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Einleitung

Gegenstand des vorliegenden Textes ist die Untersuchung des Auftretens zuf�alliger Punkte auf

der reellen Achse, die wir als Zeitachse interpretieren k�onnen. Dabei soll zu jedem Zeitpunkt t

die
"
Wahrscheinlichkeit\ oder Rate f�ur die Hervorbringung eines weiteren Punktes im nach t

folgenden in�nitesimalen Intervall durch das bisherige Auftreten von Punkten bis zum Zeitpunkt

t bestimmt sein.

Zur Darstellung von zuf�alligen Punkten auf der reellen Achse eignen sich im obigen Fall

Punkt-Prozesse, f�ur die eine sogenannte Intensit�at existiert. Eine solche Intensit�at gibt die Rate

des Auftretens weiterer Punkte an. Wir werden im folgenden selbst-anregende Hawkes-Prozesse

betrachten. Deren Intensit�aten bestehen aus einer �Ubertragungs- und einer Anregungsfunkti-

on. Die �Ubertragungsfunktion gibt an, wie stark ein jeder Punkt vor t in die Bestimmung der

Intensit�at zum Zeitpunkt t eingeht. Die gewichtete R�uckmeldung f�uhrt nach Anwendung der

Anregungsfunktion, die als eine Art Skalierung der R�uckwirkung verstanden werden kann, zur

Intensit�at.

Ziel wird es sein, geeignete �Ubertragungs- und Anregungsfunktionen zu �nden, die zum

einen die Existenz eines station�aren Punkt-Prozesses mit einer wie zuvor beschriebenen Intensit�at

sichern, und au�erdem bei einem vorgegebenem Punkt-Proze� mit solcher Intensit�at eine Art

"
Stationarit�at im Unendlichen\ zulassen, was wir als Stabilit�at bezeichnen werden. Dazu m�ussen

wir jedoch Anforderungen an die Vergangenheit bis zum Zeitpunkt 0 stellen, dies wird durch

geeignete Anfangsbedingungen geschehen.

Im ersten Kapitel formalisieren wir den zuvor beschriebenen Sachverhalt und geben grund-

legende Eigenschaften von Punkt-Prozessen und Intensit�aten sowie das ben�otigte Grundr�ustzeug

wieder. Abschlie�end widmen wir den Poisson-Prozessen einen Abschnitt. Diese besitzen her-

ausragende Bedeutung, denn sie werden als Grundlage der Existenz und Stabilit�atsnachweise

dienen.

Nach einem einleitenden Abschnitt wenden wir uns in Kapitel II der angesprochenen Exi-

stenz und Stabilit�at zu. Dabei wird es n�otig sein, die R�uckwirkung der vorhandenen Punkte (d.h.

der Punkte vor dem Zeitpunkt t) auf die Rate der Entstehung neuer Punkte zum Zeitpunkt t

einzuschr�anken. Dies kann durch Beschr�anktheitsannahmen an die Anregungsfunktion oder der

Forderung nach Eind�ammung des Wachstums der Anregungsfunktion bei geeigneter Wahl der

�Ubertragungsfunktion geschehen.

Im dritten Kapitel verallgemeinern wir die Aussagen des Kapitels II von univariaten auf

K-variate Prozesse. War bisher nur ein Punkt-Proze� gegeben, betrachten wir hier K Prozesse.
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2 Einleitung

Die Intensit�at von einem dieser K Prozesse kann dabei von allen anderen Prozessen abh�angen.

Die Beweistechniken sind an die Beweise des vorherigen Kapitels angelehnt und entsprechen sich

zum Teil, so da� wir uns in diesem Abschnitt k�urzer fassen k�onnen.

Es folgt schlie�lich ein zweigeteilter Anhang. Kapitel IV nimmt technische Aussagen auf,

die der Vollst�andigkeit halber gegeben werden. Die Details zum Nachweis der hier gegebenen

Aussagen sind an den entsprechenden Stellen im Haupttext nur von untergeordnetem Interesse.

Kapitel V beinhaltet den Quelltext eines Simulationsprogramms sowie Hinweise zur Installation

und Bedienung. Die grundlegende Funktionsweise wird im Hilfetext des Programms erl�autert.

Abschlie�end noch einige Konventionen: Es bezeichne N (N0) die nat�urlichen Zahlen ohne

(mit) Null. Wie �ublich sei �N = N [ f1g. Wir nutzen die Schreibweise R+ = R�0 = [0;1)

f�ur die positive reelle Achse, entsprechendes f�ur R� = R�0. Analog werden diese Bezeichnungen

auch bei Q etc. verwendet.

Wir bezeichnen mit Bd die Borelsche-�-Algebra auf Rd, und f�ur eine Borel-Menge A � Rd

benenne B(A) die Spur-�-Algebra auf A, B+ def
= B([0;1)) sowie B� def

= B((�1; 0]). Im Fall

d = 1 schreiben wir wie �ublich nur B und R.

Betrachten wir Intervalle der Form (s; s+ t] mit s 2 R und t 2 [0;1], so gelte (s; s+ t] = (s;1)

im Fall t =1. Ferner sei [a; b]
def
= ;, falls a > b.

F�ur die vorliegende Arbeit sei (
;F ;PPP ) stets ein beliebiger Wahrscheinlichkeitsraum (falls dieser

Raum nicht n�aher spezi�ziert wurde).

Die Verwendung der Begri�e und Symbole orientiert sich an den Skripten der Vorlesun-

gen Wahrscheinlichkeitstheorie und stochastische Prozesse von Prof. Dr. Alsmeyer (siehe [Als98],

[Als96]) sowie dem Seminar
"
Markierte Punkt-Prozesse und Anwendungen in der Warteschlan-

gentheorie\. Diesem lag das Buch
"
Elements of Queueing Theory\ von Fran�cois Baccelli und

Pierre Br�emaud (siehe [BB94]) zugrunde. Als Basis f�ur diese Arbeit diente der Artikel
"
Stability

of nonlinear Hawkes Processes\ von Pierre Br�emaud und Laurent Massouli�e (siehe [BM96]).

Ich m�ochte mich an dieser Stelle herzlich bei Herrn Prof. Dr. Alsmeyer f�ur die Betreuung

w�ahrend der Erstellung dieser Arbeit bedanken.



Kapitel I.

Hawkes-Prozesse und Intensit�aten von

Hawkes-Prozessen

Wir wenden uns zun�achst der formalen De�nition der Begri�e
"
Punkt-Proze� \ und

"
Inten-

sit�at\ zu. Anschlie�end widmen wir uns im Abschnitt 2 der Vorhersagbarkeit. Diese stellt die

mathematische Grundlage daf�ur dar, das derzeitige Verhalten eines Punkt-Prozesses durch die

vorangegangenen Punkte zu beschreiben. Abschnitt 3 dient dazu, Hawkes-Prozesse zu charakte-

risieren, bevor wir in Abschnitt 4 den Begri� der Stabilit�at einf�uhren wollen. Abschnitt 5 nutzen

wir dazu, einige grundlegende Eigenschaften von Punkt-Prozessen anzugeben und nachzuweisen.

In Abschnitt 6 erinnern wir an die De�nition von Poisson-Prozessen und geben Ergebnisse an,

die beim Nachweisen von Existenz und Stabilit�at eine fundamentale Rolle spielen werden.

1. Punkt-Prozesse und Intensit�aten

Als erstes gilt es, den Begri� des Punkt-Prozesses zu erkl�aren.

1.1. De�nition (Punkt-Proze�). Ein Punkt-Proze� N (auf R) ist eine Familie von Zufalls-

variablen (N(C))C2B mit Werten in �N0 und

N(C) =
X
n2Z

1C (Tn) :(1.1)

Dabei ist (Tn)n2Z eine Folge von Punkten, d.h. Zufallsvariablen mit Werten in �R, die

T0 � 0 � T1 und Tn � Tn+1 auf fTn < +1g\ fTn+1 > �1g(1.2)

f�ur alle n 2 Z f.s. erf�ullen. N hei�t einfacher Punkt-Proze�, wenn in (1.2) strikte Ungleichungen

gelten, wobei T0 = 0 zugelassen ist.

Die symbolische Schreibweise N = (Tn)n2Z soll im folgenden f�ur einen Punkt-Proze� N

mit den Punkten Tn, n 2 Z, stehen, wobei die Punkte die Bedingung (1.2) der vorherigen

3



4 1. Punkt-Prozesse und Intensit�aten

De�nition erf�ullen. Wir verwenden die Schreibweise N� f�ur die Einschr�ankung von N auf R�,

also N�(C) = N(C \ R�) f�ur alle C 2 B. Ferner sei N(!;C)
def
= N(C)(!) f�ur alle ! 2 
 und

C 2 B.

Eine Erweiterung des Begri�s
"
Punkt-Proze� auf R\ stellt der markierte Punkt-Proze� auf R

dar:

1.2. De�nition (markierter Punkt-Proze�). Unter einem (einfachen) markierten Punkt-

Proze� N = (Tn; Un)n2Z (auf R) mitMarken in einem me�baren Raum (E; E) versteht man eine

Familie von Zufallsvariablen (N (CE))CE2B
E mit Werten in N0, so da�

N (CE) =
X
n2Z

1CE (Tn; Un)(1.3)

gilt und N(� � E) ein (einfacher) Punkt-Proze� auf R ist. Der me�bare Raum (E; E) wird auch

als Markenraum bezeichnet.

Punkt-Prozesse und markierte Punkt-Prozesse lassen sich auch auf allgemeineren R�aumen

de�nieren (vergleiche [DVJ88] x7). Zu einem (markierten) Punkt-Proze�N de�nieren wir nun eine

Filtration (Ft)t2R . Diese l�a�t sich wie folgt interpretieren: Ft beinhaltet s�amtliche Informationen

�uber N bis zum
"
Zeitpunkt\ t, also auf (�1; t].

1.3. De�nition (Filtration). (Ft)t2R hei�t Filtration eines (markierten) Punkt-Prozesses N ,

wenn (Ft)t2R eine nichtfallende Familie von �-Algebren mit der Eigenschaft FN
t � Ft � F f�ur

alle t 2 R ist. Dabei wird die interne Filtration (FN
t )t2R von N gegeben durch

FN
t

def
= � (N(C);C 2 B((�1; t])) :(1.4)

Falls N ein markierter Punkt-Proze� mit Markenraum (E; E) ist, wird die interne Filtration

durch

FN
t

def
= � (N(CE);CE 2 B((�1; t])
 E)(1.5)

erkl�art. Die zu den Marken (Un)n2Z eines markierten Punkt-Prozesses N = (Tn; Un)n2Z geh�orige

Filtration
�
FU
t

�
t2R

wird de�niert als

FU
t

def
= � (U(s);�1 < s � t) ;(1.6)

wobei U(s)
def
= Un falls Tn � s < Tn+1.

Stellt N einen (markierten) Punkt-Proze� dar, so hei�t dieser adaptiert bez�uglich der Fil-

tration (Ft)t2R oder Ft-adaptiert, falls FN
t � Ft f�ur alle t 2 R.

F�ur eine Filtration (Ft)t2R de�nieren wir F1
def
= � (Ft; t 2 R), analog F

N
1 und FU

1.

Bevor wir zum zentralen Begri� der Intensit�at gelangen, ben�otigen wir noch geeignete

Me�barkeitsbegri�e.



i. Hawkes-Prozesse und Intensit�aten von Hawkes-Prozessen 5

1.4. De�nition (Progressivit�at und Vorhersagbarkeit). Es sei (Ft)t2R eine Filtration. Ist

(�(t))t2R ein stochastischer Proze� derart, da� f�ur alle t 2 R die auf 
 � (�1; t] de�nierte

Funktion (!; s) 7! �(s)(!)
def
= �(!; s) Ft 
 B((�1; t])-me�bar ist, so hei�t dieser Proze� Ft-

progressiv me�bar . Die �-Algebra der Ft-progressiv me�baren Ereignisse wird im folgenden mit

PG
�
(Ft)t2R

�
oder kurz PG (Ft) bezeichnet.

Der Proze� (�(t))t2R wird Ft-vorhersagbar genannt, falls die Funktion � : 
�R ! R; (!; s) 7!

�(!; s) me�bar ist bez�uglich der �-Algebra P
�
(Ft)t2R

�
(kurz P (Ft)), welche auf 
�R de�niert

ist und durch Mengen der Form A� (a; b] mit a � b und A 2 Fa erzeugt wird.

Entsprechende Bezeichnungen werden auch f�ur Funktionen f verwendet, die auf 
�R de�niert

sind.

Im vorliegenden Text nutzen wir stets die abk�urzende Schreibweise
"
Ft-...\ anstelle von

"
(Ft)t2R-...\, denn es sind keine Mi�verst�andnisse zu erwarten. So schreiben wir beispielsweise

Ft-progressiv me�bar statt (Ft)t2R-progressiv me�bar.

1.5. De�nition (Intensit�at). Sei (Ft)t2R eine Filtration eines Punkt-Prozesses N und (�(t))t2R

ein nichtnegativer Ft-progressiv me�barer Proze� mit

EEE(N(a; b] j Fa) = EEE

�Z b

a

�(s) ds

����Fa

�
f.s.(1.7)

f�ur alle (a; b] � R. Der stochastischer Proze� (�(t))t2R wird dann Ft-Intensit�at von N genannt.

Anstelle der bedingten Erwartungswerte in (1.7) k�onnen in der De�nition Erwartungswerte

�uber Ft-vorhersagbare Funktionen treten.

1.6. Bemerkung. Gegeben sei die Situation von 1.5. Dann ist (�(t))t2R genau dann eine Ft-

Intensit�at von N , wenn f�ur alle nichtnegativen Ft-vorhersagbaren Funktionen H : 
 � R ! R

die Gleichheit

EEE

�Z
H(�; t)N(dt)

�
= EEE

�Z
H(�; t)�(t) dt

�

gilt.

Diese Bemerkung ist eine Konsequenz aus [BB94] Kapitel 1 Gleichung (8.3.3) und der

P (Ft)-Me�barkeit von H(!; t) = 1A (!)1(a;b] (t) f�ur (a; b] � R und A 2 Fa.

Wir erinnern an die De�nition eines Radon-Ma�es: unter einem Radon-Ma� � auf (R;B)

verstehen wir ein lokal-endliches und von innen regul�ares Ma�, d.h. zu jedem x 2 R gibt es eine

o�ene Umgebung Vx mit � (Vx) <1, und �(C) = supf�(K);K 2 K; K � Cg f�ur alle C 2 B (K

System kompakter Mengen), vergleiche [Bau92] x25.

1.7. Bemerkung. In der Situation von 1.5 gilt f�ur alle C 2 B genau dann N(C) < 1 PPP -

f.s., wenn
R
C
�(s) ds < 1 PPP -f.s.. Daraus folgt, da� N genau dann f.s. ein Radon-Ma� ist, wenn

(�(t))t2R f.s. lokal integrabel ist.



6 1. Punkt-Prozesse und Intensit�aten

Begr�undung: (i) Um den ersten Teil der Bemerkung zu zeigen, sei C 2 B eine nichtleere

Menge und a
def
= inf C 2 �R.

Gelte zun�achst N(C) <1 f.s. und de�niere f�ur n 2 N

S(1)
n

def
= inf

�
t � a;

Z t

a

1C (s) N(ds) � n

�
= inf ft � a;N(C \ (�1; t]) � ng

mit der �ublichen Festlegung inf ;
def
= 1. Wir k�onnen o.B.d.A. S

(1)
n als nach unten beschr�ankt

annehmen, betrachte sonst S
(1)
n _ n0. Hierf�ur gilt limn!1 S

(1)
n = 1 f.s.. Au�erdem ist S

(1)
n eine

Ft-Stopzeit:

�
S(1)
n � t

	
=

(
; f�ur t < anR

[a;t]
1C (s) N(ds) � n

o
f�ur t � a

=

(
; f�ur t < a

fN(C \ [a; t]) � ng f�ur t � a

2 Ft;

t 2 R, n 2 N. Unter Beachtung des in Abschnitt 2 noch zu zeigenden Lemmas 2.1 folgt die

Ft-Vorhersagbarkeit von 1n(!̂;ŝ)2
�R;ŝ�S
(1)

n (!̂)
o, denn

�
(!̂; ŝ) 2 
�R; ŝ � S(1)

n (!̂)
	
=
[
k2N

�
(!̂; ŝ) 2 
�R; ŝ � S(1)

n (!̂) ^ k
	

(beachte: S
(1)
n ist nach unten beschr�ankt). Hieraus ergibt sich

EEE

�Z
1�

�1;S
(1)

n

i (s)1C (s)�(s) ds
�
= EEE

�Z
1�

�1;S
(1)

n

i (s)1C (s) N(ds)

�
� n <1;(1.8)

so da�
R
1
(�1;S

(1)

n ]
(s)1C (s)�(s) ds < 1 f.s. gilt. F�ur alle Elemente !1 2 
1

def
= fN(C) < 1g

existiert ein n1 2 N mit S
(1)
n (!1) =1 f�ur alle n � n1. Dies zeigt

R
C
�(s) ds <1 f.s..

Gilt andererseits
R
C
�(s) ds <1 f.s., so betrachte

S(2)
n

def
= inf

�
t � a;

Z t

a

1C (s)�(s) ds � n

�
:

Auch hier ist limn!1 S
(2)
n =1 f.s.. Ein weiterer Vorgri� auf Abschnitt 2 zeigt

�
S(2)
n � t

	
=

(
; f�ur t < anR t

a
1C (s)�(s)ds � n

o
f�ur t � a

2 Ft;

t 2 R, n 2 N, nach Lemma 2.8. Gleichung (1.8) besitzt wie zuvor G�ultigkeit, dies liefertR
1�

�1;S
(2)

n

i (s)1C (s) N(ds) <1 f.s.. Es gibt zu !2 2 
2
def
=
�R

C
�(s) ds <1

	
stets ein n2 2 N,

so da� S
(2)
n (!2) =1 f�ur n � n2 gilt. Daher folgt N(C) =

R
1C (s) N(ds) <1 f.s..
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(ii) F�ur C 2 B und ! 2 
 gilt N(!;C) = supfN(!;K);K 2 K; K � Cg; denn ist

N = (Tn)n2Z, so stellt Kk
def
= fTn(!);�k � n � k; Tn(!) 2 Cg f�ur jedes k 2 N eine kompakte

Menge mit Kk � C und limk!1N (!;Kk) = N(!;C) dar.

Bezeichne 
0 den Tr�ager von PPP .

Ist nun ! 2 f!̂ 2 
;N(!̂; �) Radon-Ma�g, gilt N(!; [a; b]) <1 f�ur beschr�ankte [a; b] � R,

und daher
R
[a;b]

�(!; s) ds <1.

Falls ! 2 f!̂ 2 
; (�(!̂; t))t2R lokal integrierbarg ist, folgt f�ur x 2 R die Endlichkeit vonR
[x�1;x+1]

�(!; s) ds, also auch N (!; (x� 1; x + 1)) <1. �

Wir verwenden ab nun eine verk�urzende Schreibweise:

Im folgenden werden (markierte) Punkt-Prozesse stets als einfach angenommen, die Nennung

des Zusatzes
"
einfach\ wird unterlassen.

Einen Spezialfall der markierten Punkt-Prozesse stellt der multivariate Punkt-Proze� (oder

auch K-variate Punkt-Proze� ) dar, bei dem der Markenraum E
def
= f1; : : : ; Kg und E die Potenz-

menge von E ist (K 2 N). Im FallK = 1 spricht man auch von einem univariaten Punkt-Proze�,

falls K = 2 von einem bivariaten Punkt-Proze�.

Ist N = (Tn; Un)n2Z ein K-variater Punkt-Proze�, so rechnet man sofort nach, da� N(� � fig)

f�ur jedes i 2 f1; : : : ; Kg einen gew�ohnlichen (univariaten) Punkt-Proze� auf R bildet.

Im folgenden werden wir nur noch K-variate Punkt-Prozesse ohne gemeinsame Punkte betrach-

ten, d.h. N (fTng � fig)N (fTng � fjg) = 0 f.s. f�ur alle n 2 Z und 1 � i; j � K mit i 6= j.

Ein K-variater Punkt-Proze� l�a�t sich durch die Zuordnungen

N(C � L) =
X
i2L

Ni(C) C 2 B; L 2 E ;

Ni(C) = N(C � fig) C 2 B;

1 � i � K, mit einem sogenannten K-Vektor-Proze� ~N = (N1; : : : ; NK) identi�zieren und

umgekehrt, so da� wir beide Darstellungen N = (Tn; Un)n2Z und N = (N1; : : : ; NK) als K-

variaten Punkt-Proze� bezeichnen werden. Es gilt dann

FN
t = �

�
FNi
t ; 1 � i � K

�
:

Ferner hei�t
�
�(t)

�
t2R

, �(t) = (�1(t); : : : ; �K(t)), Ft-Intensit�at des K-variaten Prozesses N =

(N1; : : : ; NK), falls Ni Ft-adaptiert und (�i(t))t2R eine Ft-Intensit�at von Ni ist f�ur alle i 2

f1; : : : ; Kg.

Die Einschr�ankung auf eine der reellen Halbachsen entspricht dem univariaten Fall: N� =�
N�

1 ; : : : ; N
�
K

�
, dabei stellt N�

i wie im univariaten Fall die Einschr�ankung von Ni auf R
� dar

(1 � i � K).
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2. Vorhersagbarkeit

1) Die �-Algebra der vorhersagbaren Ereignisse P (Ft). Sei (Ft)t2R eine Filtration.

In diesem Unterabschnitt geben wir zwei Erzeuger von P (Ft) an, die beim Nachweis von Ft-

Vorhersagbarkeit n�utzlich sein werden und bereits im Beweis von Bemerkung 1.7 genutzt wurden.

Au�erdem gilt es, den Zusammenhang zwischen Vorhersagbarkeit und progressiver Me�barkeit

zu kl�aren.

2.1. Lemma. Die beiden folgenden Mengen-Systeme bilden durchschnittsstabile Erzeuger der

�-Algebra der vorhersagbaren Ereignisse P (Ft):

E1
def
= fA� (s;1);A 2 Fs; s 2 Rg(2.1)

E2
def
=
�
f(!; t) 2 
�R; t � T (!)g ; T beschr�ankte Ft-Stopzeit

	
:(2.2)

Beweis: Die Durchschnittsstabilit�at von E1 und E1 � P (Ft) ist klar. F�ur P (Ft) = � (E1)

reicht es zu zeigen, da� f�ur ; 6= (a; b] � R und A 2 Fa die Menge A � (a; b] ein Element von

� (E1) darstellt. Dazu gen�ugt ein Hinweis auf die Darstellung A� (a; b] = A� (a;1)nA� (b;1)

und Fa � Fb.

Um P (Ft) = � (E2) zu erhalten zeigen wir � (E1) = � (E2). Setze zu beliebigem s 2 R und

A 2 Fs

Ts;A(!)
def
= s1A (!) +11AC (!) :

Ts;A ist eine Ft-Stopzeit:

fTs;A � tg =

8><
>:

; f�ur t < s

A f�ur s � t <1


 f�ur t =1

;

d.h. fTs;A � tg 2 Ft, und es folgt

f(!; t) 2 
�R; t � Ts;A(!)g = A� (�1; s] + AC �R =
�
A� (s;1)

�C
:(2.3)

F�ur eine beliebige nach unten beschr�ankte (auch nichtendliche) Ft-Stopzeit T gilt

f(!; t) 2 
�R; t � T (!)g =
[
n2N

f(!; t) 2 
�R; t � T (!) ^ ng 2 � (E2) :

Mit (2.3) zeigt dies E1 � � (E2), also die Inklusion
"
�\. Es ist f�ur jede beliebige Ft-Stopzeit T

f(!; t) 2 
�R;T (!) < tg =
[
t2Q

fT<tg6=;

fT < tg � (t;1) 2 � (E1) ;

denn fT < tg =
S

n2N

�
T � t� 1

n

	
2 Ft. Dies liefert "

�\.

Ebenso wie E1 ist E2 durchschnittsstabil, denn\
i=1;2

f(!; t) 2 
�R; t � Ti(!)g = f(!; t) 2 
�R; t � T1(!) ^ T2(!)g;
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f�ur zwei beschr�ankte Ft-Stopzeiten T1 und T2.

Das nachfolgende Lemma rechtfertigt die Beschr�ankung auf die Betrachtung vorhersagbarer

Intensit�aten.

2.2. Lemma. F�ur beliebige Filtrationen (Ft)t2R gilt P (Ft) � PG (Ft).

Beweis: Sei A� (s;1) 2 P (Ft) mit s 2 R und A 2 Fs. Dann gilt o�ensichtlich

A� (s;1) =
[

t1;t22Q

s�t1<t2

A� (t1; t2] 2 PG (Ft) ;

denn A 2 Fs � Ft2 . Da E1 gem�a� (2.1) ein Erzeuger von P (Ft) ist, folgt hieraus die Behauptung.

2) Vorhersagbare (und progressiv me�bare) stochastische Prozesse. Einige

Aussagen dieses Unterabschnitts lassen sich in gr�o�erer Allgemeinheit zeigen. Wir geben hier

jedoch teilweise Versionen an, die auf die sp�atere Verwendung in dieser Arbeit zugeschnitten

sind.

Der folgende Satz stellt den Schl�ussel zum Beweis von 2.4 dar und stammt aus [Br�e81]

A1.3. T7.

2.3. Satz (Abz�ahlbare Abh�angigkeiten). Gegeben sei eine Familie (Fi)i2I von �-Algebren

�uber einer Menge 
 und I eine beliebige Menge. Setze F
def
= � (Fi; i 2 I). Dann gilt:

F�ur alle A 2 F gibt es eine abz�ahlbare Menge J � I mit A 2 � (Fi; i 2 J).

Beweis: De�niere das Mengensystem E durch

E
def
= fA 2 F ;A 2 � (Fi; i 2 J) f�ur eine abz�ahlbare Menge J � Ig :

F�ur alle i 2 I gilt Fi � E , und E ist eine �-Algebra �uber 
. Daraus folgt die Inklusionskette

� (Fi; i 2 I) � E = �(E) � � (Fi; i 2 I) ;

also E = � (Fi; i 2 I).

F�ur vorhersagbare stochastische Prozesse existiert eine Art Faktorisierungslemma.

2.4. Satz. Gegeben sei ein Punkt-Proze� N und ein nichtnegativer FN
t -vorhersagbarer stocha-

stischer Proze� (�(t))t2R. Dann besitzt � die Darstellung �(!; t) = �(N(!; �); t), d.h. � h�angt nur

�uber N von ! ab.

Beweis: Der Beweis wird in zwei Schritten gef�uhrt. Zun�achst zeigen wir, da� jede be-

schr�ankte FN
t -Stopzeit die Darstellung T = � (N (Ck) ; k 2 J) mit Ck 2 B f�ur alle k 2 J (J



10 2. Vorhersagbarkeit

abz�ahlbar) und einer geeigneten Funktion � besitzt. Anschlie�end wird ausgenutzt, da� E2 gem�a�

(2.2) ein durchschnittsstabiler Erzeuger von P
�
FN
t

�
ist.

(i) Sei T eine beschr�ankte FN
t -Stopzeit. Dann ist T bez�uglich der Vergangenheit zur Zeit

T

FN
T = �

�
A 2 FN

1;A \ fT � tg 2 FN
t f�ur alle t 2 R

�
:

me�bar. Sei

T0(!)
def
=
X
n2Z

n1fn�1�T<ng;

so ist T0 ebenfalls eine FN
t -Stopzeit. W�ahle eine Menge A 2 FN

T0
beliebig und de�niere

Ai
def
= A \ fT0 = ig =

�
A \ fT0 � ig

�
\
�
A \ fT0 � i� 1g

�
2 FN

i ;

dann besitzt A die Darstellung A =
P

i2Z Ai.

F�ur alle i 2 Z gilt Ai 2 FN
i = �

�
N(C);C 2 B((�1; i])

�
. Nach 2.3 folgt Ai 2 �

�
N(Ci;k); k 2 Ji

�
mit Ji abz�ahlbar und Ci;k 2 B((�1; i]), k 2 Ji. Das Faktorisierungslemma [Als98] Lemma 52.1

sichert f�ur beliebiges i 2 Z die Existenz einer (me�baren) Abbildung �i : R
jJij ! R mit

1Ai = �i (N(Ci;k); k 2 Ji) ;

so da� 1A (!) =
P

i2Z 1Ai (!) = �A (N(CA;k); k 2 JA) nur �uber N von ! abh�angt, dabei ist

�A : RjJAj ! R me�bar, JA �
S

i2Z Ji abz�ahlbar und CA;k 2 B f�ur k 2 JA.

Unter Ausnutzung des Funktions-Erweiterungsarguments folgt f�ur alle nichtnegativen oder be-

schr�ankten FN
T0
-me�baren Abbildungen ~T die Darstellung ~T = ~�(N(Ck); k 2 J) (~� : RjJj ! R

me�bar, J abz�ahlbar, Ck 2 B f�ur alle k 2 J).

Da nach De�nition T � T0 ist, gilt FN
T � FN

T0
, d.h. f�ur die beschr�ankte FN

t -Stopzeit T existiert

eine Darstellung T = �(N(Ck); k 2 J), wobei wieder � : RjJj ! R me�bar, J abz�ahlbar und

Ck 2 B f�ur alle k 2 J .

(ii) Nutzen wir f�ur eine beschr�ankte FN
t -Stopzeit T die Darstellung aus (i), so h�angt die

Abbildung

(!; t) 7! 1f(!̂;t̂)2
�R;t̂�T (!̂)g (!; t) = 1fs2R;t�sg (T (!)) = 1[t;1) (�(N(!;Cj); j 2 J))

nur �uber N von ! ab. Mittels eines Dynkin-System-Arguments folgt, da� 1A (!; t) f�ur alle

A 2 P
�
FN
t

�
nur durch N von ! abh�angt.

Eine erneute Anwendung des Funktions-Erweiterungsarguments zeigt dann f�ur nichtnegative

P
�
FN
t

�
-me�bare Funktionen �(!; t), da� diese von ! nur �uber N abh�angen.

Die folgende Aussage �ahnelt [Als98] Lemma 19.10, welches zur Vorbereitung auf den Satz

von Fubini (und Tonelli) dient.

2.5. Lemma. Sei die nichtnegative Abbildung � : 
 � R ! R, (!; t) 7! �(!; t) bez�uglich der

Filtration (Ft)t2R vorhersagbar. Dann ist die Abbildung �(t) : 
! R, ! 7! �(!; t) Ft-me�bar.
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Beweis: Um das Funktions-Erweiterungsargument anwenden zu k�onnen, wird die Behaup-

tung f�ur Ft-vorhersagbare Funktionen der Form �(!; t) = 1A�(s;1) (!; t), s 2 R und A 2 Fs,

nachgerechnet. Dies ist wegen

! 7! 1(s;1) (t)1A (!) =

(
0 f�ur t � s

1A (!) f�ur t > s

und Fs � Ft f�ur t > s klar.

F�ur ein vorgegebenes t 2 R ist die Abbildung ! 7! �(!; t) also FN
t -me�bar. Der Satz 2.3

�uber abz�ahlbare Abh�angigkeiten liefert die Existenz einer abz�ahlbaren Menge J und Mengen

Ck 2 B((�1; t]), k 2 J . Damit gilt

�(t) = ft (N (Ck) ; k 2 J) = ft (N (Ck \ (�1; t]) ; k 2 J)

f�ur eine geeignete Funktion ft : R
jJj ! R. Wir erhalten zu Satz 2.4 folgendes

2.6. Korollar. Gegeben sei die Situation von 2.4. Dann gilt:

�(!; t) = � (N (!; � \ (�1; t]) ; t)(2.4)

f�ur alle t 2 R und ! 2 
.

Betrachten wir einen Punkt-Proze� N mit zugeh�origer Ft-Intensit�at (�(t))t2R, so k�onnen

wir diese Intensit�at stets Ft-vorhersagbar w�ahlen. Die Rechtfertigung liefert der nachstehende

2.7. Satz (Existenz einer vorhersagbaren Version der Intensit�at). Sei (Ft)t2R eine Fil-

tration und N ein Punkt-Proze� mit Ft-Intensit�at (�(t))t2R. Dann existiert eine Ft-vorhersagbare

Ft-Intensit�at
�
~�(t)

�
t2R

von N .

Beweis: Nach De�nition ist (�(t))t2R Ft-progressiv me�bar. Ferner gilt P (Ft) � PG (Ft)

(siehe 2.2). Daher werden durch

�1(A)
def
=

Z
A

�(!; t)PPP 
 �n(d! � dt) ;

�2(A)
def
=

Z
A

PPP 
 �n(d! � dt) ;

A 2 P (Ft), Ma�e auf P (Ft) mit �1 � �2 de�niert. Der Satz von Radon-Nikodym (�-Endlichkeit

on �2 ist klar) sichert die Existenz einer P (Ft)-me�baren Abbildung ~� = d�1
d�2

. F�ur alle a; b 2 R

und A 2 Fa liefert dies mit dem Satz von FubiniZ
A

EEE

�Z
(a;b]

�(t) dt

����Fa

�
dPPP =

Z
A

Z
(a;b]

�(t) dt dPPP =

Z
A�(a;b]

d�1

=

Z
A�(a;b]

~�(!; t) �2(d! � dt) =

Z
A

Z
(a;b]

~�(t) dt dPPP =

Z
A

EEE

�Z
(a;b]

~�(t) dt

����Fa

�
dPPP;
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d.h.
�
~�(t)

�
t2R

ist ebenfalls eine Ft-Intensit�at von N .

Zum Abschlu� dieses Abschnitts wird noch ein mit 2.5 vergleichbares Ergebnis (bez�uglich

der Me�barkeit) f�ur Integrationen �uber ein
"
Zeit\-Intervall gegeben. Dieses Ergebnis erinnert an

die Me�barkeitsaussage im Satz von Fubini (und Tonelli) 19.11(a) in [Als98]).

2.8. Lemma. Gegeben sei ein nichtnegativer Ft-progressiv me�barer Proze� (�(t))t2R f�ur eine

Filtration (Ft)t2R. Dann gilt f�ur jedes feste t0 2 R [ f�1g:Z t

t0

�(s) ds(2.5)

ist adaptiert bez�uglich (Ft)t2R.

Beweis: Sei t 2 R. Klar ist, da�

Ft 
B((�1; t]) = � (A� (a; b];A 2 Ft; (a; b] � (�1; t]) ;

wobei der angegebene Erzeuger durchschnittsstabil ist. F�ur beliebige A 2 Ft und (a; b] � (�1; t]

gilt Z t

t0

1A (!)1(a;b] (s) ds = 1A (!) (b _ t0 � a _ t0);

die Abbildung ! 7!
R t
t0
1A (!)1(a;b] (s) ds ist also Ft-me�bar. Mittels eines Dynkin-System-

Arguments (nutze den Satz von Fubini) folgt f�ur alle B 2 Ft
B((�1; t]) die Ft-Me�barkeit der

Abbildungen ! 7!
R t
t0
1B (!; s) ds. Ein Funktions-Erweiterungsargument liefert schlie�lich unter

Beachtung des Satzes von der monotonen Konvergenz die Behauptung.

3. Hawkes-Prozesse

F�ur die vorliegende Arbeit seien

� : R ! [0;1) und h : [0;1)! R(3.1)

stets me�bare Funktionen. An einigen Stellen wird es sinnvoll sein, h als Funktion auf R aufzu-

fassen, daher setzen wir dann h(x) = 0 f�ur x 2 (�1; 0).

Wir werden uns mit (einfachen) Punkt-Prozessen befassen, welche eine FN
t -Intensit�at der Form

�(t) = �

�Z
(�1;t)

h(t� s)N(ds)

�
[h : [0;1)! R](D1)

= � (h �N(t)) [h : R ! R]

besitzen. Intensit�aten der Form (D1) werden im folgenden meist als
�
FN
t �
�
Dynamiken bezeich-

net.
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Einen Spezialfall solcher Prozesse stellen die selbst-anregenden Punkt-Prozesse von Hawkes dar.

F�ur diese gilt:

� : R ! [0;1); �(x)
def
= � + x;

h : [0;1)! [0;1)

mit � > 0. Im folgenden sollen allgemeinere Funktionen � betrachtet und der Bildbereich von h

auf R ausgeweitet werden. Aus der Verwendung solcher (i.a. nichtlinearen) Funktionen � stammt

die Bezeichnung nichtlinearer Hawkes-Proze� f�ur Punkt-Prozesse mit Intensit�aten der Form (D1).

Der Begri� der (linearen) multivariaten Hawkes-Prozesse oder auch wechselseitig anregen-

den Punkt-Prozesse l�a�t sich zum Begri� desmultivariaten nichtlinearen Hawkes-Prozesses erwei-

tern. Ein solcher Proze� ist eine Familie Ni, 1 � i � K(K 2 N), von einfachen Punkt-Prozessen

ohne gemeinsame Punkte und zugeh�origen FN
t -Intensit�aten

�i(t) = �i

 
KX
j=1

Z
(�1;t)

hji(t� s)Nj(ds)

!
(D2)

mit me�baren Funktionen

�i : R ! [0;1) und hji : [0;1)! R;(3.2)

1 � i; j � K. Wie bereits bei der De�nition der K-variaten Punkt-Prozesse gelte

FN
t

def
= �

�
FNi
t ; 1 � i � K

�
:

Auch hier werden wir die FN
t -Intensit�at ((�1(t); : : : ; �1(t)))t2R von (N1; : : : ; NK) meist als

�
FN
t �
�

Dynamik bezeichnen. Die Funktionen � bzw. �i werden auch Anregungsfunktionen, h bzw. hji
�Ubertragungsfunktionen genannt.

3.1. Beispiel. W�ahlt man im univariaten Fall �(x)
def
= �1[0;c�1] (x) und h(t)

def
= 1[0;a] (t) (c 2 N,

a > 0). Dann ist N der Input-Proze� einer M=D=c=0-Warteschlange, d.h. einer Warteschlange

mit Poisson-verteilten Ank�unften der Intensit�at � > 0, Service-Zeiten a > 0, keinem Warteraum

und c Servern. ?

3.2. Beispiel. Unter Zuhilfenahme von Hawkes-Prozessen l�a�t sich neuronale Aktivit�at , auch

neuronales Netzwerk genannt, modellieren. In dieser Situation bezeichnet

�i(t) =

KX
j=1

Z
(�1;t)

hji(t� s)Nj(ds)(3.3)

das Potential von Neuron i zur Zeit t, �i ist die Anregungs-Funktion von Neuron i und hji die

Transfer-Funktion von Neuron j zu Neuron i. Gelte 1
�i
�i(x) = 1�1[0;�i] (x), �i > 0, dann hei�t �i

die Anregungs-Schwelle von Neuron i, und das Neuron hei�t angeregt zur Zeit t, falls �i(t) > �i,

bzw. in Ruhe oder auch gehemmt zur Zeit t, falls �i(t) � �i. ?
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3.3. Beispiel. Betrachte ein Netzwerk, bestehend aus K Neuronen mit den Eigenschaften:

Neuron i 2 f1; : : : ; Kg feuert mit einer Rate �i, falls f�ur alle j 2 f1; : : : ; Kg das Neuron j in den

letzten �ji-Zeiteinheiten nicht gefeuert hat (�ji � 0 konstant), ansonsten ist es gehemmt.

Ni hei�t der Punkt-Proze� der Spitzen von Neuron i, die Dynamik dieses Netzwerkes ist vom

allgemeinen Typ (D2) mit �i(x) = �i1[0;1) (x) und hji = 1[0;�ji] (t), denn

�i(t) = �i

 
KX
j=1

Z
(�1;t)

hji(t� s)Nj(ds)

!
= �i

 
KX
j=1

Z
(�1;t)

1[0;�ji] (t� s) Nj(ds)

!

= �i

 
KX
j=1

Z
[t��ji;t)

Nj(ds)

!
= �i1[0;1)

 
KX
j=1

Nj[t� �ji; t)

!
:

?

Das Ziel wird im folgenden sein, geeignete Bedingungen an die Funktionen � und h (bzw.

�i und hji) zu stellen, welche die Existenz und Eindeutigkeit einer station�aren Version von N

(bzw. N = (N1; : : : ; NK)) sowie auch die Stabilit�at (im Sinne von 4.5) der station�aren Version

sichern.

4. Stabilit�at von Intensit�aten

Sei X
def
= Rk (k 2 N) oder X

def
= R � E mit einem me�baren Raum (E; E), X = Bk bzw.

X = B
 E . Wir bezeichnen den me�baren Raum der Radon-Ma�e auf X mit (M(X);M(X)),

dabei wird M(X) durch Abbildungen der Form fC : M(X) ! R; � 7! �(C) erzeugt, also

M(X) = � (fC ;C 2 X ). Als abk�urzende Schreibweise verwenden wir

(Mk;Mk)
def
=
�
M
�
Rk
�
;M

�
Rk
��

sowie (M;M) im Fall k = 1, au�erdem

(ME;ME)
def
= (M (R � E) ;M (R � E)) :

Mit (M 0
k;M

0
k) bezeichnen wir den Raum der ganzzahligen Radon-Ma�e auf Rk, entsprechendes

gelte f�ur (M 0
E;M

0
E). F�ur weitergehende Betrachtungen dieser R�aume verweisen wir auf [DVJ88]

Abschnitt 6.1 und 7.1.

Verschiebungen eines Radon-Ma�es auf der reellen Achse lassen sich mit dem Shift-Operator

darstellen.

4.1. De�nition (Shift). Der Shift- (oder auch Translations-) Operator St auf M = M1 wird

de�niert durch

St�(C) = �(t+ C)(4.1)
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f�ur � 2 M und alle C 2 B. Auf Mk (k � 2) oder ME wirke der Operator nur auf die erste

Komponente des Grundraumes:

St�(C � L) = �((t+ C)� L)(4.2)

f�ur � 2Mk und alle C 2 B, L 2 Bk�1 (bzw. � 2ME, C 2 B, L 2 E).

Es stellt (St)t2R einen me�baren Flu� auf (M1;M1) bzw. (ME;ME) dar (vergleiche [BB94]

1.1 und 1.3), d.h. die Abbildung (t; �) 7! St� ist B�M1 �M1-me�bar (bzw. B�ME �ME-

me�bar), St ist bijektiv und St � Su = St+u f�ur alle t; u 2 R.

Der Shift-Operator besitze Vorrang vor der Einschr�ankung eines Punkt-Prozesses auf die positive

oder negative reelle Halbachse, d.h. StN
� = N ((t+ �) \R�).

Nach De�nition gilt f�ur einen K-variaten Punkt-Proze� N = (N1; : : : ; NK) nach Anwendung des

Shift-Operators StN = (StN1; : : : ; StNK).

4.2. De�nition (Stationarit�at und �t-Kompatiblit�at). (i) Ein Punkt-Proze� N hei�t sta-

tion�ar , falls PPP(N 2 �) = PPP(StN 2 �) f�ur alle t 2 R gilt.

(ii) Sei (�t)t2R ein me�barer Flu� auf einem me�baren Raum (
;F), vergleiche [BB94]

Kapitel 1 1.2. Ein Punkt-Proze� N hei�t �t-kompatibel , wenn er f�ur alle t 2 R und ! 2 


StN(!; �) = N(�t!; �)(4.3)

erf�ullt. Eine Verschiebung einer Realisierung des Punkt-Prozesses als Radon-Ma� entspricht also

einer
"
Verschiebung\ der zuf�alligen Komponente.

F�ur einen stochastischen Proze� (�(t))t2R verwenden wir ebenfalls das Symbol Su, um die

Verschiebung um u Zeiteinheiten darzustellen: Su�(t)
def
= �(u+ t).

Wir �ubernehmen auf (M 0;M0) die De�nition der vagen und schwachen Konvergenz aus

[Als98] (De�nition 36.1 und 43.4): eine Folge (�n)n2N von Ma�en aus M 0 konvergiert vage gegen

einen Grenzwert � 2M 0, wenn f�ur alle stetigen Funktionen f auf R mit kompakten Tr�agerZ
f d�n

n!1
���!

Z
f d�(4.4)

gilt. Die Folge (�n)n2N konvergiert schwach gegen �, falls (4.4) f�ur alle stetigen und beschr�ankten

Funktionen f auf R richtig ist.

Der Raum der ganzzahligen Ma�e (M 0;M0) auf (R;B) wird versehen mit der Topologie der

vagen Konvergenz .

4.3. De�nition (Anfangsbedingung und Konvergenz). (i) Der Punkt-Proze� N besitzt

die Anfangsbedingung (P�), falls die Beschr�ankung von N auf (�1; 0], also N� = S0N
�, die

Bedingung (P�) erf�ullt.

(ii) Eine Folge
�
N (n)

�
n2N

von Punkt-Prozessen konvergiert in Verteilung gegen einen Grenzpro-

ze� N , wenn die zugeh�origen auf M 0 induzierten Wahrscheinlichkeitsma�e PPP
�
N (n) 2 �

�
schwach
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gegen PPP(N 2 �) konvergieren.

Eine solche Folge
�
N (n)

�
n2N

konvergiert in Variation gegen N , wenn

lim
n!1

sup
C2M0

��PPP�N (n) 2 C
�
�PPP(N 2 C)

�� = 0:(4.5)

Ein n�utzliches Kriterium zur Pr�ufung auf Konvergenz in Verteilung einer Folge
�
N (n)

�
n2N

von Punkt-Prozessen gegen einen Grenzproze� N �ndet sich in [DVJ88] (Theorem 9.1.VI.):

PPP
�
N (n) 2 �

�
konvergiert genau dann schwach gegen PPP(N 2 �), wenn f�ur jede endliche Familie

beschr�ankter Mengen A1; : : : ; Ak 2 B mit PPP(N (�Ai) > 0) = 0 f�ur alle i 2 f1; : : : ; kg die Vertei-

lung von
�
N (n)(A1); : : : ; N

(n)(Ak)
�
schwach in Rk gegen die Verteilung von (N(A1); : : : ; N(Ak))

konvergiert (im
"
�ublichen\ Sinn, siehe [Als98] Abschnitt 43). Dabei bezeichnet �A den topologi-

schen Rand der Menge A 2 B.

Mit den nun vorhandenen Konvergenzbegri�en k�onnen wir die Stabilit�at eines Punkt-

Prozesses de�nieren. Zuvor noch ein Beispiel f�ur eine Anfangsbedingung eines K-variaten Punkt-

Prozesses N .

4.4. Beispiel. Gegeben sei ein K-variater Punkt-Proze� N = (N1; : : : ; NK). Dann ist

lim
t!+1

Ni((�t; 0])

t
= �i

f.s. f�ur �i > 0, 1 � i � K, eine Anfangsbedingung (P�). ?

Die De�nition von Stabilit�at geben wir nur f�ur die Dynamik (D2), da (D1) den Spezialfall

K = 1 darstellt.

Wir werden im folgenden sagen, da� der Punkt-Proze� N die Dynamik (D2) auf [0;1) besitzt,

falls (1.7) f�ur alle (a; b] � [0;1) gilt.

4.5. De�nition (Stabilit�at). Die Dynamik (D2) hei�t stabil in Verteilung (bzw. Variation)

bez�uglich einer Anfangsbedingung (P�), wenn f�ur alle Punkt-Prozesse N 0 mit Anfangsbedingung

(P�), welche eine Dynamik (D2) auf [0;1) zulassen, ein Punkt-Proze� N existiert mit

(ST1) N folgt der Dynamik (D2) auf R und ist station�ar,

(ST2) StN
0+ Vert:
��! N+ f�ur t! +1 (bzw. StN

0+ Var:
����!
t!+1

N+).

Klar ist, da� die Stabilit�at in Variation die Stabilit�at in Verteilung impliziert. Koppelt jeder

Punkt-Proze� N 0 wie in 4.5 bereits mit einem station�aren Punkt-Proze� mit der gew�unschten

Intensit�at, so erhalten wir bereits Stabilit�at in Variation, wie Lemma 4.6 zeigt.

4.6. Lemma. Zu beliebigem Punkt-Proze� N 0 mit Anfangsbedingung (P�) und Dynamik (D2)

lasse sich auf [0;1) ein Proze� N auf demselben Wahrscheinlichkeitsraum konstruieren, welcher

(ST1) erf�ullt. Ferner koppeln N und N 0, d.h.

(ST2') StN
+ � StN

0+ f.s. f�ur alle t � T , T Zufallsgr�o�e mit PPP(T < +1) = 1.
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Dann ist die Dynamik (D2) stabil in Variation bez�uglich der Anfangsbedingung (P�).

Beweis: F�ur beliebiges t 2 R und C 2 M0 gilt unter Ausnutzung der Stationarit�at von N

PPP
�
StN

0+ 2 C
�
�PPP

�
N+ 2 C

�
= PPP

�
StN

0+ 2 C; StN
0+ 6= StN

+
�
�PPP

�
StN

+ 2 C; StN
0+ 6= StN

+
�

+PPP
�
StN

0+ 2 C; StN
0+ = StN

+
�
�PPP

�
StN

+ 2 C; StN
0+ = StN

+
�

� PPP
�
StN

0+ 2M 0; StN
0+ 6= StN

+
�

� PPP
�
StN

0+ 6= StN
+
�

� PPP(T > t)

und analog PPP(N+ 2 C)�PPP
�
StN

0+ 2 C
�
� PPP(T > t) : Somit folgt die Kopplungsungleichung und

Konvergenz in Variation gegen 0:

sup
C2M0

���PPP�StN 0+ 2 C
�
� PPP

�
N+ 2 C

���� � PPP(T > t)
t!1
���! 0;

denn T < +1 f.s..

Das folgende Lemma k�onnen wir nutzen, um die Eindeutigkeit von station�aren Punkt-

Prozessen mit gegebener Anfangsbedingung und auf [0;1) vorgegebener Intensit�at zu zeigen.

4.7. Lemma. Existiere zu Dynamik (D2) eine Anfangsbedingung (P�), so da� (D2) stabil in

Verteilung (oder Variation) ist. Sei f�ur jeden Punkt-Proze� N 0, welcher (P�) erf�ullt und auf

[0;1) der Dynamik (D2) folgt, die Verteilung des in (ST1) auftretenden station�aren Punkt-

Prozesses N gleich. In diesem Fall gilt:

Jeder station�are Punkt-Proze� N 0, der die Anfangsbedingung (P�) besitzt und der Dynamik (D2)

auf [0;1) gen�ugt, ist verteilt wie N .

Erf�ullt au�erdem jeder station�are Punkt-Proze�, welcher die Dynamik (D2) auf [0;1) be-

sitzt, die Anfangsbedingung (P�), so ist die station�are L�osung eindeutig.

Beweis: Sei N 0 ein station�arer Punkt-Proze�, der die Anfangsbedingung (P�) besitzt und

der Dynamik (D2) auf [0;1) folgt. Somit gilt PPP S0N
0+

= PPPN 0+

= PPP StN
0+

f�ur alle t 2 [0;1). Es

folgt PPPN 0+

= PPPN+

, da StN
0+ t!1
���! N+ in Verteilung.

Die Stationarit�at vonN 0 undN liefert au�erdemPPP StN
0+

= PPPN 0+

= PPPN+

= PPP StN
+

f�ur t 2 (�1; 0],

d.h. N 0 ist wie N verteilt.

Die zweite Aussage ist hiermit ebenfalls klar.

Wir werden in diesem Text einen Punkt-Proze� N = (Tn)n2Z transient nennen, falls Tn f�ur

n!1 f.s. gegen unendlich strebt. In Stabilit�atsbeweisen reicht es, transiente Punkt-Prozesse zu

betrachten: f�ur ein ! 2 
 mit Tn(!)
n!1
���! x 2 (0;1) gilt nach De�nition 1.1, da�N(!; (x;1)) =
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0. Auf der Menge
n
! 2 
;Tn(!)

n!1
���! x f�ur ein x 2 (0;1)

o
strebt StN

+ f�ur t!1 also gegen

den leeren Punkt-Proze� ohne einen einzigen Punkt auf R.

5. Eigenschaften von Punkt-Prozessen

Wir beginnen diesen Abschnitt mit einer technischen Hilfsaussage, die wir im folgenden ohne

explizite Nennung verwenden werden.

5.1. Lemma. Sei (Ft)t2R eine Filtration, (�(t))
t2R ein nichtnegativer Ft-vorhersagbarer Proze�

und x � a < b. Dann gilt:

EEE

�Z b

a

�(t) dt

����Fx

�
=

Z b

a

EEE(�(t) j Fx) dt f.s..(5.1)

Beweis: Wir beginnen mit einem Dynkin-System-Argument, um die Fx 
B-Me�barkeit

der Abbildung

(!; t) 7! EEE(�(t) j Fx) (!)(5.2)

f�ur �(t) = 1D (�; t), D 2 P (Ft), zu zeigen. Das Mengen-System E1 aus 2.1 ist ein durchschnitts-

stabiler Erzeuger von P (Ft). F�ur A� (a;1) 2 E1 gilt:

EEE
�
1A1(a;1) (t)

��Fx

�
= 1(a;1) (t)EEE(1A j Fx) ;

d.h. f�ur �(t) = 1A1(a;1) (t) gilt die Fx 
B-Me�barkeit von (5.2). Man rechnet leicht nach, da�

das Mengensystem

D
def
= fD 2 P (Ft) ; (!; t) 7! EEE(1D (�; t) j Fx) (!) ist Fx 
B-me�barg

ein Dynkin-System bildet. Damit ist die oben genannte Behauptung gezeigt.

Ein Funktions-Erweiterungsargument liefert unter Beachtung monotoner Konvergenz f�ur beding-

te Erwartungswerte die Fx 
B-Me�barkeit von (5.2) f�ur alle nichtnegativen Ft-vorhersagbaren

(�(t))t2R.

Nach dieser Vorarbeit liefert der Satz von Fubini f�ur beliebige Mengen A 2 Fx:Z
A

EEE

�Z b

a

�(t) dt

����Fx

�
dPPP =

Z
A

Z b

a

�(t) dt dPPP =

Z b

a

Z
A

�(t) dPPP dt

=

Z b

a

Z
A

EEE(�(t) j Fx) dPPP dt =

Z
A

Z b

a

EEE(�(t) j Fx) dt dPPP:

Unter Beachtung der de�nierenden Eigenschaften des bedingten Erwartungswertes zeigt dies das

Gew�unschte.

Da f�ur die Punkte der negativen reellen Achse eines Punkt-Prozesses N zu einem
"
Zeit\-

punkt t < 0 bei Kenntnis der Vergangenheit bis zu diesem t nicht entschieden werden kann, an
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welcher Position ein solcher Punkt in der Folge der negativen Punkte eingeordnet werden mu�

(
"
n-ter Punkt vor 0\ oder

"
n+1-ter Punkt vor 0\ oder ...?), stellen diese Punkte keine Stopzeiten

bez�uglich der internen Filtration dar. Auf (0;1) ist dies jedoch der Fall.

5.2. Lemma. Sei N = (Tn)n2Z ein Punkt-Proze� auf R. Die Punkte der positiven reellen Halb-

achse (Tn)n2N sind dann FN
t -Stopzeiten, denn f�ur beliebiges n 2 N und t 2 R gilt

fTn � tg =

(
; f�ur t � 0

fN((0; t]) � ng f�ur t > 0

2 FN
t :

Schr�anken wir einen Punkt-Proze� mit existierender Ft-Intensit�at auf die positive reelle

Halbachse ein, so l�a�t sich auch f�ur diesen Proze� die Ft-Intensit�at angeben.

5.3. Lemma. Gegeben sei eine Filtration (Ft)t2R und ein Ft-adaptierter Punkt-Proze� N mit

Ft-Intensit�at (�(t))t2R. Dann besitzt N+ die durch

�+(t) =

(
0 f�ur t � 0

�(t) f�ur t > 0
(5.3)

de�nierte Ft-Intensit�at (�+(t))t2R.

Beweis: In den F�allen (a; b] � (�1; 0) oder (a; b] � [0;1) rechnet man die de�nierende

Gleichung (1.7) sofort nach. Sei also (a; b] � R mit 0 2 (a; b]. Daf�ur gilt

EEE
�
N+((a; b])

��Fa

�
= EEE(N((0; b]) j Fa) = EEE(EEE(N((0; b]) j F0) j Fa)

= EEE

�
EEE

�Z b

0

�(t) dt

����F0

� ����Fa

�
= EEE

�Z b

a

�+(t) dt

����Fa

�
;

denn Fa � F0.

Die Hinzunahme von Informationen, die unabh�angig vom vorgegebenen Proze� sind, �andert

die Beziehung zwischen Punkt-Proze� und Intensit�at nicht, d.h. bedingen wir nicht nur unter der

urspr�unglichen �-Algebra zum Zeitpunkt a, sondern zus�atzlich unter der davon unabh�angigen

�-Algebra zum Zeitpunkt a, so gewinnen wir keine neuen Erkenntnisse �uber das Verhalten von

Punkt-Proze� und Intensit�at in (a; b].

5.4. Satz. Sei N ein Punkt-Proze� mit Ft-Intensit�at (�(t))t2R und (Gt)t2R eine weitere, von

F1 (und damit von FN
1) unabh�angige Filtration. Dann ist (�(t))t2R ebenfalls eine � (Ft;Gt)-

Intensit�at von N .

Beweis: Die Unabh�angigkeit von Fa und Ga zeigt unter Verwendung von Lemma 2.8

EEE(N((a; b]) j Fa;Ga) = EEE(N((a; b]) j Fa) = EEE

�Z b

a

�(t) dt

����Fa

�
= EEE

�Z b

a

�(t) dt

����Fa;Ga

�

f.s. f�ur beliebige Mengen (a; b] � R.
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5.5. Satz (Risikorate). Sei N ein (einfacher) Punkt-Proze�, welcher eine FN
t -vorhersagbare

Intensit�at der Form �(t) = �(N; t) auf [0;1) zul�a�t. Dann gilt:

PPP
�
N((0; t]) = 0 j FN

0

�
= exp

�
�

Z t

0

�(N�; s) ds

�
(5.4)

f�ur alle t 2 (0;1] auf der Menge
nR t

0
�(N�; s) ds <1

o
.

Es wird in 5.5 nicht gefordert, da� die FN
t -Intensit�at �(t) von der Form �(N; t) ist. Dies

gilt vielmehr, da �(t) FN
t -vorhersagbar ist, vergleiche 2.4.

Auf der Menge
nR t

0
�(N�; s) ds =1

o
nimmt Gleichung (5.4) die Gestalt

PPP
�
N((0; t]) = 0 j FN

0

�
= 0

an. Als Basis zum Nachweis dieser Behauptung kann die Anwendung von 5.5 auf Punkt-Prozesse

N (n) mit Intensit�at �(n)(t) = �(t) ^ n genutzt werden. Dabei werden die Prozesse N (n) aus

dem Proze� N unter Verwendung der Aussagen 6.11 (bzw. 6.12) und 6.14 des nachfolgenden

Abschnitts konstruiert (�ahnlich dem Vorgehen wie z.B. im Beweis von 8.7). Auf weitere Details

verzichten wir und kommen nun zum Beweis von 5.5.

Beweis (von Satz 5.5): Sei t 2 (0;1]. Unmittelbar klar ist die Gleichheit

1fN((0;t])=0g = 1�

Z
(0;t]

1fN((0;s))=0gN(ds):(5.5)

Sei A 2 FN
0 beliebig. Die Abbildung (!; s) 7! 1A (!)1(0;t] (s) ist P

�
FN
s

�
-me�bar. Gezeigt

wird nun die FN
s -Vorhersagbarkeit der Abbildung

(!; s) 7! 1A (!)1(0;t] (s)1fN((0;s))=0g (!) :(5.6)

Hierf�ur reicht es, die P
�
FN
s

�
-Me�barkeit der Menge f(!; s) 2 
 �R;N(!; (0; s)) = 0g nachzu-

rechnen. Da f! 2 
;T1(!) � ag = f! 2 
;N(!; (0; a)) = 0g 2 FN
a f�ur alle a 2 [0;1), ergibt

sich aus der Darstellung

f(!; s) 2 
�R;N(!; (0; s)) = 0g

= 
� (�1; 0] [ f(!; s) 2 
� (0;1);T1(!) � s > 0g

mit Anhang A1.1 das Gew�unschte: f(!; s) 2 
�R;N(!; (0; s)) = 0g 2 P
�
FN
s

�
.

Multiplikation von Gleichung (5.5) mit 1A liefert wegen der Vorhersagbarkeit von (5.6)

unter Beachtung von Bemerkung 1.6

PPP(fN((0; t]) = 0g \ A) = EEE1A �EEE

�
1A

Z
(0;t]

1fN((0;s))=0gN(ds)

�

= PPP(A)�EEE

�Z
1A1(0;t] (s)1fN((0;s))=0gN(ds)

�

= PPP(A)�EEE

�
1A

Z
(0;t]

1fN((0;s])=0g�(s) ds

�
(1)
= PPP(A)�EEE

�
1A

Z
(0;t]

1fN((0;s])=0g�(N
�; s) ds

�
:



i. Hawkes-Prozesse und Intensit�aten von Hawkes-Prozessen 21

Unter (1) wurde die aus der Darstellung �(s) = �(N; s) resultierende Identit�at

1fN((0;s])=0g�(�; s) = 1fN((0;s])=0g�(N; s) = 1fN((0;s])=0g�(N
�; s)

genutzt (siehe auch Korollar 2.6). Dies wiederum zeigt mit dem Satz von Fubini, da�

PPP
�
fN((0; t]) = 0g jFN

0

�
= EEE

�
1fN((0;t])=0g

��FN
0

�
= 1�EEE

�Z
(0;t]

1fN((0;s])=0g�(N
�; s) ds

����FN
0

�

= 1�

Z
(0;t]

EEE
�
1fN((0;s])=0g�(N

�; s)
��FN

0

�
ds

= 1�

Z
(0;t]

PPP
�
N((0; s]) = 0 j FN

0

�
�(N�; s) ds:

Eine induktive Anwendung dieser Gleichung liefert (s0
def
= t)

PPP
�
N((0; t]) = 0 jFN

0

�
= 1

+

nX
k=1

(�1)k
Z s0

0

�(N�; s1)

Z s1

0

�(N�; s2)� � �

Z sk�1

0

�(N�; sk) dsk : : : ds2ds1

+ (�1)n+1

Z s0

0

�(N�; s1)

Z s1

0

�(N�; s2)� � �

Z sn�1

0

�(N�; sn)Z sn

0

PPP
�
N((0; sn+1]) = 0 j FN

0

�
�(N�; sn+1) dsn+1 dsn : : : ds2ds1:

(5.7)

In A2.1 wird gezeigt:Z s0

0

�(N�; s1)

Z s1

0

�(N�; s2)� � �

Z sk�1

0

�(N�; sk) dsk : : : ds2ds1

=

�R t
0
�(N�; s) ds

�k
k!

:

(5.8)

Aus (5.7) und (5.8) folgt die Absch�atzung

nX
k=0

(�1)k

�R t
0
�(N�; s) ds

�k
k!

�

�R t
0
�(N�; s) ds

�n+1

(n + 1)!

� PPP
�
N((0; t]) = 0 jFN

0

�
�

nX
k=0

(�1)k

�R t
0
�(N�; s) ds

�k
k!

+

�R t
0
�(N�; s) ds

�n+1

(n+ 1)!
;

was im Grenz�ubergang n!1 wegen
(
R t
0
�(N�;s) ds)

n+1

(n+1)!
! 0 zu Gleichung (5.4) f�uhrt.

Satz 5.5 kann im Fall der K-variaten Punkt-Prozesse auf den Proze� �ubertragen werden,

der die gesamten Punkte aller univariaten Punkt-Prozesse umfa�t.
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5.6. Korollar. Bezeichne N = (N1; : : : ; NK) einen K-variaten Punkt-Proze� mit FN
t -vorher-

sagbarer FN
t -Intensit�at (�(t))t2R = ((�1(t); : : : ; �K(t)))t2R. Die Komponenten besitzen eine Dar-

stellung �i(t) = �i (N1; : : : ; NK; t). Au�erdem besitzen die einzelnen Prozesse N1; : : : ; NK f.s.

keine gemeinsamen Punkte. Dann gilt:

PPP
�
N ((0; t]� f1; : : : ; Kg) = 0 j FN

0

�
= exp

 
�

KX
i=1

Z t

0

�i
�
N�

1 ; : : : ; N
�
K ; s

�
ds

!
(5.9)

f�ur alle t 2 [0;1] auf
nPK

i=1

R t
0
�i
�
N�

1 ; : : : ; N
�
K ; s

�
ds <1

o
.

Begr�undung: Der Beweis von 5.5 l�a�t sich vollst�andig �ubernehmen, wenn man beachtet,

da� aus

1fN((0;t]�f1;:::;Kg)=0g = 1�

Z
(0;t]

1fN((0;s)�f1;:::;Kg)=0gN (ds� f1; : : : ; Kg)

f�ur beliebige Mengen A 2 FN
0 bereits

PPP(fN ((0; t]� f1; : : : ; Kg) = 0g \ A)

= PPP(A)�
KX
i=1

EEE

�Z
(0;t]

1A1fN((0;s)�f1;:::;Kg)=0gN (ds� fig)

�

= PPP(A)�
KX
i=1

EEE

�Z
(0;t]

1A1fN((0;s]�f1;:::;Kg)=0g�i
�
N�

1 ; : : : ; N
�
K ; s

�
ds

�

folgt. De�niere �
�
N�

1 ; : : : ; N
�
K ; s

� def
=
PK

i=1 �i
�
N�

1 ; : : : ; N
�
K ; s

�
. Dann gilt

PPP
�
fN ((0; t]� f1; : : : ; Kg) = 0g jFN

0

�
= 1�

Z
(0;t]

PPP
�
fN ((0; s]� f1; : : : ; Kg) = 0g jFN

0

�
�
�
N�

1 ; : : : ; N
�
K ; s

�
ds;

was als Basis f�ur die �Ubernahme des weiteren Beweises dienen m�oge. �

Abschlie�end geben wir noch einen Test f�ur das Vorliegen von Stationarit�at an.

5.7. Lemma. Sei PPP ein Wahrscheinlichkeitsma� und (�t)t2R ein me�barer Flu� auf (
;F) mit

PPP � �t = PPP sowie N ein �t-kompatibeler Punkt-Proze�. Dann ist N station�ar.

Beweis: Sei k 2 N, n1; : : : ; nk 2 N0 und A1; : : : ; Ak 2 B beschr�ankt. Somit folgt

PPP(N(Ai + t) = ni; i = 1; : : : ; k)

= PPP(StN(Ai) = ni; i = 1; : : : ; k)

= PPP(N(�t�; Ai) = ni; i = 1; : : : ; k)

= PPP(f��t! 2 
;N(!;Ai) = ni; i = 1; : : : ; kg)

= PPP(N(Ai) = ni; i = 1; : : : ; k) :

(5.10)
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Nach [DVJ88] Kapitel 6.2 Proposition 6.2.III. folgt hieraus die Stationarit�at von N .

Die mittlere Intensit�at � eines station�aren Punkt-Prozesses N ist die erwartete Zahl der

Punkte von N im Intervall (0; 1]: � = EEEN((0; 1]).

5.8. Lemma. Sei N ein station�arer Punkt-Proze� mit endlicher mittlerer Intensit�at � 2 R. F�ur

beliebige C 2 B gilt

EEEN(C) = ��n(C)(5.11)

und f�ur beliebige nichtnegative me�bare Funktionen f besteht die Gleichheit

EEE

�Z
f(u)N(du)

�
= �

Z
f(u)�n(du) :(5.12)

Beweis: Da N station�ar ist, gilt f�ur alle t 2 R und C 2 B, da� EEEN(C) = EEEN(C + t).

Gleichung (5.11) folgt aus [Als98] Satz 7.5, denn EEEN(�) ist ein Ma� auf (R;B). Nun k�onnen wir

(5.11) umschreiben zu

EEE

�Z
1C (u) N(du)

�
= �

Z
1C (u) �n(du) :

Durch Anwendung des Funktions-Erweiterungsarguments folgt schlie�lich (5.12).

6. Poisson-Prozesse

Der erste Unterabschnitt gibt die De�nition eines Poisson-Prozesses sowie einige aus [DVJ88]

bekannte Eigenschaften dieser Prozesse wieder. Interessante Ergebnisse f�ur die Konstruktion von

Punkt-Prozessen werden im zweiten Unterabschnitt wiedergegeben.

Wir erinnern daran, da� f�ur die Funktionen h und � stets Me�barkeit unterstellt wird, siehe

Beginn von Abschnitt 3.

1) De�nition und Ergodizit�at. Die allgemeine De�nition eines Poisson-Prozesses auf

Rk lautet:

6.1. De�nition (Poisson-Proze�). Sei �N(!; �) f�ur alle ! 2 
 ein ganzzahliges Radon-Ma�

auf Rk und �N(C) me�bar f�ur alle C 2 Bk (k 2 N). Au�erdem gelte f�ur alle endlichen Familien

disjunkter und beschr�ankter Borel-Mengen Ai 2 Bk, 1 � i � n mit n 2 N, und (j1; : : : ; jn) 2 Nn
0

PPP
�
�N (Ai) = ji; 1 � i � n

�
=

nY
i=1

(� (Ai))
ji

ji!
e��(Ai)(6.1)

mit einem Ma� � auf Rk. Dann hei�t �N Poisson-Proze� mit Intensit�ats- (oder auch Parameter-)

Ma� � auf Rk und im Fall � = ��nk Poisson-Proze� mit Parameter (oder auch Intensit�at) �.
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Von Interesse werden hier nur solche Poisson-Prozesse auf R oder R2 sein, deren Inten-

sit�atsma� ein rationales Vielfaches des Lebesgue-Masses ist. Zu einem Poisson-Proze� �N auf

R2 de�nieren wir die zugeh�orige interne Filtration wie bei einem markiertem Punkt-Proze� mit

Markenraum (R;B):

F
�N
t

def
= �

�
�N(C);C 2 B((�1; t])
B

�
:

6.2. Bemerkung. Gegeben sei ein Poisson-Proze� mit Parameter-Ma� � auf Rk, k 2 N.

(i) Dann besitzt �N die vollst�andige Unabh�angigkeits-Eigenschaft, d.h. die Zufallsvariablen �N (Ai),

1 � i � n, sind f�ur disjunkte und beschr�ankte Mengen A1; : : : ; An 2 Bk stochastisch unabh�angig.

(ii) Im Fall � = ��nk ist die Zahl der Punkte in jedem nichtleeren, beschr�ankten Intervall A 2 B

f.s. endlich und nicht f.s. 0. Au�erdem ist �N station�ar.

Bezeichne �N einen Poisson-Proze� aufRk mit Intensit�ats-Ma� � und (Ft)t2R eine Filtration

mitF
�N
t � Ft f�ur alle t 2 R. Au�erdem seien Fs und StN

+ unabh�angig f�ur alle s < t. Wir sprechen

dann auch von einem Ft-Poisson-Proze� . F�ur alle nichtnegativen Abbildungen H : 
�Rk ! R,

die P (Ft)
Bk�1-me�bar sind, gilt

EEE

�Z
Rk
H(�; t) �N(dt)

�
= EEE

�Z
Rk
H(�; t)�(dt)

�
;(6.2)

was sich sofort durch ein Funktions-Erweiterungsargument veri�zieren l�a�t.

Wir werden einen markierten Punkt-Proze� �N = (Tn; Un)n2Z markierten Poisson-Proze�

mit Intensit�ats-Ma� � (bzw. Parameter �) nennen, falls (Tn)n2Z ein Poisson-Proze� mit Inten-

sit�ats-Ma� � (bzw. Parameter �) ist.

Sei �N = (Tn; Un)n2Z ein markierter Poisson-Proze� mit Parameter-Ma� �, welcher bez�uglich

einer Filtration (Ft)t2R, F
�N
t � Ft f�ur alle t 2 R, die Eigenschaft "

Fs und St �N
+ sind unabh�angig

f�ur alle s < t\ besitzt. Au�erdem sei F
�N(��E)
1 unabh�angig von der Folge (Un)n2Z unabh�angiger,

identisch verteilter Zufallsgr�o�en ((E; E) Markenraum). Es gilt dann als Analogon zu (6.2):

F�ur alle nichtnegativen Abbildungen H : 
�R � E ! R, die P (Ft)
 E-me�bar sind, gilt

EEE

�Z
R�E

H(�; t; z) �N(dt� dz)

�
= EEE

�Z
R�E

H(�; t; z)�(dt)Q(dz)

�
(6.3)

fallsPPPUn = Q f�ur alle n 2 N. Auch dies l�a�t sich mittels eines Funktions-Erweiterungsargumentes

aufgrund der vorausgesetzten Unabh�angigkeiten zeigen.

Stelle �N einen Ft-Poisson-Proze� der Intensit�at 1 auf R
2 bez�uglich einer Filtration (Ft)t2R

dar, dann ist �N(�� [0;�]) ein Ft-Poisson-Proze� der Intensit�at � auf R. Dazu reicht der Hinweis,

da� f�ur alle k 2 N0 und (a; b] � R

PPP
�
�N((a; b]) = k

�
= e��

n2((a;b]�(0;�]) (�n
2((a; b]� (0;�]))

k

k!

= e���
n((a;b])

�k
�
�n((a; b])

�k
k!

gilt.
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6.3. Lemma. Sei A 2 (0;1) und �N = (Tn)n2Z ein homogener Poisson-Proze� mit Intensit�at

� 2 (0;1) auf R. Ein Punkt Tn von N sei ein Punkt des Punkt-Prozesses R genau dann, wenn

Tn�Tn�1 > A. Die Punkte des resultierenden Punkt-Prozesses R werden mit (Rk)k2Z bezeichnet,

wobei die �ublichen Konventionen erf�ullt sein sollen.

Dann gilt:

(i) limk!�1Rk = �1 f.s.

(ii) R�(s) = R̂�(s) f�ur alle s 2 R, dabei ist

R�(s)
def
= sup fRk; k 2 Z; Rk � sg

R̂�(s)
def
= sup ft � s;N([t� A; t)) = 0; N([t� A; t]) � 1g

mit der Festlegung sup ; = �1.

(iii) R�(s) ist FN
s -me�bar, s 2 R.

Beweis: zu (i).W�ahle t 2 (�1; 0]. Die Zuw�achse Tn�Tn�1, n 2 Z, eines Poisson-Prozesses

sind unabh�angig Exp(�)-verteilt. Mit Borel-Cantelli folgt aus

X
n2Z�0

PPP(Tn � Tn�1 > A) =
X
n2Z�0

Z 1

A

�e��t dt =
X
n2Z�0

e��A =1

Tn � Tn�1 > A unendlich oft f.s. (n 2 Z�0) und damit nat�urlich Rn !1 f.s. f�ur n!1.

zu (ii). Sei ! 2 
 und s 2 R.

Da Rk(!) > Rk�1(!) + A f�ur alle k 2 Z wird das Maximum in der De�nition von R�(s)

angenommen, d.h. es gibt ein k0(!) 2 Z mit R�(s)(!) = Rk0(!)(!) � s. Nach De�nition der

(Rk)k2Z gilt

N
�
!;
�
Rk0(!)(!)� A;Rk0(!)(!)

��
= 0 und N

�
!;
�
Rk0(!)(!)� A;Rk0(!)(!)

��
> 0;

so da� R�(s) � R̂�(s).

Sei 0 < " < A
2
. Dann gibt es ein t0(!) � s mit t0(!) 2

�
R̂�(s)(!)� "; R̂�(s)(!)

i
und

N (!; [t0(!)� A; t0(!))) = 0 sowie N (!; [t0(!)� A; t0(!)]) > 0:

F�ur alle t 2
�
t0(!); R̂

�(s)(!)
i
ist t0(!) 2 [t � A; t), woraus t0(!) = R̂�(s)(!) folgt. Au�erdem

mu� t0(!) = Tk0(!)(!) f�ur ein k0(!) 2 Z sein, was zu Tk0(!)(!) > Tk0(!)�1(!) + A f�uhrt, denn

N (!; [t0(!)� A; t0(!))) = 0. Daher gilt R�(s) � R̂�(s), also ist (ii) gezeigt.

zu (iii). Die FN
s -Me�barkeit von R�(s) ist nat�urlich eine Folge der Gleichheit R�(s) =

R̂�(s), und damit eine Folgerung aus der Darstellung von R�(s) mittels N(� \ [�1; s]): Sei

s 2 R. F�ur alle x 2 R gilt nach Anhang A1.4

�
R�(s) > x

	
=

[
t2Q[fsg

x<t�s

[
n2N

x<t� 1

n

�
N

��
t�

1

n
� A; t�

1

n

��
= 0; N

��
t�

1

n
; t

��
> 0

�
:
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Die Me�barkeit der Menge fR�(s) > xg folgt mit obiger Darstellung sofort, denn f�ur t 2 Q[fsg,

t � s, ist �
N

��
t�

1

n
� A; t�

1

n

��
= 0

�
2 FN

t� 1

n

� FN
s�

N

��
t�

1

n
; t

��
> 0

�
2 FN

t � FN
s

f�ur alle n 2 N.

Weitere Eigenschaften von R nennen wir im nachstehenden Lemma.

6.4. Lemma. Sei �N in der Situation von 6.3 �t-kompatibel. Dann ist der Punkt-Proze� R eben-

falls �t-kompatibel und besitzt die (durchschnittliche) Intensit�at �e��A 2 (0;1).

Beweis: Sei C 2 B, t 2 R und ! 2 
.

�N(�t!;C) = St �N(!;C) = �N(!; (t+ C))

=
X
n2Z

1t+C (Tn(!)) =
X
n2Z

1C (Tn(!)� t)

was St �N = (Tn � t)n2Z zeigt. Dies f�uhrt zu

StR(!;C) = R(!; t+ C) =
X
n2Z

1t+C (Tn(!))1fTn�t�(Tn�1�t)>Ag (!) = R(�t!;C):

F�ur die zweite Behauptung reicht es,

EEER((a; b]) = �(b� a)e��A

f�ur alle beschr�ankten Intervalle (a; b] � R nachzuweisen. Wir nehmen dazu eine Fallunterschei-

dung vor. Bei den folgenden Umformungen verwenden wir, da�

� T1, �T0 und Tn � Tn�1 (n 2 Z, n 6= 1) eine Exp(�)-Verteilung besitzen,

� Tn�1 und Tn � Tn�1 f�ur n � 2 stochastisch unabh�angig sind,

� Tn und Tn � Tn�1 f�ur n � 0 stochastisch unabh�angig sind,

� EEE �N((a; b]) = �(b� a) gilt.

Ferner ist die Anordnung der Punkte (Tn)n2Z von �N gem�a� (1.2) zu beachten.

1. Fall: Sei (a; b] � (�1; 0]. Dann gilt

EEER((a; b]) = EEE

 X
k2Z

1(a;b] (Rk)

!
= EEE

 X
n2Z

1(a;b] (Tn)1fTn�Tn�1>Ag

!

=
X
n�0

PPP(a < Tn � b; Tn � Tn�1 > A) = EEE �N((a; b])

Z 1

A

�e��x dx = �(b� a)e��A:
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2. Fall: Sei nun (a; b] � (0; A]. Es folgt (beachte Tn > A auf fTn � Tn�1 > Ag f�ur alle n � 2)

EEER((a; b]) = EEE

 X
n2Z

1(a;b] (Tn)1fTn�Tn�1>Ag

!

=
X
n�1

PPP(a < Tn � b; Tn � Tn�1 > A) = PPP(a < T1 � b; T1 � T0 > A)

=

Z b

a

PPP(�T0 > A� x) PPP T1(dx) =

Z b

a

Z 1

A�x

�e��y dy�e��x dx

=

Z b

a

e��Ae�x�e��x dx =

Z b

a

e��A� dx = �(b� a)e��A:

3. Fall: Ist (a; b] � (A;1) � (0;1), so erhalten wir (beachte a > A, T1� T0 > A auf der Menge

fT1 > ag)

EEER((a; b]) = EEE

 X
n2Z

1(a;b] (Tn)1fTn�Tn�1>Ag

!

= PPP(a < T1 � b; T1 � T0 > A) +
X
n�2

PPP(a < Tn�1 + (Tn � Tn�1) � b; Tn � Tn�1 > A)

= PPP(a < T1 � b) +
X
n�2

Z 1

A

PPP(a� x < Tn�1 � b� x) PPP Tn�Tn�1(dx)

=

Z b

a

�e��x dx +
X
n�2

Z a

A

PPP(a� x < Tn�1 � b� x) �e��x dx

+
X
n�2

Z b

a

PPP(0 < Tn�1 � b� x) �e��x dx

= e��a � e��b +

Z a

A

EEE �N((a� x; b� x])�e��x dx+

Z b

a

EEE �N((0; b� x])�e��x dx

= e��a � e��b +

Z a

A

�(b� a)�e��x dx+

Z b

a

�(b� x)�e��x dx

= e��a � e��b + �(b� a)
�
e��A � e��a

�
+ �b

�
e��a � e��b

�
+ �

�
xe��x

�b
a
�

Z b

a

�e��x dx

= �(b� a)e��A:

Der allgemeine Fall (a; b] � R l�a�t sich nun mittels der Zerlegung (a; b] = (a; b]\ (�1; 0]+

(a; b] \ (0; A] + (a; b] \ (A;1) auf die zuvor betrachteten F�alle zur�uckf�uhren.

6.5. Satz. Bezeichne �N = (Tn)n2Z einen Poisson-Proze� auf R der Intensit�at �. Das Wahr-

scheinlichkeitsma� PPP
�N mischt mit dem Shift (St)t2R, d.h. es gilt

lim
jtj!1

�
PPP

�N
�
StV \ V̂

�
�PPP

�N(StV )PPP
�N (V̂ )

�
= 0(6.4)

f�ur alle V; V̂ 2 M (vergleiche [DVJ88] 10.3.I).
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Wie �ubernehmen den Begri� Semi-Ring aus [DVJ88] (Anhang A1.1, Seite 593): das System

S von Mengen ist ein Semi-Ring, falls S durchschnittsstabil und jede symmetrische Di�erenz von

Mengen aus S durch eine endliche Vereinigung disjunkter Mengen aus S darstellbar ist.

Beweis (von Satz 6.5): Bezeichne S den Semi-Ring der beschr�ankten Borelschen Teil-

mengen von R. Ferner wird durch

T
def
= ff� 2M ;�(Ai) 2 Bi; 1 � i � kg ;Ai 2 S; Bi 2 B; k 2 Ng

ebenfalls ein Semi-Ring gegeben: o�ensichtlich folgt aus V; V̂ 2 T auch V \ V̂ 2 T . Falls V =

f� 2M ;�(Ai) 2 Bi; 1 � i � kg sowie V̂ =
�
� 2 M ;�(Âi) 2 B̂i; 1 � i � k̂

	
ist, besitzt die

symmetrische Di�erenz dieser Mengen die Darstellung

V 4 V̂ =
�
V n V̂

�
[
�
V̂ n V

�

=

k̂X
j=1

V \
n
� 2M ;�(Âj) 2 B̂

C
j ; �(Âi) 2 B̂i f�ur 1 � i < j

o

+

kX
j=1

V̂ \
�
� 2M ;�(Aj) 2 B

C
j ; �(Ai) 2 Bi f�ur 1 � i < j

	
;

(Ai 2 S, Bi 2 B f�ur alle i 2 f1; : : : ; kg, Âi 2 S, B̂i 2 B f�ur alle i 2 f1; : : : ; k̂g mit k; k̂ 2 N).

Gem�a� [DVJ88] A2.5.IV stellt T einen Erzeuger von M dar, also M = � (T ). Um den Beweis

abzuschlie�en, reicht es nach [DVJ88] 10.3.II, (6.4) f�ur Mengen aus T nachzurechnen. F�ur V; V̂ 2

T { mit einer Darstellung wie oben { folgt f�ur betragsm�a�ig hinreichend gro�e t 2 R

PPP
�N
�
StV \ V̂

�
= PPP

�N
�
f�(�+ t) 2 M ;�(Ai) 2 Bi; 1 � i � kg \

n
� 2M ;�(Âj) 2 B̂j; 1 � j � k̂

o�
= PPP

�
�N(Ai � t) 2 Bi; 1 � i � k; �N(Âj) 2 B̂j; 1 � j � k̂

�
= PPP

�
�N(Ai � t) 2 Bi; 1 � i � k

�
PPP
�
�N(Âj) 2 B̂j; 1 � j � k̂

�
= PPP

�N(V )PPP
�N
�
V̂
�
:

Bei der 3. Gleichheit nutzen wir die Beschr�anktheit der Ai; 1 � i � k und Âj; 1 � j � k̂,

was f�ur t 2 R mit jtj gen�ugend gro� zur Disjunktheit von
Sk

i=1 (Ai � t) und
Sk̂

j=1 Âj, also zur

Unabh�angigkeit von �N (Ai � t) ; 1 � i � k, sowie �N
�
Âj

�
; 1 � j � k̂, f�uhrt. Bei der 4. Gleichheit

verwenden wir die Stationarit�at von �N .

Aus [DVJ88] Abschnitt 10.3 erhalten wir das nachstehende

6.6. Korollar. In der Situation von 6.5 ist
�
PPP

�N ; (St)t2R
�
ergodisch.

2) Poisson-Einbettung. Wir beginnen diesen Unterabschnitt mit der Angabe des Analogons

zu 5.4 f�ur Intensit�atskerne.
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6.7. Lemma. Es sei �N ein markierter Punkt-Proze� der reellen Achse mit Markenraum (E; E)

und F
�N
t -Intensit�atskern ��n(dt)Q(dz), vergleiche [BB94] Kapitel 1 unterhalb von Beispiel 8.2.2.

Zus�atzlich sei (Ft)t2R eine Filtration unabh�angig von �N (d.h. F
�N
1 und F1 sind stochastisch

unabh�angig). Dann ist ��n(dt)Q(dz) ebenfalls ein �
�
F

�N
t ;Ft

�
-Intensit�atskern von �N .

Zum Nachweis reicht es, nachzurechnen, da� der Punkt-Proze� �N(� � L) f�ur eine fest vor-

gegebene Menge L 2 E die (konstante) Intensit�at �Q(L) besitzt. Dies l�a�t sich wie im Beweis

von 5.4 durchf�uhren.

Wir geben nun zun�achst einige Aussagen an, die auch im Abschnitt 5 (
"
Eigenschaften von

Punkt-Prozessen\) aufgef�uhrt werden k�onnten. Diese sichern die Me�barkeit der nachfolgend

konstruierten Intensit�aten oder Punkt-Prozesse.

Wie �ublich bildet h+ (bzw. h�) den Positiv-(bzw. Negativ-) Teil der Funktion h.

6.8. Lemma. Bezeichne N einen Punkt-Proze� und (Ft)t2R eine Filtration von N . Sei h :

[0;1)! R eine B+-me�bare Funktion. Ist h nichtnegativ oder erf�ullt f.s. f�ur alle t 2 R jeweils

eine der folgenden Bedingungen:Z
(�1;t)

h+(t� s)N(ds) <1 oder

Z
(�1;t)

h�(t� s)N(ds) <1;(6.5)

so ist die Abbildung

(!; t) 7!

Z
(�1;t)

h(t� s)N(!; ds)(6.6)

Ft-vorhersagbar, also P (Ft)-me�bar.

Beweis: Sei zun�achst h(t) = 1(a;b] (t), a; b 2 [0;1). F�ur solches h gilt

Z
(�1;t)

h(t� s)N(ds) =

Z
(�1;t)

1(a;b] (t� s) N(ds)

= N([t� b; t� a) \ (�1; t)) = N([t� b; t� a)):

Da (Ft)t2R eine Filtration von N ist, erkennt man aus der Darstellung von f(!; t) 2 
 �

R;N(!; [t�b; t�a)) = ng in A1.2 die P(Ft)-Me�barkeit f�ur Funktionen der Form h(t) = 1(a;b] (t).

Mittels eines Standard Dynkin-System-Arguments zeigt man die Vorhersagbarkeit von (6.6)

f�ur alle Funktionen h = 1C mit C 2 B+: im Fall h(t) = 1[0;1) (t) zeigt analoges Vorgehen wie bei

h(t) = 1(a;b] (t) die Vorhersagbarkeit von N((�1; t)), die Pr�ufung der weiteren Voraussetzungen

stellt reines Nachrechnen dar.

Das Funktions-Erweiterungsargument liefert gemeinsam mit dem Satz von der monotonen

Konvergenz schlie�lich die Behauptung.

6.9. Lemma. Gegeben seien ein Poisson-Proze� �N auf R2 (oder ein beliebiger markierter Punkt-

Proze� �N auf R mit Marken in E 2 B), eine Filtration (Ft)t2R von �N und ein Ft-vorhersagbarer
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Proze� (�(t))t2R (der im markiertem Fall [0; �(!; t)] � E f�ur alle (!; t) 2 
�R erf�ullt). De�niert

man f�ur C 2 B

N(C) =

Z
C�R

1[0;�(s)] (z) �N(ds� dz):(6.7)

Dann ist N ein Ft-adaptierter Punkt-Proze�.

Beweis: Gem�a� A1.3 ist die Abbildung (!; s; z) 7! 1[0;�(!;s)] (z) P (Ft)
B�B-me�bar,

und nach [Als98] Satz 19.2 gilt

P (Ft)
B = � (A� (a; b]� (�; �];A 2 Fa; a; b; �; � 2 R) ;

wobei der angegebene Erzeuger \-stabil ist.

Setze f(!; s; z) = 1A (!)1(a;b] (s)1(�;�] (z), A 2 Fa; a; b; �; � 2 R. F�ur jedes feste C 2 B((�1; t])

(t 2 R) folgt

Nf(C)
def
=

Z
C�R

f(�; s; z) �N(ds� dz)

=

Z
C�R

1A1(a;b] (s)1(�;�] (z) �N(ds� dz)

=

(
1A �N (((a; b] \ C)� (�; �]) f�ur (a; b] \ C 6= ;

0 f�ur (a; b] \ C = ;
:

Dies liefert die Ft-Me�barkeit von Nf (C), denn a < t falls (a; b] \ C 6= ;, also A 2 Fa � Ft.

Unter Beachtung des Satzes von der monotonen Konvergenz liefert das Funktions-Erweiterungs-

argument die Ft-Me�barkeit von Nf (C) bei beliebigen P (Ft)
B�B-me�baren nichtnegativen

Funktionen f .

6.10. Korollar. In der Situation von Lemma 6.9 gilt f�ur jede nichtnegative P (Ft) 
 B � B-

me�bare Funktion f und jedes t 2 R:

Nf(C)
def
=

Z
C�R

f(�; s; z) �N(ds� dz)(6.8)

ist f�ur C 2 B((�1; t]) me�bar bez�uglich der �-Algebra Ft.

Die folgenden beiden S�atze dienen der Konstruktion von Punkt-Prozessen zu vorgegebenen

Intensit�aten. Bei einer Konstruktion kann ein markierter Punkt-Proze� als Basis dienen.

6.11. Satz. Gegeben sei ein markierter Punkt-Proze� �N = (Tn; Un)n2Z, bestehend aus einem

homogenen Poisson-Proze� (Tn)n2Z mit Intensit�at � 2 (0;1) und einer davon unabh�angigen

Folge (Un)n2Z von unabh�angigen, jeweils auf [0; 1] gleichverteilten Zufallsvariablen. Sei (Ft)t2R
eine Filtration von �N , so da� Fs und St �N

+ f�ur alle s < t unabh�angig sind. (�(t))t2R bezeichne

einen nichtnegativen Ft-vorhersagbaren Proze� mit �(!; t) � � f�ur alle (!; t) 2 
�R.
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De�niert man f�ur C 2 B

N(C)
def
=
X
n2Z

1C (Tn)1[0;�(Tn)
�

] (Un) =

Z
C

�N

�
dt�

�
0;
�(t)

�

��
:(6.9)

Dann besitzt der Punkt-Proze� N (�(t))t2R als eine Ft-Intensit�at.

Beweis: Unter Ausnutzung von (6.3) folgt aufgrund der Ft-Vorhersagbarkeit von (�(t))t2R

EEE(N((a; b]) j Fa) = EEE

�Z
(a;b]�[0;1]

1[0;�(t)
�
] (z)

�N(dt� dz)

����Fa

�

= EEE

�Z
(a;b]�[0;1]

1[0;�(t)
�
] (z) ��

n2(dt� dz)

����Fa

�
= EEE

�Z
(a;b]

�(t)�n(dt)

����Fa

�

f�ur alle Teilmengen (a; b] � R, denn (!; s; z) 7! 1[0;�(!;t)
�

] (z) ist P (Ft) 
 B([0; 1])-me�bar,

vergleiche A1.3.

Zu jedem Punkt lautet die Auswahlregel also: Teste, ob die Marke Un im Intervall
h
0; �(Tn)

�

i
liegt.

Ist �N ein markierter Punkt-Proze� oder ein Poisson-Proze� auf R2 und (�(t))t2R eine

Intensit�at, so werden wir die in 6.11 bereits benutzte SchreibweiseZ
C

�N (dt� [0; �(t)])
def
=

Z Z
1C (t)1[0;�(t)] (z) �N(dt� dz); C 2 B;

verwenden.

Die zweite (allgemeinere) Konstruktions-M�oglichkeit nutzt einen Poisson-Proze� auf R2.

Diese M�oglichkeit �ndet Verwendung, falls der betrachtete vorhersagbare Proze� nicht beschr�ankt

ist:

6.12. Satz. Sei �N ein Ft-Poisson-Proze� mit Intensit�at 1 auf R2, d.h. F
�N
t � Ft und Fs, St �N

+

sind unabh�angig f�ur alle s < t. Zu dem nichtnegativen, Ft-vorhersagbaren Proze� (�(t))t2R de�-

niere

N(C)
def
=

Z
C�R

1[0;�(t)] (z) �N(dt� dz) =

Z
C

�N (dt� [0; �(t)]) ;(6.10)

C 2 B. Dann ist N ein Punkt-Proze� mit Ft-Intensit�at (�(t))t2R.

Beweis: Die nach Anhang A1.3 g�ultige P (Ft)
B-Me�barkeit von (!; t; z) 7! 1[0;�(!;t)] (z)

f�uhrt mit (6.2) f�ur alle (a; b] � R zu

EEE(N((a; b]) j Fa) = EEE

�Z
(a;b]�R

1[0;�(t)] (z) �N(dt� dz)

����Fa

�

= EEE

�Z
(a;b]�R

1[0;�(t)] (z) �n
2(dt� dz)

����Fa

�
= EEE

�Z
(a;b]

�(t)�n(dt)

����Fa

�
;

was die Behauptung zeigt.

Lemma 6.8 und 6.9 lassen sich nun kombinieren zu
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6.13. Korollar. Sei �N ein Poisson-Proze� auf R2 mit Intensit�at 1 (bzw. ein markierter Punkt-

Proze� auf R mit Marken in [0; 1]), (Gt)t2R eine Filtration unabh�angig von �N und Ft
def
=

�
�
F

�N
t ;Gt

�
. Desweiteren seien N 0 ein Ft-adapierter Punkt-Proze� und � : R ! R�0, h : [0;1)!

R me�bare Funktionen. Ist der Proze�

�(t) = �

�Z
(�1;t)

h(t� s)N 0(ds)

�
; t 2 R;(6.11)

f.s. lokal integrabel, so ist der durch (6.10) (bzw. (6.9)) de�nierte Punkt-Proze� N Ft-adaptiert

und (�(t))t2R stellt eine Ft-Intensit�at von N dar.

Beweis: Der Proze�

�(t) = �

�Z
(�1;t)

h(t� s)N 0(ds)

�
(t 2 R)

ist nach 6.8 Ft-vorhersagbar, denn � ist me�bar.

Satz 6.12 (bzw. 6.11) besagt nun, da� (�(t))t2R eine Ft-Intensit�at von N ist und aus 6.9

folgt, da� (6.10) (bzw. (6.9)) Ft-adaptiert ist.

Wir geben nun ein Ergebnis wieder, welches eine Art Umkehrung von Satz 6.12 darstellt

und auf [Jac79] Kapitel 14, Abschnitt 4 xb zur�uckzuf�uhren ist.

6.14. Satz (Poisson-Inversion). Bezeichne N = (Tn)n2Z einen einfachen, nichtexplodieren-

den Punkt-Proze� auf R mit Ft-vorhersagbarer Ft-Intensit�at (�(t))t2R , adaptiert bez�uglich einer

Filtration (Ft)t2R. Sei (Un)n2Z eine Folge unabh�angiger, jeweils auf [0; 1] gleichverteilter Zufalls-

variablen unabh�angig von F1. Sei N̂ ein homogener Poisson-Proze� auf R2 mit Intensit�at 1,

unabh�angig von �
�
F1;F

U
1

�
. De�niere auf R2 den Punkt-Proze� �N durch

�N((a; b]� L) =
X
n2Z

1(a;b] (Tn)1L (�(Tn)Un) +

Z
(a;b]

Z
Ln(0;�(t)]

N̂(dt� dz):(6.12)

Dann ist �N ein homogener Poisson-Proze� auf R2 mit Intensit�at 1, und St �N
+ und �

�
Fs;F

�N
s

�
sind unabh�angig f�ur alle s < t. �N stellt also einen �

�
Fs;F

�N
s

�
-Poisson-Proze� dar.

Satz 6.14 zeigt, da� jeder nichtexplodierende Punkt-Proze� N wie in 6.12 konstruiert werden

kann. Der zu N geh�orige bivariate homogene Poisson-Proze� �N ensteht, indem man die Punkte

eines homogenen Poisson-Prozesses N̂ au�erhalb des
"
Zufalls\-Streifens f(t; z) 2 R2; 0 < z �

�(t)g w�ahlt, und innerhalb des Streifens die Punkte Tn von N mit Marken Zn = �(Tn)Un versieht

(oder anders ausgedr�uckt: setze zuf�allig einen Punkt von N in fTng � [0; � (Tn)]).

Um den homogenen Poisson-Proze� aus 6.14 zu erhalten, kann die Vergr�o�erung des zugrun-

deliegenden Wahrscheinlichkeitsraums notwendig werden. Dies geschieht in der �ublichen Weise.

Wenden wir im folgenden 6.14 an, so gehen wir von einem geeigneten Grundraum aus, ohne dies

explizit zu erw�ahnen.

Abschlie�end erweitern wir die Ergebnisse von 6.11 und 6.12.
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6.15. Satz. Es sei �N ein Poisson-Proze� auf R2 mit Intensit�at 1 oder ein markierter Poisson-

Proze� der Intensit�at � mit Marken in [0; 1]. Au�erdem seien (�i(t))t2R, i = 1; 2, zwei Ft-

vorhersagbare Prozesse und (Ft)t2R eine Filtration von �N , so da� Fs und St �N
+ unabh�angig f�ur

alle s < t sind. De�niere

Ni(C)
def
=

Z
C

1[0;�i(s)] (z)
�N(ds� dz)(6.13)

f�ur C 2 B (i = 1; 2).

Der Punkt-Proze�

jN1 �N2j (ftg)
def
= jN1(ftg)�N2(ftg)j ; t 2 R;(6.14)

der die verschiedenen Punkte von N1 und N2 z�ahlt, besitzt die Ft-Intensit�at (j�1(t)� �2(t)j)t2R.

Beweis: Sind a; b 2 R mit a � b, so setze (a; b] = ;. F�ur beliebige Mengen C 2 B gilt

jN1 �N2j (C) =

Z
C

jN1 �N2j (ds)

=

Z
C

1(�1(s);�2(s)] (z)
�N(ds� dz) +

Z
C

1(�2(s);�1(s)] (z)
�N(ds� dz):

Analog zum Beweis von 6.12 (bzw. 6.11) k�onnen wir zeigen, da� eine Ft-Intensit�at des Punkt-

Prozesses
�R

C
1(�i(s);�j(s)] (z)

�N(ds� dz)
�
C2B

durch
�
(�j(t)� �i(t))

+
�
t2R

gegeben wird (fi; jg =

f1; 2g). Damit folgt, da� jN1 �N2j den Proze�

�
(�1(t)� �2(t))

+
+ (�2(t)� �1(t))

+�
t2R

als Ft-Intensit�at besitzt.



Kapitel II.

Existenz und Stabilit�at univariater

nichtlinearer Hawkes-Prozesse

Beginnen wollen wir dieses Kapitel mit einem Abschnitt, welcher uns des �ofteren bei der Kon-

struktion von Punkt-Prozessen von Nutzen sein wird.

In den anschlie�enden Abschnitten weisen wir die Existenz und Stabilit�at von Hawkes-

Prozessen bei vorgegebenen Funktionen � und h sowie geeigneten Anfangsbedingungen nach.

Dabei macht Abschnitt 8 bereits eine Ausnahme: Es werden nur Funktionen h mit kompaktem

Tr�ager zugelassen. Die daraus resultierende Art von Intensit�aten k�onnen wir in die allgemeinere

Menge der Intensit�aten mit beschr�anktem Speicher (De�nition: siehe 8.1) einbetten und Existenz

und Stabilit�at f�ur diese Menge zeigen, so da� die Hawkes-Prozesse hier nur einen Spezialfall

darstellen.

Stellen wir Beschr�anktheitsanforderungen an die L1

�
[0;1);B+; �nj[0;1)

�
-Norm von h, so

k�onnen wir bei monotonen Anregungsfunktionen mit beschr�anktem Wachstum die Existenz ei-

nes Hawkes-Prozesses nachweisen (Abschnitt 9). Fordern wir �-Lipschitz-Stetigkeit von � und

�xieren die L1

�
[0;1);B+; �nj[0;1)

�
-Norm von �h unterhalb von 1, so l�a�t sich erneut die Exi-

stenz zeigen, und wir k�onnen geeignete Anfangsbedingungen f�ur Stabilit�at angeben, siehe dazu

Abschnitt 10. In Abschnitt 11 gelte neben der �-Lipschitz-Stetigkeit der �Ubertragungsfunktion

noch die Beschr�anktheit von �, wir ben�otigen dann neben der Endlichkeit von
R
[0;1)

jh(t)j dt noch

weitere Beschr�anktheitsanforderungen an h, um neben der Existenz auch Stabilit�at bei geeigneter

Anfangsbedingung zu zeigen.

Da die eigentlichen Beweise zum Teil gro�en Umfang besitzen, werden sie in Unterabschnit-

ten durchgef�uhrt, um diese durch Lemmata in kleinere Schritte zu zerlegen.

7. Zur Konstruktion von Punkt-Prozessen

Bei der Konstruktion von Punkt-Prozessen bietet es sich an, als Grundraum (
;F) den kano-

nischen Raum der Punkt-Prozesse auf R mit Marken in [0; 1] oder den kanonischen Raum der

34
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Punkt-Prozesse auf R2 zu betrachten.

Die im folgenden verwendeten Bezeichnungen f�ur R�aume von Radon-Ma�en hatten wir bereits

am Anfang von Abschnitt 4 eingef�uhrt.

� Der kanonische Raum der Punkt-Prozesse auf R mit Marken in [0; 1]. Wir w�ahlen als

Markenraum (E; E) = ([0; 1];B([0; 1])). Durch

�(C � L)
def
=
X
n2Z

1C (tn)1L (un) ;(7.1)

C 2 B, L 2 B([0; 1]), wird zu einer Folge

(tn; un)n2Z 2
�
(tn; un)n2Z; tn 2 �R; un 2 [0; 1]; tn � tn+1; n 2 Z;

�1 � � � � � t�2 � t�1 � t0 � 0 < t1 � t2 � � � � � +1g

ein Ma� auf (R � [0; 1];B
B([0; 1])) de�niert.

O�ensichtlich gilt f�ur den Raum
�
M 0

[0;1];M
0
[0;1]

�
der ganzzahligen Radon-Ma�e aufR�[0; 1]

M 0
[0;1] = f�;� besitzt Darstellung wie unter (7.1)g :

Die Abbildungen

Tn : M
0
[0;1] ! �R; � 7! tn und Un : M

0
[0;1] ! �R; � 7! un

sind M0
[0;1]-me�bar. Sei P ein Wahrscheinlichkeitsma� auf

�
M 0

[0;1];M
0
[0;1]

�
mit P � �t = P

f�ur alle t 2 R. Durch die Festlegungen

(
;F ;PPP )
def
=
�
M 0

[0;1];M
0
[0;1];P

�
�t

def
= St

N(�; �) = idM 0
[0;1]

(�)(� � [0; 1]) = �(� � [0; 1])

erhalten wir einen station�aren �t-kompatibelen Punkt-Proze� (N; �t;PPP ) mit assoziierter

Markenfolge (Un)n2Z.

� Der kanonische Raum der Punkt-Prozesse auf R2. Sei P ein Wahrscheinlichkeitsma� auf

(M 0
2;M

0
2) mit P � St = P, t 2 R. Durch die Festlegungen (
;F ;PPP )

def
= (M 0

2;M
0
2;P),

�t
def
= St und N(�; �) = �(�) wird (N; �t;PPP ) zu einem (in der 1. Komponente) station�aren

�t-kompatiblen Punkt-Proze�.

(Siehe auch [BB94] Kapitel 1.1, u.a. Beispiel 1.3.4).

Der folgende Satz gilt insbesondere im Fall �-Lipschitz-stetiger Funktionen �:

7.1. Satz. Es sei � 2 (0;1), �(0)(t) � x 2 R f�ur alle t 2 R,

h : [0;1)! R mit

Z
jh(s)j ds <1 und

� : R ! [0;1) mit �(s) � �+ � jsj f�ur alle s 2 R(�; � 2 [0;1)):

(7.2)

Gegeben sei ferner einer der folgenden Punkt-Prozesse:
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� �N = (Tn; Un)n2Z, so da� (Un)n2Z eine Folge unabh�angiger, identisch R[0; 1]-verteilter Zu-

fallsvariablen ist. In diesem Fall ist � durch minf�; �g zu ersetzen, diese Funktion wird

o.B.d.A. wieder mit � bezeichnet. Der Punkt-Proze� �N (� � [0; 1]) ist ein Poisson-Proze�

mit Intensit�at � unabh�angig von (Un)n2Z.

� ein Poisson-Proze� �N der Intensit�at 1 auf R2.

De�niere rekursiv die stochastischen Prozesse (�(n+1)(t))t2R und Punkt-Prozesse N (n), n 2 N0,

durch

N (n)(C) =

Z
C

�N
�
dt�

h
0;
u

�
�(n)(t)

i�

�(n+1)(t) = �

�Z
(�1;t)

h(t� s)N (n)(ds)

�(7.3)

C 2 B, t 2 R, wobei im Fall eines markierten Prozesses u = 1 und bei Vorliegen eines Poisson-

Prozesses auf R2 u = � zu w�ahlen ist. Dann gilt f�ur alle n 2 N0:

(i) (�(n)(t))t2R und N (n) sind �t-kompatibel

(ii) N (n) ist F
�N
t -adaptiert, (�(n)(t))t2R ist F

�N
t -vorhersagbar und eine F

�N
t -Intensit�at von N (n).

Beweis (Satz 7.1(i)): Zum Nachweis, der durch eine Induktion �uber n gef�uhrt wird,

seien r; t 2 R und ! 2 
. Im Fall n = 0 ist die Behauptung klar. Gelte (i) f�ur ein n 2 N. Dies

liefert unter Verwendung der Induktionsvoraussetzung beim zweiten Gleichheitszeichen

�(n+1)(�r!; t) = �

�Z
(�1;t)

h(t� s)N (n)(�r!; ds)

�

= �

�Z
(�1;t)

h(t� s)N (n)(!; r + ds)

�

= �

�Z
(�1;t+r)

h(t+ r � s)N (n)(!; ds)

�

= �(n+1)(!; t+ r)

= Sr�
(n+1)(!; t):

Hieraus erhalten wir die Behauptung auch f�ur N (n+1):

N (n+1)(�r!;C) =

Z
C

�N
�
�r!; dt�

h
0;
u

�
�(n+1)(�r!; t)

i�

=

Z
C

Sr �N
�
!; dt�

h
0;
u

�
Sr�

(n+1)(!; t)
i�

=

Z
C

�N
�
!; r + dt�

h
0;
u

�
�(n+1)(!; r + t)

i�

=

Z
r+C

�N
�
!; dt�

h
0;
u

�
�(n+1)(!; t)

i�
= N (n+1)(!; r + C)

= SrN
(n+1)(!;C):
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Um den zweiten Teil beweisen zu k�onnen ben�otigen wir das

7.2. Lemma. In der Situation von 7.1 ist
R
(�1;t)

jh(t� s)jN (n)(ds) f.s. endlich f�ur alle n 2 N.

Beweis: Der Fall � = 0 ist klar. Sei also � 2 (0;1). Auch hier bietet sich eine Induktion

(�uber n) an. Wir zeigen

�EEE

�Z
(�1;t)

jh(t� s)jN (n)(ds)

�

� �

nX
k=1

�
�

Z
[0;1)

jh(s)j ds

�k

+maxf�; x; 1g

�
�

Z
[0;1)

jh(s)j ds

�n+1

:

Nach Voraussetzung erhalten wir im Fall n = 0 die Absch�atzung

�EEE

�Z
(�1;t)

jh(t� s)jN (0)(ds)

�
� maxf�; x; 1g�

Z
(�1;t)

jh(t� s)j ds:

Zum Induktionsschritt: Die Induktionsvoraussetzung liefert die Endlichkeit der rechten Seite von

�(n+1)(s) � � + �
R
(�1;s)

jh(s� u)jN (n)(du), und es folgt nach 6.8 und 6.11 (bzw. 6.12) sowie

dem Satz von Fubini

�EEE

�Z
(�1;t)

jh(t� s)jN (n+1)(ds)

�

� �EEE

�Z
(�1;t)

jh(t� s)j1[0; u
�
�+ u

�
�
R
(�1;s)

jh(s�u)jN(n)(du)] (z)
�N(ds� dz)

�

= �EEE

�Z
(�1;t)

jh(t� s)j

�
�+ �

Z
(�1;s)

jh(s� u)jN (n)(du)

�
ds

�

= ��

Z
(�1;t)

jh(t� s)j ds

+ �

Z
(�1;t)

jh(t� s)j�EEE

�Z
(�1;s)

jh(s� u)jN (n)(du)

�
ds

� ��

Z
(�1;t)

jh(t� s)j ds

+ ��

Z
(�1;t)

jh(t� s)j
nX

k=1

�
�

Z
[0;1)

jh(u)j du

�k

ds

+ �maxf�; x; 1g

Z
(�1;t)

jh(t� s)j

�
�

Z
[0;1)

jh(u)j du

�n+1

ds

= �

n+1X
k=1

�
�

Z
[0;1)

jh(s)j ds

�k

+maxf�; x; 1g

�
�

Z
[0;1)

jh(s)j ds

�n+2

;

die Induktionsvoraussetzung wurde beim letzen Ungleichheitszeichen eingesetzt.

Wie k�onnen nun den Beweis des zweiten Teils von 7.1 angeben:

Beweis (von Satz 7.1(ii)): Auch diese Behauptung wird �uber eine Induktion nach n
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gezeigt. Im Fall n = 0 ist die Behauptung trivial. Sei also nun (ii) f�ur ein n 2 N g�ultig.Aufgrund

von 6.8 (anwendbar nach 7.2) ist
�
�(n+1)(t)

�
t2R

F
�N
t -vorhersagbar und 6.9 zeigt, da� N (n+1)

ein F
�N
t -adaptierter Punkt-Proze� ist, der nach 6.11 bzw. 6.12 die F

�N
t -Intensit�at

�
�(n+1)(t)

�
t2R

zul�a�t.

8. Intensit�aten mit beschr�anktem Speicher

Soll jeder Punkt eines Punkt-Prozesses nur eine endliche Zeit lang Ein
u� auf die eigene Zukunft

besitzen, so k�onnen wir dies durch Intensit�aten mit beschr�anktem Speicher erreichen. Es gilt

daher als erstes zu pr�azisieren, was eine Intensit�at mit beschr�anktem Speicher ist.

8.1. De�nition. Die Abbildung  : (M;M) ! (R;B) hei�t kausal , wenn aus m � m0 auf

(�1; 0) stets  (m) =  (m0) folgt, also  (m) =  (m(� \ (�1; 0))).

Ferner besitzt  einen beschr�ankten Speicher (oder ein beschr�anktes Ged�achtnis) der L�ange A 2

(0;1), wenn m � m0 auf [�A; 0) bereits  (m) =  (m0) liefert.

Ein Punkt-Proze� N besitzt eine Dynamik mit beschr�anktem Speicher der L�ange A, falls N eine

FN
t -Intensit�at (�(t))t2R der Form

�(t) =  (StN)(8.1)

zul�a�t, wobei  : (M;M)! (R;B) einen beschr�ankten Speicher der L�ange A besitzt.

Nach De�nition ist klar, da� jede Abbildung mit beschr�anktem Speicher kausal ist.

8.2. Beispiel. Sei der Tr�ager der �Ubertragungsfunktion h kompakt. Dann besitzt die Dynamik

(D1) einen beschr�ankten Speicher. ?

Begr�undung: Die Intensit�at ist von der gew�unschten Form (8.1), denn

 (StN)
def
= �

�Z
(�1;0)

h(0� s)StN(ds)

�
= �

�Z
(�1;0)

h(0� s)N(t+ ds)

�

= �

�Z
(�1;t)

h(t� s)N(ds)

�
= �(t):

Nach Voraussetzung gibt es a; b 2 [0;1), so da� h � 0 auf (a; b]C . Sei A
def
= b. Dann gilt

 (m) = �

�Z
(�1;0)

h(0� s)m(ds)

�
= �

�Z
(�1;0)\[�b;�a]

h(0� s)m(ds)

�

= �

�Z
(�1;0)\[�b;�a]

h(0� s)m0(ds)

�
=  (m0)

f�ur alle m;m0 2 M mit m � m0 auf [�A; 0). �
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Dynamiken der Form (D1) mit kompaktem Tr�ager der �Ubertragungsfunktion bilden die

Grundlage f�ur das in Kapitel V vorgestellte Programm. Als generelle Voraussetzung gelte ab

jetzt f�ur diesen Abschnitt

Voraussetzung 1. Sei  : (M;M)! (R;B) eine Abbildung mit beschr�anktem Speicher

der L�ange A 2 (0;1), welche

�
def
= sup

�2M

 (�) <1

erf�ullt.

Zun�achst weisen wir die Existenz eines station�aren Punkt-Prozesses nach (Satz 8.5). Dieser

ist eindeutig. F�ur diesen Nachweis ben�otigen wir jedoch die Stabilit�at in Variation, die im zweiten

Unterabschnitt bewiesen wird (Satz 8.7).

1) Existenz. Es sei (
;F) der kanonische Raum der markierten Punkt-Prozesse auf R

mit Marken in [0; 1]. Ferner sei PPP ein Wahrscheinlichkeitsma�, unter dem �N = (Tn; Un)n2Z
ein markierter Poisson-Proze� mit Intensit�at � und (Un)n2Z eine Folge unabh�angiger, iden-

tisch R[0; 1]-verteilter Zufallsvariablen, unabh�angig von F
�N(��[0;1])
1 , ist. F�ur alle A 2 M[0;1] gilt

PPP
��

�N(�) 2 A
	�

= PPP(A), also PPP
�N(�) = PPP .

Der Punkt-Proze� R werde wie folgt konstruiert:

Ein Punkt Tn von �N ist genau dann ein Punkt von R = (Rk)k2Z, falls Tn � Tn�1 > A, also

R(C) =
X
n2Z

1C (Tn)1fTn�Tn�1>Ag =
X
k2Z

1C (Rk) ;

C 2 B. Aus 6.4 folgt die �t-Kompatibilit�at von R sowie die Endlichkeit der durchschnittlichen

Intensit�at von R. Ziel wird im folgenden die Konstruktion eines �t-kompatiblen Punkt-Prozesses

N der Form

N(C) =

Z
C

�N

�
dt�

�
0;
 (StN)

�

��
=

Z
C�R

1h
0;
 (StN)

�

i (z) �N(dt� dz);(8.2)

C 2 B, sein. Dazu werden wir uns der Prozesse �N und R bedienen. Die Problematik der Festle-

gung von N durch Gleichung (8.2) entstammt dem Auftreten von N in  auf der rechten Seite.

Dies macht die Wahl geeigneter Startpunkte der folgenden Konstruktion n�otig.

8.3. Lemma. L�a�t sich gem�a� (8.2) ein Punkt-Proze� N konstruieren, so besitzt dieser im

zuf�alligen Intervall [Rk � A;Rk) keinen Punkt, und f�ur die Konstruktion auf [Rk;1) ist die

Kenntnis von N auf (�1; Rk) nicht erforderlich.

Beweis: F�ur alle k 2 Z gilt nach De�nition von R

0 � N([Rk � A;Rk)) =

Z
[Rk�A;Rk)

�N

�
dt�

�
0;
 (StN)

�

��

�

Z
[Rk�A;Rk)

�N(dt� [0; 1]) = �N([Rk � A;Rk)� [0; 1]) = 0:
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Hiermit ergibt sich f�ur alle t 2 [Rk;1) aufgrund des beschr�ankten Speichers der Abbildung  

 (StN) =  
�
StN(� \ [�A; 0))

�
=  

�
N((t + �) \ [t� A; t))

�
=  

�
N((t+ �) \ [t� A; t) \ [Rk;1))

�
;

denn [t� A; t) � [Rk � A;1).

Nach Lemma 6.3 gilt limk!�1Rk = �1 f.s.. Sei ! 2 
, k 2 Z und �k : 
 ! Z mit

Rk(!) = T�k(!)(!). In dieser Situation m�ussen die �k, k 2 Z, nicht me�bar sein. Wie im Beweis

zuvor erkennt man

 
�
ST�k+nN

�
=  (N ((T�k+n + �) \ [T�k+n � A; T�k+n)))

=  (N ((T�k+n + �) \ [T�k+n � A; T�k+n�1])) :

F�ur jeden Punkt T�k+n, n 2 N0, der Rk nachfolgt, k�onnen wir anhand der Prozesse (; bezeichne

den
"
leeren Punkt-Proze�\, d.h. ;(C) = 0 f�ur alle C 2 B)

N (k;0) def
= �N

�
� \ fT�kg �

�
0;
 (;)

�

��
;

N (k;n) def
=

Z
�\[T�k ;T�k+n]

�N

�
dr �

�
0;

1

�
 
�
SrN

(k;n�1)
���

; n 2 N;
(8.3)

induktiv entscheiden, ob dieser zu N geh�ort, denn nach Konstruktion gilt f�ur alle n 2 N0

N (� \ [T�k ; T�k+n]) = N (k;n);

wobei im Fall n = 0 diese Entscheidung f�ur keinen Punkt getro�en sein mu�. Die Punk-

te Rk stellen Regenerationspunkte des Prozesses N und damit Startpunkte der Konstruktion

dar. Streng genommen mu� die Konstruktion auf Intervallen [Rk; Rk+1) durchgef�uhrt werden.

Da N ([Rk+1 � A;Rk+1)) = 0 gilt, ist es jedoch f�ur die Durchf�uhrung der Konstruktion auf

[Rk+1; Rk+2) unerheblich, ob zuvor bereits Punkte erzeugt wurden. Daher kann o.B.d.A. die

Konstruktion auf [Rk;1) durchgef�uhrt werden.

8.4. Lemma. Die in (8.3) de�nierten Punkt-Prozesse sind �t-kompatibel, woraus die �t-Kompa-

tibilit�at von N folgt.

Beweis: Sei k 2 Z, ! 2 
 und C 2 B([Rk(!);1)). F�ur n = 0 gilt, da �N und R �t-

kompatibel sind,

N (k;0)(!; t+ C) = N
�
!; (t+ C) \

�
T�k(!)(!)

	�
= �N

�
!; (t+ C) \ fRk(�t!) + tg �

�
0;
 (;)

�

��

= St �N

�
!;C \ fRk(�t!)g �

�
0;
 (;)

�

��

= �N

�
�t!;C \

�
T�k(�t!)(�t!)

	
�

�
0;
 (;)

�

��
= N (k;0)(�t!;C):
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Gelte die �t-Kompatibilit�at f�ur n 2 N0. Dann folgt

N (k;n+1)(!; t+ C)

=

Z
t+C\[T�k(!)(!);T�k(!)+n+1(!)]

�N

�
!; dr�

�
0;

1

�
 
�
SrN

(k;n)(!; �)
���

=

Z
C\[Rk(�t!);T�k(�t!)+n+1(�t!)]

�N

�
!; t+ dr �

�
0;

1

�
 
�
SrStN

(k;n)(!; �)
���

=

Z
C\[T�k(�t!)(�t!);T�k(�t!)+n+1(�t!)]

St �N

�
!; dr �

�
0;

1

�
 
�
SrN

(k;n)(�t!; �)
���

= N (k;n+1)(�t!;C);

die Induktionsvoraussetzung wurde dabei beim vorletzten, die �t-Kompatibilit�at von �N und R

beim letzten und zweiten Gleichheitszeichen genutzt.

Nach Korollar A1.8 ist N ein F
�N
t -adaptierter Punkt-Proze�. Die F

N
t -Vorhersagbarkeit von

(!; t) 7! StN(!; � \ (�1; 0)) zeigt die folgende �Uberlegung: F�ur beliebige Mengen A 2 M0
1 der

Gestalt A = f� 2 M0
1;�(C) 2 Bg mit C 2 B, B ein Element der Potenzmenge von N0, gilt nach

Lemma 6.8

f(!; t) 2 
�R;StN(!; � \ (�1; 0)) 2 Ag

= f(!; t) 2 
�R;StN(!;C \ (�1; 0)) 2 Bg

=

�
(!; t) 2 
�R;

Z
(t+C)\(�1;t)

N(!; ds) 2 B

�
2 P

�
FN
t

�
:

Der Beginn von Abschnitt 4 rechtfertigt die Beschr�ankung auf Mengen A der obigen Form.

Es folgt die FN
t -Vorhersagbarkeit f�ur Prozesse (�(t))t2R der Form �(t) =  (StN).

Da N nat�urlich auch F
�N
t -adaptiert ist, gilt FN

t � F
�N
t und Satz 6.11 zeigt, da� N die F

�N
t -

Intensit�at (�(t))t2R zul�a�t. Hieraus folgt schlie�lich, da� (�(t))t2R ebenfalls eine FN
t -Intensit�at

von N ist.

Beachten wir nun noch 5.7, so erhalten wir f�ur kausale Abbildungen  mit beschr�anktem

Ged�achtnis die Existenzaussage:

8.5. Satz (Dynamiken mit beschr�anktem Speicher I). Es sei die Situation von Voraus-

setzung 1 gegeben. Dann gibt es ein (eindeutiges) station�ares Verteilungsgesetz eines Punkt-Pro-

zesses N mit Dynamik mit beschr�anktem Speicher der Form (8.1).

Die Eindeutigkeit erhalten wir im Anschlu� an den Stabilit�atsbeweis.

8.6. Bemerkung. Die Existenzbeweise in diesem Abschnitt und Abschnitt 11 werden aufgrund

der Anschaulichkeit mittels eines markierten Poisson-Prozesses �N1 durchgef�uhrt. Zu jedem Punkt

w�ahlen wir zuf�allig eine Marke im Intervall [0; 1] und entscheiden anhand der Vergangenheit des

Prozesses, ob der zugeh�orige Punkt zum konstruierten Proze� geh�oren soll (siehe Gleichung (8.3)).
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Im Fall beschr�ankter Anregungsfunktionen l�a�t die Analogie von 6.11 und 6.12 sowie die

problemlose �Ubertragung der weiteren Ergebnisse auch eine Konstruktion unter Zuhilfenahme

eines Poisson-Prozesses �N2 der Intensit�at 1 auf R2 zu; dazu haben wir die Zuordnungen

�N2(� � [0;�]) = (Tn)n2Z anstelle von �N1(� � [0; 1]) = (Tn)n2Z und(8.4) Z
C

�N2(dt� [0; �(t)]) anstelle von

Z
C

�N1

�
dt�

�
0;
�(t)

�

��
etc.(8.5)

zu tre�en.

2) Stabilit�at in Variation. Ohne Voraussetzung 1 zu versch�arfen, erhalten wir f�ur eine

Dynamik der Form (8.1) Stabilit�at in Variation. Diese Stabilit�at resultiert aus dem beschr�ank-

tem Ged�achtnis von �. Wir werden wie bereits im Existenzteil Regenerationspunkte nutzen und

anhand dieser Kopplung durchf�uhren.

8.7. Satz (Dynamiken mit beschr�anktem Speicher II). Gegeben sei die Voraussetzung 1.

Dann sind Dynamiken der Form (8.1), unabh�angig von der Anfangsbedingung, stabil in Variation.

Die Konvergenz in Variation ist exponentiell schnell.

Beweis: Sei N 0 = (T 0n)n2Z ein Punkt-Proze� , welcher die FN 0

t -Intensit�at (�0(t))t2[0;1) auf

[0;1) zul�a�t, �0(t) =  (StN
0). Da  beschr�ankt durch � ist, gilt EEE(N 0((a; b])) � (b � a)� f�ur

(a; b] � [0;1), somit ist N 0 nichtexplodierend auf [0;1). Nach Anwendung von 6.14 erhalten

wir durch

�N((a; b]� L) =
X
n2N

1(a;b] (T
0
n)1L

�
�0+ (T

0
n)U

0
n

�
+

Z
(a;b]

Z
Ln(0;�0

+
(t)]

N̂ 0(dt� dz)

=
X
n2N

Z
(a;b]

Z
1L
�
�0+(t)z

�
�fU 0ng(dz)�fT 0ng(dt) +

Z
(a;b]

Z
Ln(0;�0

+
(t)]

N̂ 0(dt� dz);

�0+(t)
def
= 1(0;1) (t)�

0(t), einen homogenen �
�
FN 0

t ;F
�N
t

�
-Poisson-Proze� der Intensit�at 1 auf R2.

Dabei werden (U 0
n)n2Z und N̂ 0 gem�a� 6.14 gew�ahlt. F�ur C 2 B+ giltZ

C

�N (dt� [0; �0(t)])

=
X
n2N

Z
C

Z
1[0;�0(t)]

�
�0+(t)z

�
�fU 0ng(dz)�fT 0ng(dt) +

Z
C

Z
[0;�0(t)]n(0;�0

+
(t)]

N̂ 0(dt� dz)

=
X
n2N

Z
C

Z
1[0;�0(t)] (�

0(t)z) �fU 0ng(dz)�fT 0ng(dt)

=
X
n2N

1C (T
0
n) = N 0(C):

Wir konstruieren aus �N wie im Existenzbeweis einen station�aren Punkt-Proze� N mit FN
t -

Intensit�at (�(t))t2R der Form (8.1), beachte 8.6.
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Setze ( �N(� � [0;�]) = (Tn)n2Z)

T
def
= 1fT1�Ag

 
T1 +

X
n�2

(Tn � Tn�1)

nY
k=2

1fTk�Tk�1�Ag

!

= 1fT1�Ag supfTn;n 2 N; Tk � Tk�1 � A f�ur alle 2 � k � ng:

Falls T1 > A ist gilt T = 0, ansonsten ist T der erste Punkt Tk > 0 mit Tk+1 � Tk > A. Da N

und N 0 auf einem solchen Punkt Tk verschieden sein k�onnen, ist T keine Kopplungszeit. Analog

zur Begr�undung von 4.6 zeigt man eine schw�achere
"
Kopplungsungleichung\

sup
C2M0

���PPP�StN+ 2 C
�
� PPP

�
StN

0+ 2 C
���� � PPP(T � t) :(8.6)

F�ur alle � > 0 gilt

PPP(T � t) e�t =

Z
fT�tg

e�t dPPP �

Z
fT�tg

e�T dPPP �

Z
e�T dPPP = EEEe�T ;

somit PPP(T � t) �
�
EEEe�T

�
e��t. Aus der De�nition von T leitet man

e�T = e�01fT1>Ag + e�T1fT1�Ag

= 1fT1>Ag + 1fT1�Age
�T1
X
n�2

1fTn�Tn�1>Ag

n�1Y
k=2

e�(Tk�Tk�1)1fTk�Tk�1�Ag

ab, was zu

EEEe�T = PPP(T1 > A)

+
X
n�2

EEE
�
1fT1�Age

�T1
�
EEE
�
1fTn�Tn�1>Ag

� n�1Y
k=2

EEE
�
e�(Tk�Tk�1)1fTk�Tk�1�Ag

�

=

Z 1

A

�e��t dt+
X
n�2

Z A

0

�e(���)t dt

Z 1

A

�e��t dt

n�1Y
k=2

Z A

0

�e(���)t dt

= e��A

 
1 +

X
n�2

�
�

�� �

�
e(���)A � 1

��n�1
!

f�uhrt, denn die (Tn)n2Z bilden einen Poisson-Proze�. Aus dieser Gleichheit k�onnen wir ablesen,

da� der Erwartungswert EEEe�T genau dann endlich ist, wenn �
���

�
e(���)A � 1

�
< 1. Die Abbil-

dung � 7! �
���

�
e(���)A � 1

�
� 0 ist stetig auf dem Intervall [0;�), und da �

0��

�
e(0��)A � 1

�
=

1� e��A < 1 ist, l�a�t sich z.B. ein hinreichend kleines � > 0 �nden, so da� EEEe�T endlich ist.

Zusammen mit (8.6) zeigt dies f�ur ein geeignetes � > 0

sup
C2M0

���PPP�StN+ 2 C
�
�PPP

�
StN

0+ 2 C
���� � �EEEe�T � e��t

und daher limt!1 supC2M0

��PPP(StN+ 2 C)� PPP
�
StN

0+ 2 C
��� = 0. Da N station�ar ist, folgt somit

limt!1PPP
StN

0+

= PPPN+

in Variation, d.h. die Dynamik ist stabil in Variation, und die Konver-

genzrate ist exponentiell schnell, unabh�angig von der Anfangsbedingung.
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Die in 8.5 angesprochene Eindeutigkeit der station�aren L�osung erhalten wir wie in Lemma

4.7, wir f�uhren den Beweis daher nicht erneut durch.

8.8. Bemerkung (Kopplungszeiten im Beweis von 8.5). Eine Alternative zu T im Stabi-

lit�atsbeweis w�are der erste Punkt Tn > 0 mit Tn�Tn�1 > A, also R1, gewesen. Diese Kopplungs-

zeit stellt jedoch eine nicht so scharfe Schranke f�ur die Konvergenz dar.

Begr�undung: Da T < R1 f.s. folgt aus EEEe
�R1 <1 stets EEEe�T <1. Ferner zeigt

EEEe�R1 � EEEe�T1 =

Z 1

0

�e(���)t dt =
�

�� �

�
lim
t!1

e(���)t � 1
�
;

� 6= �, da� f�ur die Endlichkeit von EEEe�R1 die Bedingung � < � notwendig ist. F�ur EEEe�T < 1

reicht die im Beweis gegebene Bedingung, � > � ist ebenfalls zugelassen. �

9. Intensit�aten mit nichtfallenden

Anregungsfunktionen

Im nun folgenden Satz wird die Existenz station�arer Verteilungen f�ur einen Punkt-Proze� N mit

Dynamik (D1) gezeigt, ohne die in Satz 8.5 ben�otigte Bedingung eines endlichen Speichers zu

fordern. Wie brauchen hier nur die Monotonie der Anregungsfunktion und eine Beschr�ankung

des Wachstums der �Ubertragungsfunktion, k�onnen in diesem Zusammenhang aber keine Aussage

�uber Stabilit�at tre�en.

9.1. Satz (Wachsende Anregungsfunktionen). Gegeben sei eine nichtfallende, linksseitig

stetige und nichtnegative Funktion �, die

�(x) � �+ �x; x 2 R;(9.1)

f�ur ein � > 0 und � � 0 erf�ullt. Zus�atzlich bezeichne h : [0;1)! [0;1) eine Funktion mit

�

Z
[0;1)

h(t) dt < 1:(9.2)

Dann gibt es einen station�aren Punkt-Proze� N mit Dynamik (D1).

Versch�arfen wir die Anforderungen (9.1) an � dahingehend, da� � sogar �-Lipschitz-stetig

ist, so k�onnen wir Anfangsbedingungen angeben, in denen Stabilit�at gilt, siehe Abschnitt 10 und

11.

9.2. Bemerkung. Gelte in 9.1 � = 0. Dann ist die Aussage auch f�ur quasi-integrierbare Funk-

tionen h richtig.
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Beweis (von 9.1): Sei (
;F) der kanonische Raum der Punkt-Prozesse auf R2, versehen

mit einem Wahrscheinlichkeitsma� PPP , unter dem �N(!; �) = ! Poisson-verteilt mit Intensit�at 1

ist. Gelte PPP � St = PPP und �t = St, also ist �N �t-kompatibel.

Es wird nun induktiv ein Punkt-Proze� mit den gew�unschten Eigenschaften konstruiert. Sei

�(0)(t) � 0 f�ur alle t 2 R. De�niere nun rekursiv die Prozesse (�(n+1)(t))t2R und N (n), n 2 N0,

durch

N (n)(C)
def
=

Z
C

�N
�
ds�

�
0; �(n)(s)

��
;

�(n+1)(t)
def
= �

�Z
(�1;t)

h(t� s)N (n)(ds)

�
;

(9.3)

C 2 B, t 2 R.

Behauptung 1. F�ur alle t 2 R und nichtleeren Mengen C 2 B sind �(n)(t) und N (n)(C)

monoton wachsend in n.

F�ur die leere Menge C = ; ist die Aussage von Behauptung 1 klar.

Begr�undung (von Behauptung 1): Mittels einer Induktion nach n zeigen wir f�ur alle

n 2 N

�(n)(t) � �(n�1)(t) und N (n)(C) � N (n�1)(C):

Im Fall n = 1 ist nichts zu zeigen. Gelten also diese Ungleichungen f�ur ein n � 2. Nach Voraus-

setzung ist h � 0 und � nichtfallend, so da� f�ur t 2 R

�(n+1)(t) = �

�Z
(�1;t)

h(t� s)N (n)(ds)

�

� �

�Z
(�1;t)

h(t� s)N (n�1)(ds)

�
= �(n)(t);

und damit f�ur C 2 B

N (n+1)(C) =

Z
C

�N
�
dt�

�
0; �(n+1)(t)

��
�

Z
C

�N
�
dt�

�
0; �(n)(t)

��
= N (n)(C)

folgt. �

Behauptung 1 zeigt, da� die Prozesse

�(!; t)
def
= lim

n!1
�(n)(!; t) und N(!;C)

def
= lim

n!1
N (n)(!;C)

f�ur alle ! 2 
, t 2 R und C 2 B de�niert sind. Die Grenzprozesse sind nach 7.1(i) �t-kompatibel

(und k�onnen den Wert 1 annehmen). Au�erdem ist (�(t))t2R als Grenzwert F
�N
t -vorhersagbarer

Prozesse wieder F
�N
t -vorhersagbar (siehe 7.1(ii) und [Bau92] 9.7 Korollar 2).

Behauptung 2. Der Proze� (�(t))t2R ist PPP 
 �n-f.�u. endlich.

Begr�undung: Wegen EEE
�R T

�T
�(t) dt

�
=
R T
�T
EEE(�(�t�; 0)) dt = 2TEEE(�(0)) reicht es, die
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Endlichkeit von EEE�(0) nachzurechnen. Aus Voraussetzung (9.1) ergibt sich gemeinsam mit 7.1(ii)

und dem Satz von Fubini

EEE�(n+1)(0) = EEE

�
�

�Z
(�1;0)

h(�s)N (n)(ds)

��
� �+EEE

�
�

Z
(�1;0)

h(�s)N (n)(ds)

�

= � +EEE

�
�

Z
(�1;0)

h(�s)�(n)(s) ds

�
= �+ �

Z
(�1;0)

h(�s)EEE
�
�(n)(s)

�
ds

= � + �

Z
(0;1)

h(s) dsEEE
�
�(n)(0)

�

f�ur n 2 N. Wir k�onnen hieraus induktiv EEE
�
�(n+1)(0)

�
� �

Pn

k=0

�
�
R
[0;1)

jh(s)j ds
�k

folgern,

m�ussen dabei �(0)(t) � 0 beachten, und nach Voraussetzung (9.2) gilt im Grenz�ubergang n!1

EEE�(0) �
�

1� �
R
[0;1)

h(s) ds
<1

nach dem Satz von der monotonen Konvergenz. �

Behauptung 3. (�(t))t2R ist eine F
�N
t -Intensit�at von N .

Begr�undung: Nach dem Satz von der monotonen Konvergenz gilt

N(C) =

Z
C

lim
n!1

1[0;�(n)(t)] (z)
�N(dt� dz)

und au�erdem 1[0;�(t)) (z) � limn!1 1[0;�(n)(t)] (z) � 1[0;�(t)] (z). Wie im Satz 6.12 zeigen wir, da�

der Proze�
�R

C
1[0;�(t)) (z) �N(dt� dz)

�
C2B

die F
�N
t -Intensit�at (�(t))t2R zul�a�t, woraus mit Satz

6.12 folgt, da� N die F
�N
t -Intensit�at (�(t))t2R besitzt. �

Behauptung 4. Der stochastische Proze� (�(t))t2R ist von der gew�unschten Form (D1).

Begr�undung: Da N (n) " N und � monoton wachsend ist, folgt f�ur alle n 2 N

0 = �(0)(t) � �(n)(t) = �

�Z
(�1;t)

h(t� s)N (n�1)(ds)

�
� �

�Z
(�1;t)

h(t� s)N(ds)

�

und �(n)(t) " �(t) zeigt

�(t) � �(n+1)(t) = �

�Z
(�1;t)

h(t� s)N (n)(ds)

�
:

Diese Ungleichungen f�uhren zu

�(t) � �

�Z
(�1;t)

h(t� s)N(ds)

�

und, aufgrund der linksseitigen Stetigkeit von �, zu

�(t) � lim
n!1

�

�Z
(�1;t)

h(t� s)N (n)(ds)

�
= �

�Z
(�1;t)

h(t� s)N(ds)

�
:
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Dies zeigt, da� N die gew�unschte Dynamik besitzt. �

Aus 7.1(i) folgt die �t-Kompatibilit�at von N als Grenzwert �t-kompatibler Prozesse. Somit

ist N nach 5.7 station�ar, was den Beweis abschlie�t.

10. Lipschitz-stetige Anregungsfunktionen {

unbeschr�ankte Dynamiken

Wir versch�arfen die Bedingungen aus Satz 9.1 und stellen in diesem Abschnitt die folgenden

Bedingungen an die �Ubertragungsfunktion h und die Anregungsfunktion �:

Voraussetzung 2. Gegeben seien eine �-Lipschitz-stetige Funktion � : R ! [0;1),

� > 0, und h : [0;1)! R eine me�bare Funktion, die der Bedingung

�

Z
[0;1)

jh(t)j dt < 1(10.1)

gen�ugt.

Zun�achst wenden wir uns der Existenz eines station�aren Punkt-Prozesses N mit Intensit�at

gem�a� (D1) zu, die obigen Anforderungen gen�ugt, siehe Satz 10.5. Um in Satz 10.10 und 10.12

Stabilit�at zu zeigen, werden wir weitere Forderungen ausstellen m�ussen.

Durch den �Ubergang zu �
�
1
�
�
�
und �h k�onnen wir o.B.d.A. � = 1 w�ahlen.

1) Existenz. Wie im Beweis zu Satz 9.1 sei (
;F) der kanonische Raum der Punkt-Prozesse

auf R2, PPP ein Wahrscheinlichkeitsma� auf (
;F) mit PPP �St = PPP derart, da� �N(!; �) = ! Poisson-

verteilt mit Intensit�at 1 ist. Durch die Zuordnung �t = St ist �N �t-kompatibel. Sei �(0)(t) � 0 f�ur

alle t 2 R und f�ur t 2 R, C 2 B setze

N (n)(C)
def
=

Z
C

�N
�
dt�

�
0; �(n)(t)

��
;

�(n+1)(t)
def
= �

�Z
(�1;t)

h(t� s)N (n)(ds)

�
;

n 2 N0. F�ur diese Prozesse gilt 7.1(i) und (ii).

10.1. Lemma. F�ur alle t 2 R konvergiert
�
�(n)(t)

�
n2N

f�ur n!1 f.s. und in L1(
;F ;PPP ) gegen

ein �(t).

Beweis: Die Lipschitz-Stetigkeit von � zeigt mit den S�atzen 7.1(ii) und 6.15

EEE
����(n+1)(0)� �(n)(0)

��� � EEE

�����
Z
(�1;0)

h(�s)N (n)(ds)�

Z
(�1;0)

h(�s)N (n�1)(ds)

����
�

� EEE

�Z
(�1;0)

jh(�s)j
��N (n) �N (n�1)

�� (ds)�
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= EEE

�Z
(�1;0)

jh(�s)j
���(n)(s)� �(n�1)(s)

�� ds� :
Diese Ungleichung l�a�t sich unter Ber�ucksichtigung des Satzes von Fubini und der �t-Kompati-

bilit�at der Prozesse
�
�(n)(t)

�
t2R

(siehe 7.1(i)) aufgrund der Wahl von PPP fortf�uhren:

EEE
����(n+1)(0)� �(n)(0)

��� � Z
(�1;0)

jh(�s)jEEE
����(n)(0)� �(n�1)(0)

��� ds
=

Z
[0;1)

jh(s)j dsEEE
����(n)(0)� �(n�1)(0)

��� :
Die induktive Anwendung f�uhrt zu

X
n�0

EEE
����(n+1)(0)� �(n)(0)

��� �X
n�0

�Z
[0;1)

jh(s)j ds

�n

EEE
����(1)(0)� �(0)(0)

���

=
X
n�0

�Z
[0;1)

jh(s)j ds

�n

EEE

������
�Z

(�1;0)

h(�s)N (0)(ds)

�
� 0

����
�

= �(0)
X
n�0

�Z
[0;1)

jh(s)j ds

�n

<1;

(10.2)

unter Beachtung von Voraussetzung (10.1). Bez�uglich der (Halb-)Norm k�k1 = EEE j�j auf dem

Raum L1(
;F ;PPP ) gilt somit

�(n)(0)
n!1
���! �(0);(10.3)

denn


�(k)(0)� �(m)(0)




1
�
P

n�k



�(n+1)(0)� �(n)(0)



1

k!1
���! 0 (o.B.d.A. m � k). Die Mar-

kov-Ungleichung sichert

PPP

 ���(n+1)(0)� �(n)(0)
�� > �Z 1

0

jh(s)j ds

�n
2

!

�
1�R1

0
jh(s)j ds

�n
2

EEE
����(n+1)(0)� �(n)(0)

���

�
1�R1

0
jh(s)j ds

�n
2

�Z
[0;1)

jh(s)j ds

�n

EEE
����(1)(0)� �(0)(0)

���

= �(0)

�Z
[0;1)

jh(s)j ds

�n
2

:

Dies zeigt die Endlichkeit von
P

n�0PPP
����(n+1)(0)� �(n)(0)

�� > �R1
0
jh(s)j ds

�n
2

�
, woraus gem�a�

[Nev65] Prop. II.4.2 (Seite 45) die fast sichere G�ultigkeit von (10.3) folgt.

Durch die Festlegung �(t)
def
= � (�t�; 0) erhalten wir aus der �t-Kompatibilit�at der betrach-

teten Prozesse die Behauptung: es gilt

�(t)
def
= � (�t�; 0) = lim

n!1
�(n) (�t�; 0) = lim

n!1
�(n)(t)



ii. Existenz und Stabilit�at univariater Hawkes-Prozesse 49

bez�uglich k�k1 und

PPP
�
lim
n!1

�(n)(t) = �(t)
�
= PPP

�
lim
n!1

�(n)(�t�; 0) = �(�t�; 0)
�
= PPP

�
lim
n!1

�(n)(0) = �(0)
�
= 1:

Die Abbildung ! 7! �(!; 0) ist F -me�bar und (�t)t2R ein me�barer Flu� auf (
;F), d.h.

(!; t) 7! �t! ist F 
B�F -me�bar. Daher ist (!; t) 7! � (�t!; 0) = �(!; t) F 
B�B-me�bar.

Da limn!1 �(n)(t) = �(t) f.s. gilt, ist �(t) F
�N
t -me�bar (siehe 2.5), und nach [DVJ88] (Seite 649

unten) k�onnen wir (�(t))t2R als F
�N
t -progressiv und schlie�lich als F

�N
t -vorhersagbar annehmen

(vergleiche 2.7).

Durch
�R

C
�N(ds� [0; �(s)])

�
C2B

wird ein �t-kompatibler Proze� (denn f�ur die auftretenden

Prozesse gilt dies, Nachweis analog zum Beweis von 7.1(i)) mit F
�N
t -Intensit�at (�(t))t2R gegeben

(siehe 6.12). Dieser ist nach 5.7 station�ar und wird im folgenden mit N bezeichnet.

10.2. Lemma. Auf allen beschr�ankten Borel-Mengen C wird N (n) f�ur wachsendes n f.s. konstant

(d.h. die Lage der Punkte bleibt f.s. gleich) und limn!1N (n)(C) stimmt f.s. mit N(C) �uberein.

Beweis: Sei C 2 B beschr�ankt. Da
��N (n) �N (n�1)

�� (C) 2 N0 ist, zeigt sich unter Ber�uck-

sichtigung von Satz 6.15, dem Satz von Fubini und der �t-Kompatibilit�at von
�
�(n)(t)

�
t2RX

n�0

PPP

�Z
C

��N (n+1) �N (n)
�� (ds) 6= 0

�
�
X
n�0

EEE

�Z
C

��N (n+1) �N (n)
�� (ds)�

=
X
n�0

EEE

�Z
C

���(n+1)(s)� �(n)(s)
�� ds� =

X
n�0

Z
C

EEE
����(n+1)(0)� �(n)(0)

��� ds
= �n(C)

X
n�0

EEE
����(n+1)(0)� �(n)(0)

��� <1;

vergleiche (10.2), so da� sich aus dem Borel-Cantelli-Lemma

PPP

�
lim sup
n!1

�Z
C

��N (n+1) �N (n)
�� (ds) 6= 0

��
= 0

ergibt. Dies bedeutet, da� N (n) und N (n+1) auf C f�ur wachsendes n schlie�lich f.s. stets dieselben

Punkte besitzen.

Die zweifache Anwendung des Lemmas von Fatou zeigt

EEE

�Z
C

��� lim
n!1

N (n)(ds)�N(ds)
���� = EEE

�Z
C

��� lim
n!1

N (n)(ds)� �N(ds� [0; �(s)])
����

� lim
n!1

EEE

�Z
C

�� �N �ds� �0; �(n)(s)��� �N(ds� [0; �(s)])
���

Aus 6.15 folgt gemeinsammit der �t-Kompatibilit�at der beteiligten Prozesse sowie der �t-Invarianz

des zugrundliegenden Wahrscheinlichkeitsma�es

EEE

�Z
C

��� lim
n!1

N (n)(ds)�N(ds)
���� � lim

n!1
EEE

�Z
C

���(n)(s)� �(s)
�� ds�

= lim
n!1

�n(C) EEE
����(n)(0)� �(0)

��� = 0;
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siehe 10.1.

10.3. Lemma. Der Proze� (�(t))t2R ist von der Form (D1).

Beweis: Aufgrund der �t-Kompatibilit�at reicht es, an der Stelle
"
0\ die Form (D1) nach-

zurechnen:

EEE

������(0)� �

�Z
(�1;0)

h(�s)N(ds)

�����
�

� EEE
����(0)� �(n+1)(0)

���
+EEE

������
�Z

(�1;0)

h(�s)N (n)(ds)

�
� �

�Z
(�1;0)

h(�s)N(ds)

�����
�

� EEE
����(0)� �(n+1)(0)

���+EEE

�Z
(�1;0)

jh(�s)j
��N (n) �N

�� (ds)�

= EEE
����(0)� �(n+1)(0)

���+EEE

�Z
(�1;0)

jh(�s)j
���(n)(s)� �(s)

�� ds�

= EEE
����(0)� �(n+1)(0)

���+ Z
(�1;0)

jh(�s)j dsEEE
����(n)(0)� �(0)

���
n!1
���! 0;

denn � ist Lipschitz-stetig,
�
�(n)(t)

�
t2R

und (�(t))t2R sind �t-kompatibel, und es gilt 6.15. Die

Konvergenz folgt aus 10.1 und Voraussetzung (10.1).

10.4. Lemma. Durch N wird ein Punkt-Proze� mit endlicher mittlerer Intensit�at � gegeben,

�
def
= EEE(N((0; 1])).

Beweis: Die Nutzung der Lipschitz-Stetigkeit und die Verwendung einer analogen Ab-

sch�atzung wie im Nachweis von 7.2 beim letzten Ungleichheitszeichen lassen uns zu

EEEN((0; 1]) = EEE

�Z 1

0

�(s) ds

�
= EEE(�(0)) � EEE

����(0)� �(n+1)(0)
���+EEE

�
�(n+1)(0)

�
� EEE

����(0)� �(n+1)(0)
���+ �(0) +EEE

�Z
(�1;t)

jh(t� s)j N (n)(ds)

�

� EEE
����(0)� �(n+1)(0)

���+ �(0) + �(0)

nX
k=1

�Z
[0;1)

jh(s)j ds

�k

+ �(0)

�Z
[0;1)

jh(s)j ds

�n+1

gelangen. Im Grenz�ubergang n!1 zeigt dies

EEEN((0; 1]) �
�(0)

1�
R
[0;1)

jh(s)j ds
<1(10.4)

aufgrund von Voraussetzung (10.1).

Insgesamt haben wir damit den folgenden Satz gezeigt:
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10.5. Satz (Unbeschr�ankte Lipschitz-Dynamik I). Gegeben sei Voraussetzung 2. Dann gibt

es einen eindeutigen station�aren Punkt-Proze� N mit Intensit�at (�(t))t2R gem�a� (D1) und end-

licher mittlerer Intensit�at � = EEE(N((0; 1])).

Die bisher noch nicht gezeigte Eindeutigkeit wird in Lemma 10.11 nachgeliefert. Nachdem

wir die Existenz eines station�aren Punkt-Prozesses zeigen konnten, wenden wir uns nun der Frage

zu, unter welchen Anfangsbedingungen Stabilit�at in Verteilung bzw. Variation nachweisbar ist.

2) Stabilit�at in Verteilung. Zun�achst schr�anken wir die Klasse der betrachteten Punkt-

Prozesse ein. Mit N0 wird die Menge aller Punkt-Prozesse N bezeichnet, f�ur die die Abbildung

t 7! EEE
�
�(t) j FN

0

�
= EEE

�
�

�Z
(�1;t)

h(t� s)N(ds)

� ����FN
0

�
(10.5)

f.s. lokal integrierbar auf [0;1) ist (siehe dazu auch Unterabschnitt 4)).

Geeignete Anfangsbedingungen f�ur die Stabilit�at in Variation werden in Voraussetzung 3

gegeben:

Voraussetzung 3. Gegeben sei die Voraussetzung 2. Ferner de�niere f�ur einen Punkt-

Proze� N

"a(t)
def
=

Z t_0

(t�a)_0

Z
(�1;0]

jh(s� u)j N(du) ds;(10.6)

a 2 [0;1), t 2 R. Durch

(AB i) supt�0 "a(t) <1 f.s. und limt!1 "a(t) = 0 f.s. f�ur alle a > 0

(AB ii) supt�0EEE"a(t) <1 und limt!1EEE"a(t) = 0 f�ur alle a > 0

werden zwei Anfangsbedingungen (AB i) und (AB ii) f�ur diesen Punkt-Proze� gegeben.

Gen�ugt ein Punkt-Proze� N mit FN
t -Intensit�at (�(t))t2R der Form (D1) Anfangsbedingung

(AB i), so k�onnen wir die mittlere Zahl der Punkte von N im Intervall (t�a; t] � [0;1), falls wir

unter der Vergangenheit bis zum Zeitpunkt t � a bedingen, wie folgt aufgrund der �-Lipschitz-

Stetigkeit absch�atzen:

EEE
�
N((t� a; t]) j FN

t�a

�
= EEE

�Z t

t�a

�(s) ds

����FN
t�a

�

� a�(0) +

Z t

t�a

Z
(�1;0]

jh(s� u)j N(du) ds+EEE

�Z t

t�a

Z
(0;s)

jh(s� u)j N(du) ds

����FN
t�a

�
:

Beachten wir, da� �(0) die
"
Grundanregung\ des Punkt-Prozesses ohne einen einzigen Punkt

ist, so k�onnen wir diese Darstellung zum Anla� nehmen, um Anfangsbedingung (AB i) wie folgt

zu interpretieren:

Da limt!1 "a(t) = 0 f.s. gilt, nimmt der Ein
u� der Punkte von N� f�ur die Bestimmung von N in
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(t� a; t] bei wachsendem t ab. Gewichtet mit der �Ubertragungsfunktion strebt die R�uckmeldung

der Punkte der negativen Achse (von N) gegen 0, Anfangsbedingung (AB ii) besitzt eine analoge

Interpretation.

Nun zum Nachweis der Stabilit�at in Verteilung, der in Satz 10.10 m�undet.

Sei N 0 = (T 0n)n2Z ein transienter Punkt-Proze� mit FN 0

t -Intensit�at (�0(t))t2R der Form

(D1) auf [0;1), N 0 2 N0. Ferner gen�uge N
0 einer der Anfangsbedingungen (AB i) oder (AB ii).

F�ur alle (a; b] � [0;1) gilt nach (10.5)

EEE
�
N 0((a; b]) j FN 0

0

�
= EEE

�Z b

a

�0(t) dt

����FN 0

0

�
=

Z b

a

EEE
�
�0(t) j FN 0

0

�
dt <1 f.s.;

d.h. N 0((a; b]) <1 f.s., also ist N 0 auf [0;1) nichtexplodierend. Mittels 6.14 konstruiere auf R2

einen �
�
FN 0

t ;F
�N
t

�
-Poisson-Proze� der Intensit�at 1, (U 0

n)n2Z und N̂ 0 wie in der Konstruktion von

6.14 ben�otigt:

�N((a; b]� L)

=
X
n2N

1(a;b] (T
0
n)1L

�
�0+ (T

0
n)U

0
n

�
+

Z
(a;b]

Z
Ln(0;�0

+
(t)]

N̂ 0(dt� dz)

=
X
n2N

ZZ
1(a;b] (t)1L

�
�0+(t)z

�
�fU 0ng(dz) �fT 0ng(dt) +

Z
(a;b]

Z
Ln(0;�0

+
(t)]

N̂ 0(dt� dz);

(a; b] � R, L 2 B und �0+(t) = 1(0;1) (t)�
0(t). Aus dieser Darstellung erkennt man f�ur beliebige

Borel-Mengen C � (0;1)Z
C

�N (dt� [0; �0(t)])

=
X
n2N

ZZ
1C (t)1[0;�0(t)]

�
�0+(t)z

�
�fU 0ng(dz) �fT 0ng(dt) +

Z
C

Z
[0;�0(t)]n(0;�0

+
(t)]

N̂ 0(dt� dz)

=
X
n2N

1C (T
0
n) = N 0(C);

denn PPPU 0n = R[0; 1] und N̂ 0(��f0g) � Poi(0) (N̂ 0(��f0g) besitzt also keinen Punkt auf R). Kon-

struiere aus �N wie zuvor in Unterabschnitt 1) einen station�aren Punkt-Proze� N mit endlicher

durchschnittlicher Intensit�at und FN
t -Dynamik (�(t))t2R der Form (D1), dabei ist FN

t � F
�N
t .

De�niere die Funktion f : 
�R ! [0;1) durch

f(t) = f(�; t)
def
=

(
EEE
�
j�(t)� �0(t)j j FN 0

0

�
(�) f �ur t � 0

0 f �ur t < 0
:

Da EEE
�
�0(t) j FN 0

0

�
f.s. lokal integrierbar ist, folgt dies auch f�ur f :

Z b

a

f(t) dt =

Z b_0

a_0

EEE
�
j�(t)� �0(t)j j FN 0

0

�
dt

�

Z b_0

a_0

EEE
�
�(t) j FN 0

0

�
dt+

Z b_0

a_0

EEE
�
�0(t) j FN 0

0

�
dt <1 f.s.,

(10.7)
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denn aus der Endlichkeit der durchschnittlichen Intensit�at von N l�a�t sich Endlichkeit von

EEE
�R b_0

a_0
�(t) dt

�
= EEE

�R
(a_0;b_0]

N(dt)
�
= EEE(N((a _ 0; b _ 0])) ableiten, gem�a� [Als98] Gleichung

(51.9) folgt dann die f.s. Endlichkeit von EEE
�R b_0

a_0
�(t) dt

���FN 0

0

�
.

10.6. Lemma. F�ur f gilt die Ungleichung

f(t) � �

Z
(�1;0)

jh(t� s)j ds+

Z
(�1;0)

jh(t� s)j N 0(ds) +

Z t

0

jh(t� s)j f(s) ds f.s.(10.8)

f�ur alle t > 0.

Beweis: Da � Lipschitz-stetig, N 0 auf (�1; 0) FN 0

0 -me�bar und N auf (�1; 0) F
�N
0 -

me�bar ist, wobei nach Konstruktion F
�N
0 = F N̂ 0

0 und FN 0

0 unabh�angig sind, gilt f�ur t > 0

f(t) � EEE

�����
Z
(�1;0)

h(t� s)N(ds)�

Z
(�1;0)

h(t� s)N 0(ds)

+

Z
[0;t)

h(t� s)N(ds)�

Z
[0;t)

h(t� s)N 0(ds)

����
����FN 0

0

�

� EEE

�Z
(�1;0)

jh(t� s)j N(ds)

����FN 0

0

�

+EEE

�Z
(�1;0)

jh(t� s)j N 0(ds)

����FN 0

0

�

+EEE

�Z
[0;t)

jh(t� s)j jN �N 0j (ds)

����FN 0

0

�

= EEE

�Z
(�1;0)

jh(t� s)j N(ds)

�
+

Z
(�1;0)

jh(t� s)j N 0(ds)

+EEE

�Z
[0;t)

jh(t� s)j j�(s)� �0(s)j ds

����FN 0

0

�
f.s.,

wende bei der letzten Gleichheit 6.15 an, denn wir k�onnen anstelle von FN 0

0 auch �
�
FN 0

0 ;F
�N
0

�
einsetzen. Mittels 5.8 l�a�t sich dies fortsetzen zu

f(t) � �

Z
(�1;0)

jh(t� s)j ds+

Z
(�1;0)

jh(t� s)j N 0(ds)

+

Z t

0

jh(t� s)jEEE
�
j�(s)� �0(s)j j FN 0

0

�
ds

= �

Z
(�1;0)

jh(t� s)j ds+

Z
(�1;0)

jh(t� s)j N 0(ds) +

Z t

0

jh(t� s)j f(s) ds f.s..

F�ur festes a > 0 setzen wir Fa(t)
def
=
R t
t�a

f(s) ds =
R t_0
(t�a)_0

f(s) ds (denn f(t) = 0 f�ur t < 0)

und au�erdem

�"a(t)
def
=

(
"0a(t) + �a

R1
(t�a)_0

jh(s)j ds f�ur t � 0

0 f�ur t < 0
;

wobei "0a(t) durch Gleichung (10.6) mit N 0 anstelle von N de�niert wird.
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10.7. Lemma. Die zuf�allige Funktion Fa(t) gen�ugt f�ur alle n 2 N0 der Absch�atzung

Fa(t) �
n�1X
i=0

�"a � jhj
�i
(t) + Fa � jhj

�n
(t) f.s.,(10.9)

t > 0.

Beweis: Aus Lemma 10.6 und dem Satz von Fubini folgt

Fa(t) � �

Z t_0

(t�a)_0

Z
(�1;0]

jh((t� a) _ 0� s)j ds du+ "0a(t)

+

Z t_0

(t�a)_0

Z u

0

jh(s)j f(u� s) ds du

� �a

Z 1

(t�a)_0

jh(s)j ds+ "0a(t) +

Z t_0

(t�a)_0

Z t

0

jh(s)j f(u� s) ds du

= �"a(t) +

Z t

0

Z t_0

(t�a)_0

f(u� s) du jh(s)j ds

= �"a(t) +

Z t

0

Z (t�s)_0

(t�s�a)_0

f(u) du jh(s)j ds

= �"a(t) +

Z t

0

Fa(t� s) jh(s)j ds = �"a(t) +

Z
R

Fa(t� s) jh(s)j ds f.s..

(10.10)

Die Behauptung l�a�t sich nun durch eine Induktion nach n herleiten: Im Fall n = 0 ist die

Behauptung klar, falls n = 1 ist, zeigt (10.10)

Fa(t) � �"a(t) +

Z
Fa(t� s) jh(s)j ds = �"a(t) + Fa � jhj (t) f.s.,

also das Gew�unschte. Gilt nun (10.9) f�ur ein n 2 N, so folgt aus der Induktionsvoraussetzung

und dem Fall N = 1

Fa(t) � �"a(t) +

 
n�1X
i=0

�"a � jhj
�i + Fa � jhj

�n

!
� jhj (t)

� �"a(t) +

 
nX
i=1

�"a � jhj
�i
(t) + Fa � jhj

�n+1
(t)

!

=

nX
i=0

�"a(t) � jhj
�i (t) + Fa � jhj

�n+1 (t) f.s..

Sei nun I � R ein endliches Intervall, etwa I � [x; y] � R. Die fast sichere lokale Integrier-

barkeit von f liefert f�ur beliebiges t 2 I

Fa(t) =

Z t

t�a

f(s) ds �

Z y

x�a

f(s) ds <1 f.s.,
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also ist Fa auf jedem endlichen Intervall f.s. beschr�ankt. Au�erdem ist die Norm k�k1 von h auf

L1(R;B; �n) streng kleiner 1. Daher folgt f�ur t 2 R aus [Als98] Gleichung (20.20)

Fa � jhj
�n
(t) =

Z t

0

Fa(t� s) jhj�n (s) ds �Mt

Z t

0

jhj�n (s) ds �Mt khk
n

1 f.s.

f�ur eine endliche Zufallsgr�o�e Mt : 
 ! R, was limn!1 Fa � jhj
�n
(t) = 0 f.s. zeigt. Gemeinsam

mit (10.9) ergibt sich f�ur Fa(t) (nach dem Satz von Fubini) die Absch�atzung

Fa(t) �
1X
i=0

�"a � jhj
�i
(t) =

1X
i=0

Z
�"a(t� s) jhj�i (s) ds

=

Z
�"a(t� s)

1X
i=0

jhj�i (s) ds =

Z
�"a(t� s)H(s) ds f.s.

(10.11)

mit der Festlegung H(s)
def
=
P1

i=0 jhj
�i (s). Nach [Als96] S. 235 Kapitel 27 ist H die Erneuerungs-

dichte eines defekten Erneuerungsma�es (assoziiert mit h), f�ur dieZ
H(t) dt =

Z X
n�0

jhj�n (t) dt =
X
n�0

Z
jhj�n (t) dt =

X
n�0

kjhj�nk1

�
X
n�0

khkn1 =
1

1� khk1
=

1

1�
R
jh(s)j ds

<1

gilt, beachte (10.1).

Von nun an bedarf es der Trennung des weiteren Vorgehens in Abh�angigkeit von der vor-

liegenden Anfangsbedingung.

� Erf�ulle N 0 zun�achst Anfangsbedingung (AB i) aus Voraussetzung 3.

10.8. Lemma. Auf jedem endlichen Intervall stimmt StN schlie�lich mit StN
0 �uberein, d.h.

lim
t!1

PPP(StN � StN
0 auf (s� a; s]) = 1(10.12)

f�ur alle s; a 2 R.

Beweis: Da (AB i) f�ur N 0 gilt, ist "0a(t) f.s. beschr�ankt. Damit mu� dann auch �"a(t)

auf (0;1) f.s. wegen
R1
t�a

jh(s)j ds �
R1
0
jh(s)j ds < 1 beschr�ankt sein. Nach (AB i) gilt

limt!1 "0a(t) = 0 f.s. und (10.1) sichert limt!1

R1
t�a

jh(s)j ds = 0, also insgesamt limt!1 �"a(t) = 0

f.s.. Der Satz von der majorisierten Konvergenz zeigt somit

lim
t!1

Fa(t) = 0 f.s..

Einmal mehr nutzen wir Satz 6.15:

Fa(t) = EEE

�Z t_0

(t�a)_0

j�(u)� �0(u)j du

����FN 0

0

�

= EEE

�
EEE

�Z t_0

(t�a)_0

j�(u)� �0(u)j du

����FN 0

0 ;FN
0

� ����FN 0

0

�



56 10. Lipschitz-stetige Anregungsfunktionen { unbeschr�ankte Dynamiken

= EEE

�
EEE

�Z t_0

(t�a)_0

jN �N 0j (du)

����FN 0

0 ;FN
0

� ����FN 0

0

�

= EEE

�Z t_0

(t�a)_0

jN �N 0j (du)

����FN 0

0

�
;

was sich nach De�nition des Erwartungswertes und wegen jN �N 0j (C) 2 N0 fortf�uhren l�a�t zu

Fa(t) �
X
k>0

PPP

�Z t_0

(t�a)_0

jN �N 0j (du) = k

����FN 0

0

�

= 1�PPP

�Z t_0

(t�a)_0

jN �N 0j (du) = 0

����FN 0

0

�

= 1�PPP
�
N � N 0 auf ((t� a) _ 0; t _ 0] j FN 0

0

�
:

Daher k�onnen wir f�ur beliebiges t 2 R mit dem Lemma von Fatou

1 � lim inf
t!1

EEE
�
PPP
�
N � N 0 auf (t� a; t] j FN 0

0

��
� EEE

�
lim inf
t!1

PPP
�
N � N 0 auf (t� a; t] j FN 0

0

��
� EEE

�
1� lim inf

t!1
Fa(t)

�
= EEE(1) = 1

folgern.

10.9. Lemma. F�ur jede fest vorgegebene Wahl beschr�ankter Borel-Mengen A1; : : : ; An, n 2 N,

konvergiert ((StN
0(A1); : : : ; StN

0(An)))n2N in Verteilung gegen (N(A1); : : : ; N(An)).

Beweis: W�ahle also beschr�ankte Mengen A1; : : : ; An 2 B (n 2 N). Dann gibt es a; s 2 R

mit A1 [ � � � [ An � (s� a; s].

Die Stationarit�at von N liefert

sup
a1;:::;an2N

jPPP(StN
0(Ai) = ai; i = 1; : : : ; n)�PPP(N(Ai) = ai; i = 1; : : : ; n)j

= sup
a1;:::;an2N

jPPP(StN
0(Ai) = ai; StN

0(Ai) = StN(Ai); i = 1; : : : ; n)

�PPP(StN(Ai) = ai; StN(Ai) = StN
0(Ai); i = 1; : : : ; n)

+PPP (StN
0(Ai) = ai; i = 1; : : : ; n;

StN
0(Ai) 6= StN(Ai) f�ur ein i 2 f1; : : : ; ng)

�PPP (StN(Ai) = ai; i = 1; : : : ; n;

StN(Ai) 6= StN
0(Ai) f�ur ein i 2 f1; : : : ; ng)j

� sup
a1;:::;an2N

jPPP (StN
0(Ai) = ai; i = 1; : : : ; n;

StN
0(Ai) 6= StN(Ai) f�ur ein i 2 f1; : : : ; ng)

�PPP (StN(Ai) = ai; i = 1; : : : ; n;

StN(Ai) 6= StN
0(Ai) f�ur ein i 2 f1; : : : ; ng)j

� PPP(StN(Ai) 6= StN
0(Ai) f�ur ein i 2 f1; : : : ; ng) :

(10.13)
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Aufgrund von Gleichung (10.12) ist

PPP(StN(Ai) 6= StN
0(Ai) f�ur ein i 2 f1; : : : ; ng) � 1� lim

t!1
PPP(StN � StN

0 auf (s� a; s]) = 0;

was die gew�unschte Verteilungskonvergenz zeigt (z.B. mittels [Als98] Satz 43.1).

Aufgrund von 10.9 l�a�t sich aus [DVJ88] Theorem 9.1.VI. die schwache Konvergenz von

StN
0+ gegen N+ f�ur t ! 1 folgern, d.h. im Fall von Anfangsbedingung (AB i) haben wir

Stabilit�at in Verteilung erhalten.

� Gehen wir jetzt von der G�ultigkeit von (AB ii) f�ur N 0 aus und steigen bei (10.11) erneut

in den Beweis ein. Erwartungswertbildung und der Satz von Fubini zeigen

EEE(Fa(t)) �

Z
EEE(�"a(t� s))H(s) ds � sup

t�0

EEE(�"a(t))

Z
H(s) ds <1;

denn aus der f.s. Beschr�anktheit vonEEE("0a(t)) auf [0;1) ("0a(t) � 0 f�ur t < 0) folgt die Beschr�ankt-

heit von EEE(�"a(t)). Der Satz von der majorisierten Konvergenz zeigt wie zuvor gemeinsam mit

limt!1EEE("
0
a(t)) = 0

lim
t!1

EEE(Fa(t)) = 0:

Gleiches Vorgehen wie im Beweis von 10.8 f�uhrt zu (10.12), so da� auch bei Vorliegen von

Anfangsbedingung (AB ii) die schwache Konvergenz von StN
0 gegen N f�ur t ! 1 aus Lemma

10.9 folgt.

Damit haben wir gezeigt:

10.10. Satz (Unbeschr�ankte Lipschitz-Dynamik II). In der Situation von Voraussetzung

2 und bei Beschr�ankung auf die Menge N0 von Punkt-Prozessen ist die Dynamik (D1) stabil in

Verteilung bez�uglich jeder der folgenden beiden Anfangsbedingungen:

(AB i) supt�0 "a(t) <1 f.s. und limt!1 "a(t) = 0 f.s. f�ur alle a > 0

(AB ii) supt�0EEE"a(t) <1 und limt!1EEE"a(t) = 0 f�ur alle a > 0

wobei "a(t) zu einem Punkt-Proze� N 2 N0 durch (10.6) de�niert wird.

Die in Satz 10.5 noch fehlende Eindeutigkeit folgt nun durch einfaches Nachrechnen einer

der obigen Anfangsbedingungen.

10.11. Lemma. Der nach 10.5 existierende, station�are Punkt-Proze� N mit endlicher mittlerer

Intensit�at � und Intensit�at der Form (D1) ist eindeutig.

Beweis: Es gen�ugt also, Voraussetzung 10.10 (AB ii) nachzurechnen. Dazu sei t � 0 und
~N ein weiterer station�arer Punkt-Proze� mit F

~N
t -Intensit�at

�
~�(t)

�
t2R

, die von der Form (D1) ist

und endlicher mittlerer Intensit�at ~� sowie ~"a(t) gem�a� Voraussetzung 3. Der Satz von Fubini und
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5.8 liefert

EEE(~"a(t)) =

Z t_0

(t�a)_0

EEE

�Z
(�1;0]

jh(s� u)j ~N(du)

�
ds

=

Z t_0

(t�a)_0

~�

Z
(�1;0]

jh(s� u)j du ds = ~�

Z t_0

(t�a)_0

Z 1

s

jh(u)j du ds

� ~�a

Z 1

(t�a)_0

jh(u)j du;

was zum einen den ersten Teil von Bedingung (AB ii) zeigt:

sup
t�0

EEE(~"a(t)) � ~�a

Z 1

0

jh(u)j du <1;

und au�erdem noch zu limt!1EEE(~"a(t)) = 0 f�uhrt.

3) Stabilit�at in Variation. Eine Versch�arfung von Anfangsbedingung (AB i) aus Voraus-

setzung 3 stellt Anfangsbedingung (AB iii) des anschlie�enden Satzes dar. Fordern wir zus�atzlich

noch die G�ultigkeit von (10.14), so erhalten wir die st�arkere Form der Stabilit�at: Stabilit�at in

Variation.

10.12. Satz (Unbeschr�ankte Lipschitz-Dynamik III). Gegeben sei Voraussetzung 2. Dann

ist innerhalb der Menge N0 die Dynamik (D1) stabil in Variation unter der Anfangsbedingung:

(AB iii)
R
[0;1)

jh(t)jN([�t; 0)) dt =
R
[0;1)

R 0

�1
jh(t� s)j N(ds) dt <1 f.s.,

falls zus�atzlich Z
[0;1)

t jh(t)j dt <1(10.14)

gilt.

Ebenso wie im Fall der Stabilit�at in Verteilung sichert die gegebene Anfangsbedingung (AB

iii), da� der mit h gewichtete Ein
u� der Punkte auf der negativen reellen Achse verschwindet.

Dies l�a�t sich bei linearer Anregungsfunktion �(x) = cx (c 2 (0;1)) und nichtnegativer

Anregungsfunktion h wie folgt deutlich machen: Gegeben sei die Vergangenheit bis zum Zeitpunkt

0, dann wird durch jeden Punkt Tn von N� auf [0;1) ein Poisson-Proze� mit Intensit�ats-Ma�

�n(A)
def
= c

R
A
h (t� Tn) dt erzeugt, siehe [Kin93] Existenz-Theorem in Abschnitt 2.5 (Seite 23).

Somit ist die Zahl der durch N� auf [0;1) erzeugten Punkte, falls wir unter der Vergangenheit

bis zum Zeitpunkt 0 bedingen, gleich

X
n2Z
n�0

�n([0;1)) =
X
n2Z
n�0

c

Z
[0;1)

h (t� Tn) dt = c

Z
[0;1)

Z
(�1;0]

h(t� s)N(ds) dt;(10.15)
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nach Anfangsbedingung (AB iii) also f.s. endlich. Betrachten wir nun das Intervall (t;1) anstelle

von [0;1), so verschwindet die Nachwirkung von N� f�ur t!1.

Im Lipschitz-stetigen Fall ist bei beliebigen Funktionen h der Ein
u� von N� ohne die

"
Grundintensit�at\ �(0) des leeren Prozesses auf (�1; 0] kleiner oder gleich Gleichung (10.15)

nach Multiplikation mit einer geeigneten Konstanten. Also verschwindet auch hier die Nachwir-

kung.

Beweis (von Satz 10.12): Sei N 0 = (T 0n)n2Z ein transienter Punkt-Proze�, der den

Bedingungen von 10.12 gen�ugt und auf [0;1) eine FN 0

t -Intensit�at (�0(t))t2R der Form (D1)

besitzt. Wir k�onnen Unterabschnitt 2) bis einschlie�lich 10.6 �ubernehmen.

Aus dem Satz von Fubini folgt

Z T

0

Z t

0

jh(t� s)j f(s) ds dt =

Z T

0

Z T

0

jh(t� s)j dt f(s) ds =

Z T

0

Z T

s

jh(t� s)j dt f(s) ds

�

Z
[0;1)

jh(t)j dt

Z T

0

f(t) dt <1 f.s..

Dies liefert f�ur alle T > 0 durch Integration von (10.8) �uber t von 0 bis T nach einer einfachen

Umformung

0 �

Z T

0

f(t) dt�

Z T

0

f(t) dt

Z 1

0

jh(s)j ds

�

Z T

0

Z
(�1;0)

jh(t� s)j N 0(ds) dt+ �

Z T

0

Z
(�1;0)

jh(t� s)j ds dt

�

Z
[0;1)

Z
(�1;0)

jh(t� s)j N 0(ds) dt+ �

Z
[0;1)

Z
(�1;0)

jh(t� s)j ds dt

=

Z
[0;1)

jh(t)j

Z
[�t;0)

N 0(ds) dt+ �

Z
[0;1)

Z 1

t

jh(s)j ds dt

=

Z
[0;1)

jh(t)jN 0([�t; 0)) dt+ �

Z
[0;1)

t jh(t)j dt f.s..

Hieraus folgt die fast sichere Endlichkeit von
R1
0
f(t) dt, denn f�ur alle T > 0 ist

Z T

0

f(t) dt �
1

1�
R1
0
jh(s)j ds

�Z
[0;1)

jh(t)jN 0([�t; 0)) dt+ �

Z
[0;1)

t jh(t)j dt

�

<1 f.s.

(10.16)

nach (10.14) und (AB iii). Also ist
R T
0
f(t) dt f.s. durch eine von T unabh�angige Schranke nach

oben begrenzt. Da f � 0 gilt, ist
R T
0
f(t) dt au�erdem monoton wachsend in T , und nach De�ni-

tion folgtZ 1

0

f(t) dt =

Z 1

0

EEE
�
j�(t)� �0(t)j j FN 0

0

�
dt = EEE

�Z 1

0

j�(t)� �0(t)j dt

����FN 0

0

�

= EEE

�Z 1

0

jN �N 0j (dt)

����FN 0

0

�
;
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beachte 6.15. Es ist also
R1
0
f(t) dt die mittlere Anzahl von Punkten von jN �N 0j auf [0;1) bei

Kenntnis der Vergangenheit bis zum Zeitpunkt 0, also bedingt unter FN 0

0 . Nach (10.16) ist diese

Anzahl f.s. endlich, was jN �N 0j ([0;1)) <1 f.s. liefert.

Der Proze� der verschiedenen Punkte von N und N 0, jN �N 0j, besitzt auf [0;1) also f.s.

nur endlich viele Punkte. Nach [BB94] Kapitel 2 4.1 koppeln N und N 0 somit f.s. in endlicher

Zeit. �Ahnliches Vorgehen wie bei (10.13) f�uhrt zu

sup
C2M0

���PPP�StN 0+ 2 C
�
�PPP

�
N+ 2 C

����
= sup

C2M0

���PPP�StN 0+ 2 C
�
�PPP

�
StN

+ 2 C
����

= sup
C2M0

���PPP�StN 0+ 2 C; StN
0+ 6= StN

+
�
� PPP

�
StN

+ 2 C; StN
+ 6= StN

0+
����

� PPP
�
StN

0+ 6= StN
+
�

= PPP
�
N 0
�
(t+ �) \ [t;1))

�
6= N

�
(t+ �) \ [t;1))

��
;

was limt!1 supC2M0

��PPP�StN 0+ 2 C
�
�PPP(N+ 2 C)

�� = 0 zeigt, d.h. StN
0+ konvergiert in Variati-

on gegen N+ (t!1).

10.13. Bemerkung. Gelte �(0) = 0. Dann ist der Punkt-Proze� ohne einen einzigen Punkt

N = ; ein station�arer Punkt-Proze� mit Intensit�at der Form (D1). Da dieser eindeutig ist, stellt

er die einzige L�osung dar.

Ein beliebiger transienter Punkt-Proze� mit Anfangsbedingung (AB i), (AB ii) oder (AB iii)

strebt dann notwendigerweise gegen den leeren Proze�, d.h. er stirbt aus.

Bemerkung 10.13 zeigt, da� kein linearer station�arer Hawkes-Proze� ungleich des leeren Pro-

zesses mit stochastischer Intensit�at
R
(1;t)

h(t�s)N(ds), t 2 R, bei G�ultigkeit von
R
[0;1)

h(t) dt <

1 (h : [0;1)! [0;1)) existiert.

4) Zur Einschr�ankung auf die Menge N0.

10.14. Bemerkung. Gegeben sei die Situation von 10.10 oder 10.12. In diesem Fall kann die

vorgenommene Beschr�ankung auf die Klasse der Punkt-Prozesse N , f�ur die (10.5) f.s. lokal inte-

grierbar auf [0;1) ist, fallengelassen werden.

Erf�ullt ein Punkt-Proze� N die Bedingung (AB i) (bzw. (AB ii) oder (AB iii)), folgt daraus bereits

die f.s. lokale Integrierbarkeit von (10.5) auf [0;1).

Begr�undung: Es sei N 0 ein transienter Punkt-Proze� mit Dynamik (�0(t))t2R der Form

(D1) auf [0;1). Erf�ulle "0a(t) Anfangsbedingung (AB i), wobei "0a(t) gem�a� (10.6) unter Verwen-

dung von N 0 de�niert werde.

Zu zeigen ist, da� die Abbildung

t 7! EEE
�
�0(t) j FN 0

0

�
= EEE

�
�

�Z
(�1;t)

h(t� s)N 0(ds)

� ����FN 0

0

�
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f.s. lokal integrierbar auf [0;1) ist.

Wir betrachten einen Punkt-Proze� N 0 auf R. Durch �Ubergang von PPP zu PPP(N 0 2 �) erhal-

ten wir ein Wahrscheinlichkeitsma� auf (M 0;M0), d.h. wir k�onnen o.B.d.A. (
;F) = (M 0;M0)

w�ahlen und bezeichnen das zugeh�orige Wahrscheinlichkeitsma� wieder mit PPP . Nach [DVJ88] An-

hang A2.6., Theorem A2.6.III.(i), ist (M 0;M0) ein polnischer Raum (d.h. es gibt eine Metrik, so

da� M 0 mit dieser Metrik ein separabler vollst�andiger metrischer Raum ist). Dies erlaubt uns die

folgende Festlegung:

Sei PPP � jFN
0

0
def
= PPP id jFN

0

0 die regul�ar bedingte Verteilung der Identit�at id auf (
;F) gegeben FN 0

0 .

De�niere f�ur T > 0

�
FN

0

0

T (d!0 � dt)
def
=

1

T
PPP � jFN

0

0 (d!0) �nj(0;T ](dt);

so ist �
FN

0

0

T (�)(!) f�ur alle ! 2 
 ein Wahrscheinlichkeitsma� auf (
�R;FN 0

0 
B). Der zugeh�orige

Erwartungswert wird mit EEE
FN

0

0

T (�)(!) bezeichnet.

Es sei �0(0)(t)
def
= �

�R
(�1;0]

h(t� s)N 0(ds)
�
und ferner

N 0(n)(ftg)
def
=

(
N 0(ftg) f�ur t � 0R

ftg
�N
�
ds�

h
0; �0(n)(s)

i�
f�ur t > 0

�0
(n+1)

(t)
def
= �

�Z
(�1;t)

h(t� s)N 0(n)(ds)

�

f�ur n 2 N. Dabei ist �N der nach 6.14 aus N 0+ konstruierbare homogene �
�
FN 0

t ;F
�N
t

�
-Poisson-

Proze� der Intensit�at 1 auf R2. Ferner ist
�
�0(n)(t)

�
t2R

eine �
�
FN 0

t ;F
�N
t

�
-Intensit�at von N 0(n),

siehe 6.12.

Wir ben�otigen einige Absch�atzungen:

EEE
FN

0

0

T

�����0(n+1) � �0
(n)
���� � �

T

Z T

0

EEE

�Z
(�1;t)

jh(t� s)j
���N 0(n) �N 0(n�1)

��� (ds)
����FN 0

0

�
dt(a)

=
�

T
EEE

�Z T

0

Z T�s

0

jh(t)j dt
���N 0(n) �N 0(n�1)

��� (ds)
����FN 0

0

�

� �

Z
[0;1)

jh(t)j dtEEE
FN

0

0

T

�����0(n) � �0
(n�1)

���� ;
denn � ist �-Lipschitz-stetig,

���N 0(n) �N 0(n�1)
��� ((�1; 0]) = 0 und

�����0(n)(t)� �0(n�1)(t)
����

t2R
ist

eine �
�
FN 0

t ;F
�N
t

�
-Intensit�at von

���N 0(n) �N 0(n�1)
��� auf (0;1) (siehe 6.15). Beachte weiterhin, da�

FN 0

0 und F
�N
0 nach Konstruktion unabh�angig sind. Induktiv kann dies zu

EEE
FN

0

0

T

�����0(n+1)
� �0

(n)
���� � �� Z

[0;1)

jh(t)j dt

�n

EEE
FN

0

0

T

�����0(1) � �0
(0)
����

fortgesetzt werden (n 2 N).

(b) Da � �-Lipschitz-stetig ist, folgt �0(0)(t) � �(0) + �
R
(�1;0]

jh(t� s)j N 0(ds). Dies wiederum
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f�uhrt nach (AB i) zu

EEE
FN

0

0

T

�
�0

(0)
�
=

1

T

Z T

0

�0
(0)
(t) dt <1 f.s.,

denn �0(0)(t) ist FN 0

0 -me�bar.

EEE
FN

0

0

T

�����0(1) � �0
(0)
����(c)

�
�

T

Z T

0

EEE

�����
Z
(�1;t)

h(t� s)N 0(0)(ds)�

Z
(�1;0]

h(t� s)N 0(ds)

����
����FN 0

0

�
dt

�
�

T

Z T

0

EEE

�Z
(0;t)

jh(t� s)j �N
�
ds�

h
0; �0

(0)
(s)
i� ����FN 0

0

�
dt

� �

Z
[0;1)

jh(t)j dtEEE
FN

0

0

T

�
�0

(0)
�

<1 f.s.,

dabei erfolgt die Ausnutzung der �-Lipschitz-Stetigkeit von � beim ersten Ungleichheitszeichen.

Das dritte Ungleichheitszeichen erh�alt man analog zu (a), die f.s. Endlichkeit stammt aus (b).

(d) Aus EEE
FN

0

0

T

�
�0(n+1)

�
� EEE

FN
0

0

T

�����0(n+1) � �0(n)
���� + EEE

FN
0

0

T

�
�0(n)

�
folgt einmal mehr induktiv

unter Verwendung von (a), (b) und (c)

EEE
FN

0

0

T

�
�0

(n+1)
�
�

nX
k=0

�
�

Z
[0;1)

jh(t)j dt

�k

EEE
FN

0

0

T

�����0(1) � �0
(0)
���� +EEE

FN
0

0

T

�
�0

(0)
�

�
n+1X
k=0

�
�

Z
[0;1)

jh(t)j dt

�k
1

T

Z T

0

�0
(0)
(t) dt

<1 f.s.

f�ur alle n 2 �N.

Aus (a) und (c) ergibt sich f�ur alle k;m 2 N mit k � m:

EEE
FN

0

0

T

�����0(k) � �0
(m)
���� �X

j�m

�
�

Z
[0;1)

jh(s)j ds

�j

EEE
FN

0

0

T

�����0(1) � �0
(0)
���� <1 f.s.:

Somit folgt f�ur ein geeignetes
�
�0(1)(t)

�
t2R

�0
(n) n!1
���! �0

(1)
(10.17)

bez�uglich k�k
FN

0

0

T = EEE
FN

0

0

T (j�j) auf L1

�

�R;FN 0

0 
B; �
FN

0

0

T

�
[f.s.].

Au�erdem liefert die Markov-Ungleichung zusammen mit (a) noch

�
FN

0

0

T

 ����0(n+1)
� �0

(n)
��� > �� Z

[0;1)

jh(s)j ds

�n
2

!

�

�
�

Z
[0;1)

jh(s)j ds

��n
2

EEE
FN

0

0

T

�����0(n+1)
� �0

(n)
����

�

�
�

Z
[0;1)

jh(s)j ds

�n
2

EEE
FN

0

0

T

�����0(1) � �0
(0)
���� :
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Nach Voraussetzung und (c) zeigt dies

X
n�0

�
FN

0

0

T

 ����0(n+1)
� �0

(n)
��� > �� Z

[0;1)

jh(s)j ds

�n
2

!
<1 f.s.:

Nach [Nev65] Prop. II.4.2 (Seite 45) gilt also �0(n)
n!1
���! �0(1) �

FN
0

0

T -f.s. [PPP -f.s.].

F�ur jede beschr�ankte Menge C 2 B+, C � (0; T ], gilt gem�a� (a) und (c)

X
n�0

PPP � jFN
0

0

�Z
C

���N 0(n+1)
�N 0(n)

��� (ds) 6= 0

�
�
X
n�0

EEE � jFN
0

0

����N 0(n+1)
�N 0(n)

��� (C)�

=
X
n�0

EEE � jFN
0

0

�Z
C

����0(n+1)
(t)� �0

(n)
(t)
��� dt� � T

X
n�0

EEE
FN

0

0

T

�����0(n+1) � �0
(n)
����

<1 f.s..

Nach dem Borel-Cantelli-Lemma folgt

PPP � jFN
0

0

�
lim sup
n!1

n���N 0(n+1)
�N 0(n)

��� (C) 6= 0
o�

= 0 f.s.,

d.h. N 0(n+1) und N 0(n) stimmen PPP � jFN
0

0 -f.s. auf C f�ur hinreichend gro�e n �uberein [PPP -f.s.]. Wir

de�nieren also N 0(1) def
= limn!1N

0(n). F�ur alle C 2 B, C � (0; T ], erhalten wir nach zweifacher

Anwendung des Lemmas von Fatou und unter Beachtung von (a)

EEE � jFN
0

0

�Z
C

���N 0(1)
(ds)� �N

�
ds�

h
0; �0

(1)
(s)
i����� � lim

n!1
EEE � jFN

0

0

�Z
C

����0(n)(s)� �0
(1)

(s)
��� ds�

� T lim
n!1

EEE
FN

0

0

T

�����0(n) � �0
(1)
���� = 0 PPP -f.s..

Dies zeigt N 0(1)(�) =
R
�
�N
�
ds�

h
0; �0(1)(s)

i�
PPP � jFN

0

0 -f.s. [PPP -f.s.].

Wir rechnen nun nach, da�
�
�0(1)(t)

�
t2R

von der Form (D1) ist:

EEE
FN

0

0

T

������0(1)
� �

�Z
(�1;�)

h(� � s)N 0(1)
(ds)

�����
�

� EEE
FN

0

0

T

�����0(1) � �0
(n+1)

����+ �

T
EEE � jFN

0

0

�Z T

0

Z
(�1;t)

jh(t� s)j
���N 0(n) �N 0(1)

��� (ds) dt�

� EEE
FN

0

0

T

�����0(1)
� �0

(n+1)
����+ �

T
EEE � jFN

0

0

�Z T

0

Z
(0;t)

jh(t� s)j
���N 0(n) �N 0(1)

��� (ds) dt�

� EEE
FN

0

0

T

�����0(1) � �0
(n+1)

����+ �

T

Z
[0;1)

jh(t)j dtEEE � jFN
0

0

�Z T

0

����0(n)(s)� �0
(1)

(s)
��� ds�

� EEE
FN

0

0

T

�����0(1)
� �0

(n+1)
����+ �

Z
[0;1)

jh(t)j dtEEE
FN

0

0

T

�����0(n) � �0
(1)
����

n!1
���! 0

nach (10.17) [PPP -f.s.], d.h.
�
�0(1)(t)

�
t2R

=
�
�
�R

(�1;t)
h(t� s)N 0(1)(ds)

��
t2R

�
FN

0

0

T -f.s. [PPP -f.s.].
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�N wurde weiter vorne wie in 6.14 aus N 0+ konstruiert, d.h. (�0+(t) = 1(0;1) (t)�
0(t))

�N ((a; b]� L) =
X
n2N

1(a;b] (Tn)1L
�
�0+(Tn)Un

�
+

Z
(a;b]

Z
Ln(0;�0

+
(t)]

N̂(dt� dz)

mit

� (Un)n2Z u.i.v. Zufallsgr�o�en, unabh�angig von FN 0

1 , Un � R[0; 1] (n 2 Z)

� N̂ homogener Poisson-Proze� der Intensit�at 1 auf R2, unabh�angig von �
�
FN 0

1 ;FU
1

�
.

Durch einsetzen erhalten wir N 0(C) =
R
C

�N (dt� [0; �0(t)]) f�ur alle C 2 B+.

Gezeigt wird nun, da� N 0+ = N 0(1)+. Dazu de�nieren wir ~N
def
=
���N 0 �N 0(1)

���. Bezeichne�
�
����N 0 �N 0(1)

��� ; t��
t2R

die F
~N
t -vorhersagbare Version der �

�
FN 0

t ;FN 0(1)

t

�
-Intensit�at von ~N

(die Existenz sichert [Br�e81] II.4., Theorem T14, die verwendete Darstellung stammt aus Satz

2.4). F�ur diese gilt wegen der �-Lipschitz-Stetigkeit von �

�
����N 0 �N 0(1)

��� ; t� � �

Z
(�1;t)

jh(t� s)j
��N 0 �N 01

�� (ds)
= �

Z
(0;t)

jh(t� s)j
��N 0 �N 01

�� (ds);
denn nach Konstruktion gilt N 0� = N 0(1)�. Aufgrund der weiter oben genannten Unabh�angig-

keiten sowie der Darstellung von N 0 und N 0(1) auf (0;1) mittels �N k�onnen wir zu jedem ! 2 


ein ~! 2 
 mit 0 =
��N 0 � N 0(1)

���(!; �) = ��N 0 � N 0(1)
���(~!; �) = ��N 0 � N 0(1)

���(~!; � \ (�1; t])

�nden. Somit gilt

�

����N 0 �N 0(1)
���� (!; �); t� = �

����N 0 �N 0(1)
��� (~!; � \ (�1; t]); t

�

� �

Z
(0;t)

jh(t� s)j
���N 0 �N 0(1)

��� (~!; ds) = 0;

also �
�
~N�; t

�
� 0 f.s..

Nach 5.5 liefert dies f�ur alle t > 0

PPP
�
~N ((0; t]) = 0

���F ~N
0

�
= exp

�
�

Z t

0

�
�
~N�; s

�
ds

�
� 1;

so da� sich ~N = ; f.s. und damit N 0 = N 0(1) f.s. auf [0;1) ergibt. Es gilt also (beachte erneut

die Unabh�angigkeit von FN 0

0 und F
�N
0 )

Z T

0

EEE
�
�0(t) j FN 0

0

�
dt = EEE

�
N 0((0; T ]) j FN 0

0

�
= EEE

�
N 0(1)

((0; T ])
���FN 0

0

�

=

Z T

0

EEE
�
�0

(1)
(t)
���FN 0

0

�
dt f.s..
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Schlie�lich f�uhrt (d) nun zu

Z T

0

EEE
�
�0

(1)
(t)
���FN 0

0

�
dt �

1X
k=0

�
�

Z
[0;1)

jh(t)j dt

�k Z T

0

�0
(0)
(t) dt <1 f.s.,

was insgesamt
R T
0
EEE
�
�0(t) j FN 0

0

�
dt <1 f.s. und damit die Behauptung zeigt. �

In der vorstehenden Begr�undung waren wir von der G�ultigkeit von Anfangsbedingung (AB

i) ausgegangen, wir haben jedoch nur den ersten Teil dieser Bedingung ben�otigt (siehe (b)). Die

noch fehlenden Betrachtungen f�uhren wir auf diesen Fall zur�uck und nutzen dabei die zuvor

verwendeten Bezeichnungen:

� Gelte zun�achst Anfangsbedingung (AB ii). In diesem Fall liefert

EEE

�Z T

0

Z
(�1;0]

jh(t� s)j N 0(ds) dt

�
<1

f�ur alle T > 0 die f.s. Endlichkeit von
R T
0

R
(�1;0]

jh(t� s)j N 0(ds) dt. Dies ist f�ur die obige Be-

gr�undung ausreichend.

� Im Fall von Anfangsbedingung (AB iii) gilt
R
[0;1)

jh(t)jN([�t; 0)) dt < 1 f.s.. Somit

erhalten wir

"0a(t) =

Z t_0

(t�a)_0

Z
(�1;0]

jh(s� u)j N 0(du) ds �

Z
[0;1)

Z
(�1;0]

jh(s� u)j N 0(du) ds

=

Z
[0;1)

Z
[s;1)

jh(t)j N 0(s� dt) ds =

Z
[0;1)

jh(x)jN 0([�x; 0]) dx

�

Z
[0;1)

jh(x)jN 0([�x; 0)) dx+

Z
[0;1)

jh(x)j dx <1 f.s.

f�ur alle a; t 2 [0;1) Hieraus l�a�t sich sogar die G�ultigkeit beider Bedingungen von (AB i)

ablesen.

11. Lipschitz-stetige Anregungsfunktionen {

beschr�ankte Dynamiken

Fordern wir im Fall �-Lipschitz-stetiger Anregungsfunktionen � zus�atzlich die Beschr�anktheit

dieser Funktion, so k�onnen wir die Beschr�ankung des Wertes von �
R
jh(t)j dt aus Abschnitt 10

fallen lassen. Es gelte f�ur den aktuellen Abschnitt die

Voraussetzung 4. Gegeben sei eine me�bare Funktion �, die �-Lipschitz-stetig f�ur ein

� > 0 und beschr�ankt durch ein � > 0 ist. Bezeichne h eine me�bare Funktion mitZ
[0;1)

jh(t)j dt <1 und

Z
[0;1)

t jh(t)j dt <1:(11.1)
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Ziel dieses Abschnitts wird erneut eine Existenz- und Stabilit�atsaussage unter dieser Vor-

aussetzung sein, die in Satz 11.6 und 11.8 zu �nden sind.

1) Existenz. Wie im Beweis von 8.5 sei (
;F ;PPP ) der kanonische Raum der Punkt-Prozesse

auf R mit [0; 1]-wertigen Marken. Dabei sei St = �t, t 2 R, und PPP ein Wahrscheinlichkeitsma�

mit PPP � St = PPP , unter dem �N = (Tn; Un)n2Z,
�N(!; �) = !, ein markierter Poisson-Proze� der

Intensit�at � mit Markenfolge (Un)n2Z unabh�angiger, identisch R[0; 1]-verteilter Zufallsgr�o�en,

unabh�angig von �N(� � [0; 1]) ist.

De�niere die nach 7.1 F
�N
t -adaptierten Punkt-Prozesse N (n) und F

�N
t -vorhersagbaren Pro-

zesse
�
�(n)(t)

�
t2R

, n 2 N0, �ahnlich wie im Beweis von 9.1 durch

N (n)(C)
def
=

Z
C

�N

�
ds�

�
0;
�(n)(s)

�

��
; C 2 B;

�(n+1)(t)
def
= �

�Z
(�1;t)

h(t� s)N (n)(ds)

�
; t 2 R;

wobei �(0)(t) � 0 f�ur alle t 2 R gelte. Nach 7.1 ist (�(n)(t))t2R eine F
�N
t -Intensit�at von N

(n) f�ur

alle n 2 N0. Zun�achst zeigen wir die Existenz des Grenzprozesses N
def
= limn!1N (n). Dazu sei

~N(ftg)
def
= lim sup

n!1

N (n)(ftg)� lim inf
n!1

N (n)(ftg); t 2 R:(11.2)

Der Punkt-Proze� N existiert also, wenn der Proze� ~N f.s. mit dem Punkt-Proze� ;, der keinen

Punkt auf der reellen Achse besitzt, �ubereinstimmt. Setze

~�(t)
def
= lim sup

n!1

�(n)(t)� lim inf
n!1

�(n)(t); t 2 R:

Dann gilt aufgrund der Beschr�anktheit von � f�ur alle t 2 R: 0 � ~�(t) � �.

11.1. Lemma. Der Punkt-Proze� lim supn!1N
(n) l�a�t

�
lim supn!1 �

(n)(t)
�
t2R

als F
�N
t -Inten-

sit�at zu. Entsprechend ist
�
lim infn!1 �

(n)(t)
�
t2R

eine F
�N
t -Intensit�at von lim infn!1N (n).

Beweis: Gezeigt wird nur die erste Behauptung, der zweite Nachweis l�a�t sich analog

f�uhren. O�ensichtlich gilt nach dem Satz von der monotonen Konvergenz

Z
C

�N

�
dt�

�
0;

1

�
lim sup
n!1

�(n)(t)

��
�

Z
C

lim sup
n!1

�N

�
dt�

�
0;

1

�
�(n)(t)

��

�

Z
C

�N

�
dt�

�
0;

1

�
lim sup
n!1

�(n)(t)

��
;
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C 2 B. Die gleiche Argumentation wie im Beweis zu 6.11 f�uhrt f�ur (a; b] � R zu

EEE

�Z
(a;b]

�N

�
dt�

�
0;

1

�
lim sup
n!1

�(n)(t)

�� ����F �N
a

�

= EEE

�Z
(a;b]�R

1[0; 1
�
limsupn!1 �(n)(t)) (z)

�N(dt� dz)

����F �N
a

�

= EEE

�Z
(a;b]�R

1[0; 1
�
limsupn!1 �(n)(t)) (z) ��

n((dt� dz))

����F �N
a

�

= EEE

�Z
(a;b]

lim sup
n!1

�(n)(t) dt

����F �N
a

�
:

Analoges gilt f�ur das Intervall, welches an der rechten Seite abgeschlossen ist. Somit erhalten wir

EEE

�Z
(a;b]

lim sup
n!1

N (n)(dt)

����F �N
a

�
= EEE

�Z
(a;b]

lim sup
n!1

�N

�
dt�

�
0;

1

�
�(n)(t)

�� ����F �N
a

�

= EEE

�Z
(a;b]

lim sup
n!1

�(n)(t) dt

����F �N
a

�
:

Lemma 11.1 zeigt gemeinsam mit 6.15, da� ~N die F
�N
t -Intensit�at

�
~�(t)

�
t2R

besitzt.

11.2. Lemma. In der geschilderten Situation gilt die Ungleichung

~�(t) � �

Z
(�1;t)

jh(t� s)j ~N(ds) f.s.(11.3)

f�ur alle t 2 R.

Beweis: Sei t 2 R beliebig. Wir k�onnen ~�(t) umschreiben zu

~�(t) = lim sup
n!1

�(n)(t)� lim inf
n!1

�(n)(t) = lim
n!1

�
sup
k�n

�(k)(t)� inf
k�n

�(k)(t)

�

= lim
n!1

sup
i;j�n

�
�(i)(t)� �(j)(t)

�
:

Aus der Lipschitz-Stetigkeit von � folgt f�ur beliebige a 2 (0;1) die Absch�atzung

~�(t) � � lim
n!1

sup
i;j�n

�Z
(�1;t)

jh(t� s)j N (i)(ds)�

Z
(�1;t)

jh(t� s)j N (j)(ds)

�

� �

 
lim
n!1

�
sup
k�n

Z
(�1;t�a)

jh(t� s)j N (k)(ds)� inf
k�n

Z
(�1;t�a)

jh(t� s)j N (k)(ds)

�
| {z }

=�1(a)

+ lim
n!1

�
sup
k�n

Z
[t�a;t)

jh(t� s)j N (k)(ds)� inf
k�n

Z
[t�a;t)

jh(t� s)j N (k)(ds)

�
| {z }

=�2(a)

!

= ��1(a) + ��2(a):
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O�ensichtlich ist �2(a) �
R
[t�a;t)

jh(t� s)j �N(ds � [0; 1]) < 1 f.s.. Da �N(� � [0; 1]) im Intervall

[t� a; a) f.s. nur endlich viele Punkte besitzt, erhalten wir

�2(a) � lim
n!1

�Z
[t�a;t)

jh(t� s)j sup
i�n

N (i)(ds)�

Z
[t�a;t)

jh(t� s)j inf
i�n

N (i)(ds)

�

�

Z
[t�a;t)

jh(t� s)j ~N(ds) f.s..

F�ur �1(a) gilt wegen

EEE

�Z
(�1;t�a)

jh(t� s)j �N(ds� [0; 1])

�
= EEE

�Z
(�1;t�a)

jh(t� s)j� ds

�

� �

Z
(�1;t)

jh(t� s)j ds <1

die Absch�atzung �1(a) �
R
(�1;t�a)

jh(t� s)j �N(ds�[0; 1]) <1 f.s. und damit lima!1�1(a) = 0

f.s.. Insgesamt zeigt der Grenz�ubergang a!1 wegen ~�(t) � ��1(a)+��2(a) f�ur alle a 2 (0;1)

die Ungleichung (11.3).

Nach 2.4 besitzt die F
~N
t -vorhersagbare Version der F

~N
t -Intensit�at von

~N die Darstellung�
�
�
~N; t
��

t2R
(existiert nach [Br�e81] II.4.T14) und �

�
~N; t
�
� �

R
(�1;t)

jh(t� s)j ~N(ds) f.s..

11.3. Lemma. Wird in der unmittelbar zuvor angegebenen Ungleichung ~N auf der linken Seite

durch die Einschr�ankung von ~N auf (�1; 0] ersetzt, also durch ~N�, so besitzt diese weiterhin

G�ultigkeit, falls diese Einschr�ankung auch auf der rechten Seite vorgenommen wird:

�( ~N�; t) � �

Z
(�1;0]

jh(t� s)j ~N(ds) f.s..(11.4)

Beweis: Betrachten wir den Beweis von 11.2, so erkennt man, da� (11.3) auf der Menge


0
def
=
�
�N(� � [0; 1]) nichtexplodierend

	
\

�Z
(�1;t)

jh(t� s)j �N(ds� [0; 1]) <1

�

gilt und PPP(
0) = 1. Sei !0 2 
0. Da �N(� � [0; 1]) ein Poisson-Proze� endlicher Intensit�at ist, gibt

es ein ! 2 
0, so da� ~N�(!; �) = ~N�(!0; �) und ~N(!; (0; t]) = 0. Daraus folgt

�( ~N�(!0; �); t) = �( ~N(!; � \ (�1; t]); t) � �

Z
(�1;t)

jh(t� s)j ~N(!; ds)

= �

Z
(�1;0]

jh(t� s)j ~N�(!0; ds)

unter Beachtung von 2.6.

11.4. Lemma. Der Proze� ~N besitzt mit positiver Wahrscheinlichkeit keinen Punkt auf (0;1),

d.h.

PPP
�
~N((0;1)) = 0

�
> 0:(11.5)
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Beweis: Es zeigt einmal mehr der Satz von Fubini, da�

EEE

�Z
(0;1)

Z
(�1;0]

jh(u� s)j �N(ds� [0; 1]) du

�
=

Z
(0;1)

EEE

�Z
(�1;0]

jh(u� s)j� ds

�
du

= �

Z
(0;1)

Z 1

u

jh(s)j ds du = �

Z
(0;1)

u jh(u)j du <1;

also ist
R
(0;1)

R
(�1;0]

jh(u� s)j �N(ds� [0; 1]) du f.s. endlich. Gemeinsam mit diesen �Uberlegungen

erhalten wir aus Satz 5.5 und Lemma 11.3

PPP
�
~N((0;1)) = 0

���F ~N
0

�
= exp

�
�

Z 1

0

�( ~N�; t) dt

�

� exp

�
��

Z 1

0

Z
(�1;0]

jh(t� s)j ~N(ds) dt

�

� exp

�
��

Z 1

0

Z
(�1;0]

jh(t� s)j �N(ds� [0; 1]) dt

�

> 0 f.s..

Damit folgt PPP
�
~N((0;1)) = 0

�
=
R
PPP
�
~N((0;1)) = 0

���F ~N
0

�
dPPP > 0.

Das Wahrscheinlichkeitsma� PPP ist bez�uglich des Shiftes (�t)t2R ergodisch, siehe 6.6 . Nach

7.1(i) sind die Prozesse N (n) und (�(n)(t))t2R f�ur alle n 2 N �t-kompatibel, was zur �t-Kompati-

bilit�at von ~N f�uhrt. Durch ~N wir gem�a� 5.7 ein station�arer Punkt-Proze� (bez�uglich (PPP ; (�)t2R)

im Sinne von [BB94]) gegeben und [BB94] Kapitel 1 (1.4.2) besagt, da� dann PPP(
1) = 1

f�ur die Menge 
1
def
= fN(R) = 0g [ fN((0;1)) = N((�1; 0)) = 1g gilt. Hiermit folgt

�t

n
! 2 
1; ~N(!; (0;1)) = 0

o
=
n
! 2 
1; ~N(!; (0;1)) = 0

o
f�ur alle t 2 R, also

PPP
�
~N((0;1)) = 0

�
= PPP

�n
! 2 
1; ~N(!; (0;1)) = 0

o�
= 1

aufgrund der Ergodizit�at. Somit mu� ~N wegen 11.4 f.s. dem Punkt-Proze� ohne einen einzigen

Punkt auf R entsprechen, also ~N = ; f.s.. Nach De�nition von ~N sind die Punkt-Prozesse

lim supn!1N (n) und lim infn!1N
(n) auf R f.s. gleich. Dies zeigt f�ur alle beschr�ankten Borel-

Mengen C

PPP
�
9k 2 N 8n 2 N�k :

��N (n) �N (n+1)
�� (C) = 0

�
= 1(11.6)

und wir k�onnen den Punkt-Proze� N durch die Festlegung N(ftg)
def
= limn!1N

(n)(ftg) de�nie-

ren.

11.5. Lemma. Der durch N = limn!1N (n) de�nierte Punkt-Proze� erf�ullt

(i) N ist �t-kompatibel

(ii) N besitzt die Intensit�at (�(t))t2R, �(t) = �
�R

(�1;t)
jh(t� s)j N(ds)

�
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Beweis: zu (i). F�ur alle C 2 B, t 2 R gilt nach 7.1(i)

StN(C) = N(t+ C) = lim
n!1

N (n)(t + C) = lim
n!1

N (n)(�t�; C) = N(�t�; C) f.s..

zu (ii). Wir k�onnen (�(n)(t))t2R als F
�N
t -Intensit�at von N (n) identi�zieren (n 2 N), siehe

7.1(ii). Der durch
�R

C
�N
�
ds�

h
0; �(s)

�

i��
C2B

festgelegte Punkt-Proze� besitzt die F
�N
t -Intensit�at

(�(t))t2R, siehe 6.11. Daher besitzt�Z
C

����N (n)(ds)� �N

�
ds�

�
0;
�(s)

�

������
�
C2B

nach 6.15 die F
�N
t -Intensit�at

����(n)(t)� �(t)
���
t2R

. F�ur beliebige beschr�ankte Mengen C 2 B gilt

daher aufgrund des Lemmas von Fatou

EEE

�Z
C

����N(ds)� �N

�
ds�

�
0;
�(s)

�

������
�

� lim
n!1

EEE

�Z
C

����N (n)(ds)� �N

�
ds�

�
0;
�(s)

�

������
�

= lim
n!1

Z
C

EEE
����(n)(0)� �(0)

��� ds
= �n(C) lim

n!1
EEE
����(n)(0)� �(0)

��� ;

(11.7)

denn �(n)(t) und �(t) sind �t-kompatibel. Die �-Lipschitz-Stetigkeit f�uhrt zu

���(n+1)(0)� �(0)
�� = �����

�Z
(�1;0)

h(0� s)N (n)(ds)

�
� �

�Z
(�1;0)

h(0� s)N(ds)

�����
� �

����
Z
(�1;0)

h(�s)N (n)(ds)�

Z
(�1;0)

h(�s)N(ds)

����
� �

Z
(�1;0)

jh(�s)j
��N (n) �N

�� (ds):
Da

EEE

�Z
(�1;0)�[0;1]

jh(�s)j �N(ds� dz)

�
= EEE

�Z
(�1;0)

jh(�s)j� ds

�

= �

Z
(�1;0)

jh(�s)j ds <1

gilt, ist auch
R
(�1;0)

jh(�s)j
��N (n) �N

�� (ds) � R
(�1;0)

jh(�s)j �N(ds � [0; 1]) < 1 f.s.. Nach

De�nition konvergiert N (n) f.s. gegen N f�ur n ! 1. Gleichung (11.6) gilt insbesondere f�ur

C = [�t; 0), t 2 [0;1) beliebig, so da�

lim
n!1

���(n)(0)� �(0)
�� = 0 f.s.

folgt. Dominierte Konvergenz (
���(n)(0)� �(0)

�� � � f.s. f�ur alle n 2 N) und (11.7) zeigen

EEE

�Z
C

����N(ds)� �N

�
ds�

�
0;
�(s)

�

������
�
= 0;
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d.h. N und
�R

C
�N
�
ds�

h
0; �(s)

�

i��
C2B

stimmen f.s. �uberein; also ist (�(t))t2R eine F
�N
t -Inten-

sit�at des Punkt-Prozesses N , die { wie gew�unscht { von der Form (D1) ist.

Aus 11.5 und 5.7 folgt die Stationarit�at von N , und wir erhalten insgesamt den

11.6. Satz (Beschr�ankte Lipschitz-Dynamik I). In der Situation von Voraussetzung 4 exi-

stiert ein eindeutiger station�arer Punkt-Proze� N mit Dynamik der Form (D1).

Die Eindeutigkeit werden wir wieder im Anschlu� an den Stabilit�atsbeweis nachliefern, siehe

11.12.

2) Stabilit�at in Variation. Als Vorbereitung auf den Nachweis von Stabilit�at bez�uglich

einer geeigneten Anfangsbedingung dient die folgende Kopplungsaussage:

11.7. Satz (Kopplung). Der Wahrscheinlichkeitsraum (
;F ;PPP ) sei versehen mit einer Filtra-

tion (Ft)t2R, und X und Y seien stochastische Prozesse, so da�

As
def
= fX � Y auf (s;1)g 2 F1:(11.8)

Dies gilt insbesondere f�ur Ft-adaptierte Prozesse. F�ur alle s 2 [0;1) gelte

PPP(As j Fs) � Z(s)� �(s)(11.9)

f�ur einen reellwertigen Proze� � mit lims!1 �(s) = 0 f.s. und einen reellwertigen Proze� Z mit

PPP(Z(s) � �) � � und lim
t!1

1

t

Z s+t

s

1[�;1) (Z(u)) du = PPP(Z(s) � �)(11.10)

f.s. f�ur ein � 2 (0;1). Dann koppeln die Prozesse X und Y f.s. in endlicher Zeit.

Beweis: W�ahle � 2 R gem�a� (11.10). Das Ereignis
"
X und Y koppeln\ ist der monotone

Grenzwert der As:

As "s"1 A1
def
= fX und Y koppelng 2 F1:

Nach (11.9) gilt die Absch�atzung

PPP(A1 j Fs) � PPP(As j Fs)

� (Z(s)� �(s))1[�;1) (Z(s))1(�1;
�

2
] (�(s))

�
�

2
1[�;1) (Z(s))1(�1;

�

2
] (�(s)) :

F�ur s; t > 0 liefert dies

1

t

Z s+t

s

PPP (A1 j Fu) du �
1

t

Z s+t

s

�

2
1[�;1) (Z(u))1(�1;

�

2
] (�(u)) du

�
�

2
1(�1;

�

2
]

�
sup
u�s

�(u)

�
1

t

Z s+t

s

1[�;1) (Z(u)) du:

(11.11)
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O�ensichtlich ist PPP(A1 j Ft), t 2 R, ein Ft-Martingal, welches sogar gleichgradig integrierbar ist:

0 � sup
t2R

Z
fPPP(A1 jFt)>ag

PPP(A1 j Ft) dPPP � sup
t2R

PPP(PPP(A1 j Ft) > a)
a!1
���! 0:

Nach [Als96] 17.3 (oder auch [Nev65] Prop. 4.5.6 (Seite 134)) gilt 1A1 = limt!1PPP(A1 j Ft) =

limt!1EEE(1A1 j Ft) f.s., was zu limt!1
1
t

R s+t
s

PPP(A1 j Fu) du = 1A1 f.s. f�uhrt, siehe A2.2. Der

Proze� Z erf�ullt nach (11.10)

lim
t!1

1

t

Z s+t

s

1[�;1) (Z(u)) du = PPP(Z(s) � �) � � f.s..

Die Wahl von � sichert lims!1 supu�s �(u) = 0 f.s.. Wir erhalten insgesamt aus (11.11)

1A1 �
�2

2
1(�1;

�

2
]

�
sup
u�s

�(u)

�
s!1
���!

�2

2
> 0 f.s.,

d.h. 1A1 = 1 f.s. und schlie�lich PPP(A1) = 1.

Das Ziel dieses Abschnitts ist der

11.8. Satz (Beschr�ankte Lipschitz-Dynamik II). Gegeben sei Voraussetzung 4. Dann ist

die Dynamik (D1) stabil in Variation bez�uglich der Anfangsbedingung

lim
t!1

Z 1

t

Z
(�1;0]

jh(s� u)j N(du) ds = 0 f.s..(11.12)

Die hier verwendete Anfangsbedingung, die zur Stationarit�at f�uhrt, ist st�arker als Anfangs-

bedingung (AB i) des Abschnitts 10, aber schw�acher als Bedingung (AB iii) und fordert ebenfalls,

da� die Nachwirkung von N� verschwindet.

ZumBeweis von 11.8 w�ahlen wir einen Punkt-Proze� N 0 = (T 0n)n2Z mit Anfangsbedingung

(11.12) und FN 0

t -Intensit�at (�0(t))t2[0;1) der Form (D1) auf R. Da � beschr�ankt durch � ist, gilt

dies auch f�ur �0(t) auf [0;1). Somit ist N 0 auf [0;1) nichtexplodierend. Nach 6.14 stellt

�N((a; b]� L) =
X
n2N

1(a;b] (T
0
n)1L

�
�0+(T

0
n)U

0
n

�
+

Z
(a;b]

Z
Ln(0;�0+(t)]

N̂ 0(dt� dz)

einen �
�
FN 0

s ;F
�N
s

�
-Poisson-Proze� der Intensit�at 1 auf R2 dar

�
(U 0

n)n2Z, N̂
0 wie in 6.14 ben�otigt,

�0+(t)
def
= 1(0;1))�

0(t)
�
. F�ur beliebige Borel-Mengen C � (0;1) giltN 0(C) =

R
C

�N (dt� [0; �0(t)]).

Konstruiere N wie im vorherigen Unterabschnitt aus �N , beachte Bemerkung 8.6, d.h.

N(C) =

Z
C

�N (dt� [0; �(t)]) ;

C 2 B. Nach 6.12 ist (�0(t))t2[0;1) eine Ft-Intensit�at von N 0 auf [0;1), dies gilt ebenso f�ur

(�(t))t2R und N , Ft
def
= �

�
FN 0

t ;F
�N
t

�
. Gem�a� 6.15 l�a�t jN �N 0j auf [0;1) die Ft-Intensit�at

(j�(t)� �0(t)j)t2[0;1) zu.

Wir dehnen nun den Begri� des Shiftes auf Filtrationen und stochastische Prozesse wie folgt aus:

SsF
N
t

def
= FN

s+t und Ss�(t)
def
= �(s+ t), s; t 2 R. Hiermit erhalten wir:



ii. Existenz und Stabilit�at univariater Hawkes-Prozesse 73

11.9. Lemma. F�ur alle s 2 R besitzt der Punkt-Proze� SsN die SsFt-Intensit�at (Ss�(t))t2R.

Beweis: F�ur die interne Filtration von N gilt

FSsN
t = � (SsN(C);C 2 B((�1; t]))

= � (N(C);C 2 B((�1; s+ t])) = FN
s+t = SsF

N
t ;

und da (�(t))t2R FN
t -vorhersagbar ist, ist der Proze� (Ss�(t))t2R SsFN

t -vorhersagbar, also auch

SsFt-vorhersagbar. �Ahnlich wie f�ur die interne Filtration erkennt man SsFt = Fs+t. Es folgt f�ur

(a; b] � R

EEE(SsN((a; b]) jSsFa) = EEE(N((s+ a; s+ b]) j Fs+a) = EEE

�Z s+b

s+a

�(t) dt

����Fs+a

�

= EEE

�Z b

a

Ss�(t) dt

����SsFa

�
:

Lemma 11.9 l�a�t sich analog auf den Proze� SsN
0 �ubertragen. (Ss�

0(t))t2[�s;1) ist auf

[�s;1) eine SsFt-Intensit�at. Es folgt, da� der Punkt-Proze� Ss jN �N 0j auf [�s;1) die SsFt-

Intensit�at (Ss j�(t)� �0(t)j)t2[�s;1) zul�a�t.

Sei s 2 (0;1) beliebig. F�ur alle u 2 [s;1) setzen wir

gs(u)
def
= �

�Z
(�1;s]

jh(u� v)j �N(dv � [0;�]) +

Z
(�1;0]

jh(u� v)j N 0(dv)

�
:

11.10. Lemma. F�ur alle t 2 [0;1] sei fs(t)
def
= PPP

�
jN �N 0j ((s; s+ t]) = 0 j F jN�N 0j

s

�
. Hierf�ur

gilt die Absch�atzung

fs(t) = PPP
�
jN �N 0j ((s; s+ t]) = 0 j F jN�N 0j

s

�
� exp

�
�

Z s+t

s

gs(u) du

�
:

Beweis: Die �-Lipschitz-Stetigkeit von � liefert f�ur t > 0

Ss j�(t)� �0(t)j = j�(s+ t)� �0(s+ t)j

� �

����
Z
(�1;s+t)

h(s+ t� u)N(du)�

Z
(�1;s+t)

h(s+ t� u)N 0(du)

����
= �

����
Z
(�1;t)

h(t� u)SsN(du)�

Z
(�1;t)

h(t� u)SsN
0(du)

����
� �

Z
(�1;t)

jh(t� u)j Ss jN �N 0j (du):

Au�erdem gilt f�ur die kanonische Filtration des Prozesses der verschiedenen Punkte von N und

N 0: SsF
jN�N 0j
t � SsFt. Gem�a� [Br�e81] II. 4., Theorem T14, existiert eine SsF

jN�N 0j
t -Intensit�at



74 11. Lipschitz-stetige Anregungsfunktionen { beschr�ankte Dynamiken

(�s(t))t2[�s;1) von Ss jN �N 0j auf [�s;1) der Form �s(Ss jN �N 0j ; t) (nach 2.4), diese erf�ullt

nach obiger Absch�atzung

�s(Ss jN �N 0j ; t) � �

Z
(�1;t)

jh(t� u)jSs jN �N 0j (du):

Zu jeder Realisation Ss jN �N 0j (!0; �) des Punkt-Prozesses k�onnen wir aufgrund der Unabh�an-

gigkeitsbeziehungen, die zwischen N 0, (U 0
n)n2Z und N̂ 0 gelten, ein ! 2 
 �nden, so da�

� N 0(!0; �) = N 0(!; �)

� U 0
n(!0) = U 0

n(!) falls T
0
n(!0)� s � 0 und 0 � �0+ (T

0
n(!))U

0
n(!) � � (T 0n(!)) sonst

� SsN̂
0(!0; � \ (�1; 0]) = SsN̂

0(!; � \ (�1; 0]) und SsN̂
0(!; (0; t]� [0;�]) = 0.

Dann gilt Ss jN �N 0j (!0; � \ (�1; 0]) = Ss jN �N 0j (!; � \ (�1; t]), denn nach Wahl von !

erhalten wir SsN
�(!0; �) = SsN

�(!; �) und SsN(!; � \ (0; t]) = SsN
0(!; � \ (0; t]).

Es folgt aus 2.6

�s (Ss jN �N 0j (!0; � \ (�1; 0]); t) = �s (Ss jN �N 0j (!; � \ (�1; t]); t)

� �

Z
(�1;t)

jh(t� u)j Ss jN �N 0j (!; du)

� �

Z
(�1;0]

jh(t� u)j Ss jN �N 0j (!0; du):

F�ur v � 0 gilt jN �N 0j (fvg) � N(fvg) + N 0(fvg) � �N(fvg � [0;�]) + N 0(fvg), und im Fall

v > 0 gilt nach Konstruktion jN �N 0j (fvg) � �N(fvg� [0;�]). Die vorherige Absch�atzung f�uhrt

f�ur t 2 [0;1) [ f1g zuZ t

0

�s (Ss jN �N 0j (� \ (�1; 0]); u) du � �

Z t

0

Z
(�1;0]

jh(u� v)j Ss jN �N 0j (dv) du

= �

Z t

0

Z
(�1;s]

jh(s+ u� v)j jN �N 0j (dv) du

= �

Z s+t

s

Z
(�1;s]

jh(u� v)j jN �N 0j (dv) du

� �

Z s+t

s

Z
(�1;0]

jh(u� v)j N 0(dv) du+ �

Z s+t

s

Z
(�1;s]

jh(u� v)j �N(dv � [0;�]) du

=

Z s+t

s

gs(u) du:

Somit erhalten wir auf der Menge
nR s+t

s
gs(u) du <1

o
mit Satz 5.5 die Absch�atzung

PPP
�
jN �N 0j ((s; s+ t]) = 0 j F jN�N 0j

s

�
= PPP

�
Ss jN �N 0j ((0; t]) = 0 j FSsjN�N

0j
0

�
= exp

�
�

Z t

0

�s (Ss jN �N 0j (� \ (�1; 0]); u) du

�
� exp

�
�

Z s+t

s

gs(u) du

�
:

Diese besitzt wegen exp
�
�
R s+t
s

gs(u) du
�
= 0 auf

nR s+t
s

gs(u) du <1
oC

�uberall G�ultigkeit.
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11.11. Lemma. Die Punkt-Prozesse N und N 0 koppeln f.s. in endlicher Zeit.

Beweis: Wir rechnen die Bedingungen von Satz 11.7 nach. De�niere dazu f�ur s 2 (0;1)

die stochastischen Prozesse

Z(s)
def
= exp

�
��

Z 1

s

Z
(�1;s]

jh(u� v)j �N(dv � [0;�]) du

�

�(s)
def
= Z(s)� exp

�
�

Z 1

s

gs(u) du

�
:

Diese Prozesse erf�ullen PPP
�
jN �N 0j ((s;1)) = 0 j F jN�N 0j

s

�
� Z(s)� �(s) und die Bedingungen,

die in Satz 11.7 an die gleichnahmigen Prozesse gestellt werden:

Nach Voraussetzung (11.12) des Satzes 11.8 gilt wegen 0 � Z(s) � 1 f.s.

lim
s!1

�(s) = lim
s!1

�
Z(s)

�
1� exp

�
��

Z 1

s

Z
(�1;0]

jh(u� v)j N 0(dv) du

���
= 0 f.s.

und (11.1) sichert

EEE

�Z 1

s

Z
(�1;s]

jh(u� v)j �N(dv � [0;�]) du

�

=

Z 1

s

EEE

�Z
(�1;s]

jh(u� v)j �N(dv � [0;�])

�
du

= �

Z 1

s

Z
(�1;s]

jh(u� v)j dv du

= �

Z 1

s

Z
[u�s;1)

jh(v)j dv du

� �

Z
[0;1)

u jh(u)j du <1;

wonach also Z(s) > 0 f.s. gilt. Es existiert also ein � 2 (0;1) mit PPP(Z(s) � �) � �. Nach 6.6

ist
�
PPP

�N ; (St)t2R
�
ergodisch, und f�ur alle t 2 R besitzt Z(t) die Darstellung

Z(t) = exp

�
��

Z 1

t

Z
(�1;0]

jh(u� t� vj �N(t+ dv � [0;�]) du

�

= exp

�
��

Z 1

0

Z
(�1;0]

jh(u� v)j St �N(dv � [0;�]) du

�
= f

�
St �N

�
f�ur eine geeignete Funktion f : M ! [0;1). Gem�a� [BFL90] Theorem 3.6.2 ist auch die zweite

in 11.7 an Z(s) gestellte Bedingung erf�ullt:

lim
t!1

1

t

Z s+t

s

1[�;1)

�
f
�
Su �N

��
du = lim

t!1

1

t

Z t

0

1[�;1)

�
f
�
Su
�
Ss �N

���
du

=

Z
1[�;1)

�
f
�
Ss �N

��
dPPP = PPP(Z(s) � �) f.s..

Satz 11.7 zeigt die f.s. Kopplung von N und N 0 in endlicher Zeit.

Die Stabilit�atsaussage 11.8 ist nun eine Konsequenz aus 4.6.
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11.12. Lemma. Die im Satz 11.6 noch fehlende Eindeutigkeit erhalten wir durch nachrechnen

der Anfangsbedingung (11.12) aus Satz 11.8.

Beweis: Gegeben sei ein station�arer Punkt-Proze� N mit Dynamik (D1) auf R, welcher

(11.1) erf�ullt. F�ur t 2 (0;1) gilt aufgrund der Beschr�anktheit von � und dem Satz von Fubini

0 � EEE

�Z 1

t

Z
(�1;0]

jh(s� u)j N(du) ds

�
�

Z 1

t

EEE

�Z
(�1;0]

jh(s� u)j� du

�
ds

= �

Z 1

t

Z 1

s

jh(u)j du ds � �

Z 1

t

s jh(s)j ds;

so da� (11.1) limt!1

R1
t

R
(�1;0]

jh(s� u)j N(du) ds = 0 f.s. liefert.



Kapitel III.

Der K-variate Fall { Existenz und

Stabilit�at nichtlinearer Hawkes-Prozesse

Ziel des folgenden Kapitels wird sein, die Ergebnisse des Falls univariater Punkt-Prozesse auf

den K-variaten Fall (K > 0) zu erweitern. Die Voraussetzungen werden an diese Situation

angepa�t, so da� die Techniken zum Beweis denen aus dem vorherigen Kapitel entsprechen oder

zumindest �ahneln. Wir werden daher einige Beweisteile kurz halten, die Details k�onnen dann im

entsprechenden Abschnitt f�ur univariate Prozesse nachgelesen und mit geringen Modi�kationen

im vorliegenden Fall verwendet werden.

Wir erinnern daran, da� f�ur einenK-variaten Punkt-Proze� N = (N1; : : : ; NK) die einzelnen

Punkt-Prozesse N1; : : : ; NK einfache Prozesse bilden und keine gemeinsamen Punkte besitzen sol-

len. Eine Filtration f�urN und jeden derK Prozesse wird gegeben durch Ft
def
= �

�
FNi
t ; 1 � i � K

�
.

Dabei soll jeder Punkt-Proze� Ni eine Ft-Intensit�at (�i(t))t2R gem�a� (D2) besitzen.

12. Stabilit�at bei Intensit�aten mit beschr�anktem

Speicher

Zun�achst wird der Begri� der Abbildung und Intensit�at mit beschr�anktem Speicher auf die

vorliegende Situation erweitert:

12.1. De�nition. Sei  :
�
MK ;MK

�
! ([0;1);B+). Die Abbildung  besitzt einen beschr�ank-

ten Speicher (bzw. Ged�achtnis) der L�ange A 2 (0;1), wenn f�ur mi; m
0
i 2 M aus der Gleichheit

von mi und m
0
i auf [�A; 0) f�ur alle 1 � i � K immer  (m1; : : : ; mK) =  (m0

1; : : : ; m
0
K) folgt.

Analog zur De�nition 8.1 besitzt der K-variate Punkt-Proze� (N1; : : : ; NK) eine Ft-Intensit�at

(�1(t); : : : ; �K(t))t2R mit beschr�anktem Speicher der L�ange A 2 (0;1), falls f�ur alle Elemente

i 2 f1; : : : ; Kg

�i(t) =  i (StN1; : : : ; StNK)(12.1)

77
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mit einer me�baren Abbildung  i :M
K ! [0;1) mit beschr�anktem Speicher der L�ange A gilt.

Die Verallgemeinerung der S�atze 8.5 und 8.7 auf K-variate Punkt-Prozesse stellt der nach-

folgende Satz dar:

12.2. Satz (K-variate Dynamiken mit beschr�anktem Speicher). Die Abbildungen

 i :
�
MK ;MK

�
!
�
[0;1);B+

�
; 1 � i � K;(12.2)

seien durch ein � 2 (0;1) beschr�ankt und besitzen einen beschr�ankten Speicher der L�ange A 2

(0;1).

Es gibt dann ein eindeutiges station�ares Verteilungsgesetz des multivariaten Punkt-Pro-

zesses N = (N1; : : : ; NK), so da� die einzelnen Punkt-Prozesse Ni den stochastischen Proze�

�i(t) =  i (StN1; : : : ; StNK), t 2 R, als FN
t -Intensit�at zulassen, wobei die gemeinsame Filtration�

FN
t

�
t2R

durch FN
t

def
= �

�
FNk
t ; 1 � k � K

�
gegeben wird. Die Prozesse Ni, 1 � i � K, besitzen

keine gemeinsamen Punkte.

Die Dynamik ( 1 (StN1; : : : ; StNK) ; : : : ;  K (StN1; : : : ; StNK))t2R ist auch hier, unabh�angig

von der Anfangsbedingung, stabil in Variation, und die auftretende Konvergenz in Variation ist

exponentiell schnell.

Da der Nachweis von 12.2 dem von 8.5 und 8.7 �ahnelt, wird im nun folgenden Beweis an

einigen Stellen auf eine detaillierte Ausf�uhrung einzelner Schritte verzichtet. Diese k�onnen aus

den Beweisen von 8.5 bzw. 8.7 �ubernommen werden.

Beweis (von 12.2): Wenden wir uns als erstes dem Existenzbeweis zu. Es sei (
;F) der

kanonische Raum der markierten Punkt-Prozesse aufR mit Marken in [0; 1] (oder, gegebenenfalls

das K-fache Produkt dieser R�aume) und �t = St. Mit PPP wird ein Wahrscheinlichkeitsma� auf

(
;F) bezeichnet, welches PPP � �t = PPP erf�ullt.

Zun�achst befassen wir uns mit der Konstruktion eines station�aren Punkt-Prozesses: Die Punkt-

Prozesse �Ni = (Ti;n; Ui;n)n2Z (1 � i � K) seien untereinander unabh�angig und

� (Ti;n)n2Z sei ein homogener Poisson-Proze� mit F
�N
t -Intensit�at � 2 (0;1)

� (Ui;n)n2Z sei eine Folge unabh�angiger, identisch R[0; 1]-verteilter Zufallsvariablen

� (Ti;n)n2Z und (Ui;n)n2Z seien stochastisch unabh�angig

f�ur alle i 2 f1; : : : ; Kg, �Ni(!; �) = !(�) (oder, falls das K-fache Produkt des kanonischen Raums

betrachtet wird: �Ni((!1; : : : ; !K); �) = !i(�)). Durch F
�N
t

def
= �

�
F

�Ni
t ; 1 � i � K

�
wird eine Filtra-

tion der obigen Punkt-Prozesse gegeben.

Nach dem Disjunktheits-Lemma besitzen die Prozesse �Ni, 1 � i � K, keine gemeinsamen Punkte,

und das Superpositions-Theorem zeigt, da�

�N0 =
�
(Ti;n)n2Z

�
1�i�K
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ein Poisson-Proze� mit F
�N
t -Intensit�at K� <1 ist (vergleiche dazu [Kin93] 2.2). Die in �ublicher

Weise angeordneten Punkte von �N0 werden mit (T0;n)n2Z bezeichnet.

Konstruiere nun den Punkt-Proze� R aus �N0, der auch hier die Startpunkte f�ur die Kon-

struktion der station�aren Punkt-Prozesse Ni beinhaltet: T0;n ist ein Punkt des Punkt-Prozesses

R, falls T0;n � T0;n�1 > A. Da die �Ni nach Vorgabe �t-kompatibel sind, folgt dies auch f�ur den

Punkt-Proze� R (vergleiche Beweis von 8.5).

Setze f�ur C 2 B

Ni(C)
def
=

Z
C

�Ni

�
dt�

�
0;
 i(StN1; : : : ; StNK)

�

��
;

1 � i � K. Wie wir sp�ater sehen werden, ist diese Festlegung auch hier sinnvoll.

Behauptung 1. Falls die Punkt-Prozesse N1; : : : ; NK konstruierbar sind, lassen sie sich auf

[Rk;1) ohne Kenntnis von N1; : : : ; NK auf (�1; Rk) konstruieren.

Begr�undung: Nach Wahl der Rk gilt

0 � Ni ([Rk � A;Rk)) �

Z
[Rk�A;Rk)

�Ni (dt� [0; 1]) = 0:

F�ur alle ! 2 
 und t 2 [Rk(!);1) zeigt sich damit wie gew�unscht f�ur alle i 2 f1; : : : ; Kg

�i(!; t) =  i (StN1(!; �); : : : ; StNK(!; �))

=  i (Nl (!; (�+ t) \ [t� A; t) \ [Rk(!);1)) ; 1 � l � K)
(12.3)

aufgrund des beschr�ankten Speichers der Abbildungen  1; : : : ;  K. �

Da limk!�1Rk = �1 (nach 6.3) ergibt sich die folgende

Behauptung 2. F�ur i 2 f1; : : : ; Kg ist Ni auf ganz R konstruierbar.

Begr�undung: Geeignete Punkt-Prozesse f�ur eine induktive Konstruktion f�ur den Fall

K = 1 werden durch Gleichung (8.3) angegeben. F�ur den Fall K > 1 wird die Konstruktion

analog durchgef�uhrt:

De�niere zu festem k 2 Z induktiv die Punkt-Prozesse

N
(k;0)
i

def
= �Ni

�
� \ fT0;�kg �

�
0;
 i(;; : : : ; ;)

�

��

N
(k;n)
i

def
=

Z
�\[T0;�k ;T0;�k+n]

�Ni

�
dr �

�
0;

1

�
 i

�
SrN

(k;n�1)
j ; 1 � j � K

���
;

1 � i � K, n 2 N, mit �k wie vor 8.4 de�niert. Wir k�onnen induktiv entscheiden, ob der Punkt

T0;�k+n zu einem der Prozesse N
(k;n)
i geh�ort, 1 � i � K. Damit ist festgelegt, ob dieser Punkt zu

Ni geh�ort:

Ni (� \ [T0;�k ; T0;�k+n]) = N
(k;n)
i ;

1 � i � K. �
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Die �t-Kompatibilit�at der Prozesse N1; : : : ; NK ist auch im multivariaten Fall eine direkte

Folge der �t-Kompatibilit�at der Prozesse �N1; : : : ; �NK und R.

Analog zu A1.8 l�a�t sich die F
�N
t -Adaptiertheit von N1; : : : ; NK zeigen. Dabei ist die Me�-

barkeit der Prozesse N
(n)
i;t der Form (A1.10), die jeweils aus den Punkt-Prozessen �Ni entstehen,

parallel zu betrachten, da sie voneinander abh�angen. Diese Konstruktion wird induktiv f�ur alle

k 2 N jeweils auf den Mengen
�
9n 2 Z : Ti;n = T�k (s)

	
durchgef�uhrt, T�k (s) wird wie in (A1.7)

aus �N0 = (T0;n)n2Z gebildet (1 � i � K).

Lemma 6.8 zeigt die F
�N
t -Vorhersagbarkeit von

PK

j=1

R
(�1;t)

hji(t � s)Nj(ds), woraus die F
�N
t -

Vorhersagbarkeit von (�i(t))t2R folgt (1 � i � K).

Nach 6.11 l�a�t Ni die F
�N
t -Intensit�at (�i(t))t2R zu. Da Ft eine Unter-�-Algebra von F

�N
t f�ur

alle t 2 R ist, stellt (�i(t))t2R ebenfalls eine Ft-Intensit�at von Ni dar (1 � i � K).

Die Stationarit�at von N ist eine Folge von PPP � �t = PPP und der �t-Kompatibilit�at von

N1; : : : ; NK, vergleiche 5.7.

Nun zur Stabilit�at von N . Da der Proze� der
"
Regenerationspunkte\ s�amtliche Punkte der

Prozesse N1; : : : ; NK ber�ucksichtigt, l�a�t sich die Kopplungszeit T , hier de�niert unter Nutzung

der Punkte des Prozesses �N0, und somit der Beweis zu 8.7 �ubernehmen.

Lemma 4.7 zeigt sodann die Eindeutigkeit des station�aren Punkt-Prozesses.

13. Existenz im Fall

nichtfallender Anregungsfunktionen

Die Erweiterung von Satz 9.1 ist weniger kanonisch. Wir zeigen hier die Version f�ur bivariate

Punkt-Prozesse. Die Beschr�ankung des Wachstums von �, siehe Gleichung (9.1), mu� der Be-

schr�anktheit (13.3) weichen.

13.1. Satz (Wachsende Anregungsfunktionen). Gegeben seien zwei nichtnegative me�bare

Funktionen h11, h22 auf [0;1) mitZ
[0;1)

h11(x) dx <1 und

Z
[0;1)

h22(x) dx <1:(13.1)

Ferner seien h12 und h21 nichtnegative (oder beide nichtpositive) me�bare Funktionen auf [0;1),

die

�1 <

Z
[0;1)

h12(x) dx <1 und �1 <

Z
[0;1)

h21(x) dx <1(13.2)

erf�ullen. F�ur die nichtnegativen, nichtfallenden Funktionen �1 und �2, de�niert auf R, gelte

�1(x) � � und �2(x) � � f�ur alle x 2 R(13.3)
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und ein � > 0. Au�erdem sei �1 linksseitig stetig. Sind h12; h21 � 0, so sei �2 ebenfalls linksseitig

stetig, im Fall h12; h21 � 0 rechtsseitig stetig.

In dieser Situation existiert ein station�ares Verteilungsgesetz f�ur den bivariaten Punkt-

Proze� N = (N1; N2) mit der Dynamik (D2).

Beweis: Es bezeichne (
;F) den kanonischen Raum der Punkt-Prozesse auf R mit [0; 1]-

wertigen Marken (bzw. das zweifache Produkt dieses Raumes). Auf (
;F) seien zwei unterein-

ander unabh�angige Punkt-Prozesse �N1 = (T1;n; U1;n)n2Z und �N2 = (T2;n; U2;n)n2Z de�niert, f�ur

die

� (Ti;n)n2Z ein Poisson-Proze� mit Intensit�at � 2 [0;1) ist

� (Ui;n)n2Z unabh�angige identisch R[0; 1]-verteilte Zufallsgr�o�en sind

� (Ti;n)n2Z und (Ui;n)n2Z unabh�angig sind,

i = 1; 2. Die Konstruktion des gew�unschten bivariaten Punkt-Prozesses wird erneut induktiv

durchgef�uhrt. Setze �
(0)
1 (t) � 0 und

�
(0)
2 (t) �

(
0 falls h12; h21 nichtnegativ

� falls h12; h21 nichtpositiv
:

F�ur n 2 N0 wird der bivariate Punkt-Proze� N (n)(C) =
�
N

(n)
1 (C); N

(n)
2 (C)

�
, C 2 B, und

der bivariate stochastische Proze� �(n+1)(t) =
�
�
(n+1)
1 (t); �

(n+1)
2 (t)

�
, t 2 R, de�niert durch die

Komponenten

N
(n)
i (C) =

Z
C

�Ni

 
dt�

"
0;
�
(n)
i (t)

�

#!

�
(n+1)
i (t) = �i

 
2X

j=1

Z
(�1;t)

hji(t� s)N
(n)
j (ds)

!(13.4)

i = 1; 2. Analog zu 7.1 k�onnen wie die �t-Kompatibilit�at von N
(n)
i und

�
�
(n)
i

�
t2R

, i = 1; 2, und

somit mittels 5.7 bei gleichem Vorgehen wie in 8.4 die Stationarit�at zeigen.

De�niere eine gemeinsame Filtration von �N1 und �N2 durch F
�N
t

def
= �

�
F

�N1

t ;F
�N2

t

�
.

Behauptung 1. Die Punkt-Prozesse N
(n)
1 und N

(n)
2 sind F

�N
t -adaptiert, und der stochastische

Proze�
�
�
(n)
i (t)

�
t2R

ist eine F
�N
t -Intensit�at von N

(n)
i f�ur alle n 2 N0 (i = 1; 2).

Begr�undung: Eine Induktion zeigt das Gew�unschte. Sei C 2 B((�1; t]) f�ur ein t 2 R.

Im Fall n = 0 ist �
(0)
i (t) 2 f0;�g und

N
(0)
i (C) =

Z
C

�Ni

 
dt�

"
0;
�
(0)
i (t)

�

#!
= �Ni

 
C �

"
0;
�
(0)
i (t)

�

#!
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F
�N
t -me�bar. Nach 6.11 stellt �

(0)
i (t) eine F

�N
t -Intensit�at von N

(0)
i dar (i = 1; 2).

Gelte Behauptung 1 f�ur n 2 N. Dann zeigt 6.8, da� durch
�R

(�1;t)
hji(t� s)N

(n)
j (ds)

�
t2R

ein

F
�N
t -vorhersagbarer Proze� de�niert wird. Daher gilt dies auch f�ur

�
�
(n+1)
i (t)

�
t2R

, woraus nach

6.9 die F
�N
t -Adaptiertheit von N

(n+1)
i resultiert. Erneut zeigt Satz 6.11, da�

�
�
(n+1)
i (t)

�
t2R

eine

F
�N
t -Intensit�at von N

(n)
i darstellt (i = 1; 2). �

� Wir betrachten zun�achst den Fall, da� h12 und h21 nichtnegativ sind, also �2 linksseitig

stetig ist.

Behauptung 2. F�ur alle t 2 R, C 2 B und n 2 N gilt

�
(n�1)
i (t) � �

(n)
i (t) und N

(n�1)
i (C) � N

(n)
i (C);(13.5)

d.h. die Zufallsvariablen �
(n)
i (t) und N

(n)
i (C) sind monoton wachsend in n (i = 1; 2).

Begr�undung: Auch hier kommt eine Induktion nach n zum Einsatz. Der Induktionsan-

fang ist klar: Da �i nichtnegativ ist, folgt �
(0)
i (t) � 0 � �

(1)
i (t), was zu

N
(0)
i (C) = �Ni (C � f0g) �

Z
C

�Ni

 
dr �

"
0;
�
(1)
i (r)

�

#!
= N

(1)
i (C)

f�uhrt, i = 1; 2.

Gelte (13.5) f�ur n 2 N und i = 1; 2. Nach Voraussetzung gilt hji � 0 (i; j 2 f1; 2g). Hieraus

ergibt sich Z
(�1;t)

hji(t� s)N
(n�1)
j (ds) �

Z
(�1;t)

hji(t� s)N
(n)
j (ds);

was unmittelbar nach De�nition zu �
(n)
i (t) � �

(n+1)
i (t) aufgrund der Monotonie von �i f�uhrt,

i = 1; 2. Damit folgt au�erdem

N
(n)
i (C) =

Z
C

�Ni

 
dr �

"
0;
�
(n)
i (r)

�

#!
�

Z
C

�Ni

 
dr �

"
0;
�
(n+1)
i (r)

�

#!
= N

(n+1)
i (C);

wie gew�unscht (i = 1; 2). �

Zu jedem t 2 R und C 2 B existiert �i(t)
def
= limn!1 �

(n)
i (t) und Ni(C)

def
= limn!1N

(n)
i (C),

jedoch kann Ni(C) auch den Wert
"
1\ annehmen.

Der Satz von der monotonen Konvergenz zeigtZ
C

1h
0;
�i(t)

�

� (z) �Ni(dt� dz) � Ni(C) =

Z
C

lim
n!1

1h
0;
�
(n)

i
(t)

�

i (z) �Ni(dt� dz)

�

Z
C

1h
0;
�i(t)

�

i (z) �Ni(dt� dz):

Wir k�onnen analog zu 6.11 zeigen, da� durch (�i(t))t2R eine F
�N
t -Intensit�at des Punkt-Prozesses�R

C
1h

0;
�i(t)

�

� (z) �Ni(dt� dz)

�
C2B

gegeben wird. Dies gilt ebenso f�ur den Punkt-Proze�, der wie
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zuvor, jedoch mit dem rechts abgeschlossenen Intervall, de�niert wird. Damit erkennen wir, da�

Ni die F
�N
t -Intensit�at (�i(t))t2R zul�a�t, vergleiche dazu auch Lemma 11.1.

Behauptung 3. Die Intensit�at (�i(t))t2R ist von der gew�unschten Form (D2) (i = 1; 2).

Begr�undung: Nach oben kann die Folge
�
�
(n)
i (t)

�
n2N

wegen N
(n)
i (C) "n!1 Ni(C) und

hji � 0 (j 2 f1; 2g) abgesch�atzt werden durch

�
(n)
i (t) � �i

 
2X

j=1

Z
(�1;t)

hji(t� s)Nj(ds)

!
;

da �i monoton wachsend ist. Andererseits ist �i(t) eine obere Schranke von

�i

 
2X

j=1

Z
(�1;t)

hji(t� s)N
(n)
j (ds)

!
; n 2 N

denn �
(n)
i (t) "n!1 �i(t), was im Grenz�ubergang n ! 1 aufgrund der linksseitigen Stetigkeit

von �i Behauptung 3 zeigt. Wir haben also einen Punkt-Proze� mit der gew�unschten Dynamik

erhalten. Beachtet man die �Uberlegungen vor Behauptung 1, so ist klar, da� N �t-kompatibel

ist, woraus wie �ublich die Stationarit�at folgt. �

� Gelte h12; h21 � 0, also ist �2 rechtsseitig stetig und �
(0)
2 (t) � �. Es werden vergleichbare

Aussagen wie zuvor nachgerechnet.

Behauptung 4. F�ur i = 1 bleiben unter den ge�anderten Voraussetzungen die Zuvallsvariablen

�
(n)
i (t) und N

(n)
i (C) monoton wachsend f�ur alle t 2 R und C 2 B, d.h. es gilt (13.5), f�ur i = 2

sind sie monoton fallend:

�
(n�1)
2 (t) � �

(n)
2 (t) und N

(n�1)
2 (C) � N

(n)
2 (C)(13.6)

f�ur alle t 2 R, C 2 B und n 2 N.

Begr�undung: Der Induktionsanfang folgt sofort aus 0 � �i � �, i = 1; 2. Gelten nun

(13.5) und (13.6) f�ur ein n 2 N. Dies liefert gemeinsam mit h11 � 0 und h21 � 0Z
(�1;t)

hj1(t� s)N
(n�1)
j (ds) �

Z
(�1;t)

hj1(t� s)N
(n)
j (ds)

f�ur j = 1; 2. Nach De�nition f�uhren diese �Uberlegungen zu �
(n)
1 (t) � �

(n+1)
1 (t). Wie in Behauptung

2 schlie�t man hieraus N
(n)
1 (C) � N

(n+1)
1 (C). Da h12 � 0 und h22 � 0, giltZ

(�1;t)

hj2(t� s)N
(n�1)
j (ds) �

Z
(�1;t)

hj2(t� s)N
(n)
j (ds);

j = 1; 2, woraus �
(n)
2 (t) � �

(n+1)
2 (t) und schlie�lich N

(n)
2 (C) � N

(n+1)
2 (C) folgt. �

Auch in diesem Fall existiert also �i(t)
def
= limn!1 �

(n)
i (t) wie auchNi(C)

def
= limn!1N

(n)
i (C)

f�ur t 2 R, C 2 B, und erf�ullt die gew�unschten Me�barkeitseigenschaften (i = 1; 2).
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Sei (a; b] � R. Nach Wahl von �N besitzt �N ((a; b]� [0; 1]) eine Poi(�(b � a))-Verteilung,

also EEE
�
�N ((a; b]� [0; 1])

�
= �(b� a). Majorisierte Konvergenz im bedingten Fall zeigt

EEE
�
Ni((a; b]) j F

�N
a

�
= lim

n!1
EEE
�
N

(n)
i ((a; b])

���F �N
a

�
= lim

n!1
EEE

�Z
(a;b]

�
(n)
i (t) dt

����F �N
a

�
= EEE

�Z
(a;b]

�i(t) dt

����F �N
a

�
;

d.h. (�i(t))t2R ist eine F
�N
t -Intensit�at von Ni (i = 1; 2).

Wir k�onnen in dieser Situation Behauptung 3 abschreiben:

Behauptung 5. Die Intensit�at (�i(t))t2R ist von der gew�unschten Form (D2) (i = 1; 2).

Begr�undung: Im Fall i = 1 f�uhrt die gleiche Argumentation wie im Nachweis von Be-

hauptung 3 zum Ziel. F�ur �2(t) gelten die Absch�atzungen

�
(n)
2 (t) � �2

 
2X

j=1

Z
(�1;t)

hj2(t� s)Nj(ds)

!

�2(t) � �2

 
2X

j=1

Z
(�1;t)

hj2(t� s)N
(n)
j (ds)

!
:

Die rechtsseitige Stetigkeit von �2 zeigt im Grenz�ubergang n ! 1 das Gew�unschte, denn

N (n) #n!1 N . �

Wir haben gesehen, da� (�i(t))t2R in beiden F�allen eine F
�N
t -Intenstit�at von Ni darstellt.

Nach Konstruktion gilt Ft � F
�N
t und (�i(t))t2R ist ein Ft-vorhersagbarer stochastischer Proze�,

woraus folgt, da� (�i(t))t2R auch eine Ft-Intensit�at von Ni ist (i = 1; 2).

14. Lipschitz-stetige Anregungsfunktionen { der

unbeschr�ankte Fall

Die �Ubertragung der Aussagen der S�atze 10.5, 10.10 und 10.12 auf den K-variaten Fall �ndet

sich wieder im

14.1. Satz (unbeschr�ankte Lipschitz-Dynamik). Gegeben seien ein K 2 N und �i-Lip-

schitz-stetige Funktionen �i : R ! [0;1), 1 � i � K. Die Funktionen hji : [0;1)! R seien so

gew�ahlt, da� die Matrix

A = (aij) i=1;:::;K
j=1;:::;K

def
=

�
�i

Z 1

0

jhji(t)j dt

�
i=1;:::;K
j=1;:::;K

(14.1)

endliche Eintr�age und einen Spektral-Radius echt kleiner 1 besitzt. Dann gilt:
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(i) Es gibt ein eindeutiges station�ares Verteilungsgesetz N = (N1; : : : ; NK) mit Dynamik (D2)

und endlichen durchschnittlichen Intensit�aten �i = EEE(Ni((0; 1])), 1 � i � K.

(ii) Sei NK
0 die Menge aller K-variaten Punkt-Prozesse N = (N1; : : : ; NK) mit Intensit�at

(�1(t); : : : ; �K(t))t2[0;1) auf [0;1), f�ur die die Abbildung t 7! EEE
�
�i(t) j F

N
0

�
f.s. lokal inte-

grierbar auf [0;1) ist, 1 � i � K. F�ur t 2 R und a 2 (0;1) sei

"a(t) =
X

i=1;:::;K
j=1;:::;K

Z t_0

(t�a)_0

Z
(�1;0]

jhji(s� u)j Nj(du) ds:(14.2)

In der Menge NK
0 ist die Dynamik (D2) stabil in Verteilung bez�uglich jeder der folgenden

Anfangsbedingungen

(AB i') supt�0 "a(t) <1 f.s. und limt!1 "a(t) = 0 f.s. f�ur alle a > 0

(AB ii') supt�0EEE("a(t)) <1 und limt!1EEE("a(t)) = 0 f�ur alle a > 0.

(iii) Gelte in der Situation von (ii) zus�atzlich
R1
0
t jhji(t)j dt < 1 f�ur i; j 2 f1; : : : ; Kg, dann

ist (D2) auf NK
0 stabil in Variation bez�uglich der Anfangsbedingung

(AB iii')
P

i=1;:::;K
j=1;:::;K

R1
0

R
(�1;0]

jhji(t� s)j Nj(ds) dt <1 f.s..

Beweis (Satz 14.1(i)): Um die Existenz eines station�aren Verteilungsgesetzes zu bewei-

sen, bedienen wir uns erneut einer induktiven Konstruktion: Sei (
;F) der kanonische Raum

der Punkt-Prozesse auf R2 (ggf. das K-fache Produkt dieses Raumes) und PPP ein Wahrschein-

lichkeitsma� mit PPP � �t = PPP . �N1; : : : ; �NK bezeichnen K bivariate �t-kompatible Poisson-Prozesse

auf R2 der Intensit�at 1, die stochastisch unabh�angig sind. Falls (
;F) =
NK

i=1(M
0
2;M

0
2) gelte

�Ni((!1; : : : ; !K); �) = !i(�), ansonsten �Ni(!; �) = !(�). Eine gemeinsame Filtration dieser Prozesse

ist F
�N
t

def
= �

�
F

�Ni
t ; 1 � i � K

�
. Setze �

(0)
i � 0 (1 � i � K) und de�niere induktiv

N
(n)
i (C)

def
=

Z
C

�Ni

�
dt�

h
0; �

(n)
i (t)

i�
; C 2 B;

�
(n+1)
i (t)

def
= �i

 
KX
j=1

Z
(�1;t)

hji(t� s)N
(n)
j (ds)

!
; t 2 R;

1 � i � K.

(a) Nach Voraussetung ist �i eine �i-Lipschitz-stetige Funktion. Analog zu 7.1 k�onnen wir

zeigen, da�
�
�
(n)
i (t)

�
t2R

F
�N
t -vorhersagbar und eine �t-kompatible F

�N
t -Intensit�at von N

(n)
i ist.

Au�erdem ist N (n) F
�N
t -adaptiert und �t-kompatibel. Mit Hilfe von 6.15 und dem Satz von Fubini

erhalten wir die Ungleichung

EEE
�����(n+1)

i (0)� �
(n)
i (0)

���� � �iEEE

 
KX
j=1

Z
(�1;0)

jhji(�s)j
���N (n)

j �N
(n�1)
j

��� (ds)
!
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= �iEEE

 
KX
j=1

Z
(�1;0)

jhji(�s)j
����(n)j (s)� �

(n�1)
j (s)

��� ds
!

= �i

KX
j=1

Z
(�1;0)

jhji(�s)j dsEEE
�����(n)j (0)� �

(n�1)
j (0)

���� :
Bei der letzten Gleichheit wurde PPP � �t = PPP und die �t-Kompatibilit�at der Punkt-Prozesse
�N1; : : : ; �NK genutzt, die dazu f�uhrt, da� die Prozesse

�
�
(n)
i (t)

�
t2R

und Ni ebenfalls �t-kompatibel

sind (analog zu 7.1(i)). Zu n 2 N folgt f�ur den
"
Intensit�atenvektor\

���(n+1)(0)� �(n)(0)
��

EEE
����(n+1)(0)� �(n)(0)

��� =
0
BBB@
EEE
�����(n+1)

1 (0)� �
(n)
1 (0)

����
...

EEE
�����(n+1)

K (0)� �
(n)
K (0)

����
1
CCCA

�

0
BBB@
�1

PK

j=1

R
[0;1)

hj1(s) dsEEE
�����(n)j (0)� �

(n�1)
j (0)

����
...

�K
PK

j=1

R
[0;1)

hjK(s) dsEEE
�����(n)j (0)� �

(n�1)
j (0)

����
1
CCCA

= AEEE
����(n)(0)� �(n�1)(0)

��� ;
die Ungleichung ist komponentenweise zu lesen. Induktiv gelangt man hiermit unter Verwendung

von N
(0)
j = �Nj(� � f0g) � Poi(0) zur Ungleichung

EEE����(n+1)(0)� �(n)(0)

���

 � 

AnEEE
����(1)(0)� �(0)(0)

���


=


AnEEE

����(1)(0)���

 =







A

n

0
B@
EEE(j�1(0)j)

...

EEE(j�K(0)j)

1
CA







 � K max

1�i�K
�i(0) kA

nk :

Nach [Asm87] Kapitel X 1. Lemma 1.1 (iv) gibt es ein k 2 N0, so da� sich An f�ur n ! 1 mit

geeignetem k wie nk�n verh�alt, � bezeichne den Spektralradius von A. Unter Ausnutzung des

Quotientenkriteriums (z.B. [For76] x7 Satz 7) folgt

K max
1�i�K

�i(0)

1X
n=0

nk�n <1;

denn � < 1. Insgesamt k�onnen wir aus diesen Absch�atzungen

1X
n=0



EEE����(n+1)(0)� �(n)(0)
���

 <1

schlie�en. Bez�uglich der (Halb-)Norm k�k1
def
= EEE j�j auf dem Raum L1(
;F ;PPP ) gilt f�ur k;m 2 N


�(k+m)

i (0)� �
(k)
i (0)





1
�


EEE����(k+m)(0)� �(k)(0)

���


�

1X
n=k



EEE����(n+1)(0)� �(n)(0)
���

 k!1

���! 0;
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d.h. �
(n)
i (0) konvergiert im L1(
;F ;PPP )-Sinn gegen ein passendes �i(0) f�ur n!1. F�ur beliebiges

t 2 R de�niere �i(t)
def
= �i (�t�; 0) = limn!1 �

(n)
i (�t�; 0) = limn!1 �

(n)
i (t).

Der weitere Beweis wird nicht in allen Details durchgef�uhrt, denn ab nun k�onnen wir die

Beweisschritte zu Satz 10.5 �ubernehmen. Aus

PPP
�����(n+1)

i (0)� �
(n)
i (0)

��� > 

An
2



� � K max
1�i�K

�i(0)


An

2




folgt die f.s. G�ultigkeit von limn!1 �

(n)
i (0) = �i(0).

(b) Die Endlichkeit von

1X
n=0

PPP

�Z
C

���N (n+1)
i �N

(n)
i

��� (ds) 6= 0

�
� �n(C)

1X
n=0

EEE
�����(n+1)

i (0)� �
(n)
i (0)

���� <1

bei vorliegen beschr�ankten Mengen C 2 B zeigt nach Borel-Cantelli

PPP

�
lim sup
n!1

�Z
C

���N (n+1)
i �N

(n)
i

��� (ds) 6= 0

��
= 0;

d.h. die Lage der Punkte von N
(n+1)
i und N

(n)
i auf C stimmen f.s. ab einem gen�ugend gro�en

n �uberein. Somit gibt es einen Punkt-Proze� N mit Ni = limn!1N
(n)
i f.s., 1 � i � K. Nach

Konstruktion ist Ni �t-kompatibel, hieraus folgt mit PPP � �t = PPP wie �ublich die Stationarit�at.

F�ur alle 1 � i � K stimmt Ni mit
�R

C
�Ni (ds� [0; �i(s)])

�
C2B

f.s. �uberein: Erneut l�a�t sich

f�ur beschr�ankte Mengen C 2 B eine Absch�atzung �nden:

EEE

�Z
C

��Ni(ds)� �Ni (ds� [0; �i(s)])
��� � �n(C) lim

n!1
EEE
�����(n)i (0)� �i(0)

���� = 0:

Der Proze� Ni hat also die F
�N
t -Intensit�at (�i(s))s2R.

(c) Um die Darstellung der F
�N
t -Intensit�at in der Form (D2) zu erhalten, betrachten wir

zun�achst �i(0). Hierf�ur gilt

EEE

 ������i(0)� �i

 
KX
j=1

Z
(�1;0)

hji(�s)Nj(ds)

!�����
!

� EEE
�����i(0)� �

(n+1)
i (0)

����

+EEE

 ������i
 

KX
j=1

Z
(�1;0)

hji(�s)N
(n)
j (ds)

!
� �i

 
KX
j=1

Z
(�1;0)

hji(�s)Nj(ds)

!�����
!

� EEE
�����i(0)� �

(n+1)
i (0)

���� + �i

KX
j=1

Z
(�1;0)

jhji(�s)j dsEEE
�����(n)j (0)� �j(0)

����
n!1
���! 0;

somit ist �i(0) = �i

�PK

j=1

R
(�1;0)

hji(�s)Nj(ds)
�
f.s.. Dies sorgt gemeinsam mit der �t-Kompa-

tibilit�at f�ur die Gleichheit

�i(t) = �i(�t�; 0) = �i

 
KX
j=1

Z
(�1;t)

hji(t� s)Nj(ds)

!
:
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Nach Konstruktion wird durch (�i(s))s2R ebenfalls eine FN
t -Intensit�at von Ni gegeben, denn

(�i(s))s2R ist aufgrund der vorhergehenden Darstellung FN
t -vorhersagbar, dabei gilt F

N
t =

�
�
FNi
t ; 1 � i � K

�
� F

�N
t .

(d) Um den Existenzbeweis abzuschlie�en, wird noch die Endlichkeit von EEE(Ni((0; 1]))

ben�otigt. Hierf�ur besteht aufgrund der �i-Lipschitz-Stetigkeit der �i die komponentenweise Ab-

sch�atzung

0
BBB@
�1EEE

�PK

j=1

R
(�1;t)

jhj1(t� s)j N (n)
j (ds)

�
...

�KEEE
�PK

j=1

R
(�1;t)

jhjK(t� s)j N (n)
j (ds)

�
1
CCCA �

nX
k=1

Ak

0
B@
�1(0)
...

�K(0)

1
CA(14.3)

f�ur alle n 2 N0. Den Nachweis f�uhren wir durch eine Induktion nach n.

Begr�undung: Der Fall n = 0 ist nach De�nition der Prozesse N
(0)
1 ; : : : ; N

(0)
K klar. Gelte

(14.3) f�ur ein n 2 N0. F�ur die i-te Komponente gilt aufgrund der �j-Lipschitz-Stetigkeit von �j

(1 � j � K) und dem Satz von Fubini

�iEEE

 
KX
j=1

Z
(�1;t)

jhji(t� s)j N (n+1)
j (ds)

!

� �iEEE

 
KX
j=1

Z
(�1;t)

jhji(t� s)j�j(0) ds

!

+ �iEEE

 
KX
j=1

Z
(�1;t)

jhji(t� s)j
KX
l=1

�j

Z
(�1;s)

jhlj(s� u)j N (n)
l (du) ds

!

=

0
B@A

0
B@
�1(0)
...

�K(0)

1
CA
1
CA

i

+ �i

KX
j=1

Z
(�1;t)

jhji(t� s)j�jEEE

 
KX
l=1

Z
(�1;s)

jhlj(s� u)j N (n)
l (du)

!
ds:

Durch Anwendung der Induktionsvoraussetzung erhalten wir hieraus

 
�iEEE

 
KX
j=1

Z
(�1;t)

jhji(t� s)j N (n+1)
j (ds)

!!
1�i�K

� A

0
B@
�1(0)
...

�K(0)

1
CA+

0
BB@�i

KX
j=1

Z
(�1;t)

jhji(t� s)j

0
B@ nX

k=1

Ak

0
B@
�1(0)
...

�K(0)

1
CA
1
CA

j

ds

1
CCA

1�i�K

= A

0
B@
�1(0)
...

�K(0)

1
CA+ A

nX
k=1

Ak

0
B@
�1(0)
...

�K(0)

1
CA
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=

n+1X
k=1

Ak

0
B@
�1(0)
...

�K(0)

1
CA :

�

Wie bereits in (a) gesehen, bleibt die rechte Seite von Absch�atzung (14.3) auch nach dem

�Ubergang zu n!1 endlich, dies sichert die geforderte Endlichkeit, denn aus (�i ist �i-Lipschitz-

stetig) 0
B@
EEE(N1((0; 1]))

...

EEE(NK((0; 1]))

1
CA =

0
B@
EEE(�1(0))

...

EEE(�K(0))

1
CA

�

0
BBB@
EEE
�����1(0)� �

(n+1)
1 (0)

����
...

EEE
�����K(0)� �

(n+1)
K (0)

����
1
CCCA+

0
BBB@
EEE
�
�
(n+1)
1 (0)

�
...

EEE
�
�
(n+1)
K (0)

�
1
CCCA

�

0
BBB@
EEE
�����1(0)� �

(n+1)
1 (0)

����
...

EEE
�����K(0)� �

(n+1)
K (0)

����
1
CCCA+

0
B@
�1(0)
...

�K(0)

1
CA

+

0
BBB@
�1EEE

�PK

j=1

R
(�1;t)

jhj1(t� s)j N (n)
j (ds)

�
...

�KEEE
�PK

j=1

R
(�1;t)

jhjK(t� s)j N (n)
j (ds)

�
1
CCCA

�

0
BBB@
EEE
�����1(0)� �

(n+1)
1 (0)

����
...

EEE
�����K(0)� �

(n+1)
K (0)

����
1
CCCA+

0
B@
�1(0)
...

�K(0)

1
CA +

nX
k=1

Ak

0
B@
�1(0)
...

�K(0)

1
CA

f�ur alle n 2 N folgt

 
EEE(N1((0;1]))

...
EEE(NK((0;1]))

!
�

 
�1(0)

...
�K(0)

!
+
P1

k=1A
k

 
�1(0)

...
�K(0)

!
<1.

(e) Der Beweis der Eindeutigkeit des station�aren Prozesses nutzt die noch nachzuweisende

Aussage (ii) des Satzes. Wir rechnen Voraussetzung (AB ii') nach: Bezeichne ~N =
�
~N1; : : : ; ~NK

�
einen station�aren Punkt-Proze� mit F

~N
t -Intensit�at

�
~�(t)

�
t2R

, ~�(t) =
�
~�1(t); : : : ; ~�K(t)

�
. Sei

~�i
def
= EEE

�
~Ni((0; 1])

�
< 1, a 2 [0;1) und t 2 R. ~"a werde gem�a� (14.2) mit ~N anstelle von N

de�niert. Voraussetzung (AB ii') folgt mit dem Satz von Fubini und 5.8 aus

EEE(~"a(t)) =

KX
i;j=1

Z t_0

(t�a)_0

EEE

�
~�j

Z
(�1;0]

jhji(s� u)j du

�
ds

=

KX
i;j=1

Z t_0

(t�a)_0

~�j

Z 1

s

jhji(u)j du ds
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�
KX

i;j=1

a~�j

Z 1

(t�a)_0

jhji(u)j du:

Hiervon liest man ab:

� supt�0EEE(~"a(t)) � a
PK

i;j=1
~�j
R1
0
jhji(u)j du <1

� limt!1EEE(~"a(t)) = 0.

Der Nachweis von (ii) und (iii) verl�auft zu Beginn wieder parallel:

Beweis (Satz 14.1(ii) und (iii)): Sei N 0 = (N 0
1; : : : ; N

0
K) 2 N

K
0 ein transienter Punkt-

Proze� auf dem me�baren Raum (
;F), welcher eine FN 0

t -Intensit�at

�
�0(t)

�
t2R

=
��
�01(t); : : : ; �

0
K(t)

��
t2R

der Form (D2) auf [0;1) besitzt, und au�erdem eine der Anfangsbedingungen (AB i'), (AB ii')

oder (AB iii') erf�ullt. Es bezeichne PPP die zugeh�orige Wahrscheinlichkeitsverteilung.

Da Ni = (Ti;n)n2Z 2 N0 gilt, ist Ni nichtexplodierend auf [0;1) (1 � i � K). Somit lassen sich

gem�a� 6.14 durch

�Ni(C � L) =
X
n2N

1C
�
T 0i;n
�
1L
�
�0i+
�
T 0i;n
�
U 0
i;n

�
+

Z
C

Z
Ln(0;�0i+(t)]

N̂ 0
i(dt� dz)

homogene �
�
FN 0

t ;F
�Ni
t

�
-Poisson-Prozesse �Ni der Intensit�at 1 auf R

2 mit �0i+(t)
def
= 1(0;1) (t)�

0
i(t)

und geeigneten Folgen (Ui;n)n2Z und Punkt-Prozessen N̂ 0
i wie in 6.14 konstruieren, 1 � i � K.

Es sei angenommen, da� die nach 6.14 zur Konstruktion ben�otigten Prozesse s�amtlich vonein-

ander unabh�angig sind, so da� �Ni einen �
�
FN 0

t ;F
�N
t

�
-Poisson-Proze� bildet. Wir k�onnen sofort

nachrechnen, da�

N 0
i(C) =

Z
C

�Ni (dt� [0; �0i(t)])

f�ur alle C 2 B gilt. Wie im ersten Beweisteil konstruiere den station�aren Punkt-Proze� N =

(N1; : : : ; NK) mit Intensit�at (�(t))t2R aus �N =
�
�N1; : : : ; �NK

�
, wobei �(t) = (�1(t); : : : ; �K(t)).

De�niere f�ur i 2 f1; : : : ; Kg die Funktion

fi(t)
def
=

(
EEE
�
j�i(t)� �0i(t)j j F

N 0

0

�
f�ur t � 0

0 f�ur t < 0
:

Nach Wahl von N 0 ist EEE
�
�0i(t) j F

N 0

0

�
f.s. lokal integrierbar auf [0;1), dies �ubertr�agt sich auf fi,

vergleiche (10.7):

Z b

a

fi(t) dt �

Z b_0

a_0

EEE
�
�i(t) j F

N 0

0

�
dt+

Z b_0

a_0

EEE
�
�0i(t) j F

N 0

0

�
dt <1 f.s.,(14.4)
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a; b 2 R. Ferner gen�ugt fi(t) f�ur alle t � 0 aufgrund der �i-Lipschitz-Stetigkeit von �i, der nach

Konstruktion g�ultigen Unabh�angigkeit von FN 0

0 und F N̂ 0

0 sowie der FN 0

0 -Me�barkeit von N 0 auf

(�1; 0) der Absch�atzung

fi(t) � �i

KX
j=1

�
EEE

�Z
(�1;0)

jhji(t� s)j N 0
j(ds)

����FN 0

0

�

+EEE

�Z
(�1;0)

jhji(t� s)j Nj(ds)

����FN 0

0

�

+EEE

�Z
[0;t)

jhji(t� s)j
��N 0

j �Nj

�� (ds) ����FN 0

0

��

= �i

KX
j=1

�Z
(�1;0)

jhji(t� s)j N 0
j(ds) +EEE

�Z
(�1;0)

jhji(t� s)j�j(s) ds

�

+EEE

�Z
[0;t)

jhji(t� s)j
���0j(s)� �j(s)

�� ds ����FN 0

0

��

= �i

KX
j=1

�Z
(�1;0)

jhji(t� s)j N 0
j(ds) + �j

Z
(t;1)

jhji(s)j ds

+

Z
[0;t)

jhji(t� s)j fj(s) ds

�
:

(14.5)

Sei nun a > 0 fest und de�niere dazu Fa;i(t)
def
=
R t
t�a

fi(s) ds =
R t_0
(t�a)_0

fi(s) ds. Die vorherige

Ungleichung zeigt f�ur t � 0 mit dem Satz von Fubini

Fa;i(t) � �i

KX
j=1

Z t_0

(t�a)_0

�Z
(�1;0)

jhji(u� s)j N 0
j(ds) + �j

Z 1

u

jhji(s)j ds

�
du(14.6)

+ �i

KX
j=1

Z t_0

(t�a)_0

Z
[0;u)

jhji(u� s)j fj(s) ds du

� �"a;i(t) + �i

KX
j=1

Z
[0;t)

Z t_0

(t�a)_0

fj(u� s) du jhji(s)j ds

= �"a;i(t) + �i

KX
j=1

Z
[0;t)

Z (t�s)_0

(t�s�a)_0

fj(u) du jhji(s)j ds

= �"a;i(t) + �i

KX
j=1

Z
[0;t)

Fa;j(s) jhji(t� s)j ds

unter Ausnutzung der De�nition

�"a;i(t)
def
=

8>><
>>:

�i
PK

j=1

R t_0
(t�a)_0

�R
(�1;0)

jhji(u� s)j N 0
j(ds) + �j

R1
u
jhji(s)j ds

�
du

f�ur t � 0

0 f�ur t < 0

:
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F�ur jedes endliche Intervall I � [x; y] � R und t 2 R gilt nach (14.4)

Fa;i(t) =

Z t_0

(t�a)_0

fi(s) ds �

Z y_0

(x�a)_0

fi(s) ds <1 f.s.,

d.h. Fa;i ist auf jeder beschr�ankten Menge f.s. beschr�ankt. Aus Gleichung (14.6) folgt mit den

Festlegungen g
(0)
ij (t)

def
= 1fi=jg�0(t) und

g
(n+1)
ij (t)

def
= �i1[0;1) (t)

KX
k=1

Z t

0

jhki(t� s)j g(n)kj (s) ds;

n 2 N0, die Absch�atzung

Fa;i(t) � Ga;i(t)
def
=

1X
k=0

KX
j=1

Z 1

0

1[0;t] (s) �"a;j(t� s)g
(k)
ij (s) ds:(14.7)

Dazu zeigt man zun�achst die folgende Behauptung, wovon wir im weiteren Beweis nur Unglei-

chung (14.10) ben�otigen werden.

Behauptung 1. Sei Mt;i
def
= sups2[0;t] Fa;i(s) (< 1 f.s.). Dann gilt f�ur alle t 2 [0;1) die

Gleichung und die Ungleichungen

KX
j1;:::;jn+1=1

Z
[0;t)

�i jhj1i(t� s1)j

Z
[0;s1)

�j1 jhj2j1(s1 � s2)j : : :(14.8)

Z
[0;sn)

�jn
��hjn+1jn(sn � sn+1)

�� �"a;jn+1
(sn+1) dsn+1 : : : ds2 ds1

=

KX
j=1

Z t

0

�"a;j(t� s)g
(n+1)
i;j (s) ds;

0
@ KX

j1;:::;jn+1=1

Z
[0;t)

�i jhj1i(t� s1)j

Z
[0;s1)

�j1 jhj2j1(s1 � s2)j : : :(14.9)

Z
[0;sn)

�jn
��hjn+1jn(sn � sn+1)

��Fa;jn+1
(sn+1) dsn+1 : : : ds2 ds1

�
1�i�K

� An+1

0
B@
Mt;1

...

Mt;K

1
CA f.s. (komponentenweise),

Fa;i(t) �
nX

k=0

KX
j=1

Z t

0

�"a;j(t� s)g
(k)
i;j (s) ds(14.10)

+

KX
j1;:::;jn+1=1

Z
[0;t)

�i jhj1i(t� s1)j

Z
[0;s1)

�j1 jhj2j1(s1 � s2)j : : :

Z
[0;sn)

�jn
��hjn+1jn(sn � sn+1)

��Fa;jn+1
(sn+1) dsn+1 : : : ds2 ds1;
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f�ur alle i 2 f1; : : : ; Kg und n 2 N0.

Begr�undung: Wir nutzen jeweils eine Induktion zum Nachweis.

zu (14.8). Im Fall n = 0 sehen wir sofort

KX
j1=1

Z
[0;t)

�i jhj1i(t� s1)j �"a;j1(s1) ds1

=

KX
j1=1

Z
[0;t)

�"a;j1(t� s1)

KX
j=1

�i

Z s1

0

jhji(s1 � s)j1fj1=jg�0(s) ds ds1

=

KX
j1=1

Z
[0;t)

�"a;j1(t� s1)g
(1)
ij1
(s1) ds1:

Falls (14.8) f�ur n 2 N0 erf�ullt ist, gilt unter Ausnutzung der Induktionsvoraussetzung bei der

ersten Gleichheit

KX
j1;:::;jn+2=1

Z
[0;t)

�i jhj1i(t� s1)j

Z
[0;s1)

�j1 jhj2j1(s1 � s2)j : : :

Z
[0;sn+1)

�jn+1

��hjn+2jn+1
(sn+1 � sn+2)

�� �"a;jn+2
(sn+2) dsn+2 : : : ds2 ds1

=

KX
j1=1

Z
[0;t)

�i jhj1i(t� s1)j
KX
j=1

Z s1

0

�"a;j(s1 � s)g
(n+1)
j1;j

(s) ds ds1

=

KX
j;j1=1

Z t

0

Z t

0

�i jhj1i(t� s� s1)j �"a;j(s1)g
(n+1)
j1j

(s) ds ds1

=

KX
j=1

Z t

0

�"a;j(s1)g
(n+2)
ij (t� s1) ds1 =

KX
j=1

Z t

0

�"a;j(t� s1)g
(n+2)
ij (s1) ds1:

zu (14.9). Es ist
"
n = 0\ nach De�nition der Mt;i klar. Gelte (14.9) f�ur ein n 2 N0. Dies liefert0

@ KX
j1;:::;jn+2=1

Z
[0;t)

�i jhj1i(t� s1)j

Z
[0;s1)

�j1 jhj2j1(s1 � s2)j : : :

Z
[0;sn+1)

�jn+1

��hjn+2jn+1
(sn+1 � sn+2)

��Fa;jn+2
(sn+2) dsn+2 : : : ds2 ds1

�
1�i�K

�

0
BB@

KX
j1=1

Z
[0;t)

�i jhj1i(t� s1)j

0
B@An+1

0
B@
Ms1;1

...

Ms1;K

1
CA
1
CA

j1

1
CCA

1�i�K

� An+2

0
B@
Mt;1

...

Mt;K

1
CA f.s.,

dabei Anwendung der Induktionsvoraussetzung beim ersten, Ms1;i �Mt;i f�ur alle s1 2 [0; t] beim

zweiten Ungleichheitszeichen.
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zu (14.10). Aus Gleichung (14.6) und g
(0)
ij (t) = 1fi=jg�0(t) erhalten wir den Fall n = 0. Nutzung

von (14.10) und einsetzen des Falls n = 0 liefert:

Fa;i(t) �
nX

k=0

KX
j=1

Z t

0

�"a;j(t� s)g
(k)
i;j (s) ds

+

KX
j1;:::;jn+1=1

Z
[0;t)

�i jhj1i(t� s1)j

Z
[0;s1)

�j1 jhj2j1(s1 � s2)j : : :

Z
[0;sn)

�jn
��hjn+1jn(sn � sn+1)

�� �"a;jn+1
(sn+1) dsn+1 : : : ds2 ds1

+

KX
j1;:::;jn+1=1

Z
[0;t)

�i jhj1i(t� s1)j

Z
[0;s1)

�j1 jhj2j1(s1 � s2)j : : :

Z
[0;sn)

�jn
��hjn+1jn(sn � sn+1)

��
KX

jn+2=1

Z
[0;sn+1)

�jn+1

��hjn+2jn+1
(sn+1 � sn+2)

��Fa;jn+2
(sn+2) dsn+2

dsn+1 : : : ds2 ds1

=

n+1X
k=0

KX
j=1

Z t

0

�"a;j(t� s)g
(k)
i;j (s) ds

+

KX
j1;:::;jn+1=1

Z
[0;t)

�i jhj1i(t� s1)j

Z
[0;s1)

�j1 jhj2j1(s1 � s2)j : : :

Z
[0;sn)

�jn
��hjn+1jn(sn � sn+1)

��
KX

jn+2=1

Z
[0;sn+1)

�jn+1

��hjn+2jn+1
(sn+1 � sn+2)

��Fa;jn+2
(sn+2) dsn+2

dsn+1 : : : ds2 ds1;

benutze (14.8). �

Da der Spektralradius von A echt kleiner als 1 ist, konvergiert die rechte Seite von (14.9)

f�ur n!1 gegen 0. Somit gilt also Fa;i(t) � Ga;i(t) nach (14.10) (Grenz�ubergang n!1).

Unser weiteres Vorgehen h�angt von der gew�ahlten Anfangsbedingung ab, also:

� Erf�ulle N 0 ab jetzt Anfangsbedingung (AB i'). Nach Anfangsbedingung (AB i') folgt ge-

meinsam mit der fast sicheren Endlichkeit von �ja
R1
0
jhji(s)j ds die fast sichere Endlichkeit von

supt2[0;1) �"a;j(t), damit ist �"a;i(t) f.s. beschr�ankt auf R

Es ist Ga;i(t) <1 f.s., t 2 [0;1), falls wir zeigen k�onnen:

Behauptung 2. F�ur t 2 R und i 2 f1; : : : ; Kg gilt

1X
k=0

KX
j=1

Z t

0

�"a;j(t� s)g
(k)
ij (s) ds <1 f.s..
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Begr�undung: Setze �a;j
def
= supt2[0;1) �"a;j(t) < 1 f.s.. Wir zeigen durch eine Induktion

nach k die Ungleichung

KX
j=1

�a;j

Z t

0

g
(k)
ij (s) ds �

0
B@Ak

0
B@
�a;1
...

�a;K

1
CA
1
CA

i

f.s..

Es ist
"
n = 0\ einmal mehr klar. Den Induktionsschritt zeigt

KX
j=1

�a;j

Z t

0

g
(k+1)
ij (s) ds =

KX
j=1

�a;j

Z t

0

KX
l=1

�i

Z t

0

1[0;s] (s1) jhli(s� s1)j g
(k)
lj (s1) ds1 ds

=

KX
l=1

�i

Z t

0

jhli(s1)j
KX
j=1

�a;j

Z t

0

1[s1;1) (s) g
(k)
lj (s� s1) ds ds1

�
KX
l=1

�i

Z t

0

jhli(s1)j

0
B@Ak

0
B@
�a;1
...

�a;K

1
CA
1
CA

l

ds1 �

0
B@Ak+1

0
B@
�a;1
...

�a;K

1
CA
1
CA

i

f.s.,

Nutzung der Induktionsvoraussetzung bei der ersten Ungleichheit. Hieraus k�onnen wir

1X
k=0

KX
j=1

0
B@
R t
0
�"a;j(t� s)g

(k)
1j (s) ds

...R t
0
�"a;j(t� s)g

(k)
Kj(s) ds

1
CA �

1X
k=0

Ak

0
B@
�a;1
...

�a;K

1
CA <1 f.s.

folgern. �

Nach Anfangsbedingung (AB i') und wegen
R1
(t�a)_0

jhji(s)j ds < 1 konvergiert �"a;j(t � s)

f�ur t!1 gegen 0, dominierte Konvergenz sichert damit limt!1 Fa;i(t) = 0 f.s.. Ab nun k�onnen

wir der Argumentation von Abschnitt 10.2) folgen. Nach De�nition von Fa;i(t) gilt

Fa;i(t) = EEE

�Z t_0

(t�a)_0

jNi �N 0
i j (du)

����FN 0

0

�

�
X
k>0

PPP

�Z t_0

(t�a)_0

jNi �N 0
i j (du) = k

����FN 0

0

�

= 1�PPP

�Z t_0

(t�a)_0

jNi �N 0
i j (du) = 0

����FN 0

0

�

= 1�PPP
�
Ni � N 0

i auf ((t� a) _ 0; t _ 0] j FN 0

0

�
;

so da� nach den vorangegangenen �Uberlegungen { wie bereits im Beweis von 10.8 { mit dem

Lemma von Fatou limt!1PPP
�
Ni � N 0

i auf ((t� a) _ 0; t _ 0] j FN 0

0

�
= 1 geschlossen werden kann.

Schlie�lich gilt die schwache Konvergenz von StN
0
i
+ gegen N+

i f�ur t ! 1, siehe 10.9 und die

daran anschlie�ende Anmerkung.
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� Gen�ugt N 0 Anfangsbedingung (AB ii'), liefert Erwartungswertbildung bei Gleichung (14.7)

mit dem Satz von Fubini0
B@
EEE(Fa;1(t))

...

EEE(Fa;K(t))

1
CA �

1X
k=0

KX
j=1

0
B@
R t
0
EEE(�"a;j(t� s)) g

(k)
1j (s) ds

...R t
0
EEE(�"a;j(t� s)) g

(k)
Kj(s) ds

1
CA :

Der Satz von der majorisierten Konvergenz zeigt aufgrund der Beschr�anktheit jeder Komponente

der rechten Seite nach Anfangsbedingung (AB ii') limt!1EEE(Fa;i(t)) = 0, 1 � i � K, woraus wir

schlie�lich die schwache Konvergenz von StN
0+ gegen N+ folgern k�onnen.

� Besitze N 0 Anfangsbedingung (AB iii') und gelte zus�atzlich
R1
0
t jhji(t)j dt <1, 1 � i; j �

K. Wir haben jetzt (iii) zu zeigen. Aus (14.5) folgt durch Integration zwischen 0 und T > 0

Z T

0

fi(t) dt � �i

KX
j=1

Z T

0

�Z
(�1;0]

jhji(t� s)j N 0
j(ds) + �j

Z 1

t

jhji(s)j ds

�
dt

+ �i

KX
j=1

Z T

0

Z
[0;t)

jhji(t� s)j fj(s) ds dt

� �"i + �i

KX
j=1

Z
[0;T )

Z T

0

jhji(t� s)j dt fj(s) ds

� �"i + �i

KX
j=1

Z 1

0

jhji(t)j dt

Z T

0

fj(s) ds;

dabei wird �"i de�niert als

�"i
def
= �i

KX
j=1

�Z 1

0

Z
(�1;0]

jhji(t� s)j N 0
j(ds) dt+ �j

Z 1

0

t jhji(t)j dt

�
:

Nach Voraussetzung (AB iii') und der zus�atzlichen Bedingung an hji ist �"i <1 f.s., es gilt ebensoR T
0
fi(t) dt <1 f.s. (vergleiche Beweis zu 10.12 Gleichung (10.16)). Obige Ungleichung l�a�t sich

als komponentenweise Ungleichung im RK schreiben:

Z T

0

f(t) dt =

0
B@
R T
0
f1(t) dt
...R T

0
fK(t) dt

1
CA �

0
B@

�"1
...

�"K

1
CA + A

0
B@
R T
0
f1(t) dt
...R T

0
fK(t) dt

1
CA = �"+ A

Z T

0

f(t) dt:

Durch Iteration zeigt dies
R T
0
f(t) dt �

Pk

n=0A
n�" + Ak+1

R T
0
f(t) dt f�ur k 2 N, was wegen

limk!1Ak+1 = 0 zu
R T
0
f(t) dt �

P1
n=0A

n�" f.s. f�ur alle T 2 (0;1) f�uhrt. Die rechte Seite

dieses Ausdruckes ist, unabh�angig von T , f.s. endlich, denn der Spektralradius von A ist echt

kleiner 1. Also gilt
R1
0
f(t) dt <1 f.s.. Aus

1 >

Z 1

0

fi(t) dt = EEE

�Z 1

0

j�i(t)� �0i(t)j dt

����FN 0

0

�

= EEE

�Z 1

0

jNi �N 0
i j (dt)

����FN 0

0

�
� EEE

�
jNi �N 0

i j ((0;1)) jFN 0

0

�
f.s.
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ergibt sich jNi �N 0
i j ([0;1)) < 1 f.s., d.h. Ni und N 0

i und somit N und N 0 koppeln f.s. in

endlicher Zeit auf der positiven reellen Achse, woraus wie im Beweis von 10.12 die Stabilit�at in

Variation folgt.

Wie bereits im univariaten Fall erweist sich auch hier die Einschr�ankung auf die Menge

NK
0 als unn�otig. Wir k�onnen die Argumentation der Begr�undung von Bemerkung 10.14 auf den

K-variaten Fall �ubertragen, f�uhren jedoch die Details an dieser Stelle nicht aus.

15. Lipschitz-stetige Anregungsfunktionen { der

beschr�ankte Fall

Wenden wir uns nun schlie�lich der Verallgemeinerung der S�atze 11.6 und 11.8 zu.

15.1. Satz. Gegeben seien K 2 N und �i-Lipschitz-stetige Funktionen �i : R ! [0;1), welche

jeweils durch ein �i > 0 beschr�ankt sind, 1 � i � K. F�ur die me�baren Funktionen hji : [0;1)!

R gelte Z
[0;1)

jhji(t)j dt <1 und

Z
[0;1)

t jhji(t)j dt <1;(15.1)

1 � i; j � K. In dieser Situation existiert ein eindeutiges station�ares Verteilungsgesetz f�ur den

Punkt-Proze� N = (N1; : : : ; NK) mit Dynamik (D2), und (D2) ist stabil in Variation bez�uglich

der Anfangsbedingung

lim
s!1

Z 1

s

Z
(�1;0]

jhji(u� v)j Nj(dv) du = 0 f.s.(15.2)

(1 � i; j � K).

Beweis: (i) Existenz eines station�aren Punkt-Prozesses. Sei (
;F) der kanonische Raum

der markierten Punkt-Prozesse mit [0; 1]-wertigen Marken (oder das K-fache Produkt dieses

Raumes), �t = St und PPP ein Wahrscheinlichkeitsma� auf (
;F) mit PPP � �t = PPP . Es bezeichne
�N1; : : : ; �NK stochastisch unabh�angige, markierte Punkt-Prozesse mit

� �Ni = (Ti;n; Ui;n)n2Z

� (Ti;n)n2Z ist ein Poisson-Proze� mit F
�Ni
t -Intensit�at �i

� (Ui;n)n2Z ist eine Folge u.i.v. Zufallsgr�o�en, jeweils R[0; 1]-verteilt

� (Ti;n)n2Z und (Ui;n)n2Z sind stochastisch unabh�angig

f�ur 1 � i � K. F�ur ! 2 
 gelte �Ni(!; �) = !(�) (bzw. �Ni((!1; : : : ; !K) ; �) = !i(�)). Durch

F
�N
t = �

�
F

�Ni
t ; 1 � i � K

�
wird eine gemeinsame Filtration dieser markierten Poisson-Prozesse

gegeben.
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Der gesuchte station�are Punkt-Proze� wird einmal mehr das Ergebnis einer induktiven

Konstruktion sein: De�niere Punkt-Prozesse und stochastische Prozesse durch �
(0)
i (t) � 0 und

N
(n)
i (C)

def
=

Z
C

�Ni

 
ds�

"
0;
�
(n)
i (s)

�i

#!
; C 2 B;

�
(n+1)
i (t)

def
= �i

 
KX
j=1

Z
(�1;t)

hji(t� s)N
(n)
j (ds)

!
; t 2 R:

Wie in 7.1 k�onnen wir zeigen, da�
�
�
(n)
i (t)

�
t2R

eine F
�N
t -Intensit�at von N

(n)
i darstellt, und auch

die �ubrigen Ergebnisse aus 7.1 k�onnen �ubernommen werden.

Mittels der Hilfsprozesse

~Ni(ftg) = lim sup
n!1

N
(n)
i (ftg)� lim inf

n!1
N

(n)
i (ftg)

~�i(t) = lim sup
n!1

�
(n)
i (t)� lim inf

n!1
�
(n)
i (t);

t 2 R, werden wir folgern, da� der Grenzwert Ni
def
= limn!1N

(n)
i existiert. Dazu weisen wir nach,

da� ~Ni dem Punkt-Proze� ohne einen einzigen Punkt auf der reellen Achse entspricht.

(a) Wie im Beweis von 11.6 (vergleiche ab Lemma 11.1) sieht man, da�
�
~�i(t)

�
t2R

eine

F
�N
t -Intensit�at von

~Ni ist. F�ur diese Intensit�aten gilt die Ungleichung ~�i(t) � �i�i1(a)+�i�i2(a)

mit den Festlegungen

�i1(a)
def
= lim

n!1

 
sup
k�n

KX
j=1

Z
(�1;t�a)

jhji(t� s)j N (k)
j (ds)� inf

k�n

KX
j=1

Z
(�1;t�a)

jhji(t� s)j N (k)
j (ds)

!

�i2(a)
def
= lim

n!1

 
sup
k�n

KX
j=1

Z
[t�a;t)

jhji(t� s)j N (k)
j (ds)� inf

k�n

KX
j=1

Z
[t�a;t)

jhji(t� s)j N (k)
j (ds)

!
:

Nach Konstruktion der beteiligten Prozesse ist �i2(a) �
PK

j=1

R
[t�a;t)

jhji(t� s)j �Nj(ds � [0; 1])

klar und daher �i2(a) <1 f.s.. Au�erdem erf�ullt �i2(a)

�i2(a) � lim
n!1

KX
j=1

Z
[t�a;t)

jhji(t� s)j

�
sup
k�n

N
(k)
j � inf

k�n
N

(k)
j

�
(ds)

�
KX
j=1

Z
[t�a;t)

jhji(t� s)j ~Nj(ds) f.s..

F�ur �i1(a) gilt �i1(a) <1 f.s. und lima!1�i1(a) = 0 f.s., was eine Folgerung aus

EEE(�i1(a)) � EEE

 
KX
j=1

Z
(�1;t�a)

jhji(t� s)j �Nj(ds� [0; 1])

!

=

KX
j=1

EEE

�Z
(�1;t�a)

jhji(t� s)j�jds

�
<1
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ist. Insgesamt gilt im Grenz�ubergang a!1 also

~�i(t) � �i

KX
j=1

Z
(�1;t)

jhji(t� s)j ~Nj(ds) f.s..

(b) Die Aussagen 2.4 und 2.6 lassen sich ohne gr�o�ere Modi�kationen auf den Fall K-

variater Punkt-Prozesse erweitern, d.h. die nach [Br�e81] II.4., Theorem 14, existierende F
~N
t -

vorhersagbare Version der F
�N
t -Intensit�at

�
~�i(t)

�
t2R

von ~Ni besitzt eine Darstellung der Form�
�i
�
~N1; : : : ; ~NK; t

��
t2R

. Wie in Lemma 11.3 erhalten wir das Analogon zu (11.4) f�ur den vorlie-

genden Fall:

�i

�
~N�
1 ; : : : ;

~N�
K ; t
�
� �i

KX
j=1

Z
(�1;0]

jhji(t� s)j ~Nj(ds) f.s..(15.3)

Wird die rechte Seite dieses Ausdrucks noch bez�uglich t �uber [0;1) integriert, bleibt der entste-

hende Ausdruck f.s. endlich, denn aus (15.1) folgt

EEE

 Z
(0;1)

KX
j=1

Z
(�1;0]

jhji(t� s)j �Nj(ds� [0; 1]) dt

!

=

KX
j=1

EEE

�Z
(0;1)

Z
(�1;0]

jhji(t� s)j�j ds dt

�
=

KX
j=1

�j

Z
(0;1)

t jhji(t)j dt <1

unter Nutzung des Satzes von Fubini. Gleichung (15.3) und Korollar 5.6 zeigen (beachte das

Disjunktheitslemma in [Kin93] 2.2)

PPP
�
~Ni((0;1)) = 0

���F ~N
0

�
� PPP

�
~N((0;1)� f1; : : : ; Kg) = 0

���F ~N
0

�

�
KY
i=1

exp

 
�

Z
(0;1)

�i

KX
j=1

Z
(�1;0]

jhji(t� s)j �Nj(ds� [0; 1]) dt

!

> 0 f.s.,

dies f�uhrt zu PPP
�
~Ni((0;1)) = 0

�
= 1 (vergleiche �Uberlegungen im Anschlu� an 11.4). Damit

wird die Festlegung Ni
def
= limn!1Ni sinnvoll, denn f�ur beschr�ankte Mengen C 2 B stimmen die

Punkte von N
(n)
i und N

(n+1)
i auf C ab einem gen�ugend gro�en n f.s. �uberein. Nach Konstruktion

ist die �t-Kompatibilit�at von Ni klar, dies liefert die Stationarit�at von Ni.

(c) Sei (�i(t))t2R von der Form (D2), dieser Proze� ist eine FN
t -Intensit�at von Ni:

F�ur beschr�ankte Mengen C 2 B gilt aufgrund der �t-Kompatibilit�at, des Lemma's von Fatou

und 6.15

EEE

�Z
C

����Ni(ds)� �Ni

�
ds�

�
0;
�i(s)

�i

������
�
� �n(C) lim

n!1
EEE
�����(n+1)

i (0)� �i(0)
���� :

Aus der Endlichkeit von EEE
�R

(�1;0)
jhji(�s)j �Nj (ds� [0; 1])

�
= �j

R
[0;1)

jhji(s)j ds folgt die fast

sichere Endlichkeit von
R
(�1;0)

jhji(�s)j
���N (n)

j �Nj

��� (ds) f�ur alle n 2 N. Da N
(n)
i auf jedem
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beschr�ankten Intervall schlie�lich mit Ni �ubereinstimmt, zeigt die aus der Lipschitz-Stetigkeit

resultierende Absch�atzung����(n+1)
i (0)� �i(0)

��� � �i

KX
j=1

Z
(�1;0)

jhji(�s)j
���N (n)

j �Nj

��� (ds)
die f.s. Konvergenz von limn!1

����(n+1)
i (0)� �i(0)

��� gegen 0. Der Satz von der dominierten Kon-

vergenz sichert

lim
n!1

EEE
�����(n+1)

i (0)� �i(0)
���� = 0;

d.h. Ni stimmt auf jeder beschr�ankten Borel-Menge schlie�lich mit
�R

C
�Ni

�
ds�

h
0;

�i(s)

�i

i��
C2B

�uberein, also Ni =
�R

C
�Ni

�
ds�

h
0; �i(s)

�i

i��
C2B

f.s..

Den Nachweis der Eindeutigkeit erbringen wir im Anschlu� an den Beweis der Stabilit�at.

(ii) Stabilit�at in Variation. Sei N 0 = (N 0
1; : : : ; N

0
K) ein K-variater Punkt-Proze� , der der

Anfangsbedingung (15.2) gen�ugt und auf [0;1) die FN 0

t -Intensit�at (�0(t))t2[0;1) von der Form

(D2) zul�a�t, dabei ist FN 0

t = �
�
F

N 0
i

t ; 1 � i � K
�
und �0(t)

def
= (�01(t); : : : ; �

0
K(t)) auf [0;1). Die

Funktionen �1; : : : ; �K sind beschr�ankt und daher die Prozesse N1; : : : ; NK auf [0;1) nichtex-

plodierend.

Im Hinblick auf die Anwendung von 6.14 w�ahlen wir eine Folge u.i.v. Zufallsvariablen U 0
i

def
=�

U 0
i;n

�
n2Z

(U 0
i;n � R[0; 1]) unabh�angig von FN 0

1 sowie einen homogenen Poisson-Proze� N̂ 0
i auf R

2

der Intensit�at 1 unabh�angig von FU
1 und FN 0

1 , so da� der durch

�Ni ((a; b]� L) =
X
n2N

1(a;b]
�
T 0i;n
�
1L
�
�0i+
�
T 0i;n
�
U 0
i;n

�
+

Z
(a;b]

Z
Ln(0;�0i+(t)]

N̂ 0
i(dt� dz);

(a; b] � R, L 2 B, de�nierte Punkt-Proze� ein homogener �Fi;t-Poisson-Proze� der Intensit�at 1

auf [0;1) ist. Dabei sei �Fi;t
def
= �

�
FN 0

t ;F
�Ni
t

�
, N 0

i
+ =

�
T 0i;n
�
n2N

und �0i+(t) = 1(0;1) (t)�
0
i(t) (1 �

i � K). Die Folgen und Punkt-Prozesse U 0
1; : : : ; U

0
K; N̂

0
1; : : : ; N̂

0
K sollen unabh�angig voneinander

sein. In diesem Fall ist dann �Ni ein homogener Ft-Poisson-Proze�, Ft = �
�
�Fi;t; 1 � i � K

�
.

Durch �Ni (� � [0;�i]) = (Ti;n)n2Z wird ein �Fi;t-Poisson-Proze� der Intensit�at �i auf R de�niert.

Nach Konstruktion gilt auf [0;1) die Identit�at N 0
i(C) =

R
C

�Ni (dt� [0; �0i(t)]), C 2 B((0;1)).

Wie im Existenzbeweis k�onnen wir den station�aren Punkt-Proze�

Ni(C) =

Z
C

�Ni (dt� [0; �i(t)])

mit F
�N
t -Intensit�at (�i(t))t2R der Form (D2) konstruieren (beachte 8.6). Diese Intensit�at ist

gem�a� 6.12 auch eine Ft-Intensit�at von Ni. Ferner stellt (�0i(t))t2R eine Ft-Intensit�at von N 0
i

auf [0;1) dar, beachte �Fi;t � Ft � �

�
�Fi;t;F

N̂ 0
j

t ;F
U 0j
1 ; j 2 f1; : : : ; Kg n fig

�
und die gegebenen

Unabh�angigkeiten zur Anwendung von 5.4. Auf [0;1) ist (j�i(t)� �0i(t)j)t2[0;1) eine Ft-Intensit�at

von jNi �N 0
i j. Diese gen�ugt aufgrund der �i-Lipschitz-Stetigkeit von �i der Absch�atzung

j�i(t)� �0i(t)j � �i

KX
j=1

Z
(�1;t)

jhji(t� s)j
��Nj �N 0

j

�� (ds):
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Da F jN�N 0j
t

def
= �

�
F
jNi�N 0

ij
t ; 1 � i � K

�
� Ft f�ur alle t 2 [0;1) gilt, folgt f�ur die F jN�N 0j

t -

vorhersagbare Version der F jN�N 0j
t -Intensit�at von jNi �N 0

i j:

�i
�
Ss
��Nj �N 0

j

�� (� \ (�1; 0]); 1 � j � K; t
�
� �i

KX
j=1

Z
(�1;0]

jhji(t� u)j Ss
��Nj �N 0

j

�� (du):
Wie im Beweis von 11.8 ist das Ziel unserer Bem�uhungen die Kopplung von N und N 0. Korollar

5.6 zeigt

PPP
�
jN �N 0j ((s; s+ t]) = 0 j F jN�N 0j

s

�

�
KY
i=1

exp

 
��i

Z t

0

KX
j=1

Z
(�1;0]

jhji(u� v)j Ss
��Nj �N 0

j

�� (dv) du
!

=

KY
i=1

exp

 
��i

Z s+t

s

KX
j=1

Z
(�1;s]

jhji(u� v)j
��Nj �N 0

j

�� (dv) du
!

�
KY
i=1

exp

�
�

Z 1

s

gi;s(u) du

�
= exp

�
�

Z 1

s

gs(u) du

�

mit den Festlegungen gs(u)
def
=
PK

i=1 gi;s(u) und

gi;s(u)
def
= �i

KX
j=1

�Z
(�1;0]

jhji(u� v)j N 0
j(dv) +

Z
(�1;s]

jhji(u� v)j �Nj(dv � [0;�j])

�
du:

Wir pr�ufen f�ur die Prozesse

Z(s)
def
= exp

 
�

KX
i=1

�i

Z 1

s

KX
j=1

Z
(�1;s]

jhji(u� v)j �Nj(dv � [0;�j]) du

!

�(s)
def
= Z(s)� exp

�
�

Z 1

s

gs(u) du

�

= Z(s)

 
1� exp

 
�

KX
i=1

�i

Z 1

s

KX
j=1

Z
(�1;0]

jhji(u� v)j N 0
j(dv) du

!!
;

s 2 [0;1), die Voraussetzungen von 11.7 und folgen daf�ur der Argumentation aus dem Beweis von

11.8. Da 0 � Z(s) � 1 gilt lims!1 �(s) = 0 f.s., siehe Voraussetzung (15.2), und die Darstellung

Z(s) = f
�
Ss �N

�
f�uhrt aufgrund der Ergodizit�at von

�
PPP

�N ; (St)t2R
�
zu

lim
t!1

1

t

Z s+t

s

1[�;1)

�
f
�
Su �N

��
du = PPP(Z(s) � �) f.s.

f�ur alle � 2 (0;1). Die G�ultigkeit von PPP(Z(s) � �) � � wird bewiesen durch die Endlichkeit



102 15. Lipschitz-stetige Anregungsfunktionen { der beschr�ankte Fall

von

EEE

 
KX
i=1

�i

Z 1

s

KX
j=1

Z
(�1;s]

jhji(u� v)j �Nj(dv � [0;�j]) du

!

=

KX
i=1

�i

Z 1

s

KX
j=1

EEE

�Z
(�1;s]

jhji(u� v)j �Nj(dv � [0;�j])

�
du

=

KX
i=1

�i

KX
j=1

Z 1

s

Z
(�1;s]

jhji(u� v)j�j dv du

=

KX
i=1

�i

KX
j=1

�j

Z
[0;1)

u jhji(u)j du:

Satz 11.7 zeigt nun die Kopplung von N und N 0 in endlicher Zeit.

(iii) Eindeutigkeit des station�aren Punkt-Prozesses. Gegeben sei ein station�arer Punkt-

Proze� N = (N1; : : : ; NK) mit Dynamik (D2) auf R, welcher (15.1) erf�ullt. Die Funktion �j ist

beschr�ankt durch �j. Damit folgt aus

0 � EEE

�Z 1

s

Z
(�1;0]

jhji(u� v)j Nj(dv) du

�
�

Z 1

s

EEE

�Z
(�1;0]

jhji(u� v)j�j dv

�
du

= �j

Z 1

s

(u� s) jhji(u)j du <1

die G�ultigkeit von Anfangsbedingung (15.2).



Kapitel IV.

Anhang

A1. Me�barkeit

1) Einige Mengenidentit�aten. Wir listen hier nun einige Mengenidentit�aten auf, die in

den eigentlichen Beweisen im vorangegangenen Teil der Arbeit nur von untergeordnetem Interesse

sind und der Vollst�andigkeit halber angegeben werden.

F�ur den gesamten Abschnitt sei N = (Tn)n2Z ein (einfacher) Punkt-Proze�, (Ft)t2R eine

Filtration von N und (�(t))t2R ein Ft-vorhersagbarer Proze�.

A1.1. Lemma. In der zuvor beschriebenen Situation gilt die Gleichheit

f(!; s) 2 
� (0;1);T1(!) � s > 0g =
\
n2N

[
b2Q�0

fT1 � bg �

�
b; b +

1

n

�
2 P (Ft) :(A1.1)

Beweis: Sei zun�achst T1(!) � s > 0. Dann gibt es zu jedem n 2 N ein bn 2 Q�0, so da�

T1(!) � bn und s 2
�
bn; bn +

1
n

�
.

Gebe es zu (!; s) f�ur alle n 2 N ein bn 2 Q
�0, so da� T1(!) � bn und s 2

�
bn; bn +

1
n

�
.

O�ensichtlich gilt limn!1 bn = s und somit T1(!) � s > 0.

A1.2. Lemma. Sei (a; b] � R. Die Menge f(!; t) 2 
 � R;N(!; [t � b; t � a)) = ng l�a�t sich

f�ur jedes fest vorgegebene n 2 N darstellen als

\
k2N

[
t2Q

�
! 2 
;N

�
!;

�
t�

1

k
� b; t�

1

k
� a

��
= n

�
�

�
t�

1

k
; t

�
:(A1.2)

Beweis:
"
�\ Gelte N (!0; [t0 � b; t0 � a)) = n. Dann gibt es zu jedem k 2 N ein t 2 Q

mit t� 1
k
< t0 � t und N

�
!0;
�
t� 1

k
� b; t� 1

k
� a
��

= n.

"
�\ Existiert andererseits zu jedem k 2 N ein tk 2 Q mit tk �

1
k
< t0 � tk und

N
�
!0;
�
tk �

1
k
� b; tk �

1
k
� a
��

= n, so folgt wegen �n
��
tk �

1
k
; tk
�� k!1
���! 0, da� limk!1 tk = t0.

Da tk �
1
k
< t0, folgt ebenfalls !0 2 f! 2 
;N(!; [t0 � b; t0 � a)) = ng.
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A1.3. Lemma. In der gegebenen Situation gilt die Gleichheit:�
(!; s; z) 2 
�R2;1[0;�(!;s)] (z) = 1

	
=
\
k2N

[
t2Q�0

�
(!; s) 2 
�R; t � �(!; s) � t+

1

k

�
�

�
0; t+

1

k

�
2 P (Ft)
B

(A1.3)

Beweis: Zum Nachweis von
"
�\ gelte 1[0;�(!0;s0)] (z0) = 1 f�ur ein Tupel (!0; s0; z0) aus


 � R2. F�ur alle k 2 N gibt es somit ein t 2 Q�0 mit z0 2 [0; �(!0; s0)] �
�
0; t+ 1

k

�
und

t � �(!0; s0) � t+ 1
k
, was die erste Inklusion zeigt.

Gebe es andererseits f�ur das Tupel (!0; s0; z0) 2 
 � R2 f�ur alle k 2 N ein tk 2 Q�0 mit

z0 2
�
0; tk +

1
k

�
und tk � �(!0; s0) � tk +

1
k
. Dann folgt limk!1

�
tk +

1
k

�
= �(!0; s0) und daher

z0 2
T

k2N

�
0; tk +

1
k

�
= [0; �(!0; s0)], so da� auch

"
�\ gezeigt ist.

A1.4. Lemma. Ist N ein homogener Poisson-Proze� der Intensit�at � 2 (0;1), R = (Rk)k2Z

der Proze� der Punkte Tn von N , die Tn � Tn�1 > A erf�ullen (A 2 (0;1)), und R�(s)
def
=

sup fRk � s; k 2 Zg. Dann gilt

�
R�(s) > x

	
=

[
t2Q[fsg
x<t�s

[
n2N

x<t� 1

n

�
N

��
t�

1

n
� A; t�

1

n

��
= 0; N

��
t�

1

n
; t

��
> 0

�
:(A1.4)

f�ur alle s; x 2 R.

Beweis: Zu
"
�\: Gilt R�(s)(!) > x, dann gibt es ein k 2 Z mit x < R�(s)(!) = Rk(!) �

s. Aus Rk(!) > Rk�1(!)+A folgt die Existenz eines n 2 N, das Rk(!)�
1
n
�A > Rk�1(!) erf�ullt.

Nun l�a�t sich n so gro� w�ahlen, da� ein t 2 Q [ fsg mit x < t � 1
n
< t � s existiert, welches

au�erdem auch t� 1
n
� Rk(!) � t erf�ullt. Also gilt

N

�
!;

�
t�

1

n
; t

��
> 0 und N

�
!;

�
t�

1

n
� A; t�

1

n

��
= 0:(A1.5)

Um
"
�\ zu zeigen, gebe es ein t 2 Q [fsg, x < t � s und ein n 2 N, x < t� 1

n
, die (A1.5)

erf�ullen. Da N endliche Intesit�at � besitzt, ist N nichtexplodierend, und es gibt ein k 2 Z, f�ur

das x < t� 1
n
� Rk(!) � t � s, d.h. R�(s)(!) > x, gilt.

2) markierte Punkt-Prozesse auf R und Poisson-Prozesse auf R2 mit zuf�alliger

Punkt-Auswahlbedingung. Wir widmen uns in diesem Abschnitt der Frage, unter welchen

Voraussetzungen bei zuf�alliger Auswahl von Punkten eines markierten Punkt-Prozesses auf R

(oder Poisson-Prozesses auf R2) eine Adaptiertheit bez�uglich einer geeigneten Filtration erhalten

bleibt. Die nachfolgenden �Uberlegungen dienen besonders Abschnitt 8.

A1.5. Lemma. Sei �N ein markierter Punkt-Proze� auf R mit Marken in R oder ein Poisson-

Proze� auf R2. Es bezeichne (Ft)t2R eine Filtration von �N und Y (t) eine Ft-me�bare Zufallsva-

riable f�ur alle t 2 R.

F�ur alle (a; b] � (�1; t] ist dann �N ((a; b]� [0; Y (t)]) eine Ft-me�bare Abbildung.
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Beweis: Sei (a; b] � (�1; t]. Es reicht, f�ur beliebige k 2 N0 die Gleichheit�
�N ((a; b]� [0; Y (t)]) � k

	
=
\
n2N

[
y2Q

y� 1

n�0

�
Y (t) 2

�
y �

1

n
; y

��
\
�
�N ((a; b]� [0; y]) � k

	

nachzurechnen:

Zun�achst
"
�\: Aus �N (!; (a; b]� [0; Y (t)(!)]) � k folgt f�ur alle n 2 N die Existenz eines yn 2 Q

mit yn �
1
n
� 0, so da�

yn �
1

n
� Y (t)(!) � yn und �N (!; (a; b]� [0; yn]) � k:

Nun zu
"
�\. Es gebe also zu n 2 N stets Zahlen yn 2 Q, yn �

1
n
� 0, mit

Y (t)(!) 2

�
yn �

1

n
; yn

�
und �N (!; (a; b]� [0; yn]) � k:

Daraus ergibt sich limn!1 yn = Y (t)(!) und somit �N (!; (a; b]� [0; Y (t)(!)]) � k.

A1.6. Bemerkung. Es sei (Ft)t2R eine Filtration und N ein Punkt-Proze�, so da� f�ur alle

C 2 B

N(C) : 
! R

! 7! N(!;C);
(A1.6)

Ft-me�bar ist. Die Abbildung N(�) : 
!M , ! 7! N(!; �) ist dann ebenfalls Ft-me�bar.

Begr�undung: Sei A 2 M. Es gen�ugt, Mengen der Form A = fm 2 M ;m(C) 2 Bg mit

B;C 2 B zu betrachten. O�ensichtlich ist f! 2 
;N(!; �) 2 Ag = f! 2 
;N(!;C) 2 Bg 2 Ft,

was die Behauptung zeigt. �

A1.7. Satz. Gegeben sei ein � 2 (0;1) und einer der folgenden beiden Punkt-Prozesse:

� ein markierter Punkt-Proze� �N = (Tn; Un)n2Z auf R, so da� (Un)n2Z eine Folge unabh�angi-

ger, identisch R[0; 1]-verteilter Zufallsvariablen ist. Der Punkt-Proze� �N (� � [0; 1]) ist ein

Poisson-Proze� mit Intensit�at � unabh�angig von (Un)n2Z.

� ein Poisson-Proze� �N der Intensit�at 1 auf R2. Dabei sei �N (� � [0;�]) = (Tn)n2Z.

Au�erdem sei  : (M;M) ! (R;B) eine Abbildung mit beschr�anktem Speicher (der L�ange

A 2 (0;1)) und supm2M  (m) = �. Im Fall eines markierten Punkt-Prozesses sei u
def
= 1. Liegt

ein Poisson-Proze� auf R2 vor, so sei u
def
= �. De�niere f�ur s 2 R

T�0 (s)
def
= sup

�
t 2 (�1; s]; �N([t� A; t)� [0; u]) = 0; �N([t� A; t]� [0; u]) > 0

	
T�k (s)

def
= inf

�
Tn > T�k�1(s);n 2 Z

	
; k 2 N:

(A1.7)

Dann gilt f�ur (s; t] � R:
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(i) F�ur alle k 2 N0, C 2 B ist
�
T�k (s) 2 C \ (�1; t]

	
2 F

�N
t und die Abbildung T�k (s; t)

def
=

T�k (s)1fT�k (s)�tg +11fT�k (s)>tg F
�N
t -me�bar.

(ii) Bei gegebenen k 2 N0, C 2 B und F
�N
t -me�barer Abbildung Y (t) stellt

Xk(s; t; C) : (
;F
�N
1)! (f0; 1g;P (f0; 1g))

! 7! 1fT�k (s)�tg (!)
�N
�
!;C \

�
T�k (s)(!)

	
� [0; Y (t)(!)]

�(A1.8)

eine F
�N
t -me�bare Abbildung dar.

(iii) Die Zufallsgr�o�e

N((s; t])
def
=

Z
(s;t]

�N
�
dr �

h
0;
u

�
 (SrN)

i�
(A1.9)

ist F
�N
t -me�bar.

Beweis: zu (i). Die Me�barkeit ist f�ur T�0 (s) nach 6.3 klar. Sei nun die Behauptung f�ur

ein k 2 N g�ultig. Ist x 2 R mit x � s, gilt nach De�nition
�
T�k (s) � x

	
= ; 2 F

�N
x � F

�N
t . Falls

x > s ist, ergibt sich
�
T�k (s) � x

	
=
�
9n 2 Z : T�0 (s) < Tn+1 < Tn+2 < � � � < Tn+k � x

	
2 F

�N
x ,

denn T�0 (s) ist F
�N
x -me�bar. F�ur alle x � t ist also

�
T�k (s) � x

	
2 F

�N
t , woraus die erste Aussage

folgt.

Da
�
T�k (s) � x

	
=
�
T�k (s; t) � x

	
f�ur alle x � t und

�
T�k (s; t) � x

	
=
�
T�k (s) � t

	
f�ur

x > t gilt, folgt auch die zweite Behauptung.

zu (ii). Hier gen�ugt unter Hinweis auf A1.5 der Nachweis der folgenden Gleichheit:

fXk(s; t; C) = 1g

=
\
n2N

[
x2Q[ftg

x�t

�
T�k (s) 2 C \

�
x�

1

n
; x

��
\

�
�N

��
x�

1

n
; x

�
� [0; Y (t)]

�
� 1

�
:

"
�\ Aus Xk(s; t; C)(!) = 1 folgt T�k (s)(!) 2 C \ (�1; t] und die Existenz eines j 2 Z, so

da� Tj(!) = T�k (s)(!) und
�N (!; fTj(!)g � [0; Y (t)(!)]) � 1. Daher gibt es zu n 2 N Elemente

xn � t aus Q [ ftg mit

Tj(!) = T�k (s)(!) 2 C \

�
xn �

1

n
; xn

�
und �N (!; fTj(!)g � [0; Y (t)(!)]) � 1

f�ur ein passend gew�ahltes j 2 Z. Es gilt also insbesondere

�N

�
!;

�
xn �

1

n
; xn

�
� [0; Y (t)(!)]

�
� 1:

"
�\ Gebe es f�ur alle n 2 N ein xn 2 Q [ ftg, xn � t, mit

T�k (s)(!) 2 C \

�
xn �

1

n
; xn

�
und �N

�
!;

�
xn �

1

n
; xn

�
� [0; Y (t)(!)]

�
� 1:
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Dann folgt zun�achst T�k (s)(!) 2 (�1; t] und f�ur alle n 2 N, n � 1
A
, die Existenz von jn 2 N mit

Tjn(!) 2
�
xn �

1
n
; xn
�
und �N (!; fTjn(!)g � [0; Y (t)(!)]) � 1. Au�erdem mu� xn

n!1
���! T�k (s)(!)

gelten und jn nach Wahl von �N ( �N als Poisson-Proze� nichtexplodierend) f�ur gen�ugend gro�e n

konstant bleiben. Somit ist die Existenz eines j 2 N mit

Tj(!) = T�k (s)(!) 2 C und �N (!; fTj(!)g � [0; Y (t)(!)]) � 1

gesichert.

zu (iii). Es wird die Me�barkeit von

N
��
T�0 (s); t

��
=

Z
[T�0 (s);t]

�N
�
dr �

h
0;
u

�
 (SrN)

i�

nachgewiesen. Dazu de�niere induktiv die Punkt-Prozesse (n 2 N0)

N
(n)
t (C)

def
= �N

��
C \

�
T�0 (s)

	�
�
h
0;
u

�
 
�
ST�

0
(s)N

�i�

+

nX
k=1

Z
(T�k�1(s)^t;T

�

k
(s)^t]\C

�N
�
dr �

h
0;
u

�
 (SrN)

i�

= �N
��
C \

�
T�0 (s)

	�
�
h
0;
u

�
 (;)

i�

+

nX
k=1

1fT�k (s)�tg
�N
��
C \

�
T�k (s)

	�
�
h
0;
u

�
 
�
ST�

k
(s;t)N

(k�1)
t

�i�
;

(A1.10)

C 2 B, wobei das zweite Gleichheitszeichen aufgrund des beschr�ankten Speichers von  g�ultig

ist.

F�ur alle n 2 N0 und C 2 B ist N
(n)
t (C) eine F

�N
t -me�bare Abbildung, der Nachweis wird durch

eine Induktion nach n gef�uhrt: im Fall n = 0 ist die Behauptung wegen  
�
ST�

0
(s)N

�
=  (;) und�

T�0 (s) � t
	
= 
 mit (ii) klar.

Gelte die Behauptung f�ur alle k 2 f0; : : : ; ng und C 2 B. Durch S� : (R�M;B
M)! (M;M),

(t; �) 7!St� wird eine me�bare Abbildung gegeben. Die Abbildung ! 7!
�
T�k+1(s; t)(!); N

(k)
t (!; �)

�
von 
 nach R �M ist F

�N
t �B 
M-me�bar, beachte A1.6 und die Induktionsvoraussetzung.

Hieraus folgt die F
�N
t -Me�barkeit von ! 7! ST�

k+1
(s;t)(!)N

(k)
t (!; �) f�ur alle k 2 f0; : : : ; ng. Nach (ii)

ist f�ur 1 � k � n + 1 und C 2 B

1fT�k (s)�tg
�N
��
C \

�
T�k (s)

	�
�
h
0;
u

�
 
�
ST�

k
(s;t)N

(k�1)
t

�i�

F
�N
t -me�bar. Daher ist auch N

(n+1)
t (C) f�ur alle C 2 B F

�N
t -me�bar. Es folgt schlie�lich die F

�N
t -

Me�barkeit von ! 7! N
(n+1)
t (!; �) (erneut A1.6). F�ur alle Mengen C 2 B gilt limn!1N

(n)
t (C) =

N
�
C \

�
T�0 (s); t

��
. Damit ist das Gew�unschte gezeigt worden. Insbesondere zeigt dies die F

�N
t -

Me�barkeit von

N((s; t]) = N
��
T�0 (s); t

��
�N

��
T�0 (s); s

��
:
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A1.8. Korollar. Gegeben die Situation von A1.7 ist der durch

N(C)
def
=

Z
C

�N
�
dt�

h
0;
u

�
 (StN)

i�
; C 2 B;(A1.11)

de�nierte Punkt-Proze� N F
�N
t -adaptiert:

Im Fall C 2 B((n� 1; n]), n 2 Z, liefert Aussage A1.7(iii) gemeinsam mit einem Dynkin-

System-Argument das Gew�unschte, f�ur C 2 B((�1; t]) nutze die Darstellung C =
S

n2Z(n �

1; n] \ C.

A2. Analysis

A2.1. Lemma. Es sei t0 > 0 und f : (0; t0)! R eine auf (0; t0) nichtnegative oder integrierbare

Funktion. Dann gilt:

n

Z t0

0

f(t1)

�Z t1

0

f(t2) dt2

�n�1

dt1 =

�Z t0

0

f(t) dt

�n

(A2.1)

und

n!

Z t0

0

f(t1)

Z t1

0

f(t2)� � �

Z tn�1

0

f(tn) dtn : : : dt2 dt1 =

�Z t0

0

f(t) dt

�n

(A2.2)

f�ur alle n 2 N.

Beweis: Der Beweis von (A2.1) wird durch Induktion �uber n gef�uhrt. Im Fall n = 1 ist

die Aussage klar. Sei n = 2.

2

Z t0

0

f(t1)

Z t1

0

f(t2) dt2 dt1

=

Z t0

0

f(t1)

�Z t1

0

f(t2) dt2 +

Z t1

0

f(t2) dt2

�
dt1

=

Z t0

0

f(t1)

Z t1

0

f(t2) dt2 dt1 +

Z t0

0

f(t2)

Z t0

t2

f(t1) dt1 dt2

=

Z t0

0

f(t1)

�Z t1

0

f(t2) dt2 +

Z t0

t1

f(t2) dt2

�
dt1

=

�Z t0

0

f(t1) dt1

��Z t0

0

f(t2) dt2

�
:

Gelte f�ur n > 2 Gleichung (A2.1). Unter Beachtung von

ft = (t1; : : : ; tn+1) 2 R
n+1; 0 � t1 � t0; t1 � t2 � t0; 0 � t3; : : : ; tn+1 � t1g

= ft = (t1; : : : ; tn+1) 2 R
n+1; 0 � t1 � t2; 0 � t2 � t0; 0 � t3; : : : ; tn+1 � t1g
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zeigt der Satz von Fubini

n

Z t0

0

f(t1)

Z t0

t1

f(t2) dt2

Z t1

0

f(t3) dt3� � �

Z t1

0

f(tn+1) dtn+1 dt1

= n

Z t0

0

f(t2)

Z t2

0

f(t1)

Z t1

0

f(t3) dt3� � �

Z t1

0

f(tn+1) dtn+1 dt1 dt2

=

Z t0

0

f(t2)

�Z t2

0

f(t) dt

�n

dt2

unter Ausnutzung der Induktionsvoraussetzung (A2.1) beim letzten Gleichheitszeichen. Wir k�on-

nen durch erneute Anwendung von (A2.1), diesmal beim 2. Gleichheitszeichen,�Z t0

0

f(t) dt

�n+1

=

Z t0

0

f(t) dt

�Z t0

0

f(t) dt

�n

=

Z t0

0

f(t) dt n

Z t0

0

f(t1)

�Z t1

0

f(t) dt

�n�1

dt1

= n

Z t0

0

f(t1)

�Z t1

0

f(t) dt+

Z t0

t1

f(t) dt

��Z t1

0

f(t) dt

�n�1

dt1

= n

Z t0

0

f(t1)

�Z t1

0

f(t) dt

�n

dt1

+ n

Z t0

0

f(t1)

Z t0

t1

f(t) dt

�Z t1

0

f(t) dt

�n�1

dt1

= (n+ 1)

Z t0

0

f(t1)

�Z t1

0

f(t) dt

�n

dt1

schlie�en. Der Nachweis von (A2.2) l�a�t sich ebenfalls leicht durch Induktion f�uhren, wenn (A2.1)

genutzt wird.

A2.2. Satz. Sei f : R ! R eine Funktion mit limx!1 f(x) = a und jf(x)� aj lokal integrier-

bar. Dann gilt ebenfalls

lim
x!1

1

x

Z s+x

s

f(u) du = a

f�ur alle s 2 R.

Beweis: Sei s 2 R und " > 0. Nach Voraussetzung gibt es ein x1 2 [0;1), so da�

jf(x)� aj < "

2
f�ur alle x � x1. Die lokale Integrierbarkeit sichert die Existenz eines x2 2 [0;1)

mit

1

x

Z s+x1

s

jf(u)� aj du <
"

2

f�ur x � x2. Ist nun x � max fx1; x2g, folgt

����1x
Z s+x

s

f(u) du� a

���� � 1

x

Z s+x1

s

jf(u)� aj du+
1

x

Z s+x

s+x1

jf(u)� aj du <
"

2
+
x� x1

x

"

2
� ";



110 A2. Analysis

denn x1 � 0.



Kapitel V.

Simulation von Punkt-Prozessen mit

beschr�anktem Speicher

A3. Zum Programm

Zun�achst eine kurze �Ubersicht �uber die Funktionsweise der zugrundeliegenden Berechnungsrouti-

ne. Die Basis des Programms bildet der Beweis des Satzes 8.5 �uber Dynamiken mit beschr�anktem

Speicher.

Das Programm erzeugt eine zuf�allige positive Zahl mittels einer Exponentialverteilung.

Diese Zahl stellt den Abstand des ersten Punktes t1 eines Poisson-Prozesses zur 0 dar. Wie zuvor

wird eine weitere positive Zahl erzeugt, die nun den Abstand des ersten Punktes t1 zum n�achsten

Punkt t2 angibt. Diese Konstruktion wird nun weitergef�uhrt, bis eine vorgegebene Anzahl von

Punkten erzeugt wurde oder die Position eines Punktes einen vorgegebenen Wert �uberschreitet.

Wir haben dann die Positionen und Zwischenabst�ande einer Realisation eines Poisson-Prozesses

in einem Ausschnitt der positiven reellen Achse erhalten.

Als n�achstes mu� induktiv, beginnend mit dem Punkt t1, entschieden werden, ob ein Punkt

des Poisson-Prozesses zu einem neuen (noch zu konstruierenden) Proze� mit Dynamik der Form

(D1) geh�ort. Dies geschieht unter Zuhilfenahme von (8.3), wobei zu beachten ist, da� wir In-

tensit�aten der Form (D1) betrachten. Nachdem wir �(t1) = �(0) berechnet haben, erzeugen wir

gem�a� einer R[0; 1]-Verteilung einen Wert u1 und pr�ufen, ob dieser 0 � u1 �
�(t1)

�
erf�ullt. Ist

dies der Fall, so ist t1 ein Punkt der zu konstruierenden Realisation des neuen Prozesses und die

zugeh�orige Marke wird gleich 1 gesetzt, ansonsten gleich 0.

Ist bis zu einem Punkt tk die zugeh�orige Marke bestimmt worden, so ist nun die Marke zu tk+1

festzulegen. Dazu berechnen wir

� (tk+1) = �

 Z
(0;tk+1)

h(tk+1 � s)nk(ds)

!
= �

�Z
(0;tk]

h(tk+1 � s)nk(ds)

�
;

wobei nk die bereits erzeugte Realisation des neuen Prozesses im Intervall [t1; tk] ist. Wir erzeugen

wieder einen R[0; 1]-verteilten Wert uk+1 und testen, ob 0 � uk+1 �
�(tk+1)

�
. Die zu tk+1 geh�orige
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Marke wird auf 1 gesetzt, falls dies der Fall ist, sonst auf 0. Dieses Verfahren wird solange

angewendet, bis wir zum letzten Punkt des Poisson-Prozesses gelangt sind.

Die erhaltenen Punkte samt Marken werden in eine Datei mit der Endung
"
.dat\ gespei-

chert. Aus dieser k�onnen sie zur graphischen Darstellung oder Weiterverarbeitung gelesen werden.

1) Installation. Installation des Simulationsprogramms auf einem SUN-Rechner (im Netz

des Fachbereichs Mathematik der WWU M�unster, Stand: Januar 1999):

Die ben�otigte Diskette be�ndet sich auf der letzten Seite dieser Arbeit.

� Der Installationsrechner besitzt ein Diskettenlaufwerk.

1. Zun�achst ein Kommandozeilenfenster �o�nen (ein xterm, eine bash oder �ahnliches; falls

dies noch nicht geschehen ist).

2. Diskette einlegen und durch den Befehl volcheck im Dateisystem anmelden (�ublicher-

weise l�a�t sich die Diskette dann unter dem Verzeichnis /a ansprechen).

3. Mittels cd [Pfad] in das Verzeichnis wechseln, in welchem das Programm installiert

werden soll. Der Aufruf cd � wechselt in das Heimat-(home-)Verzeichnis des aktuel-

len Benutzers. (Achtung: Der Benutzer mu� in dem Ziel-Verzeichnis Schreibrechte

besitzen.)

4. Durch den Aufruf tar xvf /a/simupp.tar wird das Programm in das Unterverzeich-

nis simuPP des aktuellen Verzeichnisses installiert (eventuell ist der Befehl tar xvf

/a/SIMUPP.TAR einzugeben).

5. Die Diskette kann nun mit eject ausgeworfen werden.

6. Zum Start der Simulation mit dem Befehl cd [Pfad]/simuPP bzw. cd �/simuPP in

das Programmverzeichnis wechseln und dort simuPP eingeben.

� Der Installationsrechner besitzt kein Diskettenlaufwerk. Es wird dann ein Rechner im Netz

ben�otigt, der ein solches Laufwerk besitzt. Der Name dieses Rechners wird im folgenden

mit [Rechnername] bezeichnet.

Das Vorgehen �ahnelt dem zuvor beschriebenen Fall, so da� nur die zus�atzlichen Schritte

erkl�autert werden.

1. Starte ein Kommandozeilenfenster auf dem Rechner ohne Diskettenlaufwerk. Einle-

gen der Diskette in das Laufwerk des Rechners [Rechnername]. Um Zugri� auf das

Laufwerk zu erhalten mittels rlogin [Rechnername] auf den Computer mit Laufwerk

"
einloggen\, hei�t der Rechner z.B. wald, so ist rlogin wald einzugeben.

2. Diskette durch volcheck anmelden und ...

3. durch cd [Pfad] in das gew�unschte Verzeichnis wechseln.

4. Eingabe von tar xvf /a/simupp.tar (bzw. tar xvf /a/SIMUPP.TAR), um die In-

stallation des Programmes durchzuf�uhren.
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5. Auswurf der Diskette mit eject.

6. Druch Eingabe von logout den Rechner [Rechnername] wieder verlassen.

7. Zum Start der Simulation mit dem Befehl cd [Pfad]/simuPP in das Programmver-

zeichnis wechseln, und dort simuPP eingeben.

(Hinweis: Das Programm sollte ohne gr�o�ere Modi�kationen auch auf Linux-Rechnern be-

nutzt werden k�onnen { der Start des Programms auf einem Rechner mit der Linux-Distribution

"
S.u.S.E. Linux 5.3\ war ohne �Anderungen des Quelltextes m�oglich.)

2) Bedienungshinweise. Nach dem Start des Programms erh�alt der Benutzer durch

anklicken des Hilfe-Buttons mit der linken Maustaste die m�oglichen Hilfethemen aufgelistet.

Bewegt man nun die Maus auf eines der f�unf Themen, so �o�net ein Klick mit der linken Maustaste

ein Fenster mit dem gew�unschten Text. Diese Themen haben folgende Inhalte:

1. Bedienung: Gibt Hinweise zur Benutzung der Maus im Simulationsprogramm und bei der

Verwendung des Editors (um eigene Funktionsdateien zu erstellen).

2. Aktionen: Erkl�art die Aufgaben der im Aktionenfeld angeordneten Buttons.

3. Parameter: Erl�autert die Bedeutung der Parameter, die vom Benutzer �ubergeben werden.

4. Funktionsweise: Gibt die theoretischen Grundlagen des Programms wieder. Weiter wird

die Vorgehensweise zur Erzeugung eines Punkt-Prozesses sowie der Darstellung (graphisch/

tabellarisch) dargelegt.

5. De�nition von Funktionen: Liefert Hinweise f�ur die Erstellung eigener De�nitionsdateien

von Funktionen.

Die Funktionen k�onnen in jedem beliebigen Editor erstellt werden. Es ist lediglich zu beachten,

da� C-Syntax genutzt wird und die Datei einen Namen der Form <Name>.fkt erh�alt. Ferner mu�

diese im Verzeichnis simuPP gespeichert werden, damit diese Datei genutzt werden kann. Man

beachte die Meldungen nach Aufruf des Programms im Kommandozeilenfenster, hier werden

auch die verf�ugbaren Funktionsdateien aufgelistet. Eine aktuelle �Ubersicht �uber die verf�ugbaren

Funktionsdateien erh�alt man durch Eingabe von ls *.fkt im Kommandozeilenfenster (Basis-

verzeichnis: simuPP)

Das Programm kann durch Anwahl des Buttons Ende beendet werden.
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3) Beispiel f�ur die Realisation eines Punkt-Prozesses. Zoomstufe: 1
16
, � = 1, A = 10

�(t)
def
= exp(� jtj)

h(x)
def
=

(
exp

�
10�x
5

�
f�ur x � A

0 f�ur x > A

0 25 50 75 100

100 125 150 175 200

200 225 250 275 300

300 325 350 375 400

400 425 450 475 500

500 525 550 575 600

600 625 650 675 700

700 725 750
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A4. Quellcodes

1) C-Programm. Die ben�otigten Berechnungen nimmt das folgende C-Programm vor:

/* Simulation von Punkt-Prozessen mit beschr�anktem Speicher.

Dieser Teil erzeugt zuf�allig die Punkte eines Poisson-Prozesses auf der

positiven reellen Achse und w�ahlt diese nach vorgegebenen Schema aus.

Die so erzeugten Punkte werden in die Datei ??? geschrieben. */

/* C-Programm-Datei: simuPP/progs/simu_bsd.c */

/* �Ubersetzen mit "gcc -lm -O -W -ansi simu_BSD.c" */

/* Hinzuladen von Funktionen ... */

#include <stdio.h> /* ... zur Ein-/Ausgabe. */

#include <stdlib.h> /* ... fuer Datentypen. */

#include <stdio.h> /* ... fuer Dateioperationen. */

#include <time.h> /* ... fuer Zeit-/Datumsoperationen. */

#include <math.h> /* ... fuer mathematische Operationen. */

#include "function.h" /* Datei mit Definition der Funktionen "phi" und "h",*/

/* diese Datei ist eine temporaere Kopie einer */

/* Funktionsdatei [Name].fkt (durch simuPP erstellt).*/

/*----- Strukturen definieren -----*/

typedef struct markPkt /* Strukturdefinition, die die noetigen Informationen

fuer Punkte des Poisson-Prozesses beinhaltet. */

{

double abstand; /* Abstand zum vorherigen Punkt. */

unsigned char marke; /* Marke des Punktes:

= 0 -> geh�ort NICHT zum konstruierten Proze�

> 0 -> geh�ort zum konstruierten Proze�. */

struct markPkt *pre; /* Zeiger auf vorhergehenden Punkt. */

struct markPkt *next; /* Zeiger auf nachfolgenden Punkt. */

} markierterPunkt; /* Erklaere Typ "markierterPunkt" als Struktur vom Typ

"markPkt". */

/* Die folgenden Funktionen sollen dazu dienen, die erste Zufallszahl wirklich

zuf�allig zu w�ahlen, ohne zus�atzliche Initialisierung ist Folge der Zufalls-

zahlen ansonsten stets gleich; hier geschieht dies mit der aktuellen Zeit.*/

int sekunden() /* Extrahiert Sekunden aus der */

{ /* aktuellen Systemzeit. */

long zeitOhneSek, zeitSek;
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zeitOhneSek = (int)(time(&zeitSek)/60);

return(time(&zeitSek)-zeitOhneSek*60);

} /*=== ENDE "int sekunden" ===*/

int minuten() /* Extrahiert Minuten aus der */

{ /* aktuellen Systemzeit. */

long zeitOhneMin, zeitMin;

zeitOhneMin = (int)(((time(&zeitMin)-sekunden())/60)/60);

return((time(&zeitMin)-sekunden())/60-zeitOhneMin*60);

} /*=== ENDE "int minuten" ===*/

int stunden() /* Extrahiert Stunden aus der */

{ /* aktuellen Systemzeit. */

long zeitOhneStd, zeitStd;

zeitOhneStd = (int)(((((time(&zeitStd)-sekunden())/60)-minuten())/60)/24);

return(((time(&zeitStd)-sekunden())/60-minuten())/60-zeitOhneStd*24+1);

} /*=== ENDE "int stunden" ===*/

/* Funktionen zur Erzeugung eines Punkt-Prozesses durch ausd�unnen eines

Poisson-Prozesses der Intensit�at LAMBDA. */

double exponentialVert() /* Gem�a� Statistik-Skript Satz 26.4: */

{ /* liefert Exp(LAMBDA)-verteilten Zufallswert. */

double Wert; /* Variable zur Zwischenspeicherung des berechneten Wertes. */

Wert = (-1)*log((double) (1-drand48()))/LAMBDA; /* Berechnung eines gemaess

Exp(LAMBDA)-verteilten

Punktes, schreibe in

Variable "Wert". */

return(Wert); /* bei erreichen dieser Stelle liefert die Funktion

"exponentialVert" den Wert der Variable "Wert" zurueck. */

} /*=== ENDE "double exponentialVert" ===*/

double integralN(markierterPunkt *aktuellerPunkt) /* berechnet das Integral */

/* �uber h(t-s) bez�uglich */

{ /* N(ds) in (0,t). */

markierterPunkt *hilfsPunkt; /* bei der Berechnung des Integrals

benoetigter Hilfspunkt. */

double abstandHilfsAktPkt = 0; /* speichere den Abstand des Hilfspunkts

vom aktuellen Punkt in dieser Variable.*/

double hgesamt = 0; /* Variable fuer den Gesamt-Wert des

Integrals. */

hilfsPunkt = aktuellerPunkt; /* setze den aktuellen Punkt als Hilfspunkt.*/
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while((hilfsPunkt->pre != NULL) && ((abstandHilfsAktPkt <= A) || (A == 0)))

/* solange vor dem Hilfspunkt ein Punkt

vorhanden ist und der Abstand des

Hilfspunkts zum aktuellen Punktes kleiner

gleich A (oder A gleich 0 gesetzt)

durchlaufe die nachfolgende Schleife. */

{

abstandHilfsAktPkt += (double) hilfsPunkt->abstand; /* Abstand des

aktuellen Punktes zum Hilfspunkt gleich

bisheriger Wert dieser Variablen plus

Abstand des Hilfs-Punktes zum naechsten

Punkt. */

hilfsPunkt = hilfsPunkt->pre;/* speichere den Vorgaenger des bisher in

der Variable "hilfsPunkt" abgespeicherten

Punktes in der Variable "hilfsPunkt". */

if (hilfsPunkt->marke > 0) /* gehoert der Hilfs-Punkt zum */

hgesamt += h(abstandHilfsAktPkt); /* ausgeduennten Prozess, so */

} /* addiere Wert der Funktion "h" */

/* an der entsprechenden Stelle zu */

/* "hgesamt" hinzu. */

return(hgesamt); /* bei erreichen dieser Stelle liefert die Funktion

"integralN" den Wert der Variable "hgesamt" zurueck. */

} /*=== ENDE "double integralN" ===*/

float psi(markierterPunkt *aktuellerPunkt) /* liefert den Wert von psi = */

{ /* phi(Integral �uber h (t-s) */

/* auf (0,t) bez�uglich ...). */

return(phi(integralN(aktuellerPunkt)));

} /*=== ENDE "float psi" ===*/

unsigned char bestimmeMarke(markierterPunkt *aktuellerPunkt) /* pr�uft, ob */

{ /* der gerade konstruierte Punkt zu N geh�ort. */

if (LAMBDA*drand48() <= psi(aktuellerPunkt)) /* Ist LAMBDA * gemaess */

return(1); /* R(0,1)-verteilte Zufalls- */

else /* groesse kleiner gleich */

return(0); /* psi(aktuellerPunkt), so */

/* erhaelt die Marke den */

/* Wert 1, sonst 0. */

} /*=== ENDE "unsigned char bestimmeMarke" ===*/

void naechsterPunkt(markierterPunkt *letzterPunkt, /* erzeugt den n�achsten */

long int aktAnzPkte, /* Punkt eines Poisson-Prozesses und l�a�t */

long int maxAnzPkte, /* pr�ufen, ob dieser zu N geh�ort. Diese */

long double *aktPosition, /* Funktion ruft sich rekursiv selber */

long double maxPosition) /* wieder auf. */

{

markierterPunkt *aktuellerPunkt; /* Punkt ohne Inhalte vom Typ "markierter

Punkt" erzeugen. */
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/* erzeuge solange Punkte, wie die maximale Zahl der bisher erzeugten Punkte

das gegebene Limit nicht ueberschreitet und die erzeugten Punkte das

vorgegebene Intervall nicht verlassen. */

if (((aktAnzPkte < maxAnzPkte) || (maxAnzPkte == 0)) &&

((*aktPosition < maxPosition) || (maxPosition == 0)))

{

/* pr�ufe, ob Speicherplatz zum Erzeugen des n�achsten Punktes zur Verf�ugung

steht. */

if ((aktuellerPunkt = (markierterPunkt *) malloc(sizeof(markierterPunkt)) )

== NULL)

{

printf("\nFEHLER: es steht nicht gen�ugend Speicher f�ur diese Zahl

von Punkten zur Verf�ugung.\n");

exit(0);

}

/* Zeiger und Variablen initialisieren/ Werte zuordnen. */

letzterPunkt->next = aktuellerPunkt; /* der bisher letzte Punkt

verweist auf den Punkt

"aktuellerPunkt" als

nachfolgenden Punkt. */

aktuellerPunkt->abstand = exponentialVert(); /* erzeuge Abstand des neuen

Punktes von bisher letzen

Punkt gemaess Exp(LAMBDA)

Verteilung. */

aktuellerPunkt->pre = letzterPunkt; /* Vorgaenger des neuen

Punktes ist der bisher

letzte Punkt. */

aktuellerPunkt->next = NULL; /* der nachfolgende Punkt des

neuen Punktes existiert

(noch) nicht. */

aktuellerPunkt->marke = bestimmeMarke(aktuellerPunkt); /* setzen der Marke

des aktuellen Punktes. */

*aktPosition += (long double) aktuellerPunkt->abstand; /* die Position des

zuletzt erzeugten Punktes

auf dem Zahlenstrahl ist die

Position des zuvor erzeugten

Punktes zuzueglich des

Abstandes dieser Punkte. */

aktAnzPkte++; /* Zahl der bisher erzeugten

Punkte um 1 erhoehen. */

printf("%6ld",aktAnzPkte); /* Ausgabe der Nummer des

gerade erzeugten Punktes. */

if (aktAnzPkte % 10 == 0) /* nach 10 Punkten in neue */

printf("\n"); /* Zeile springen. */

letzterPunkt = aktuellerPunkt; /* der neue Punkt wird zum

neuen letzten Punkt. */

/* durch (rekursiven) Aufruf von "naechsterPunkt" wird der nachfolgenden

Punkt konstruiert. */

naechsterPunkt

(letzterPunkt, aktAnzPkte, maxAnzPkte, aktPosition, maxPosition);

}

} /*=== ENDE "void naechsterPunkt" ===*/
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int schreibePunkt(markierterPunkt *aktuellerPunkt, FILE *datei) /* Speichern

der erzeugten Punkte in die Datei "'zieldatei'.dat". */

{

int tempZustand; /* temporaere Variable, die den Zustand der

Schreiboperation beinhaltet. */

if ((tempZustand= fprintf(datei, "%1d; %20.8lf\n",

aktuellerPunkt->marke, aktuellerPunkt->abstand))

== -1) /* schlaegt die Schreiboperation fehlt, */

return(-1); /* steige aus Funktion aus; sonst */

else /* rekursiver Aufruf von "schreibePunkt", */

if (aktuellerPunkt->next != NULL) /* solange noch Punkte vorhanden. */

{

tempZustand = schreibePunkt(aktuellerPunkt->next, datei);

return(tempZustand);

}

else

return(0);

} /*=== ENDE "int schreibePunkt" ===*/

int speicherProzess(markierterPunkt *ersterPunkt, /* Oeffnet die Datei */

char zieldatei[255], /* "'zieldatei'.dat", um */

long double aktPosition) /* mittels "schreibe Punkt" */

/* die einzelnen Punkte */

/* darin zu sichern. */

{

FILE *datei; /* Variable als Verweis auf die zum Schreiben geoeffnete Datei */

int tempZustand; /* wie in Funktion "schreibePunkt". */

datei = fopen(zieldatei, "w"); /* oeffnen der Datei "'zieldatei'" zum schreiben.*/

if (datei == NULL) /* War das Oeffnen der Datei erfolglos, so liefere den Wert */

return(-1); /* "-1" zurueck, sonst: */

else /* schreibe Werte in die geoeffnete Datei. */

{

if ((tempZustand

= fprintf(datei, "PUNKT-PROZESS (Marke; Zwischenabstand)\n")) == -1)

return(-1); /* Kopfzeile schreiben. */

else if ((tempZustand = fprintf(datei, "%Lf\n", aktPosition)) == -1)

return(-1); /* Schreibe die Position des letzten Punktes in die Datei. */

else

{

tempZustand = schreibePunkt(ersterPunkt, datei); /* schreibe (rekursiv) die */

if (tempZustand == -1) /* Punkte in die Datei. */

return(tempZustand);

}

if ((tempZustand = fprintf(datei, "ENDE\n")) == -1) /* Als Markierung des */

return(-1); /* Endes der Datei: "ENDE".*/
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fclose(datei); /* Schliesse die Datei. */

return(0); /* die Schreiboperation war erfolgreich, gebe den Wert "0" zurueck. */

}

} /*=== ENDE "int speicherProzess" ===*/

/***************************/

/****** Hauptprogramm ******/

/***************************/

main(int argc, char *argv[], char *envp[])

{

/*----- Konstante Vorgaben -----*/

long double maxPosition = 0; /* (0,maxWert]=Konstr.intervall,=0: bel. lang. */

long int maxAnzPkte = 0; /* Zahl der zu konstr. Punkte,=0: bel. viele. */

char zieldatei[1024] = ""; /* Zieldatei f�ur den erzeugten Proze�. */

/*----- Varablen Deklaration ----- */

long double aktPosition = 0; /* Summe der Abst�ande. */

long int aktAnzPkte = 0; /* Zahl der bisher konstruierten Punkte. */

markierterPunkt *ersterPunkt; /* Ausgezeichnete Punkte eines Punkt-Prozesses: */

markierterPunkt *letzterPunkt; /* erster und letzter Punkt. */

int tempZustand; /* temporaere Zustandsvariable. */

/* Folge der Zufallszahlen (mittels Uhrzeit) initialisieren. */

srand48(stunden()*minuten()*sekunden());

/* pr�ufe, ob Speicherplatz zum Erzeugen der Punkteliste zu Verf�ugung steht. */

if ((ersterPunkt = (markierterPunkt *) malloc(sizeof(markierterPunkt)) )

== NULL)

{

printf("\nFEHLER: kein Speicher verf�ugbar, um eine Punkteliste zu erzeugen.\n");

exit(0);

}

/* Zeiger und Variablen initialisieren. */

maxPosition = (long double) atof (argv[1]); /* Position aller konstruierten

zwischen 0 und maxPosition. */

maxAnzPkte = (long int) atof (argv[2]); /* erzeuge hoechstens maxAnzPkte

Punkte. */

strcpy(zieldatei, argv[3]); /* Ziel fuer die Daten: */

strcat(zieldatei, ".dat"); /* "'zieldatei'.dat". */

ersterPunkt->abstand = 0; /* initialisiere die */

ersterPunkt->marke = 0; /* Komponenten des ersten */

ersterPunkt->pre = NULL; /* Punktes. */

ersterPunkt->next = NULL;

letzterPunkt = ersterPunkt;
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/* ersten Punkt konstruieren. */

ersterPunkt->abstand = exponentialVert();

ersterPunkt->marke = bestimmeMarke(ersterPunkt);

aktPosition = (long double) ersterPunkt->abstand;

aktAnzPkte++;

printf("%6ld",aktAnzPkte);

/* zweiten Punkt konstruieren, da sich diese Funktion rekursiv wieder aufruft,

werden durch diesen Aufruf alle weiteren Punkte konstruiert. */

naechsterPunkt

(letzterPunkt, aktAnzPkte, maxAnzPkte, &aktPosition, maxPosition);

/* speichern des erzeugten Punkt-Prozesses. */

if ((tempZustand = speicherProzess(ersterPunkt, zieldatei, aktPosition))

== -1)

printf("\nSpeicherung der erzeugten Werte in \"%s\" fehlgeschlagen!\n");

else

printf("\nDie erzeugten Werte wurden in die Datei\n \"%s\"\ngeschrieben.\n",

zieldatei);

return(0);

} /*=== ENDE "main" ===*/
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2) Tcl/Tk-Script. Die Benutzerschnittstelle und Ausgabe der Punkte wurde in der

Script-Sprache Tcl/Tk realisiert:

#!/bin/sh

##### Tcl/Tk-Script: simuPP/progs/simuPP #####

# starte tcl/tk-Interpreter \

exec wish "$0" "$@"

##### Hauptfenster, von dem alle Funktionen aus angew�ahlt werden #####

eval destroy [winfo child .]

wm title . "Simulation von Punkt-Prozessen"

wm iconname . "Simulation PP"

wm resizable . 0 0

set tk_strictMotif 1

set quelldatei "PktProz"

set einheit 128

set maxAnzPkte 100

set maxPosition 100

set fenster 0

set ausgabe .ausgaben.text

if {$argc == 1} {

set quelldatei [lindex $argv 0]

}

#----- Aktionen -----#

frame .aktionen -borderwidth 2 -relief groove

pack .aktionen -side left -anchor nw -padx 4m -pady 4m

label .aktionen.kopfzeile -text "AKTIONEN."\

-font -*-Helvetica-Bold-R-Normal--*-180-*-*-*-*-*-*

pack .aktionen.kopfzeile -side top -anchor nw -padx 4m -pady 4m

label .aktionen.zwtext1 -text ""

button .aktionen.fktBearb -text "Bearbeite\nFunktionen" -width 13\

-command {exec textedit $quelldatei.fkt &}

button .aktionen.bspFkt -text "Beispiel f�ur\nFunktionen" -width 13\

-command {source [file join hilfe/fktbsp.hlp]}

button .aktionen.uebersetzen -text "�Ubersetzen" -width 13\

-command {$ausgabe configure -state normal

$ausgabe delete 0.0 end

if {[file exists $quelldatei.fkt]} {

$ausgabe insert end "Bereite Erstellung eines Punkt-Prozesses\

mit den in\n\ \ \ \"${quelldatei}.fkt\"\ngegebenen Funktionen\

vor - bitte warten ..."

update

$ausgabe insert end [file copy -force\

$quelldatei.fkt progs/function.h]

if {[catch {exec gcc -lm -O -W progs/simu_bsd.c}] == 0} {

$ausgabe insert end [file delete progs/function.h]

file rename -force a.out $quelldatei.exe

exec chmod a+x $quelldatei.exe
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$ausgabe insert end "\n\nBeendet."

} else {

$ausgabe insert end "\n\nBei der �Ubersetzung ist ein Fehler\

aufgetreten!\

\nPr�ufen Sie, ob die Funktionen phi und h korrekt\

definiert\nwurden."

}

$ausgabe see end

} else {

$ausgabe insert end "�Ubersetzen.\n\

\nFEHLER: Die Datei \"$quelldatei.fkt\" existiert nicht!"

}

$ausgabe configure -state disabled}

label .aktionen.zwtext2 -text ""

button .aktionen.werteErzeugen -text "Erzeuge Punkte\ndes Prozesses" -width 13\

-command {$ausgabe configure -state normal

$ausgabe delete 0.0 end

if {[string match "" [string trim $maxAnzPkte 0123456789]] &&

[string match "" [string trim $maxPosition 0123456789]]} {

if {[string match "" $maxAnzPkte]} {

set maxAnzPkte 0}

if {[string match "" $maxPosition]} {

set maxPosition 0}

if {($maxAnzPkte == 0) && ($maxPosition == 0)} {

$ausgabe insert end "Erzeuge Punkte des Prozesses.\n\

\nFEHLER: Die maximale Anzahl der Punke und rechte\

\nIntervallbegrenzung ist \"0\"."

} else {

if {[file exists $quelldatei.exe]} {

$ausgabe insert end\

"Erzeuge Punkt-Proze� - bitte warten ...\n"

update

$ausgabe insert end\

[exec $quelldatei.exe $maxPosition $maxAnzPkte $quelldatei]

$ausgabe insert end "\n\nBeendet."

} else {

$ausgabe insert end "Erzeuge Punkt-Proze�.\n\

\nFEHLER: Die Datei \"$quelldatei.exe\" existiert nicht!\

\nBenutze \"�Ubersetzen\", um diese Datei zu erzeugen."

}

$ausgabe see end

}

} else {

$ausgabe insert end "Erzeuge Punkte des Prozesses.\n\

\nFEHLER: Die maximale Anzahl der Punkte und/ oder die rechte\

\nIntervallbegrenzung ist keine nat�urliche Zahl."

}

$ausgabe configure -state disabled}

label .aktionen.zwtext3 -text "\nAusgabe des\nPunkt-Prozesses" -justify left

button .aktionen.graphisch -text "auf Zahlenstrahl" -width 13\

-command {$ausgabe configure -state normal

$ausgabe delete 0.0 end

if {[file exists $quelldatei.dat]} {

$ausgabe insert end "Ausgabe des Punkt-Prozesses aus\n\
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\ \ \"$quelldatei.dat\"\

\n- bitte warten ...\n"

update

graphAusgabe $einheit $quelldatei $ausgabe

$ausgabe insert end "\n\nBeendet."

$ausgabe see end

} else {

$ausgabe insert end\

"Ausgabe des Punkt-Prozesses auf Zahlenstrahl.\n\

\nFEHLER: Die Datei \"$quelldatei.dat\" existiert nicht!"

}

$ausgabe configure -state disabled}

button .aktionen.tabelle -text "in Werte-Tabelle" -width 13\

-command {$ausgabe configure -state normal

$ausgabe delete 0.0 end

if {[file exists $quelldatei.dat]} {

$ausgabe insert end "Ausgabe der Werteliste aus\n\

\ \ \"$quelldatei.dat\"\

\n- bitte warten ..."

update

werteListe $quelldatei $ausgabe

$ausgabe insert end "\n\nBeendet."

$ausgabe see end

} else {

$ausgabe insert end\

"Ausgabe des Punkt-Prozesses in Werte-Tabelle.\n\

\nFEHLER: Die Datei \"$quelldatei.dat\" existiert nicht!"

}

$ausgabe configure -state disabled}

label .aktionen.zwtext4 -text ""

button .aktionen.hilfe -text "Hilfe" -width 13\

-command {hilfe $ausgabe}

pack .aktionen.zwtext1 .aktionen.fktBearb .aktionen.bspFkt\

.aktionen.uebersetzen .aktionen.zwtext2 .aktionen.werteErzeugen\

.aktionen.zwtext3 .aktionen.graphisch .aktionen.tabelle\

.aktionen.zwtext4 .aktionen.hilfe -side top -anchor nw -padx 4m

button .aktionen.ende -text "Ende" -command exit -width 13

pack .aktionen.ende -side top -anchor nw -padx 4m -pady 4m

#-----Parameter -----#

frame .parameter -borderwidth 2 -relief groove

pack .parameter -side top -anchor nw -padx 4m -pady 4m

# Datei und �Ubersetzung #

frame .parameter.compPar

pack .parameter.compPar -side left -anchor nw -padx 4m -pady 4m

label .parameter.compPar.kopfzeile -text "PARAMETER."\

-font -*-Helvetica-Bold-R-Normal--*-180-*-*-*-*-*-*

label .parameter.compPar.zwtext1 -text ""

label .parameter.compPar.zwtext2\

-text "1. DATEI\nQuelldatei (ohne Endung \".fkt\", \".dat\"):" -justify left

frame .parameter.compPar.bearbDatei
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label .parameter.compPar.zwtext3 -text "\n2. ERZEUGUNG."

frame .parameter.compPar.maxAnzPkte

label .parameter.compPar.zwtext4\

-text "und beschr�anke die Konstruktion auf das"

frame .parameter.compPar.konstrIntervall

pack .parameter.compPar.kopfzeile .parameter.compPar.zwtext1\

.parameter.compPar.zwtext2 .parameter.compPar.bearbDatei\

.parameter.compPar.zwtext3 .parameter.compPar.maxAnzPkte\

.parameter.compPar.zwtext4 .parameter.compPar.konstrIntervall\

-side top -anchor w

entry .parameter.compPar.bearbDatei.wert -width 37 -textvariable quelldatei\

-justify left -xscrollcommand ".parameter.compPar.bearbDatei.xScroll set"\

-highlightthickness 0

scrollbar .parameter.compPar.bearbDatei.xScroll -relief sunken -orient horiz\

-command ".parameter.compPar.bearbDatei.wert xview" -width 9

pack .parameter.compPar.bearbDatei.wert .parameter.compPar.bearbDatei.xScroll\

-side top -fill x

label .parameter.compPar.maxAnzPkte.txt1 -text "Erzeuge maximal"

entry .parameter.compPar.maxAnzPkte.wert -width 13 -textvariable maxAnzPkte\

-justify right -highlightthickness 0

label .parameter.compPar.maxAnzPkte.txt2 -text "Punkte"

pack .parameter.compPar.maxAnzPkte.txt1 .parameter.compPar.maxAnzPkte.wert\

.parameter.compPar.maxAnzPkte.txt2 -side left

label .parameter.compPar.konstrIntervall.txt1 -text "Intervall (0,"

entry .parameter.compPar.konstrIntervall.wert -width 13\

-textvariable maxPosition -justify right -highlightthickness 0

label .parameter.compPar.konstrIntervall.txt2 -text "]."

pack .parameter.compPar.konstrIntervall.txt1\

.parameter.compPar.konstrIntervall.wert\

.parameter.compPar.konstrIntervall.txt2 -side left

# Zoomstufe #

frame .parameter.graphAus

pack .parameter.graphAus -anchor nw -padx 4m -pady 4m

label .parameter.graphAus.zwtext1 -text "\n3. AUSGABE."

frame .parameter.graphAus.einheit

pack .parameter.graphAus.zwtext1 .parameter.graphAus.einheit -side top\

-anchor nw

frame .parameter.graphAus.einheit.links

frame .parameter.graphAus.einheit.rechts

pack .parameter.graphAus.einheit.links .parameter.graphAus.einheit.rechts\

-side left

label .parameter.graphAus.einheit.links.zoomstufe -text "Zoomstufe:"

pack .parameter.graphAus.einheit.links.zoomstufe -side top

foreach i {64 32 16 8 4 2 1} {

radiobutton .parameter.graphAus.einheit.links.rb$i\

-text "[format "%5s " 1/[expr (128/$i)]]"\
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-variable einheit -relief flat -value $i

pack .parameter.graphAus.einheit.links.rb$i -side top -anchor center

}

foreach i {128 256 512 1024 2048 4096 8192 16384} {

radiobutton .parameter.graphAus.einheit.rechts.rb$i\

-text "[format "%3s" [expr ($i/128)]]"\

-variable einheit -relief flat -value $i

pack .parameter.graphAus.einheit.rechts.rb$i -side top -anchor center

}

#----- Ausgaben -----#

frame .ausgaben

pack .ausgaben -side top -anchor nw -padx 4m -pady 3m

text .ausgaben.text -width 60 -height 13 -wrap char\

-yscrollcommand ".ausgaben.yscroll set"

scrollbar .ausgaben.yscroll -relief sunken -command ".ausgaben.text yview"\

-width 13

pack .ausgaben.text .ausgaben.yscroll -fill y -side left

.ausgaben.text tag configure big\

-font -*-Helvetica-Bold-R-Normal--*-120-*-*-*-*-*-*

.ausgaben.text insert end\

"Simulation von Punkt-Prozessen mit beschr�anktem Speicher.\n" big

.ausgaben.text insert end "\n\nDieses Programm entstand im Rahmen der\

Diplomarbeit\

\n\"Existenz und Stabilit�at nichtlinearer Hawkes-Prozesse\" am\

\nInstitut f�ur Mathematische Statistik der Westf�alischen\

\nWilhelms-Universit�at M�unster.\n"

.ausgaben.text insert end "\nBetreuer: Prof. Dr. G. Alsmeyer"

.ausgaben.text insert end "\nErstellt von: J�urgen te Vrugt"

.ausgaben.text insert end "\n\nM�unster, 1998/1999."

$ausgabe configure -state disabled

##### graphische Ausgabe des Punkt-Prozesses #####

proc graphAusgabe {einheit quelldatei ausgabe} {

global fenster

#---- Fenster zur graphischen Werteausgabe erstellen ----#

catch {destroy .zeigePunkte$fenster}

toplevel .zeigePunkte$fenster

wm title .zeigePunkte$fenster "Graphische Ausgabe der Punkte: $quelldatei"

wm iconname .zeigePunkte$fenster "Graphik"

# Linux: ...x250 Sun: ...x280

wm geometry .zeigePunkte$fenster [winfo screenwidth .]x280

#---- Variablen ----#

set zaehler 1

# f�ur Datei-Operationen #

set datei [open ${quelldatei}.dat r]

# f�ur Ausgabe #

set nummer 0
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set maxPosition 0

set xNullpkt 10

set position 0

set bitteWarten 0

set xScrollIncrement 1p

set aktLinienPos $xNullpkt

set aktZeichenPos $xNullpkt

#---- Datei-Kopf auslesen ----#

gets $datei

set maxPosition [string trim [gets $datei]]

set maxPosition [expr ($maxPosition * $einheit)]

#---- Ausgabefenster initialisieren/ Objekte erzeugen ----#

frame .zeigePunkte$fenster.ausgabe

pack .zeigePunkte$fenster.ausgabe

append hScrollBereich "0p 0p " [expr ($maxPosition+2*$xNullpkt+200)] "p 0p"

# Linux: -height 117 Sun: -height 147

canvas .zeigePunkte$fenster.ausgabe.reelleAchse\

-height 147 -width [expr ($maxPosition + 8 * $xNullpkt + 200)]\

-relief sunken -borderwidth 2\

-xscrollcommand ".zeigePunkte$fenster.ausgabe.hscroll set"\

-scrollregion $hScrollBereich

pack .zeigePunkte$fenster.ausgabe.reelleAchse

scrollbar .zeigePunkte$fenster.ausgabe.hscroll -orient horiz\

-command ".zeigePunkte$fenster.ausgabe.reelleAchse xview"

pack .zeigePunkte$fenster.ausgabe.hscroll -fill x

label .zeigePunkte$fenster.bitteWarten -text "Bitte warten ..."

pack .zeigePunkte$fenster.bitteWarten

# Zeichne Grundlinie #

.zeigePunkte$fenster.ausgabe.reelleAchse create line\

${xNullpkt}p 66p ${xNullpkt}p 96p -width 2

.zeigePunkte$fenster.ausgabe.reelleAchse create line\

[expr ($xNullpkt-1)]p 66p\

[expr (int ($maxPosition)+$xNullpkt+200)]p 66p -arrow last -width 2

.zeigePunkte$fenster.ausgabe.reelleAchse create text ${xNullpkt}p 103p\

-text [expr ($zaehler-1)]

#---- Einlesen der Daten, Erzeugung eines Zahlenstrahls, ----#

#---- Ausgabe der Punkte auf diesem Zahlenstrahl ----#

while {![eof $datei]} {

# Einlesen der Punkte und Marken in die Arrays "abstand()" und marke() #

set marke($zaehler) [read $datei 1]

set abstand($zaehler) [gets $datei]

set abstand($zaehler) [string trim $abstand($zaehler) " ;"]

set zeile ""

append zeile $marke($zaehler) $abstand($zaehler)

if {[string compare $zeile "ENDE"] == 0} {
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set marke($zaehler) -1

set abstand($zaehler) ""

gets $datei

} else {

# Punkte auf die Achse zeichnen #

set aktZeichenPos [expr ($aktZeichenPos + ($abstand($zaehler)*$einheit))]

.zeigePunkte$fenster.ausgabe.reelleAchse create line\

${aktZeichenPos}p 66p\

${aktZeichenPos}p [expr (55 - $marke($zaehler) * 22)]p

if {$marke($zaehler) == 1} {

.zeigePunkte$fenster.ausgabe.reelleAchse create oval\

[expr ($aktZeichenPos-2)]p 29p [expr ($aktZeichenPos+2)]p 33p\

-fill red

#.zeigePunkte$fenster.ausgabe.reelleAchse create text\

# [expr ($aktZeichenPos+.2)]p 33p -text ""

}

# Skala auf die reellen Achse zeichnen #

while {$aktLinienPos < $aktZeichenPos} {

if {$einheit >= 1} {

if {[expr ($einheit * $nummer)] % 2048 == 0} {

if {$bitteWarten == 0} {

.zeigePunkte$fenster.bitteWarten configure\

-text "Bitte warten ..."

set bitteWarten 1

} else {

.zeigePunkte$fenster.bitteWarten configure -text ""

set bitteWarten 0

}

}

if {($einheit >= 128) ||

(($einheit == 64) && ([expr (($nummer+1) % 2)] == 0)) ||

(($einheit == 32) && ([expr (($nummer+1) % 5)] == 0)) ||

(($einheit == 16) && ([expr (($nummer+1) % 10)] == 0)) ||

(($einheit == 8) && ([expr (($nummer+1) % 25)] == 0)) ||

(($einheit <= 4) && ([expr (($nummer+1) % 50)] == 0))} {

.zeigePunkte$fenster.ausgabe.reelleAchse create line\

[expr ($aktLinienPos+$einheit)]p 66p\

[expr ($aktLinienPos+$einheit)]p 96p

.zeigePunkte$fenster.ausgabe.reelleAchse create text\

[expr ($aktLinienPos+$einheit)]p 103p -text [expr ($nummer+1)]

$ausgabe insert end [format "%6s" [expr ($nummer+1)]]

$ausgabe see end

update

} elseif {$einheit == 64} {

.zeigePunkte$fenster.ausgabe.reelleAchse create line\

[expr ($aktLinienPos+$einheit)]p 66p\

[expr ($aktLinienPos+$einheit)]p 96p

} elseif {($einheit >= 8) && ($einheit < 64)} {

.zeigePunkte$fenster.ausgabe.reelleAchse create line\

[expr ($aktLinienPos+$einheit)]p 66p\

[expr ($aktLinienPos+$einheit)]p 81p

} elseif {($einheit >= 1) && ($einheit < 8) &&\

([expr (($nummer+1) % 5)] == 0)} {
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.zeigePunkte$fenster.ausgabe.reelleAchse create line\

[expr ($aktLinienPos+$einheit)]p 66p\

[expr ($aktLinienPos+$einheit)]p 81p

}

if {$einheit >= 64} {

.zeigePunkte$fenster.ausgabe.reelleAchse create line\

[expr ($aktLinienPos + .5 * $einheit)]p 66p\

[expr ($aktLinienPos + .5 * $einheit)]p 85p

if {$einheit >= 256} {

.zeigePunkte$fenster.ausgabe.reelleAchse create text\

[expr ($aktLinienPos+.5*$einheit)]p 103p -text $nummer.5

}

if {$einheit >= 128} {

for {set tempzaehler 1} {$tempzaehler < 10} {incr tempzaehler} {

.zeigePunkte$fenster.ausgabe.reelleAchse create line\

[expr ($aktLinienPos + ($tempzaehler*.1)*$einheit)]p 66p\

[expr ($aktLinienPos + ($tempzaehler*.1)*$einheit)]p 79p

if {$einheit >= 1024} {

.zeigePunkte$fenster.ausgabe.reelleAchse create text\

[expr ($aktLinienPos+$tempzaehler*.1*$einheit)]p 103p\

-text $nummer.$tempzaehler

}

}

if {$einheit >= 256} {

for {set tempzaehler 1} {$tempzaehler <= 10}\

{incr tempzaehler} {

.zeigePunkte$fenster.ausgabe.reelleAchse create line\

[expr ($aktLinienPos + ($tempzaehler*.1-.05)*$einheit)]p\

66p\

[expr ($aktLinienPos + ($tempzaehler*.1-.05)*$einheit)]p\

75p

if {$einheit >= 4096} {

.zeigePunkte$fenster.ausgabe.reelleAchse create text\

[expr ($aktLinienPos+($tempzaehler*.1-.05)*$einheit)]p\

103p -text [expr ($nummer+$tempzaehler*.1-.05)]

}

}

if {$einheit >= 1024} {

for {set tempzaehler 1} {$tempzaehler < 100}\

{incr tempzaehler} {

.zeigePunkte$fenster.ausgabe.reelleAchse create line\

[expr ($aktLinienPos + ($tempzaehler*.01)*$einheit)]p\

66p\

[expr ($aktLinienPos + ($tempzaehler*.01)*$einheit)]p 72p

if {$einheit >= 16384} {

.zeigePunkte$fenster.ausgabe.reelleAchse create text\

[expr ($aktLinienPos+$tempzaehler*.01*$einheit)]p 103p\

-text [expr ($nummer+$tempzaehler*.01)]

}

}

if {$einheit >= 4096} {

for {set tempzaehler 1} {$tempzaehler <= 100}\

{incr tempzaehler} {

.zeigePunkte$fenster.ausgabe.reelleAchse create line\
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[expr ($aktLinienPos+($tempzaehler*.01-.005)*$einheit)]p\

66p\

[expr ($aktLinienPos+($tempzaehler*.01-.005)*$einheit)]p\

70p

}

if {$einheit >= 16384} {

for {set tempzaehler 1} {$tempzaehler < 1000}\

{incr tempzaehler} {

.zeigePunkte$fenster.ausgabe.reelleAchse create line\

[expr ($aktLinienPos+($tempzaehler*.001)*$einheit)]p\

66p\

[expr ($aktLinienPos+($tempzaehler*.001)*$einheit)]p\

68p

}

}

}

}

}

}

}

}

set aktLinienPos [expr ($aktLinienPos + $einheit)]

incr nummer

}

}

# "zaehler" erh�ohen

incr zaehler

}

close $datei

#

destroy .zeigePunkte$fenster.bitteWarten

unset bitteWarten

frame .zeigePunkte$fenster.unten

pack .zeigePunkte$fenster.unten

# Info-Leiste

frame .zeigePunkte$fenster.unten.iLeiste -relief groove -borderwidth 2

pack .zeigePunkte$fenster.unten.iLeiste -side left -padx 7m -pady 3m

if {$einheit >= 128} {

label .zeigePunkte$fenster.unten.iLeiste.auflsg\

-text "Zoomstufe: [expr ($einheit / 128)]"

} else {

label .zeigePunkte$fenster.unten.iLeiste.auflsg\

-text "Zoomstufe: 1/[expr (128 / $einheit)]"

}

frame .zeigePunkte$fenster.unten.iLeiste.pkte

pack .zeigePunkte$fenster.unten.iLeiste.auflsg\

.zeigePunkte$fenster.unten.iLeiste.pkte\
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-side left -padx 17 -anchor w

frame .zeigePunkte$fenster.unten.iLeiste.pkte.legende1

frame .zeigePunkte$fenster.unten.iLeiste.pkte.legende2

pack .zeigePunkte$fenster.unten.iLeiste.pkte.legende1\

.zeigePunkte$fenster.unten.iLeiste.pkte.legende2 -side top -anchor w

canvas .zeigePunkte$fenster.unten.iLeiste.pkte.legende1.symbol\

-height 38 -width 13

label .zeigePunkte$fenster.unten.iLeiste.pkte.legende1.zwtext\

-text "-Punkte des erzeugten Prozesses."

pack .zeigePunkte$fenster.unten.iLeiste.pkte.legende1.symbol\

.zeigePunkte$fenster.unten.iLeiste.pkte.legende1.zwtext\

-side left -anchor w

.zeigePunkte$fenster.unten.iLeiste.pkte.legende1.symbol create line\

2p 34p 12p 34p

.zeigePunkte$fenster.unten.iLeiste.pkte.legende1.symbol create line\

7p 4p 7p 34p

.zeigePunkte$fenster.unten.iLeiste.pkte.legende1.symbol create oval\

5p 2p 9p 6p -fill red

canvas .zeigePunkte$fenster.unten.iLeiste.pkte.legende2.symbol\

-height 27 -width 13

label .zeigePunkte$fenster.unten.iLeiste.pkte.legende2.zwtext\

-text "-nicht ausgew�ahlter Punkt des Poisson-Prozesses. "

pack .zeigePunkte$fenster.unten.iLeiste.pkte.legende2.symbol\

.zeigePunkte$fenster.unten.iLeiste.pkte.legende2.zwtext\

-side left -anchor w

.zeigePunkte$fenster.unten.iLeiste.pkte.legende2.symbol create line\

2p 19p 12p 19p

.zeigePunkte$fenster.unten.iLeiste.pkte.legende2.symbol create line\

7p 9p 7p 19p

# Button-Leiste

frame .zeigePunkte$fenster.unten.bLeiste

pack .zeigePunkte$fenster.unten.bLeiste -padx 7m

frame .zeigePunkte$fenster.unten.bLeiste.ausgPS

frame .zeigePunkte$fenster.unten.bLeiste.befehle

pack .zeigePunkte$fenster.unten.bLeiste.ausgPS\

.zeigePunkte$fenster.unten.bLeiste.befehle -side top -padx 5m -pady 1m

button .zeigePunkte$fenster.unten.bLeiste.ausgPS.ausschnittPS -width 30\

-text "Postscript-sichtbarer Bereich"\

-command "ausschnittPS .zeigePunkte$fenster.ausgabe.reelleAchse\

$maxPosition $xNullpkt $quelldatei"

button .zeigePunkte$fenster.unten.bLeiste.ausgPS.gesamtPS -width 30\

-text "Postscript-gesamte Achse"\

-command "gesamtPS .zeigePunkte$fenster.ausgabe.reelleAchse $maxPosition\

$xNullpkt $quelldatei"

pack .zeigePunkte$fenster.unten.bLeiste.ausgPS.ausschnittPS\
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.zeigePunkte$fenster.unten.bLeiste.ausgPS.gesamtPS -side top

button .zeigePunkte$fenster.unten.bLeiste.befehle.druckHilfe\

-text "Postscript Hilfe" -width 14\

-command "source [file join hilfe/pshilfe.hlp]"

button .zeigePunkte$fenster.unten.bLeiste.befehle.fensterSchliessen\

-text "Schlie�en" -width 11\

-command "destroy .zeigePunkte$fenster"

pack .zeigePunkte$fenster.unten.bLeiste.befehle.druckHilfe\

.zeigePunkte$fenster.unten.bLeiste.befehle.fensterSchliessen\

-side left -padx 1m

incr fenster

}

proc ausschnittPS {canv maxPosition xNullpkt quelldatei} {

$canv postscript -colormode mono -file $quelldatei.ps\

-pagewidth 28.0c -pagey 14.85c -rotate 1\

-width [expr (floor ([lindex [$canv xview] 1]*\

($maxPosition+8*$xNullpkt+200)+1)-\

floor ([lindex [$canv xview] 0]*$maxPosition))]p\

-x [expr (floor ([lindex [$canv xview] 0]*$maxPosition))]p

# Parameter fuer:

# DIN-A4 quer: -pagewidth 28c -pagey 14.85c -rotate 1

# -width [...*(...+8*...+200)+1)-...]

# DIN-A4 hoch: -pagewidth 17.2c -pagey 8.6c -rotate 0

# -width [...*(...+8*...+200)+1)-...]

}

proc gesamtPS {canv maxPosition xNullpkt quelldatei} {

for {set ausgzaehler 0}\

{[expr ($ausgzaehler*1500)] <= [expr ($maxPosition + 8 * $xNullpkt + 200)]}\

{incr ausgzaehler} {

$canv postscript -colormode mono -file $quelldatei.$ausgzaehler.ps\

-pagewidth 28.0c -pagey 14.85c -rotate 1\

-width 1536p -x [expr ($ausgzaehler * 1500)]p

}

# Parameter fuer:

# DIN-A4 quer: for {...}{[...(...*1500)]<=[...(...+8*...+200)]}

# -pagewidth 28c -pagey 14.85c -rotate 1

# -width 1536p -x [(...*1500)]p

# DIN-A4 hoch: for {...}{[...(...*800)]<=[...(...+8*...+200)]}

# -pagewidth 17.2c -pagey 8.6c -rotate 0

# -width 836p -x [(...*800)]p

}

##### Anzeige der einzelnen Werte #####

proc werteListe {quelldatei ausgabe} {

global fenster

catch {destroy .liste$fenster}

toplevel .liste$fenster

wm title .liste$fenster "Punkte-Liste: $quelldatei"

wm iconname .liste$fenster "Punkte"
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wm positionfrom .liste$fenster program

label .liste$fenster.kopf -anchor w\

-text "Marke Position "

pack .liste$fenster.kopf

frame .liste$fenster.werte

pack .liste$fenster.werte

text .liste$fenster.werte.text\

-width 24 -setgrid 1\

-yscrollcommand ".liste$fenster.werte.scroll set"

scrollbar .liste$fenster.werte.scroll\

-command ".liste$fenster.werte.text yview"

pack .liste$fenster.werte.scroll -side right -fill y

pack .liste$fenster.werte.text -fill y

set zaehler 1

set aktPos 0

set datei [open ${quelldatei}.dat r]

gets $datei

gets $datei

while {![eof $datei]} {

set marke($zaehler) [read $datei 1]

set abstand($zaehler) [gets $datei]

set abstand($zaehler) [string trim $abstand($zaehler) " ;"]

set zeile ""

append zeile $marke($zaehler) $abstand($zaehler)

if {[string compare $zeile "ENDE"] == 0} {

set marke($zaehler) -1

set abstand($zaehler) ""

gets $datei

}

if {$marke($zaehler) != -1} {

if {$zaehler > 1} {

.liste$fenster.werte.text insert end \n}

.liste$fenster.werte.text insert end $marke($zaehler)

set aktPos [expr ($aktPos + $abstand($zaehler))]

.liste$fenster.werte.text insert end [format " %22.4f" $aktPos]

}

if {($zaehler % 100) == 0} {

$ausgabe insert end "."

update

}

incr zaehler

}

close $datei
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button .liste$fenster.fensterSchliessen -text "Schlie�en"\

-command "destroy .liste$fenster"

pack .liste$fenster.fensterSchliessen

incr fenster

}

##### Hilfe #####

proc hilfe {ausgabe} {

if {[winfo depth $ausgabe] > 1} {

set bold "-background #43ce80 -relief raised -borderwidth 1"

set normal "-background {} -relief flat"

} else {

set bold "-foreground white -background black"

set normal "-foreground {} -background {}"

}

$ausgabe configure -state normal

$ausgabe delete 0.0 end

$ausgabe tag configure big\

-font -*-Helvetica-Bold-R-Normal--*-180-*-*-*-*-*-*

$ausgabe insert end "Hilfe.\n" big

$ausgabe insert end "Simulation eines Punkt-Prozesses mit beschr�anktem\

Speicher\nauf der positiven reellen Achse.\n\n"

$ausgabe insert end "1. Bedienung\n" bedienung

$ausgabe insert end "2. Aktionen\n" action

$ausgabe insert end "3. Parameter\n" para

$ausgabe insert end "4. Funktionsweise\n" fktsweise

$ausgabe insert end "5. Definition von Funktionen\n" fktdef

$ausgabe insert end "\nAuswahl eines Themas durch anklicken mit der\

linken\nMaustaste."

foreach tag {bedienung action para fktsweise fktdef} {

$ausgabe tag bind $tag <Any-Enter> "$ausgabe tag configure $tag $bold"

$ausgabe tag bind $tag <Any-Leave> "$ausgabe tag configure $tag $normal"

}

$ausgabe tag bind bedienung <1> {source [file join hilfe/bedienng.hlp]}

$ausgabe tag bind action <1> {source [file join hilfe/action.hlp]}

$ausgabe tag bind para <1> {source [file join hilfe/para.hlp]}

$ausgabe tag bind fktsweise <1> {source [file join hilfe/fktsweis.hlp]}

$ausgabe tag bind fktdef <1> {source [file join hilfe/fktdef.hlp]}

$ausgabe configure -state disabled

}



v. Simulation von Punkt-Prozessen mit beschr�anktem Speicher 135

3) Beispiel f�ur eine Funktionsdatei. Durch das C-Programm wird eine Funktionsdatei

importiert, die die De�nitionen von h und � (im Programmtext mit
"
phi\ bezeichnet) beinhaltet.

Hier nun ein Beipiel f�ur eine solche Datei. Da diese durch ein C-Programm verarbeitet wird, mu�

die Datei dem Formalismus von C-Programmen gen�ugen.

double LAMBDA = 1; /* Wert, durch den die Funktion phi beschr�ankt wird */

double phi(double x)

{

double wertvonphi = 0;

if ((-50 <= x) && (x <= 50))

wertvonphi = (50 + x)/100;

else

wertvonphi = 0;

return(wertvonphi);

}

double A = 100; /* Ged�achtnis der L�ange A: Der Tr�ager von h mu� eine

Teilmenge von [0, A] sein.

A=0: oo-langes Ged�achtnis */

double h(double x)

{

double wertvonh = 0;

if (x <= 50)

wertvonh = exp((50-x)/25);

else if ((50 < x) && (x <= A))

wertvonh = -exp((50-x)/25);

else

wertvonh = 0;

return(wertvonh);

}
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4) Funktionsdateien zum Programm. Es folgt eine Au
istung der Funktionsdateien,

die unmittelbar nach Installation des Programms verf�ugbar und im Verzeichnis simuPP zu �nden

sind.

Zur Erinnerung: � : R ! [0;1) und h : [0;1)! R (siehe auch Abschnitt 3).

Datei: bsp01.fkt � = 1, � � 1, A = 0, h � 0 (alle Punkte des Poisson-Prozesses werden

mit der Marke 1 versehen)

Datei: bsp02.fkt � = 1, � � 0, A = 0, h � 0 (alle Punkte des Poisson-Prozesses werden

mit der Marke 0 versehen)

Datei: bsp03.fkt � = 1, �(t) =

(
exp(t) f�ur t � 0

exp(�t) f�ur t > 0
,

A = 10, h(x) =

(
exp

�
10�x
5

�
f�ur x � A

0 f�ur x > A

Datei: bsp04.fkt (=̂ PktProz.fkt) � = 1, �(t) =

(
50+t
100

f�ur �50 � t � 50

0 f�ur t < �50 oder t > 50
,

A = 50, h(x) =

(
exp

�
50�x
25

�
f�ur x � A

0 f�ur x > A

Datei: bsp05.fkt (=̂ beispiel.fkt) � = 1, �(t) =

(
50+t
100

f�ur �50 � t � 50

0 f�ur t < �50 oder t > 50
,

A = 100, h(x) =

8><
>:

exp
�
50�x
25

�
f�ur x � 50

� exp
�
50�x
25

�
f�ur 50 < x � A

0 f�ur x > A

Datei: bsp06.fkt � = 1, �(t) =

(
1 f�ur t � 1

0:1 f�ur t < 1
,

A =1, h(x) = exp(�x)

Datei: bsp07.fkt � = 1, �(t) =

(
1 f�ur t � 50

0:1 f�ur t < 50
,

A = 10, h(x) =

(
10� x f�ur x � A

0 f�ur x > A

Datei: bsp08.fkt � = 1, �(t) =

(
1 f�ur t � 7

0:1 f�ur t < 7
,

A = 10, h(x) =

(
1 f�ur x � A

0 f�ur x > A

Datei: bsp09.fkt � = 7:389, �(t) =

(
exp(jtj) f�ur �2 � t � 2

exp(2) f�ur t < �2 oder t > 2
,

A =1, h(x) = 0:1 exp(�x)
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Datei: bsp10.fkt � = 7:389, �(t) =

(
exp(jtj) f�ur �2 � t � 2

exp(2) f�ur t < �2 oder t > 2
,

A = 1, h(x) =

(
1� x f�ur x � A

0 f�ur x > A

Datei: bsp11.fkt � = 7:389, �(t) =

(
exp(jtj) f�ur �2 � t � 2

exp(2) f�ur t < �2 oder t > 2
,

A = 0:1, h(x) =

(
1 f�ur x � A

0 f�ur x > A

Datei: bsp12.fkt � = 1:5, �(t) =

8><
>:

0:1 f�ur t � 0:1

t f�ur 0:1 < t � 1:5

1:5 f�ur t > 1:5

,

A =1, h(x) = exp(�x)

Datei: bsp13.fkt � = 1:5, �(t) =

8><
>:

0:1 f�ur t � 0:1

t f�ur 0:1 < t � 1:5

1:5 f�ur t > 1:5

,

A = 1, h(x) =

(
1� x f�ur x � A

0 f�ur x > A

Datei: bsp14.fkt � = 1:5, �(t) =

8><
>:

0:1 f�ur t � 0:1

t f�ur 0:1 < t � 1:5

1:5 f�ur t > 1:5

,

A = 1, h(x) =

(
1 f�ur x � A

0 f�ur x > A

Datei: bsp15.fkt � = 1:5, �(t) =

8><
>:

0:1 f�ur t � 0:1

t f�ur 0:1 < t � 1:5

1:5 f�ur t > 1:5

,

A = 3:141592654, h(x) =

(
sin(x) f�ur x � A

0 f�ur x > A

Datei: bsp16.fkt � = 1, �(t) = exp(� jtj),

A = 10, h(x) =

(
exp

�
10�x
5

�
f�ur x � A

0 f�ur x > A

(siehe auch Unterabschnitt 3))
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