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Einleitung

Gegenstand des vorliegenden Textes ist die Untersuchung des Auftretens zufilliger Punkte auf
der reellen Achse, die wir als Zeitachse interpretieren konnen. Dabei soll zu jedem Zeitpunkt ¢
die ,,Wahrscheinlichkeit“ oder Rate fiir die Hervorbringung eines weiteren Punktes im nach ¢
folgenden infinitesimalen Intervall durch das bisherige Auftreten von Punkten bis zum Zeitpunkt
t bestimmt sein.

Zur Darstellung von zufélligen Punkten auf der reellen Achse eignen sich im obigen Fall
Punkt-Prozesse, fiir die eine sogenannte Intensitéit existiert. Eine solche Intensitit gibt die Rate
des Auftretens weiterer Punkte an. Wir werden im folgenden selbst-anregende Hawkes-Prozesse
betrachten. Deren Intensitiiten bestehen aus einer Ubertragungs- und einer Anregungsfunkti-
on. Die Ubertragungsfunktion gibt an, wie stark ein jeder Punkt vor ¢ in die Bestimmung der
Intensitdt zum Zeitpunkt ¢ eingeht. Die gewichtete Riickmeldung fiihrt nach Anwendung der
Anregungsfunktion, die als eine Art Skalierung der Riickwirkung verstanden werden kann, zur
Intensitét.

Ziel wird es sein, geeignete Ubertragungs- und Anregungsfunktionen zu finden, die zum
einen die Existenz eines stationdren Punkt-Prozesses mit einer wie zuvor beschriebenen Intensitét
sichern, und auflerdem bei einem vorgegebenem Punkt-Prozefl mit solcher Intensitit eine Art
,otationaritdt im Unendlichen® zulassen, was wir als Stabilitit bezeichnen werden. Dazu miissen
wir jedoch Anforderungen an die Vergangenheit bis zum Zeitpunkt O stellen, dies wird durch
geeignete Anfangsbedingungen geschehen.

Im ersten Kapitel formalisieren wir den zuvor beschriebenen Sachverhalt und geben grund-
legende Eigenschaften von Punkt-Prozessen und Intensititen sowie das benétigte Grundriistzeug
wieder. Abschliefend widmen wir den Poisson-Prozessen einen Abschnitt. Diese besitzen her-
ausragende Bedeutung, denn sie werden als Grundlage der Existenz und Stabilitdtsnachweise
dienen.

Nach einem einleitenden Abschnitt wenden wir uns in Kapitel II der angesprochenen Exi-
stenz und Stabilitdt zu. Dabei wird es notig sein, die Riickwirkung der vorhandenen Punkte (d.h.
der Punkte vor dem Zeitpunkt ¢) auf die Rate der Entstehung neuer Punkte zum Zeitpunkt ¢
einzuschrianken. Dies kann durch Beschrinktheitsannahmen an die Anregungsfunktion oder der
Forderung nach Einddmmung des Wachstums der Anregungsfunktion bei geeigneter Wahl der
Ubertragungsfunktion geschehen.

Im dritten Kapitel verallgemeinern wir die Aussagen des Kapitels IT von univariaten auf

K-variate Prozesse. War bisher nur ein Punkt-Prozefl gegeben, betrachten wir hier K Prozesse.



2 EINLEITUNG

Die Intensitdt von einem dieser K Prozesse kann dabei von allen anderen Prozessen abhéingen.
Die Beweistechniken sind an die Beweise des vorherigen Kapitels angelehnt und entsprechen sich
zum Teil, so dafl wir uns in diesem Abschnitt kiirzer fassen konnen.

Es folgt schlielich ein zweigeteilter Anhang. Kapitel IV nimmt technische Aussagen auf,
die der Vollstindigkeit halber gegeben werden. Die Details zum Nachweis der hier gegebenen
Aussagen sind an den entsprechenden Stellen im Haupttext nur von untergeordnetem Interesse.
Kapitel V beinhaltet den Quelltext eines Simulationsprogramms sowie Hinweise zur Installation
und Bedienung. Die grundlegende Funktionsweise wird im Hilfetext des Programms erldutert.

Abschlieflend noch einige Konventionen: Es bezeichne N (Nj) die natiirlichen Zahlen ohne
(mit) Null. Wie iiblich sei N = N U {oco}. Wir nutzen die Schreibweise R* = R=% = [0, 00)
fiir die positive reelle Achse, entsprechendes fiir R~ = R=". Analog werden diese Bezeichnungen
auch bei @ etc. verwendet.

Wir bezeichnen mit B¢ die Borelsche-o-Algebra auf R?, und fiir eine Borel-Menge A C RY
benenne B (A) die Spur-c-Algebra auf A, B+ o B([0,00)) sowie B~ oo B ((—00,0]). Im Fall
d = 1 schreiben wir wie {iblich nur ‘B und R.

Betrachten wir Intervalle der Form (s, s +¢] mit s € R und ¢ € [0, 00|, so gelte (s, s +t] = (s,00)
im Fall ¢ = co. Ferner sei [a, 0] ), falls a > b.

Fiir die vorliegende Arbeit sei (€2, F, P) stets ein beliebiger Wahrscheinlichkeitsraum (falls dieser
Raum nicht néher spezifiziert wurde).

Die Verwendung der Begriffe und Symbole orientiert sich an den Skripten der Vorlesun-
gen Wahrscheinlichkeitstheorie und stochastische Prozesse von Prof. Dr. Alsmeyer (siehe [Als98],
[Als96]) sowie dem Seminar ,Markierte Punkt-Prozesse und Anwendungen in der Warteschlan-
gentheorie“. Diesem lag das Buch , Elements of Queueing Theory“ von Francois Baccelli und
Pierre Brémaud (siehe [BB94]) zugrunde. Als Basis fiir diese Arbeit diente der Artikel ,,Stability
of nonlinear Hawkes Processes“ von Pierre Brémaud und Laurent Massoulié (siche [BM96]).

Ich mochte mich an dieser Stelle herzlich bei Herrn Prof. Dr. Alsmeyer fiir die Betreuung

wahrend der Erstellung dieser Arbeit bedanken.



Kapitel 1.

Hawkes-Prozesse und Intensitaten von

Hawkes-Prozessen

Wir wenden uns zunichst der formalen Definition der Begriffe ,Punkt-Prozefl “ und ,Inten-
sitdt“ zu. Anschliefend widmen wir uns im Abschnitt 2 der Vorhersagbarkeit. Diese stellt die
mathematische Grundlage dafiir dar, das derzeitige Verhalten eines Punkt-Prozesses durch die
vorangegangenen Punkte zu beschreiben. Abschnitt 3 dient dazu, Hawkes-Prozesse zu charakte-
risieren, bevor wir in Abschnitt 4 den Begriff der Stabilitéit einfiihren wollen. Abschnitt 5 nutzen
wir dazu, einige grundlegende Eigenschaften von Punkt-Prozessen anzugeben und nachzuweisen.
In Abschnitt 6 erinnern wir an die Definition von Poisson-Prozessen und geben Ergebnisse an,

die beim Nachweisen von Existenz und Stabilitit eine fundamentale Rolle spielen werden.

1. Punkt-Prozesse und Intensititen

Als erstes gilt es, den Begriff des Punkt-Prozesses zu erklaren.

1.1. Definition (Punkt-Prozef). Ein Punkt-Prozeff N (auf R) ist eine Familie von Zufalls-
variablen (N(C'))cens mit Werten in Ng und

(11) N(C) =Y 10 (T;).

neZ

Dabei ist (T,,)nez eine Folge von Punkten, d.h. Zufallsvariablen mit Werten in R, die
(12) To <0< T und T, < Tn+1 auf {Tn < +OO} N {Tn—l—l > —OO}

fiir alle n € Z f.s. erfiillen. N hei3t einfacher Punkt-ProzefS, wenn in (1.2) strikte Ungleichungen

gelten, wobei Ty = 0 zugelassen ist.

Die symbolische Schreibweise N = (7},)nez soll im folgenden fiir einen Punkt-Prozefl N
mit den Punkten T, n € 7, stehen, wobei die Punkte die Bedingung (1.2) der vorherigen
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Definition erfiillen. Wir verwenden die Schreibweise N* fiir die Einschrinkung von N auf R¥,
also N*(C) = N(C' N R*) fiir alle C' € B. Ferner sei N(w,C) o N(C)(w) fiir alle w € © und
C € B.

Eine Erweiterung des Begriffs ,,Punkt-Prozef§ auf R“ stellt der markierte Punkt-Prozefl auf R
dar:

1.2. Definition (markierter Punkt-Proze8). Unter einem (einfachen) markierten Punkt-
Prozef N = (T,,U,), ey, (auf R) mit Marken in einem mefibaren Raum (F, £) versteht man eine

Familie von Zufallsvariablen (N (Cg)) ¢, cpee mit Werten in Ny, so daf

(1.3) N(Cp) = ey (Tn, Un)
neZ
gilt und N (- x E) ein (einfacher) Punkt-Proze§ auf R ist. Der meBbare Raum (E, ) wird auch

als Markenraum bezeichnet.

Punkt-Prozesse und markierte Punkt-Prozesse lassen sich auch auf allgemeineren Rdumen
definieren (vergleiche [DVJ88] §7). Zu einem (markierten) Punkt-Prozef N definieren wir nun eine
Filtration (F;);cr- Diese a8t sich wie folgt interpretieren: F; beinhaltet simtliche Informationen

iber N bis zum , Zeitpunkt*“ ¢, also auf (—oo, t].

1.3. Definition (Filtration). (F;);,cr heifit Filtration eines (markierten) Punkt-Prozesses N,
wenn (F;)ier eine nichtfallende Familie von o-Algebren mit der Eigenschaft FN¥ C F, C F fiir
alle t € R ist. Dabei wird die interne Filtration (F)ier von N gegeben durch

(1.4) FN 5 (N(C);C € B((—00,1])).

Falls N ein markierter Punkt-Proze mit Markenraum (E, &) ist, wird die interne Filtration
durch

(1.5) FY o (N(Cr)i Cr € B((—00, 1) @)
erkldrt. Die zu den Marken (U,), ., eines markierten Punkt-Prozesses N = (T,,,Uy),,.,, gehorige

Filtration (F),.,, wird definiert als

(1.6) FU Y o (U(s);—oc0 < s < 1),

wobei U(s) © U, falls T}, < s < Tp:.

Stellt N einen (markierten) Punkt-Prozef§ dar, so heifit dieser adaptiert beziiglich der Fil-
tration (F;),.g oder Fi-adaptiert, falls F¥ C F, fiir alle t € R.
Fiir eine Filtration (F;),. definieren wir Fo, =P (Fi;t € R), analog FY und FY.

Bevor wir zum zentralen Begriff der Intensitdt gelangen, bendtigen wir noch geeignete
Mefbarkeitsbegriffe.
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1.4. Definition (Progressivitit und Vorhersagbarkeit). Es sei (F;)cr eine Filtration. Ist
(A(t))ier ein stochastischer Prozefl derart, daf fiir alle ¢ € R die auf Q x (—o0,t] definierte
Funktion (w,s) — A(s)(w) o AMw, s) Fr @ B((—o0, t])-meBbar ist, so heifit dieser Prozefl F;-
progressiv mefsbar. Die o-Algebra der F;-progressiv mefibaren Ereignisse wird im folgenden mit
Pg ((Fi),er) oder kurz Pg (F;) bezeichnet.

Der ProzeB (A(t))ter wird Fi-vorhersagbar genannt, falls die Funktion A : @ x R — R, (w, s) —
Aw, s) meBibar ist beziiglich der o-Algebra P ((F;),.g) (kurz P (F;)), welche auf Q x R definiert
ist und durch Mengen der Form A x (a,b] mit a < b und A € F, erzeugt wird.

Entsprechende Bezeichnungen werden auch fiir Funktionen f verwendet, die auf 2 x R definiert

sind.

13

Im vorliegenden Text nutzen wir stets die abkiirzende Schreibweise ,, F;-...“ anstelle von
o (Fi) g denn es sind keine Mifiverstindnisse zu erwarten. So schreiben wir beispielsweise

Fi-progressiv mefbar statt (F;),.p-progressiv mefbar.

1.5. Definition (Intensitét). Sei (F;)icr eine Filtration eines Punkt-Prozesses N und (A(%)):er

ein nichtnegativer F;-progressiv mef3barer Prozefl mit
.7-"a> f.s.

fiir alle (a,b] C R. Der stochastischer Proze8 (A(t));er wird dann F;-Intensitit von N genannt.

(1.7) E(N(a,8] | F,) = E(/ A(s) ds

Anstelle der bedingten Erwartungswerte in (1.7) kénnen in der Definition Erwartungswerte

iiber Fi-vorhersagbare Funktionen treten.

1.6. Bemerkung. Gegeben sei die Situation von 1.5. Dann ist (A(t))icr genau dann eine Fi-

Intensitdt von N, wenn fiir alle nichtnegativen F;-vorhersagharen Funktionen H : 2 x R — R

die Gleichheit
E(/ H(-,t)N(dt)) :E</ H(- D) dt)

gilt.

Diese Bemerkung ist eine Konsequenz aus [BB94] Kapitel 1 Gleichung (8.3.3) und der
P (Fi)-MeBbarkeit von H(w,t) = 14 (w) L(ay (¢) fiir (a,b) C R und A € F,.

Wir erinnern an die Definition eines Radon-Mafles: unter einem Radon-Mafl 1 auf (R, B)
verstehen wir ein lokal-endliches und von innen regulidres Maf}, d.h. zu jedem x € R gibt es eine
offene Umgebung V, mit p (V) < oo, und pu(C) = sup{u(K); K € & K C C} fiir alle C' € B (R
System kompakter Mengen), vergleiche [Bau92] §25.

1.7. Bemerkung. In der Situation von 1.5 gilt fiir alle C' € 9B genau dann N(C) < oo P-
f.s., wenn fc A(s) ds < oo P-f.s.. Daraus folgt, dal N genau dann f.s. ein Radon-Ma8 ist, wenn
(A(t))ier f.s. lokal integrabel ist.
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BEGRUNDUNG: (i) Um den ersten Teil der Bemerkung zu zeigen, sei C' € B eine nichtleere
Menge und a “infC e R.
Gelte zunéchst N(C) < oo f.s. und definiere fiir n € N

t
S déflnf{tz a;/ Le (s) N(ds) zn} =inf {t > a; N(C' N (—o0,t]) > n}

mit der iiblichen Festlegung inf () ' 5. Wir kénnen 0.B.d.A. SV als nach unten beschrinks
annehmen, betrachte sonst 57(%1) V ng. Hierfiir gilt lim,, ., 57(%1) = oo f.s.. AuBlerdem ist 57(%1) eine

Fi-Stopzeit:

S <41 0 firt<a
{sp)<t}= {Jiuglc(s) N(ds) >} fiirt>a
_ 0 fiirt<a
| {N(CN]a,t]) >n} firt > a

€ Fi,

t € R, n € N. Unter Beachtung des in Abschnitt 2 noch zu zeigenden Lemmas 2.1 folgt die

Fi-Vorhersagbarkeit von 1 { denn

(@,8)€QxR:8< S (@ )}’

{(@8)eaxR;s<8SP (@)} =J{@3e2xR;s< P (@) Ak}

(beachte: S ist nach unten beschréinkt). Hieraus ergibt sich

(1.8) E( / L] () 10 (M) ds) :E< / (L] ()10 () N(ds)) < n < oo,

so dafl f 1, S(l)]( s) e (s ))\(s) ds < oo f.s. gilt. Fiir alle Elemente w; € Q; & {N(C) < =}

existiert ein n; € N mit S5” (wi) = oo fiir alle n > n;. Dies zeigt [, A(s)ds < oo fs..
)

Gilt andererseits fc s)ds < oo f.s., so betrachte

¢
Sr(l)déf 1nf{t > a;/ Ie (s)A(s)ds > n}

Auch hier ist lim,,_, S’,(f) = oo f.s.. Ein weiterer Vorgriff auf Abschnitt 2 zeigt

0 firt<a

(@) <1 _
{5 <1} {{f]lc A(s dsZn} firt > a

€ Fi,

t € R, n € N, nach Lemma 2.8. Gleichung (1.8) besitzt wie zuvor Giiltigkeit, dies liefert
fll( S(z)] s) 1c (s) N(ds) < oo f.s.. Es gibt zu wq € Qy def {fc ds<oo} stets ein ny € N,

so daff S (w2) = oo fiir n > ny gilt. Daher folgt N(C) = [1¢ (s ) < oo fs..
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(11) Fiir C € B und w € Q gilt N(w,C) = sup{N(w,K); K € 8 K C C}; denn ist
N = (Tp),,ez, so stellt K = {T,(w); =k <n <k, T,(w) € C} fiir jedes k € N eine kompakte
Menge mit K C C' und limy_,o N (v, K;) = N(w, C) dar.
Bezeichne 2y den Tréger von P.

Ist nun w € {& € Q; N(w, -) Radon-MaB}, gilt N(w, [a,b]) < oo fiir beschriankte [a,b] C R,

und daher [, , A(w, s)ds < .
Falls w € {& € Q; (A\(@,1))er lokal integrierbar} ist, folgt fiir x € R die Endlichkeit von
f[m_l 211) AW, 8) ds, also auch N (w, (z — 1,2 + 1)) < co. o

Wir verwenden ab nun eine verkiirzende Schreibweise:
Im folgenden werden (markierte) Punkt-Prozesse stets als einfach angenommen, die Nennung

des Zusatzes ,einfach® wird unterlassen.

Einen Spezialfall der markierten Punkt-Prozesse stellt der multivariate Punkt-Prozefl (oder
auch K-variate Punkt-Prozef ) dar, bei dem der Markenraum E oo {1,..., K} und & die Potenz-
menge von E ist (K € N). Im Fall K = 1 spricht man auch von einem univariaten Punkt-Proze8,
falls K = 2 von einem bivariaten Punkt-Prozefs.

Ist N = (T,,U,),,cz, €in K-variater Punkt-Prozef}, so rechnet man sofort nach, da§ N(- x {i})
fiir jedes i € {1,..., K} einen gewdhnlichen (univariaten) Punkt-Prozefy auf R bildet.
Im folgenden werden wir nur noch K-variate Punkt-Prozesse ohne gemeinsame Punkte betrach-

ten, d.h. N ({T,,} x {i}) N({T,} x {j}) =0fs. firallen € Z und 1 <i,j < K mit i # j.
Ein K-variater Punkt-Prozef§ 148t sich durch die Zuordnungen

N(CxL)=Y N(C Ce®B, Lek,
1€L
N;(C) = N(C x {i}) C € B,

1 < i < K, mit einem sogenannten K-Vektor-Prozef N = (Ny,..., Ng) identifizieren und
umgekehrt, so daf§ wir beide Darstellungen N = (1,,,Uy,), e, und N = (Ny,...,Ng) als K-

variaten Punkt-Prozefl bezeichnen werden. Es gilt dann
FV =0 (F1<i<K).

Ferner heif3t ()\(t))te]R, At) = (M(b), ..., Ak (b)), Fi-Intensitit des K-variaten Prozesses N =
(Ny,...,Ng), falls N; Fi-adaptiert und (X;(t)),.p eine Fi-Intensitdt von Nj; ist fiir alle i €
{1,...,K}.

Die Einschriinkung auf eine der reellen Halbachsen entspricht dem univariaten Fall: N* =
(Nli, e NI%), dabei stellt N;* wie im univariaten Fall die Einschrinkung von N; auf R* dar
(1<i<K).
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2. Vorhersagbarkeit

1) Die o-Algebra der vorhersagbaren Ereignisse P(F;).  Sei (F}),.y eine Filtration.
In diesem Unterabschnitt geben wir zwei Erzeuger von P (F;) an, die beim Nachweis von Fy-
Vorhersagbarkeit niitzlich sein werden und bereits im Beweis von Bemerkung 1.7 genutzt wurden.
Auflerdem gilt es, den Zusammenhang zwischen Vorhersagbarkeit und progressiver Mefibarkeit

zu klaren.

2.1. Lemma. Die beiden folgenden Mengen-Systeme bilden durchschnittsstabile Erzeuger der
o-Algebra der vorhersagbaren Ereignisse P (F;):

(2.1) E Y {Ax (s,00); A € Fy, s € R}

def

(2.2) E = {{(w,t) € Ax Rt <T(w)}, T beschrinkte F,-Stopzeit}.

BEWEIS: Die Durchschnittsstabilitit von £ und £ C P (F;) ist klar. Fiir P (F,) = o (£1)
reicht es zu zeigen, daB fiir ) # (a,b] C R und A € F, die Menge A X (a,b] ein Element von
o (&) darstellt. Dazu geniigt ein Hinweis auf die Darstellung A X (a,b] = A X (a,00) \ A X (b, 00)
und F, C Fy.

Um P (F;) = o (&) zu erhalten zeigen wir o (1) = o (€;). Setze zu beliebigem s € R und
AeF,

Ty a(w) & 514 (w) + ool e (w) .

T 4 ist eine F-Stopzeit:

0 fiirt <s
{Tsa<t}=¢ A fir s<t<oo ,

Q fiir t = o0
d.h. {T; 4 <t} € F, und es folgt
(2.3) {(w,t) €A x Ryt < Ty a(w)} = A x (=00, 5] + A x R = (4 x (s,00))°.
Fiir eine beliebige nach unten beschrinkte (auch nichtendliche) F;-Stopzeit T gilt

{(wt) e xRyt < TW)} = | J{(w,t) € Qx Rst < T(w) An} € 0 (E).

neN
Mit (2.3) zeigt dies £ C o (€2), also die Inklusion ,,C“. Es ist fiir jede beliebige F;-Stopzeit T
{wt) e QxR;T(w) <t} = |J {T <t} x (t,) €0 (&),
{tht?;ém
denn {T <t} =, en {T <t-— %} € F;. Dies liefert ,D*.

Ebenso wie &; ist & durchschnittsstabil, denn

N {(w, ) € Q2xR;t < T(w)} = {(w,1) € A x Rst < Ty (w) ATh(w)},

i=1,2
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fiir zwei beschrinkte F;-Stopzeiten 77 und 75. O

Das nachfolgende Lemma rechtfertigt die Beschrinkung auf die Betrachtung vorhersagbarer

Intensitéiten.
2.2. Lemma. Fir beliebige Filtrationen (Fy)ier gilt P (Fi) C Pg (Fr)-
BEWEIS: Sei A x (s,00) € P (F;) mit s € R und A € F,. Dann gilt offensichtlich

A X (s,00) = U A X (t1, 1] € Pg (Fr)

t1,t2€Q
s<t]<to

denn A € F; C F,. Da & geméB (2.1) ein Erzeuger von P (F,) ist, folgt hieraus die Behauptung.
U

2) Vorhersagbare (und progressiv mefibare) stochastische Prozesse. Einige
Aussagen dieses Unterabschnitts lassen sich in gréferer Allgemeinheit zeigen. Wir geben hier
jedoch teilweise Versionen an, die auf die spitere Verwendung in dieser Arbeit zugeschnitten
sind.

Der folgende Satz stellt den Schliissel zum Beweis von 2.4 dar und stammt aus [Bré81]
A1.3. T7.

2.3. Satz (Abzidhlbare Abhingigkeiten). Gegeben sei eine Familie (F;);cr von o-Algebren
tiber einer Menge Q) und I eine beliebige Menge. Setze F s (Fi;i € I). Dann gilt:
Fiir alle A € F gibt es eine abzihlbare Menge J C I mit A € o (F;;i € J).

BEWEIS: Definiere das Mengensystem £ durch
EY{Ae FyA€o(Fyie ) fiir eine abzihlbare Menge .J C I} .
Fiir alle 7 € I gilt F; C £, und £ ist eine o-Algebra iiber (2. Daraus folgt die Inklusionskette
o(Fpiel)cE=o0()Co(Fyiel),
also & = o (F;;i € 1). O

Fiir vorhersagbare stochastische Prozesse existiert eine Art Faktorisierungslemma.

2.4. Satz. Gegeben sei ein Punkt-Prozef§ N und ein nichtnegativer F} -vorhersagbarer stocha-
stischer ProzefS (A(t))ier. Dann besitzt X die Darstellung N\(w,t) = v(N(w,+),t), d.h. X hingt nur

uber N von w ab.

BEWEIS: Der Beweis wird in zwei Schritten gefiihrt. Zunéchst zeigen wir, dal jede be-
schriinkte FN-Stopzeit die Darstellung T = u (N (Cy);k € J) mit Cp, € B fiir alle k € J (J
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abzihlbar) und einer geeigneten Funktion u besitzt. Anschlieflend wird ausgenutzt, dal £ geméis
(2.2) ein durchschnittsstabiler Erzeuger von P (F}) ist.

(i) Sei T eine beschriinkte F/'-Stopzeit. Dann ist T beziiglich der Vergangenheit zur Zeit
T

FY=c(Ae FL,An{T <t} e F) firallet € R).
mefbar. Sei

Ty(w) = Z nln-1<r<ny,

neEZ
so ist Tp ebenfalls eine F;¥-Stopzeit. Wihle eine Menge A € F] beliebig und definiere

AL AN =iy =(An{Ty <) Nn(An{Ty <i—1}) € FV,
dann besitzt A die Darstellung A =3, A;.
Fiir allei € Z gilt A; € FN = o(N(C); C € B((—00,i]) ). Nach 2.3 folgt A; € (N (Cyx); k € J;)
mit .J; abzéhlbar und C; ) € B((—00,i]), k € J;. Das Faktorisierungslemma [Als98] Lemma 52.1
sichert fiir beliebiges i € Z die Existenz einer (mefbaren) Abbildung p; : R — R mit

La, = s (N(Cip)s k€ Ji),

so daB 14 (w) = Y icp 1a, (W) = pa(N(Cag);k € Jy) nur iiber N von w abhingt, dabei ist
pia : R4l — R meBbar, J4 C {J,., J; abzdhlbar und Cay € B fiir k € J4.
Unter Ausnutzung des Funktions-Erweiterungsarguments folgt fiir alle nichtnegativen oder be-
schréinkten FJ-meBbaren Abbildungen T die Darstellung T = ji(N(Cy):k € J) (i : RVl = R
mef3bar, J abzéhlbar, C} € B fiir alle k € J).
Da nach Definition T < Ty ist, gilt FY C Fj}, d.h. fiir die beschrénkte F,¥-Stopzeit T existiert
eine Darstellung T = u(N(Cy);k € J), wobei wieder p : R/ — R mefbar, J abzihlbar und
Cy € B fiir alle k € J.

(ii) Nutzen wir fiir eine beschriinkte F;¥-Stopzeit T' die Darstellung aus (i), so hingt die
Abbildung

(w, ) — IL{(G),f)eQX]R;ng(@)} (W, 1) = Lseru<sy (T (W) = Loy (W(N(w, C5); 5 € J))

nur iiber N von w ab. Mittels eines Dynkin-System-Arguments folgt, dafl 1, (w,t) fiir alle
A € P (FY) nur durch N von w abhéngt.

Eine erneute Anwendung des Funktions-Erweiterungsarguments zeigt dann fiir nichtnegative
P (F})-meBbare Funktionen A(w, ), daB diese von w nur iiber N abhéingen. O

Die folgende Aussage &hnelt [Als98] Lemma 19.10, welches zur Vorbereitung auf den Satz
von Fubini (und Tonelli) dient.

2.5. Lemma. Sei die nichtnegative Abbildung X : Q@ x R — R, (w,t) — Aw,t) beziiglich der
Filtration (F;)ier vorhersagbar. Dann ist die Abbildung \(t) : Q@ — R, w — Aw, t) F-mefsbar.
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BEwEIS: Um das Funktions-Erweiterungsargument anwenden zu kénnen, wird die Behaup-
tung fiir Fi-vorhersagbare Funktionen der Form A(w,t) = Lax(s00) (w,t), s € R und A € F,
nachgerechnet. Dies ist wegen

0 firt <s
1a(w) firt>s

w — 11(3700) (t) Ta (w) = {

und F, C F; fiir t > s klar. O

Fiir ein vorgegebenes ¢t € R ist die Abbildung w — A(w, ) also F¥-mefibar. Der Satz 2.3
iiber abzdhlbare Abhéngigkeiten liefert die Existenz einer abz&hlbaren Menge J und Mengen
Cy € B((—o0,t]), k € J. Damit gilt

At) = fi (N(Ck), ke J)=fi (N(Cpn(—00,t]),keJ)
fiir eine geeignete Funktion f; : Rl — R. Wir erhalten zu Satz 2.4 folgendes
2.6. Korollar. Gegeben sei die Situation von 2.4. Dann gilt:

(2.4) Mw,t) =v (N (w,-N(=00,t]), 1)
fiir allet € R und w € €.

Betrachten wir einen Punkt-Proze N mit zugehériger Fy-Intensitit (A(f)),cp, so kénnen

wir diese Intensitét stets F-vorhersagbar wihlen. Die Rechtfertigung liefert der nachstehende

2.7. Satz (Existenz einer vorhersagbaren Version der Intensitit). Sei (F;)icr eine Fil-
tration und N ein Punkt-ProzefS mit Fy-Intensitat (\(t))ier . Dann existiert eine Fy-vorhersagbare

Fi-Intensitdt (S\(t))tE]R von N.

BEWEIS: Nach Definition ist (A\(¢))er Fi-progressiv mefibar. Ferner gilt P (F;) C Pg (F)
(siehe 2.2). Daher werden durch

v (A) < / Aw, 1) P & Ndw x dt),
A
vp(A) / P ® Adw x dt),
A
A € P (F,), MaBe auf P (F;) mit v; < v; definiert. Der Satz von Radon-Nikodym (o-Endlichkeit

on v, ist klar) sichert die Existenz einer P (F;)-meBbaren Abbildung A = Z—Z;. Fiir alle a,b € R
und A € F, liefert dies mit dem Satz von Fubini

/E(/ dt‘f)dp // t)dtdP = / dvy

A (a,b] a,b] Ax(a,b]
/ Mw, 1) va(dw x dt) // t) dt dP = / </ dt‘]—“a> dP,
Ax(a,b] a,b]
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d.h. (S\(t)) ist ebenfalls eine F;-Intensitidt von N. O

teR

Zum Abschluf} dieses Abschnitts wird noch ein mit 2.5 vergleichbares Ergebnis (beziiglich
der MeBbarkeit) fiir Integrationen iiber ein ,,Zeit“-Intervall gegeben. Dieses Ergebnis erinnert an
die Mefibarkeitsaussage im Satz von Fubini (und Tonelli) 19.11(a) in [Als98]).

2.8. Lemma. Gegeben sei ein nichtnegativer Fi-progressiv mefsbarer ProzefS (A(t))wer fir eine
Filtration (F;)ier- Dann gilt fir jedes feste to € R U {—o0}:

t
(2.5) / A(s) ds
to
ist adaptiert beziiglich (Fy)ier -
BEWwWEIS: Sei t € R. Klar ist, daf}
Fi @ B((—o0,t]) =0 (A x (a,b]; A € Fy(a,b] C (—o0,t]),
wobei der angegebene Erzeuger durchschnittsstabil ist. Fiir beliebige A € F; und (a, b] C (—oo, t]

gilt

/ Lt () L (5) ds = 1 (@) (bV fo — aV o),

to

die Abbildung w +— ftto 1a(w) L (s) ds ist also Fi-meB8bar. Mittels eines Dynkin-System-
Arguments (nutze den Satz von Fubini) folgt fiir alle B € F, @B ((—o0, t]) die Fi-MeBbarkeit der
Abbildungen w fti 1p (w,s) ds. Ein Funktions-Erweiterungsargument liefert schliefilich unter

Beachtung des Satzes von der monotonen Konvergenz die Behauptung. O

3. Hawkes-Prozesse

Fiir die vorliegende Arbeit seien
(3.1) ¢: R —[0,00) und h:[0,00) = R

stets mefbare Funktionen. An einigen Stellen wird es sinnvoll sein, h als Funktion auf R aufzu-
fassen, daher setzen wir dann h(x) = 0 fiir z € (—o00, 0).

Wir werden uns mit (einfachen) Punkt-Prozessen befassen, welche eine F¥-Intensitéit der Form
(D1) Alt) =¢ (/ h(t —s) N(ds)) [h:]0,00) = R]
(—oo,t)
= ¢ (h* N(t)) [h: R — R]

besitzen. Intensitéiten der Form (D1) werden im folgenden meist als (F;¥—) Dynamiken bezeich-

net.
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Einen Spezialfall solcher Prozesse stellen die selbst-anregenden Punkt-Prozesse von Hawkes dar.

Fiir diese gilt:

1R —[0,00),6(x) = v+,
h:[0,00) — [0, 00)

mit v > 0. Im folgenden sollen allgemeinere Funktionen ¢ betrachtet und der Bildbereich von h
auf R ausgeweitet werden. Aus der Verwendung solcher (i.a. nichtlinearen) Funktionen ¢ stammt
die Bezeichnung nichtlinearer Hawkes-Prozefs fiir Punkt-Prozesse mit Intensitéiten der Form (D1).

Der Begriff der (linearen) multivariaten Hawkes-Prozesse oder auch wechselseitig anregen-
den Punkt-Prozesse 148t sich zum Begriff des multivariaten nichtlinearen Hawkes-Prozesses erwei-
tern. Ein solcher Prozef ist eine Familie NV;, 1 < i < K(K € N), von einfachen Punkt-Prozessen

ohne gemeinsame Punkte und zugehorigen F¥-Intensitéiten

(D2) Ai(t) = ¢i (Z /(_ ) hyi(t — S)Nj(d5)>

mit mefibaren Funktionen

(3.2) é; : R — [0,00) und h;i : [0,00) = R,

1 <i,5 < K. Wie bereits bei der Definition der K-variaten Punkt-Prozesse gelte
FN Yo (F1<i<K).

Auch hier werden wir die F}'-Intensitét ((A1(t), ..., Ai(£))),cg von (Ni,. .., Nk) meist als (F¥ —)
Dynamik bezeichnen. Die Funktionen ¢ bzw. ¢; werden auch Anregungsfunktionen, h bzw. h;;

Ubertragungsfunktionen genannt.

3.1. Beispiel. Wihlt man im univariaten Fall ¢(z) & Alyc—1) (z) und h(t) & Lo (t) (c €N,

a > 0). Dann ist N der Input-Proze8 einer M/D/c/0-Warteschlange, d.h. einer Warteschlange
mit Poisson-verteilten Ankiinften der Intensitat A > 0, Service-Zeiten a > 0, keinem Warteraum

und ¢ Servern. *

3.2. Beispiel. Unter Zuhilfenahme von Hawkes-Prozessen 1488t sich neuronale Aktivitit, auch

neuronales Netzwerk genannt, modellieren. In dieser Situation bezeichnet

(3.3) \i(t) = Z /( . hji(t — s) N;(ds)

das Potential von Neuron i zur Zeit t, ¢; ist die Anregungs-Funktion von Neuron ¢ und hj; die
Transfer-Funktion von Neuron j zu Neuron i. Gelte /\%qﬁz(x) =1—1j9,0, (#), A > 0, dann heifit o;
die Anregungs-Schwelle von Neuron i, und das Neuron heifit angeregt zur Zeit t, falls \;(t) > oy,
bzw. in Ruhe oder auch gehemmt zur Zeit ¢, falls \;(t) < o;. *
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3.3. Beispiel. Betrachte ein Netzwerk, bestehend aus K Neuronen mit den Eigenschaften:
Neuron ¢ € {1,..., K} feuert mit einer Rate \;, falls fiir alle j € {1, ..., K} das Neuron j in den
letzten 6;-Zeiteinheiten nicht gefeuert hat (6;; > 0 konstant), ansonsten ist es gehemmt.

N; heifit der Punkt-Prozef$ der Spitzen von Neuron i, die Dynamik dieses Netzwerkes ist vom
allgemeinen Typ (D2) mit ¢;(x) = ALy (z) und hj; = Ly, (£), denn

Ai(t) = & (2 /( . hji(t — s) Nj(ds)> = ¢, (2 /( o Lio ;] (t — 5) Nj(ds)>
= d)l (]Zl /[tgji’t) N](d8)> == )‘i]]-[(),l) <]Zl N][t - gjz,t)> .

*

Das Ziel wird im folgenden sein, geeignete Bedingungen an die Funktionen ¢ und h (bzw.
¢; und hj;) zu stellen, welche die Existenz und Eindeutigkeit einer stationdren Version von N
(bzw. N = (Ny,..., Ng)) sowie auch die Stabilitdt (im Sinne von 4.5) der stationédren Version

sichern.

4. Stabilitit von Intensititen

Sei X & Rk (k € N) oder X ' R x E mit einem meBbaren Raum (E,€), X = B* bzw.
X =B ® E. Wir bezeichnen den mefibaren Raum der Radon-Mafle auf X mit (M (X), M(X)),
dabei wird M(X) durch Abbildungen der Form fo : M(X) — R,pu — p(C) erzeugt, also
M(X) =0 (fo;C € X). Als abkiirzende Schreibweise verwenden wir

(M, My) € (M (RF), M(R))

sowie (M, M) im Fall £ = 1, aulerdem

(Mg, Mz) & (M (R x E), M(R x E)).
Mit (M, M}) bezeichnen wir den Raum der ganzzahligen Radon-Mafie auf R¥, entsprechendes
gelte fiir (M}, M';). Fiir weitergehende Betrachtungen dieser Rdume verweisen wir auf [DVJ8§]
Abschnitt 6.1 und 7.1.
Verschiebungen eines Radon-Mafles auf der reellen Achse lassen sich mit dem Shift-Operator

darstellen.

4.1. Definition (Shift). Der Shift- (oder auch Translations-) Operator S, auf M = M, wird
definiert durch

(4.1) Suu(C) = pu(t +C)
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fir p € M und alle C € B. Auf My (k > 2) oder Mg wirke der Operator nur auf die erste

Komponente des Grundraumes:
(4.2) Siu(C x L) =p((t+C) x L)
fiir p € My und alle C € B, L € B*~! (bzw. p € Mg, C € B, L € F).

Es stellt (S),cg einen mefbaren Fluff auf (M, M) bzaw. (Mg, Mg) dar (vergleiche [BB94]
1.1 und 1.3), d.h. die Abbildung (¢, ) — Sy ist B x My — M;-mefibar (bzw. B x Mpr — Mp-
meflbar), S; ist bijektiv und S; o S, = S;4,, fiir alle ¢, u € R.
Der Shift-Operator besitze Vorrang vor der Einschrinkung eines Punkt-Prozesses auf die positive
oder negative reelle Halbachse, d.h. S;N* = N ((t + -) N R*).
Nach Definition gilt fiir einen K-variaten Punkt-Prozel N = (Ny, ..., Ni) nach Anwendung des
Shift-Operators S;N = (S;Vy, ..., S;Nk).

4.2. Definition (Stationaritit und 0;-Kompatiblitit). (i) Ein Punkt-Proze8 N heifit sta-
tiondr, falls P(N € -) = P(S;N € ) fiir alle t € R gilt.

(11) Sei (6;)icr ein meBbarer Flufl auf einem mefibaren Raum (Q, F), vergleiche [BB94]
Kapitel 1 1.2. Ein Punkt-Prozefl N heifit 0;-kompatibel, wenn er fiir alle t € R und w € 2

(4.3) SN(w,") = N(Ow, ")

erfiillt. Eine Verschiebung einer Realisierung des Punkt-Prozesses als Radon-Maf entspricht also

einer ,, Verschiebung® der zufilligen Komponente.

Fiir einen stochastischen Proze (A(f)),.p verwenden wir ebenfalls das Symbol S,, um die
Verschiebung um u Zeiteinheiten darzustellen: S, A(t) o Alu+1).

Wir iibernehmen auf (M', M') die Definition der vagen und schwachen Konvergenz aus
[Als98] (Definition 36.1 und 43.4): eine Folge (p,)nen von Maflen aus M’ konvergiert vage gegen

einen Grenzwert p € M', wenn fiir alle stetigen Funktionen f auf R mit kompakten Trager

(1.4) [ ran == [ gau

gilt. Die Folge (pin)nen konvergiert schwach gegen p, falls (4.4) fiir alle stetigen und beschrinkten
Funktionen f auf R richtig ist.
Der Raum der ganzzahligen Mafle (M', M') auf (R,) wird versehen mit der Topologie der

vagen Konvergenz.

4.3. Definition (Anfangsbedingung und Konvergenz). (i) Der Punkt-Proze N besitzt
die Anfangsbedingung (P_), falls die Beschrinkung von N auf (—o00,0], also N~ = SoN—, die
Bedingung (P_) erfiillt.

(ii) Eine Folge (N™)
zefl N, wenn die zugehorigen auf M’ induzierten Wahrscheinlichkeitsmafle P(N () ¢ ) schwach

von Punkt-Prozessen konvergiert in Verteilung gegen einen Grenzpro-
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gegen P(N € -) konvergieren.

Eine solche Folge (N("))HGN konvergiert in Variation gegen N, wenn

(4.5) lim sup
n—o00 cemM’

P(N™ e C)-P(N eC)|=0.

Ein niitzliches Kriterium zur Priifung auf Konvergenz in Verteilung einer Folge (N(”))nelN
von Punkt-Prozessen gegen einen Grenzproze N findet sich in [DVJ88] (Theorem 9.1.VI.):
P(N™ € ) konvergiert genau dann schwach gegen P(N € -), wenn fiir jede endliche Familie
beschrinkter Mengen A;,..., Ay € B mit P(N (64;) > 0) =0 fiir alle i € {1,...,k} die Vertei-
lung von (N™(4,),...,N™(A;)) schwach in R* gegen die Verteilung von (N(A;),..., N(Ay))
konvergiert (im ,iiblichen® Sinn, siehe [Als98] Abschnitt 43). Dabei bezeichnet 0 A den topologi-
schen Rand der Menge A € ‘B.

Mit den nun vorhandenen Konvergenzbegriffen kénnen wir die Stabilitdt eines Punkt-
Prozesses definieren. Zuvor noch ein Beispiel fiir eine Anfangsbedingung eines K-variaten Punkt-

Prozesses N.

4.4. Beispiel. Gegeben sei ein K-variater Punkt-Proze8 N = (Ny,..., Ng). Dann ist

lim 7Ni((_t’ o)) =

t— 400 t

f.s. fiir a; > 0, 1 < i < K, eine Anfangsbedingung (P_). *

Die Definition von Stabilitéit geben wir nur fiir die Dynamik (D2), da (D1) den Spezialfall
K =1 darstellt.
Wir werden im folgenden sagen, da§ der Punkt-Proze3 N die Dynamik (D2) auf [0, c0) besitzt,
falls (1.7) fiir alle (a,b] C [0, 00) gilt.

4.5. Definition (Stabilitit). Die Dynamik (D2) heifit stabil in Verteilung (bzw. Variation)
beziiglich einer Anfangsbedingung (P_), wenn fiir alle Punkt-Prozesse N’ mit Anfangsbedingung

(P_), welche eine Dynamik (D2) auf [0, c0) zulassen, ein Punkt-Prozef N existiert mit

(ST1) N folgt der Dynamik (D2) auf R und ist stationér,

(ST2) S,N'* X5 N+ fiir t — +o00 (bzw. S,N'* # NH).
—+00

Klar ist, dafl die Stabilitéit in Variation die Stabilitdt in Verteilung impliziert. Koppelt jeder
Punkt-Prozel N’ wie in 4.5 bereits mit einem stationiren Punkt-Prozefl mit der gewiinschten

Intensitét, so erhalten wir bereits Stabilitdt in Variation, wie Lemma 4.6 zeigt.

4.6. Lemma. Zu beliebigem Punkt-Prozeff N' mit Anfangsbedingung (P_) und Dynamik (D2)
lasse sich auf [0,00) ein Prozeff N auf demselben Wahrscheinlichkeitsraum konstruieren, welcher
(ST1) erfillt. Ferner koppeln N und N', d.h.

(ST2’) SN+t = S,N'" fs. fiir alle t > T, T Zufallsgrofe mit P(T < 4+o00) = 1.
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Dann ist die Dynamik (D2) stabil in Variation beziglich der Anfangsbedingung (P_).
BEWEIS: Fiir beliebiges ¢t € R und C' € M’ gilt unter Ausnutzung der Stationaritéit von N
P(S,N'" € C) - P(N* € C)
- P(StN’+ €C, SN + StN+) _ P(StN+ €, 8N £ StN+)
+P(SIN'T € C SN = SINY) = P(SN* € €SN = SN

< P(StN’+ e M',S,N'"t £ StN+>
< P(S,N'"" # StN+>
< P(T > 1)

und analog P(N* € C)—P(S,N'" € C) < P(T > t). Somit folgt die Kopplungsungleichung und

Konvergenz in Variation gegen 0:

sup
ceM’

P(SIN'* € C) = P(N* € C)| < P(T > 1) =%,

denn 7" < +o0o fs.. O

Das folgende Lemma konnen wir nutzen, um die Eindeutigkeit von stationdren Punkt-

Prozessen mit gegebener Anfangsbedingung und auf [0, 00) vorgegebener Intensitit zu zeigen.

4.7. Lemma. Ezistiere zu Dynamik (D2) eine Anfangsbedingung (P-), so dafi (D2) stabil in
Verteilung (oder Variation) ist. Sei fiir jeden Punkt-Prozefs N', welcher (P_) erfillt und auf
[0,00) der Dynamik (D2) folgt, die Verteilung des in (ST1) auftretenden stationdren Punkt-
Prozesses N gleich. In diesem Fall gilt:
Jeder stationdre Punkt-Prozefs N', der die Anfangsbedingung (P_) besitzt und der Dynamik (D2)
auf [0, 00) geniigt, ist verteilt wie N.

Erfillt auferdem jeder stationdre Punkt-Prozef, welcher die Dynamik (D2) auf [0,00) be-

sitzt, die Anfangsbedingung (P_), so ist die stationdre Lisung eindeutig.

BEWEIS: Sei N’ ein stationdrer Punkt-Proze8}, der die Anfangsbedingung (P_) besitzt und
der Dynamik (D2) auf [0,00) folgt. Somit gilt PSoN" = PN'" = PS:N'™ fiir alle t € [0, 00). Es
folgt PN'" = P¥" da S,N'* 22 N+ in Verteilung.

Die Stationaritét von N’ und N liefert auferdem PN = PN = PN* = PSIN* fiir t € (—o0, 0),
d.h. N ist wie N verteilt.

Die zweite Aussage ist hiermit ebenfalls klar. O

Wir werden in diesem Text einen Punkt-Proze N = (1},), ., transient nennen, falls T), fiir

n — oo f.s. gegen unendlich strebt. In Stabilitdtsbeweisen reicht es, transiente Punkt-Prozesse zu
n—oo

betrachten: fiir ein w € Q mit T, (w) —— = € (0, 00) gilt nach Definition 1.1, dafl N (w, (z,00)) =
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0. Auf der Menge {w € O, T, (w) == 7 fiir ein € (0, oo)} strebt S;N* fiir t — oo also gegen

den leeren Punkt-Prozefl ohne einen einzigen Punkt auf R.

5. Eigenschaften von Punkt-Prozessen

Wir beginnen diesen Abschnitt mit einer technischen Hilfsaussage, die wir im folgenden ohne

explizite Nennung verwenden werden.

5.1. Lemma. Sei (F;), . eine Filtration, (A(t)),.p ein nichtnegativer F;-vorhersagbarer Prozef
und x < a <b. Dann gilt:

(5.1) E(/ab)\(t) dt‘]-}) :/abE(A(t)m) dt fs..

BEWEIS: Wir beginnen mit einem Dynkin-System-Argument, um die F, ® B-Mefibarkeit
der Abbildung

(5.2) (w,t) — E(\(1) | Fs) (w)

fiir A\(t) = 1p (-, ), D € P (F;), zu zeigen. Das Mengen-System &; aus 2.1 ist ein durchschnitts-
stabiler Erzeuger von P (F;). Fiir A X (a,00) € & gilt:

E(ILA]laoo ‘f)—]laoo)(t)E(]lA|f$)’

d.h. fiir A() = Lal(ae0 () gilt die F, ® B-MeBbarkeit von (5.2). Man rechnet leicht nach, daf
das Mengensystem

p {De€P(F);(w,t)— E(lp (- t)| Fp) (w) ist F, @ B-meBbar}

ein Dynkin-System bildet. Damit ist die oben genannte Behauptung gezeigt.
Ein Funktions-Erweiterungsargument liefert unter Beachtung monotoner Konvergenz fiir beding-
te Erwartungswerte die F, ® B-Mefbarkeit von (5.2) fiir alle nichtnegativen F;-vorhersagbaren

(A)ser-
Nach dieser Vorarbeit liefert der Satz von Fubini fiir beliebige Mengen A € F,:

/ ( dt‘f)dP // t)dt dP = // t) dP dt
//E t)| F,) dP dt = //E ) dt dP.

Unter Beachtung der definierenden Eigenschaften des bedingten Erwartungswertes zeigt dies das
Gewlinschte. 0

Da fiir die Punkte der negativen reellen Achse eines Punkt-Prozesses N zu einem ,,Zeit"“-

punkt £ < 0 bei Kenntnis der Vergangenheit bis zu diesem ¢ nicht entschieden werden kann, an
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welcher Position ein solcher Punkt in der Folge der negativen Punkte eingeordnet werden muf
(,n-ter Punkt vor 0 oder ,n+ 1-ter Punkt vor 0“ oder ...?7), stellen diese Punkte keine Stopzeiten

beziiglich der internen Filtration dar. Auf (0, 00) ist dies jedoch der Fall.

5.2. Lemma. Sei N = (T},), ., ein Punkt-Prozef auf R. Die Punkte der positiven reellen Halb-

achse (T,,), cn sind dann F-Stopzeiten, denn fiir beliebiges n € N und t € R gilt

€

B 0 firt <0
stk = { {N((0,8]) >n}  firt>0

e FN.
Schrinken wir einen Punkt-Prozefl mit existierender F;-Intensitit auf die positive reelle

Halbachse ein, so 1483t sich auch fiir diesen Prozef§ die F;-Intensitit angeben.

5.3. Lemma. Gegeben sei eine Filtration (F;),.p und ein Fi-adaptierter Punkt-Prozeff N mit
Fi-Intensitit (A(t)),cg . Dann besitzt N* die durch

wo-{ s

definierte Fy-Intensitdt (A4 (t)),cg -
BEWEIS: In den Fillen (a,b] C (—o0,0) oder (a,b] C [0,00) rechnet man die definierende

Gleichung (1.7) sofort nach. Sei also (a,b] C R mit 0 € (a, b]. Dafiir gilt
E(N*((a,b]) | Fa) = E(N((0,0]) | Fa) = E(E(N((0,8]) | Fo) | Fa)

:E(E(/Ob)\(t) dt‘f()) ‘.7-") :E</abA+(t) dt‘ﬂ) :

denn F, C Fy. O

Die Hinzunahme von Informationen, die unabhéingig vom vorgegebenen Prozef sind, dndert
die Beziehung zwischen Punkt-Prozefl und Intensitéit nicht, d.h. bedingen wir nicht nur unter der
urspriinglichen o-Algebra zum Zeitpunkt a, sondern zusétzlich unter der davon unabhingigen
o-Algebra zum Zeitpunkt a, so gewinnen wir keine neuen Erkenntnisse iiber das Verhalten von
Punkt-Prozefl und Intensitét in (a, b].

5.4. Satz. Sei N ein Punkt-Prozeff mit F-Intensitit (A(1)),cg und (Gi),cp eine weitere, von
Foo (und damit von FY) unabhingige Filtration. Dann ist (A(t)),.g ebenfalls eine o (F;, G,)-
Intensitit von N.

BeEwEIs: Die Unabhéngigkeit von F, und G, zeigt unter Verwendung von Lemma 2.8

E(N((a,b]) | Fa,Ga) = E(N((a,b]) | Fa) = E(/ab)\(t) dt ‘ ]-'a> = E(/ab)\(t) dt ‘ fa,ga>

f.s. fiir beliebige Mengen (a,b] C R. O
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5.5. Satz (Risikorate). Sei N ein (einfacher) Punkt-Prozefs, welcher eine F} -vorhersagbare
Intensitit der Form \(t) = v(N,t) auf [0,00) zuldfit. Dann gilt:

(5.4) P(N((0,t) =0|Fy) = exp (— /OtV(N,S) ds)
fir alle t € (0,00] auf der Menge {f[f v(N—,s)ds < oo}

Es wird in 5.5 nicht gefordert, da die F¥-Intensitit A(¢) von der Form v(N,t) ist. Dies
gilt vielmehr, da A(t) F}-vorhersagbar ist, vergleiche 2.4.
Auf der Menge {fot v(N—,s)ds = oo} nimmt Gleichung (5.4) die Gestalt

P(N((0,¢]) =0|F)) =0

an. Als Basis zum Nachweis dieser Behauptung kann die Anwendung von 5.5 auf Punkt-Prozesse
N®™ mit Intensitit A™(#) = A(t) A n genutzt werden. Dabei werden die Prozesse N™ aus
dem Proze8 N unter Verwendung der Aussagen 6.11 (bzw. 6.12) und 6.14 des nachfolgenden
Abschnitts konstruiert (§hnlich dem Vorgehen wie z.B. im Beweis von 8.7). Auf weitere Details
verzichten wir und kommen nun zum Beweis von 5.5.

BEWEIS (VON SATZ 5.5): Sei t € (0,00]. Unmittelbar klar ist die Gleichheit

(5.5) Lin(og=0y =1~ /( g V@0 N (ds).

Sei A € FJ beliebig. Die Abbildung (w,s) — 14 (w) Loy (s) ist P (FN)-meBbar. Gezeigt
wird nun die FV-Vorhersagbarkeit der Abbildung

(5.6) (w,s) = La(w) Lo (5) Lino,s)=0} (W) -

Hierfiir reicht es, die P (F2)-MeBbarkeit der Menge {(w,s) € Q x R; N(w, (0, s)) = 0} nachzu-
rechnen. Da {w € Q;Ty(w) > a} = {w € Q; N(w, (0,a)) = 0} € FY fiir alle a € [0,0), ergibt
sich aus der Darstellung

{(w,s) € A x R; N(w, (0,s)) =0}
=Q X (—00,0] U {(w,s) € 2 x (0,00); T (w) > s >0}

mit Anhang Al.1 das Gewiinschte: {(w, s) € @ x R; N(w, (0,5)) = 0} € P (FX).
Multiplikation von Gleichung (5.5) mit 1,4 liefert wegen der Vorhersagbarkeit von (5.6)

unter Beachtung von Bemerkung 1.6
PUN(0.6) =041 4) = BLy - E(L [ Lo V()
=P(A) - E ( / LaLoy (s) Linqo,sn=0y N (d8)>
=P(4) - E (M /( . Lin((o,s)=03 A(5) dS)

1
(:) P(A) — E(ﬂA /(0 ] ﬂ{N((O’S]):O}Z/(Nf, S) dS) .
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Unter (1) wurde die aus der Darstellung A(s) = v(NV, s) resultierende Identitét
Lin(o,=01A( 8) = Linqo,sn=0y(IV, 8) = Linqo,sp=0y /(N 7, 8)
genutzt (siehe auch Korollar 2.6). Dies wiederum zeigt mit dem Satz von Fubini, daf
P({N((0.1]) = 0}| 73") = E(Lwoan-ny | 7o)
=1- E(/(o ) Leno,s))=03 V(N 5) ds .7-'5V>

=1 —/( }E(E{N((o,sno}V(N,S) | F3) ds
0,t

:1—/‘I%N(&ﬂ%:MI§ﬁ4Nj@d&
(0,t]

Eine induktive Anwendung dieser Gleichung liefert (sg o t)
P(N((0,]) =0[F') =1
n S0 S1 Sk—1
+Z(—1)k/ I/(N_,Sl)/ V(N_,SQ)"'/ V(N7 sg)dsg ... dssds;
o 0 0 0
S0 S1 Sn—1
0 [T s [ s [ V)
0 0 0

/ P(N((0,8041]) = 0| F) V(N 7, 8p41) dspy1dsy, . . . dsads;.
0

(5.7)

In A2.1 wird gezeigt:

S0 S1 Sk—1
/ I/(N_,Sl)/ V(N_,SQ)"'/ V(N7, s) dsg ... dsadsy
0 0

0

(58) (fot v(N—,s) ds)k
N Kl
Aus (5.7) und (5.8) folgt die Abschétzung
n OtV(N_,S)dS ) Otl/(N_,S)dS "
Z(_l)k( k! ) B ( (n+1)! )

k=0

n ( Otl/(N,s)ds)k <f(fl/(]\7,s)ds)wrl

<P(N((0,2]) =0]F") <) (-1)F
: . (Jav(N~—s)as)""" : .
was im Grenziibergang n — oo wegen ) — 0 zu Gleichung (5.4) fiihrt. O

Satz 5.5 kann im Fall der K-variaten Punkt-Prozesse auf den Prozef} iibertragen werden,

der die gesamten Punkte aller univariaten Punkt-Prozesse umfaft.
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5.6. Korollar. Bezeichne N = (Ny, ..., Ng) einen K-variaten Punkt-Prozeff mit F} -vorher-
sagbarer FY -Intensitit (A(t)),cg = (M), ..., Ak (t))),cr- Die Komponenten besitzen eine Dar-
stellung A\;(t) = v; (N1,..., Ng,t). Auflerdem besitzen die einzelnen Prozesse Ni,..., Nk f.s.

keine gemeinsamen Punkte. Dann gilt:

(5.9) P(N((0,4] x {1,...,K}) =0|F)) —exp( Z/ vi (N7 ..., Ny, s) ds)

fiir alle t € [0, 0] auf{ z1fon( oo Ny s) ds<oo}.

BEGRUNDUNG: Der Beweis von 5.5 a3t sich vollsténdig {ibernehmen, wenn man beachtet,

daf} aus

Lin(o,x{1,...xk =0y = 1 — /(0 ) Lin(o,5)x{1,...k =0y N (ds x {1,...,K})

fiir beliebige Mengen A € F} bereits
PN ((0,1] x {1,...., K}) =0} 1 4)
K
- ZE</ LaTyn(0,5)x{1,...})=0} N (ds x {i }))
i=1 (0,¢]
K
> E

folgt. Definiere v (Nf, .. .,N[},s) def ZZ Vi (Nf, .. .,N;(,s). Dann gilt

P({N((0,#] x {1,...,K}) =0} | 7))
_ 1—/(0t]P({N((o,s] < {L,....K}) = 0} | FN) v (N7,..., Nz, s) ds,

was als Basis fiir die Ubernahme des weiteren Beweises dienen moge. o

Abschlielend geben wir noch einen Test fiir das Vorliegen von Stationaritéit an.

5.7. Lemma. Sei P ein Wahrscheinlichkeitsmaf und (0,),.r ein mefibarer Fluf auf (Q, F) mit
P o6, =P sowie N ein 0;-kompatibeler Punkt-Prozefs. Dann ist N stationdr.

BEWEIS: Sei k € N, nq,...,ng € Ng und Ay,..., Ay € B beschrankt. Somit folgt

P(N(A;+t)=nsi=1,...,k)
= P(S,N(A) =nii=1,....k)
P(N(0;-, A;)) =nji=1,...,k)
P({0_w € QG N(w,A) =ngi=1,...,k})
P(N(A4;) =n;i=1,...,k).

(5.10)
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Nach [DVJ88] Kapitel 6.2 Proposition 6.2.II1. folgt hieraus die Stationaritéit von N. O

Die mittlere Intensitadt A\ eines stationdren Punkt-Prozesses N ist die erwartete Zahl der
Punkte von N im Intervall (0, 1]: A = EN((0, 1]).

5.8. Lemma. Sei N ein stationdrer Punkt-Prozefs mit endlicher mittlerer Intensitit X\ € R. Fiir
beliebige C' € B gilt

(5.11) EN(C) = A\(C)

und fiir beliebige nichtnegative mefbare Funktionen f besteht die Gleichheit

(5.12) E</f(u)N(du)> :)\/f(u) Ndu).

BeEwEIS: Da N stationir ist, gilt fiir alle t € R und C' € 9B, dal EN(C) = EN(C + ).
Gleichung (5.11) folgt aus [Als98] Satz 7.5, denn EN(-) ist ein Maf auf (R, ). Nun kénnen wir

(5.11) umschreiben zu

E</ e (u) N(du)) - )\/ILC (u) Mdu) -

Durch Anwendung des Funktions-Erweiterungsarguments folgt schlieflich (5.12). O

6. Poisson-Prozesse

Der erste Unterabschnitt gibt die Definition eines Poisson-Prozesses sowie einige aus [DVJ88]
bekannte Eigenschaften dieser Prozesse wieder. Interessante Ergebnisse fiir die Konstruktion von
Punkt-Prozessen werden im zweiten Unterabschnitt wiedergegeben.

Wir erinnern daran, dafl fiir die Funktionen A und ¢ stets Meflbarkeit unterstellt wird, siehe
Beginn von Abschnitt 3.

1) Definition und Ergodizitit. Die allgemeine Definition eines Poisson-Prozesses auf
R* lautet:

6.1. Definition (Poisson-Prozef). Sei N(w,-) fiir alle w € Q ein ganzzahliges Radon-Maf}
auf R* und N(C) mefibar fiir alle C € B* (k € N). AuBerdem gelte fiir alle endlichen Familien
disjunkter und beschréinkter Borel-Mengen A; € B* 1 <i <nmitn € N, und (ji,...,5,) € NI

(6.1) P(N (4) =jis1<i < n) = ﬁ %e—u(&)

mit einem Maf} 1 auf RF. Dann heifit N Poisson-Prozeff mit Intensitits- (oder auch Parameter-)
Map p auf R* und im Fall g = AN Poisson-Prozefl mit Parameter (oder auch Intensitit) A.
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Von Interesse werden hier nur solche Poisson-Prozesse auf R oder IR? sein, deren Inten-
sititsmafl ein rationales Vielfaches des Lebesgue-Masses ist. Zu einem Poisson-Proze N auf
R? definieren wir die zugehdrige interne Filtration wie bei einem markiertem Punkt-Prozefl mit
Markenraum (R, B):

FN Y 5 (N(C); 0 € B((—00,1]) © B) .

6.2. Bemerkung. Gegeben sei ein Poisson-Proze§ mit Parameter-Maf8 ;1 auf R*, k € N.

(i) Dann besitzt N die vollstindige Unabhingigkeits- Eigenschaft, d.h. die Zufallsvariablen N (A;),
1 < i < n, sind fiir disjunkte und beschrinkte Mengen A, ..., A, € B* stochastisch unabhiingig.
(ii) Tm Fall g = AN ist die Zahl der Punkte in jedem nichtleeren, beschrinkten Intervall A € B
f.s. endlich und nicht f.s. 0. AuBerdem ist N stationir.

Bezeichne N einen Poisson-Prozef auf R* mit Intensitéits-MaB p und (), . eine Filtration
mit ]—"tN C F,fiirallet € R. AuBerdem seien F; und S;N* unabhingig fiir alle s < ¢. Wir sprechen

dann auch von einem F;-Poisson-Prozef. Fiir alle nichtnegativen Abbildungen H : QO x RF — R,
die P (F;) ® B* L-meBbar sind, gilt

(6.2) E( ]RkH(-,t) N(dt)) :E( H(-,t)u(dt)>,

was sich sofort durch ein Funktions-Erweiterungsargument verifizieren 148t.

Rk

Wir werden einen markierten Punkt-Proze8 N = (T,,U,),,., markierten Poisson-Prozefs
mit Intensitdts-Maf 4 (bzw. Parameter A) nennen, falls (77,), ., ein Poisson-Prozef mit Inten-
sitdts-MaB p (bzw. Parameter A) ist.

Sei N = (T,,,U,), oz €in markierter Poisson-ProzeB mit Parameter-Ma$ 1, welcher beziiglich
einer Filtration (F),cg» ]:tN C F, fiir alle t € R, die Eigenschaft ,, F, und S,N* sind unabhiingig
fiir alle s < t* besitzt. Auerdem sei Fy(*® unabhéngig von der Folge (U, )nc7z unabhiingiger,
identisch verteilter ZufallsgroBen ((E, ) Markenraum). Es gilt dann als Analogon zu (6.2):
Fiir alle nichtnegativen Abbildungen H : Q x R x F — R, die P (F;) ® £-meBbar sind, gilt

(6.3) E( . H(-,t, z) N(dt x dz)> = E( H(-,t, ) p(dt) Q(dz)>

RxE
falls PU» = Q fiir allen € N. Auch dies 148t sich mittels eines Funktions-Erweiterungsargumentes
aufgrund der vorausgesetzten Unabhéngigkeiten zeigen.

Stelle N einen F;-Poisson-Prozef der Intensitiit 1 auf R? beziiglich einer Filtration (F)ier
dar, dann ist N (- x [0, A]) ein F;-Poisson-Prozef der Intensitiit A auf R. Dazu reicht der Hinweis,
daf fiir alle £ € Ny und (a,b] C R

. xasixoan (A2((a, ] x (0, A]))"
P(N((a,B]) = k) = et AL ]k!( D)
AF(A((a, )"

_AN((ab])
¢ !

gilt.
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6.3. Lemma. Sei A € (0,00) und N = (Ty)nez ein homogener Poisson-Prozefs mit Intensitit
A € (0,00) auf R. Ein Punkt T, von N sei ein Punkt des Punkt-Prozesses R genau dann, wenn
T, —T, 1> A. Die Punkte des resultierenden Punkt-Prozesses R werden mit (Ry)rez bezeichnet,
wobei die tiblichen Konventionen erfillt sein sollen.

Dann gilt:
(1) limg_, o Ry = —00 f.s.

(ii) R (s) = R (s) fir alle s € R, dabei ist

R™(s) © sup {Ry;k € Z, Ry, < s}

R (s) ¥ sup {t < s;N([t — A, 1)) = 0,N([t — A, #]) > 1}

o

mit der Festlequng sup () = —oo.
(iii) R™(s) ist FN-mefbar, s € R.

BeEWwEIS: zu (i). Wéhle t € (—o0, 0]. Die Zuwichse T,,—T,,_1, n € Z, eines Poisson-Prozesses
sind unabhéngig Exp(A)-verteilt. Mit Borel-Cantelli folgt aus

E P(T,—T,.1>A) = E Oer_tdt: E e =00
( ) / A AA
A

nez<o nez<o nez<o

T, — T, 1 > A unendlich oft f.s. (n € Z=°) und damit natiirlich R,, — oo f.s. fiir n — oo.

zu (ii). Sei w € Q und s € R.
Da Ri(w) > Ry_1(w) + A fiir alle £ € Z wird das Maximum in der Definition von R (s)
angenommen, d.h. es gibt ein ko(w) € Z mit R (s)(w) = Ryyw)(w) < s. Nach Definition der
(Ri)kez gilt

N (u), [Rko(w) (w) — A, Rko(w) (w))) =0 und N (u), [Rko(w) (w) — A, Rko(w) (w)]) > 0,

so daB R™(s) < R™(s).
Sei 0 < & < 4. Dann gibt es ein to(w) < s mit to(w) € (R’(s)(w) — g, R*(s)(w)] und

N (w, [to(w) — A, to(w))) =0 sowie N (w, [to(w) — A, to(w)]) > 0.

Fiir alle £ € (tg(w),]%*(s)(w)] ist to(w) € [t — A, 1), woraus ty(w) = R (s)(w) folgt. AuBerdem
muf} to(w) = Tho(w)(w) fiir ein ko(w) € 7Z sein, was zu Tiyw)(w) > Thow)-1(w) + A fiihrt, denn
N (w, [to(w) — A, ty(w))) = 0. Daher gilt R~(s) > R~ (s), also ist (ii) gezeigt.

zu (iii). Die FN-Mefibarkeit von R™(s) ist natiirlich eine Folge der Gleichheit R™(s) =
R (s), und damit eine Folgerung aus der Darstellung von R~ (s) mittels N(- N [—o0, s]): Sei
s € R. Fiir alle x € R gilt nach Anhang A1.4

{R(s) >z} = teg{s} g {N({t—%—A,t—%)) :0,N<{t—%,t]> >0}.

e<t<s w<i—t
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Die MeBbarkeit der Menge { R~ (s) > z} folgt mit obiger Darstellung sofort, denn fiir t € QU {s},

t <s,ist
1 1 N N
N |t———At—— =0p€F 1 CF
n n n

1
{th_ﬁ’t]) >0} cFNc F¥
fiir alle n € IN. O

Weitere Eigenschaften von R nennen wir im nachstehenden Lemma.

6.4. Lemma. Sei N in der Situation von 6.3 0,-kompatibel. Dann ist der Punkt-Prozef R eben-
falls 0,-kompatibel und besitzt die (durchschnittliche) Intensitit Ae 4 € (0, 00).

BEWEIS: Sei C' € B, t € R und w € Q2.

N(w,C) = $;N(w,C) = N(w, (t + O))

= e (Tu(w) =D Lo (Ta(w) —

neZ neZ

was S;N = (T}, — t)nez zeigt. Dies fiihrt zu

StR(w,C') w t+ C Z ﬂt-}-C ]l{Tn t—(Tp—1— t)>A} ( ) R(Htw, C)

neZ

Fiir die zweite Behauptung reicht es,
ER((a,b]) = A(b—a)e

fiir alle beschrankten Intervalle (a,b] C R nachzuweisen. Wir nehmen dazu eine Fallunterschei-

dung vor. Bei den folgenden Umformungen verwenden wir, dafl
e I, —Tyund T,, — T,,—1 (n € Z, n # 1) eine Exp(A)-Verteilung besitzen,
e 1, yund T, — T,_; fiir n > 2 stochastisch unabhéngig sind,
e T, und T,, — T,, ; fiir n < 0 stochastisch unabhéingig sind,
e EN((a,b]) = A(b— a) gilt.

Ferner ist die Anordnung der Punkte (7},),cz von N gemi8 (1.2) zu beachten.
1. Fall: Sei (a,b] C (—o0,0]. Dann gilt

ER((a, b)) :E<Z L(ag (Rp) ) = (ZIL ot (Tn) Lz, 1>A})

kEZ nez
0

=N P(a<T, <bT, Ty > A) = EN((a, b] / Ae= dg = A(b— a)e=M.

n<0 A
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2. Fall: Sei nun (a,b] C (0, A]. Es folgt (beachte T,, > A auf {T,, — T,,_y > A} fiir alle n > 2)

E <Z]]‘ ab ]]‘{Tn Thn— 1>A}>

nez
=Y Pa<T,<b,T,—Tyy > A)=Pla< Ty <bTy — Ty > A)

n>1

b b 00
= / P(—T, > A —2) P"'(dz) = / / Ae ™ dy Ae ™ dx
a A-zx
b b
= / e MM Ne A g = / e MAdr = A(b— a)e M.

3. Fall: Tst (a,b] C (A, 00) C (0,00), so erhalten wir (beachte a > A, T} — Ty > A auf der Menge
{T1 > CL})

ER CL b] (Zﬂ a,b] IL{Tn Th— 1>A}>

neZ

=Pla<Ti<bTi—Ty>A)+> Pla<T, 1+ (T, — T, 1) <0,T, — Ty > A)

n>2
=Pla<T) <D) +Z/ Pa—$<Tn1<b—x)an Tnl(dl.)
n>2
/Ae Amdx+Z/Pa—x<T L <b—2)Ae™dx
@ n>2

+Z P0<Tn1<b—x)Ae_Amdx

n>2v¢

a b
—ete eV [CEN(a-mb - a)Ae o [ ER(0. - a)Ae N ds
A a

a b
S et / A(b — a)Ae ™ dx + / A(b — z)Ae ™" dx
A a

b
=eM—eMpAb—a)(e M —e )+ Ab(e M —e M)+ A [xe’A’”]z - / Ae A dg
= A(b—a)e ™.

Der allgemeine Fall (a,b] C R l#8t sich nun mittels der Zerlegung (a, b] = (a, b] N (—o0, 0] +
(a,b] N (0, A] + (a,b] N (A, 00) auf die zuvor betrachteten Félle zuriickfiihren. O

6.5. Satz. Bezeichne N = (T,,),., einen Poisson-Prozef auf R der Intensitit A. Das Wahr-
scheinlichkeitsmaf P~ mischt mit dem Shift (S)1ers d-h. es gilt

(6.4) lim (PN(StV N v) —PY(5,V) PN(V)) ~0

[t] =00

fir alle V,V € M (vergleiche [DV.J88] 10.3.1).
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Wie iibernehmen den Begriff Semi-Ring aus [DVJ88] (Anhang A1.1, Seite 593): das System
S von Mengen ist ein Semi-Ring, falls S durchschnittsstabil und jede symmetrische Differenz von
Mengen aus S durch eine endliche Vereinigung disjunkter Mengen aus S darstellbar ist.

BEWEIS (VON SATZ 6.5): Bezeichne S den Semi-Ring der beschrinkten Borelschen Teil-

mengen von R. Ferner wird durch
TS {{ue M;p(A) € B,1 <i<k}; A €S,Bi € B,k €N}

ebenfalls ein Semi-Ring gegeben: offensichtlich folgt aus V,V € T auch VNV € T. Falls V =
{pe M;u(4;) € Bi,1 <i<k} sowie V = {p e M;u(4;) € Bi,1 < i < l;:} ist, besitzt die

symmetrische Differenz dieser Mengen die Darstellung

VAV:(V\V)LJ(V\V)

VN {ME M; u(A;) € B]C,/L(Al) € B, fiir 1 §i<j}

Ma-

<.
Il

Mw =

Vin{neMuA;) e BS w(A;) € B fiw 1 <i<j},
1

J

(A; €8, B;eBfirallei e {1,...,k}, 4; €S, B; € B fiir alle i € {1,...,k} mit k, k € N).
Geméfl [DVJ88] A2.5.IV stellt 7 einen Erzeuger von M dar, also M = o (7). Um den Beweis
abzuschlieBen, reicht es nach [DVJ88] 10.3.11, (6.4) fiir Mengen aus 7 nachzurechnen. Fiir V,V €
T — mit einer Darstellung wie oben — folgt fiir betragsméfig hinreichend grofle t € R

PN<SthV>
:PN<{M(-+t)€M;M(A)EBz71<Z<k}ﬂ{ ) € jﬂlﬁjﬁ’%b

A

:P(N(Ai—t) €Bi,1<i<k;N(A;) € Bj,1<j< )
—P(N(A; -t eB,1<i< k)P(N(A]-) eB,1<j<
= PN(V) PV (v) .

Bei der 3. Gleichheit nutzen wir die Beschrianktheit der A;,1 < ¢ < k und fl 1 <5< l%

was fiir £ € R mit |¢| geniigend grof zur Disjunktheit von |J; _1( —t) und U ‘| A;, also zur

Unabhingigkeit von N (4; —t),1 < i < k, sowie N <A ) 1< < k, fithrt. Bei der 4. Gleichheit

verwenden wir die Stationaritit von N. O

Aus [DVJ88] Abschnitt 10.3 erhalten wir das nachstehende

6.6. Korollar. In der Situation von 6.5 ist (PN, (Si),er) ergodisch.

2) Poisson-Einbettung. Wir beginnen diesen Unterabschnitt mit der Angabe des Analogons

zu 5.4 fiir Intensititskerne.
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6.7. Lemma. Es sei N ein markierter Punkt-Prozef8 der reellen Achse mit Markenraum (E, )
und F)N -Intensititskern AN(dt) Q(dz), vergleiche [BB94] Kapitel 1 unterhalb von Beispiel 8.2.2.
Zusitzlich sei (Fy),.p eine Filtration unabhingig von N (d.h. FN und Fa sind stochastisch
unabhdngig). Dann ist AN(dt) Q(dz) ebenfalls ein o (ftN, Fi)-Intensititskern von N.

Zum Nachweis reicht es, nachzurechnen, dafi der Punkt-Proze N (- x L) fiir eine fest vor-
gegebene Menge L € £ die (konstante) Intensitit AQ(L) besitzt. Dies 148t sich wie im Beweis
von 5.4 durchfiihren.

Wir geben nun zunéchst einige Aussagen an, die auch im Abschnitt 5 (,Eigenschaften von
Punkt-Prozessen®) aufgefiihrt werden konnten. Diese sichern die Mefibarkeit der nachfolgend
konstruierten Intensitdten oder Punkt-Prozesse.

Wie iiblich bildet h* (bzw. h~) den Positiv-(bzw. Negativ-) Teil der Funktion h.

6.8. Lemma. Bezeichne N einen Punkt-Prozefs und (Fi)ier eine Filtration von N. Sei h :
[0,00) = R eine BT -mefbare Funktion. Ist h nichtnegativ oder erfillt f.s. fir alle t € R jeweils

eine der folgenden Bedingungen:
(6.5) /( )h+(t —8) N(ds) < oder/( )h’(t —s) N(ds) < o,
—o0,t —oo,t
so ist die Abbildung
(6.6) (,4) > /( At =) N d)
—o0,t

Fi-vorhersagbar, also P (F;)-mefsbar.

BEWEIS: Sei zunéchst h(t) = L1 (t), a,b € [0, 00). Fiir solches h gilt

h(t —s) N(ds) = ap (t—38) N(ds
[ e aN@) = [ vt NG

(7oo7t)

= N([t—b,t—a) N (—00,t)) = N([t — b,t — a)).

Da (F;)ier eine Filtration von N ist, erkennt man aus der Darstellung von {(w,?) € Q x
R; N(w, [t—b,t—a)) = n} in A1.2 die P(F;)-MeBbarkeit fiir Funktionen der Form h(t) = 1,y (%).
Mittels eines Standard Dynkin-System-Arguments zeigt man die Vorhersagbarkeit von (6.6)
fiir alle Funktionen h = 1o mit C' € B*: im Fall h(t) = L ) (t) zeigt analoges Vorgehen wie bei
h(t) = 1(ay (t) die Vorhersagbarkeit von N((—o0,t)), die Priifung der weiteren Voraussetzungen
stellt reines Nachrechnen dar.
Das Funktions-Erweiterungsargument liefert gemeinsam mit dem Satz von der monotonen

Konvergenz schliefllich die Behauptung. O

6.9. Lemma. Gegeben seien ein Poisson-Prozefs N auf R? (oder ein beliebiger markierter Punkt-
Prozef N auf R mit Marken in E € B), eine Filtration (Fi)ier von N und ein F;-vorhersagbarer
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Prozefs (A\(t))ier (der im markiertem Fall [0, \(w,t)] C E fiir alle (w,t) € QxR erfillt). Definiert
man fir C' € B

(6.7) N(C) = / Loy (2) N(ds x dz).
CxR
Dann ist N ein Fi-adaptierter Punkt-Prozefs.

BEWEIS: Gemdfl A1.3 ist die Abbildung (w, s, 2) = Lo x(w,s) (2) P (Fi) ® B — B-meBbar,
und nach [Als98] Satz 19.2 gilt

P(F) @B =0(Ax(a,b] X (a,0]; A€ Fo,a,b,a, 6 € R),

wobei der angegebene Erzeuger N-stabil ist.
Setze f(w,s,z) = 1a (W) Lap (5) Liag (2), A € Fasa,b,a, 3 € R. Fiir jedes feste C' € B ((—o0, 1])
(t € R) folgt

Ny C) = sz Nds x d2)

:/ Lal(ap) (5) L) (2) N(ds x dz)
CxR

) 1N (((a, 0] N C) x (e, B]) fir (a,0]NC #0
B 0 fiir (a,b]NC =0

Dies liefert die Fi-Mefibarkeit von N¢(C'), denn a < ¢ falls (a,b] N C # 0, also A € F, C F,.

Unter Beachtung des Satzes von der monotonen Konvergenz liefert das Funktions-Erweiterungs-
argument die F;-Mefibarkeit von N;(C') bei beliebigen P (F;) ® B — B-mefbaren nichtnegativen
Funktionen f. 0

6.10. Korollar. In der Situation von Lemma 6.9 gilt fiir jede nichtnegative P (F;) @ B — B-
mefsbare Funktion f und jedes t € R.:

(6.8) Ny(C) & - £+, 5,2) N(ds x dz)

ist fir C' € B((—oo,t]) mefbar beziglich der o-Algebra F;.

Die folgenden beiden Sétze dienen der Konstruktion von Punkt-Prozessen zu vorgegebenen

Intensititen. Bei einer Konstruktion kann ein markierter Punkt-Prozef3 als Basis dienen.

6.11. Satz. Gegeben sei ein markierter Punkt-Prozef N = (T,,U,)nez, bestehend aus einem
homogenen Poisson-Prozefs (T)nez mit Intensitit A € (0,00) und einer davon unabhdingigen
Folge (Uyp)nez von unabhingigen, jeweils auf [0,1] gleichverteilten Zufallsvariablen. Sei (Fy),cr
eine Filtration von N, so daff F, und S;N* fiir alle s < t unabhdingig sind. (\(t))er bezeichne
einen nichtnegativen Fy-vorhersagbaren ProzefS mit Aw,t) < A fir alle (w,t) € Q x R.
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Definiert man fir C € B

(6.9) N(C) E > 1c(Ty) 1y a) (Un) :/ N (dt X {0, ?]) .

neZ ¢

Dann besitzt der Punkt-ProzefS N (A(t))wer als eine Fy-Intensitit.

BeEwEISs: Unter Ausnutzung von (6.3) folgt aufgrund der F;-Vorhersagbarkeit von (A(t))er

]—"a>
.7-"a> - E( /( JRCRICD ‘ fa>

fir alle Teilmengen (a,b] C R, denn (w,s,z) — IL[O A (z) ist P (F) ® B([0,1])-meBbar,
TR
vergleiche A1.3. O

E(N((a,b]) | F.) = E(/( o 120 (2) N(dt x dz)

= E(/ ]l[o A0 (z) AN*(dt x dz)
(a,p]x[0,1] L7 A

Zu jedem Punkt lautet die Auswahlregel also: Teste, ob die Marke U,, im Intervall [0, /\(fn)]

liegt.
Ist N ein markierter Punkt-ProzeB oder ein Poisson-Prozef auf R” und (A(f)),. eine

Intensitét, so werden wir die in 6.11 bereits benutzte Schreibweise

/CN(dt « [0, A(1)]) déf//nc (1) Lo (=) N(dt x dz), C € B,

verwenden.
Die zweite (allgemeinere) Konstruktions-Moglichkeit nutzt einen Poisson-ProzeB auf R?.
Diese Moglichkeit findet Verwendung, falls der betrachtete vorhersagbare Prozefl nicht beschrankt

ist:

6.12. Satz. Sei N ein F,-Poisson-Prozef mit Intensitit 1 auf R?, d.h. F¥ C F, und F,, S;N*
sind unabhdngig fiir alle s < t. Zu dem nichtnegativen, F-vorhersagbaren Prozefl (A(t))ier defi-

niere

(6.10) N(C) % / Loy (2) N(dt x dz) = / N (dt x [0, A(#)]) .
CxR c

C € B. Dann ist N ein Punkt-Prozefs mit F;-Intensitit (A(t))ier-

BEWEIS: Die nach Anhang A1.3 giiltige P (F;) ® B-MeBbarkeit von (w,t,z) — Lo aw (2)
fithrt mit (6.2) fiir alle (a,b] C R zu
fa>

fa> _ E< /w A(t) A(dr) ‘f) ,

was die Behauptung zeigt. O

E(N((a,8)) | ) = E< /( o o () Ve x =)

= E</ ]]_[U’A(t)] (Z) )\\Q(dt X dZ)
(a,b] xR

Lemma 6.8 und 6.9 lassen sich nun kombinieren zu
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6.13. Korollar. Sei N ein Poisson-Prozef auf R? mit Intensitit 1 (bzw. ein markierter Punkt-
Prozeff auf R mit Marken in [0,1]), (Gi),cg eine Filtration unabhingig von N und F, o
o (ftN, Qt). Desweiteren seien N' ein Fy-adapierter Punkt-Prozeff und ¢ : R — R2°, h : [0,00) —

R mefbare Funktionen. Ist der Prozef
(6.11) ) = é (/ Wt — s) N’(ds)) . teR,
(7oo7t)

f.s. lokal integrabel, so ist der durch (6.10) (bzw. (6.9)) definierte Punkt-Prozefs N Fi-adaptiert
und (A(t))er stellt eine Fy-Intensitit von N dar.

BEWEIS: Der Prozef}
) = 6 (/ Wt — s) N’(ds)) (teR)
(—o0,t)

ist nach 6.8 F;-vorhersagbar, denn ¢ ist mef3bar.
Satz 6.12 (bzw. 6.11) besagt nun, dal (\(¢)),cr eine Fi-Intensitdt von N ist und aus 6.9
folgt, da8 (6.10) (bzw. (6.9)) F;-adaptiert ist. O

Wir geben nun ein Ergebnis wieder, welches eine Art Umkehrung von Satz 6.12 darstellt
und auf [Jac79] Kapitel 14, Abschnitt 4 §b zuriickzufiihren ist.

6.14. Satz (Poisson-Inversion). Bezeichne N = (T,,)nez einen einfachen, nichtexplodieren-
den Punkt-Prozefs auf R mit Fy-vorhersagbarer Fy-Intensitit (A(t))er, adaptiert beziglich einer
Filtration (Fy),cg - Sei (Un)nez eine Folge unabhingiger, jeweils auf [0, 1] gleichverteilter Zufalls-
variablen unabhdngig von F.. Sei N ein homogener Poisson-Prozef auf R? mit Intensitit 1,
unabhdngig von o (.7-"00, .7:0[{3) Definiere auf R? den Punkt-Prozeff N durch

6.12 ((a,b] x L) L, / / dtxdz
( ) | Z ’ a,b] J L\ (0,(t) )

neZ

Dann ist N ein homogener Poisson-Prozeff auf R? mit Intensitit 1, und S;NT und o (]—"s,]:jv)
sind unabhdngig fiir alle s < t. N stellt also einen o (]:s, .7:;\7) -Poisson-Prozefs dar.

Satz 6.14 zeigt, daf jeder nichtexplodierende Punkt-Prozefl N wie in 6.12 konstruiert werden
kann. Der zu N gehérige bivariate homogene Poisson-Proze8 N ensteht, indem man die Punkte
eines homogenen Poisson-Prozesses N auBerhalb des ,Zufalls“-Streifens {(t,2) e R0 < 2z <
A(t)} wéhlt, und innerhalb des Streifens die Punkte 7, von N mit Marken Z,, = A\(T,,)U,, versieht
(oder anders ausgedriickt: setze zufillig einen Punkt von N in {T,} x [0, A (T},,)]).

Um den homogenen Poisson-Prozefl aus 6.14 zu erhalten, kann die Vergréflerung des zugrun-
deliegenden Wahrscheinlichkeitsraums notwendig werden. Dies geschieht in der iiblichen Weise.
Wenden wir im folgenden 6.14 an, so gehen wir von einem geeigneten Grundraum aus, ohne dies
explizit zu erwihnen.

Abschlieflend erweitern wir die Ergebnisse von 6.11 und 6.12.
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6.15. Satz. Es sei N ein Poisson-Prozef$ auf R? mit Intensitit 1 oder ein markierter Poisson-
Prozef3 der Intensitit A mit Marken in [0,1]. Auferdem seien (X\;(t))er, i@ = 1,2, zwei Fi-
vorhersagbare Prozesse und (F;),.r eine Filtration von N, so dafi F, und S;N*T unabhdingig fiir
alle s < t sind. Definiere

(6.13) Ny(C) ¥ / Lo (s (2) N(ds x dz)
C

firCe®B (i=1,2).
Der Punkt-Prozef

(6.14) N = Mol ({1 € IN({#) = Na({t})],  tER,
der die verschiedenen Punkte von Ny und Ny zihlt, besitzt die Fy-Intensitit (|[Ai(t) — Xao(t)])ep -

BEWEIS: Sind a,b € R mit a > b, so setze (a,b] = 0. Fiir beliebige Mengen C € B gilt
Ny = Nl (€)= [ 1N = N d)
c

= / L)) (2) N(ds x dz) + / Lu(s)on(sn (2) N(ds x dz).
C C

Analog zum Beweis von 6.12 (bzw. 6.11) kénnen wir zeigen, daf§ eine Fi-Intensitéit des Punkt-
Prozesses (fc Loni(s)0 (s (2) N(ds x dz))Ce% durch (()\j (t) — )\i(t))+)teR gegeben wird ({i;j} =
{1;2}). Damit folgt, daB8 |N; — N5| den Prozef}

(a(t) = Ae(t))F + (alt) = M(8) ) e

als F;-Intensitat besitzt. O



Kapitel I1.

Existenz und Stabilitidt univariater

nichtlinearer Hawkes-Prozesse

Beginnen wollen wir dieses Kapitel mit einem Abschnitt, welcher uns des 6fteren bei der Kon-
struktion von Punkt-Prozessen von Nutzen sein wird.

In den anschlieBenden Abschnitten weisen wir die Existenz und Stabilitdt von Hawkes-
Prozessen bei vorgegebenen Funktionen ¢ und h sowie geeigneten Anfangsbedingungen nach.
Dabei macht Abschnitt 8 bereits eine Ausnahme: Es werden nur Funktionen A mit kompaktem
Triger zugelassen. Die daraus resultierende Art von Intensititen konnen wir in die allgemeinere
Menge der Intensitédten mit beschrinktem Speicher (Definition: siehe 8.1) einbetten und Existenz
und Stabilitéit fiir diese Menge zeigen, so dafl die Hawkes-Prozesse hier nur einen Spezialfall
darstellen.

Stellen wir Beschrinktheitsanforderungen an die £ ([0, 00), BT, )\|[0700))—N0rm von h, So
kénnen wir bei monotonen Anregungsfunktionen mit beschrianktem Wachstum die Existenz ei-
nes Hawkes-Prozesses nachweisen (Abschnitt 9). Fordern wir a-Lipschitz-Stetigkeit von ¢ und
fixieren die £; ([0, 0), BT, )\|[O,oo))—Norm von ah unterhalb von 1, so a8t sich erneut die Exi-
stenz zeigen, und wir kénnen geeignete Anfangsbedingungen fiir Stabilitdt angeben, siehe dazu
Abschnitt 10. In Abschnitt 11 gelte neben der a-Lipschitz-Stetigkeit der Ubertragungsfunktion
noch die Beschrinktheit von ¢, wir benotigen dann neben der Endlichkeit von f[O,oo) |h(t)| dt noch
weitere Beschrinktheitsanforderungen an h, um neben der Existenz auch Stabilitit bei geeigneter
Anfangsbedingung zu zeigen.

Da die eigentlichen Beweise zum Teil grolen Umfang besitzen, werden sie in Unterabschnit-

ten durchgefiihrt, um diese durch Lemmata in kleinere Schritte zu zerlegen.

7. 7Zur Konstruktion von Punkt-Prozessen

Bei der Konstruktion von Punkt-Prozessen bietet es sich an, als Grundraum (2, F) den kano-

nischen Raum der Punkt-Prozesse auf R mit Marken in [0, 1] oder den kanonischen Raum der

34
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Punkt-Prozesse auf R? zu betrachten.
Die im folgenden verwendeten Bezeichnungen fiir R&ume von Radon-Maflen hatten wir bereits

am Anfang von Abschnitt 4 eingefiihrt.

e Der kanonische Raum der Punkt-Prozesse auf R mit Marken in [0,1]. Wir wihlen als
Markenraum (E, &) = ([0, 1], ([0, 1])). Durch

(7.1) p(Cx L) =Y e (t) L ()

neZ

C e®B, LeB([0,1]), wird zu einer Folge

(tn,un)neZ € {(tnaun)nezatn € R,Un € [07 1]7tn S tn-l-lan € Za
—00 <<ty <t <t <0<t <ty <--- < oo}

ein Maf} auf (R x [0,1],8 ® B([0,1])) definiert.
Offensichtlich gilt fiir den Raum (M[IU,I}’ MEU,I}) der ganzzahligen Radon-Mafle auf R x [0, 1]

My, = {#; pu besitzt Darstellung wie unter (7.1)}.
Die Abbildungen
T, : M[lo,l} — R, pu—t, und U, : M[Io,1] — R, p— u,

sind MEOJ}—meBbar. Sei P ein Wahrscheinlichkeitsmafl auf (M[lo,ua MI[O,I}) mit Pof, =P
fiir alle £ € R. Durch die Festlegungen

def

(Qafa P) = (M[lo,uaMfo,uarp)
def

0, = S,
N(p,-) = idug, | () (- x [0,1]) = (-  [0,1])

erhalten wir einen stationiren f;-kompatibelen Punkt-Prozel (N, #;, P) mit assoziierter
Markenfolge (Up,)nez-

e Der kanonische Raum der Punkt-Prozesse auf R2. Sei P ein Wahrscheinlichkeitsmaf} auf

(M5, M}y) mit P oS, = P, t € R. Durch die Festlegungen (92, F,P) o (M}, M}, P),
0, < S, und N(p, ) = p(-) wird (N, 6;, P) zu einem (in der 1. Komponente) stationéren

f;-kompatiblen Punkt-Proze8.
(Siehe auch [BB94] Kapitel 1.1, u.a. Beispiel 1.3.4).
Der folgende Satz gilt insbesondere im Fall a-Lipschitz-stetiger Funktionen ¢:

7.1. Satz. Es sei A € (0,00), \O(t) =z € R fiir alle t € R,

(72) h:[0,00) —» R mit /|h(s)| ds < oo und

d: R —[0,00) mit ¢(s) < X+ als| fir alle s € R(a, A € [0,0)).

Gegeben sei ferner einer der folgenden Punkt-Prozesse:
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o N =(1,,Up) e $0 daf (Uy), oy eine Folge unabhingiger, identisch R0, 1]-verteilter Zu-
fallsvariablen ist. In diesem Fall ist ¢ durch min{A, ¢} zu ersetzen, diese Funktion wird
0.B.d.A. wieder mit ¢ bezeichnet. Der Punkt-Prozeff N (- x [0,1]) ist ein Poisson-Prozefs

mit Intensitit A unabhdngig von (Uy),cy-

e cin Poisson-Prozeff N der Intensitit 1 auf R2.

Definiere rekursiv die stochastischen Prozesse (A" (t)),er und Punkt-Prozesse N™, n € Ny,
durch

N = / N (ar x [0, 2™ )])
AP+ () = ( /( e N(”)(ds)>

C €%B,t e R, wobei im Fall eines markierten Prozesses u = 1 und bet Vorliegen eines Poisson-

(7.3)

Prozesses auf R? w = A zu wdihlen ist. Dann gilt fir alle n € Ny:
(i) (A (t))ier und N™ sind 0,-kompatibel

(ii) N® ist FN-adaptiert, (A (t))er ist F¥ -vorhersagbar und eine F -Intensitit von N™.

BeEwEIS (SATz 7.1(i)): Zum Nachweis, der durch eine Induktion iiber n gefiihrt wird,
seien r,t € R und w € Q. Im Fall n = 0 ist die Behauptung klar. Gelte (i) fiir ein n € N. Dies

liefert unter Verwendung der Induktionsvoraussetzung beim zweiten Gleichheitszeichen

A w0 t) = ¢ < / h(t —s) N™ (0w, ds))
(—o0,t)

_ </(_oo,t) h(t — s) N (w,r + ds))
— < /( T =) N® (w, ds))

=X (w4 7)
= S\ (W, 1).

Hieraus erhalten wir die Behauptung auch fiir N(+1:

NO+ (9,0, C) = / N(er,dtx [o,
C

u

A (4, t)] )

-

_ /C SeN (w,dt x [0, 282D (w,1)])

— [ ¥ (s [0 0 1))

<L o)

= Ny r+C)
= S, N (y, 0).
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Um den zweiten Teil beweisen zu kénnen bendétigen wir das
7.2. Lemma. In der Situation von 7.1 ist f(_oot) \h(t — 5)| N™(ds) f.s. endlich fiir alle n € N.

BEWEIS: Der Fall a = 0 ist klar. Sei also @ € (0,00). Auch hier bietet sich eine Induktion

(iiber n) an. Wir zeigen

aE(/( =) N(”)(ds)>
< AZ( / 9| ds)k + max{A,z, 1} <a/[0’oo) Ih(s)| ds)nH.

Nach Voraussetzung erhalten wir im Fall n = 0 die Abschédtzung

aE(/ |h(t — s)] N(O)(ds)> < max{A,z, 1}04/ |h(t — s)| ds.
(—o0,t) (—o0,t)

Zum Induktionsschritt: Die Induktionsvoraussetzung liefert die Endlichkeit der rechten Seite von
APHD(8) < A+ O i o [h(s —u) N®(du), und es folgt nach 6.8 und 6.11 (bzw. 6.12) sowie

dem Satz von Fubini

aE( /( =) N<n+1>(ds)>

< aE(/( | |h(t — s)| ﬂ[O,%M%af( lGs—wive @) (2 (2) N(ds x dz))
—00,t

:aE</(Oo’t) Ih(t — 5) (Am/(m) Ih(s — u)| N® ) )
— o) /(oo,t) (i — 5)]| ds

+a/ |h(t—s)|aE</ |h(s—u)|N(”)(du)> ds
(—o0,t) (—00,s)
< a)\/ h(t — 5)]| ds

(—oo,t)

n k
+a)\/ h(t—3)| (a/ Ih(u)| du) ds
(—o0,t) [0,00)

k=1

n+1
+amaX{A,x,1}/ |h(t — s)] <a/ |h(u)] du) ds
(—o0,t) [0,00)

n+1 k n+2
_)\Z< / |ds> + max{A, 7,1} (a/ Ih(s)] ds) ,
[0,00)
die Induktionsvoraussetzung wurde beim letzen Ungleichheitszeichen eingesetzt. O

Wie konnen nun den Beweis des zweiten Teils von 7.1 angeben:
BEWEIS (VON SATz 7.1(ii)): Auch diese Behauptung wird iiber eine Induktion nach n
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gezeigt. Im Fall n = 0 ist die Behauptung trivial. Sei also nun (ii) fiir ein n € N giiltig. Aufgrund
von 6.8 (anwendbar nach 7.2) ist (A"*D(t)), . F}N-vorhersagbar und 6.9 zeigt, da N+
ein FN-adaptierter Punkt-Proze8 ist, der nach 6.11 bzw. 6.12 die F}¥-Intensitét ()\("“)(t))te]R
zulaft. 0

8. Intensititen mit beschrinktem Speicher

Soll jeder Punkt eines Punkt-Prozesses nur eine endliche Zeit lang Einflul auf die eigene Zukunft
besitzen, so konnen wir dies durch Intensitdten mit beschrinktem Speicher erreichen. Es gilt

daher als erstes zu prézisieren, was eine Intensitit mit beschrinktem Speicher ist.

8.1. Definition. Die Abbildung ¢ : (M, M) — (R,B) heiBBt kausal, wenn aus m = m’' auf
(—o00,0) stets ¢(m) = 1 (m’) folgt, also ¢(m) = 1 (m(- N (—o0,0))).

Ferner besitzt ¢ einen beschrankten Speicher (oder ein beschrinktes Gedichinis) der Lénge A €
(0,00), wenn m = m' auf [—A, 0) bereits ¢)(m) = ¢(m') liefert.

Ein Punkt-Prozefl N besitzt eine Dynamik mit beschrinktem Speicher der Linge A, falls N eine
F}N-Intensitit (A(t))er der Form

(8.1) A(t) = p(SiN)
zuldflt, wobei ¢ : (M, M) — (R, B) einen beschrinkten Speicher der Linge A besitzt.
Nach Definition ist klar, dal jede Abbildung mit beschréinktem Speicher kausal ist.

8.2. Beispiel. Sei der Triiger der Ubertragungsfunktion A kompakt. Dann besitzt die Dynamik
(D1) einen beschrinkten Speicher. *

BEGRUNDUNG: Die Intensitét ist von der gewiinschten Form (8.1), denn

W(S,N) Y ¢ (/ h(0 — s) StN(ds)> =4 (/ h(0 — s) N(t + ds))
(—00,0) (—00,0)
— ¢ ( h(t—s) N(d ) — (D).
[ =9 N@) =20
Nach Voraussetzung gibt es a,b € [0, 00), so daf$ h = 0 auf (a, b]°. Sei A &1 b, Dann gilt
= h(0 — d = h(0 — d
vy =o ([ no—gman)=o([  #0-sm)
~o( B(0 — 3) ' (ds) ) = ()
(—00,0)N[—b,—a]

fiir alle m,m’ € M mit m = m' auf [-A4,0). o
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Dynamiken der Form (D1) mit kompaktem Triiger der Ubertragungsfunktion bilden die
Grundlage fiir das in Kapitel V vorgestellte Programm. Als generelle Voraussetzung gelte ab
jetzt fiir diesen Abschnitt

Voraussetzung 1. Sei ¢ : (M, M) — (R,B) eine Abbildung mit beschrinktem Speicher
der Linge A € (0,00), welche
A= sup ¢ () < oo
neM

erfillt.

Zunichst weisen wir die Existenz eines stationdren Punkt-Prozesses nach (Satz 8.5). Dieser
ist eindeutig. Fiir diesen Nachweis benttigen wir jedoch die Stabilitdt in Variation, die im zweiten
Unterabschnitt bewiesen wird (Satz 8.7).

1) Existenz. Es sei (€2, F) der kanonische Raum der markierten Punkt-Prozesse auf R
mit Marken in [0,1]. Ferner sei P ein Wahrscheinlichkeitsma$, unter dem N = (T, U,), oz
ein markierter Poisson-Prozef mit Intensitit A und (U,),., eine Folge unabhingiger, iden-
tisch RJ[0, 1]-verteilter Zufallsvariablen, unabhéngig von ]:OZZ('X[O’I]), ist. Fiir alle A € M) gilt
P({N(:) € A}) = P(A), also P’) = P.
Der Punkt-Prozefl R werde wie folgt konstruiert:
Ein Punkt 7}, von N ist genau dann ein Punkt von R = (Ri)per» falls T, — T,y > A, also
R(C)=> 1c(To) Lz, -1,_ay = Y Le (Ry),
neZ kEZ
C € B. Aus 6.4 folgt die ;-Kompatibilitdt von R sowie die Endlichkeit der durchschnittlichen

Intensitit von R. Ziel wird im folgenden die Konstruktion eines #;-kompatiblen Punkt-Prozesses
N der Form

(8.2) N(C) = /C N (dt X {O, M%N)}) = /CX]R 1[0,¢(5tN)] (z) N(dt x dz),

A

C € B, sein. Dazu werden wir uns der Prozesse N und R bedienen. Die Problematik der Festle-
gung von N durch Gleichung (8.2) entstammt dem Auftreten von N in ¢ auf der rechten Seite.
Dies macht die Wahl geeigneter Startpunkte der folgenden Konstruktion nétig.

8.3. Lemma. Ladfit sich gemdf (8.2) ein Punkt-Prozefs N konstruieren, so besitzt dieser im
zufilligen Intervall [Ry — A, Ry) keinen Punkt, und fir die Konstruktion auf [Ry,o0) ist die

Kenntnis von N auf (—oo, Ry,) nicht erforderlich.

BeEweEis: Fiir alle k£ € Z gilt nach Definition von R

0< N([Rp — A, Ry)) = / N (dt X {0, ¢(StN)D

[Ri—A,Ry) A

< / N(dt x [0,1]) = N([Rx — A, Ry) x [0,1]) = 0.
[Rr—A,Ry)
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Hiermit ergibt sich fiir alle ¢t € [Ry, c0) aufgrund des beschrinkten Speichers der Abbildung v
U(SIN) = B(SN(- N [=A,0) = b(N((t+) N[t = 4,0)
denn [t — A,t) C [Ry — A, 00). O

Nach Lemma 6.3 gilt limy_,_o R = —o0 fis.. Seiw € Q, k € Z und 7, : Q@ — 7 mit
Ry(w) = T, (v)(w). In dieser Situation miissen die 7, k& € Z, nicht mefbar sein. Wie im Beweis

zuvor erkennt man

w (ST e N ) = w (N ((TTk+TL + ) N [TTk+TL - A’T'fk+n)))
- ¢( (( Ten + ) N [TTk-‘H’L - A?TTk-I-n—l])) :

Fiir jeden Punkt 77, 4,, n € Ny, der Ry nachfolgt, kénnen wir anhand der Prozesse ({) bezeichne
den ,leeren Punkt-ProzeB“, d.h. §(C) = 0 fiir alle C' € B)

N k0) def 5y ( N{T,} x [0 %ﬁ)])

. _ 1
(k) def / N (dr X [0, — 1 (STNU“"—”)D , néeN,
‘N [T"'k aTTk +n] A

induktiv entscheiden, ob dieser zu N gehért, denn nach Konstruktion gilt fiir alle n € N

(8.3)

N( [TTk-’T +n]) = N(k,n),

wobei im Fall n = 0 diese Entscheidung fiir keinen Punkt getroffen sein muf}. Die Punk-
te Ry stellen Regenerationspunkte des Prozesses N und damit Startpunkte der Konstruktion
dar. Streng genommen muf} die Konstruktion auf Intervallen [Ry, Ryy1) durchgefithrt werden.
Da N ([Reg+1 — A, Rgy1)) = 0 gilt, ist es jedoch fiir die Durchfiihrung der Konstruktion auf
[Ri+1, Rg+2) unerheblich, ob zuvor bereits Punkte erzeugt wurden. Daher kann 0.B.d.A. die
Konstruktion auf [Ry, co) durchgefiihrt werden.

8.4. Lemma. Die in (8.3) definierten Punkt-Prozesse sind 6,-kompatibel, woraus die 0;-Kompa-
tibilitat von N folgt.

BEWEIS: Sei k € Z, w € Q und C € B([Rx(w),0)). Fiir n = 0 gilt, da N und R 6;-
kompatibel sind,

NED 4+ C) = N (w, (t+C) N {Ty ) (w)}
N( ,(t+C) N Rk (Ow) +t}><[, (DD
s, ( Cm{Rk(etw}x[, WD])

N
:N<0twOﬂ{TTk br) (Ow) } % {o, v ]) N®Y (9w, C).
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Gelte die #;-Kompatibilitéit fiir n € Ng. Dann folgt

N®ED (¢ 4+ O)

_ 1
- / N (w, dr x [0, —1 (S, N®m) (w, ))})
t+Cﬂ[Tﬂ—k(u)(w)7Trk(u)+n+l(w)] A
_ 1
— / N (w,t + dr x {0, —) (SrStN(lc,n)(w, ))D
Cﬂ[Rk(gtw)aT-rk(etw)+n+l(0tw)] A

_ 1
:/ S,N (w,dr X {o, 1Y (STN(’“’”)(Htw,-))]>
CN[Tr (030 (060), Ty, (6,01 4n 41 (0ew)]

= N(k’"“)(ﬁtw, 0),

die Induktionsvoraussetzung wurde dabei beim vorletzten, die #,-Kompatibilitit von N und R

beim letzten und zweiten Gleichheitszeichen genutzt. O

Nach Korollar A1.8 ist N ein ftN -adaptierter Punkt-Prozef3. Die F;V-Vorhersagbarkeit von
(w,t) = S;N(w, N (—00,0)) zeigt die folgende Uberlegung: Fiir beliebige Mengen A € M/ der
Gestalt A = {p € M/; u(C) € B} mit C € B, B ein Element der Potenzmenge von Ny, gilt nach

Lemma 6.8

{(w,t) € 2 x R; S;N(w,-N(—00,0)) € A}
={(w,t) € A X R; S;N(w,C N (—00,0)) € B}

—J(w,t) €Qx Ry N(w,ds) € By e P (F).
{ |

(t+C)N(—o00,t)
Der Beginn von Abschnitt 4 rechtfertigt die Beschrankung auf Mengen A der obigen Form.
Es folgt die FN-Vorhersagbarkeit fiir Prozesse (\(t));er der Form A(¢) = (S N).
Da N natiirlich auch FN-adaptiert ist, gilt F¥ c FN und Satz 6.11 zeigt, daB N die F}N-
Intensitét (A(t)),.g zuldBt. Hieraus folgt schlieBlich, daB (A(¢)),. ebenfalls eine F;¥-Intensitét
von N ist.

Beachten wir nun noch 5.7, so erhalten wir fiir kausale Abbildungen ¢ mit beschrinktem

Gedéchtnis die Existenzaussage:

8.5. Satz (Dynamiken mit beschrinktem Speicher I). Es sei die Situation von Voraus-
setzung 1 gegeben. Dann gibt es ein (eindeutiges) stationdres Verteilungsgesetz eines Punkt-Pro-

zesses N mit Dynamik mit beschrinktem Speicher der Form (8.1).
Die Eindeutigkeit erhalten wir im Anschlufl an den Stabilitdtsbeweis.

8.6. Bemerkung. Die Existenzbeweise in diesem Abschnitt und Abschnitt 11 werden aufgrund
der Anschaulichkeit mittels eines markierten Poisson-Prozesses N; durchgefiihrt. Zu jedem Punkt
wihlen wir zuféllig eine Marke im Intervall [0, 1] und entscheiden anhand der Vergangenheit des

Prozesses, ob der zugehorige Punkt zum konstruierten Prozef§ gehoren soll (siehe Gleichung (8.3)).
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Im Fall beschriankter Anregungsfunktionen 148t die Analogie von 6.11 und 6.12 sowie die
problemlose Ubertragung der weiteren Ergebnisse auch eine Konstruktion unter Zuhilfenahme

eines Poisson-Prozesses N, der Intensitéit 1 auf R? zu; dazu haben wir die Zuordnungen

(8.4) No(- x [0,A]) = (Th) er anstelle von — Ni(- x [0,1]) = (T0) ez und
_ _ At
(8.5) / No(dt x [0, A(¢)]) anstelle von / Ny <dt X [0, (T ) etc.
c c
zu treffen.
2) Stabilitit in Variation. Ohne Voraussetzung 1 zu verschérfen, erhalten wir fiir eine

Dynamik der Form (8.1) Stabilitdt in Variation. Diese Stabilitét resultiert aus dem beschrink-
tem Gedéchtnis von ¢. Wir werden wie bereits im Existenzteil Regenerationspunkte nutzen und
anhand dieser Kopplung durchfiihren.

8.7. Satz (Dynamiken mit beschrinktem Speicher II). Gegeben sei die Voraussetzung 1.
Dann sind Dynamiken der Form (8.1), unabhdngig von der Anfangsbedingung, stabil in Variation.

Die Konvergenz in Variation ist exponentiell schnell.

BewEIs: Sei N’ = (T}),,c, ein Punkt-Proze , welcher die F}¥' -Intensitt (') 110,00y aUE
[0,00) zuldBt, N'(t) = (S;N'). Da ¢ beschrénkt durch A ist, gilt E(N'((a,b])) < (b — a)A fiir
(a,b] C [0,00), somit ist N’ nichtexplodierend auf [0,00). Nach Anwendung von 6.14 erhalten

wir durch

N((a,b] x L) =Y Loy (T3) 1, (N (T3) UL) /ab/mx N'(dt x dz)

neN
/ /]]-L 5{U’ (dZ 6{T’ dt / / dt X dZ)
(a,b] (a,b] J L\(0,N (

N (t) = o L(o,00) (£) N'(t), einen homogenen o (F', FN)-Poisson-Proze der Intensitéit 1 auf R2.
Dabei werden (U7), ., und N' gemiB 6.14 gewihlt. Fiir C' € B+ gilt

/ N (dt x [0, N (£)
=3 [ [ o (440)2) by (@216 @)+ | /[0 IRLCELS

neN

=3 [ [ oo (02) B )30 1)

neN

= Z L (T,) = N'(O).

neN

Wir konstruieren aus N wie im Existenzbeweis einen stationiiren Punkt-Proze N mit F/¥-
Intensitéit (A(t))er der Form (8.1), beachte 8.6.
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Setze (N (- x [0,A]) = (Th) ez

def -
T = ln<a (Tl + > (T —To-) [ ] ﬂ{Tka1<A}>
k=2

n>2 =

= Lip<aysup{T,;n € N, T, = Tj,_; < Afiir alle 2 < k < n}.

Falls 77 > A ist gilt T" = 0, ansonsten ist 7" der erste Punkt 7}, > 0 mit Ty, — T > A. Da N
und N’ auf einem solchen Punkt 7}, verschieden sein konnen, ist 7" keine Kopplungszeit. Analog
zur Begriindung von 4.6 zeigt man eine schwéchere ,, Kopplungsungleichung*

(8.6) sup
cem’

P(SIN* € C) = P(SN'" e C)| < P(T 2 1).
Fiir alle o > 0 gilt

P(T > t)e™ = / e dP < / e dpP < /eO‘T dP = Ee°T,
{T>t} {T>t}
somit P(T' > t) < (Ee®T) e . Aus der Definition von T leitet man

eaT = eaoﬂ{TI>A} + eO‘TIL{TISA}

n—1
= Loy + Lnenye®™™ > Lgrr, sy [ [ 5L —n_ <y
n>2 k=2

ab, was zu

Ee® = P(T) > A)

n—1
+Y E(Lr<me™) E(Ln, 1,_50) [ [ B g 1<)
n>2 k=2
o0 A 00 n—1 A
= / Ae Mt 3 / Ael@=Mt gy / Ae Mat I / Ae@=Mt gy
. n>2"" A k=2"0
A n—1
—AA a—A)A
—e (1+;<Q_A(e< ) _1)> )

fiihrt, denn die (7,),.5,
daB der Erwartungswert Ee®” genau dann endlich ist, wenn -2 (>4 — 1) < 1. Die Abbil-
dung o ﬁ (e(o‘_A)A — 1) > 0 ist stetig auf dem Intervall [0, A), und da ﬁ (e(O_A)A —-1) =
1 — e M < 1 ist, 1Bt sich z.B. ein hinreichend kleines a > 0 finden, so dafi Ee®T endlich ist.

Zusammen mit (8.6) zeigt dies fiir ein geeignetes « > 0

bilden einen Poisson-Prozef. Aus dieser Gleichheit konnen wir ablesen,

sup
cem

P(StN+ € C) —P(StN'+ € C’)‘ < (EeozT) ool

P(S,N* € C) — P(S;N'* € C)| = 0. Da N stationér ist, folgt somit

limy oo PSN'" = PN* in Variation, d.h. die Dynamik ist stabil in Variation, und die Konver-

und daher limy_, Supge e

genzrate ist exponentiell schnell, unabhéngig von der Anfangsbedingung. O
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Die in 8.5 angesprochene Eindeutigkeit der stationdren Ldsung erhalten wir wie in Lemma
4.7, wir fithren den Beweis daher nicht erneut durch.

8.8. Bemerkung (Kopplungszeiten im Beweis von 8.5). Eine Alternative zu 7' im Stabi-
litdtsbeweis wire der erste Punkt 7;, > 0 mit T, — T}, 1 > A, also Ry, gewesen. Diese Kopplungs-

zeit stellt jedoch eine nicht so scharfe Schranke fiir die Konvergenz dar.

BEGRUNDUNG: Da T < R, fs. folgt aus Ee®® < oo stets Ee®’ < oco. Ferner zeigt

oo A
EeaRl Z EeaTl — / Ae(afA)t dt = <hm 6(0&*A)t . 1) ,
0

Oé—A t—o00

a # A, daB fiir die Endlichkeit von Ee®®t die Bedingung o < A notwendig ist. Fiir Ee®’’ < 0o

reicht die im Beweis gegebene Bedingung, o > A ist ebenfalls zugelassen. o

9. Intensitidten mit nichtfallenden

Anregungsfunktionen

Im nun folgenden Satz wird die Existenz stationéirer Verteilungen fiir einen Punkt-Prozefl N mit
Dynamik (D1) gezeigt, ohne die in Satz 8.5 benétigte Bedingung eines endlichen Speichers zu
fordern. Wie brauchen hier nur die Monotonie der Anregungsfunktion und eine Beschriankung
des Wachstums der Ubertragungsfunktion, kénnen in diesem Zusammenhang aber keine Aussage
iiber Stabilitit treffen.

9.1. Satz (Wachsende Anregungsfunktionen). Gegeben sei eine nichtfallende, linksseitig

stetige und nichtnegative Funktion ¢, die
(9.1) dx) < A4azx, zeR,

fir ein A > 0 und o > 0 erfillt. Zusatzlich bezeichne h : [0,00) — [0,00) eine Funktion mit
(9.2) a/ h(t)dt < 1.
[0,00)

Dann gibt es einen stationdren Punkt-Prozefs N mit Dynamik (D1).

Verschirfen wir die Anforderungen (9.1) an ¢ dahingehend, daf ¢ sogar a-Lipschitz-stetig
ist, so konnen wir Anfangsbedingungen angeben, in denen Stabilitit gilt, siehe Abschnitt 10 und
11.

9.2. Bemerkung. Gelte in 9.1 a = 0. Dann ist die Aussage auch fiir quasi-integrierbare Funk-
tionen h richtig.
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BEWEIS (VON 9.1): Sei (€, F) der kanonische Raum der Punkt-Prozesse auf R?, versehen
mit einem Wahrscheinlichkeitsmafl P, unter dem N(w,-) = w Poisson-verteilt mit Intensitit 1
ist. Gelte P o S, = P und 6, = S,, also ist N 6,-kompatibel.

Es wird nun induktiv ein Punkt-Prozefl mit den gewiinschten Eigenschaften konstruiert. Sei
MO (#) = 0 fiir alle t € R. Definiere nun rekursiv die Prozesse (A1 (#)),cg und N™, n € N,
durch

N () & / N (ds x [0,A™)(s)]),

ceB,teck.

BEHAUPTUNG 1. Fiir alle t € R und nichtleeren Mengen C € B sind \™(t) und N™(C)

monoton wachsend in n.

Fiir die leere Menge C' = () ist die Aussage von Behauptung 1 klar.
BEGRUNDUNG (VON BEHAUPTUNG 1): Mittels einer Induktion nach n zeigen wir fiir alle
n e N

AV > AV und  NO(C) > NOD(©),

Im Fall n = 1 ist nichts zu zeigen. Gelten also diese Ungleichungen fiir ein n > 2. Nach Voraus-
setzung ist A > 0 und ¢ nichtfallend, so daf fiir t € R

A+ () = ( /( S N(”)(ds)>
2o ([ M= 9Nt an) = 200),

und damit fiir C € B
N(n-l—l) (C) :/

N (dt x [0, A (#)]) > / N (df x [0,A™(5)]) = NO(0)

C

folgt. o
Behauptung 1 zeigt, dal die Prozesse

def

Mw,t) = lim A\ (w, t) und N(w, () & Jim N (w,0)

n—oo n—oo

fir allew € Q, ¢t € R und C € B definiert sind. Die Grenzprozesse sind nach 7.1(i) 6;-kompatibel
(und kénnen den Wert co annehmen). AuBerdem ist (A(¢))ier als Grenzwert F¥-vorhersagbarer
Prozesse wieder FN-vorhersagbar (siehe 7.1(ii) und [Bau92] 9.7 Korollar 2).

BEHAUPTUNG 2. Der Prozefl (A(t))wer ist P ® N-f.i. endlich.

T

BEGRUNDUNG: Wegen E( JEA®) dt) = [T E(\(0;-,0)) dt = 2TE()0)) reicht es, die



46 9. Intensitédten mit nichtfallenden Anregungsfunktionen

Endlichkeit von EX(0) nachzurechnen. Aus Voraussetzung (9.1) ergibt sich gemeinsam mit 7.1(ii)
und dem Satz von Fubini

EX"D(0) = E<¢ < /( o h(—s) N<">(ds)>> <A+ E(a /( o h(—s) N<">(ds)>
= +E<a /(_0070) h(—s)A"M(s) ds) = A+ a/(_oo’o) h(—=s)E(\"™(s)) ds

= o s)ds (n)
ot /(o,oo)h( ) ds E(\™(0))

k
fiir n € N. Wir kénnen hieraus induktiv E(A™(0)) < AYp_, (a Jio.o0) 11(5)] ds) folgern,
miissen dabei A(%)(#) = 0 beachten, und nach Voraussetzung (9.2) gilt im Grenziibergang n — oo

A
EX0) < < 00
1- af[o,oo) h(s)ds

nach dem Satz von der monotonen Konvergenz. o

BEHAUPTUNG 3. (A(t)),cg 45t eine FN -Intensitit von N.

BEGRUNDUNG: Nach dem Satz von der monotonen Konvergenz gilt

N(C) = /C lim 1, ) (2) N (dt x d2)

n—o0

und auBerdem T ) (2) < limy, o0 11[0 A (0] (2) < 1w (2). Wie im Satz 6.12 zeigen wir, dafl
der ProzeB ([, L) (2) N(dt x dz )Ce% die FN-Intensitit (A(t))er zuliBt, woraus mit Satz
6.12 folgt, dal N die ]:,fv—lntensitfit A(t))ier besitzt. o

TN

BEHAUPTUNG 4. Der stochastische Prozef (A(t))er ist von der gewiinschten Form (D1).

BEGRUNDUNG: Da N(™ 1 N und ¢ monoton wachsend ist, folgt fiir alle n € N
0= A () < AW (1) = ¢ (/( =) N<"1>(ds)> <o (/( =) N(ds))
—o0,t —o0,t
und A™ () 1 A(t) zeigt
A0 =30 = f

Diese Ungleichungen fiihren zu

D) < 6 </(Oo’t) h(t — 5) N(ds))

und, aufgrund der linksseitigen Stetigkeit von ¢, zu

A0 = im o ([ re—gN@) <o ([ =N

h(t — s) N(")(ds)> :

00,t)
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Dies zeigt, da} N die gewiinschte Dynamik besitzt. o

Aus 7.1(i) folgt die §;-Kompatibilitit von N als Grenzwert 6;-kompatibler Prozesse. Somit

ist NV nach 5.7 stationér, was den Beweis abschlief3t. O

10. Lipschitz-stetige Anregungsfunktionen —

unbeschrinkte Dynamiken

Wir verschérfen die Bedingungen aus Satz 9.1 und stellen in diesem Abschnitt die folgenden

Bedingungen an die Ubertragungsfunktion i und die Anregungsfunktion ¢:

Voraussetzung 2. Gegeben seien eine a-Lipschitz-stetige Funktion ¢ : R — [0, 00),
a >0, und h:[0,00) = R eine mefbare Funktion, die der Bedingung

(10.1) a/ ()] dt < 1
[0,00)
geniigt.

Zunéchst wenden wir uns der Existenz eines stationéren Punkt-Prozesses N mit Intensitét
gemif (D1) zu, die obigen Anforderungen geniigt, siehe Satz 10.5. Um in Satz 10.10 und 10.12
Stabilitdt zu zeigen, werden wir weitere Forderungen ausstellen miissen.

Durch den Ubergang zu ¢ ( ) und ah konnen wir 0.B.d.A. @ =1 wéhlen.

1
o

1) Existenz. Wie im Beweis zu Satz 9.1 sei (€2, F) der kanonische Raum der Punkt-Prozesse
auf R2, P ein Wahrscheinlichkeitsmaf} auf (€2, ) mit PoS; = P derart, da N (w, -) = w Poisson-
verteilt mit Intensitiit 1 ist. Durch die Zuordnung 6, = S; ist N f,-kompatibel. Sei A\(¥)(¢) = 0 fiir
allet € R und fiir t € R, C € B setze

N (0) & / N (dt x [0, A7 (5)])
c
e ([ - ),
(—oo,t)
n € Ny. Fiir diese Prozesse gilt 7.1(i) und (ii).

10.1. Lemma. Fir allet € R konvergiert ()\(”) (t))nelN fiirn — oo f.s. und in L,(2, F, P) gegen
ein A(t).

BeEWwEIs: Die Lipschitz-Stetigkeit von ¢ zeigt mit den Sétzen 7.1(ii) und 6.15

h(—s) N™(ds) — h(—s) N®=V(ds
J N = [ ) N D)

(700’0)

<B( [ Il N0 N )

E(|]A"D(0) = A™(0)]) < E<

)
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=5( [ =9l 30 = (o) ds).

Diese Ungleichung 14t sich unter Beriicksichtigung des Satzes von Fubini und der 6;-Kompati-

bilitét der Prozesse (A (t))telR (siehe 7.1(i)) aufgrund der Wahl von P fortfiihren:

E(]A®(0) — AM(0)]) < /( ) h(—s)| B(A® (0) = XD (0)]) ds
:/[0 1) ds E(]A™(0) — A" D(0))).

Die induktive Anwendung fiihrt zu

SOE(ATI(0) - A (0)]) < 3 (/[0 ) ds> E(]AD(0) — A9 (0)))

(10.2) h = ; (fm,o;lj(S) ds)n E( ¢ </<oo,0) h(—S)N(O)(ds)> - OD

o0 Y ([ ar) <

n>0

unter Beachtung von Voraussetzung (10.1). Beziiglich der (Halb-)Norm |-, = E|-| auf dem
Raum £,(92, F, P) gilt somit

(10.3) A (0) 2225 X\(0),

denn || AF(0) — A (0) ||, < 32,k [[ATD(0) = AM(0) |, £2%% 0 (0.B.d.A. m > k). Die Mar-
kov-Ungleichung sichert

p(wn“)(O) _ A ()] > (/OOO Ih(s)] ds)
< E(|A"TD(0) — A™(0)])

1
(o ()] ds)

B

w[S

|h(s)] ds)n E(|]AM(0) — X0)])

: s |h(i)| ds)* </moo

=00 ([ o)

Dies zeigt die Endlichkeit von Zn>0P(‘)\("+1)(O) = XO)[ > ([ 1h(s)] ds)%>, woraus geméif
[Nev65] Prop. I1.4.2 (Seite 45) die fast sichere Giiltigkeit von (10.3) folgt.

Durch die Festlegung A(t) =i (6;-,0) erhalten wir aus der §;-Kompatibilitidt der betrach-
teten Prozesse die Behauptung: es gilt

Nl

w[S

A(t) = (6,-,0) = lim A™ (6;-,0) = lim A" (1)

n—o0 n—o0
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beziiglich |||, und
P( lim \®(f) = )\(t)) P(hm A®(8,,0) = )\(Ht-,())> - P(lim A®(0) = A(O)) —1.

n—o0 n— 00 n— 00

O

Die Abbildung w +— A(w,0) ist F-mefBbar und (6;),. ein meBbarer Fluf§ auf (€2, ), d.h.
(w, 1) — G ist F @ B — F-meBbar. Daher ist (w,t) — A (w,0) = Aw,t) F @ B — B-meBbar.
Da lim,_,o A™ (t) = A(t) f.s. gilt, ist A(£) FN-meBbar (siche 2.5), und nach [DVJ88] (Seite 649
unten) koénnen wir (A(t))er als F¥-progressiv und schlieBlich als F}N-vorhersagbar annehmen
(vergleiche 2.7).

Durch (fc (ds x [0, A(s )]))CE% ’
Prozesse gilt dies, Nachweis analog zum Beweis von 7.1(i)) mit FN-Intensitit (A(¢))cr gegeben

wird ein ;-kompatibler Prozef§ (denn fiir die auftretenden

(siehe 6.12). Dieser ist nach 5.7 stationédr und wird im folgenden mit N bezeichnet.

10.2. Lemma. Auf allen beschrinkten Borel-Mengen C wird N™ fiir wachsendesn f.s. konstant
(d.h. die Lage der Punkte bleibt f.s. gleich) und lim,,_,o, N (C) stimmt f.s. mit N(C) iiberein.

BEWEIS: Sei C' € B beschriinkt. Da [N — N(=D| (C) € Ny ist, zeigt sich unter Beriick-
sichtigung von Satz 6.15, dem Satz von Fubini und der #;-Kompatibilitét von ()\(") (t))te]R

ZP(/ [N (ds) 7&0) ZE(/ [N \(ds)>

n>0 n>0

_ ZE(/ AP () — AP ()] ds) _ Z:/CE(\A(M(O) ~ M (0)]) ds

n>0

= NC) Y E(|A™(0) — A™(0)]) < o0,

n>0

vergleiche (10.2), so daf sich aus dem Borel-Cantelli-Lemma

<11£s$p{/ |INCHD — N™| (ds) # 0}) =0

ergibt. Dies bedeutet, da N™ und N1 auf C fiir wachsendes n schlieBlich f.s. stets dieselben
Punkte besitzen.

Die zweifache Anwendung des Lemmas von Fatou zeigt

(/] )==(/.

< lim E(/ |N (ds x [0,A"(s)]) — N(ds x [0, A(s)])\>
Aus 6.15 folgt gemeinsam mit der 6;-Kompatibilitéit der beteiligten Prozesse sowie der #;-Invarianz

lim N™(ds) — N(ds)

n— 00

lim N™(ds) — N(ds x [0,)\(3)])‘>

n—o0

n— 00

des zugrundliegenden Wahrscheinlichkeitsmafles

E(/C JLTONW(CJS) — N(ds) ) <711320E</ \A — A(s)| ds)
= lim N\C ™ (0) — A(0)]) =0,

n—o0
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siehe 10.1. O

10.3. Lemma. Der Prozefs (A(t))er ist von der Form (D1).

BEWEIS: Aufgrund der #;-Kompatibilitit reicht es, an der Stelle ,0“ die Form (D1) nach-

zurechnen:

E(‘)\(O) — ¢ (/(00’0) h(—s) N(ds)) D

< E(JAM0) = A"™D(0)])
(o ([, neonma) o ([ n=sva)))

< E(|A(0) = AT (0)]) + E(/(oo,o) h(—s)| [N™ — N (ds))

= E(|\(0) = A (0)|) + E(/(

= E(|A(0) = A" (0)|) + / |h(—s)| ds E(|A™(0) — A(0)])

(_00’0)

|h(—s)| ‘)\(”)(s) — )\(s)‘ ds)

00,0)

n—0Q

0,

denn ¢ ist Lipschitz-stetig, (A (t))tE]R und (A(t)),cr sind ;-kompatibel, und es gilt 6.15. Die
Konvergenz folgt aus 10.1 und Voraussetzung (10.1). O

10.4. Lemma. Durch N wird ein Punkt-Prozefs mit endlicher mittlerer Intensitit A gegeben,

A E(N((0,1])).

BEwEIs: Die Nutzung der Lipschitz-Stetigkeit und die Verwendung einer analogen Ab-

schitzung wie im Nachweis von 7.2 beim letzten Ungleichheitszeichen lassen uns zu
1
EN((0,1]) = E</ A(s) ds> = E(\(0)) < E(|A(0) = A™D(0)]) + E(A"T(0))
0

< B(AO) - X))+ o0) + B[ jhie ) N

50,1)
< B(A0) = X"00)]) +60) +60) Y ( [ e d8>k +00) ( [ e ds>”“

gelangen. Im Grenziibergang n — oo zeigt dies

(10.4) EN((0,1]) < ¢(0) < 0o

11— f[o,oo) |h(s)| ds

aufgrund von Voraussetzung (10.1). O

Insgesamt haben wir damit den folgenden Satz gezeigt:
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10.5. Satz (Unbeschrinkte Lipschitz-Dynamik I). Gegeben sei Voraussetzung 2. Dann gibt
es einen eindeutigen stationdren Punkt-Prozeff N mit Intensitit (A(t))ier gemafs (D1) und end-
licher mittlerer Intensitit A = E(N((0,1])).

Die bisher noch nicht gezeigte Eindeutigkeit wird in Lemma 10.11 nachgeliefert. Nachdem
wir die Existenz eines stationdren Punkt-Prozesses zeigen konnten, wenden wir uns nun der Frage

zu, unter welchen Anfangsbedingungen Stabilitit in Verteilung bzw. Variation nachweisbar ist.

2) Stabilitit in Verteilung. Zunichst schrianken wir die Klasse der betrachteten Punkt-
Prozesse ein. Mit Ny wird die Menge aller Punkt-Prozesse N bezeichnet, fiir die die Abbildung

(10.5) ts B(A() | ) :E(¢ (/(_ h(t—s)N(ds)) ‘]-'év>

00,t)

f.s. lokal integrierbar auf [0, 00) ist (siehe dazu auch Unterabschnitt 4)).
Geeignete Anfangsbedingungen fiir die Stabilitdt in Variation werden in Voraussetzung 3

gegeben:

Voraussetzung 3. Gegeben sei die Voraussetzung 2. Ferner definiere fir einen Punkt-
Prozefs N

(10.6) cat) /( /( | hls =] N s,

t—a)Vvo
a € [0,00), t € R. Durch
(AB i) sup;sq€a(t) < 00 f.s. und lim; o 24(t) = 0 f.s. fiir alle a > 0
(AB ii) supysq Eea(t) < 0o und limy o Ee,(t) = 0 fiir alle a >0
werden zwei Anfangsbedingungen (AB i) und (AB ii) fir diesen Punkt-Prozef3 gegeben.

Geniigt ein Punkt-Prozefl N mit FN-Intensitéit (A(¢));er der Form (D1) Anfangsbedingung
(AB 1), so kénnen wir die mittlere Zahl der Punkte von N im Intervall (t —a, t] C [0, c0), falls wir
unter der Vergangenheit bis zum Zeitpunkt ¢ — a bedingen, wie folgt aufgrund der a-Lipschitz-
Stetigkeit abschitzen:
#Y)

< ad)(0)+/tta /(OO’O] (s — u)| N(du) ds+E</tta /(o,s) (s — u)| N(du) ds ftfia).

Beachten wir, da ¢(0) die ,,Grundanregung” des Punkt-Prozesses ohne einen einzigen Punkt

t

E(N((t — a, 1)) | FY,) = E(/t As) ds

—a

ist, so kénnen wir diese Darstellung zum Anlafl nehmen, um Anfangsbedingung (AB i) wie folgt
zu interpretieren:

Da limy_, £,(t) = 0 f.s. gilt, nimmt der Einflufl der Punkte von N~ fiir die Bestimmung von N in
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(t — a, t] bei wachsendem t ab. Gewichtet mit der Ubertragungsfunktion strebt die Riickmeldung
der Punkte der negativen Achse (von N) gegen 0, Anfangsbedingung (AB ii) besitzt eine analoge
Interpretation.

Nun zum Nachweis der Stabilitéit in Verteilung, der in Satz 10.10 miindet.

Sei N' = (1), €in  transienter Punkt-ProzeB mit F¥'-Intensitit (X'(t))er der Form
(D1) auf [0,00), N" € Ny. Ferner geniige N’ einer der Anfangsbedingungen (AB i) oder (AB ii).
Fiir alle (a, b] C [0, 00) gilt nach (10.5)

E(N’((a, b)) |ng’) :E</ab)\’(t) dt‘]—“év'> - /:E(X(t) |ng’) dt < oo fs.,

d.h. N'((a,b]) < oo f.s., also ist N" auf [0, 00) nichtexplodierend. Mittels 6.14 konstruiere auf R?
einen o (FN', ]:gv)—Poisson—ProzeB der Intensitét 1, (U}),, e, und N’ wie in der Konstruktion von
6.14 bendtigt:

N((a,b] x L)
= Ly (T) 1 (N (T3 Uy) / / N'(dt x dz)
neN a,b] J L\(0,N, (¢
= Z // @t (6) 1o (N[ (8)2) bqury(dz) Ogryy (di) + / / N'(dt x dz),
neN ab] JL\(ON (¢

(a,b) CR, L € B und X, (t) = Lo (t) N'(t). Aus dieser Darstellung erkennt man fiir beliebige
Borel-Mengen C' C (0, c0)

/thx 0, X (1))

denn PU» = R[0,1] und N'(- x {0}) ~ Poi(0) (N'(- x {0}) besitzt also keinen Punkt auf R). Kon-
struiere aus N wie zuvor in Unterabschnitt 1) einen stationéren Punkt-Proze N mit endlicher
durchschnittlicher Intensitét und F;¥-Dynamik (A(t)),.g der Form (D1), dabei ist F¥ C FN.
Definiere die Funktion f: Q x R — [0, 00) durch

£ =160 { BAO XA O firez0

Da E(X(t) | 7)) . lokal integrierbar ist, folgt dies auch fiir f:

/ab f(t)dt = /;:()E(M(t) —N(@)||F ) &t
< /ME(A(t) 7)) dt+ /ME(X(t) FY) di <o fs.

VO aVo0

(10.7)
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denn aus der Endlichkeit der durchschnittlichen Intensitdt von N l&8t sich Endlichkeit von
E(f;vvg A(t) dt) = E(f(avo,bvo} N(dt)) = E(N((aV 0,bV0])) ableiten, gemif [Als98] Gleichung
(51.9) folgt dann die f.s. Endlichkeit von E( PO N (F) di ‘ F )

aVo0

10.6. Lemma. Fir f gilt die Ungleichung

(10.8)  f(t) g)\/(_ ; Ih(t — s)] ds+/(

_00’0)

|h(t — s)| N'(ds) + /0lt |h(t — s)| f(s)ds f.s.

fiir alle t > 0.

BEWEIS: Da ¢ Lipschitz-stetig, N’ auf (—oo,0) F -meBbar und N auf (—oo,0) Fl-
meBbar ist, wobei nach Konstruktion ¥ = F und F2"" unabhingig sind, gilt fiir £ > 0

[t <E <‘ /( M) N ) - /( IRIERELCY
+ /[O’t)h(t—s)]\f(ds)—/ h(t — s) N'(ds) ng’>

[0,)
< E(/ Ih(t — 5)| N(ds)
(70070)

fé“)
+E</(_OO7O) |h(t = s)| N'(ds) | Fy )
+E</m> |h(t — s)| IN = N'| (ds) fév')

—5( /( =) Vi) ) + /( =)l V()
+ /[ It = )1 ) = X (o) s )t

wende bei der letzten Gleichheit 6.15 an, denn wir konnen anstelle von 73" auch o (F', FY)
einsetzen. Mittels 5.8 &t sich dies fortsetzen zu

() < )\/ Bt — 5)] ds+/ Ih(t — 5)| N'(ds)

(_0070)

(—00,0)
+ [ =9 B(16) — X617 ds

- A/(_OO,O) |h(t — s)| ds+/(_oo,0) \h(t —s)| N'(ds) +/0 h(t — )| f(s)ds fs..
O

Fiir festes a > 0 setzen wir F(t) o ftt_a f(s)ds = f(i\ioa)vo f(s)ds (denn f(t) =0 fiir t < 0)
und auflerdem

£ (1) def e (t) + da f(iia)vo |h(s)| ds fiir t > 0 |
0 fiir £ < 0
wobei ¢/ (t) durch Gleichung (10.6) mit N’ anstelle von N definiert wird.
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10.7. Lemma. Die zufdillige Funktion F,(t) gentgt fir alle n € Ny der Abschdtzung

(10.9) F,(t) < Ze « |h|" (t) + Fy = |h|™ (t) fs.,

t>0.

BEWEIS: Aus Lemma 10.6 und dem Satz von Fubini folgt

tvo
(1) g)\/ / (£ —a) v 0 — 5)| dsdu + &' (¢)
(t—a)Vv0 J (—o0,0]
tvo u
+/ (3] f(u — s) ds du
(

t—a)v0o J0

0 tvo
<)\a/ Ih(s)| ds + 2! (¢ / /|h ) F(u = ) ds du
t—a)Vvo a)Vo
£v0
= // (u—s)du |h(s)| ds
a\/O
(t—s)VO
// u)du |h(s)| ds
-

5a(t)+/0 Fy(t — s) |h(s)] ds:s‘a(t)Jr/RFa(t—s) Ih(s)| ds fs..

(10.10)

Il
ml

Die Behauptung 1488t sich nun durch eine Induktion nach n herleiten: Im Fall n = 0 ist die
Behauptung klar, falls n = 1 ist, zeigt (10.10)

Fu(t) < s‘a(t)+/Fa(t—s) h(s)| ds = Za() + F, % |h| (1) fs.,

also das Gewiinschte. Gilt nun (10.9) fiir ein n € N, so folgt aus der Induktionsvoraussetzung
und dem Fall N =1

n—1
F (t) <&.(t) + (Z o % WY 4+ F, * |h|*n> * |h ()
i=0

<5, () + (Z Eq % | (t) + Fy + |h™ (t))
=1
= Eq(t) * |h|*i (t) + F, * |h|*”+1 (t) fs..
=0

0

Sei nun I C R ein endliches Intervall, etwa I C [z,y] C R. Die fast sichere lokale Integrier-
barkeit von f liefert fiir beliebiges t € I

t Yy
:/ f(s)dsg/ fls)ds < 0o fs.,



II. EXISTENZ UND STABILITAT UNIVARIATER HAWKES-PROZESSE 5%

also ist F, auf jedem endlichen Intervall f.s. beschrinkt. AuBerdem ist die Norm ||-||, von h auf
L1(R, B, \) streng kleiner 1. Daher folgt fiir ¢ € R aus [Als98] Gleichung (20.20)

t t
F,*|h|™ (t) = / F.(t—s)|hI™ (s)ds < Mt/ |h|™ (s)ds < My ||h]]}  fs.
0 0

fiir eine endliche Zufallsgrofie M; : Q — R, was lim, ;o F, * |[h|™ (f) = 0 f.s. zeigt. Gemeinsam
mit (10.9) ergibt sich fiir F,,(¢) (nach dem Satz von Fubini) die Abschétzung

F,(t) < Zg «|h[" (t) = Z/s‘a(t — 5) |h]" (s) ds

:/ga(t—s)2|h|*i (s) ds:/sa(t—s)H(s) ds fs.

1=0

(10.11)

mit der Festlegung H (s) o S, |h* (s). Nach [Als96] S. 235 Kapitel 27 ist H die Erneuerungs-

dichte eines defekten Erneuerungsmafes (assoziiert mit h), fiir die

/ H(t) dt = / SO ) de = / B ey de = 3 (1B

n>0 n>0 n>0

1 1
< hl|" = = <
< M = T = T s <

n>0

gilt, beachte (10.1).

Von nun an bedarf es der Trennung des weiteren Vorgehens in Abhéngigkeit von der vor-
liegenden Anfangsbedingung.

e Lrfiille N' zundchst Anfangsbedingung (AB i) aus Voraussetzung 3.

10.8. Lemma. Auf jedem endlichen Intervall stimmt SyN schliefilich mit S;N' tberein, d.h.
(10.12) ltlim P(S;N = S;N' auf (s —a,s]) =1

— 00
fir alle s,a € R.

BEWEIS: Da (AB i) fiir N’ gilt, ist €/ (¢) f.s. beschrinkt. Damit muf dann auch &,(¢)
auf (0,00) fs. wegen [~ |h(s)] ds < [;7|h(s)] ds < oo beschriinkt sein. Nach (AB i) gilt
limy_, 0 €, (t) = 0 f.5. und (10.1) sichert limy_ [, |A(s)| ds = 0, also insgesamt limy_,o, £,(t) =0

f.s.. Der Satz von der majorisierten Konvergenz zeigt somit

Einmal mehr nutzen wir Satz 6.15:

lim F,(t) =0 fs.
t—00
V0 ,
F,(t) = E(/ IA(u) — N(u)] du .7-'5V>
(t—a)Vvo

tvo
:E(E(/ A(w) = X ()] du fﬁ’,fﬁ) ‘fé"')
(t—a)Vvo
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tVv0
:E(E(/ IN — N'| (du) fﬁ’,fﬁ) ‘]—"0 )
(t—a)Vvo
tvo ,
—5( [ Iv-Nja| A7),
(

t—a)Vo
was sich nach Definition des Erwartungswertes und wegen |N — N'| (C') € Ny fortfiihren 14t zu

Fu(t) = ZP(/(M N — N'| (du) = k ‘ ng’>

£>0 t—a)Vo
tvo
:1—P</ |N—N’|(du):0‘.7-"éw>
(t—a)Vvo

—1 —P(NE N’ auf ((t —a) V0,V 0] |ng’) .
Daher konnen wir fiir beliebiges ¢ € R mit dem Lemma von Fatou

1> liminfE(P(NE N auf (t — a,t] |‘7:éw>)

t—00

> E(lig(ixr)lfP(N = N auf (t — a, ] |.7:évl>)
> E(1 . 1igglfFa(t))
_E(1)=1

folgern. O

10.9. Lemma. Fir jede fest vorgegebene Wahl beschrinkter Borel-Mengen Ay, ..., A, n € N,
konvergiert ((S;N'(A1), ..., SiN'(Ayn))),en in Verteilung gegen (N(A),...,N(A,)).

BewEIs: Wihle also beschréinkte Mengen Aq,..., A, € B (n € N). Dann gibt es a,s € R
mit A;U---UA, C(s—a,s].
Die Stationaritdt von N liefert

= sup |P(SiN'(4;) = ai, SiN'(A;) = SiN(4;);i=1,...,n)
S PSIN(A) = as, SIN(As) = SN'(A)si = 1,...,n)
+P(Si;N'(A;) =a;,i=1,...,n;
SiN'(A;) # SiN(A;) fiir ein i € {1,...,n})
(10.13) —P(SN(A) =a;,i=1,...,m
SUN(A;) £ SN'(Ay) fiir ein i € {1,...,n})|
< sup |P(SN'(4A)=a;i=1,...,m;
S GN(AL) £ SuN(A;) i ein i € {1, n})
—P(S;N(A) =a;,i=1,...,m
SiN(A;) # S;N'(A;) fiir ein i € {1,...,n})]
< P(S;N(A;) # SiN'(4;) fiirein i € {1,...,n}).
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Aufgrund von Gleichung (10.12) ist
P(S;N(A;) # S;N'(A;) fireini e {1,...,n}) <1-— Jim P(S;N = S;N'" auf (s — a, s]) =0,
—00

was die gewiinschte Verteilungskonvergenz zeigt (z.B. mittels [Als98] Satz 43.1). O

Aufgrund von 10.9 &8t sich aus [DVJ88] Theorem 9.1.VI. die schwache Konvergenz von
S,N'" gegen N7t fiir t — oo folgern, d.h. im Fall von Anfangsbedingung (AB i) haben wir
Stabilitét in Verteilung erhalten.

e Gehen wir jetzt von der Giltigkeit von (AB ii) fiir N' aus und steigen bei (10.11) erneut

in den Beweis ein. Erwartungswertbildung und der Satz von Fubini zeigen

E(F,(1)) < / E(eult — )) H(s) ds < sup E(o(1)) / H(s) ds < oo,

>0

denn aus der f.s. Beschrianktheit von E(g/,()) auf [0, c0) (g/,(t) = 0 fiir t < 0) folgt die Beschréinkt-
heit von E(&,(t)). Der Satz von der majorisierten Konvergenz zeigt wie zuvor gemeinsam mit

im0 E(2, () = 0

a

lim E(F,(t)) = 0.

t— 00

Gleiches Vorgehen wie im Beweis von 10.8 fiihrt zu (10.12), so dafl auch bei Vorliegen von
Anfangsbedingung (AB ii) die schwache Konvergenz von S;N’ gegen N fiir t — oo aus Lemma
10.9 folgt.

Damit haben wir gezeigt:

10.10. Satz (Unbeschrinkte Lipschitz-Dynamik II). In der Situation von Voraussetzung
2 und bei Beschrinkung auf die Menge Ny von Punkt-Prozessen ist die Dynamik (D1) stabil in
Verteilung beziiglich jeder der folgenden beiden Anfangsbedingungen:

(AB i) sup;sga(t) < oo fos. und limy oo £4(t) = 0 f.5. fiir alle a > 0
(AB ii) sup,q Eeq(t) < 0o und limy_,o Ee,(t) = 0 fiir alle a > 0
wobei £4(t) zu einem Punkt-Prozeff N € Ny durch (10.6) definiert wird.

Die in Satz 10.5 noch fehlende Eindeutigkeit folgt nun durch einfaches Nachrechnen einer
der obigen Anfangsbedingungen.

10.11. Lemma. Der nach 10.5 existierende, stationdre Punkt-Prozef$ N mit endlicher mittlerer
Intensitit A\ und Intensitit der Form (D1) ist eindeutig.

BEWEIS: Es geniigt also, Voraussetzung 10.10 (AB ii) nachzurechnen. Dazu sei ¢ > 0 und
N ein weiterer stationérer Punkt-Proze mit F;¥-Intensitiit (S\(t))tE]R, die von der Form (D1) ist

und endlicher mittlerer Intensitit A sowie £4(t) geméB Voraussetzung 3. Der Satz von Fubini und
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5.8 liefert

E(éa(t)):/tvo E(/ L N(du)> ds
/tavo /000 (s — u)| duds = A /tavo/s )| du ds
/MOW )| du,

was zum einen den ersten Teil von Bedingung (AB ii) zeigt:

sup E(2,(t)) < Aa /000 |h(u)] du < oo,

>0

und auflerdem noch zu lim; ., E(£,(t)) = 0 fiihrt. O

3) Stabilitit in Variation. Eine Verschirfung von Anfangsbedingung (AB i) aus Voraus-
setzung 3 stellt Anfangsbedingung (AB iii) des anschlieflenden Satzes dar. Fordern wir zusétzlich
noch die Giiltigkeit von (10.14), so erhalten wir die stérkere Form der Stabilitét: Stabilitéit in
Variation.

10.12. Satz (Unbeschrinkte Lipschitz-Dynamik III). Gegeben sei Voraussetzung 2. Dann
ist innerhalb der Menge Ny die Dynamik (D1) stabil in Variation unter der Anfangsbedingung:

(AB iii) f (t)| N([—t,0)) dt = f[O,oo) ffoo |h(t — s)| N(ds)dt < > f.s.,

falls zusdtzlich
(10.14) / HIA(H)] dt < oo
[0,00)

qgilt.

Ebenso wie im Fall der Stabilitéit in Verteilung sichert die gegebene Anfangsbedingung (AB
iii), daB der mit h gewichtete Einflufl der Punkte auf der negativen reellen Achse verschwindet.
Dies 1dB8t sich bei linearer Anregungsfunktion ¢(z) = cz (¢ € (0,00)) und nichtnegativer
Anregungsfunktion h wie folgt deutlich machen: Gegeben sei die Vergangenheit bis zum Zeitpunkt
0, dann wird durch jeden Punkt 7, von N~ auf [0,00) ein Poisson-Prozefl mit Intensitéits-Maf
def ¢ [, h( ) dt erzeugt, siehe [Kin93] Existenz-Theorem in Abschnitt 2.5 (Seite 23).
Som1t ist die Zahl der durch N~ auf [0, 00) erzeugten Punkte, falls wir unter der Vergangenheit
bis zum Zeitpunkt 0 bedingen, gleich

(10.15) Zun ([0, 00)) Z /oo (t -1, dt—c/oo/oo0 (t —s) N(ds) dt,

nNEZ A
n<0 n<0
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nach Anfangsbedingung (AB iii) also f.s. endlich. Betrachten wir nun das Intervall (¢, 00) anstelle
von [0, 00), so verschwindet die Nachwirkung von N~ fiir ¢ — oo.

Im Lipschitz-stetigen Fall ist bei beliebigen Funktionen h der Einfluf von N~ ohne die
»Grundintensitit ¢(0) des leeren Prozesses auf (—oo, 0] kleiner oder gleich Gleichung (10.15)
nach Multiplikation mit einer geeigneten Konstanten. Also verschwindet auch hier die Nachwir-
kung.

BEWEIS (VON SATZ 10.12): Sei N' = (T})),.c
Bedingungen von 10.12 geniigt und auf [0,00) eine F¥-Intensitéit (M (t)),.z der Form (D1)
besitzt. Wir kénnen Unterabschnitt 2) bis einschlieBlich 10.6 iibernehmen.

Aus dem Satz von Fubini folgt

//|ht—s|f ) ds dt = // Wit — )| dt f(s ds—// Wt — )| dt f(s) ds
_/[OOO |dt/f Bt < oo fs.

Dies liefert fiir alle 7" > 0 durch Integration von (10.8) iiber ¢ von 0 bis 7" nach einer einfachen

, ein transienter Punkt-Prozef}, der den

Umformung
T T 00
0< / () dt—/ () dt/ Ih(s)| ds
0 0 0
T T
< / / Ih(t — 5)| N'(ds) dt+)\/ / Ih(t — 5)| ds dt
0 (—00,0) 0 (—00,0)
§/ / |h(t — s)| N'(ds) dt+)\/ / |h(t — s)| dsdt
[0,00) 00,0) [0,00)  (—00,0)
:/ |/ N'(ds) dt—l—)\/ / s)| dsdt
t,0) [0,00)
:/ (1) N'([—t, 0))dt+)\/ th()| dt Es..
[0,00) [0,00)
Hieraus folgt die fast sichere Endlichkeit von fo t) dt, denn fiir alle T > 0 ist
T
() dt < (/ Ih(t)] N'([—t, 0)) dt + )\/ £1h(0)] dt)
(10.16) /0 1- fo s)| ds \J1o,00) [0,00)

< oo fs.

nach (10.14) und (AB iii). Also ist fo t)dt f.s. durch eine von T unabhéngige Schranke nach
oben begrenzt. Da f > 0 gilt, ist fo dt auflerdem monoton wachsend in 7', und nach Defini-
tion folgt

/Ooof(t) dt:/UOOE(M(t) SOIEN dtzE(/Ooop\(t) vl dt‘}“év’>
B[ Iv-vian| =),
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beachte 6.15. Es ist also [~ f(#) dt die mittlere Anzahl von Punkten von [N — N'| auf [0, 0o) bei
Kenntnis der Vergangenheit bis zum Zeitpunkt 0, also bedingt unter F2¥'. Nach (10.16) ist diese
Anzahl f.s. endlich, was [N — N'| ([0,00)) < oo f.s. liefert.

Der Prozef§ der verschiedenen Punkte von N und N, |N — N'|, besitzt auf [0, 00) also f.s.
nur endlich viele Punkte. Nach [BB94] Kapitel 2 4.1 koppeln N und N’ somit f.s. in endlicher
Zeit. Ahnliches Vorgehen wie bei (10.13) fiihrt zu

sup [P(SiN' € C) ~ P(N* € 0
cemM’
= sup |[P(SN'T € C) — P(SNT € C),
cemM’
= sup P(Stz\/'+ €C, 8N £ StN+> _ P(StN+ € C,8,N* # sgv’*)‘
CeM’

< P(StN’+ ” StN+>

= P(V'((t+) N1 [1,00))) £ N((t+4) N[t o))
P(S,N'" € C) — P(N* € C)| = 0 zeigt, d.h. S;N"" konvergiert in Variati-
on gegen Nt (t — 00). O

was limy_, o SUpce

10.13. Bemerkung. Gelte ¢(0) = 0. Dann ist der Punkt-Proze8 ohne einen einzigen Punkt
N = () ein stationiirer Punkt-Prozef8 mit Intensitit der Form (D1). Da dieser eindeutig ist, stellt
er die einzige Losung dar.

Ein beliebiger transienter Punkt-Prozefl mit Anfangsbedingung (AB i), (AB ii) oder (AB iii)

strebt dann notwendigerweise gegen den leeren Prozef}, d.h. er stirbt aus.

Bemerkung 10.13 zeigt, daf kein linearer stationédrer Hawkes-Prozefl ungleich des leeren Pro-
zesses mit stochastischer Intensitét f(oo 9 h(t—s) N(ds), t € R, bei Giiltigkeit von f[o ) h(t)dt <
1 (h:]0,00) — [0,00)) existiert.

4) Zur Einschrinkung auf die Menge Nj.

10.14. Bemerkung. Gegeben sei die Situation von 10.10 oder 10.12. In diesem Fall kann die
vorgenommene Beschrinkung auf die Klasse der Punkt-Prozesse N, fiir die (10.5) f.s. lokal inte-
grierbar auf [0, 00) ist, fallengelassen werden.

Erfiillt ein Punkt-Prozefl N die Bedingung (AB i) (bzw. (AB ii) oder (ABiii)), folgt daraus bereits
die f.s. lokale Integrierbarkeit von (10.5) auf [0, 00).

BEGRUNDUNG: Es sei N’ ein transienter Punkt-Prozeff mit Dynamik (X' (t)),.p der Form
(D1) auf [0, 00). Erfiille €/ (¢) Anfangsbedingung (AB i), wobei ¢/ () gem&f (10.6) unter Verwen-
dung von N’ definiert werde.

Zu zeigen ist, dafy die Abbildung

t|—>E<)\'(t) | F ) :E<¢ (/(_

h(t — s) N’(ds)) ‘fé“)

00,t)
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f.s. lokal integrierbar auf [0, co) ist.

Wir betrachten einen Punkt-Proze N’ auf R. Durch Ubergang von P zu P(N' € -) erhal-
ten wir ein Wahrscheinlichkeitsmaf$ auf (A, M’), d.h. wir kénnen 0.B.d.A. (2, F) = (M', M')
wihlen und bezeichnen das zugehorige Wahrscheinlichkeitsmafl wieder mit P. Nach [DVJ88] An-
hang A2.6., Theorem A2.6.IIL.(i), ist (M’, M’) ein polnischer Raum (d.h. es gibt eine Metrik, so
daf M’ mit dieser Metrik ein separabler vollstindiger metrischer Raum ist). Dies erlaubt uns die
folgende Festlegung:
Sei P17 pidlRY e regulir bedingte Verteilung der Identitit id auf (Q, F) gegeben FJ¥'.
Definiere fiir 7' > 0

!

ef 1 '
pird (do' x dt)  — PV (duf) A oun(d),

so ist u;év (+)(w) fiir alle w € Q ein Wahrscheinlichkeitsmafl auf (Q x R, ¥’ ®B). Der zugehdérige

Erwartungswert wird mit E;év (+)(w) bezeichnet.
Es sei VO(t) & ¢ (f(_oo o It —5) N’(ds)) und ferner

N'({t}) fiir t <0
f{t} N (dS X [0, X(n)(s)]) fiirt >0
o ([ i)

fiir n € N. Dabei ist N der nach 6.14 aus N'* konstruierbare homogene o (.7-",5N', ftﬁ)—Poisson—

Proze§ der Intensitit 1 auf R?. Ferner ist <X(n) (t)) eine o (F', FN)-Intensitit von N'™,
teR
siehe 6.12.

Wir benétigen einige Abschitzungen:

) <= 'E h ) _ e
ST |h(t —s)| [IN™Y = N
0 (—00,t)
o T T—s
iy / / (o) i [N — 7D
T 0 0

S a/ Ih(t)| dt B3 ( pUREES VI ) ,
[0,00)

N'™ _ N'W”‘ ((—00,0]) = 0 und ( N () - X("*U(t)‘) ist

teR
eine o (7}, ]—"tN)—Intensitéit von ‘N’(”) - N’(”*l)‘ auf (0,00) (siehe 6.15). Beachte weiterhin, daf}

FY " und ]-"év nach Konstruktion unabhéngig sind. Induktiv kann dies zu

) < (a/ () dt)n ol ©)
< T
)< (o)., ( )
fortgesetzt werden (n € N).

(b) Da ¢ a-Lipschitz-stetig ist, folgt N (¢) < ¢(0) + af o [P(t = s)| N'(ds). Dies wiederum

(a) E;év ( )\/(n+1) o )\/(n (dS)

]-'N>d

fgv’>

(ds)

denn ¢ ist a-Lipschitz-stetig,

EX ( PUGR S UL PUCIEPY
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fiithrt nach (AB i) zu

’

E;év ()\/(0)> _

denn X' () ist FY'-meBbar.

1 T
T/Amwm<mf&
0

(C) E;év ( )\/(1) _ )\/(O)D
T
< 3/ E(‘/ h(t — s) N'(ds) —/ h(t — s) N'(ds) ‘f§’> dt
T/ (=o0,t) (—00,0]
a [T S !
<— | E h(t —s)| N (d A © N') dt
<7/ (fm,t)' (= N dsx [0x ]} 7
<o @)l atER (V)
0,00)
< oo fs.,

dabei erfolgt die Ausnutzung der a-Lipschitz-Stetigkeit von ¢ beim ersten Ungleichheitszeichen.
Das dritte Ungleichheitszeichen erhéilt man analog zu (a), die f.s. Endlichkeit stammt aus (b).

(d) Aus EZ0 (W“)) < EX ( ) +EX (X(”)) folgt einmal mehr induktiv

unter Verwendung von (a), (b) und (c)

n k
A (et < 7
g7 (» )_;<a/mm)|h(t)|dt> B (
— 1T
< Oé/ h(t dt) —/ MY (t) dt
S (af mora) g [x00

k=0

)\/(n+1) _ )\/(n)

OBBVO) ) +ED ( X(O))

< oo fs.

fiir alle n € N.
Aus (a) und (c) ergibt sich fiir alle k,m € N mit k£ > m:

E7 (|x0 - DY (a/ Ih(s)| ds)j E7 (
T = Z o T

Somit folgt fiir ein geeignetes (X(OO)(t)>

)\/(1) _ )\I(U)

) < oo fs.
7m)

teR
(10.17) PURREENP UL
beziiglich [|-|20 = EZ (|]) auf £, (Q xR, FN ® %,Mﬁv) £.5.].

Auflerdem liefert die Markov-Ungleichung zusammen mit (a) noch

o ( > (a / |h(s)|ds> )
[0,00)
<(of meas) B
[0,00)
< (a/ |h(s)|ds>2E§éV (
[0,00)

)\l("+1) _ )\l(”)

)\l("+1) _ )\l(”)

)

VO _ )\'(O)D .
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Nach Voraussetzung und (c) zeigt dies

5 (

n>0

)\/("Jrl) _ )\/(")

> (a/[o’oo)|h(s)| ds>%) <oo fs.

Nach [Nev65] Prop. I1.4.2 (Seite 45) gilt also /™ 2225 \r(0) jfﬁv -f.s. [P-f.s.].
Fiir jede beschrinkte Menge C' € B+, C C (0,71, gilt gemaf (a) und (c)

ZowéV, (/ ‘N’ () _ N (ds) # 0> < ZE'%VI (‘N’(nﬂ) ~ N
e n>0
g () cr e
n>0

n>0

(©)

)

X(n"‘l) . X(n)

< oo fs.

Nach dem Borel-Cantelli-Lemma folgt

n—oo

P 7 (hrnsup{‘]\f'wrl —- N'"|(C )%0}) =0 fs.,

d.h. N ynd N'™ stimmen P10 -f£.5. auf C' fiir hinreichend grofle n iiberein [P-f.s.]. Wir

def lim,, o, N'™ . Fiir alle C' € B, C' C (0,T], erhalten wir nach zweifacher

Anwendung des Lemmas von Fatou und unter Beachtung von (a)

PR ( / ‘ N)(ds) (dsx [0, x<°°>(s)])‘> < lim gl ( /C N (5) x(°°>(s)‘ ds)

AN X("O)D —0 P-fs.

definieren also N'(*

< T lim EX (

n—0o0

Dies zeigt N'O9() = [ N (ds x [0,x(s)] ) P17 £, [P-£s).
Wir rechnen nun nach, dafl (X(oo) (t))te]R von der Form (D1) ist:

By (] s ( [ he=s Vs ) )
< E;év ( )\,(oo) B )\/(n-i-l) ) + ;E |_7-'N’ (/ / } t s | ‘N/ ‘(ds‘) dt)
<E;év ()\/(00)_)\/(”+1))+%E Fil (/ /Ot t—3| ‘N’ ‘(ds)dt)
< E;év ( V(o) _ yr(ntD) ) L2 Ih(t)] dtE 7 )\’ n) (5) — e (s)‘ ds
T Jio,00) 0
<Ef (V& -x"]) ta /[0 Inct) atB (V- X))
n—oo ,
—0

teR

nach (10.17) [P-fs.], d.h. (x<°°>(t))t€R - (¢ ( [ N'<°°>(ds))) 15 s, [P-ts).



64 10. Lipschitz-stetige Anregungsfunktionen — unbeschrinkte Dynamiken

N wurde weiter vorne wie in 6.14 aus N’ konstruiert, d.h. (X, (£) = L(p 0 (£) N (1))
N ((a,b] x L) = Loy (Tn) 1r, (N ( / / N(dt x dz)
oy (ab] J L\ (O, (
mit
e (Up),cp Wiv. Zufallsgrofen, unabhiingig von FY', U, ~ R[0,1] (n € Z)
e N homogener Poisson-Proze$ der Intensitit 1 auf R?, unabhiingig von o (7Y, FY).
Durch einsetzen erhalten wir N'(C)) = [, N (dt x [0, N'(¢)]) fiir alle C € B*.
Gezeigt wird nun, daB N'* = N’( ©)* Dazu definieren wir N & | N’ — N’(Oo)‘. Bezeichne
<V (‘N’ — N/ ,t)) die ftﬁ—vorhersagbare Version der o (]—",fvl,ftN'(oo))—Intensitfit von N
teR
(die Existenz sichert [Bré81] I1.4., Theorem T14, die verwendete Darstellung stammt aus Satz

2.4). Fiir diese gilt wegen der a-Lipschitz-Stetigkeit von ¢

(‘N/ N/( 00)

1) < a/(_oot) Ih(t — $)| [N — N™] (ds)

:a/ h(t —s)| [N" = N"*| (ds),
(0)

denn nach Konstruktion gilt N'~ = N/~ Aufgrund der weiter oben genannten Unabhéngig-
keiten sowie der Darstellung von N’ und N’ auf (0, c0) mittels N konnen wir zu jedem w € Q
ein @ € Q mit 0 = [N — N (w,) = [N = N (&,) = [N = N (@, N (—00,1])
finden. Somit gilt

v <‘N . N'<°°>‘7 (w, -),t) — (‘N - N'<°°>‘ @,-N (—oo,t]),t)

ga/ bt = )] [N = N2 (@,ds) = 0
(0,t)

also v (N*,t) <0 fs..
Nach 5.5 liefert dies fiir alle ¢ > 0

P(N((o,t]) :O‘J:év) — exp <_/Oty(zv,s) ds) > 1

so daB sich N = 0 f.s. und damit N = N'®) fs. auf [0, 00) ergibt. Es gilt also (beachte erneut
die Unabhingigkeit von ' und FY)

/OTE(X(t) 7") at = B(N(0.7) | 7) = B(N(0.77) | 7Y
- /TE(X(OO)(t) F )t fs.
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SchlieBlich fithrt (d) nun zu

/OTE(X(OO)( )| 77 d Si( / |dt>k/0TX(0)(t)dt<oo fs.

was insgesamt fOTE()\’(t) | FV') dt < oo 5. und damit die Behauptung zeigt. o

In der vorstehenden Begriindung waren wir von der Giiltigkeit von Anfangsbedingung (AB
i) ausgegangen, wir haben jedoch nur den ersten Teil dieser Bedingung benétigt (siehe (b)). Die
noch fehlenden Betrachtungen fithren wir auf diesen Fall zuriick und nutzen dabei die zuvor
verwendeten Bezeichnungen:

e Gelte zunichst Anfangsbedingung (AB ii). In diesem Fall liefert

E</0T/<_oo,0] It — $)| N'(ds) dt> < 50

fiir alle T > 0 die f.s. Endlichkeit von fOT J( oo [Pt — )| N'(ds) dt. Dies ist fiir die obige Be-
griindung ausreichend.
e Im Fall von Anfangsbedingung (AB iii) gilt f h(t)| N([—t,0))dt < oo f.s.. Somit

erhalten wir
/ / h(s — u)| N'(du) ds</ / (s — u)| N'(du) ds
t—a)Vo 00,0] (—00,0]

/000 /soo t)| N'( s—dt)ds—/[oyoo) h(2)| N'([~, 0]) dz

S/[o,o@ |h(x)|N’([—x,0))dx+/ h(z)| do < 00 fs.

[0,00)

fir alle a,t € [0,00) Hieraus ldfit sich sogar die Giiltigkeit beider Bedingungen von (AB i)
ablesen.

11. Lipschitz-stetige Anregungsfunktionen —

beschrinkte Dynamiken

Fordern wir im Fall a-Lipschitz-stetiger Anregungsfunktionen ¢ zusétzlich die Beschrinktheit
dieser Funktion, so konnen wir die Beschrinkung des Wertes von « [ |h(t)| dt aus Abschnitt 10

fallen lassen. Es gelte fiir den aktuellen Abschnitt die

Voraussetzung 4. Gegeben sei eine mefbare Funktion ¢, die a-Lipschitz-stetig fir ein

a > 0 und beschrdnkt durch ein A > 0 ist. Bezeichne h eine mefbare Funktion mit

(11.1) / |h(t)] dt < oo und / t|h(t)| dt < 0.
[0,00) [0,00)
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Ziel dieses Abschnitts wird erneut eine Existenz- und Stabilitdtsaussage unter dieser Vor-

aussetzung sein, die in Satz 11.6 und 11.8 zu finden sind.

1) Existenz. Wieim Beweis von 8.5 sei (2, F, P) der kanonische Raum der Punkt-Prozesse
auf R mit [0, 1]-wertigen Marken. Dabei sei S; = 6;, t € R, und P ein Wahrscheinlichkeitsmaf3
mit P o S; = P, unter dem N = (T, Un)nez» N(w,+) = w, ein markierter Poisson-Proze§ der
Intensitdt A mit Markenfolge (Up,), ., unabhingiger, identisch R[0, 1]-verteilter Zufallsgrofien,
unabhiingig von N(- x [0,1]) ist.

Definiere die nach 7.1 FN-adaptierten Punkt-Prozesse N und F}N-vorhersagbaren Pro-

zesse (A" (t))teR, n € Ny, dhnlich wie im Beweis von 9.1 durch

N®(C) déf/c N (ds X {0, A(ni(S)D , C B,

A () &g ( /( )h(t —s) N<">(ds)> : teR,
—o0,t

wobei A\ (#) = 0 fiir alle t € R gelte. Nach 7.1 ist (A ()),er eine FN-Intensitit von N™ fiir

alle n € Ny. Zunéchst zeigen wir die Existenz des Grenzprozesses N def lim,, o N™. Dazu sei

(11.2) N({t})  limsup N ({#}) — lim inf N ({}), € R.

n—o0

Der Punkt-ProzeB N existiert also, wenn der ProzeB N f.s. mit dem Punkt-ProzeB (), der keinen

Punkt auf der reellen Achse besitzt, iibereinstimmt. Setze

A(t) & Jim sup A™ (t) — liminf A\ (¢), teR.

n—00 n—00

Dann gilt aufgrund der Beschriinktheit von ¢ fiir alle t € R: 0 < () < A.

11.1. Lemma. Der Punkt-Prozef limsup,_,, N™ lgft (lim sup,_,,, A" (t))te]R als F) -Inten-

sitdt zu. Entsprechend ist (lim inf,, oo A (t)) eine fﬁ—[ntensitdt von lim inf,_,. N™.

teR

BEWEIS: Gezeigt wird nur die erste Behauptung, der zweite Nachweis 148t sich analog

fithren. Offensichtlich gilt nach dem Satz von der monotonen Konvergenz

_ 1 - 1
/ N <dt X {0,—limsup)\(")(t)>> < / limsup N (dt X {0,—)\(")@)])
C A oo C n—oo A
- 1
g/ N <dt X [O,Xlimsup)\(")(t)}> ,
C n—00
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C € 8. Die gleiche Argumentation wie im Beweis zu 6.11 fiihrt fiir (a,b] C R zu
_ 1 N
E N [ dt x |0, = limsup A" F,
(a,b] A n—00
=E Tigys N N
</(a,b}><]R [0 timsup, , 0 A (1)) \# (=) Nidtx dz) | 7, >

E</ L 1 i 3o (2) At x d2)) ‘ff)
(a,b] xR

:E</ lim sup A dt‘]—"N>
(a,h] n—00

Analoges gilt fiir das Intervall, welches an der rechten Seite abgeschlossen ist. Somit erhalten wir

E</ lim sup N (dt) ‘fN>—E</ limsupN(dtx [O —)\( ])‘]—"N>
(a,b] n—o0 (a,b] n—o00 A

:E</ lim sup A™ dt‘}“N>
(ab} n—00

Lemma 11.1 zeigt gemeinsam mit 6.15, daB N die F}Y-Intensitiit (S\(t))tE]Rbesitzt.

11.2. Lemma. In der geschilderten Situation gilt die Ungleichung

(11.3) A < a/ h(t = s)| N(ds) fs.
(—oo,t)

fir allet € R.

BEWEIS: Sei t € R beliebig. Wir kénnen \(t) umschreiben zu

A(t) = limsup A™(¢) — lim inf A™ (¢) = lim (sup AR (#) — inf AK) (t))

n—00 n—00 n—oo \ k>n k>n

= lim sup (AD(t) — AD(2)).

n—oo z,]Zn

Aus der Lipschitz-Stetigkeit von ¢ folgt fiir beliebige a € (0, 00) die Abschéitzung
A(t) < a lim sup </ Ih(t — 5)| NO(ds) —/ h(t—3)| N(j)(ds)>
0>n \J (—o0,t) (—o0,t)

<of tim <sup / Ih(t — 5)| N®)(ds) — inf / h(t—3)| N<k>(ds)>
:z—)oo k>n J(—oco,t—a) k2n J(—co,t—a)

J/

-~

=A1(a)

+ lim <sup / Ih(t — 5)| N®(ds) — inf / h(t—3)| N<k>(ds)>
7700 \k>n Jft—a,t) k2n Jit—a,t) g

~”

:Ag(a)

= OfAl(CL) + OZAQ(CL).
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Offensichtlich ist Agy(a) < f[t_at) |h(t — s)| N(ds x [0,1]) < oo f.s.. Da N(- x [0,1]) im Intervall

[t — a,a) f.s. nur endlich viele Punkte besitzt, erhalten wir

As(a) < lim ( / Ih(t — 5| sup N (ds) — / h(t—3)| ian<i>(ds)>
[t—a,t) [t—a,t) ¢

n—+00 i>n >n
g/ |h(t — s)| N(ds) fs..
[t—a,t)

Fiir A;(a) gilt wegen

E</(_oo,t_a)| (t— 8)| N(ds x [0,1]) ) E(/m ) t—s)|Ads>

<A h(t — s)| ds < 0o
—00,t)
die Abschétzung A (a) < f oo t—a) |h(t —5)| N(dsx[0,1]
f.s.. Insgesamt zeigt der Grenziibergang a — 0o wegen )\(
die Ungleichung (11.3).

f.s. und damit lim, o Ai(a) =0

)<
) < aAj(a)+aAy(a) fir allea € (0,00

Dv

Nach 2.4 besitzt die ]-"tN -vorhersagbare Version der ftN -Intensitéit von N die Darstellung
(y(N,t)) (existiert nach [Bré81] I1.4.T14) und v (N, t) <af oplh(t—=s)| N(ds) fs..

11.3. Lemma. Wird in der unmittelbar zuvor angegebenen Ungleichung N auf der linken Seite

teR

durch die Einschrinkung von N auf (—o0,0] ersetzt, also durch N, so besitzt diese weiterhin

Giiltigkeit, falls diese Einschrinkung auch auf der rechten Seite vorgenommen wird:
(11.4) V(N 1) < a/ h(t—s)| N(ds) fs..
(_00’0]

BEWEIS: Betrachten wir den Beweis von 11.2, so erkennt man, daf§ (11.3) auf der Menge

def

Qy = {N(- x [0,1]) nichtexplodierend} N {/( |h(t — s)| N(ds x [0,1]) < oo}

_Oo7t)

gilt und P(Q) = 1. Sei wy € Q. Da N(- x [0,1]) ein Poisson-Prozef§ endlicher Intensitét ist, gibt
es ein w € Qp, so daB N~ (w,-) = N~ (wp, ) und N(w, (0,#]) = 0. Daraus folgt

v(N™(wo,),t) = v(N(w, N (—00,1]),t) < a/ |h(t — 5)| N(w,ds)

(7oo7t)
:a/ |h(t — s)| N~ (wo, ds)
(_0070}

unter Beachtung von 2.6. O

11.4. Lemma. Der Prozef N besitzt mit positiver Wahrscheinlichkeit keinen Punkt auf (0, 00),
d.h.

(11.5) P(N((0,00)) = 0) > 0.
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BEWEIS: Es zeigt einmal mehr der Satz von Fubini, daf}

E</(0’Oo) /(00,0] h(u — )] N(ds x [0, 1])du> - /(o,oo)E</(oo,0} |h(u—s)|Ads> du

:A/ / ()| dsdu=A | ulh(w)] du < oo,
(0,00) Ju (0,00)

also ist [ o) J seg [B(u — 5)] N(ds x[0,1]) du f.s. endlich. Gemeinsam mit diesen Uberlegungen

erhalten wir aus Satz 5.5 und Lemma 11.3

P(N((0,50)) =0 ‘ F) = exp <_ /Ooo v(N~, 1) dt)

> exp (—a /OOO /(_oom \h(t — )| N(ds) dt)

> exp (—a /OOO /(_0070] Ih(t — 5)| N(ds x [0,1]) dt)

>0 fs..

Damit folgt P(N((o, o)) = o) - fP(N((o, %)) =0 ‘ f({V) dP > 0. O

Das Wahrscheinlichkeitsmafl P ist beziiglich des Shiftes (6;);cr ergodisch, siehe 6.6 . Nach
7.1(i) sind die Prozesse N™ und (A™(t)),cr fiir alle n € N #;-kompatibel, was zur §;,-Kompati-
bilitét von N fiihrt. Durch N wir gemi$ 5.7 ein stationiirer Punkt-Proze (beziiglich (P, (8)er)
im Sinne von [BB94]) gegeben und [BB94] Kapitel 1 (1.4.2) besagt, daB dann P(€;) = 1
fiir die Menge € < {N(R) = 0} U {N((0,00)) = N((—00,0)) = oo} gilt. Hiermit folgt
0, {w € Q1; N(w, (0,00)) = 0} = {w € Q1 N(w, (0,00)) = 0} fiir alle t € R, also

P(N((o, 0)) = o) — P({w € O N(w, (0,00)) = o}) —1

aufgrund der Ergodizitit. Somit muB N wegen 11.4 f.s. dem Punkt-Proze$ ohne einen einzigen
Punkt auf R entsprechen, also N = ) f.s.. Nach Definition von N sind die Punkt-Prozesse
limsup,, ,,, N™ und liminf,_, N™ auf R fs. gleich. Dies zeigt fiir alle beschrinkten Borel-

Mengen C'

(11.6) P(3k € NVp e N=F: INW — NOHU | (C) = 0) = 1

und wir kénnen den Punkt-Proze8 N durch die Festlegung N({t}) M im,, o0 N™({t}) definie-

ren.
11.5. Lemma. Der durch N = lim,,_,.c N™ definierte Punkt-Prozef erfillt
(i) N ist 0;-kompatibel

(ii) N besitzt die Intensitit (A(£)),cp, A(t) = ¢ ( S It = 9)] N(ds))
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BEWEIs: zu (i). Fiir alle C € B, t € R gilt nach 7.1(i)

S,N(C)=N(t+C) = lim NV(t+C)= lim N®(4,-,C) = N(b,-,C) fs..

n—o0 n—oo

zu (ii). Wir konnen (A (t)),er als F)-Intensitit von N identifizieren (n € N), siehe
7.1(ii). Der durch (fc N (ds X [0, )‘5\5)] )) festgelegte Punkt-Prozefl besitzt die ftN—Intensitéit
cen
(A(t))ier, siehe 6.11. Daher besitzt

(o= (s p22)])

nach 6.15 die FN-Intensitit ([A™(#) = A(2) ‘)teR. Fiir beliebige beschrinkte Mengen C € B gilt

daher aufgrund des Lemmas von Fatou

([ - o=

" < p( v - (e o 5 ) )

= lim [ E(|]A™(0) — A(0)]) ds

= A(C) lim E(]A™(0) = A(0)]),

denn A (¢) und A(t) sind #;-kompatibel. Die a-Lipschitz-Stetigkeit fiihrt zu

AP (0) — A(0)| = ‘¢ (/(00’0) h(0 — s) N(n)(ds)> — ¢ (/(00’0) h(0 — s) N(ds))‘
/(00,0) h(—s) N™(ds) —/ h(—s) N(ds)

(70070)

<«

< a/ Ih(—s)| |N® — N (ds).
(_00’0)

E(/(OO,O)X[O,H Ih(—s)| N(ds x dz)) _ E(/(OO’O) (=), Ads)

- A/ Ih(=s)| ds < o
(_0070)

gilt, ist auch f(_oo o) [P(=5)] |IN™ — N|(ds) < f(_oo o) [P(=5)] N(ds x [0,1]) < oo f.s.. Nach
Definition konvergiert N fs. gegen N fiir n — oo. Gleichung (11.6) gilt insbesondere fiir
C =[-t,0), t € [0,00) beliebig, so dafl

lim [AM™(0) = A0)| =0 fs.

n—o0

folgt. Dominierte Konvergenz (| (0) — A(0)| < A f.s. fiir alle n € N) und (11.7) zeigen

([ oo p2]) ) -
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d.h. N und (fc N (ds X [O, )‘5:)])>CE% stimmen f.s. iiberein; also ist (A(t)),er eine F}Y-Inten-

sitdt des Punkt-Prozesses N, die — wie gewiinscht — von der Form (D1) ist. O
Aus 11.5 und 5.7 folgt die Stationaritit von IV, und wir erhalten insgesamt den

11.6. Satz (Beschrinkte Lipschitz-Dynamik I). In der Situation von Voraussetzung 4 exi-
stiert ein eindeutiger stationdrer Punkt-Prozeff N mit Dynamik der Form (D1).

Die Eindeutigkeit werden wir wieder im Anschlufl an den Stabilitdtsbeweis nachliefern, siehe
11.12.

2) Stabilitit in Variation. Als Vorbereitung auf den Nachweis von Stabilitét beziiglich

einer geeigneten Anfangsbedingung dient die folgende Kopplungsaussage:

11.7. Satz (Kopplung). Der Wahrscheinlichkeitsraum (2, F, P) sei versehen mit einer Filtra-

tion (Fy),er, und X und Y seien stochastische Prozesse, so daff

(11.8) A, {X =Y auf (s,00)} € Fro.

Dies gilt insbesondere fiir Fi-adaptierte Prozesse. Fir alle s € [0, 00) gelte
(11.9) P(A;|Fo) = Z(s) — e(s)

fiir einen reellwertigen Prozeff € mit lim,_ oo €(s) = 0 f.s. und einen reellwertigen Prozefs Z mit
) 1 s+t
(11.10) P(Z(s)>p)>p und lim — Lig,00) (Z(u)) du = P(Z(s) > [3)

t—oo t s

f.s. fir ein B € (0,00). Dann koppeln die Prozesse X und Y f.s. in endlicher Zeit.

BeweEIls: Wihle g € R gemifl (11.10). Das Ereignis , X und Y koppeln® ist der monotone
Grenzwert der A,:
As Tstoo Ao def {X und Y koppeln} € F.
Nach (11.9) gilt die Abschitzung

P(Ax | F5) > P(As | Fy)

[P duz g [ S (Z@) 1 gy ) du
(11.11) ’ g »
> 21 gy (swpet)) 3 [ty (2000
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Offensichtlich ist P( Ay | Ft), t € R, ein F-Martingal, welches sogar gleichgradig integrierbar ist:

0< SUP/ P(Ay | F,) dP < sup P(P(As | Fy) > a) == 0.
tER J{R Auo |Fi)>a) teER
Nach [Als96] 17.3 (oder auch [Nev65] Prop. 4.5.6 (Seite 134)) gilt 14 = lim; oo P(As | Fp) =
limy o E(1a | F;) f.s., was zu limtﬁoo% SSHP(Aoo | Fu) du = 1,4 fs. fiihrt, siehe A2.2. Der

Prozel 7 erfiillt nach (11.10)

im 2 [ 1 (Z(0) du= P(Z(s) > B) > B fs.

t—oo t

Die Wahl von € sichert lim, o sup,s, €(u) = 0 f.s.. Wir erhalten insgesamt aus (11.11)

Ty, > 5—211 sup e(u) | === i >0 fs,
Ao = 75 (o0 ] \ 050 2
d.h. 14 =1 f.s. und schliefllich P(A,) = 1. O

Das Ziel dieses Abschnitts ist der

11.8. Satz (Beschrinkte Lipschitz-Dynamik IT). Gegeben sei Voraussetzung 4. Dann ist
die Dynamik (D1) stabil in Variation beziglich der Anfangsbedingung

(11.12) lim/ /( s~ Nn)ds =0 fs.

t—00 "

Die hier verwendete Anfangsbedingung, die zur Stationaritit fiihrt, ist stdrker als Anfangs-
bedingung (AB i) des Abschnitts 10, aber schwécher als Bedingung (AB iii) und fordert ebenfalls,
daf} die Nachwirkung von N~ verschwindet.

Zum Beweis von 11.8 wihlen wir einen Punkt-Proze8 N' = (1), ., mit Anfangsbedingung
(11.12) und FN' -Intensitit (X' (t))1epo,00) der Form (D1) auf R. Da ¢ beschrinkt durch A ist, gilt
dies auch fiir '(¢) auf [0,00). Somit ist N auf [0, 00) nichtexplodierend. Nach 6.14 stellt

N((a,b] x L) =Y Loy (T}) 1, (N (T))U}) /b/L N'(dt x dz)

neN \ 0,M, (

einen o (FN', FN)-Poisson-Prozef der Intensitit 1 auf R? dar ( (U7, )HEZ, N’ wie in 6.14 benétigt,
N () | (0,00)) ' (t)). Fiir beliebige Borel-Mengen C' C (0, 00) gilt N'(C) = [,, N (dt x [0, X'(t)]).

Konstruiere N wie im vorherigen Unterabschnitt aus IV, beachte Bemerkung 8.6, d.h.

:waxmwm,

C € 8. Nach 6.12 ist (N(¢))

(A()er und N, F, &

(A = N () Dsero,00) 20
Wir dehnen nun den Begriff des Shiftes auf Filtrationen und stochastische Prozesse wie folgt aus:

S, FN = o FN oy und SgA(t) o A(s +t), s,t € R. Hiermit erhalten wir:

tel0,00) €in€ F-Intensitét von N’ auf [0,00), dies gilt ebenso fiir

o (FN',FN). GemsB 6.15 1aBt [N — N'| auf [0,00) die F;-Intensitit
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11.9. Lemma. Fir alle s € R besitzt der Punkt-Prozefs S;N die SyF;-Intensitit (SsA(t)),cp -
BEwEIs: Fiir die interne Filtration von N gilt

FiN =5 (8,N(C); C € B((—o0,1]))
o (N(C);C € B((—o0,s+1)) =FN, =S, F,

und da (A(t)),cg F{ -vorhersagbar ist, ist der ProzeB (SsA(t)),cp SsF{ -vorhersagbar, also auch
S, Fi-vorhersagbar. Ahnlich wie fiir die interne Filtration erkennt man S, F;, = Fqry. Es folgt fiir
(a,0) C R

s+b

E(S,N((a,8]) | S, ) = E(N((s+ a5+ b]) | Fora) = E(/

+a
b
_ E(/ SA(H) dt ‘ Ss}"a> |

Lemma 11.9 ldft sich analog auf den ProzeB S;N' iibertragen. (SsA'(2))yc(_s ) ist auf
[—s,00) eine Sy Fi-Intensitét. Es folgt, dafl der Punkt-Prozefl S; [N — N'| auf [—s, 00) die S;Fy-
Intensitét (S [A(X) — N'(2)])¢ zulaflt.

Sei s € (0,00) beliebig. Fiir alle u € [s, 00) setzen wir

A(t) dt ‘ .7-"s+a>
0

—5,00)

9s(u) € o (/(_Oo,s] Ih(uw—v)| N(dv x [0, A]) + /(_0070] h(u — )| N’(dv)) .

11.10. Lemma. Fiir alle t € [0,00] sei f4(t) o P<|N —N'|((s,s+1]) = 0|]—"S‘N_N,‘). Hierfir
gilt die Abschdtzung

s+t
fot) = P(IN = N[ ((s,5+1]) = 0| FIV 1) > exp (‘/ s (1) d“) |
BEWEIS: Die a-Lipschitz-Stetigkeit von ¢ liefert fiir ¢ > 0

Se|A@) = N(@®)| = A (s +1t) = N(s+1)]

/ h(s +t — u) N(du) — / h(s + ¢ — u) N'(du)
(—o0,s+t)

(—o00,s+t)

<«

=

/ h(t —u) SyN(du) — h(t —u) S;N'(du)
(—o0st)

(_Oo7t)

< a/ Ih(t — u)| S, |N = N'| (du).
(700’t)

Auflerdem gilt fiir die kanonische Filtration des Prozesses der verschiedenen Punkte von N und
N' SS.E‘NfN,' C S;F;. Geméf [Bré8l1] II. 4., Theorem T14, existiert eine Ss]:leN"—Intensitfit
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(1s(1))1e 5,00y YOI S5 [N — N'[ auf [—s, 00) der Form v(Ss [N — N'[,t) (nach 2.4), diese erfiillt
nach obiger Abschétzung

vs(Sy [N — N'| 1) < a/ |h(t — u)| Sy |N — N'| (du).

(_oo’t)
Zu jeder Realisation S5 |N — N'| (wy, -) des Punkt-Prozesses konnen wir aufgrund der Unabhén-

gigkeitsbeziehungen, die zwischen N', (U}), ., und N’ gelten, ein w € Q finden, so daB
o N'(wp,") = N'(w,)
o U (wy) = U, (w) falls T}, (wp) —s < 0und 0 < X, (T}, (w)) U, (w) < A(T}(w)) sonst
o S,N'(wp, - N (—00,0]) = S;N'(w, - N (=00, 0]) und S;N'(w, (0,t] x [0, A]) = 0.

Dann gilt S5 |N — N'| (wp, - N (—00,0]) = Ss|N — N'| (w,- N (—o0,t]), denn nach Wahl von w
erhalten wir SsN~(wp,-) = SN~ (w, ) und SN (w, - N (0,t]) = SsN'(w, - N (0, ¢]).
Es folgt aus 2.6

vy (S [N — N'| (wo, - N (=00, 0]), ) = 15 (Sy [N = N'| (w, - N (=0, 1]), £)

a/ It — u)| S, [N = N'| (w, du)
(—o0,t)

IN

IN

a/ |h(t —u)| Ss|N — N'| (wo, du).
(—00,0]

Fiir v < 0 gilt [N — N'|({v}) < N{v}) + N'({v}) < N({v} x [0,A]) + N'({v}), und im Fall
v > 0 gilt nach Konstruktion [N — N’| ({v}) < N({v} x [0, A]). Die vorherige Abschiitzung fiihrt
fiir ¢t € [0, 00) U {00} zu

/tys(s IN = N'| (- N (=00, 0]), u )du<a//ooo (= )| S, |N = N'| (dv) du

—a// h(s +u— v)| [N = N'| (dv) du
:a/ / |h(u —v)| |[N — N'| (dv) du
s (—00,s]
s+t s+t B
<a / |h(u —v)| N'(dv) du + a/ / |h(u —v)| N(dv x [0,A]) du
s (—00,0] s (—00,s]
s+t

= /8 gs(u) du.

Somit erhalten wir auf der Menge {ISH gs(u) du < oo} mit Satz 5.5 die Abschéitzung

S

P(|N —N'|((s,s+1]) = 0|y:s\'NfN'\) - P(SS IN — N'| ((0,1]) = O|]-'(fS‘N’N'|>

~ exp <_ /Ot Vs (S [N = N'| (- 1) (=00, 0]), u) du) > exp (- /:H 0 (1) du> |

c
Diese besitzt wegen exp (— fss+t gs(u) du) =0 auf {f;“ gs(u) du < oo} iiberall Giiltigkeit. [
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11.11. Lemma. Die Punkt-Prozesse N und N' koppeln f.s. in endlicher Zeit

BEWEIS: Wir rechnen die Bedingungen von Satz 11.7 nach. Definiere dazu fiir s € (0, 00)
die stochastischen Prozesse

2(s) difexp< //oo u—v|N(dvx[A])du>
e(s)défZ()—exp</s s()du).

Diese Prozesse erfiillen P( IN — N'|((s,00)) = 0| j:s\N*N’I

> Z(s) — €(s) und die Bedingungen,
die in Satz 11.7 an die gleichnahmigen Prozesse gestellt werden:

Nach Voraussetzung (11.12) des Satzes 11.8 gilt wegen 0 < Z(s) <1 f.s.

lim ¢(s) = lim (Z(s) (1 ~exp (—a / N /( =0l M) du>>> ~0 fs.

und (11.1) sichert
E(/Oo /(oo’s] h(u— v)| N(dv x [0, A]) du)
:/fE(/(OO’S} h(u — v)| N(dv x [0,A])> du
.
A/ / ) v

gA/ u|h(u)| du < o0,
[0,00)

h(u —v)| dvdu

wonach also Z(s) >

0 f.s. gilt. Es existiert also ein 4 € (0, 00) mit P(Z(s) > ) > . Nach 6.6
ist (PN,

(St),er) ergodisch, und fiir alle ¢ € R besitzt Z(t) die Darstellung

Z() —exp< //OOO (=t — | N(t+dv x [0 A])d)
~ exp <—a /0 /( =] SN x 0,4) du) — £ (S.V)

fiir eine geeignete Funktion f : M — [0,00). Gem&fl [BFLI0] Theorem 3.6.2 ist auch die zweite
in 11.7 an Z(s) gestellte Bedingung erfiillt:

1 s+t

. = 1!
i 1 [ g (7 (808)) du = i 3 [y (7 (50 (53)

— / Loy (f (S,N)) dP = P(Z(s) > §) fs.
Satz 11.7 zeigt die f.s. Kopplung von N und N’ in endlicher Zeit.

Die Stabilititsaussage 11.8 ist nun eine Konsequenz aus 4.6
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11.12. Lemma. Die im Satz 11.6 noch fehlende Eindeutigkeit erhalten wir durch nachrechnen
der Anfangsbedingung (11.12) aus Satz 11.8.

BEWEIS: Gegeben sei ein stationdrer Punkt-Proze N mit Dynamik (D1) auf R, welcher
(11.1) erfiillt. Fiir ¢t € (0,00) gilt aufgrund der Beschrénktheit von ¢ und dem Satz von Fubini

OSEQKiAwm%@—uﬂNW@d%stmE<Kmmm&—uﬂAm0ds

:A/ /|Mmhmng/‘ﬂM@M&
t s t

so daB (11.1) limy_o [, f(

50,0] |h(s —u)| N(du)ds =0 f.s. liefert. O



Kapitel IIT.

Der K-variate Fall — Existenz und

Stabilitat nichtlinearer Hawkes-Prozesse

Ziel des folgenden Kapitels wird sein, die Ergebnisse des Falls univariater Punkt-Prozesse auf
den K-variaten Fall (K > 0) zu erweitern. Die Voraussetzungen werden an diese Situation
angepaflt, so dafi die Techniken zum Beweis denen aus dem vorherigen Kapitel entsprechen oder
zumindest dhneln. Wir werden daher einige Beweisteile kurz halten, die Details kénnen dann im
entsprechenden Abschnitt fiir univariate Prozesse nachgelesen und mit geringen Modifikationen
im vorliegenden Fall verwendet werden.

Wir erinnern daran, daf fiir einen K-variaten Punkt-Proze3 N = (IVy,. .., Nk ) die einzelnen
Punkt-Prozesse Ny, ..., Nk einfache Prozesse bilden und keine gemeinsamen Punkte besitzen sol-
len. Eine Filtration fiir N und jeden der K Prozesse wird gegeben durch F; e (]-"tNi; 1< < K).
Dabei soll jeder Punkt-Prozefl N; eine Fi-Intensitit (\;(t))ier gemiB (D2) besitzen.

12. Stabilitit beil Intensititen mit beschrinktem

Speicher

Zunichst wird der Begriff der Abbildung und Intensitdt mit beschrinktem Speicher auf die

vorliegende Situation erweitert:

12.1. Definition. Sei¢ : (M*, M) — ([0, 00), B7). Die Abbildung 1 besitzt einen beschrink-
ten Speicher (bzw. Geddchtnis) der Linge A € (0,00), wenn fiir m;, m; € M aus der Gleichheit
von m; und m} auf [—A,0) fiir alle 1 < i < K immer ¢ (mq,...,mg) = (m},...,m) folgt.
Analog zur Definition 8.1 besitzt der K-variate Punkt-Prozef§ (IVy,..., Ng) eine F;-Intensitit
(A1(t),..., Ak(t)),cg mit beschrinktem Speicher der Linge A € (0, 00), falls fiir alle Elemente
ie{l,...,K}

77
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mit einer mefibaren Abbildung ¢; : M% — [0, 00) mit beschrinktem Speicher der Linge A gilt.

Die Verallgemeinerung der Sétze 8.5 und 8.7 auf K-variate Punkt-Prozesse stellt der nach-

folgende Satz dar:

12.2. Satz (K-variate Dynamiken mit beschrinktem Speicher). Die Abbildungen
(12.2) Yo (ME,MF) = ([0,00),B%), 1<i<K,

seien durch ein A € (0,00) beschrinkt und besitzen einen beschrinkten Speicher der Linge A €
(0,00).

Es gibt dann ein eindeutiges stationdres Verteilungsgesetz des multivariaten Punkt-Pro-
zesses N = (Ni,...,Ng), so daf die einzelnen Punkt-Prozesse N; den stochastischen Prozefs
Ai(t) = 9 (SgNy, ..., SiNg), t € R, als F)N-Intensitit zulassen, wobei die gemeinsame Filtration
(j:tN)teR durch FN © (]—"tN’f; 1<k< K) gegeben wird. Die Prozesse N;, 1 <1 < K, besitzen
keine gemeinsamen Punkte.

Die Dynamik (11 (S¢Nv, ..., SiNk) .., Yk (SeN1, ..., SiNK)) e 45t auch hier, unabhdingig
von der Anfangsbedingung, stabil in Variation, und die auftretende Konvergenz in Variation ist

exponentiell schnell.

Da der Nachweis von 12.2 dem von 8.5 und 8.7 &hnelt, wird im nun folgenden Beweis an
einigen Stellen auf eine detaillierte Ausfiihrung einzelner Schritte verzichtet. Diese kénnen aus
den Beweisen von 8.5 bzw. 8.7 {ibernommen werden.

BEWEIS (VON 12.2): Wenden wir uns als erstes dem Existenzbeweis zu. Es sei (€2, F) der
kanonische Raum der markierten Punkt-Prozesse auf R mit Marken in [0, 1] (oder, gegebenenfalls
das K-fache Produkt dieser Rdume) und 6, = S;. Mit P wird ein Wahrscheinlichkeitsmaf} auf
(2, F) bezeichnet, welches P o §, = P erfiillt.

Zunichst befassen wir uns mit der Konstruktion eines stationdren Punkt-Prozesses: Die Punkt-

Prozesse N; = (T, Ui ) (1 <i < K) seien untereinander unabhingig und

neZ

® (Tin),cy sei ein homogener Poisson-Prozef mit, FN-Intensitiit A € (0, 00)
® (Uin),cy sei eine Folge unabhéngiger, identisch R[0, 1]-verteilter Zufallsvariablen
o (Tin),ey und (Uin), ., seien stochastisch unabhéngig

fir allei € {1,..., K}, Ni(w,-) = w() (oder, falls das K-fache Produkt des kanonischen Raums
betrachtet wird: N;((w;, ..., wk), ) = wi(+)). Durch F¥ P <.7-"tNi; 1<i < K) wird eine Filtra-
tion der obigen Punkt-Prozesse gegeben.

Nach dem Disjunktheits-Lemma, besitzen die Prozesse N;, 1 < i < K, keine gemeinsamen Punkte,

und das Superpositions-Theorem zeigt, dafl

No = ((Tz’,n)nez) 1<i<K
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ein Poisson-ProzeB mit FN-Intensitit KA < oo ist (vergleiche dazu [Kin93] 2.2). Die in iiblicher
Weise angeordneten Punkte von N, werden mit (To,n) ez, bezeichnet.

Konstruiere nun den Punkt-Prozef R aus Ny, der auch hier die Startpunkte fiir die Kon-
struktion der stationéren Punkt-Prozesse N; beinhaltet: T} ,, ist ein Punkt des Punkt-Prozesses
R, falls Ty ,, — T -1 > A. Da die N; nach Vorgabe 6,-kompatibel sind, folgt dies auch fiir den
Punkt-Prozefl R (vergleiche Beweis von 8.5).

Setze fiir C' € B
MO [ 5 o, P Neeeen SN
C

1 <17 < K. Wie wir spiter sehen werden, ist diese Festlegung auch hier sinnvoll.

BEHAUPTUNG 1. Fualls die Punkt-Prozesse Ny,..., Nk konstruierbar sind, lassen sie sich auf

[Ry, 00) ohne Kenntnis von Ny, ..., Nk auf (—oo, Ry,) konstruieren.

BEGRUNDUNG: Nach Wahl der Ry gilt

[Rk_A7Rk')

Fiir alle w € Q und ¢ € [Ry(w), 00) zeigt sich damit wie gewiinscht fiir alle i € {1,..., K}

)\i(w,t) == lbl (StNl(w, '), ey StNK(w, ))

(12.3)
= U (N (w, (- +1) N[t = A1) N [Ry(w),00)) , 1 < | < K)

aufgrund des beschrinkten Speichers der Abbildungen 1, ..., ¢¥k. o
Da limy_, o Ry = —oo (nach 6.3) ergibt sich die folgende

BEHAUPTUNG 2. Firie {1,...,K} ist N; auf ganz R konstruierbar.

BEGRUNDUNG: Geeignete Punkt-Prozesse fiir eine induktive Konstruktion fiir den Fall
K = 1 werden durch Gleichung (8.3) angegeben. Fiir den Fall K > 1 wird die Konstruktion
analog durchgefiihrt:

Definiere zu festem k € 7Z induktiv die Punkt-Prozesse

RYCORES ( A (T} % [0, 1/)2-(@,/.\. .,@)D

)

e \ 1 n— ]
Ni(k,n) d:f/ N, <dr % [0, —; (S,«N](k, 1); 1< < K)]) ;
'D[TO,Tk 7T0,7'k.+n] A

1 <i< K,n €N, mit 7, wie vor 8.4 definiert. Wir kénnen induktiv entscheiden, ob der Punkt
10,7, +n zu einem der Prozesse Ni(k’n) gehort, 1 < ¢ < K. Damit ist festgelegt, ob dieser Punkt zu
N; gehort:

N; (- NV Lo, Tometn]) = N,

)
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Die 0;-Kompatibilitit der Prozesse Ny, ..., Nk ist auch im multivariaten Fall eine direkte
Folge der #,-Kompatibilitit der Prozesse Ni, ..., N und R.

Analog zu A1.8 148t sich die ]:,fV—Adaptiertheit von Ny, ..., Ni zeigen. Dabei ist die Mef3-
barkeit der Prozesse Ni(;) der Form (A1.10), die jeweils aus den Punkt-Prozessen N; entstehen,
parallel zu betrachten, da sie voneinander abhéngen. Diese Konstruktion wird induktiv fiir alle
k € N jeweils auf den Mengen {3n € Z : T;,, = T, (s)} durchgefiihrt, T, (s) wird wie in (A1.7)
aus Ny = (To.n) ez gebildet (1 < i < K).

Lemma 6.8 zeigt die F;V-Vorhersagbarkeit von Z]K:1 f(foo’t) hji(t — s) N;(ds), woraus die FN-
Vorhersagbarkeit von (\;(t))er folgt (1 <i < K).

Nach 6.11 18t N; die FN-Intensitéit (X;(t))ser zu. Da F; eine Unter-o-Algebra von F,¥ fiir
alle t € R ist, stellt (\;(¢))er ebenfalls eine Fi-Intensitét von N; dar (1 <i < K).

Die Stationaritdt von N ist eine Folge von P o §; = P und der #;-Kompatibilitit von
Ni, ..., Nk, vergleiche 5.7.

Nun zur Stabilitdt von N. Da der Prozef der ,,Regenerationspunkte” sémtliche Punkte der
Prozesse Ny, ..., Ni beriicksichtigt, 148t sich die Kopplungszeit T, hier definiert unter Nutzung
der Punkte des Prozesses Ny, und somit der Beweis zu 8.7 iibernehmen.

Lemma 4.7 zeigt sodann die Findeutigkeit des stationdren Punkt-Prozesses. O

13. Existenz im Fall

nichtfallender Anregungsfunktionen

Die Erweiterung von Satz 9.1 ist weniger kanonisch. Wir zeigen hier die Version fiir bivariate
Punkt-Prozesse. Die Beschrinkung des Wachstums von ¢, siehe Gleichung (9.1), muf3 der Be-
schrinktheit (13.3) weichen.

13.1. Satz (Wachsende Anregungsfunktionen). Gegeben seien zwei nichtnegative mefbare
Funktionen hyq, hoe auf [0,00) mit

(13.1) / hyi(z) dox < oo und / hao () dz < oo.
[0,00) [0,00)

Ferner seien hia und hey nichtnegative (oder beide nichtpositive) mefbare Funktionen auf [0, 00),

die
(13.2) —00 < / hio(z) dz < 0o und —0o0 < / hoy(z) dx < 0o
[0,00) [0,00)

erfilllen. Fir die nichtnegativen, nichtfallenden Funktionen ¢ und ¢o, definiert auf R, gelte

(13.3) or(x) <A und  ¢go(x) <A fiirallex € R
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und ein A > 0. Auferdem sei ¢y linksseitig stetig. Sind his, hoy > 0, so sei ¢ ebenfalls linksseitig
stetig, 1m Fall hqi9, hoy < 0 rechtsseitig stetig.

In dieser Situation existiert ein stationdres Verteilungsgesetz fiir den bivariaten Punkt-
Prozef§ N = (Ny, N2) mit der Dynamik (D2).

BEWEIS: Es bezeichne (€2, F) den kanonischen Raum der Punkt-Prozesse auf R mit [0, 1]-
wertigen Marken (bzw. das zweifache Produkt dieses Raumes). Auf (€2, F) seien zwei unterein-
ander unabhiingige Punkt-Prozesse N; = (T1 0y Urn), ey, und Ny = (Typ, Usin),ey definiert, fiir
die

® (Tin), ey €in Poisson-Prozef mit Intensitit A € [0, 0o) ist
® (Uin),cy unabhingige identisch R[0, 1]-verteilte Zufallsgrofien sind
e (Tin) ey und (Uin), ., unabhingig sind,

1 = 1,2. Die Konstruktion des gewiinschten bivariaten Punkt-Prozesses wird erneut induktiv
durchgefiihrt. Setze )\g‘” (t) =0 und

A\ () = 0 falls his, hoy nichtnegativ
| A falls by, hyy nichtpositiv

Fiir n € Ny wird der bivariate Punkt-Proze N (C) = (Nl(")(C),NZ(n)(C’)), C € 8B, und
der bivariate stochastische ProzeB A"+ (¢) = ()\gnﬂ)(t), )\gnH)(t)), t € R, definiert durch die

Komponenten
(n)
NP(C) = / N; (dtx [0, A (t)D
c A
N

)\(n+1) = Q; 2 hjz' — S (n) ds
a0 ¢<Z/(_oo,t) ( >J<>)

j=1

(13.4)

i = 1,2. Analog zu 7.1 kénnen wie die §,-Kompatibilitit von Ni(n) und ()\Z(n)> ,i=1,2, und
teR
somit mittels 5.7 bei gleichem Vorgehen wie in 8.4 die Stationaritét zeigen. ©

Definiere eine gemeinsame Filtration von Ny und N, durch FN = <]:,5N1,]:,5N2>.

BEHAUPTUNG 1. Die Punkt-Prozesse Nl(n) und NQ(n) sind ]:gv—adaptiert, und der stochastische

Prozefs ()\Z(-n) (t)) ist eine F) -Intensitit von N fir allen € Ny (i = 1,2).
teR

BEGRUNDUNG: Eine Induktion zeigt das Gewiinschte. Sei C' € B ((—o0, t]) fiir ein t € R.
Im Fall n = 0 ist A\”(¢) € {0,A} und

NO(C) = / N; (dt X
C
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F}N-meBbar. Nach 6.11 stellt )\2(0) (t) eine F)N-Intensitiit von NZ.(O) dar (i =1

Gelte Behauptung 1 fiir n € N. Dann zeigt 6.8, dal durch (f(foo h;i(t — s) N(")(ds)) ein
teR

(t)) , woraus nach
teR

[\
~

.7-"tN -vorhersagbarer Prozef definiert wird. Daher gilt dies auch fiir

6.9 die FV-Adaptiertheit von N resultiert. Erneut zeigt Satz 6.11, daB ()\(nﬂ)(t)) eine
. teR

FN-Intensitit von N™ darstellt (i = 1,2). o

o Wir betrachten zundchst den Fall, daf$ his und hoy nichtnegativ sind, also ¢, linksseitig

stetig ist.
BEHAUPTUNG 2. Firallete R, C € B undn € N gilt
(13.5) APV <Ay uwnd NOTY() < N (©),

7 )

d.h. die Zufallsvariablen )\En) (t) und Ni(n)(C) sind monoton wachsend inn (i =1,2).

BEGRUNDUNG: Auch hier kommt eine Induktion nach n zum Einsatz. Der Induktionsan-
fang ist klar: Da ¢; nichtnegativ ist, folgt )\Z(-O) (t)=0< )\gl)(t), was zu

2V (r)

C

NO(C) = N; (C x {0}) < / N; (dr X

fithrt, i = 1, 2.
Gelte (13.5) fiir n € N und ¢ = 1,2. Nach Voraussetzung gilt h;; > 0 (4,7 € {1,2}). Hieraus
ergibt sich

/ Bt — )N (ds) < / Byt — $)N®™(ds),
(700’t)

(7oo7t)

was unmittelbar nach Definition zu )\Z(-n) (1) < )\gnﬂ)(t) aufgrund der Monotonie von ¢; fiihrt,

t = 1,2. Damit folgt aulerdem
(n+1)
) g/ N; (dr X [0, A ) (r)
c A

MW@:/N«WX
C

wie gewiinscht (i = 1, 2). o

Zu jedem t € R und C' € B existiert \;(t) M imy, o0 A (t) und N;(C) M imy, o Nz.(n) (@),

jedoch kann N;(C') auch den Wert ,,00“ annehmen.

Der Satz von der monotonen Konvergenz zeigt

/01[0,”(”) (2) N;(dt x dz) < N;(C) :/ lim ll[ A(n)(t)] (2) N;(dt x dz)

A CTL—)OO 0’ lA

< /(;H[O,Ai(t)] (2) Ni(dt X dz).

A

Wir konnen analog zu 6.11 zeigen, dafl durch (Ai(t)),.p eine FN-Intensitiit des Punkt-Prozesses

(fc 1[0,*1}“) (2) N;(dt x dz)) gegeben wird. Dies gilt ebenso fiir den Punkt-Proze8, der wie
ces
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zuvor, jedoch mit dem rechts abgeschlossenen Intervall, definiert wird. Damit erkennen wir, daf}
N; die F)N-Intensitét (Ai(t)),er zuldBt, vergleiche dazu auch Lemma 11.1.

BEHAUPTUNG 3. Die Intensitit (\i(t)),cg ist von der gewiinschten Form (D2) (i =1,2).

BEGRUNDUNG: Nach oben kann die Folge ()\Z(-n) (t)) wegen N(C) Tposeo Ni(C) und
neN
h;i >0 (j € {1,2}) abgeschétzt werden durch

A : 2 hji(t — s) N;(ds) |,
mww(;/(m’t) (t - ())

da ¢; monoton wachsend ist. Andererseits ist \;(¢) eine obere Schranke von

b (Z /  hlt=s) N}">(ds>> . neN

denn )\En) (1) Thosoo Ai(t), was im Grenziibergang n — oo aufgrund der linksseitigen Stetigkeit
von ¢; Behauptung 3 zeigt. Wir haben also einen Punkt-Prozefl mit der gewiinschten Dynamik
erhalten. Beachtet man die Uberlegungen vor Behauptung 1, so ist klar, daB N 6,-kompatibel

ist, woraus wie iiblich die Stationaritét folgt. o

e Gelte hya, hay < 0, also ist ¢y rechtsseitig stetig und )\g)) (t) = A. Es werden vergleichbare

Aussagen wie zuvor nachgerechnet.

BEHAUPTUNG 4. Fiiri =1 bleiben unter den gednderten Voraussetzungen die Zuvallsvariablen
)\Z(-n) (t) und Ni(n)(C) monoton wachsend fir alle t € R und C € B, d.h. es gilt (13.5), fir i =2

sind sie monoton fallend:
(13.6) NV =) wnd NT(C) > NSO
fiur allet € R, C € B und n € N.

BEGRUNDUNG: Der Induktionsanfang folgt sofort aus 0 < ¢; < A, i = 1,2. Gelten nun
(13.5) und (13.6) fiir ein n € N. Dies liefert gemeinsam mit hy; > 0 und hg; <0

/ Bt — 5) N®D (ds) < / Bt — 5) N (ds)

(—o0,t) (—o0,t)

fiir j = 1, 2. Nach Definition fiihren diese Uberlegungen zu A (¢) < A"V (¢). Wie in Behauptung
2 schlieBt man hieraus N (C) < N™™(C). Da his < 0 und hay > 0, gilt

/ hia(t — 5) N (ds) > / Byalt — 5) N (ds).
(700’t)

(7oo7t)

j=1,2, woraus A% (£) > AV (1) und schlieBlich NV (C) > N{**(C) folgt. o

Auch in diesem Fall existiert also \;(#) LM im, o AW (t) wie auch N;(C') © im, o Ni(") (C)

i

fir t € R, C' € B, und erfiillt die gewiinschten Mefibarkeitseigenschaften (i = 1,2).
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Sei (a,b] € R. Nach Wahl von N besitzt N ((a,b] x [0,1]) eine Poi(A(b — a))-Verteilung,
also E(N ((a,b] x [0,1])) = A(b— a). Majorisierte Konvergenz im bedingten Fall zeigt

B(00155) - i BN 00 2)

n—oo

= lim E(/ A () dt‘f§> :E</ Ai(t) dt‘fiv>,
n—oo (a,b} (a,b]

d.h. (XAi(t)) e ist eine FN-Intensitit von N; (i = 1,2).

Wir kénnen in dieser Situation Behauptung 3 abschreiben:
BEHAUPTUNG 5. Die Intensitit (\(t)),cg ist von der gewiinschten Form (D2) (i =1,2).

BEGRUNDUNG: Im Fall ¢ = 1 fiihrt die gleiche Argumentation wie im Nachweis von Be-
hauptung 3 zum Ziel. Fiir \y(¢) gelten die Abschitzungen

N(t) > ¢ (Z /( oyt 9) Nj(ds>>
&@S%(i%lwmﬁ—QMW@o.

Die rechtsseitige Stetigkeit von ¢y zeigt im Grenziibergang n — oo das Gewiinschte, denn
N® Lysoo N. o

Wir haben gesehen, dafl ();()),cg in beiden Fillen eine FN-Intenstitit von N; darstellt.
Nach Konstruktion gilt F, ¢ F¥ und (Ai(t));er ist ein Fy-vorhersagbarer stochastischer Proze,
woraus folgt, daB (Ai(t)),cr auch eine Fi-Intensitat von Nj ist (i = 1,2). O

14. Lipschitz-stetige Anregungsfunktionen — der

unbeschriankte Fall

Die Ubertragung der Aussagen der Siitze 10.5, 10.10 und 10.12 auf den K-variaten Fall findet

sich wieder im

14.1. Satz (unbeschrinkte Lipschitz-Dynamik). Gegeben seien ein K € N und o;-Lip-
schitz-stetige Funktionen ¢; : R — [0,00), 1 <14 < K. Die Funktionen hj; : [0,00) — R seien so
gewdhlt, daf$ die Matriz

(14.1) A= (a5j) imr.... K¥<%/ Wﬁﬂﬁ)
J 0 i._

endliche Fintrdge und einen Spektral-Radius echt kleiner 1 besitzt. Dann gilt:
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(i) Es gibt ein eindeutiges stationdres Verteilungsgesetz N = (Nu, ..., Ng) mit Dynamik (D2)
und endlichen durchschnittlichen Intensititen \; = E(N;((0,1])), 1 <i < K.

(ii) Sei N die Menge aller K-variaten Punkt-Prozesse N = (Ny,...,Ng) mit Intensitit
(AL(8)s s AR () 1o ,0) @Uf [0,00), fiir die die Abbildung t — E(X() | FY) f.s. lokal inte-
grierbar auf [0,00) ist, 1 <i < K. Firt € R und a € (0,00) sei

tvo0

(14.2) = Y /( byl — w)| Nj(du) ds.

t—a)V0 J (—00,0]

In der Menge NE ist die Dynamik (D2) stabil in Verteilung beziiglich jeder der folgenden
Anfangsbedingungen

(AB i’) sup;sqea(t) < oo fos. und lim; oo e4(t) = 0 fos. fiir alle a >0

(AB ii’) sup,sq E(eq(t)) < 0o und lim;_,o, E(g4(t)) = 0 fiir alle a > 0.

(iii) Gelte in der Situation von (ii) zusitzlich [°t|h;(t)| dt < oo fir i,j € {1,...,K}, dann
ist (D2) auf N stabil in Variation beziiglich der Anfangsbedingung

(AB iii’) Zl LK 1> f_ so.0] |h;i(t — s)| Nj(ds)dt < oo f.s..

.....

BEWEIS (SATZ 14.1(i)): Um die Existenz eines stationéren Verteilungsgesetzes zu bewei-
sen, bedienen wir uns erneut einer induktiven Konstruktion: Sei (2, F) der kanonische Raum
der Punkt-Prozesse auf R? (ggf. das K-fache Produkt dieses Raumes) und P ein Wahrschein-
lichkeitsmafl mit Po 6, = P. Ny,..., Ng bezeichnen K bivariate 6,-kompatible Poisson-Prozesse
auf R? der Intensitit 1, die stochastisch unabhiingig sind. Falls (Q, F) = @/, (M}, Mb) gelte
Ni((wi,...,wk),*) = w;i(-), ansonsten N;(w,-) = w(+). Eine gemeinsame Filtration dieser Prozesse
ist FN s <]—",5Ni; 1<i< K). Setze A =0 (1 <i < K) und definiere induktiv

N () /C N, (dt x [O,Agn)(t)]) , C e B,

A () (Z/ hiilt — N (ds)>, teR,
00,t)

1<i<K.
(a) Nach Voraussetung ist ¢; eine «;-Lipschitz-stetige Funktion. Analog zu 7.1 kénnen wir
zeigen, dafl ()\Z(n) (t)) fN—vorhersagbar und eine #;-kompatible fN—Intensitéit von N.(") i
teR

AuBerdem ist N .7-" N_adaptiert und ,-kompatibel. Mit Hilfe von 6.15 und dem Satz von Fubini
erhalten wir die Ungleichung
(dS))

K
j=1"17%%
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Bei der letzten Gleichheit wurde P o §; = P und die #,-Kompatibilitidt der Punkt-Prozesse
Ny, ..., Nk genutzt, die dazu fiihrt, daf§ die Prozesse ()\(n) (t)) und N; ebenfalls #;-kompatibel
teR

(0) — A®)(0)

sind (analog zu 7.1(i)). Zu n € N folgt fiir den , Intensitétenvektor*
(
B[\ 0) - 2 0)

01 S [y hin(9) dsE(‘Ag.")(o) =" (0))

A(0) = A7 (0)))
E(|A™(0) = A™(0)]) = :

<

CVKZ] 1f000 K (s dSE(
= AE(|A™(0) — A" 1Y(0)]),

die Ungleichung ist komponentenweise zu lesen. Induktiv gelangt man hiermit unter Verwendung
von N( N;(- x {0}) ~ Poi(0) zur Ungleichung

IB(A"0(0) = 2P < [[A"E(A(0) =P (O)])]

E(16,(0)])
= [A"E(XD(©O)])] = (A" : < K max ¢;(0)]|A"].

E(16x(0))) e

Nach [Asm87] Kapitel X 1. Lemma 1.1 (iv) gibt es ein k& € Ny, so daf sich A" fiir n — oo mit
geeignetem k wie nfp" verhilt, p bezeichne den Spektralradius von A. Unter Ausnutzung des
Quotientenkriteriums (z.B. [For76] §7 Satz 7) folgt

1<i<K

o0
K max ¢;( )anp” < 00,
n=0

denn p < 1. Insgesamt kdnnen wir aus diesen Abschitzungen

> B 0) - XV <

schlieBen. Beziiglich der (Halb-)Norm |||, % E || auf dem Raum £,(Q2, F, P) gilt fiir k,m € N

0)| < [E(A*™(0) - 2D (0)])]
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d.h. )\Z(n)(O) konvergiert im £;(£2, F, P)-Sinn gegen ein passendes \;(0) fiir n — oo. Fiir beliebiges
t € R definiere A;(£) < N (6;-,0) = limy_yo0 A (6, 0) = im0 A™ ().

Der weitere Beweis wird nicht in allen Details durchgefiihrt, denn ab nun kénnen wir die
Beweisschritte zu Satz 10.5 iibernehmen. Aus

P([X"0(0) = AP (0)] > [|43]) < K max 6:(0) [[43]

1<i<K

folgt die f.s. Giiltigkeit von lim,_,s A™(0) = A;(0).
(b) Die Endlichkeit von

ZP</ ‘Nn-i-l

bei vorliegen beschrinkten Mengen C' € B zeigt nach Borel-Cantelli

g - ) -

d.h. die Lage der Punkte von N, ) ynd N, () auf C stimmen f.s. ab einem geniigend grofien
n iiberein. Somit gibt es einen Punkt-Proze N mit N; = lim,, ., N fs 1 <3¢ < K. Nach
Konstruktion ist N; 6;-kompatibel, hieraus folgt mit P o 6§, = P wie iiblich d1e Stationaritét.

Fiir alle 1 < i < K stimmt N; mit ([, V; (ds x [0, \i(s )]))CE,B f.s. iiberein: Erneut 148t sich

| (ds) ;éo) < \C ZE(‘ A Agn)(o)D < 0

fiir beschrinkte Mengen C' € B eine Abschatzung finden:

(/ |Ni(ds) — ; (ds x [0, \i(s )])\) < A\(C) lim E(‘)\E”)(O) —)\i(O)D —0.

n—0o0

Der ProzeB N; hat also die F-Intensitit (\;(s)),cp-
(c) Um die Darstellung der FN-Intensitéit in der Form (D2) zu erhalten, betrachten wir
zunéchst A;(0). Hierfiir gilt

E( A0) - (Z /( =) Nj<ds>) D

< B([n(0) - A"(0)])

; 3 (—s) N™(ds) | — ¢ 3 i(—s) N;(ds
E(@ (Z /(oo,o)h”( )N (d >> " (Z /(W,O)h”( ) N (d >>D
(0= X"(0)]) + e S /

<B( hyi(—s)| ds B(

") = x0))

0,

somit ist \;(0) = ¢; (ZJKZI f(_oo 0) h;i(—s) Nj(ds)> f.s.. Dies sorgt gemeinsam mit der #;-Kompa-
tibilitdt fiir die Gleichheit

Ai(t) = Ai(0y-,0) = (Z/ , hiilt — N(ds)).
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Nach Konstruktion wird durch (\;(s)),. ebenfalls eine FN-Intensitéit von N; gegeben, denn
(Ai(8)),eg ist aufgrund der vorhergehenden Darstellung FY-vorhersagbar, dabei gilt F¥ =
o (FY1<i<K)cFN.

(d) Um den Existenzbeweis abzuschliefen, wird noch die Endlichkeit von E(N;((0,1]))
benotigt. Hierfiir besteht aufgrund der «y-Lipschitz-Stetigkeit der ¢; die komponentenweise Ab-

schitzung

MBS g = NV@) ) L fa0)
RB(SP [ it =9 N(a9) | \ow(0)

fiir alle n € Ngy. Den Nachweis fithren wir durch eine Induktion nach n.

BEGRUNDUNG: Der Fall n = 0 ist nach Definition der Prozesse NI(O), ceey NI(?) klar. Gelte
(14.3) fiir ein n € Ny. Fiir die i-te Komponente gilt aufgrund der a;-Lipschitz-Stetigkeit von ¢;
(1 <j < K) und dem Satz von Fubini

O[Z'.E (Z /OO t |h]z (t - 8)| N](n-i-l) (dS))

j:l ( ) )

o,E 3 hji(t — s - @ huj(s — u Nl(n) du) ds
¥ (;/(_WJ =913 /_oo,s| (s — )| N (du) )
61(0)
=1 A :
41¢(0)

K K
+ai2/ |hji(t—s)|ajE<Z/ |y (s — u)| N§">(du)) ds.
j=1 (—o0,t) =1 (—00,s)

Durch Anwendung der Induktionsvoraussetzung erhalten wir hieraus

- " (t— s (n-l—l) s
( E(Z [ It =9 N )))

1<i<K
<al |4 aiZ/ bt - ) | SD A [ ds
¢x(0) =17 = ox(0)/ 7, 1<i<K
$1(0) n ¢1(0)
=A : +AY Ak

¢ (0) h= ¢ (0)
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n+1 ¢1 (0)
— Z AF :
k=1 ¢K(O)

<

Wie bereits in (a) gesehen, bleibt die rechte Seite von Abschétzung (14.3) auch nach dem
Ubergang zu n — oo endlich, dies sichert die geforderte Endlichkeit, denn aus (¢; ist a;-Lipschitz-

stetig)
E(N((0,1])) E(\(0))
EVe(0.1))  \BOw(0)
E(‘)\I(O) ~ AP (g D E(Ay’“)(o))
< + :
E(A0) -2 0)) ) \ B 0)
E([M©) =20\ /6000
< + :
E(‘)\K(O) Aﬁ@“’(o)‘) $x(0)
B (I e hir(t = 9)] NI (d5))
+ :
ke B( S [y Ihirc(t = )| NI(ds))
E(|x(0) - A" (0) D O 61(0)
< : + : +) A :
E(‘)\K(O) - )\%H)(O)D ¢x(0) = ¢x(0)
EN1((0,1])) #1(0) #1(0)
fiirallenEINfolgt( : )S( : >+ZZ°:1A'“< : ><oo.
ENk((0,1])) ¢x(0) K (0)

(e) Der Beweis der Eindeutigkeit des stationdren Prozesses nutzt die noch nachzuweisende
Aussage (ii) des Satzes. Wir rechnen Voraussetzung (AB ii’) nach: Bezeichne N = (Nl, ey NK>
einen stationéiren Punkt-ProzeB mit F}-Intensitéit (5\(75)) ,A() = (5\1(75), : ,S\K(t)> Sei

teR
- E(NZ-((O, 1])) < 00, a € [0,00) und t € R. &, werde gemiB (14.2) mit N anstelle von N
definiert. Voraussetzung (AB ii’) folgt mit dem Satz von Fubini und 5.8 aus

E(a,() = XK: /(tWZ)VOE<Xj /(OO’O] hsils — u)| du> ds

ij=1

K tVvo0 » 00
= Z/ Aj/ |hji(u)| duds
(t—a)VvOo s

ij=1
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K 00
<> a) / |hji(u)| du.

Hiervon liest man ab:

o sup,o B(Ea(1) < a X275 A JyT [hi(w)] du < oo

o lim, o E(,(t)) = 0.

Der Nachweis von (ii) und (iii) verldauft zu Beginn wieder parallel:
BEWEIS (SATz 14.1(ii) UND (iii)): Sei N' = (N!,..., N}) € N ein transienter Punkt-

ProzeB auf dem meBbaren Raum (€2, F), welcher eine F} -Intensitéit

(V) = (0 X)) o

der Form (D2) auf [0, 00) besitzt, und aulerdem eine der Anfangsbedingungen (AB i’), (AB ii’)
oder (AB iii’) erfiillt. Es bezeichne P die zugehorige Wahrscheinlichkeitsverteilung.

Da N; = (T;4),,cr, € No gilt, ist N; nichtexplodierend auf [0,00) (1 <4 < K). Somit lassen sich
geméf 6.14 durch

Ni(Cx L) =Y 1c(T},) 1 (N, (T; // N!(dt x dz)
neN L\ 0)\’

10,00 () Ni(1)

und geeigneten Folgen (Ujy),, ., und Punkt-Prozessen N! wie in 6.14 konstruieren, 1 < i < K.

homogene o (.7-",5N', ]—"tNi)—Poisson—Prozesse N; der Intensitit 1 auf R? mit A, ()

Es sei angenommen, daf§ die nach 6.14 zur Konstruktion benétigten Prozesse sdmtlich vonein-
ander unabhéingig sind, so da N; einen o (F} LN )-Poisson-ProzeB bildet. Wir kénnen sofort

nachrechnen, dafl

/N (dt x [0, \.(8)])

fiir alle C' € B gilt. Wie im ersten Beweisteil konstruiere den stationdren Punkt-Prozefl N =
(Ni,..., Ng) mit Intensitét (A(¢))er aus N = (Ny,..., Ng), wobei A(t) = (Ai(t), ..., Ax(t)).
Definiere fiir ¢ € {1,..., K} die Funktion

0 firt<0

ﬁ@@{ﬂww—mmmm fiir ¢ > 0

Nach Wahl von N'ist E(\(t) | ') fs. lokal integrierbar auf [0, 00), dies iibertrigt sich auf f;,
vergleiche (10.7):

b bvO , bvO ,
(14.4) / (D) dtg/ E(Ai(t)|]-'év> dt+/ E(A;(t)|fgv) dit < oo fs.,
a aVo0 aVo0

\



11I. DER K-VARIATE FALL 91

a,b € R. Ferner geniigt f;(¢) fiir alle ¢ > 0 aufgrund der «;-Lipschitz-Stetigkeit von ¢;, der nach
Konstruktion giiltigen Unabhingigkeit von F2'" und FJ'' sowie der FJ -MeBbarkeit von N’ auf
(—00,0) der Abschétzung

T )

=)
)

H<a f( /(ooo) il — )] Ni(ds)
J =) Vi)

[ Pt 01 1= ] )

(14,5 0y ( [ e =) N w5 ( [ It =100 is)
v [ e = t0) = 2] s 7))

= i </(_oo70) |hji(t — s)| Nj(ds) + A /(t,oo) |hji(s)| ds
o[ a0 ds) .

Sei nun a > 0 fest und definiere dazu F, (¢ def ft L fils)ds = f(ivoa vo fi(s) ds. Die vorherige
Ungleichung zeigt fiir £ > 0 mit dem Satz von Fublnl

K

(14.6) Fost) < 0; 3 /( " ( /( hjstu — 5)] Ni(ds) + A, / (o) ds> du

7j=1
/ [ Pt )1 5(5) ds
t—a)Vvo J[0,u)

gs-a,z-(t)miz/ /t ., (u— ) du |hji(s)| ds

+az / / u) du |hji(s)| ds
0,8) J (t—
= Eq,i(t —l—aZZ/ s) |hji(t — s)| ds

unter Ausnutzung der Definition

0
2= i iva Vo <f |h]l( s)| Ni(ds) + Xj [ [hji(s)| ds) du
Failt) = firt >0 -
0 fiirt <0
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Fiir jedes endliche Intervall I C [z,y] C R und ¢ € R gilt nach (14.4)
tvo yVO
R = [ g [ fds<oo ts,
(t—a)Vvo (z—a)VO0
d.h. F,; ist auf jeder beschrinkten Menge f.s. beschrankt. Aus Gleichung (14.6) folgt mit den

Festlegungen gg-)) (t) o 14;=j300(t) und

n def
o) it / e = 5)| 3 (5) .

n € Ny, die Abschitzung

(14.7) Foi(t) < Goult) ZZ/ 0] (5) Eaj(t — 5)g10 (s) ds.

k=0 j=1

Dazu zeigt man zunéchst die folgende Behauptung, wovon wir im weiteren Beweis nur Unglei-

chung (14.10) bendtigen werden.

BEHAUPTUNG 1. Sei M;; = SUP,eqo, Fui(8) (< o0 fs.). Dann gilt fir alle t € [0,00) die
Gleichung und die Ungleichungen

(14.8) Z / et =l [ (o= s

_717 7]n+1 1 [0’81)

/ o | Pinssin (50 = Sn1)| Eaguss (Snt1) dsnsr .. . dsadsy

[0,5n)
K t
— Z/ Eaj(t — s)gfzﬂ)(s) ds,
j=1"0
K
(11.9) S [ sttt [ a G- sl
Jrseegns1=1"7[0) [0,51)
/ aj, ‘h]n+1]n(s snﬂ)‘ Fojnir(Snt1) dspgr - .. dsy d51>
[0,5%) 1<i<K
My,
< A : f.s. (komponentenweise)
My i

(14.10)  F,,(t) < i /0 t 20yt = 5)g™) (5) ds

4 Z /azmm |/ gy i (31— ).

J1yeeodn1=1

/ aj, ‘h]n+1]n(s snﬂ)‘ Fojnir(Sn41) dspgr ... dsy dsy,
[O,Sn)
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fir allei € {1,..., K} und n € Ny.

BEGRUNDUNG: Wir nutzen jeweils eine Induktion zum Nachweis.
zu (14.8). Im Fall n = 0 sehen wir sofort

S [ttt i)
j1=1 0,t)
= Z/ Eayin (t Zaz/ hyi( s)| Lj,=300(s) ds ds;

Ji=1
K

= Z/ Eas (t = 51)95) (51) ds1.
[0,t)

Ji=1
Falls (14.8) fiir n € Ny erfiillt ist, gilt unter Ausnutzung der Induktionsvoraussetzung bei der
ersten Gleichheit

Z / i it — sl | o [, (51— s2)] ..
t

Jis-- ’]n+2 1 [0’81)

/ Wit | Pnainss (Snt1 = $nt2) | Eajua (Sn2) dsppa . dsa dsy
[0,5n+1)

— Z/ i |hji(t — |Z/ Eaj(s1—8) gj(ﬁ;rl)(s) ds ds,

Ji=1
Z / / a |hyi(t — s — 51)|5a1(51)gj('?1ﬂ)(5) ds ds,
J=1

—Z/ (51 gZ] t—sl )ds; = Z/ Ea;(t g” )(sl)dsl.

zu (14.9). Es ist ,n = 0“ nach Definition der M;; klar. Gelte (14.9) fiir ein n € Ny. Dies liefert

> [ eethaate =l [ et i o1 =52
0,t)

Jiyeenjnt2=1 [0’51)

/ Wpir | Pnainss (St = $nto)| Fajois (Snto) dsnya .. . dss d81>
[0,5n+1)

1<i<K
M,
<% [ ethaste =l | 47
0,t)
1
J1= M K ‘
S1, .
Ji/ 1<i<K
M,
< AnF? : fs.,
M,k

dabei Anwendung der Induktionsvoraussetzung beim ersten, M, ; < M, ; fiir alle s; € [0, ¢] beim

zweiten Ungleichheitszeichen.
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2u (14.10). Aus Gleichung (14.6) und g’ (t) = L;—j300(¢) erhalten wir den Fall n = 0. Nutzung
von (14.10) und einsetzen des Falls n = 0 liefert:

Foul <ZZ/6M )9 (s) ds

k=0 j=1
- [ eethate =l [ e i o1 =2
_717 7]n+1 1 Ot
/ o | Pinssin (50 = Sns1)| Eaguss (Sns1) dsnsr ... dsadsy
[0,5n)
- festhaatt =l [ i o1 =]
]17 7]n+1 1 Ot [0’31)
/ &j, ‘h]n+1]n (Sn Sn-l—l)‘
[O,sn)
Z / 0 ‘hjn+2jn+l (5n+1 - Sn+2)‘ Fa,jn+2 (Sn+2) d5n+2
Jnt2=1 08n+1
d8n+1 C d82 dSl
n+1

+ . Z /[0 a; |hji(t |/ aj, [hjpj, (51— s2)] ...
/ Qj,, ‘h’]n+1]n (Sn 5n+1)‘

E , / Qg ‘hjn+2jn+l (5n+1 - 5n+2)‘ Fa,jn+2 (Sn+2) d5n+2
0

]n+2 1 sn+1

d8n+1 e d32 dS‘l,
benutze (14.8). o

Da der Spektralradius von A echt kleiner als 1 ist, konvergiert die rechte Seite von (14.9)
fiir n — oo gegen 0. Somit gilt also F,;(t) < G,,(t) nach (14.10) (Grenziibergang n — 00).

Unser weiteres Vorgehen hingt von der gewihlten Anfangsbedingung ab, also:

e Erfille N' ab jetzt Anfangsbedingung (AB i’). Nach Anfangsbedingung (AB i’) folgt ge-
meinsam mit der fast sicheren Endlichkeit von Aja [ |hji(s)| ds die fast sichere Endlichkeit von
SUD4e(0,00) €a,j (1), damit ist £,;(¢) f.s. beschriinkt auf R
Es ist G,;(t) < oo f.s., t € [0,00), falls wir zeigen kénnen:

BEHAUPTUNG 2. Firte R undi€ {1,...,K} gilt

ZZ/ Eay(t 923 J(s)ds < oo fs..

k=0 j=1
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BEGRUNDUNG: Setze (3, ; & SUD4e(0,00) £a,j(t) < 00 f.s.. Wir zeigen durch eine Induktion
nach k die Ungleichung

ﬁa,l

Zﬁa]/g” yds < | A% | fs..

ﬁa,K

Es ist ,n = 0“ einmal mehr klar. Den Induktionsschritt zeigt

t K t K t
Zﬁa,g [ o6 =32 [ e [ o) s = )15 ) o s
j=1 0 ;_ 0
_Zaz/ (s, IZBM/ oroe) (5) 9(s — s1) ds dsy

K t ﬁa,l ﬁa,l
< Zaz’/o |hui(s1)| | A* | ds; < [ AFF fs.,
= ﬁa,K I ﬁa,K

i

Nutzung der Induktionsvoraussetzung bei der ersten Ungleichheit. Hieraus kénnen wir

oo K fO 6“] gg])( )dS 00 ﬁa,l
ZZ : < ZAk : <oo fs.

k=0 =t f[] 6ag gﬁ(])( ) ds h=0 ﬁa,K
folgern. o

Nach Anfangsbedingung (AB i’) und wegen f((:ia)vo |h;i(s)| ds < oo konvergiert &, ;(t — s)
fiir t — oo gegen 0, dominierte Konvergenz sichert damit lim; ,, Fy,;(t) = 0 f.s.. Ab nun kénnen

wir der Argumentation von Abschnitt 10.2) folgen. Nach Definition von F,;(t) gilt

tvO0
F,4(t) :E(/( . |N; — N}| (du) ‘fé\">
t—a)V
VO
> ([ - N - | #Y)
(t—

k>0 a)vo

tvo0 ,
:1—P</ |NZ-—NZ.’|(du):0‘]:éV>
(t—a)Vvo

:1—P(NZ-ENZ-I auf((t—a)\/(),t\/()H]:éV’);

so daB8 nach den vorangegangenen Uberlegungen — wie bereits im Beweis von 10.8 — mit dem
Lemma von Fatou limy_,. P(N; = N} auf ((t —a) vV 0,2V 0] | F¥') = 1 geschlossen werden kann.
SchlieBlich gilt die schwache Konvergenz von S;N!™ gegen N, fiir t — oo, siche 10.9 und die
daran anschlieBende Anmerkung.
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e Geniigt N' Anfangsbedingung (AB ii’), liefert Erwartungswertbildung bei Gleichung (14.7)

mit dem Satz von Fubini

E(F..(t)) 2 E(Fas(t = 5)) g1 (s) ds

E(Fox()) =277 \[JE(Euy(t - 9)) gi)(s) ds

Der Satz von der majorisierten Konvergenz zeigt aufgrund der Beschréinktheit jeder Komponente
der rechten Seite nach Anfangsbedingung (AB ii’) lim;_,o, E(F,;(t)) =0, 1 < i < K, woraus wir
schlieBlich die schwache Konvergenz von S;N'" gegen Nt folgern konnen.

e Besitze N' Anfangsbedingung (AB iii’) und gelte zusdtzlich [t |h;;(t)] dt < o0, 1 <i,j <
K. Wir haben jetzt (iii) zu zeigen. Aus (14.5) folgt durch Integration zwischen 0 und 7> 0

/OTfi(t) it < aizl_(:/oT </000 hyi(t — )] Ni(ds) + X, /too|hji(s)| ds) dt

+azz// hyilt — )| f(s) ds dt

QZ;/[O,T)/O |hji(t — s)| dt f;(s) ds

K 00 T
o> [ Il de [ gi)ds
=1 o 0
dabei wird &; definiert als

Sy ([ o, [T a),
00,0] 0

Nach Voraussetzung (AB iii’) und der zusétzlichen Bedingung an hj; ist & < oo f.s., es gilt ebenso
fOT fi(t) dt < oo f.s. (vergleiche Beweis zu 10.12 Gleichung (10.16)). Obige Ungleichung 148t sich

als komponentenweise Ungleichung im R schreiben:

. Jo Fi(t)dt 3 [T fi(t)dt
| rwa=| -

T
: S+ A : :5+A/ f(t)dt
0
[ fx(t) dt Ex [ fr(t)dt

Durch Iteration zeigt dies fo tydt < YF_ A 4 Ak“f f(t)dt fiir k € N, was wegen
limy,_,00 AFF1 = 0 7u fo t) dt < S A"E fs. fiir alle T € (0,00) fiihrt. Die rechte Seite
dieses Ausdruckes ist, unabhang1g von T, f.s. endlich, denn der Spektralradius von A ist echt
kleiner 1. Also gilt [° f(¢) dt < oo fs.. Aus

oo>/ £(t) dt = (/ |)\i(t)—)\;(t)|dt‘fév'>
_E</O IN; — N| ( dt‘ )ZE(|NZ-—NZ.'|((O,00))|]-'(§VI> s.

VAN
M)

[\
M)

IN
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ergibt sich |N; — N/| ([0,00)) < oo f.s., d.h. N; und N/ und somit N und N’ koppeln f.s. in
endlicher Zeit auf der positiven reellen Achse, woraus wie im Beweis von 10.12 die Stabilitéit in
Variation folgt. O

Wie bereits im univariaten Fall erweist sich auch hier die Einschriankung auf die Menge
NE als unnétig. Wir kénnen die Argumentation der Begriindung von Bemerkung 10.14 auf den

K-variaten Fall iibertragen, fiihren jedoch die Details an dieser Stelle nicht aus.

15. Lipschitz-stetige Anregungsfunktionen — der
beschrinkte Fall

Wenden wir uns nun schlieflich der Verallgemeinerung der Sétze 11.6 und 11.8 zu.

15.1. Satz. Gegeben seien K € N und o;-Lipschitz-stetige Funktionen ¢; : R — [0, 00), welche
jeweils durch ein A; > 0 beschrinkt sind, 1 < i < K. Fir die mefbaren Funktionen hj; : [0,00) —
R gelte

(15.1) / h(t) dt < 00 und / Ehsi(8)] dt < oo,
[0,00) [0,00)

1 <1,5 < K. In dieser Situation existiert ein eindeutiges stationdres Verteilungsgesetz fiir den
Punkt-Prozef§ N = (Ny, ..., Ng) mit Dynamik (D2), und (D2) ist stabil in Variation beziglich
der Anfangsbedingung
(15.2) lim/ / hjs(u— )| Ny(dv)du=0 fs.

s (—00,0]

§—00
(1<ij<K)

BEWEIS: (i) Existenz eines stationdren Punkt-Prozesses. Sei (2, F) der kanonische Raum
der markierten Punkt-Prozesse mit [0, 1]-wertigen Marken (oder das K-fache Produkt dieses
Raumes), §; = S; und P ein Wahrscheinlichkeitsmafl auf (2, F) mit P o §; = P. Es bezeichne

Ni, ..., Nk stochastisch unabhingige, markierte Punkt-Prozesse mit

i Nz = (ﬂ,na Uz,n)

nez

® (Tin),cy ist ein Poisson-Prozefl mit ]—"fvi—lntensitéit A,

® (Uin),ey ist eine Folge u.i.v. Zufallsgrofien, jeweils R[0, 1]-verteilt

o (Tin),cq wnd (Uin),p sind stochastisch unabhéngig
fir 1 < i < K. Fiir w € Q gelte N;(w,:) = w() (bzw. N;((wi,...,wk),*) = wi(+)). Durch

N N, . . . . . . . . .
ftN =0 (]—"t 1 <1 < K| wird eine gemeinsame Filtration dieser markierten Poisson-Prozesse

gegeben.
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Der gesuchte stationdre Punkt-ProzeB wird einmal mehr das Ergebnis einer induktiven

Konstruktion sein: Definiere Punkt-Prozesse und stochastische Prozesse durch )\Z(-O) (t) =0 und

Ny ¥ / N (ds x ) , C € B,
C

K
A0 E (Z |t N§”><ds>) , 1ER.
(_oo’t)

j=1

o M)
Y Al

Wie in 7.1 kénnen wir zeigen, dafl ()\Z(n) (t)) eine FN-Intensitiit von N ) darstellt, und auch
teR
die iibrigen Ergebnisse aus 7.1 kénnen iibernommen werden.

Mittels der Hilfsprozesse

Ni({t}) = lim supN ({t}) - hm 1an ({t})

n—oo
Xi(t) = limsup A (£) — lim inf A™ (1),
n—00 n—00

t € R, werden wir folgern, dafy der Grenzwert NV; def lim,, . Ni(") existiert. Dazu weisen wir nach,
daB N; dem Punkt-Proze$f ohne einen einzigen Punkt auf der reellen Achse entspricht.

(a) Wie im Beweis von 11.6 (vergleiche ab Lemma 11.1) sieht man, daf} (S\i(t))te]R eine
F}N-Intensitit von Nj ist. Fiir diese Intensitiiten gilt die Ungleichung \;(t) < a; A (a) + a3 Aja(a)

mit den Festlegungen

K
Aji(a) lim (supz /( )|hjz~(t—s)| ~ nf Z / hys(t — )| N](k)(ds)>
—oo,t—a 00,t—a)

k>n

j=1
K K
def . .
Ain(a) ¥ Tim <sup§ : / |hji(t — s)| NI (ds) —ng : / |hjs(t — 5)] N;’”(ds)) .
nee \k2n 7 Jt-ayt) =M Jlt-at)

Nach Konstruktion der beteiligten Prozesse ist Ayp(a) < ZJKZ1 f[t_a ) |hji(t — s)| N;(ds x [0,1])
klar und daher Aj(a) < oo f.s.. AuBerdem erfiillt Ajy(a)

Ajpp(a) < lim / hi(t—s (su N® ian(k)> ds
2( ) — nﬁoojzl ) | J ( )| kzlz J k>n J ( )
K
<Y [ e o) My(as) ts
j=1 [t—a,t)

Fiir A1 (a) gilt Aji(a) < oo f.s. und lim, oo Aji(a) = 0 f.s., was eine Folgerung aus

E(Z/ e =) Notas x o, 1]))
_ f;E(/(_m_a) it — 5)| Ajds> <o

| N

E(A;
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ist. Insgesamt gilt im Grenziibergang a — oo also
K
M) < aiZ/ hsilt — 5)| Ni(ds) .
j=1 7 (=00t

(b) Die Aussagen 2.4 und 2.6 lassen sich ohne grofiere Modifikationen auf den Fall K-
variater Punkt-Prozesse erweitern, d.h. die nach [Bré81] II.4., Theorem 14, existierende ]—"tN—
vorhersagbare Version der FN-Intensitiit (S\l(t)) LR
(yi(Nl, .o, N, t))tER. Wie in Lemma 11.3 erhalten wir das Analogon zu (11.4) fiir den vorlie-
genden Fall:

von N besitzt eine Darstellung der Form

(15.3) <Nf,.. NK,t < O‘ZZ/ hji(t — s)| Nj(ds) fs..

Wird die rechte Seite dieses Ausdrucks noch beziiglich ¢ iiber [0, o) integriert, bleibt der entste-
hende Ausdruck f.s. endlich, denn aus (15.1) folgt

E( /(O’OO) ; /( Pt =9 Byas <o, 1) dt)

K
:ZE(/ / it — )] A, dsdt) ZA/ Ehsi(1)] dt < oo
- (0,00) o/ (—00,0]

Jj=1

unter Nutzung des Satzes von Fubini. Gleichung (15.3) und Korollar 5.6 zeigen (beachte das
Disjunktheitslemma in [Kin93] 2.2)

P(N((Ooo _O‘fo)zP(N(( o) x {1, ..,K}):o‘f[ﬁ)

leexp< / i;/ 9)| N;(ds x [0, 1])dt>

>0 fs.,

dies fiihrt zu P(NZ((O,OO)) = 0) = 1 (vergleiche Uberlegungen im Anschluf an 11.4). Damit

wird die Festlegung N; def lim,, ,o IN; sinnvoll, denn fiir beschrinkte Mengen C' € 8 stimmen die
Punkte von Ni(n) und Ni(nH) auf C' ab einem geniigend grofien n f.s. iiberein. Nach Konstruktion
ist die #;-Kompatibilitit von N; klar, dies liefert die Stationaritit von N;.

(c) Sei (Ai(t)),cg von der Form (D2), dieser Proze8 ist eine F,¥-Intensitét von N;:
Fiir beschrinkte Mengen C' € B gilt aufgrund der §;-Kompatibilitit, des Lemma’s von Fatou
und 6.15

(/.

Aus der Endlichkeit von E( i) .

Ni(ds) — N; <ds x {o, AA(S)D D < A\(C) lim E(

n—o0

A (0) — )\Z-(O)D .

i(—s)| N; (ds x [0,1]) ) Aj Jio.o0 1i(5)| ds folgt die fast
sichere Endlichkeit von [__ o |hsi(~s)] ‘N]( —N]-‘ (ds) fiir alle n € N. Da N™ auf jedem

ooO)|
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beschrinkten Intervall schliefilich mit N; {ibereinstimmt, zeigt die aus der Lipschitz-Stetigkeit

resultierende Abschitzung

K
SENOEPYOIETS Sy BERITC AR
j:1 (700’0)

)\(n+1)

die f.s. Konvergenz von lim,,_, |\;

(0) — )\Z-(O)‘ gegen 0. Der Satz von der dominierten Kon-

vergenz sichert

n— 00

lim E(‘)\ (n+1) (0) - )\Z(O)D =0,

d.h. N; stimmt auf jeder beschriankten Borel-Menge schliefSlich mit (fc (ds X [O, AiA(f)] ))
i Ces

iiberein, also N; = (fc (ds X [O, ’\lA—(s)] )) fs..
i ces
Den Nachweis der Eindeutigkeit erbringeen wir im Anschlufl an den Beweis der Stabilitit.

(11) Stabilitat in Variation. Sei N' = (N7, ..., Nj) ein K-variater Punkt-Proze§ , der der
Anfangsbedingung (15.2) geniigt und auf [0,00) die F -Intensitit (A" (1)) te0,00)
(D2) zulift, dabei ist FV = o (]-",fvi; 1<i< K) and N'(8) % (V0 (1), ..., N (#)) auf [0, 00). Die
Funktionen ¢1,..., ¢k sind beschrinkt und daher die Prozesse Ny, ..., Nk auf [0,00) nichtex-

von der Form

plodierend.
Im Hinblick auf die Anwendung von 6.14 wihlen wir eine Folge u.i.v. Zufallsvariablen U/ &f
(U, )nEZ (U},, ~ R[0,1]) unabhéingig von FX sowie einen homogenen Poisson-Prozef N! auf R?

der Intensitéit 1 unabhiingig von FY und ]-"O]X’, so daf} der durch

N ((a,b] x L) = > Ty 1, (A (T7,) UL,) +/ / N!(dt x dz),

neN (a,b] / L\(0,X] | (8)]

(a,b] C R, L € B, definierte Punkt-Proze ein homogener F; ;-Poisson-Prozef§ der Intensitéit 1
auf [0, 00) ist. Dabei sei F;; < o (ftN’,fﬁ ) N =(T],), e td Xy () = To,00) () Ni(t) (1 <
i < K). Die Folgen und Punkt-Prozesse U!,..., Uk, NI, ..., N sollen unabhingig voneinander
sein. In diesem Fall ist dann N; ein homogener F;-Poisson-Proze, F, = o (]:"i,t; 1< < K).
Durch N; (- x [0,Ai]) = (Tin),cp wird ein .E,t—Poisson ProzeB der Intensitit A; auf R definiert.
Nach Konstruktion gilt auf [0, c0) die Identitit N/(C) = [, N; (dt x [0, Aj(t)]), C € B((0,0)).

Wie im Existenzbeweis kénnen wir den stationéren Punkt ProzeB
:/ N, (dt % [0, ()
c
mit FN-Tntensitit (\i(t)),cp der Form (D2) konstruieren (beachte 8.6). Diese Intensitit ist
gemdf 6.12 auch eine F-Intensitdt von N;. Ferner stellt (\j(Z)),.p eine Fi-Intensitiat von N
auf [0, 00) dar, beachte F;; C F, C o (]:"i,t,]:;vj,fozj;j e{l,...,K}\ {z}) und die gegebenen

Unabhéngigkeiten zur Anwendung von 5.4. Auf [0, 00) ist (|A;(¢) — Ai(£)|) [ 00) €ine Fi-Intensitét
von |N; — N/|. Diese geniigt aufgrund der a;-Lipschitz-Stetigkeit von ¢; der Abschitzung

K
ww—MMS%Z[ D= 51 [ = N ).
j=1 7/ (=0,
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N—N'| def
Da .7-}‘ & a(

vorhersagbare Version der le_N,‘—Intensitéit von |N; — N/|:

i i|; 1<i< K> C F; fiir alle t € [0,00) gilt, folgt fiir die fiNﬁNq—

vi (Ss | N; = NI (-0 (=00,0]),1 < j < K;t) <al2/ |hji(t — u)| Sy |N; — Nj| (du).

Wie im Beweis von 11.8 ist das Ziel unserer Bemiihungen die Kopplung von N und N’. Korollar
0.6 zeigt

P(IN = N[ (5,5 +1]) = omN—N’l)

ziljexp (—ai/ / )| Sy |N; — Ni| (dv) du )
:ﬁexp (—ai/:ﬂ 3 /oos jilu—v)| \Nj—N;\(dv)du>
> i]jexp <— /:o Gi,s (1) dU> = exp <— /soo gs(u) dU>

mit den Festlegungen g (u) o K gis(u) und

K

gin) F 0, 3 ( /( . (B — )| NJ(dv) + /( . i (u — )| N;(dv [0, Aj])> du.

=1
Wir priifen fiir die Prozesse

K

2(5)  exp ( Zal/s 1/(00,5} Ihsi(t— v)| N (dv x [O,Aj])du>
€(s) o Z(s) —exp (— /SOO gs(u) du>
— Z(s) (1 ~exp <—§;ai /smé[_oo,m i — v)| N (do) du)> |

s € [0,00), die Voraussetzungen von 11.7 und folgen dafiir der Argumentation aus dem Beweis von
11.8. Da 0 < Z(s) < 1 gilt lim,_, €(s) = 0 f.s., sieche Voraussetzung (15.2), und die Darstellung
Z(s) = f (SsN) fithrt aufgrund der Ergodizitét von (PN, (S),er) Zu

im 2 [ ) (F (SuN)) du=P(Z(s) = B) L5,

t—oo T

fir alle 3 € (0,00). Die Giiltigkeit von P(Z(s) > () > [ wird bewiesen durch die Endlichkeit
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von

i=1 j=1 00,5]
K o K
:Zai/ ZE(/ \hyi(u = )| Nj(dv x [o,Aj])> du
i=1 s =1 (—o0ss]
K K oo
:ZaiZ/ / |hji(u —v)| Aj dvdu
i=1 =175 J(-00]

K K

Satz 11.7 zeigt nun die Kopplung von N und N’ in endlicher Zeit.

(111) Eindeutigkeit des stationdren Punkt-Prozesses. Gegeben sei ein stationdrer Punkt-
ProzeB N = (Ny,..., Nk) mit Dynamik (D2) auf R, welcher (15.1) erfiillt. Die Funktion ¢; ist
beschriankt durch A;. Damit folgt aus

0 gE(/:o /(_00,0] hss(u — v)] N (do) du> < /:OE</<_OO,O} Ihys(u — v)| A, dv) du
_ A, /soo(u — 8) hys(u)| du < o0

die Giiltigkeit von Anfangsbedingung (15.2). O



Kapitel IV.

Anhang

Al. MeBbarkeit

1) FEinige Mengenidentititen. Wir listen hier nun einige Mengenidentitdten auf, die in
den eigentlichen Beweisen im vorangegangenen Teil der Arbeit nur von untergeordnetem Interesse
sind und der Vollstindigkeit halber angegeben werden.

Fiir den gesamten Abschnitt sei N = (7,,), ., ein (einfacher) Punkt-ProzeB, (F;),. eine

Filtration von N und (A(t)),cy ein F-vorhersagbarer ProzeB.

A1l.1. Lemma. In der zuvor beschriebenen Situation gilt die Gleichheit

(ALL)  {(w,5) €2 x (0,00);T1(w) >s>0}= [ |J {71 >0} x <b,b+ﬂ cP(F).

neN pc20

BEWEIS: Sei zuniichst T} (w) > s > 0. Dann gibt es zu jedem n € N ein b, € Q2°, so daf
Ti(w) > by und s € (by, by + 1.

Gebe es zu (w, s) fiir alle n € N ein b, € Q=°, so daB Tj(w) > b, und s € (b, b, + 1].
Offensichtlich gilt lim,, ,, b, = s und somit T (w) > s > 0. O

A1.2. Lemma. Sei (a,b] C R. Die Menge {(w,t) € Q@ x R; N(w, [t — b,t —a)) = n} lift sich

fiir jedes fest vorgegebene n € N darstellen als

(A1.2) N U{wéQ;N(w, [t—%—b,t—%—a)) :n} X <t—%,t].

kEN te@Q

BEWEIS: ,,C“ Gelte N (wy, [to — b,tg — a)) = n. Dann gibt es zu jedem k € N ein t € Q
mitt—%<t0§tund]\7(w0, [t—%—b,t—%—a)) =n.

,D Existiert andererseits zu jedem k£ € N ein t, € @Q mit t;, — % < tyg < tx und
N (wo, [tk — % — bt — % — a)) = n, so folgt wegen )\\((t,C — %,tk]) oo, 0, dafl limy,_, t, = to.
Da t), — ¢ < to, folgt ebenfalls wy € {w € Q; N(w, [to — b, tg — a)) = n}. O

103
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A1.3. Lemma. In der gegebenen Situation gilt die Gleichheit:

{(W,S,Z) EQXRQ; [Oz\ws —]-}
. 1 1
(AL3) -N U { EQXRt<)\(ws)<t+E}X|:0,t+E:|EP(.7'—t)®%
keEN tcQ>0

BEWEIS: Zum Nachweis von ,,C* gelte 1jg x(wo,s0)] (20) = 1 fiir ein Tupel (wy, S0, 29) aus
Q x R2 Fiir alle k € N gibt es somit ein ¢ € Q2% mit z € [0, \(wp,50)] C [0,¢+ £] und
t < Mwo, s0) < t+ ¢, was die erste Inklusion zeigt.

Gebe es andererseits fiir das Tupel (wy, s, 20) € 2 x R? fiir alle £ € N ein #;, € Q2° mit
20 € [O,tk + %] und t < Awo, so) < tg + % Dann folgt limy,_, (t,C + %) = A wo, So) und daher
20 € ren [O,tk + %] = [0, A(wo, So)], so daB auch , D gezeigt ist. O

A1l.4. Lemma. Ist N ein homogener Poisson-Prozef§ der Intensitit A € (0,00), R = (Rg)kez
der ProzefS der Punkte T, von N, die T,, — T, 1 > A erfillen (A € (0,00)), und R™(s) =
sup{Ry, < s;k € Z}. Dann gilt

(A14) {R (s >x}_teg{s} g{ ([t—l—At—%>>:0,N<[t—%,t]>>0}.

r<t<s m<t——

fir alle s,z € R.

BEWEIS: Zu, C“: Gilt R (s)(w) > z, dann gibt es ein k € Z mit z < R~ (s)(w) = R(w) <
s. Aus Ry(w) > Ry1(w)+ A folgt die Existenz eines n € N, das Ry(w) — = — A > Ry (w) erfiillt.
Nun 148t sich n so groB wihlen, daff ein ¢t € Q U {s} mit z < t — = < ¢ < s existiert, welches
auBerdem auch ¢ — + < Ry(w) < t erfiillt. Also gil

wn v b0 ma v tae D))o

Um , D 7zu zeigen, gebeeseint € QU{s},z <t <sundeinn e N,z <t— %, die (A1.5)
erfiillen. Da N endliche Intesitit A besitzt, ist N nichtexplodierend, und es gibt ein k& € 7Z, fiir
das 2 <t — 1 < Ry(w) <t <s,dh. R (s)(w) >z, gilt. O

2) markierte Punkt-Prozesse auf R und Poisson-Prozesse auf R?> mit zufilliger
Punkt- Auswahlbedingung. = Wir widmen uns in diesem Abschnitt der Frage, unter welchen
Voraussetzungen bei zufilliger Auswahl von Punkten eines markierten Punkt-Prozesses auf R
(oder Poisson-Prozesses auf R?) eine Adaptiertheit beziiglich einer geeigneten Filtration erhalten

bleibt. Die nachfolgenden Uberlegungen dienen besonders Abschnitt 8.

A1.5. Lemma. Sei N ein markierter Punkt-Prozeff auf R mit Marken in R oder ein Poisson-
Prozep auf R?. Es bezeichne (F,),. eine Filtration von N und Y (t) eine Fy-mefbare Zufallsva-
riable fir alle t € R.

Fiir alle (a,b] C (=00, t] ist dann N ((a,b] x [0,Y(t)]) eine Fi-mefibare Abbildung.
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BEWEIS: Sei (a,b] C (—oo,t]. Es reicht, fiir beliebige k& € Ny die Gleichheit

{NV (8] x [0,Y(1)]) > k}

VR | R

neN yeER
y—%ZO

nachzurechnen:

Zunichst ,C“: Aus N (w, (a,b] x [0,V (t)(w)]) > k folgt fiir alle n € N die Existenz eines y,, € Q

mit y, — = > 0, so daf
1 _
=~ <YW <yo und N (w, (0, 8] x [0,3m]) > k.

Nun zu ,,0“. Es gebe also zu n € N stets Zahlen y, € Q, y,, — % > 0, mit
1 ~
Y(t)(w) € [yn— —,yn] und N (w, (a,b] X [0, yn]) > k.
n

Daraus ergibt sich lim,,_,o ¥, = Y (t)(w) und somit N (w, (a, b] x [0, Y (t)(w)]) > k. O

A1.6. Bemerkung. Es sei (F;),cr eine Filtration und N ein Punkt-ProzeB, so daf fiir alle
Ce’B

N(C): Q>R

(ALS) wi— N(w, (),

Fi-meBbar ist. Die Abbildung N () : Q@ — M, w — N(w,-) ist dann ebenfalls F;-mefbar.

BEGRUNDUNG: Sei A € M. Es geniigt, Mengen der Form A = {m € M;m(C) € B} mit
B,C € B zu betrachten. Offensichtlich ist {w € ; N(w,-) € A} ={w € Q;N(w,C) € B} € F,
was die Behauptung zeigt. o

A1.7. Satz. Gegeben sei ein A € (0,00) und einer der folgenden beiden Punkt-Prozesse:

e cin markierter Punkt-Prozef N = (T,,,U,),cq auf R, so daf (Uy),,c, eine Folge unabhdingi-
ger, identisch R[0, 1]-verteilter Zufallsvariablen ist. Der Punkt-Prozef N (- x [0,1]) ist ein

Poisson-Prozef§ mit Intensitit A unabhdingig von (Uy), oy

e cin Poisson-Prozef§ N der Intensitit 1 auf R%. Dabei sei N (- x [0,A]) = (Ty,)

nez "
Auferdem sei ¢ : (M, M) — (R,B) eine Abbildung mit beschrinktem Speicher (der Lange

A € (0,00)) und sup,,cp ¥ (m) = A. Im Fall eines markierten Punkt-Prozesses sei u 1. Liegt

. . . def . ..
ein Poisson-Prozeff auf R? vor, so sei w = A. Definiere fiir s € R

Ty (5) % sup {t € (—o0, s]; N([t — A, 1) x [0,u]) = 0, N([t — A, ] x [0,u]) > 0}

def

(A1.7)
T, (s) = inf{T,, > T,_,(s);n € Z}, k € N.

Dann gilt fir (s,t] C R:
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(i) Fir alle k € Ny, C' € B ist {T yelcn( oo,t]} € ftN und die Abbildung T, (s,t) def
T, (s )H{Tk_(s)gt} + OOH{TI;(S)>t} FN-mefbar.

(ii) Bei gegebenen k € No, C' € B und F -mefbarer Abbildung Y (t) stellt

Xk(sata C) : (Qvfo]Z) — ({07 1},‘13({0, 1}))

Al. _
(AL8) W Lip (e @) N (@,C 0 {T (9)(w)} % 0,V () (w)])
eine ftN—meﬁbare Abbildung dar.

(11i) Die Zufallsgrife
(A1.9) N((s, ) /(s’ﬂ N (ar x [0, %0 (5,3 )

ist FN -mepbar.

BEWEIS: zu (i). Die Mefibarkeit ist fiir 7, (s) nach 6.3 klar. Sei nun die Behauptung fiir
ein k € N giiltig. Ist € R mit < s, gilt nach Definition {7} (s) <z} =0 € FN ¢ FN. Falls
x> s ist, ergibt sich {T (s) <z} ={In € Z : T (s) < Tpi1 < Tpio < -+» <Tnyp <z} € FN
denn T} (s) ist FN-meBbar. Fiir alle z < ¢ ist also {77 (s) < v} € F}, woraus die erste Aussage
folgt.

Da {T; (s) <z} = {T; (s,t) <z} fiir alle z < t und {T} (s,t) <z} = {T, (s) <t} fiir
x >t gilt, folgt auch die zweite Behauptung.

zu (i1). Hier geniigt unter Hinweis auf A1.5 der Nachweis der folgenden Gleichheit:

{Xi(s,1,0) =1}
_ng zeg{t}{ yecn (m—%x]}ﬂ {N ((:c— %x] [0, Y (¢ )]) > 1}.

2 C* Aus Xy(s,t,C)(w) =1 folgt T} (s)(w) € C'N (—o0,t] und die Existenz eines j € Z, so
daB T;(w) = T (s)(w) und N (w, {T}(w)} x [0,Y(t)(w)]) > 1. Daher gibt es zu n € N Elemente
T, < taus QU {t} mit

T =T (@ €0n (ot wd N )< DYOW) 21

fiir ein passend gewdéhltes j € Z. Es gilt also insbesondere

N (w, (xn — %xn] X [O,Y(t)(w)]> > 1.

» 2 Gebe es fiir alle n € N ein z,, € Q U {t}, x, < t, mit

T (s)(w) € C'n <x - %x] ud N (w, (x _ %xn] « [0, Y(t)(w)]) > 1.
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Dann folgt zunéichst 7 (s)(w) € (—oo,t] und fiir alle n € N, n > %, die Existenz von j, € N mit
Tj,(w) € (zy — +,2,] und N (w, {Tj, (w)} x [0,V (¢)(w)]) > 1. AuBerdem muf z,, 22 T (s)(w)
gelten und j, nach Wahl von N (N als Poisson-Prozef nichtexplodierend) fiir geniigend grofie n

konstant bleiben. Somit ist die Existenz eines j € N mit
Tijw) =T, (s)w)€C und  N(w,{Tj(w)} x[0,Y(H)w)]) =1

gesichert.
zu (i11). Es wird die Meibarkeit von

V() = [ 8 (i fo.ge )

nachgewiesen. Dazu definiere induktiv die Punkt-Prozesse (n € Np)
N E (O T} x [0. 50 (550)])
027 S—

N ((en {TO‘ s }) x [o,%waa)])
- é Lar ey N ((C0{TE)}) < |o. 1Y (510N 0)])

N (dr X [o, %w(STN)])
(A1.10)

C € B, wobei das zweite Gleichheitszeichen aufgrund des beschrinkten Speichers von 1 giiltig
ist.

Fiir alle n € Ny und C € ‘B ist Nt(n)(C’) eine FN-mefibare Abbildung, der Nachweis wird durch
eine Induktion nach n gefiihrt: im Fall n = 0 ist die Behauptung wegen ) (STJ(S)N) = () und
{T; (s) <t} = Q mit (ii) klar.

Gelte die Behauptung fiir alle k € {0,...,n} und C € B. Durch S. : (R x M, BIM) — (M, M),
(t, 1) — Sy wird eine meBbare Abbildung gegeben. Die Abbildung w +— (Tkjrl (s,t)(w), N (w, ))
von €2 nach R x M ist .7:]\7 B ® M-mefbar, beachte A1.6 und die Induktionsvoraussetzung.
Hieraus folgt die FV-MeBbarkeit von w — S, Nt(k)(w, -) fiir alle k € {0,...,n}. Nach (ii)
ist firl<k<n+1lund C €°B

]l{T,;(s)St}N ((C N{T; (5)}) x [0’ %lﬁ (ST{(s,t)Nt(k_l))D

FN-meBbar. Daher ist auch N\ (C) fiir alle C € B FN-meBbar. Es folgt schlieflich die FV-
Mefibarkeit von w — N(n+1)( ,-) (erneut A1.6). Fiir alle Mengen C' € B gilt lim,, Nt(”)(C’) =

(C’ N [ o (), ]) Damit ist das Gewiinschte gezeigt worden. Insbesondere zeigt dies die F;V-
Mefibarkeit von

T (s,)(w)

N((s,t]) = N ([T; (s),t]) = N ([T (s), s]) -
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A1.8. Korollar. Gegeben die Situation von A1.7 ist der durch
(AL11) N(C) déf/ N (dx [o.%wsm)]). cem.
c A

definierte Punkt-ProzefS N fgv—adaptiert:

Im Fall C € B((n—1,n]), n € Z, liefert Aussage A1.7(iii) gemeinsam mit einem Dynkin-
System-Argument das Gewiinschte, fir C € B((—o00,t]) nutze die Darstellung C = |, ., (n
L,n|NC.

A2. Analysis

A2.1. Lemma. FEsseity> 0 und f:(0,t)) — R eine auf (0, ty) nichtnegative oder integrierbare
Funktion. Dann gilt:

(A2.1) n/oto £(t) (/Ot f(tQ)dt2>n_1 dt, = (/Ot () dt)n

und

(A2.2) n! /Otof(tl)/otlf(tQ)---/otnlf(tn) dt, . dty dty = </0t0f(t) dt)n

fiir alle n € N.

BEWEIS: Der Beweis von (A2.1) wird durch Induktion {iber n gefiihrt. Im Fall n = 1 ist
die Aussage klar. Sei n = 2.

> [ " fn) / " Fta)dnad,
= [T ([ s [ i) do
= [Cre [ saanan s [ s [ s
:/ () </ £(ts) dt2+/ £(t) dt2> dt,
(s ([ s

Gelte fiir n > 2 Gleichung (A2.1). Unter Beachtung von

{t=(t,... . tar1) ER"™H0 <ty <to,ty <ty <tg,0<ty,....th1 <t}
={t="(t1,....tas1) ER"™H0 <t <t5,0 <ty <t5,0 <ts,... 0041 <t}
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zeigt der Satz von Fubini

n / ") tl°f(t2> dt, / Flts) dty / Fltsr) dbus dty
t1

to to t1
—n / £(t2) / F0) [ 5t [ i) dtg it

_ /Oto f(ts) (/:t (1) dt)n dts 0

unter Ausnutzung der Induktionsvoraussetzung (A2.1) beim letzten Gleichheitszeichen. Wir kon-

nen durch erneute Anwendung von (A2.1), diesmal beim 2. Gleichheitszeichen,

([ sma)” = [“soa ([ o)
[ svaen [ s ([ s dt)n_l i
o [Caen ([ s [T rwa) ([ @)
= [" st ([ s an
e [Cre [Crwa ([0 dt)n_l i
=0 [Cseo ([ swar) an

schlieen. Der Nachweis von (A2.2) 148t sich ebenfalls leicht durch Induktion fiihren, wenn (A2.1)
genutzt wird. O

A2.2. Satz. Sei f: R — R eine Funktion mit lim,_, f(x) = a und |f(z) — a| lokal integrier-
bar. Dann gilt ebenfalls
1 st+x
lim — f(u)du=a

z—oo T [

fir alle s € R.

BEWEIS: Sei s € R und £ > 0. Nach Voraussetzung gibt es ein x; € [0,00), so daf}
|f(z) —a| < 5 fiir alle z > z,. Die lokale Integrierbarkeit sichert die Existenz eines x5 € [0, 00)

1 s+x1
@ -l du<

mit
T 2

fiir x > x9. Ist nun x > max {x, 25}, folgt

E/:Hf(u) du —a

T —x€

1 s+ 1 s+ -
S_/ |f(U)—a|dU+;/ |f(u) —al du < = + —<e

— ’
x . 2 r 2
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denn x; > 0. O



Kapitel V.

Simulation von Punkt-Prozessen mit

beschrianktem Speicher

A3. Zum Programm

Zunichst eine kurze Ubersicht iiber die Funktionsweise der zugrundeliegenden Berechnungsrouti-
ne. Die Basis des Programms bildet der Beweis des Satzes 8.5 {iber Dynamiken mit beschrianktem
Speicher.

Das Programm erzeugt eine zufillige positive Zahl mittels einer Exponentialverteilung.
Diese Zahl stellt den Abstand des ersten Punktes ¢; eines Poisson-Prozesses zur 0 dar. Wie zuvor
wird eine weitere positive Zahl erzeugt, die nun den Abstand des ersten Punktes #; zum néchsten
Punkt t, angibt. Diese Konstruktion wird nun weitergefiihrt, bis eine vorgegebene Anzahl von
Punkten erzeugt wurde oder die Position eines Punktes einen vorgegebenen Wert {iberschreitet.
Wir haben dann die Positionen und Zwischenabstéinde einer Realisation eines Poisson-Prozesses
in einem Ausschnitt der positiven reellen Achse erhalten.

Als néchstes mufl induktiv, beginnend mit dem Punkt ¢, entschieden werden, ob ein Punkt
des Poisson-Prozesses zu einem neuen (noch zu konstruierenden) Prozefl mit Dynamik der Form
(D1) gehort. Dies geschieht unter Zuhilfenahme von (8.3), wobei zu beachten ist, dafl wir In-
tensitédten der Form (D1) betrachten. Nachdem wir A(¢;) = ¢(0) berechnet haben, erzeugen wir
gemif einer R[0, 1]-Verteilung einen Wert u; und priifen, ob dieser 0 < u; < w erfiillt. Ist
dies der Fall, so ist ¢; ein Punkt der zu konstruierenden Realisation des neuen Prozesses und die
zugehorige Marke wird gleich 1 gesetzt, ansonsten gleich 0.

Ist bis zu einem Punkt ¢, die zugehorige Marke bestimmt worden, so ist nun die Marke zu #;,

festzulegen. Dazu berechnen wir

Afien) = 6 ( /() Bt — 5) nk(ds>> — 4 ( /H Wt — 5) nk<ds>) ,

wobei ny die bereits erzeugte Realisation des neuen Prozesses im Intervall [t1, ¢x] ist. Wir erzeugen

wieder einen RJ[0, 1]-verteilten Wert u;,; und testen, ob 0 < uyyq < % Die zu tj,, gehorige

111
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Marke wird auf 1 gesetzt, falls dies der Fall ist, sonst auf 0. Dieses Verfahren wird solange
angewendet, bis wir zum letzten Punkt des Poisson-Prozesses gelangt sind.
Die erhaltenen Punkte samt Marken werden in eine Datei mit der Endung ,.dat“ gespei-

chert. Aus dieser konnen sie zur graphischen Darstellung oder Weiterverarbeitung gelesen werden.

1) Installation. Installation des Simulationsprogramms auf einem SUN-Rechner (im Netz
des Fachbereichs Mathematik der WWU Miinster, Stand: Januar 1999):
Die benétigte Diskette befindet sich auf der letzten Seite dieser Arbeit.

e Der Installationsrechner besitzt ein Diskettenlaufwerk.

1. Zunéchst ein Kommandozeilenfenster 6ffnen (ein xterm, eine bash oder #hnliches; falls

dies noch nicht geschehen ist).

2. Diskette einlegen und durch den Befehl volcheck im Dateisystem anmelden (iiblicher-

weise 148t sich die Diskette dann unter dem Verzeichnis /a ansprechen).

3. Mittels cd [Pfad] in das Verzeichnis wechseln, in welchem das Programm installiert
werden soll. Der Aufruf cd ~ wechselt in das Heimat-(home-)Verzeichnis des aktuel-
len Benutzers. (ACHTUNG: Der Benutzer muf} in dem Ziel-Verzeichnis Schreibrechte

besitzen.)

4. Durch den Aufruf tar xvf /a/simupp.tar wird das Programm in das Unterverzeich-
nis simuPP des aktuellen Verzeichnisses installiert (eventuell ist der Befehl tar xvf
/a/SIMUPP.TAR einzugeben).

5. Die Diskette kann nun mit eject ausgeworfen werden.

6. Zum Start der Simulation mit dem Befehl cd [Pfad]/simuPP bzw. cd ~/simuPP in

das Programmverzeichnis wechseln und dort simuPP eingeben.

e Der Installationsrechner besitzt kein Diskettenlaufwerk. Es wird dann ein Rechner im Netz
bendtigt, der ein solches Laufwerk besitzt. Der Name dieses Rechners wird im folgenden
mit [Rechnername] bezeichnet.

Das Vorgehen dhnelt dem zuvor beschriebenen Fall, so daf§ nur die zusétzlichen Schritte

erklautert werden.

1. Starte ein Kommandozeilenfenster auf dem Rechner ohne Diskettenlaufwerk. Einle-
gen der Diskette in das Laufwerk des Rechners [Rechnername]. Um Zugriff auf das
Laufwerk zu erhalten mittels rlogin [Rechnername] auf den Computer mit Laufwerk

seinloggen®, heifft der Rechner z.B. wald, so ist rlogin wald einzugeben.
2. Diskette durch volcheck anmelden und ...
3. durch cd [Pfad] in das gewiinschte Verzeichnis wechseln.

4. Eingabe von tar xvf /a/simupp.tar (bzw. tar xvf /a/SIMUPP.TAR), um die In-

stallation des Programmes durchzufiihren.
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5. Auswurf der Diskette mit eject.
6. Druch Eingabe von logout den Rechner [Rechnername] wieder verlassen.

7. Zum Start der Simulation mit dem Befehl cd [Pfad]/simuPP in das Programmver-

zeichnis wechseln, und dort simuPP eingeben.

(HINWEIS: Das Programm sollte ohne grofiere Modifikationen auch auf Linux-Rechnern be-
nutzt werden kénnen — der Start des Programms auf einem Rechner mit der Linux-Distribution

,S.1.S.E. Linux 5.3“ war ohne Anderungen des Quelltextes méglich.)

2) Bedienungshinweise. Nach dem Start des Programms erhilt der Benutzer durch
anklicken des Hilfe-Buttons mit der linken Maustaste die moglichen Hilfethemen aufgelistet.
Bewegt man nun die Maus auf eines der fiinf Themen, so 6ffnet ein Klick mit der linken Maustaste

ein Fenster mit dem gewiinschten Text. Diese Themen haben folgende Inhalte:

1. Bedienung: Gibt Hinweise zur Benutzung der Maus im Simulationsprogramm und bei der

Verwendung des Editors (um eigene Funktionsdateien zu erstellen).
2. Aktionen: Erklart die Aufgaben der im Aktionenfeld angeordneten Buttons.
3. Parameter: Erldutert die Bedeutung der Parameter, die vom Benutzer iibergeben werden.

4. Funktionsweise: Gibt die theoretischen Grundlagen des Programms wieder. Weiter wird
die Vorgehensweise zur Erzeugung eines Punkt-Prozesses sowie der Darstellung (graphisch/

tabellarisch) dargelegt.

5. Definition von Funktionen: Liefert Hinweise fiir die Erstellung eigener Definitionsdateien

von Funktionen.

Die Funktionen konnen in jedem beliebigen Editor erstellt werden. Es ist lediglich zu beachten,
dafl C-Syntax genutzt wird und die Datei einen Namen der Form <Name>.fkt erhélt. Ferner mufl
diese im Verzeichnis simuPP gespeichert werden, damit diese Datei genutzt werden kann. Man
beachte die Meldungen nach Aufruf des Programms im Kommandozeilenfenster, hier werden
auch die verfiigharen Funktionsdateien aufgelistet. Eine aktuelle Ubersicht iiber die verfiigbaren
Funktionsdateien erhélt man durch Eingabe von 1s *.fkt im Kommandozeilenfenster (Basis-
verzeichnis: simuPP)

Das Programm kann durch Anwahl des Buttons Ende beendet werden.
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A4. Quellcodes

1) C-Programm. Die bendtigten Berechnungen nimmt das folgende C-Programm vor:

/* Simulation von Punkt-Prozessen mit beschrinktem Speicher.
Dieser Teil erzeugt zuf&dllig die Punkte eines Poisson-Prozesses auf der
positiven reellen Achse und wahlt diese nach vorgegebenen Schema aus.

Die so erzeugten Punkte werden in die Datei 777 geschrieben. */

/* C-Programm-Datei: simuPP/progs/simu_bsd.c */

/* Ubersetzen mit "gcc -1m -0 -W -ansi simu_BSD.c" x/
/* Hinzuladen von Funktionen ... */
#include <stdio.h> /* ... zur Ein-/Ausgabe. */
#include <stdlib.h> /* ... fuer Datentypen. */
#include <stdio.h> /* ... fuer Dateioperationen. */
#include <time.h> /* ... fuer Zeit-/Datumsoperationen. x/
#include <math.h> /* . fuer mathematische Operationen. x/
#include "function.h" /* Datel mit Definition der Funktionen "phi" und "h",*/
/* diese Datei ist eine temporaere Kopie einer x/

/* Funktionsdatei [Name].fkt (durch simuPP erstellt).x*/

[*——=== Strukturen definieren ----- */
typedef struct markPkt /#* Strukturdefinition, die die noetigen Informationen
fuer Punkte des Poisson-Prozesses beinhaltet. */
{
double abstand; /* Abstand zum vorherigen Punkt. */
unsigned char marke; /* Marke des Punktes:
= 0 -> gehdrt NICHT zum konstruierten Prozef
> 0 -> gehdrt zum konstruierten ProzeS. */
struct markPkt *pre; /* Zeiger auf vorhergehenden Punkt. */
struct markPkt *next; /* Zeiger auf nachfolgenden Punkt. */
} markierterPunkt; /* Erklaere Typ "markierterPunkt" als Struktur vom Typ
"markPkt". x/

/* Die folgenden Funktionen sollen dazu dienen, die erste Zufallszahl wirklich
zufédllig zu wéhlen, ohne zusdtzliche Initialisierung ist Folge der Zufalls-
zahlen ansonsten stets gleich; hier geschieht dies mit der aktuellen Zeit.*/

int sekunden() /* Extrahiert Sekunden aus der */
{ /* aktuellen Systemzeit. */
long zeitOhneSek, zeitSek;
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zeitOhneSek = (int) (time (&zeitSek)/60);
return(time (&zeitSek)-zeitOhneSek*60) ;

} /*=== ENDE "int sekunden'" ===x/
int minuten() /* Extrahiert Minuten aus der */
{ /* aktuellen Systemzeit. */

long zeitOhneMin, zeitMin;

zeitOhneMin = (int) (((time(&zeitMin)-sekunden())/60)/60);
return((time (&zeitMin)-sekunden())/60-zeit0hneMin*60) ;

} /*=== ENDE "int minuten" ===x%/
int stunden() /* Extrahiert Stunden aus der */
{ /* aktuellen Systemzeit. x/

long zeitOhneStd, zeitStd;
zeitOhneStd = (int) (((((time (&zeitStd)-sekunden())/60)-minuten())/60)/24);

return(((time (&zeitStd)-sekunden())/60-minuten())/60-zeitOhneStd*24+1) ;
} /x=== ENDE "int stunden" ===x/

/* Funktionen zur Erzeugung eines Punkt-Prozesses durch ausdiinnen eines

Poisson-Prozesses der Intensitadt LAMBDA. */
double exponentialVert() /* Gemdfl Statistik-Skript Satz 26.4: x/
{ /* liefert Exp(LAMBDA)-verteilten Zufallswert. x/

double Wert; /* Variable zur Zwischenspeicherung des berechneten Wertes. */

Wert = (-1)*log((double) (1-drand48()))/LAMBDA; /* Berechnung eines gemaess
Exp(LAMBDA)-verteilten
Punktes, schreibe in

Variable "Wert". x/
return(Wert) ; /* bei erreichen dieser Stelle liefert die Funktion
"exponentialVert" den Wert der Variable "Wert" zurueck. */

} /*=== ENDE "double exponentialVert" ===x/

double integrallN(markierterPunkt *aktuellerPunkt) /* berechnet das Integral */
/* iber h(t-s) beziiglich  */

{ /* N(ds) in (0,t). x/
markierterPunkt *hilfsPunkt; /* bei der Berechnung des Integrals
benoetigter Hilfspunkt. */

double abstandHilfsAktPkt = O; /* speichere den Abstand des Hilfspunkts
vom aktuellen Punkt in dieser Variable.x*/

double hgesamt = O0; /* Variable fuer den Gesamt-Wert des
Integrals. */

hilfsPunkt = aktuellerPunkt; /* setze den aktuellen Punkt als Hilfspunkt.x*/
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while((hilfsPunkt->pre != NULL) && ((abstandHilfsAktPkt <= A) || (A == 0)))
/* solange vor dem Hilfspunkt ein Punkt
vorhanden ist und der Abstand des
Hilfspunkts zum aktuellen Punktes kleiner
gleich A (oder A gleich O gesetzt)
durchlaufe die nachfolgende Schleife.

{

abstandHilfsAktPkt += (double) hilfsPunkt->abstand; /* Abstand des
aktuellen Punktes zum Hilfspunkt gleich
bisheriger Wert dieser Variablen plus
Abstand des Hilfs-Punktes zum naechsten

Punkt.

hilfsPunkt = hilfsPunkt->pre;/* speichere den Vorgaenger des bisher in
der Variable "hilfsPunkt" abgespeicherten

Punktes in der Variable "hilfsPunkt".
if (hilfsPunkt->marke > 0) /* gehoert der Hilfs-Punkt zum
hgesamt += h(abstandHilfsAktPkt); /* ausgeduennten Prozess, so
} /* addiere Wert der Funktion "h"

/* an der entsprechenden Stelle zu

*/

*/

*/
*/
*/
*/
*/

/* "hgesamt" hinzu. */
return(hgesamt); /* bei erreichen dieser Stelle liefert die Funktion
"integralN" den Wert der Variable "hgesamt" zurueck. */
} /*=== ENDE "double integrallN" ===x/
float psi(markierterPunkt *aktuellerPunkt) /* liefert den Wert von psi = */
{ /* phi(Integral iiber h (t-s) */
/* auf (0,t) beziiglich ...). */
return(phi(integrallN(aktuellerPunkt)));
} /x=== ENDE "float psi'" ===x/
unsigned char bestimmeMarke (markierterPunkt *aktuellerPunkt) /* priift, ob */
{ /* der gerade konstruierte Punkt zu N gehdrt. */
if (LAMBDA*drand48() <= psi(aktuellerPunkt)) /# Ist LAMBDA * gemaess */
return(1); /* R(0,1)-verteilte Zufalls- */
else /* groesse kleiner gleich */
return(0) ; /* psi(aktuellerPunkt), so */
/* erhaelt die Marke den */
/* Wert 1, sonst O. */
} /#=== ENDE "unsigned char bestimmeMarke" ===x%/
void naechsterPunkt (markierterPunkt *letzterPunkt, /* erzeugt den ndchsten */
long int aktAnzPkte, /* Punkt eines Poisson-Prozesses und 148t */
long int maxAnzPkte, /* priifen, ob dieser zu N gehdrt. Diese */
long double *aktPosition, /* Funktion ruft sich rekursiv selber x/
long double maxPosition) /* wieder auf. */
{
markierterPunkt *aktuellerPunkt; /* Punkt ohne Inhalte vom Typ "markierter
Punkt" erzeugen. */
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/* erzeuge solange Punkte, wie die maximale Zahl der bisher erzeugten Punkte
das gegebene Limit nicht ueberschreitet und die erzeugten Punkte das
vorgegebene Intervall nicht verlassen. x/

if (((aktAnzPkte < maxAnzPkte) || (maxAnzPkte == 0)) &&

((xaktPosition < maxPosition) || (maxPosition == 0)))

{

/* priife, ob Speicherplatz zum Erzeugen des ndchsten Punktes zur Verfiigung
steht. */
if ((aktuellerPunkt = (markierterPunkt *) malloc(sizeof (markierterPunkt)) )
== NULL)

{

printf ("\nFEHLER: es steht nicht geniigend Speicher fiir diese Zahl

von Punkten zur Verfiigung.\n");

exit (0);

b

/* Zeiger und Variablen initialisieren/ Werte zuordnen. */
letzterPunkt->next = aktuellerPunkt; /* der bisher letzte Punkt
verweist auf den Punkt
"aktuellerPunkt" als
nachfolgenden Punkt. */
aktuellerPunkt->abstand = exponentialVert(); /* erzeuge Abstand des neuen
Punktes von bisher letzen
Punkt gemaess Exp(LAMBDA)
Verteilung. x/
aktuellerPunkt->pre = letzterPunkt; /* Vorgaenger des neuen
Punktes ist der bisher
letzte Punkt. */
aktuellerPunkt->next = NULL; /* der nachfolgende Punkt des
neuen Punktes existiert
(noch) nicht. */
aktuellerPunkt->marke = bestimmeMarke (aktuellerPunkt); /* setzen der Marke
des aktuellen Punktes. x/
*aktPosition += (long double) aktuellerPunkt->abstand; /* die Position des
zuletzt erzeugten Punktes
auf dem Zahlenstrahl ist die
Position des zuvor erzeugten
Punktes zuzueglich des

Abstandes dieser Punkte. */
aktAnzPkte++; /* Zahl der bisher erzeugten

Punkte um 1 erhoehen. */
printf ("%61d",aktAnzPkte) ; /* Ausgabe der Nummer des

gerade erzeugten Punktes. */
if (aktAnzPkte % 10 == 0) /* nach 10 Punkten in neue */

printf ("\n"); /* Zeile springen. x/

letzterPunkt = aktuellerPunkt; /* der neue Punkt wird zum

neuen letzten Punkt. */

/* durch (rekursiven) Aufruf von "naechsterPunkt" wird der nachfolgenden
Punkt konstruiert. */
naechsterPunkt
(letzterPunkt, aktAnzPkte, maxAnzPkte, aktPosition, maxPosition);
}
} /*=== ENDE "void naechsterPunkt'" ===x/
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int schreibePunkt (markierterPunkt *aktuellerPunkt, FILE *datei) /* Speichern
der erzeugten Punkte in die Datei "’zieldatei’.dat". */
{
int tempZustand; /* temporaere Variable, die den Zustand der
Schreiboperation beinhaltet. x/
if ((tempZustand= fprintf(datei, "%1d; %20.81lf\n",
aktuellerPunkt->marke, aktuellerPunkt->abstand))
== -1) /* schlaegt die Schreiboperation fehlt,  */
return(-1); /* steige aus Funktion aus; sonst */
else /* rekursiver Aufruf von "schreibePunkt', */
if (aktuellerPunkt->next != NULL) /* solange noch Punkte vorhanden. */
{
tempZustand = schreibePunkt (aktuellerPunkt->next, datei);
return(tempZustand) ;
}
else
return(0) ;
} /#=== ENDE "int schreibePunkt" ===/
int speicherProzess(markierterPunkt *ersterPunkt, /* Oeffnet die Datei x/
char zieldatei[255], /* "?zieldatei’.dat", um x/
long double aktPosition) /* mittels "schreibe Punkt" */
/* die einzelnen Punkte x/
/* darin zu sichern. 7
{
FILE *datei; /* Variable als Verweis auf die zum Schreiben geoeffnete Datei */
int tempZustand; /* wie in Funktion "schreibePunkt". x/
datei = fopen(zieldatei, "w"); /* oeffnen der Datei "’zieldatei’" zum schreiben.x*/
if (datei == NULL) /* War das Oeffnen der Datei erfolglos, so liefere den Wert */
return(-1); /* "-1" zurueck, sonst: x/
else /* schreibe Werte in die geoeffnete Datei. */
{
if ((tempZustand
= fprintf(datei, "PUNKT-PROZESS (Marke; Zwischenabstand)\n")) == -1)
return(-1); /* Kopfzeile schreiben. x/
else if ((tempZustand = fprintf(datei, "}Lf\n", aktPosition)) == -1)
return(-1); /* Schreibe die Position des letzten Punktes in die Datei. */
else
{
tempZustand = schreibePunkt (ersterPunkt, datei); /* schreibe (rekursiv) die */
if (tempZustand == -1) /* Punkte in die Datei. x/
return(tempZustand) ;
}
if ((tempZustand = fprintf(datei, "ENDE\n")) == -1) /* Als Markierung des x/

return(-1); /* Endes der Datei: "ENDE".x*/
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fclose(datei); /* Schliesse die Datei. */

return(0); /* die Schreiboperation war erfolgreich, gebe den Wert "O" zurueck. */

}

} /+=== ENDE "int speicherProzess" ===x%/

/***************************/

/***xx*x Hauptprogramm ***x*x*/
[ sesk sk sk sk ok sk ok sk ok sk ok sk ok ks ok ok k ok ok sk k sk ok ok /

main(int argc, char *argv[], char *envp[])

{

[*—==== Konstante Vorgaben ----- */

long double maxPosition = 0; /* (0,maxWert]=Konstr.intervall,=0: bel. lang. */
long int maxAnzPkte = 0; /* Zahl der zu konstr. Punkte,=0: bel. viele. */
char zieldatei[1024] = ""; /* Zieldatei fiir den erzeugten ProzeS. */
[*=—=== Varablen Deklaration —----- x/

long double aktPosition = 0; /* Summe der Abstande. x/
long int aktAnzPkte = O; /* Zahl der bisher konstruierten Punkte. x/
markierterPunkt *ersterPunkt; /* Ausgezeichnete Punkte eines Punkt-Prozesses: */
markierterPunkt *letzterPunkt; /* erster und letzter Punkt. */
int tempZustand; /* temporaere Zustandsvariable. x/

/* Folge der Zufallszahlen (mittels Uhrzeit) initialisieren. */
srand48(stunden() *minuten() *sekunden()) ;

/* priife, ob Speicherplatz zum Erzeugen der Punkteliste zu Verfiigung steht. x/
if ((ersterPunkt = (markierterPunkt *) malloc(sizeof (markierterPunkt)) )
== NULL)
{
printf ("\nFEHLER: kein Speicher verfiigbar, um eine Punkteliste zu erzeugen.\n");
exit (0);
}
/* Zeiger und Variablen initialisieren. */
maxPosition = (long double) atof (argv([1]); /* Position aller konstruierten
zwischen O und maxPosition. */
maxAnzPkte = (long int) atof (argv[2]); /* erzeuge hoechstens maxAnzPkte
Punkte. */
strcpy(zieldatei, argv[3]); /* Ziel fuer die Daten: x/
strcat(zieldatei, ".dat"); /* "’zieldatei’.dat". */
ersterPunkt->abstand = 0; /* initialisiere die */
ersterPunkt->marke = 0; /* Komponenten des ersten */
ersterPunkt->pre = NULL; /* Punktes. */

ersterPunkt->next = NULL;
letzterPunkt = ersterPunkt;
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/* ersten Punkt konstruieren. */
ersterPunkt->abstand = exponentialVert();

ersterPunkt->marke = bestimmeMarke (ersterPunkt) ;

aktPosition = (long double) ersterPunkt->abstand;

aktAnzPkte++;

printf ("%61d",aktAnzPkte) ;

/* zweiten Punkt konstruieren, da sich diese Funktion rekursiv wieder aufruft,
werden durch diesen Aufruf alle weiteren Punkte konstruiert. */
naechsterPunkt
(letzterPunkt, aktAnzPkte, maxAnzPkte, &aktPosition, maxPosition);

/* speichern des erzeugten Punkt-Prozesses. x/
if ((tempZustand = speicherProzess(ersterPunkt, zieldatei, aktPosition))

printf ("\nSpeicherung der erzeugten Werte in \"%s\" fehlgeschlagen!\n");
else
printf ("\nDie erzeugten Werte wurden in die Dateil\n \"Y%s\"\ngeschrieben.\n",
zieldatei);

return(0);
} /*=== ENDE "main" ===+/
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2) Tel/Tk-Script. Die Benutzerschnittstelle und Ausgabe der Punkte wurde in der
Script-Sprache Tcl/Tk realisiert:

#!/bin/sh

##### Tcl/Tk-Script: simuPP/progs/simuPP #i###i#
# starte tcl/tk-Interpreter \

exec wish "$0" "$@"

##### Hauptfenster, von dem alle Funktionen aus angewdhlt werden #####
eval destroy [winfo child .]

wm title . "Simulation von Punkt-Prozessen'

wm iconname . "Simulation PP"

wm resizable . 0 O

set tk_strictMotif 1

set quelldatei "PktProz"
set einheit 128

set maxAnzPkte 100

set maxPosition 100

set fenster 0O

set ausgabe .ausgaben.text

if {$argc == 1} {
set quelldatei [lindex $argv 0]
¥

#---—- Aktionen ----- #
frame .aktionen -borderwidth 2 -relief groove
pack .aktionen -side left -anchor nw -padx 4m -pady 4m

label .aktionen.kopfzeile -text "AKTIONEN.'"\
-font -*-Helvetica-Bold-R-Normal--*-180—*%—*—*—%—%—x
pack .aktionen.kopfzeile -side top -anchor nw -padx 4m -pady 4m

label .aktionen.zwtextl -text ""
button .aktionen.fktBearb -text "Bearbeite\nFunktionen" -width 13\
-command {exec textedit $quelldatei.fkt &}
button .aktionen.bspFkt -text "Beispiel fiir\nFunktionen" -width 13\
-command {source [file join hilfe/fktbsp.hlp]l}
button .aktionen.uebersetzen -text "Ubersetzen" -width 13\
-command {$ausgabe configure -state normal
$ausgabe delete 0.0 end
if {[file exists $quelldatei.fktl} {
$ausgabe insert end "Bereite Erstellung eines Punkt-Prozesses\
mit den in\n\ \ \ \"${quelldateil}.fkt\"\ngegebenen Funktionen)\
vor - bitte warten ..."
update
$ausgabe insert end [file copy -force\
$quelldatei.fkt progs/function.h]
if {[catch {exec gcc -1m -0 -W progs/simu_bsd.c}] == 0} {
$ausgabe insert end [file delete progs/function.h]
file rename -force a.out $quelldatei.exe
exec chmod a+x $quelldatei.exe
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$ausgabe insert end "\n\nBeendet."
} else {
$ausgabe insert end "\n\nBei der Ubersetzung ist ein Fehler\
aufgetreten!\
\nPriifen Sie, ob die Funktionen phi und h korrekt\
definiert\nwurden."
}
$ausgabe see end
} else {
$ausgabe insert end "Ubersetzen.\n\
\nFEHLER: Die Datei \"$quelldatei.fkt\" existiert nicht!"
}
$ausgabe configure -state disabled}
label .aktionen.zwtext2 -text ""
button .aktionen.werteErzeugen -text "Erzeuge Punkte\ndes Prozesses" -width 13\
-command {$ausgabe configure -state normal
$ausgabe delete 0.0 end
if {[string match "" [string trim $maxAnzPkte 0123456789]] &&
[string match "" [string trim $maxPosition 012345678911} {
if {[string match "" $maxAnzPkte]l} {
set maxAnzPkte 0}
if {[string match "" $maxPosition]} {
set maxPosition O}
if {($maxAnzPkte == 0) && ($maxPosition == 0)} {
$ausgabe insert end "Erzeuge Punkte des Prozesses.\n\
\nFEHLER: Die maximale Anzahl der Punke und rechte\
\nIntervallbegrenzung ist \"O\"."
} else {
if {[file exists $quelldatei.exel} {
$ausgabe insert end\
"Erzeuge Punkt-Prozef - bitte warten ...\n"
update
$ausgabe insert end\
[exec $quelldatei.exe $maxPosition $maxAnzPkte $quelldatei]
$ausgabe insert end "\n\nBeendet."
} else {
$ausgabe insert end "Erzeuge Punkt-ProzeS.\n\
\nFEHLER: Die Datei \"$quelldatei.exe\" existiert nicht!\
\nBenutze \"Ubersetzen\", um diese Datei zu erzeugen."
}
$ausgabe see end
}
} else {
$ausgabe insert end "Erzeuge Punkte des Prozesses.\n\
\nFEHLER: Die maximale Anzahl der Punkte und/ oder die rechte\
\nIntervallbegrenzung ist keine natiirliche Zahl."
}
$ausgabe configure -state disabled}
label .aktionen.zwtext3 -text "\nAusgabe des\nPunkt-Prozesses" -justify left
button .aktionen.graphisch -text "auf Zahlenstrahl" -width 13\
-command {$ausgabe configure -state normal
$ausgabe delete 0.0 end
if {[file exists $quelldatei.dat]} {
$ausgabe insert end "Ausgabe des Punkt-Prozesses aus\n\



124 A4. Quellcodes

\ \ \"$quelldatei.dat\"\
\n- bitte warten ...\n"
update
graphAusgabe $einheit $quelldatei $ausgabe
$ausgabe insert end "\n\nBeendet."
$ausgabe see end
} else {
$ausgabe insert end\
"Ausgabe des Punkt-Prozesses auf Zahlenstrahl.\n\
\nFEHLER: Die Datei \"$quelldatei.dat\" existiert nicht!"
}
$ausgabe configure -state disabled}
button .aktionen.tabelle -text "in Werte-Tabelle" -width 13\
-command {$ausgabe configure -state normal
$ausgabe delete 0.0 end
if {[file exists $quelldatei.datl} {
$ausgabe insert end "Ausgabe der Werteliste aus\n\
\ \ \"$quelldatei.dat\"\
\n- bitte warten ..."
update
werteListe $quelldatei $ausgabe
$ausgabe insert end "\n\nBeendet."
$ausgabe see end
} else {
$ausgabe insert end\
"Ausgabe des Punkt-Prozesses in Werte-Tabelle.\n\
\nFEHLER: Die Datei \"$quelldatei.dat\" existiert nicht!"
}
$ausgabe configure -state disabled}
label .aktionen.zwtext4 -text ""
button .aktionen.hilfe -text "Hilfe" -width 13\
-command {hilfe $ausgabel}
pack .aktionen.zwtextl .aktionen.fktBearb .aktionen.bspFkt\
.aktionen.uebersetzen .aktionen.zwtext2 .aktionen.werteErzeugen\
.aktionen.zwtext3 .aktionen.graphisch .aktionen.tabelle\
.aktionen.zwtext4 .aktionen.hilfe -side top -anchor nw -padx 4m

button .aktionen.ende -text "Ende" -command exit -width 13
pack .aktionen.ende -side top —anchor nw -padx 4m -pady 4m

#-— Parameter ——--- #
frame .parameter -borderwidth 2 -relief groove
pack .parameter -side top —anchor nw -padx 4m -pady 4m

# Datei und Ubersetzung #
frame .parameter.compPar
pack .parameter.compPar -side left -anchor nw -padx 4m -pady 4m

label .parameter.compPar.kopfzeile -text "PARAMETER."\
-font -*-Helvetica-Bold-R-Normal--*-180—%—%—%—%—%—x%
label .parameter.compPar.zwtextl -text ""
label .parameter.compPar.zwtext2\
-text "1. DATEI\nQuelldatei (ohne Endung \".fkt\", \".dat\"):" -justify left
frame .parameter.compPar.bearbDatei
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label .parameter.compPar.zwtext3 -text "\n2. ERZEUGUNG."

frame .parameter.compPar.maxAnzPkte

label .parameter.compPar.zwtext4\
-text "und beschrénke die Konstruktion auf das"

frame .parameter.compPar.konstrIntervall

pack .parameter.compPar.kopfzeile .parameter.compPar.zwtextl\
.parameter.compPar.zwtext2 .parameter.compPar.bearbDatei\
.parameter.compPar.zwtext3 .parameter.compPar.maxAnzPkte\
.parameter.compPar.zwtext4 .parameter.compPar.konstrIntervall\
-side top -anchor w

entry .parameter.compPar.bearbDatei.wert -width 37 -textvariable quelldateil
-justify left -xscrollcommand ".parameter.compPar.bearbDatei.xScroll set"\

-highlightthickness 0

scrollbar .parameter.compPar.bearbDatei.xScroll -relief sunken -orient horiz\

-command ".parameter.compPar.bearbDatei.wert xview'" -width 9

pack .parameter.compPar.bearbDatei.wert .parameter.compPar.bearbDatei.xScroll\

-side top -fill x

label .parameter.compPar.maxAnzPkte.txtl -text "Erzeuge maximal"

entry .parameter.compPar.maxAnzPkte.wert -width 13 -textvariable maxAnzPkte\

—justify right -highlightthickness 0

label .parameter.compPar.maxAnzPkte.txt2 -text "Punkte"

pack .parameter.compPar.maxAnzPkte.txtl .parameter.compPar.maxAnzPkte.wert\
.parameter.compPar.maxAnzPkte.txt2 -side left

label .parameter.compPar.konstrIntervall.txtl -text "Intervall (O,"

entry .parameter.compPar.konstrIntervall.wert -width 13\
-textvariable maxPosition -justify right -highlightthickness 0

label .parameter.compPar.konstrIntervall.txt2 -text "]."

pack .parameter.compPar.konstrIntervall.txtl\
.parameter.compPar.konstrIntervall.wert\
.parameter.compPar.konstrIntervall.txt2 -side left

# Zoomstufe #
frame .parameter.graphAus
pack .parameter.graphAus -anchor nw -padx 4m -pady 4m

label .parameter.graphAus.zwtextl -text "\n3. AUSGABE."

frame .parameter.graphAus.einheit

pack .parameter.graphAus.zwtextl .parameter.graphAus.einheit -side top\
—anchor nw

frame .parameter.graphAus.einheit.links

frame .parameter.graphAus.einheit.rechts

pack .parameter.graphAus.einheit.links .parameter.graphAus.einheit.rechts\
-side left

label .parameter.graphAus.einheit.links.zoomstufe -text "Zoomstufe:"
pack .parameter.graphAus.einheit.links.zoomstufe -side top

foreach i {64 32 16 8 4 2 1} {
radiobutton .parameter.graphAus.einheit.links.rb$i\
-text "[format "%5s " 1/[expr (128/$i)11"\
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-variable einheit -relief flat -value $i
pack .parameter.graphAus.einheit.links.rb$i -side top -anchor center
}
foreach i {128 256 512 1024 2048 4096 8192 16384} {
radiobutton .parameter.graphAus.einheit.rechts.rb$i\
-text "[format "%3s" [expr ($i/128)11"\
-variable einheit -relief flat -value $i
pack .parameter.graphAus.einheit.rechts.rb$i -side top -anchor center

¥

frame .ausgaben
pack .ausgaben -side top —anchor nw -padx 4m -pady 3m

text .ausgaben.text -width 60 -height 13 -wrap char\
-yscrollcommand ".ausgaben.yscroll set"

scrollbar .ausgaben.yscroll -relief sunken -command ".ausgaben.text yview"\
-width 13

pack .ausgaben.text .ausgaben.yscroll -fill y -side left

.ausgaben.text tag configure big\
-font -*-Helvetica-Bold-R-Normal-—*—-120—%—k—%—%—%—%
.ausgaben.text insert end\
"Simulation von Punkt-Prozessen mit beschrénktem Speicher.\n" big
.ausgaben.text insert end "\n\nDieses Programm entstand im Rahmen der\
Diplomarbeit\
\n\"Existenz und Stabilitdt nichtlinearer Hawkes-Prozesse\" am\
\nInstitut fiir Mathematische Statistik der Westfdlischen\
\nWilhelms-Universitédt Minster.\n"
.ausgaben.text insert end "\nBetreuer: Prof. Dr. G. Alsmeyer"
.ausgaben.text insert end "\nErstellt von: Jirgen te Vrugt"
.ausgaben.text insert end "\n\nMiinster, 1998/1999."
$ausgabe configure -state disabled

##### graphische Ausgabe des Punkt-Prozesses #####
proc graphAusgabe {einheit quelldatei ausgabel} {
global fenster

#-——— Fenster zur graphischen Werteausgabe erstellen ———-#

catch {destroy .zeigePunkte$fenster}

toplevel .zeigePunkte$fenster

wm title .zeigePunkte$fenster "Graphische Ausgabe der Punkte: $quelldatei"
wm iconname .zeigePunkte$fenster "Graphik"

# Linux: ...x250 Sun: ...x280

wm geometry .zeigePunkte$fenster [winfo screenwidth .]x280

#---- Variablen -——-#

set zaehler 1

# fur Datei-Operationen #

set datei [open ${quelldateil}.dat r]
# fir Ausgabe #

set nummer O
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set maxPosition O

set xNullpkt 10

set position O

set bitteWarten O

set xScrollIncrement 1p

set aktLinienPos $xNullpkt
set aktZeichenPos $xNullpkt

#-——- Datei-Kopf auslesen ----#

gets $datei

set maxPosition [string trim [gets $dateill

set maxPosition [expr ($maxPosition * $einheit)]

#---- Ausgabefenster initialisieren/ Objekte erzeugen ----#
frame .zeigePunkte$fenster.ausgabe
pack .zeigePunkte$fenster.ausgabe

append hScrollBereich "Op Op " [expr ($maxPosition+2*$xNullpkt+200)] "p Op"

# Linux: -height 117  Sun: -height 147

canvas .zeigePunkte$fenster.ausgabe.reelleAchse\
~height 147 -width [expr ($maxPosition + 8 * $xNullpkt + 200)]1\
-relief sunken -borderwidth 2\
-xscrollcommand ".zeigePunkte$fenster.ausgabe.hscroll set"\
-scrollregion $hScrollBereich

pack .zeigePunkte$fenster.ausgabe.reelleAchse

scrollbar .zeigePunkte$fenster.ausgabe.hscroll -orient horiz\
-command ".zeigePunkte$fenster.ausgabe.reelleAchse xview"
pack .zeigePunkte$fenster.ausgabe.hscroll -fill x

label .zeigePunkte$fenster.bitteWarten -text "Bitte warten ..."
pack .zeigePunkte$fenster.bitteWarten

# Zeichne Grundlinie #
.zeigePunkte$fenster.ausgabe.reelleAchse create line)\
${xNullpkt}p 66p ${xNullpkt}p 96p -width 2
.zeigePunkte$fenster.ausgabe.reelleAchse create line)\
[expr ($xNullpkt-1)]p 66p\
[expr (int ($maxPosition)+$xNullpkt+200)]p 66p -arrow last -width 2
.zeigePunkte$fenster.ausgabe.reelleAchse create text ${xNullpktl}p 103p\
-text [expr ($zaehler-1)]

#---- Einlesen der Daten, Erzeugung eines Zahlenstrahls, ————#
#---- Ausgabe der Punkte auf diesem Zahlenstrahl -———-#
while {![eof $dateil} {
# Einlesen der Punkte und Marken in die Arrays "abstand()" und marke() #
set marke($zaehler) [read $datei 1]
set abstand($zaehler) [gets $dateil
set abstand($zaehler) [string trim $abstand($zaehler) " ;"]
set zeile ""

append zeile $marke($zaehler) $abstand($zaehler)
if {[string compare $zeile "ENDE"] == 0} {
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set marke($zaehler) -1
set abstand($zaehler) ""
gets $datei
} else {
# Punkte auf die Achse zeichnen #
set aktZeichenPos [expr ($aktZeichenPos + ($abstand($zaehler)*$einheit))]
.zeigePunkte$fenster.ausgabe.reelleAchse create line\
${aktZeichenPos}p 66p\
${aktZeichenPos}p [expr (55 - $marke($zaehler) * 22)]1p
if {$marke($zaehler) == 1} {
.zeigePunkte$fenster.ausgabe.reelleAchse create oval\
[expr ($aktZeichenPos-2)]p 29p [expr ($aktZeichenPos+2)]p 33p\
-fill red
#.zeigePunkte$fenster.ausgabe.reelleAchse create text\
# [expr ($aktZeichenPos+.2)]p 33p -text ""
}

# Skala auf die reellen Achse zeichnen #
while {$aktLinienPos < $aktZeichenPos} {
if {$einheit >= 1} {
if {[expr ($einheit * $nummer)] 7% 2048 == 0} {
if {$bitteWarten == 0} {
.zeigePunkte$fenster.bitteWarten configure\
-text "Bitte warten ..."
set bitteWarten 1
} else {
.zeigePunkte$fenster.bitteWarten configure -text ""
set bitteWarten O
}
}
if {($einheit >= 128) ||
(($einheit == 64) && ([expr (($nummer+1) % 2)] == 0)) ||
(($einheit == 32) && ([expr (($nummer+1) % 5)] == 0)) ||
(($einheit == 16) && ([expr (($nummer+1) % 10)] == 0)) |
(($einheit == 8) && ([expr (($nummer+1) % 25)]1 == 0)) ||
(($einheit <= 4) && ([expr (($nummer+1) % 50)]1 == 0))} {
.zeigePunkte$fenster.ausgabe.reelleAchse create line)\
[expr ($aktLinienPos+$einheit)]p 66p\
[expr ($aktLinienPos+$einheit)]p 96p
.zeigePunkte$fenster.ausgabe.reelleAchse create text)\
[expr ($aktLinienPos+$einheit)]p 103p -text [expr ($nummer+1)]
$ausgabe insert end [format "Y6s" [expr ($nummer+1)]]
$ausgabe see end
update
} elseif {$einheit == 64} {
.zeigePunkte$fenster.ausgabe.reelleAchse create line\
[expr ($aktLinienPos+$einheit)]p 66p\
[expr ($aktLinienPos+$einheit)]p 96p
} elseif {($einheit >= 8) && ($einheit < 64)} {
.zeigePunkte$fenster.ausgabe.reelleAchse create line)\
[expr ($aktLinienPos+$einheit)]p 66p\
[expr ($aktLinienPos+$einheit)]p 81p
} elseif {($einheit >= 1) && ($einheit < 8) &&\
([expr (($nummer+1) % 5)]1 == 0)} {
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.zeigePunkte$fenster.ausgabe.reelleAchse create line\
[expr ($aktLinienPos+$einheit)]p 66p\
[expr ($aktLinienPos+$einheit)]p 81p
}
if {$einheit >= 64} {
.zeigePunkte$fenster.ausgabe.reelleAchse create line\
[expr ($aktLinienPos + .5 * $einheit)]p 66p\
[expr ($aktLinienPos + .5 * $einheit)]p 85p
if {$einheit >= 256} {
.zeigePunkte$fenster.ausgabe.reelleAchse create text)\
[expr ($aktLinienPos+.5*$einheit)]p 103p -text $nummer.5
}
if {$einheit >= 128} {
for {set tempzaehler 1} {$tempzaehler < 10} {incr tempzaehler} {
.zeigePunkte$fenster.ausgabe.reelleAchse create line)\
[expr ($aktLinienPos + ($tempzaehler*.1)*$einheit)]p 66p\
[expr ($aktLinienPos + ($tempzaehlerx.1)*$einheit)]p 79p
if {$einheit >= 1024} {
.zeigePunkte$fenster.ausgabe.reelleAchse create text\
[expr ($aktLinienPos+$tempzaehler*.l*$einheit)]p 103p\
-text $nummer.$tempzaehler
}
}
if {$einheit >= 256} {
for {set tempzaehler 1} {$tempzaehler <= 10}\
{incr tempzaehler} {
.zeigePunkte$fenster.ausgabe.reelleAchse create line\
[expr ($aktLinienPos + ($tempzaehler*.1-.05)*$einheit)]p\
66p\
[expr ($aktLinienPos + ($tempzaehlerx.1-.05)*$einheit)]Ip\
75p
if {$einheit >= 4096} {
.zeigePunkte$fenster.ausgabe.reelleAchse create text\
[expr ($aktLinienPos+($tempzaehler*.1-.05)*$einheit)]p\
103p -text [expr ($nummer+$tempzaechlerx*.1-.05)]
}
}
if {$einheit >= 1024} {
for {set tempzaehler 1} {$tempzaehler < 100}\
{incr tempzaehler} {
.zeigePunkte$fenster.ausgabe.reelleAchse create line\
[expr ($aktLinienPos + ($tempzaehlerx.01)*$einheit)]p\
66p\
[expr ($aktLinienPos + ($tempzaehler*.01)*$einheit)]p 72p
if {$einheit >= 16384} {
.zeigePunkte$fenster.ausgabe.reelleAchse create text)\
[expr ($aktLinienPos+$tempzaehler*.01l*$einheit)]p 103p\
-text [expr ($nummer+$tempzaehler*.01)]
}
}
if {$einheit >= 4096} {
for {set tempzaehler 1} {$tempzaehler <= 100}\
{incr tempzaehler} {
.zeigePunkte$fenster.ausgabe.reelleAchse create line)\
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[expr ($aktLinienPos+($tempzaehler*.01-.005)*$einheit)]p\
66p\
[expr ($aktLinienPos+($tempzaehler*.01-.005)*$einheit)Ip\
70p
}
if {$einheit >= 16384} {
for {set tempzaehler 1} {$tempzaehler < 1000}\
{incr tempzaehler} {
.zeigePunkte$fenster.ausgabe.reelleAchse create line)\
[expr ($aktLinienPos+($tempzaehler*.001)*$einheit)]Ip\
66p\
[expr ($aktLinienPos+($tempzaehler*.001)*$einheit)]Ip\
68p

set aktLinienPos [expr ($aktLinienPos + $einheit)]

incr nummer
}
# "zaehler" erhohen
incr zaehler

}

close $datei

#
destroy .zeigePunkte$fenster.bitteWarten
unset bitteWarten

frame .zeigePunkte$fenster.unten
pack .zeigePunkte$fenster.unten

# Info-Leiste
frame .zeigePunkte$fenster.unten.ileiste -relief groove -borderwidth 2
pack .zeigePunkte$fenster.unten.ileiste -side left -padx 7m -pady 3m

if {$einheit >= 128} {
label .zeigePunkte$fenster.unten.ileiste.auflsg\
-text "Zoomstufe: [expr ($einheit / 128)]1"
} else {
label .zeigePunkte$fenster.unten.ileiste.auflsg\
-text "Zoomstufe: 1/[expr (128 / $einheit)]"
}
frame .zeigePunkte$fenster.unten.ileiste.pkte
pack .zeigePunkte$fenster.unten.ileiste.auflsg\
.zeigePunkte$fenster.unten.ileiste.pkte\
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-side left -padx 17 -anchor w

frame .zeigePunkte$fenster.unten.ileiste.pkte.legendel

frame .zeigePunkte$fenster.unten.ileiste.pkte.legende2

pack .zeigePunkte$fenster.unten.ileiste.pkte.legendel\
.zeigePunkte$fenster.unten.ileiste.pkte.legende2 -side top -anchor w

canvas .zeigePunkte$fenster.unten.ileiste.pkte.legendel.symbol\
-height 38 -width 13

label .zeigePunkte$fenster.unten.ileiste.pkte.legendel.zwtext\
-text "-Punkte des erzeugten Prozesses."

pack .zeigePunkte$fenster.unten.ileiste.pkte.legendel.symbol\
.zeigePunkte$fenster.unten.ileiste.pkte.legendel.zwtext\
-side left —anchor w

.zeigePunkte$fenster.unten.ileiste.pkte.legendel.symbol create line)\
2p 34p 12p 34p

.zeigePunkte$fenster.unten.ilLeiste.pkte.legendel.symbol create line\
Tp 4p 7p 34p

.zeigePunkte$fenster.unten.ilLeiste.pkte.legendel.symbol create oval\
5p 2p 9p 6p -fill red

canvas .zeigePunkte$fenster.unten.ileiste.pkte.legende2.symbol\
-height 27 -width 13

label .zeigePunkte$fenster.unten.ileiste.pkte.legende2.zwtext\
-text "-nicht ausgewdhlter Punkt des Poisson-Prozesses. "

pack .zeigePunkte$fenster.unten.ileiste.pkte.legende2.symbol\
.zeigePunkte$fenster.unten.ileiste.pkte.legende2.zwtext\
-side left -anchor w

.zeigePunkte$fenster.unten.ilLeiste.pkte.legende2.symbol create line\
2p 19p 12p 19p

.zeigePunkte$fenster.unten.ileiste.pkte.legende2.symbol create line)\
Tp 9p 7p 19p

# Button-Leiste
frame .zeigePunkte$fenster.unten.blLeiste
pack .zeigePunkte$fenster.unten.bLeiste -padx 7m

frame .zeigePunkte$fenster.unten.blLeiste.ausgPS

frame .zeigePunkte$fenster.unten.blLeiste.befehle

pack .zeigePunkte$fenster.unten.bLeiste.ausgPS\
.zeigePunkte$fenster.unten.bleiste.befehle -side top -padx 5m -pady 1m

button .zeigePunkte$fenster.unten.bLeiste.ausgPS.ausschnittPS -width 30\
-text "Postscript-sichtbarer Bereich"\
-command "ausschnittPS .zeigePunkte$fenster.ausgabe.reelleAchse)\
$maxPosition $xNullpkt $quelldatei”
button .zeigePunkte$fenster.unten.blLeiste.ausgPS.gesamtPS -width 30\
-text "Postscript-gesamte Achse"\
-command "gesamtPS .zeigePunkte$fenster.ausgabe.reelleAchse $maxPosition\
$xNullpkt $quelldatei”

pack .zeigePunkte$fenster.unten.bLeiste.ausgPS.ausschnittPS\
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}

.zeigePunkte$fenster.unten.bLeiste.ausgPS.gesamtPS -side top

button .zeigePunkte$fenster.unten.bleiste.befehle.druckHilfe\
-text "Postscript Hilfe" -width 14\
-command "source [file join hilfe/pshilfe.hlp]"

button .zeigePunkte$fenster.unten.bleiste.befehle.fensterSchliessen\
-text "Schlieflen" -width 11\
-command "destroy .zeigePunkte$fenster"

pack .zeigePunkte$fenster.unten.blLeiste.befehle.druckHilfe\
.zeigePunkte$fenster.unten.bLeiste.befehle.fensterSchliessen\
—-side left -padx 1m

incr fenster

proc ausschnittPS {canv maxPosition xNullpkt quelldateil} {

¥

$canv postscript -colormode mono -file $quelldatei.ps\
-pagewidth 28.0c -pagey 14.85c -rotate 1\
-width [expr (floor ([lindex [$canv xview] 1]*\
($maxPosition+8*$xNullpkt+200)+1)-\
floor ([lindex [$canv xview] 0]*$maxPosition))]Ip\
-x [expr (floor ([lindex [$canv xview] O]*$maxPosition))]p
Parameter fuer:
DIN-A4 quer: -pagewidth 28c -pagey 14.85c -rotate 1
-width [...*(...+8%...+200)+1)~-...]
DIN-A4 hoch: -pagewidth 17.2c -pagey 8.6c -rotate O
-width [...*(...+8%...+200)+1)~-...]

H OH OH H R

proc gesamtPS {canv maxPosition xNullpkt quelldateil} {

for {set ausgzaehler 0}\

{[expr ($ausgzaehlerx1500)] <= [expr ($maxPosition + 8 * $xNullpkt + 200)1}\

{incr ausgzaehler} {

$canv postscript -colormode mono -file $quelldatei.$ausgzaehler.ps\
-pagewidth 28.0c -pagey 14.85c -rotate 1\
-width 1536p -x [expr ($ausgzaehler * 1500)]1p

Parameter fuer:

DIN-A4 quer: for {...}{[...(...*1500)]1<=[...(...+8%...+200)]1}
-pagewidth 28c -pagey 14.85c -rotate 1
-width 1536p -x [(...*1500)1p

DIN-A4 hoch: for {...}[...(...*800)]<=[...(...+8%...+200)]1}
-pagewidth 17.2c -pagey 8.6c -rotate O
-width 836p -x [(...*800)]1p

HOH H H R H Y

##### Anzeige der einzelnen Werte #####
proc wertelListe {quelldatei ausgabe} {

global fenster

catch {destroy .liste$fenster}

toplevel .liste$fenster

wm title .liste$fenster "Punkte-Liste: $quelldatei”
wm iconname .liste$fenster "Punkte"
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wm positionfrom .liste$fenster program

label .liste$fenster.kopf -anchor w\
-text "Marke Position "
pack .liste$fenster.kopf

frame .liste$fenster.werte
pack .liste$fenster.werte

text .liste$fenster.werte.text)\

-width 24 -setgrid 1\

-yscrollcommand ".liste$fenster.werte.scroll set"
scrollbar .liste$fenster.werte.scroll\

-command ".liste$fenster.werte.text yview"
pack .liste$fenster.werte.scroll -side right -fill y
pack .liste$fenster.werte.text -fill y

set zaehler 1
set aktPos O
set datei [open ${quelldateil}.dat r]

gets $datei
gets $datei

while {![eof $dateil} {
set marke($zaehler) [read $datei 1]
set abstand($zaehler) [gets $dateil
set abstand($zaehler) [string trim $abstand($zaehler) " ;"]
set zeile ""

append zeile $marke($zaehler) $abstand($zaehler)
if {[string compare $zeile "ENDE"] == 0} {

set marke($zaehler) -1

set abstand($zaehler) ""

gets $datei
}

if {$marke($zaehler) '= -1} {
if {$zaehler > 1} {
.liste$fenster.werte.text insert end \n}
.liste$fenster.werte.text insert end $marke($zaehler)
set aktPos [expr ($aktPos + $abstand($zaehler))]
.liste$fenster.werte.text insert end [format " %22.4f" $aktPos]
}

if {($zaehler % 100) == 0} {
$ausgabe insert end "."
update

}

incr zaehler

}

close $datei
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button .liste$fenster.fensterSchliessen -text "Schliefen"\
-command '"destroy .liste$fenster"
pack .liste$fenster.fensterSchliessen

incr fenster

¥

#u### Hilfe #####
proc hilfe {ausgabe} {

if {[winfo depth $ausgabel > 1} {
set bold "-background #43ce80 -relief raised -borderwidth 1"
set normal "-background {} -relief flat"

} else {

set bold "-foreground white -background black"
set normal "-foreground {} -background {}"

}

$ausgabe configure -state normal

$ausgabe delete 0.0 end
$ausgabe tag configure big\
—-font —*-Helvetica-Bold-R-Normal-—*—180—*—k—k—*k—*—x

$ausgabe insert
$ausgabe insert

$ausgabe insert
$ausgabe insert
$ausgabe insert
$ausgabe insert
$ausgabe insert
$ausgabe insert

end
end

end
end
end
end
end
end

"Hilfe.\n" big

"Simulation eines Punkt-Prozesses mit beschrinktem\
Speicher\nauf der positiven reellen Achse.\n\n"
"1. Bedienung\n" bedienung

"2. Aktionen\n" action

"3. Parameter\n" para

"4, Funktionsweise\n" fktsweise

"5. Definition von Funktionen\n" fktdef

"\nAuswahl eines Themas durch anklicken mit der\
linken\nMaustaste."

foreach tag {bedienung action para fktsweise fktdef} {
$ausgabe tag bind $tag <Any-Enter> "$ausgabe tag configure $tag $bold"
$ausgabe tag bind $tag <Any-Leave> "$ausgabe tag configure $tag $normal"

}

$ausgabe tag bind bedienung <1> {source [file join hilfe/bedienng.hlp]l}
$ausgabe tag bind action <1> {source [file join hilfe/action.hlp]l}
$ausgabe tag bind para <1> {source [file join hilfe/para.hlpl}

$ausgabe tag bind fktsweise <1> {source [file join hilfe/fktsweis.hlp]l}
$ausgabe tag bind fktdef <1> {source [file join hilfe/fktdef.hlpl}

$ausgabe configure -state disabled
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3) Beispiel fiir eine Funktionsdatei. Durch das C-Programm wird eine Funktionsdatei
importiert, die die Definitionen von h und ¢ (im Programmtext mit ,phi“ bezeichnet) beinhaltet.
Hier nun ein Beipiel fiir eine solche Datei. Da diese durch ein C-Programm verarbeitet wird, muf}

die Datei dem Formalismus von C-Programmen geniigen.

double LAMBDA = 1; /* Wert, durch den die Funktion phi beschrankt wird */

double phi(double x)
{

double wertvonphi = 0;

if ((-50 <= x) && (x <= 50))
wertvonphi = (50 + x)/100;

else
wertvonphi

0;

return(wertvonphi) ;

}

double A = 100; /* Geddchtnis der Lange A: Der Trédger von h muf eine
Teilmenge von [0, A] sein.
A=0: oo-langes Ged&chtnis */

double h(double x)
{

double wertvonh = 0;

if (x <= 50)

wertvonh = exp((50-x)/25);
else if ((50 < x) && (x <= A))

wertvonh = -exp((50-x)/25);
else

wertvonh = 0;

return(wertvonh) ;
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4) Funktionsdateien zum Programm. Es folgt eine Auflistung der Funktionsdateien,

die unmittelbar nach Installation des Programms verfiigbar und im Verzeichnis simuPP zu finden

sind.

Zur Erinnerung: ¢ : R — [0,00) und h : [0,00) — R (siehe auch Abschnitt 3).

Datei: bsp01.fkt

Datei:

Datei:

Datei:

Datei:

Datei:

Datei:

Datei:

Datei:

bsp02.

bsp03.

bsp04.

bsp05.

bsp06.

bspO7.

bsp08.

bsp09.

fkt

fkt

fkt

fkt

fkt

fkt

fkt

fkt

A=1,¢=1, A=0, h =0 (alle Punkte des Poisson-Prozesses werden

mit der Marke 1 versehen)

A=1,¢6=0, A=0, h=0 (alle Punkte des Poisson-Prozesses werden

mit der Marke 0 versehen)

A1, o(t) = exp(t) firt <0
- | exp(—t) fiir ¢ >0
10—z .
exp firz <A
Ale,h(x):{ (05) firx > A

504t iy —50 < ¢ < 50
(= PktProz.fkt) A =1, ¢(t) = ¢ 'O r Sts ,
0 fiir t < =50 oder ¢t > 50
A =50, h(z) = exp (U57)  fiire <A
’ 0 firx > A

504t fijr —50 < ¢ < 50
(= beispiel.fkt) A =1, ¢(t) = 100 lir <t< |
0 fiir t < —50 oder ¢ > 50

exp (502;”) fiir x < 50
A =100, h(z) = ¢ —exp (3:%) firs0<z <A
0 fir z > A

A=L¢®={ 1 firt>1

01 firt<1’
A =00, h(z) = exp(—x)

1 fiir ¢ >
A=1,6(t) = e =50
0.1 fiir t < 50
10 — firz < A
A =10, h(z) = 0—2 ir o <
0 firx > A
1 fiirt>7
A=1, &(t) = >
» #10) {(11 fiirt <7
1 firx < A
A:10, h(x): ur r <
0 firz > A
t fiir —2 <t <2
A =17.389, $(t) = exp(Jt])  fiir —2 <t <

exp(2) fiir t < —2 oder t > 2
A =00, h(z) =0.1exp(—z)
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Datei:

Datei:

Datei:

Datei:

Datei:

Datei:

Datei:

bsp10.

bspil

bspl2.

bsp13.

bspl4.

bsplb.

bsp16.

fkt

.fkt

fkt

fkt

fkt

fkt

fkt

t fiir —2 <t <2
A =7.389, ¢(t) ::{ exp(|t|)  fiir -2 <t <
-z firz < A

A=1, h(z)=
i) { 0 firxz > A

A =17.389, (t) ::{ exp([t])  fiir =2 <t <
firz < A

1
AZO'Lh(ﬁ):{O fiir v > A

0.1 fiir t <0.1
A=156t)={ t fir01<t<15
1.5 fiir t > 1.5

A = o0, h(x) = exp(—x)

0.1  fiirt<o0.1
A:L&¢@ﬁ={ t fir01<t<15,
15 firt> 15

1—=x firz <A
{ 0 fiirx > A

0.1 fiirt <0.1
A=15¢(t)=< ¢t fir0l<t<1l5,
1.5 firt > 1.5
1 firz <A
0 firz > A

0.1 fiir t <0.1
A=156)={ t fir01<t<15,

1.5 fiirt > 1.5
sin(x) firz < A

A = 3.141592654, h(z) = { 0 fiir 7 > A
ur r

A =1, ¢(t) = exp(—|t]),

10—z fii < A
At | ) s
0 firz > A
(siehe auch Unterabschnitt 3))

exp(2) fiir t < —2 oder t > 2’

exp(2) fiir t < —2 oder t > 2’
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Symbolverzeichnis

B(-) Borelsche o-Algebra auf -; S. 2

B, B¢ B+ B~ Borelsche o-Algebra auf R, R?, [0, 00) bzw. (—00,0]; S. 2

(D1) Grundform der Dynamiken im univariaten Fall; S.12

(D2) Grundform der Dynamiken im K-variaten Fall; S. 13

(F1)ier Filtration eines (markierten) Punkt-Prozesses ; S. 4

(j:tN)teR Filtration eines (markierten) Punkt-Prozesses N; S. 4

(ftU)telR Filtration der Marken (U,), ., eines markierten Punkt-Prozesses N; S. 4

(M, M) mefbarer Raum der Radon-Mafe auf R; S. 14

(Mg, Mg) mefbarer Raum der Radon-Mafle auf F; S. 14

(Mg, M%) meflbarer Raum der ganzzahligen Radon-Mafle auf E; S. 14

(M, My, meBbarer Raum der Radon-MaBe auf R¥; S. 14

(M (]Rk),M(IRk)) mefbarer Raum der Radon-Mafe auf R¥; S. 14

(M, M) mefBbarer Raum der ganzzahligen Radon-Mafe auf R*; S. 14

(M(X), M(X)) mefBbarer Raum der Radon-Mafle auf X; S. 14

N, Ny Menge der natiirlichen Zahlen ohne (mit) Null; S. 2

Mo Menge aller Punkt-Prozesse N, fiir die (10.5) f.s. lokal integrierbar auf [0, co)
ist; S. 51

NF Menge aller K-variaten Punkt-Prozesse N mit Intensitidt (A(¢))er, fiir die
t— E(X(t) | 7)) Ls. lokal integrierbar auf [0, 00) ist (1 <i < K); S. 85

N =N U{oo}; S.2

N+ Einschrinkung des Punkt-Prozesses N auf R*; S. 4, 7

(P-) Anfangsbedingung; S.15

P (F) o-Algebra der Fi-vorhersagbaren Ereignisse (Kurzschreibweise); S. 5

P ((]:t)te]R) o-Algebra der F;-vorhersagbaren Ereignisse; S. 5

Pg (Fr) o-Algebra der F-progressiv mefibaren Ereignisse (Kurzschreibweise); S. 5

Po ((F)1er) o-Algebra der F-progressiv mefibaren Ereignisse; S. 5

RT, R positive bzw. negative reelle Achse inklusive Null; S. 2

SuA(1) = ANu+1);S.15

iv



INDEX

St
(ST1)
(ST2)
(ST2))
SN+

Shift-Operator; S.14, 15

erste Bedingung fiir Stabilitéit; S.16

zweite Bedingung fiir Stabilitdt; S.16

alternative zweite Bedingung fiir Stabilitit; S. 16
=N((t+-)NR*);S. 15



Index

A
(Fi-) adaptiert 4
Aktivitat

neuronale 13
Anfangsbedingung 15
angeregt 13
Anregungs-Funktion 13
Anregungs-Schwelle 13
Anregungsfuktion 13

D
Dynamik 12, 13
auf [0,00) 16
mit beschrinktem Speicher 38

F

Filtration 4
interne 4, 24

Funktion

anregende 13
Transfer 13

G

Gedéchtnis
beschranktes 38

gehemmt 13

H

Hawkes-Prozef3
nichtlinearer 13
multivariater 13

multivariater nichtlinearer 13

I
in Ruhe 13
Intensitdt 5, 7

vi

auf [0,00) 16
Intensitats-Mafi 23

K
kanonischer Raum der Punkt-Prozesse
kausal 38
0;-kompatibel 15
Konvergenz
in Variation 16
in Verteilung 15
schwache 15
vage 15
Kopplung 16
Kopplungsungleichung 17

M

Marken 4
-raum 4

mef3bar
progressiv. 5

mefibarer Flufl 15

mischend 27

N
Netzwerk

neuronales 13
Neuron

Potential eines 13
P

Parameter-Mafl 23
Poisson-Prozefl 23, 24
markierter 24

Potential 13
Punkt-Proze3 3

bivariater 7

34



INDEX

Vil

der Spitzen 14
einfacher 3
Hawkes’” 13
kanonischer Raum der ... e
(einfacher) markierter 4
multivariater 7
selbst-anregender 13
univariater 7
K-variater 7
wechselseitig anregender
Punkte 3,7

R
Radon-Mafi 5

S
Semi-Ring 28
Shift-Operator 14
Speicher

beschrinkter 38, 77
Stabilitat

in Variation 16

in Verteilung 16
Stationaritdt 15

T
transient 17

Translations-Operator 14

U
Ubertragungsfunktion 13

Vv

Voraussetzung 1 39
Voraussetzung 2 47
Voraussetzung 3 51

vorhersagbar 5

13

34
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