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We consider the bisexual Galton-Watson process (BGWP) with promis-
cuous mating, that is a branching process which behaves like an ordinary
GWP as long as at least one male is produced in each generation. For the
case of Poissonian reproduction, it was pointed out by Daley et al.(1986)
that the extinction probability of such a BGWP apparently behaves like
a constant times the respective probability of its asexual counterpart
(where males do not matter) providing the number of ancestors grows
to infinity. They further mentioned that they had no theoretical justifi-
cation for this phenomenon. In the present article we will prove upper
and lower bounds for the ratio between both extinction probabilities and
introduce a recursive algorithm that can easily be implemented on a com-
puter to produce very accurate approximations for that ratio. The final
section contains a number of numerical results that have been obtained
by use of this algorithm.
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1. INTRODUCTION

The bisexual Galton-Watson process with various mating functions has been introduced
by Daley(1968) as a modification of the ordinary asexual one so as to allow for sexual repro-
duction. The underlying model can be described as follows, see Daley, Hull and Taylor(1986):
We are given a two-type population process, whose n-th generation consists of ZI" females and
ZM males which form Z,, = ((ZF, ZM) mating units. Each mating unit reproduces indepen-
dently of all other units according to the same bivariate distribution for each generation. Thus
(ZE, |, ZF.,) can be defined by

(Zg—i—lv n+1 Z gnmnnj (1'1)
7j=1

where (&, j,Mn,j)n>0,;>1 forms a family of i.i.d. nonnegative integer-valued random variables.
Plainly, the empty sum is defined as (0,0) in (1.1). We assume that the mating function
¢ is nondecreasing in each argument, integer-valued for integer-valued arguments and satis-
fies ((0,0) = 0. Under these conditions (Z,),>0 is called a bisezual Galton-Watson process
(BGWP) with mating function (.

It was pointed out by Hull(1982) that mating functions ( likely to occur in real-life are

superadditive in the sense that

C(r1 + 22,91 +92) > ((w1,91) + ((72,92) (1.2)

for all z1,x2,y1,y2 € [0,00). Examples of this type are

(M1) ((z,y) =« min{1,y} for all z,y > 0, known as promiscuous mating,

(M2)  ((z,y) = min{z,y} for all z,y > 0, known as mating with fidelity, or

(M3) ((x,y) = x for all z,y > 0, which is the mating function for the ordinary GWP with

asexual reproduction.

Ultimate extinction for BGWP with mating functions like (M1) and (M2) but also others has
been examined by Daley(1968), Bruss(1984), Hull(1982,1984) and most recently by Daley, Hull
and Taylor(1986), the latter under no further assumption on ¢ than superadditivity. Indeed,

excluding the trivial case &, j = 1,7, ; = 1, their main result reads as follows:

THEOREM 1.1. (Daley, Hull and Taylor) Let q(j) = P(Z,, = 0 for some n|Zy = j) denote
the extinction probability of (Zn)n>0 given j initial mating units and m(j) = j= E(Z1|Zo = j)
the respective mean reproduction rate. Then for every BGWP (Z,)n>0 with superadditive

mating function q(j) =1 for each j > 1 holds iff lim;_.. m(j) < 1.

The present work has been motivated by a discussion at the end of the paper by Daley,
Hull and Taylor(1986). Numerical calculations they have done for a BGWP with supercritical
Poissonian reproduction, more precisely (&,,j,7n,;) ~ Poi(1.2) ® Poi(1.2), and promiscuous

mating show that, as j — 00, q(j) quickly tends to a value about 1.33 times the respective
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extinction probability for the ordinary GWP with j ancestors and the same reproduction
law, given by some ¢/. They point out that they have no theoretical justification for that
phenomenon and a little reflection shows that it is in fact a nontrivial problem.

In the present article we want to compare more deeply the extinctive behavior of a
promiscuous BGWP (Z,,),>0 with that of its asexual counterpart, henceforth denoted by
(F)n>0, where females reproduce without mating. We always assume that (Z,,),>0 has a
product reproduction law pt" @ pM | where pf" = (pf),,>0 and p™ = (pM),,>0 are probability
distributions on IVy. Let P; be such that P;(Zy = Fy = j) = 1 for each j > 1 and define the

extinction probability function

def P;(Z, =0 for some n >0), j e Ny,

q(j)
pertaining to (Z,),>o. Plainly, the reproduction law of the ordinary GWP (F,),>0 is p¥, its
extinction probability function ¢/ for some ¢ € [0, 1].

Suppose we are in the supercritical case defined as noncertain extinction, that is g(j) < 1
for each j € IN. Given our assumptions, an equivalent condition is that p has mean p > 1
and p)! < 1. Our main result, Theorem 3.1, then provides upper and lower bounds for ¢(j) in
terms of ¢/, if p}! < ¢, and of (p}?)7, if p}! > q. In the latter case, exponential convergence to 1,
as j — oo, of the ratio q(j)/(pd!)? yields as a simple consequence (Corollary 3.2). Otherwise,
however, convergence of q(j)/q¢’ turns out to be a very difficult question that will be dealt
with in another article because the necessary arguments are of a totally different nature than
those presented here. They involve potential theory and particularly the Martin boundary of
an ordinary GWP. A further brief discussion is given at the end of Section 3.

Section 4 contains the proof of Theorem 3.1 while Section 5 provides upper and lower
envelopes for g(j) that lead to very accurate numerical approximations based upon iteration.
Some results for the Poissonian case are presented in Section 6. In particular, we have re-
produced the approximations by Daley et al.(1986) mentioned above. Surprisingly, all our
numerical results (and that includes further ones not given here for the binary splitting and
the linear fractional case) strongly indicate rapid convergence of q(j)/q’ if p}! < ¢, thus being

in contrast to the afore-mentioned problems with a theoretical justification.

Whenever dealing with the extinction probability function of a branching process (Z,,)n>0,
the natural thing to start with is a look at generating functions. So let us take a brief look at

the explicit form of the generating function hy ,, of Z,,, given Zy = k, i.e.
hin(s) = Exs? fork>1, n>0andsc[-1,1],

Let f be the generating function of pf, i.e. f(s) = >, -,pks™ Then one can show by

induction that

hi(s) = 14 3 (=) ((F™ 0o fmm)i(s) = (f o o 1)) (13)
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for all k,n > 1, where f(O(s) = f(s), fV(s) = pd f(s), 7 = (71,...,m,) and |7| = Z;.Lzl ;.
With f,, denoting the n-fold iteration of f, (1.3) may be rewritten as

Prn(s) = FE6)+ > (D((F 0o fEE(s) = (f) 0o fEINE)) - (14)
7#(0,...,0)

which is noteworthy because f¥(s) is nothing but the generating function of F,, under P;. In

particular, we have

n—oo

7#(0,...,0)

ak) = ¢"+ im > () (T 0o f)E(g) = (F 0o fTE()), (15)

since q(k) = lim,, . hi.n(q) and f,(¢) = ¢ for each n > 0. Unfortunately, the occurring sum
in (1.5) does not appear to be amenable to a further analysis of g(k) and we have thus turned

to an alternative approach.
2. A FUNCTIONAL EQUATION FOR THE EXTINCTION PROBABILITY q(k)

For a moment we adopt a more general viewpoint to be described next. Define the
ordinary GWP (F,,)n>0 by

Fn
Fop1 = Y &ny forn>0 (2.1)

j=1
and denote by R = (7 ); j>0 its transition matrix. Let x : INg — [0,1] be a function, called
killing rate. We kill the process F,, at state ¢ with probability (i), which means we send it to
a grave, for simplicity taken as 0.

The killed process (Z,)n>0 is a Markov chain with transition matrix P = (p; ;)i j>o0,

where
pij = Loy (h)K(d) + (1 — k(2))ri ;.
Define again the extinction probability function

def

q(j) P;(Z, =0 for some n > 0), j € INy.

A function h : INg — IR is called (right) harmonic for P if it is nonnegative and satisfies
h = Ph. We then have the obvious

LEMMA 2.1. The extinction probability function q is a harmonic function for P. In
detail,

q(j) = s(J) + (A1 —k()) E;q(Fr) for all j = 0. (2.2)

q is uniquely determined as the smallest harmonic solution with q(0) = 1 and given by q =

lim,, oo P"0 where 6 = 1yq;.
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Since g(j) =1 — P;j(Z, > 1 for all n > 0), it is easily verified that

q(j) = 1 - Ej(H(l—MFn))). (2.3)

n>0

Returning to the situation of a BGWP (Z,,),>0 with promiscuous mating, we are obvi-
ously given a killed Markov chain with killing rate x(j) = (p}!)? for j € INy. Indeed, if F,, = j,
this process is killed if no males are produced which happens with probability (pd!)7.

With the help of (2.2) we will derive upper and lower bounds for g(k) in the following
section (Theorem 3.1). Let us close the present one with a further lemma that shows g(k) to
be the unique solution of (2.2) that satisfies g(0) = 1 and g(c0) C imy o q(k) = 0, for the

latter see at the beginning of Section 3.
LEMMA 2.2. There is exactly one solution q of (2.2) with q(0) =1 and q(o0) = 0.

PROOF. Let q; and g» be two solutions of (2.2) having the stated properties. Put x = p}!
and d = g1 — qo, which clearly satisfies the equation d(j) = (1 — /) E;d(F}) for all j > 0 as
well as d(0) = d(o0) = 0. By iterating this equation we obtain for every j > 1

d(j)

IN

E;d(Fy) = E;(1-£™)d(F) < Ejl{psnd(F)
< .. < Bj(1—k"™1d(F,) < Ejl(p, ,>00d(F.) — 0,

as n — oo, since 1¢p, >0y d(F,) — 0 Pj-a.s.
3. UPPER AND LOWER BOUNDS FOR q(k)

From now on we simplify our notation in that we put p, = pf for n > 0 and x = p}’.
The particular choice of the other p2 will be of no relevance for the subsequent analysis.

We consider a BGWP (Z,,),,>0 obtained by killing at rate x(j) = s’ an ordinary GWP
(Fy)n>0 of females if no mating occured. According to (2.3) the extinction probability function

q is then given by

q(k) = 1—Ek<H(1—an)>. (3.1)

n>0
Let g be the extinction probability of (F),),>0 given Fy = 1, that is under P;. Consequently,
¢" gives the respective probability under Pj.

It is a trivial consequence of the model assumptions that ¢* always forms a lower bound
for g(k) for each kK > 0. However, under which conditions is the latter of the same order of
magnitude as the former, i.e. when does

1 < liminf atk) < limsup k) < 00 (3.2)
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hold true? Of course, this is an interesting question only in the supercritical case, in the present
setup equivalent to
k<1 und p=Y gp>1, (3.3)
jz1
which are therefore standing assumptions throughout.
It is next readily seen from (3.1) that q(1) < 1, and that q(k) < g¢*(1) — 0, as k — oo.
Use the fact that a BGWP with promiscuous mating and k£ ancestors stochastically dominates
the sum of k independent BGWP with the same reproductive behavior but one ancestor. By
Lemma 2.2, q(k) is thus the unique solution of (2.2).
Theorem 3.1 below is the main result of this article and shows that (3.2) is indeed valid
unless £ > ¢q. Recall that f(s) = ijopjsj denotes the generating function of p* = (p,)n>0

and f, its n-fold iterate for each n > 0, in particular fy(s) = s.

THEOREM 3.1.  Assuming (3.3), the following assertions hold for all k > 1:
(1) If Kk < pgy then

1 < Kf) <1+ 2 (3.4)
q Po
(ii) If k = po then
l1—gq q(k)
1 < 2 .
T a—p gc (3.5)

(iii) If po < kK < q then

k(1 —q) o ak)

1 Do
at+(—rpo = F = (n+2)< +_) (3:6)

1
+ 11—k K

where n is determined through fn(po) < & < frnt1(po)-
(iv) If Kk = q then

. ak) _ 1 m
qglar —q)+ (1 —q) = arq” < + (3.7)

where ar d:ef Ek(T|T < OO)7 T = mf{n >0: Fn = O}

(v) If k > q then

1§L}l€€)§1+
K

f(x)

. (3.8)

The proof of Theorem 3.1 will be given in the Section 4. Observe that (3.6) indeed
completely covers the case py < k < ¢ because f,(pg) strictly increases to gq. Note also that
po = ~ holds in particular when p™ = p™ that is when male and female offspring are produced
according to the same distribution. Since aj evidently tends to infinity as k — oo, (3.7) implies
SUPj>1 ¢ *q(k) = oo if Kk = ¢q. Figure 1 gives an illustration of the obtained bounds for the

case considered by Daley et al.(1986) where p!" is Poisson with mean pu = 1.2.
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FIGURE 1. Lower and upper bounds for r(k) in the Poisson case with p = 1.2.

Define next r(k) = ¢ ¥ q(k) for k > 0 and

r(k), ifk<gq
r (k) = r(k)/ag, ifrk=q (3.9)
q(k)/kk, ifk>q

It is natural to ask next whether or not 7*(k) converges as k — co. Unfortunately, the answer

is simple only in case k£ > ¢ where even exponential convergence holds true (f(k) < k).

COROLLARY 3.2. Ifk > q then for all k > 0

P (G C(MY (3.10)

K

where C' is the upper bound in (3.8).

PROOF. By (3.8) in Theorem 3.1, q(k) < Ck* for all k> 0 whence by (2.2)

1—kF C(1—kF
gty < 1 SO

Cf*(x)

Kk

1 <7k =1+ Eft <1 +

Kk

which is the asserted result.

The case k < ¢ is much more difficult because, in contrast to the previous case, the
bounding functions of Theorem 3.1 do not provide any insight into the asymptotic behavior
of q(k) apart from the crude information that r*(k) remains bounded. Before discussing this
further, we state the following result on r

Let P, = Py (-|F,, — 0) with expectation operator Ey. Tt is well-known that (Fn)n>0
forms again an ordinary (subcritical) GWP under Py, with k ancestors, offspring generating
function f(s) = ¢ ' f(sq) and reproduction mean i = f’(q) < 1, see Athreya and Ney(1972,
p.47f).
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LEMMA 3.3. The function r(k) = ¢ *q(k) satisfies

A

k
r(k) = (g) + (1= &") Eyr(Fy) (3.11)
for each k > 0.

PROOF. The identity is a direct consequence of (2.2) if we note that Py(F; = j) =
Py(Fy = j) ¢°7% holds for all j,k > 0 and thus

¢ "Eyr(F) = ) P(F=j)d"r(j) = Epr(F).
§20

Iterating equation (3.11) leads to the basic identity

r(k) = (g)k + B i(g)Fjﬁ(l—mFi> (3.12)

j=1 i=0

where 7 is here and for all the extinction time of (F},),>0. As one can see from this identity,
the limiting behavior of (k) for k — oo is related to that of the time reversion at 7 of (F},)n>0
under P,. For an analysis of the latter potential theoretic arguments have to be employed
involving the Martin boundary of (F},),>0. Since such arguments cannot be given shortly and
are of a totally different nature than those given here we have decided to present them in a
separate article. We finally note, however, that in contrast to the picture conveyed by the
numerical results of Section 6 we have good reasons to believe that (k) does not generally

converge.
4. PROOF OF THEOREM 3.1

Recall that P denotes the transition matrix of (Z,,),>0 and forms an operator that maps
a function h : INy — IR on Ph given by Ph(j) = x/ + (1 — x?)E;h(F}). Notice that P is
order-preserving. The subsequent proof makes frequent use of the following two conclusions

that can be drawn from Lemmata 2.1 and 2.2.

(1) If h is a superharmonic function for P (h > Ph) and h(0) = 1 then P"h decreases to

a harmonic limit h., > g whence h > q.

(2) 1If g is a subharmonic function for P with ¢(0) = 1 and if g is upper bounded by some
superharmonic function h with h(co) = limg_,o h(k) = 0 then P"g increases to ¢
implying g < q.

Now consider the functions h.(0) = 1, h.(k) = cg* for k > 1 where ¢ > 1 is to be suitably
chosen below. Notice that h. < hq if ¢ < d and that h.(c0) = 0. It follows

Pho(k) = k* + (1 — k") (pf + cBklips010™) = "+ (1= &")(pf + (" —pf))  (4.1)
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for all £ > 0 whence h. < (>)Ph, is equivalent to

et K (L—w5)pf 14 (1 —q)

c <(>)ec .
kFgF + (1 — /ik)plg kg + (1 — mk)plg

If k < po it is easily seen that 1 < ¢, — 1, as k — oo, and that supy>; ¢ < 1+ K/po.-
Hence (3.4) follows from (1) by taking h = hy/p,-
If kK = pg then

1— k
a lim ¢, = 2, (4.2)

< =1 _—
= G +qk+1—/£k T k—oo

which implies (3.5) by first using (1) with A = hs and then (2) with g = h., and the same h.
We note for the first inequality in (4.2) that

k k -1 k=1=3 i -1
q° — K 1 q— K Zgo“ q 1
Ck_l:( P k:) ( e k

1—g¢q 1—g¢q 1—g¢q ZJ 0 @ 1—gq

q—K 1 -
> — = — 1.
- (1—q+1—Q> “

If po < k < g then the same approach yields

1—qk
< =1 < I = 4.3
c1 X ¢ + qk—l—(l—/{k)(po//f)k < kggock 00, ( )

where the left inequality in (4.3) follows by a similar estimation as that leading to (4.2).
We infer the lower bound in (3.6) by another appeal to (2) after having provided an upper
superharmonic bound. Unfortunately, the latter requirement as well as the upper bound in
(3.6) must be derived from another function class because the ¢;’s are now unbounded. We

will finish the proof of the lower bound after (4.7).

Let us introduce the function

g(s,k) = 14 (f(s) = fipo)*) "

7>0

for k > 0 and s € [0, 1), hence g(s,0) = 0, which in case f,,(po) < s < fnt+1(po), n > 0, satisfies

g(s,k) > 1+ Z (ffn(o) — fF(po)) ¢ "

J=20

= 1+ i > (Frivalpo) = fiipo) a (4.4)

i=0 j>0

= (n+1)— i £ (po)g*
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and, by a similar estimation,

n

g(s,k) < (n+2)=> fFpo)g " (4.5)

1=0

Recalling that R denotes the transition operator of (F),),>0, the important feature of this

function can be stated as

Erg(s,F1)g™ = R(g(s,-)q)(k) = g(s,k)q" — s*.

for every s € [0,1] and k& > 0. Namely,

Erg(s, F1)¢™ = Eplipsoyq™ + Zﬂ:( s) — f; 1(290))
>0
= (¢" = (po)*) + Z (s 3+1(p0))
§20 (4.6)

N k

Y g ()

>0 q q
= g(s,k)g" — s".

Consider now the functions h.(0) = 1, he(k) = cg(k, k)g* for k > 1 and ¢ > 0. Again,
h. < hy if ¢ < d and fbc(oo) = 0. Then
Ph.(k) = kP + (1— /ik)(plg + cEkg(,«;,Fl)qFl)

= k41— /-@k)<pl§ +c(g(r)q" — /{k)>,
so that ilc > PiALC holds iff

=R po)* 14+ (1= k) (po/k)"

def K
 kRg(kE)gR + (1 — kE)RR gk, k)gF + (1 — KF)

CZék

for all k£ > 1. In order to show the upper bound in (3.6) for sup,; q(k)g* it suffices by (1)
to verify that this bound is also an upper one for supy~; g(, k)é. Let fn(po) < & < fri1(po)
for an arbitrary n > 0, in which case supy>; g(x,k) < n + 2 by (4.5). Now the desired result

follows from
14 (1= #¥)(po/0)*
1 — Kk

= g(/{,k’){(l_lmk)—F(%)k} (4.7)

1 of .
< (n—|—2){ +@} e

11—k K

g(/i7 k)ék < g(’%a k)

for every k > 1.
By noting that h, < hs the proof of the lower bound in (3.6) is also settled.
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For the case Kk = ¢ we proceed in the same manner, this time choosing h.(0) = 1 and
he(k) = cg(q, k)¢* for k > 1. Recall from before Lemma 3.3 P, = Pp(:|F, — 0) with ex-
pectation operator E’k. (F)n>o0 forms a subcritical GWP under Pk with k£ ancestors and
reproduction generating function f(s) = ¢~ 'f(gs). Furthermore, its n-th iterate f,, takes the

form fn(s) = q " fn(gs) for each n > 0. Consequently, for each k > 0,

glak) = 1+ 3 (@ = fEw)) a7 = 1+ 3 (1= fF(wo/a)

>0 320
= 1+2Pk(F]>O) = Zpk;(T>j) = EkT = ag
7>1 7>0

For inequality (4.9) below, we note that by the same argument which proved (4.2)

Z q ;_fgqpo ¢+ q—lbij(;?o) _ Q(itl_—qQ) (4.8)

k
agq =

Jj=0 J=0

for all k > 1. Now h. < (>)Ph, again holds iff ¢ < (>)¢y, for all £ > 1 where ¢, here takes the

form
1+ (1—¢")(po/a)"

arq® + (1 — q*)
The asserted inequality (3.7) thus follows from

Cr =

14+ (1—qg* k 1
o < L0 -Ow/a” 1 o
1—gF l—q¢ ¢
and
1 1 1—gq
> > = 4.9
arg® + (1 — %) Q(al—Q)+1 g(ar —q) + (1 —q) (4.9)

l—q
for each k > 1, of course, by a further appeal to (1) and (2).
We finally have to consider the case x > ¢ and put h.(0) = 1, h.(k) = ck® for k > 1.
Then h. < (>)Ph, holds iff

k L k\k
¢ <)o OO

T R = (=R (f(R)F 1)

for all £ > 1. (3.8) now follows from limy_,~ ¢y = 1 (notice f(k) < k) and the inequality

(1 — k") f*(x)

1< ¢ = 1+Kk_(1_/<;k)(f’“(ﬂ)—pl§)
KO :
< 1+K,€_fk(,{) - 1+(/€/f(/“3))k_
B T (N
SRCTICIES R

for all £ > 1. The proof of Theorem 3.1 is herewith complete.
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5. LOWER AND UPPER ENVELOPES FOR q(k)/q¥

The bounds given in Theorem 3.1 may clearly fail to be very accurate as being valid for all
k > 1. But the bounds we have provided in the previous sections can be used as initializations
for a recursive scheme that successively leads to sharpened upper and lower bounds for q. The
procedure is easily implemented on a computer and gives numerical results in those cases where
the distribution of F} is known under each Pj. Such a case, namely where reproduction laws
are Poissonian, is presented further below after having introduced the iteration scheme and its
relevant properties.

Let gy be any given approximation of g with go(0) = 1 and superharmonic upper bound
h satisfying h(co) = 0 (standing assumption throughout). g itself, however, need not be sub-
or superharmonic. From a theoretical standpoint it would then be natural to approximate q by
P" gy which indeed converges pointwise to g, as one can easily verify (see Lemma 5.1 below).
On the other hand, this iteration would require to compute P™qq(k) for every k > 0 and thus
involve infinitely many computations. For that reason we have used another, though similar
iteration scheme which, at each step, updates the current approximation only within a finite
window, however of increasing size. More precisely, we define the n-th iteration g, recursively
by

Pq, 1(k), if0<k<n
gu(k) = { | (5.1)
gn-1(k), ifk>n
for each n > 1. A simple induction shows that
. (k) = PO~ gy (k) (5.2)

for all n > 0 and £ > 0. Notice that ¢,(0) = 1 for all n > 0. The relevant properties of this

recursive scheme arev stated as

LEMMA 5.1. g9 < (>)q implies g, < (>)q as well as lim q, = q. If qo is further

sub(super)harmonic for P, then even

W< <>Z)e<(>2)--1)q (5.3)

holds true.

PROOF. Since P is order-preserving, we havegq, (k) =  IN q(k) < (>)gforalln >1
and k > 0 if gy < (>)q. For the same reason we infer (5.3) in case of sub(super)harmonic gqp.
In view of (5.2) the convergence of g, to q clearly follows if we prove P"qy — q, as
n — oo. But the uniform boundedness of the P"¢q, implies that each subsequence (ng)g>1
contains a further subsequence (n})r>1 such that P go converges to a harmonic limit g,
d>(0) = 1. Now gy < h for some superharmonic which vanishes at co implies g (00) = 0.

Consequently, goo = g by Lemma 2.2 and the proof of Lemma 5.1 is complete.
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6. NUMERICAL RESULTS

Let us finally turn to the question of how the recursive scheme in (5.1) can be used to
provide numerical results. Suppose we are given a function qéo) whose iteration ql(o) can be
easily computed. If k < ¢ such functions are naturally given by Theorem 3.1 and of the simple
form qéo)(()) =1, qéo)(lc) = cq® for k > 1 and an appropriate ¢ > 1. However, the reader
should recall from the proof of Theorem 3.1, that these functions need not necessarily be sub-
or superharmonic in case py < kK < ¢q. It is for that reason we have given the more general
convergence result in Lemma 5.1.

Now (5.3) is perfectly designed for recursive calculations whenever R is known. This
includes the cases of Poissonian and linear fractional reproduction as well as the case of binary
splitting, to mention the probably most popular ones. Let us rewrite (5.3) as a recursive equa-
tion for rl(n)(k) of q_kql(n)(k) since we are interested in approximations for 7(k) = ¢ *q(k).

We have

n—1

n 0 n—1),. 0),/ . i
) = V) + (=8 Y (V0 - 1)) (61)
J=0
A collection of numerical results we obtained for the Poissonian case are reported be-

low. When it turned out that corresponding results in the other afore-mentioned cases look

qualitatively very similar we decided to refrain from their presentation here.

r(k)
k (5.4) DHT
1 1.2439 1.2439
2 1.3161 1.3161
3 1.3302 1.3300
4 1.3310 1.3308
5 1.3301 1.3300
6 1.3296 1.3292
10 1.3295 1.3296
20 1.3295 1.3295
40 1.3295 1.3296
60 1.3295 1.3293
100 1.3295
200 1.3295
TABLE 1

A comparision of numerical values for r(k) obtained
from (5.4) with those by Daley et al.(1986)

We first take a look at the situation that has been examined by Daley et al.(1986) So
let p be a Poisson distribution with mean p = 1.2 which yields ¢ = 0.6863. Also let py = &.
Table 1 compares, for various k, the approximated values for (k) obtained from our recursive

algorithm with those by Daley et al.(DHT) who used a method based upon truncation of the
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transition matrix of (Z,,),>0. We used 400 iterations and, in order to reduce the number of
computations, a stopping rule that would keep fixed at any k the values of upper and lower
envelope as soon as their difference would fall below 10~°. As one can see, both methods lead
to almost identical numbers.

We then performed similar calculations for pg = x and varying g. The respective graphs
of r(k) for ¢ = 0.01, 0.2, 0.5 and 0.8 within ranges of k that provided satisfactory precision are
shown in Figures 2-5. It seems that for ¢ < 0.5 the graph of r always behaves like a damped
oscillation that eventually settles at a limiting value between 1 and 2, whereas for ¢ > 0.5
such a limit point is rapidly approached in a non-oscillatory manner. However, we have no

theoretical justification for this apparent phenomenon.

1.9934 +
1.9962 +
I;I 1I:II;I EI:II;I SEII;I 4I:II;I
F1GURE 2. The case ¢ = 0.01 and s = pyg.
1.25060 1
1.85040 +

] 120 240 260 420

FIGURE 3. The case ¢ = 0.2 and k = pg
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1.5360 1 \f
1.5280 1
Iil Sél 1|:I|;I 15|;I EEIlil
FIGURE 4. The case ¢ = 0.5 and k = py.
1.20750 1 L’
1.20620 1+

] a0 100 150 200

F1GURE 5. The case ¢ = 0.8 and k = py.

Finally, we looked at the graphs of r for fixed g but varying x between values much smaller
than the pertinent py up to K = f10(po). The results for ¢ = 0.2 (implying po = 0.13375 and
p = 2.0118) and x = 0.05, 0.01, f(po), f2(po), f5(po) and f1o(po) may be found in Figures
6-10. The case K = f10(po) can be viewed as a good approximation of the case K = ¢ within
the range shown in the picture. In fact, we obtained the same curve modulo deviations of
order < 107° for Kk = fao(pg). Although the graphs of = for k = f5(po) and fi9(po) appear
as increasing functions (with some finite limiting value according to our theorem), we suspect
an oscillatory behavior of r for all kK < ¢, however, with rapidly decreasing amplitudes as k
increases to ¢, and with intervals between consecutive amplitudes that are too long to be visible
in the given range chosen in the picture.

For ¢ > 0.5 the graphs of r as k varies look very much the same as those shown in Figures

4 and 5 where k = pg. We have thus refrained from displaying them here.



1.19500 +
1.19450 +
1. 19400 +
] 120 240 260 420
FIGURE 6. The case ¢ = 0.2 and k = 0.05.
1.50255 +
1.50220 +
1.50185 +
] 120 240 260 420
F1GURE 7. The case ¢ = 0.2 and x = 0.1.
2.72070 1+
2.72040 +
] 120 240

260 420

FIGURE 8. The case ¢ = 0.2 with k = f(po).
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FIGURE 9. The case ¢ = 0.2 with k = fa(pp).
7.0
3.9 71

] 120 240 260 420

FIGURE 10. The case ¢ = 0.2 with kK = f5(po) (lower curve) and k = f19(po) (upper curve).

The speed of convergence of our recursive algorithm appears to be very fast for small
values of ¢ (not bigger than 0.4) but increasingly poor as ¢ increases beyond 0.5. We always
chose an iteration number between 400 and 500 and computed approximations for (k) for k
less than this iteration number, as suggested by (6.1). It then appeared for ¢ > 0.5 that not
only computation times would exponentially grow, but simultaneously the distance between
lower and upper bounds of 7(k) would be outside a satisfactory range (chosen as 10=* or
smaller) for k greater than about half the iteration number.

Despite the computational problems just mentioned for large values of k the grand picture
conveyed by our numerical results is that r(k) always converges as k tends to infinity. It is
therefore to be emphasized once more that we have theoretical reasons to conjecture the latter
be generally false. On the other hand, if 7(k) indeed diverges, then its variation for large values
of k seems to be in a range of poor numerical interest, a ”near-constancy” phenomenon also

encountered for the so-called Harris function of certain supercritical ordinary GWP, see e.g.
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Biggins and Nadarajah(1993) and the references therein.
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