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MULTILEVEL MONTE CARLO FOR LEVY-DRIVEN SDEs:
CENTRAL LIMIT THEOREMS FOR ADAPTIVE EULER SCHEMES

BY STEFFEN DEREICH AND SANGMENG LI
Westfilische Wilhelms-Universitdt Miinster

In this article, we consider multilevel Monte Carlo for the numeri-
cal computation of expectations for stochastic differential equations driven
by Lévy processes. The underlying numerical schemes are based on jump-
adapted Euler schemes. We prove stable convergence of an idealised scheme.
Further, we deduce limit theorems for certain classes of functionals depend-
ing on the whole trajectory of the process. In particular, we allow depen-
dence on marginals, integral averages and the supremum of the process. The
idealised scheme is related to two practically implementable schemes and
corresponding central limit theorems are given. In all cases, we obtain errors
of order N~/ 2(log N2 in the computational time N which is the same
order as obtained in the classical set-up analysed by Giles [Oper. Res. 56
(2008) 607-617]. Finally, we use the central limit theorems to optimise the
parameters of the multilevel scheme.

1. Introduction. The numerical computation of expectations E[ F (X)] for so-
lutions (X;);¢[0,7] of stochastic differential equations (SDEs) is a classical prob-
lem in stochastic analysis and numerous numerical schemes were developed and
analysed within the last twenty years; see, for instance, the textbooks by Kloeden
and Platen [21] and Glasserman [13]. Recently, a new very efficient class of Monte
Carlo algorithms was introduced by Giles [12]; see also Heinrich [14] for an ear-
lier variant of the computational concept. Central to these multilevel Monte Carlo
algorithms is the use of whole hierarchies of approximations in numerical simu-
lations. For SDEs, multilevel algorithms often achieve errors of order N ~1/2+o(D
in the computational time N (see [10, 12]) despite the infinite-dimensional nature
of the stochastic differential equation. Further, the algorithms are in many cases
optimal in a worst case sense [7]. So far, the main focus of research was concerned
with asymptotic error estimates, whereas central limit theorems have only found
minor attention yet. Beyond the central limit theorem, developed by Ben Alaya and
Kebaier [4] for the Euler scheme for diffusions no further results are available yet.
In general, central limit theorems illustrate how the choice of parameters affects
the efficiency of the scheme and they are a central tool for tuning the parameters.
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In this article, we focus on central limit theorems for Lévy-driven stochastic
differential equations. We prove stable convergence of the error process of an ide-
alised jump-adapted Euler schemes. Based on this result, we derive central limit
theorems for multilevel schemes for the approximate computation of expectations
of functionals depending on marginals, integral averages and the supremum of the
SDE. We then introduce implementable jump-adapted Euler schemes that inherit
the properties of the idealised schemes so that the main results prevail. Finally, we
use our new results to optimise over the parameters of the scheme, and thereby
complement the research conducted in [12]. In the Parameter Optimisation 1.13
below, we find that often it is preferable to increase the number of Euler steps
from level to level by a factor of 6. For ease of presentation, we restrict atten-
tion to the one-dimensional setting although a generalisation to finite-dimensional
stochastic differential equations is canonical.

In the following, (€2, F,[P) denotes a probability space that is sufficiently
rich to ensure existence of all random variables used in the exposition. We let
Y = (Y;)ie0,77 be a square integrable Lévy-process and note that there exist
b € R (drift), o2 € [0, co0) (diffusion coefficient) and a measure v on R \ {0} with
i x2v(dx) < 00 (Lévy measure) such that

E[e'*"] = exp{t(l’bz — %GZZ + /(eizx - 1= izx)v(dx))}

for t € [0, T] and z € R. We call the unique triplet (b, o2, v) the Lévy triplet of Y.
We refer the reader to the textbooks by Applebaum [2], Bertoin [5] and Sato [31]
for a concise treatment of Lévy processes. The process X = (X):c[0,7] denotes
the solution to the stochastic integral equation

t
(1.1 thxo—l-f a(Xs—)dYs, tel0,T],
0

where a: R — R is a continuously differentiable Lipschitz function and xg € R.
Both processes Y and X attain values in the space of cadlag functions on [0, T']
which we will denote by D(R) and endow with the Skorokhod topology. We will
analyse multilevel algorithms for the computation of expectations E[ F'(X)], where
F :D(R) — Ris ameasurable functional such that F (x) depends on the marginals,
integrals and/or supremum of the path x € D(R). Before we state the results, we
introduce the underlying numerical schemes.

1.1. Jump-adapted Euler scheme. In the context of Lévy-driven stochastic dif-
ferential equations, there are various Euler-type schemes analysed in the literature.
We consider jump-adapted Euler schemes. For finite Lévy measures, these were in-
troduced by Platen [27] and analysed by various authors; see, for example, [6, 25].
For infinite Lévy measures, an error analysis is conducted in [10] and [8] for two
multilevel Monte Carlo schemes. Further, weak approximation is analysed in [22]
and [26]. In general, the simulation of increments of the Lévy-process is delicate.
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One can use truncated shot noise representations as in [30]. These perform well
for Blumenthal-Getoor indices smaller than one, but are less efficient when the
BG-index gets larger than one [10], even when combined with a Gaussian com-
pensation in the spirit of [3]; see [9]. A faster simulation technique is to do an
inversion of the characteristic function of the Lévy process and to establish direct
simulation routines in a precomputation. Certainly, this approach is more involved
and its realisation imposes severe restrictions on the dimension of the Lévy pro-
cess; see [11].

In this article, we analyse one prototype of adaptive approximations that is in-
timately related to implementable adaptive schemes and we thus believe that our
results have a universal appeal. The approximations depend on two positive pa-
rameters:

e h, the threshold for the size of the jumps being considered large and causing
immediate updates, and
e ¢ with T € ¢N, the length of the regular update intervals.

For the definition of the approximations, we use the simple Poisson point pro-
cess IT on the Borel sets of (0, T'] x (R \ {0}) associated to Y, that is,

= > 8(s,AY,)>
5€(0,TT: AY;£0

where we use the notation Ax; = x; — x;_ for x € D(R) and ¢ € (0, T']. It has
intensity £(o, 7] ® v, where £, 7] denotes Lebesgue measure on (0, 7']. Further, let
IT be the compensated variant of IT that is the random signed measure on (0, 7] x
(R \ {0}) given by

ﬁ:n—ﬁ(o’ﬂ@v.

The process (¥;)s¢[0,7] admits the representation

(1.2) Y, = bt + oW, +lim x dTI(s, x),
340 J(0,1]1x B(0,8)¢

where (W;);c[0,7] 1s an appropriate Brownian motion that is independent of IT and
the limit is to be understood uniformly in 2. We enumerate the random set

(eZN[0,T)U{t € (0, T1:|AY,| > h} ={Ty. Ti,.. .}

in increasing order and define the approximation X he — (X,h’e),e[o,T] by Xg’8 =
xp and, forn=1,2,...and t € (T,,—1, T;]

(13) X; = X7° +a(X7" )V = Yr,).
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1.2. Multilevel Monte Carlo. In general, multilevel schemes make use of
whole hierarchies of approximate solutions and we choose decreasing sequences

(er)ken and (hp)ken with:

(ML1) g = M~KT, where M € {2,3, ...} is fixed,
(ML2) limg_; 00 v(B(0, hy))er =6 fora 6 € [0, 0o) and limy_, o0 A/ /€ = 0.

We remark that whenever 6 in (ML2) is strictly positive, then one automatically
has that &; = o(,/ex); see Lemma A.10.

For every k € N, we denote by X* := X/t the corresponding adaptive Eu-
ler approximation with update rule (1.3). Once this hierarchy of approximations
has been fixed, a multilevel scheme S is parameterised by a N-valued vector
(n1,...,ny) of arbitrary finite length L: for a measurable function F :D(R) - R
we approximate E[ F (X)] by

E[F(XY]+E[F(X?) — F(X")]+---+E[F(x!) - F(xt™1)]

and denote by S(F) the random output that is obtained when estimating the in-
dividual expectations E[F(X!)], E[F(X?) — F(XY)],...,E[F(XL) — F(XE~1)]
independently by classical Monte Carlo with ny, ..., ny iterations and summing
up the individual estimates. More explicitly, a multilevel scheme S associates to
each measurable F a random variable

ni L ng

(L) 5P = 3 F(XM) + 30 0 S (F(X) = P 1),

i k=2 "k i1

where the pairs of random variables (X% / Xxk=1.i.¢) respectively, the random
variables X /| appearing in the sums are all independent with identical distribution
as (XK, Xk=1), respectively, X'. Note that the upper indices f and c refer to fine
and coarse and that the entries of each pair are not independent.

1.3. Implementable schemes. We give two implementable schemes. The first
one relies on precomputation for direct simulation of Lévy increments. The second
one ignores jumps of size smaller than a threshhold which leads to schemes of
optimal order only in the case where—roughly speaking—the Blumenthal-Getoor
index is smaller than one.

Schemes with direct simulation of small jumps. For h > 0, we let Y =
(Y;h)te[O,T] denote the Lévy process given by

(1.5) Yh=bt 4 oW, + xdTI(s, x).
(0,t]1x B(0,h)¢

Using the shot noise representation (see [3]), we can simulate Y” on arbitrary
(random) time sets. The remainder M h — (M,h)te[o’T], that is,

M" =1im xdI(s,x) =Y — Y",
810 J(0,]1x (B(0,h)\B(0,5))
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can be simulated on a fixed time grid ¢'Z N [0, T] with & € ¢N denoting an
additional parameter of the scheme. A corresponding approximation is given by

~ ’ ~ / N ’
Xhee = (X9, o) via Xpr©F =xp and, forn=1,2,... and t € (T,,_1, T,

o S LR 10 G 0 SO T
+1oz(a(XEE ) (Ml — M),

t—e¢’

We call X"&¢ the continuous approximation with parameters h, ¢, ¢’. Further, we
— — !/
define the piecewise constant approximation X"-6¢ = (X™6¢ te[0,7] via demand-
14 pD t [0,T]
ing thatforn=1,2,...and ¢t € [T;,—1, T;,),

(1.7) Xpor = Xy

J— ’ o~ /
and X}T”e’e = X}T”e’s .
In corresponding multilevel schemes, we choose (¢x)ren and (hx)xeN as before.
Further, we choose monotonically decreasing parameters (8,/6) reN With 8]: e N
and:

(ML3a) €, [5(0.n, X>v(dx)log?(1 + 1/g}) = o(er).
(ML3b) hZlog*(1 + 1/e}) = o(ep).

REMARK 1.1. If
2,2 1
(1.8) fx log <1 + —)v(dx) < 00,
X

there exist appropriate parameters (hg, &, 8]/{) keN satisfying (ML1), (ML2),
(ML3a) and (ML3b). More precisely, in the case where v is infinite, appropriate pa-
rameters are obtained by choosing 8;( = gy and (hy) with limg_, oo £,V (B(0, hi)€) =
6 > 0; see Lemma A.10.

In analogy to before, we denote by (5(\ k:k € N) and (X*:k € N) the corre-
sponding approximate continuous and piecewise constant solutions. We state a
result of [24] which implies that in most cases the central limit theorems to be
provided later are also valid for the continuous approximations.

LEMMA 1.2. If assumptions (ML1), (ML3a) and (ML3Db) are satisfied, then

lim ¢, 'E| su Xk—fsz =0.
ok [tE[OPT]| ! t|]

Practical issues of numerical schemes with direct simulation of increments are
discussed in [11].
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Truncated shot noise scheme. The truncated shot noise scheme is parame-
terised by two positive parameters h, e as above. The continuous approxima-
tions X"¢ = (f,h’e),e[oj] are defined via X\g’e =xp and, for n =1,2,... and
te (Tnfl’ Tn],

o~

(1.9) Xt =Xp° +a(XpT ) —v] )

and the piecewise constant approximations xXhe = (Yﬁ’ ’g)te[O,T] are defined as
before by demanding that, forn = 1,2, ... and ¢t € [T,,—1, T},),

(1.10) X\ =Xp°

and X }}’8 =X }T”S. Again we will use decreasing sequences (&) and (/) as before
to specify sequences of approximations (X*) and (X*). In the context of truncated
shot noise schemes, we will impose as additional assumption:

(ML4) [ 0.5y x>0 (dx) = 0(ex).

REMARK 1.3. If [ |x|v(dx) < oo, then (ML1), (ML2) and (ML4) are satisfied
for appropriate parameters.

The following result is a minor modification of [10], Proposition 1; see also [24].

LEMMA 1.4. If assumptions (ML1) and (ML4) are satisfied, then

lim & 'E| su Xk—sz =0.
oDk [IE[OPT]’ t z’ ]

1.4. Main results. Inthe following, we will always assume that Y = (¥;);¢(0,7]
is a square integrable Lévy process with Lévy triplet (b, o2, v) satisfying o> > 0
and that X = (X;);¢[0,7] solves the SDE

dX; = a(X,_)dy,

with X = xo, where a : R — R is a continuously differentiable Lipschitz function.
Further, for each k € N, X* denotes the jump-adapted Euler scheme with updates
at all times in

(&NN[0, TN U {t € (0, T]: |AY;| > i };

see (1.3). The decreasing sequences of parameters (g;) and (/i) are assumed to
satisfy (ML1) and (ML?2) from Section 1.2.
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Convergence of the error process. We consider the normalised sequence
of error processes associated to the multilevel scheme that is the sequence
(e?k_l/z(XkJrl — X¥):k € N). Let us introduce the process appearing as a limit.
We equip the points of the associated point process I1 with independent marks and
denote for a point (s, x) € IT:

e by &, a standard normal random variable,

e by U, an independent uniform random variable on [0, 1], and

e by €s9 and SS(M_I)Q independent Exp(8) and Exp((M — 1)6)-distributed random
variables, respectively.

Further, we denote by B = (B;);¢[0,7] an independent standard Brownian motion.
The idealised error process U = (U;)s¢jo,1) 1s defined as the solution of the
integral equation

t t
U,:/ d' (X, )U,_ dYs—i-ozT/ (ad’)(X,_) dBy
0 0
(L11)
+ Z ng:s(aa/)(xs—)AYs,
5€(0,1]: AY;£0

where Y2 = e‘eg—#(l — 1), if 0 > 0, and T2 = L(1 — &), if 6 = 0, and the
positive marks (oy) are defined by

of=0 Y 11{<m—1)/Msus<m/M}[min(é’f ,Us)

1<m<M

—1
— m1n<€f, ES(M_I)O,Z/{S — mT)]

Note that the above infinite sum has to be understood as an appropriate martingale
limit. More explicitly, denoting by L = (L;);¢(0,7) the Lévy process

L, =0>YB, +lim > 0y E AY
s€(0,t]: |AYs|>8

we can rewrite (1.11) as

t 1
Ur= [ @/ (t)Us- ¥+ [ (aa) (X, dL.
0 0

Strong uniqueness and existence of the solution follow from Jacod and Memin
[16], Theorem 4.5.

THEOREM 1.5. Under the above assumptions, we have weak convergence

(1.12) (Y, e, 2(x" T = Xx") = (v,U)  inD(R?).
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Central limit theorem for linear functionals. We consider functionals
F:D(@R) — R of the form

F(x)= f(Ax)
with f:R? — R and A :D(R) — R? being linear and measurable. We set
Dy :={z eRY: f is differentiable in z}.
THEOREM 1.6. Suppose that f is Lipschitz continuous and that A is Lipschitz

continuous with respect to supremum norm and continuous with respect to the
Skorokhod topology in Py-almost every path. Further suppose that AX € Dy,

almost surely, and that o > % is such that the limit
. —a n .
nll)rgosn E[F(X") - F(X)]=:«

exists. We denote for § € (0,1) by Ss the multilevel Monte Carlo scheme with

parameters (nga), n(za), e n(LB()S)), where

"10g8_1
alogM
fork=1,2,...,L(5). Then we have,

7 Y(S5(F) —E[F(X)]) = N(k, p?)  ass§—0,

(1.13) L) =

—‘ and nk(S)z(S_ZL((S)Sk—ﬂ»

where N (k, ,02) is the normal distribution with mean k and variance
p* = Var(V f(AX) - AU).
EXAMPLE 1.7. (a) For any finite signed measure u, the integral Ax =

fOT xsdu(s) satisfies the assumptions of the theorem. Indeed, for every path
x € D(R) with

(1.14) (s €10, T]: Ax, #0}) =0

one has for x" — x in the Skorokhod space that

T T
Ax”:/o x?du(s)%/(‘) xsdu(s) = Ax

by dominated convergence and (1.14) is true for Py;-almost all paths since p has at
most countably many atoms. Hence, the linear maps Ax = x; and Ax = fOT Xxg ds
are allowed choices in Theorem 1.6 since U is almost surely continuous in .

(b) All combinations of admissible linear maps Ay, ..., A, satisfy again the
assumptions of the theorem.

In view of implementable schemes, we state a further version of the theorem.
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THEOREM 1.8. Suppose that either ()?k k € N) and (X*: k € N) denote the
continuous and piecewise constant approximations of the scheme with direct simu-
lation and that (ML1), (ML2) and (ML3) are fulfilled or that they are the approxi-
mations of the truncated shot noise scheme and that (ML1), (ML2) and (ML4) are
fulfilled. Then Theorem 1.6 remains true when replacing the family (X* : k € N) by
(X*:k € N). Further, if A is given by

T
Ax = (xr,/ X ds),
0

the statement of the central limit theorem remains true, when replacing the family
(XK:k eN) by (XF:k eN).

Central limit theorem for supremum-dependent functionals. In this section, we
consider functionals F :D(R) — R of the form

F(x)=f( sup xt)

t€l0,T]

with f:R — R measurable.

THEOREM 1.9. Suppose that f:R — R is Lipschitz continuous and that the
coefficient a does not attain zero. Further, suppose that sup,¢jo 71 Xt € Dy, almost

surely, and that o > % is such that the limit
: —a n .
nli)rgosn E[F(X")— F(X)]=:«

exists. We denote for § € (0,1) by Ss the multilevel Monte Carlo scheme with

parameters (n(la), ngﬁ)’ - ”g()a))’ where

logs™!
alogM

L) = [

fork=1,2,..., L(5). Then we have
5TV (Ss(F) —E[F(X)]) = N(k,p*)  as8—0,

—‘ and nk(8)=[572L(5)8k—11,

where N (k, ,02) is the normal distribution with mean « and variance

p? = Var(f’(tes[gPT] Xz)Us>,

and S denotes the random time at which X attains its supremum.
THEOREM 1.10. Theorem 1.9 remains true for the continuous approxima-

tions for the scheme with direct simulation of increments or the truncated shot
noise scheme under the same assumptions as imposed in Theorem 1.8.
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Optimal parameters. We use the central limit theorems to adjust the parame-
ters of the multilevel scheme. Here, we use the following result.

THEOREM 1.11. Let F be as in Theorems 1.6 or 1.9 and assume that the
assumptions of the respective theorem are fulfilled. Further assume in the first case
that A is of integral type meaning that there exist finite signed measures [L1, ..., lLd
on [0, T] such that A = (Aq, ..., Ag) with

T
ij:/ Xgdj(s) forx eD(R)and j=1,...,d
0

and generally suppose that a'(X;_)AYy # —1 for all s € [0, T, almost surely.
Then there exists a constant k depending on F and the underlying SDE, but not on
M and 0 such that the variance p® appearing as variance is of the form

p=k7Y,
where as before Y2 = <=1+ (1 — L) if§ > 0, and 1> = L(1 — 1), if 6 = 0.

REMARK 1.12. The assumption that a’(X;_)AY # —1 for all s € [0, T],
almost surely, is automatically fulfilled if v has no atoms. For every s € (0, T'] with
a'(Xs—)AYy = —1, the error process jumps to zero causing technical difficulties
in our proofs. In general, the result remains true without this assumption, but for
simplicity we only provide a proof under this technical assumption.

PARAMETER OPTIMISATION 1.13.  We use Theorem 1.11 to optimise the pa-
rameters. We assume that 6 of (ML2) and the bias « are zero. Multilevel schemes
are based on iterated sampling of F(X* — F(X*=1), where (X*~!, X¥) are cou-
pled approximate solutions. Typically, one simulation causes cost (has runtime) of
order

-1

Cr = (1 + 0(1))Kcost8k_1(M +8),
where ko5t 1S @ constant that does not depend on M, and § € R is an appropriate
constant typically with values between zero and one: one coupled path simulation
needs:
e to simulate &, _ _11 T M increments of the Lévy process,
e todo 8]:_11 T M Euler steps to gain the fine approximation,
e to concatenate 8,:_11 T (M — 1) Lévy increments, and
e todo 8]:711 T Euler steps to gain the coarse approximation.
If every operation causes the same computational cost, one ends up with g = 0. If

the concatenation procedure is significantly less expensive, the parameter g rises.
Using that

571 (Ss(F) —E[F(X)]) = N(0,k2.(1 = 1/M))  as§ |0,
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we conclude that for § :=§(8) := 8/(Kerra/1 — 1/ M) one has
7 (S5(F) —E[F(X)]) = N (0, 1)  asé8 0.

Hence, the asymptotics of §5(F ) do not depend on the choice of M and we can
compare the efficiency of different choices of M by looking at the cost of a simu-
lation of S5(F). It is of order

(1 + 0(1))keost L(8)*(M + B)6 2

Kcost/{ezrr (M —1)(M + B)

— -2 —1\2
= (1+o(D)) " M (log M2 8 *(logs™")".

A plot illustrating the dependence on the choice of M is provided in Figure 1.

%W for B being 0 or 1. The plot indicates

that in both cases 6 is a good choice for M. In particular, it is not necessary to
know B explicitly in order to find a “good” M. For numerical tests concerning
appropriate choices of 8, we refer the reader to [11].

There we plot the function M —

The article is outlined as follows. In Section 2, we analyse the error process
and prove Theorem 1.5. In Section 3, we prepare the proofs of the central limit
theorems for integral averages for the piecewise constant approximations and for
supremum dependent functionals. In Section 4, we provide the proofs of all re-
maining theorems, in particular, of all central limit theorems. The article ends
with an Appendix where we summarise known and auxiliary results. In particular,
we provide a brief introduction to stable convergence and perturbation estimates
mainly developed in articles by Jacod and Protter.

Dependence on M
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FI1G. 1.  Impact of M on the computational cost for B =0 (green) and B =1 (red).
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2. The error process (Theorem 1.5). In this section, we prove Theorem 1.5.
We assume that properties (ML1) and (ML2) are fulfilled. At first, we introduce
the necessary notation and outline our strategy of proof. All intermediate results
will be stated as propositions and their proofs are deferred to later subsections. We
denote forn e Nand r € [0, T]

1y (1) =supl0, t]N I,

where I, = {s € (0, T]: AYSh” # 0} U (6,Z N[0, T]) is the random set of update
times and recall that X" solves

(21) dX;’l =a(XZl(t_)) dYt
with X7 = xo. We analyse the (normalised) error process of two consecutive
X"-levels that is the process U™"+! = (Utn’"H),e[o,T] given by

Utn,n—l—l _ 8—1/2(Xn+1 _ Xn)

" .
The error process satisfies the SDE
aUP Y = e V(X0 — a(X0))dY; + 5 2 (a(X]) — (X)) Y,
—1/2 1 1
— &y / (a(X?:r )_a(XZ:l(t—)))dYt'

In order to rewrite the SDE, we introduce some more notation. We let

a(v) —a(u) )
Va(u,v) = v—u ifu#v,
a’(u), ifu=v

for u, v € R and consider the processes
(D) = (Va(X] . X1)),  (DP"!) = (Va(x], X)),

(A7) = a(X} ()
In terms of the new notation, we have
02 At = prrturtay, 4 672D AT (Yo — Y, o)) dY,
— &, PO AN Y, =Y, o) dYs

n n,n+1 : —
) t -
Clearly, the processes (D}) and (D ) converge in ucp to (Dy)

(a’(X1))iero,7) and the processes (A}) to (A;) := (a(X;)):e[o,1- It often will be
useful that the processes D™"*! and D are uniformly bounded by the Lipschitz
constant of the coefficient a.

For technical reasons, we introduce a further approximation. For every ¢ > 0,

we denote by U +1-¢ = (U,”’”H’E),e[oj] the solution of the SDE

dUn,n—i—l,s =D, Un,n-i—l,a dYt
t - e
(2.3) "
tey 2D Ao Wiy ) — Wy 0-) dYf
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with Ug’"H’g =0, where Y¢ is as in (1.5). Further, let U® = (Uf);¢[0,7] denote
the solution of

¢ t
Uf:/ Ds_UsidYS+ozT/ Ds_As_dBq
0 0
2.4)
+ Z 05€s Dy Ag— AY.
s€(0,1]: AYEF#O

We will show that the processes U¢, U">¢, U>3#, ... are good approximations
for the processes U, U 1.2 23 . inthe sense of Remark A.7. As a consequence
of Lemma A.6, we then get:

PROPOSITION 2.1. Iffor every € > 0,
(Y, Umte) = (v, Uf)  inD(R?),
then one has
(v,um""Y= (v,U)  inD(R?).
The proof of the proposition is carried out in Section 2.1. It then remains to
prove the following proposition which is the task of Section 2.2.
PROPOSITION 2.2. For every € > 0,
(v, un" ) = (v, Uf)  in D(R?).
2.1. The approximations U™ 1€ are good. In this subsection, we prove
Proposition 2.1. By Lemma A.6, it suffices to show that the approximations are
good in the sense of Remark A.7. In this section, we will work with an additional

auxiliary process: for n € N and & > 0 we denote by U1 .= (T""1¢), .0.11

the solution of

(2 5) dan,n—f—l,e — Dtn;n-i-lan_,n-i-l,s ay, + 8;1/2D?_A?_O'(Wt_ _ th(t—)) des
e DR AT W, Wy )0,

with T = 0.

LEMMA 2.3. Forevery §, & > 0, we have:

1. limg o limsup,,_, o E[sup,cjo.77 |U,"’”Jrl — l7,"’”+1’£|2] =0,
2. 1imys 00 PGSUp, 0.7 1T T8 — U1 > 8) =0,
3. limg o P(sup,co. 77 1Ur — Uf| > 8) =0.



MLMC FOR ADAPTIVE EULER SCHEMES 149

It is straightforward to verify that Lemma 2.3 implies that the approximations
are good.

PROOF OF LEMMA 2.3. (1) Recalling (2.2) and (2.5) and noting that D"-"*!
is uniformly bounded, we conclude with Lemma A.14 that the first statement is
true if

t
limlimsupe, 1E|: sup / Dy A} _(Ys_ — Y, (s—)) dY;

el0 n—oo 1€[0,T]
(2.6)

2} —o0.

Let M? denote the martingale Y — Y?. The above term can be estimated against
the sum of
]

t
—o [ DIAL Wy = W, o) Y
0

2.7 e} IE[ sup

t
; | Di_ AT (Ve = Yoy = oW o W) A,
t€[0,T]

1

We start with estimating the former expression. For ¢ € [0, T'], one has

and

(2.8) E;IUZE[ sup
t€l0,T]

f Dn_An (Wy_ — th(s—))de

I ghn
Yo =Y,y =0Wr = W, ) + M;" =M,

+ <b - / xv(dx)) (t — 1, (1)).
B(0,h,)¢
By Lemma A.10, one has

e 'E[|Y; — Y, ) — oW, +O'WL”(Z)|2|LH]

2
<2 xzv(dx) + 2(19 — / xv(dx)) &n
B(0,hy) B(0,hn)¢
=:46,—>0

as n — oo. Further, by Lemma A.11 and the uniform boundedness of D", there is
a constant 1 not depending on n such that
]

T
(2.9) gxlsn—l/o E[(A” ) (Yoo = Y, 5oy — o Ws_ + 0 W, 5—))*]ds

T 2
§K18n/ E[|A}_|"]ds
0

t
sn_lE[ sup / D?_A?_(Y. - = Ytn(sf) —o W+ O'th(é‘f))dYS
t€[0,7]1/0
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where we have used conditional independence of A}_ and Y —Y, (s—)—oWy_+
oW, (s—) given (, in the last transformation. By Lemma A.12 and the Lipschitz
continuity of a, the latter integral is uniformly bounded over all n € N so that (2.7)
tends to zero as n — 00.

Next, consider (2.8). Note that M? is a Lévy martingale with triplet (0,0,
V|B(0,¢))- By Lemma A.11 and the uniform boundedness of D", there exists a
constant k» not depending on € and n such that

t 2
enlE[ sup / DY AL (Ws— — W, (5—)) dM? }
tel0,T]
T
(2.10) 5/(28”_1/ xzv(dx)/ E[|A"_|*|W,_ — W, [*]ds
B(0,¢) 0

T
<o [ o [ E[AL]ds
B(0,¢) 0

where we used in the last step that conditionally on ¢, the random variables AY_
and Wy_ — W, (s_ are independent and E[((W;— — W, (s— )) ltwl =5 — 1p(s5) <
&n. As noted above, fo E[AY_ 21ds is uniformly bounded, and hence (2.8) tends

uniformly to zero over all n € N as ¢ |, 0.
(2) We will use Lemma A.15 to prove that

(2.11) grrtle _pgnntle in ucp, as n — oo.
We rewrite the SDE (2.3) as
AU/t = p UM QY, 67 2D Ao (Wil — W, y) dYE
— e, 2D Ao (Wi— — W, (1—) dYf.
Recalling (2.5), it suffices by part one of Lemma A.15 to show that:

1. D" — D, in ucp,
12 .
2. &y / Jo(DY_AY_ — Ds_As_)(Ws_ — W, (s—)) dYE — 0, in ucp,
3. the families (supte[o T |D"*!|:n € N) and
‘ne N)

( sup
t€l0,T]
The tightness of (sup,p 77 |Df "+ € N) follows by uniform boundedness.
Further, the tightness of the second family follows by observing that in analogy
to the proof of (1) one has
]

|: sup
t€[0,T]

<ize, ! TE}A”|2W — W, s [*]ds < TE}A”|2d
<wsey | B[AT[IWe = Wi FJds <5 | E[|AT_[7]ds

/ D" A" (Ws_ — W, sy dY?

are tight.

/ D' A" (Wy_ — W, (s—y) dY¢
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for an appropriate constant k3 not depending on n. Furthermore, convergence
D"+ . D follows from ucp convergence of X" — X and Lipschitz continu-
ity of a. To show the remaining property, we let § > 0 and 7, s denote the stopping
time

T,.s =inf{s € [0, T]: |D} A} — D;Ag| > 8}.

Then by Lemma A.11, there exists a constant x4 not depending on n and § with

P 2
E[ sup s,;l( / (D'_A"_ — Dy A, )(W,_ — Wt,l<s—>>dY§“) }
te[0,T ATy 5] 0

T
<y8%e; ! f E[(Wy— — W, s—))*]ds < ka8°T.
0

Since for any § > 0, P(T,, s = 0o) — 1 by ucp convergence D" A" — DA — 0, we
immediately get the remaining property by choosing § > O arbitrarily small and
applying the Markov inequality.

(3) The proof of the third statement can be achieved by a simplified version of
the proof of the first statement. It is therefore omitted. [

2.2. Weak convergence of U™"+1:¢. In this subsection, we prove Proposi-
tion 2.2 for fixed ¢ > 0. We first outline the proof. We will make use of results
of [17] summarised in the Appendix; see Section A.1. We consider processes
zZmE¢ = (Z?’S)ZE[O’T] and Z¢ = (Ztg)te[O,T] given by

t
(212) Z;l’e = SJI/ZA (WLnJrl(S_) - Wln(s_)) dYYS
and
(2.13) ZE=rB+ Y Zgav,

s€(0,1]: |AY,|=e @

where (o) and (&) are the marks of the point process IT as introduced in Sec-
tion 1.1.

In view of Theorem A.5, the statement of Proposition 2.2 follows, if we show
that

(Y,/'D,_ dY,,/'D,_A,_de’E) = (Y,/.D,_dY,,/.D,_A,_ dzf)
0 0 0 0
in D(R3).

Further, by Theorem A.4, this statement follows once we showed that (Z"¢:n €
N) is uniformly tight and

(2.14) (Y,D,DA,Z"¥)= (Y, D, DA, Z°)  inD(R?).
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We first prove that ((Y, D, DA, Z"?) :n € N) is tight which shows that, in par-
ticular, (Z™¢:n € N) is uniformly tight; see Lemma 2.4. Note that (Y, D, DA) is
o (Y)-measurable. To identify the limit and complete the proof of (2.14), it suffices
to prove stable convergence

stabl
Zl’l ,€ Y ZS

with respect to the o-field o (Y); see Section A.1 in the Appendix for a brief intro-
duction of stable convergence. The latter statement is equivalent to

(Y,Z"%) = (¥.Z°)  inDR) x D(R),

by Theorem A.2. We prove the stronger statement that this is even true in the finer
topology D(R?): the sequence ((Y, Z"%):n € N) is tight by Lemma 2.4 and we
will prove convergence of finite-dimensional marginals in Lemma 2.6. The proof
of the latter lemma is based on a perturbation result provided by Lemma 2.5.

LEMMA 2.4. For ¢ > 0, the family (Y, D, DA, Z"?) :n € N) taking values
in D(RY) is tight. In particular, (Z™¢ :n € N) is uniformly tight.

PROOF. One has by Lemma A.11
t
2 _
E[ sup (27°)*] <re,” / E[(Wey16-) = W) ]dr <1
1€[0,T] 0

for an appropriate constant «1 so that by the Markov inequality

lim supIP( sup |Y,|v|Zf’8|v|D,|v|DtAt|zK):O.
K—00,eN  “re[0,T]

It remains to verify Aldous’ criterion for tightness [18], Theorem VI1.4.5, which
can be checked componentwise. It is certainly fulfilled for ¥, A and DA and it
remains to show that for every K > 0 there exists for every § > 0 a constant ¢5 > 0
such that for arbitrary stopping times S7, Sz, ...

limsup P sup |z —Z5| = K) <cs
n—=>00 e[S, (Syt+8)AT] !

and limgs o cs = 0.
First, suppose that Sy, S,, ... denote stopping times taking values in the respec-
tive sets ,7. Then as above

, €12
Bl swp (70075
t€[Sn,(Sp+0)AT]

T
<kig,! fo E[11s,. (5,461 0 W12 — W —))7] dt

T
(2.15) <kie; ! fo E[1(s,,. (5,461 (tn () (Wi 1=y — Wey—))*] dt
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T
< qu[/O 15, (S,+8)1 (tn (1)) df}
<«ki1(en +98) = k16,

where we have used that E[(W,, ., ¢—) — Wi, 1—))*|Fu,@)] < & and s, (s,+6)1(t)
is F,, (-measurable. It remains to estimate for general stopping times Sy, Sz, ...

n,e n,e|2
E[ sup |27 — Z5°| ]
t€[Sp,Sul

where S, = inf[S,, o0) NeyZ. As in (2.15), we conclude with S, — S, < ¢ that

E[ sup |27 —Z§"[]
1€[Sn,Snl

T
=< KlgrflE[/O Lis, 51O W6 — Wzn(t—))zdf}
< /qE[ sup |Ws — W,Iz] — 0.

s,re[(k—Deyr L ke

By the Markov inequality, this estimate together with (2.15) imply Aldous’ crite-
rion. [J

To control perturbations, we will use the following lemma.

LEMMA 2.5. For j = 1,2, let (@\")ieqo.11 and (B )iepo.) optional pro-
cesses being square integrable with respect to P ® {0, 1| and let

. t . .
nj__ _—1/2 o7 (J) o7 () v (j
T; =&, / /O(WL,1+1(S—)_ tn(s—))dYs(j)’
where
79D —w o+ [(eid 79—+ [ g
=W Oas S, =M+ b By’ ds
and

M;=cW,+ x dII(s, x).
(0,t]1x B(0,e)¢

For t € D =J,enénZ N[0, T], the sequences (’Y',n’l)neN and (Tt”’z)neN are
equivalent in probability, that is, for every § > 0

. n,l n,2 _
nll)ngoP(}T, — Y7 > 8)=0.
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PROOF. We prove the statement in three steps.

1st step. First, we show a weaker perturbation estimate. Using the bilinearity of
the stochastic integral, we get that

tn1(s—)
a0 )
L (s

+ Sn_l/zf Wiparts—) = Wi s=) (B = BP) ds

tht1(s— )
_1/2/ f o' — @) du g ds
tn(s—)

np 16D o) () e @)
+e, //L(S) o,” du(Bs” — Bg”) ds

We analyse the terms individually. By Itd’s isometry, the fact that s —
&n < tp(s—) < tp+1(s—) < s and Fubini’s theorem one has that for k = 0%+

fB(O,é‘)” )C2V(d.)C)

2
|:( _1/2/ /Ln-H(S ) (1) _a(z))dudMs> ]
tn(s—) "
t/ plagr(s—) 2
:KSH_IIE[/ </ (@l — ) du) ds}
tn(s—)

ln I(V)
2.17) <KE[/ / ! (1)—a£2))2duds:|
Ly

n(5—)

<klE / / all — g 2duds]
[o (s—s,l)\/O( " i)

1
< KS,,E[/ (@M — @) ds].

0

By the Cauchy—Schwarz inequality and Fubini, it follows that the second term
satisfies

E[g,;l/z
1/2 ! 2 2 Lo e . ]
<e E[/O W1 5-) = Wips—)) dS} E[/O (8" - B?) dS}

< IE[/()t(ﬁs(l) _ ﬂs(z))zds]l/z’

where we have used in the last step that (/71 — ti_ is independent of the Brownian

motion and smaller or equal to &,. The third term is estimated similarly as the first

(2.16)

t
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term:
ln+1 (s—)
1 2 1
// ()—a;))duﬁs()ds
L

e |
n(s—)
t tp1(s—) 2 1/2 T 1/2
< E}l/ZE[/ (/ ' (@ —a?) du) ds} E[/ (ﬁfl))zds}
0 tn(s—) 0

tt1(s— ) 172 T 1/2
<EU / + oV — a@)?du ds:| E[/ (ﬂs(l))zds]
tn(s—) 0
t 1/2 T 1/2
el [l -] e[ o]
0 0

In complete analogy, the fourth term satisfies

12 w1 5=) 1 2
Ble, 2|1 e au(p - p) s
tn(s—)

t ) 172 T 5 1/2
<e8[ [Py as] 5| [60 - 5O as]
0 0

By the Markov inequality, the first, third and fourth term of (2.16) tend to zero in
probability as n — o0.

2nd step. Next, we analyse the case where p® =0 and 8 := BV is sim-
ple in the following sense. There exist [ € N, increasingly ordered times 0 =

to,t1,....t1 =t € D=,enyernZ N[0, T] such that B is almost surely constant
on each of the time intervals [7, #1), ..., [tj—1,%). Forn e Nand j=1,...,[, we
let

M, = 871/2/ Wi 16— — Wi, 5-)) ds.

j—1

We suppose that n € N is sufficiently large to ensure that {¢1,...,#} C &,Z. The
Brownian motion W is independent of IT so that for u, s € [0, t]

]E[(Wln+l(s_) - Wln(s_))(W‘rrH(”_) - Wln(u_))ln]
= L([ta(5=)s a1 ()] N [t =), tag1(u—)])

< enl{js—ul<e,)-

Consequently, we obtain with Fubini that

_ i [
E[sz',n] =¢, IE[/ / Weiis=) = Wos-) Wi w—y — Wi, u—)) ds du]
-

<2en(t; —tj-1).
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Since M, is independent of J—"tj_l and has mean zero, we conclude that

.....

l t
<2g, Zﬂ,zjf,(lj —tj_1) = ZS”E[/O ﬁszds]
=1

3rd step. We combine the first and second step. Let «® and P be as in the
statement of the theorem and let § > O be arbitrary. The simple functions as defined
in step two are dense in the space of previsible processes with finite L>-norm with
respect to P ® {0, 7). By part one, we can choose o) =0 and a simple process
BM such that
P = = 8/2) <8/2

for n sufficiently large. Next, let Y0 denote the process that is obtained in analogy
to Y”! and Y"2 when choosing & = 8 = 0. By the second step, (Tt"’1 :n € N) and
; One N) are asymptotically equivalent in probability implying that

Pt -0 = 8/2) <6/2
for sufficiently large n € N. Altogether, we arrive at

B2 =100 = 6) <6
for sufficiently large n € N. Since 8 > 0 is arbitrary, (Y"?:n € N) and (Y/*%:n €
N) are equivalent in probability. The general statement follows by transitivity of
equivalence in probability. []
LEMMA 2.6. For any finite subset T C D = J,,cn €:No, one has convergence
(Y,, Ztnye)te’]l‘ = (Yl’ Zf)teT'

PROOF. 1ststep. In the first step, we derive a simpler sufficient criterion which
implies the statement. Fix / € N, increasing times 0 =1#y <t <--- <t <T and

consider T = {¢1, ..., t7}. The statement follows if for A € o (Y;:t € T) and con-
tinuous compactly supported f: R/ — R
E[1af(Z55. ... Zy°)] = E[1a f(Z] . ... Z})].

By the Stone—Weierstrass theorem, the linear hull of functions of the form

R - R, x> fi(x)) X - X f1(x)
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with continuous compactly supported functions fi, ..., fi:R — R is dense in the
space of compactly supported continuous functions on R/ equipped with supre-
mum norm. Hence, it suffices to verify that

E[1af1(Z5°) - filZy® — Zy°)]
— E[1af1(Z;) - filZ;, - Z; )]

for arbitrary continuous compactly supported functions fi, ..., fi:R— R.

For fixed set T, the family of sets A € o(Y;:t € T) for which (2.18) is valid is
a Dynkin system provided that the statement is true for A = Q2. Consequently, it
suffices to prove (2.18) on the N-stable generator

E={AN---NA:Age Ay, ..., A € Ay},
where A1 =0 (Y;)),...., Ay =0, —Y; ;). Wenotethatfor A=A N---NA €
& the random variables
]lAlfl(Z;ll’g),...,]lAlf](ZZ’g —ZZ’_SI)

are independent if T C ¢,Np which is fulfilled for sufficiently large n since T is
finite and a subset of D. Likewise this holds for (Z;"®) replaced by (Z7). Conse-
quently, it suffices to prove that fork =1, ...,/

E[lac fe(Zy" = 245)] = BlLa fi(Z5 = Z5 )]

Due to the time homogeneity of the problem, we can and will restrict attention to
the case k = 1 and set t = 11. Note that 0 (W) N Uy~00 (X se(0.11: |AY, [z¢’ SAY,) 18
N-stable, contains €2 and generates a o -field that contains o (¥;).

We conclude that the statement of the lemma is true, if for all t € D, ¢’ > 0,
all Aeo(W) and A" € 0 (X c(0.1]: |aY, | SaY,) and all continuous compactly
supported f:R — R, one has

(2.19) nli)ngoE[]lAﬂA/f(Z?’g)] :E[]].AQA/f(ZZS)].
2nd step. In this step, we prove that for A € o(W) and A’ € o (IT)
Jim [E[140a f(Z])] = P(AE[La £ (Z1)]] =0,

(2.18)

where (?f ) and (Z"S ) are given by
?f:aWs+ xdIT(u, x)
(0,51x B(0,£)°

and

N

N P
8= 8;1/2]0 W=y — Woyu—) dYy,.

It suffices to consider the case P(A) > 0. We use results of enlargements of filtra-
tions; see [19], Theorem 2, page 47, or [1], Example 2: there exists a previsible
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process (ots)se[0,7] being square integrable with respect to P ® £[o 7 such that
given A the process (WSA) 5€[0,7]

N
WSA = W —/ o, du
0

is a Wiener process. By Lemma 2.5, the processes (Z;®) and

s
—Zn,e,A _ —1/2 A A
Z? 88 = &n / /0 (th+1(u—) - th(u )) dYs

with Y&4 (ch —i—f(O sIx B(0.6)e X dIT(u, x))sefo, 7] are equivalent in probability.
Hence,

E[Lanar £ (Z1)] = E[Lana £(Z754)]] = 0.

The set A is independent of IT. Further, conditionally on A the process W4 is a
Brownian motion that is independent of IT which implies that

E[Lana f(Z5*)] =P(AE[14 £ (Z1F)].
3rd step. Let T denote the finite Poisson point process on B(0, ¢')¢ with

Z SAy, =/ 8, dI(u, x).

se(0.1] (0,1]x B(0,¢)¢
[AYs|=e’

In the third step, we prove that for every A’ € o(I") and every continuous and
bounded function f:R — R one has

lim IE[]lA/f(Z" N =E[La f(Z))]
By dominated convergence, it suffices to show that, almost surely,
(2.20) hm E[f( Z9)IT] =E[f(Z9)IT].

The regular conditional probability of IT| o s1x B(0,¢"yc given I' can be made pre-
cise: the distribution of 1| 1xp(0,e)c given {I' =y =Y}, 8,,} withm e N

and yi, ..., ym € B(0, £')° is the same as the distribution of

m

Z SSk,yk

k=1
with independent on (0, #] uniformly distributed random variables S, ..., Sy,.
Since, furthermore, 1|0 /1xB(0,e))c 1s independent of IT|(o,;1x B(0,e/)\{0} and the

Brownian motion W, we conclude that the distribution of Z;"°

{I" = y} equals the distribution of the random variable

conditioned on

t
2Es —1/2 vn,
Zpe =gl /0 Wy = W) Y7
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with ¥i"" = o Wy + 301 | ym L1y, ze) Lise<s) and
i (s) =sup[(e.Z N[0, 2]) U {s € (0,2]: hy <|AY,| <&} U{S1,..., Sn}]-

Here, the random variables Si, ..., S, are independent of 1| ;xB(0,¢) and W.
Likewise the random variable Z? given {I" = y} has the same distribution as the
unconditional random variable

m
o
ZiT =B+ ) E Yy 1)
j=1
withoy,...,0, and &1, .. ., &, being independent (also of B) with the same distri-
bution as the marks of the point process I1. Consequently, statement (2.20) follows
if for every y as above,

lim E[£(Z)"")] =EL£(Z7)].

We keep y fixed and analyse Z;"®" for n € N sufficiently large, that is, with
t € &,7. We partition (0, t] into ¢ /e, n-windows. We call the kth n-window to be
occupied by S; if §; is the only time in the window ((k — 1)&,, ke, ]. Further, we

call a window to be empty, if none of the times Sy, ..., S, is in the window. For
each window k =1, ..., t /e, that is empty, we set
ny _ 1y [ren
zZ,=¢, 7o /(kl)en W‘ZH(”_) — WLZ(u—))qu’

and for a window ((k — 1)¢,, ke, ] being occupied by j
ny _ —1/2
2 =gy / (Wt,ﬁﬂ(sj—) = Wiris;)illy;izel-

The remaining 2, can be defined arbitrarily since we will make use of the fact
that the event 7, that all windows are either empty or occupied satisfies P(7,) — 1.

We first analyse the contribution of the occupied windows. Given that 7,
occurs and that Sy,...,S,, are in windows ki, ..., k,, the random variables
ZZI’V, e ZIZ;V are independent. We consider their conditional distributions: con-
ditionally, each §; is uniformly distributed on the respective window and the last
displacement in B(0, &) \ B(0, hy), respectively, B(0, h,) \ B(0, h,+1) has oc-
curred an independent exponentially distributed amount of time ago; with parame-
ter A, = v(B(0, &') \ B(0, hy,)), respectively, A,+1 — A,. Therefore, the conditional
distribution of (S; — ,(S;), §; — tx41(S;)) is the same as the one of

M .

—1

<min(u8", SA"), Z 1((i_1)8n’i€n](u8n) min(u*f" — 17, Skn, S)‘"“_)‘")) )
i=1

where U¢", £ and £+ are independent random variables with /" being uni-
formly distributed on [0, &,] and £, E*»+1=*» being exponentially distributed
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with parameters A, and A,4| — A,. Consequently, conditionally, one has that

n

ZZJ?V L1 (min(ug", EMn)

M 1 1/2

. i— _

_mln(g :ﬂ.((i_l)sn’ign](uf;‘n)(ué‘n _ 7>’6An, g)xn+1 )\n))
X EYjL{y; 1z},

where £ denotes an independent standard normal. By assumption, A, /&, — 6 as

n — oo so that the latter distribution converges to the one of %5 jy;j- Hence, con-
ditionally on 7, one has

m
o
n.y J
> 2T =) Lz
keNN[0,1/e,] j=1
kth n-window occupied
Next, we analyse the contribution of all empty windows. Given 7,, there are
t/e, —m empty windows and the corresponding random variables Z,':’V are inde-
pendent and identically distributed. We have

E[Zf’y 1(0, &,] empty, 7,,] =0

since W is independent of the event we condition on. Further, by It6’s isometry
and the scaling properties of Brownian motion one has

Var(Z{""|(0, &,] empty, T, )

En
= sn_lazE[ (Wy
0

n+1 (u)

— Wy 0)* dul(0, £,] empty, T,,]
(2.21)

= en0 E[Wootr qiom = Wert i en)”1(0: €] empty, 7]

LV
n+1
2 -1 n -1 n
=¢,0°E[e, LI)’:+1(US ) — &, L (U)]I, g,] empty, Ty ].

Here, we denote again by ¢//*" an independent uniform random variable on [0, &,]
and we used that conditionally the processes ¢, and LZ 41 are independent of the
Brownian motion W. As above, we note that the distributions of ¢, ! L,}; 1 (Ut and
&, L (Uen) are identically distributed as

En

U
8;1 <€A”+‘ A ﬁ) and 8;1(6’” AU).

By assumption (ML2), these converge in L' to EM9 A1/!/M and £9 AU, respec-
tively. Hence, computing the respective expectations gives with (2.21)
dM—1e?—(1-06)

.2
" 7 G

e, ! Var(Z1"7|(0, &,] empty, Tp) — o
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The uniform L2-1ntegrab1hty of L(g, 12 2 ?’y [(0, &, ] empty, T,) follows by notic-
ing that by the Burkholder—Davis—Gundy inequality there exists a universal con-
stant x such that

E((2"7)*1(0, e] empty, Ty,)

§K€,1_204E|:( A W = Wi Y () du) }(0 &y empty, 7']
4 4] _ 4.2 4
<d4xo E[ sup Wu] =dko enE[ sup Wu].
uel0,e,] uel0,1]
Hence, conditionally on 7, one has
> 2 = N(0,7%).

keNN(0,t/e,]
kth n-window empty

Given 7, the contribution of the empty and occupied windows are independent,
so that since P(7,) — 1, generally

t/en
Y ZT =z
k=1
It remains to show that
t/en
nlgrgo <_n v Z Zn y) in probability.

This follows immediately by noticing that, given 7, one has

t/en

Zn,a,y _ ZZIZ”V

ken
=os, '/ > / Vo= = Wi, u—) dWa,
keNN[0,1/en] (k—Den
kth n-window occupied

where the sum on the right-hand side is over m independent and identically dis-
tributed summands each having second moment smaller than &2.

4th step. In the last step, we combine the results of the previous steps. By step
one, it suffices to verify equation (2.19). Provided that the statement is true for
A = Q, the system of sets A for which (2.19) is satisfied is a Dynkin system.
Consequently, it suffices to verify validity for sets A N A" with A € o(W;) and
A’ € o(I'). By step two, one has

1im [E[Lana f(Z1°) = PAE[1a f(Z1°)]| = 0
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and by step three
. —n,e\1 _ &
lim E[14 f(Z")] = E[14 £ (Z])]
so that
hm ]E[ILAQA/f( #) =P(AE[L4 f(Z0)].
The proof is complete by noticing that o (W;) is independent of o (I, Z;) so that

P(AE[14 f(ZF)] =E[Lana f(Z5)]. O

3. Scaled errors of derived quantities. In this section, we collect results that
will enable us to deduce the main central limit theorems with the help of Theo-
rem 1.5.

3.1. The integrated processes. The following lemma is central to the proof of
Theorems 1.9 and 1.10.

LEMMA 3.1. Ifassumptions (ML1) and (ML2) hold, then one has
2
lim ¢, 1EH/ X” X”)dt‘ }:0.
n—oo
PROOF. With b, :=b — fB(O,h,,)C xv(dx) we have for ¢ € [0, T]

X; =X} =aX, )Y =¥ ,)

=a(Xy,1))(bn(t — ta(®)) + 0 (W, — Wy, (1))
We estimate

T v 2 2.2
IEH/O a(R, 0)ba(t — ta (1)) dt ]5bngnTE[/ (X ,)| dz]

The latter expectation is uniformly bounded over all n; see Lemma A.12. Further,
bﬁ =o(g, ) by Lemma A.10. Consequently, the first term is of order o(e,). By
Fubini,

EK/OT a(X,,w)o (W — Wm(t))df>2}

T T . .
—o? /O /O E[a(R, )Wy — Wo 0)a (Ko, @0y) Wae — Wo )] d dut.

(3.1)

Further, forO <t <u<T,
Ela(X,, ) (W — Wo,1)a(X,,00) Wi = Wo ) tns X o]
= L4, ()=t (0} (X1 () ((E A 1) — 1 (1))
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and since the statement is symmetric in the variables ¢, u# alsofor 0 <u <t < T.
Consequently,

T 2 T R
]E[( /0 a(X,,m)o (W, — th(,))dt> ]528,302 /0 E[a(X,, )] dr.

We recall that the latter expectation is uniformly bounded so that this term is also
of order o(g;). O

3.2. The supremum. The results of this subsection are central to the proof of
Theorem 1.8. We first give some qualitative results for solutions X = (X;):¢[0,7]
of the stochastic differential equation

dXt = a(X[_)dYt

with arbitrary starting value. We additionally assume that a does not attain zero.

LEMMA 3.2. One has for every t € [0, T] that, almost surely,

sup X5 > Xo V X;.
s€[0,¢]

PROOF. We only prove that

sup X5 > X;
s€[0,1]

and remark that the remaining statement follows by similar simpler considerations.

1st step. In the first step, we show that

1 stably
%(Xt—s-i-ss - Xt—e)se[O,l] - (O'a(XI)Bs)Se[O’l]-
We show the statement in two steps: first note that

1 1
ﬁ(theres - ths)se[O,l] and ﬁ(a(xtfe)(yvtfawss - the))se[()’]]

are equivalent in ucp. Further, Z¢ := (8_1/2(YT_5+ES — Yi—¢))sefo0,1] 1s indepen-
dent of a(X;_.) and a(X;—.) tends to a(X;), almost surely. Hence, it remains
to show that Z? converges for ¢ | O in distribution to o B. Note that Z¢ is a
Lévy-process with triplet (b/g, 02, v,), where v,(A) = ev(/eA) for Borel sets
A C R\ {0}. It suffices to show that Lévy-processes Z¢ with triplet (0, 0, v,) con-
verge to the zero process.

We uniquely represent Z¢ as

— =&,r
ZE=Z"4+Z —be,t
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— —=¢&,r
with independent Lévy processes Z;" and Z , the first one with triplet
(0,0, ve|B(0,r)), the second one being a compound Poisson process with intensity
V|B(0,r)c, and with b, . := fB(o rye X dvg(x). Clearly, for § > 0

32 P(sup |Z|>8)<1 |b”‘>5/2}+]13>( sup |z”| >5/2)+IP>(Z £0).
tel0,1]

For r > 0, one has

x|
rv(B(0, r)¢ 5/ X dvg(x)=ef —dv(x)
( ) B(o,r)cl | B(0,/5r)¢ +/€

2 2
sff}g(oﬁ)ﬁv(dxw /x b (dx).

Hence, |bs,| < /2, for sufficiently large r, and P(Z = # 0) < v(B(0,r)°) <
%2 [ x?v(dx). Further,

/ x2 dvg(x) = / x? dv(x) —> 0
B(0,r) B(0,/zr)

so that Doob’s L2-inequality yields

limP( sup |Z)"| > 8/2
slw <ze%p1]| ‘> /)

Plugging these estimates into (3.2) gives
1
hmsup[P( sup |Zf| > 8) < —/xzv(dx)
el0 tel0,1]

and the statement of step one follows by noticing that r > 0 can be chosen arbi-
trarily large.
2nd step. Clearly, for ¢ € (0, t],

P(sup Xy =X,) <P(e7'/2 sup (Xicqes — Xpe) =~ 2(X: = X, o).
s€[0,1] s€l0,1]

The set of all cadlag functions x : [0, 1] — R with supcg 1 Xs = x1 is closed in
the Skorokhod space so that

P, X =)

= thUP]P)(E_l/Z sup (X;—etes — Xi—e) = S_I/Z(Xt - Xt—s))
&l0 s€[0,1]

< IP’(a(Xt) sup o By = a(X,)Bl) —0.
s€[0,1] O
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LEMMA 3.3.  Suppose that a(x) # 0 for all x € R. There is a unique random
time S (up to indistinguishability) such that, almost surely,

sup X5 =Xg
s€[0,T]

and one has AXgs = 0. Further, for every ¢ > 0, almost surely,

sup X5 < Xs.
s€[0,8]: [s—S|=e

PROOF. st step. First we prove that the supremum sup, .o 7 X, is almost
surely attained at some random time S with A Xg = 0. By compactness of the time
domain, we can find an almost surely convergent [0, T']-valued sequence (S,),eN
of random variables, say with limit S, with

lim X5 = sup X;.

n—00 +€[0,T]

Let & > 0. We represent Y as sum

N
Y, =Y+ 15.1(0)AYT,
k=1

where T1, ..., Ty are the increasingly ordered times of the discontinu_ities of Y
being larger than /. Further, Y" is a Lévy process that is independent of Y := Y —
Y". Given Y", for every k=1,..., N, the process (X;):e[r,_,,1;) solves the SDE

dX, =a(X,-)dy}
and we have, almost surely, that
Tk "
XTk—=XTk,1 +/ a(XS)dYS .
Ti—1
Consequently, we can apply Lemma 3.2 and conclude that, almost surely, for each
k=1,...,N+1,

sup Xy>Xp VX
S€[Tk—1,Tk)

with Ty =0 and Ty4+1 = T. Hence, almost surely,

sup X > sup Xp_, VXp—.
s€[0,T] k=1,...,N+1
Consequently, S is almost surely not equal to O or 7" or a time with displacement
larger than k. Since i > 0 was arbitrary, we get that, almost surely, AXs =0, so
that

Xg= lim X5, = sup X; almost surely.
n—0oo t€[0,T]
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2nd step. We prove that for every 7 € [0, T] the distribution of supc(g ,; Xs has
no atom. Suppose that it has an atom in z € R. We consider the stopping time

Ty =inf{t € [0, T]: X, = z}

with the convention 7{;) = oo in the case when z is not hit. For ¢ > 0, conditionally
on the event {T(;) < T — ¢} the process (Xy)se[0,¢] With

Xs = XT[Z}-FS

starts in z and solves dX s = a()N( s) dy, s with Y denoting the T;)-shifted Lévy pro-
cess Y. Hence, by Lemma 3.2, one has almost surely on {T{;; < T — ¢} that
z=§0< sup Xsf sup Xj.
sel0,e] 5€[0,T]
Since ¢ > 0 is arbitrary and X does not attain its supremum in 7, it follows that
P(Supse[o’” Xs = Z) =0.
3rd step. We prove that the supremum over two disjoint time windows [u, v)
and [w,z) withO <u <v <w < z <T, satisfies
sup X;# sup Xg,
s€lu,v) s€lw,z)
almost surely. By the Markov property, the random variables SUPgcfu.v) Xs and
SUPgeqy, ;) Xs are independent given X, and we get

]P’( sup Xy = sup Xs)

s€lu,v) selw,z)
== / ]P( Sup XS = y‘Xw - x) dP(Xw,SUPse[u,v) Xs)(xv }7),
se€lw,z)

were P(x,, sup,p,.., Xs) denotes the distribution of (X, sup,ep,, ) Xs). We note that
the conditional process (Xy)se[w,z) 1S again a solution of the SDE started in x and
by step two the inner conditional probability equals zero.

4th step. We finish the proof of the statement. For given ¢ > 0, we choose de-
terministic times 0 =7y < t; < --- <t, =T with ty — tx_1 < ¢. By step three,
there is, almost surely, one window in which the supremum is attained, say in
[tpm—1,tm), and

sup X < sup sup Xy < sup X, =Xg.
5€[0,T]: |S—s|>e kef(l,....mN\{M) s€ltp—1,t) s€lty—1.tm) O

LEMMA 3.4. Suppose that a(x) # 0 for all x € R and denote by S the random

time at which X attains its maximum. One has

8n_1/2< sup X;’H — sup X?) _ ng,rH—l -0 in probability.
t€[0,T] t€[0,T]
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PROOF. With Lemma 3.3 we conclude that, for every ¢ > 0, one has with high
probability that

‘8”_1/2( sup X"t — sup Xf) - U’SL"H’
1€[0,T] te[0,T]

< sup e O - X0 - Up|
t:|t—S|<e

n,n+1 n,n+1
= sup |U; - U™
t:|t—S|<e

For ¢, 5§ > 0, consider

Acs={(s,x) €10, TI x D®): sup e — x| = 8.

(t,u):s—e<t<u<s+e

Note that cl(Ag 5) C A2e.s and recall that (S, U™ty = (S, U). Hence,
e V2 sup XM o 12 qup X7 — U;””H’ > 8)

lim sup IP’(
t€[0,T] t€[0,T]

n—oo

<limsupP((S, U™") € Ag.5) <P((S, U) € Age.5).
n—oo
Note that U is almost surely continuous in S so that for ¢ | 0, P((S,U)
Az 5) — 0. O

4. Proofs of the central limit theorems. In this section, we prove all central
limit theorems and Theorem 1.11. We will verify the Lindeberg conditions for the
summands of the multilevel estimate §(F ); see (1.4). As shown in Lemma A.9
in the Appendix, a central limit theorem holds for the idealised approximations
X', X2, ... if:

(1) 1im,_, o Var(e; V2 (F(X"+1) — F(X")) = p? and

) (en *(F(X"*1) — F(X")):k € N) is uniformly L2-integrable.

The section is organised as follows. In Section 4.1, we verify uniform L2-in-
tegrability of the error process in supremum norm which will allow us to verify
property (2) in the central limit theorems. In Section 4.2, we prove Theorems 1.6
and 1.9, essentially by verifying property (1).

It remains to deduce Theorems 1.8 and 1.10 from the respective theorems for the
idealised scheme. By Lemmas 1.2, 1.4 and 3.1, switching from the idealised to the
continuous or piecewise constant approximation leads to asymptotically equivalent
L?-errors. Hence, the same error process can be used and, in particular, uniform
L>-integrability prevails due to Lemma A.8. Consequently, the identical proofs
yield the statements.

Finally, we prove Theorem 1.11 in Section 4.3.
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4.1. Uniform L*-integrability.

PROPOSITION 4.1. The sequence (enfl/2 SUp;[0.7] |X;’+1 — X!'DneN is uni-
formly L?-integrable.

To prove the proposition, we will make use of the perturbation estimates given

in the Appendix; see Section A.4. Recall that U+ = e?,,_l/z(X"Jrl — X" satisfies
the equation

t t
yrntl :/0 D;”_”“Ug’;”“dnﬂ;]/zfo D' A" (Y — Y, (s—))dY;

t
—8;1/2/0 DI AT (Yom = Y o) Y

We use approximations indexed by m € N: we denote by
n.n+lm _ (7 m,n+1m
U - (ut )te[O,T]

the solution of the equation

1, 1
un n+1,m _/ Dn ,n+ urvz,n-i-l,m dy:n
t
@.1) te 120 /0 DA (W — W, 5—y) AP

t
- En_mafo D AL (W = W, ) VY
where Y™ = (V/"):e[0.1] is given by

' =Dt + oW, +1lim x dTI(s, x),
310 J(0,¢]1x (B(0,m)\ B(0,8))
and A™™ = (A"™) (0,17 is the simple adapted cadlag process given by
nm _ {A';, if |A"] <m,
! 0, else.
The proof of the proposition is achieved in two steps. We show that:

1. limy,poo limsup,, , o E[sup;cfo. 7 1U;" A _ g tlm 21 = 0 and

n,n+1,m

2. forevery p > 2and m € N, E[sup, o 71 ;" |P] < oo.

Then the uniform L2-integrability of (sup;efo.71 107 ntly v follows with
Lemma A.8.

LEMMA 4.2. One has

lim hmsupE[ sup |U/mt gyt 2] =0.
mtoo p—o00 +€[0,T]



MLMC FOR ADAPTIVE EULER SCHEMES 169
PROOF. The processes U™"T1." are perturbations of U™"*! as analysed in

Lemma A.14. More explicitly, the result follows if there exists a constant x > 0
such that

2

J=x

t
/0 DAT_(Y,_ — Y, ;) dY,

“4.2) E[ sup
tel0,T]

t
8;1/2‘/(‘) D?—Ag,—m(Ws_ - Wln(s_)) dy;‘n

forall n,m € N, and

lim limsu 8_1E|: su
m—00 n—>oop " te[O,pT]

4.3)

2} —o0.

Using Lemma A.11, the uniform boundedness of D", conditional independence of
A’;’_m and W,_ — W, (s—) given (,, there exists a constant «; > 0 such that

]

T
<i1 /O e B[ A PIW- — Wiy 2] ds

t
s / DA Wy — W, (5—y) dV™
0

8,1_1E|: sup

0<r<t

’
/(; D':_,A;Z’_m(W - Wt,l(s—))dy?

T n,m|2 r 2
§K1/ E[|A5" 7] ds 5/{1/ E[|A?_|"]ds
0 0

for all n, m € N. The latter integral is uniformly bounded by Lemma A.12 and the
Lipschitz continuity of a.

We proceed with the analysis of (4.3). The expectation in (4.3) is bounded by
twice the sum of

pILSUREES 8_1E|: sup

n,m n
te[0,T]

t
/0 DAT_(Y,_ — Y, ¢y dY,

]

t
—0/0 Dy_Al (Wy_ — W, (s—) dY"

and

2 = 8_1E|: sup

n,m n
te[0,T]

t
| DA W= Wiy

]
The term 2,(1‘,),1 is the same as the one appearing in (2.6) when replacing Y¢ by ).
One can literally translate the proof of (2.6) to obtain that

t
_ / D" A (W — W, gy "
0

i i 1 _
mh_)moo lllgso%p Xym=0.
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By uniform boundedness of D" and Lemma A.11, there exists a constant k, not
depending on n, m € N with

T
B2, < ey [ EIAL — AL W = Wio)]ds

T 2
< Kz./o E[(AT_ — A:™) ] ds

T T
52@/0 E[(A?_ —a(Xs_))z]ds+2K2/0 E[(a(Xs_) — A™™)*]ds,

where we have used again that given ¢, the random variables A”_ — A" and
Ws_ — W, (s—) are independent. The first integral in the previous line tends to zero
by Lipschitz continuity of ¢ and L?-convergence of sup;ero.77 1 X7 — X¢| — 0 (see
Proposition 4.1 of [11]). Further, the second integral satisfies

: d n,my2 T 2
limsup [ E[(a(Xs-) — A7) ]ds 5/0 E[Lim.00) (1 Xs—)a(Xs—)"]ds

n—oo JO

which tends to zero as m — oo since sup, o 7} | X[ is square integrable. [

LEMMA 4.3. Foreverym € N and p > 2, one has

supE[ sup |Z/{t"’"+l’m\p] < 00.
neN “te€[0,T]

PROOF. Since V" has bounded jumps, it has finite pth moment. D™"*! is
uniformly bounded and by part one of Lemma A.15 it suffices to prove that

p
E[ sup i|
t€[0,T]
is uniformly bounded over all » € N for fixed m € N. Using Lemma A.11 and the

uniform boundedness of D" and A™"™ over all n € N, we conclude existence of a
constant k3 such that for every n € N
]

E|: sup
§K3/ E[|W_—th(s_)|p]dS§K3T85/2. 0
0

t
eI/ /0 DA (W — W, (5—y) dY"

t
oy /0 Dy AT (W — Wy (s—) AV
1|0,

T

4.2. Proof of the central limit theorems for X', X?,.... In this section we
prove Theorems 1.6 and 1.9. By Proposition 4.1 and the Lipschitz continuity of F
with respect to supremum norm, we conclude that (g, 1/ 2(F (X" —F(X"):ne
N) is uniformly L>-integrable in both settings. In view of the discussion at the

beginning of Section 4 it suffices to show that
. —-1/2 n+ly _ nyY) — .
nll)néo Var(e, /“(F(X"™") — F(X"))) = Var(V f(AX) - AU)

n
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in the first setting and
lim Var(e, 2 (F (X" — F(X"))) = Var(f'(Xs) - Us)

in the second setting. By dominated convergence it even suffices to show weak
convergence of the distributions appearing in the variances. Theorem 1.6 follows
from the following lemma.

LEMMA 4.4. Under the assumptions of Theorem 1.6, one has

e, V2 (F(X"T) — F(X")) = Vf(AX) - AU.

PROOF. Forn €N, let Z, := AX" and set Z = AX. Since Z € Dy, almost
surely, we conclude that

44)  lim e V2(f(Zy) — f(Z) =V (Z)(Zy—Z))=0  in probability.

n

Indeed, one has f(Z,) — f(Z) —V f(Z)(Z, — Z) = R, (Z,, — Z) for appropriate
random variables R, that converge in probability to zero since Z, — Z — 0, in
probability, and f is differentiable in Z. Further, for fixed ¢ > 0 we choose § > 0
large and estimate

P(le, 2 Ru(Zy — Z)| > &) <P(IRn| > &/8) + P(|e, V2 (2, — Z)| > 8).

The first summand converges to zero as n — oo and the second term can be made
uniformly arbitrarily small over n by choosing § sufficiently large due to tightness

of the sequence (¢, 1/ Z(Z,1 — Z))nenN- Equation (4.4) remains true when replacing
Z, by Z,+1 and we conclude that

lim e, 2(f(Zus1) = f(Zn) =V f(Z)(Zys1 = Z,)) =0 in probability.

By Theorem 1.5 and the fact that A is continuous in P-almost every point, we
conclude that

(Y, Ag; V2 (X" — X)) = (¥, AU)
and, hence,
—1/2 stably
by Lemma A.2. Consequently, since V f(Z) is o (Y')-measurable we get
(VI(@), 65 2 (Zn1 = Zn) = (V[ (2), AU)

and the proof is completed by noticing that the scalar product is continuous. [J

Analogously, Theorem 1.9 is a consequence of the following lemma.
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LEMMA 4.5. Under the assumptions of Theorem 1.9, one has

or P g ) =1 s, X5)) = 109 U

where S denotes the time where X attains its maximum.

PROOF. By Lemma 3.3, there exists s unique time S at which X attains its
maximum and by Lemma 3.4 one has

8”_1/2< sup X;"'H — sup Xf) — Ug"”“ -0 in probability.
s€[0,T] s€[0,T]

By Theorem 1.5 and Lemma A.2, one has
(v, s, U = (v,5,0)

and the function [0, T'] x D(R) — R, (s, #) — uy is continuous in Pg ¢7-almost all
(s, u) since U is almost surely continuous in S by Lemma 3.3. Consequently,

(Y, Us" ™) = (v, Us)

and, hence,

stabl
e;l/2< sup X" — sup X;’) = vs.
s€[0,T] s€[0,T]

The rest follows as in the proof of Lemma 4.4. [

4.3. Proof of Theorem 1.11. 1st step. Denote by £ = (&;);<[0,1] the stochastic
exponential of ( fé a’(Xs—)dYy)reo0.77- In particular, £ does not hit zero with prob-
ability one; see, for instance, [18], Theorem 1.4.61. In the first step, we show that
E[U,U|Y]="?¢; ;(Y), where

N(Xuo)?

S (aa
bu(V) =068, [ S

4.5)
(aad")(Xu)?AY;

2 .
| E
+0o 81&)1 E&

et I+ d (X )AY)2EL
[AYy|>6
and the limit is taken in ucp.
We define L = (L;)s¢[0,1] by
_ 1
L, =0>YB, +lim AL
t t + SG%:[]I 1 + a/(Xsi)AYS ’

|AY;|=8
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and note that the process is well-defined since the denominator does not attain the
value zero by assumption. Using the product rule and independence of W and B,
it is straight forward to verify that

(5 f’ (aa")(Xs-) dZ)
“Jo Es— *)ieto.)

solves the stochastic integral equation (1.11) and by strong uniqueness of the so-
lution equals U, almost surely. We write

! (aa)(Xs—
U,=02T8t/ @O 4p 1ime, >
0 s~ O o
—Z, |AY; |26

(aa")(Xs-)
(I+a(X,o)AY)E-

z®

and note that given Y the processes Z and Z® are independent and have expecta-
tion zero. Further, for 0 <s <t < T one has

) (Xu-)?

N
E[ZSZ,|Y]=ES<€,/ (aa S au
0 il

and
(aa')(X,)?AY}
(1+a'(X,—)AY,)2E2_

E[o;].

E[zOz0)v]=5¢& Y
ue(0,s]:
|[AYy|=6

One easily computes that E[O‘uz] = o212, Altogether, it follows the wanted state-
ment.

2nd step. Let A = (A1, ..., Aq):D(R) — R? be a linear map of integral type
meaning that there are finite signed measures p1, ..., g on [0, T] with

T
Ajx 2/0 xgdpuj(s).
Then by conditional Fubini and step one,

Var[V f(AX) - AU]

E[0; f(AX)A;U 8 f(AX)A;U]

i 1

d

=2

J=

d

=> E[aif(AX)ajﬂAX)E[/ Uquduiwj(u,v)]Yﬂ
J=1 0.7

i
d

=02 3 B AN [ b b @ )|

i,j=1
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3rd step. The supremum dependent case follows by noticing that step one re-
mains valid when choosing s =t = S since § is o (Y)-measurable.

APPENDIX

A.1. Stable and weak convergence. We briefly introduce the concept of sta-
ble convergence first appearing in Rényi [29].

DEFINITION A.l. Let 7Y denote a sub-o-field of F. A sequence (Z;)neN
of FY-measurable random variables taking values in a Polish space E converges
stably with respect to F° to an E-valued F-measurable random variable Z, if for
every A € F0 and continuous and bounded function f: E — R

Tim E[14 f(Zy)] =E[14£(2)]

1
We briefly write Z" Sta:b>y Z.

Stable convergence admits various equivalent definitions.

THEOREM A.2. Let (Z,) and Z be F°-measurable, respectively, F-measu-
rable, random variables taking values in a Polish space E. The following state-
ments are equivalent:

1. Z, Sta:mg/ Z with respect to F°,
2. for all bounded F°-measurable random variables U and all bounded and
continuous functions f: E — R one has

(A.1) lim E[Uf(Z)] =E[Uf(2)].

If FO = o(Y) for a random variable Y taking values in a Polish space E', then
stable convergence is equivalent to weak convergence

(A.2) Y,Z)=(Y,Z) inExE.

PROOF. The first equivalence is an immediate consequence of the fact that the
set of F9-measurable random variables U for which

lim E[Uf(Z,)] =E[Uf(2)]

is true is linear and closed with respect to L'-norm. Further, (A.2) implies

bl . . .
Z Sta:g Z since the L'-closure of random variables g(Y) with g: E’ — R

bounded and continuous contains all indicators 14 with A € F°. Conversely, as-

suming Z, Sta:bly Z, the sequence of random variables ((Y, Z,):n € N) is tight in
the product topology and for any g: E” — R bounded and continuous one has
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Elg(Y) f(Z,)] — Elg(Y) f(Z)] which implies that (Y, Z,) = (Y, Z). The last
statement is proved in complete analogy with the proof of the corresponding state-
ment for weak convergence. [J

As the latter theorem shows, stable and weak convergence are intimately con-
nected and we will make use of results of Jacod and Protter [17] on weak conver-
gence for stochastic differential equations. For the statement, we need the concept
of uniform tightness.

DEFINITION A.3. Let (F;)/e0,7] be a filtration and (Z":n € N) be a se-
quence of cadlag (F;)-semimartingales. For § > 0 we represent each semi-
martingale uniquely in the form

ZP=Zp+ AP+ M+ Y AZMazrssy  fort e[0T,

s<t

where A" = (A} ’6),6[0]] is a cadlag predictable process of finite variation and

M = (M] ’8),6[0,71 is a cadlag local martingale, both processes starting in zero. We
say that (Z" :n € N) is uniformly tight, if the sequence,

T
8 8 8 i ,
(M™0, M™0), + /O [dATY |+ D7 [AZ™ L g g0
0<s<T

is tight. The definition does not depend on the particular choice of §. Multivariate
processes are called uniformly tight if each component is uniformly tight.

We cite [17], Theorem 2.3, which is a consequence of [23].

THEOREM A.4. Let Z,Z', 7%, ... be cadlag one-dimensional semimartin-

gales and H be a cadlag one-dimensional adapted process. If:

(1) (Z":n € N) is uniformly tight and
(i) (H,Z"):neN)= (H,Z) in D(R?),

then
(H, Z”,/ Hy_dZ':ne N) = <H, z,/ Hy_ dZs) in D(RY).
0 0
We state a consequence of [23], Theorem 8.2.

THEOREM A.5. Let H,Z,Z',Z?, ... be as in the previous theorem. Further,
let Y be an adapted cadlag semimartingale. We define U" := (U}")ic0,11 and U :=
(Unrefo, 11 by

t t
Ul =2+ / Ul_H,_dY,,  U=Z+ / Us_H,-dY,  fort€[0,T].
0 0
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If
(z", /0 H,_ dYS> - (Z, fo H,_ dYS> in D(R),

(z",/'Hs_ dv,, U”) N (z,/'Hs_ dy,., U) in D(R?).
0 0

The definition of uniform tightness and the two theorems above have natural
extension to the multivariate setting and we refer the reader to [23] for more details.
Further results about stable convergence of stochastic process can be found in [15]
and [18].

A helpful lemma in the treatment of weak convergence is the following.

then

LEMMA A.6. Let A, Al, AZ, ... be processes with trajectories in D(Rd).

1. Suppose that for every m € N, A™, A" A2™ are processes with trajecto-
ries in D(R?) such that:

(@) V8 > 0: limy, o0 limsup,, , . P(sup, (o 71147 — A} > 8) =0,
(b) 1imy o0 P(SUP,cfo 71 1A — A;] > 8) = 0.

Provided that one has convergence A™"™ = A™ for every m € N, it is also true
that

A"= A.

2. Suppose that B', B2, ... are processes with trajectories in D(R?) such that for
alls >0

lim IP’( sup |B; — A} >8)=0.

=0 NMel0,T]

Then one has weak convergence A" = A if and only if B" = A.

PROOF. To prove weak convergence on D(R?) it suffices to consider bounded
and continuous test functions f :ID(R?) — R that are additionally Lipschitz con-
tinuous with respect to supremum norm. Using this, it is elementary to verify the
first statement. Further, the second statement is an immediate consequence of the
first one. [J

REMARK A.7. In general, we call approximations A”, Alm AZm  with
properties (a) and (b) of part one of the lemma good approximations for
A, A', A%, ... Further, approximations B', B2, ... as in part two will be called
asymptotically equivalent in ucp to A', A%, .. ..



MLMC FOR ADAPTIVE EULER SCHEMES 177

A.2. Auxiliary estimates. We will make use of the following analogue of
Lemma A.6 for tightness.

LEMMA A.8. Let (Ap)nen and, for every m € N, (AS,m))neN be sequences of
L>-integrable random variables. If

lim limsupE[|A, — A/ [*] =0

m—o0 n_so00

and, for every m € N, the sequence (A,(,m))neN is uniformly 1L*-integrable, then
also the sequence (A,)nen is uniformly L?-integrable. In particular, if there is a
sequence (Bp)nen of uniformly L?-integrable random variables with

lim E[|B, — A,*] =0,
n— oo
then (A,)neN is uniformly Lz—integrable.

PROOF. Forn > 0andn,m € N, one has
E[|An Ly, 12n] < 2E[| Ay — AT ]+ 2E[| AP P14, 12m)]

2 2
< 2E[|Ay — AP [T+ 2E[|AT 7L 4oy )]

(m) |2
+2E[[A4;"] LD <2 1A= AL 1220

2 2
< 2E[|A, — AP [T+ 2E[|AT "L yon ., )]

2
+ TP(As— ALz 0/2)

2 2
S4E[|An —A;m)| ]+2E[|Ar(zm)| ﬂ{\Aﬁ,’"HZn/z}]’

where we used Chebychew’s inequality in the last step. Let now & > 0. By assump-
tion, we can choose m sufficiently large such that for all large n, say for n > nyg,
4E[|A, — A{™|?] < /2. Further, by the uniform L2-integrability of (AY™),en
we can choose 7 large to ensure that for all n € N, 2E[|A,(1m) |2]1{|A’(1m)|>n/2}] <g/2

so that E[|An|2]l{|An|z,7}] <egforn>ng. Forn=1,...,n9— 1 this estimate re-
mains true for a sufficiently enlarged 7, since finitely many L>-integrable random
variables are always uniformly L2-integrable. [

LEMMA A.9. Let Ay, As, ... be real random variables and let (&})eN satisfy
(MLT1) (see Section 1.2), and L(8) and ni(8) be as in (1.13). Suppose that:

1. Var(ek__l{ZAk) — ¢ and
2. (8;_1{214]{ keN)is Lz—uniformly integrable.
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Denote by (A j:k, j € N) independent random variables with L(Ay, ;) = L(Ak).
The random variables (Sg 8 € (0, 1)) given by

LO) | m)

Si= 20 2 Ak

satisfy
87'(Ss — E[Ss1) = N (0, ).

PROOF. Without loss of generality, we can and will assume that the random
variables A, Aj, ... have zero mean.
1st step. We first show that the variance of §5 converges. One has
L(5) L($)

~ 82 Var(Ag)
var) = 2 oy Ve = ZlL(S)ek_lJ‘”“l o1

=dk.s

It is elementary to verify that Z,ffl) (ak,58_2 — L)) > 0as 8] 0. By the
boundedness of (Var(Ag)/ex—1)keN one has

N 1 L9 varay)
572 Var(Ss) —
‘ L) /;

-0
Ek—1

and we get that lims o Var(8_1§5) = ¢ since the Césaro mean of a convergent
sequence converges to its limit.

2nd step. In view of the Lindeberg condition (see, e.g., [20], Theorem 5.12), it
suffices to verify that for arbitrarily fixed « > 0 one has

L@

Ak, j
@) =), ZE[(8 (5)) Ak,,/(an<5>)|>x}} —0  ass 0.

k=1 j=1
We estimate
L(5) 2
2§ Skl Ak
@) <6” Z o |:8k—11{|Ak|/«/—5k1>K5”1(<6)/\/_8k1}i|

and note that fork =1, ..., L((S)

Ek—1 = EL(S)—1 = TM~LEOF > 7452,
where we used that o« > 1/2 in the previous step. Hence, for these k, one has
5n ) Je1 = 87 e 1L (8) = /T L(5). Consequently,

L(5)

2

2y Skl Ak

@) =5 ]; L |:8k_11{|Ak|/«/—€k—1>KﬁL(5)}i|'
k
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By uniform Lz—integrability of (Ax//€x—1)ken and the fact that L(5) — oo, we
get that

A2
E[Sk 1 lAkl/W>KfL(5)}:|§a(5) fork=1,....L(S).

with (as)se0,1) being positive reals with limsjgas = 0. Hence, X(8) <
asd~? ZL(‘S) 8"(5)1 and we remark that the analysis of step one yields equally well

that § 2 ZL(B) Sk(s)‘ converges to a finite limit. ]

A.3. Estimates for Lévy-driven SDEs. Let Y = (Y¥;);c[0,7] denote a square
integrable Lévy process with triplet (b, o2, v).
LEMMA A.10. Let (g,) and (hy) be positive decreasing sequences such that

sup v(B(0, hy)€)e, < 00.
neN

One has

2
(A.3) &n </ xv(dx)> -0 asn — oo.
B(0,h,)¢

Further, if the limit lim,,_, o v(B(0, hy,)) e, =: 0 exists and is strictly positive, then
lim,, 0 hy / \/€n = 0. If additionally [ x? log?(1 + 1/x)v(dx) < 00, then

1

lim xzv(dx)10g2<1 + —) =0 and
=00 JB(0,hy) &n

(A.4)

h? 1
lim —*log (1 + —) =0.
&n

n—oo g,

PROOFE. One has for fixed & > O for all n € N that

2
&n </ xv(dx))
B(0,h,)°

2 2
<2¢, (/ xv(dx)> + 2¢g, (/ xv(dx)) .
B(0,h)¢ B(0,h)\B(0,hy)

The first term on the right-hand side tends to zero since ¢, tends to zero. Further,
the Cauchy—Schwarz inequality yields for the second term

2
sn(/ xv(dx)) fenv(B(O,hn)C)/ x2v(dx).
B(0,h)\B(0,h,) B(0,h)

By assumption, (g, v(B(0, h,)¢)) is uniformly bounded and by choosing & arbi-
trarily small we can make the integral as small as we wish. This proves (A.3).
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We assume that lim,,_, oo V(B(0, h,,))¢e, =: 6 > 0. The second statement fol-
lows by noting that

h? , 2
02— ~ £,h2v(B(0, hy))* < &, (/ xv(dx)) 0.
B(0,hy)¢

€n

The first estimate in (A.4) follows from

1 _
/ x2v(dx) 5/ x210g2<1+—>v(dx)(log(1+1/hn)) 2
B(0,hy) B(0,hy) x

-0

and recalling that 4, /,/€, — 0. The second estimate in (A.4) follows in complete
analogy to the proof of (A.3). [

LEMMA A.11. Let p > 2 and suppose that E[|Y7|P] < co. Then there exists
a finite constant k such that for every predictable process H one has
E|: sup

t p T
f H, dY, i| 5/(/ E[|Hy|?]ds.
tef0,711/0 0

If p =2, one can choose k = 20T + 8(c% + fxzv(dx)).

PROOF. The proof is standard; see, for instance, [28], Theorem V.66. The ex-
plicit constant in the p = 2 case can be deduced with Doob’s L2-inequality and
the Cauchy—Schwarz inequality. [

LEMMA A.12. [Irrespective of the choice of the parameters (&,) and (hy), one
has

supE[ sup |Xf|2] < 00.
neN  1efo,7]

The proof of the lemma is standard and can be found, for instance, in [22],
Lemma 8.

A.4. Perturbation estimates for SDEs. In this section, we collect perturba-
tion estimates for solutions of stochastic differential equations. For n,m € N, we
denote by 2", Z", Z™ and Z"™ cadlag semimartingales and by Y a square in-
tegrable Lévy process all with respect to the same filtration. Further, let H", H™™
and H be caglad adapted processes. We represent Y as in (1.2) and consider as
approximations the processes Y™ = (Y");c[0,1] given by

Y =bt + oW, +lim xdII(s, x),
840 J(0.11% (Vi \ B(0.8))

where Vi, V3, ... denote an increasing sequence of Borel sets with |J,,ey Vin =
R\ {0}.
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In the first part of the subsection, we derive perturbation estimates for the pro-
cesses U™ = U™ )eo.r and U™ = U™ )se10.7] given as solutions to

t
0
and

_ r__ —
o = f N AY + 20
0

LEMMA A.13. Suppose that

(A.5) sup |H""| and E[ sup [2]""?]
t€l0,T] t€[0,T]

are uniformly bounded over all n,m € N. Then

sup IE[ sup |Z/{t"m|2] < 00.
n,meN t€l0,T]

PROOF. Suppose that the expressions in (A.5) are bounded by «i, denote
by T a stopping time and define z7(t) = E[supsc(o ;a7 U™ 2] for t € [0, T1.
By Lemma A.11, there exists a finite constant «» such that

t —
27@) =20 [ B[tz @ PIH P ds + 28] sup |27
0 s€[0,1]

t
< 2/(2/{12/ z7(s)ds + 2«1.
0

We replace 7 by a localising sequence (7x)keN of stopping times for which each
Z7; 1s finite and conclude with Gronwall’s inequality that z7; is uniformly bounded
over all k € N and n, m € N. The result follows by monotone convergence. []

LEMMA A.14. Suppose that

sup |H/""|
tel0,T]

is uniformly bounded over all n,m and that Y™ =Y for allm € N or

sup E[ sup |Z,"’m|2] < 0.
n,meN “te[0,T]

If additionally

A.6 lim limsupE| sup |27™ — 2" % | =0,

(A6) Jim, imsup | sup |2 — 2"’

then,
lim limsupE| sup (07" — """ *] = 0 asn — oo.
Jim, imsupE| sup g1 2" 7]
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PROOF. We rewrite, for r € [0, T],

_ t
ur - = |

+ Ztn,m _ Zn,m‘

" —umy H dY —/ U HPTA(Y — Y™,

We fix n,m € N and consider z(¢) = E[sup,¢[o U™ — urm 2] for t € [0, T1.
Further, denote by «; a uniform bound for sup,, ,,x sup |H;|"" and, if applicable,
for sup, ,, E[sup, 0.7 |Z{"™|?]. Using that (a1 + a2 + a3)* < 3(a} + a3 + a3)
(ay, az, a3 € R) and Lemma A.11, we get that

]

t
z(1) 53;<2/<12/ z(s)ds+3IE[ sup
0 s€[0,7]

38 sup |20~ 200 ]
s€[0,¢]

/ U HPA(Y —Y™),

with «p being uniformly bounded. In view of (A.6), the statement follows with
Gronwall’s inequality, once we showed that

2

|=o

If Y = Y™, this is trivially true. In the remaining case, we can apply Lemma A.13
due to the uniform boundedness of E[sup,cp.7712/"™"|*] and conclude with

Doob’s L>-inequality and the martingale property of ¥ — Y™ that

lim hmsupE[ sup
M= n—oo  Lief0,T]

/ U HP (Y —Y™),

[sup /L{"’"H”de Y™ H<4/ B[ P | H" 2] d(Y — v™),

te[0,7T]

§4K12K3T/ x2v(dx)
Vi

with k3 denoting the constant appearing in Lemma A.13. All constants do not
depend on n, m and the latter integral tends to 0 as m — oco. [

We denote by 711, 12, ... adapted cadlag processes with 7,,(¢) <t for all ¢ €
[0, 7] and focus on perturbation estimates for the processes U" = (U;')e[0, 1) and
U" = (U]")1<f0,1] given as solutions to

uy' / o s Hs dYs + 2
and

/ " ooy Hs Yy + 21"
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LEMMA A.15. 1. (Stochastic convergence) If:

(a) Tn(t) =_t7f0rt € [07 T]’

(b) 2" —Z" - 0and H" — H — 0 in ucp, as n — oo, and

(¢) the sequences (sup,cpo.71|2'|:n € N) and (sup,¢po.71|H/'|:n € N) are
tight,

then
U —u" — 0 in ucp, as n — oo.
2. (Moment estimates) Let p > 2. If:

(a) Y has Lévy measure v satisfying [ |x|Pv(dx) < oo, and
(b) the expressions

sup |H'| and E[ sup |Zt”|p]
1€[0,T1 1€[0, ]

are uniformly bounded over n € N,

then

supE[ sup |L[t”|p] < 00.
neN  re[0,T]

PROOF. (1) Statement 1 follows when combining Theorems 2.5(b) and 2.3(d)
in [17].

(2) Since [ |x|Pv(dx) < oo the process (¥;) has bounded pth moment and the
statement can be proved similarly as Lemma A.13 by using Lemma A.11 and
Gronwall’s inequality. [J

Acknowledgement. We thank two anonymous referees for their valuable
comments.

REFERENCES

[1] ANKIRCHNER, S., DEREICH, S. and IMKELLER, P. (2007). Enlargement of filtrations and
continuous Girsanov-type embeddings. In Séminaire de Probabilités XL. Lecture Notes
in Math. 1899 389—410. Springer, Berlin. MR2409018

[2] APPLEBAUM, D. (2009). Lévy Processes and Stochastic Calculus, 2nd ed. Cambridge Studies
in Advanced Mathematics 116. Cambridge Univ. Press, Cambridge. MR2512800

[3] ASMUSSEN, S. and ROSINSKI, J. (2001). Approximations of small jumps of Lévy processes
with a view towards simulation. J. Appl. Probab. 38 482—493. MR1834755

[4] BEN ALAYA, M. and KEBAIER, A. (2015). Central limit theorem for the multilevel Monte
Carlo Euler method. Ann. Appl. Probab. 25 211-234.

[S] BERTOIN, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ.
Press, Cambridge. MR1406564

[6] BRUTI-LIBERATI, N., NIKITOPOULOS-SKLIBOSIOS, C. and PLATEN, E. (2006). First or-
der strong approximations of jump diffusions. Monte Carlo Methods Appl. 12 191-209.
MR2274692


http://www.ams.org/mathscinet-getitem?mr=2409018
http://www.ams.org/mathscinet-getitem?mr=2512800
http://www.ams.org/mathscinet-getitem?mr=1834755
http://www.ams.org/mathscinet-getitem?mr=1406564
http://www.ams.org/mathscinet-getitem?mr=2274692

184

[10]

(1]
[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]
[20]
(21]
(22]

(23]

[24]
[25]

(26]

(27]

S. DEREICH AND S. LI

CREUTZIG, J., DEREICH, S., MULLER-GRONBACH, T. and RITTER, K. (2009). Infinite-
dimensional quadrature and approximation of distributions. Found. Comput. Math. 9 391—
429. MR2519865

DEREICH, S. (2008). The coding complexity of diffusion processes under supremum norm
distortion. Stochastic Process. Appl. 118 917-937. MR2418250

DEREICH, S. (2011). Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaussian
correction. Ann. Appl. Probab. 21 283-311. MR2759203

DEREICH, S. and HEIDENREICH, F. (2011). A multilevel Monte Carlo algorithm for
Lévy-driven stochastic differential equations. Stochastic Process. Appl. 121 1565-1587.
MR2802466

DEREICH, S. and L1, S. (2015). Multilevel Monte Carlo implementation for SDEs driven by
truncated stable processes. Preprint.

GILES, M. B. (2008). Multilevel Monte Carlo path simulation. Oper. Res. 56 607-617.
MR2436856

GLASSERMAN, P. (2004). Monte Carlo Methods in Financial Engineering: Stochastic Mod-
elling and Applied Probability. Applications of Mathematics (New York) 53. Springer,
New York. MR1999614

HEINRICH, S. (2001). Multilevel Monte Carlo methods. In Large-Scale Scientific Computing.
Lecture Notes in Comput. Sci. 2179 58—67. Springer, Berlin.

JAcoD, J. (1997). On continuous conditional Gaussian martingales and stable convergence in
law. In Séminaire de Probabilités, XXXI. Lecture Notes in Math. 1655 232-246. Springer,
Berlin. MR1478732

JAcoD, J. and MEMIN, J. (1981). Weak and strong solutions of stochastic differential equa-
tions: Existence and stability. In Stochastic Integrals (Proc. Sympos., Univ. Durham,
Durham, 1980). Lecture Notes in Math. 851 169-212. Springer, Berlin. MR0620991

JACOD, J. and PROTTER, P. (1998). Asymptotic error distributions for the Euler method for
stochastic differential equations. Ann. Probab. 26 267-307. MR1617049

JACOD, J. and SHIRYAEV, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed.
Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathemat-
ical Sciences] 288. Springer, Berlin. MR1943877

JEULIN, T. and YOR, M., eds. (1985). Grossissements de Filtrations: Exemples et Applications.
Lecture Notes in Math. 1118. Springer, Berlin. MR0884713

KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its
Applications (New York). Springer, New York. MR1876169

KLOEDEN, P. E. and PLATEN, E. (1992). Numerical Solution of Stochastic Differential Equa-
tions. Applications of Mathematics (New York) 23. Springer, Berlin. MR1214374

KOHATSU-HIGA, A. and TANKOV, P. (2010). Jump-adapted discretization schemes for Lévy-
driven SDEs. Stochastic Process. Appl. 120 2258-2285. MR2684745

KURTZ, T. G. and PROTTER, P. E. (1996). Weak convergence of stochastic integrals and
differential equations. In Probabilistic Models for Nonlinear Partial Differential Equa-
tions (Montecatini Terme, 1995). Lecture Notes in Math. 1627 1-41. Springer, Berlin.
MR1431298

L1, S. (2015). Multilevel Monte Carlo for Lévy-driven SDEs. Ph.D. thesis, in preparation.

MAGHSO0O0DI, Y. (1996). Mean square efficient numerical solution of jump-diffusion stochastic
differential equations. Sankhya Ser. A 58 25-47. MR1659067

MORDECKI, E., SZEPESSY, A., TEMPONE, R. and ZOURARIS, G. E. (2008). Adaptive
weak approximation of diffusions with jumps. SIAM J. Numer. Anal. 46 1732-1768.
MR2399393

PLATEN, E. (1982). An approximation method for a class of Itd processes with jump compo-
nent. Litovsk. Mat. Sb. 22 124-136. MR0659025


http://www.ams.org/mathscinet-getitem?mr=2519865
http://www.ams.org/mathscinet-getitem?mr=2418250
http://www.ams.org/mathscinet-getitem?mr=2759203
http://www.ams.org/mathscinet-getitem?mr=2802466
http://www.ams.org/mathscinet-getitem?mr=2436856
http://www.ams.org/mathscinet-getitem?mr=1999614
http://www.ams.org/mathscinet-getitem?mr=1478732
http://www.ams.org/mathscinet-getitem?mr=0620991
http://www.ams.org/mathscinet-getitem?mr=1617049
http://www.ams.org/mathscinet-getitem?mr=1943877
http://www.ams.org/mathscinet-getitem?mr=0884713
http://www.ams.org/mathscinet-getitem?mr=1876169
http://www.ams.org/mathscinet-getitem?mr=1214374
http://www.ams.org/mathscinet-getitem?mr=2684745
http://www.ams.org/mathscinet-getitem?mr=1431298
http://www.ams.org/mathscinet-getitem?mr=1659067
http://www.ams.org/mathscinet-getitem?mr=2399393
http://www.ams.org/mathscinet-getitem?mr=0659025

MLMC FOR ADAPTIVE EULER SCHEMES 185

[28] PROTTER, P. E. (2005). Stochastic Integration and Differential Equations, 2nd ed. Stochastic
Modelling and Applied Probability 21. Springer, Berlin.

[29] RENYI, A. (1963). On stable sequences of events. Sankhya Ser. A 25 293-302. MR0170385
[30] ROSINSKI, J. (2001). Series representations of Lévy processes from the perspective of point
processes. In Lévy Processes 401-415. Birkhéduser, Boston, MA. MR1833707
[31] SaATO, K.-1. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies

in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge. MR1739520

INSTITUTE FOR MATHEMATICAL STATISTICS

WESTFALISCHE WILHELMS-UNIVERSITAT MUNSTER

ORLEANS-RING 10

48149 MUNSTER

GERMANY

E-MAIL: steffen.dereich@wwu.de
sangmeng.li@wwu.de


http://www.ams.org/mathscinet-getitem?mr=0170385
http://www.ams.org/mathscinet-getitem?mr=1833707
http://www.ams.org/mathscinet-getitem?mr=1739520
mailto:steffen.dereich@wwu.de
mailto:sangmeng.li@wwu.de

	Introduction
	Jump-adapted Euler scheme
	Multilevel Monte Carlo
	Implementable schemes
	Schemes with direct simulation of small jumps
	Truncated shot noise scheme

	Main results
	Convergence of the error process
	Central limit theorem for linear functionals
	Central limit theorem for supremum-dependent functionals
	Optimal parameters


	The error process (Theorem 1.5)
	The approximations Un,n+1,epsilon are good
	Weak convergence of Un,n+1,epsilon

	Scaled errors of derived quantities
	The integrated processes
	The supremum

	Proofs of the central limit theorems
	Uniform L2-integrability
	Proof of the central limit theorems for X1,X2,…
	Proof of Theorem 1.11

	Appendix
	Stable and weak convergence
	Auxiliary estimates
	Estimates for Lévy-driven SDEs
	Perturbation estimates for SDEs

	Acknowledgement
	References
	Author's Addresses

