zero.

Remark 4. Typically, (18) holds for infinite-dimensional spaces X, see Li, Shao (2001). For
example, if µ is the distribution of a fractional Brownian motion with Hurst parameter H ∈ ]0, 1[
on X = C([0, 1]) or X = Lp([0, 1]) for some p ∈ [1,∞[, then α = 1/H and β = 0. Moreover,
α = 1/(H − γ) and β = 0 when ‖ · ‖ denotes the γ-Hölder norm. Similar results are known for
Sobolev norms, see Kuelbs, Li, Shao (1995) and Li, Shao (1999).

If X = C([0, 1]2) and µ is the distribution of the two-dimensional fractional Brownian sheet,
then α = 1/H and β = 1 + 1/H due to Belinsky, Linde (2002). Moreover, for a d-dimensional
Brownian sheet considered in X = L2([0, 1]d) one has α = 2 and β = 2(d− 1), see Csáki (1984)
and Fill, Torcaso (2004).

Assumption (18) determines the asymptotic behavior of the quantization numbers and the
Kolmogorov widths, see Dereich (2003, Thm. 3.1.2) and Creutzig (2002, Cor. 4.7.2).
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Proposition 2. The quantization numbers q
(r)
n satisfy

q(r)
n ³ (lnn)−1/α · (ln ln n)β/α

for every r > 0. The average Kolmogorov widths d
(r)
k satisfy

d
(r)
k ³ k−1/α · (ln k)β/α

for every r > 0.

Hence, by Theorem 1, quadrature of arbitrary Lipschitz functionals by means of deterministic
algorithms is intractable even in the full space sampling model. Now we turn to the analysis
of randomized algorithms in the different sampling models. We write aN ¹ bN for sequences of
positive real numbers aN and bN if supN∈N aN/bN < ∞.

Theorem 8. For full space sampling the minimal errors satisfy

eran
N,full ¹ N−1/2 · (lnN)−1/α · (ln lnN)β/α

and
lim sup
N→∞

eran
N,full ·N1/2 · (lnN)1+1/α · (ln lnN)−β/α > 0.

Proof. The upper bound immediately follows from Proposition 2 and Theorem 2. To prove the
lower bound apply Corollary 2 with f given by f(t) = c · (ln t)−1/α · (ln ln t)β/α for t sufficiently
large and a suitable constant c > 0. ¤

Theorem 9. For fixed subspace sampling the minimal errors satisfy

eran
N,fix ¹ N−1/(2+α) · (lnN)β/(2+α)

and
lim sup
N→∞

eran
N,fix ·N1/(2+α) · (lnN)(2+2α−αβ)/(α(2+α)) · (ln lnN)−2β/(α(2+α)) > 0.

Proof. Proposition 2 and Theorem 4 yield the upper bound with the following choice

(19) nN = bN2/(2+α) · (lnN)−2β/(2+α)c
of numbers of replications and

(20) kN = bNα/(2+α) · (lnN)2β/(2+α)c
of dimensions of subspaces.

For the proof of the lower bound we combine Proposition 2 with Theorems 5 and 8. Due to
Theorem 8 there exists a constant γ > 0 and an increasing sequence of integers n` ∈ N such that

eran
n`,full ≥ γ · n−1/2

` · (lnn`)−1−1/α · (ln lnn`)β/α

for every ` ∈ N. Put
N` =

⌊
n

(2+α)/2
` · (lnn`)α+β+1 · (ln lnn`)−β

⌋
,

and let n, k ∈ N with n · k ≤ N`. If n > n` then k < N`/n`, and Proposition 2 implies

(21) d
(1)
k ≥ d

(1)
bN`/n`c º (N`/n`)−1/α · (ln(N`/n`))β/α ³ n

−1/2
` · (lnn`)−1−1/α · (ln lnn`)β/α.

On the other hand, if n ≤ n` then eran
n,full ≥ eran

n`,full. Consequently, by Theorem 5 and (21)

eran
N`,fix º n

−1/2
` · (lnn`)−1−1/α · (ln lnn`)β/α.
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Straightforward computations show

n
−1/2
` · (lnn`)−1−1/α · (ln lnn`)β/α

³ N
−1/(2+α)
` · (lnN`)−(2+2α−αβ)/(α(2+α)) · (ln lnN`)2β/(α(2+α)),

which completes the proof of the lower bound. ¤

Remark 5. The upper bound for fixed subspace sampling (in Theorem 4) is established by sam-
pling from distributions ν that are order optimal approximations to µ in the sense of Kolmogorov
widths. Often such approximations are not known explicitly and sampling is not feasible.

Therefore, it is quite common to approximately compute the integrals S(f) with respect
to Gaussian measures by sampling from a normal distribution on a suitable finite-dimensional
subspace of X. A proper choice of the subspace is suggested by the following general result on
average linear widths, which is due to Creutzig (2002, Thm. 4.4.1). There exist points x`,k ∈ X

and bounded linear functionals ξ`,k ∈ X∗ such that

(22) ∆(2)(µ, πk(µ)) ≤
(∫

X
‖x− πk(x)‖2 µ(dx)

)1/2

¹ ln k · d(2)
k

for

(23) πk(x) =
k∑

`=1

ξ`,k(x) · x`,k.

Consider the classical Monte Carlo algorithm Ŝn,νk
that is based on the normal distribution

νk = πk(µ)

on X0 = span{x1,k, . . . , xk,k}, see Example 3. Choose

nN = dN2/(2+α) · (lnN)−2(α+β)/(2+α)e
and

kN = dNα/(2+α) · (lnN)2(α+β)/(2+α)e,
and put

ŜN = ŜnN ,νkN

to obtain costc(ŜN ) ¹ N in the corresponding fixed subspace cost models, and

e(ŜN ) ¹ N−1/(2+α) · (lnN)(α+β)/(2+α)

by Lemma 1.
A slightly better upper bound is available if the Banach space X is B-convex, e.g., if X is an

Lp-space with p ∈ ]1,∞[. Instead of (22) we then have

(24)
(∫

X
‖x− πk(x)‖2 µ(dx)

)1/2

¹ d
(2)
k ,

see Creutzig (2002, Cor. 3.4.2), which yields

(25) e(ŜN ) ¹ N−1/(2+α) · (lnN)β/(2+α)

as in Theorem 9, if the parameters nN and kN are chosen according to (19) and (20).
Both of the estimates (22) and (24) are proven non-constructively, so that it remains to

actually determine the underlying normal distributions νk. For a number of Gaussian measures
the Karhunen-Loéve expansion is explicitly known, and hereby we get an approximation πk that
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satisfies (24), if X is an L2-space. In particular for an L2-space X and β = 0 the upper bound
(25) is due to Wasilkowski, Woźniakowski (1996, p. 2076).

Consider the distribution µ of the d-dimensional fractional Brownian sheet with Hurst pa-
rameter H ∈ ]0, 1[ on the space X = C([0, 1]d). In this case a direct approach yields

(26)
(∫

X
‖x− πk(x)‖2 µ(dx)

)1/2

¹ k−H · (ln k)H(d−1)+d/2,

see Kühn, Linde (2002). See also Ayache, Taqqu (2003) for a wavelet approximation πk in the
case d = 1 and Dzhaparidze, van Zanten (2005) for a trigonometric approximation πk in the
case d ≥ 1, which both satisfy this estimate. From (26) and Lemma 1 we get

e(ŜN ) ¹ N−1/(2+1/H) · (lnN)d/2−1/(2+1/H).

Theorem 10. For variable subspace sampling the minimal errors are bounded as follows.
If α > 2, then

N−1/α · (lnN)β/α ¹ eran
N,var ¹ N−1/α · (lnN)β/α+1/2.

If α = 2 and β 6= −1, then

N−1/2 · (lnN)β/2 ¹ eran
N,var ¹ N−1/2 · (lnN)(β/2+1/2)++1/2.

If α = 2 and β = −1, then

N−1/2 · (lnN)−1/2 ¹ eran
N,var ¹ N−1/2 · (lnN)1/2 · (ln lnN)1/2.

If 0 < α < 2, then
eran
N,var ¹ N−1/2 · (lnN)1/2

and
lim sup
N→∞

eran
N,var ·N1/2 · (lnN)1+1/α · (ln lnN)−β/α > 0.

Proof. For the proof of the upper bounds we study the asymptotic behaviour of

g(N) =
blog2 Nc∑

j=1

2j · (d(2)

2j

)2

because of Theorem 6. By Proposition 2

2j · (d(2)
2j

)2 ³ 2j·(1−2/α) · j2β/α.

Thus, if α > 2, then
g(N) ³ N1−2/α · (lnN)2β/α.

For α = 2 we obtain
g(N) ³ (lnN)(β+1)+

if β 6= −1, while
g(N) ³ ln lnN

if β = −1. Finally, if 0 < α < 2, then
g(N) ³ 1.

Apply Theorem 6 to obtain the upper bounds as claimed.
For the proof of the lower bounds we combine Theorem 7 with Proposition 2 in the case α ≥ 2

and with Theorem 8 in the case 0 < α < 2. ¤
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Remark 6. In Remark 5 we have discussed classical Monte Carlo algorithms based on normal
distributions πk(µ). Now we discuss their multilevel counterparts based on the normal distribu-
tions

ρ(j) = (π2j−1 , π2j )(µ).

Choose

kN = dlog2 Ne,
and put

ŜN = Ŝ(kN ),

see (17). By Lemma 3 we have costc(ŜN ) ¹ N in the variable subspace cost model corresponding
to the sequence of subspaces Xj = span{x`,2m : 1 ≤ ` ≤ 2m, 1 ≤ m ≤ j}. Furthermore, (22)
implies

e(ŜN ) ¹ uN (α, α + β),

where uN (α, β) denotes the upper bound for the minimal error eran
N,var in Theorem 10. If the

stronger bound (24) holds for the sequence πj , then we even have

e(ŜN ) ¹ uN (α, β)

as in Theorem 10.

Remark 7. Due to Theorems 8–10 we have sharp upper and lower bounds on the minimal
errors in the different cost models, up to logarithmic terms and up to the fact that some of the
lower bounds are established only for an infinite sequence of integers N . Furthermore, all of the
classical Monte Carlo algorithms ŜN presented in Remark 5 are almost optimal in this sense,
i.e., there exist constants γi > 0 such that

e(ŜN ) ≤ γ1 · eran
N,fix · (lnN)γ2

holds at least for infinitely many integers N . Similarly, all of the multilevel algorithms ŜN

presented in Remark 6 satisfy

e(ŜN ) ≤ γ1 · eran
N,var · (lnN)γ2

for at least infinitely many integers N .
For full space sampling the bounds depend on the specific properties of the Gaussian measure

only via logarithmic terms, and the order of the polynomial term is

γ = 1/2.

This is no longer the case for subspace sampling, where the order of the polynomial term is

γ = min(1/2, 1/α)

for variable subspace sampling and

γ = 1/(2 + α)

for fixed subspace sampling. We conclude that variable subspace sampling is as powerful as full
space sampling if 0 < α ≤ 2 and always superior to fixed subspace sampling. In the latter
comparison the extremal case occurs for α = 2.
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9. Application to Diffusion Processes

In this section we consider the distribution µ of an m-dimensional diffusion process X on the
space C = C([0, 1],Rm), equipped with the supremum norm, or on a space Lp = Lp([0, 1],Rm),
and here we always assume that 1 ≤ p < ∞. More precisely, X is given by

(27)
dXt = a(Xt) dt + b(Xt) dWt,

X0 = u0 ∈ Rm

for t ∈ [0, 1] with an m-dimensional Brownian motion W , and we assume that the following
conditions are satisfied:

(i) a : Rm → Rm is Lipschitz continuous
(ii) b : Rm → Rm×m has bounded first and second order partial derivatives and is of class

C∞ in some neighborhood of u0

(iii) det b(u0) 6= 0
We first present bounds for the quantization numbers and the Kolmogorov widths. The cor-

responding proofs are postponed to Section 9.2.

Proposition 3. Let X = C or X = Lp. The quantization numbers q
(r)
n satisfy

q(r)
n ³ (lnn)−1/2

for every r > 0. The average Kolmogorov widths d
(r)
k satisfy

d
(r)
k ³ k−1/2

for every r > 0.

The asymptotic behavior of the quantization numbers stated in Proposition 3 is partially
known. Luschgy and Pagès (2006) study scalar stochastic differential equations under suitable
growth and smoothness conditions. In this work the upper bound is established for equations with
a strictly positive diffusion coefficient b : [0, 1]×R→ R, and a matching lower bound is derived
if inf(t,x)∈[0,1]×R b(t, x) > 0 and r ≥ 1. More generally, 1-dimensional diffusions are analyzed
by Dereich (2007a, 2007b), who determines the exact asymptotic behavior of the quantization
numbers for r ≥ 1 under rather mild smoothness assumptions. The asymptotic behavior of the
Kolmogorov widths is determined by Maiorov (1992, 1993) for the Brownian motion.

Observing Theorem 1 we conclude that quadrature of arbitrary Lipschitz functionals is in-
tractable even in the full space sampling model by means of deterministic algorithms. Further-
more, the estimates from Theorems 8–10 with α = 2 and β = 0 are valid, too, in the diffusion
case.

Theorem 11. Let X = C or X = Lp. For full space sampling the minimal errors satisfy

eran
N,full ¹ N−1/2 · (lnN)−1/2

and
lim sup
N→∞

eran
N,full ·N1/2 · (lnN)3/2 > 0.

For fixed subspace sampling the minimal errors satisfy

eran
N,fix ¹ N−1/4

and
lim sup
N→∞

eran
N,fix ·N1/4 · (lnN)3/4 > 0.
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For variable subspace sampling the minimal errors satisfy

N−1/2 ¹ eran
N,var ¹ N−1/2 · ln N.

Remark 8. Consider the strong Euler scheme with uniform step-size 1/k, i.e., X(k)(0) = u0

and

X(k)((` + 1)/k) = X(k)(`/k) + a(X(k)(`/k)) · 1/k + b(X(k)(`/k)) · (W ((` + 1)/k)−W (`/k)),

and let X(k) = (X(k)(t))t∈[0,1] denote the piecewise linear interpolation of X(k)(0), . . . , X(k)(1)
at the breakpoints `/k. We then have the well-known error bounds

(28)
(
E‖X −X(k)‖2

)1/2
¹ k−1/2

for X = Lp and

(29)
(
E‖X −X(k)‖2

)1/2
¹ k−1/2 · (ln k)1/2

for X = C. Furthermore, the distribution νk of X(k) on the space X satisfies

∆(2)(µ, νk) ≤
(
E‖X −X(k)‖2

)1/2
.

Hence Lemma 1 yields the following upper bounds for the classical Monte Carlo method

ŜN = ŜnN ,νkN
,

see Example 3, with a suitable choice of nN , kN ∈ N such that costc(ŜN ) ¹ N in the correspond-
ing fixed subspace model. In the Lp-case we take nN = kN = bN1/2c to obtain

e(ŜN ) ¹ N−1/4

as in Theorem 11. For X = C we take nN = dN1/2 · (lnN)−1/2e and kN = dN1/2 · (lnN)1/2e to
obtain

e(ŜN ) ¹ N−1/4 · (lnN)1/4.

Now we turn to a multilevel construction that is based on the joint distributions ρ(j) of
(X(2j−2), X(2j−1)), with X(2−1) = u0, say. Note that ρ(j) can easily be derived from an m · 2j−1-
dimensional standard normal distribution. Choose kN = dlog2 Ne and consider the corresponding
multilevel algorithm

ŜN = Ŝ(kN ),

see (17). Apply Lemma 3 to obtain costc(ŜN ) ¹ N in the variable subspace cost model corre-
sponding to the sequence of subspaces Xj that consist of piecewise linear functions with break-
points at `/2j−1, respectively. Furthermore, (28) implies

e(ŜN ) ¹ N−1/2 · ln N

for X = Lp as in Theorem 11, and by (29) we have

e(ŜN ) ¹ N−1/2 · (lnN)3/2

for X = C.

For full space and fixed subspace sampling we can improve the lower bounds from Theorem
11 in the case X = C. See Section 9.3 for the corresponding proof.
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Theorem 12. Let X = C. For full space sampling the minimal errors satisfy

eran
N,full º N−1/2 · (lnN)−3/2.

For fixed subspace sampling the minimal errors satisfy

eran
N,fix º N−1/4 · (lnN)−3/4.

Remark 9. Due to Theorems 11 and 12 we have sharp upper and lower bounds on the minimal
errors in the different cost models, up to logarithmic terms and up to the fact that, for X = Lp,
some of the lower bounds are established only for an infinite sequence of integers N . Furthermore,
the classical Monte Carlo algorithms ŜN presented in Remark 8 are almost optimal in this sense,
i.e., there exists a constant γ > 0 such that

e(ŜN ) ≤ γ · eran
N,fix · lnN

holds for every N ∈ N in case of X = C and at least for infinitely many integers N in case of
X = Lp. Similarly, the multilevel algorithms ŜN presented in Remark 9 satisfy

e(ŜN ) ≤ γ · eran
N,var · lnN

for every N ∈ N.

9.1. Preliminaries. A basic idea in the proofs of Proposition 3 and Theorem 12 is to reduce
the case of an m-dimensional diffusion process with properties (i)–(iii) to the particular case of
a one-dimensional Brownian motion by means of Lipschitz transformations and stopping.

Let X denote any random element with values in some separable Banach space X and consider
its distribution µ on this space. We use the notation

eran
N,full(X, X) = eran

N,full

for the N -th minimal error of randomized algorithms using full space sampling,

d
(p)
k (X, X) = d

(p)
k

for the k-th average Kolmogorov width of order p, and

q(r)
n (X, X) = q(r)

n

for the n-th quantization number of order r.
Consider a measurable mapping T : X → Y, where Y is a Banach space, too. The following

observation is straightforward to verify. We add that an analogous result for Kolmogorov widths
is not available.

Lemma 4. Suppose that T is Lipschitz continuous with a Lipschitz constant L > 0. Then

eran
N,full(TX, Y) ≤ L · eran

N,full(X, X)

and
q(r)
n (TX,Y) ≤ L · q(r)

n (X, X).

We formulate a simplified version of a general relation between quantization numbers and
average Kolmogorov widths, which is due to Creutzig (2002, Thm. 4.6.1).

Lemma 5. For 0 < r < p

sup
n≤2`

lnn · q(r)
n (X, X) ¹ sup

k≤`
k · d(p)

k (X, X).

The following contraction principle holds for best approximation of sums of independent and
symmetric random elements.



25

Lemma 6. Let X1, . . . , Xk denote a sequence of independent and symmetric random elements
with values in X and let p ≥ 1. Then

E
(
distp

( k∑

`=1

λ`X`,X0

))
≤ max

`=1,...,k
|λ`|p · E

(
distp

( k∑

`=1

X`, X0

))

for all λ1, . . . , λk ∈ R and every closed linear subspace X0 ⊂ X.

Proof. Take Rademacher variables ε1, . . . , εk such that ε1, . . . , εk, X1, . . . , Xk are independent,
and consider the quotient mapping Q : X → X/X0. Since (X1, . . . , Xk) and (ε1X1, . . . , εkXk) co-
incide in distribution, the same holds true for (QX1, . . . , QXk) and (ε1QX1, . . . , εkQXk). Hence

E
(
distp

( k∑

`=1

λ`X`,X0

))
= E

∥∥∥
k∑

`=1

λ` ·QX`

∥∥∥
p

X/X0

= E
∥∥∥

k∑

`=1

λ`ε` ·QX`

∥∥∥
p

X/X0

.

For any choice of elements y` ∈ X/X0

E
∥∥∥

k∑

`=1

λ`ε` · y`

∥∥∥
p

X/X0

≤ max
`=1,...,k

|λ`|p · E
∥∥∥

k∑

`=1

ε` · y`

∥∥∥
p

X/X0

due to Kahane’s contraction principle, see Kahane (1993, p. 21). Thus

E
∥∥∥

k∑

`=1

λ`ε` ·QX`

∥∥∥
p

X/X0

≤ max
`=1,...,k

|λ`|p · E
∥∥∥

k∑

`=1

ε` ·QX`

∥∥∥
p

X/X0

,

which completes the proof. ¤
Now we turn to the diffusion process X given by (27).

Lemma 7. There exists a neighborhood U of u0 and a function f ∈ C∞(U) such that

(∇f)∗bb∗∇f = 1.

Proof. Choose a radius r > 0 such that det bb∗(u) 6= 0 if |u − u0| < r. Furthermore, take
g ∈ C∞(Rm,Rm×m) with symmetric and positive definite values such that

g(u) = (bb∗)−1(u)

if |u−u0| < r/2 and g(u) is the identity matrix if |u−u0| > r. Then M = Rm endowed with the
metric tensor

∑m
i,j=1 gij(u) · dui ⊗ duj is a complete C∞-Riemannian manifold. Here u1, . . . , um

are the local coordinates obtained when taking the identity as chart. Moreover, let dM denote
the corresponding Riemannian distance.

Choose v0 ∈ M such that 0 < |v0 − u0| < r/2 and 0 < dM (v0, u0) < iv0(M), where iv0(M)
denotes the injectivity radius at v0, see Sakai (1996, Prop. III.4.13). Define

U = {u ∈ M : 0 < |v0 − u| < r/2, 0 < dm(v0, u) < iv0(M)}
as well as

f(u) = dM (v0, u)
for u ∈ U . Then f ∈ C∞(U) and (∇f)∗bb∗∇f = 1, see Sakai (1996, Prop.. III.4.8). ¤
Lemma 8. Either let X = C and Y = C([0, 1],R) or let X = L1 and Y = L1([0, 1],R). There
exists a Lipschitz continuous mapping T : X → Y and a stopping time τ with P(τ > 0) = 1 such
that the stopped process

(TX)τ
t = (TX)t∧τ , t ∈ [0, 1],

is a Brownian motion stopped at time τ .
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Proof. Due to Lemma 7 there exists a function h ∈ C∞(Rm) with bounded derivatives that
satisfies

(30) (∇h)∗bb∗∇h = 1

on a closed ball with radius r > 0 around u0. Define the stopping time

τ = inf{t ∈ [0, 1] : |Xt − u0| = r}.
Clearly, P(τ > 0) = 1.

In both cases cases, X = C and X = L1 we define a Lipschitz continuous mapping T : X → Y

by

(Tx)(t) = h(x(t))− h(u0)−
∫ t

0

(
(∇h)∗a + 1

2 ·
m∑

i,j=1

(bb∗)i,j
∂2

∂ui∂uj h
)
(x(s)) ds.

Itô’s formula implies

(TX)t =
∫ t

0

(
(∇h)∗b

)
(Xt) dWt.

Observing (30) we conclude that the stopped process (TX)τ is a continuous martingale with
quadratic variation

〈(TX)τ 〉t =
∫ t∧τ

0

(
(∇h)∗bb∗∇h

)
(Xs) ds = t ∧ τ,

which completes the proof. ¤

Remark 10. The assumption that the diffusion coefficient b is of class C∞ in a neighborhood
of the initial value u0 can be relaxed. For instance, in the one-dimensional case it suffices to
assume b ∈ C1([0, 1]) with Lipschitz continuous first derivative. Then

f(u) =
∫ u

u0

|1/b(v)| dv

is well defined in a neighborhood of u0, and the statement of Lemma 8 follows with the same
proof.

9.2. Proof of Proposition 3. We use the contraction principle from Lemma 6 to establish the
upper bound for the Kolmogorov widths.

Lemma 9. For every p > 0
d

(p)
k (X, C) ¹ k−1/2.

Proof. Assume that p ≥ 1 without loss of generality. Fix k ∈ N, put t` = `/k for ` = 0, . . . , k,
and consider the corresponding Euler process X

(k) defined by X
(k)
0 = u0 and

X
(k)
t = X

(k)
t`

+ a(X(k)
t`

) · (t− t`) + b(X(k)
t`

) · (Wt −Wt`)

for t ∈ [t`, t`+1]. On the space X = C we have

E‖X −X
(k)‖p ¹ k−p/2,

see Bouleau, Lépingle (1994, p. 276), and therefore

d
(p)
k (X,C) ¹ k−1/2 + d

(p)
k (X(k)

, C).

Let W̃ (k) denote the piecewise linear interpolation of the Brownian motion W at the break-
points t` and define the continuous process V (k) by

V
(k)
t = b(X(k)

t`
) · (Wt − W̃

(k)
t )
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for t ∈ [t`, t`+1]. Note that X
(k) − V (k) takes values in the (k + 1)-dimensional subspace of

piecewise linear functions with breakpoints t`. Hence

d
(p)
2k+1(X

(k)
, C) ≤ d

(p)
k (V (k), C).

Let A denote the σ-algebra generated by W (t1), . . . ,W (tk). The random variables b(X(k)
t`

) are
measurable with respect to A, and conditioned on A the process W−W̃ (k) consists of independent
Brownian bridges on the subintervals [t`, t`+1]. We apply Lemma 6 with X` = 1[t`−1,t`]·(W−W̃ (k))
to obtain

d
(p)
2k (V (k), C) ≤ (

E‖b(X(k))‖p
)1/p · d(p)

2k (W − W̃ (k), C) ¹ d
(p)
k (W,C).

From Maiorov (1993) we get d
(p)
k (W,C) ³ k−1/2. ¤

Lemma 10. For every r > 0
q(r)
n (X,L1) º (lnn)−1/2.

Proof. Observe that, due to Lemma 4 and Lemma 8, it suffices to show that

(31) q(r)
n (Y, L1) º (lnn)−1/2

for every one-dimensional process Y such that

Yt∧τ = Wt∧τ , t ∈ [0, 1],

with a stopping time τ that satisfies P (τ = 0) = 0.
To this end fix ε ∈ ]0, 1] with P(τ ≥ ε) > 0 and define a bounded linear operator T : L1 → L1

by
(Tx)(t) = ε−1/2 · x(ε · t).

Clearly TW is a Brownian motion, too. The quantization problem for Gaussian processes in the
space L1 is analyzed in Dereich, Scheutzow (2005). In particular there exists a constant κ > 0
such that

(32) lim
n→∞ (lnn)1/2 · q(r)

n (TW,L1) = κ

for every r > 0, see Dereich, Scheutzow (2005, Thm. 6.1).
For n ∈ N let Mn ⊂ L1 denote any set of cardinality n, fix δ ∈ ]0, 1[, and put

An = {dist(TW,Mn) ≥ (1− δ) · q(r)
n (TW,L1)}.

Due to (32) we can complement the sets Mn to sets M̃n of cardinality 2n such that

lim
n→∞ (lnn)1/2 · (E(dist2r(TW, M̃n))

)1/2r = κ.

as well as
lim

n→∞ (lnn)1/2 · (E(distr(TW, M̃n))
)1/r = κ.

Employing Lemma A.1 in Dereich, Scheutzow (2005) we conclude that

lim
n→∞P(An) = 1.

Consequently

E(distr(TY,Mn)) ≥ E(1{τ≥ε} · distr(TW,Mn))

≥ (1− δ)r · P({τ ≥ ε} ∩An) ·
(
q(r)
n (TW,L1)

)r

º (lnn)−r/2,
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which yields
q(r)
n (TY, L1) º (lnn)−1/2.

The latter bound implies (31) by Lemma 4. ¤

Proof of Proposition 3. In view of Lemma 9 and Lemma 10 it suffices to show that

(33) q(r)
n (X, C) ¹ (lnn)−1/2

and

(34) d
(p)
k (X, L1) º k−1/2.

By Lemma 5 and Lemma 9 we have

lnn · q(r)
n (X, C) ¹ sup

k≤2 ln n
k · d(2r)

k (X, C) ¹ (lnn)1/2,

which yields (33). From Lemma 9 we also get

(35) d
(p)
k (X, L1) ≤ c · k−1/2

with some constant c > 0. Moreover, by Lemma 10,

sup
n≤2`

ln n · q(p/2)
n (X, L1) º sup

n≤2`

(lnn)1/2 º `1/2.

Consequently, by Lemma 5
sup
k≤`

k · d(p)
k (X,L1) ≥ c̃ · `1/2

with some constant c̃ ∈ ]0, c[. Put c = (c̃/c)2. Since

sup
k<c·`

k · d(p)
k (X,L1) < c̃ · `1/2

by (35), we conclude that

` · d(p)
bc·`c(X, L1) ≥ sup

c·`≤k≤`
k · d(p)

k (X, L1) ≥ c̃ · `1/2,

which yields (34). ¤

9.3. Proof of Theorem 12. Consider a one-dimensional Brownian motion W . Given ` ∈ N
and ε ∈ ]0, 1] let si = i/` · ε and put

B`,ε
i,0 = {x ∈ C([0, 1]) : x(si)− x(si−1) ≥ ε1/2/`3/2}

as well as
B`,ε

i,1 = {x ∈ C([0, 1]) : x(si)− x(si−1) < −ε1/2/`3/2}
for i = 1, . . . , `. Moreover, define

A`,ε
α =

⋂̀

i=1

{W ∈ B`,ε
i,αi
}

for any multi-index α ∈ {0, 1}`.

Lemma 11. There exists a constant c0 ∈ ]0, 1[ such that

c0 · 2−` ≤ P(A`,ε
α ) ≤ 2−`

for all ` ∈ N, ε ∈ ]0, 1], and α ∈ {0, 1}`.
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Proof. Obviously, the probability P(A`,ε
α ) does not depend on α. Hence

P(W ∈ B`,ε
i,0 ) = 1

2 − P(0 ≤ Wsi −Wsi−1 ≤ ε1/2/`3/2)

= 1
2 −

∫ 1/`

0
(2π)−1/2 exp(−x2/2) dx

≥ 1
2 ·

(
1−

√
2/π · `−1

)

implies
2` · P(A`,ε

α ) ≥ (
1−

√
2/π · `−1

)`
.

The latter bound tends to exp(−
√

2/π) as ` tends to infinity, which completes the proof. ¤

Let A be any event with P(A) ≥ 1− c0/2 and put

N(ε, `) = #{α ∈ {0, 1}` : P(A`,ε
α ∩A) > c0 · 2−`−2}.

Lemma 12. For all ε > 0 and ` ∈ N
N(ε, `) ≥ c1 · 2`,

where c1 = c0/(4− c0).

Proof. Due to Lemma 11

P
( ⋃

α∈{0,1}`

A`,ε
α ∩A

)
≥ P(A) + P

( ⋃

α∈{0,1}`

A`,ε
α

)
− 1

≥ P(A) + c0 − 1 ≥ c0/2.

On the other hand, by the definition of N(ε, `) and Lemma 11

P
( ⋃

α∈{0,1}`

A`,ε
α ∩A

)
≤ (2` −N(ε, `)) · c0 · 2−`−2 + N(ε, `) · 2−`.

It remains to combine both estimates. ¤

Proof of Theorem 12. First we establish the lower bound for eran
N,full. Because of Lemma 4 and

Lemma 8 it suffices to prove that

(36) eran
N,full(Y, C) º N−1/2 · (lnN)−3/2

for every one-dimensional process Y such that

Yt∧τ = Wt∧τ , t ∈ [0, 1],

with a stopping time τ that satisfies P (τ = 0) = 0. To this end we use Proposition 1.
Put

B`
α =

⋂̀

i=1

B`,0
i,αi

and define f `
α ∈ F by

f `
α(x) = dist

(
x,

(
B`

α

)c)

for α ∈ {0, 1}`. Note that
f `

α(x) ≥ 1
2 · min

i=1,...,`
|x(si)− x(si−1)|
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for x ∈ B`
α. Choose ε ∈ ]0, 1] with P(τ ≥ ε) ≥ 1− c0/2, and let A = {τ ≥ ε}. Then

S(f `
α) ≥ 1

2 · E
(
1A · 1B`

α
(W ) · min

i=1,...,`
|Wsi −Wsi−1 |

)

≥ 1
2 · E

(
1

A`,ε
α ∩A

· min
i=1,...,`

|Wsi −Wsi−1 |
)

≥ 1
2 · ε1/2/`3/2 · P(A`,ε

α ∩A).

Take N = bc1 · 2`−1c and use Lemma 12 to conclude that

S(f `
α) º N−1 · (lnN)−3/2

holds uniformly for at least 2N multi-indices α ∈ {0, 1}`. Finally, apply Proposition 1 to complete
the proof of (36).

We combine the lower bound for eran
N,full together with Theorem 5 and Proposition 3 to obtain

the lower bound for eran
N,fix. ¤
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