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We consider the supercritical bisexual Galton-Watson process (BGWP)
with promiscuous mating, that is a branching process which behaves
like an ordinary supercritical Galton-Watson process (GWP) as long as
at least one male is born in each generation. For a certain example, it

was pointed out by Daley et al. [7] that the extinction probability of
such a BGWP apparently behaves like a constant times the respective
probability of its asexual counterpart (where males do not matter) if

the number of ancestors grows to infinity. In an earlier paper [1] we

provided general upper and lower bounds for the ratio between both
extinction probabilities and also numerical results that seemed to confirm

the convergence of that ratio. However, theoretical considerations rather

led us to the conjecture that this does not generally hold. The present
article turns this conjecture into a rigorous result. The key step in

our analysis is to identify the extinction probability ratio as a certain

functional of a subcritical ordinary GWP and to prove its continuity as

a function of the number of ancestors in a suitable topology associated

with the Martin entrance boundary of that GWP.
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1. Introduction and main results

The bisexual Galton-Watson process with promiscuous mating (Zn)n≥0, shortly called
promiscuous BGWP, is defined as follows: Consider a two sex population process (ZFn ,ZMn )n≥0

whose n-th generation consists of ZFn females and ZMn males. Females within one generation
reproduce according to an ordinary two-type Galton-Watson process (GWP) with product
reproduction law pF ⊗ pM as long as at least one male is alive. Plainly, pF = (pFj )j≥0 and
pM = (pMj )j≥0 describe the number of female, respectively male offspring. We are therefore
given

Zn def= ZFn 1(0,∞)(ZMn )

mating units in the n-th generation, the pertinent mating function being ζ(x, ·) = x1(0,∞).
The formal definition of (ZFn ,ZMn )n≥0 thus takes the form

(ZFn+1,ZMn+1) =
Zn∑
j=1

(ξn,j , ηn,j) (1.1)

with i.i.d. random vectors (ξn,j , ηn,j), n ≥ 0, j ≥ 1 with common distribution pF ⊗ pM .

Bisexual GWPs with various mating functions were introduced by Daley [6] and further
investigated in a series of papers [5],[7],[8],[9]. The present article is a continuation of [1]
where we compared in some detail the extinctive behavior of a promiscuous BGWP (Zn)n≥0

with that of its asexual counterpart, henceforth denoted by (Fn)n≥0. Let Pj be such that
Pj(Z0 = F0 = j) = 1 for each j ≥ 1 and define the extinction probability function

q(j) def= Pj(Zn = 0 for some n ≥ 0), j ∈ IN0,

pertaining to (Zn)n≥0. Plainly, the reproduction law of the ordinary GWP (Fn)n≥0 is pF , its
extinction probability function qj for some q ∈ [0, 1]. We are interested in the supercritical case
when q(j) < 1 for all j ≥ 1, a standing assumption hereafter. For the promiscuous BGWP
this is easily seen to be equivalent to pM0 < 1 and µ

def=
∑
j≥1 jpFj > 1. Hence (Fn)n≥0 is also

supercritical and its extinction probability q less than 1. A numerical study in [7] showed for
the case where pF and pM are Poisson with mean 1.2 that the extinction probability ratio

r(k) def=
q(k)
qk

, k ∈ IN,

apparently converges very rapidly to approximately 1.33. On the other hand, they had no
theoretical justification for this phenomenon and our analysis in [1] indeed showed that this
can neither be given shortly nor by easy arguments. Let P̂k = Pk(·|Fn → 0) with expectation
operator Êk and put κ

def= pM0 . By exploiting a functional equation for r(k), namely

r(k) =
(

κ

q

)k
+ (1− κk) Êkr(F1) (1.2)
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for each k ≥ 0, we were led in [1] to lower and upper bounds for r(k) depending on the model
parameters. Numerical studies for various sets of parameters further confirmed the observa-
tion of Daley et al. that r(k) rapidly stabilizes for increasing k if κ < q. However, based upon
arguments beyond the scope of that article, we conjectured that r(k) may actually not always
converge but oscillate very slowly, a ”near-constancy” phenomenon also encountered for the
so-called Harris function of certain supercritical ordinary GWP, see e.g. [4]. The main result
of the present article, Theorem 2.1, shows that this conjecture is correct. The proof is based
on potential theory for subcritical GWPs which is therefore shortly reviewed from [3] in the
Section 3.

Iterating equation (1.2) leads to the fundamental identity (see (3.12) in [1])

r(k) =
(

κ

q

)k
+ Êk

(
τ∑
j=1

(
κ

q

)Fj j−1∏
i=0

(
1− κFi

))
(1.3)

where τ denotes the extinction time of (Fn)n≥0. Note that, under P̂k, (Fn)n≥0 forms an
ordinary subcritical GWP with k ancestors, reproduction mean µ̂ = f ′(q), offspring distribution
p̂F = (qj−1pFj )j≥0 and offspring generating function f̂(s) = q−1f(sq), f the generating function
of pF , see [3, p. 37f]. Note that

P̂1(F1 > 1) =
∑
j≥2

qj−1pFj > 0 (1.4)

and that q < 1 clearly implies the (X log X)-condition for (Fn)n≥0 under the P̂k, i.e.

ÊkF1 log F1 < ∞. (1.5)

Our main concern hereafter will be the case 0 < κ < q where the near-constancy phe-
nomenon turns up, but we will also provide a result for the case κ = q (Theorem 2.2 below).
If κ > q, we already gave a satisfactory answer in [1], Corollary 3.2 which states that κ−kq(k)
converges to 1 at an exponential rate.

2. Main results

A look at identity (1.3) shows that its further investigation does no longer require to deal
with the original model of a promiscuous BGWP from which it came out. We may rather
adopt the viewpoint of dealing with a certain functional in two arguments, κ and q, of an
ordinary subcritical GWP. We will therefore simplify our previous notation and use the one
for Galton-Watson branching processes in [3] to which we will frequently refer. So from now
on let (Zn)n≥0 be a subcritical GWP with offspring distribution (pj)j≥0, offspring generating
function f(s) =

∑
j≥0 pjs

j , reproduction mean µ = f ′(1) < 1 and extinction time τ . Notice
that now f(q) 6= q. For each k ≥ 1, Pk shall denote the probability measure under which
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Z0 = k. If k = 1, we also write P instead of P1. We further assume (see also (1.4) and (1.5))

p1 > 0, p0 + p1 < 1 (2.1)

and the (X log X)-condition

EZ1 log Z1 < ∞. (2.2)

These conditions will in fact be needed in the course of our subsequent analysis. The first
condition together with p0 > 0 ensures that all states i ≥ 1 are communicating for (Zn)n≥0

and, as a consequence, that all quasi invariant measures (see Section 3) have positive mass at
each i ≥ 1.

The function r(k) = r(κ, q, k) now clearly takes the form

r(k) =
(

κ

q

)k
+ Ek

(
τ∑
j=1

(
κ

q

)Zj j−1∏
i=0

(
1− κZi

))
(2.3)

for k ∈ IN and 0 < κ ≤ q < 1. Since r(k) is also a functional of (Zτ−n)0≤n≤τ under Pk, its
asymptotic behavior, as k →∞, should be linked to the limit behavior of (Zτ−n)0≤n≤τ under
Pk. Unfortunately, there is not just one limiting distribution but infinitely many, essentially the
Martin entrance boundary of (Zn)n≥0. This comes out from potential theoretic considerations
for subcritical GWPs as described e.g. in [3]. A short review of the most important facts from
there will be given in the following section. Here we confine ourselves to a sketchy description
in order to formulate our results.

Let Qk be the distribution of the time reversal (Zτ−n)0≤n≤τ under Pk. Any probability
measure Q in the closure of {Qk, k ≥ 1} with respect to weak convergence defines a Markov
chain (Wn)n≥0 on IN0 with transition matrix (qij)i,j≥0, say, and corresponds uniquely to a
quasi invariant measure η = (ηi)i≥1 for (Zn)n≥0 (see Section 3) via the relation

qij =


0, if i = j = 0

ηjp
j
0, if i = 0, j ≥ 1,

ηipij
ηj

, if i, j ≥ 1
, (2.4)

where η is normalized such that
∑
j≥1 ηjp

j
0 = 1. In our setting, we are interested in sequences

kn, n ≥ 1, approaching∞ in such a way that r(kn) converges, as n→∞. It suffices to consider
sequences kn, n ≥ 1, such that Qkn converges weakly to some probability measure Q. We may
identify Q with a quasi invariant measure η via (2.4). As shown in [2], these are exactly the
extremal elements in the convex set of all quasi invariant measures (normalized as above), for
which the circle forms a natural parametrization. We thus identify the closure of {Qk, k ≥ 1}
with the set N

def= IN ∪ (−1, 0]. The Martin topology on N, rendering weak continuity of
x 7→ Qx, is isomorphic to the topology generated by the metric ρ defined in Section 3. Taking
these facts for granted, assertion (2.5) of Theorem 2.1 below should no longer be too surprising.
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Theorem 2.1. Suppose (2.1), (2.2) and 0 < κ < q. Then, for all x ∈ (−1, 0],

lim
k
ρ→x

r(k) = r(x) def= E

(∑
n≥0

(
κ

q

)Wn(x) ∏
i>n

(
1− κWi(x)

)∣∣∣∣∣W0(x) = 0

)
. (2.5)

where (Wn(x))n≥0 is a Markov chain on IN0 with distribution Qx. Moreover, for each q ∈ (0, 1),
there exist infinitely many κ ∈ (0, q) such that r is not a constant.

Theorem 2.2. Suppose (2.1), (2.2), κ = q, and put ak
def= Ekτ . Then

lim
k→∞

q(k)
akqk

= 1. (2.6)

3. Quasi invariant measures and time reversal

We begin with a review of some basic facts from potential theory for subcritical GWPs
as described in Athreya and Ney [3, Chapter II]. The notation is kept from there as far as
possible. So let (Zn)n≥0 be an ordinary subcritical GWP with reproduction distribution (pj)j≥0

and reproduction mean µ =
∑
j≥0 jpj < 1. Let f be the generating function of (pj)j≥0, i.e.

f(s) =
∑
j≥0 pjs

j and fn its n-fold iterate.

Denote by pij the transition probabilities of (Zn)n≥0. A σ-finite measure η = (ηj)j≥1 on
IN is called quasi invariant or quasi stationary for (Zn)n≥0 if

ηj =
∑
i≥1

ηipij

for all j ∈ IN . Notice that we exclude the absorbing state 0 in the summation. The generating
function U(s) =

∑
j≥1 ηjs

j of any such η is analytic for |s| < 1 and, if normalized so that
U(p0) = 1, satisfies the functional relation

1 + U(s) = U(f(s)).

Conversely, this relation characterizes quasi invariant measures [3, Theorem II.2]. Since all
states i ≥ 1 communicate and ηj =

∑
i≥1 ηip

(n)
ij for all n ≥ 1, we infer ηi > 0 for all i ≥ 1, as

already mentioned in Section 2.

In order to describe all quasi invariant measures for (Zn)n≥0, let [3, II.2, eq. (3)]

U(s, t) def=
∑
n∈Z

(
exp(Q(s)µn−t)− exp(Q(0)µn−t)

)
, |s| < 1, t ∈ (−1, 0].

Here

Q(s) def= lim
n→∞µ−n(fn(s)− 1), s ∈ [0, 1].
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Note that Q(f(s)) = µQ(s) [3], eq. (10) on p. 40] and Q(s) = Q(0)(1−B(s)) [3, eq. (30) on p.
47], where B is the generating function

B(s) def=
∑
j≥1

bjs
j , bj = lim

n→∞P (Zn = j|Zn > 0).

The following result is shown in [2].

Theorem 3.1. If EZ1 log Z1 < ∞, then the space of quasi invariant measures (up to
positive scalars) is isomorphic to the set of probability measures on the circle. The bijection
η ↔ ν can be stated as

Uη =
∫

(−1,0]

U(·, t) ν(dt) (3.1)

where Uη is the generating function of η.

Recall that N = IN ∪ (−1, 0]. Define the map ϕ : N→ C by

ϕ(x) def=


x

1 + x
e2πi logµ x, if x ∈ IN

e2πix, if x ∈ (−1, 0]

and then the metric ρ on N by

ρ(x, y) = |ϕ(x)− ϕ(y)|.

Notice that under this metric the closure of IN is (−1, 0] and that (−1, 0] is endowed with the
spherical topology. The latter is not true for the metric given in [3, p. 69]. An integer sequence
(kn)n≥1 converges in the ρ-metric iff (K(kn, ·))n≥1 converges pointwise on IN0, where

K(i, j) def=
G(i, j)∑

k≥1G(i, k)pk0

is the Martin kernel and

G(i, j) def=
∑
n≥0

p
(n)
ij

is the Green kernel. Every such sequence (kn)n≥0 with a ρ-limit t ∈ (−1, 0] will be called a
Martin sequence hereafter, and we write kn

ρ→ t (equivalent is ϕ(kn) → ϕ(t)). The closure of
{K(·, j), j ∈ IN} is isomorphic to (N, ρ). For such a Martin sequence we further have

lim
n→∞K(kn, j) = lim

n→∞G(kn, j) = ηj(t),

where η(t) = (ηj(t))j≥1 is the quasi invariant measure with generating function U(·, t), t ∈
(−1, 0] as defined above. For the first equality it should be noticed that∑

l≥1

G(kn, l)pl0 =
∑
m≥1

(fknm (p0)− fknm (0)) =
∑
m≥1

(fknm+1(0)− fknm (0)) = 1− fkn(0)



7

which converges to 1 as n→∞. Note also that η(t) is continuous in t, see [3, p. 69].

The time reversal (Wn(t))n≥0, say, of (Zn)n≥0 with respect to any quasi invariant measure
η(t) is a Markov chain with n-step transition matrix Qn(t) = (q(n)

ij (t))i,j≥0, n ≥ 1, where

q
(n)
ij (t) def=


0, if i = j = 0

ηj(t)Pj(τ = n), if i = 0, j ≥ 1

ηj(t)p
(n)
ji

ηi(t)
, if i, j ≥ 1

. (3.2)

The associated Green function is denoted H(i, j, t) =
∑
n≥0 q

(n)
ij (t) and satisfies H(0, 0, t) = 1,

H(0, j, t) = ηj(t) for j ≥ 1 and H(i, j, t) = ηj(t)G(j, i)/ηi(t), otherwise.

Lemma 3.2. For any i1, ..., im ∈ IN und m ∈ IN , the function fi1,...,im : IN ∪ (−1, 0]→
[0, 1],

fi1,...,im(t) def=

{
Pt(Zτ−m = im, ..., Zτ−1 = i1, Zτ = 0), if t ∈ IN

P (W1(t) = i1, ..., Wm(t) = im|W0(t) = 0), if t ∈ (−1, 0]

is continuous in the ρ-metric.

Proof. Let first IN 3 kn
ρ→ t ∈ (−1, 0] be a Martin sequence. Then, as n→∞,

fi1,...,im(kn) = Pkn(Zτ−m = im, ..., Zτ−1 = i1, Zτ = 0)

=
∑
l≥0

Pkn(Zl = im)pimim−1 · ... · pi10

= G(kn, im)
1

ηim(t)
qim−1im(t) · ... · q0i1(t)

→ qim−1im(t) · ... · q0i1(t)

= fi1,...,im(t).

For a sequence (−1, 0] 3 tn
ρ→ t ∈ (−1, 0], the assertion follows from the continuity of the ηj(t)

in t.

Notice that Lemma 3.2 states in particular that for every Martin sequence kn
ρ→ t,

lim
n→∞Pkn(Zτ−m = im, ..., Zτ−1 = i1, Zτ = 0) = P (W1(t) = i1, ..., Wm(t) = im|W0(t) = 0)

for all i1, ..., im ∈ IN und m ∈ IN which explains the meaning of (Wn(t))n≥0 as a time reversal
of (Zn)n≥0.
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4. Proof of Theorem 2.1

Let R : N× [0, 1)× [0, 1)→ [0,∞] be the function defined through

R(x, u, v) =


Ex

(
τ∑
n=0

uZn
n−1∏
i=0

(1− vZi)

)
, if x ∈ IN

E

∑
n≥0

uWn(x)
∏
i>n

(1− vWi(x))
∣∣∣∣W0(x) = 0

 , if x ∈ (−1, 0]

.

The important fact we will prove in this section is

Proposition 4.1. The function R is finite and continuous in the product topology
induced by (N, ρ)⊗ ([0, 1)2,Euclidean).

The proof of this result is provided through a series of lemmata. Fix N ∈ IN and define

RN (x, u, v) =


Ex

(
τ∑

n=τ−N
uZn

n−1∏
i=τ−N

(1− vZi)

)
, if x ∈ IN

E

(
N∑
n=0

uWn(x)
N∏

i=n+1

(1− vWi(x))
∣∣∣∣W0(x) = 0

)
, if x ∈ (−1, 0]

.

Our program is to show first that RN is continuous for each N (Lemma 4.2) and then in
several steps that R − RN converges to 0 uniformly on compact sets (Lemma 4.3–5). This
clearly implies the asserted continuity of R.

Lemma 4.2. For each N ∈ IN , the function RN is continuous in the product topology
induced by (N, ρ)⊗ ([0, 1)2,Euclidean).

Proof. Fix N ∈ IN , take a sequence (xn, un, vn) convergent to (x, u, v) and write

|RN (xn, un, vn)−RN (x, u, v)| ≤ |RN (xn, un, vn)−RN (xn, u, v)| + |RN (xn, u, v)−RN (x, u, v)|.

The second expression on the right-hand side tends to 0 by an application of Lemma 3.1
because RN (·, u, v) is the expectation of a bounded function w.r.t. the weakly convergent
discrete probability distributions Px((Zτ−N , ..., Zτ ) ∈ ·). As for the first, it is easy to show
uniform convergence in xn. Indeed, if |u′ − u| < ε and |v − v′| < ε, then

|RN (x, u′, v′)−RN (x, u, v)|

≤ Ex

(
τ∑

n=τ−N
(u + ε)Zn

n−1∏
i=τ−N

(1− (v − ε)Zi)− (u− ε)Zn
n−1∏

i=τ−N
(1− (v + ε)Zi)

)
= Ex∆ε,u,v(Zτ−N , ..., Zτ )
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where ∆ε,u,v is a bounded function defined in the obvious manner. Notice that ∆ε,u,v ↓ 0 as
ε ↓ 0. Hence, by another appeal to Lemma 3.1 and the monotone convergence theorem,

lim
n→∞|RN (xn, un, vn)−RN (xn, u, v)|

≤ lim
ε↓0

lim
n→∞Exn∆ε,u,v(Zτ−N , ..., Zτ )

= lim
ε↓0

E(∆ε,u,v(WN (x), ..., W0(x))|W0(x) = 0) = 0.

In order to show uniform compact convergence of RN to R, as N →∞, we first observe
that for k ∈ IN

|R(k, u, v)−RN (k, u, v)| ≤ Ek

(
τ−N−1∑
n=0

uZn
n−1∏
i=0

(1− vZi)

)

+ Ek

(
τ∑

n=τ−N
uZn

n−1∏
i=τ−N

(1− vZi)
(

1−
τ−N−1∏
i=0

(1− vZi)
))

≤ Ek

(
τ−N−1∑
n=0

uZn

)
+ N Ek

(
1−

τ−N−1∏
i=0

(1− vZi)

)

≤ N Ek

(
τ−N−1∑
n=0

(
uZn + vZn

))

≤ 2N Ek

(
τ−N−1∑
n=0

(u ∨ v)Zn
)

(4.1)

where

1−
n∏
i=0

(1− ci) ≤
n∑
i=0

ci (4.2)

for c0, ..., cn ∈ [0, 1] has been used for the penultimate inequality. In view of the subsequent
estimations we note that (4.2) remains true if n =∞. For x ∈ (−1, 0], we further have

|R(x, u, v)−RN (x, u, v)|

≤
∑
n>N

E

(
uWn(x)

∏
i>n

(1− vWi(x))
∣∣∣∣W0(x) = 0

)

+
N∑
n=0

E

uWn(x)
N∏

i=n+1

(1− vWi(x))

1−
∏
j>N

(1− vWj(x))

∣∣∣∣W0(x) = 0

 (4.3)

≤
∑
n>N

E
(
uWn(x)|W0(x) = 0

)
+ N E

(
1−

∏
j>N

(1− vWj(x))
∣∣∣∣W0(x) = 0

)

≤ 2N
∑
n>N

E
(
(u ∨ v)Wn(x)

∣∣∣W0(x) = 0
)
.

Since that latter inequality is easier to handle we first show
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Lemma 4.3. For all y, w < 1,

lim
N→∞

sup
x≤y;u,v≤w

|R(x, u, v)−RN (x, u, v)| = 0.

Proof. Recalling from (3.2) the definition of q
(n)
0i , we obtain

N
∑
n>N

E
(
(u ∨ v)Wn(x)

∣∣∣W0(x) = 0
)

≤ N
∑
n>N

E(wWn(x)|W0(x) = 0)

= N
∑
n>N

∑
i≥1

wiq
(n)
0i

= N
∑
n>N

∑
i≥1

wiηi(x)Pi(τ = n)

= N
∑
i≥1

wiηi(x)Pi(τ > N)

= N
∑
i≥1

wiηi(x)Pi(ZN > 0)

= N
∑
i≥1

wiηi(x)(1− f iN (0))

= N
(
U(w, x)− U(wfN (0), x)

)
≤ C(w, y)Nw(1− fN (0)),

where C(w, y) def= maxx≤y;u≤w DuU(u, x) < ∞ as one can easily check. The assertion now
follows because N(1− fN (0))→ 0 as N →∞, see [3, Section I.11].

In order to further exploit (4.1) for our purposes, we have to consider the functions

gN (k, u) def= Ek

(
τ−N−1∑
n=0

uZn

)
,

h(k, u) def=
∑
n≥0

Eku
Zn1{Zn>0} =

∑
n≥0

(
fkn(u)− fkn(0)

)
,

k, N ∈ IN , u ∈ [0, 1), which are related as follows:

gN (k, u) = Ek

(∑
n≥0

uZn1{τ>n+N}

)
=
∑
n≥0

Eku
Zn1{Zn+N>0}

=
∑
n≥0

Eku
ZnPZn(ZN > 0)
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=
∑
n≥0

Eku
Zn(1− fZnN (0))

=
∑
n≥0

(
fkn(u)− fkn(ufN (0))

)
= h(k, u)− h(k, ufN (0)). (4.4)

Lemma 4.4. The function h satisfies

sup
k∈IN

h(k, u) ≤ m(u) (4.5)

for each u < 1, where m(u) def= inf{n ≥ 1 : fn(0) ≥ u}. Furthermore,

sup
k≥1;u,v≤w

|h(k, u)− h(k, v)| < m(w + ε)

(
2
(

w

w + ε

)N
+
|u− v|

w
N

)
(4.6)

for all ε > 0, 0 < w < 1− ε and N ∈ IN .

Proof. By using 0 ≤ ∑n≥0(1 − fkn(u)) < ∞ for all k ∈ IN and u < 1 we obtain with
m = m(u)

h(k, u) =
∑
n≥0

(
fkn(u)− 1

)
−
∑
n≥m

(
fkn−m(fm(0))− 1

)
−

m−1∑
n=0

(
fkn(0)− 1

)

=
∑
n≥0

(
fkn(u)− fkn(fm(0))

)
+

m−1∑
n=0

(
1− fkn(0)

)
≤ m

because the first sum in the previous line is negative.

In order to prove (4.6), we note first that

h(k, u) =
∑
n≥0

Eku
Zn1{Zn>0}

=
∑
i≥1

ui
∑
n≥0

Pk(Zn = i) =
∑
i≥1

uiG(k, i).

Define hN (k, u) def=
∑N
i=1 uiG(k, i) and choose an arbitrary ε > 0, w.l.o.g. < 1− w. Then, for

all k ∈ IN and u ≤ w

h(k, u)− hN (k, u) =
∑
i>N

uiG(k, i)

≤
(

u

w + ε

)N ∑
i>N

(w + ε)iG(k, i)

=
(

u

w + ε

)N
h(k, w + ε) ≤

(
w

w + ε

)N
m(w + ε),

(4.7)
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where (4.5) has been used for the final inequality. Moreover, for all u, v ≤ w and N ≥ 1,

|hN (k, u)− hN (k, v)| = |u− v|
N∑
i=1

(
ui − vi

u− v

)
G(k, i)

= |u− v|
N∑
i=1

i−1∑
j=0

ujvi−1−jG(k, i)

≤ |u− v|
w

N∑
i=1

iwi−1G(k, i) ≤ |u− v|
w

Nm(w),

(4.8)

the last inequality again by (4.5). By combining (4.7) and (4.8) with a simple application of
the triangle inequality, we finally obtain (4.6)

Going back into (4.1), we are now ready to prove

Lemma 4.5. For all w < 1,

lim
N→∞

sup
k≥1;u,v≤w

|R(k, u, v)−RN (k, u, v)| = 0.

Proof. Indeed, we infer with the help of (4.1), (4.4) and the previous lemma

lim sup
N→∞

sup
k≥1;u,v≤w

|R(k, u, v)−RN (k, u, v)|

≤ 2 lim sup
N→∞

N sup
k≥1;u,v≤w

|h(k, u ∨ v)− h(k, (u ∨ v)fN (0))|

≤ 2m(w + ε) lim sup
N→∞

(
2N

(
w

w + ε

)N
+

(u ∨ v)(1− fN (0))
w

N2

)
= 0

recalling that 1− fN (0) converges to 0 exponentially fast [3, I.11].

Proof of Proposition 4.1. A combination of Lemma 4.3 and 4.5 clearly yields uniform
compact convergence of the RN to R. Since the RN are further continuous by Lemma 4.2, we
conclude the continuity of R as claimed.

In view of the main assertion of Theorem 2.1, namely the nonconstancy of the extinction
probability ratio r(x) for suitable pairs (κ, q), two further lemmata are needed.

Lemma 4.6. The function η1(t), t ∈ (−1, 0], is not a constant.

Proof. Note first that

η1(t) = DsU(s, t)|s=0 = Q′(0)
∑
n∈Z

µn−t exp
(
Q(0)µn−t

)
.
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Since our assumptions in Section 2 guarantee η1 to be everywhere positive, we particularly
have Q′(0) > 0. We make the change of variables x = µ−t, i.e. t = − logµ x. Defining

Ψ(x, y) def=
∑
n∈Z

(
exyµ

n − eyµ
n
)
, y < 0 < x,

we obviously have
DxΨ(x, y) =

∑
n∈Z

yµnexyµ
n

and therefore
η1(− logµ x) =

Q′(0)
Q(0)

xDxΨ(x, Q(0)).

Now suppose η1 be constant and infer

DxΨ(x, Q(0)) =
c

x

for all x ∈ [1, 1/µ) and some constant c < 0. The equality extends to all x > 0 because both
sides are evidently analytic functions on the half plane of complex numbers with positive real
part. Integration together with Ψ(1, ·) ≡ 0 then implies

Ψ(x, Q(0)) =
∫ x

1

DzΨ(z, Q(0)) dz = c log x (4.9)

for all x > 0. Next, the functional equation

Ψ(x, y) = Ψ
(

xy

z
, z

)
+ Ψ

(
z

y
, y

)
for all y, z < 0 < x together with (4.9) leads to

Ψ(x, y) = Ψ
(

xy

Q(0)
, Q(0)

)
+ Ψ

(
Q(0)

y
, y

)
= c log

(
xy

Q(0)

)
+ Ψ

(
Q(0)

y
, y

)
for all y < 0 < x. For x = 1, we get

Ψ
(

Q(0)
y

, y

)
= c log

(
Q(0)

y

)
and thereby

Ψ(x, y) = c log x

for all y < 0 < x. Rewriting this result for U(s, t), we find that

U(s, t) = Ψ
(

Q(s)
Q(0)

, µ−tQ(0)
)

= c log
(

Q(s)
Q(0)

)
,

which is impossible because the U(·, t) are pairwise distinct by Theorem 3.1.

Lemma 4.7. Given any q ∈ (0, 1), the function R(·, u/q, u) is not constant for all
sufficiently small u ∈ (0, q).
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Proof. R(x, u/q, u) is analytic in u and R(·, 0, 0) ≡ 1. Writing

R(x, u/q, u) = E

(∏
i≥1

(1− uWi(x))
∣∣∣∣W0(x) = 0

)

+
u

q
E

(∑
n≥1

(
u

q

)Wn(x)−1 ∏
i>n

(1− uWi(x))
∣∣∣∣W0(x) = 0

)

and noting that Wn(x) ≥ 1 for all x ∈ (−1, 0] and n ≥ 1, it is easily verified that

DuR(x, u/q, u)|u=0 =
1− q

q
η1(x).

Since η1(x) is not constant in x, the same holds true for DuR(x, u/q, u) at u = 0. Consequently,
picking two distinct values x1, x2 ∈ (−1, 0] with DuR(x1, u/q, u)|u=0 6= DuR(x2, u/q, u)|u=0,
we must also have R(x1, u/q, u) 6= R(x2, u/q, u) for all sufficiently small u ∈ (0, q) (using
R(x1, 0, 0) = R(x2, 0, 0) and the continuity of DuR(x, u/q, u) in u). This proves the lemma.

Proof of Theorem 2.1. Suppose 0 < κ < q. Since r(k) = (κ/q)k + R(k, κ/q, κ) for
k ∈ IN (see (2.3)) and r(x) = R(x, κ/q, κ) for x ∈ (−1, 0], assertion (2.5) follows directly from
Proposition 4.1. Moreover, we infer from the previous lemma that r is not a constant for
infinitely many, in fact all sufficiently small κ ∈ (0, q). We have thus proved the theorem.

5. Proof of Theorem 2.2

We begin with an auxiliary lemma which gives an asymptotic estimate of the expected
extinction time ak = Ekτ as k →∞.

Lemma 5.1. Let (Zn)n≥0 be a subcritical GWP with reproduction mean µ > 0 and
EZ1 log Z1 <∞. Then

lim
k→∞

ak
log1/µ k

= 1.

Proof. Recall from [3, I.11] that fn(0) = 1 − cnµ
n with positive constants cn ∈ [0, 1]

converging to some c > 0. It is the positivity of c where the (X log X)-condition enters. Since
Pk(τ > n) = Pk(Zn > 0) = 1− fkn(0), we infer

ak
log1/µ k

=
1

log1/µ k

∑
n≥0

Pk(τ > n) =
1

log1/µ k

∑
n≥0

(
1− fkn(0)

)
=

1
log1/µ k

∑
n≥0

(
1− (1− cnµ

n)k
)

Fix any ε ∈ (0, 1), put n∗ = n∗(ε, k) def= (1 − ε) log1/µ k, n∗ = n∗(ε, k) def= (1 + ε) log1/µ k and
split up the sum into three parts S1(k), S2(k), S3(k) ranging from 0 to n∗−1, from n∗ to n∗−1,
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and from n∗ to ∞, respectively. Note that µn∗ = k−(1−ε) and µn
∗

= k−(1+ε). The three sums
will be considered separately.

Choose m such that infn≥m cn ≥ c/2. Then we have for S1(k)(
1− ε− m

log1/µ k

)(
1− (1− cµm/2)k

)
≤ 1

log1/µ k

n∗−1∑
n=m

(
1− (1− cµn/2)k

)
≤ S1(k)

≤ 1
log1/µ k

n∗−1∑
n=0

(
1− (1− µn)k

)
≤ (1− ε)

(
1− (1− µn∗)k

)
= (1− ε)

(
1− (1− k−(1−ε))k

)
≤ (1− ε)

(
1− exp(−2kε)

)
,

where the last inequality holds for sufficiently large k using log(1− x) ≥ −2x for all positive x

sufficiently close to 0. Consequently,

lim
k→∞

S1(k) = 1− ε.

For S2(k) we just note 0 ≤ S2(k) ≤ 2ε. Finally, we obtain for S3(k), if k is sufficiently large,

0 ≤ S3(k) ≤ 1
log1/µ k

∑
n≥0

(
1− (1− µn

∗+n)k
)

=
1

log1/µ k

∑
n≥0

(
1− (1− k−(1+ε)µn)k

)
≤ 1

log1/µ k

∑
n≥0

(
1− exp(−2k−εµn)

)
≤ 2

kε log1/µ k

∑
n≥0

µn

where 1− e−x ≤ x for all x has been used for the final inequality. Hence

lim
k→∞

S3(k) = 0.

Putting the results together the assertion of the lemma easily follows because ε ∈ (0, 1) was
arbitrary.

Proof of Theorem 2.2. We first note that

q(k)
akqk

=
r(k)
ak

=
1
ak

(
1 + Ek

(
τ∑
j=1

j−1∏
i=0

(
1− qZi

)))
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because κ = q. We thus have to show

lim
k→∞

1
ak

Ek

(
τ∑
j=1

(
1−

j−1∏
i=0

(
1− qZi

)))
= 0.

Fix an arbitrary ε ∈ (0, 1), put N(k) def= bεakc and split up the sum under the expectation
into the sum from 1 to τ −N(k)− 1 (of course, equal to 0 if τ −N(k) ≤ 0) and the sum from
τ −N(k) to τ . As for the latter, we immediately have

0 ≤ lim sup
k→∞

1
ak

Ek

(
τ∑

j=τ−N(k)

(
1−

j−1∏
i=0

(
1− qZi

)))
≤ lim

k→∞
N(k) + 1

ak
= ε.

Turning to the first sum, we use once more the inequality 1 −∏n
i=0(1 − xi) ≤

∑n
i=0 xi for

numbers x1, ..., xn ∈ [0, 1] and obtain

1
ak

Ek

(
τ−N(k)−1∑

j=1

(
1−

j−1∏
i=0

(
1− qZi

)))

≤ 1
ak

Ek

(
τ−N(k)−1∑

j=1

j−1∑
i=0

qZi

)

≤ 1
ak

Ek

(∑
j≥1

j−1∑
i=0

qZi1{Zj+N(k)>0}

)

=
1
ak

∑
i≥0

∑
j>i

Ek

(
qZiPZi(Zj−i+N(k) > 0)

)
=

1
ak

∑
i≥0

∑
j>N(k)

Ek

(
qZi(1− fZij (0))

)
=

1
ak

∑
i≥0

∑
j>N(k)

(
fki (q)− fki (qfj(0))

)
.

Now a first order Taylor expansion of fki (qfj(0)) about q together with the monotonicity of fi

and f ′i gives for some zij between qfj(0) and q

fki (qfj(0)) = fki (q)− kqfk−1
i (zij)f ′i(zij)(1− fj(0))

≥ fki (q)− kqfk−1
i (q)f ′i(1)(1− fj(0)).

Hence the above estimation can be continued as

≤ kq

ak

(∑
i≥0

fk−1
i (0)f ′i(1)

)( ∑
j>N(k)

(1− fj(0))

)

≤ kq

ak

(∑
i≥0

fk−1
i (q)µi

)( ∑
j>N(k)

2cµj

)
. (5.1)
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Now the second sum in (5.1) is clearly bounded by a constant times µε log1/µ k = k−ε for all k

(since N(k) = bεakc ' ε log1/µ k by Lemma 5.1), while the first can be bounded by a constant
times k−(1−ε) for sufficiently large k. To see the latter, split up the first sum asb(1−ε) log1/µ kc∑

i=0

+
∑

i>b(1−ε) log1/µ kc

 fk−1
i (q)µi.

Observe that ∑
i>b(1−ε) log1/µ kc

fk−1
i (q)µi ≤ µ(1−ε) log1/µ k

1− µ
=

k−(1−ε)

1− µ
.

Since, for all i0 ≤ i ≤ (1− ε) log1/µ k, i0 sufficiently large (independent of k), all k sufficiently
large and some Q(q) ∈ (−1, 0), see [3, I.11],

fk−1
i (q) ≤ (1 + Q(q)µi/2)k−1

≤ (1 + Q(q)µ(1−ε) log1/µ k/2)k−1 ≤ exp((k − 1)εQ(q)/2),

we further have

b(1−ε) log1/µ kc∑
i=0

fk−1
i (q)µi ≤ i0f

k−1
i0

(q) + (1− ε) log1/µ k exp((k − 1)εQ(q)/2)

for all k sufficiently large.
Putting the pieces together, we finally conclude in (5.1)

kq

ak

(∑
i≥0

fk−1
i (q)µi

)( ∑
j>N(k)

2cµj

)
≤ const

ak

which converges to 0 as k →∞.
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