
Über die Verteilung der Länge externer
Zweige in Koaleszenzbäumen:

Genetische Vielfalt innerhalb einer Spezies

Diplomarbeit
von

Thomas Uckelmann

September 2012

Betreut durch Prof. Dr. Gerold Alsmeyer
Institut für Mathematische Statistik



Inhaltsverzeichnis

1. Allgemeine Grundlagen 1
1.1. Markov-Prozesse in stetiger Zeit . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Markov-Sprungprozesse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3. Die minimale Konstruktion . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. ATGC’s of life 11
2.1. Das Wright-Fisher Modell . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. Der Koaleszenzprozess nach Kingman 16
3.1. Der n-Koaleszenzprozess . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2. Die Sprung-Kette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3. Der Koaleszenzprozess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4. Genealogische Bäume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4. Längenverteilung externer Zweige in Koaleszenzbäumen 37
4.1. Eine alternative Darstellung von Zn . . . . . . . . . . . . . . . . . . . . . 41

A. Appendix 57

i



Einleitung

Der n-Koaleszenzprozess nach Kingman [15] ergibt sich als asymptotisches Modell für
die Geneaologie von n Individuen einer haploiden Population der Größe 2N unter dem
Wright-Fisher Modell. Dabei lässt sich der n-Koaleszenzprozess in natürlicher Weise als
baumwertiger Prozess auffassen.

In [17] wurde als mögliches Maß für die genetische Vielfalt einer Population die Einzigar-
tigkeit eines Individuums als Zeit bis zum zeitlich nähesten gemeinsamen Vorfahren eines
Individuums und seines nähesten Verwandten innerhalb der Population eingeführt.

Für diese wurde unter Betrachtung von Laplace-Transformierten von Caliebe et al. in
[7] das Ergebnis geliefert, dass sie asymptotisch einer Verteilung mit Dichte x→ 8/(2 +
x)3, x ≥ 0, genügt. Genauer wurde gezeigt, dass die Länge Zn eines zufällig gewählten
externen Zweiges eines Koaleszenzbaumes der Konvergenzeigenschaft nZn

d→ Z genügt,
wobei die Dichte von Z gerade der eben gegebenen entspricht.

Eine unweigerliche Konsequenz ist damit, dass die genetische Vielfalt einer Population
auf eine geringe Anzahl Individuen konzentriert ist. Insbesondere kann daher der Ver-
lust einzelner Individuen große Auswirkungen auf die genetische Vielfalt der Population
haben.

Eine andere Betrachtungsweise ergibt sich mit Blick auf [12]. Dort wurde die Länge aller
externen Zweige im Verhältnis zur Länge der internen Zweige untersucht. Die dahinter-
liegende Frage ist, ob die Annahme von neutraler Selektion für eine gegebene Population
mit Mutationseinfluss gerechtfertigt ist. Die Länge aller externen Zweige korrespondiert
dabei zu der Zeit, in der Mutationen auftretenen können, welche nur ein Individuum
betreffen können.

In [13] wurde gezeigt, dass für die Gesamtlänge Ln der externen Zweige eines Koales-
zenzprozesses nach Kingman mit n externen Zweigen die Verteilungskonvergenz

1
2

√
n

lnn (Ln − 2) d→ N(0, 1)

für n → ∞ gilt, wobei wie üblich mit N(0, 1) eine Normalverteilung mit Erwartung 0
und Varianz 1 bezeichnet sei.
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Inhaltsverzeichnis

Vermöge der Unabhängigkeit des Koaleszenzprozesses und des Mutationsprozesses in
einem Koaleszenzprozess mit Mutation, kann die Länge der externen Zweige herangezo-
gen werden, um die Anzahl von Mutationen auf den externen Zweigen zu bestimmen.
Die Länge eines zufällig gewählten externen Zweiges korrespondiert unter dieser Be-
trachtung mit der Zeit, in der Mutationen das ausgewählte Individuum im Vergleich zu
seinem nähesten Verwandten verändern können.

Entsprechend des asymptotischen Ergebnisses für die Länge eines externen Zweiges lässt
sich die Verteilung der Anzahl der Mutationen auf einem externen Zweig angeben.

In dieser Arbeit wollen wir das Ergebnis von Caliebe et al. rekapitulieren.

Ich danke Herrn Prof. Dr. Gerold Alsmeyer für diesen Themenvorschlag und im Beson-
deren für seine Geduld mit mir. Desweiteren möchte ich mich bei meiner Familie für die
Unterstützung während meiner Studienzeit bedanken.
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1. Allgemeine Grundlagen

Dieses Kapitel dient dazu, einige grundlegende Definitionen und Ergebnisse der Theorie
der Markov-Sprungprozesse anzugeben, auf die im Folgenden verwiesen wird. Darüber
hinaus werden wir größtenteils auf Beweise verzichten.

Bevor wir damit allerdings beginnen, wollen wir noch einige allgemeinere Definitionen
treffen und halten entsprechend fest, dass wir mit einer Exponentialverteilung mit Pa-
rameter λ, kurz Exp(λ), eine Verteilung bezeichnen, deren Verteilungsfunktion durch
(1− e−λx)1[0,∞)(x) gegeben ist. Insbesondere berechnet sich der Erwartungswert in die-
sem Fall zu 1/λ. Ebenfalls wollen wir O in der üblichen Bedeutung des Landau-Kalküls
verstehen.

1.1 Definition
Ein topologischer Raum (S,T) heißt polnisch, wenn eine die Toplogie T erzeugende Me-
trik % existiert, so dass (S, %) ein separabler, vollständiger metrischer Raum ist.

1.2 Definition
Sei (M,d) ein metrischer Raum und bezeichne R+ = [0,∞). Dann heißt eine Funktion
f : R+ →M càdlàg (aus dem Französischen »continue à droite, limite à gauche«), falls

(i) f(t) = lims↓t f(s) für alle t ≥ 0, und

(ii) f(t−) = lims↑t f(s) für alle t > 0 existiert.

f ist also rechtsseitig stetig und besitzt linksseitige Limiten.

Wir nennen ferner einen stochastischen Prozess (Xt)t≥0 càdlàg, falls dies für seine Pfade
der Fall ist.

1.3 Definition
Gegeben einen Wahrscheinlichkeitsraum (Ω,A, P) mit einer Filtration F = (Ft)t≥0,
heißt eine nichtnegative Zufallsvariable τ Stoppzeit bezüglich F , falls

{τ ≤ t} ∈ Ft, (1.1)
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1. Allgemeine Grundlagen

für alle t ≥ 0 gilt. Wir bezeichnen ferner mit

Fτ
def= {A ∈ A : A ∩ {τ ≤ t} ∈ Ft} (1.2)

die σ-Algebra der τ -Vergangenheit.

1.1. Markov-Prozesse in stetiger Zeit

Für die allgemeine Betrachtung von Markov-Prozessen in stetiger Zeit in [1], auf die wir
hier für die Beweise der Sätze verweisen, setzen wir voraus, dass der Zustandsraum (S,S)
eines stochastischen ProzessesX = (Xt)t≥0 auf einemWahrscheinlichkeitsraum (Ω,A, P)
lokalkompakt und mit abzählbarer Basis sei, sowie S die zugehörigen Borelschen σ-
Algebra bezeichne. Da damit (S,S) insbesondere polnisch ist, existieren die im Folgenden
auftretenden (regulär) bedingten Verteilungen (vgl. Satz 53.4 in [2]).

1.4 Definition (Markov-Prozess)
Sei X = (Xt)t≥0 ein stochastischer Prozess auf einem Wahrscheinlichkeitsraum (Ω,A, P)
mit Zustandsraum (S,S) und F = (Ft)t≥0 eine Filtration.

X heißt Markov-Prozess bezüglich F , wenn er F-adaptiert ist und die Markov-Eigen-
schaft, gegeben durch

P(Xt ∈ A|Fs) = P(Xt ∈ A|Xs) P-f.s. (1.3)

für alle 0 ≤ s < t <∞ und A ∈ S, besitzt. Ferner bezeichne

Ps,t(Xs, A) def= P(Xt ∈ A|Xs) (1.4)

für alle 0 ≤ s < t < ∞ und A ∈ S die zugehörigen Übergangskerne. Falls diese so
gewählt werden können, dass sie lediglich über s − t von s und t abhängen, das heißt,
falls

P(Xt ∈ A|Fs) = P(Xt ∈ A|Xs) = P0,t−s(Xs, A) P-f.s.

gilt, so heißt X zeitlich homogen.

Im Fall der natürlichen Filtration G = (Gt)t≥0, mit Gt = σ(Xs, s ≤ t), verzichten wir auf
den Zusatz bezüglich G.

Ist der Zustandsraum (S,S) abzählbar, so nennen wir X einen Markov-Sprungprozess
oder auch zeitstetige Markovkette.
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1. Allgemeine Grundlagen

1.5 Definition
Wir sagen, ein Markov-Prozess X = (Xt)t≥0 bezüglich einer Filtration F = (Ft)t≥0 mit
Zustandsraum (S,S) auf einem Wahrscheinlichkeitsraum (Ω,A, P), erfülle die starke
Markov-Eigenschaft bezüglich τ , wenn, bedingt unter {τ <∞},

P(Xτ+t ∈ A|Fτ ) = P(Xτ+t ∈ A|Xτ ) = Pτ,τ+t(Xτ , A) P-f.s. (1.5)

für alle A ∈ S und t ≥ 0 für eine Stoppzeit τ bezüglich F gilt. Im Fall eines homogenen
Prozesses vereinfacht sich die Gestalt von (1.5) zu

P(Xτ+t ∈ A|Fτ ) = P0,t(Xτ , A) P-f.s. (1.6)

1.6 Bemerkung
Die Definition der starken Markov-Eigenschaft für beliebige Markov-Prozesse in steti-
ger Zeit verwendet rechtsseitig stetige σ-Algebren, beziehungsweise rechtsseitig stetige
Erweiterungen (vgl. Seite 57 in [8]). Für einen Markov-Prozess X = (Xt)t≥0 bezüg-
lich einer rechtsseitig stetigen Filtration F = (Ft)t≥0 sagen wir dann, dass dieser die
starke Markov-Eigenschaft besitze, falls für jede Stoppzeit τ bezüglich F bedingt unter
{τ <∞} (1.5) gilt.

Die im Folgenden betrachteten Markov-Prozesse seien nunmehr stets zeitlich homogen.
Wir führen deshalb Pt = P0,t als abkürzende Schreibweise für die Übergangskerne ein.
Darüber hinaus setzen wir P0(x, ·) def= δx, wobei δx die Einpunktverteilung in x bezeich-
ne.

Für die Übergangskerne eines homogenen Markov-Prozesses gelten die Kolmogorov-
Chapman-Gleichungen als einfache Konsequenz der Rechenregeln für stochastische Ker-
ne:

1.7 Lemma
Für die Familie (Pt)t≥0 der Übergangskerne eines zeitlich homogenen Markov-Prozesses
gelten die Kolmogorov-Chapman-Gleichungen, das heißt

Ps+t = PsPt. (1.7)

(Pt)t≥0 bildet damit eine Halbgruppe (bezüglich der Hintereinanderschaltung von Ker-
nen).

Wir weisen ebenfalls darauf hin, dass zu jeder Halbgruppe (Pt)t≥0 von Übergangskernen
auf (S,S) mit P0(x, ·) = δx ein Markov-Prozess existiert. Darüber hinaus kann die
Anfangsverteilung λ ∈W(S), wobei W(S) die Menge der Wahrscheinlichkeitsmaße auf S
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1. Allgemeine Grundlagen

bezeichne, beliebig gewählt werden. Dies ergibt sich als Anwendung des Konsistenzsatzes
von Daniell-Kolmogorov.

Insbesondere erlaubt uns dies die Betrachtung von Räumen(
Ω,A, (Xt)t≥0, ( Pλ)λ∈W(S)

)
, (1.8)

in denen X = (Xt)t≥0 unter jedem Pλ ein Markov-Prozess mit Übergangskernen Pt und
Anfangsverteilung λ ist. Wir nennen dann (1.8) ein Standardmodell für (Pt)t≥0.

1.8 Bemerkung
Es bezeichne bS den Raum der beschränkten Funktionen f : S→ S, versehen mit der
Supremumsnorm ‖ · ‖∞. Wir setzen ferner

Ptf(x) def=
∫
S
f(y)Pt(x, dy) (1.9)

für alle f ∈ bS. Vermöge der A-Messbarkeit von x→ Pt(x,A) für alle A ∈ S, definiert
dies einen linearen Operator von bS nach bS. Für diesen Operator gilt ferner Ptf ≥ 0
für alle nichtnegativen f ∈ bS, ‖Ptf‖∞ ≤ ‖f‖∞ für alle f ∈ bS, das heißt, Pt ist eine
positive Kontraktion, und man nennt (Pt)t≥0 deshalb auch eine positive Kontraktions-
halbgruppe.

1.9 Definition
Eine Übergangshalbgruppe (Pt)t≥0 heißt stochastisch, falls ‖Pt‖ = 1 für alle t ≥ 0 gilt
und andernfalls substochastisch. Dabei bezeichnet ‖·‖ die Operatornorm, definiert durch

‖Pt‖
def= sup{‖Ptf‖ : ‖f‖∞ = 1}. (1.10)

1.2. Markov-Sprungprozesse

Sei nunmehr der Zustandsraum (S,S) abzählbar. Für einen Markov-Sprungprozess ge-
mäß 1.4 stellen wir fest:

1.10 Definition
Gegeben einen Markov-Sprungprozess X = (Xt)t≥0 auf einem abzählbaren Zustands-
raum (S,S) mit Übergangshalbgruppe (Pt)t≥0, wird dieser bereits eindeutig durch
pij(t)

def= Pt(i, {j}) für i, j ∈ S festgelegt. Wir definieren deshalb

P(t) def= (pij(t))i,j∈S (1.11)

für alle t ≥ 0 und nennen (P(t))t≥0 die zu X gehörende Übergangsmatrixfunktion.
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1. Allgemeine Grundlagen

1.11 Bemerkung
Für die Übergangsmatrixfunktion (P(t))t≥0 eines Markov-Sprungprozesses X = (Xt)t≥0
gelten

(i) pij(t) ≥ 0 für alle t ≥ 0 und i, j ∈ S, sowie pij(0) = δij , wobei δij das Kronecker-
Delta bezeichnet, und damit P(0) = (δij)i,j∈S = I,

(ii)
∑

j∈S pij(t) ≤ 1 für alle t ≥ 0 und i, j ∈ S,

(iii) pij(s + t) =
∑

k∈S pik(s)pkj(t), genannt Kolmogorov-Chapman-Gleichungen; die
Halbgruppeneigenschaft lässt sich also bezüglich der gewöhnlichen Matrix-Multi-
plikation als

P(s+ t) = P(s)P(t) (1.12)

darstellen.

1.12 Definition
Eine Matrix P = (pij)i,j∈S heißt stochastisch, falls

pij ≥ 0, und
∑
j∈S

pij = 1 (1.13)

für alle i, j ∈ S gilt.

Dementsprechend nennen wir eine Übergangsmatrixfunktion (P(t))t≥0 eines Markov-
Sprungprozesses stochastisch, falls P(t) für alle t ≥ 0 stochastisch ist. Andernfalls nennen
wir (P(t))t≥0 substochastisch.

1.13 Definition
Gegeben eine Übergangsmatrixfunktion (P(t))t≥0, nennen wir diese eine Standard-Über-
gangsmatrixfunktion, falls ihre einzelnen Komponenten stetig in 0 sind, das heißt, falls

lim
t↓0

pij(t) = pij(0) = δij (1.14)

für alle i, j ∈ S gilt.

1.14 Satz
Gegeben eine Standard-Übergangsmatrixfunktion (P(t))t≥0, so ist jedes pij(t) für alle
t > 0 stetig differenzierbar. Für t = 0 gilt zumindet noch die (rechtsseitige) Differenzier-
barkeit. Bezeichnet nun

qij
def= lim

t↓0
t−1(pij(t)− pij(0)), (1.15)

so gilt ferner |qij | <∞, falls i 6= j und qii <∞ (kann aber den Wert −∞ annehmen).

5
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1.15 Definition
Gegeben eine Standard-Übergangsmatrixfunktion (P(t))t≥0, eines Markov-Sprungpro-
zesses X = (Xt)t≥0, setzen wir

Q def= (qij)i,j∈S (1.16)

und bezeichnen Q als Q-Matrix von X.

Gegeben eine Q-Matrix Q eines Markov-Sprungprozesses X = (Xt)t≥0, gilt qij ≥ 0 für
alle i, j ∈ S mit i 6= j vermöge t−1(pij(t) − pij(t)) = t−1pij(t) ≥ 0 für alle t ≥ 0. Eine
ähnliche Überlegung liefert darüber hinaus auch qii ≤ 0. Setze nunmehr

qi
def= −qii für alle i ∈ S. (1.17)

Eine Anwendung von Fatous Lemma bezüglich des Zählmaßes auf den Paaren (i, j) mit
i 6= j liefert ferner∑

i 6=j
qij =

∑
i 6=j

lim
t↓0

pij(t)
t
≤ lim inf

t↓0

∑
i 6=j

pij(t)
t

= lim
t↓0

1− pii(t)
t

= qi. (1.18)

1.16 Definition
Eine Q-Matrix Q heißt konservativ, falls∑

j 6=i
qij = qi <∞ (1.19)

für alle i ∈ S gilt.

1.17 Satz
Gegeben eine Standard-Übergangsmatrixfunktion (P(t))t≥0 mit konservativer Q-Matrix
Q. Dann ist Q der Generator der Halbgruppe mit Definitionsbereich

D(Q) =
{
f ∈ bS : ∃g ∈ bS : lim

t↓0
‖t−1(P(t)f − f)− g‖∞ = 0

}
.

1.18 Satz
Jeder càdlàg-Markov-Sprungprozess, das heißt jeder Markov-Sprungprozess mit rechts-
seitig stetigen, stückweise konstanten Pfaden, besitzt die starke Markov-Eigenschaft.

1.19 Definition
Für einen Markov-SprungprozessX = (Xt)t≥0 auf einem Zustandsraum (S,S) mit Über-
gangsmatrixfunktion (P(t))t≥0 und zugehöriger Q-Matrix Q = (qij)i,j∈S und qi = −qii
für i ∈ S, bezeichnen wir einen Zustand i ∈ S als

6



1. Allgemeine Grundlagen

(i) stabil, falls 0 < qi <∞,

(ii) absorbierend, falls qi = 0,

(iii) augenblicklich, falls qi =∞.

Darüber hinaus bezeichnen wir eine Übergangsmatrixfunktion als stabil, wenn alle Zu-
stände i ∈ S stabil sind.

In konservativen Markov-Sprungprozessen gibt es keine augenblickliche Zustände.

1.20 Definition
Ein konservativer Markov-Sprungprozess X = (Xt)t≥0 mit Werten in N0 heißt Geburts-
und Todesprozess (in stetiger Zeit), falls er von jedem Zustand n lediglich in die Nach-
barzustände n− 1, n+ 1 springen kann. Die dazugehörige Q-Matrix ist von der Gestalt

Q =


−λ0 λ0 0 0 0 · · ·
µ1 −(λ1 + µ1) λ1 0 0 · · ·
0 µ2 −(λ2 + µ2) λ2 0 · · ·
... . . .

 ,

wobei λn ∈ [0,∞), n ≥ 0 die Geburtsraten und µn ∈ [0,∞), n ≥ 1 die Sterberaten
bezeichnen. Entsprechend bezeichnen wir einen Geburts- und Todesprozess als (reinen)
Geburtsprozess, falls sämtliche Sterberaten µn = 0 sind, beziehungsweise als (reinen)
Todesprozess, falls sämtliche Geburtsraten λn = 0 sind. Im letzten Fall ist Q von der
Gestalt

Q =


0 0 0 0 · · ·
µ1 −µ1 0 0 · · ·
0 µ2 −µ2 0 · · ·
... . . .

 .

Insbesondere ist der Zustand 0 ein absorbierender Zustand für einen reinen Todesprozess.

1.3. Die minimale Konstruktion

Im Hinblick auf 1.14, stellt sich die Frage, ob auch die Umkehrung gilt, sprich, ob zu
gegebener konservativer Q-Matrix Q ein Markov-Prozess X = (Xt)t≥0 existiert, dessen
Q-Matrix gerade durch Q gegeben ist.

7
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1.21 Definition
Für einen Markov-Sprungprozess X = (Xt)t≥0, definiere die Sprungzeiten

σ0
def= 0, σn

def= inf{t > σn−1 : Xt 6= Xσn−1} (1.20)

für n ≥ 1, sowie die Absorptionszeit

%A
def= sup{σk : σk <∞} (1.21)

und die sukzessiven Eintrittszeiten in eine Menge A ∈ S

σ0(A) def= 0, σn(A) def= inf{σk > σn−1(A) : Xσk−1 ∈ A
c, Xσk ∈ A}. (1.22)

1.22 Satz
Für einen Markov-Sprungprozess X = (Xt)t≥0, mit rechtsseitig stetigen, stückweise kon-
stanten Pfaden sind die in (1.20) und (1.22) definierten Zufallsvariablen, sowie die erste
Explosionszeit, definiert als σ∞ = supn≥1 σn, Stoppzeiten.

1.23 Satz
Gegeben einen Markov-Sprungprozess X = (Xt)t≥0 in einem Standardmodell mit Stan-
dard-Übergangsmatrixfunktion (P(t))t≥0, konservativer Q-Matrix Q und kanonischer
Filtration F , sei ferner vorausgesetzt, dass σ∞ = supn≥1 σn =∞ gelte. Definiere weiter

τn
def= (σn − σn−1)1{σn−1<∞} +∞1{σn−1=∞} (1.23)

X̂n
def= Xσn1{σn<∞} +X%A1{σn=∞}. (1.24)

Dann existiert eine Übergangsmatrix P̂ = (p̂ij)i,j∈S mit

p̂ii =
{

0, falls qi ∈ (0,∞)
1, falls qi = 0,

so dass für alle n ∈ N0, j ∈ S und t ≥ 0

P(X̂n+1 = j, τn+1 > t|Fσn) =
∑
i∈S

p̂ije
−qjt1{X̂n=i} Pλ-f.s (1.25)

für alle λ ∈W(S) gilt. Insbesondere bildet X̂ unter jedem Pλ eine diskrete Markov-Kette
mit Zustandsraum S, Übergangsmatrix P̂ und Startverteilung λ. Ferner sind τ1, τ2, . . .
bedingt unter X̂ stochastisch unabhängig und genügen jeweils einer Exponentialvertei-
lung mit Parameter qX̂n−1

, das heißt τn ∼ Exp(qX̂n−1
) für alle n ∈ N.

8
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1.24 Satz
Gegeben die Voraussetzungen des vorangegangen Satzes ist die Übergangsmatrix P̂ der
eingebetteten Markov-Kette (X̂n)n≥0 wie folgt durch Q bestimmt: Falls 0 < qi <∞, gilt

p̂ii = 0 und p̂ij = qij/qi für i 6= j. (1.26)

Im Fall qi = 0 gilt p̂ij = δij für alle j ∈ S.

Mithilfe der Sätze 1.23 und 1.24 lässt sich nunmehr zu gegebener konservativer Q-Matrix
Q ein Verfahren zur Konstruktion eines Markov-Sprungprozess X = (Xt)t≥0, für den Q
die Q-Matrix darstellt, angeben. Man konstruiert eine diskrete Markov-Kette X̂ = (X̂n)n
mit Übergangsmatrix P̂ gemäß 1.24, sowie eine Folge (τn)n≥1 von exponentialverteilten
Verweildauern, τn ∼ Exp(qX̂n), die bedingt unter X̂ stochastisch unabhängig sind. Man
definiert dann σ0 = 0, σn = τ1 + τ2 + · · ·+ τn für die Sprungzeiten und setzt

Xt
def= X̂n, für alle t ∈ [σn, σn+1) (1.27)

und Xt
def= X̂n, falls σn = ∞. Dabei kann es allerdings passieren, dass unendlich viele

Sprünge in endlicher Zeit auftreten. Man spricht in diesem Fall von Explosion, charak-
terisiert durch Pδi(supn≥1 σn <∞) > 0 für ein i ∈ S.

Bei der minimalen Konstruktion wird deshalb der Zustandsraum um einen absorbieren-
den Punkt ∆ /∈ S erweitert und der Prozess zum Explosionszeitpunkt in diesem »Fried-
hof« geparkt. Dies liefert dann ebenfalls einen Markov-Sprungprozess mit rechtsseitig
stetigen, stückweise konstanten Pfaden.

Da Explosion in unserem Fall später nicht auftritt, verzichten wir an dieser Stelle auf
diese Ausführung, notieren aber zumindest noch, warum der Begriff der minimalen Kon-
struktion gerechtfertigt ist, ehe wir Bedingungen an Q angeben, die sicherstellen, dass
die minimale Konstruktion nicht-explodierend ist.

1.25 Satz
Für jede zu Q gehörende substochastische Standard-Übergangsmatrixfunktion P̃(t) =
(p̃ij(t))i,j∈S gilt

p̃ij(t) ≥ pij(t) (1.28)

für alle i, j ∈ S und t ≥ 0. Ist P(t) = (pij)i,j∈S stochastisch, gilt also pi∆(t) = 0 für
alle i ∈ S und t ≥ 0, so ist P(t) die einzige zu Q gehörende substochastische Standard-
Übergangsmatrixfunktion.

1.26 Satz (Reuters Explosionskriterium)
Die minimale Konstruktion ist genau dann nicht-explodierend, wenn x = 0 die einzige
nichtnegative und beschränkte Lösung der Gleichung Qx = x bildet.

9



1. Allgemeine Grundlagen

1.27 Proposition
Hinreichende Bedingungen dafür, dass die minimale Konstruktion nicht-explodierend ist,
sind

(i) Der Zustandsraum S ist endlich,

(ii) supi∈S qi <∞,

(iii) Die eingebettete diskrete Markovkette ist rekurrent.

10



2. ATGC’s of life

Um eine Motivation für die Betrachtung von Koaleszenzbäumen zu liefern, soll nach
einem oberflächlichen Einblick in die Genetik, inklusive einiger grundlegender Begriffs-
bildungen, auf das Wright-Fisher-Modell eingegangen werden.

Wir folgen Durrett [9] in seinem gleichnamigen Kapitel in der Feststellung, dass das
Erbgut der meisten Organismen in der Desoxyribonukleinsäure (DNS) kodiert ist. Diese
besteht im Regelfall aus zwei zu einer Doppelhelix verwobenen, komplementären Strän-
gen, bestehend aus einer Sequenz aus vier verschiedenen Nukleotiden. Ein Nukleotid
besteht dabei aus einer der vier verschiedenen Nukleobasen Adenin (A), Guanin (G),
Cytosin (C) und Thymin (T), einer Phosphorsäure (P) und einem Zucker, im Fall der
DNS, der Desoxyribose (dR). Ferner verbinden sich stets Adenin mit Thymin (über 2
Wasserstoffbrücken), sowie Cytosin mit Guanin (über drei Wasserstoffbrücken).

P dR

A

P dR

T

P dR

G

P dR

C

G

dRPdR

C

PdR

A

PdR

T

P P

P

Abbildung 2.1.: Vereinfachte Darstellung eines (inneren) DNS-Abschnittes.

Das grundlegende Prinzip der Vervielfältigung von DNS besteht in der Aufteilung der
Doppelhelix in zwei Stränge und der Neukonstruktion komplementärer Stränge, die
durch die paarweise Bindung der Basen gegebenen sind. Auf eine genauere Darstellung
des Reproduktionsverganges verzichten wir an dieser Stelle ebenfalls, fügen aber noch an,
dass das Genom eines Organismus über mehrere DNS-Stränge verteilt sein kann; beim
Menschen befindet sich beispielsweise ein Großteil des Erbgutes in den Zellkernen und
ist dort innerhalb der Chromosomen unterteilt. Wir wollen verallgemeinert im Folgenden
mit Chromosomen stets die verschiedenen DNS-Stränge eines Organismus bezeichnen.

Bevor wir nun eine einfache Variante des Wright-Fisher Modells betrachten, fassen wir
zunächst noch einige Begriffe in der folgenden Definition zusammen.
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2. ATGC’s of life

2.1 Definition
Gegeben eine Population, bezeichnen wir diese als

(i) haploid, falls die Chromosomen eines Individuums stets nur in einfacher Form
vorliegen,

(ii) diploid, falls die Chromosomen eines Individuums zweifach vorliegen.

Ferner bezeichnen wir eine bestimmte Ausprägung eines Gens an einem bestimmten
Genort als Allel.

2.1. Das Wright-Fisher Modell

Als besonders einfache Variante des Wright-Fisher Modells wollen wir nun ein Modell für
zufällige Reproduktion ohne Mutationen und Selektion hinsichtlich zweier Allele A und a
einer haploiden Population konstanter Größe 2N mit nichtüberlappenden Generationen
betrachten.

Dabei lässt sich der Evolutionsprozess wie folgt mit Hilfe eines Urnenmodelles beschrei-
ben: Bezeichnen An beziehungsweise an die Anzahl der Individuen vom Typ A bezie-
hungsweise a der n-ten Generation, so ergibt sich die (n + 1)-ste Generation durch
2N -faches Ziehen mit Zurücklegen aus einer Urne mit An Kugeln vom Typ A (und an
Kugeln vom Typ a).

Damit erhalten wir für die Verteilung der Anzahl der Allele vom Typ A in der (n+ 1)-
sten Generation eine Binomialverteilung mit Parametern 2N und p(A)

n
def= An/2N gemäß

der Faltungseigenschaft von Bernoulli-Verteilungen mit Parameter p(A)
n (vgl. Satz 26.2

in [2]).

Dabei ist zu beachten, dass die Allel-Verteilung der (n+1)-sten Generation lediglich von
der Verteilung der n-ten Generation abhängt: (An)n∈N bildet folglich einen (diskrete)
Markov-Kette.

Vermöge des Urnenmodells für den Generationswechsel, notieren wir ferner die offen-
sichtliche Feststellung, dass 0 und 2N absorbierende Zustände für (An)n∈N darstellen.
Darüber hinaus stellen wir fest, dass einer dieser Zustände nach hinreichend langer Zeit
angenommen wird.

In natürlicher Weise stellt sich damit die Frage, wie lange es dauert, bis ein Allel ausge-
storben ist.

12



2. ATGC’s of life

Wir folgen weiter [9] und bezeichnen mit

H◦n = 2An(2N −An)
2N(2N − 1)

die Wahrscheinlichkeit, dass zwei zufällig gewählte Individuen (Ziehen ohne Zurücklegen)
zum Zeitpunkt n von unterschiedlichem Typ sind. In Anlehnung an diploide Organis-
men, bei denen Heterozygotie (in Bezug auf ein bestimmtes Gen) bedeutet, dass im
Chromosomensatz zwei verschieden Allele vorliegen, nennt man H◦n die Heterozygotie
einer Population.

Wir notieren ohne Beweis:

2.2 Satz
In einem haploiden Modell für zufällige Reproduktion ohne Mutationen und Selektion
hinsichtlich zweier Allele einer Population konstanter Größe 2N gilt für die Heterozygo-
zität H◦n der Population zum Zeitpunkt n

EH◦n =
(

1− 1
2N

)n
EH◦0 .

Diese Beziehung gilt auch, wenn man in der Definition der Heterozygotie ohne Zurück-
legen zieht. Das heißt, wenn man

Hn = 2An(2N −An)
(2N)2 = 2N − 1

2N H◦n

setzt, so gilt EHn = (1− 1/2N)n EH0.

Mit Verweis auf §8, Satz 2 in [11] erhalten wir aus der Reihendarstellung der Exponen-
tialfunktion

e−x = 1− x+R(x), mit |R(x)| ≤ x2,

für alle x mit |x| ≤ 3/2.

Dies liefert für hinreichend großes 2N die asymptotische Beziehung

EHn ≈ e−n EH0

2.3 Bemerkung
Das beschriebene Urnenmodell lässt sich leicht um Abstammungsinformationen erwei-
tern: Dazu macht man die Kugeln der Anfangsgeneration unterscheidbar, beispielsweise
durch (zufällige) Durchnummerierung von 1 bis 2N . Wir können dann ein Individuum
der (n + 1)-sten Generation als Kind eines Individuums der n-ten Generation identifi-
zieren. Dementsprechend bezeichnen wir mit einer Ahnenlinie die aufsteigende Linie der
Vorfahren eines Individuums der n-ten Generation.

13



2. ATGC’s of life

Abbildung 2.2.: Realisierung des Wright-Fisher Modells für eine Population der Größe
8 über 6 Generationen mit eingetragenen Ahnenlinien (links) und einer
»entworrenen« Version (rechts).

2.4 Satz
Unter Reskalierung der Zeit bezüglich 2N Generationen genügt die Zeit τk, für die k
verschiedene Ahnenlinien existieren, einer Exponentialverteilung mit Parameter

(
k
2
)
.

Beweis. Wir vermerken zunächst, dass bei der Betrachtung von Ahnenlinien, also der Be-
trachtung eines Wright-Fisher Modells in rückwärtiger Zeit, diese lediglich verschmelzen
können. Dies ist der Fall, wenn wenigstens zwei Individuen einen direkten gemeinsamen
Vorfahren haben.

Wir betrachten deshalb zunächst die Wahrscheinlichkeit, dass k Individuen einer Ge-
neration verschiedene Eltern haben. Dazu erinnern wir an den Generationswechsel und
notieren, dass nach Ziehen vonm verschiedenen Kugeln noch 2N−m davon verschiedene
Kugeln existieren. Damit berechnet sich die gewünschte Wahrscheinlichkeit zu

k−1∏
i=0

2N − i
2N =

k−1∏
i=1

(
1− i

2N

)
= 1−

∑k−1
i=0 i

2N +O
(

1
N2

)
,

wobei im letzten Schritt das Produkt ausmultipliziert und nach den Potenzen von 2N
umsortiert wurde (vgl. auch [16]). Für die Wahrscheinlichkeit, dass k Ahnenlinien über
die ersten n Generationen bestehen bleiben, erhalten wir daher(

1− k(k − 1)
2 · 1

2N +O
(

1
N2

))n

Reskalieren wir also die Zeit mit 2N , setzen wir also t def= n/2N , so erhalten wir

lim
N→∞

(
1− k(k − 1)

2 · 1
2N +O

(
1
N2

))2Nt
= exp

(
−k(k − 1)

2 t

)
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2. ATGC’s of life

und damit für die skalierte Zeit bis zum ersten Verschmelzungsereignis eine exponenti-
alverteilte Zeit mit Parameter

(
k
2
)
.

Mit der Feststellung, dass die obige Argumentation für jeden Zeitpunkt, zu dem k Ah-
nenlinien existieren, greift, folgt damit die Behauptung.

Für die Wahrscheinlichkeit, dass mehr als zwei Individuen dieselben Eltern haben, notie-
ren wir, dass diese in O

( 1
N2

)
liegt und mithin ebenfalls asymptotisch vernachlässigbar

ist. Dazu überlegen wir uns, dass die Wahrscheinlichkeit, dass es ein Individuum der Vor-
gängergeneration mit mindestens 3 Kindern gibt, durch 2N

(
k
3
) ( 1

2N
)3 ∈ O ( 1

N2

)
gegeben

ist.

2.5 Bemerkung
Unter den Annahmen von 2.4 verschmelzen k verschiedene Ahnenlinien nach einer ex-
ponentialverteilten Zeit τk mit Parameter

(
k
2
)
zu (k − 1) verschiedenen Ahnenlinien.

Vermöge der Feststellung, dass sich in einem Modell zufälliger Reproduktion ohne Muta-
tion und Selektionsdruck hinsichtlich zweier Allele einer diploiden Population konstanter
Größe N , jedes Gen zu jedem Zeitpunkt eindeutig zurückverfolgen lässt, kann man dieses
auch als Modell für eine haploide Population konstanter Größe 2N betrachten.

Zu beachten ist allerdings, dass bei dieser Betrachtungsweise auch Selbstbefruchtung zu
berücksichtigen ist. Mit Bezug auf (14) in [16] notieren wir allerdings, dass für einen
geeignet gewählten Skalierungsparameter 2Ne = 2N/(1 + F ), wobei F abhängig von
der Wahrscheinlichkeit für Selbstbefruchtung ist, die Ahnenlinien sich gemäß der obigen
Bemerkung verhalten.

Ähnlich erhält man für eine zweigeschlechtliche, diploide Population der Größe N mit
Nm männlichen und Nf weiblichen Individuen, also N = Nm + Nf , einen Skalierungs-
parameter 2Ne = 8NmNf/(Nm +Nf ), bezüglich dem die Ahnenlinien sich asymptotisch
erneut gemäß der obigen Bemerkung verhalten (vgl (16) in [16]).
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3. Der Koaleszenzprozess nach Kingman

Wir haben gesehen, dass für eine haploide Population der Größe 2N , beziehungsweise
alternativ für eine diploide Population der Größe N mit zufälliger Rekombination, ohne
Mutation und Selektionsdruck, die Zeit, bis k Ahnenlinien zu k − 1 Ahnenlinien ver-
schmelzen, asymptotisch gemäß einer Exponentialverteilung mit Parameter

(
k
2
)
verhält.

Kingman [14],[15] definierte 1982 den n-Koaleszenzprozess als zeitstetige Markov-Kette
auf den Äquivalenzrelationen von {1, 2, . . . , n} als Approximation der Geneaolgie einer
(haploiden) Population unter dem Wright-Fisher-Model.

Bemerkenswert ist dabei, dass die Betrachtung zeitlich rückwärts stattfindet und le-
diglich die Genealogie einer Population und nicht die expliziten genetischen Strukturen
jeder Generation betrachtet. Insbesondere werden bereits ausgestorbene Erblinien nicht
betrachtet, was im Hinblick auf Simulationsverfahren auch den Rechenaufwand redu-
ziert.

3.1. Der n-Koaleszenzprozess

In diesem Abschnitt sei stets n ∈ N eine natürliche Zahl. Ferner sei, sofern nicht anders
angegeben, stets (Ω,A, P) ein Wahrscheinlichkeitsraum.

3.1 Definition (i) En bezeichne die Menge der Äquivalenzrelationen auf {1, 2, . . . , n}.

(ii) Die Äquivalenzrelationen ∆n,Θn ∈ En seien durch

∆n
def= {(i, i)|i ∈ {1, 2, . . . , n}}, (3.1)

Θn
def= {(i, j)|i, j ∈ {1, 2, . . . , n}} (3.2)

gegeben. Dann ist ∆n die Äquivalenzrelation, in der jedes Element aus {1, 2, . . . , n}
nur mit sich selbst äquivalent ist und Θn die Äquivalenzrelation, in der alle Ele-
mente aus {1, 2, . . . , n} miteinander äquivalent sind.

(iii) Für ξ ∈ En bezeichne |ξ| die Anzahl der Äquivalenzklassen von ξ. Darüber hinaus
bezeichne für k < l ≤ n

k ∼ξ l
def⇔ (k, l) ∈ ξ
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3. Der Koaleszenzprozess nach Kingman

die Äquivalenz von k und l bezüglich ξ, sowie [k] die Äquivalenzklasse von k.

(iv) Für ξ, η ∈ En bezeichne ξ ≺ η, dass η aus ξ durch das Verschmelzen zweier Äqui-
valenzklassen hervorgeht, also dass

ξ ≺ η def⇔ ξ ⊂ η, |ξ| = |η|+ 1 (3.3)

gilt.

Wir folgen nun Kingman in der Defintion des n-Koaleszenzprozesses in [14].

3.2 Definition
Ein Markov-Sprungprozess (Rt)t≥0 mit Zustandsraum En heißt n-Koaleszenzprozess, falls

R0 = ∆n (3.4)

gilt und die Übergangsraten

qξη = lim
h↓0

h−1 P(Rt+h = η|Rt = ξ)

mit ξ, η ∈ En, ξ 6= η durch

qξη =
{

1 falls ξ ≺ η,
0 sonst

(3.5)

gegeben sind.

Damit nun Q def= (qξ,η)ξ,η konservativ wird, ergibt sich für die Diagonaleinträge unwei-
gerlich:

3.3 Korollar
Es sei (Rt)t≥0 ein n-Koaleszenzprozess und ξ ∈ En. Für die Gesamtaustrittsrate

qξ = lim
h↓0

h−1P (Rt+h 6= ξ|Rt = ξ) =
∑
η 6=ξ

qξη

aus ξ gilt
qξ = 1

2 |ξ|(|ξ| − 1). (3.6)

Beweis. Die einzigen Zustände η 6= ξ, für die der Summand ungleich 0 ist, sind definiti-
onsgemäß alle η mit ξ ≺ η, also diejenigen η, welche aus ξ durch die Verschmelzung zweier
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3. Der Koaleszenzprozess nach Kingman

Äquivalenzklassen von ξ hervorgehen. Dies entspricht der Auswahl aller 2-elementigen
Teilmengen aus einer |ξ|-elementigen Menge. Damit gilt

qξ =
∑
η 6=ξ

qξη =
∑
ξ≺η

qξη =
∑
ξ≺η

1 =
(
|ξ|
2

)
= 1

2 |ξ|(|ξ| − 1)

für alle ξ ∈ En.

3.4 Bemerkung
Solche Markov-Sprungprozesse existieren und besitzen alle dieselben endlich-dimensio-
nalen Verteilungen. Darüber hinaus können diese so konstruiert werden, dass ihre Pfade
rechtsseitig stetig und stückweise konstant sind.

Vermöge der Verteilungs-Eindeutigkeit, ist es mitunter auch üblich, von dem n-Koales-
zenzprozess zu reden.

Beweis. Wir beginnen mit der Feststellung, dass En versehen mit der diskreten Topologie
insbesondere polnisch ist. Ferner haben wir Q gerade so gewählt, dass Q konservativ
ist. Mit Hinweis auf 1.27 folgt wegen der Endlichkeit des Zustandsraumes damit die
Eindeutigkeit der minimalen Konstruktion. Speziell gilt für die Übergangsmatrixfunktion
(P(t))t≥0

Pt = eQt def=
∞∑
k=0

tk

k!Q
k,

für t ≥ 0 (vgl. Korollar 3.5 in [3]).

Insbesondere gilt vermöge 1.18, dass n-Koaleszenzprozesse (mit rechtsseitig stetigen und
stückweise konstanten Pfaden) die starke Markov-Eigenschaft besitzen.

3.5 Bemerkung
Sei (Rt)t≥0 ein n-Koaleszenzprozess und ξ ∈ En mit |ξ| = k für ein k ∈ N, dann ist die
Verweildauer in ξ exponentialverteilt mit Parameter dk = 1

2k(k − 1) und hängt somit
einzig von |ξ| ab.

Beweis. Aufgrund der Markov-Eigenschaft ist klar, dass die Verweildauer eine gedächt-
nislose Verteilung haben muss und die einzige zeitstetige gedächtnislose Verteilung ist
die Exponentialverteilung. Mit Gleichung (3.6) folgt schließlich die Behauptung.

3.6 Definition und Satz
Gegeben einen n-Koaleszenzprozess (Rt)t≥0, definieren wir

Dt
def= |Rt|. (3.7)
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3. Der Koaleszenzprozess nach Kingman

Dann ist (Dt)t≥0 eine zeitstetige Markov-Kette mit Zustandsraum {1, 2, . . . , n} und
Übergangsraten

lim
h↓0

h−1 P(Dt+h = l|Dt = k) =
{
dk falls l = k − 1,
0 falls l 6= k, k − 1,

(3.8)

mit dk = 1
2k(k − 1).

Beweis. Sei ξ ∈ En. Für jeden Zustandswechsel von ξ in einen Zustand η ∈ En muss
gemäß Definition |η| = |ξ| − 1 gelten. Jeder Zustandswechsel in (Rt)t≥0 entspricht also
genau einem Zustandswechsel in (Dt)t≥0 und umgekehrt. Der Prozess (Dt)t≥0 verhält
sich also in seiner Sprungdynamik wie der Koaleszenzprozess und ist mithin selbst ein
Markov-Sprungprozess. Die Übergangsrate von einem Zustand k in einen Zustand k− 1
in (Dt)t≥0 korrespondiert demnach mit den Austrittsraten qξ aus einem Zustand ξ mit
|ξ| = k im Koaleszenzprozess.
Sei (Rt)t≥0 ein n-Koaleszenzprozess und (Dt)t≥0 gemäß 3.6 definiert. Sei ferner ω ∈ Ω
und gelte Dt(ω) = k. Dann gibt es ein ξ(ω) ∈ En mit |ξ(ω)| = k und Rt(ω) = ξ(ω). Seien
ferner k, l ∈ {1, 2, . . . , n}, dann gilt:

lim
h↓0

h−1 P(Dt+h(ω) = l|Dt(ω) = k)

= lim
h↓0

h−1 P(Dt+h(ω) = l|Rt(ω) = ξ(ω))

= lim
h↓0

h−1
∑

η(ω)∈En
|η(ω)|=l

P(Rt+h(ω) = η(ω))|Rt(ω) = ξ(ω))

Für l = k−1 bedeutet dies gerade qξ(ω) und für l 6= k, k−1 sind die einzelnen Summanden
= 0.

In der üblichen Terminologie (vgl. 1.20) handelt es sich bei (Dt)t≥0 um einen reinen
Todesprozess mit Anfangszustand n und Sterberaten dk.

Darüber hinaus ist die in 3.1 definierte Äquivalenzrelation Θ ein absorbierender Zustand
für (Rt)t≥0 und dazu korrespondierend der Zustand 1 für (Dt)t≥0 absorbierend.

3.7 Proposition
Sei (Rt)t≥0 ein n-Koaleszenzprozess und (Dt)t≥0 der assoziierte Todesprozess gemäß 3.6.
Es bezeichne τk die Verweildauer von (Dt)t≥0 im Zustand k für alle k ∈ {2, . . . , n}.

(i) Dann sind die τk unabhängig und jeweils gemäß einer Exponentialverteilung mit
Parameter dk = 1

2k(k − 1) verteilt, das heißt τk ∼ Exp(dk).
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3. Der Koaleszenzprozess nach Kingman

(ii) Die Durchgangszeit

T
def= inf{t ≥ 0|Rt = Θ} = inf{t ≥ 0|Dt = 1}

kann mittels der τk als

T =
n∑
k=2

τk

dargestellt werden.

Beweis. zu (i) Analog zu 3.5 liefert auch hier die Markov-Eigenschaft zusammen mit den
Übergangsraten von (Dt)t≥0, dass die τk jeweils exponentialverteilt mit Parameter dk
sind. Ebenfalls liefert die Markov-Eigenschaft die Unabhängigkeit vermöge der Feststel-
lung, dass die Aufenthaltsdauer in einem Zustand unabhängig vom Eintrittszeitpunkt
ist.

Ein typischer Pfad von (Rt)t≥0 ist nun eine Folge von Äquivalenzrelationen

∆ = Rn ≺ Rn−1 ≺ Rn−2 ≺ · · · ≺ R2 ≺ R1 = Θ, (3.9)

wobei der Prozess jeweils eine Exp(dk)-verteilte Zeit τk in Rk verbringt. Offensichtlich
gilt

|Rk| = k. (3.10)

Die Folge (3.9) entspricht einem typischen Pfad der eingebetteten diskreten Markovkette
des n-Koaleszenzprozesses, auch Sprung-Kette genannt.

3.2. Die Sprung-Kette

3.8 Satz
Es sei (Rt)t≥0 ein n-Koaleszenzprozess und (Dt)t≥0 der assoziierte Todesprozess, sowie
(Rk)k=n,n−1,...,1 die eingebettete diskrete Markovkette. Dann sind (Rk)k=n,n−1...,1 und
(Dt)t≥0 unabhängig und es gilt

Rt = RDt (3.11)

für alle t ≥ 0. Die Übergangswahrscheinlichkeiten der Markov-Kette (Rk) sind für ξ ∈ En,
|ξ| = k und 2 ≤ k ≤ n durch

P(Rk−1 = η|Rk = ξ) =
{

2
k(k−1) falls ξ ≺ η,
0 sonst,

(3.12)
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gegeben. Die absoluten Wahrscheinlichkeiten sind durch

P(Rk = ξ) = (n− k)!k!(k − 1)!
n!(n− 1)! λ1!λ2! · · ·λk!, (3.13)

gegeben, wobei λ1, λ2, . . . , λk die Größen der Äquivalenzklassen von ξ bezeichne.

Beweis. Gemäß der Theorie über Sprung-Ketten (vgl. 1.24), sind die Übergangswahr-
scheinlichkeiten von der Form

qξη
qξ

(ξ 6= η),

sofern qξ > 0 gilt. Zudem sind die Verweildauern bedingt unter der Sprung-Kette unab-
hängig und exponentialverteilt mit Parameter qξ.

Es gilt also für ξ, η ∈ En, |ξ| = k und ξ ≺ η

P (Rk−1 = η|Rk = ξ) =
qξη
qξ

= q−1
ξ = 2

|ξ|(|ξ| − 1)

und damit (3.12) unter Berücksichtigung von (3.10).

Für den Beweis von (3.13) führen wir eine Rückwärtsinduktion über k durch. Führe
dafür zunächst die abkürzende Schreibweise

pk(ξ)
def= P(Rk = ξ), ξ ∈ En, |ξ| = k

ein. Für den Fall k = n ist die Aussage offensichtlich richtig, denn in diesem Fall folgt
schon ξ = ∆n und damit

1 = pn(∆n) = (n− n)!n!(n− 1)!
n!(n− 1)! 1! · · · 1!︸ ︷︷ ︸

=λ1!···λn!

= 1

Gemäß (3.12) gilt ferner für η ∈ En

pk−1(η) =
∑
ξ≺η

2
k(k − 1)pk(ξ),

denn:

P(Rk−1 = η) =
∑
ξ≺η

P(Rk = ξ) P(Rk−1 = η|Rk = ξ)

=
∑
ξ≺η

2
|ξ|(|ξ| − 1) P(Rk = ξ)
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Wenn nun λ1, λ2, . . . λk−1 die Größen der Äquivalenzklassen von η bezeichnen, sind die
von ξ gerade λ1, λ2, . . . , λl−1, ν, λl − ν, λl+1, . . . , λk−1 für ein l, 1 ≤ l ≤ k − 1 und ein
ν, 1 ≤ ν ≤ λl − 1. Nehmen wir nun also an, die Aussage sei bereits für k bewiesen, so
müssen wir, um über alle möglichen ξ aus unserer Rekursionsgleichung aufzusummieren,
über alle möglichen Indizes l und alle Möglichkeiten, die l-te Äquivalenzklasse von η auf
zwei verschiedene Klassen aufzuteilen, aufsummieren. Für jedes 1 ≤ ν ≤ λl − 1 gibt es
dann

(
λl
ν

)
= λl!

ν!(λl−ν)! Möglichkeiten, ν Elemente aus der l-ten Äquivalenzklasse von η
für eine neue Klasse zu entnehmen. Nun vertauschen aber die Rollen der ν-ten und der
l-ten Klasse miteinander, weshalb dies mit einem Faktor von 1

2 korrigiert werden muss.
In Formeln geschrieben gilt dann

pk−1(η)

=
k−1∑
l=1

λl−1∑
ν=1

2
k(k − 1)

(n− k)!k!(k − 1)!
n!(n− 1)! λ1! · · ·λl−1!ν!(λl − ν)!λl+1 · · ·λk−1!12

(
λl
ν

)

=(n− k)!(k − 1)!(k − 2)!
n!(n− 1)!

k−1∑
l=1

λ1! · · ·λl−1!λl+1! · · ·λk−1!
λl−1∑
ν=1

(
λl
ν

)
(λl − ν)!ν!

=(n− k)!(k − 1)!(k − 2)!
n!(n− 1)!

k−1∑
l=1

λ1! · · ·λl−1!λl+1! · · ·λk−1!
λl−1∑
ν=1

λl!(λl − ν)!ν!
(λl − ν)!ν!

=(n− k)!(k − 1)!(k − 2)!
n!(n− 1)!

k−1∑
l=1

λ1! · · ·λl−1!λl!λl+1! · · ·λk−1!
λl−1∑
ν=1

1

=(n− k)!(k − 1)!(k − 2)!
n!(n− 1)! λ1!λ2! · · ·λk−1!

k−1∑
l=1

λl−1∑
ν=1

1. (3.14)

Die Doppelsumme in (3.14) berechnet sich ferner zu

k−1∑
l=1

λl−1∑
ν=1

1 =
k−1∑
l=1

(λl − 1) =
k−1∑
l=1

λl −
k−1∑
l=1

1 = n− (k − 1),

womit der Induktionsschritt bewiesen ist.

3.9 Satz
Gegeben ein n-Koaleszenzprozess (Rt)t≥0 mit assoziierter Sprungkette (Rk)k, sowie l <
k, ξ, η ∈ En, |ξ| = k, |η| = l, ξ ⊂ η, gilt für die bedingten Verteilungen von Rk

P(Rl = η|Rk = ξ) = (k − l)!l!(l − 1)!
k!(k − 1)! λ1!λ2! . . . λl!, (3.15)
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3. Der Koaleszenzprozess nach Kingman

wobei λ1, λ2, . . . , λl wie folgt definiert sind: Seien ηi, 1 ≤ i ≤ l die Äquivalenzklassen von
η und ξj , 1 ≤ j ≤ k die Äquivalenzklassen von ξ, so ist λi die Anzahl der Äquivalenz-
klassen von ξ, welche zu ηi verschmelzen, das heißt

λi = |{ξj |1 ≤ j ≤ k, ξk ⊂ ηi}|.

Beweis. Wir verzichten an dieser Stelle auf einen Beweis, merken aber an, dass man einen
Beweis führen kann, wenn man die Äquivalenzklassen von ξ als Individuen eines nunmehr
|ξ|-Koaleszenzprozesses auffasst. Dieser Idee werden wir im folgenden Abschnitt weiter
nachgehen und verweisen deshalb an dieser Stelle auf das noch ausstehende Ergebnis
3.11.

3.3. Der Koaleszenzprozess

Nachdem wir nun den n-Koaleszenzprozess für beliebige natürliche Zahlen n kennenge-
lernt haben, stellt sich hinsichtlich tieferer Analysen, wie zum Beispiel Grenzwertverhal-
ten von n-Koaleszenzprozessen, die Frage, inwiefern Koaleszenzprozesse für verschiedene
n in Verbindung stehen. In den Kapiteln 6 und 7 in [15], stellt Kingman zwei verschiede-
ne Konzepte der Einbettung eines m-Koaleszenzprozesses in einen n-Koaleszenzprozess
vor, Temporal Coupling beziehungsweise Natural Coupling. Als Konsequenz dieser Kon-
sistenzeigenschaft ergibt sich darüber hinaus sogar die Existenz eines Prozesses (Rt)t≥0
auf der Menge E der Äquivalenzklassen auf den natürlichen Zahlen, so dass dieser n-
Koaleszenzprozesse für alle n ∈ N enthält (vgl. Kapitel 8 in [15], oder [14]).

3.10 Bemerkung
Es sei ξ ∈ En eine Äquivalenzrelation mit Äquivalenzklassen ξ1, ξ2, . . . , ξk. Wir vermerken
zunächst, dass wir die Äquivalenzklassen nach der natürlichen Ordnung ihrer kleinsten
Elemente sortieren können, das heißt, wir schreiben

ξi ≤ ξj
def⇔ min{k : k ∈ ξi} ≤ min{k : k ∈ ξj},

wobei wir min ∅ def= inf setzen. Dann können wir jede Äquivalenzrelation in En als n-
Tupel (ν1, ν2 . . . , νn) darstellen, mit νi < νj für alle 0 < i < j ≤ |ξ| und νk = ∅ für
k > |ξ|.

3.11 Proposition (Temporal Coupling)
Es sei (R(n)

t )t≥0 ein n-Koaleszenzprozess und (Dt)t≥0 der assoziierte Todesprozess. Es be-
zeichne τk die Verweildauer von (Dt)t≥0 im Zustand k. Setze Tk

def=
∑k−1

i=0 τn−i. Definiere
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3. Der Koaleszenzprozess nach Kingman

ferner eine Abbildung κm,n : En → Em gemäß

κm,n(ξ1, ξ2, . . . , ξn) = ([1], [2], . . . , [|ξ|], ∅, . . . , ∅),

wobei (ξ1, ξ2, . . . , ξn) die in 3.10 vorgestellte Darstellung bezeichnet. Dann gilt

(κm,nR(n)
Tm+t)t≥0

d= (R(m)
t )t≥0

für einen m-Koaleszenzprozess (R(m)
t )t≥0, das heißt (κm,nRTm+t)t≥0 ist ein m-Koales-

zenzprozess.

Beweis. Wir beginnen mit der Feststellung, dass es ausreichend ist, die Behauptung
für den Übergang n → (n − 1) zu zeigen. Bezeichne also τn = inf{t > 0 : Rt 6= R0}
die erste Sprungzeit und κ

def= κn−1,n. Vermöge der starken Markov-Eigenschaft ist
(R′t)t≥0

def= (Rτn+t)t≥0 ein Markov-Sprungprozess mit derselben Sprungdynamik wie
(Rt)t≥0, gestartet in Rτn . Offensichtlich gilt R′0 = ∆m und jeder Sprung von (R′t)t≥0
induziert einen Sprung von (κR′t)t≥0 = (κRτn+t)t≥0.

Rein anschaulich kann man also für m < n einen m-Koaleszenzprozess innerhalb eines
n-Koaleszenzprozesses (Rt)t≥0 finden, indem man bis zu dem Zeitpunkt wartet, an dem
(Rt)t≥0 aus m Äquivalenzklassen besteht, und dann diese als Individuen auffasst.

Im Hinblick auf den n-Koaleszenzprozess als Modell für die Genealogie einer Auswahl
von n Individuen einer Population der Größe 2N , ist es allerdings natürlicher, statt n
Individuen eine Subpopulation von m < n Individuen zu betrachten. In Bezug zu einem
n-Koaleszenzprozess bedeutet dies die Einschränkung auf die Äquivalenzrelationen auf
m Elementen. Die positive Antwort, dass auch auf diese Art ein m-Koaleszenzprozess
innerhalb eins n-Koaleszenzprozesses gefunden werden kann, liefert nunmehr

3.12 Proposition (Natural Coupling)
Sei (R(n)

t )t≥0 ein n-Koaleszenzprozess, sowie m < n, m,n ∈ N. Sei ferner ρm,n : En → Em
definiert durch

ρm,n(ξ) def= {(i, j)|1 ≤ i, j ≤ m, (i, j) ∈ ξ}

für alle ξ ∈ En. Dann ist (ρm,nR(n)
t )t≥0 ein m-Koaleszenzprozess, das heißt

(ρm,nR(n)
t )t≥0

d= (R(m)
t )t≥0 (3.16)

für einen m-Koaleszenzprozess (R(m)
t )t≥0.

24



3. Der Koaleszenzprozess nach Kingman

Beweis. Wie im Beweis zu 3.11 vermerken wir auch hier, dass es ausreicht, den Übergang
n→ (n− 1) zu betrachten. Dies ergibt sich leicht aus der Feststellung

ρm,n = ρm,n−1 ◦ ρn−1,n

für m < n− 1.

Sei also (Rt)t≥0 ein n-Koaleszenzprozess und ρ def= ρn−1,n : En → En−1 die oben definierte
Einschränkungsabbildung. Seien ferner ξ ∈ En−1 und wähle ν ∈ En derart, dass ρν = ξ
gilt.

Darüber hinaus sei an dieser Stelle davon ausgegangen, dass (Rt)t≥0 in ν startet (vgl.
[5]): Bezeichne σν

def= inf{t ≥ 0 : Rt = ν} die (Erst-)Eintrittszeit in den Zustand ν.
Dann ist ν eine Stoppzeit (vgl. (1.22); da der Wert 0 nur angenommen wird, wenn
ν = ∆n gilt) und vermöge der starken Markov-Eigenschaft, sowie der zeitlichen Ho-
mogenität ist (Rσν+t)t≥0 ein Markov-Prozess mit denselben Übergangsraten wie ein n-
Koaleszenzprozess, der jedoch in ν startet.

Falls nun ein m ∈ {1, 2, . . . , n− 1} mit m ∼ν n existiert, das heißt, falls die Äquivalenz-
klasse von n in ν nicht einelementig ist, so gilt bereits |ν| = |ξ| und für jedes µ ∈ En mit
ν ≺ µ gilt ρν ≺ ρµ. Darüber hinaus gilt natürlich auch ρµ 6= ρµ′ für alle µ, µ′ ∈ En mit
ν ≺ µ, ν ≺ µ′, µ 6= µ′. Damit stimmt das Übergangsverhalten von (Rt)t≥0 und (ρRt)t≥0
überein.

Sei also nun die Äquivalenzklasse von n in ν einelementig und setze k def= |ν|. Bezeichne σ
die Zeit bis zum ersten Sprung aus ν heraus. Dann genügt σ einer Exponentialverteilung
mit Parameter

(
k
2
)
. Bezeichne mit µ = Rσ den Zustand von Rt nach dem ersten Sprung.

Dann entspricht die Verteilung von µ der Gleichverteilung auf der Menge der Äquiva-
lenzrelationen, welche durch Verschmelzung zweier Äquivalenzklassen von ν entstehen.
Davon sind k − 1 dieser Relationen durch Verschmelzungen der Äquivalenzklassen von
n mit einer der übrigen k − 1 Äquivalenzklassen entstanden. Bezeichne also mit N das
Ereignis, dass die Äquivalenzklasse von n in µ weiterhin einelementig ist. Offensicht-
lich gilt dann P(N) = k−2

k und, bedingt unter N, entspricht die Verteilung von ρµ der
Gleichverteilung auf den

(
k−1

2
)
möglichen Verschmelzungen zweier Äquivalenzrelationen

von ρν.

Falls also N nicht eintritt, so bezeichne mit σ′ die Zeit bis zum zweiten Sprung aus
ν heraus. Dies entspricht der Zeit bis zum ersten Sprung aus µ heraus und genügt
damit einer Exponentialverteilung mit Parameter

(
k−1

2
)
. Bezeichne mit µ′ def= Rσ+σ′

den Zustand von (Rt)t≥0 nach dem zweiten Sprung. Dann entspricht die Verteilung
von ρµ′ der Gleichverteilung auf den

(
k−1

2
)
möglichen Äquivalenzrelationen, die durch

Verschmelzung zweier Äquivalenzklassen von ρν hervorgehen.
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3. Der Koaleszenzprozess nach Kingman

ρRt verweilt nun also bis zum Zeitpunkt σ + 1{Nc}σ
′ im Zustand ξ und springt dann

beim Eintreten von N in den Zustand µ und beim Nichteintreten von N in den Zustand
µ′. Darüber hinaus hängt das Sprungziel nicht von den Zeitpunkten der Sprünge ab.

Es ist leicht einzusehen, dass die Voraussetzungen von A.6 gegeben sind. Damit genügt
also σ + 1{Nc}σ

′ einer Exponentialverteilung mit Parameter
(
k−1

2
)
.

Insgesamt verweilt also (ρRt)t≥0 eine
(|ξ|

2
)
-verteilte Zeit im Zustand ξ und springt dann

mit gleicher Wahrscheinlichkeit in eine der
(|ξ|−1

2
)
Äquivalenzrelationen, welche durch

Verschmelzung zweier Äquivalenzklassen von ξ hervorgehen.

Im Kontext des n-Koaleszenzprozesses als asymptotisches Modell für die Genealogie ei-
ner Population, erinnern wir daran, dass die Äquivalenzklassen mit Individuen assoziiert
sind. Die spezielle Wahl der Einschränkungsabbildung ρm,n bevorzugt bei der Betrach-
tung von Subpopulationen der Größe k einer Population der Größe n gerade die ersten
k Individuen.

Man überlegt sich allerdings, dass die Assoziation von Individuen und Äquivalenzklassen
auch in anderer Reihenfolge getroffen werden kann, und dass dies keine Auswirkung auf
die Gestalt der Genealogie (unter neutraler Evolution) haben sollte.

Formalisiert wird dies durch den Begriff der Austauschbarkeit (vgl. unter anderem [14]
oder [15]), auf den im Folgenden eingegangen wird.

3.13 Definition
Für n ∈ N bezeichne

(i)
Sn

def= {π : {1, 2, . . . , n} → {1, 2, . . . , n}|π bijektiv},

die symmetrische Gruppe von {1, 2, . . . , n},

(ii)
SN

def= {π : N→ N|π bijektiv},

die (unendliche) symmetrische Gruppe von N und

(iii)
Sfin
N

def= {π ∈ SN||supp(π)| <∞},

die (unendliche) symmetrische Gruppe von N mit endlichem Träger, wobei wir mit
supp(π) def= {n ∈ N|π(n) 6= n} den Träger von π bezeichnen.
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3. Der Koaleszenzprozess nach Kingman

3.14 Definition
Eine (zufällige) Äquivalenzrelation ξ ∈ E heißt austauschbar, falls ihre Verteilung inva-
riant unter der Wirkung jeder Permutation π ∈ Sfin

N
mit endlichem Träger ist, wobei die

Wirkung von π auf ξ gemäß

πξ = ξπ
def= {(i, j) : i, j ∈ N, (π(i), π(j)) ∈ ξ} (3.17)

definiert ist.

Für (zufällige) Äquivalenzrelationen ξ ∈ En reduziert sich 3.14 offensichtlich auf die
Invarianz der Verteilung von ξ unter der Wirkung der Permutationen π ∈ Sn.

3.15 Bemerkung
Man überlegt sich leicht, dass die in (3.17) definierte Abbildung Sfin

N
×E → E , (π, ξ)→ ξπ

tatsächlich eine Wirkung im Sinne der Gruppentheorie ist.

3.16 Proposition
Der n-Koaleszenzprozess nach Kingman ist austauschbar. Dabei bezeichnen wir einen
stochastischen Prozess (Rt)t≥0 mit Werten in En als austauschbar, wenn

(Rt)t≥0
d= (πRt)t≥0 (3.18)

für alle π ∈ Sn gilt.

Beweis. Der Beweis folgt unmittelbar aus der Tatsache, dass das Verhalten eines n-
Koaleszenzprozesses lediglich von der Anzahl der Äquivalenzklassen abhängt. Diese ist
invariant unter π ∈ Sn. Darüber hinaus ist π nicht nur mit der Anzahl der Äquivalenz-
klassen verträglich, sondern auch mit der Größe der Äquivalenzklassen.

Bevor wir uns nun mit der Frage nach der Existenz eines stochastischen Prozesses befas-
sen, der n-Koaleszenzprozesse für alle n ∈ N enthält, wollen wir zunächst festhalten, dass
der Raum E der Äquivalenzrelationen auf N, versehen mit einer geeigneten Topologie,
ein polnischer Raum ist.

Wir folgen dazu Lemma 2.6 in [5], definieren aber zunächst noch Einschränkungabbil-
dungen ρn : E → En, n ∈ N, analog zu 3.12, gemäß

ρn(ξ) def= {(i, j)|1 ≤ i, j ≤ n : (i, j) ∈ ξ} (3.19)

für alle ξ ∈ E .
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3.17 Lemma
Die Abbildung d : E × E → R, definiert durch

d(ξ, ξ′) def= 1
sup{n ∈ N : ρnξ = ρnξ′}

, (3.20)

für ξ, ξ′ ∈ E , mit der Konvention 1/ supN = 0, ist eine Ultrametrik.

Beweis. Wir beginnen mit der Feststellung, dass lediglich der Nachweis der starken Drei-
ecksungleichung nicht offensichtlich ist. Seien also ξ, η, ν ∈ E verschiedene Äquivalenzre-
lationen. Sei ferner d(ξ, ν) = 1/k und d(ξ, η) = 1/n. Für n ≤ k folgt d(η, ν) = 1/n ≥ 1/k.
Im Fall n > k gilt aber bereits d(η, ν) = 1/k. Denn angenommen η und ν würden auch
unter ρk+1 übereinstimmen, so wäre dies auch für ξ und ν der Fall, was einen Wider-
spruch zur Annahme liefern würde. Insgesamt ergibt sich nun

d(ξ, ν) ≤ max{d(ξ, η), d(η, ν)}, (3.21)

d ist also eine Ultrametrik.

3.18 Proposition
Der Raum (E ,d) der Äquivalenzrelationen auf N, versehen mit der in (3.20) definierten
Metrik d, ist kompakt.

Beweis. Sei (ξn)n∈N ⊂ E eine Folge von Äquivalenzrelationen auf den natürlichen Zah-
len.

Wir stellen zunächst fest, dass (ρ1ξn)n eine identische Folge ist. Mithin finden wir eine
Teilfolge (ξ1,n)n derart, dass d(ξ1,n, ξ1,n′) ≤ 1 für alle n, n′ gilt. Ferner überlegen wir
uns, dass für eine Folge (νk,n)n ⊂ E mit d(νk,n, νk,n′) ≤ 1/k für alle n, n′ die Menge
{ρk+1νk,n : n ∈ N} höchstens (k+1)-elementig ist. Dies liefert die Existenz einer Teilfolge
(νk+1,n)n derart, dass d(νk+1,n, νk+1,n′) ≤ 1/(k + 1) für alle n, n′. Zusammen ergeben
sich so Teilfolgen ξ(k) def= (ξk,n)n derart, dass ξ(k+1) eine Teilfolge von ξ(k) ist, und
d(ξk,n, ξk,n′) ≤ 1/k für alle n, n′.

Für die diagonale Folge (νn)n
def= (ξn,n)n ergibt sich damit für alle k ∈ N

ρkνn = ρkνn′ (3.22)

für alle n, n′ ≥ k, und damit d(νn, νn′) ≤ 1/k für alle n, n′ ≥ k.

Insbesondere können wir (νn)n als Äquivalenzrelation auf den natürlichen Zahlen auffas-
sen, indem wir eine Äquivalenzrelation ξ ∈ E als Element (ρnξ)n ∈×∞i=1 En auffassen.
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Das Bild von E unter der so beschriebenen Einbettung sind dann gerade die Elemente
von×∞i=1 En, die regulär im Sinne von (3.22) sind.

Damit besitzt jede Folge in (E ,d) eine konvergente Teilfolge und (E , d) ist demnach ein
kompakter metrischer Raum.

3.19 Bemerkung
Gemäß 3.3 in [10] erzeugt die Metrik d′(ξ, η) def= supn∈N 2−n1{ρnξ 6=ρnη} die von den
Einschränkungsabbildungen ρn erzeugte Topologie, das heißt die schwächste Topologie,
bezüglich der die Einschränkungsabbildungen ρn stetig sind. Ferner ist gemäß Lemma
9 in [10] der Raum (E , d′) kompakt und total unzusammenhängend und insbesondere
polnisch (vgl. auch [4]).

Man überlegt sich leicht, dass d und d′ vermöge der Beziehung

d(ξ, ξ′) = 1/k ⇔ d′(ξ, ξ′) = 1/2k

äquivalente Metriken bilden.

3.20 Satz
Es existiert ein Wahrscheinlichkeitsraum (Ω,A, P) und ein eindeutig verteilter stochas-
tischer Prozess (Rt)t≥0 mit Werten in E , so dass für die Einschränkungsabbildungen
ρn : E → En, n ∈ N, gemäß (3.19), die eingeschränkten Prozesse (ρnRt)t≥0 jeweils
n-Koaleszenzprozesse sind. (Rt)t≥0 heißt dann Kingmans Koaleszenzprozess oder Ko-
aleszenzprozess nach Kingman.

Beweis. Wir folgen [4] in der Feststellung, dass eine Äquivalenzrelation ξ auf N als eine
Funktion δ : N → N verstanden werden kann, indem wir jede natürliche Zahl auf die
kleinste zu ihr bezüglich ξ äquivalente natürliche Zahl abbilden, das heißt

δ(n) def= min{k ∈ N : k ∼ξ n}.

Man überlegt sich leicht, dass für jede Äquivalenzrelation genau eine solche Funktion
existiert und auch jede solche Funktion eine eindeutige Äquivalenzrelation beschreibt.

Damit lässt sich ein Prozess (Rt)t≥0 auf E formal als Prozess mit Indexmenge N und
Zustandsraum N

[0,∞) auffassen.

Im Hinblick auf die endlich-dimensionalen Verteilungen dieses Prozesses notieren wir,
dass für jede endliche Teilmenge I ⊂ N offensichtlich ein k ∈ N existiert, derart dass I ⊂
{1, 2, . . . , k}. Sei ferner J ⊂ I. Vermöge der Austauschbarkeit von n-Koaleszenzprozesen
dürfen wir ferner annehmen, dass I, J von der Gestalt {1, 2, . . . , l} mit l ∈ {|I|, |J |} sind.
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Mit dem Satz von Daniell-Kolmogorov (vgl. Satz 54.7 in [2]) folgt damit die Existenz
eines eindeutigen Maßes Q auf den Äquivalenzrelationen von N mit den vorgegebenen
Randverteilungen und mithin die Existenz eines eindeutig verteilten stochastischen Pro-
zesses (Rt)t≥0 auf E , derart dass (ρnRt)t≥0 der Verteilung eines n-Koaleszenzprozesses
genügt.

Für konstruktive Beweise sei an dieser Stelle unter anderem auf Theorem 3 in [14] oder
Proposition 2.1 in [4] verwiesen.

3.21 Bemerkung
Wie schon im Fall der n-Koaleszenzprozesse führt auch hier die Eindeutigkeit in Vertei-
lung dazu, dass auch von dem Koaleszenzprozess gesprochen wird.

3.22 Proposition
Der Koaleszenzprozess nach Kingman ist austauschbar.

Beweis. Es sei (Rt)t≥0 ein Koaleszenzprozess und π ∈ Sfin
N

eine Permutation der natür-
lichen Zahlen mit endlichem Träger, dann gibt es ein n ∈ N derart, dass supp(π) ⊂
{1, 2, . . . , n} gilt. Wir wir in 3.16 bereits gesehen haben, ist (ρkRt)t≥0 austauschbar für
alle k ≥ n. Damit ist aber auch (Rt)t≥0 bereits austauschbar.

Der Startzustand des Koaleszenzprozesses nach Kingman ist, wie im endlichen Fall, er-
neut die Äquivalenzrelation, in der jede Äquivalenzklasse einelementig ist. Damit gilt
insbesondere |R0| =∞. Man kann jedoch zeigen, dass der Koaleszenzprozess nach posi-
tiver Zeit fast sicher nur endlich viele Äquivalenzklassen hat. Wir notieren (vgl. Theorem
2.1 in [4]):

3.23 Proposition
Für einen Koaleszenzprozess (Rt)t≥0, gilt

P(|Rt| <∞, t > 0) = 1,

das heißt, ein Koaleszenzprozess besitzt zu jedem Zeitpunkt t > 0 fast sicher nur endlich
viele Äquivalenzklassen.

Beweis. Es ist ausreichend zu zeigen, dass für jedes ε > 0 ein M > 0 derart existiert,
dass P(|Rt| > M) ≤ ε. Dazu betrachten wir die Einschränkungen auf die eingebetteten
n-Koaleszenzprozesse (R(n)

t )t≥0
def= (ρnRt)t≥0 und wählen exponentialverteilte Zufallsva-

riablen τn mit Parameter
(
n
2
)
. Die Wahrscheinlichkeit, dass (R(n)

t )t≥0 zum Zeitpunkt t
noch mehr als M Äquivalenzklassen hat, ergibt sich als die Wahrscheinlichkeit, dass die
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Summe der ersten M Verweildauern des assoziierten Todesprozesse (D(n)
t )t≥0 den Wert

t nicht überschreitet. Vermöge der Markov-Ungleichung (vgl. Satz 17.4 in [2]) für die
monotone identische Abbildung, erhalten wir

P
(
|R(n)

t | > M
)

= P
(

n∑
k=M

τk > t

)

≤ 1
t

E
(

n∑
k=M

τk

)

≤ 1
t

∞∑
k=M

2
k(k − 1)

= 2
t

∞∑
k=M

(
1

k − 1 −
1
k

)
= 2
t(M − 1) .

Daraus ergibt sich
lim sup
n→∞

P(|R(n)
t | > M) ≤ 2

t(M − 1)

und folglich lim supn→∞ P(|R(n)
t | > M) ≤ ε für alle M > d 2

εte+ 1 und mithin

P(|Rt| > M) ≤ ε.

Sei nun εn eine monotone Nullfolge. Dies liefert eine monoton wachsende Folge (Mn)n
mit limn→∞Mn = ∞. Ferner definiert An

def= {|Rt| > Mn} eine antitone Mengenfolge
mit A def= limn→∞An = {|Rt| = ∞}. Vermöge der Stetigkeit von oben (vgl. Satz 2.3 in
[2]), gilt

P(|Rt| =∞) = P( lim
n→∞

An) = lim
n→∞

P(An) ≤ lim
n→∞

εn = 0,

und damit die Behauptung.

3.4. Genealogische Bäume

Als Prozess auf den Äquivalenzklassen von {1, . . . , n} ist ein n-Koaleszenzprozess eine
relativ abstrakte Realisierung der vergleichsweise einfachen Sprungdynamik. Mit der
Zerlegung des Prozesses in seine eingebettete diskrete Markov-Kette und zugehörigen
Todesprozess (vgl. 3.6), lässt sich auf natürliche Weise ein n-Koaleszenzprozess (Rt)t≥0
mit einem zufälligen, binären Wurzelbaum assoziieren, in welchem die Blätter mit den
verschiedenen Äquivalenzklassen korrespondieren, und die Zweige proportional zu den
sukzessiven Sprungzeiten von (Dt)t≥0 dargestellt werden (siehe auch [19]), das heißt, wir
können Koaleszenzprozesse als baumwertige Prozesse auffassen.
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3. Der Koaleszenzprozess nach Kingman

3.24 Definition
Ein gerichteter Graph G ist ein Paar (V,E), bestehend aus einer Knotenmenge V und
einer Kantenmenge E ⊂ V × V . Seien v, w ∈ V zwei Knoten. Wir sagen dann, dass eine
Kante von v nach w geht, falls (v, w) ∈ V . Da dies für unsere Fälle ausreichend ist, sei
ferner G schleifenfrei, das heißt, (v, v) /∈ E für alle v ∈ V .

Wir sagen, dass für zwei Knoten v, w ∈ V ein Pfad oder Weg von v nach w existiert,
wenn eine Folge (xn)1≤n≤k mit x1 = v und xk = w existiert, so dass

(xi, xi+1) ∈ V für alle i ∈ {1, 2, . . . , k − 1}

Ferner bezeichnen wir mit

degout(v) def= |{w ∈ V : (v, w) ∈ E}| (3.23)

degin(v) def= |{w ∈ V : (w, v) ∈ E}| (3.24)

den Ausgangsgrad, beziehungsweise den Eingangsgrad von v.

3.25 Definition
Ein Wurzelbaum ist ein gerichteter Graph T = (V,E) mit einer ausgezeichneten Wurzel
r ∈ V derart, dass

(i) für alle v ∈ V \ {r} ein Pfad von v nach r existiert, oder

(ii) für alle v ∈ V \ {r} ein Pfad von r nach v existiert.

T heißt ferner binär, falls

(i’) degin(v) ∈ {0, 2} und degout(v) ∈ {0, 1}, im Fall (i),

(ii’) degout(v) ∈ {0, 2} und degin(v) ∈ {0, 1}, im Fall (ii),

für alle Knoten v ∈ V gilt.

3.26 Definition
Wir betrachten an dieser Stelle einen schleifenfreien, ungerichteten Graph G als Paar
(V,E), bestehend aus der Knotenmenge V und der Kantenmenge E ⊂ {{v, w} : v 6=
w ∈ V }. Eine Kante ist demnach eine zweielementige Teilmenge der Knotenmenge. Wir
bezeichnen mit

deg(v) def= |{e ∈ E : v ∈ e}|

den Knotengrad von v.
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3. Der Koaleszenzprozess nach Kingman

3.27 Bemerkung
Vermöge der Feststellung, dass für einen binären Wurzelbaum mit Wurzel r ∈ V

degin(v) + degout(v)
{

= 2, falls v = r

∈ {1, 3}, sonst.

gilt, können wir einen binären Wurzelbaum auch als ungerichteten Graphen auffassen.

Ein binärer Wurzelbaum lässt sich demnach auf sehr natürliche Form als Darstellung
einer Realisierung eines n-Koaleszenzprozesses (Rt)t≥0 auffassen und konstruieren.

3.28 Bemerkung
Beginnend mit n Knoten, korrespondierend zu den Äquivalenzklassen von R0 = ∆n und
einer leeren Kantenmenge, fügt man für jedes Koaleszenzereignis einen neuen Knoten,
sowie neue Kanten zwischen diesem und den Knoten, welche zu den am Verschmel-
zungsereignis beteiligten Äquivalenzklassen assoziiert sind, ein. Offensichtlich liefert die-
se Konstruktion dann einen binären Wurzelbaum.

3.29 Definition
Sei G = (V,E) ein schleifenfreier, ungerichteter Graph, sowie |V | > 1. Ein Knoten v ∈ V
heißt äußerer oder externer Knoten, falls deg(v) = 1 gilt und innerer Knoten andernfalls.

Entsprechend heißt eine Kante äußere oder externe Kante, falls einer ihrer Endpunkte
ein äußerer Knoten ist, und innere Kante andernfalls.

Ist G ein Baum, so bezeichnen wir Kanten auch als Zweige und externe Knoten als
Blätter.

Die externen Knoten eines zur Realisierung eines n-Koaleszenzprozesses assoziierten bi-
nären Wurzelbaumes sind damit gerade die den einelementigen Äquivalenzklassen zuge-
ordneten Knoten.

3.30 Definition
Ein gewichteter Graph W ist ein Tripel (V,E,w), bestehend aus einem Graphen G =
(V,E) und einer Gewichtsfunktion w : E → R.

Für eine positive Gewichtsfunktion können wir die Gewichte über die Kantenlängen dar-
stellen. Darüber hinaus lässt sich die Konstruktion gemäß 3.28 einfach um die Konstruk-
tion einer Gewichtsfunktion mithilfe der Sprungzeiten des zugrundeliegenden Markov-
Sprungprozesses erweitern. Dabei entsteht ein Baum, in welchem alle externen Knoten
denselben Abstand zur Wurzel haben.
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Abbildung 3.1.: Zu einem Koaleszenzprozess assoziierter zufälliger, binärer Wurzelbaum
mit externen Knoten 1, 2, . . . , 7. Hierbei bezeichnen Ti die sukzessiven
Sprungzeitpunkte, d.h. Ti+1 − Ti = τi.

3.31 Definition
Für einen n-Koaleszenzprozess (Rt)t≥0 bezeichnen wir den zufälligen, binären Wurzel-
baum, der sich gemäß des oben angegebenen, pfadweisen Konstruktionsverfahrens ergibt,
als Koaleszenzbaum (zu (Rt)t≥0).

3.32 Bemerkung
In Koaleszenzbäumen nimmt 3.11 die einfache Gestalt an, den unteren Teil des Baumes
abzuschneiden.

3.33 Proposition
Für die Anzahl der Knoten eines binären Wurzelbaumes T = (V,E) gilt:

(i) Es existiert ein k ∈ N0 mit |V | = 2k − 1.

(ii) Es existieren in diesem Fall genau k externe Knoten

Darüber hinaus gibt es dann auch genau 2k − 2 Kanten.
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Beweis. Die Aussagen ergeben sich leicht per Induktion aus der Überlegung, dass je-
der Wurzelbaum T = (V,E) mit Wurzelknoten r genau zwei Unterwurzelbäume T ′, T ′′
enthält. Die Wurzelknoten von T ′ und T ′′ sind gerade die zwei Kindknoten von r. Für
die Knotenzahl von T ′ beziehungsweise T ′′ existieren dann per Induktionsvoraussetzung
k′, k′′ ∈ N0, so dass wir

|V | = 1 + (2k′ − 1) + (2k′′ − 1) = 2(k′ + k′′)− 1

erhalten. Analog ergibt sich, dass die Anzahl externer Knoten gerade die Summe über
die Anzahl externer Knoten der beiden Teilbäume ist. Als unweigerliche Konsequenz aus
der Tatsache, dass an einem Verschmelzungsvorgang stets genau 2 Kanten beteiligt sind,
wird die Wurzel des Baumes nach k − 1 Verschmelzungsvorgängen erreicht, also gibt es
2(k − 1) Kanten.

3.34 Definition
Für einen gewichteten, binären Wurzelbaum T = (V,E,w : E → R>0) mit Wurzel r,
bezeichnen wir den Abstand zweier Knoten v, w ∈ V als

d(v, w) = inf
{∑

k

w(ek) : (ek)k ⊂ E ist ein Pfad von v nach w
}
,

wobei inf ∅ = −∞ vereinbart sei und ferner die Höhe des Baumes mit

h(T ) def= sup {d(v, r) : deg(v) = 1} ,

falls |V | > 1.

3.35 Definition
Wir bezeichnen einen gewichteten, binären Wurzelbaum T = (V,E,w : E → R>0) mit
Wurzel r und |V | > 1 als regulär beziehungsweise zulässig, falls

d(v, r) = h(T )

für alle externen Knoten v gilt.

Demnach können wir jeden zulässigen, gewichteten, binären Wurzelbaum als Darstel-
lung eines Pfades eines Koaleszenzprozesses auffassen. Entsprechend können wir ein
Konstruktionsverfahren für zufällige, gewichtete binäre Wurzelbäume angeben, so dass
ihre Verteilungen gerade denen von n-Koaleszenzprozessessen entsprechen (vgl. [19] oder
[9])

Wir haben im Beweis von 3.33 gesehen, dass sich ein binärer Wurzelbaum als Baum,
bestehend aus einem Wurzelknoten und zwei Subwurzelbäumen darstellen lässt. Ent-
sprechend können wir zwei Wurzelbäume zu einem einzelnen Wurzelbaum mit neuer
Wurzel wie folgt verschmelzen:
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3.36 Proposition
Seien S = (VS , ES , wS : ES → R>0) und S′ = (VS′ , ES′ , wS′ : ES′ → R>0) gewichtete,
binäre Wurzelbäume mit VS ∩ VS′ = ∅ und Wurzeln s, s′. Sei ferner r /∈ VS ∪ VS′ , sowie
g ∈ R>0. Ohne Einschränkung sei darüber hinaus h(S) ≥ h(S′) angenommen. Vermöge
der Definitionen

V
def= {r} ∪ VS ∪ VS′

E
def= {s, r} ∪ {s′, r} ∪ ES ∪ ES′

w(e) def=


wS(e), für alle e ∈ ES ,
wS′(e), für alle e ∈ ES′ ,
g, für e = {s, r},
g + h(S)− h(S′), für e = {s′, r}

liefert dies einen gewichteten, binären Wurzelbaum T = (V,E,w) mit Höhe h(T ) =
h(S) + g. Dieser ist ferner regulär, falls S, S′ regulär sind.

Damit lässt sich nun folgendes Konstruktionsverfahren angeben:

(i) Beginne mit einem Wald T0 = (T1, T2, . . . , Tn) von einelementigen Wurzelbäumen,
etwa Ti = (i, ∅, w(i)

0 ), wobei w(i)
0 die leere Abbildung bezeichne.

(ii) Gegeben einen Wald Tk = (T1, T2, . . . , Tn−k) regulärer, gewichteter, binärer Wur-
zelbäume, generiere (unabhängig) eine exponentialverteilte Zeit tn−k mit Parame-
ter
(
n−k

2
)
, und führe dann das obige Vorgehen 3.36 mit g = tn−k solange sukzessive

durch, bis der Wald sich auf einen einzelnen Baum reduziert hat. Dies ist offen-
kundig nach n− 1 Schritten der Fall.
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4. Längenverteilung externer Zweige in
Koaleszenzbäumen

Wie wir in 3.20 gesehen haben, existiert ein Wahrscheinlichkeitsraum (Ω,A, P) und ein
stochastischer Prozess (Rt)t≥0 mit Werten in E derart, dass die kanonischen Einschrän-
kungen (ρnRt)t≥0 auf den Äquivalenzrelationen der natürlichen Zahlen in die Äquiva-
lenzrealtionen auf {1, 2, . . . , n} jeweils n-Koaleszenzprozesse sind. Ferner haben wir in
3.19 gesehen, dass E ein polnischer Raum ist. Dies ermöglicht es uns insbesondere Kon-
vergenzaussagen über Eigenschaften von n-Koaleszenzprozessen zu treffen. Ebenfalls ha-
ben wir gesehen, dass sich jeder n-Koaleszenzprozess als zufälliger binärer Wurzelbaum
auffassen lässt.

Wir folgen Caliebe et al. [7] in der Feststellung, dass sich die Länge eines zufällig ge-
wählten externen Zweiges als zufällige Summe exponentialverteilter Zuwächse auffassen
lässt und notieren dazu zunächst eine rekursive Darstellung.

Im Folgenden sei stets ein Koaleszenzprozess (Rt)t≥0 auf einem Wahrscheinlichkeitsraum
(Ω,A, P) gegeben. Aussagen zu einem Koaleszenzbaum beziehen sich dann auf den zu
(ρnRt)t≥0 assoziierten zufälligen Baum.

4.1 Bemerkung
Für einen n-Koaleszenzbaum bezeichne Zn die Länge eines externen Zweiges, welcher
zufällig aus den n externen Zweigen des Baumes ausgewählt wurde. Aus der Struktur
des Koaleszenzbaumes wird klar, dass der so gewählte Zweig entweder am ersten Koales-
zenzereignis beteiligt ist, und in dem Fall gilt Zn = Tn, oder, dass er an einem späteren
Koaleszenzereignis beteiligt ist, in welchem Fall Zn = Tn + Rn gilt, wobei Rn vermöge
3.11 gemäß Zn−1 verteilt ist, das heißt Rn

∼= Zn−1.

Daraus ergibt sich folgende Rekursion

Zn
∼= BnZn−1 + Tn, n ≥ 3, (4.1)

sowie Z2
∼= T2. Dabei sind für n ∈ {3, 4, . . . , n} die Bn bernoulliverteilt mit Parameter

1 − 2/n) und die die Tn exponentialverteilt mit Parameter λn =
(
n
2
)
. Desweiteren sind

Z2, B3, . . . , Bn, T3, . . . , Tn unabhängig.
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4.2 Proposition
Für einen zufällig gewählten externen Zweig Zn, n ≥ 3 gilt für die Erwartung und die
Varianz

EZn = 2
n
, (4.2)

Var(Zn) = 8Hn − 12 + 4/n
n(n− 1) , (4.3)

wobei Hn
def=
∑n

j=1 1/j die n-te harmonische Zahl bezeichne.

Beweis. Wir setzen zunächst Xn
def= n(n − 1)Zn. Unter Erinnerung an die rekursive

Struktur von Zn und die Rechenregeln für Erwartungswerte gemäß (4.1) ergibt sich
dann vermöge der Unabhängigkeit der Z2, B3, . . . , Bn, T3, . . . , Tn

EXn = E(n(n− 1)Zn)
= n(n− 1) E(BnZn−1 + Tn)
= n(n− 1) P(Bn = 0) E(BnZn−1 + Tn|Bn = 0)

+ n(n− 1) P(Bn = 1) E(BnZn−1 + Tn|Bn = 1)

= n(n− 1)
(

2
n

ETn + n− 2
n

E(Zn−1 + Tn)
)

= n(n− 1) ETn + EXn−1

= 2 + EXn−1 (4.4)

Iteratives Einsetzen liefert EXn = 2(n− 1) und damit folgt

EZn = EXn

n(n− 1) = 2
n
.

Zur Berechnung der Varianz, sei auf den Hinweis verwiesen, dass es sich häufig als nütz-
lich erweist, eine Funktion der eigentlich zu betrachtenden Zufallsvariablen zu untersu-
chen. Wie in [12] setzen wir nunmehr Yn

def= n(n− 1)Z2
n und erhalten

EYn = E[n(n− 1)Z2
n]

= E[n(n− 1)(BnZn−1 + Tn)2]
= n(n− 1) E(BnZn−1 + Tn)2
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Bedingen unter Bn liefert dann

EYn = n(n− 1) P(Bn = 1) E
(
(BnZn−1 + Tn)2|Bn = 1

)
+ n(n− 1) P(Bn = 0) E

(
(BnZn−1 + Tn)2|Bn = 0

)
= n(n− 1)

(
P(Bn = 1) E(Tn + Zn−1)2 + P(Bn = 0) ET 2

n

)
= n(n− 1)

(
n− 2
n

E(Tn + Zn−1)2 + 2
n

ET 2
n

)
= (n− 1)(n− 2) E(T 2

n + 2TnZn−1 + Z2
n−1) + 2(n− 1) ET 2

n

= n(n− 1) ET 2
n + 2(n− 1)(n− 2) ETnZn−1 + EYn−1. (4.5)

Nun gilt aber für die Exp(λn)-verteilte Zufallsvariable Tn

ETn = (λn)−1 = 2
n(n− 1) , (4.6)

ET 2
n = 2(λ2

n)−1 = 8
n2(n− 1)2 . (4.7)

Ebenso ist Zn−1 als Verknüpfung von Z2, B3, . . . , Bn−1, T3, . . . , Tn−1 unabhängig von Tn
und es gilt mit Verweis auf (4.2)

ETnZn−1 = ETn EZn−1 = 2
n(n− 1) ·

2
n− 1 = 4

n(n− 1)2 .

Damit ergibt sich für die Erwartung von Yn vermöge (4.5)

EYn = 8
n(n− 1) + 8(n− 2)

n(n− 1) + EYn−1

= 8(n− 1)
n(n− 1) + EYn−1

= 8
n

+ EYn−1. (4.8)

Iteratives Einsetzen liefert dann

EYn = 8
n

+ 8
n− 1 + · · ·+ 8

2 = 8(Hn − 1), (4.9)

wobei für den letzten Summanden die Beziehung EY2 = 2 EZ2
2 = 4 verwendet wurde.

Unter Berücksichtigung der Linearität des Erwartungswertes erhalten wir daher

EZ2
n = EYn

n(n− 1) = 8(Hn − 1)
n(n− 1) ,
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und damit weiter für die Varianz von Zn

Var(Zn) = EZ2
n − ( EZn)2 = 8(Hn − 1)

n(n− 1) −
4
n2 = 8Hn − 12 + 4/n

n(n− 1) .

Wir folgen nunmehr Caliebe et al. [7] in der Feststellung, dass die standardisierte Län-
ge eines zufällig gewählten externen Zweiges Zn eines Koalesezenzbaumes keiner nicht-
trivialen Verteilung genügt, genauer gilt:

4.3 Proposition
Bezeichne Zn die Länge eines zufällig gewählten externen Zweiges eines Koaleszenzbau-
mes, dann gilt

Zn − EZn√
V ar(Zn)

L1→ 0. (4.10)

Genauer gilt sogar ∥∥∥∥∥ Zn − EZn√
V ar(Zn)

∥∥∥∥∥
1

∈ O
(

1√
lnn

)
. (4.11)

Beweis. Mit der trivialen Feststellung Zn ≥ 0, liefert eine Anwendung der Dreiecksun-
gleichung für die L1-Norm unter Berücksichtigung von ‖Zn‖1 = EZn∥∥∥∥∥ Zn − EZn√

Var(Zn)

∥∥∥∥∥
1

≤
‖Zn‖1√
Var(Zn)

+ EZn√
Var(Zn)

= 2 EZn√
Var(Zn)

.

Einsetzen von Erwartungswert und Varianz gemäß 4.2 liefert ferner

lim sup
n→∞

2EZn√
V ar(Zn)

√
lnn = lim sup

n→∞
4
(
n2(8Hn − 12 + 4/n)

n(n− 1) lnn

)− 1
2

≤ lim sup
n→∞

4
(
n2(8Hn − 12 + 4/n)

n2 lnn

)− 1
2
.

Aus der bekannten Tatsache limn→∞(Hn − lnn) = γ, wobei γ die Euler-Mascheroni-
Konstante bezeichne, erhält man limn→∞Hn/ lnn = 1 und mithin

lim sup
n→∞

2 EZn√
Var(Zn)

√
lnn ≤

√
2 <∞,

und somit die zweite Behauptung.

Insbesondere konvergiert damit die standardisierte Länge eines externen Zweiges in Ver-
teilung gegen 0. Wir folgen weiter [7] in dem Bemühen, eine alternative Normalisierung
zu finden.
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4.1. Eine alternative Darstellung von Zn

Sei n ≥ 3, und Bn wie in (4.1). Setze weiterhin B2 ≡ 0. Definiere nun

τn
def= min{i ∈ {0, . . . , n− 2} : Bn−1 = 0}. (4.12)

Dann können wir die Verteilung von τn unmittelbar berechnen und erhalten:

4.4 Proposition
Für die in (4.12) definierte Zufallsvariable τn gilt

P(τn = k) = 2n− k − 1
n(n− 1) = 2

n
− 2k
n(n− 1) (4.13)

für 0 ≤ k ≤ n− 2.

Beweis. Aus der Unabhängigkeit der Bi folgt unmittelbar

P(τn = k) = P(Bn = Bn−1 = · · · = Bn−k+1 = 1, Bn−k = 0)

=
(
k−1∏
i=0

P(Bn−i = 1)
)
· P(Bn−k = 0)

=
(
k−1∏
i=0

n− i− 2
n− i

)
2

n− k
= 2n− k − 1

n(n− 1) .

Im Hinblick auf (4.1) ermöglicht uns dies nun die Darstellung von Zn als zufällige Summe
der Tk. Genauer erhalten wir

Zn
∼=

τn∑
k=0

Tn−k. (4.14)

4.5 Proposition
Für das gemäß (4.12) definierte τn gilt

τn
n

d→W, (4.15)

wobei W eine Zufallsvariable auf [0, 1] mit Verteilungsfunktion

P(W ≤ x) = x(2− x), x ∈ [0, 1] (4.16)

ist. Für die zu W gehörende Dichte gilt

fW (x) = 2(1− x), x ∈ [0, 1]. (4.17)
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Beweis. Es bezeichne bxc die untere Gaußklammer von x, das heißt bxc = max{n ∈
Z|n ≤ x}. Für x ∈ [0, 1) folgt mittels (4.12) und der einfachen Überlegung bnxc ≤ n− 1
für x ∈ [0, 1), sowie der Tatsache, dass die rechte Seite in (4.13) auch mit k = n − 1
verträglich ist,

P(τn ≤ nx) =
bnxc∑
k=0

P(τn = k)

=
bnxc∑
k=0

(
2
n
− 2k
n(n− 1)

)
= 2(bnxc+ 1)

n
− bnxc(bnxc+ 1)

n(n− 1) → 2x− x2 = x(2− x),

für n → ∞. Für x = 1 ergibt sich P(τn ≤ n) = 1 = 2 − 12. Damit folgt die ge-
wünschte Verteilungskonvergenz gegen eine Zufallsvariable W auf [0, 1] mit der in (4.16)
gewünschten Verteilungsfunktion.

Die Behauptung für die zu W gehörende Dichte erschließt sich leicht durch Ableitung
der Verteilungsfunktion von W

d
dxx(2− x) = x(1− x).

4.6 Proposition
Für den Erwartungswert und die Varianz von τn beziehungsweise W gelten

Eτn = n− 2
3 , E

(τn
n

)
→ EW = 1

3 , (4.18)

Var(τn) = n2 − n− 2
18 , Var

(τn
n

)
→ Var(W ) = 1

18 . (4.19)

Beweis. Gemäß der Definition des Erwartungswertes und unter Verwendung von (4.13)
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und A.4, gilt

E(τn) =
n−2∑
k=0

kP(τn = k)

=
n−2∑
k=0

2kn− k − 1
n(n− 1)

= 2(n− 1)
n(n− 1)

n−2∑
k=0

k − 2
n(n− 1)

n−2∑
k=0

k2

= 2
n

(n− 2)(n− 1)
2 − 2

n(n− 1)
(n− 2)(n− 1)(2(n− 2) + 1

6

= n− 2
3

Der Erwartungswert EW von W berechnet sich gemäß (4.17) zu

EW =
∫ 1

0
2x(1− x) dx

= 2
(

1
2x

2
∣∣∣∣1
0
− 2

(
1
3x

3
∣∣∣∣1
0

= 1
3 .

Es reicht nun vermöge der Linearität des Erwartungswertes der Vermerk

E
(τn
n

)
= Eτn

n
= 1

3 −
2

3n →
1
3

für n→∞.

Für die Varainz von τn betrachten wir zunächst E(τ2
n). Mit Verweis auf (A.5) für die

Summe von dritten Potenzen folgt

E(τ2
n) =

n−2∑
k=0

k2 P(τn = k)

=
n−2∑
k=0

2k2n− k − 1
n(n− 1)

= 2
n

n−2∑
k=0

k2 − 2
n(n− 1)

n−2∑
k=0

k3

= 2
n

(n− 2)(n− 1)(2(n− 2) + 1)
6 − 2

n(n− 1)
(n− 2)2(n− 1)2

4

= (n− 1)(n− 2)
6 = n2 − 3n+ 2

6 (4.20)
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Für Var(τn) gilt somit

Var(τn) = E(τ2
n)− ( Eτn)2

= (n− 1)(n− 2)
6 − (n− 2)2

9

= (n− 2)(n+ 1)
18 = n2 − n− 2

18 .

Die Varianz von W berechnet sich ähnlich der obigen Berechnung des Erwartungswertes
von W zu

Var(W ) = EW 2 − ( EW )2

=
∫ 1

0
2x2(1− x) dx

= 2
(

1
3x

3 − 1
4x

4
∣∣∣∣1
0
− 1

9 = 1
18 ,

und auch in diesem Fall reicht der Vermerk von

Var
(τn
n

)
= Var(τn)

n2 = 1
18

(
1− 1

n
− 2
n2

)
→ 1

18

für n→∞.

4.7 Bemerkung
In [7] finden wir anstelle von (4.19) mit Verweis auf [6] die Behauptung, dass für die
Varianz von τn

Var(τn) = n2 + 31n− 2
18

gelte. Dabei betrachteten Blum und François eine Zufallsvariable K, das Koaleszenzlevel
von Individuum 1, mit K = n − τn. Insbesondere bedeutet K = k also, dass das Indi-
viduum 1 beim Übergang von k → (k − 1) Äquivalenzklassen zum ersten Mal an einer
Verschmelzung beteiligt ist. Bezugnehmend auf (4.13), (4.18) und (4.19) notieren wir

P(K = k) = P(τn = n− k) = 2
n

k − 1
n− 1

für k ∈ {2, 3, . . . , n} und EK = n− Eτn = 2/3(n+ 1) in Übereinstimmung mit [6], aber

Var(K) = Var(τn) = 1
18(n2 + n− 2)

als mögliche Korrektur.
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4.8 Proposition
Für die Verteilungsfunktionen Fn(x) def= P(τn/n ≤ x) und F (x) def= P(W ≤ x), x ∈ [0, 1],
von τn/n beziehungseise W gilt

‖Fn − F‖∞ = |Fn(0)− F (0)| = Fn(0) = 2
n
. (4.21)

Beweis. Wir beginnen mit der einfachen Überlegung, dass die einzigen Punkte, für die
die Supremumsnorm angenommen werden kann, vermöge der strengen Monotonie von
F gerade die Unstetigkeitsstellen von Fn sind. Daher betrachten wir

P
(
τn
n
≤ i

n

)
=

i∑
k=0

(
2
n
− 2k
n(n− 1)

)
= 2(i+ 1)

n
− i(i+ 1)
n(n+ 1) (4.22)

für i ∈ {0, 1, . . . , n− 2} und erhalten weiterhin

P
(
τn
n
≤ i

n

)
− P

(
W ≤ i

n

)
= 2
n
− i(n− i)
n2(n+ 1) , (4.23)

womit die Behauptung bewiesen ist.

Damit erhalten wir die gleichmäßige Konvergenz von Fn(x) → F (x), welche schon
durch die Stetigkeit von F (x) gegeben ist, und darüber hinaus auch einen Hinweis
auf die Geschwindigkeit der Konvergenz der Verteilungsfunktionen. Insbesondere gilt
‖Fn − F‖∞ ∈ O(1/n).

Wir folgen weiter Caliebe et al. [7] in ihrem Beweis zur asymptotischen Verhalten von
Zn und notieren dazu analog zunächst das folgende Lemma:

4.9 Lemma
Für festes t > 0 und n/ lnn ≤ j ≤ n− n/ lnn gilt für n→∞

n∑
l=n−1

ln
(

1 + 2tn
l(l − 1)

)
= 2tj
n− j

+O
(

ln3 n

n

)
, (4.24)

wobei der Fehler unabhängig von j gewählt werden kann, aber von t abhängt.

Beweis. Definiere Restglieder Rn gemäß
n∑

l=n−j
ln
(

1 + 2tn
l(l − 1)

)
=

n∑
l=n−j

2tn
l(l − 1) +Rn,
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das heißt Rn ist von der Gestalt

Rn =
n∑

l=n−j
ln
(

1 + 2tn
l(l − 1)

)
− 2tn
l(l − 1) .

Unter Verwendung von A.2 (jeder Summand ist von der Gestalt ln(1 + x) für ein x > 0)
ergibt sich

|Rn| ≤
1
2

n∑
l=n−j

(
2tn

l(l − 1)

)2
= 2t2n2

n∑
l=n−j

1
l(l − 1)

≤ 2t2n2
n∑

l=n−j

1
(l − 1)2 ≤ 2t2n2

n∑
l=n−j

1
(l − 1)4

≤ 2t2n2
∞∑

l=n−j

1
(l − 1)4 ≤ 2t2n2

∫ ∞
n−j−1

1
(x− 1)4dx (4.25)

= 2t2n2

3(n− j − 2)3 ≤
2
3

t2n2

(n/ lnn− 2)3 (4.26)

≤ t2n2

n3/ ln3 n
= t2 ln3 n

n
,

wobei in (4.25) verwendet wurde, dass x→ 1/(x− 1)4 monoton fallend für x > 1, sowie
n/ lnn ≥ 2 für n ≥ 2 ist. Die Ungleichung in (4.26) beruht auf einer Abschätzung von j
nach oben, und der letzte Schritt verwendet erneut die Beziehung n/ lnn ≥ 2 für n ≥ 2.
Mittels dieser Abschätzung ergibt sich dann

lim sup
n→∞

∣∣∣∣Rn n

ln3 n

∣∣∣∣ ≤ lim sup
n→∞

∣∣∣∣ t2 ln3 n

n

n

ln3 n

∣∣∣∣ = t2 <∞

Damit reicht nun zu zeigen, dass∣∣∣∣∣∣ j

n− j
−

n∑
l=n−j

n

l(k − 1)

∣∣∣∣∣∣ ∈ O
(

ln3 n

n

)
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gilt, denn dann folgt
n∑

l=n−j
ln
(

1 + 2tn
l(l − 1)

)
=

n∑
l=n−j

2tn
l(l − 1) +Rn

= 2t

 j

n− j
− j

n− j
+

n∑
l=n−j

n

l(l − 1)︸ ︷︷ ︸
∈O

(
ln3 n
n

)

+ Rn︸︷︷︸
∈O

(
ln3 n
n

)
= 2tj
n− j

+O
(

ln3 n

n

)
und damit die Behauptung. Deshalb betrachten wir nunmehr

n∑
l=n−j

n

l(l − 1) = n

n∑
l=n−j

(
1

l − 1 −
1
l

)

= n

(
1

n− j − 1 −
1
n

)
= j + 1
n− j − 1 .

Insbesondere ist j/(n− j) ≤ (j + 1)/(n− j), weshalb nun∣∣∣∣∣∣ j

n− j
−

n∑
l=n−j

n

l(l − 1)

∣∣∣∣∣∣ = j + 1
n− j − 1 −

j

n− j
(4.27)

= n

(n− j)(n− j − 1)
≤ n

(n− n+ n
lnn)(n− n+ n

lnn − 1)

= n

(
n2

ln2 n
− n

lnn

)−1

folgt. Damit gilt für

lim sup
n→∞

∣∣∣∣∣∣ j

n− j
−

n∑
l=n−j

n

l(l − 1)

∣∣∣∣∣∣ n

ln3 n
≤ lim sup

n→∞

∣∣∣∣∣ n2

ln3 n

(
n2

ln2 n
− n

lnn

)−1
∣∣∣∣∣

= lim
n→∞

∣∣∣(lnn− ln2 n
)−1
∣∣∣ = 0 <∞.

Insbesondere kann der Fehler, bestehend aus Rn und der linken Seite in (4.27) unabhän-
gig von j abgeschätzt werden, hängt aber von t ab.
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Wir können nun Caliebe et al. in ihrem Resultat über die Verteilungskonvergenz ex-
terner Zweige von Koaleszenzbäumen mithilfe ihrer Laplace-Transformierten folgen und
notieren:

4.10 Satz
Gegeben externe Zweige in Koaleszenzbäumen mit Längen Zn, konvergiert nZn für n→
∞ in Verteilung gegen Z def= 2W/(1−W ), wobei W durch (4.15) gegeben ist. Damit ist
die zu Z gehörende Dichtefunktion von der Form x→ 8/(2 + x)3, x ≥ 0.

Beweis. Wir bezeichnen mit ϕn die Laplace-Transformierte von nZn, das heißt, ϕn(t) =
E exp(−tnZn), t > 0. Mit der im folgenden gezeigten punktweisen Konvergenz von ϕn
gegen die Laplace-Transformierte ϕ von Z, folgt die Verteilungskonvergenz von nZn
gegen Z (vgl. Satz 42.4 in [2]).

Seien dazu In
def= [n/ lnn, n− n/ lnn] und An

def= {τn ∈ In} mit τn gemäß (4.12)

In einem ersten Schritt vermerken wir P(Acn) ∈ O(1/ lnn), denn

P(Acn) = P(τn /∈ In) = P
(
τn
n
/∈
[

1
lnn, 1−

1
lnn

])
= 1− P

(
τn
n
≤ 1− 1

lnn

)
+ P

(
τn
n
≤ 1

lnn

)
.

Vermöge 4.8 erhalten wir für alle x ∈ [0, 1]

P (W ≤ x)− 2
n
≤ P

(τn
n
≤ x

)
≤ P (W ≤ x) + 2

n
, (4.28)

und damit bereits

P(Acn) ≤ 1− P
(
W ≤ 1− 1

lnn

)
+ P

(
W ≤ 1

lnn

)
+ 4
n

= P
(
W /∈

[
1

lnn, 1−
1

lnn

])
+ 4
n

= 2
lnn + 4

n
. (4.29)

Also gilt lim supn→∞ |P(Acn) · lnn| ≤ lim supn→∞ |2 + 4 lnn/n| = 2 < ∞, und mithin
P(Acn) ∈ O(1/ lnn).
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Für die Laplace-Transformierte ϕn(t) von Zn bedeutet dies

ϕn(t) = E exp(−tnZn) = E exp
(
−tn

τn∑
k=0

Tn−k

)

=
∫
An∪Acn

exp
(
−tn

τn∑
k=0

Tn−k

)
.

Es reicht ferner, das Integral über An zu betrachten, da wir vermöge der Beschränkung
des Integranden nach oben durch 1 nunmehr∫

Acn

exp (−tnZn) ≤
∫
Acn

1 = P(Acn) ∈ O
(

1
lnn

)
erhalten. Für die Laplace-Transformierte einer Exp(λ)-verteilten ZufallsvariablenX, λ >
0 verweisen wir auf Seite 282 in [2] und notieren,

ϕX(t) = E exp(−tX) = λ

t+ λ
, t > 0.

Damit gilt vermöge der Unabhängigkeit der Ti∫
An

exp
(
−tn

τn∑
k=0

Tn−k

)
=

∑
j∈In∩N

P(τn = j)
j∏

k=0
E exp (−tnTn−k)

=
∑

j∈In∩N
P(τn = j)

j∏
k=0

λn−k
λn−k + tn

=
∑

j∈In∩N
P(τn = j) exp

(
−

j∑
k=0

ln
(

1 + tn

λn−k

))

=
∑

j∈In∩N
P(τn = j) exp

− n∑
l=n−j

ln
(

1 + tn

λl

) ,

wobei im vorletzten Schritt die Beziehungen xy = elnxeln y = exp(ln x + ln y), sowie
ln(x) = − ln(1/x) verwendet wurden, sowie im letzten Schritt die Summe umsortiert
wurde. In Erinnerung an λl =

(
l
2
)

= l(l−1)
2 erfüllt der (negative) Exponent gerade die

Voraussetzungen von 4.9. Dies liefert∫
An

exp
(
−tn

τn∑
k=0

Tn−k

)
=

∑
j∈In∩N

P(τn = j) exp
(
− 2tj
n− j

+O
(

ln3 n

n

))

= exp
(
O
(

ln3 n

n

))∫
An

exp
(
−t 2τn/n

1− τn/n

)
,
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wobei im letzten Schritt verwendet wurde, dass der Fehler unabhängig von j abgeschätzt
werden kann.

Es gilt nun vermöge A.1 die Konvergenz von exp
(
O
(

ln3 n
n

))
→ 1, für n → ∞. Unter

Verwendung von (4.15) und der asymptotischen Vernachlässigbarkeit von P(Acn) ergibt
sich insgesamt die Konvergenz der Laplace-Transformierten von Zn gegen die Laplace-
Transformierte von Z.

Zur Bestimmung der Dichte von Z berechnen wir im Weiteren zunächst die Verteilungs-
funktion von Z mithilfe der Verteilung von W gemäß

P(Z ≤ x) = P
(

2W
1−W ≤ x

)
= P

(
W ≤ x

2 + x

)
= 2x

2 + x
−
(

x

2 + x

)2
. (4.30)

Anschließendes Ableiten liefert dann die Dichte von Z

d
dx

[
2x

2 + x
−
(

x

2 + x

)2
]

= 4
(2 + x)2 −

2x
2 + x

2
(2 + x)2 = 8

(2 + x)3 ,

und damit die Behauptung.

Im Hinblick auf Anwendungsbeispiele, notieren wir gemäß [7], dass die Konvergenz von
nZn auch unter geringeren Anforderungen an die Sprungzeiten des zugrundeliegenden
Koaleszenzprozesses gewährleistet ist. Im Besonderen reicht es aus, wenn die zugehörigen
Erwartungen mit denen der entsprechenden Exponentialverteilungen übereinstimmen,
und die Varianz nicht zu groß wird.

4.11 Satz
Die Aussage von 4.10 gilt auch, wenn man die Verteilungen der Ti lediglich vorausgesetzt
wird, dass

ETi = 2
i(i− 1) , (4.31)

lim
n→∞

n2
bnxc∑
k=0

Var(Tn−k) = 0 ∀x ∈ (0, 1). (4.32)

gilt.

Beweis. Wir beginnen mit der Feststellung, dass für festes x0 ∈ (0, 1) und m ∈ N stets
ein n0 ∈ N zu finden ist, so dass n − bnx0c ≥ m für alle n ≥ n0 gilt. Vermöge der
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Definition der unteren Gaußklammer erhalten wir byc ≤ y für alle y ∈ R und damit
n−bnx0c ≥ n−nx0 = n(1−x0). Es reicht nun die Bemerkung, dass y → (1−x0)y eine
lineare Funktion mit positiver Steigung ist.

Wir betrachten erneut (4.14) und erhalten

nZn
∼=

τn∑
k=0

nTn−k

=
τn∑
k=0

(nTn−k − EnTn−k) +
τn∑
k=0

EnTn−k

= I + II. (4.33)

Im Folgenden wird zunächst die Konvergenz von I gegen 0 in Wahrscheinlichkeit gezeigt.
Dazu sei ε > 0 und x0 ∈ (0, 1), dann gilt für die Wahrscheinlichkeit, dass I einen Wert
ungleich 0 annimmt

P (|I| > ε) = P
(∣∣I1{τn/n>x0}

∣∣ > ε
)

+ P
(∣∣I1{τn/n≤x0}

∣∣ > ε
)
.

Seien ferner δ > 0 und x0 ∈ (0, 1) so gewählt, dass P(W > x0) ≤ δ
4 gilt. Dies ist möglich,

da W eine Verteilung auf [0, 1] ist. Aus der Verteilungskonvergenz der τn/n gegen W in
Verteilung, folgt weiter die Existenz einer natürlichen Zahl m1 ∈ N derart, dass für alle
n > m1 ∣∣∣P(τn

n
> x0

)
− P (W > x0)

∣∣∣ ≤ δ

4
gilt und damit insbesondere

P
(∣∣I1{τn/n>x0}

∣∣ > ε
)
≤ P

(τn
n
> x0

)
=
∣∣∣P(τn

n
> x0

)
− P (W > x0) + P (W > x0)

∣∣∣
≤ δ

4 + δ

4 = δ

2

vermöge der Dreiecksungleichung für Beträge.
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Für hinreichend großes n ergibt sich nun

E
(
I1{τn/n≤x0}

)2 = E1{τn/n≤x0}

(
τn∑
n=0

(nTn−k − EnTn−k)
)2

= E
bnx0c∑
l=0

1{τn=l}

(
l∑

k=0
(nTn−k − EnTn−k)

)2

= n2 E
bnx0c∑
l=0

1{τn=l}

l∑
k=0

(Tn−k − ETn−k)2

+ 2
l∑

j>k

(Tn−k − ETn−k) (Tn−j − ETn−j)

= n2
bnx0c∑
l=0

P(τn = l)

 l∑
k=0

Var(Tn−k) + 2
l∑

j>k

Cov(Tn−k, Tn−j)


≤ n2

bnx0c∑
k=0

Var(Tn−k),

wobei benutzt wurde, dass die Ti stochastisch unabhängig und ferner unabhängig von τn
sind. Unter Verwendung der Voraussetzung an die Varianzen folgt damit die Konvergenz
von I1{τn/n≤x0}

L2→ 0 für n → ∞. Eine Anwendung der Markov-Ungleichung liefert
desweiteren damit auch die stochastische Konvergenz von I1{τn/n≤x0} gegen 0 vermöge

P
(∣∣I1{τn/n≤x0}

∣∣ ≥ ν) ≤ 1
ν2 E

(∣∣I1{τn/n≤x0}
∣∣)2 → 0

für n → ∞ und ν > 0 und damit die Existenz einer natürlichen Zahl m2 ∈ N derart,
dass für alle n > m2

P
(∣∣I1{τn/n≤x0}

∣∣ > ε
)
≤ δ

2
gilt. Damit gilt

P (|I| > ε) ≤ P
(∣∣I1{τn/n≤x0}

∣∣ > ε
)

+ P
(τn
n
> x0

)
≤ δ,

für alle n > max{m1,m2}. Dabei sind m1,m2 abhängig von δ, aber da δ > 0 beliebig
war, folgt die stochastische Konvergenz von I gegen 0.
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Für II gilt ferner nach Voraussetzung

II = n

τn∑
k=0

ETn−k

= n

τn∑
k=0

2
(n− k)(n− k − 1)

= 2n
τn∑
k=0

(
1

n− k − 1 −
1

n− k

)
= 2n

(
1

n− τn − 1 −
1
n

)
= 2

1− τn/n− 1/n − 2 d→ 2
1−W − 2 = Z,

also die Verteilungskonvergenz von II gegen Z und damit zusammen mit der stochas-
tischen Konvergenz von I gegen 0 ebenso die Verteilungskonvergenz von nZn

d→ Z für
n→∞ vermöge des Satzes von Slutsky (vgl. Satz 36.12 in [2]).

Der Beweis basiert also auf der Aufteilung der alternativen Darstellung gemäß (4.14) in
zwei Teile, von denen einer stochastisch gegen 0 konvergiert, und der andere gerade in
Verteilung gegen die Grenzverteilung Z. Für die Varianz von nZn notieren wir numehr:

4.12 Bemerkung
Gegeben die Voraussetzungen und Bezeichnungen aus 4.11, so gilt

Var(nZn) = Var(I) + Var(II). (4.34)

Wir beweisen stattdessen allgemeiner:

4.13 Proposition
Sei (Ω,A, P) ein Wahrscheinlichkeitsraum und X = (Xk)k∈N0 : (Ω,A, P) → (R,B(R))
eine Familie unabhängiger, quadratisch integrierbarer Zufallsvariablen, und desweiteren
N : (Ω,A, P)→ (N0,P(N0)) eine von (Xk)k unabhängige, integrierbare Zufallsvariable
mit Werten in N0. Ist N beschränkt, so gilt

Var
(

N∑
k=0

Xk

)
= Var

(
N∑
k=0

(Xk − EXk)
)

+ Var
(

N∑
k=0

EXk

)
. (4.35)
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Darüber hinaus erhalten wir ferner

Var
(

N∑
k=0

(Xk − EXk)
)

= EN

(
N∑
k=0

Var(Xk)
)

(4.36)

Var
(

N∑
k=0

EXk

)
= VarN

(
N∑
k=0

EXk

)
, (4.37)

wobei mit EN beziehungsweise VarN die Erwartung beziehungsweise die Varianz bezüg-
lich der Verteilung von N bezeichnet sei.

Beweis. Gemäß der Formel für die bedingte Varianz (vgl. Seite 151 in [18]) gilt

Var
(

N∑
k=0

Xk

)
= EN

(
Var

(
N∑
k=0

Xk|N

))
+ VarN

(
E
(

N∑
k=0

Xk|N

))
. (4.38)

Bezeichne mit SN ((Xk)k) =
∑N

k=0Xk. Dann gilt für die bedingte Varianz von SN ((Xk)k)
gegeben N vermöge der Unabhängigkeit der beteiligten Zufallsvariablen

Var (SN ((Xk)k)|N = n)
= Var (Sn((Xk)k))
= Sn(( Var(Xk))k) (4.39)
= Sn(( Var(Xk − EXk))k) + Sn(( Var( EXk))k).

Für die bedingte Erwartung von SN ((Xk)k) gegeben N ergibt sich ferner ebenfalls auf-
grund der Unabhängigkeit der beteiligten Zufallsvariablen

E (SN ((Xk)k)|N = n)
= E (Sn((Xk)k))
= Sn(( EXk)k) (4.40)
= Sn(( E(Xk − EXk))k) + Sn(( EXk)k).

Zusammengefasst erhalten wir damit

Var (SN ((Xk)k)) = EN (SN (( VarXk)k)) + VarN (SN (( EXk)k)) .

Die Behauptung ergibt sich unter nochmaliger Anwendung der Formel für die bedingte
Varianz für die Varianz von SN ((Xk− EXk)k) beziehungsweise SN (( EXk)k) vermöge der
Feststellungen E((SN (Xk− EXk)k)|N = n) = 0 und Var(SN (( EXk)k)|N = n) = 0.
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4.14 Korollar
Für die Varianz von nZn ergibt sich damit

Var(nZn) = n2 Eτn

(
τn∑
k=0

Var(Tn−k)
)

+ n2 Varτn

(
τn∑
k=0

ETn−k

)
. (4.41)

Mit Rückblick auf 4.6 können wir ferner feststellen, dass das asymptotische Verhalten
von Var(nZn) durch das Verhalten von Var(II) dominiert wird, wenn sich die Summe
der Varianzen der Ti geeignet verhält.

Ferner lässt sich nunmehr eine hinreichende Bedingung für die Erfüllung von (4.32) in
4.11 angeben (vgl. ebenfalls [7]):

4.15 Korollar
Gegeben eine Familie unabhängiger Zufallsvariablen (Ti)i>1, mit ETi = i(i − 1)/2 und
Var(Ti) = ( ETi)2, so gilt die Aussage von 4.10; insbesondere konvergiert dann nZn
gemäß der Definition in (4.14) in Verteilung gegen eine Verteilung, deren Dichte durch
x→ 8/(2 + x)3 gegeben ist.

Beweis. Seien Ti, i ≥ 2 mit ETi =
(
i
2
)
und Var(Ti) = ( ETi)2. Sei ferner x0 ∈ (0, 1).

Dann können wir ein m ∈ N derart finden, dass n−bnx0c ≥ 2 für alle n ≥ m gilt. Dann
erhalten wir

n2

4

bnx0c∑
k=0

Var(Tn−k) = n2

4

n∑
k=n−bnx0c

Var(Tk)

= n2

(n− 1)2n2 + n2

(n− 2)2(n− 1)2 + · · ·+ n2

(n− bnx0c − 1)2(n− bnx0c)2

≤ n2(bnx0c+ 1)
(n− bnx0c − 1)4 ≤

n3 + n2

(n(1− x0)− 1)4 → 0,

für n→∞. Damit sind alle Voraussetzungen aus 4.11 erfüllt; inbesondere gilt damit die
Konvergenz von nZn gegen eine Verteilung, deren Dichte durch x→ 8/(2 + x)3 gegeben
ist.

In Bezug auf die Interpretation der Länge eines zufällig gewählten Zweiges im Hinblick
auf die Frage nach einem Test auf neutrale Selektion, analog zu [12] notieren wir ebenfalls
zunächst, dass man den Koaleszenzprozess einfach um neutrale Mutation unter Annah-
me des »Infinite Allele«, oder des »Infinite Sites« Modells erweitern kann, indem man

55



4. Längenverteilung externer Zweige in Koaleszenzbäumen

einen unabhängigen Poisson-Prozess mit Rate θ/2 wählt, um damit nachträglich Muta-
tionszeitpunkte zu generieren (vgl. [9] oder [16]). Der Parameter θ bezeichnet dabei die
skalierte Mutationsrate.

Damit genügt die Anzahl der Mutationen auf einem Zweig der Länge l einer Poisson-
Verteilung mit Rate lθ/2.

Für einen externen Zweig eines Koaleszenzbaumes mit Länge Zn bezeichnet demgemäß
M(2Zn) die Anzahl der Mutationen, die auf dem Teilbaum eines zufällig gewählten In-
dividuums und seines nähesten Verwandten stattfinden. Als Anwendung von 4.10 ergibt
sich:

4.16 Korollar
Für die Anzahl der Mutationen auf einem zufällig gewählten externen Zweig eines Ko-
aleszenzbaumes gilt M(2nZn) d→M(2Z), wobei die Verteilung von M(2Z) durch

P(M(2Z/n) = k) =
∫

P(M(2x/n) = k) dPZ( dx)

=
∫
xkθk

nkk! e
−xθ/n dPZ( dx)

= (θ/n)k

k!

∫ ∞
0

e−θx/n
8xk

(2 + x)3 dx (4.42)

für k ∈ N0 gegeben ist.
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An dieser Stelle seien einige Aussagen zusammengefasst, auf die im bisherigen Verlauf
verwiesen wurde, die aber im Textverlauf nicht zweckmäßig untergebracht werden konn-
ten.

A.1 Lemma
Sei k ∈ N und seien a, c ∈ R. Dann gilt

lim
x→∞

a
lnk(x)
x

+ c = c. (A.1)

Beweis. Da sowohl x als auch lnk(x) für x → ∞ bestimmt gegen ∞ divergieren, lässt
sich die Regel von de l’Hospital anwenden (siehe zum Beispiel §16, Satz 9 in [11]). Es
gilt dann für k > 1

lim
x→∞

lnk(x)
x

= lim
x→∞

d
dx lnk(x)

d
dxx

= lim
x→∞

k lnk−1(x)
x

1 = lim
x→∞

k lnk−1(x)
x

,

und somit durch iteratives Anwenden der Regel von L’Hospital und unter Verwendung
von d

dx ln(x) = 1/x

lim
x→∞

a
lnk(x)
x

+ c = lim
x→∞

a
k!
x

+ c = c.

A.2 Lemma
Für x > 0 gilt

x− x2

2 ≤ ln(1 + x) ≤ x.

Beweis. Sei 0 < x ≤ 1, dann gilt

ln(1 + x) =
∞∑
n=1

(−1)n+1x
n

n
,

57



A. Appendix

als Reihenentwicklung des Logarithmus mit Konvergenzradius 1. Weiterhin gilt für jedes
k ∈ N ∣∣∣∣xkk

∣∣∣∣ > ∣∣∣∣ xk+1

k + 1

∣∣∣∣
und damit für k ∈ N

(−1)2k+1x
2k

2k + (−1)2k+2 x
2k+1

2k + 1 < 0,

beziehungsweise

(−1)2k+2 x
2k+1

2k + 1 + (−1)2k+3 x
2k+2

2k + 2 > 0.

Daraus folgt
∞∑
n=2

(−1)n+1x
n

n
≤ 0 bzw.

∞∑
n=3

(−1)n+1x
n

n
≥ 0,

und damit wiederum

x− x2

2 ≤ x−
x2

2 +
∞∑
n=3

(−1)n + 1x
n

n

= ln(1 + x)

= x+
∞∑
n=2

(−1)n+1x
n

n
≤ x.

Sei nun x > 1. Beobachte, dass f(x) = −x2

2 +x ein globales Maximum bei x0 = 1 besitzt
und ferner f(1) = 1

2 ≤ ln(2) gilt. Die zweite Ungleichung gilt vermöge der Beobachtung
ln(1 + x) ≤ x⇔ 1 + x ≤ ex und 2 ≤ e.

A.3 Lemma
Sei x ∈ R, dann gilt

lim
n→∞

(
1 + x

n

)n
= ex (A.2)

Beweis. Sei x ∈ R gegeben, ferner sei x 6= 0. Setze fx(n) def= (1 + x
n) und betrachte

lim
n→∞

ln(fx(n)n) = lim
n→∞

n ln(fx(n)) = lim
n→∞

ln(fx(n))
n−1 .

Damit sind die Voraussetzungen für den Satz von de l’Hospital (§16, Satz 9 in [11])
gegeben und es gilt limn→∞ ln((1 + x/n)n) = x.
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A.4 Lemma
Für die Summe der natürlichen Zahlen von 1 bis n, ihrer Quadrate, beziehungsweise
ihrer dritten Potenzen gelten

n∑
k=1

k = n(n+ 1)
2 , (A.3)

n∑
k=1

k2 = n(n+ 1)(2n+ 1)
6 , (A.4)

n∑
k=1

k3 = n4 + 2n3 + n2

4 . (A.5)

A.5 Lemma
Es seien (Xk)1≤k≤n unabhängige, jeweils Exp(λk)-verteilte Zufallsvariablen auf einem
Wahrscheinlichkeitsraum (Ω,A, P), λk > 0, 1 ≤ k ≤ n. Dann ist X def= min{Xk : 1 ≤ k ≤
n} ebenfalls exponentialverteilt mit Parameter λ =

∑n
k=1 λk. Die Wahrscheinlichkeit,

dass Xj , 1 ≤ j ≤ n das Minimum annimmt, ergibt sich als

P(Xj = min{Xk : 1 ≤ k ≤ n}) = λj
λ1 + · · ·+ λn

.

Beweis. Wähle hierzu x > 0 beliebig und betrachte
P(X > x) = P(X1 > x,X2 > x, . . . ,Xn > x)

=
n∏
k=1

P(Xk > x)

=
n∏
k=1

exp(−xλk) = exp
(
−x

n∑
k=1

λk

)
.

Damit entspricht die Verteilungsfunktion von X der einer Exponentialverteilung mit
Parameter λ. Für den zweiten Teil notieren wir

P(Xj = min{Xk : 1 ≤ k ≤ n}) = P(Xj < Xk, j 6= k, 1 ≤ k ≤ n)
= EXj (1{Xj<Xk:j 6=k,1≤k≤n}|Xj)

=
∫ ∞

0
λje
−λjt

∏
j 6=k

1≤k≤n

P(Xj > t) dt

=
∫ ∞

0
λje
−(λ1+···+λn)t dt

= λj
λ1 + · · ·+ λn

.
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A.6 Proposition
Sei (Ω,A, P) ein Wahrscheinlichkeitsraum, und seien X1, X2: (Ω,A, P) → (R,B) un-
abhängige, exponentialverteilte Zufallsvariablen mit Parameter λi > 0, das heißt Xi ∼
Exp(λi), sowie B : (Ω,A, P) → ({0, 1},P({0, 1}) eine von X1, X2 unabhängige, ber-
noulliverteilte Zufallsvariable mit Parameter p ∈ (0, 1), das heißt B ∼ B(1, p). Unter der
Voraussetzung λ1 > λ2 und p = λ1−λ2

λ1
, gilt

X1 +BX2
∼= Exp(λ2),

das heißt, X1 +BX2 genügt einer Exponentialverteilung mit Parameter λ2.

Beweis. Unter der Berücksichtigung von

fX(x) = λe−λx1[0,∞)(x) FX(x) = 1− e−λx1[0,∞)(x),

wobei fX die Dichte- und FX die Verteilungsfunktion für eine ZufallsvariableX ∼ Exp(λ)
bezeichne, gilt für die Verteilungsfunktion von X1 +BX2

P(X1 +BX2 ≤ t)
= P(N = 0) P(X1 +BX2 ≤ t|B = 0) + P(N = 1) P(X1 +BX2 ≤ t|B = 1)

= (1− p)
(

1− e−λ1t
)

+ p ( EX1( P(X1 +BX2 ≤ t|B = 1, X1))

= (1− p)
(

1− e−λ1t
)

+ p

∫ ∞
0

(
1− e−λ2(t−s)

)
1{t−s≥0}λ1e

−λ1s ds

= (1− p)
(

1− e−λ1t
)

+ p

[
1− e−λt − λ1

λ2 − λ1

(
e−λ1t − e−λ2t

)]
= (1− p)

(
1− e−λ1t

)
+ p

λ1
λ1 − λ2

(
e−λ1t − e−λ2t

)
.

Mit Erinnerung an die Voraussetzung p = λ1−λ2
λ1

folgt somit die Behauptung.
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