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5.9 Effects of Sexual Reproduction
G. Alsmeyer

To examine the effect of sexual reproduction on extinction probabilities, we turn to
the Galton—Watson process with mating, which is introduced in Section 2.8. Recall
that in this model the nth generation consists of F;, females and M, males, who
form Z, = ¢(F,, M,) couples where F,, and M, are random variables and ¢ is a
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deterministic function, called a mating function. Each couple produces offspring
independently of all other couples and according to the same distribution. Thus,
let for each couple p;; denote the probability of producing j female and k male
children. With X; and Y, denoting, respectively, the number of female and male
offspring of the kth couple of the nth generation (labeled in arbitrary fashion), we
arrive at

Zn Zn
Fn—H = Z Xk and Mn—H = Z Yk (5125)
k=1 k=1

for n > 0, where the (X, Y;) are independent and identically distributed. This is
the familiar structure for the Galton—Watson branching process with the one, but
important, difference that here the summation ranges over the number of couples
of the preceding generation. Choosing the “asexual” mating function ¢ (x, y) = x,
we see that Z, just equals the number of females in the nth generation (Z, = F,
for all n > 0) and is, indeed, a classic branching process.

From a mathematical viewpoint it is desirable to restrict the class of offspring
distributions to facilitate explicit computations. Daley (1968) gave two alternative
possibilities:

Assumption 5.2 Conditionally on the total number of offspring, their sex is deter-
mined at random (analogously to flipping a, possibly biased, coin). More formally,
if pj+x denotes the probability that a couple produces j + k children, and if the
probability that a child is female equals 6, then

i+ k\ .
Pik = (J i )91(1 — )" Pk (5.126)
forall j, k> 0.

Assumption 5.3 Another possibility is that the numbers of male and female off-
spring are independent with a possibly different distribution. In this case

pik = pj Py (5.127)

for all j,k > 0, where pf and p,i” denote the probabilities that a couple has,
respectively, j female and k male children.

The mechanism that corresponds to Assumption 5.2 is most common in mam-
mals, and occurs in humans with 6 = 0.5. Assumption 5.3 may be reasonable
in situations with environmental sex determination, such as temperature depen-
dence in many reptiles [for examples, see Bull (1983)]. The two mechanisms are
equivalent for Poisson-distributed numbers of male and female offspring, so As-
sumption 5.3 with (p[");0 and (p}");=0 Poisson distributions with means m” and
m™ | respectively, is equivalent to Assumption 5.2 with the Poisson distribution
(p;)j=0 with mean m? +m™ and 6 = m* /(m* + m™).

Let us stipulate without further discussion that hereafter (p; x); x>0 always sat-
isfies Assumption 5.2 or 5.3 and, further, that there is a positive probability of
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producing offspring that are of one sex only, that is,
max(po.e, Pe0) > 0, (5.128)

where poe = D ;o0 Pok and peo = ijo pj.0 denote the respective probabili-
ties that a couple has only male or only female offspring. This condition holds
automatically under Assumption 5.2 because 0 < 6 < 1, and is equivalent to
max(p{’, p}') > 0 under Assumption 5.3. As before, we assume that the mating

function ¢ is common sense and superadditive (see Section 2.8).

5.9.1 Criticality

We now turn to the fundamental question of finding conditions that guarantee cer-
tain ultimate extinction of a Galton—Watson process with mating (Z,),>o. To be
more precise, let

Q; =P(Z, =0eventually|Z; = j) (5.129)

denote the extinction probability given j > 1 ancestor couples. Then the question
in its most ambitious form may be restated as: Is there an intuitive condition for
Q01 = 0, = --- =1, as for the simple Galton—Watson process, where we know
that certain extinction occurs if, and only if, each individual produces at most one
child on average and has a positive chance of having no children?

The following example, from Hull (1982), shows that one cannot expect an
equally simple answer for processes with sexual reproduction. Consider the mat-
ing function ¢(x, y) = 0if x =0ory =0, and ¢(x, y) = x+y— 1 otherwise. Let
pj.k be of the form of Equation (5.126) for some 0 < 6 < 1 and with (p;);>o de-
fined through p3 = 1, and hence p; = 0 otherwise. Then, every couple has exactly
three children. Nonetheless, extinction occurs if, for some n > 0, all couples of the
nth generation produce only female or only male offspring. By comparison with a
process of an inbreeding population in which couples are formed only by children
of the same parents, Hull showed that Q; < 1 for all j > 1 and any choice of ¢
(see Theorem 5.10 and its proof in Box 5.3). This may come as a surprise because

m = E[Z|Zo=1] = 2(1 — 6% — (1 — )% (5.130)

is strictly less than 1 if & = 0.8. However, as pointed out later by Bruss (1984),
more relevant here are the average unit reproduction means

1
m; = }E[Zn+1|Zn =1, j=>1, (5.131)

which give the mean population growth rates per generation for the various levels
j. For the simple Galton—Watson process this is disguised by the lucky coinci-
dence that m; does not depend on ;. In the given example,

3j—1

(1—-0%—1-0)¥), (5.132)

mj:

which, for any choice of 6, increases to 3 as j tends to infinity. In the case 8 = 0.8,
we thus see that the population, when originating from one ancestor couple, can
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actually survive because, with positive probability, it eventually reaches a level at
which the growth becomes supercritical (m; > 1, for all sufficiently large j).

It is quite intuitive, and actually confirmed by the following result of Daley
et al. (1986), that this latter observation holds true more generally.

Theorem 5.10 For a Galton—Watson process (Z,),>0 with a common sense, su-
peradditive mating function {, the average reproduction means m; are convergent
to the limit ms, = supy.; mg. Furthermore, m, < 1 implies certain extinction for
any initial population size (i.e., Q1 = Qs = --- = 1), while in the case mq, > 1
(ultimate supercriticality) the population survives with positive probability for a
sufficiently large initial population size, in fact 1 > Q;, > Qj,+1 > --- for some
positive integer .

For those readers who wonder whether there are examples of ultimately supercrit-
ical processes with common sense superadditive mating functions that die out if
the initial population size is too small, we note that this happens, for instance, if
the mating function ¢ is chosen such that ¢ (x, y) = 0 whenever x or y is less than
some (arbitrarily chosen) threshold. Other, less trivial examples can also be given,
but further discussion is omitted because the biological relevance of any such ex-
ample seems doubtful. We add in support of the latter statement that, whenever
the considered population has a positive chance of increase at any given level i,
formally stated as P(Z,+, > i|Z, = i) > O for all i € IN, then ultimate super-
criticality implies a positive chance of survival for all initial population sizes, so
ip=1and 1 > Q1 > O, > ---. Since, by the Strong Law of Large Numbers
(see the Appendix), X; = j~'>/_ X;and ¥; = j~' Y/_, ¥; tend to the average
numbers of female and male children per couple, m’ and m™, writing

J J
meo = lim B[¢ (Y Xp, 3 ¥)|/j = lim E[¢(jX;. j¥)]/i, (5133
i=1 i=1
it should not be surprising that one can show that
Mo = lim E[¢(jm", jm™)]/j = r(m", m™) (5.134)
Jj—>00

for a suitable function r (see Daley ef al. 1986, Lemma 2.3). We note in passing
the technical point that m” and m™ need not be integers, but that, by linear interpo-
lation, ¢(x, y) can always be defined for all pairs (x, y) of non-negative numbers
without losing superadditivity. For the examples given in Section 2.8 this is clear
anyway. Although it often may be hard to determine r explicitly, there are many
examples of ¢, including ours, for which this is easy. In fact, ¢(x, y) = min(x, dy)
implies r = ¢ and mo, = min(m’, dm™) and ¢(x,y) = xmin(l, y) implies

r(x,y) =x and mq, = m".
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Box 5.3 Proof of Theorem 5.10

In the following we present the main arguments of the proof, without technicalities.
The first observation to make is that

PZuer = j1Zo = 1) =P(£(3 Xuoro D Vo) = J) (a)
k=1 k=1
and, since the mating function ¢ is monotonic in each argument, this implies
i i i+1 i+1
P(Z, > k|Zo = i) = P(;(ZX-, RO k) < P(g(ZX-, 3y > k)
j=1 j=1 j=1 j=1
=P(Z >k|Zy=i+1) (b)

for all i, k € INy. So the probability of exceeding a size k in the next generation
forms an increasing function of the current population size. A Markov chain with
this property is called stochastically monotone. By an easy inductive argument, one
can prove that Equation (b) generalizes to

P(Z, > k|Zo=1i) < P(Z, > k|Zo =i+ 1) (©)

foralli,k =0,1,2,... andn = 1,2, ..., which in turn yields the important fact
that the extinction probability Q; is a decreasing function of the initial population
size i. Namely, by letting » tend to infinity in Equation (c),

1— Q0i=lim P(Z, > 01Zg =i)< lim P(Z, > 0|1 Zp =i + )=1— 01, (d)

for all i € IVy. For a more intuitive comparison argument, suppose the population
starts with i 4+ 1 ancestor couples (Zy = i + 1). Choose an arbitrary subset of
i couples and denote by (Z),>( the process based on this subset, hence Z;, = i.
Then the Z; couples that form the first generation of the original population are
those formed by the offspring of the i ancestor couples of the subpopulation plus,
generally, some more because of the one additional ancestor couple in the original
population and the monotonicity of the mating function. This shows Z| < Z; and
finally leads to the conclusion that Z/, < Z, for all n > 0 when repeating the argu-
ment for the subsequent generations. Since the extinction probabilities of (Z,),>0
and (Z)),>0 are Q,1; and Q;, respectively, the inequality Q; > Q,, follows as a
consequence.

We now show that m; converges to mq, = sup,.., m. Indeed, from the definition
in Equation (5.131) -

Jjtk Jj+k
G+ homj = BLZi1Zo = j + K1 = E[¢ (Y X1, Y1) ©
I=1 =1
and from the superadditivity of ¢, the result is larger than or equal to
J j Jj+k jtk
E[e(X % Y] +E[e(Y x> n)]. (f)
I=1 1=1 I=j+1  I=j+l continued
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Box 5.3 continued

From the independence and identical distribution of the offspring variables (X, Y;),
it follows that this equals

E[@(ijxz, Xijn)] +E[§(ixz, in)]

=1
=E[Z|Zy = jl+ E[Z\|Zy = k] = jm; + km, (2

for all j, k > 1. Combining Equation (e) with Equation (g), we find that (j + k)
mji > jmj + kmy for all j, k > 1, which implies that jm; is superadditive.
Applying standard results on superadditive functions to (jm;);>; (e.g., Hille and
Phillips 1957) then yields the asserted convergence of the m; to m,, = sup,. my.
Suppose now that m,, < 1 and thus m; < 1 forall j > 1. Then -

E[Zyi|Z, =i] = im; < i (h)

holds for all i, n > 0. A stochastic sequence with this property is called a super-
martingale (see the Appendix). A fundamental result from the theory of stochastic
processes says that every non-negative supermartingale converges to a finite ran-
dom variable, hence Z, — Z, (for any given initial population size). However,
Z~, must then be identical to 0 by the extinction—explosion dichotomy (see Sec-
tion 5.2), and so Q; = O, = --- = 1, as asserted.

To see that Q; < 1 for all sufficiently large i in the case m,, > 1 is more
difficult and too technical to be presented here. However, a rather simple argument
from Hull (1982) exists under the stronger condition m; > 1, and is again based
on a comparison of (Z,),>o with another process, a supercritical Galton—Watson
process. Define Z) = Z; and then, recursively,

z

)/171

Z, = (X, Y)) (i)
j=1

for n > 2. One may think of (Z)),>¢ as describing an inbreeding population in
which couples are formed according to the same mating function, but only by chil-
dren of the same parents. The superadditivity of ¢ implies

Zy Zy Zy
Zy=) ¢(XnY) < ¢(D X ) Y) =271 ()
Jj=1 J=1 Jj=1
and then, inductively, Z/ < Z, for all n > 0. Since all {(X;, ¥;) are independent
with the same distribution (py)i=0, say, (Z)),>o is distributed as a simple Galton—
Watson process with offspring distribution (py)r>o. It is further supercritical be-
cause E[¢ (X, Y1)] = E[Z,|Zy, = 1] = m; > 1. Consequently, (Z)),>o survives
with positive probability for any initial population size and so (Z,),>o also does
(e,1>01>0y>--+).
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5.9.2 Sexual versus asexual reproduction:
The extinction probability ratio

Given a large initial population size, how does mating affect the extinction prob-
ability as compared to the asexual case? This interesting and natural question
appears to be a hard one from a mathematical point of view, which may be why
only very few contributions to this subject are found in the literature, namely Daley
et al. (1986) and Alsmeyer and Rosler (1996, 2002). For the classic basic branch-
ing process, the extinction probability Q; given an initial size i satisfies Q; = Q‘i
and can be calculated exactly because Q; is found as the smallest solution in [0, 1]
to the equation f(s) = s, where f(s) = ijo pjs’ denotes the generating func-
tion of the offspring distribution. Unfortunately, there is no such simple way to
compute Q; for Galton—Watson processes with mating, whatever the choice of the
mating function.

Daley et al. (1986) suggest a finite Markov chain approximation, which is de-
scribed roughly as follows. Let (Z,),>0 be a Galton—Watson process with super-
additive mating function ¢ and note that (Z,),>o forms a temporally homogeneous
Markov chain with transition matrix P = (P;;); j>o, that is,

Py = P(Zy = jlZy— =1) (5.135)

denotes the conditional probability that, at any time n = 0, 1, 2, ..., the popula-
tion size changes from i to j. The state O is absorbing and thus Pyy = 1. The
extinction—explosion dichotomy further implies that, in the case of survival, the
chain is asymptotically absorbed at co. Moreover, the latter is more and more
likely to happen if the initial population size becomes large. Hence, the proba-
bility of extinction (absorption at 0) should only change very little if, for some
integer N considerably larger than the initial state, (Z,),>¢ 1s replaced with the fi-
nite Markov chain (Z,,(N)),>0, say, which evolves exactly as (Z,),>¢ until a state
N +1i,i > 1, is hit, in which case the latter chain is absorbed at N. The extinction
probabilities of both chains then only differ by the probability of the rare event that
(Z,)n>0 dies out after exceeding the high level N. However, extinction probabil-
ities for the finite Markov chain (Z,(N)),>0 can be obtained as the solutions to a
finite system of linear equations.
To make this precise, fix a large integer N and let (Z,,(N)),>0 be defined as

Z, ifn < T(N)

Zrny, ifn>T(N) ~ (5.136)

Z,(N) = Zninn, (V) = {

where T (N) is the first time k is such that Z;, > N. This chain has the transition
matrix

1 0O ... 0 0
Po Py ... Py 1=-N, P,
PN)=| : : o : (5.137)
Pvo Pyi ... Pyy 1=YN Py

0 o ... O 1
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The extinction probabilities Q;(N) = P(Z,(N) = 0eventually|Zyo(N) = i),

i =1,...,n, satisfy the system of linear equations
N
Qi(N) = Po+ Y PjQj(N), i=1,...,N, (5.138)
j=1

which in matrix form reads

Q(N) = (I = R(N)™'Py(N), (5.139)
where
O1(N) Py Pi ... P
Q(N)= : , P(N)=| + |, R(N)=| + .. :
On(N) Pno Pyi ... Pwwn
(5.140)

and [/ is the identity matrix. Note that
(I—R(N) '=IT+R(N)+R(N?*>+---. (5.141)
The following result from Daley et al. (1986) provides an estimate for Q; — Q; (N)

for N > i and is stated without proof.

Theorem 5.11 Given a Galton—Watson process (Z,),>o with superadditive mating
function,

(5.142)

Oii+j—1) < 0 < min(l Qi t/j—1) )

1= +j-1
foralli, j > 1.

Daley et al. (1986) used this finite chain approximation to compute the extinc-
tion probabilities Q; of supercritical processes with monogamous or (unilateral)
promiscuous mating functions for various initial generation sizes i. The numbers
of female and male offspring per individual were assumed to be independent, with
a Poisson distribution of mean 1.2, that is,

F M 2120

p; =p; =e T j=0,1,2,.... (5.143)
The simple (asexual) branching process with this offspring distribution has extinc-
tion probabilities Q' fori > 1, where Q = 0.6863. These values can be compared
to the respective extinction probabilities Q; for the monogamous or (unilateral)
promiscuous branching processes, which are clearly larger. Based on the numbers
in Daley et al. (1986), Table 5.6 shows the values of the extinction probability ratio
R; = Q;/0.6863 for various initial generation sizes i.

In the monogamous case R; apparently tends to infinity. Daley ef al. (1986)
note that there does not appear to be a simple way to find the precise asymptotic
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Table 5.6 Extinction probability ratios for various initial generation sizes.

Initial Mating type

generation size Asexual Monogamous Promiscuous
i 0.6863' R; = Q;/0.6863
1 0.6863 1.4530 1.2439
2 0.4710 2.0964 1.3161
3 0.3233 2.9938 1.3300
4 0.2219 4.2231 1.3308
5 0.1523 5.8779 1.3300
6 0.1045 8.0699 1.3292

10 0.2318x 107! 25.0216 1.3296

20 0.5374x1073 204.1310 1.3295

40 0.2888x107° 2637.1191 1.3296

60 0.1552x107° 12847.9381 1.3293

behavior of R;, but that, by a very rough heuristic argument based on the Cen-
tral Limit Theorem, it seems plausible that R; ~ exp(c«/zT ) for some ¢ > 0 and
sufficiently large i. They also point out that, in the promiscuous case, R; seems
to converge rapidly to about 1.33, but do not give a theoretical explanation for
the particular value. However, convergence of R; is quite plausible because the
promiscuous process behaves exactly like the asexual process that pertains to the
female subpopulation, as long as at least one male is born in each generation. An
additional risk of extinction is caused only by the probability that a generation
may have no male offspring at all, which becomes more and more unlikely for in-
creasing initial population sizes. Based on these observations Alsmeyer and Rosler
(1996, 2002) provide a deeper analysis of promiscuous processes with offspring
distributions that satisfy Assumption 5.3. Although the mathematical details are
far beyond the scope of this survey, as they involve potential theoretic aspects of
branching processes, we summarize the major findings from these authors in The-
orem 5.12.

So we consider a Galton—Watson process with (unilateral) promiscuous mat-
ing (Z,)n=o that has probabilities p;x = p; p}’ of having j daughters and k
sons, respectively, per couple. Since Z, equals the number of females in the nth
generation, as long as at least one male is alive it follows easily with Assump-
tion 5.3 that the extinction probabilities Q; depend on the male offspring distribu-
tion (p)=o only through p(])” , the probability that a couple has no male offspring.

Let f(s) =) i=0 P JF s/ be the generating function of the female offspring distribu-

tion ( pf )j=0, [ 1ts nth iterate (see Section 5.3), and Q the extinction probability of
the associated simple Galton—Watson process, say (F},),>0, wWith this offspring dis-
tribution. Hence, Q is the smallest solution of f(Q) = Q in [0, 1], and f,(s) 1+ O
foreachs < Q.

Theorem 5.12 Suppose that m* = ijl jpf > land k = pé"f < 1
(a) The following assertions hold true for all i > 1:
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1. Ifk < pg, then

1< R < 14— (5.144)
Po
2. Ifk :p(’;, then
1-0
l+ ———— < R < 2; (5.145)
1+Q_p0
3. If pt <k < Q, then
1-— 1 y
=0 g < (n+2)(—+p—°>, (5.146)
kQ+ (1 —x)p I —« K

where n is determined through f, (p(’;) <k < fn+1(pg);
4. If « = Q, then
. S (5.147)
Qa—Q)+U—-0) a; l—qg ¢
where a; = E(t|t < 00, Fy =1i)and t =inf{n > 0: F, = 0};
5. Ifk > Q, then

P A ACV R (5.148)
K' K — fK)
(b) If 0 < k < Q, then convergence of R; does not hold in general, while
lim 1 LRy By ific = Q (5.149)
o\ Q) )4 el PETE '
and

. R .
Im — =1 ifk > Q. (5.150)
i—o00 K!

The most intriguing result stated in Theorem 5.12 is that for 0 < k < Q conver-
gence of R; fails to hold in general. This is even more surprising considering that
all computational studies of R; for this case indicate the contrary, namely a rapid
convergence to some finite value, as in the above example studied by Daley et al.
(1986); see Alsmeyer and Rosler (1996) for some examples. The disclosed phe-
nomenon belongs to the class of so-called near-constancy phenomena, which also
show up in other problems in the theory of branching processes (see also Biggins
and Nadarajah 1993). It means that a considered sequence is seemingly conver-
gent, but actually oscillates in a very small range (of the order 10~* or smaller).
The convergence results, Equation (5.149) and Equation (5.150), are much more
appealing to intuitive thinking, their interpretation being that for k > Q, the ex-
tinction of a population with large initial size is more likely to be caused by the
disappearance of males than that of females.
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Box 5.4 Lotka’s data reconsidered by Hull

Lotka (1931a, 1931b) calculated the extinction probability of a male line of descent
from one newborn male. Using data from a US census of 1920, he arrived at the
conclusion that this risk equals 0.8715. His calculation, however, was based on
an asexual branching process model. Recently, Hull (2001) corrected the estimate,
using a branching process with monogamous mating. He used the offspring distri-
bution given by Lotka and sex determination according to Assumption 5.2. From
the same census data, he estimated that the probability of producing a female child,
0, equaled 0.485. With the numerical approach developed by Daley er al. (1986)
and outlined above, he arrived at an estimated extinction probability of 0.9958, ob-
viously much larger than Lotka’s estimate. This would be a grim prospect for the
survival of family names (the application that Lotka had in mind). As Hull notes,
however, this analysis is based on the assumption of a single mating unit in the ini-
tial population. Moreover, a particular name that originates from a single family has
a higher survival chance when other mating units produce females to act as mates
for future generations, especially when males from that family are highly esteemed
(Hull 1998).
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