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Wald and Wolfowitz [11] introduced the run test for testing whether two
samples of i.i.d. random variables follow the same distribution. Here a
run means a consecutive subsequence of maximal length from only one of
the two samples. In this paper we contribute to the problem of runs and
resulting test procedures for the superposition of independent renewal
processes which may be interpreted as arrival processes of customers
from two different input channels at the same service station. To be more
precise, let (Sp),>1 and (Tn),>1 be the arrival processes for channel 1
and channel 2, regpectively, and (Wn)n>1 their be superposition with
counting process N(t) def sup{n > 1: W, < t¢}. Let further R} be
the number of runs in Wy,...,W,, and R; = R*N(t)
observed up to time t. We study the asymptotic behavior of R} and

Ry, first for the case where (Su),>1 and (Th),>1 have exponentially
distributed increments with parameters A1 and A2, and then for the more

the number of runs

difficult situation when these increments have an absolutely continuous
distribution. These results are used to design asymptotic level o tests
for testing A1 = Ag against A1 # A2 in the first case, and for testing for
equal scale parameters in the second.
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1. INTRODUCTION

Wald and Wolfowitz [11] introduced the run test for testing whether two samples follow
the same distribution: Let X7, X5, ... and Y7,Y5, ... be two independent samples of i.i.d. real-
valued random variables having continuous distribution functions F' and G, respectively. Let
R, n, denote the number of runs in the pooled sample X;,..., X, ,Y1,...,Y,, arranged in
ascending order of magnitude, where a run is a subsequence of maximal length taken only
from the X- or the Y-sample.

The run test rejects the hypothesis F' = G if R,,, ,, is less than some critical value. The
distribution of R, ,, under the hypothesis is of course independent of the particular contin-
uous distribution, and Wald and Wolfowitz [11] compute this distribution, derive asymptotic
normality and show consistency of the test, as ni,no — oo such that ny/(n1+mng) — € (0,1).
The distribution theory of runs is also treated in Wishart and Hirschfeld [12] and Mood [9].

Let us now consider the case that only the joint sample size n = ny + ns is fixed and n,
is a random variable having a binomial distribution with parameters n,p. Denoting by R}, the
resulting number of runs, we obtain from the explicit results for R,,, ,, that

P(R, = k) = ;MRmm—m:’f) (;>pm(1_p)n_m

- S (U e
if k = 21, and
P(R. = k) = ; {(77_—11) (n - 1) .\ <n - 1) (nlz_—llﬂpm(l -

if K =20+ 1. Under the hypothesis F' = GG, we have
ER), ~ 2np(1—p) and VarR, =~ 4np(1—p)(1—3p(1—p))

and

R e I onp(l —
.. i ) A TR} (1.1)

2/np(1 —p)(1 - 3p(1 — p))

as n — 0o, see [9].
If F' # G the distributions of R,,, », and R} both depend of course on F' and G. Given
that F' and G have continuous Lebesgue densities f and g, respectively, Henze and Voigt [5]
showed that 5 o 5 5
lim ELIE =1- B (@) + (- 6)g"(x) dr a.s.
n—o0 Ny + Mgy Bf(x)+ (1 —B)g(x)

as nyi,ny — oo such that ny/(ny +ne) — G € (0,1). This easily implies

R, p 1_/p2f2(x)+(1—p)292(w)
n pf(z) + (1 —p)g()

dx

P . .
where — means convergence in probability.
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In this paper we want to contribute to the problem of runs and resulting test procedures
for superpositions of renewal processes which may be interpreted as arrival processes of cus-
tomers from two different input channels at the same service station. So let us assume that
X1, Xs,... and Y7, Y5, ... are independent samples of i.i.d. positive interarrival times, again with
continuous distributions F' and G, respectively. Denote the corresponding renewal processes
by (Sp)n>1 (channel 1) and (7),),>1 (channel 2), i.e.

S,=X1+..+X, and T,=Y1+..+Y, forn=12, ..

We now consider runs in the superposition, (W, ),>1 say, of (Sy)n>1 and (7},),>1, defined as
subsequences of maximal length from the first or second of the these processes. We put

def

R} = number of runs in Wy, ..., W,

forn=1,2,... and

R, 4 umber of runs in Wi, Wne = R}‘V(t)
for t > 0, where N(t) =3 -1 L0,q(Whn).

If the interarrival times in both channels are exponentially distributed the same holds
true for the superposed arrival process. We will discuss this case in Section 2 and show that
we may use the methods from the i.i.d. situation.

Section 3 deals with the more complicated situation of general interarrival distributions.
We will derive the limiting behavior of R} and R; by drawing on the fact shown in [1] (see also
[7]) that the superposition of absolutely continuous renewal processes constitutes a Markov
renewal process.

2. EXPONENTIAL INTERARRIVAL TIMES

We consider exponentially distributed interarrival times X7, Xo,... and Y7, Y5, ... with
means 1/A; and 1/)\y, respectively. Then the following holds:

THEOREM 1. Put A\ % A+ Ao, p def A1 /A, and let R) be as in Section 1. Then

(i) R has the same distribution as R), for eachn =1,2, ...
(i) P(Ry =k) =3, P(R}, = E)e= XXM /m) for each t > 0.

(iii) R % R, —2p(1 —p)n <4 N(0,1), asn — co.
2y/p(1 —p)(1 —3p(1 —p))n
def R, —2p(1 —p)N(t)

(iv) Ry < < N(0,1), as t — oo.

2¢/p(1 = p)(1 = 3p(1 — p))N(t)
ProOOF. We will pass from renewal processes to their corresponding renewal counting
processes and use some well-known facts for Poisson processes; see e.g. [10].
(1) Let (N1(¢))t>0 and (N2(t))i>0 denote the resulting counting processes for Si, S, ...
and Ty, T5, ..., which are Poisson processes with intensities A\; and Ay, respectively. Then the
counting process (N (t)):>0 of the superposition Wy, W, ... satisfies

N(t) = Ni(t)+ No(t), >0,
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and is also Poisson with intensity A\. Put the mark V,, = 0 or 1 to each W,, according to
whether W, is an arrival epoch from channel 1 or channel 2. Hence

M) = > Lw,<evo—oy and No(t) = > Lw,<iv,—1}-

n>1 n>1

It is well-known that Vi, V4, ... are i.i.d. Bernoulli variables with parameter p, i.e. P(V,, = 1) =
p=1—P(V, =0). With this notation

n
R’ = number of runs in V4, ..., V,, = 1+Zl{‘/i71?£‘/i}'

n
1=2

We may thus resort to the combinatorial arguments of Wald and Wolfowitz [11] for the i.i.d.

situation and obtain, with U, def Vi+..4+V,forn>1,

P(R: =k) = i P(Rmnm = k)P(U, =m) = P(R, = k)

m=0

for eachn > 1 and k > 0.
(ii) It suffices to note that

for all ¢t > 0 and m > 0.

(iii) This follows immediately from from the asymptotic normality result (1.1) of Mood
together with (i).

(iv) Put u(p) def 2p(1 — p), o(p) o 4p(1 —p)(1 —3p(1 —p)), and let m(¢) be the largest
integer less than or equal to At. Note that m(t) "N (t) — 1 a.s. and write

B m(t) (R;kn(t) —m()up) Ry — By — (N() - m@))ﬂ(ﬁ))
t N\ olp)vm(t) a(p)y/m(t) '

By (i), the first term in parentheses is equally distributed as Zfi;n ) and hence, by (1.1), asymp-
totically standard normal as t — oco. Therefore it suffices to show that the second one converges
to 0 in probability. To that end pick arbitrary £,7 > 0. Then

P(' Ry = By — (N () —m(t) u(p) ' . 5)

a(p)y/m(t)
< P(IN(E) —m(t)] > nt)
+ PRy — Ry — (N(@) = m(t)u(p)| > o (p)v/m(t), [N(t) —m(t)] < nt)

The first probability on the right-hand side of this inequality converges to 0 because t~1(N (t) —
m(t)) — 0 a.s. as t — 0o. The second one is bounded by

P(k:k—%%ﬁgm Ry, — Ry — (k= m(t)u(p)| > ea(p) m(t))



For m(t) < k < m(t) + nt, we have

k

Ry = Ry — (k—=m®)u(p) = Y. (Lgvii,zvy — #lp))
i=m(t)+1

which is a sum of 1-dependent stationary random variables with mean zero. By summing
over odd and even 7 separately, it can be decomposed into two sums of i.i.d. zero mean random
variables. With an obvious modification the same can be said about R} — R,,,) — (k—m/(t))u(p)
for m(t)—nt < k < m(t). By combining these observations with an application of Kolmogorov’s
inequality (applied to the resulting i.i.d. sums) the conclusion

P R Ry~ (k=m0 > colp)y/miD)) < <

k:|k—m(t)|<nt

for n = n(e) sufficiently small and ¢ sufficiently large yields as in the proof of Theorem 1.3.1 in
Gut [4]. Further details are omitted. o

A TESTING PROCEDURE. Using Mood’s result (1.1) and the previous theorem we obtain
tests for the hypothesis of equal intensities A\; = A against the alternative A1 # Ay. For
a € (0,1) define the critical value as

c(n,a) = n/2 — vy v/n/2,

where v, is the a-fractile of the standard normal distribution. Let ¢,, be the test based upon
a sample of n observed arrivals which rejects the hypothesis for R} < ¢(n,a), i.e.

def
on = l{r:<c(n,a)}-

Let ¢; be the corresponding test when sampling from the fixed time interval (0, ¢], defined as

def
Ot = L{R,<c(N(t),0)}

Then the following Corollary shows that ¢,, and ¢; are asymptotically consistent level a tests.

COROLLARY 1. In the situation of exponential interarrival times we have as n — oo,
respectively t — oo:
(i) Py (Ry < c(n,a)) = a and P, ) (R < c(N(t),a)) — « for any v > 0,
(ii) Pa, x) (R < c(n, ) — 1 and Py, x,) (R < c(N(t), ) — 1 for any A1 # Aa.

PROOF. From Theorem 1 we have for any A1, A2 with p = A1 /(A1 + A2)
Pxg o) (B =) = Pp(R, =)
now explicitly showing the parameters, in particular
Pl (B, =) = Pipa(R;, =)

for each v > 0. Hence (i) follows from Theorem 1(iii) and (iv).
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For (ii) it is enough to note that 2p(1—p) < 1/2 for all p # 1/2, again using the asymptotic
normality results. %

Corollary 1 shows that the run statistic provides asymptotically consistent level « tests
for the problem of testing equal intensities, i.e. equal scale parameters of the interarrival times.

For homogeneous Poisson processes (exponential interarrival times) as treated in this
section one may want to use the uniformly most powerful unbiased level « test for the i.i.d.
Bernoulli sample Vi, ..., V,,. It is given by

Cn = LU, —n/2>v00v/2)

when using that % is asymptotically standard normal under each P, )y und therefore

normal approximation for the critical value.

On the other hand, leaving homogeneous Poisson processes simple tests as ¢} are no
longer available. But the run statistic still makes sense in more general situations, and it is
our opinion that useful discrimination tests can be built upon this statistic. The results in the
following section will demonstrate this in the problem of testing for equal scale parameters for
general renewal processes.

3. SUPERPOSITIONS OF RENEWAL PROCESSES

In this section we will consider the number of runs R}, resp. R; for the superposition of
two absolutely continuous renewal processes which no longer forms a renewal process unless
the interarrival times in both channels are exponentially distributed. However, it is shown
in [1] and briefly summarized below that it forms a Markov renewal process and can thus be
analyzed within the framework of Markov renewal theory.

Given the interarrival times X7, Xo,... and Y7, Y5, ... for the two channels with generic
copies X,Y, finite means & ©f B x ,C T By and associated renewal processes (S, )n>0 and
(T )n>0, respectively, let X*, Y* denote two generic random variables having the stationary
renewal distributions for the respective channels, defined as

P(X* €dx) = ¢ 'P(X >x)der and P(Y* cdy) = (T'P(Y > y)dy.

Let further B = (B,,),>0 denote the sequence of backward recurrence times associated with
the superposition (W, ),>0. This means that B, = (BX,BY) gives the elapsed times since
the last renewal from channel 1, respectively channel 2 at W,,, in particular By = (0,0). It is
well-known that B forms a Markov chain with state space S & {0} x [0,00) U [0,00) x {0}.
The absolute continuity of X and Y implies that B is further positive Harris recurrent with
unique stationary distribution

dof & poxr e ¢
T = f—f-CP(X E)®(50+ £+C

where §g is Dirac measure at 0 and ® denotes product measure, see [1]. As one can readily

S @P(Y™ € ) (3.1)

verify, the increments of (W,,),>o are conditionally independent given B and

P(Wn - Wn—l S |B) = Q(Bn—hB’rL? )



for all n > 1 and a suitable kernel @), see [1]. Therefore, (B,,, W},),>0 constitutes a Markov
renewal process with Harris recurrent driving chain B.
We next observe that for n > 2

{(Voor #Vo} = {B,_, =B, =0} U{B,_, =B =0} as. (32)

The two sets on the right-hand side are a.s. disjoint because the absolute continuity of X and
Y in combination with the independence of (S,),>0 and (T},),>0 guarantees that the event
{Wi = Wiy, for some k > 1} of multiple renewals in the superposition has probability 0.
(3.2) shows that, conditioned upon B, the indicators 1;y, ,»v,} are deterministic and thus
independent and that

P(Voo1 # ValB) = 1g.03Ba_1,By) + 1003 By_1,B;) as. (3:3)
Since these indicators are the increments of (R} ),>1 we have proved

LEMMA 1. Under the given assumptions (B,,, R}, )n>1 forms a Markov renewal process.

THEOREM 2. Under the given assumptions,

. R 2 /OO
lim =& = —— P(X >tOP(Y >¢) dt a.s. 3.4
Jm 2o [ R R > (3.4)
and
. Ry 2 [
thm T P(X >t)P(Y >t) dt a.s. (3.5)

PROOF. By the strong law of large numbers for Markov renewal processes, R} /n con-
verges a.s. to B (R5 — RY) = P.(V1 # Va), where P, denotes the probability measure under
which B has initial distribution 7 and is hence stationary. Now use (3.1) and (3.3) to infer

Pr(Vi #V2) = Pr(BY =0,B; =0) + Pr(B] =0,By =0)
_ S a4 & .
= €+CIP’(X>Y) + €+€IP’(Y>X)

2 / o
= P(X > t)P(Y > t) dt.
fie ) PX>0RY >0
Of course, the occurring generic variables X, X*,Y and Y* are here assumed to be mutually

independent. We have thus proved (3.4). Next, by the elementary renewal theorem (see e.g.
[10])

. N(@) .. Nit) . No(t) 1 1 &+
mL T Ty P AT T ete T e Y
which combined with (3.4) yields
R, _ Byw _ N({t) Rvey 2 /”
=t = = : — | P(X>tPY >t)dt
t ! © O N@ e, FESURE >0 dt

that is (3.5). &
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Our next result shows that suitable normalizations of R; and R; converge to a standard
normal distribution. This will subsequently be used to derive asymptotically consistent level
a tests for the problem of testing for equal scale parameters.

THEOREM 3. Gliven the previous assumptions, EX? < oo and EY? < oo,

R o RZ—\_/%W < N(0,1), asn — oo, (3.8)

and

~ e - N t

R, BN 4 v01), ast— oo, (3.9)
o/ N(t)

where p % ﬁ JooP(X > H)P(Y > t)dt and

o2 w(l —p) + Z (IP’W(Vl # Vo, Vo # Vig1) — M2) > 0.
n>2

The proof of this result is not only more difficult than the one of its counterpart Theorem
1 in the Poisson case but also rather long. It is therefore provided in the next section.

TESTING FOR EQUAL SCALE PARAMETERS. Consider an absolutely continuous positive
random variable Z with mean £Z = 1. Let us assume that, for £, > 0, the X; are distributed
as £Z and the Y; are distributed as (Z. We want to consider the problem of testing for equal
scale parameters £ = ( based on the run statistic R). Clearly, R} does not change if we
multiply the X;’s and Y;’s by the same positive constant. Hence the limiting constant of (3.4)

of 2 >
(€0 € / P(¢Z > t)P(CZ > t) dt (3.6)
§+C Jo
depends on ¢ and ¢ only through their ratio p def (/€ or, equivalently, p def & = ﬁ and
may be written as
ulp) H(%J) = 2p/ IP’(Z>t)IP’(1P%pZ>t) dt, (3.7)
0

which is also immediate by a change of variables in the integral in (3.6). The obvious inequality

1 —
u(p) < 2p min{l, —p}
p

shows that p(p) becomes small whenever p is close to its boundary values 0 or 1. In fact, u(p)
attains its absolute maximum at p = 1/2 which provides the basis for using the run statistic
for discrimination purposes.

LEMMA 2. Let Z be a positive random variable with finite mean and p(p) be as defined
in (3.7) for pe (0,1). Then

) < u(ly2) = / TR(Z > 0 db



for all p #1/2.

Proor. Using the Cauchy-Schwarz inequality, we obtain

Mmf;%(AWMZ>w2ﬁyﬂ(AmPG§Z>QQﬁ>
_ 2p</000 P(Z > t)? dt>1/2(% /Ooo 1%1@(2 > 1%)2 dt)1/2

_ 2p1/2(1—p)1/2/ P(Z > )2 dt
0

= 21— p)p(1/2).

1/2

Since 2p'/2(1 — p)/? has its unique maximum 1 at p = 1/2 the lemma is proved. O
Level « run tests for p = gi—c = 1/2 against p # 1/2, either based upon a sample of n

arrivals or upon the N (t) arrivals within a time interval (0,¢], can now be defined along the
same lines as in Section 2 for the Poisson case. We write P, for the situation that p is the
underlying parameter. For o € (0, 1) the critical value here takes the form

c(n,a) = pu(1/2)n —veo(1/2)v/n,

where as before v,, is the a-fractile of the standard normal distribution. The following Corollary

def def . . .
shows that @, = 1(r:<c(n,a)} a0d ¢t = 1(Rr,<¢(N(t),a)} are again asymptotically consistent
level « tests.

COROLLARY 2. In the described situation of testing for equal scale parameters we have
as n — oo, respectively t — oo:
(i) Pyjo(Ry < c(n,a)) — a and Py jo(Ry < c(N(t),a)) — a,
(11) Pp(R), < c(n,a)) — 1 and Pp(R: < ¢(N(t),a)) — 1 for any p # 1/2.

The proof is essentially a copy of the proof of Corollary 1 when substituting Theorem 1
with Theorem 3 there. It is therefore omitted.

4. PROOF OF THEOREM 3

We begin with some further notation and put P, , dof P(|Bf = z,BY =y) (soP="Pyp)

with expectation operator E, ,. The transition kernel of (B, ),>¢ is denoted by P and we
write Pg(z,y) for [ g(u,v) P((z,y),d(u,v)). For a measurable A C S, the first hitting and
first return time of (B,,),>0 to A are denoted as 79(A) and 7(A), respectively, i.e.

To(A) def inf{n >0:B,, € A} and 7(A) o inf{n >1:B, € A}.

PROOF OoF THEOREM 3. Note that

S e S h(Be Ry~ Ry )
" ovn ov/n
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with h(x,y,e) Lo u, whence (3.8) and (3.9) are central limit theorems for an additive

functional of the temporally homogeneous Markov chain (B,,, R} — R},_;),>0 with state space
S x {0,1}. Its transition kernel P((z,y,e),-), say, is independent of e € {0,1} because, by
Lemma 1, (B,,, R} ),>0 is a Markov renewal process. This property implies that (B,,, R} —
R} _{)n>o inherits the Harris ergodicity from (B,,),>0 and that A x {0,1} is a small set (see
[8, p. 106]) whenever A is a small set for (B,,),>0. Let T be the stationary distribution of
(B, Ry, — Ry _1)n>o0-

We will conclude (3.8) and the asserted form of 0% from Theorem 17.5.3 in [8] after the
verification of the drift condition

PG(z,y,e) — G(z,y,e) < —1+b1la(z,y,e), (x,y,e) €S x{0,1}, (4.1)

for (B, RX — R%_|)n>0, where the function G > 1 satisfies il G? di < o0, C'is a small set and
b € (0,00) a constant. For the proof of (3.9) we will first show that ¥ (h) has the same
limiting behavior as another additive functional possessing stationary, 1-dependent increments.
Asymptotic normality of this second functional is then rather easily obtained by an application
of Anscombe’s theorem. The positivity of o2 will be proved in Lemma 6 in Section 4.

PROOF OF (3.8). Lemma 3 and 4 below show that the set C,, o {0} x (0, a] is small for
(Bn)n>0 and satisfies sup(, ,yes Bz y7(Co) < 00 for each a > 0 with P(Y > a) > 0. These two
facts imply that C,, is (1-)regular (see [8, p. 333 and Theorem 14.2.4 on p. 339]). Consequently,
by Theorem 14.2.3 in [8], the drift condition

PGa(xay)_Ga(w7y) < —1—|—blca($,y), (ZU,y) ES; (42)
def
holds true for some b € (0,00), where Go(z,y) = E;,70(C,) for (z,y) € S. Note that

70(Cy) < 7(C,) and Lemma 4 ensure that G, is a bounded function with supremum ||G||co-

Putting V, L4 Gua, (4.2) even implies the stronger geometric drift condition

PV,~V, < —~1+ble, < —AV,+0b1g, (4.3)
with \ % (1 +||Galloo) ™t € (0,1) and therefore the geometric ergodicity of (B, )n>0, see [8,
Theorem 15.0.1].

Next put @a(x, Y, €) def Ga(z,y) for (z,y,e) € S x {0,1} and observe that PG, = PG,.
Combining this fact with (4.2) we infer validity of (4.1) with G = G, and C = C, x {0,1}
for any a with P(Y > a) > 0. Furthermore [G2d# = [G2dr < oo trivially holds by the
boundedness of G,. Since (R}),>o has increments bounded by 1, we conclude (3.8) and the
asserted form of o2 from Theorem 17.5.3 in [8].

PRrOOF OF (3.9). Using Nummelin’s split chain (see [8, p. 101f]), each small set induces

a renewal process (vp)n,>1 of regeneration epochs for (B, R} — R} _;)n,>0 such that, under

*

every initial distribution, the cycles (B;, R} — R}_;)v, ,<j<v,, n > 1 are 1-dependent and for

n > 2 also stationary (vg o 0) with the same distribution as the first cycle under Py, ¢ def

P(B,, € -). Consequently, ¥ (h) def Y., (h), n > 0, forms a random walk with 1-dependent

increments which are further stationary for n > 2. Its stationary drift E(X5(h) — X5 (h)) equals
Eyv1 E-h(By, R;) = 0. The geometric ergodicity of (B, ),>0 ensures that Egvi < oo (see [8,



11

Theorem 15.0.1]) and thus E(S5(h) — $1(h))2 < oo because || < 1. Put 7*(n) < inf{k : vy, >

n}. Then
S5 (B) — Sa(h S
n Jn

where 5 means convergence in probability (under every initial distribution). Combining this

result with (3.8) we infer

. (h
L)() < N(0,1), asmn — oc.
ov/n

With (X7 (h))n>1 having stationary, 1-dependent increments it is not difficult to verify that
Anscombe’s theorem applies to Ei( N t))(h) and gives

S5 nvion ()
wiNOl ast — oo
U\/m (7 )7 9

The details are omitted. Since (4.4) remains true when n is replaced with N (¢) giving

. (h) .
T*(N(t)) P

— = —R;| — 0 ast— oo,
o/N(t) '

we finally infer (3.9). O
LEMMA 3. The set C, = {0} x (0,a] is small for each a > 0 with P(Y > a) >0

PROOF. If P(Y > a) > 0 then P(Y* < a) > 0 and thus 7(C,) = gzP(Y* < a) > 0. For
C, to be small it hence remains to verify that

inf Py,B;e-) > gT
u€(0,a]
for some k > 1, 5 € (0,1] and a probability measure I' concentrated on C,.
Since, for all m,n > 1 and u € (0,00), S,, and 7, are independent and absolutely
continuous with respect to Lebesgue measure A under Py ,, a technical but straightforward
argument shows that for some a > 0 there exist m,n > 1 and « € (0, 1) such that

i%f ]IP’()’u(Sm —T, €dvn(0,a)) > alg,q(v)A(dv).
ue(0,a

Consequently,

Py, (B

m—+n

> ]P)O,u(Sm - 1T, € BN (0, OO),Yn+1 > Sm — Tn)

_ / Po.u(Sm — T € BN (0,9)) P(Y € dy)
0

=0,BY . €B)

m—+n

> /OO Po.u (S — Ty € BN (0,a)) P(Y € dy)
> aP(Y > a)A(B N (0,a)
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for all u € (0, a], that is

iI(lOf ]IP’O,U(]B%mJFn €) > alP(Y >a)d @ A(-N(0,a)).
u€(0,a

This shows that C, is a small set whenever a satisfies P(Y > a) > 0. &

LEMMA 4. The set C, = {0} x (0, a] satisfies sup,, ,yes Ex,y7(Ca) < 00 for each a >0
with P(Y > a) > 0.

PrOOF. We first note that, having proved sup(, ,)esExy7(Ca) < 00, regularity is a
direct consequence of Theorem 14.2.4 in [8] because C|, is also small.

Let || - || denote total variation distance. Fix any a with P(Y > a) > 0. By absolute
continuity of X and Y,

t—o0

Tim [[P(Tyy 0 — 1 € )~ BY* )] = 0,

which implies that

inf P(Sn,(4)41 —t<a) > P(X*<a)/2 > 2y > 0,

t>to

inf P(T'n,(1)4+1 —t<a) > P(Y*"<a)/2 > 2y > 0

t>tg -

for some to > 0, where ~ dof min{P(X* < a),P(Y* < a)}/4. Choose m large enough so that
def 2. def

min{P(S,, > to), (T, > to)} > 1/2. Define W_1 = Ty, Wo = Sy 4i_,y 41, and
=, def = def def
Wi = SNI(W,l)—f—m—f—l’ W2 = TN2(W1)+1’ Ws = TN2(W1)+'m+1
2 def 2 def ~_ def
Wy = SNl(WS)-i-l’ Ws = SN1(W3)+m+1’ Ws = TNQ(W5)+17 ey

Wou & (W, ..., W),

and

def
D, =

Wy — Wit

for n > 1. Then the conditional distribution under P, , of D, given W();Qn_l depends only on
(D2p—2, Dap—1) and P (D2y, € -|Dap—2 = u, Dayp—1 = ) either equals P(Sn, (yt0)4+1—u—0 € -)
or P(Tn, (ugv)+1 —u—v € -) for u,v > 0, (x,y) € S and n > 1. Furthermore, Dy, is indepen-
dent of Wy.2,,—2 for n > 1, and its distribution (under each PP, ,) equals either that of S,, or
of T, (under P = Py ). Noting that EX? < oo and EY? < oo ensures

/ sup P(Sy, ()41 —t > s) ds < oo
0 >0

and a similar result for sup,~qP(Tn, )41 —t > s), see e.g. [13, Theorem 2.4], we hence infer
the existence of an integrable distribution G on [0, c0) such that

Ppy(Dp > t|Won_1) < 1—G(t) as. (4.5)
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for all t > 0, (x,y) € S and n > 1. By choice of ty and m, we further obtain

]Poc,y( min D4k > a) = / / Pw,y(D4n > a|D4n_2 = u,D4n_1 = U)
1<k<n (a,00) J(0,00)

X Py y(Dan—1 € dv) Py y(Dan—2 € du, | nin Dy > a)

<k<n—1

1<k<n-—1

< ((1 — 2’}/)P$,y(D4n71 > t()) + Pm7y(D4n,1 < to))wa( min D4k > a)

1= 29Pyy(Din-1 > 1) )Pay(_min D > a)

IN

L= V)Pw’y(1<¥cn<i2—1D4k > a)

(
< (A=)
for all n > 1 and (x,y) € S. We thus see that 7 dof inf{n : Dy, < a} has geometrically
decreasing tails of order less than 1 — « under each P, ,, (x,y) € S. In particular,

sup E,,7 < oo. (4.6)
(z,y)esS

Now 7(Cl,) def inf{n > 1:B,, € C,} is clearly bounded by Nl(VAVM) which may be rewritten as

47

7(Ca) < > Ni(Wio1, Wi, (4.7)
k=1

where N (s, t] N (t) — Ni(s) for s < t. We claim that there exists an integrable distribution

H such that
Py y(Ny(Wi1, Wi] > n|[Woe1) < 1—H(n) as. (4.8)

for all k,n > 1. For the proof we will use (4.5) and the inequality
Pyy(Ni(s,s +t] >n) < P(Ny(t) >n—1) (4.9)

for all (z,y) € S, s,t > 0 and n > 1, see e.g. [3, p. 810]. Now it is readily seen that
Ny (Wk_l, Wk] either equals m or 1, or satisfies

P,y (N1 (Wh_1, Wi] > n|Wo.e_1)

= /[ /[ ]P’w’y(Nl(VAVk_l, Wk—l + t] > n) ]P’gc’y(Dk € dt|Wo;k_1)
0,00) /[0,00)

< / PNy (t) > n— 1) Poy(Dy € de|Wo_1) ass.
0.00)

where (4.9) was used for the last inequality. Now use (4.5) and the fact that P(Ny(¢) > n —1)
is increasing in ¢ to conclude that either Ny(Wj_1, Wi] € {1,m}, or

P,y (N1 (Wi_1, Wi] > n) < /[0 )IP’(Nl (t) > n—1) G(dt).
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This proves (4.8) for some distribution H, and since

> P(Ni(t) >n) < ENi(t) < c(t+1)

for a suitable constant ¢ € (0,00), we further see that H can be chosen as an integrable
distribution with mean g, say.
Finally, by combining (4.6), (4.8) and Lemma 5 below, we obtain

sup E,,7(Co) < 2um sup Eg 7 < oo

which is the asserted result. &

LEMMA 5. Let0 = Zy < Z7 < Zy < ... be an increasing sequence of nonnegative random
vartables whose increments Z,, — Z,,_1 are stochastically bounded by an integrable distribution,

i.e., there exists a distribution function H such that H(0) = 0, pug def fooo(l — H(t))dt < oo
and

]P)(Zn — L1 > t|Z0, ceny Zn—l) < 1- H(t) a.s. (410)

forallt >0 andn > 1. Then
EZ, < puEr

for each stopping time T for (Sy)n>0-

PROOF. Integration of (4.10) with respect to ¢ gives E(Z,, — Z,—1|Z1, ... Zn-1) < pumg a.s.
for all n > 1. Hence the assertion follows from

]EZT - E<ZE(Zn - Zn—1|Z17"'7Zn—1)1{T2n})

n>1

< E ( Z /’LH]-{TZTL}>

n>1
= pugET. ¢

LEMMA 6. The asymptotic variance o in Theorem 3 is positive.

PrOOF. For each a with P(Y > a) > 0, the set C, = {0} x (0, qa] is small for (B,,),>0
(Lemma 3). It is also small for the chain (B,,, R}, — R};_;)n>1 because (B,,, R, — R} _;) depends

on (IB%]-,R;T — R;f_l)lgjgn_l only through B,,_;. For a fixed and k > 1, let ¢ € [0,1] be the
maximal value so that inf,c(0,q) P(0,u)(Bx € ) > crdo@A(-N(0,a]). Choose k > 1 and e € {0,1}

such that ¢ > 0 and

D fye @l [, o= Ry = el = 0.0) Ade) 2 af2)
0,a
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is A-positive. It follows
PO,U(Bg(;f = OvB%/k S Aa R;kz - R;kz—l = 6)

> / / Po (Ry — Ri_y = eBy, = (0,2), Bog = (0,1)) A(dz) Mdy)
AN(0,a] Y (0,a]

= & / / Pou(Ri — Rl y = e[By = (0,4)) A(dz) A(dy)
AN(0,a] Y (0,qa]
2

> %»(Ama)

for all u € (0,a] and all measurable A C IR and thus with ¥ ot 1p, (Y)A(dy) /A (Dy).

inf Fo.u (B3, = 0,BY, € dy, Ry, — Ry =¢) > 5 ¥(dy) (4.11)
ue(0,a

for some c3;, > 0.

Now let A/ be the set of all [ € IN for which (4.11) holds true if 2k is replaced with [ and
csp with some ¢ > 0 (keeping e and D, fixed). We claim that N contains [y + IN for some
lo > 1. In fact, since (B,,, R}, — R} _,)n>1 is aperiodic, we have that {{ > 1: Py (B; € C,) > 0}
contains [; 4+ IN for some [; > 1. Consequently, for all | > 2k + [; and all u € (0, a

IEDO,u(Bl € Ca) Z ]P)O,u(BQI@ S CayBl S Ca) Z C;kP‘IIGBl—Qk S Ca) > 0

and then, for all [ > Iy ©f gk + l1, u € (0,a] and all measurable A C IR,

Po..(BX =0,Bf € A, Rf — Rf_; =e¢)
2 / ]P)O,:E(ngg == O,B%/k E A,R;k - Rzk—l — 6) ]PO,’U,(BZ—Zk E {O} X dy)
(0,u]
> (c5y,)*Pu(Bi_ak € Ca)¥(A)

which proves our claim.
Let 7 be the stationary distribution of (B,,, R}

r — R _{)n>1. Since C, is a small set for

(By,)n>0 with minorizing measure dp ® ¥, it is well known that

T—1
) 1
T = —Es,0u0 (Zl{(m,R;—R;_l)e-})

E T
So®¥ k=0

for some regeneration epoch 7 (see e.g. [2] for the construction) and thus 7 > ¢(dp @ ¥ ® &)
for ¢ % (EsyowT)™' > 0. A combination with (4.11), with [ € N instead of 2k, then implies

Pz((B1, R, Bis1, Ry — Rf) €4) > @6 @ ¥ ®4.) (4.12)

for all { € N and suitable ¢; > 0.

Now assume o2 = 0 and observe that y € (0,1). Since (B, R} — R}_;)n>1 is Harris
ergodic and satisfying the drift condition (4.1) with bounded G, Proposition 2.4 in [6] implies
the existence of a measurable function A : S x INg — IR such that

Yo(h) = AB,,R; — R ;) — A(By,R]) Pz-as. (4.13)

n
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for all n > 1. Note that X,,(h) takes values in {j — nu;0 < j < n}. Choose m > 1 such that
m — 1 and m are both elements of /. Combining (4.12) and (4.13), we see that there exists a
value s such that

Pﬁ-(Ei(h):S) > 51/1{3}(/\(192,7“2)—A(bl,Tl)) (50®\I/®5e)2(dbl,d7’1,db2,d’l°2) > 0

for both ¢ = m and ¢ = m + 1. Hence there must be my, mo € INy such that s = m; — mpu =
mo — (m+ 1), i.e. g =mg —my € Z. Since p € (0, 1), we have produced a contradiction. <
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