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Einleitung

Der n-Koaleszenzprozess nach Kingman [15] ergibt sich als asymptotisches Modell fiir
die Geneaologie von n Individuen einer haploiden Population der Gréfle 2NV unter dem
Wright-Fisher Modell. Dabei lasst sich der n-Koaleszenzprozess in natiirlicher Weise als
baumwertiger Prozess auffassen.

In [17] wurde als mogliches Ma$ fiir die genetische Vielfalt einer Population die Einzigar-
tigkeit eines Individuums als Zeit bis zum zeitlich ndhesten gemeinsamen Vorfahren eines
Individuums und seines néhesten Verwandten innerhalb der Population eingefiihrt.

Fiir diese wurde unter Betrachtung von Laplace-Transformierten von Caliebe et al. in
[7] das Ergebnis geliefert, dass sie asymptotisch einer Verteilung mit Dichte x — 8/(2 +
x)3, z > 0, geniigt. Genauer wurde gezeigt, dass die Linge Z, eines zufillig gewihlten

externen Zweiges eines Koaleszenzbaumes der Konvergenzeigenschaft nZz, 4z genlgt,
wobei die Dichte von Z gerade der eben gegebenen entspricht.

Eine unweigerliche Konsequenz ist damit, dass die genetische Vielfalt einer Population
auf eine geringe Anzahl Individuen konzentriert ist. Insbesondere kann daher der Ver-
lust einzelner Individuen grofle Auswirkungen auf die genetische Vielfalt der Population
haben.

Eine andere Betrachtungsweise ergibt sich mit Blick auf [12]. Dort wurde die Lange aller
externen Zweige im Verhéltnis zur Lange der internen Zweige untersucht. Die dahinter-
liegende Frage ist, ob die Annahme von neutraler Selektion fiir eine gegebene Population
mit Mutationseinfluss gerechtfertigt ist. Die Léinge aller externen Zweige korrespondiert
dabei zu der Zeit, in der Mutationen auftretenen kénnen, welche nur ein Individuum
betreffen kénnen.

In [13] wurde gezeigt, dass fiir die Gesamtlédnge L, der externen Zweige eines Koales-
zenzprozesses nach Kingman mit n externen Zweigen die Verteilungskonvergenz

1 n d
Nion (Ln —2) = N(0,1)

fir n — oo gilt, wobei wie {iblich mit N(0,1) eine Normalverteilung mit Erwartung 0
und Varianz 1 bezeichnet sei.
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Inhaltsverzeichnis

Vermoge der Unabhéingigkeit des Koaleszenzprozesses und des Mutationsprozesses in
einem Koaleszenzprozess mit Mutation, kann die Lénge der externen Zweige herangezo-
gen werden, um die Anzahl von Mutationen auf den externen Zweigen zu bestimmen.
Die Lénge eines zufillig gewdhlten externen Zweiges korrespondiert unter dieser Be-
trachtung mit der Zeit, in der Mutationen das ausgewéhlte Individuum im Vergleich zu
seinem néhesten Verwandten verdndern kénnen.

Entsprechend des asymptotischen Ergebnisses fiir die Léinge eines externen Zweiges lasst
sich die Verteilung der Anzahl der Mutationen auf einem externen Zweig angeben.

In dieser Arbeit wollen wir das Ergebnis von Caliebe et al. rekapitulieren.

Ich danke Herrn Prof. Dr. Gerold Alsmeyer fiir diesen Themenvorschlag und im Beson-
deren fiir seine Geduld mit mir. Desweiteren moéchte ich mich bei meiner Familie fiir die
Unterstiitzung wahrend meiner Studienzeit bedanken.
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1. Allgemeine Grundlagen

Dieses Kapitel dient dazu, einige grundlegende Definitionen und Ergebnisse der Theorie
der Markov-Sprungprozesse anzugeben, auf die im Folgenden verwiesen wird. Dariiber
hinaus werden wir grofitenteils auf Beweise verzichten.

Bevor wir damit allerdings beginnen, wollen wir noch einige allgemeinere Definitionen
treffen und halten entsprechend fest, dass wir mit einer Exponentialverteilung mit Pa-
rameter A\, kurz Exp()\), eine Verteilung bezeichnen, deren Verteilungsfunktion durch
(1— e_’\“)]l[o’oo) (x) gegeben ist. Insbesondere berechnet sich der Erwartungswert in die-
sem Fall zu 1/\. Ebenfalls wollen wir O in der iblichen Bedeutung des Landau-Kalkiils
verstehen.

1.1 Definition
Ein topologischer Raum (S, ¥) heifit polnisch, wenn eine die Toplogie ¥ erzeugende Me-
trik o existiert, so dass (S, ¢) ein separabler, vollstandiger metrischer Raum ist.

1.2 Definition
Sei (M,d) ein metrischer Raum und bezeichne Ry = [0, 00). Dann heifit eine Funktion
f Ry — M cadlag (aus dem Franzdsischen »continue d droite, limite a gauche«), falls

(i) f(t) = limgy f(s) fiir alle t > 0, und
(ii) f(t—) =limgy f(s) fiir alle t > 0 existiert.
f ist also rechtsseitig stetig und besitzt linksseitige Limiten.
Wir nennen ferner einen stochastischen Prozess (X¢):>0 cddlag, falls dies fur seine Pfade

der Fall ist.

1.3 Definition
Gegeben einen Wahrscheinlichkeitsraum (€2,2(, P) mit einer Filtration F = (F)e>o0,
heifit eine nichtnegative Zufallsvariable 7 Stoppzeit beziiglich F, falls

{r <t} € F, (1.1)
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fiir alle ¢t > 0 gilt. Wir bezeichnen ferner mit

FYAeu:An{r <t} e R} (1.2)

die o-Algebra der 7-Vergangenheit.

1.1. Markov-Prozesse in stetiger Zeit

Fiir die allgemeine Betrachtung von Markov-Prozessen in stetiger Zeit in [1], auf die wir
hier fiir die Beweise der Sitze verweisen, setzen wir voraus, dass der Zustandsraum (.5, &)
eines stochastischen Prozesses X = (X¢)¢>0 auf einem Wahrscheinlichkeitsraum (€2, 2, P)
lokalkompakt und mit abzidhlbarer Basis sei, sowie & die zugehorigen Borelschen o-
Algebra bezeichne. Da damit (.S, &) insbesondere polnisch ist, existieren die im Folgenden
auftretenden (reguldr) bedingten Verteilungen (vgl. Satz 53.4 in [2]).

1.4 Definition (Markov-Prozess)
Sei X = (X¢)¢>0 ein stochastischer Prozess auf einem Wahrscheinlichkeitsraum (9,2, P)
mit Zustandsraum (5, &) und F = (F;)>0 eine Filtration.

X heifit Markov-Prozess beziiglich F, wenn er F-adaptiert ist und die Markov-Figen-
schaft, gegeben durch

P(X; € A|Fs) = P(X; € A|X;) P-fs. (1.3)
flir alle 0 < s <t < oo und A € &, besitzt. Ferner bezeichne
P, y(X,s, A) < P(X; € AX,) (1.4)

fir alle 0 < s <t < oo und A € & die zugehérigen Ubergangskerne. Falls diese so
gewdhlt werden konnen, dass sie lediglich iiber s — ¢ von s und ¢ abhéngen, das heifit,
falls

P(X; € A|F,) = P(X; € A|X;) =Poys—s(Xs, A)  P-fs.

gilt, so heifit X zeitlich homogen.

Im Fall der natiirlichen Filtration G = (Gt)>0, mit G; = (X5, s < t), verzichten wir auf
den Zusatz beziiglich G.

Ist der Zustandsraum (S, &) abzéhlbar, so nennen wir X einen Markov-Sprungprozess
oder auch zeitstetige Markovkette.
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1.5 Definition

Wir sagen, ein Markov-Prozess X = (X¢)¢>0 beziiglich einer Filtration F = (F;);>0 mit
Zustandsraum (S, &) auf einem Wahrscheinlichkeitsraum (€,2(, P), erfiille die starke
Markov-Eigenschaft beziiglich T, wenn, bedingt unter {7 < oo},

P(X, 41 € AF;) = P(Xrit € AIX;) = Prrse(Xs, A) Pofs. (1.5)

fiir alle A € & und t > 0 fiir eine Stoppzeit 7 beziiglich F gilt. Im Fall eines homogenen
Prozesses vereinfacht sich die Gestalt von (1.5) zu

P(X,41 € A|F;) = Poy(Xr, A) DP-fs. (1.6)

1.6 Bemerkung

Die Definition der starken Markov-Eigenschaft fiir beliebige Markov-Prozesse in steti-
ger Zeit verwendet rechtsseitig stetige o-Algebren, beziehungsweise rechtsseitig stetige
Erweiterungen (vgl. Seite 57 in [8]). Fur einen Markov-Prozess X = (Xi)i>0 beziig-
lich einer rechtsseitig stetigen Filtration F = (F:):>0 sagen wir dann, dass dieser die
starke Markov-FEigenschaft besitze, falls fiir jede Stoppzeit 7 beziiglich F bedingt unter
{1 < o0} (1.5) gilt.

Die im Folgenden betrachteten Markov-Prozesse seien nunmehr stets zeitlich homogen.

Wir fiihren deshalb P; = Py als abkiirzende Schreibweise fiir die Ubergangskerne ein.

Dariiber hinaus setzen wir Pg(z, -) def 0., wobei §, die Einpunktverteilung in = bezeich-

ne.

Fiir die Ubergangskerne eines homogenen Markov-Prozesses gelten die Kolmogorov-
Chapman-Gleichungen als einfache Konsequenz der Rechenregeln fiir stochastische Ker-
ne:

1.7 Lemma
Fiir die Familie (P;);>0 der Ubergangskerne eines zeitlich homogenen Markov-Prozesses
gelten die Kolmogorov-Chapman-Gleichungen, das heifit

IPs-i—t = PsPy. (17)
(P¢)¢>0 bildet damit eine Halbgruppe (beziiglich der Hintereinanderschaltung von Ker-

nen).

Wir weisen ebenfalls darauf hin, dass zu jeder Halbgruppe (P;)¢>0 von Ubergangskernen
auf (S,6) mit Po(z,-) = J, ein Markov-Prozess existiert. Dariiber hinaus kann die
Anfangsverteilung A € 23(S), wobei 20(.5) die Menge der Wahrscheinlichkeitsmafle auf S
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bezeichne, beliebig gewahlt werden. Dies ergibt sich als Anwendung des Konsistenzsatzes
von Daniell-Kolmogorov.

Insbesondere erlaubt uns dies die Betrachtung von Réumen

(2,2, (X¢)20, (PA)aean(s)) - (1.8)

in denen X = (X;)¢>0 unter jedem P ein Markov-Prozess mit Ubergangskernen P; und
Anfangsverteilung A ist. Wir nennen dann (1.8) ein Standardmodell fiir (IP¢)¢>0.

1.8 Bemerkung
Es bezeichne b& den Raum der beschrénkten Funktionen f : & — &, versehen mit der
Supremumsnorm || - ||s. Wir setzen ferner

P, f(x) 4 /S J(y)Py(x, dy) (1.9)

fir alle f € bS. Vermoge der 2A-Messbarkeit von z — Py(x, A) fir alle A € &, definiert
dies einen linearen Operator von b& nach bS. Fur diesen Operator gilt ferner Py f > 0
fir alle nichtnegativen f € bS, ||P:¢f|loc < ||flloo fiir alle f € bS, das heifit, P, ist eine

positive Kontraktion, und man nennt (IP;);>¢ deshalb auch eine positive Kontraktions-
halbgruppe.

1.9 Definition
Eine Ubergangshalbgruppe (IP¢);>0 heiBt stochastisch, falls ||| = 1 fiir alle ¢t > 0 gilt
und andernfalls substochastisch. Dabei bezeichnet ||- || die Operatornorm, definiert durch

P % sup{|Pof]| : | flloe = 1} (1.10)

1.2. Markov-Sprungprozesse

Sei nunmehr der Zustandsraum (5, &) abzahlbar. Fiir einen Markov-Sprungprozess ge-
méf 1.4 stellen wir fest:

1.10 Definition
Gegeben einen Markov-Sprungprozess X = (X;);>0 auf einem abzéhlbaren Zustands-
raum (S, &) mit Ubergangshalbgruppe (P);>0, wird dieser bereits eindeutig durch

pij(t) o P(i,{j}) fiir 4,5 € S festgelegt. Wir definieren deshalb

P(t) “ (pij(t))ijes (1.11)

fiir alle t > 0 und nennen (P(t));>¢ die zu X gehérende Ubergangsmatrizfunktion.
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1.11 Bemerkung
Fiir die Ubergangsmatrixfunktion (P(t)):>0 eines Markov-Sprungprozesses X = (X;)t>0
gelten

(i) pij(t) > 0 fiir alle ¢ > 0 und ¢,j € S, sowie p;;(0) = d;;, wobei d;; das Kronecker-
Delta bezeichnet, und damit P(0) = (0s5)i jes = 1,

(ii) ZjeSpij(t) <1lfirallet>0undi,j€eS,

(iii) pij(s +1) = > pcgPir(8)pr;(t), genannt Kolmogorov-Chapman-Gleichungen; die
Halbgruppeneigenschaft ldsst sich also beziiglich der gewthnlichen Matrix-Multi-
plikation als

P(s+t) =P(s)P(t) (1.12)

darstellen.

1.12 Definition
Eine Matrix P = (p;;)i jes heifit stochastisch, falls

pij >0, und Y p;j =1 (1.13)
JES

fir alle 4,5 € S gilt.

Dementsprechend nennen wir eine Ubergangsmatrixfunktion (P(t));>0 eines Markov-
Sprungprozesses stochastisch, falls P(t) fir alle t > 0 stochastisch ist. Andernfalls nennen
wir (P(t))t>0 substochastisch.

1.13 Definition
Gegeben eine Ubergangsmatrixfunktion (P(t));>0, nennen wir diese eine Standard-Uber-
gangsmatrizfunktion, falls ihre einzelnen Komponenten stetig in 0 sind, das heif$t, falls

bim pi; (t) = pij (0) = 0ij (1.14)

fir alle ¢, 5 € S gilt.

1.14 Satz

Gegeben eine Standard-Ubergangsmatrixfunktion (P(t)):>0, so ist jedes p;;(¢) fiir alle
t > 0 stetig differenzierbar. Fiir t = 0 gilt zumindet noch die (rechtsseitige) Differenzier-
barkeit. Bezeichnet nun

def . _
Gij = ltljglt pij (1) = pij(0)), (1.15)

so gilt ferner |g;;| < oo, falls i # j und g;; < co (kann aber den Wert —co annehmen).
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1.15 Definition
Gegeben eine Standard-Ubergangsmatrixfunktion (P(t))¢>0, eines Markov-Sprungpro-

zesses X = (Xt)¢>0, setzen wir

Q¥ (¢ij)ijes (1.16)

und bezeichnen Q als Q-Matriz von X.

Gegeben eine Q-Matrix Q eines Markov-Sprungprozesses X = (X;);>0, gilt ¢;; > 0 fiir
alle 4,7 € S mit 7 # j vermoge til(pij(t) — pij(t)) = tflpij(t) > ( fiir alle ¢t > 0. Eine
ahnliche Uberlegung liefert dariiber hinaus auch ¢; < 0. Setze nunmehr

4 < g fir alle i € S, (1.17)

Eine Anwendung von Fatous Lemma beziiglich des Z&éhlmafes auf den Paaren (i, j) mit
1 # j liefert ferner

tjo t t}0 tl0 t

;i (t i (¢ . 1—py
ZQij = limm < liminfz p]t() = hmﬁ = q;. (1.18)
i#] 1#] i#j

1.16 Definition
Eine Q-Matrix Q heifit konservativ, falls

Zqij =q; < 00 (1.19)
J#i

fir alle ¢ € S gilt.

1.17 Satz
Gegeben eine Standard-Ubergangsmatrixfunktion (P(¢)):>¢ mit konservativer Q-Matrix
Q. Dann ist Q der Generator der Halbgruppe mit Definitionsbereich

blQ) = {f €06 : 39 € b6 : lim [t~ (P(1)f = /) = glloo = o}.

1.18 Satz
Jeder cadlag-Markov-Sprungprozess, das heiflt jeder Markov-Sprungprozess mit rechts-
seitig stetigen, stiickweise konstanten Pfaden, besitzt die starke Markov-Eigenschaft.

1.19 Definition

Fiir einen Markov-Sprungprozess X = (X;)¢>0 auf einem Zustandsraum (S, &) mit Uber-
gangsmatrixfunktion (P(t))¢>¢ und zugehoriger Q-Matrix Q = (¢ij)i jes und ¢ = —gi;
fir i € S, bezeichnen wir einen Zustand 7 € S als
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(i) stabil, falls 0 < ¢; < o0,
(ii) absorbierend, falls ¢; = 0,
(iii) augenblicklich, falls ¢; = co.

Dariiber hinaus bezeichnen wir eine Ubergangsmatrixfunktion als stabil, wenn alle Zu-
stdnde ¢ € S stabil sind.

In konservativen Markov-Sprungprozessen gibt es keine augenblickliche Zustédnde.

1.20 Definition

Ein konservativer Markov-Sprungprozess X = (X)¢>0 mit Werten in Ny heifit Geburts-
und Todesprozess (in stetiger Zeit), falls er von jedem Zustand n lediglich in die Nach-
barzustédnde n — 1,n + 1 springen kann. Die dazugehorige Q-Matrix ist von der Gestalt

-0 Ao 0 0 O
[ m —(A1 + 1) A o 0 .-
Q=10 142 —(A2+p2) A2 O |

wobei A, € [0,00),n > 0 die Geburtsraten und u, € [0,00),n > 1 die Sterberaten
bezeichnen. Entsprechend bezeichnen wir einen Geburts- und Todesprozess als (reinen)
Geburtsprozess, falls samtliche Sterberaten p, = 0 sind, beziehungsweise als (reinen)
Todesprozess, falls samtliche Geburtsraten A, = 0 sind. Im letzten Fall ist Q von der
Gestalt

0 0 0 0
o —p1 0 0
Q=10 p2 —p2 0

Insbesondere ist der Zustand 0 ein absorbierender Zustand fiir einen reinen Todesprozess.

1.3. Die minimale Konstruktion

Im Hinblick auf 1.14, stellt sich die Frage, ob auch die Umkehrung gilt, sprich, ob zu
gegebener konservativer Q-Matrix Q ein Markov-Prozess X = (X;);>0 existiert, dessen
Q-Matrix gerade durch Q gegeben ist.



1. Allgemeine Grundlagen

1.21 Definition
Fiir einen Markov-Sprungprozess X = (X;);>0, definiere die Sprungzeiten

oo 0, o & inf{t > op_1: Xt # X5, .} (1.20)

fir n > 1, sowie die Absorptionszeit

0A of sup{oy, : o) < 0o} (1.21)

und die sukzessiven Eintrittszeiten in eine Menge A € S

o0(A) €0, 0n(A) Y inf{o, > on_1(A) : X,,_, € A%, X, € A}. (1.22)

1.22 Satz

Fiir einen Markov-Sprungprozess X = (X¢)¢>0, mit rechtsseitig stetigen, stiickweise kon-
stanten Pfaden sind die in (1.20) und (1.22) definierten Zufallsvariablen, sowie die erste
Explosionszeit, definiert als 0o = sup,,>1 o5, Stoppzeiten.

1.23 Satz

Gegeben einen Markov-Sprungprozess X = (X¢)>0 in einem Standardmodell mit Stan-
dard-Ubergangsmatrixfunktion (P(t)):>0, konservativer Q-Matrix Q und kanonischer
Filtration F, sei ferner vorausgesetzt, dass 0o = sup,,»; 0, = 0o gelte. Definiere weiter

def
Tn, = (Un - O'n—l)ﬂ{an71<00} + oon{gn,lzoo} (123)
o def
Xn S Xo, 1o, <o0} + Xoal{o,—oc}- (1.24)

Dann existiert eine Ubergangsmatrix P = (Pij)ijes mit

)0, fallsg € (0, 00)
P10 falls ¢ =0,

so dass flr allen € Ng, 7 € Sund ¢t >0

P(Xpi1 = J, Tng1 > t|Fy,) = ;ﬁije—qﬂn{f%zi} Py-f.s (1.25)
1€

fir alle A € 20(S) gilt. Insbesondere bildet X unter jedem P} eine diskrete Markov-Kette
mit Zustandsraum S, Ubergangsmatrix P und Startverteilung A. Ferner sind 71,7, . ..
bedingt unter X stochastisch unabhéingig und geniigen jeweils einer Exponentialvertei-

lung mit Parameter a%, das heif3t 7, ~ EXp(an_l) fir alle n € IN.
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1.24 Satz
Gegeben die Voraussetzungen des vorangegangen Satzes ist die Ubergangsmatrix P der
eingebetteten Markov-Kette (Xy,),>0 wie folgt durch Q bestimmt: Falls 0 < ¢; < oo, gilt

Dii = 0 und p;; = qi5/¢; fir i # j. (1.26)

Im Fall ¢; = 0 gilt ﬁij = 57;]' fiir alle j € S.

Mithilfe der Satze 1.23 und 1.24 lésst sich nunmehr zu gegebener konservativer Q-Matrix
Q ein Verfahren zur Konstruktion eines Markov-Sprungprozess X = (X¢)>0, fiir den Q
die Q-Matrix darstellt, angeben. Man konstruiert eine diskrete Markov-Kette X = (Xn)n
mit Ubergangsmatrix P gemaf 1.24, sowie eine Folge (Tn)n>1 von exponentialverteilten
Verweildauern, 7,, ~ Exp(an), die bedingt unter X stochastisch unabhéngig sind. Man
definiert dann o9 =0, 0, =71 + T2 + - - - + 7, fiir die Sprungzeiten und setzt

X, ¥ X, fiir alle t € [0, 0ni1) (1.27)

und Xy def Xn, falls o, = oco. Dabei kann es allerdings passieren, dass unendlich viele
Spriinge in endlicher Zeit auftreten. Man spricht in diesem Fall von Fxplosion, charak-
terisiert durch Py, (sup,,>; 0 < 00) > 0 fiir ein i € S.

Bei der minimalen Konstruktion wird deshalb der Zustandsraum um einen absorbieren-
den Punkt A ¢ S erweitert und der Prozess zum Explosionszeitpunkt in diesem »Fried-
hof« geparkt. Dies liefert dann ebenfalls einen Markov-Sprungprozess mit rechtsseitig
stetigen, stiickweise konstanten Pfaden.

Da Explosion in unserem Fall spater nicht auftritt, verzichten wir an dieser Stelle auf
diese Ausfithrung, notieren aber zumindest noch, warum der Begriff der minimalen Kon-
struktion gerechtfertigt ist, ehe wir Bedingungen an Q angeben, die sicherstellen, dass
die minimale Konstruktion nicht-explodierend ist.

1.25 Satz
Fiir jede zu Q gehérende substochastische Standard-Ubergangsmatrixfunktion P(t) =
(Dij(t))ijes gilt

Pij(t) = pij(t) (1.28)
fir alle 4,7 € S und t > 0. Ist P(t) = (pij)ijes stochastisch, gilt also p;a(t) = 0 fiir
alle i € S und ¢t > 0, so ist P(¢) die einzige zu Q gehorende substochastische Standard-
Ubergangsmatrixfunktion.

1.26 Satz (Reuters Explosionskriterium)
Die minimale Konstruktion ist genau dann nicht-explodierend, wenn z = 0 die einzige
nichtnegative und beschrinkte Losung der Gleichung Qx = x bildet.
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1.27 Proposition
Hinreichende Bedingungen dafiir, dass die minimale Konstruktion nicht-explodierend ist,
sind

(i) Der Zustandsraum S ist endlich,

(ll) SUp;cs 4i < 00,

(iii) Die eingebettete diskrete Markovkette ist rekurrent.

10



2. ATGC'’s of life

Um eine Motivation fiir die Betrachtung von Koaleszenzbdumen zu liefern, soll nach
einem oberflachlichen Einblick in die Genetik, inklusive einiger grundlegender Begriffs-
bildungen, auf das Wright-Fisher-Modell eingegangen werden.

Wir folgen Durrett [9] in seinem gleichnamigen Kapitel in der Feststellung, dass das
Erbgut der meisten Organismen in der Desoxyribonukleinsédure (DNS) kodiert ist. Diese
besteht im Regelfall aus zwei zu einer Doppelhelix verwobenen, komplementéren Stran-
gen, bestehend aus einer Sequenz aus vier verschiedenen Nukleotiden. Ein Nukleotid
besteht dabei aus einer der vier verschiedenen Nukleobasen Adenin (A), Guanin (G),
Cytosin (C) und Thymin (T), einer Phosphorsédure (P) und einem Zucker, im Fall der
DNS, der Desoxyribose (dR). Ferner verbinden sich stets Adenin mit Thymin (iber 2
Wasserstoftbriicken), sowie Cytosin mit Guanin (iiber drei Wasserstoftbriicken).

P—dR—P—dR—P—dR—P—dR—P

A T G C

T A C G

P—dR—P—dR—P—dR—P—dR—P
Abbildung 2.1.: Vereinfachte Darstellung eines (inneren) DNS-Abschnittes.

Das grundlegende Prinzip der Vervielfiltigung von DNS besteht in der Aufteilung der
Doppelhelix in zwei Stringe und der Neukonstruktion komplementéirer Strénge, die
durch die paarweise Bindung der Basen gegebenen sind. Auf eine genauere Darstellung
des Reproduktionsverganges verzichten wir an dieser Stelle ebenfalls, fiigen aber noch an,
dass das Genom eines Organismus iiber mehrere DNS-Strénge verteilt sein kann; beim
Menschen befindet sich beispielsweise ein Grofiteil des Erbgutes in den Zellkernen und
ist dort innerhalb der Chromosomen unterteilt. Wir wollen verallgemeinert im Folgenden
mit Chromosomen stets die verschiedenen DNS-Stringe eines Organismus bezeichnen.

Bevor wir nun eine einfache Variante des Wright-Fisher Modells betrachten, fassen wir
zunéchst noch einige Begriffe in der folgenden Definition zusammen.
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2. ATGC’s of life

2.1 Definition
Gegeben eine Population, bezeichnen wir diese als

(i) haploid, falls die Chromosomen eines Individuums stets nur in einfacher Form
vorliegen,

(ii) diploid, falls die Chromosomen eines Individuums zweifach vorliegen.

Ferner bezeichnen wir eine bestimmte Ausprigung eines Gens an einem bestimmten
Genort als Allel.

2.1. Das Wright-Fisher Modell

Als besonders einfache Variante des Wright-Fisher Modells wollen wir nun ein Modell fiir
zufillige Reproduktion ohne Mutationen und Selektion hinsichtlich zweier Allele A und a
einer haploiden Population konstanter Grole 2N mit nichtiiberlappenden Generationen
betrachten.

Dabei lasst sich der Evolutionsprozess wie folgt mit Hilfe eines Urnenmodelles beschrei-
ben: Bezeichnen A, beziehungsweise a,, die Anzahl der Individuen vom Typ A bezie-
hungsweise a der n-ten Generation, so ergibt sich die (n + 1)-ste Generation durch
2N-faches Ziehen mit Zuriicklegen aus einer Urne mit A4,, Kugeln vom Typ A (und a,
Kugeln vom Typ a).

Damit erhalten wir fiir die Verteilung der Anzahl der Allele vom Typ A in der (n + 1)-

sten Generation eine Binomialverteilung mit Parametern 2V und ngA) def Ay /2N gemaf
der Faltungseigenschaft von Bernoulli-Verteilungen mit Parameter p%A) (vgl. Satz 26.2

in [2)).

Dabei ist zu beachten, dass die Allel-Verteilung der (n+ 1)-sten Generation lediglich von
der Verteilung der n-ten Generation abhéngt: (A, ),en bildet folglich einen (diskrete)
Markov-Kette.

Vermoge des Urnenmodells fiir den Generationswechsel, notieren wir ferner die offen-
sichtliche Feststellung, dass 0 und 2N absorbierende Zusténde fir (A4, ) en darstellen.
Dariiber hinaus stellen wir fest, dass einer dieser Zustédnde nach hinreichend langer Zeit
angenommen wird.

In natiirlicher Weise stellt sich damit die Frage, wie lange es dauert, bis ein Allel ausge-
storben ist.

12



2. ATGC’s of life

Wir folgen weiter [9] und bezeichnen mit

o 2An(2N — Ap)

" 2N(2N —1)
die Wahrscheinlichkeit, dass zwei zuféllig gewahlte Individuen (Ziehen ohne Zurticklegen)
zum Zeitpunkt n von unterschiedlichem Typ sind. In Anlehnung an diploide Organis-
men, bei denen Heterozygotie (in Bezug auf ein bestimmtes Gen) bedeutet, dass im

Chromosomensatz zwei verschieden Allele vorliegen, nennt man H, die Heterozygotie
einer Population.

Wir notieren ohne Beweis:

2.2 Satz

In einem haploiden Modell fiir zuféllige Reproduktion ohne Mutationen und Selektion
hinsichtlich zweier Allele einer Population konstanter Grofie 2V gilt fir die Heterozygo-
zitat H, der Population zum Zeitpunkt n

1 n
EHZ — <1 - 2]\[) EHS

Diese Beziehung gilt auch, wenn man in der Definition der Heterozygotie ohne Zuriick-
legen zieht. Das heifft, wenn man

24,(2N = A)) _ 2N -1,
(2N)2 2N "
setzt, so gilt EH, = (1 —1/2N)" EH,.

H, =

Mit Verweis auf §8, Satz 2 in [11] erhalten wir aus der Reihendarstellung der Exponen-
tialfunktion
e =1—x+ R(z), mit |R(z)| < z?

fir alle x mit |z| < 3/2.
Dies liefert fiir hinreichend grofies 2V die asymptotische Beziehung
EH, = e "EH,

2.3 Bemerkung

Das beschriebene Urnenmodell lasst sich leicht um Abstammungsinformationen erwei-
tern: Dazu macht man die Kugeln der Anfangsgeneration unterscheidbar, beispielsweise
durch (zufillige) Durchnummerierung von 1 bis 2/N. Wir kénnen dann ein Individuum
der (n + 1)-sten Generation als Kind eines Individuums der n-ten Generation identifi-
zieren. Dementsprechend bezeichnen wir mit einer Ahnenlinie die aufsteigende Linie der
Vorfahren eines Individuums der n-ten Generation.

13



2. ATGC’s of life

Abbildung 2.2.: Realisierung des Wright-Fisher Modells fiir eine Population der Grofie
8 iiber 6 Generationen mit eingetragenen Ahnenlinien (links) und einer
»entworrenen« Version (rechts).

2.4 Satz
Unter Reskalierung der Zeit beziiglich 2N Generationen geniigt die Zeit 7, fiir die k
verschiedene Ahnenlinien existieren, einer Exponentialverteilung mit Parameter (’5)

Beweis. Wir vermerken zunéchst, dass bei der Betrachtung von Ahnenlinien, also der Be-
trachtung eines Wright-Fisher Modells in riickwértiger Zeit, diese lediglich verschmelzen
kénnen. Dies ist der Fall, wenn wenigstens zwei Individuen einen direkten gemeinsamen

Vorfahren haben.

Wir betrachten deshalb zunéchst die Wahrscheinlichkeit, dass k Individuen einer Ge-
neration verschiedene Eltern haben. Dazu erinnern wir an den Generationswechsel und
notieren, dass nach Ziehen von m verschiedenen Kugeln noch 2N —m davon verschiedene
Kugeln existieren. Damit berechnet sich die gewiinschte Wahrscheinlichkeit zu

k—1 . k—1 . k—1 .
2N — . 1
z: ” <1_Z> :1_21(”4_0(2)’
z‘I=Io 2N paiey 2N 2N N

wobei im letzten Schritt das Produkt ausmultipliziert und nach den Potenzen von 2N
umsortiert wurde (vgl. auch [16]). Fiir die Wahrscheinlichkeit, dass & Ahnenlinien tiber
die ersten n Generationen bestehen bleiben, erhalten wir daher

(-2 o)

Reskalieren wir also die Zeit mit 2N, setzen wir also ¢ e /2N, so erhalten wir
, k(k—1) 1 1))\ k(k—1)
&i&(l‘z‘m*O(m)) DR U
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2. ATGC’s of life

und damit fiir die skalierte Zeit bis zum ersten Verschmelzungsereignis eine exponenti-
alverteilte Zeit mit Parameter (’5)

Mit der Feststellung, dass die obige Argumentation fiir jeden Zeitpunkt, zu dem k Ah-
nenlinien existieren, greift, folgt damit die Behauptung. O

Fiir die Wahrscheinlichkeit, dass mehr als zwei Individuen dieselben Eltern haben, notie-
ren wir, dass diese in O (ﬁ) liegt und mithin ebenfalls asymptotisch vernachléssigbar
ist. Dazu iiberlegen wir uns, dass die Wahrscheinlichkeit, dass es ein Individuum der Vor-
giangergeneration mit mindestens 3 Kindern gibt, durch 2V (lg) (ﬁ)3 e0O (ﬁ) gegeben
ist.

2.5 Bemerkung
Unter den Annahmen von 2.4 verschmelzen k verschiedene Ahnenlinien nach einer ex-
ponentialverteilten Zeit 7, mit Parameter (g) zu (k — 1) verschiedenen Ahnenlinien.

Vermoge der Feststellung, dass sich in einem Modell zufélliger Reproduktion ohne Muta-
tion und Selektionsdruck hinsichtlich zweier Allele einer diploiden Population konstanter
Grofle N, jedes Gen zu jedem Zeitpunkt eindeutig zuriickverfolgen ldsst, kann man dieses
auch als Modell fiir eine haploide Population konstanter Grofie 2NV betrachten.

Zu beachten ist allerdings, dass bei dieser Betrachtungsweise auch Selbstbefruchtung zu
berticksichtigen ist. Mit Bezug auf (14) in [16] notieren wir allerdings, dass fiir einen
geeignet gewéahlten Skalierungsparameter 2N, = 2N/(1 + F'), wobei F abhédngig von
der Wahrscheinlichkeit fiir Selbstbefruchtung ist, die Ahnenlinien sich geméfl der obigen
Bemerkung verhalten.

Ahnlich erhilt man fiir eine zweigeschlechtliche, diploide Population der GréBe N mit
N,,, ménnlichen und Ny weiblichen Individuen, also N = N, + Ny, einen Skalierungs-
parameter 2N, = 8N,, Ny /(N,, + Ny), beziiglich dem die Ahnenlinien sich asymptotisch
erneut geméf der obigen Bemerkung verhalten (vgl (16) in [16]).
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3. Der Koaleszenzprozess nach Kingman

Wir haben gesehen, dass fiir eine haploide Population der Gréfle 2V, beziehungsweise
alternativ fiir eine diploide Population der Gréfle N mit zufélliger Rekombination, ohne
Mutation und Selektionsdruck, die Zeit, bis £k Ahnenlinien zu &k — 1 Ahnenlinien ver-
schmelzen, asymptotisch geméaf einer Exponentialverteilung mit Parameter (g) verhalt.
Kingman [14],[15] definierte 1982 den n-Koaleszenzprozess als zeitstetige Markov-Kette
auf den Aquivalenzrelationen von {1,2,...,n} als Approximation der Geneaolgie einer
(haploiden) Population unter dem Wright-Fisher-Model.

Bemerkenswert ist dabei, dass die Betrachtung zeitlich riickwarts stattfindet und le-
diglich die Genealogie einer Population und nicht die expliziten genetischen Strukturen
jeder Generation betrachtet. Insbesondere werden bereits ausgestorbene Erblinien nicht
betrachtet, was im Hinblick auf Simulationsverfahren auch den Rechenaufwand redu-
ziert.

3.1. Der n-Koaleszenzprozess

In diesem Abschnitt sei stets n € N eine natiirliche Zahl. Ferner sei, sofern nicht anders

angegeben, stets (2,2, P) ein Wahrscheinlichkeitsraum.

3.1 Definition (i) &, bezeichne die Menge der Aquivalenzrelationen auf {1,2,...,n}.
(ii) Die Aquivalenzrelationen A, ®,, € &, seien durch

def

A, = {(,9)]i € {1,2,...,n}}, (3.1)
def e o]
O, = {(i,4)i,5 € {1,2,...,n}} (3.2)
gegeben. Dann ist A,, die Aquivalenzrelation, in der jedes Element aus {1,2,...,n}
nur mit sich selbst dAquivalent ist und ©,, die Aquivalenzrelation, in der alle Ele-
mente aus {1,2,...,n} miteinander dquivalent sind.

(iii) Fiir € € &, bezeichne |¢| die Anzahl der Aquivalenzklassen von £. Dariiber hinaus

bezeichne fir k <1 <n

ke 19 (B, 1) € ¢
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3. Der Koaleszenzprozess nach Kingman

die Aquivalenz von k und [ beziiglich &, sowie [k] die Aquivalenzklasse von k.

(iv) Fiir £,m € &, bezeichne £ < 7, dass n aus ¢ durch das Verschmelzen zweier Aqui-
valenzklassen hervorgeht, also dass

c<n&ecny, Jg=+1 (3.3)

gilt.

Wir folgen nun Kingman in der Defintion des n-Koaleszenzprozesses in [14].

3.2 Definition
Ein Markov-Sprungprozess (R;):>0 mit Zustandsraum &, heifit n-Koaleszenzprozess, falls

Ry = A, (3.4)
gilt und die Ubergangsraten
Gen = lﬁﬁ} h™' P(Ren = 1Ry = £)

mit £, € &,,& # n durch

1 falls & < n,
den = {0 (3.5)
sonst

gegeben sind.

Damit nun Q def (gen)en konservativ wird, ergibt sich fiir die Diagonaleintrige unwei-
gerlich:

3.3 Korollar
Es sei (Rt)t>0 ein n-Koaleszenzprozess und £ € &),. Fiir die Gesamtaustrittsrate

Qe = lhifgh_lP(RHh #ER =¢) = %%n
n

aus & gilt )
a = 3 lEl(lel - D). (3.6

Beweis. Die einzigen Zustidnde n # &, fir die der Summand ungleich 0 ist, sind definiti-
onsgeméf alle n mit & < 7, also diejenigen 7, welche aus £ durch die Verschmelzung zweier
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3. Der Koaleszenzprozess nach Kingman

Aquivalenzklassen von ¢ hervorgehen. Dies entspricht der Auswahl aller 2-elementigen
Teilmengen aus einer |£|-elementigen Menge. Damit gilt

6= Yt == 1= () = 5léllel -

n#E §=<n §=<n
fir alle £ € &,. O

3.4 Bemerkung

Solche Markov-Sprungprozesse existieren und besitzen alle dieselben endlich-dimensio-
nalen Verteilungen. Dariiber hinaus kénnen diese so konstruiert werden, dass ihre Pfade
rechtsseitig stetig und stiickweise konstant sind.

Vermoge der Verteilungs-Eindeutigkeit, ist es mitunter auch iiblich, von dem n-Koales-
zenzprozess zu reden.

Beweis. Wir beginnen mit der Feststellung, dass &, versehen mit der diskreten Topologie
insbesondere polnisch ist. Ferner haben wir Q gerade so gewéahlt, dass Q konservativ
ist. Mit Hinweis auf 1.27 folgt wegen der Endlichkeit des Zustandsraumes damit die
Eindeutigkeit der minimalen Konstruktion. Speziell gilt fiir die Ubergangsmatrixfunktion

(P(t))e=0
def o= tF
P, = Q= Z EQk’
k=0

fir ¢ > 0 (vgl. Korollar 3.5 in [3]). O

Insbesondere gilt vermoge 1.18, dass n-Koaleszenzprozesse (mit rechtsseitig stetigen und
stiickweise konstanten Pfaden) die starke Markov-Eigenschaft besitzen.

3.5 Bemerkung
Sei (R¢)t>0 ein n-Koaleszenzprozess und € € &), mit |£| = k fiir ein & € N, dann ist die
Verweildauer in & exponentialverteilt mit Parameter dj = %k(kz — 1) und héngt somit
einzig von || ab.

Beweis. Aufgrund der Markov-Eigenschaft ist klar, dass die Verweildauer eine gedécht-
nislose Verteilung haben muss und die einzige zeitstetige gedéachtnislose Verteilung ist
die Exponentialverteilung. Mit Gleichung (3.6) folgt schlieflich die Behauptung. O

3.6 Definition und Satz
Gegeben einen n-Koaleszenzprozess (R;)¢>0, definieren wir

def
Dy = |Ry|. (3.7)
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3. Der Koaleszenzprozess nach Kingman

Dann ist (Dy)i>0 eine zeitstetige Markov-Kette mit Zustandsraum {1,2,...,n} und
Ubergangsraten

limh ' P(Dyp, = 1| Dy = k) =

dp fallsl=k—1,
R10

0 fallsl#k k-1,
mit dy = $k(k — 1).

Beweis. Sei £ € &,. Fir jeden Zustandswechsel von £ in einen Zustand 7 € &, muss
gemaf Definition |n| = || — 1 gelten. Jeder Zustandswechsel in (R;);>0 entspricht also
genau einem Zustandswechsel in (D;);>¢ und umgekehrt. Der Prozess (Dy)i>o verhélt
sich also in seiner Sprungdynamik wie der Koaleszenzprozess und ist mithin selbst ein
Markov-Sprungprozess. Die Ubergangsrate von einem Zustand k in einen Zustand k — 1
in (Dy)¢>0 korrespondiert demnach mit den Austrittsraten g¢ aus einem Zustand £ mit
|€] = k im Koaleszenzprozess.

Sei (Ry¢)e>0 ein n-Koaleszenzprozess und (Dy)i>0 geméfl 3.6 definiert. Sei ferner w € Q
und gelte D;(w) = k. Dann gibt es ein {(w) € &, mit |{(w)| = k und R;(w) = £{(w). Seien
ferner k,1 € {1,2,...,n}, dann gilt:

lim h™ ' P(Dyp(w) = 1| Dy(w) = k)

hl0
=l P (D) = 1R () = 6)
i Y P(Ra(e) = )R = €)
n(w)€én
In(w)|=l

Fiir | = k—1 bedeutet dies gerade g¢(w) und fiir I # k, k—1 sind die einzelnen Summanden
=0. O

In der tblichen Terminologie (vgl. 1.20) handelt es sich bei (D);>p um einen reinen
Todesprozess mit Anfangszustand n und Sterberaten dy.
Dariiber hinaus ist die in 3.1 definierte Aquivalenzrelation © ein absorbierender Zustand

fir (R;)i>0 und dazu korrespondierend der Zustand 1 fiir (D;);>0 absorbierend.

3.7 Proposition
Sei (R¢)t>0 ein n-Koaleszenzprozess und (Dy):>o der assoziierte Todesprozess gemaf 3.6.
Es bezeichne 7y, die Verweildauer von (Dy)¢>o im Zustand k fiir alle k € {2,...,n}.

(i) Dann sind die 7, unabhéngig und jeweils geméfl einer Exponentialverteilung mit
Parameter dj, = $k(k — 1) verteilt, das heiit 7, ~ Exp(dy).
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3. Der Koaleszenzprozess nach Kingman

(ii) Die Durchgangszeit

T inf{t > 0|R, = ©} = inf{t > 0|D; = 1}

kann mittels der 7, als
n
T = Z Tk
k=2
dargestellt werden.

Beweis. zu (i) Analog zu 3.5 liefert auch hier die Markov-Eigenschaft zusammen mit den
Ubergangsraten von (D;);>0, dass die 7 jeweils exponentialverteilt mit Parameter dy,
sind. Ebenfalls liefert die Markov-Eigenschaft die Unabhéngigkeit vermége der Feststel-
lung, dass die Aufenthaltsdauer in einem Zustand unabhéngig vom Eintrittszeitpunkt
ist. O

Ein typischer Pfad von (R;);>¢ ist nun eine Folge von Aquivalenzrelationen
A=Rp <RBpn1=<Rpo=<"<%y <% =0, (3.9)

wobei der Prozess jeweils eine Exp(dy)-verteilte Zeit 75, in %), verbringt. Offensichtlich
gilt

| Z).| = k. (3.10)
Die Folge (3.9) entspricht einem typischen Pfad der eingebetteten diskreten Markovkette
des n-Koaleszenzprozesses, auch Sprung-Kette genannt.

3.2. Die Sprung-Kette

3.8 Satz
Es sei (Ry)i>0 ein n-Koaleszenzprozess und (Dy)¢>o der assoziierte Todesprozess, sowie
(%)) k=nn—1,..1 die eingebettete diskrete Markovkette. Dann sind (% )k=nn—1..1 und
(D¢)>0 unabhéingig und es gilt

R, = %p, (3.11)

fiir alle t > 0. Die Ubergangswahrscheinlichkeiten der Markov-Kette (%) sind fiir £ € &,,
|¢] = k und 2 < k < n durch
re falls € <,

3.12
0 sonst, ( )

P(B1 = 1% = ©) = {
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3. Der Koaleszenzprozess nach Kingman

gegeben. Die absoluten Wahrscheinlichkeiten sind durch

(n — k)EN(k —1)!
P(Z, =¢) = PYIPVIERRD VA 3.13
gegeben, wobei Ai, Ao, ..., \; die GroBen der Aquivalenzklassen von ¢ bezeichne.

Beweis. Geméf der Theorie iiber Sprung-Ketten (vgl. 1.24), sind die Ubergangswahr-
scheinlichkeiten von der Form

den
P (& #mn),

sofern g¢ > 0 gilt. Zudem sind die Verweildauern bedingt unter der Sprung-Kette unab-
hangig und exponentialverteilt mit Parameter gg.

Es gilt also fur £,n € &, |{| =k und £ <7

2
Py =0l =€) = 2 = 4" = (o

und damit (3.12) unter Beriicksichtigung von (3.10).

Fiir den Beweis von (3.13) fithren wir eine Ruckwértsinduktion tber k durch. Fiihre
dafiir zunéchst die abkiirzende Schreibweise

&) L P& =€), ccé lel=k

ein. Fir den Fall £ = n ist die Aussage offensichtlich richtig, denn in diesem Fall folgt
schon & = A,, und damit

(n—n)nl(n—1)!

_ — l...1! =
L= pa(dn) = T ALl =1
=A1lAp!

GemaéB (3.12) gilt ferner fiir n € &,
2
proa(n) = (6,
k(k—1)
£=<n

denn:

P(%p-1=1) =Y P(%y=E)P(RB1 =% =E)

&=<n

2
=2 = =9

§=<n

21



3. Der Koaleszenzprozess nach Kingman

Wenn nun A, Az, ... \y_; die GroéSen der Aquivalenzklassen von 1 bezeichnen, sind die
von & gerade Ay, Ag, ..., N1, U A — Uy A1, .-, A fiitein [,1 <1 < k— 1 und ein
v,1 < v < )\ — 1. Nehmen wir nun also an, die Aussage sei bereits fir k bewiesen, so
miissen wir, um iiber alle méglichen & aus unserer Rekursionsgleichung aufzusummieren,
iiber alle moglichen Indizes [ und alle Moglichkeiten, die I-te Aquivalenzklasse von 7 auf
zwei verschiedene Klassen aufzuteilen, aufsummieren. Fir jedes 1 < v < A\; — 1 gibt es
dann (’}j) = ﬁ Méglichkeiten, v Elemente aus der [-ten Aquivalenzklasse von 7
fiir eine neue Klasse zu entnehmen. Nun vertauschen aber die Rollen der v-ten und der
l-ten Klasse miteinander, weshalb dies mit einem Faktor von % korrigiert werden muss.

In Formeln geschrieben gilt dann

Pr-1(n)

k—1X—1
- (n— k)R = 1)! . , SOy
;; S R r— Al MmO = 2) g Ml |
(n—k)(k — 1)!(k — 2)! ' = o
= (= 1! Z)\l A A Apor! Z (A —v)I!

)\l—l
_(n—k) (k:—l k—2)! Al —v)I!
_(n=k)li(k —1)!(k — 2)! Z)\ V) VSV DS |§1
= nl(n = 1)! 1! I—1ALR AL+ k1!
k_ —

(n—=E)l(k—-1)!(k—2)!
T e RN S ot a1

Die Doppelsumme in (3.14) berechnet sich ferner zu

k—1X—1 k-1 k— k—1
1=y (1) = Z l=n—(k—1),
=1 v=1 =1 =1 =1
womit der Induktionsschritt bewiesen ist. O

3.9 Satz
Gegeben ein n-Koaleszenzprozess (R;):>0 mit assoziierter Sprungkette (Zy)g, sowie | <
k.&,n e én, €l =k, n| =1,§ Cn, gilt fir die bedingten Verteilungen von %,

(k — DI —
Kk —1)!

P = | = €) = Dhiat ., (3.15)
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3. Der Koaleszenzprozess nach Kingman

wobei A1, Ag, ..., \; wie folgt definiert sind: Seien 7;, 1 < i < [ die Aquivalenzklassen von
nund &, 1 < 5 < k die Aquivalenzklassen von &, so ist A\; die Anzahl der Aquivalenz-
klassen von &, welche zu 7; verschmelzen, das heifit

X = [{§11 <5 <K& C it

Beweis. Wir verzichten an dieser Stelle auf einen Beweis, merken aber an, dass man einen
Beweis fithren kann, wenn man die Aquivalenzklassen von ¢ als Individuen eines nunmehr
|€|-Koaleszenzprozesses auffasst. Dieser Idee werden wir im folgenden Abschnitt weiter
nachgehen und verweisen deshalb an dieser Stelle auf das noch ausstehende Ergebnis
3.11. O

3.3. Der Koaleszenzprozess

Nachdem wir nun den n-Koaleszenzprozess fiir beliebige natiirliche Zahlen n kennenge-
lernt haben, stellt sich hinsichtlich tieferer Analysen, wie zum Beispiel Grenzwertverhal-
ten von n-Koaleszenzprozessen, die Frage, inwiefern Koaleszenzprozesse fiir verschiedene
n in Verbindung stehen. In den Kapiteln 6 und 7 in [15], stellt Kingman zwei verschiede-
ne Konzepte der Einbettung eines m-Koaleszenzprozesses in einen n-Koaleszenzprozess
vor, Temporal Coupling beziechungsweise Natural Coupling. Als Konsequenz dieser Kon-
sistenzeigenschaft ergibt sich dariiber hinaus sogar die Existenz eines Prozesses (R:):>0
auf der Menge & der Aquivalenzklassen auf den natiirlichen Zahlen, so dass dieser n-
Koaleszenzprozesse fiir alle n € N enthélt (vgl. Kapitel 8 in [15], oder [14]).

3.10 Bemerkung

Es sei € € &, eine Aquivalenzrelation mit Aquivalenzklassen &1, &, . . ., &. Wir vermerken
zunéchst, dass wir die Aquivalenzklassen nach der natiirlichen Ordnung ihrer kleinsten
Elemente sortieren kénnen, das heifit, wir schreiben

& <§& & min{k : k € §&} < min{k : k € &},

wobei wir min () L inf setzen. Dann kénnen wir jede Aquivalenzrelation in &), als n-
Tupel (vi,v2 ...,vy) darstellen, mit v; < v; fir alle 0 < ¢ < j < |¢] und v, = 0 fir
k> [¢].

3.11 Proposition (Temporal Coupling)
Es sei (Rin))tzo ein n-Koaleszenzprozess und (D;):>o der assoziierte Todesprozess. Es be-

. . . . f _ .
zeichne 7, die Verweildauer von (Dy)¢>0 im Zustand k. Setze T, def Zf:ol Tp—i. Definiere
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3. Der Koaleszenzprozess nach Kingman

ferner eine Abbildung Kpm p : &, — & gemal

Km,n(gl,fb cee afn) = ([”v [2]’ ) Hf”v@v s 70)7

wobei (£1,&2,...,&,) die in 3.10 vorgestellte Darstellung bezeichnet. Dann gilt
n d m
(K’mynRg“Wz—&-t)tZO < (R™)iz0

fiir einen m-Koaleszenzprozess (Rgm))tzo, das heifit (K nR7,,+¢)t>0 ist ein m-Koales-
ZENZProzess.

Beweis. Wir beginnen mit der Feststellung, dass es ausreichend ist, die Behauptung
fiir den Ubergang n — (n — 1) zu zeigen. Bezeichne also 7, = inf{t > 0 : R; # Ry}

die erste Sprungzeit und k def Kn—1n. Vermoge der starken Markov-Eigenschaft ist

(R})t>0 o (R, +¢)t>0 ein Markov-Sprungprozess mit derselben Sprungdynamik wie

(Ry)>0, gestartet in R, . Offensichtlich gilt R = A, und jeder Sprung von (R});>0
induziert einen Sprung von (kR})i>0 = (kRr,+t)t>0- O

Rein anschaulich kann man also fiir m < n einen m-Koaleszenzprozess innerhalb eines
n-Koaleszenzprozesses (R;):>0 finden, indem man bis zu dem Zeitpunkt wartet, an dem
(R¢)t>0 aus m Aquivalenzklassen besteht, und dann diese als Individuen auffasst.

Im Hinblick auf den n-Koaleszenzprozess als Modell fiir die Genealogie einer Auswahl
von n Individuen einer Population der Grofie 2N, ist es allerdings natiirlicher, statt n
Individuen eine Subpopulation von m < n Individuen zu betrachten. In Bezug zu einem
n-Koaleszenzprozess bedeutet dies die Einschrankung auf die Aquivalenzrelationen auf
m Elementen. Die positive Antwort, dass auch auf diese Art ein m-Koaleszenzprozess
innerhalb eins n-Koaleszenzprozesses gefunden werden kann, liefert nunmehr

3.12 Proposition (Natural Coupling)

Sei (Rﬁ”))tzo ein n-Koaleszenzprozess, sowie m < n, m,n € N. Sei ferner p,, , : &, = &
definiert durch

P (G P < 0,§ <m,(6,5) € €)

fiir alle £ € &,. Dann ist (pm,nRgn))tzo ein m-Koaleszenzprozess, das heif3t

(PR )es0 £ (R )0 (3.16)

(m

fiir einen m-Koaleszenzprozess (R, ))tzo-
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3. Der Koaleszenzprozess nach Kingman

Beweis. Wie im Beweis zu 3.11 vermerken wir auch hier, dass es ausreicht, den Ubergang
n — (n — 1) zu betrachten. Dies ergibt sich leicht aus der Feststellung

Pmn = Pmmn—10° Pn—1n
flir m <n —1.

Sei also (R¢)+>0 ein n-Koaleszenzprozess und p def Pn—1n : én — ép—1 die oben definierte
Einschriankungsabbildung. Seien ferner £ € &,_1 und wéhle v € &, derart, dass pr = £
gilt.

Dariiber hinaus sei an dieser Stelle davon ausgegangen, dass (R¢):>o in v startet (vgl.

[5]): Bezeichne o, ot inf{t > 0 : Ry = v} die (Erst-)Eintrittszeit in den Zustand v.
Dann ist v eine Stoppzeit (vgl. (1.22); da der Wert 0 nur angenommen wird, wenn
v = A, gilt) und vermoge der starken Markov-Eigenschaft, sowie der zeitlichen Ho-
mogenitit ist (Ry,1t)i>0 ein Markov-Prozess mit denselben Ubergangsraten wie ein n-
Koaleszenzprozess, der jedoch in v startet.

Falls nun ein m € {1,2,...,n — 1} mit m ~, n existiert, das heifit, falls die Aquivalenz-
klasse von n in v nicht einelementig ist, so gilt bereits |v| = |£| und fiir jedes p € &, mit
v < u gilt pv < pp. Dartiber hinaus gilt natiirlich auch pu # pp’ fir alle p, ¢/ € &, mit
v <, v =, u# . Damit stimmt das Ubergangsverhalten von (Ry):>o und (pR:)>0
iiberein.

Sei also nun die Aquivalenzklasse von n in v einelementig und setze k & |v|. Bezeichne o
die Zeit bis zum ersten Sprung aus v heraus. Dann geniigt o einer Exponentialverteilung
mit Parameter (g) Bezeichne mit u = R, den Zustand von R; nach dem ersten Sprung.
Dann entspricht die Verteilung von p der Gleichverteilung auf der Menge der Aquiva-
lenzrelationen, welche durch Verschmelzung zweier Aquivalenzklassen von v entstehen.
Davon sind k£ — 1 dieser Relationen durch Verschmelzungen der Aquivalenzklassen von
n mit einer der iibrigen k — 1 Aquivalenzklassen entstanden. Bezeichne also mit N das
Ereignis, dass die Aquivalenzklasse von n in u weiterhin einelementig ist. Offensicht-

lich gilt dann P(N) = k—f und, bedingt unter N, entspricht die Verteilung von pu der

k—1

N ) méglichen Verschmelzungen zweier Aquivalenzrelationen

Gleichverteilung auf den (
von puv.

Falls also N nicht eintritt, so bezeichne mit ¢’ die Zeit bis zum zweiten Sprung aus

v heraus. Dies entspricht der Zeit bis zum ersten Sprung aus p heraus und geniigt

o . . . _ . . def
damit einer Exponentialverteilung mit Parameter (k21). Bezeichne mit p/ = Ryyo

den Zustand von (R;);>0 nach dem zweiten Sprung. Dann entspricht die Verteilung
von pp’ der Gleichverteilung auf den (kgl) moglichen Aquivalenzrelationen, die durch
Verschmelzung zweier Aquivalenzklassen von pv hervorgehen.
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3. Der Koaleszenzprozess nach Kingman

pR: verweilt nun also bis zum Zeitpunkt o + 1y Nc}a’ im Zustand £ und springt dann
beim Eintreten von N in den Zustand g und beim Nichteintreten von /N in den Zustand
i'. Dariiber hinaus hingt das Sprungziel nicht von den Zeitpunkten der Spriinge ab.

Es ist leicht einzusehen, dass die Voraussetzungen von A.6 gegeben sind. Damit geniigt

also o + 1 Nc}a’ einer Exponentialverteilung mit Parameter (kgl)

Insgesamt verweilt also (pR:)i>0 eine ('g‘)—verteilte Zeit im Zustand £ und springt dann

mit gleicher Wahrscheinlichkeit in eine der (I&I; 1) Aquivalenzrelationen, welche durch
Verschmelzung zweier Aquivalenzklassen von ¢ hervorgehen. O

Im Kontext des n-Koaleszenzprozesses als asymptotisches Modell fiir die Genealogie ei-
ner Population, erinnern wir daran, dass die Aquivalenzklassen mit Individuen assoziiert
sind. Die spezielle Wahl der Einschrankungsabbildung p,, ., bevorzugt bei der Betrach-
tung von Subpopulationen der Grofle k einer Population der Grofle n gerade die ersten
k Individuen.

Man iiberlegt sich allerdings, dass die Assoziation von Individuen und Aquivalenzklassen
auch in anderer Reihenfolge getroffen werden kann, und dass dies keine Auswirkung auf
die Gestalt der Genealogie (unter neutraler Evolution) haben sollte.

Formalisiert wird dies durch den Begriff der Austauschbarkeit (vgl. unter anderem [14]
oder [15]), auf den im Folgenden eingegangen wird.

3.13 Definition
Fir n € N bezeichne

(i)
Sn def {m:{1,2,...,n} = {1,2,...,n}|r bijektiv},

die symmetrische Gruppe von {1,2,...,n},
(i)
Sy & {m: N — N|r bijektiv},
die (unendliche) symmetrische Gruppe von N und
(i)
SN {r € Sx|lsupp(r)| < oo},

die (unendliche) symmetrische Gruppe von N mit endlichem Trager, wobei wir mit

supp(m) o {n € N|m(n) # n} den Trager von 7 bezeichnen.
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3.14 Definition

Eine (zufillige) Aquivalenzrelation & € & heifit austauschbar, falls ihre Verteilung inva-
riant unter der Wirkung jeder Permutation 7 € S%n mit endlichem Trager ist, wobei die
Wirkung von 7 auf £ gemaf

€ =& © {(6,) 4, € N, (n(i), 7(4)) € €} (3.17)

definiert ist.

Fiir (zufillige) Aquivalenzrelationen ¢ € &, reduziert sich 3.14 offensichtlich auf die
Invarianz der Verteilung von £ unter der Wirkung der Permutationen 7w € .S,,.

3.15 Bemerkung
Man iiberlegt sich leicht, dass die in (3.17) definierte Abbildung SiPx & — &, (7€) — &
tatsdchlich eine Wirkung im Sinne der Gruppentheorie ist.

3.16 Proposition
Der n-Koaleszenzprozess nach Kingman ist austauschbar. Dabei bezeichnen wir einen
stochastischen Prozess (R¢)¢>0 mit Werten in &, als austauschbar, wenn

(Re)es0 = (TRy)is0 (3.18)

fiir alle 7 € S, gilt.

Beweis. Der Beweis folgt unmittelbar aus der Tatsache, dass das Verhalten eines n-
Koaleszenzprozesses lediglich von der Anzahl der Aquivalenzklassen abhingt. Diese ist
invariant unter m € S,,. Dariiber hinaus ist 7 nicht nur mit der Anzahl der Aquivalenz-
klassen vertriglich, sondern auch mit der Gréfie der Aquivalenzklassen. 0

Bevor wir uns nun mit der Frage nach der Existenz eines stochastischen Prozesses befas-
sen, der n-Koaleszenzprozesse fiir alle n € N enthélt, wollen wir zunéchst festhalten, dass
der Raum & der Aquivalenzrelationen auf N, versehen mit einer geeigneten Topologie,
ein polnischer Raum ist.

Wir folgen dazu Lemma 2.6 in [5], definieren aber zunéchst noch Einschrankungabbil-
dungen p, : & = &,, n € N, analog zu 3.12, geméaf

(€ (G DN <irj <n: (i) € €} (3.19)

fir alle £ € &.
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3.17 Lemma
Die Abbildung d : & x & — R, definiert durch

7y def 1
d6.8) = sup{n € N : pp& = p,&'}’ (3.20)

fir £,¢' € &, mit der Konvention 1/sup N = 0, ist eine Ultrametrik.

Beweis. Wir beginnen mit der Feststellung, dass lediglich der Nachweis der starken Drei-
ecksungleichung nicht offensichtlich ist. Seien also &, 7, v € & verschiedene Aquivalenzre-
lationen. Sei ferner d(¢,v) = 1/kund d(¢,n) = 1/n. Firn < kfolgt d(n,v) = 1/n > 1/k.
Im Fall n > k gilt aber bereits d(n,v) = 1/k. Denn angenommen 7 und v wiirden auch
unter ppy1 ilibereinstimmen, so wére dies auch fiir £ und v der Fall, was einen Wider-
spruch zur Annahme liefern wiirde. Insgesamt ergibt sich nun

d(f,l/) < maX{d(&’?)ad(n, V)]'? (3'21)

d ist also eine Ultrametrik. ]

3.18 Proposition
Der Raum (&, d) der Aquivalenzrelationen auf N, versehen mit der in (3.20) definierten
Metrik d, ist kompakt.

Beweis. Sei (&,)nen C & eine Folge von Aquivalenzrelationen auf den natiirlichen Zah-
len.

Wir stellen zunéchst fest, dass (p1&, ), eine identische Folge ist. Mithin finden wir eine
Teilfolge (&1,n)n derart, dass d(§1,n,&1,) < 1 fir alle n,n’ gilt. Ferner tiberlegen wir
uns, dass fir eine Folge (Vg )n C & mit d(Vg g, Vi) < 1/k fir alle n,n’ die Menge
{pr+1vkn : n € N} hochstens (k+1)-elementig ist. Dies liefert die Existenz einer Teilfolge
(Vk+1,n)n derart, dass d(Vg41p, Vkt1,0) < 1/(k + 1) fiir alle n,n/. Zusammen ergeben
sich so Teilfolgen &) def (&kn)n derart, dass ¢+1) eine Teilfolge von £ ist, und
d(gk,mfk,n’) < 1//€ far alle n,n’.

Fir die diagonale Folge (v,)n, def (&nn)n ergibt sich damit fiir alle K € N

PkVn = PkVp/ (3.22)
fir alle n,n' > k, und damit d(v,, v,) < 1/k fir alle n,n’ > k.

Insbesondere kénnen wir (v,), als Aquivalenzrelation auf den natiirlichen Zahlen auffas-
sen, indem wir eine Aquivalenzrelation £ € & als Element (pn€), € Xi-, &, auffassen.
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Das Bild von & unter der so beschriebenen Einbettung sind dann gerade die Elemente
von X2, &, die reguldr im Sinne von (3.22) sind.

Damit besitzt jede Folge in (&, d) eine konvergente Teilfolge und (&', d) ist demnach ein
kompakter metrischer Raum. O

3.19 Bemerkung

Gemafl 3.3 in [10] erzeugt die Metrik d'(&,n) &t SUPpen 27" Uy, e2p,my die von den
Einschrankungsabbildungen p,, erzeugte Topologie, das heifit die schwichste Topologie,
beziiglich der die Einschrankungsabbildungen p,, stetig sind. Ferner ist geméfl Lemma
9 in [10] der Raum (&,d’) kompakt und total unzusammenhéngend und insbesondere
polnisch (vgl. auch [4]).

Man iiberlegt sich leicht, dass d und d’ vermoge der Beziehung
A&, &) =1/k & d'(&,¢) =1/2F

dquivalente Metriken bilden.

3.20 Satz

Es existiert ein Wahrscheinlichkeitsraum (€2,2(, P) und ein eindeutig verteilter stochas-
tischer Prozess (R¢)¢>0 mit Werten in &, so dass fiir die Einschrédnkungsabbildungen
pn & = &y, no€ N, gemaf (3.19), die eingeschrankten Prozesse (pn,Rt)i>0 jeweils
n-Koaleszenzprozesse sind. (R¢)¢>0 heiBt dann Kingmans Koaleszenzprozess oder Ko-
aleszenzprozess nach Kingman.

Beweis. Wir folgen [4] in der Feststellung, dass eine Aquivalenzrelation ¢ auf N als eine
Funktion § : N — N verstanden werden kann, indem wir jede natiirliche Zahl auf die
kleinste zu ihr beziiglich £ dquivalente natiirliche Zahl abbilden, das heif}t

d(n) o min{k € N : k ~¢ n}.

Man iiberlegt sich leicht, dass fiir jede Aquivalenzrelation genau eine solche Funktion
existiert und auch jede solche Funktion eine eindeutige Aquivalenzrelation beschreibt.

Damit ldsst sich ein Prozess (R¢)¢>0 auf & formal als Prozess mit Indexmenge N und

Zustandsraum NI0) auffassen.

Im Hinblick auf die endlich-dimensionalen Verteilungen dieses Prozesses notieren wir,
dass fiir jede endliche Teilmenge I C N offensichtlich ein k£ € N existiert, derart dass I C
{1,2,...,k}. Sei ferner J C I. Vermoge der Austauschbarkeit von n-Koaleszenzprozesen
diirfen wir ferner annehmen, dass I, J von der Gestalt {1,2,...,[} mit [ € {|I|,|/|} sind.
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Mit dem Satz von Daniell-Kolmogorov (vgl. Satz 54.7 in [2]) folgt damit die Existenz
eines eindeutigen Mafles Q auf den Aquivalenzrelationen von N mit den vorgegebenen
Randverteilungen und mithin die Existenz eines eindeutig verteilten stochastischen Pro-
zesses (Ry)i>0 auf &, derart dass (p,R:)i>0 der Verteilung eines n-Koaleszenzprozesses
genligt. O

Fiir konstruktive Beweise sei an dieser Stelle unter anderem auf Theorem 3 in [14] oder
Proposition 2.1 in [4] verwiesen.

3.21 Bemerkung
Wie schon im Fall der n-Koaleszenzprozesse fithrt auch hier die Eindeutigkeit in Vertei-
lung dazu, dass auch von dem Koaleszenzprozess gesprochen wird.

3.22 Proposition
Der Koaleszenzprozess nach Kingman ist austauschbar.

Beweis. Es sei (R;)¢>0 ein Koaleszenzprozess und m € S&n eine Permutation der natiir-
lichen Zahlen mit endlichem Triger, dann gibt es ein n € N derart, dass supp(w) C
{1,2,...,n} gilt. Wir wir in 3.16 bereits gesehen haben, ist (pyR¢):>0 austauschbar fiir
alle £ > n. Damit ist aber auch (R;);>¢ bereits austauschbar. a

Der Startzustand des Koaleszenzprozesses nach Kingman ist, wie im endlichen Fall, er-
neut die Aquivalenzrelation, in der jede Aquivalenzklasse einelementig ist. Damit gilt
insbesondere |Ry| = co. Man kann jedoch zeigen, dass der Koaleszenzprozess nach posi-
tiver Zeit fast sicher nur endlich viele Aquivalenzklassen hat. Wir notieren (vgl. Theorem
2.1 in [4]):

3.23 Proposition
Fiir einen Koaleszenzprozess (R:)>0, gilt

P(|R:| < 00,t > 0) =1,

das heif3t, ein Koaleszenzprozess besitzt zu jedem Zeitpunkt ¢ > 0 fast sicher nur endlich
viele Aquivalenzklassen.

Beweis. Es ist ausreichend zu zeigen, dass fiir jedes € > 0 ein M > 0 derart existiert,

dass P(|R¢| > M) < e. Dazu betrachten wir die Einschrankungen auf die eingebetteten

n-Koaleszenzprozesse (Rin))tzo def (pnRt)t>0 und wihlen exponentialverteilte Zufallsva-
riablen 7, mit Parameter (g) Die Wahrscheinlichkeit, dass (Rgn))tzo zum Zeitpunkt ¢

noch mehr als M Aquivalenzklassen hat, ergibt sich als die Wahrscheinlichkeit, dass die
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Summe der ersten M Verweildauern des assoziierten Todesprozesse (Dt(n))tzo den Wert
t nicht iiberschreitet. Vermoge der Markov-Ungleichung (vgl. Satz 17.4 in [2]) fir die
monotone identische Abbildung, erhalten wir

P<\R§")] >M) =P (ﬁ: Tk>t>

IN
~+ | =

=
-~
L=
=~
N——

1 & 2
<,
~t Zk(k—l)
k=M
2 1 1 2
_ZZ <k—1_k)—t(M—1)
k=M

Daraus ergibt sich

li PIR™| > M) < — =
im sup P(| 1] )_t(M_l)

und folglich lim sup,, P(|R£n)] > M) < e fiir alle M > [2] 4 1 und mithin
P(|Rt| > M) <e.

Sei nun €, eine monotone Nullfolge. Dies liefert eine monoton wachsende Folge (M),
mit lim,,_yoo M, = oco. Ferner definiert A4, def {|R¢| > M,,} eine antitone Mengenfolge

mit A % limy,_,e0 Ap = {|R¢| = oo}. Vermoge der Stetigkeit von oben (vgl. Satz 2.3 in

[2]), gilt
P(|R¢| = 00) = P(lim A,) = lim P(4,) < lim ¢, =0,
n—o0

n—oo n—o0

und damit die Behauptung. O

3.4. Genealogische Baume

Als Prozess auf den Aquivalenzklassen von {1,...,n} ist ein n-Koaleszenzprozess eine
relativ abstrakte Realisierung der vergleichsweise einfachen Sprungdynamik. Mit der
Zerlegung des Prozesses in seine eingebettete diskrete Markov-Kette und zugehorigen
Todesprozess (vgl. 3.6), lasst sich auf natiirliche Weise ein n-Koaleszenzprozess (Ry)i>0
mit einem zufilligen, bindren Wurzelbaum assoziieren, in welchem die Blatter mit den
verschiedenen Aquivalenzklassen korrespondieren, und die Zweige proportional zu den
sukzessiven Sprungzeiten von (Dy):>o dargestellt werden (siche auch [19]), das heiit, wir
konnen Koaleszenzprozesse als baumwertige Prozesse auffassen.
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3.24 Definition

Ein gerichteter Graph G ist ein Paar (V, E), bestehend aus einer Knotenmenge V und
einer Kantenmenge E C V x V. Seien v,w € V zwei Knoten. Wir sagen dann, dass eine
Kante von v nach w geht, falls (v,w) € V. Da dies fiir unsere Félle ausreichend ist, sei
ferner G schleifenfrei, das heifit, (v,v) ¢ E fur alle v € V.

Wir sagen, dass fiir zwei Knoten v,w € V ein Pfad oder Weg von v nach w existiert,
wenn eine Folge (xy,)1<n<k mit 1 = v und z, = w existiert, so dass

(x4, mip1) € V fir allei € {1,2,...,k — 1}

Ferner bezeichnen wir mit

degou(v) & [{w € V': (v,w) € B} (3.23)
deg, (v) € {w € V i (w,v) € BY| (3.24)

den Ausgangsgrad, beziehungsweise den Eingangsgrad von v.

3.25 Definition

Ein Wurzelbaum ist ein gerichteter Graph 7' = (V, E') mit einer ausgezeichneten Wurzel
r € V derart, dass

(i) fur alle v € V' \ {r} ein Pfad von v nach r existiert, oder

(ii) fiir alle v € V' \ {r} ein Pfad von r nach v existiert.
T heifit ferner bindr, falls

(") deggy(v) € {0,2} und deg, . (v) € {0,1}, im Fall (i),

(ii") degyy:(v) € {0,2} und deg;,(v) € {0,1}, im Fall (ii),
fiir alle Knoten v € V gilt.
3.26 Definition
Wir betrachten an dieser Stelle einen schleifenfreien, ungerichteten Graph G als Paar
(V, E), bestehend aus der Knotenmenge V und der Kantenmenge E C {{v,w} : v #

w € V}. Eine Kante ist demnach eine zweielementige Teilmenge der Knotenmenge. Wir

bezeichnen mit ot
deg(v) = [{e € E:v € e}

den Knotengrad von v.
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3.27 Bemerkung
Vermoge der Feststellung, dass fiir einen bindren Wurzelbaum mit Wurzel r € V

=2, fallsv =r

deg;, (v) + degqy (v
Bin (V) Bou( ){E {1,3}, sonst.

gilt, kénnen wir einen bindren Wurzelbaum auch als ungerichteten Graphen auffassen.

Fin bindrer Wurzelbaum ldsst sich demnach auf sehr natiirliche Form als Darstellung
einer Realisierung eines n-Koaleszenzprozesses (R;);>o auffassen und konstruieren.

3.28 Bemerkung

Beginnend mit n Knoten, korrespondierend zu den Aquivalenzklassen von Ry = A,, und
einer leeren Kantenmenge, fiigt man fiir jedes Koaleszenzereignis einen neuen Knoten,
sowie neue Kanten zwischen diesem und den Knoten, welche zu den am Verschmel-
zungsereignis beteiligten Aquivalenzklassen assoziiert sind, ein. Offensichtlich liefert die-
se Konstruktion dann einen bindren Wurzelbaum.

3.29 Definition
Sei G = (V, E) ein schleifenfreier, ungerichteter Graph, sowie |V| > 1. Ein Knoten v € V
heifit Gguferer oder externer Knoten, falls deg(v) = 1 gilt und innerer Knoten andernfalls.

Entsprechend heifit eine Kante dufere oder externe Kante, falls einer ihrer Endpunkte
ein duflerer Knoten ist, und innere Kante andernfalls.

Ist G ein Baum, so bezeichnen wir Kanten auch als Zweige und externe Knoten als
Blatter.

Die externen Knoten eines zur Realisierung eines n-Koaleszenzprozesses assoziierten bi-
naren Wurzelbaumes sind damit gerade die den einelementigen Aquivalenzklassen zuge-
ordneten Knoten.

3.30 Definition
Ein gewichteter Graph W ist ein Tripel (V, E,w), bestehend aus einem Graphen G =
(V, E) und einer Gewichtsfunktion w : £ — R.

Fiir eine positive Gewichtsfunktion kénnen wir die Gewichte {iber die Kantenléngen dar-
stellen. Dariiber hinaus lésst sich die Konstruktion geméfl 3.28 einfach um die Konstruk-
tion einer Gewichtsfunktion mithilfe der Sprungzeiten des zugrundeliegenden Markov-
Sprungprozesses erweitern. Dabei entsteht ein Baum, in welchem alle externen Knoten
denselben Abstand zur Wurzel haben.
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Abbildung 3.1.: Zu einem Koaleszenzprozess assoziierter zufélliger, bindrer Wurzelbaum
mit externen Knoten 1,2,...,7. Hierbei bezeichnen 7T; die sukzessiven
Sprungzeitpunkte, d.h. T;41 — T; = 7.

3.31 Definition

Fiir einen n-Koaleszenzprozess (R:):>0 bezeichnen wir den zufélligen, bindren Wurzel-
baum, der sich geméafl des oben angegebenen, pfadweisen Konstruktionsverfahrens ergibt,
als Koaleszenzbaum (zu (R¢)t>0)-

3.32 Bemerkung
In Koaleszenzbdumen nimmt 3.11 die einfache Gestalt an, den unteren Teil des Baumes
abzuschneiden.

3.33 Proposition

Fiir die Anzahl der Knoten eines bindren Wurzelbaumes 7' = (V, F) gilt:
(i) Es existiert ein k € Ng mit |V] =2k — 1.
(ii) Es existieren in diesem Fall genau k externe Knoten

Dariiber hinaus gibt es dann auch genau 2k — 2 Kanten.
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3. Der Koaleszenzprozess nach Kingman

Beweis. Die Aussagen ergeben sich leicht per Induktion aus der Uberlegung, dass je-
der Wurzelbaum T = (V, E) mit Wurzelknoten r genau zwei Unterwurzelbaume 77, T"
enthélt. Die Wurzelknoten von 7”7 und T” sind gerade die zwei Kindknoten von r. Fiir
die Knotenzahl von T beziehungsweise T" existieren dann per Induktionsvoraussetzung
k' k" € Ny, so dass wir

V|=1+(2k' — 1)+ (2K — 1) = 20k’ + k') — 1

erhalten. Analog ergibt sich, dass die Anzahl externer Knoten gerade die Summe tiber
die Anzahl externer Knoten der beiden Teilbdume ist. Als unweigerliche Konsequenz aus
der Tatsache, dass an einem Verschmelzungsvorgang stets genau 2 Kanten beteiligt sind,
wird die Wurzel des Baumes nach k£ — 1 Verschmelzungsvorgéngen erreicht, also gibt es
2(k — 1) Kanten. O

3.34 Definition
Fiir einen gewichteten, bindren Wurzelbaum 7' = (V, E,w : E — Rs() mit Wurzel r,
bezeichnen wir den Abstand zweier Knoten v, w € V als

d(v,w) = inf {Z w(ek) : (ex)r C E ist ein Pfad von v nach W} ,
k
wobei inf ) = —oo vereinbart sei und ferner die Héhe des Baumes mit

h(T) o sup {d(v,r) : deg(v) =1},

falls |V| > 1.

3.35 Definition
Wir bezeichnen einen gewichteten, bindren Wurzelbaum 7' = (V, E,w : E — R~() mit
Wurzel r und |V| > 1 als reguldr beziehungsweise zuldssig, falls

d(v,r) = h(T)

fiir alle externen Knoten v gilt.

Demnach kénnen wir jeden zuldssigen, gewichteten, bindren Wurzelbaum als Darstel-
lung eines Pfades eines Koaleszenzprozesses auffassen. Entsprechend kénnen wir ein
Konstruktionsverfahren fiir zuféllige, gewichtete bindre Wurzelbdume angeben, so dass
ihre Verteilungen gerade denen von n-Koaleszenzprozessessen entsprechen (vgl. [19] oder

)

Wir haben im Beweis von 3.33 gesehen, dass sich ein bindrer Wurzelbaum als Baum,
bestehend aus einem Wurzelknoten und zwei Subwurzelbdumen darstellen lésst. Ent-
sprechend kénnen wir zwei Wurzelbdume zu einem einzelnen Wurzelbaum mit neuer
Waurzel wie folgt verschmelzen:

35



3. Der Koaleszenzprozess nach Kingman

3.36 Proposition

Seien S = (Vg, Es,wg : Es — Rsg) und S’ = (Vgr, Egr,wgr : Egr — Rsg) gewichtete,
bindre Wurzelbdume mit Vg N Vgr = 0 und Wurzeln s, s. Sei ferner r ¢ Vg U Vg, sowie
g € R~¢. Ohne Einschrinkung sei dartiber hinaus h(S) > h(S’) angenommen. Vermoge
der Definitionen

VUV U Vs

o {s,7}U{s',r} UEsU Eg

wg(e), fir alle e € Eg,
w(e) def | wgr(e), fir alle e € Fgr,
g, fir e = {s,r},

g+ h(S)—=h(S"), fire={s,r}

liefert dies einen gewichteten, bindren Wurzelbaum 7" = (V, E,w) mit Hohe h(T) =
h(S) + g. Dieser ist ferner regulér, falls S, S” regulér sind.

Damit lasst sich nun folgendes Konstruktionsverfahren angeben:

(i) Beginne mit einem Wald Ty = (11,75, . .., T;) von einelementigen Wurzelbdumen,

etwa T; = (i, 0, w(()i)), wobei w(()z) die leere Abbildung bezeichne.

(ii) Gegeben einen Wald Ty, = (11,75, ..., T,_) reguldrer, gewichteter, bindrer Wur-
zelbdume, generiere (unabhéngig) eine exponentialverteilte Zeit ¢,,_; mit Parame-
ter (”gk), und fithre dann das obige Vorgehen 3.36 mit g = ¢,,_ solange sukzessive
durch, bis der Wald sich auf einen einzelnen Baum reduziert hat. Dies ist offen-

kundig nach n — 1 Schritten der Fall.
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4. Langenverteilung externer Zweige in
Koaleszenzbaumen

Wie wir in 3.20 gesehen haben, existiert ein Wahrscheinlichkeitsraum (€2,2(, P) und ein
stochastischer Prozess (R¢):>0 mit Werten in & derart, dass die kanonischen Einschran-
kungen (p,Rt)i>0 auf den Aquivalenzrelationen der natiirlichen Zahlen in die Aquiva-
lenzrealtionen auf {1,2,...,n} jeweils n-Koaleszenzprozesse sind. Ferner haben wir in
3.19 gesehen, dass & ein polnischer Raum ist. Dies erméglicht es uns insbesondere Kon-
vergenzaussagen lber Eigenschaften von n-Koaleszenzprozessen zu treffen. Ebenfalls ha-
ben wir gesehen, dass sich jeder n-Koaleszenzprozess als zufélliger bindrer Wurzelbaum
auffassen lasst.

Wir folgen Caliebe et al. [7] in der Feststellung, dass sich die Lénge eines zuféllig ge-
wahlten externen Zweiges als zuféllige Summe exponentialverteilter Zuwéchse auffassen
lasst und notieren dazu zunéchst eine rekursive Darstellung.

Im Folgenden sei stets ein Koaleszenzprozess (R;):>0 auf einem Wahrscheinlichkeitsraum
(Q,2(, P) gegeben. Aussagen zu einem Koaleszenzbaum beziehen sich dann auf den zu
(pnR¢)e>0 assoziierten zufélligen Baum.

4.1 Bemerkung

Fiir einen n-Koaleszenzbaum bezeichne Z, die Lange eines externen Zweiges, welcher
zufillig aus den n externen Zweigen des Baumes ausgewéahlt wurde. Aus der Struktur
des Koaleszenzbaumes wird klar, dass der so gewahlte Zweig entweder am ersten Koales-
zenzereignis beteiligt ist, und in dem Fall gilt Z,, = T;,, oder, dass er an einem spéteren
Koaleszenzereignis beteiligt ist, in welchem Fall Z,, = T}, + R,, gilt, wobei R, vermoge
3.11 geméB Z,_; verteilt ist, das heifit R, = Z,,_1.

Daraus ergibt sich folgende Rekursion
Zn = BpZy—1 + Ty, n >3, (4.1)

sowie Zo = Ty. Dabei sind fiir n € {3,4,...,n} die B, bernoulliverteilt mit Parameter
1 —2/n) und die die T, exponentialverteilt mit Parameter \,, = (g) Desweiteren sind
Z9,Bs, ..., By, T3,...,T, unabhingig.
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4. Langenverteilung externer Zweige in Koaleszenzbaumen

4.2 Proposition
Fiir einen zufillig gewdhlten externen Zweig Z,, n > 3 gilt fiir die Erwartung und die
Varianz

2
EZy =, (4.2)
8H, —12+4/n
Var(Z,) = 4.3
ar( 77») n(n - 1) ’ ( )
wobei H, of Z;L:1 1/j die n-te harmonische Zahl bezeichne.
Beweis. Wir setzen zunichst X, & n(n — 1)Z,. Unter Erinnerung an die rekursive

Struktur von Z, und die Rechenregeln fiir Erwartungswerte geméaf (4.1) ergibt sich
dann vermoge der Unabhéngigkeit der Zs, Bs, ..., By, 13,...,T,

EX, = E(n(n—-1)Z,)
=n(n—1)E(B,Z,-1+ 1))
=n(n—1)P(B, =0)E(B,Z,—1 + T,,| B, =0)
+n(n—1)P(B, =1)E(ByZn—1 + Tn|Bn, = 1)

n —

=n(n-1) (i BT, + 2 E(Zn 1+ Tn)>

n
=n(n—-1)ET, + EX,_1
=24 EX,4 (4.4)

Iteratives Einsetzen liefert EX,, = 2(n — 1) und damit folgt

EX 2
EZ,= ——— = —.
nn—1) n

Zur Berechnung der Varianz, sei auf den Hinweis verwiesen, dass es sich haufig als niitz-
lich erweist, eine Funktion der eigentlich zu betrachtenden Zufallsvariablen zu untersu-

chen. Wie in [12] setzen wir nunmehr Y, o n(n —1)Z2 und erhalten
EY, = E[n(n —1)Z2]
= E[n(n — 1)(BnZn—1 + Tn)?]
=n(n—1)E(ByZn_1+T)?
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4. Langenverteilung externer Zweige in Koaleszenzbaumen

Bedingen unter B, liefert dann

EY, =n(n—1)P(B, =1)E ((BpZn-1 + T,)*|B, = 1)
+n(n—1)P(B, =0)E ((BnZn-1 + T;)?|Bn = 0)
=n(n—1) (P(B, =1)E(T), + Z,—1)* + P(B, = 0)ET?)

2
B(Ty + Zna)* + ETg)
=n—1)(n—-2)E(T2+ 2T, Zn-1+ Z2_;) +2(n — 1) ET?
=n(n—1)ET? +2(n—1)(n—2)ET,Z,_1 + EY,_1. (4.5)
Nun gilt aber fir die Exp(A,,)-verteilte Zufallsvariable T;,

2
n(n —1)’

8
ET? =200t t= ——.
n ( n) n2(n—1)2

ET, =(\,) ' = (4.6)

(4.7)

Ebenso ist Z,_; als Verkniipfung von Z5, B3, ..., Bp_1,13,...,T,_1 unabhéngig von T,
und es gilt mit Verweis auf (4.2)

2 2 4

El.Z, 1=FEILEZ, 1 = . = .
nen=l nEend nn—1) n—1 n(n—1)>2

Damit ergibt sich fiir die Erwartung von Y, vermoge (4.5)

8 8(n —2)
EY, = EY,,_
" n(n—1)+n(n—1)+ ol
8(n—1)
=—Z2 1+ EY,_
8
=—+4 EY,_1. (48)
n
Iteratives Einsetzen liefert dann
8 8 8
EY,, =—+—-+- -4+ =-=8(H, -1 4.
n= g g = 8(Ha - 1), (4.9)

wobei fiir den letzten Summanden die Beziehung EY; = 2 EZ3 = 4 verwendet wurde.
Unter Beriicksichtigung der Linearitdt des Erwartungswertes erhalten wir daher

B2 _ EY,  8(H,-1)
" pn—-1) nn-1)"
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4. Langenverteilung externer Zweige in Koaleszenzbaumen

und damit weiter fiir die Varianz von Z,

Hy,—1) 4 SH,—12+4
Var(Zy) = BZ2 — (Bz,)? = SUn 1) 4 8 +4/n
nn—1) n? n(n —1)

O]

Wir folgen nunmehr Caliebe et al. [7] in der Feststellung, dass die standardisierte Lan-
ge eines zufillig gewdhlten externen Zweiges Z,, eines Koalesezenzbaumes keiner nicht-
trivialen Verteilung geniigt, genauer gilt:

4.3 Proposition
Bezeichne Z,, die Lénge eines zufillig gewéhlten externen Zweiges eines Koaleszenzbau-
mes, dann gilt
Z,—EZ
n_—an L (4.10)
Var(Zy,)
Genauer gilt sogar
Zn—EZ 1
—_— o <> . (4.11)
Var(Zy,) Vinn
Beweis. Mit der trivialen Feststellung Z,, > 0, liefert eine Anwendung der Dreiecksun-
gleichung fiir die Li-Norm unter Berticksichtigung von || Z, |, = EZ,

Zn — EZ, | Znll; n EZ, _ 2EZ,
Vv Var(Zy) ||, VVar(Z,)  \/Var(Z,) /Var(Z,)

Einsetzen von Erwartungswert und Varianz geméafl 4.2 liefert ferner

N|=

2FEZ 2(8H,, — 12+ 4 -
lim sup ———=—v/Inn = limsup 4 <n (8, + /n)>
n—oo Var(Zn n—oo n(n — 1) lnn
1
2(8H,, — 12+ 4 B
Slimsup4<n (8 n2 + /n))
n—oo n lnn

Aus der bekannten Tatsache lim, o (H, — Inn) = 7, wobei v die Euler-Mascheroni-
Konstante bezeichne, erhilt man lim,,_,o, H,/Inn = 1 und mithin

limsupﬂ\/lnn < V2 < o,

n—oo 4/ Var(Zn)

und somit die zweite Behauptung. O
Insbesondere konvergiert damit die standardisierte Lange eines externen Zweiges in Ver-

teilung gegen 0. Wir folgen weiter [7] in dem Bemiihen, eine alternative Normalisierung
zu finden.
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4. Langenverteilung externer Zweige in Koaleszenzbaumen

4.1. Eine alternative Darstellung von Z,
Sei n > 3, und B,, wie in (4.1). Setze weiterhin By = 0. Definiere nun

7o Y min{i € {0,...,n — 2} : By_y = 0}. (4.12)
Dann kénnen wir die Verteilung von 7,, unmittelbar berechnen und erhalten:

4.4 Proposition
Fiir die in (4.12) definierte Zufallsvariable 7, gilt

n—k—1 2 2k

P(r,=k)=2— >~ _2___“* 4.13
(7 ) nin—1) n nn-1) (4.13)
fuir0 <k <n-2.
Beweis. Aus der Unabhéngigkeit der B; folgt unmittelbar
P(r,=k)=PB,=Bp-1=--=Bp_kt1 =1,B,_ =0)
k—1
= (H P(B,_i = 1)) - P(Bp_ = 0)
i=0
B ’ﬁn—i—Q 2 _n—k-1
B Ty m n—k “nn-1)"
O

Im Hinblick auf (4.1) erméglicht uns dies nun die Darstellung von Z, als zufillige Summe
der T}.. Genauer erhalten wir

Zn = Ths. (4.14)
k=0

4.5 Proposition

Fiir das geméf (4.12) definierte 7, gilt
ndw, (4.15)
n

wobei W eine Zufallsvariable auf [0, 1] mit Verteilungsfunktion

PW<z)=2(2—-1x), xz€l0,1] (4.16)
ist. Fiir die zu W gehoérende Dichte gilt
fw(x)=21—-2z), ze€]l0,1]. (4.17)
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4. Langenverteilung externer Zweige in Koaleszenzbaumen

Beweis. Es bezeichne |z| die untere Gauflklammer von x, das heifit |x| = max{n €
Z|n < x}. Fiir z € [0,1) folgt mittels (4.12) und der einfachen Uberlegung |nz| <mn —1
fir z € [0,1), sowie der Tatsache, dass die rechte Seite in (4.13) auch mit k = n — 1
vertraglich ist,

P(r, < nx) = P(r, =k)

e (2o 2
—\n n(n—1)

_ 2(|na +1)  [nz(lnz] +1)
n n(n—1)

— 2 — 22 =2(2 - 1),

fir n — oo. Fiir # = 1 ergibt sich P(7, < n) = 1 = 2 — 12. Damit folgt die ge-
wiinschte Verteilungskonvergenz gegen eine Zufallsvariable W auf [0, 1] mit der in (4.16)
gewiinschten Verteilungsfunktion.

Die Behauptung fiir die zu W gehorende Dichte erschlieit sich leicht durch Ableitung
der Verteilungsfunktion von W

i:16(2 —xz)=z(l —x).

dx
O
4.6 Proposition
Fiir den Erwartungswert und die Varianz von 7, beziehungsweise W gelten
n—2 T, 1
Er, — , E (£> S EW = -, 418
™=y n 3 (4.18)
n®—n—2 Tn 1
_ n = . 4.1
Var(,) I8 , Var ( - ) — Var(W) 1S (4.19)

Beweis. Gemaf der Definition des Erwartungswertes und unter Verwendung von (4.13)
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4. Langenverteilung externer Zweige in Koaleszenzbaumen

und A.4, gilt
n—2
B(rn) =Y kP(r, =k)

k=0
=2 k-1

N Z 2k n(n —1)
k=0

_2n 1)’§k_ 2 §k2
nin—1) — n(n—1) —

_ 2(n—2)(n—1) 2 (n—-2)(n—1)2(n—-2)+1
n 2 n(n —1) 6

n—2

-3

Der Erwartungswert EW von W berechnet sich geméf (4.17) zu

1
EW :/ 2x(1 — z)dx

1! 1
=92 =2? —2|(=2®
27 0 3

Es reicht nun vermoge der Linearitdt des Erwartungswertes der Vermerk

Tn Er, 1 2 1
B(%)- 2o - 204
n n 3 3n 3

oy
s 3

fir n — oo.

Fiir die Varainz von 7, betrachten wir zunichst E(72). Mit Verweis auf (A.5) fiir die
Summe von dritten Potenzen folgt

n—2
2) = ZHP(TR =k

n—k—1

:Z%Q =T

2n72
:ngz— n—1 ZkS

k=0
_2(r-2)n-DE2n-2)+1) 2 (n-27°*n-1)
n 6 n(n—1) 4
_(n=1)(n-2) n*-3n+2

43



4. Langenverteilung externer Zweige in Koaleszenzbaumen

Fiir Var(r,) gilt somit

Var(r,) = E(TZ) — (ETn)2

n

n—1)(n—-2) (n—2)32

6 9
(n—2)(n+1) n?—n-2
B 18 18

Die Varianz von W berechnet sich dhnlich der obigen Berechnung des Erwartungswertes
von W zu

Var(W) = EW? — (EW)?

und auch in diesem Fall reicht der Vermerk von

Tn Var(7,) 1 1 2 1
— | = = —[1 - == — _
Var(n> n? 18< n n2> T

fur n — oo. O

4.7 Bemerkung
In [7] finden wir anstelle von (4.19) mit Verweis auf [6] die Behauptung, dass fir die
Varianz von 7,
n?+31n — 2

18
gelte. Dabei betrachteten Blum und Francois eine Zufallsvariable K, das Koaleszenzlevel
von Individuum 1, mit K = n — 7,. Insbesondere bedeutet K = k also, dass das Indi-
viduum 1 beim Ubergang von k — (k — 1) Aquivalenzklassen zum ersten Mal an einer
Verschmelzung beteiligt ist. Bezugnehmend auf (4.13), (4.18) und (4.19) notieren wir

Var(r,) =

_2]{:—1
Cnn-—1

P(K = k) = P(r, =n — k)

fir k € {2,3,...,n} und EK = n— E7r, = 2/3(n+ 1) in Ubereinstimmung mit [6], aber
1
Var(K) = Var(r,) = E(n2 +n—2)

als mogliche Korrektur.
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4. Langenverteilung externer Zweige in Koaleszenzbaumen

4.8 Proposition
Fiir die Verteilungsfunktionen F,, (z) o P(r,/n < z) und F(z) o P(W <x),z€]0,1],
von 7, /n beziehungseise W gilt

[1Fn = Flloo = [Fn(0) = F(0)] = Fu(0) = (4.21)

Beweis. Wir beginnen mit der einfachen Uberlegung, dass die einzigen Punkte, fiir die
die Supremumsnorm angenommen werden kann, vermoge der strengen Monotonie von
F gerade die Unstetigkeitsstellen von F,, sind. Daher betrachten wir

(7<) -2 ()

k=0
_2i+1)  ii+1) (422)
n n(n+1) '
fir i € {0,1,...,n — 2} und erhalten weiterhin
. . 9 o
p(<®) _p(wei)z2_ o= (4.23)
n o n n n  n?(n+1)

womit die Behauptung bewiesen ist. O

Damit erhalten wir die gleichméfige Konvergenz von F,(x) — F(z), welche schon
durch die Stetigkeit von F(z) gegeben ist, und dariiber hinaus auch einen Hinweis
auf die Geschwindigkeit der Konvergenz der Verteilungsfunktionen. Insbesondere gilt
1Fn = Flloo € O(1/n).

Wir folgen weiter Caliebe et al. [7] in ihrem Beweis zur asymptotischen Verhalten von
Zy und notieren dazu analog zunéchst das folgende Lemma:

4.9 Lemma
Fiir festes ¢ > 0 und n/Inn < j <n —n/Inn gilt fir n — oo

- 2tn 2y In®n

wobei der Fehler unabhéngig von j gewahlt werden kann, aber von ¢ abhéngt.

Beweis. Definiere Restglieder R, geméf

n

2tn " 2tn
PR <1+l(l—1)> =l:Z o R

I=n—j n—j
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4. Langenverteilung externer Zweige in Koaleszenzbaumen

das heifit R, ist von der Gestalt

" 2tn 2tn
Ri= ), 1“<1+z(l—1)> -y

l=n—j

Unter Verwendung von A.2 (jeder Summand ist von der Gestalt In(1+ x) fiir ein z > 0)
ergibt sich

n

Bl 3 () e 3
"= -1, l:nijl(l—l)

l=n—j

~ 1
<222§ <222§:7
<2t°n (-2 = t°n P REE

l=n—j

1 ee 1
2 2 2 2
<2t*n l_gnj (=1 <2t°n /n_ e 1>4dx (4.25)

2t%n?

(4.26)

t2n?2 2In®n

_n3/ln3n: n

wobei in (4.25) verwendet wurde, dass x — 1/(x — 1)* monoton fallend fiir x > 1, sowie
n/lnn > 2 fir n > 2 ist. Die Ungleichung in (4.26) beruht auf einer Abschétzung von j
nach oben, und der letzte Schritt verwendet erneut die Beziehung n/Inn > 2 fiir n > 2.
Mittels dieser Abschéitzung ergibt sich dann

2In®n n

< lim sup =t <

n—0o0

lim sup ’Rn

n
n—00 In®n n  In®n

Damit reicht nun zu zeigen, dass

J " n In®n
n—j Z‘l(kz—l) EO( n >
l

=n—)

46



4. Langenverteilung externer Zweige in Koaleszenzbaumen

gilt, denn dann folgt

2tn - 2tn
Zm( 1—1)> l:;jl(l—l)+R”

l=n—j

j n
=2t Ry,
n—j n—j+lzll—1 +

n—j
—~
co(lix) co(i=)
_ 2tj'+o<ln n>
n—7j n
und damit die Behauptung. Deshalb betrachten wir nunmehr
n n
n 1 1
>ty (i)
l=n—j l=n—j
1 1
=n - - =
n—j—1 n
Jj+1
n—j—1
Insbesondere ist j/(n —j) < (5 4+ 1)/(n — j), weshalb nun
J - n J+1 J
— = — 4.27
n—j Z,l(l—l) n—j—1 n-—j (427)
l=n—j
B n
(= )n—j—1)

n
<
(n—n+p=)n—n+g —1)

n? n\ !
- (lnzn B lnn)

n? n? n \!
In®n <1n2n a lnn)

= lim (hln—lnzn)il‘ =0 < 0.
n—oo

folgt. Damit gilt fur

—Z L<limsup
ll—l Sp—

In n n—o00

Insbesondere kann der Fehler, bestehend aus R,, und der linken Seite in (4.27) unabhén-
gig von j abgeschitzt werden, hingt aber von t ab. O
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Wir koénnen nun Caliebe et al. in ihrem Resultat iiber die Verteilungskonvergenz ex-
terner Zweige von Koaleszenzbdumen mithilfe ihrer Laplace-Transformierten folgen und
notieren:

4.10 Satz
Gegeben externe Zweige in Koaleszenzbdumen mit Lingen Z,,, konvergiert nZ, fiir n —

oo in Verteilung gegen Z def 2W/(1 — W), wobei W durch (4.15) gegeben ist. Damit ist
die zu Z gehorende Dichtefunktion von der Form x — 8/(2 + x)3,z > 0.

Beweis. Wir bezeichnen mit ¢,, die Laplace-Transformierte von nZ,, das heifit, ¢, (t) =
Eexp(—tnZ,),t > 0. Mit der im folgenden gezeigten punktweisen Konvergenz von ¢,
gegen die Laplace-Transformierte ¢ von Z, folgt die Verteilungskonvergenz von nZz,
gegen Z (vgl. Satz 42.4 in [2]).

Seien dazu I, & [n/Inn,n —n/Inn] und A, ey {mn € I,} mit 7,, gemaB (4.12)

In einem ersten Schritt vermerken wir P(A¢) € O(1/1lnn), denn

P(Ay)=P(rn ¢ I,) =P (Z: ¢ [lnn 171])

n Inn n Inn

Vermoge 4.8 erhalten wir fiir alle = € [0, 1]

P(ng)—g<P(—<x>§P(ng)+—, (4.28)

n n

und damit bereits

P(47)

IN

- P ng_i +P Wﬁi +é
Inn Inn n

o)
-2 42 (4.29)

Inn n

Also gilt limsup,, , | P(AS) - Inn| < limsup,,_,o |2+ 4lnn/n| = 2 < oo, und mithin
P(AS) € O(1/1nn).
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4. Langenverteilung externer Zweige in Koaleszenzbaumen

Fiir die Laplace-Transformierte ¢, (t) von Z,, bedeutet dies

Tn
on(t) = Eexp(—tnZ,) = Eexp (—thTn_k)
k=0

Tn
:/ exp —thTn,k .
AnUAG =0

Es reicht ferner, das Integral iiber A, zu betrachten, da wir vermoge der Beschrinkung
des Integranden nach oben durch 1 nunmehr

/%exp(—thn) < / 1=P(AS) €O <1nln>

erhalten. Fiir die Laplace-Transformierte einer Exp(\)-verteilten Zufallsvariablen X, \ >
0 verweisen wir auf Seite 282 in [2] und notieren,

ox(t) = Eexp(—tX)=——, t>0.

Damit gilt vermoge der Unabhangigkeit der T;

Tn J
/A exp (—thTnk) = Z P(m, =J) H Eexp (—tnT),_k)
n k=0

jeL,NN k=0

- je%;ﬂN H )\n k —I— tn

= Z P(r, = exp( Zln( ))
jeL,NN

= Z P(r, = j)exp Z In <1+ tn) ,
jel,NN l=n—j

wobei im vorletzten Schritt die Beziehungen zy = e™%e™¥ = exp(lnz + Iny), sowie

In(z) = —In(1/x) verwendet wurden, sowie im letzten Schritt die Summe umsortiert
. A ()

wurde. In Erinnerung an \; = (2) = =5

Voraussetzungen von 4.9. Dies liefert

= . 2t In3n
exp [ —tn T — = P(r, = j)exp <_‘+@<>>
R R R R

jel,NN

—oo(0(%50)) [0 (7225)
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4. Langenverteilung externer Zweige in Koaleszenzbaumen

wobei im letzten Schritt verwendet wurde, dass der Fehler unabhéngig von j abgeschétzt
werden kann.

Es gilt nun vermoége A.1 die Konvergenz von exp ((9 (%)) — 1, fiir n — oo. Unter

Verwendung von (4.15) und der asymptotischen Vernachléssigbarkeit von P(AS) ergibt
sich insgesamt die Konvergenz der Laplace-Transformierten von Z, gegen die Laplace-
Transformierte von Z.

Zur Bestimmung der Dichte von Z berechnen wir im Weiteren zunéchst die Verteilungs-
funktion von Z mithilfe der Verteilung von W geméf

2W x
pizza= v (2 <)< (w2 )

2z z \? (4.30)
24z 24x) '

AnschlieSendes Ableiten liefert dann die Dichte von Z

d 2z z \? B 4 2z 2 B 8
dz |2+ 2+ (24 2)?2 24x(2412)2  (24x)3
und damit die Behauptung. O

Im Hinblick auf Anwendungsbeispiele, notieren wir geméf [7], dass die Konvergenz von
nZy auch unter geringeren Anforderungen an die Sprungzeiten des zugrundeliegenden
Koaleszenzprozesses gewéhrleistet ist. Im Besonderen reicht es aus, wenn die zugehorigen
Erwartungen mit denen der entsprechenden Exponentialverteilungen iibereinstimmen,
und die Varianz nicht zu grof§ wird.

4.11 Satz
Die Aussage von 4.10 gilt auch, wenn man die Verteilungen der T; lediglich vorausgesetzt
wird, dass

2
ET, = —— 4.31
i(i—1) (431)
Lna]
. 2 _
nhﬁngon kz_o Var(T,—r) =0 Vz e (0,1). (4.32)

gilt.

Beweis. Wir beginnen mit der Feststellung, dass fiir festes zp € (0,1) und m € N stets
ein ng € N zu finden ist, so dass n — |nxg| > m fir alle n > ng gilt. Vermoge der
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4. Langenverteilung externer Zweige in Koaleszenzbaumen

Definition der unteren Gauflklammer erhalten wir |y| < y fiir alle y € R und damit
n— |nxo| > n—nxg =n(l—xp). Es reicht nun die Bemerkung, dass y — (1 — x¢)y eine
lineare Funktion mit positiver Steigung ist.

Wir betrachten erneut (4.14) und erhalten

k=0
Tn Tn
= (T — EnTyg) + > EnTyy,
k=0 k=0
=1+11 (4.33)

Im Folgenden wird zunéchst die Konvergenz von I gegen 0 in Wahrscheinlichkeit gezeigt.
Dazu sei € > 0 und zo € (0, 1), dann gilt fiir die Wahrscheinlichkeit, dass I einen Wert
ungleich 0 annimmt

P(I| > €) = P (|Il{r, /n>a0}| > €) + P (|17, n<ao)| > €) -

Seien ferner § > 0 und z¢ € (0, 1) so gewahlt, dass P(W > x) < g gilt. Dies ist moglich,
da W eine Verteilung auf [0, 1] ist. Aus der Verteilungskonvergenz der 7, /n gegen W in
Verteilung, folgt weiter die Existenz einer natiirlichen Zahl m; € N derart, dass fiir alle
n>mi

Tn 0
‘P(g >I’0> - P(W>I'0)} < 1
gilt und damit insbesondere

Tn

Pﬂﬂ@m»mﬂ>€)§P(g*>%)
‘P(%>xo>—P(W>xo)+P(W>xo)

0,03
—4 4 2

vermoge der Dreiecksungleichung fiir Betrage.

o1



4. Langenverteilung externer Zweige in Koaleszenzbaumen

Fiir hinreichend grofles n ergibt sich nun

Tn

2
E (17, /n<r0})” = Elfr, fn<ao} (Z (nTyr, — EnTn—k>>

n=0
[nzo | 2
=E Z Lir,=1y <Z (nTh—k — EnTn—k)>
Ln:coj l

=n*E Y 1=y ) (Lot = Eo)”
=0 k=0

+2) Ty — ETpy) (Tnj — ET,-;)

:nQZ ZVar nk+2ZCOV Tk Tn—j)

=0 >k

wobei benutzt wurde, dass die T; stochastisch unabhéngig und ferner unabhéngig von 7,
sind. Unter Verwendung der Voraussetzung an die Varianzen folgt damit die Konvergenz

von Il /n<ao) 520 fir n — oo. Eine Anwendung der Markov-Ungleichung liefert
desweiteren damit auch die stochastische Konvergenz von Iy, <z, gegen 0 vermoge

P (lI]l{Tn/TLSLEO}} 2 V) < 7E (‘Iﬂ{Tn/n<a}0}’

flir n — oo und v > 0 und damit die Existenz einer natiirlichen Zahl mo € N derart,
dass fir alle n > mog

5
P (rmae| > €) < 5

gilt. Damit gilt
Tn
Pl >€) < P (|1, /neae}| > €) + P (; > x()) <4,

fir alle n > max{m, ma}. Dabei sind m;, mg abhéngig von §, aber da § > 0 beliebig
war, folgt die stochastische Konvergenz von I gegen 0.
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4. Langenverteilung externer Zweige in Koaleszenzbaumen

Fiir IT gilt ferner nach Voraussetzung

I = nz ET,_s

k=0
T
- 1 1
= 2
nZ(n—k—l n—k>
k=0
(=)
= 2n|——m — —
n—1t,—1 n
2 d 2
= 2= -2=7
1—7,/n—1/n 1-W ’

also die Verteilungskonvergenz von II gegen Z und damit zusammen mit der stochas-

tischen Konvergenz von I gegen 0 ebenso die Verteilungskonvergenz von nZz, 4 7 fiw
n — oo vermoge des Satzes von Slutsky (vgl. Satz 36.12 in [2]). O

Der Beweis basiert also auf der Aufteilung der alternativen Darstellung geméfl (4.14) in
zwel Teile, von denen einer stochastisch gegen 0 konvergiert, und der andere gerade in
Verteilung gegen die Grenzverteilung Z. Fiir die Varianz von nZ, notieren wir numehr:

4.12 Bemerkung
Gegeben die Voraussetzungen und Bezeichnungen aus 4.11, so gilt

Var(nZ,) = Var(I) + Var(II). (4.34)

Wir beweisen stattdessen allgemeiner:

4.13 Proposition

Sei (2,2, P) ein Wahrscheinlichkeitsraum und X = (Xp)ken, : (2,2, P) — (R, B(R))
eine Familie unabhéngiger, quadratisch integrierbarer Zufallsvariablen, und desweiteren
N : (2,2, P) — (Np,P(Ny)) eine von (Xj); unabhéngige, integrierbare Zufallsvariable
mit Werten in INg. Ist NV beschrénkt, so gilt

N N N
Var (Z Xk> = Var (Z(Xk - EXk)> + Var (Z EXk> . (4.35)
k=0

k=0 k=0
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Dartiber hinaus erhalten wir ferner

N N
Var <Z(Xk - EXk)> = Ey (Z Var(Xk)> (4.36)

k=0 k=0
N N
Var (Z EXk> = Vary (Z EXk> , (4.37)
k=0 k=0

wobei mit Exn beziehungsweise Vary die Erwartung beziehungsweise die Varianz beziig-
lich der Verteilung von N bezeichnet sei.

Beweis. Gemaf der Formel fiir die bedingte Varianz (vgl. Seite 151 in [18]) gilt

Var (ix) ~ by <var &XW)) + Vary (E (ixw)) R

Bezeichne mit Sy ((Xx)x) = Zszo X}. Dann gilt fiir die bedingte Varianz von Sy ((X)x)
gegeben N vermoge der Unabhéngigkeit der beteiligten Zufallsvariablen

Var (Sy((Xx)x)|N =n)

= Var (S,,((Xk)x))

= Sn((Var(Xy))x) (4.39)
= Sp((Var(Xy — EXy))x) + Sn((Var(EXy))x).

Fiir die bedingte Erwartung von Sy ((Xg)x) gegeben N ergibt sich ferner ebenfalls auf-
grund der Unabhéngigkeit der beteiligten Zufallsvariablen

E (Sn((Xx)r)IN = n)

= E (Sn((Xk)k))
= Sn((EXk)k) (4.40)
= Sn((E(X) — EXy))k) + Su((EXk)k)-

Zusammengefasst erhalten wir damit
Var (Sy((Xk)k)) = En (Sn((VarXy)g)) + Vary (Sn((EXk)k)) -

Die Behauptung ergibt sich unter nochmaliger Anwendung der Formel fiir die bedingte
Varianz fiir die Varianz von Sy ((Xi— EXy)r) beziehungsweise Sy (( EX})r) vermoge der
Feststellungen E((Sy(Xr— EXg)r)|N =n) =0 und Var(Sy((EXg)k)|N =n)=0. O
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4. Langenverteilung externer Zweige in Koaleszenzbaumen

4.14 Korollar
Fiir die Varianz von nZ,, ergibt sich damit

Var(nZ,) = n*E,, (Z Var(Tnk)> + n? Var,, <Z ETnk> ) (4.41)

k=0 k=0

Mit Riickblick auf 4.6 kénnen wir ferner feststellen, dass das asymptotische Verhalten
von Var(nZ,) durch das Verhalten von Var(II) dominiert wird, wenn sich die Summe
der Varianzen der T; geeignet verhélt.

Ferner ldsst sich nunmehr eine hinreichende Bedingung fiir die Erfiillung von (4.32) in
4.11 angeben (vgl. ebenfalls [7]):

4.15 Korollar

Gegeben eine Familie unabhéngiger Zufallsvariablen (7;);>1, mit ET; = (i — 1)/2 und
Var(T;) = (ET;)?, so gilt die Aussage von 4.10; insbesondere konvergiert dann nZ,
geméf der Definition in (4.14) in Verteilung gegen eine Verteilung, deren Dichte durch
r — 8/(2 + x)3 gegeben ist.

Beweis. Seien T;, i > 2 mit ET; = (;) und Var(T}) = (ET;)2. Sei ferner 2y € (0,1).
Dann kénnen wir ein m € N derart finden, dass n — [nzg| > 2 fiir alle n > m gilt. Dann

erhalten wir

n2 [nzo] n2 n
Z Z Var(Tn,k) = Z Z Var(Tk)
k=0 k=n—|nxo

n2 n2 n2
T T =22 —12 T (= [nao] — D2(n — [na0) )2
n?(|nxo| + 1) < n? + n? Lo,

~ (n—|nzo] —1* ~ (n(1 —xp) —1)*

flir n — oo. Damit sind alle Voraussetzungen aus 4.11 erfiillt; inbesondere gilt damit die
Konvergenz von nZ, gegen eine Verteilung, deren Dichte durch x — 8/(2 + z) gegeben
ist. O

In Bezug auf die Interpretation der Lénge eines zufillig gewdhlten Zweiges im Hinblick
auf die Frage nach einem Test auf neutrale Selektion, analog zu [12] notieren wir ebenfalls
zunéchst, dass man den Koaleszenzprozess einfach um neutrale Mutation unter Annah-
me des »Infinite Allele«, oder des »Infinite Sites« Modells erweitern kann, indem man

95



4. Langenverteilung externer Zweige in Koaleszenzbaumen

einen unabhéngigen Poisson-Prozess mit Rate 6/2 wihlt, um damit nachtriglich Muta-
tionszeitpunkte zu generieren (vgl. [9] oder [16]). Der Parameter 6 bezeichnet dabei die
skalierte Mutationsrate.

Damit geniigt die Anzahl der Mutationen auf einem Zweig der Lange [ einer Poisson-
Verteilung mit Rate 16/2.

Fiir einen externen Zweig eines Koaleszenzbaumes mit Linge Z,, bezeichnet demgeméfl
M(2Z,) die Anzahl der Mutationen, die auf dem Teilbaum eines zuféllig gewdhlten In-
dividuums und seines ndhesten Verwandten stattfinden. Als Anwendung von 4.10 ergibt
sich:

4.16 Korollar
Fiir die Anzahl der Mutationen auf einem zuféllig gewahlten externen Zweig eines Ko-

aleszenzbaumes gilt M (2nZ,,) & M (2Z7), wobei die Verteilung von M (2Z) durch

P(M(2Z/n) = k) = / P(M(2x/n) = k) dP?(dz)

kpk
— / z0 e~ 0" qP% (dx)

nkk!
=0, e CESE dz (4.42)

fir £ € INg gegeben ist.
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A. Appendix

An dieser Stelle seien einige Aussagen zusammengefasst, auf die im bisherigen Verlauf
verwiesen wurde, die aber im Textverlauf nicht zweckméaBig untergebracht werden konn-
ten.

A.1 Lemma
Sei k € N und seien a,c € R. Dann gilt

1 k
lim a n”(z)
T—00 €T

+c=c (A.1)

Beweis. Da sowohl z als auch In* (z) fiir x — oo bestimmt gegen oo divergieren, lasst
sich die Regel von de I’'Hospital anwenden (siehe zum Beispiel §16, Satz 9 in [11]). Es
gilt dann fiir k£ > 1

klnk—1(z —
= lim 7% In*(z) = lim L - = lim 7]{:111’“ ()

. In®(z
lim (z)
d 4 T—00 1 T—r00 T
dx

T—00 T T—00

und somit durch iteratives Anwenden der Regel von L’Hospital und unter Verwendung
von %ln(x) =1/x
In”(z) k!

lim a +c= lim a—+c=c
T—00 €T r—00 I

A.2 Lemma

Fiir z > 0 gilt
2

x—%ﬁln(l—l—x)ga:.

Beweis. Sei 0 < x <1, dann gilt

) "
(1 +a) =3 (1)
n
n=1
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als Reihenentwicklung des Logarithmus mit Konvergenzradius 1. Weiterhin gilt fiir jedes
keN
xk—l—l

“Ex1

k

und damit fur £ € N
2k+1

(_1)2k+1L% + (_ )2k+2 T

ok T

beziehungsweise
Ly p2k+1
2k+1

2k+3 b2

Daraus folgt

o0 o0

S :(—1)n+1ﬁ <0 bzw. ) :(—1)n+1£n >0,
n n
n=2 n=3

und damit wiederum

Sei nun z > 1. Beobachte, dass f(x) = —% + ein globales Maximum bei xy = 1 besitzt

und ferner f(1) = % < In(2) gilt. Die zweite Ungleichung gilt vermoge der Beobachtung

In(l4+z)<zelt+z<e’und 2 <e.
O

A.3 Lemma

Sei z € R, dann gilt

lim (1 + E) =e” (A.2)
n

n—oo

Beweis. Sei x € R gegeben, ferner sei x # 0. Setze fy(n) o (14 %) und betrachte
. ny 1 _ i 0(fz(n)
nh_)rréo In(fz(n)") = nh_{réonln(fx(n)) = nh_)rglo —

Damit sind die Voraussetzungen fir den Satz von de 1'Hospital (§16, Satz 9 in [11])
gegeben und es gilt lim, oo In((1 + 2/n)") = . O
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A.4 Lemma
Fiir die Summe der natiirlichen Zahlen von 1 bis n, ihrer Quadrate, beziehungsweise
ihrer dritten Potenzen gelten

Z =20 (A.3)

Z 12— n(n + 1)6(2n + 1)’ (A)

Z 1 m_ (A.5)

A.5 Lemma
Es seien (X)i<kp<, unabhéngige, jeweils Exp(Ay)-verteilte Zufallsvariablen auf einem

Wahrscheinlichkeitsraum (2,2, P), A\p > 0,1 < k < n. Dann ist X def min{X;: 1<k <
n} ebenfalls exponentialverteilt mit Parameter A = >"}'_; Ay. Die Wahrscheinlichkeit,
dass X;, 1 < j <n das Minimum annimmt, ergibt sich als

Aj

1 n

Beweis. Wéhle hierzu x > 0 beliebig und betrachte
PX>z)=PX1 >z, Xo>z,..., X, >2x)
=[] P(xx > )

k=1
= H exp(—zA;) = exp (—xZ/\k> .
k=1 k=1

Damit entspricht die Verteilungsfunktion von X der einer Exponentialverteilung mit
Parameter \. Fiir den zweiten Teil notieren wir

P(X; =min{Xy:1 <k <n}) = P(X; < Xy, j #k, 1<k <n)
= EXJ-(H{Xj<Xk:j7ék,1§k’§n}‘Xj)

:/ )\je_kjt H P(Xj>t)dt

0 ik
1<k<n

= /OO AjeRattAnt gy
0

Aj
YR
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A.6 Proposition

Sei (2,2, P) ein Wahrscheinlichkeitsraum, und seien Xi, Xs: (,2, P) — (R,B) un-
abhéngige, exponentialverteilte Zufallsvariablen mit Parameter A\; > 0, das heifit X; ~
Exp(\:), sowie B : (Q,2, P) — ({0,1}, 22({0,1}) eine von X;, X2 unabhéngige, ber-
noulliverteilte Zufallsvariable mlt Parameter p € (0,1), das heiBt B ~ B(1,p). Unter der
Voraussetzung A\; > A9 und p = 222 gilt

X1 + BX5 = Exp(\2),

das heifit, X; + BXs geniigt einer Exponentialverteilung mit Parameter Ao.

Beweis. Unter der Beriicksichtigung von

fx(@) =X Mlpey(z)  Fx(z)=1-e (),

wobei fx die Dichte- und Fx die Verteilungsfunktion fiir eine Zufallsvariable X ~ Exp())
bezeichne, gilt fiir die Verteilungsfunktion von X; + BX»

P(X, 4 BX, <t)
— P(N=0)P(X; 4+ BXy <t|B=0)+ P(N =1)P(X; + BXy < t|B=1)

= (1=p) (1= 1) 4+ p(Bx, (P(X1 + BX; < B =1, X))
=(1- (1 —e Alt) + / (1 — e (- S)) ]l{t,szo})\lef)‘lsds
)

=(1- ( M) 4p {1 —e M= /\2)\_1)\1 (e_)‘lt — e_)‘2t>]

=(1-p) (1 - e*)‘lt> +p)\1)\_1)\2 (e*)‘lt — e*)‘Qt) )

Mit Erinnerung an die Voraussetzung p = ’\1/\;1/\2 folgt somit die Behauptung. ]
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