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We consider the supercritical bisexual Galton-Watson process (BGWP)
with promiscuous mating, that is a branching process which behaves
like an ordinary supercritical Galton-Watson process (GWP) as long as
at least one male is born in each generation. For a certain example, it
was pointed out by Daley et al. [7] that the extinction probability of
such a BGWP apparently behaves like a constant times the respective
probability of its asexual counterpart (where males do not matter) if
the number of ancestors grows to infinity. In an earlier paper [1] we
provided general upper and lower bounds for the ratio between both
extinction probabilities and also numerical results that seemed to confirm
the convergence of that ratio. However, theoretical considerations rather
led us to the conjecture that this does not generally hold. The present
article turns this conjecture into a rigorous result. The key step in
our analysis is to identify the extinction probability ratio as a certain
functional of a subcritical ordinary GWP and to prove its continuity as
a function of the number of ancestors in a suitable topology associated
with the Martin entrance boundary of that GWP.
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1. INTRODUCTION AND MAIN RESULTS

The bisezual Galton-Watson process with promiscuous mating (Z,)n>0, shortly called
promiscuous BGWP, is defined as follows: Consider a two sex population process (21", ZM), >
whose n-th generation consists of Z!” females and ZM males. Females within one generation
reproduce according to an ordinary two-type Galton-Watson process (GWP) with product
reproduction law p™ ® pM as long as at least one male is alive. Plainly, p¥ = (pf )j>o0 and
pM = (pj‘/" )j>0 describe the number of female, respectively male offspring. We are therefore
given

def
Z, Z 1o, oo)(Z )

mating units in the n-th generation, the pertinent mating function being ((z,-) = 219 o0)-
The formal definition of (ZF, ZM), < thus takes the form

Zn

(Zn—|—17 Z 5n,]7nn,j (11)

=1

<.

with i.i.d. random vectors (&, ;,7n.;),n > 0,7 > 1 with common distribution p? @ p™

Bisexual GWPs with various mating functions were introduced by Daley [6] and further
investigated in a series of papers [5],[7],[8],]9]. The present article is a continuation of [1]
where we compared in some detail the extinctive behavior of a promiscuous BGWP (Z,,),>0
with that of its asexual counterpart, henceforth denoted by (F),)n>0. Let P; be such that
P;(Zy = Fy = j) =1 for each j > 1 and define the extinction probability function

def P;(Z, =0 for some n >0), je& Ny,

q(j)
pertaining to (Z,),>0. Plainly, the reproduction law of the ordinary GWP (F,),>0 is p¥
extinction probability function ¢’ for some q € [0, 1]. We are interested in the supercritical case
when q(j) < 1 for all j > 1, a standing assumption hereafter. For the promiscuous BGWP
this is easily seen to be equivalent to p! < 1 and p o ng1jij > 1. Hence (F},)n>0 is also
supercritical and its extinction probability ¢ less than 1. A numerical study in [7] showed for

the case where pf" and pM are Poisson with mean 1.2 that the extinction probability ratio

apparently converges very rapidly to approximately 1.33. On the other hand, they had no
theoretical justification for this phenomenon and our analysis in [1] indeed showed that this
can neither be given shortly nor by easy arguments. Let P, = Py (-|F, — 0) with expectation

operator E), and put K def pd!. By exploiting a functional equation for r(k), namely

k
r(k) = (g) + (1= kK" Epr(Fy) (1.2)
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for each k > 0, we were led in [1] to lower and upper bounds for r(k) depending on the model
parameters. Numerical studies for various sets of parameters further confirmed the observa-
tion of Daley et al. that (k) rapidly stabilizes for increasing k if k < q. However, based upon
arguments beyond the scope of that article, we conjectured that r(k) may actually not always
converge but oscillate very slowly, a ”"near-constancy” phenomenon also encountered for the
so-called Harris function of certain supercritical ordinary GWP, see e.g. [4]. The main result
of the present article, Theorem 2.1, shows that this conjecture is correct. The proof is based
on potential theory for subcritical GWPs which is therefore shortly reviewed from [3] in the
Section 3.

Iterating equation (1.2) leads to the fundamental identity (see (3.12) in [1])

r(k) = (g)k + E,C(z;(g)F:H:@—KF)) (1.3)

where 7 denotes the extinction time of (F},),>o. Note that, under Py, (Fy)n>o0 forms an
ordinary subcritical GWP with k ancestors, reproduction mean i = f’(q), offspring distribution
pf = (¢ _1pf )j>0 and offspring generating function f (s) = ¢ 1 f(sq), f the generating function
of pt', see [3, p. 37f]. Note that

PR >1) =Y ¢7'pf >0 (1.4)
Jjz2

and that ¢ < 1 clearly implies the (X log X)-condition for (F},),>o under the Py, i.e.
E FilogFy < . (1.5)

Our main concern hereafter will be the case 0 < k < ¢ where the near-constancy phe-
nomenon turns up, but we will also provide a result for the case k = ¢ (Theorem 2.2 below).
If k > g, we already gave a satisfactory answer in [1], Corollary 3.2 which states that k= *q(k)

converges to 1 at an exponential rate.

2. MAIN RESULTS

A look at identity (1.3) shows that its further investigation does no longer require to deal
with the original model of a promiscuous BGWP from which it came out. We may rather
adopt the viewpoint of dealing with a certain functional in two arguments, x and ¢, of an
ordinary subcritical GWP. We will therefore simplify our previous notation and use the one
for Galton-Watson branching processes in [3] to which we will frequently refer. So from now
on let (Z,,)n>0 be a subcritical GWP with offspring distribution (p;);>0, offspring generating
function f(s) = ijopjsj, reproduction mean p = f’(1) < 1 and extinction time 7. Notice
that now f(q) # ¢q. For each k > 1, P} shall denote the probability measure under which
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Zy=k. If k=1, we also write P instead of P;. We further assume (see also (1.4) and (1.5))

p1 >0, po+p1 <l (2.1)

and the (X log X)-condition
EZylogZ, < oc. (2.2)

These conditions will in fact be needed in the course of our subsequent analysis. The first
condition together with py > 0 ensures that all states ¢ > 1 are communicating for (Z,,),>0
and, as a consequence, that all quasi invariant measures (see Section 3) have positive mass at

each 7 > 1.

The function r(k) = r(k, q, k) now clearly takes the form

r(k) = (g)k + Ek<§i:(g)2%ff(l——ﬁz)> (2.3)

j=1 i=0

for k € IN and 0 < Kk < ¢ < 1. Since r(k) is also a functional of (Z,_,)o<n<- under Py, its
asymptotic behavior, as k — oo, should be linked to the limit behavior of (Z;_,,)o<n<- under
Pyr. Unfortunately, there is not just one limiting distribution but infinitely many, essentially the
Martin entrance boundary of (Z,,),>0. This comes out from potential theoretic considerations
for subcritical GWPs as described e.g. in [3]. A short review of the most important facts from
there will be given in the following section. Here we confine ourselves to a sketchy description
in order to formulate our results.

Let @y be the distribution of the time reversal (Z._, )o<n<, under P;. Any probability
measure @ in the closure of {Q,k > 1} with respect to weak convergence defines a Markov
chain (W),),>0 on INy with transition matrix (g;;): j>0, say, and corresponds uniquely to a

quasi invariant measure 1 = (1;);>1 for (Z,)n>0 (see Section 3) via the relation

0, ifi=3j=0
G = ﬁjyf?, ifi=0,j=>1, (2.4)
DiPig ip g >
n;

where 7 is normalized such that > i>1 njpé = 1. In our setting, we are interested in sequences
kn,n > 1, approaching co in such a way that r(k,,) converges, as n — oo. It suffices to consider
sequences k,,n > 1, such that Q)i converges weakly to some probability measure ). We may
identify @ with a quasi invariant measure 7 via (2.4). As shown in [2], these are exactly the
extremal elements in the convex set of all quasi invariant measures (normalized as above), for
which the circle forms a natural parametrization. We thus identify the closure of {Q,k > 1}
with the set 90 < IV U (—=1,0]. The Martin topology on I, rendering weak continuity of
x +— @, is isomorphic to the topology generated by the metric p defined in Section 3. Taking

these facts for granted, assertion (2.5) of Theorem 2.1 below should no longer be too surprising.
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THEOREM 2.1.  Suppose (2.1), (2.2) and 0 < k < q. Then, for all z € (—1,0],

lim (k) = r(z) E(Z (g)wn(m) T (1 )

P
k=z n>0 i>n

Wo(z) = 0). (2.5)

where (W, (x))n>0 s a Markov chain on INy with distribution Q. Moreover, for each q € (0,1),

there exist infinitely many k € (0,q) such that T is not a constant.

THEOREM 2.2. Suppose (2.1), (2.2), k = q, and put ay, def EyT. Then

. q(k)
lim = 1. 2.6
el arqk (2:6)

3. QUASI INVARIANT MEASURES AND TIME REVERSAL

We begin with a review of some basic facts from potential theory for subcritical GWPs
as described in Athreya and Ney [3, Chapter II]. The notation is kept from there as far as
possible. Solet (Z,,),>0 be an ordinary subcritical GWP with reproduction distribution (p;);>0
and reproduction mean p = ijo jp; < 1. Let f be the generating function of (p;);>o, i.e.
f(s)=2_,50p;s’ and f, its n-fold iterate.

Denote by p;; the transition probabilities of (Z,)n>0. A o-finite measure n = (1;);>1 on

IN is called quasi invariant or quasi stationary for (Z,)n>0 if

n = Z 1iDij
i>1
for all j € IN. Notice that we exclude the absorbing state 0 in the summation. The generating

function U(s) = 35, n;s’ of any such 7 is analytic for |s| < 1 and, if normalized so that

U(po) = 1, satisfies the functional relation
1+U(s) = U(f(s)).

Conversely, this relation characterizes quasi invariant measures [3, Theorem II.2]. Since all
states ¢ > 1 communicate and n; = > .o, m-pz(-?) for all n > 1, we infer n; > 0 for all ¢ > 1, as
already mentioned in Section 2.

In order to describe all quasi invariant measures for (Z,),>0, let [3, 1.2, eq. (3)]
def n— n—
U(s, ) 3 (exp(@)n™™") — exp(@O)a" ), |s| < 1t € (—1,0].
nes
Here

Q(s) € lim p(fuls) = 1), se[0,1].

n—oo
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Note that Q(f(s)) = pQ(s) [3], eq. (10) on p. 40] and Q(s) = Q(0)(1 — B(s)) [3, eq. (30) on p.
47], where B is the generating function

B(s) € Y b, b, = lim P(Z, = j|Z, > 0).

= n— o0
The following result is shown in [2].

THEOREM 3.1. If EZylog Z; < oo, then the space of quasi invariant measures (up to
positive scalars) is isomorphic to the set of probability measures on the circle. The bijection

1 <> v can be stated as
U, = / U(-,t) v(dt) (3.1)
(_170]

where U, is the generating function of 7.

Recall that 91 = IN U (—1,0]. Define the map ¢ : 91 — C by

Xz

27ilog,, x :
—e w® o ifx e N
sp(x) d:ef 1+

2™ if 2 € (—1,0]

and then the metric p on 9 by

p(x,y) = [o() —p(y)l.

Notice that under this metric the closure of IV is (—1,0] and that (—1, 0] is endowed with the
spherical topology. The latter is not true for the metric given in [3, p. 69]. An integer sequence

(kn)n>1 converges in the p-metric iff (K(k,,-)),>1 converges pointwise on INy, where

def G(i,7)

K.g) 2@1 G(i, k)plg

is the Martin kernel and
. . def n
n>0
is the Green kernel. Every such sequence (ky),>0 with a p-limit ¢t € (—1,0] will be called a
Martin sequence hereafter, and we write k,, 2 ¢ (equivalent is ¢(k,) — ¢(t)). The closure of
{K(-,4),j € IN} is isomorphic to (M, p). For such a Martin sequence we further have
lim K(kn,j) = lm G(kn,j) = n;(t),

n—oo

where 1(t) = (n;(t));j>1 is the quasi invariant measure with generating function U(-,t), t €
(—1,0] as defined above. For the first equality it should be noticed that

> Glkn,Dph = > (fhr(po) = fEr(0) = > (frn,(0) = fhr(0)) = 1— f*(0)

1>1 m>1 m>1
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which converges to 1 as n — oo. Note also that () is continuous in t, see [3, p. 69].

The time reversal (W,,(t))n>0, say, of (Z,)n>0 with respect to any quasi invariant measure

n(t) is a Markov chain with n-step transition matrix Q™ (t) = (qi(;-l) (t))i,j>0, n > 1, where

0, ifi=j=0
n det | mi(t)Pj(t=mn), ifi=0,j>1
gy LM a()(n) . (3.2)
AT
AN 1 ifi,j>1
1i(t)

The associated Green function is denoted H (i, j,t) = >, > qgl) (t) and satisfies H(0,0,t) =1,
H(0,5,t) =n;(t) for j > 1 and H(i,5,t) = n;(t)G(j,i)/ni(t), otherwise.

LEMMA 3.2.  For any iy, ...,im € IN und m € IN, the function f;, . ; :+INU(—1,0] —
[0, 1],

def Pt(ZT—m:iTTL?"'?Z’T—l :i17ZT:O)7 thew

18 continuous in the p-metric.

PROOF. Let first N >k, &t e (—1,0] be a Martin sequence. Then, as n — oo,

fil,l..,im (kn) - Pkn (Zr—m = ima ceey ZT—l = 2'1, ZT = 0)

= ZPkH<Zl = Gy )Dipim_1 " Dir0
1>0

- G(kn,mﬁqim_w () - qon (1)
= Qi rin (1) * e - o4, (1)
= fir..in ().

For a sequence (—1,0] 3 ¢, Lte (—1,0], the assertion follows from the continuity of the n;(¢)

in t.

Notice that Lemma 3.2 states in particular that for every Martin sequence k,, LN t,

lim Pkn(Z'r—m = im, "'7ZT—1 = il,ZT = 0) = P(W1<t) = il, ,Wm(t) = Zm‘Wo(t) = 0)

n—oo

for all iy, ...,%,, € IN und m € IN which explains the meaning of (W, (¢)),>0 as a time reversal
Of (Zn)nZO-



8

4. PROOF OF THEOREM 2.1

Let R:91x [0,1) x [0,1) — [0, o0] be the function defined through

n—1

(Zu H l—in)>, iftee N

=0
R(z,u,v) =

\ n>0 i>n

The important fact we will prove in this section is

ProproOSITION 4.1. The function R is finite and continuous in the product topology
induced by (M, p) @ ([0, 1)%, Euclidean).

The proof of this result is provided through a series of lemmata. Fix N € IN and define

( T n—1
Em< Z u?n H (1—1}21')), if v € IN

R (x " U) n=7—N i=T—N
N\L, W, = N
<Z V(@) H (1-— UWi(m)) Wo(z) = 0> , ifx e (-1,0]
1=n+1

Our program is to show first that Ry is continuous for each N (Lemma 4.2) and then in
several steps that R — Ry converges to 0 uniformly on compact sets (Lemma 4.3-5). This

clearly implies the asserted continuity of R.

LEMMA 4.2.  For each N € IN, the function Ry is continuous in the product topology
induced by (M, p) ® ([0, 1)%, Euclidean).

Proor. Fix N € IN, take a sequence (2, un, v,) convergent to (z,u,v) and write
| RN (Zp, Un, Un) — RN (2, u,0)| < |RN(TpyUn, Up)—RN(Tp,u,v)| + |RNn(Tp, u,v)— Ry (z,u,v)|.

The second expression on the right-hand side tends to 0 by an application of Lemma 3.1
because Ry (-,u,v) is the expectation of a bounded function w.r.t. the weakly convergent
discrete probability distributions P,((Z,_n,...,Z;) € -). As for the first, it is easy to show

uniform convergence in z,,. Indeed, if |’ — u| < ¢ and |v — v'| < ¢, then
|Rn(z,u',v") — Ry (z,u,v)|

T n—1 n—1
< Ex< Yo wte) J[ O-w-9%) (- J] 0-(@+e) ))

n=1t—N i=7—N =7

= ExAE,u,v(ZTva X3 ZT)
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where A, , . is a bounded function defined in the obvious manner. Notice that A, , , | 0 as
€ | 0. Hence, by another appeal to Lemma 3.1 and the monotone convergence theorem,

lim |RN(zn, Un, vn) — RN (Tn,u,v)|
n—oo

< lim lim E, A,y (Zr-N,.... Z7)

el0 n—oo

= laiil(’)lE(AE’uw(WN(ZC),...,WQ(SE‘))lW()(%) :O) = 0.

In order to show uniform compact convergence of Ry to R, as N — oo, we first observe
that for k € IV

T—N-1 n—1
|R(k,u,v)—RN(/€,u,v)| < Ek( Z uZn (1_1021))

VAN
=
5
bl
]
i
=
N
3
+
[t
N
~

where

1-— H(l —¢) < Zci (4.2)

i=0 i=0
for cg,...,c, € ]0,1] has been used for the penultimate inequality. In view of the subsequent

estimations we note that (4.2) remains true if n = co. For z € (—1,0], we further have
|R('T> u, U) - RN(x7 u, U)|

< Z E (uwn(x) H(l _ vWi(x))‘WO(Q;) = 0)

n>N >n
N N
+ Y E[u"@ T =™ @) (1= [T @ - o™ ’WO(x)zo (4.3)
n=0 1=n+1 J>N
< >y E(uW"(“”)|WO(x) :o) + NE<1 -1Ja —ij(w))‘Wo(x) :0)
n>N >N
<Ny E((qu)W”(x) Wo(z) = o).
n>N

Since that latter inequality is easier to handle we first show
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LEMMA 4.3.  For all y,w < 1,

lim  sup |R(z,u,v) — Ry(z,u,v)| = 0.

N=00 p<y;u,v<w

PROOF. Recalling from (3.2) the definition of q(()?), we obtain
N Y B (v o)) W) = 0)
n>N
< NY B W) = 0)
n>N
S
n>N i>1
= N Z Zwim(x)Pi(T =n)
n>N i>1
= NZwini(x)Pi(T > N)
i>1

= NZwim(a:)Pi(ZN > 0)

i>1

= N whni(x)(1 - f3(0))

— N(U(w,2) — Ulwfn(0),2))
< C(w,y)Nw(1l — fn(0)),

where C(w,y) def maxy<y.u<w DuU(u,x) < 0o as one can easily check. The assertion now
follows because N(1 — fn(0)) — 0 as N — oo, see [3, Section I.11].

In order to further exploit (4.1) for our purposes, we have to consider the functions

T—N—-1
gN(]{?,U) d:ef Ek( Z uZn>’
Ak,u) N B gm0 = Y (FEw) - £E0)),

n>0 n>0

k,N € IN, u € [0,1), which are related as follows:

gn(k,u) = Ey ( Z u”n 1{T>n—|—N})

n>0

= Z Epu?n iz, n>0}

n>0

= EE:E%UZ"f%ﬁ(ZN’>(D

n>0
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= Y B (1 f37(0)

n>0
= > () - fhusn (o))
n>0

LEMMA 4.4. The function h satisfies

sup h(k,u) < m(u) (4.5)
kelN

for each u < 1, where m(u) def inf{n > 1: f,(0) > u}. Furthermore,

B w \V lu — |
sup  |h(k,u) — h(k,v)] < m(w+e)|2 e + N (4.6)

k>1Lu,v<w w

foralle >0,0<w<1—¢cand N € IN.

PROOF. By using 0 <> (1 — fE(u)) < oo for all k € IN and u < 1 we obtain with

m = m(u)

—1

M) = 3 (£ -1) = 3 (7 o)~ 1) = 3 (£0)-1)

n>0 n>m —~
= (fﬁ(U)—fﬁ(fm(O))) + %(1—]"5(0)) < m
n>0 =0

because the first sum in the previous line is negative.

In order to prove (4.6), we note first that

h(k,u) = > By 1z, 50y

n>0
=Y W' PuZy=i) = > u'G(k,).
i>1  n>0 i>1

Define hy (k,u) Lof Ef\il u'G(k, i) and choose an arbitrary ¢ > 0, w.l.o.g. < 1 —w. Then, for
all k € IN and u < w

h(k,u) = hy(k,u) = > u'G(k,i)

>N

() 3w+ G @

_ ( u )Nh(k:,w+6) < ( - )Nm<w+s>,

w—+ €
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where (4.5) has been used for the final inequality. Moreover, for all u,v < w and N > 1,

N i i
u —v .
st~ kb0l = ol (5 )6tk
N i—1 o '
= Ju—vY Y W' IGk, ) (4.8)
i=1 j=0

IN

N
wzmi_l(@(k,i) < =y,

; w
=1

the last inequality again by (4.5). By combining (4.7) and (4.8) with a simple application of
the triangle inequality, we finally obtain (4.6)

Going back into (4.1), we are now ready to prove

LEMMA 4.5, For allw < 1,

lim  sup |R(k,u,v) — Rny(k,u,v)] = 0.

N—oo k>Tu,v<w

PROOF. Indeed, we infer with the help of (4.1), (4.4) and the previous lemma

limsup sup |R(k,u,v) — Ry(k,u,v)|
N—oo k>2Lu,v<w

< 2limsup N sup |h(k,uVv) — h(k,(uVv)fn(0))]
N —o0 k>1Lu,v<w

=0

N—oo w—+ € w

ot s (2N ( >N L (Vo)1= fx(0) N2>

recalling that 1 — fn(0) converges to 0 exponentially fast [3, I.11].

PROOF OF PROPOSITION 4.1. A combination of Lemma 4.3 and 4.5 clearly yields uniform
compact convergence of the Ry to R. Since the Ry are further continuous by Lemma 4.2, we

conclude the continuity of R as claimed.

In view of the main assertion of Theorem 2.1, namely the nonconstancy of the extinction

probability ratio r(z) for suitable pairs (k, q), two further lemmata are needed.
LEMMA 4.6. The function n1(t), t € (—1,0], is not a constant.

PRrooF. Note first that

m(t) = DU(s,t)smo = Q(0) > p" Fexp (QO)u"").

nez
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Since our assumptions in Section 2 guarantee 7; to be everywhere positive, we particularly

have @Q'(0) > 0. We make the change of variables x = u~*, i.e. t = —log,, x. Defining
U(z,y) def Z (ew“n — ey“n>, y<0<ux,
nez

we obviously have

D, U(z,y) = ) yu e
nez

m(—log, ) = %xDm\P(x, Q(0)).

Now suppose 771 be constant and infer

and therefore

C

T

for all x € [1,1/pu) and some constant ¢ < 0. The equality extends to all x > 0 because both
sides are evidently analytic functions on the half plane of complex numbers with positive real

part. Integration together with W(1,-) = 0 then implies
¥(@.Q0) = [ Du(Q) &z = cloga (4.9)
1
for all z > 0. Next, the functional equation

U(z,y) = Q(%z) + \Il(gy)

for all y, z < 0 < x together with (4.9) leads to

for all y < 0 < z. For z = 1, we get
0 0
\I,(Q( )7y) — clog (Q( ))
Yy Y

U(z,y) = clogz

and thereby

for all y < 0 < . Rewriting this result for U(s,t), we find that

e - () - o (22)

which is impossible because the U(+,t) are pairwise distinct by Theorem 3.1.

LEMMA 4.7. Given any q € (0,1), the function R(-,u/q,u) is not constant for all
sufficiently small u € (0, q).
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PROOF. R(x,u/q,w) is analytic in v and R(-,0,0) = 1. Writing

R(z,u/q,u) = E(H(l—uWi(‘”))

Wo(x) = 0>

i>1
u u Wi (z)—1
+ —E(Z (—> H(1—uWi<w>)‘WO(a;) :0>
q n>1 q i>n
and noting that W, (z) > 1 for all x € (—1,0] and n > 1, it is easily verified that
l—q
DuR(l‘a u/Qv u)|u:0 = q Ui (LL‘)

Since 71 (x) is not constant in x, the same holds true for D, R(x,u/q,u) at u = 0. Consequently,
picking two distinct values 1,25 € (—1,0] with Dy R(x1,u/q,u)|y=0 # DuR(22,1/q,u)u=0,
we must also have R(z1,u/q,u) # R(x2,u/q,u) for all sufficiently small v € (0,q) (using
R(x1,0,0) = R(z2,0,0) and the continuity of D, R(x,u/q,u) in u). This proves the lemma.

PROOF OF THEOREM 2.1. Suppose 0 < x < g. Since r(k) = (k/q)* + R(k,x/q, k) for
k € IN (see (2.3)) and r(x) = R(x,k/q, k) for x € (—1,0], assertion (2.5) follows directly from
Proposition 4.1. Moreover, we infer from the previous lemma that r is not a constant for

infinitely many, in fact all sufficiently small x € (0, g). We have thus proved the theorem.

5. PROOF OF THEOREM 2.2

We begin with an auxiliary lemma which gives an asymptotic estimate of the expected

extinction time a, = E,7 as k — oo.

LEMMA 5.1.  Let (Z,)n>0 be a subcritical GWP with reproduction mean p > 0 and

EZylog Z1 < oo. Then
ag

li = 1.
kirgo 10g1/H k
PROOF. Recall from [3, I.11] that f,(0) = 1 — ¢, u™ with positive constants ¢, € [0, 1]

converging to some ¢ > 0. It is the positivity of ¢ where the (X log X )-condition enters. Since
Pi(1 > n) = P,(Z, > 0) =1— £¥(0), we infer

ag Ic
= P = —
logy , k 1og1 ok Z k(r > 1) 1og1 k! ( Tl >

1 n
= logl/“ ’ RZZO (l — (1= cpp )k:)

Fix any € € (0,1), put n,. = n.(e, k) = o (1 —¢)logy,, k, n* =n*(e, k:) ( +¢)logy,, k and
split up the sum into three parts S (k), Sa(k), S3(k) ranging from 0 to n, — 1, from n, to n* —1,
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and from n* to co, respectively. Note that g™ = k== and " = k~(1+¢). The three sums
will be considered separately.
Choose m such that inf,>,, ¢, > ¢/2. Then we have for S (k)

(1 - logfju k) (1 (- c,um/Q)k>

1 n
logy, k;(l_(l_cﬂ /2)k>
< Si(k)
1 "= 1 1 n\k
- 1Og1/ukn:o< — _M>>

< (=g (1= - pm))

IN

(1= 2)(1 — exp(~2k%) ).

where the last inequality holds for sufficiently large k using log(1 — x) > —2xz for all positive x

sufficiently close to 0. Consequently,

lim Si(k) = 1—e.

k—o0

For S5(k) we just note 0 < So(k) < 2¢. Finally, we obtain for S3(k), if k is sufficiently large,

0 < Sg(k) < 1Og11/ I Z <1 — (1 _ ’un*—i—n)k)
uw
- IOgl/uk <1_ B 1+E)Mn) >
= 1og11/ k Z <1 - eXp(_%_E“n))
= k;slogwk Z“

where 1 — e™® < x for all z has been used for the final inequality. Hence

lim S3(k) = 0.

k—o0

Putting the results together the assertion of the lemma easily follows because € € (0,1) was

()

arbitrary.

PRrROOF OoF THEOREM 2.2. We first note that

q(klz _ r(k) _ ak<1+Ek< g

=11
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because k = q. We thus have to show

kIL“;ank<§< ;1‘1:(1_@)) -0

def

Fix an arbitrary € € (0,1), put N(k) = |eax| and split up the sum under the expectation
into the sum from 1 to 7 — N (k) — 1 (of course, equal to 0 if 7 — N (k) < 0) and the sum from
T — N(k) to 7. As for the latter, we immediately have

0 < limsupiEk< i (1—ﬁ<1—qzi))> < lim w = e&.

a k—oo a
k—oo k j=r—N(k) i=0 k

Turning to the first sum, we use once more the inequality 1 — [ (1 — z;) < Y 1 z; for

numbers z1, ..., z, € [0,1] and obtain

j—1
< —Ek(zzq L¢z, +N(k>>0}>
Ak j>1i=0

= EZZE]{:( ZPZ j— 2+N(k)>0>>
>0 >4

- Y > (P sro)
7,>0]>N(k)

- Y Y (@ - ).
z>0]>N(k

Now a first order Taylor expansion of f¥(qf;(0)) about q together with the monotonicity of f;

and f] gives for some z;; between ¢f;(0) and ¢
FEafi0)) = fF(q) — kaff M (zi5) f1(2i5) (1 = £;(0))
> fi(a) = kaf; ) fi (1)1~ f;(0)).
Hence the above estimation can be continued as

< ’;—Z(fo—l(t))fxl))( > (1—fj(0))>
i>0

J>N(k)

%(fol(qmi>< > 2cuj>~ (5.1)

J>N(k)

IN
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Now the second sum in (5.1) is clearly bounded by a constant times p€1°81/u* = k=< for all k
(since N (k) = |eax| ~ €log; , k by Lemma 5.1), while the first can be bounded by a constant
times k£~ (17¢) for sufficiently large k. To see the latter, split up the first sum as

[(1—¢)log, ,, k]

oo+ > T

1=0 i>|(1—¢)logy,,, k|

Observe that
H(lfs)logl/uk k,—(l—e:)

S e < B =

1-— 1—p
i>|(1—¢)logy,,, k] H H

Since, for all ig < i < (1 —¢)logy,, k, 4o sufficiently large (independent of k), all k sufficiently
large and some Q(q) € (—1,0), see [3, I.11],

) < 1+ Qu'/2)F !
< (1+ Q(q)utt = 1Bumk 29k =1 < exp((k — 1)°Q(q)/2),

we further have

[(1—¢)log,,,, k]

Y. HTHow < iofi @) + (1= 2)logy, k exp((k = 1)°Q(a)/2)

=0

for all k sufficiently large.
Putting the pieces together, we finally conclude in (5.1)

(o) (5, <

120 J>N (k)

which converges to 0 as k — oc.
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