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We consider the bisexual Galton-Watson process (BGWP) with promis-
cuous mating, that is a branching process which behaves like an ordinary
GWP as long as at least one male is produced in each generation. For the
case of Poissonian reproduction, it was pointed out by Daley et al.(1986)
that the extinction probability of such a BGWP apparently behaves like

a constant times the respective probability of its asexual counterpart

(where males do not matter) providing the number of ancestors grows
to infinity. They further mentioned that they had no theoretical justifi-
cation for this phenomenon. In the present article we will prove upper

and lower bounds for the ratio between both extinction probabilities and

introduce a recursive algorithm that can easily be implemented on a com-

puter to produce very accurate approximations for that ratio. The final

section contains a number of numerical results that have been obtained
by use of this algorithm.
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1. Introduction

The bisexual Galton-Watson process with various mating functions has been introduced
by Daley(1968) as a modification of the ordinary asexual one so as to allow for sexual repro-
duction. The underlying model can be described as follows, see Daley, Hull and Taylor(1986):
We are given a two-type population process, whose n-th generation consists of ZFn females and
ZMn males which form Zn = ζ(ZFn , Z

M
n ) mating units. Each mating unit reproduces indepen-

dently of all other units according to the same bivariate distribution for each generation. Thus
(ZFn+1, Z

F
n+1) can be defined by

(ZFn+1, Z
M
n+1) =

Zn∑
j=1

(ξn,j , ηn,j) (1.1)

where (ξn,j , ηn,j)n≥0,j≥1 forms a family of i.i.d. nonnegative integer-valued random variables.
Plainly, the empty sum is defined as (0, 0) in (1.1). We assume that the mating function
ζ is nondecreasing in each argument, integer-valued for integer-valued arguments and satis-
fies ζ(0, 0) = 0. Under these conditions (Zn)n≥0 is called a bisexual Galton-Watson process
(BGWP) with mating function ζ.

It was pointed out by Hull(1982) that mating functions ζ likely to occur in real-life are
superadditive in the sense that

ζ(x1 + x2, y1 + y2) ≥ ζ(x1, y1) + ζ(x2, y2) (1.2)

for all x1, x2, y1, y2 ∈ [0,∞). Examples of this type are
(M1) ζ(x, y) = x min{1, y} for all x, y ≥ 0, known as promiscuous mating,
(M2) ζ(x, y) = min{x, y} for all x, y ≥ 0, known as mating with fidelity, or
(M3) ζ(x, y) = x for all x, y ≥ 0, which is the mating function for the ordinary GWP with

asexual reproduction.
Ultimate extinction for BGWP with mating functions like (M1) and (M2) but also others has
been examined by Daley(1968), Bruss(1984), Hull(1982,1984) and most recently by Daley, Hull
and Taylor(1986), the latter under no further assumption on ζ than superadditivity. Indeed,
excluding the trivial case ξn,j ≡ 1, ηn,j ≡ 1, their main result reads as follows:

Theorem 1.1. (Daley, Hull and Taylor) Let q(j) = P (Zn = 0 for some n|Z0 = j) denote
the extinction probability of (Zn)n≥0 given j initial mating units and m(j) = j−1E(Z1|Z0 = j)
the respective mean reproduction rate. Then for every BGWP (Zn)n≥0 with superadditive
mating function q(j) = 1 for each j ≥ 1 holds iff limj→∞m(j) ≤ 1.

The present work has been motivated by a discussion at the end of the paper by Daley,
Hull and Taylor(1986). Numerical calculations they have done for a BGWP with supercritical
Poissonian reproduction, more precisely (ξn,j , ηn,j) ∼ Poi(1.2) ⊗ Poi(1.2), and promiscuous
mating show that, as j → ∞, q(j) quickly tends to a value about 1.33 times the respective
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extinction probability for the ordinary GWP with j ancestors and the same reproduction
law, given by some qj . They point out that they have no theoretical justification for that
phenomenon and a little reflection shows that it is in fact a nontrivial problem.

In the present article we want to compare more deeply the extinctive behavior of a
promiscuous BGWP (Zn)n≥0 with that of its asexual counterpart, henceforth denoted by
(Fn)n≥0, where females reproduce without mating. We always assume that (Zn)n≥0 has a
product reproduction law pF ⊗ pM , where pF = (pFn )n≥0 and pM = (pMn )n≥0 are probability
distributions on IN0. Let Pj be such that Pj(Z0 = F0 = j) = 1 for each j ≥ 1 and define the
extinction probability function

q(j) def= Pj(Zn = 0 for some n ≥ 0), j ∈ IN0,

pertaining to (Zn)n≥0. Plainly, the reproduction law of the ordinary GWP (Fn)n≥0 is pF , its
extinction probability function qj for some q ∈ [0, 1].

Suppose we are in the supercritical case defined as noncertain extinction, that is q(j) < 1
for each j ∈ IN . Given our assumptions, an equivalent condition is that pF has mean µ > 1
and pM0 < 1. Our main result, Theorem 3.1, then provides upper and lower bounds for q(j) in
terms of qj , if pM0 ≤ q, and of (pM0 )j , if pM0 > q. In the latter case, exponential convergence to 1,
as j →∞, of the ratio q(j)/(pM0 )j yields as a simple consequence (Corollary 3.2). Otherwise,
however, convergence of q(j)/qj turns out to be a very difficult question that will be dealt
with in another article because the necessary arguments are of a totally different nature than
those presented here. They involve potential theory and particularly the Martin boundary of
an ordinary GWP. A further brief discussion is given at the end of Section 3.

Section 4 contains the proof of Theorem 3.1 while Section 5 provides upper and lower
envelopes for q(j) that lead to very accurate numerical approximations based upon iteration.
Some results for the Poissonian case are presented in Section 6. In particular, we have re-
produced the approximations by Daley et al.(1986) mentioned above. Surprisingly, all our
numerical results (and that includes further ones not given here for the binary splitting and
the linear fractional case) strongly indicate rapid convergence of q(j)/qj if pM0 < q, thus being
in contrast to the afore-mentioned problems with a theoretical justification.

Whenever dealing with the extinction probability function of a branching process (Zn)n≥0,
the natural thing to start with is a look at generating functions. So let us take a brief look at
the explicit form of the generating function hk,n of Zn, given Z0 = k, i.e.

hk,n(s) = Eks
Zn for k ≥ 1, n ≥ 0 and s ∈ [−1, 1],

Let f be the generating function of pF , i.e. f(s) =
∑
n≥0 p

F
n s

n. Then one can show by
induction that

hk,n(s) = 1 +
∑

π∈{0,1}n
(−1)|π|

(
(f (π1) ◦ ... ◦ f (πn))k(s)− (f (π1) ◦ ... ◦ f (πn))k(1)

)
(1.3)
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for all k, n ≥ 1, where f (0)(s) = f(s), f (1)(s) = pM0 f(s), π = (π1, ..., πn) and |π| = ∑n
j=1 πj .

With fn denoting the n-fold iteration of f , (1.3) may be rewritten as

hk,n(s) = fkn(s) +
∑

π 6=(0,...,0)

(−1)|π|
(
(f (π1) ◦ ... ◦ f (πn))k(s)− (f (π1) ◦ ... ◦ f (πn))k(1)

)
(1.4)

which is noteworthy because fkn(s) is nothing but the generating function of Fn under Pk. In
particular, we have

q(k) = qk + lim
n→∞

∑
π 6=(0,...,0)

(−1)|π|
(
(f (π1) ◦ ... ◦ f (πn))k(q)− (f (π1) ◦ ... ◦ f (πn))k(1)

)
, (1.5)

since q(k) = limn→∞ hk,n(q) and fn(q) = q for each n ≥ 0. Unfortunately, the occurring sum
in (1.5) does not appear to be amenable to a further analysis of q(k) and we have thus turned
to an alternative approach.

2. A functional equation for the extinction probability q(k)

For a moment we adopt a more general viewpoint to be described next. Define the
ordinary GWP (Fn)n≥0 by

Fn+1 =
Fn∑
j=1

ξn,j for n ≥ 0 (2.1)

and denote by R = (ri,j)i,j≥0 its transition matrix. Let κ : IN0 → [0, 1] be a function, called
killing rate. We kill the process Fn at state i with probability κ(i), which means we send it to
a grave, for simplicity taken as 0.

The killed process (Zn)n≥0 is a Markov chain with transition matrix P = (pi,j)i,j≥0,
where

pi,j = 1{0}(j)κ(i) + (1− κ(i))ri,j .
Define again the extinction probability function

q(j) def= Pj(Zn = 0 for some n ≥ 0), j ∈ IN0.

A function h : IN0 → IR is called (right) harmonic for P if it is nonnegative and satisfies
h = Ph. We then have the obvious

Lemma 2.1. The extinction probability function q is a harmonic function for P . In
detail,

q(j) = κ(j) + (1− κ(j))Ejq(F1) for all j ≥ 0. (2.2)

q is uniquely determined as the smallest harmonic solution with q(0) = 1 and given by q =
limn→∞Pnδ where δ = 1{0}.
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Since q(j) = 1− Pj(Zn ≥ 1 for all n ≥ 0), it is easily verified that

q(j) = 1 − Ej

(∏
n≥0

(
1− κ(Fn)

))
. (2.3)

Returning to the situation of a BGWP (Zn)n≥0 with promiscuous mating, we are obvi-
ously given a killed Markov chain with killing rate κ(j) = (pM0 )j for j ∈ IN0. Indeed, if Fn = j,
this process is killed if no males are produced which happens with probability (pM0 )j .

With the help of (2.2) we will derive upper and lower bounds for q(k) in the following
section (Theorem 3.1). Let us close the present one with a further lemma that shows q(k) to
be the unique solution of (2.2) that satisfies q(0) = 1 and q(∞) def= limk→∞ q(k) = 0, for the
latter see at the beginning of Section 3.

Lemma 2.2. There is exactly one solution q of (2.2) with q(0) = 1 and q(∞) = 0.

Proof. Let q1 and q2 be two solutions of (2.2) having the stated properties. Put κ = pM0

and d = q1 − q2, which clearly satisfies the equation d(j) = (1− κj)Ejd(F1) for all j ≥ 0 as
well as d(0) = d(∞) = 0. By iterating this equation we obtain for every j ≥ 1

d(j) ≤ Ejd(F1) = Ej(1− κF1)d(F2) ≤ Ej1{F1>0}d(F2)

≤ ... ≤ Ej(1− κFn−1)d(Fn) ≤ Ej1{Fn−1>0}d(Fn) → 0,

as n→∞, since 1{Fn−1>0}d(Fn)→ 0 Pj-a.s.

3. Upper and lower bounds for q(k)

From now on we simplify our notation in that we put pn = pFn for n ≥ 0 and κ = pM0 .
The particular choice of the other pMn will be of no relevance for the subsequent analysis.

We consider a BGWP (Zn)n≥0 obtained by killing at rate κ(j) = κj an ordinary GWP
(Fn)n≥0 of females if no mating occured. According to (2.3) the extinction probability function
q is then given by

q(k) = 1− Ek
(∏
n≥0

(
1− κFn)). (3.1)

Let q be the extinction probability of (Fn)n≥0 given F0 = 1, that is under P1. Consequently,
qk gives the respective probability under Pk.

It is a trivial consequence of the model assumptions that qk always forms a lower bound
for q(k) for each k ≥ 0. However, under which conditions is the latter of the same order of
magnitude as the former, i.e. when does

1 ≤ lim inf
k→∞

q(k)
qk

≤ lim sup
k→∞

q(k)
qk

< ∞ (3.2)
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hold true? Of course, this is an interesting question only in the supercritical case, in the present
setup equivalent to

κ < 1 und µ
def=
∑
j≥1

jpj > 1, (3.3)

which are therefore standing assumptions throughout.

It is next readily seen from (3.1) that q(1) < 1, and that q(k) ≤ qk(1) → 0, as k → ∞.
Use the fact that a BGWP with promiscuous mating and k ancestors stochastically dominates
the sum of k independent BGWP with the same reproductive behavior but one ancestor. By
Lemma 2.2, q(k) is thus the unique solution of (2.2).

Theorem 3.1 below is the main result of this article and shows that (3.2) is indeed valid
unless κ ≥ q. Recall that f(s) =

∑
j≥0 pjs

j denotes the generating function of pF = (pn)n≥0

and fn its n-fold iterate for each n ≥ 0, in particular f0(s) = s.

Theorem 3.1. Assuming (3.3), the following assertions hold for all k ≥ 1:

(i) If κ < p0 then

1 ≤ q(k)
qk

≤ 1 +
κ

p0
. (3.4)

(ii) If κ = p0 then

1 +
1− q

1 + q − p0
≤ q(k)

qk
≤ 2 (3.5)

(iii) If p0 < κ < q then

1 +
κ(1− q)

κq + (1− κ)p0
≤ q(k)

qk
≤ (n+ 2)

(
1

1− κ +
p0

κ

)
(3.6)

where n is determined through fn(p0) < κ ≤ fn+1(p0).

(iv) If κ = q then
1− q

q(a1 − q) + (1− q) ≤
q(k)
akqk

≤ 1
1− q +

p0

q
(3.7)

where ak
def= Ek(τ |τ <∞), τ = inf{n ≥ 0 : Fn = 0}.

(v) If κ > q then

1 ≤ q(k)
κk

≤ 1 +
f(κ)

κ− f(κ)
. (3.8)

The proof of Theorem 3.1 will be given in the Section 4. Observe that (3.6) indeed
completely covers the case p0 < κ < q because fn(p0) strictly increases to q. Note also that
p0 = κ holds in particular when pF = pM , that is when male and female offspring are produced
according to the same distribution. Since ak evidently tends to infinity as k →∞, (3.7) implies
supk≥1 q

−kq(k) = ∞ if κ = q. Figure 1 gives an illustration of the obtained bounds for the
case considered by Daley et al.(1986) where pF is Poisson with mean µ = 1.2.
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Figure 1. Lower and upper bounds for r(k) in the Poisson case with µ = 1.2.

Define next r(k) = q−kq(k) for k ≥ 0 and

r∗(k) =


r(k), if κ < q

r(k)/ak, if κ = q

q(k)/κk, if κ > q

(3.9)

It is natural to ask next whether or not r∗(k) converges as k →∞. Unfortunately, the answer
is simple only in case κ > q where even exponential convergence holds true (f(κ) < κ).

Corollary 3.2. If κ > q then for all k ≥ 0

1 ≤ q(k)
κk

≤ 1 + C

(
f(κ)
κ

)k
, (3.10)

where C is the upper bound in (3.8).

Proof. By (3.8) in Theorem 3.1, q(k) ≤ Cκk for all k ≥ 0 whence by (2.2)

1 ≤ r(k) = 1 +
1− κk
κk

Ekq(F1) ≤ 1 +
C(1− κk)

κk
Ekκ

F1 ≤ 1 +
Cfk(κ)
κk

which is the asserted result.

The case κ ≤ q is much more difficult because, in contrast to the previous case, the
bounding functions of Theorem 3.1 do not provide any insight into the asymptotic behavior
of q(k) apart from the crude information that r∗(k) remains bounded. Before discussing this
further, we state the following result on r

Let P̂k = Pk(·|Fn → 0) with expectation operator Êk. It is well-known that (Fn)n≥0

forms again an ordinary (subcritical) GWP under P̂k with k ancestors, offspring generating
function f̂(s) = q−1f(sq) and reproduction mean µ̂ = f ′(q) < 1, see Athreya and Ney(1972,
p.47f).
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Lemma 3.3. The function r(k) = q−kq(k) satisfies

r(k) =
(
κ

q

)k
+ (1− κk) Êkr(F1) (3.11)

for each k ≥ 0.

Proof. The identity is a direct consequence of (2.2) if we note that P̂k(F1 = j) =
Pk(F1 = j) qj−k holds for all j, k ≥ 0 and thus

q−kEkr(F1) =
∑
j≥0

P (F1 = j)qk−jr(j) = Êkr(F1).

Iterating equation (3.11) leads to the basic identity

r(k) =
(
κ

q

)k
+ Êk

 τ∑
j=1

(
κ

q

)Fj j−1∏
i=0

(
1− κFi

) (3.12)

where τ is here and for all the extinction time of (Fn)n≥0. As one can see from this identity,
the limiting behavior of r(k) for k →∞ is related to that of the time reversion at τ of (Fn)n≥0

under P̂k. For an analysis of the latter potential theoretic arguments have to be employed
involving the Martin boundary of (Fn)n≥0. Since such arguments cannot be given shortly and
are of a totally different nature than those given here we have decided to present them in a
separate article. We finally note, however, that in contrast to the picture conveyed by the
numerical results of Section 6 we have good reasons to believe that r(k) does not generally
converge.

4. Proof of Theorem 3.1

Recall that P denotes the transition matrix of (Zn)n≥0 and forms an operator that maps
a function h : IN0 → IR on Ph given by Ph(j) = κj + (1 − κj)Ejh(F1). Notice that P is
order-preserving. The subsequent proof makes frequent use of the following two conclusions
that can be drawn from Lemmata 2.1 and 2.2.

(1) If h is a superharmonic function for P (h ≥ Ph) and h(0) = 1 then Pnh decreases to
a harmonic limit h∞ ≥ q whence h ≥ q .

(2) If g is a subharmonic function for P with g(0) = 1 and if g is upper bounded by some
superharmonic function h with h(∞) = limk→∞ h(k) = 0 then Png increases to q

implying g ≤ q .

Now consider the functions hc(0) = 1, hc(k) = cqk for k ≥ 1 where c ≥ 1 is to be suitably
chosen below. Notice that hc ≤ hd if c ≤ d and that hc(∞) = 0. It follows

Phc(k) = κk + (1− κk)(pk0 + cEk1{F1>0}qF1) = κk + (1− κk)(pk0 + c(qk − pk0)) (4.1)
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for all k ≥ 0 whence hc ≤ (≥)Phc is equivalent to

c ≤ (≥) ck
def=

κk + (1− κk)pk0
κkqk + (1− κk)pk0

= 1 +
κk(1− qk)

κkqk + (1− κk)pk0
.

If κ < p0 it is easily seen that 1 ≤ ck → 1, as k → ∞, and that supk≥1 ck ≤ 1 + κ/p0.
Hence (3.4) follows from (1) by taking h = h1+κ/p0 .

If κ = p0 then

c1 ≤ ck = 1 +
1− qk

qk + 1− κk ≤ lim
k→∞

ck = 2, (4.2)

which implies (3.5) by first using (1) with h = h2 and then (2) with g = hc1 and the same h.
We note for the first inequality in (4.2) that

ck − 1 =
(
qk − κk
1− qk +

1
1− qk

)−1

=
(
q − κ
1− q ·

∑k−1
j=0 κ

k−1−jqj∑k−1
j=0 q

j
+

1
1− qk

)−1

≥
(
q − κ
1− q +

1
1− q

)−1

= c1 − 1.

If p0 < κ < q then the same approach yields

c1 ≤ ck = 1 +
1− qk

qk + (1− κk)(p0/κ)k
≤ lim

k→∞
ck = ∞, (4.3)

where the left inequality in (4.3) follows by a similar estimation as that leading to (4.2).
We infer the lower bound in (3.6) by another appeal to (2) after having provided an upper
superharmonic bound. Unfortunately, the latter requirement as well as the upper bound in
(3.6) must be derived from another function class because the ck’s are now unbounded. We
will finish the proof of the lower bound after (4.7).

Let us introduce the function

g(s, k) = 1 +
∑
j≥0

(
fkj (s)− fj(p0)k

)
q−k

for k ≥ 0 and s ∈ [0, 1), hence g(s, 0) = 0, which in case fn(p0) ≤ s ≤ fn+1(p0), n ≥ 0, satisfies

g(s, k) ≥ 1 +
∑
j≥0

(
fkj+n(p0)− fkj (p0)

)
q−k

= 1 +
n−1∑
i=0

∑
j≥0

(
fkj+i+1(p0)− fkj+i(p0)

)
q−k

= (n+ 1)−
n−1∑
i=0

fkj (p0)q−k

(4.4)
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and, by a similar estimation,

g(s, k) ≤ (n+ 2)−
n∑
i=0

fki (p0)q−k. (4.5)

Recalling that R denotes the transition operator of (Fn)n≥0, the important feature of this
function can be stated as

Ekg(s, F1)qF1 = R(g(s, ·)q·)(k) = g(s, k)qk − sk.

for every s ∈ [0, 1] and k ≥ 0. Namely,

Ekg(s, F1)qF1 = Ek1{F1>0}qF1 +
∑
j≥0

Ek

(
fF1
j (s)− fF1

j (p0)
)

= (qk − (p0)k) +
∑
j≥0

(
fkj+1(s)− fkj+1(p0)

)

= qk

1−
(
p0

q

)k
+
∑
j≥0

(
fkj (s)− fkj (p0)

)
q−k −

(
s

q

)k
+
(
p0

q

)k
= g(s, k)qk − sk.

(4.6)

Consider now the functions ĥc(0) = 1, ĥc(k) = cg(κ, k)qk for k ≥ 1 and c > 0. Again,
ĥc ≤ ĥd if c ≤ d and ĥc(∞) = 0. Then

P ĥc(k) = κk + (1− κk)(pk0 + cEkg(κ, F1)qF1
)

= κk + (1− κk)
(
pk0 + c

(
g(κ)qk − κk)),

so that ĥc ≥ P ĥc holds iff

c ≥ ĉk
def=

κk + (1− κk)(p0)k

κkg(κ, k)qk + (1− κk)κk =
1 + (1− κk)(p0/κ)k

g(κ, k)qk + (1− κk)

for all k ≥ 1. In order to show the upper bound in (3.6) for supk≥1 q(k)q−k it suffices by (1)
to verify that this bound is also an upper one for supk≥1 g(κ, k)ĉk. Let fn(p0) < κ ≤ fn+1(p0)
for an arbitrary n ≥ 0, in which case supk≥1 g(κ, k) ≤ n + 2 by (4.5). Now the desired result
follows from

g(κ, k)ĉk ≤ g(κ, k)
1 + (1− κk)(p0/κ)k

1− κk

= g(κ, k)
{(

1
1− κk

)
+
(p0

κ

)k}
≤ (n+ 2)

{
1

1− κ +
p0

κ

}
def= ĉ

(4.7)

for every k ≥ 1.

By noting that hc1 ≤ ĥĉ the proof of the lower bound in (3.6) is also settled.
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For the case κ = q we proceed in the same manner, this time choosing hc(0) = 1 and
hc(k) = cg(q, k)qk for k ≥ 1. Recall from before Lemma 3.3 P̂k = Pk(·|Fn → 0) with ex-
pectation operator Êk. (Fn)n≥0 forms a subcritical GWP under P̂k with k ancestors and
reproduction generating function f̂(s) = q−1f(qs). Furthermore, its n-th iterate f̂n takes the
form f̂n(s) = q−nfn(qs) for each n ≥ 0. Consequently, for each k ≥ 0,

g(q, k) = 1 +
∑
j≥0

(
fkj (q)− fkj (p0)

)
q−k = 1 +

∑
j≥0

(
1− f̂kj (p0/q)

)
= 1 +

∑
j≥1

P̂k(Fj > 0) =
∑
j≥0

P̂k(τ > j) = Êkτ = ak.

For inequality (4.9) below, we note that by the same argument which proved (4.2)

akq
k = qk + (1− qk)

∑
j≥0

qk − fj(p0)
1− qk ≤ q +

∑
j≥0

q − fj(p0)
1− q =

q(a1 − q)
1− q (4.8)

for all k ≥ 1. Now hc ≤ (≥)Phc again holds iff c ≤ (≥)ck for all k ≥ 1 where ck here takes the
form

ck =
1 + (1− qk)(p0/q)k

akqk + (1− qk) .

The asserted inequality (3.7) thus follows from

ck ≤ 1 + (1− qk)(p0/q)k

1− qk ≤ 1
1− q +

p0

q

and

ck ≥ 1
akqk + (1− qk) ≥

1
q(a1 − q)

1− q + 1
=

1− q
q(a1 − q) + (1− q) (4.9)

for each k ≥ 1, of course, by a further appeal to (1) and (2).

We finally have to consider the case κ > q and put hc(0) = 1, hc(k) = cκk for k ≥ 1.
Then hc ≤ (≥)Phc holds iff

c ≤ (≥) ck
def=

κk + (1− κk)pk0
κk − (1− κk)(f(κ)k − pk0)

for all k ≥ 1. (3.8) now follows from limk→∞ ck = 1 (notice f(κ) < κ) and the inequality

1 ≤ ck = 1 +
(1− κk)fk(κ)

κk − (1− κk)(fk(κ)− pk0)

≤ 1 +
fk(κ)

κk − fk(κ) = 1 +
1

(κ/f(κ))k − 1

≤ 1 +
1

(κ/f(κ))− 1
= 1 +

f(κ)
κ− f(κ)

for all k ≥ 1. The proof of Theorem 3.1 is herewith complete.
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5. Lower and upper envelopes for q(k)/q k

The bounds given in Theorem 3.1 may clearly fail to be very accurate as being valid for all
k ≥ 1. But the bounds we have provided in the previous sections can be used as initializations
for a recursive scheme that successively leads to sharpened upper and lower bounds for q . The
procedure is easily implemented on a computer and gives numerical results in those cases where
the distribution of F1 is known under each Pk. Such a case, namely where reproduction laws
are Poissonian, is presented further below after having introduced the iteration scheme and its
relevant properties.

Let q0 be any given approximation of q with q0(0) = 1 and superharmonic upper bound
h satisfying h(∞) = 0 (standing assumption throughout). q0 itself, however, need not be sub-
or superharmonic. From a theoretical standpoint it would then be natural to approximate q by
Pnq0 which indeed converges pointwise to q , as one can easily verify (see Lemma 5.1 below).
On the other hand, this iteration would require to compute Pnq0(k) for every k ≥ 0 and thus
involve infinitely many computations. For that reason we have used another, though similar
iteration scheme which, at each step, updates the current approximation only within a finite
window, however of increasing size. More precisely, we define the n-th iteration qn recursively
by

qn(k) =
{

Pqn−1(k), if 0 ≤ k < n

qn−1(k), if k ≥ n
(5.1)

for each n ≥ 1. A simple induction shows that

qn(k) = P (n−k)+
q0(k) (5.2)

for all n ≥ 0 and k ≥ 0. Notice that qn(0) = 1 for all n ≥ 0. The relevant properties of this
recursive scheme arev stated as

Lemma 5.1. q0 ≤ (≥)q implies qn ≤ (≥)q as well as lim
n→∞ qn = q . If q0 is further

sub(super)harmonic for P , then even

q0 ≤ (≥)q1 ≤ (≥)q2 ≤ (≥)... ↑ (↓)q (5.3)

holds true.

Proof. Since P is order-preserving, we haveqn(k) = P (n−k)+
q0(k) ≤ (≥)q for all n ≥ 1

and k ≥ 0 if q0 ≤ (≥)q . For the same reason we infer (5.3) in case of sub(super)harmonic q0.

In view of (5.2) the convergence of qn to q clearly follows if we prove Pnq0 → q , as
n → ∞. But the uniform boundedness of the Pnq0 implies that each subsequence (nk)k≥1

contains a further subsequence (n′k)k≥1 such that Pn′kq0 converges to a harmonic limit q∞,
q∞(0) = 1. Now q0 ≤ h for some superharmonic which vanishes at ∞ implies q∞(∞) = 0.
Consequently, q∞ = q by Lemma 2.2 and the proof of Lemma 5.1 is complete.
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6. Numerical Results

Let us finally turn to the question of how the recursive scheme in (5.1) can be used to
provide numerical results. Suppose we are given a function q

(0)
0 whose iteration q

(0)
1 can be

easily computed. If κ < q such functions are naturally given by Theorem 3.1 and of the simple
form q

(0)
0 (0) = 1, q

(0)
0 (k) = cqk for k ≥ 1 and an appropriate c ≥ 1. However, the reader

should recall from the proof of Theorem 3.1, that these functions need not necessarily be sub-
or superharmonic in case p0 < κ < q. It is for that reason we have given the more general
convergence result in Lemma 5.1.

Now (5.3) is perfectly designed for recursive calculations whenever R is known. This
includes the cases of Poissonian and linear fractional reproduction as well as the case of binary
splitting, to mention the probably most popular ones. Let us rewrite (5.3) as a recursive equa-
tion for r

(n)
1 (k) def= q−kq (n)

1 (k) since we are interested in approximations for r(k) = q−kq(k).
We have

r
(n)
1 (k) = r

(0)
1 (k) + (1− κk)

n−1∑
j=0

rj,k

(
r

(n−1)
1 (j)− r

(0)
0 (j)

)
qj−k. (6.1)

A collection of numerical results we obtained for the Poissonian case are reported be-
low. When it turned out that corresponding results in the other afore-mentioned cases look
qualitatively very similar we decided to refrain from their presentation here.

r(k)
k (5.4) DHT
1 1.2439 1.2439
2 1.3161 1.3161
3 1.3302 1.3300
4 1.3310 1.3308
5 1.3301 1.3300
6 1.3296 1.3292
10 1.3295 1.3296
20 1.3295 1.3295
40 1.3295 1.3296
60 1.3295 1.3293
100 1.3295
200 1.3295

Table 1

A comparision of numerical values for r(k) obtained
from (5.4) with those by Daley et al.(1986)

We first take a look at the situation that has been examined by Daley et al.(1986) So
let pF be a Poisson distribution with mean µ = 1.2 which yields q = 0.6863. Also let p0 = κ.
Table 1 compares, for various k, the approximated values for r(k) obtained from our recursive
algorithm with those by Daley et al.(DHT) who used a method based upon truncation of the
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transition matrix of (Zn)n≥0. We used 400 iterations and, in order to reduce the number of
computations, a stopping rule that would keep fixed at any k the values of upper and lower
envelope as soon as their difference would fall below 10−5. As one can see, both methods lead
to almost identical numbers.

We then performed similar calculations for p0 = κ and varying q. The respective graphs
of r(k) for q = 0.01, 0.2, 0.5 and 0.8 within ranges of k that provided satisfactory precision are
shown in Figures 2–5. It seems that for q < 0.5 the graph of r always behaves like a damped
oscillation that eventually settles at a limiting value between 1 and 2, whereas for q ≥ 0.5
such a limit point is rapidly approached in a non-oscillatory manner. However, we have no
theoretical justification for this apparent phenomenon.

Figure 2. The case q = 0.01 and κ = p0.

Figure 3. The case q = 0.2 and κ = p0
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Figure 4. The case q = 0.5 and κ = p0.

Figure 5. The case q = 0.8 and κ = p0.

Finally, we looked at the graphs of r for fixed q but varying κ between values much smaller
than the pertinent p0 up to κ = f10(p0). The results for q = 0.2 (implying p0 = 0.13375 and
µ = 2.0118) and κ = 0.05, 0.01, f(p0), f2(p0), f5(p0) and f10(p0) may be found in Figures
6–10. The case κ = f10(p0) can be viewed as a good approximation of the case κ = q within
the range shown in the picture. In fact, we obtained the same curve modulo deviations of
order < 10−5 for κ = f20(p0). Although the graphs of r for κ = f5(p0) and f10(p0) appear
as increasing functions (with some finite limiting value according to our theorem), we suspect
an oscillatory behavior of r for all κ < q, however, with rapidly decreasing amplitudes as κ
increases to q, and with intervals between consecutive amplitudes that are too long to be visible
in the given range chosen in the picture.

For q ≥ 0.5 the graphs of r as κ varies look very much the same as those shown in Figures
4 and 5 where κ = p0. We have thus refrained from displaying them here.
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Figure 6. The case q = 0.2 and κ = 0.05.

Figure 7. The case q = 0.2 and κ = 0.1.

Figure 8. The case q = 0.2 with κ = f(p0).
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Figure 9. The case q = 0.2 with κ = f2(p0).

Figure 10. The case q = 0.2 with κ = f5(p0) (lower curve) and κ = f10(p0) (upper curve).

The speed of convergence of our recursive algorithm appears to be very fast for small
values of q (not bigger than 0.4) but increasingly poor as q increases beyond 0.5. We always
chose an iteration number between 400 and 500 and computed approximations for r(k) for k
less than this iteration number, as suggested by (6.1). It then appeared for q > 0.5 that not
only computation times would exponentially grow, but simultaneously the distance between
lower and upper bounds of r(k) would be outside a satisfactory range (chosen as 10−4 or
smaller) for k greater than about half the iteration number.

Despite the computational problems just mentioned for large values of k the grand picture
conveyed by our numerical results is that r(k) always converges as k tends to infinity. It is
therefore to be emphasized once more that we have theoretical reasons to conjecture the latter
be generally false. On the other hand, if r(k) indeed diverges, then its variation for large values
of k seems to be in a range of poor numerical interest, a ”near-constancy” phenomenon also
encountered for the so-called Harris function of certain supercritical ordinary GWP, see e.g.
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Biggins and Nadarajah(1993) and the references therein.
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