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Wald and Wolfowitz [11] introduced the run test for testing whether two
samples of i.i.d. random variables follow the same distribution. Here a
run means a consecutive subsequence of maximal length from only one of
the two samples. In this paper we contribute to the problem of runs and
resulting test procedures for the superposition of independent renewal
processes which may be interpreted as arrival processes of customers
from two different input channels at the same service station. To be more

precise, let (Sn)n≥1 and (Tn)n≥1 be the arrival processes for channel 1

and channel 2, respectively, and (Wn)n≥1 their be superposition with

counting process N(t)
def
= sup{n ≥ 1 : Wn ≤ t}. Let further R∗n be

the number of runs in W1, ...,Wn and Rt = R∗
N(t)

the number of runs

observed up to time t. We study the asymptotic behavior of R∗n and
Rt, first for the case where (Sn)n≥1 and (Tn)n≥1 have exponentially

distributed increments with parameters λ1 and λ2, and then for the more
difficult situation when these increments have an absolutely continuous

distribution. These results are used to design asymptotic level α tests

for testing λ1 = λ2 against λ1 6= λ2 in the first case, and for testing for
equal scale parameters in the second.
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1. Introduction

Wald and Wolfowitz [11] introduced the run test for testing whether two samples follow
the same distribution: Let X1, X2, ... and Y1, Y2, ... be two independent samples of i.i.d. real-
valued random variables having continuous distribution functions F and G, respectively. Let
Rn1,n2 denote the number of runs in the pooled sample X1, ..., Xn1 , Y1, ..., Yn2 arranged in
ascending order of magnitude, where a run is a subsequence of maximal length taken only
from the X- or the Y -sample.

The run test rejects the hypothesis F = G if Rn1,n2 is less than some critical value. The
distribution of Rn1,n2 under the hypothesis is of course independent of the particular contin-
uous distribution, and Wald and Wolfowitz [11] compute this distribution, derive asymptotic
normality and show consistency of the test, as n1, n2 →∞ such that n1/(n1 +n2)→ β ∈ (0, 1).
The distribution theory of runs is also treated in Wishart and Hirschfeld [12] and Mood [9].

Let us now consider the case that only the joint sample size n = n1 + n2 is fixed and n1

is a random variable having a binomial distribution with parameters n, p. Denoting by R′n the
resulting number of runs, we obtain from the explicit results for Rn1,n2 that

P(R′n = k) =
n∑

m=0

P(Rm,n−m = k)
(

n

m

)
pm(1− p)n−m

=
n∑

m=0

2
(

m− 1
l − 1

)(
n−m− 1

l − 1

)
pm(1− p)n−m

if k = 2l, and

P(R′n = k) =
n∑

m=0

[(
m− 1
l − 1

)(
n−m− 1

l

)
+
(

n−m− 1
l − 1

)(
m− 1
l − 1

)]
pm(1− p)n−m

if k = 2l + 1. Under the hypothesis F = G, we have

ER′n ' 2np(1− p) and VarR′n ' 4np(1− p)(1− 3p(1− p))

and

R̂′n
def=

R′n − 2np(1− p)
2
√

np(1− p)(1− 3p(1− p))
d→ N(0, 1), (1.1)

as n→∞, see [9].
If F 6= G the distributions of Rn1,n2 and R′n both depend of course on F and G. Given

that F and G have continuous Lebesgue densities f and g, respectively, Henze and Voigt [5]
showed that

lim
n→∞

Rn1,n2

n1 + n2
= 1−

∫
β2f2(x) + (1− β)2g2(x)

βf(x) + (1− β)g(x)
dx a.s.

as n1, n2 →∞ such that n1/(n1 + n2)→ β ∈ (0, 1). This easily implies

R′n
n

P→ 1−
∫

p2f2(x) + (1− p)2g2(x)
pf(x) + (1− p)g(x)

dx

where P→ means convergence in probability.
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In this paper we want to contribute to the problem of runs and resulting test procedures
for superpositions of renewal processes which may be interpreted as arrival processes of cus-
tomers from two different input channels at the same service station. So let us assume that
X1, X2, ... and Y1, Y2, ... are independent samples of i.i.d. positive interarrival times, again with
continuous distributions F and G, respectively. Denote the corresponding renewal processes
by (Sn)n≥1 (channel 1) and (Tn)n≥1 (channel 2), i.e.

Sn = X1 + ... + Xn and Tn = Y1 + ... + Yn for n = 1, 2, ...

We now consider runs in the superposition, (Wn)n≥1 say, of (Sn)n≥1 and (Tn)n≥1, defined as
subsequences of maximal length from the first or second of the these processes. We put

R∗n
def= number of runs in W1, ..., Wn

for n = 1, 2, ... and

Rt
def= number of runs in W1, ..., WN(t) = R∗N(t)

for t > 0, where N(t) =
∑
n≥1 1(0,t](Wn).

If the interarrival times in both channels are exponentially distributed the same holds
true for the superposed arrival process. We will discuss this case in Section 2 and show that
we may use the methods from the i.i.d. situation.

Section 3 deals with the more complicated situation of general interarrival distributions.
We will derive the limiting behavior of R∗n and Rt by drawing on the fact shown in [1] (see also
[7]) that the superposition of absolutely continuous renewal processes constitutes a Markov
renewal process.

2. Exponential interarrival times

We consider exponentially distributed interarrival times X1, X2, ... and Y1, Y2, ... with
means 1/λ1 and 1/λ2, respectively. Then the following holds:

Theorem 1. Put λ
def= λ1 + λ2, p

def= λ1/λ, and let R′n be as in Section 1. Then
(i) R∗n has the same distribution as R′n for each n = 1, 2, ...

(ii) P(Rt = k) =
∑
m≥1 P(R∗m = k)e−λtλmtm/m! for each t > 0.

(iii) R̂∗n
def=

R∗n − 2p(1− p)n
2
√

p(1− p)(1− 3p(1− p))n
d→ N(0, 1), as n→∞.

(iv) R̂t
def=

Rt − 2p(1− p)N(t)
2
√

p(1− p)(1− 3p(1− p))N(t)
d→ N(0, 1), as t→∞.

Proof. We will pass from renewal processes to their corresponding renewal counting
processes and use some well-known facts for Poisson processes; see e.g. [10].

(i) Let (N1(t))t≥0 and (N2(t))t≥0 denote the resulting counting processes for S1, S2, ...

and T1, T2, ..., which are Poisson processes with intensities λ1 and λ2, respectively. Then the
counting process (N(t))t≥0 of the superposition W1, W2, ... satisfies

N(t) = N1(t) + N2(t), t ≥ 0,
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and is also Poisson with intensity λ. Put the mark Vn = 0 or 1 to each Wn according to
whether Wn is an arrival epoch from channel 1 or channel 2. Hence

N1(t) =
∑
n≥1

1{Wn≤t,Vn=0} and N2(t) =
∑
n≥1

1{Wn≤t,Vn=1}.

It is well-known that V1, V2, ... are i.i.d. Bernoulli variables with parameter p, i.e. P(Vn = 1) =
p = 1− P(Vn = 0). With this notation

R∗n = number of runs in V1, ..., Vn = 1 +
n∑
i=2

1{Vi−1 6=Vi}.

We may thus resort to the combinatorial arguments of Wald and Wolfowitz [11] for the i.i.d.
situation and obtain, with Un

def= V1 + ... + Vn for n ≥ 1,

P(R∗n = k) =
n∑

m=0

P(Rm,n−m = k)P(Un = m) = P(R′n = k)

for each n ≥ 1 and k ≥ 0.
(ii) It suffices to note that

P(Rt = k) =
∑
m≥0

P(R∗m = k)P(N(t) = m)

for all t > 0 and m ≥ 0.
(iii) This follows immediately from from the asymptotic normality result (1.1) of Mood

together with (i).
(iv) Put µ(p) def= 2p(1− p), σ2(p) def= 4p(1− p)(1− 3p(1− p)), and let m(t) be the largest

integer less than or equal to λt. Note that m(t)−1N(t)→ 1 a.s. and write

R̂t =

√
m(t)
N(t)

(
R∗m(t) −m(t)µ(p)

σ(p)
√

m(t)
+

R∗N(t) −R∗m(t) − (N(t)−m(t))µ(p)

σ(p)
√

m(t)

)
.

By (i), the first term in parentheses is equally distributed as R̂′m(t) and hence, by (1.1), asymp-
totically standard normal as t→∞. Therefore it suffices to show that the second one converges
to 0 in probability. To that end pick arbitrary ε, η > 0. Then

P

(∣∣∣∣R∗N(t) −R∗m(t) − (N(t)−m(t))µ(p)

σ(p)
√

m(t)

∣∣∣∣ > ε

)
≤ P(|N(t)−m(t)| > ηt)

+ P(|R∗N(t) −R∗m(t) − (N(t)−m(t))µ(p)| > εσ(p)
√

m(t), |N(t)−m(t)| ≤ ηt)

The first probability on the right-hand side of this inequality converges to 0 because t−1(N(t)−
m(t))→ 0 a.s. as t→∞. The second one is bounded by

P
(

max
k:|k−m(t)|≤ηt

|R∗k −R∗m(t) − (k −m(t))µ(p)| > εσ(p)
√

m(t)
)
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For m(t) < k ≤ m(t) + ηt, we have

R∗k −Rm(t) − (k −m(t))µ(p) =
k∑

i=m(t)+1

(1{Vi−1 6=Vi} − µ(p))

which is a sum of 1-dependent stationary random variables with mean zero. By summing
over odd and even i separately, it can be decomposed into two sums of i.i.d. zero mean random
variables. With an obvious modification the same can be said about R∗k−Rm(t)−(k−m(t))µ(p)
for m(t)−ηt ≤ k < m(t). By combining these observations with an application of Kolmogorov’s
inequality (applied to the resulting i.i.d. sums) the conclusion

P
(

max
k:|k−m(t)|≤ηt

|R∗k −Rm(t) − (k −m(t))µ(p)| > εσ(p)
√

m(t)
)

< ε

for η = η(ε) sufficiently small and t sufficiently large yields as in the proof of Theorem I.3.1 in
Gut [4]. Further details are omitted. ♦

A testing procedure. Using Mood’s result (1.1) and the previous theorem we obtain
tests for the hypothesis of equal intensities λ1 = λ2 against the alternative λ1 6= λ2. For
α ∈ (0, 1) define the critical value as

c(n, α) = n/2− vα
√

n/2,

where vα is the α-fractile of the standard normal distribution. Let ϕn be the test based upon
a sample of n observed arrivals which rejects the hypothesis for R∗n < c(n, α), i.e.

ϕn
def= 1{R∗n<c(n,α)}.

Let φt be the corresponding test when sampling from the fixed time interval (0, t], defined as

φt
def= 1{Rt<c(N(t),α)}.

Then the following Corollary shows that ϕn and φt are asymptotically consistent level α tests.

Corollary 1. In the situation of exponential interarrival times we have as n → ∞,
respectively t→∞:

(i) P(ν,ν)(R∗n < c(n, α))→ α and P(ν,ν)(Rt < c(N(t), α))→ α for any ν > 0,
(ii) P(λ1,λ2)(R∗n < c(n, α))→ 1 and P(λ1,λ2)(Rt < c(N(t), α))→ 1 for any λ1 6= λ2.

Proof. From Theorem 1 we have for any λ1, λ2 with p = λ1/(λ1 + λ2)

P(λ1,λ2)(R∗n = ·) = Pp(R′n = ·)

now explicitly showing the parameters, in particular

P(ν,ν)(R∗n = ·) = P1/2(R′n = ·)

for each ν > 0. Hence (i) follows from Theorem 1(iii) and (iv).
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For (ii) it is enough to note that 2p(1−p) < 1/2 for all p 6= 1/2, again using the asymptotic
normality results. ♦

Corollary 1 shows that the run statistic provides asymptotically consistent level α tests
for the problem of testing equal intensities, i.e. equal scale parameters of the interarrival times.

For homogeneous Poisson processes (exponential interarrival times) as treated in this
section one may want to use the uniformly most powerful unbiased level α test for the i.i.d.
Bernoulli sample V1, ..., Vn. It is given by

ϕ∗n = 1{|Un−n/2|>vα/2
√
n/2}

when using that (Un−n/2)√
n/2

is asymptotically standard normal under each P(λ,λ) und therefore
normal approximation for the critical value.

On the other hand, leaving homogeneous Poisson processes simple tests as ϕ∗n are no
longer available. But the run statistic still makes sense in more general situations, and it is
our opinion that useful discrimination tests can be built upon this statistic. The results in the
following section will demonstrate this in the problem of testing for equal scale parameters for
general renewal processes.

3. Superpositions of renewal processes

In this section we will consider the number of runs R∗n, resp. Rt for the superposition of
two absolutely continuous renewal processes which no longer forms a renewal process unless
the interarrival times in both channels are exponentially distributed. However, it is shown
in [1] and briefly summarized below that it forms a Markov renewal process and can thus be
analyzed within the framework of Markov renewal theory.

Given the interarrival times X1, X2, ... and Y1, Y2, ... for the two channels with generic
copies X, Y , finite means ξ

def= EX, ζ
def= EY and associated renewal processes (Sn)n≥0 and

(Tn)n≥0, respectively, let X∗, Y ∗ denote two generic random variables having the stationary
renewal distributions for the respective channels, defined as

P(X∗ ∈ dx) = ξ−1P(X > x) dx and P(Y ∗ ∈ dy) = ζ−1P(Y > y) dy.

Let further B = (Bn)n≥0 denote the sequence of backward recurrence times associated with
the superposition (Wn)n≥0. This means that Bn = (BXn ,BYn ) gives the elapsed times since
the last renewal from channel 1, respectively channel 2 at Wn, in particular B0 = (0, 0). It is
well-known that B forms a Markov chain with state space S def= {0} × [0,∞) ∪ [0,∞) × {0}.
The absolute continuity of X and Y implies that B is further positive Harris recurrent with
unique stationary distribution

π
def=

ξ

ξ + ζ
P(X∗ ∈ ·)⊗ δ0 +

ζ

ξ + ζ
δ0 ⊗ P(Y ∗ ∈ ·) (3.1)

where δ0 is Dirac measure at 0 and ⊗ denotes product measure, see [1]. As one can readily
verify, the increments of (Wn)n≥0 are conditionally independent given B and

P(Wn −Wn−1 ∈ ·|B) = Q(Bn−1,Bn, ·)
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for all n ≥ 1 and a suitable kernel Q, see [1]. Therefore, (Bn, Wn)n≥0 constitutes a Markov
renewal process with Harris recurrent driving chain B.

We next observe that for n ≥ 2

{Vn−1 6= Vn} = {BXn−1 = BYn = 0} ∪ {BYn−1 = BXn = 0} a.s. (3.2)

The two sets on the right-hand side are a.s. disjoint because the absolute continuity of X and
Y in combination with the independence of (Sn)n≥0 and (Tn)n≥0 guarantees that the event
{Wk = Wk+1 for some k ≥ 1} of multiple renewals in the superposition has probability 0.
(3.2) shows that, conditioned upon B, the indicators 1{Vn−1 6=Vn} are deterministic and thus
independent and that

P(Vn−1 6= Vn|B) = 1{(0,0)}(BXn−1,BYn ) + 1{(0,0)}(BYn−1,BXn ) a.s. (3.3)

Since these indicators are the increments of (R∗n)n≥1 we have proved

Lemma 1. Under the given assumptions (Bn, R∗n)n≥1 forms a Markov renewal process.

Theorem 2. Under the given assumptions,

lim
n→∞

R∗n
n

=
2

ξ + ζ

∫ ∞
0

P(X > t)P(Y > t) dt a.s. (3.4)

and

lim
t→∞

Rt

t
=

2
ξζ

∫ ∞
0

P(X > t)P(Y > t) dt a.s. (3.5)

Proof. By the strong law of large numbers for Markov renewal processes, R∗n/n con-
verges a.s. to Eπ(R∗2 − R∗1) = Pπ(V1 6= V2), where Pπ denotes the probability measure under
which B has initial distribution π and is hence stationary. Now use (3.1) and (3.3) to infer

Pπ(V1 6= V2) = Pπ(BX1 = 0,BY2 = 0) + Pπ(BY1 = 0,BX2 = 0)

=
ζ

ξ + ζ
P(X > Y ∗) +

ξ

ξ + ζ
P(Y > X∗)

=
2

ξ + ζ

∫ ∞
0

P(X > t)P(Y > t) dt.

Of course, the occurring generic variables X, X∗, Y and Y ∗ are here assumed to be mutually
independent. We have thus proved (3.4). Next, by the elementary renewal theorem (see e.g.
[10])

lim
t→∞

N(t)
t

= lim
t→∞

N1(t)
t

+ lim
t→∞

N2(t)
t

=
1
ξ

+
1
ζ

=
ξ + ζ

ξζ
a.s.,

which combined with (3.4) yields

Rt

t
=

R∗N(t)

t
=

N(t)
t
· RN(t)

N(t)
→ 2

ξζ

∫ ∞
0

P(X > t)P(Y > t) dt,

that is (3.5). ♦
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Our next result shows that suitable normalizations of R∗n and Rt converge to a standard
normal distribution. This will subsequently be used to derive asymptotically consistent level
α tests for the problem of testing for equal scale parameters.

Theorem 3. Given the previous assumptions, EX2 <∞ and EY 2 <∞,

R̂∗n
def=

R∗n − µn

σ
√

n

d→ N(0, 1), as n→∞, (3.8)

and

R̂t
def=

Rt − µN(t)
σ
√

N(t)
d→ N(0, 1), as t→∞, (3.9)

where µ
def= 2

ξ+ζ

∫∞
0
P(X > t)P(Y > t) dt and

σ2 def= µ(1− µ) +
∑
n≥2

(
Pπ(V1 6= V2, Vn 6= Vn+1)− µ2

)
> 0.

The proof of this result is not only more difficult than the one of its counterpart Theorem
1 in the Poisson case but also rather long. It is therefore provided in the next section.

Testing for equal scale parameters. Consider an absolutely continuous positive
random variable Z with mean EZ = 1. Let us assume that, for ξ, ζ > 0, the Xi are distributed
as ξZ and the Yi are distributed as ζZ. We want to consider the problem of testing for equal
scale parameters ξ = ζ based on the run statistic R∗n. Clearly, R∗n does not change if we
multiply the Xi’s and Yi’s by the same positive constant. Hence the limiting constant of (3.4)

κ(ξ, ζ) def=
2

ξ + ζ

∫ ∞
0

P(ξZ > t)P(ζZ > t) dt (3.6)

depends on ξ and ζ only through their ratio ρ
def= ζ/ξ or, equivalently, p

def= ξ
ξ+ζ = 1

ρ+1 and
may be written as

µ(p) def= κ
(

1−p
p , 1

)
= 2p

∫ ∞
0

P(Z > t)P
(

1−p
p Z > t

)
dt, (3.7)

which is also immediate by a change of variables in the integral in (3.6). The obvious inequality

µ(p) ≤ 2p min
{

1,
1− p

p

}
shows that µ(p) becomes small whenever p is close to its boundary values 0 or 1. In fact, µ(p)
attains its absolute maximum at p = 1/2 which provides the basis for using the run statistic
for discrimination purposes.

Lemma 2. Let Z be a positive random variable with finite mean and µ(p) be as defined
in (3.7) for p ∈ (0, 1). Then

µ(p) < µ(1/2) =
∫ ∞

0

P(Z > t)2 dt
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for all p 6= 1/2.

Proof. Using the Cauchy-Schwarz inequality, we obtain

µ(p) ≤ 2p

(∫ ∞
0

P(Z > t)2 dt

)1/2(∫ ∞
0

P
(

1−p
p Z > t

)2

dt

)1/2

= 2p

(∫ ∞
0

P(Z > t)2 dt

)1/2(1− p

p

∫ ∞
0

p

1− p
P
(
Z > pt

1−p
)2

dt

)1/2

= 2p1/2(1− p)1/2

∫ ∞
0

P(Z > t)2 dt

= 2p1/2(1− p)1/2µ(1/2).

Since 2p1/2(1− p)1/2 has its unique maximum 1 at p = 1/2 the lemma is proved. ♦

Level α run tests for p = ξ
ξ+ζ = 1/2 against p 6= 1/2, either based upon a sample of n

arrivals or upon the N(t) arrivals within a time interval (0, t], can now be defined along the
same lines as in Section 2 for the Poisson case. We write Pp for the situation that p is the
underlying parameter. For α ∈ (0, 1) the critical value here takes the form

c(n, α) = µ(1/2)n− vα σ(1/2)
√

n,

where as before vα is the α-fractile of the standard normal distribution. The following Corollary
shows that ϕn

def= 1{R∗n<c(n,α)} and φt
def= 1{Rt<c(N(t),α)} are again asymptotically consistent

level α tests.

Corollary 2. In the described situation of testing for equal scale parameters we have
as n→∞, respectively t→∞:

(i) P1/2(R∗n < c(n, α))→ α and P1/2(Rt < c(N(t), α))→ α,
(ii) Pp(R∗n < c(n, α))→ 1 and Pp(Rt < c(N(t), α))→ 1 for any p 6= 1/2.

The proof is essentially a copy of the proof of Corollary 1 when substituting Theorem 1
with Theorem 3 there. It is therefore omitted.

4. Proof of Theorem 3

We begin with some further notation and put Px,y
def= P(·|BX0 = x,BY0 = y) (so P = P0,0)

with expectation operator Ex,y. The transition kernel of (Bn)n≥0 is denoted by P and we
write Pg(x, y) for

∫
g(u, v) P ((x, y), d(u, v)). For a measurable A ⊂ S, the first hitting and

first return time of (Bn)n≥0 to A are denoted as τ0(A) and τ(A), respectively, i.e.

τ0(A) def= inf{n ≥ 0 : Bn ∈ A} and τ(A) def= inf{n ≥ 1 : Bn ∈ A}.

Proof of Theorem 3. Note that

R̂∗n =
Σn(h)
σ
√

n

def=
∑n
k=1 h(Bk, R∗k −R∗k−1)

σ
√

n
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with h(x, y, e) def= e − µ, whence (3.8) and (3.9) are central limit theorems for an additive
functional of the temporally homogeneous Markov chain (Bn, R∗n−R∗n−1)n≥0 with state space
S × {0, 1}. Its transition kernel P̃ ((x, y, e), ·), say, is independent of e ∈ {0, 1} because, by
Lemma 1, (Bn, R∗n)n≥0 is a Markov renewal process. This property implies that (Bn, R∗n −
R∗n−1)n≥0 inherits the Harris ergodicity from (Bn)n≥0 and that A × {0, 1} is a small set (see
[8, p. 106]) whenever A is a small set for (Bn)n≥0. Let π̃ be the stationary distribution of
(Bn, R∗n −R∗n−1)n≥0.

We will conclude (3.8) and the asserted form of σ2 from Theorem 17.5.3 in [8] after the
verification of the drift condition

P G̃(x, y, e)− G̃(x, y, e) ≤ −1 + b 1C̃(x, y, e), (x, y, e) ∈ S × {0, 1}, (4.1)

for (Bn, R∗n −R∗n−1)n≥0, where the function G̃ ≥ 1 satisfies
∫
G̃2 dπ̃ <∞, C̃ is a small set and

b ∈ (0,∞) a constant. For the proof of (3.9) we will first show that ΣN(t)(h) has the same
limiting behavior as another additive functional possessing stationary, 1-dependent increments.
Asymptotic normality of this second functional is then rather easily obtained by an application
of Anscombe’s theorem. The positivity of σ2 will be proved in Lemma 6 in Section 4.

Proof of (3.8). Lemma 3 and 4 below show that the set Ca
def= {0}× (0, a] is small for

(Bn)n≥0 and satisfies sup(x,y)∈S Ex,yτ(Ca) <∞ for each a > 0 with P(Y > a) > 0. These two
facts imply that Ca is (1-)regular (see [8, p. 333 and Theorem 14.2.4 on p. 339]). Consequently,
by Theorem 14.2.3 in [8], the drift condition

PGa(x, y)−Ga(x, y) ≤ −1 + b 1Ca(x, y), (x, y) ∈ S, (4.2)

holds true for some b ∈ (0,∞), where Ga(x, y) def= Ex,yτ0(Ca) for (x, y) ∈ S. Note that
τ0(Ca) ≤ τ(Ca) and Lemma 4 ensure that Ga is a bounded function with supremum ‖Ga‖∞.
Putting Va

def= 1 +Ga, (4.2) even implies the stronger geometric drift condition

PVa − Va ≤ −1 + b 1Ca ≤ −λVa + b 1Ca (4.3)

with λ
def= (1 + ‖Ga‖∞)−1 ∈ (0, 1) and therefore the geometric ergodicity of (Bn)n≥0, see [8,

Theorem 15.0.1].
Next put G̃a(x, y, e) def= Ga(x, y) for (x, y, e) ∈ S × {0, 1} and observe that P̃ G̃a = PGa.

Combining this fact with (4.2) we infer validity of (4.1) with G̃ = G̃a and C̃ = Ca × {0, 1}
for any a with P(Y > a) > 0. Furthermore

∫
G̃2
a dπ̃ =

∫
G2
a dπ < ∞ trivially holds by the

boundedness of Ga. Since (R∗n)n≥0 has increments bounded by 1, we conclude (3.8) and the
asserted form of σ2 from Theorem 17.5.3 in [8].

Proof of (3.9). Using Nummelin’s split chain (see [8, p. 101f]), each small set induces
a renewal process (νn)n≥1 of regeneration epochs for (Bn, R∗n − R∗n−1)n≥0 such that, under
every initial distribution, the cycles (Bj , R∗j −R∗j−1)νn−1≤j<νn , n ≥ 1 are 1-dependent and for

n ≥ 2 also stationary (ν0
def= 0) with the same distribution as the first cycle under Pφ, φ

def=

P(Bν1 ∈ ·). Consequently, Σ∗n(h) def= Σνn(h), n ≥ 0, forms a random walk with 1-dependent
increments which are further stationary for n ≥ 2. Its stationary drift E(Σ∗2(h)−Σ∗1(h)) equals
Eφν1 Eπh(B1, R

∗
1) = 0. The geometric ergodicity of (Bn)n≥0 ensures that Eφν2

1 < ∞ (see [8,
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Theorem 15.0.1]) and thus E(Σ∗2(h)−Σ∗1(h))2 <∞ because |h| ≤ 1. Put τ∗(n) def= inf{k : νk ≥
n}. Then

|Σ∗τ∗(n)(h)− Σn(h)|√
n

≤ ντ∗(n) − n√
n

P→ 0, as n→∞, (4.4)

where P→ means convergence in probability (under every initial distribution). Combining this
result with (3.8) we infer

Σ∗τ∗(n)(h)

σ
√

n

d→ N(0, 1), as n→∞.

With (Σ∗n(h))n≥1 having stationary, 1-dependent increments it is not difficult to verify that
Anscombe’s theorem applies to Σ∗τ(N(t))(h) and gives

Σ∗τ∗(N(t))(h)

σ
√

N(t)
d→ N(0, 1), as t→∞,

The details are omitted. Since (4.4) remains true when n is replaced with N(t) giving∣∣∣∣Σ∗τ∗(N(t))(h)

σ
√

N(t)
− R̂t

∣∣∣∣ P→ 0 as t→∞,

we finally infer (3.9). ♦

Lemma 3. The set Ca = {0} × (0, a] is small for each a > 0 with P(Y > a) > 0

Proof. If P(Y > a) > 0 then P(Y ∗ ≤ a) > 0 and thus π(Ca) = ζ
ξ+ζP(Y ∗ ≤ a) > 0. For

Ca to be small it hence remains to verify that

inf
u∈(0,a]

P0,u(Bk ∈ ·) ≥ βΓ

for some k ≥ 1, β ∈ (0, 1] and a probability measure Γ concentrated on Ca.
Since, for all m, n ≥ 1 and u ∈ (0,∞), Sm and Tn are independent and absolutely

continuous with respect to Lebesgue measure λλ under P0,u, a technical but straightforward
argument shows that for some a > 0 there exist m, n ≥ 1 and α ∈ (0, 1) such that

inf
u∈(0,a]

P0,u(Sm − Tn ∈ dv ∩ (0, a)) ≥ α 1(0,a)(v)λλ(dv).

Consequently,

P0,u(BXm+n = 0,BYm+n ∈ B)

≥ P0,u(Sm − Tn ∈ B ∩ (0,∞), Yn+1 > Sm − Tn)

=
∫ ∞

0

P0,u(Sm − Tn ∈ B ∩ (0, y)) P(Y ∈ dy)

≥
∫ ∞
a

P0,u(Sm − Tn ∈ B ∩ (0, a)) P(Y ∈ dy)

≥ αP(Y > a)λλ(B ∩ (0, a))
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for all u ∈ (0, a], that is

inf
u∈(0,a]

P0,u(Bm+n ∈ ·) ≥ αP(Y > a) δ0 ⊗ λλ(· ∩ (0, a)).

This shows that Ca is a small set whenever a satisfies P(Y > a) > 0. ♦

Lemma 4. The set Ca = {0} × (0, a] satisfies sup(x,y)∈S Ex,yτ(Ca) <∞ for each a > 0
with P(Y > a) > 0.

Proof. We first note that, having proved sup(x,y)∈S Ex,yτ(Ca) < ∞, regularity is a
direct consequence of Theorem 14.2.4 in [8] because Ca is also small.

Let ‖ · ‖ denote total variation distance. Fix any a with P(Y > a) > 0. By absolute
continuity of X and Y ,

lim
t→∞ ‖P(SN1(t)+1 − t ∈ ·)− P(X∗ ∈ ·)‖ = 0,

lim
t→∞ ‖P(TN2(t)+1 − t ∈ ·)− P(Y ∗ ∈ ·)‖ = 0,

which implies that

inf
t≥t0

P(SN1(t)+1 − t ≤ a) ≥ P(X∗ ≤ a)/2 ≥ 2γ > 0,

inf
t≥t0

P(TN2(t)+1 − t ≤ a) ≥ P(Y ∗ ≤ a)/2 ≥ 2γ > 0

for some t0 > 0, where γ
def= min{P(X∗ ≤ a),P(Y ∗ ≤ a)}/4. Choose m large enough so that

min{P(Sm ≥ t0),P(Tm ≥ t0)} ≥ 1/2. Define W−1
def= T0, Ŵ0

def= SN1(Ŵ−1)+1, and

Ŵ1
def= SN1(Ŵ−1)+m+1, Ŵ2

def= TN2(Ŵ1)+1, Ŵ3
def= TN2(Ŵ1)+m+1

Ŵ4
def= SN1(Ŵ3)+1, Ŵ5

def= SN1(Ŵ3)+m+1, Ŵ6
def= TN2(Ŵ5)+1, ...,

Ŵ0:n
def= (Ŵ0, ..., Ŵn),

and
Dn

def= Ŵn − Ŵn−1

for n ≥ 1. Then the conditional distribution under Px,y of D2n given Ŵ0:2n−1 depends only on
(D2n−2, D2n−1) and Px,y(D2n∈ ·|D2n−2 = u, D2n−1 = v) either equals P(SN1(u+v)+1−u−v ∈ ·)
or P(TN2(u+v)+1−u−v ∈ ·) for u, v > 0, (x, y) ∈ S and n ≥ 1. Furthermore, D2n−1 is indepen-
dent of Ŵ0:2n−2 for n ≥ 1, and its distribution (under each Px,y) equals either that of Sm or
of Tm (under P = P0,0). Noting that EX2 <∞ and EY 2 <∞ ensures∫ ∞

0

sup
t≥0

P(SN1(t)+1 − t > s) ds < ∞

and a similar result for supt≥0 P(TN2(t)+1 − t > s), see e.g. [13, Theorem 2.4], we hence infer
the existence of an integrable distribution G on [0,∞) such that

Px,y(Dn > t|Ŵ0:n−1) ≤ 1−G(t) a.s. (4.5)
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for all t > 0, (x, y) ∈ S and n ≥ 1. By choice of t0 and m, we further obtain

Px,y( min
1≤k≤n

D4k > a) =
∫

(a,∞)

∫
(0,∞)

Px,y(D4n > a|D4n−2 = u, D4n−1 = v)

× Px,y(D4n−1 ∈ dv) Px,y(D4n−2 ∈ du, min
1≤k≤n−1

D4k > a)

≤
(
(1− 2γ)Px,y(D4n−1 > t0) + Px,y(D4n−1 ≤ t0)

)
Px,y( min

1≤k≤n−1
D4k > a)

=
(
1− 2γPx,y(D4n−1 > t0)

)
Px,y( min

1≤k≤n−1
D4k > a)

≤ (1− γ)Px,y( min
1≤k≤n−1

D4k > a)

... ≤ (1− γ)n

for all n ≥ 1 and (x, y) ∈ S. We thus see that τ̂
def= inf{n : D4n ≤ a} has geometrically

decreasing tails of order less than 1− γ under each Px,y, (x, y) ∈ S. In particular,

sup
(x,y)∈S

Ex,y τ̂ < ∞. (4.6)

Now τ(Ca)
def= inf{n ≥ 1 : Bn ∈ Ca} is clearly bounded by N1(Ŵ4τ̂ ) which may be rewritten as

τ(Ca) ≤
4τ̂∑
k=1

N1(Ŵk−1, Ŵk], (4.7)

where N1(s, t]
def= N1(t)−N1(s) for s ≤ t. We claim that there exists an integrable distribution

H such that

Px,y(N1(Ŵk−1, Ŵk] > n|Ŵ0:k−1) ≤ 1−H(n) a.s. (4.8)

for all k, n ≥ 1. For the proof we will use (4.5) and the inequality

Px,y(N1(s, s + t] > n) ≤ P(N1(t) > n− 1) (4.9)

for all (x, y) ∈ S, s, t ≥ 0 and n ≥ 1, see e.g. [3, p. 810]. Now it is readily seen that
N1(Ŵk−1, Ŵk] either equals m or 1, or satisfies

Px,y(N1(Ŵk−1, Ŵk] > n|Ŵ0:k−1)

=
∫

[0,∞)

∫
[0,∞)

Px,y(N1(Ŵk−1, Ŵk−1 + t] > n) Px,y(Dk ∈ dt|Ŵ0:k−1)

≤
∫

[0,∞)

P(N1(t) > n− 1) Px,y(Dk ∈ dt|Ŵ0:k−1) a.s.

where (4.9) was used for the last inequality. Now use (4.5) and the fact that P(N1(t) > n− 1)
is increasing in t to conclude that either N1(Ŵk−1, Ŵk] ∈ {1, m}, or

Px,y(N1(Ŵk−1, Ŵk] > n) ≤
∫

[0,∞)

P(N1(t) > n− 1) G(dt).



14

This proves (4.8) for some distribution H, and since∑
n≥0

P(N1(t) > n) ≤ EN1(t) ≤ c(t + 1)

for a suitable constant c ∈ (0,∞), we further see that H can be chosen as an integrable
distribution with mean µH , say.

Finally, by combining (4.6), (4.8) and Lemma 5 below, we obtain

sup
(x,y)∈S

Ex,yτ(Ca) ≤ 2µH sup
(x,y)∈S

Ex,y τ̂ < ∞

which is the asserted result. ♦

Lemma 5. Let 0 = Z0 ≤ Z1 ≤ Z2 ≤ ... be an increasing sequence of nonnegative random
variables whose increments Zn−Zn−1 are stochastically bounded by an integrable distribution,
i.e., there exists a distribution function H such that H(0) = 0, µH

def=
∫∞

0
(1 −H(t)) dt < ∞

and

P(Zn − Zn−1 > t|Z0, ..., Zn−1) ≤ 1−H(t) a.s. (4.10)

for all t ≥ 0 and n ≥ 1. Then

EZτ ≤ µHEτ

for each stopping time τ for (Sn)n≥0.

Proof. Integration of (4.10) with respect to t gives E(Zn−Zn−1|Z1, ..., Zn−1) ≤ µH a.s.
for all n ≥ 1. Hence the assertion follows from

EZτ = E

(∑
n≥1

E(Zn − Zn−1|Z1, ..., Zn−1)1{τ≥n}

)

≤ E

(∑
n≥1

µH1{τ≥n}

)
= µHEτ. ♦

Lemma 6. The asymptotic variance σ2 in Theorem 3 is positive.

Proof. For each a with P(Y > a) > 0, the set Ca = {0} × (0, a] is small for (Bn)n≥0

(Lemma 3). It is also small for the chain (Bn, R∗n−R∗n−1)n≥1 because (Bn, R∗n−R∗n−1) depends
on (Bj , R∗j − R∗j−1)1≤j≤n−1 only through Bn−1. For a fixed and k ≥ 1, let ck ∈ [0, 1] be the
maximal value so that infu∈(0,a] P(0,u)(Bk ∈ ·) ≥ ckδ0⊗λλ(·∩(0, a]). Choose k ≥ 1 and e ∈ {0, 1}
such that ck > 0 and

Da
def=

{
y ∈ (0, a] :

∫
(0,a]

P0,x(R∗k −R∗k−1 = e|Bk = (0, y)) λλ(dx) ≥ a/2
}
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is λλ-positive. It follows

P0,u(BX2k = 0,BY2k ∈ A, R∗2k −R∗2k−1 = e)

≥ c2
k

∫
A∩(0,a]

∫
(0,a]

P0,u(R∗2k −R∗2k−1 = e|Bk = (0, x),B2k = (0, y)) λλ(dx) λλ(dy)

= c2
k

∫
A∩(0,a]

∫
(0,a]

P0,x(R∗k −R∗k−1 = e|Bk = (0, y)) λλ(dx) λλ(dy)

≥ ac2
k

2
λλ(A ∩Da)

for all u ∈ (0, a] and all measurable A ⊂ IR and thus with Ψ def= 1Da(y)λλ(dy)/λλ(Da).

inf
u∈(0,a]

P0,u(BX2k = 0,BY2k ∈ dy, R∗2k −R∗2k−1 = e) ≥ c∗2kΨ(dy) (4.11)

for some c∗2k > 0.
Now let N be the set of all l ∈ IN for which (4.11) holds true if 2k is replaced with l and

c∗2k with some c∗l > 0 (keeping e and Da fixed). We claim that N contains l0 + IN for some
l0 ≥ 1. In fact, since (Bn, R∗n−R∗n−1)n≥1 is aperiodic, we have that {l ≥ 1 : PΨ(Bl ∈ Ca) > 0}
contains l1 + IN for some l1 ≥ 1. Consequently, for all l ≥ 2k + l1 and all u ∈ (0, a]

P0,u(Bl ∈ Ca) ≥ P0,u(B2k ∈ Ca,Bl ∈ Ca) ≥ c∗2kPΨ(Bl−2k ∈ Ca) > 0

and then, for all l ≥ l0
def= 4k + l1, u ∈ (0, a] and all measurable A ⊂ IR,

P0,u(BXl = 0,BYl ∈ A, R∗l −R∗l−1 = e)

≥
∫

(0,u]

P0,x(BX2k = 0,BY2k ∈ A, R∗2k −R∗2k−1 = e) P0,u(Bl−2k ∈ {0} × dy)

≥ (c∗2k)
2PΨ(Bl−4k ∈ Ca)Ψ(A)

which proves our claim.
Let π̃ be the stationary distribution of (Bn, R∗n − R∗n−1)n≥1. Since Ca is a small set for

(Bn)n≥0 with minorizing measure δ0 ⊗Ψ, it is well known that

π̃ =
1

Eδ0⊗Ψτ
Eδ0⊗Ψ

(
τ−1∑
k=0

1{(Bk,R∗k−R∗k−1)∈·}

)

for some regeneration epoch τ (see e.g. [2] for the construction) and thus π̃ ≥ c(δ0 ⊗ Ψ ⊗ δe)
for c

def= (Eδ0⊗Ψτ)−1 > 0. A combination with (4.11), with l ∈ N instead of 2k, then implies

Pπ̃((B1, R
∗
1,Bl+1, R

∗
l+1 −R∗l ) ∈ ·) ≥ c̃l(δ0 ⊗Ψ⊗ δe)2 (4.12)

for all l ∈ N and suitable c̃l > 0.
Now assume σ2 = 0 and observe that µ ∈ (0, 1). Since (Bn, R∗n − R∗n−1)n≥1 is Harris

ergodic and satisfying the drift condition (4.1) with bounded G̃, Proposition 2.4 in [6] implies
the existence of a measurable function Λ : S × IN0 → IR such that

Σn(h) = Λ(Bn, R∗n −R∗n−1)− Λ(B1, R
∗
1) Pπ̃-a.s. (4.13)
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for all n ≥ 1. Note that Σn(h) takes values in {j − nµ; 0 ≤ j ≤ n}. Choose m ≥ 1 such that
m− 1 and m are both elements of N . Combining (4.12) and (4.13), we see that there exists a
value s such that

Pπ̃(Σi(h) = s) ≥ c̃i

∫
1{s}(Λ(b2, r2)− Λ(b1, r1)) (δ0 ⊗Ψ⊗ δe)2(db1, dr1, db2, dr2) > 0

for both i = m and i = m + 1. Hence there must be m1, m2 ∈ IN0 such that s = m1 −mµ =
m2 − (m + 1)µ, i.e. µ = m2 −m1 ∈ Z. Since µ ∈ (0, 1), we have produced a contradiction. ♦
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