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Einleitung
Eine Paarung eines Baumes ist eine Teilmenge der Kantenmenge, die nur Kanten ent-
hält, die paarweise keinen gemeinsamen Knoten verbinden. Wählen wir einen Baum
Tn gleichverteilt aus der nn−1-elementigen Menge aller verwurzelten Bäume mit einer
festen, n-elementigen Knotenmenge und versehen die Kanten von Tn mit identisch
nach F verteilten, unabhängig voneinander gewählten und nichtnegativen Gewichten,
so gebe Mn das maximale Gewicht einer Paarung von Tn an.
Das erste Ziel der vorliegenden Arbeit ist es, die Asymptotik des Erwartungswertes

der ZufallsgrößeMn zu verstehen. Dabei folgen wir einer Arbeit von Aldous und Steele
[4] aus dem Jahr 2004.
Die Methode, die hier zum Erfolg führt, wird in der Literatur häufig objective me-

thod genannt. Dabei handelt es sich weniger um ein festes Schema zur Problemlösung
als um eine philosophische Herangehensweise (vgl. [17], Kapitel 5): Gegeben sei eine
Folge endlicher Objekte, die wir auf eine gewisse Eigenschaft untersuchen. Finden wir
ein unendliches Objekt, für das die zu untersuchende Eigenschaft nahezu der der Fol-
ge entspricht, so ist die Hoffnung groß, dass die Eigenschaft der Folge approximativ
mit der Eigenschaft des unendlichen Objektes übereinstimmt.
Auch wenn diese Formulierung sehr ungenau ist und ungewiss scheint, was ein

derartiges unendliches Objekt überhaupt ist und wie wir es finden, so gibt es doch
bemerkenswert viele Beispiele, bei denen diese Philosophie zum Ziel führt.
In unserem Fall ist die Folge endlicher Objekte die Folge der Zufallsbäume Tn. Die

Eigenschaft, die untersucht wird, ist das maximale Gewicht einer Paarung von Tn.
Hier scheint klar zu sein, was ein unendliches Objekt ist: Es muss ein Zufallsbaum
T∞ sein, der unendlich viele Knoten besitzt und bestenfalls der Limes der Folge Tn
ist.
Um die objective method anzuwenden, müssen wir also zunächst untersuchen, wel-

che Konvergenzart hier die richtige ist und gegen welchen Zufallsbaum die Folge Tn
konvergiert. Es wird sich herausstellen, dass die Verteilungskonvergenz der geeignete
Konvergenzbegriff ist, und dass der unendliche Baum T∞ derjenige Zufallsbaum ist,
der entsteht, wenn wir eine unabhängige Folge kritischer Galton-Watson-Bäume mit
Poissonscher Reproduktionsverteilung entlang ihrer Wurzeln verbinden.
Die für die Formulierung dieser Aussage notwendigen Formalitäten führen wir im

ersten Kapitel dieser Arbeit ein. Beginnen werden wir damit, den passenden Wertebe-
reich der Zufallsbäume Tn festzulegen, ihn mit einer geeigneten Metrik auszustatten
und anschließend die Verteilungskonvergenz auf diesem metrischen Raum zu unter-
suchen.
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Der darauffolgende Abschnitt 1.2 dient zur Einführung der Galton-Watson-Bäume
und zur Wiederholung einiger Eigenschaften derselbigen.
Nachdem wir die Konvergenz von Tn gegen T∞ festgemacht haben, befassen wir

uns damit, ob das maximale Gewicht einer Paarung von Tn – oder zumindestens sein
Erwartungswert – approximativ durch T∞ ausgedrückt werden kann.
Dies wird uns das zweite Kapitel hindurch beschäftigen. In Abschnitt 2.4 werden

wir dann das Hauptresultat beweisen: Im Fall einer stetigen Gewichtsverteilung F
mit endlichem Erwartungswert gilt

lim
n→∞

1
n

EMn = E(ξ · 1{ξ >Y+Z}),

wobei ξ, Y und Z unabhängige Zufallsgrößen mit den Verteilungen F,G und H seien.
Die Verteilungen G und H ergeben sich als Lösungen zweier stochastischer Fixpunkt-
gleichungen:
G ist die eindeutige Lösung der Gleichung

Y
d= max{0, ξi − Yi : 1 ≤ i ≤ N} (∗)

und H ist die eindeutige Lösung der Gleichung

Z
d= max{Y, ξ − Z}, (∗∗)

wobei die Variablen (Yi), (ξi) und N unabhängig voneinander mit Yi ∼ Y , ξi ∼ F
und N ∼ Poi(1) seien. Beiden Fixpunktgleichungen widmen wir uns ebenfalls im
zweiten Kapitel, siehe Theoreme 2.2.3 und 2.3.1.
Den Abschluss des Kapitels bildet eine Untersuchung des Falles exponentialverteil-

ter Gewichte, also F = Exp(λ). In diesem Fall werden wir die Fixpunktverteilungen
aus (∗) und (∗∗) explizit bestimmen, und auch den gesuchten Erwartungswert geben
wir näherungsweise an.
Im letzten Kapitel der Arbeit verlassen wir das Paarungsproblem und beschäftigen

uns mit einer Klasse von endlichen Zufallsbäumen S, die von Aldous in [2] eingeführt
wurde: Sei EQ(S, t) die erwartete Anzahl von Teilbäumen der ersten Generation von
S, die zu t isomorph sind. S besitzt eine Fransenverteilung, falls

EQ(S, t) = P (S = t)

für alle t gilt. Wir werden sehen, dass kritische Galton-Watson-Bäume diese Bedin-
gung erfüllen (Beispiel 3.1.4). Allerdings treten auch bei anderen Anwendung derar-
tige Verteilungen auf.
Die Abschnitte 3.1.2 und 3.2 werden klären, warum Zufallsbäume mit Fransenver-

teilungen im Kontext der objective method wichtig sind: Sie lassen sich stets fortsetzen
zu unendlichen Bäumen, die als Approximationsobjekt endlicher Folgen dienen.
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1. Das Paarungsproblem für zufällig
gewichtete Zufallsbäume

Bevor wir das Paarungsproblem für zufällig gewichtete Zufallsbäume einführen, legen
wir formal exakt fest, wie der Bildraum eines Zufallsbaumes aussieht und welche σ-
Algebra auf dieser Menge die „richtige“ ist. Am Anfang dieser Formalitäten steht die
Frage, was genau ein Baum eigentlich ist.

1.1. Markierte und unmarkierte Bäume
Definition 1.1.1 Unter einem markierten Baum mit Wurzel verstehen wir ein Tupel
t = (Vt, Et, r), wobei

(a) Vt eine Menge ist, genannt Knotenmenge des Baumes,

(b) r ∈ Vt ein ausgezeichnetes Element ist, genannt Wurzel des Baumes, und

(c) Et eine Menge von zwei-elementigen Teilmengen von Vt ist, genannt Kanten-
menge des Baumes.

Zudem muss es zwischen zwei verschiedenen Knoten v, w ∈ Vt genau einen Pfad
von v nach w geben.
Ein Pfad von v nach w ist hierbei eine endliche Folge v0, . . . , vn in Vt mit v0 = v,

vn = w, vi 6= vj für alle i 6= j und {vi, vi−1} ∈ Et für alle i = 1, . . . , n. Wir schreiben
auch v0 → · · · → vn für einen derartigen Pfad, und nennen n die Länge des Pfades
von v nach w.

Einen Baum t = (Vt, Et, r) visualisieren wir dadurch, dass wir uns für jeden Knoten
v ∈ Vt einen Punkt mit Markierung v vorstellen und für jede Kante e = {v, w} ∈ Et
eine Linie zwischen den Punkten v und w. Außerdem muss die Wurzel gekennzeichnet
werden. Abbildung 1.1 zeigt ein Beispiel für diese Visualisierung.
Es scheint naheliegend, dass wir einen Baum t mit allen Bäumen s identifizieren

sollten, deren graphische Visualisierung mit der von t übereinstimmt, obwohl die
Knotenmenge von s aus ganz anderen Elementen besteht. De facto sind derartige
Bäume jedoch unterschiedlich, und Gleichheit zwischen diesen Bäumen herrscht nur
dann, wenn die Knotenmengen tatsächlich übereinstimmen.
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Abbildung 1.1. Der Baum ({1, 2, 3, 4, 5}, {{4, 2}, {4, 5}, {2, 1}, {2, 3}}, 4).

In Definition 1.1.7 werden wir die konkrete Markierung der Knoten vergessen, um
diese Bäume tatsächlich miteinander zu identifizieren.
Dadurch, dass wir einen ausgezeichneten Knoten r gegeben haben, können wir auf

der Knotenmenge Vt auf natürliche Weise eine Ordnung definieren, indem wir für
zwei Knoten vergleichen, auf welchem Pfad wir zur Wurzel r gelangen. Eine exaktere
Auskunft gibt die nächste Definition:

Definition 1.1.2 Sei t = (Vt, Et, r) ein Baum, v, w ∈ Vt, w 6= r mit eindeutigem
Pfad r = v0 → · · · → vn = w von der Wurzel zu dem Knoten w.

(a) Existiert ein 0 ≤ j ≤ n − 1 mit vj = v, so heißt v Vorfahre von w sowie
umgekehrt w ein Nachkomme von v.

(b) Gilt in (a) speziell j = n − 1, so heißt v Mutter von w sowie umgekehrt w
Kind von v. Die Menge aller Kinder von v bezeichnen wir mit Cv. Ist v = r, so
werden wir auch C oder C(t) statt Cr schreiben.

Die oben erwähnte Ordnung ≤ auf Vt erhalten wir, indem wir v ≤ w für alle
Nachkommen w von v und für w = v definieren.
Die Begriffe „Mutter“ und „Kind“ in obiger Definition lassen darauf schließen,

dass wir einen Baum auch als Stammbaum einer Population ansehen. Die Wurzel des
Baumes werden wir auch als Urahnen bezeichnen, jeden Knoten als Individuum. Der
Urahne bildet somit die 0. Generation der Population, die Kinder des Urahnen die
1. Generation der Population, alle Kinder der 1. Generation bilden die 2. Generation
usw.

Definition 1.1.3 Sei t = (Vt, Et, r) ein Baum, v ∈ Vt und n ∈ N0.

(a) v befinde sich in Generation n, falls die Länge des Pfades von r nach v genau
n beträgt. Die Generation der Wurzel r setzen wir hierbei auf 0.

(b) t|n sei der Teilbaum von t, der aus den ersten n Generationen besteht.
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(c) tv sei der Teilbaum von t, der am Knoten v hängt, d. h. die Knotenmenge Vtv
von tv besteht aus v und allen Nachkommen von v, die Wurzel von tv sei v und
die Kantenmenge von tv besteht aus den Kanten von t, welche Knoten aus Vtv
miteinander verbinden.

Weitere interessante Größen für (Zufalls-)Bäume sind die Höhe des Baumes, die
Größe der gesamten Population sowie die Anzahl der Blätter des Baumes.

Definition 1.1.4 Sei t = (Vt, Et, r) ein Baum.

(a) H(t) sei die Höhe des Baumes t, gegeben durch H(t) = inf{n ∈ N0 : t|n = t}.

(b) |t| sei die Anzahl der Knoten des Baumes t, d. h. |t| = |Vt|. |t| nennen wir auch
die Populationsgröße von t.

(c) v ∈ Vt heißt Blatt von t, falls v keine Nachkommen besitzt. Es bezeichne L(t)
die Menge aller Blätter von t. |L(t)| gibt dann die Anzahl der Blätter von t an.

Zurückkehrend zur Interpretation eines Baumes als Stammbaum einer Population
scheint es sinnvoll, wenn wir uns auf diejenigen Bäume t einschränken, bei denen jedes
Individuum nur endlich viele Kinder gebärt. Ein derartiger Baum hat die Eigenschaft,
dass jeder der Bäume t|n, n ∈ N, endlich ist.
Schneiden wir den Baum t ab der Generation n ab, so erhalten wir einen endlichen

Baum. Dies erklärt die Begriffsbildung in der nächsten Definition:

Definition 1.1.5 (a) Ein Baum t = (Vt, Et, r) heißt lokal endlich, wenn jeder
Knoten von t nur endlich viele Kinder besitzt.

(b) Es sei S̃n die Menge aller verwurzelten Bäume mit Knotenmenge {1, . . . , n} und
S̃∞ die Menge aller lokal endlichen, verwurzelten Bäume mit Knotenmenge N.

Ein Resultat von Arthur Cayley aus dem Jahr 1889 gibt Auskunft über die Mäch-
tigkeit von S̃n, d. h. über die Anzahl verwurzelter Bäume mit fester n-elementiger
Knotenmenge.

Satz 1.1.6 (Cayley) Die Menge der unverwurzelten markierten Bäume mit n Knoten
besitzt die Mächtigkeit nn−2. Folglich gilt

|̃Sn| = nn−1, (1.1)

da es für einen unverwurzelten Baum mit n Knoten n verschiedene Möglichkeiten
gibt, diesen zu einem verwurzelten Baum zu machen.

Beweis. Siehe Korollar 4.3 in [14] oder [8] für den ursprünglichen Beweis von Cayley.
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Im Anschluss an Definition 1.1.1 haben wir bereits motiviert, auf welche Art wir
zwei markierte Bäume miteinander identifizieren. Ein weiterer Grund für die Ein-
führung eines Isomorphiebegriffs auf der Menge aller Bäume ist, dass es für viele
graphentheoretische Probleme – das Paarungsproblem eingeschlossen – unerheblich
ist, welche konkrete Markierung der Baum trägt.

Definition 1.1.7 Zwei Bäume t = (Vt, Et, r) und t′ = (Vt′ , Et′ , r′) heißen isomorph,
wenn es eine Bijektion f : Vt → Vt′ mit f(r) = r′ gibt, die

{f(u), f(v)} ∈ Et′ ⇔ {u, v} ∈ Et
erfüllt. Wir schreiben in diesem Fall t ∼= t′. Die Restklasse eines Baumes t bezeichnen
wir mit [t]. f induziert offenbar eine Bijektion f : Et → Et′ .

4

2

1 3

5

5

3

2 4

1 ∼=

Abbildung 1.2. Zwei isomorphe Bäume aus S̃5.

Eine Restklasse [t] nennen wir nun unmarkierten Baum. Wenn wir von der Kan-
tenmenge Vt eines unmarkierten Baumes sprechen, so heißt das stets, dass wir einen
Repräsentanten gewählt haben, dessen Kantenmenge wir betrachten. Ausdrücke der
Form ∏

v∈Vt
g(|Cv|) und

∑
v∈Vt

g(|Cv|) (1.2)

für eine Funktion g : N0 → R werden dadurch wohldefiniert und uns im weiteren
Verlauf einige Male begegnen.
Auch die Höhe von [t], die Teilbäume von [t] bis zur Generation n, die Popula-

tionsgröße von [t] und die Anzahl der Blätter von [t] sind Eigenschaften, die für
unmarkierte Bäume mühelos definiert werden können.

Definition 1.1.8 Für n ∈ N = N ∪ {∞} sei

Sn = {[t] : t ∈ S̃n}. (1.3)

Wir setzen ferner

S̃ =
⋃
n∈N

S̃n und S =
⋃
n∈N

Sn. (1.4)



1.1. Markierte und unmarkierte Bäume 5

Die Menge der endlichen Bäume sei als Sfin definiert, d. h.

Sfin = {t ∈ S : |t| <∞} =
⋃
n∈N
Sn. (1.5)

Die Menge aller unmarkierten, lokal endlichen Bäume S wird der passende Wer-
tebereich für die Zufallsbäume sein, die wir betrachten werden. Bevor wir uns mit
Zufallsbäumen beschäftigen, klären wir zunächst die Frage, ob wir einer Restklasse
[t], t ∈ S̃n, ansehen können, aus wie vielen Elementen sie besteht.
Für t ∈ Sn sei

AS̃(t) = |{t̃ ∈ S̃n : [t̃] = t}|. (1.6)

AS̃(t) gibt demnach an, auf wie viele Arten wir t als einen markierten Baum aus
S̃n darstellen können.
Wir definieren für markierte Bäume t, s und einen Knoten v von t die Zählvariable

Qv(t, s) = |{i ∈ Cv : ti ∼= s}|. (1.7)

Der Ausdruck Qv(t, s) ist nur für markierte Bäume t definiert, weil wir den Knoten
v direkt „ansprechen“.
Wenn wir (1.7) über alle Knoten von t summieren oder multiplizieren, erhalten wir

eine Zahl, die für alle Bäume aus [t] identisch ist (siehe dazu auch (1.2)).
Wir erhalten ebenso einen vom Repräsentanten unabhängigen Ausdruck, wenn wir

(1.7) über alle Knoten v in einer festen Generation summieren oder multiplizieren.
Suchen wir nach einer alternativen Darstellung von (1.6), so ist klar, dass jede der

n! möglichen Belegungen der n Knoten von t mit paarweise verschiedenen Zahlen aus
{1, . . . , n} einen Baum t̃ ∈ S̃n mit [t̃] = t liefert. Die Frage ist, bei wie vielen dieser
Belegungen identische Bäume entstehen.
Um dies zu beantworten, fixieren wir einen Knoten v und betrachten seine Kin-

dermenge Cv. Sind für i, j ∈ Cv die Teilbäume ti und tj isomorph, so liefert die
Transposition (i j) auf jeder Belegung stets denselben Baum. Diese Beobachtung
lässt sich mühelos verallgemeinern:

Lemma 1.1.9 Für t ∈ Sfin gilt

AS̃(t) = n!
∏
v∈Vt

∏
s∈Sfin

1
Qv(t, s)!

. (1.8)

Beweis. Ist eine Belegung der n Knoten von t mit paarweise verschiedenen Zahlen
aus {1, . . . , n} gegeben, so liefert jede Permutation auf der Menge

{i ∈ Cv : [ti] = s},

für festes v ∈ Vt und s ∈ Sfin, die ursprüngliche Belegung. Mit dieser Überlegung
folgt (1.8). Siehe auch Abbildung 1.3 für ein Beispiel.
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3! 2!

2!

1 1

1 1 2!

1 1

1

Abbildung 1.3. Ein Baum t ∈ S10 mit AS̃(t) = 10!
3! 2! 2! 2! = 75600. An jedem Knoten

v ist ∏s∈Sfin Qv(t, s)! notiert.

Wir definieren nun erste Zufallsvariablen mit Werten in S. Dabei nehmen wir die
Existenz eines nicht näher spezifizierten Wahrscheinlichkeitsraumes (Ω,A, P ) an, auf
dem alle in dieser Arbeit vorkommenden Zufallsvariablen definiert sind.
Die Zufallsvariable

T̃n : (Ω,A, P )→ S̃n
wähle gemäß einer Gleichverteilung einen Baum aus der Menge S̃n. Ferner sei

Tn = [ · ] ◦ T̃n : (Ω,A, P )→ Sn
ω 7→ [T̃n(ω)].

Wir beachten, dass Tn nicht gleichverteilt auf Sn ist, sondern

P (Tn = t) = AS̃(t) · n1−n (1.9)

für alle t ∈ Sn gilt.
Die zufälligen Bäume Tn spielen eine wichtige Rolle und lassen sich allgemein in

die Klasse der einfach erzeugten Bäume einordnen (siehe dazu [1] oder [9]). Einen
einfachen Algorithmus zur Simulation einer Gleichverteilung auf der Menge der un-
verwurzelten Bäume mit Knotenmenge {1, . . . , n} gibt das nächste Lemma an.

Lemma 1.1.10 Es seien n ≥ 2 und U2, . . . , Un unabhängige, gleichverteilte Zufalls-
größen auf {1, . . . , n}.

• Für 2 ≤ i ≤ n verbinden wir den Knoten i durch eine Kante mit dem Knoten

Vi = min{Ui, i− 1}.

• Wir wählen gleichverteilt eine Permutation π auf {1, . . . , n} und durchmischen
die Markierung des oben erhaltenen Baumes gemäß π.
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Der deraus resultierende Zufallsbaum T n ist gleichverteilt auf der Menge der unver-
wurzelten Bäume mit Knotenmenge {1, . . . , n}, d. h. es gilt

P (T n = t) = n2−n

für jeden unverwurzelten Baum t = ({1, . . . , n}, Vt).

Beweis. Siehe Proposition 3 in [1].

Alternativ können wir jeden konstruktiven Beweis des Satzes von Cayley (Satz
1.1.6) nutzen, um einen Algorithmus zur Simulation einer Gleichverteilung auf der
Menge der unverwurzelten Bäume zu finden. Erwähnt sei hierbei der von Heinz Prü-
fer entdeckte und nach ihm benannte Prüfer-Code, der eine Bijektion zwischen der
Menge {1, . . . , n}n−2 und der Menge der unverwurzelten Bäume mit Knotenmenge
{1, . . . , n} beschreibt. Für Details verweisen wir auf [16].
In Satz 1.2.12 werden wir sehen, dass wir die Verteilung von Tn auch erhalten,

indem wir einen gewissen Galton-Watson-Baum darunter bedingen, dass er aus n
Knoten besteht.
Dies deutet an, dass wir Zufallsvariablen betrachten, die nicht nur Werte in einer

diskreten Teilmenge von S annehmen, sondern in ganz S. Um von Messbarkeit von
Abbildungen mit Bildraum S sprechen zu können, benötigen wir eine σ-Algebra auf
S, die hier durch eine Metrik induziert werden kann.
Für die nächste Definition legen wir ∞−1 = 0 als Konvention fest.

Satz 1.1.11 Durch dS : S × S → [0, 1] mit

dS(t, t′) = (1 + sup{n ∈ N0 : t|n = t′|n})−1 (1.10)

wird S zu einem polnischen Raum, d. h. zu einem vollständigen, separablen metri-
schen Raum. Eine abzählbare dichte Teilmenge von S ist durch Sfin gegeben.

Bemerkung 1.1.12 (a) Gilt für t, s ∈ S und k ∈ N0 die Ungleichung

dS(t|k, s|k) ≤ (1 + k)−1,

folgt t|k = s|k. Sind t und s endlich, und lässt sich k ≥ H(t) ∨H(s) wählen, so
folgt offenbar t = s.

(b) Wie in (1.10) wird S̃ via dS̃ zu einem polnischen Raum. Die Restklassenpro-
jektion [ · ] ist dann eine stetige Abbildung, denn die Topologie auf S ist die
Quotiententopologie von S̃ bzgl. ∼=.

Beweis von Satz 1.1.11. Die Symmetrie von dS und die Eigenschaft

dS(t, t′) = 0 ⇔ t = t′
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sind offenkundig erfüllt. Für den Nachweis der Dreiecksungleichung seien t, t′, t′′ ∈ S.
Dann gilt

sup{n ∈ N0 : t|n = t′′|n} ≥ sup{n ∈ N0 : t|n = t′|n} ∧ sup{n ∈ N0 : t′|n = t′′|n}

und folglich

dS(t, t′′) ≤ (1 + sup{n ∈ N0 : t|n = t′|n} ∧ sup{n ∈ N0 : t′|n = t′′|n})−1

= dS(t, t′) ∨ dS(t′, t′′)
≤ dS(t, t′) + dS(t′, t′′).

Die Menge Sfin = ∪n∈N Sn ist als abzählbare Vereinigung endlicher Mengen abzähl-
bar und für t ∈ S gilt dS(t, t|n) = (1 + n)−1 → 0, welches zusammen mit t|n ∈ Sfin
für alle n ≥ 1 die Dichtheit von Sfin ⊆ S und die Separabilität von S zeigt.
Für den Nachweis der Vollständigkeit sei (tn)n∈N eine Cauchy-Folge in S und k ∈

N0. Dann gilt

dS((tn)|k, (tm)|k) ≤ dS((tn)|k, tn) + dS(tm, tn) + dS((tm)|k, tm)
= 2 · (1 + k)−1 + dS(tm, tn) n,m→∞−→ 2 · (1 + k)−1.

Für jedes k ∈ N0 wird aufgrund der Bemerkung 1.1.12 (a) die Folge ((tn)|k)n∈N
konstant, etwa gegen t(k). Offenbar gilt für alle l ≤ k die Gleichheit

t(k)|l = t(l),

und somit existiert ein Baum t mit t|k = t(k) für alle k ∈ N0. Insgesamt folgt tn → t
für n→∞.

Definition 1.1.13 Für einen topologischen Raum (X,T) sei B(X) die kleinste σ-Al-
gebra auf X, welche alle offenen Mengen enthält. B(X) heißt die Borelsche σ-Algebra
auf X.

Einer Zufallsvariablen mit Werten in S bzw. S̃ unterstellen wir ab sofort die Mess-
barkeit bzgl. B(S) bzw. B(S̃). Diese Variable nennen wir auch zufälligen unmarkier-
ten Baum bzw. zufälligen markierten Baum.
Für den Nachweis der Messbarkeit einer Abbildung ist es von Vorteil, wenn wir

einen „möglichst einfachen“ Erzeuger der σ-Algebra kennen. Im Falle eines separablen
metrischen Raumes ist ein dementsprechender Erzeuger stets durch das System aller
ε-Bälle gegeben. In S können wir diese Bälle einfach beschreiben.

Lemma 1.1.14 Für t ∈ S und n ∈ N0 sei

[t]n = {t′ ∈ S : t|n = t′|n}. (1.11)

Dann bildet
E = {∅} ∪ {[t]n : t ∈ S, n ∈ N0}

einen ∩-stabilen Erzeuger von B(S).
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Beweis. Für t ∈ S und ε > 0 sei

Bε(t) = {t′ ∈ S : dS(t, t′) < ε},

der offene ε-Ball um t.
Da dS nur Werte in der abzählbaren Menge {0} ∪ {(1 + k)−1 : k ∈ N0} annimmt

und Bε(t) = S für alle ε > 1 erfüllt ist, gilt

{Bε(t) : t ∈ S, ε > 0} = {B(1+k)−1(t) : t ∈ S, k ∈ N0} ∪ {S}
= {[t]k : t ∈ S, k ∈ N0},

wobei sich die zweite Gleichung mittels [t]0 = S und

t′ ∈ Bk−1(t) ⇔ sup{n ∈ N0 : t|n = t′|n} > k − 1 ⇔ t|k = t′|k ⇔ t′ ∈ [t]k

für alle k ∈ N ergibt.
Es folgt nun σ(E) = B(S), denn in einem separablen Raum lässt sich jede nichtleere

offene Menge als abzählbare Vereinigung von ε-Bällen schreiben. Für den Nachweis
der ∩-Stabilität seien t, t′ ∈ S und j ≥ k ≥ 0. Dann gilt

[t]j ∩ [t′]k = {s ∈ S : s|j = t|j, s|k = t′|k} =

[t]j, falls t|k = t′|k,

∅, falls t|k 6= t′|k.

Bemerkung 1.1.15 Die offenen ε-Bälle um t sind durch die Mengen [t]k, k ∈ N0,
gegeben und zudem abgeschlossen.
Der Grund dafür liegt darin, dass dS eine Ultra-Metrik ist, d. h. es gilt die ver-

schärfte Dreiecksungleichung

dS(t, t′) ≤ dS(t, t′′) ∨ dS(t′, t′′)

für alle t, t′, t′′ ∈ S.
Ferner haben wir im Beweis gesehen, dass zwei ε-Bälle entweder disjunkt oder inein-

ander enthalten sind. Diese spezielle Topologie vereinfacht den Begriff der schwachen
Konvergenz auf S, den wir als nächstes definieren werden.

Definition 1.1.16 Es sei (X,T) ein topologischer Raum und µ, (µn)n∈N endliche Ma-
ße auf (X,B(X)). Es bezeichne Cb(X) die Menge aller stetigen, beschränkten Funk-
tionen X→ R.

(a) µn konvergiert schwach gegen µ, falls

lim
n→∞

∫
X
f dµn =

∫
X
f dµ

für alle f ∈ Cb(X) gilt. Wir schreiben in diesem Fall auch µn w→ µ.
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(b) Sind X, (Xn)n∈N Zufallsvariablen mit Werten in X, so konvergiert Xn in Ver-
teilung gegen X, falls P (Xn ∈ · ) schwach gegen P (X ∈ · ) konvergiert. Wir
schreiben in diesem Fall auch Xn

d→ X.

Eine wichtige Charakterisierung der schwachen Konvergenz gibt das Portmanteau-
Theorem.

Satz 1.1.17 (Portmanteau-Theorem) Es sei X ein metrischer Raum und µ, (µn)n∈N
endliche Maße auf (X,B(X)). Dann sind äquivalent:

(a) µn w→ µ.

(b) lim
n→∞

µn(X) = µ(X) und für jede abgeschlossene Menge A ⊆ X gilt

lim sup
n→∞

µn(A) ≤ µ(A).

(c) lim
n→∞

µn(X) = µ(X) und für jede offene Menge B ⊆ X gilt

lim inf
n→∞

µn(B) ≥ µ(B).

(d) Für jedes C ∈ B(X) mit µ(∂C) = 0 gilt lim
n→∞

µn(C) = µ(C).

Beweis. Siehe Theorem 3.25 in [11].

Sind µ, (µn)n∈N als Wahrscheinlichkeitsmaße vorausgesetzt, so ist trivialerweise die
Bedingung µn(X)→ µ(X) erfüllt. Ist X = S, so vereinfacht sich das Theorem erneut,
denn hier genügt es die Mengen [t]k aus (1.11) zu untersuchen.

Korollar 1.1.18 Es seien X∞, (Xn)n∈N zufällige unmarkierte Bäume. Dann sind
äquivalent:

(a) Xn
d→ X∞.

(b) lim
n→∞

P (Xn ∈ [t]k) = P (X∞ ∈ [t]k) für alle t ∈ S, k ≥ 1.

(c) lim inf
n→∞

P (Xn ∈ [t]k) ≥ P (X∞ ∈ [t]k) für alle t ∈ S, k ≥ 1.

Beweis. „(a)⇒ (b)“: Aufgrund der Bemerkung 1.1.15 ist [t]k offen und abgeschlossen.
Mit Hilfe des Portmanteau-Theorems folgt dann (b).
„(b) ⇒ (c)“: Klar.
„(c) ⇒ (a)“: Da S separabel ist, lässt sich jede nichtleere offene Menge A ⊆ S

als höchstens abzählbare Vereinigung von ε-Bällen schreiben, d. h. es existiert eine
Menge I ⊆ N, Bäume (ti)i∈I und Zahlen (ki)i∈I mit

A =
⋃
i∈I

[ti]ki .
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Unter Beachtung der Bemerkung 1.1.15 können wir annehmen, dass diese Vereinigung
aus paarweise disjunkten Mengen besteht. Dann folgt mit Hilfe von (c) und Fatous
Lemma (siehe Lemma 9.12 in [6])

lim inf
n→∞

P (Xn ∈ A) = lim inf
n→∞

∑
i∈I

P (Xn ∈ [ti]ki)

≥
∑
i∈I

lim inf
n→∞

P (Xn ∈ [ti]ki)

≥
∑
i∈I

P (X∞ ∈ [ti]ki)

= P (X∞ ∈ A)

und mit Portmanteau wiederum die Behauptung.

Betrachten wir zufällige unmarkierte Bäume mit Werten in der abzählbaren Menge
Sfin, so genügt es, für die Verteilungskonvergenz P (Xn = t) → P (X∞ = t) für alle
t ∈ Sfin nachzuweisen.

Korollar 1.1.19 Es seien X∞, (Xn)n∈N zufällige unmarkierte Bäume mit Werten in
Sfin. Dann sind äquivalent:

(a) Xn
d→ X∞.

(b) lim
n→∞

P (Xn = t) = P (X∞ = t) für alle t ∈ Sfin.

Beweis. „(a) ⇒ (b)“: Wir wählen k = H(t) in Korollar 1.1.18 (b).
„(b) ⇒ (a)“: Da (Xn)n∈N eine Folge endlicher Zufallsbäume mit Werten in der

abzählbaren Menge Sfin ist, gilt

P (Xn ∈ [t]k) =
∑

s∈Sfin∩[t]k

P (Xn = s)

für alle t ∈ S, k ≥ 1, n ∈ N. Eine erneute Anwendung des Lemmas von Fatou zeigt

lim inf
n→∞

P (Xn ∈ [t]k) = lim inf
n→∞

∑
s∈Sfin∩[t]k

P (Xn = s)

≥
∑

s∈Sfin∩[t]k

lim inf
n→∞

P (Xn = s)

(b)=
∑

s∈Sfin∩[t]k

P (X∞ = s)

= P (X∞ ∈ [t]k),

und (a) folgt mit Korollar 1.1.18.
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Korollar 1.1.20 Es seien X∞, (Xn)n∈N zufällige unmarkierte Bäume. Wir setzen
Xk
n = (Xn)|k für alle k ∈ N und n ∈ N. Dann sind äquivalent:

(a) Xn
d→ X∞.

(b) Xk
n

d→ Xk
∞ für alle k ≥ 1.

Beweis. Die Behauptung folgt durch eine Kombination der vorangegangenen Korol-
lare und der Beobachtung {Xk

n = t|k} = {Xn ∈ [t]k} für alle t ∈ S, k ∈ N und
n ∈ N.

Die Topologie von S gibt der schwachen Konvergenz auf S einen lokalen Charakter.
Daher wird in der Literatur die Bezeichnung local weak convergence verwendet.
Da die Definition Xn

d→ X∞ ausschließlich von den Verteilungen der Variablen
abhängt, stellt sich die Frage, ob wir nicht auch Variablen X ′n, n ∈ N, konstruieren
können, die Xn ∼ X ′n erfüllen, und für die eine stärkere Konvergenz vorliegt. Das
folgende Theorem gibt eine positive Antwort auf diese Frage.

Theorem 1.1.21 Sind X∞, (Xn)n∈N Zufallsvariablen auf (Ω,A, P ) mit Werten in
einem polnischen Raum und konvergiert Xn in Verteilung gegen X∞, so existieren
Zufallsvariablen (X ′n)n∈N auf einem geeigneten Wahrscheinlichkeitsraum (Ω′,A′, P ′)
derart, dass Xn ∼ X ′n für alle n ∈ N und X ′n → X ′∞ P ′-fast sicher gilt.

Beweis. Siehe Theorem 3.30 in [11].

Der Nutzen dieses Theorems in der Theorie kann nicht genug herausgestellt werden.
Ein treffendes Beispiel für seine Anwendung ist der folgende Satz.

Satz 1.1.22 Sind X∞, (Xn)n∈N Zufallsvariablen auf (Ω,A, P ) mit Werten in einem
polnischen Raum und konvergiert Xn gegen X∞ in Verteilung, so konvergiert auch
f(Xn) für jede PX∞-f. s. stetige Funktion f in Verteilung gegen f(X∞).

Beweis. In Anbetracht des Theorems 1.1.21 lässt sich ohne EinschränkungXn → X∞
f. s. voraussetzen. Daraus folgt f(Xn)→ f(X∞) f. s. (siehe Lemma 34.3 in [6]) und die
Behauptung, da fast sichere Konvergenz die Konvergenz in Verteilung impliziert.

Ist eine Folge von Zufallsbäumen (Xn)n∈N mit Xn
d→ X∞ gegeben, so konvergieren

beispielsweise auch
(a) |Xn|,

(b) H(Xn),

(c) Zk(Xn) = Anzahl der Individuen von Xn in festen Generation k, und

(d) |L(Xn)|
für n → ∞ in Verteilung gegen |X∞|, H(X∞), Zk(X∞) und |L(X∞)|, denn alle
auftretenden Abbildungen sind stetig.



1.2. Galton-Watson-Bäume 13

1.2. Galton-Watson-Bäume
In diesem Abschnitt führen wir eine wichtige Klasse von Zufallsbäumen ein, die Gal-
ton-Watson-Bäume. Während Tn eher aus kombinatorischer Sicht interessant ist,
sind Galton-Watson-Bäume biologisch motiviert: Stellen wir uns eine Population mit
einem Urahnen vor, in der sich jedes Individuum gemäß einer Verteilung (pj)j∈N0

vermehrt, so erhalten wir einen zufälligen Stammbaum, also eine Zufallsvariable mit
Werten in S.
Über einen Umweg gelangen wir zu der Definition dieses Zufallsbaumes: Die Werte

der Zufallsvariable sind zunächst Teilmengen des Ulam-Harris-Baumes

V =
⋃
n∈N0

Nn, (1.12)

wobei N0 = {∅} gesetzt wird. ∅ ist das Symbol, welches den Urahnen kennzeichnet.
Zur Übersichtlichkeit werden wir für ein Element (v1, . . . , vn) ∈ Nn auch v1 . . . vn

schreiben. Die elementaren Definitionen und Sätze dieses Abschnittes lassen sich in
[7] wieder finden.

Definition 1.2.1 Eine Teilmenge τ ⊆ V heißt Baum, falls folgendes gilt:

(a) ∅ ∈ τ ,

(b) Aus v1 . . . vn ∈ τ folgt v1 . . . vk ∈ τ für alle 1 ≤ k < n und alle n ≥ 1,

(c) Aus v1 . . . vn−1vn ∈ τ folgt v1 . . . vn−1j ∈ τ für alle 1 ≤ j < vn und alle n ≥ 1.

Ein Baum heißt – wie zuvor auch – lokal endlich, wenn jedes Individuum nur endlich
viele Kinder besitzt. Für τ ⊆ V halten wir diese Bedingung als

|τ ∩ Nn| <∞ für alle n ≥ 1

fest.

Ein Baum τ ⊆ V induziert einen Baum im Sinne von Definition 1.1.1, indem
wir die Knotenmenge als τ und die Wurzel als ∅ setzen, und die Kantenmenge Eτ
dadurch gegeben ist, dass wir jeden Knoten v1 . . . vn ∈ τ mit seiner Mutter v1 . . . vn−1
verbinden, die definitionsgemäß in τ enthalten ist (siehe auch Abbildung 1.4 für ein
Beispiel).
Wir setzen

T = {τ ⊆ V : τ ist ein lokal endlicher Baum},
Tn = {τ ∈ T : |τ | = n} und

Tfin = {τ ∈ T : |τ | <∞} = {τ ⊆ V : τ ist ein endlicher Baum}.
(1.13)
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∅

1

(1, 1) (1, 2)

(1, 2, 1)

2 3

(3, 1)

(3, 1, 1) (3, 1, 2)

Abbildung 1.4. Ein Baum aus T.

Die Bäume aus T unterscheiden sich von denen aus S darin, dass die Kindermenge
jedes Knotens geordnet ist. In der Literatur ist deshalb auch von verwurzelten, ge-
ordneten Bäumen die Rede. Es ist also für jeden Knoten v von Bedeutung, in welcher
Reihenfolge die Teilbäume τw, w ∈ Cv, an der Mutter v hängen.
Den bereits bekannten Isomorphiebegriff aus Definition 1.1.7 führen wir auch für

Bäume aus T ein, um die Markierung und Anordnung zu „vergessen“. Den Quotienten
T modulo Isomorphie identifizieren wir mit S. Da es keine Probleme bereitet, werden
wir die Restklassenprojektion T→ S auch mit [ · ] bezeichnen.
Analog zu AS̃(t) in (1.6) definieren wir für jeden Baum t ∈ Sfin die Zählvariable

AT(t) als die Anzahl der Bäume τ ∈ T mit [τ ] = t, d. h.

AT(t) = |{τ ∈ T : [τ ] = t}|. (1.14)

Genau wie für AS̃(t) in Lemma 1.1.9 suchen wir eine Produktdarstellung für AT(t).

Lemma 1.2.2 Für alle t ∈ Sfin gilt

AT(t) =
∏
v∈Vt
|Cv|!

∏
s∈Sfin

1
Qv(t, s)!

. (1.15)

Beweis. Gemäß Definition 1.2.1 (a) kann die Wurzel r von t nur die Markierung
∅ erhalten. Die |Cr| Kinder der Wurzel müssen mit den Zahlen 1 bis |Cr| versehen
werden. Dafür gibt es |Cr|! Möglichkeiten, wobei bei jeder derartigen Belegung ein
identischer Baum entsteht, wenn die Markierung innerhalb der Menge {i ∈ Cr : [ti] =
s}, für ein festes s ∈ Sfin, identisch ist.
Sukzessiv setzen wir dies für jeden Knoten v fort und erhalten dann (1.15).

Alle Bezeichnungen, die wir für Bäume aus S bereits eingeführt haben, verwenden
wir auch für Bäume aus T, und so wie wir S in Satz 1.1.11 mit der Metrik dS versehen
haben, lässt sich auch eine Metrik auf T definieren.
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Abbildung 1.5. t aus Abbildung 1.3. Es ist AT(t) = 10 und AS̃(t) = 75600.

Satz 1.2.3 (a) Durch dT : T× T→ [0, 1] mit

dT(τ, τ ′) = (1 + sup{n ∈ N0 : τ|n = τ ′|n})−1

wird T zu einem polnischen Raum und [ · ] : T→ S zu einer stetigen Abbildung.

(b) ET = {∅} ∪ {[τ ]n : τ ∈ T, n ∈ N0} ist ein ∩-stabiler Erzeuger von B(T).

Beweis. Analog zu den Beweisen aus Satz 1.1.11 und Lemma 1.1.14 folgen die Be-
hauptungen.

Wir kommen nun zur Definition des Galton-Watson-Baumes GW als Zufallsvariable
mit Werten in (T,B(T)), bei gegebener Reproduktionsverteilung (pj)j∈N0 auf N0.
Sei {Xv : v ∈ V} eine Familie von unabhängigen, nach (pj)j∈N0 verteilten Zufalls-

größen auf dem Wahrscheinlichkeitsraum (Ω,A, P ). Wir definieren

GW =
⋃
n≥0

GWn (1.16)

durch GW0 = {∅} und

GWn = {v1 . . . vn ∈ Nn : v1 . . . vn−1 ∈ GWn−1 und 1 ≤ vn ≤ Xv1...vn−1}.

Offensichtlich ist GW eine T-wertige Abbildung und wir nennen GW den Galton-
Watson-Baum mit Reproduktionsverteilung (pj)j∈N0 . Den Erwartungswert

µ =
∞∑
j=1

j · pj

der Reproduktionsverteilung bezeichnen wir als Reproduktionsmittel.
Das nächste Lemma klärt, dass es sich bei GW tatsächlich um eine messbare Ab-

bildung handelt.

Lemma 1.2.4 Die Abbildung GW : (Ω,A, P )→ T ist A-B(T)-messbar. Folglich ist
die Komposition

[GW] : (Ω,A, P ) GW−→ T [ · ]−→ S
A-B(S)-messbar.
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Beweis. Gemäß Satz 1.2.3 (b) genügt es GW−1(ET) ⊆ A zu zeigen.
Es sei A = [τ ]n für ein τ ∈ T und n ∈ N0. Mit τj = τ ∩ Nj für j ∈ N0 und |v| = n

für v = v1 . . . vn ∈ V gilt dann

GW−1(A) = {ω ∈ Ω : GW|n(ω) = τ|n}

=
n⋂
j=1
{ω ∈ Ω : GWj(ω) = τj}

∈ σ({Xv : |v| ≤ n− 1}) ⊆ A.

Das Lemma berechtigt, von den Verteilungen von GW und [GW] zu sprechen. Ge-
geben, dass die Wurzel k Kinder besitzt, scheint aufgrund des rekursiven Aufbaus
von GW klar zu sein, dass die Teilbäume, die an den Kindern der Wurzeln hängen,
stochastisch unabhängig voneinander und gemäß GW verteilt sind.

Lemma 1.2.5 Seien GW, X = X∅ wie in Definition (1.16) und T = [GW] sowie
pk > 0. Gegeben X = k, ist die Familie {T i : 1 ≤ i ≤ k} bedingt stochastisch
unabhängig und jede Variable T i genauso verteilt wie T .

Beweis. Siehe Satz 2.3 in [7].

Eine naheliegende Frage ist, mit welcher Wahrscheinlichkeit die Population eines
Galton-Watson-Baumes ausstirbt. Übersetzen wir diese in das gegebene mathemati-
sche Modell, so suchen wir nach der Aussterbewahrscheinlichkeit

q = P (GW ∈ Tfin) = P ([GW] ∈ Sfin). (1.17)

Eine Untersuchung der erzeugenden Funktion f der Reproduktionsverteilung be-
antwortet die Frage größtenteils. Allerdings sollte nicht verschwiegen werden, dass
eine genaue Angabe von q im Fall (b) nur in seltenen Fällen möglich ist.

Satz 1.2.6 Die Aussterbewahrscheinlichkeit q ist der kleinste Fixpunkt von f in
[0, 1]. Setzen wir 0 < p0 ≤ p0 + p1 < 1 voraus, so gelten die folgenden Implikationen:

(a) µ ≤ 1⇒ f hat keinen Fixpunkt in [0, 1) und folglich ist q = 1,

(b) µ > 1⇒ f hat genau einen Fixpunkt in [0, 1) und es gilt p0 < q < 1.

Beweis. Siehe Satz 3.1 in [7] oder Theorem 2.1.1 in [12].

Ist das Reproduktionsmittel µ ≤ 1 und p1 6= 1, so stirbt die Population fast sicher
aus. In diesem Fall nimmt GW fast sicher Werte in Tfin an. Der Satz gibt Anlass zu
einer Definition.

Definition 1.2.7 Ein Galton-Watson-Baum mit Reproduktionsverteilung (pj)j∈N0

und Reproduktionsmittel µ = ∑∞
j=1 j · pj heißt
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(a) subkritisch, falls µ < 1,

(b) kritisch, falls µ = 1, und

(c) superkritisch, falls µ > 1 gilt.

Der Grund für die Unterscheidung der Fälle µ = 1 und µ < 1 liegt darin, dass z. B.
Aussagen über die Aussterbegeschwindigkeit in beiden Fällen variieren.
Unser Interesse gilt einer besonderen Reproduktionsverteilung, der Poisson-Vertei-

lung mit Erwartungswert µ = 1.

Definition 1.2.8 Sei (pj)j∈N0 ∼ Poi(1), d. h. pj = (e ·j!)−1 für alle j ∈ N0. Sei ferner
GW ein Galton-Watson-Baum mit Reproduktionsverteilung (pj)j∈N0 . Wir definieren
die Verteilung

PGW(1) (1.18)

auf Sfin als die Verteilung von [GW].

Der Grund für unser Interesse liegt darin: Ist T ∼ PGW(1), so gilt

P (T ∈ · | |T | = n) = P (Tn ∈ · ) (1.19)

für alle n ∈ N. Bedingt darunter, dass die Gesamtpopulation von T aus n Individuen
besteht, ist T genauso verteilt wie die in (1.9) definierten Zufallsbäume Tn. Um dies
einzusehen, bedarf es einiger Vorbereitungen.

Satz 1.2.9 (Dwass) Sei GW ein Galton-Watson-Baum mit Reproduktionsverteilung
(pj)j∈N0 und (Ni)i∈N eine Folge unabhängiger, jeweils nach (pj)j∈N0 verteilter Zufalls-
größen. Dann gilt für alle n ∈ N

P (|GW| = n) = n−1 · P (N1 + · · ·+Nn = n− 1), (1.20)

sowie P (|GW| =∞) = 1− q.

Beweis. Siehe Kapitel I, Satz 10.1 in [5] oder Theorem 6.3 in [9].

Eine zusätzlich Anmerkung ist, dass die Verteilung von |GW| beim Übergang nach
S unverändert bleibt, da die Knotenanzahl eines Baum invariant unter Isomorphie
ist, d. h. mit T = [GW] gilt

P (|GW| ∈ · ) = P (|T | ∈ · ).

Wenden wir Satz 1.2.9 auf die für uns interessante PGW(1)-Verteilung an, so
erhalten wir das folgende:
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Korollar 1.2.10 Ist T ∼ PGW(1), so gilt für alle n ≥ 1

P (|T | = n) = nn−1

n! · e
−n. (1.21)

Beweis. Ist (Ni)i∈N eine Folge unabhängiger Zufallsgrößen mit Ni ∼ Poi(1) für alle
i ∈ N, so gilt aufgrund von (1.20) und N1 + · · ·+Nn ∼ Poi(n)

P (|T | = n) = n−1 · Poi(n)({n− 1})

= n−1 · nn−1

(n− 1)! · e
−n

= nn−1

n! · e
−n.

Lemma 1.2.11 Ist T ∼ PGW(1), so gilt

P (T = t) =
AS̃(t)
n! · e−n (1.22)

für alle t ∈ Sn.

Beweis. Es bezeichne GW den zu T gehörigen Galton-Watson-Baum mit Werten in
T. Es sei τ ∈ T ein fester Baum mit [τ ] = t. Dann gilt offenbar

P (T = t) = AT(t) · P (GW = τ). (1.23)

Da sich die Individuen v ∈ τ unabhängig voneinander gemäß einer Poi(1)-Verteilung
vermehren, gilt

P (GW = τ) =
∏
v∈τ

Poi(1)(|Cv|) =
∏
v∈τ

1
|Cv|! · e

= e−n
∏
v∈τ

1
|Cv|!

= e−n
∏
v∈Vt

1
|Cv|!

Aus Lemma 1.1.9 und Lemma 1.2.2 ergibt sich

∏
v∈Vt

1
|Cv|!

=
AS̃(t)

n! · AT(t)
und das Einsetzen in (1.23) liefert die Behauptung (1.22).

Nun verifizieren wir das in (1.19) angekündigte Resultat:

Satz 1.2.12 Ist T ∼ PGW(1), so gilt für alle n ≥ 1

P (T ∈ · | |T | = n) = P (Tn ∈ · ). (1.24)

Beweis. Ist t ∈ Sn, so folgt mit Korollar 1.2.10, Lemma 1.2.11 und (1.9)

P (T = t | |T | = n) = P (T = t)
P (|T | = n) = AS̃(t) · n1−n = P (Tn = t).
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Bemerkung 1.2.13 Ist (pj)j∈N0 ∼ Geo
(

1
2

)
, d. h. pj =

(
1
2

)j+1
, und GW der zugehö-

rige Galton-Watson-Baum mit Werten in T, so können wir analog – wie in Korollar
1.2.10 und Lemma 1.2.11 –

P (GW = τ) =
(1

2

)2n−1
für alle τ ∈ Tn und

P (|GW| = n) =
(1

2

)2n−1
·
(

2 · (n− 1)
n− 1

)
· 1
n
für alle n ∈ N

(1.25)

einsehen. Da P (GW = τ) von τ nur über |τ | abhängt, folgt unmittelbar

P (GW ∈ · | |GW| = n) = Uniform(Tn). (1.26)

Hierbei sei Uniform(Tn) die Gleichverteilung auf Tn. Aus (1.25) und (1.26) lässt sich
|Tn|, die Anzahl aller verwurzelten, geordneten Bäume mit n Knoten, ablesen. Es
gilt

|Tn| =
(

2 · (n− 1)
n− 1

)
· 1
n
,

auch besser bekannt als (n− 1)-te Catalan-Zahl.

Verbinden wir eine unabhängige Folge von PGW(1)-Bäumen entlang ihrer Wur-
zeln, so erhalten wir einen weiteren wichtigen Zufallsbaum, der gerade der Vertei-
lungslimes der Tn ist. Um das „Verbinden“ mathematisch zu formulieren, definieren
wir:

Definition 1.2.14 Sei (bn)n∈N eine Folge von Bäumen aus S, und für n ∈ N sei
sn = (Vn, En, rn) ein Repräsentant von bn derart, dass (Vn)n∈N eine Folge paarweiser
disjunkter Mengen ist. Es sei

∞⊔
i=1

bi ∈ S (1.27)

die Restklasse des Baumes

(
⋃
n∈N

Vn,
⋃
n∈N

En ∪
⋃
n∈N
{rn, rn+1}, r1).

Für eine Folge von Zufallsbäumen (Bn)n∈N sei t∞i=1Bi punktweise wie in (1.27) defi-
niert.

Wir beachten, dass t∞i=1 bi unabhängig von der Wahl der Repräsentanten ist, und
dass die Reihenfolge der bi eine Rolle spielt, da z. B. die Wurzel von t∞i=1 bi der Wurzel
von b1 entspricht (siehe auch Abbildung 1.6).
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b1 b2 b3

Abbildung 1.6. Der Baum t∞i=1 bi.

Definition 1.2.15 Für eine unabhängige Folge (Bn)n∈N mit Bn ∼ PGW(1) für alle
n ∈ N, definieren wir

PGW∞(1) (1.28)

als die Verteilung von t∞i=1Bi.

Ist in (1.27) jedes bi ein endlicher Baum, so ist t∞i=1 bi ein Baum, der einen ein-
deutigen, unendlich langen, in der Wurzel startenden Pfad besitzt. In Abschnitt 3.2
untersuchen wir die Menge dieser Bäume genauer.
Wir merken an, dass die Verteilung PGW∞(1) nur Masse in dieser speziellen Bäu-

memenge besitzt, da jede der Variablen Bi nach PGW(1) verteilt ist und somit fast
sicher ausstirbt.

1.3. Grimmetts Lemma
Die Folge (Tn)n∈N sei wie in (1.9) gegeben. Grimmetts Lemma stellt die Verbindung
zwischen den ersten beiden Abschnitten her.

Satz 1.3.1 (Grimmetts Lemma) Es sei T∞ ∼ PGW∞(1). Mit T kn = (Tn)|k gilt

T kn
d−→ T k∞ für n→∞

für alle k ≥ 1. Das Korollar 1.1.20 impliziert

Tn
d−→ T∞ für n→∞.

Beweis. Wir verzichten an dieser Stelle auf einen Beweis. Verifizieren werden wir die
Aussage in Kapitel 3, Satz 3.2.8. Für den ursprünglichen Beweis von Grimmett siehe
Theorem 3 in [10].

Als nächstes untersuchen wir die Verteilungskonvergenz gewisser Teilbäume von
Tn gegen Teilbäume von T∞. Für t ∈ S und Kindermenge C der Wurzel sei

mt = max{|ti| : i ∈ C} und
Cmax(t) = {tj : j ∈ C mit |tj| = mt}.

(1.29)
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Die Zufallsvariable tmax : (Ω,A, P ) → S wähle gleichverteilt einen Baum aus
Cmax(t). Entfernen wir den Teilbaum tmax von t, so erhalten wir einen Baum tcmax,
der wieder in der Wurzel von t verwurzelt ist.
Anschließend nennen wir die beiden Bäume tmax und tcmax in tsmall bzw. tbig um, je

nachdem, welcher der beiden Teilbäume aus mehr Knoten besteht. Im Gleichheitsfall
werfen wir eine Münze, d. h.

tsmall =


tmax auf |tmax| < |tcmax|
tcmax auf |tmax| > |tcmax|
X · tmax + (1−X) · tcmax auf |tmax| = |tcmax|

(1.30)

und

tbig =


tmax auf |tmax| > |tcmax|
tcmax auf |tmax| < |tcmax|
(1−X) · tmax +X · tcmax, auf |tmax| = |tcmax|,

(1.31)

mit einer Zufallsgröße X ∼ B(1, 1/2), die unabhängig von tmax sei. Siehe Abbildung
1.7 für ein Beispiel.

tsmall

tbig

Abbildung 1.7. Baum t mit tsmall und tbig visualisiert. Hier gilt tmax = tsmall.

Für einen Zufallsbaum T definieren wir T small und T big punktweise, wie in (1.30)
und (1.31) beschrieben. Alle auftretenden Münzwürfe und Gleichverteilungen seien
unabhängig voneinander und unabhängig von T .

Lemma 1.3.2 Ist T∞ ∼ PGW∞(1), so sind T small
∞ und T big

∞ unabhängig, und es gilt

T small
∞ ∼ PGW(1) bzw. Tbig

∞ ∼ PGW∞(1).
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Beweis. Die Behauptung folgt direkt aus der Konstruktion der PGW∞(1)-Verteilung.
Der Teilbaum T j∞, j ∈ C, der den unendlichen Pfad enthält, besitzt stets unendlich
viele Knoten. Der restliche Teil von T∞ besteht P -fast sicher nur aus endlich vielen
Knoten, d. h. es gilt mit den Bezeichnungen aus Definition 1.2.15

T small
∞ = B1 ∼ PGW(1) und

T big
∞ =

∞⊔
i=2

Bi ∼ PGW∞(1).

Die Unabhängigkeit von T small
∞ und T big

∞ ist damit ebenso klar.

Lemma 1.3.3 Seien t, (tn)n∈N Bäume aus S mit tn → t und t besitze einen eindeu-
tigen größten Teilbaum tj, j ∈ C, d. h. es gelte

|Cmax(t)| = 1. (1.32)

Dann gilt |Cmax(tn)| = 1 für fast alle n, d. h. wir können tsmall
n und tbig

n als Elemente
von S ansehen, und es gilt

tsmall
n → tsmall und tbig

n → tbig.

Beweis. Aufgrund von (1.32) gilt insbesondere |tsmall| < ∞. Damit können wir ein
k0 ∈ N finden, so dass

tsmall = (t|k)small (1.33)

für alle k ≥ k0 gilt. Wir wählen dafür ein k0 mit |(t|k0)big| > |tsmall|, das nach Voraus-
setzung existiert.
Aus tn → t folgt, dass die Folge ((tn)|l)n∈N für jedes l konstant t|l wird. Demnach

gilt |Cmax(tn)| = 1 für fast alle n und wir erhalten wie gewünscht tsmall
n → tsmall und

tbig
n → tbig, wenn wir (1.33) beachten.

Satz 1.3.4 Für die Folge der Zufallsbäume (Tn)n∈N gilt

(T small
n , T big

n ) d−→ (T small
∞ , T big

∞ ), (1.34)

wobei T small
∞ und T big

∞ unabhängig mit T small
∞ ∼ PGW(1) und T big

∞ ∼ PGW∞(1) sind.

Beweis. Aus Grimmetts Lemma folgt Tn d→ T∞ ∼ PGW∞(1). Gemäß Theorem 1.1.21
existiert eine Kopienfolge S∞, (Sn)n∈N auf einem geeigneten Wahrscheinlichkeitsraum
(Ω′,A′, P ′) mit Sn → S∞ P ′-fast sicher und Sn ∼ Tn für alle n ∈ N.
Für S∞ ist P ′-fast sicher die Voraussetzung von Lemma 1.3.3 erfüllt, somit folgt

(Ssmall
n , Sbig

n )→ (Ssmall
∞ , Sbig

∞ ) P ′-f. s. (1.35)
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Wir beachten nun, dass die Verteilungen von (Ssmall
n , Sbig

n ) und (T small
n , T big

n ) über-
einstimmen, auch wenn wir Sn nur so gewählt haben, dass Sn ∼ Tn gilt. Der Grund
dafür liegt darin, dass die Verteilung von (Ssmall

n , Sbig
n ) nur von der Verteilung von Sn

abhängt.
Die fast sichere Konvergenz in (1.35) impliziert die Verteilungskonvergenz der Fol-

ge, also gilt, wie in (1.34) behauptet,

(T small
n , T big

n ) d= (Ssmall
n , Sbig

n ) d−→ (Ssmall
∞ , Sbig

∞ ) d= (T small
∞ , T big

∞ ).
Die restlichen Behauptungen ergeben sich aus Lemma 1.3.2.

1.4. Die Problemstellung
Wir führen nun den Begriff der gewichteten Paarung ein, beschränken uns in diesem
Abschnitt aber auf eine feste Kantengewichtsfunktion und einen fixierten Baum, um
uns mit den Definitionen vertraut zu machen.
Paarungen für Zufallsbäume mit zufälligen Gewichten werden im anschließenden

Abschnitt 1.5 definiert.

Definition 1.4.1 (a) Eine Paarung (oder auch: ein matching) eines Baumes t =
(Vt, Et, r) ist eine Teilmenge S ⊆ Et, so dass je zwei verschiedene Kanten aus
S keinen gemeinsamen Knoten besitzen, d. h. für alle {v1, v2} 6= {w1, w2} aus
S gilt {v1, v2} ∩ {w1, w2} = ∅.

(b) Es bezeichne P (t) die Menge aller Paarungen von t.

Wir sagen, dass eine Paarung S einen Knoten v enthält, wenn es eine Kante e in
S gibt, die den Knoten v enthält.
Paarungen werden unter Isomorphismen auf Paarungen abgebildet, genauer gilt:

Sind t, t′ zwei markierte Bäume, die via f isomorph sind, und ist S eine Paarung von
t, so wird durch

f(S) = {{f(v), f(w)} : {v, w} ∈ S}
eine Paarung von t′ definiert. Wie wir schnell erkennen, induziert f auf diese Weise
eine Bijektion zwischen P (t) und P (t′).

Definition 1.4.2 Sei t = (Vt, Et, r) ein endlicher markierter Baum und w : Et →
[0,∞) eine Kantengewichtsfunktion. w induziert das Gewicht der Paarung S durch

w(S) =
∑
e∈S

w(e).

Ist S∗ eine Paarung von t mit w(S∗) ≥ w(S) für alle S ∈ P (t), so nennen wir S∗ eine
maximal gewichtete Paarung von t. Wir definieren

M(t) = w(S∗) = max
S∈P (t)

w(S), (1.36)
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das maximale Gewicht einer Paarung von t.

Wir geben die Definition M(t) auch für Bäume t ∈ Sfin: Sind t′, t zwei markierte
Bäume, die via f : Vt′ → Vt isomorph sind, und ist w eine Kantengewichtsfunktion
von t, so wird durch w′ = w ◦ f eine Kantengewichtsfunktion von t′ definiert, die

max
S∈P (t′)

w′(S) = max
S∈P (t)

w(S)

erfüllt. Demzufolge ist der Ausdruck M(t) für t ∈ Sfin wohldefiniert, wenn wir w auf
einem Repräsentanten von t definiert haben und auf allen anderen Repräsentanten
die Gewichte entsprechend der Definition w′ setzen.
Für den Rest des Abschnittes sei ein Baum t ∈ Sfin und eine Kantengewichtsfunk-

tion w auf einem Repräsentanten von t fixiert. Auf jedem Teilbaum von t induziert
w eine Kantengewichtsfunktion des Teilbaumes.

7 4

3

5

4

9

Abbildung 1.8. Beispiel eines Baumes t mit M(t) = 16. Wir beachten, dass t zwei
maximal gewichtete Paarungen besitzt.

Lemma 1.4.3 Sei C die Kindermenge der Wurzel r von t. Existiert für t eine ma-
ximal gewichtete Paarung, die die Wurzel nicht enthält, so gilt

M(t) =
∑
i∈C

M(ti). (1.37)

Beweis. Die Behauptung ergibt sich dadurch, dass es zwischen ti und tj, i 6= j, keine
Verbindungskanten gibt.

Ist die Voraussetzung des Lemmas nicht erfüllt, so gilt (1.37) im Allgemeinen nicht
mehr. Mit der nächsten Definition fangen wir die Größe ein, die angibt, um wie viel
sich beide Seiten unterscheiden. Sei dazu Pr(t) die Menge aller Paarungen von t, die
die Wurzel nicht enthalten, d. h.

Pr(t) = {S ∈ P (t) : r /∈ e für alle e ∈ S} (1.38)
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für t = (Vt, Et, r).
Wir definieren B(t) so, dass M(t) − B(t) das maximale Gewicht einer Paarung

angibt, die die Wurzel von t nicht enthält, d. h.

M(t)−B(t) = max
S∈Pr(t)

w(S). (1.39)

Wir beachten, dass B(t) ebenfalls für Bäume t ∈ Sfin ein wohldefinierter Ausdruck
ist.

Lemma 1.4.4 Für t ∈ Sfin gilt stets B(t) ≥ 0 und

M(t)−B(t) =
∑
i∈C

M(ti). (1.40)

Beweis. Aus der Optimalität vonM(t) folgt B(t) ≥ 0. (1.40) ergibt sich daraus, dass
es zwischen ti und tj, i 6= j, keine Verbindungskanten gibt.

Lemma 1.4.5 Existiert für t ∈ Sfin eine maximal gewichtete Paarung, die die Wurzel
r enthält, so gilt

M(t) = max
j∈C
{w({r, j})−B(tj)}+

∑
i∈C

M(ti). (1.41)

Beweis. Ist Sj eine maximal gewichtete Paarung von t, die die Kante ej = {r, j}
zwischen der Wurzel r und einem j ∈ C enthält, so gilt nach Definition von B( · )

M(t) = w(ej) +M(tj)−B(tj) +
∑
i∈C
i 6=j

M(ti) = w(ej)−B(tj) +
∑
i∈C

M(ti).

Eine Maximierung über alle j ∈ C liefert (1.41), unter Beachtung der Voraussetzung.

Wir kommen nun zur wichtigsten Darstellung von B(t). Aus ihr leiten wir im
zweiten Kapitel eine stochastische Fixpunktgleichung ab (siehe Satz 2.2.2).

Satz 1.4.6 Für t ∈ Sfin mit Wurzel r gilt

B(t) = max
i∈C
{0, w({r, i})−B(ti)}. (1.42)

Beweis. Existiert für t eine maximal gewichtete Paarung, die die Wurzel enthält, so
gilt aufgrund von (1.40) und (1.41)

B(t) = M(t)−
∑
i∈C

M(ti) = max
j∈C
{w({r, j})−B(tj)},

und da B(t) ≥ 0 ist, folgt (1.42).
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Im anderen Fall ist B(t) = 0 und wir haben

B(tj) ≥ w({r, j})

für alle j ∈ C zu zeigen.
Sei dazu j fixiert und S∗ eine maximal gewichtete Paarung von t, die die Wurzel

nicht enthält. Wir definieren eine Paarung S durch:

• S enthalte die Kante {r, j},

• S enthalte alle Kanten einer maximal gewichteten Paarung von tj, die die Wur-
zel von tj nicht enthält, und

• S enthalte alle Kanten aus S∗, die sich in den Teilbäumen ti, i 6= j, befinden.

Damit gilt
w(S) = w({r, j}) +M(tj)−B(tj) +

∑
i∈C
i 6=j

M(ti)

und aufgrund von (1.37) und der Optimalität von S∗

B(tj)− w({r, j}) = w(S∗)− w(S) ≥ 0.

Wir nutzen die rekursive Struktur eines Baumes aus, um eine alternative Darstel-
lung für M(t) zu finden: Für t ∈ S und eine Kante e ∈ Et von t seien

tsmall(e) und tbig(e) (1.43)

die beiden Teilbäume von t, die durch das Entfernen von e aus t entstehen und deren
Wurzeln die beiden Knoten seien, die von e verbunden werden.
Wie in (1.30) soll die Mächtigkeit der Knotenmenge von tsmall(e) kleiner sein als die

Mächtigkeit der Knotenmenge von tbig(e). Im Gleichheitsfalle werfen wir eine faire
Münze.
Wir beachten, dass der Ausgang des Münzwurfes keinen Einfluss auf die Summen

M(tsmall(e)) +M(tbig(e)) und B(tsmall(e)) +B(tbig(e))

hat.

Lemma 1.4.7 Ist t ∈ Sfin und S∗ eine maximal gewichtete Paarung von t mit der
Eigenschaft

e ∈ S∗ ⇒ M(t) > M(tsmall(e)) +M(tbig(e)), (1.44)

so gilt

S∗ = {e ∈ E : w(e) > B(tsmall(e)) +B(tbig(e))}. (1.45)

Insbesondere ist S∗ die einzige maximal gewichtete Paarung von t.
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Beweis. Wir merken als erstes an, dass stets

M(t) ≥M(tsmall(e)) +M(tbig(e)) (1.46)

gilt, da tsmall(e) und tbig(e) zwei disjunkte Teilbäume von t sind.
Für e ∈ Et gelten nun folgende Äquivalenzen:

e /∈ S∗ ⇔ M(t) = M(tsmall(e)) +M(tbig(e)) und (1.47)
e ∈ S∗ ⇔ M(t) > M(tsmall(e)) +M(tbig(e)). (1.48)

Die Hinrichtung von (1.47) ist klar und die Rückrichtung folgt aus (1.44). Die Aussage
(1.48) ist nur die Verneinung von (1.47), unter Beachtung von (1.46). Für e ∈ S∗ gilt
jedoch nach Definition von B( · )

M(t) = w(e) +M(tsmall(e))−B(tsmall(e)) +M(tbig(e))−B(tbig(e)).

Ein Vergleich mit (1.48) zeigt,

e ∈ S∗ ⇔ w(e) > B(tsmall(e)) +B(tbig(e)),

wie in (1.45) behauptet.

1.5. Zufällige Gewichte
Wie bereits mehrfach erwähnt, sind wir nicht an einer festen Gewichtsfunktion in-
teressiert, sondern betrachten zufällige Bäume mit zufälligen Gewichten. Für t ∈ S
und jede Kante e von t nehmen wir die Existenz einer Zufallsgröße

ξte : (Ω,A, P )→ [0,∞)

an, derart, dass die Familie aller Gewichte

G = {ξte : t ∈ S, e ∈ Et} (1.49)

stochastisch unabhängig ist, und jedes ξte die Verteilung F besitzt. Für ein festes
t ∈ S und ω ∈ Ω betrachten wir die Kantengewichtsfunktion

e 7→ ξte(ω)

und nennen einen von G unabhängigen Zufallsbaum T einen Zufallsbaum mit F -
verteilten Kantengewichten.
Wir halten eine Verteilung F auf [0,∞) fixiert und unterstellen für alle betrachteten

Zufallsbäume, dass sie F -verteilte Kantengewichte besitzen.
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In Anlehnung an die Ausgangsproblemstellung führen wir jetzt die Zufallsgrößen
M(T ) und B(T ) ein. Sei dazu T ein endlicher Zufallsbaum mit F -verteilten Kanten-
gewichten. Wir definieren M(T ) als die Zufallsgröße

M(T ) : (Ω,A, P )→ [0,∞),

die für ω ∈ Ω das maximale Gewicht einer Paarung des Baumes t = T (ω) mit
zugrundeliegender Gewichtsfunktion e 7→ ξte(ω) angibt. Also gilt

M(T ) =
∑
t∈Sfin

1{T=t} · max
S∈P (t)

∑
e∈S

ξte. (1.50)

Die Zufallsgröße B(T ) auf (Ω,A, P ) sei so definiert, dassM(T )−B(T ) das maximale
Gewicht einer Paarung angibt, die die Wurzel nicht enthält, d. h.

M(T )−B(T ) =
∑
t∈Sfin

1{T=t} · max
S∈Pr(t)

∑
e∈S

ξte. (1.51)

Lemma 1.5.1 Sind (Xn)n∈N, X∞ endliche Zufallsbäume mit F -verteilten Kantenge-
wichten und konvergiert Xn in Verteilung gegen X∞, so gilt

M(Xn) d−→ M(X∞) und B(Xn) d−→ B(X∞).

Beweis. Unter Beachtung des Theorems 1.1.21 nehmen wir ohne Einschränkung
Xn → X∞ P -f. s. an.
Ist (tn)n∈N eine Folge endlicher Bäume mit tn → t und t ∈ Sfin, so wird die Folge

(tn)n∈N ab einem Index konstant t, denn alle auftretenden Bäume sind endlich.
Damit ist auch M(tn) ab einem Index konstant. Insbesondere folgt M(tn)→M(t)

P -f. s. und M(Xn)→M(X∞) P -f. s. Analog folgern wir B(Xn)→ B(X∞) P -f. s.

Der nächste Satz bildet das Pendant zu Satz 1.4.6. Auch wenn ein Beweis nicht
nötig ist, halten wir diese wichtige Verteilungsgleichheit für B(T ) in einem eigenen
Satz fest.

Satz 1.5.2 Für einen endlichen Zufallsbaum T mit F -verteilten Kantengewichten
gilt

B(T ) d=
∑
t∈Sfin

1{T=t} ·max{0, ξti −B(ti) : i ∈ C(t)}, (1.52)

wobei ξti das Gewicht der Kante zwischen der Wurzel von t und dem Kind i ∈ C(t)
sei.

Beweis. In Satz 1.4.6 wurde (1.52) punktweise überprüft.

Abbildung 1.4 auf Seite 24 gibt ein Beispiel für einen Baum, der zwei maximal
gewichtete Paarungen besitzt. Ist die Kantengewichtsverteilung F stetig, so tritt
dieses Phänomen fast sicher nicht auf.
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Satz 1.5.3 Ist F eine stetige Verteilung auf [0,∞) und T ein endlicher Zufallsbaum
mit F -verteilten Kantengewichten, so gilt

M(T ) d=
∑
t∈Sfin

1{T=t} ·
∑
e∈Et

ξte · 1{ξte>B(tsmall(e)) +B(tbig(e))}. (1.53)

Beweis. Die Behauptung folgt, wenn wir zeigen, dass für P -fast alle ω die Voraus-
setzung (1.44) von Lemma 1.4.7 an t = T (ω) erfüllt ist.
Zu zeigen ist demnach, dass für P -fast alle ω eine maximal gewichtete Paarung

S∗ = S∗(ω) von t = T (ω) derart existiert, dass

M(t) > M(tsmall(e)) +M(tbig(e)) P -fast sicher (1.54)

für jede Kante e ∈ S∗ gilt.
Ist S∗ eine maximal gewichtete Paarung von t und e ∈ S∗, so gilt

M(t) = ξte +M(tsmall(e))−B(tsmall(e)) +M(tbig(e))−B(tbig(e)),

also
M(t)−M(tsmall(e))−M(tbig(e)) = ξte −B(tsmall(e))−B(tbig(e)).

Die zu zeigende Ungleichung (1.54) vereinfacht sich dadurch zu

ξte > B(tsmall(e)) +B(tbig(e)) P -fast sicher. (1.55)

Da B(tsmall(e)) + B(tbig(e)) stochastisch unabhängig von ξte, und ξte nach Vorausset-
zung stetig verteilt ist, gilt

ξte 6= B(tsmall(e)) +B(tbig(e)) P -fast sicher,

und mit Blick auf (1.46) folgt auch (1.55).

Für jeden Baum t ∈ Sfin sei e(t) eine auf Et gleichverteilte und von den Gewichten
G stochastisch unabhängige Zufallsvariable. Für alle t ∈ Sfin erhalten wir∑

e∈Et
ξte · 1{ξte>B(tsmall(e)) +B(tbig(e))} = |Et| · ξte(t) · 1{ξte(t) >B(tsmall(e(t))) +B(tbig(e(t)))}.

(1.56)

Aus (1.53) leiten wir auch eine nützliche Darstellung von EM(T ) für stetige F ab:

Korollar 1.5.4 Ist F eine stetige Verteilung auf [0,∞) und T ein endlicher Zufalls-
baum mit F -verteilten Kantengewichten, so gilt

EM(T ) =
∑
t∈Sfin

|Et| · E(1{T=t} · ξ · 1{ξ >B(tsmall(e(t))) +B(tbig(e(t)))}), (1.57)

wobei ξ nach F verteilt und stochastisch unabhängig von T und G ist.
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Beweis. Aus (1.53) und (1.56) folgt

EM(T ) =
∑
t∈Sfin

E(1{T=t} ·
∑
e∈Et

ξte · 1{ξte>B(tsmall(e)) +B(tbig(e))})

=
∑
t∈Sfin

|Et| · E(1{T=t} · ξte(t) · 1{ξte(t) >B(tsmall(e(t))) +B(tbig(e(t)))}).

Da jedes ξte unabhängig von T und G \ {ξte} ist und die gleiche Verteilung F besitzt,
können wir ξte(t) durch ξ ersetzen.

Wir halten die Ergebnisse aus Satz 1.5.3 und Korollar 1.5.4 noch einmal für die
speziellen Bäume Tn aus (1.9) fest. (1.57) vereinfacht sich in diesem Fall, denn es gilt
|ETn | = n− 1. Wir setzen abkürzend en = e(Tn) und Mn = M(Tn).

Korollar 1.5.5 Ist F eine stetige Verteilung auf [0,∞), so gilt für alle n ≥ 1

Mn
d=
∑
t∈Sn

1{Tn=t}
∑
e∈Et

ξte · 1{ξte>B(tsmall(e)) +B(tbig(e))} (1.58)

sowie

EMn = (n− 1)
∑
t∈Sn

E(1{Tn=t} · ξ · 1{ξ >B(tsmall(e(t))) +B(tbig(e(t)))})

= (n− 1) · E(ξ · 1{ξ >B(T small
n (en)) +B(Tbig

n (en))}),
(1.59)

mit ξ ∼ F und stochastisch unabhängig von (Tn)n∈N und G.

Für das weitere Verstehen der Asymptotik von EMn werden wir im anschließen-
den Kapitel die Folgen B(T small

n (en)) und B(T big
n (en)) genauer untersuchen müssen.

Vorweg sei erwähnt, dass unter den Voraussetzungen, dass F stetig ist und einen
endlichen Erwartungswert besitzt, EMn sich für n→∞ wie n · γ verhält, wobei die
Konstante γ nur von F abhängt. In einigen Fällen können wir γ explizit berechnen.



2. Charakterisierung der Grenzwerte
von B(Tsmall

n ) und B(Tbig
n )

Wie in (1.9) seien die Zufallsbäume Tn so geschaffen, dass wir zunächst gleichverteilt
einen Baum aus der nn−1-elementigen Menge aller verwurzelten Bäume mit n Knoten
wählen. Anschließend vergessen wir die Knotenmarkierung, d. h. wir sehen den Baum
als Element der in (1.3) definierten Menge Sn an.
Des Weiteren erinnern wir an die Definition von Mn = M(Tn) aus (1.50). Mn gibt

das maximale Gewicht einer Paarung von Tn an, wenn wir auf den Kanten von Tn
unabhängige, nichtnegative und nach F verteilte Gewichte G ansetzen.
Das Ziel des Kapitels ist es, die Asymptotik von EMn zu verstehen. Korollar 1.5.5

zeigt, dass wir dafür die Folgen B(T small
n (en)) und B(T big

n (en)) genauer untersuchen
müssen.
Die Verteilungslimiten von T small

n und T big
n kennen wir bereits aus Abschnitt 1.3,

Satz 1.3.4. Der erste Abschnitt dieses Kapitels gibt eine positive Antwort auf die Fra-
ge, ob mit B(T small

n ) bzw. B(T big
n ) auch B(T small

n (en)) bzw. B(T big
n (en)) in Verteilung

konvergieren.

2.1. tsmall vs. tsmall(e(t))
Das Ziel dieses technischen Abschnittes sind die Abschätzungen (2.1) und (2.2).

Lemma 2.1.1 Für alle n ∈ N und x ∈ R gilt∣∣∣P (B(T small
n (en)) ≤ x

)
− P

(
B(T small

n ) ≤ x
)∣∣∣ ≤ 1

n
(2.1)

und ∣∣∣P (B(T big
n (en)) ≤ x

)
− P

(
B(T big

n ) ≤ x
)∣∣∣ ≤ 1

n
. (2.2)

Wir bestimmen zunächst die Wahrscheinlichkeit, dass ein Knoten v von t die Wur-
zel von tsmall(e(t)) bzw. tbig(e(t)) wird. e(t) sei wie vor Korollar 1.5.4 definiert als eine
von den Gewichten G unabhängige und auf Et gleichverteilte Zufallsvariable.
Wir beachten, dass die gesuchten Wahrscheinlichkeiten

psmall
v = P (v ist die Wurzel von tsmall(e(t))) und
pbig
v = P (v ist die Wurzel von tbig(e(t)))

(2.3)
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überhaupt wohldefiniert sind, weil sie nicht von einer Repräsentantenwahl vom Baum
t ∈ Sn abhängen. Zudem hängt (2.3) nicht davon ab, in welchem Knoten t verwurzelt
ist. Wir gehen deshalb im Folgenden davon aus, dass t ein unverwurzelter, markierter
Baum mit Knotenmenge Vt und Kantenmenge Et ist.
Wir betrachten nun die beiden Aussagen:

A Für t = (Vt, Et) existiert genau ein u ∈ Vt mit u /∈ tsmall(e) für alle e ∈ Et.1

B Für t = (Vt, Et) existiert genau ein e = {v, w} ∈ Et mit |tsmall(e)| = |tbig(e)|.

Lemma 2.1.2 Ist t = (Vt, Et) ein unverwurzelter Baum mit n ≥ 2 Knoten, so gilt:

(a) Ist n ungerade, so hat t die Eigenschaft A.

(b) Ist n gerade, so hat t entweder die Eigenschaft A oder die Eigenschaft B.

Beweis. Es ist klar, dass A und B sich ausschließen, denn im Fall B ist ein Münzwurf
erforderlich, um tsmall(e) bzw. tbig(e) festzulegen (vgl. Definition (1.43)).
Für den Beweis von (a) und (b) konstruieren wir für jeden unverwurzelten Baum

t = (Vt, Et) einen Pfad v1 → · · · → vk in t, auf dem wir nach den Knoten u, v und w
suchen.
Sei v1 ein Blatt von t und t(v1) der Baum t, verwurzelt in v1. Als Blatt besitzt

v1 nur ein Kind v2. Induktiv fahren wir fort: Ist v1 → · · · → vi definiert, so wählen
wir einen Kinderknoten vi+1 von vi derart, dass der Teilbaum, der an vi+1 hängt,
maximale Größe besitzt unter allen Kinderteilbäumen von vi, d. h.

vi+1 ∈ {v ∈ Cvi : |tv| = max{|tj| : j ∈ Cvi}}. (2.4)

Dies liefert einen Pfad v1 → · · · → vk in t, dessen Endknoten vk wiederum ein Blatt
ist. Entfernen wir für i = 1, . . . , k− 1 die Kante zwischen vi und vi+1, so zerlegt sich
t in zwei Bäume, ti und tci (vgl. dazu Abbildung 2.1).

r2 ri ri+1 rk−1

v1 v2 vi vi+1 vk−1 vk

ti tci

Abbildung 2.1. Der Pfad v1 → · · · → vk und die Zerlegung von t in ti und tci .

Wir wählen nun i ∈ {1, . . . , k − 1} maximal, so dass

|ti| ≤ |tci | (2.5)
1u /∈ tsmall(e) bedeutet, dass u nicht in der Knotenmenge von tsmall(e) vorkommt.
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gilt. Dieses i existiert, da t1 nur aus dem Blatt v1 besteht, d. h. |t1| = 1 ≤ n−1 = |tci |
gilt.
Herrscht in (2.5) Gleichheit, so befinden wir uns im Fall B mit v = vi und w = vi+1.

Die Eindeutigkeit dieser Knoten ist – genauso wie die Tatsache, dass n aufgrund von
|ti|+ |tci | = |t| = n gerade sein muss – unmittelbar klar.
Von nun an gelte also

|ti| < |tci |, (2.6)

und wir weisen die Eigenschaft A mit u = vi+1 nach. Sei dafür e eine Kante von t.
Durch einige Fallunterscheidungen zeigen wir u /∈ tsmall(e):

• Ist e eine Kante von ti, so folgt aus (2.6), dass tsmall(e) ein Teilbaum von ti
ist. Für e = {vi, u} ist tsmall(e) = ti, gemäß (2.6). In beiden Fällen gilt somit
u /∈ tsmall(e).

• Sei jetzt e eine Kante von tci+1 oder e = {u, vi+2}. Durch die Maximalität von
i in (2.5) gilt

|ti+1| > |tci+1|.

Dies impliziert, dass tsmall(e) ein Teilbaum von tci+1 ist. Im Fall e = {u, vi+2}
ist tsmall(e) = tci+1. Mit u /∈ tci+1 gilt auch u /∈ tsmall(e).

• Es bleibt der Fall, dass e eine Kante von ri+1 ist (vgl. Abbildung 2.1). Hier
sichert aber die Wahl des Knotens vi+2 in (2.4), dass |tsmall(e)| < |tci+1|+ 1 gilt.
Mithin ist u /∈ tsmall(e).

Zu zeigen ist nun noch die Eindeutigkeit von u in A. Ist x ein von u verschiedener
Knoten und e eine Kante des Pfades u → · · · → x, so gilt nach Voraussetzung
u /∈ tsmall(e), nach Wahl von e dann x ∈ tsmall(e), d. h. x kann A nicht erfüllen.

Je nachdem, ob t die Eigenschaft A oder B besitzt, lassen sich jetzt die Wahr-
scheinlichkeiten (2.3) bestimmen. Dazu setzen wir für einen unverwurzelten Baum
t = (Vt, Et) und ein x ∈ Vt die Menge der Nachbarn von x als

N(x) = {y ∈ Vt : {x, y} ∈ Et}. (2.7)

Es gilt offenbar ∑
x∈Vt
|N(x)| = 2 · |Et| = 2 · (n− 1). (2.8)

Lemma 2.1.3 Hat t die Eigenschaft A, so gilt

psmall
u = 0 und pbig

u = |N(u)|
n− 1 (2.9)
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und für x 6= u

psmall
x = 1

n− 1 und pbig
x = |N(x)| − 1

n− 1 . (2.10)

Hat t die Eigenschaft B, so gilt für x ∈ {v, w}

psmall
x = 1

2 ·
1

n− 1 und pbig
x = 1

2 ·
1

n− 1 + |N(x)| − 1
n− 1 (2.11)

und für x /∈ {v, w}

psmall
x = 1

n− 1 und pbig
x = |N(x)| − 1

n− 1 . (2.12)

Beweis. Die Gleichungen (2.9) sind aufgrund von u /∈ tsmall(e(t)) klar. Für den Nach-
weis von (2.10) sei x 6= u und v1 = x→ · · · → vk = u der Pfad von x nach u.
Ist e eine Kante von t, so gilt u /∈ tsmall(e) und damit

x ist die Wurzel von tsmall(e) ⇔ e = {x, v2},

sowie
x ist die Wurzel von tbig(e) ⇔ e = {x, y} für ein y 6= v2.

Dies zeigt (2.10).
t habe nun die Eigenschaft B. (2.11) ergibt sich aus der Randomisierung im Fall

e(t) = {v, w}. Für (2.12) argumentieren wir genauso wie in (2.10), diesmal mit dem
Pfad v1 = x→ · · · → vk = v.

Um ähnliche Untersuchungen für tsmall durchzuführen, muss t eine Wurzel besitzen,
da der Ausdruck tsmall sonst gar nicht definiert ist. Sei v(t) eine von G unabhängige,
auf Vt gleichverteilte Zufallsvariable. Wir betrachten t von nun an als Zufallsbaum,
der in v(t) verwurzelt ist. Analog zu (2.3) definieren wir

qsmall
x = P (x ist die Wurzel von tsmall) und
qbig
x = P (x ist die Wurzel von tbig).

(2.13)

Wir erinnern an die Notation (1.29) aus Abschnitt 1.3:

mt = max{|ti| : i ∈ C} und
Cmax(t) = {tj : j ∈ C mit |tj| = mt}.

Eine einfache Überlegung zeigt, dass |Cmax(t)| > 1 nur gelten kann, wenn t die
Eigenschaft A besitzt und v(t) = u gilt. Daher setzen wir

M(u) = {j ∈ N(u) : tj ∈ Cmax(t)} (2.14)

für einen Baum t, der die Eigenschaft A besitzt und in u verwurzelt ist.
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Lemma 2.1.4 Für den in v(t) verwurzelten Zufallsbaum t gilt:
Hat t die Eigenschaft A, so ist

qsmall
u = 0 und qbig

u = 1 + |N(u)|
n

(2.15)

und für x 6= u

qsmall
x = 1

n
+ 1
n
· 1
|M(u)| · 1M(u)(x) und qbig

x = |N(x)| − 1
n

. (2.16)

Hat t die Eigenschaft B, so gilt für x ∈ {v, w}

qsmall
x = 1

n
und qbig

x = |N(x)|
n

(2.17)

und für x /∈ {v, w}

qsmall
x = 1

n
und qbig

x = |N(x)| − 1
n

. (2.18)

Beweis. Beginnen wir mit Fall A.
Da u stets ein Knoten des Baumes tbig ist, gilt qsmall

u = 0.

• Ist v(t) ∈ N(u) ∪ {u}, so ist u die Wurzel von tbig. Aufgrund der Gleichung

P (v(t) ∈ N(u) ∪ {u}) = 1 + |N(u)|
n

folgt (2.15).

• Im Fall v(t) = u ist die Wurzel von tsmall ein Element ausM(u), welches gleich-
verteilt gewählt wird. Dies erklärt den Summanden n−1 · |M(u)|−1 ·1M(u)(x) in
(2.16).

• Nehmen wir nun an, dass v(t) = x 6= u gilt. In diesem Fall ist |Cmax(t)| = 1
und x die Wurzel von tsmall. Bezeichnet u = v1 → · · · → vk = x den Pfad von u
nach x, so ist für v(t) ∈ N(x) \ {vk−1} die Wurzel von tbig der Knoten x, denn
der Teilbaum tx enthält u.

Alle Fälle zusammen ergeben (2.16).
Es liege nun Fall B vor.

• Für v(t) ∈ {v, w} muss ein Münzwurf entscheiden, welcher Teilbaum tsmall bzw.
tbig ist. Ist v(t) ∈ N(v) \ {w}, so ist v stets die Wurzel von tbig. Eine analoge
Aussage lässt sich für w formulieren.
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• Für v(t) = x /∈ {v, w} ist x offenbar die Wurzel von tsmall, denn der Teilbaum
tj, j ∈ C, der v und w enthält, besitzt mindestens n

2 + 1 Knoten.

• Ist x /∈ {v, w}, v = v1 → · · · → vk = x der Pfad von v nach x und v(t) ∈
N(x) \ {vk−1}, so ist x die Wurzel von tbig, denn der Teilbaum tx enthält v und
w.

Fassen wir alle Fälle zusammen, so erhalten wir (2.17) und (2.18).

Wir berechnen nun jeweils den Totalvariationsabstand zwischen den Verteilungen

psmall = (psmall
x )x∈Vt und qsmall = (qsmall

x )x∈Vt

bzw.
pbig = (pbig

x )x∈Vt und qbig = (qbig
x )x∈Vt .

Dieser ist durch

dV (psmall, qsmall) = 1
2
∑
x∈Vt
|psmall
x − qsmall

x | bzw.

dV (pbig, qbig) = 1
2
∑
x∈Vt
|pbig
x − qbig

x |
(2.19)

gegeben.

Korollar 2.1.5 Sei t = (Vt, Et) ein unverwurzelter Baum mit n ≥ 2 Knoten, der in
v(t) verwurzelt ist. Für die in (2.3) und (2.13) definierten Verteilungen psmall, qsmall,
pbig und qbig gilt:

dV (psmall, qsmall) =


n−1−|M(u)|
n·(n−1) falls A vorliegt,
n−2

n·(n−1) falls B vorliegt,
(2.20)

bzw.

dV (pbig, qbig) =


n−1−|N(u)|
n·(n−1) falls A vorliegt,

n−|N(v)|−|N(w)|
n·(n−1) falls B vorliegt.

(2.21)

Insbesondere gilt stets

dV (psmall, qsmall) ≤ 1
n

und dV (pbig, qbig) ≤ 1
n
. (2.22)
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Beweis. Betrachten wir zunächst den Fall A. Unter Beachtung von (2.9), (2.10),
(2.15) und (2.16) folgt∑

x∈Vt
|psmall
x − qsmall

x |

=
∑

u6=x∈Vt
|psmall
x − qsmall

x |

=
∑

u6=x∈Vt\M(u)

( 1
n− 1 −

1
n

)
+

∑
x∈M(u)

(
1
n

+ 1
n
· 1
|M(u)| −

1
n− 1

)

= (n− 1− |M(u)|) · 1
n · (n− 1) + |M(u)| · n− 1− |M(u)|

n · (n− 1) · |M(u)|

= 2 · n− 1− |M(u)|
n · (n− 1)

und ∑
x∈Vt
|pbig
x − qbig

x |

=
(

1 + |N(u)|
n

+ |N(u)|
n− 1

)
+

∑
u6=x∈Vt

(
|N(x)| − 1
n− 1 − |N(x)| − 1

n

)

= n− 1− |N(u)|
n · (n− 1) +

∑
u6=x∈Vt

|N(x)| − 1
n · (n− 1)

= 1
n · (n− 1)

n− 1− 2 · |N(u)| − (n− 1) +
∑
x∈Vt
|N(x)|


= 2 · n− 1− |N(u)|

n · (n− 1) ,

wobei im letzten Gleichheitszeichen (2.8) benutzt wurde.
Wir haben damit (2.20) und (2.21) für den Fall A bewiesen und widmen uns nun

dem Fall B. Hier liefern (2.11), (2.12), (2.17) und (2.18)∑
x∈Vt
|psmall
x − qsmall

x | = 2 ·
( 1
n
− 1

2 ·
1

n− 1

)
+

∑
x∈Vt\{v,w}

( 1
n− 1 −

1
n

)

= n− 2
n · (n− 1) + n− 2

n · (n− 1) = 2 · n− 2
n · (n− 1) ,

für x ∈ {v, w}

|pbig
x − qbig

x | =
(
|N(x)|
n
− 1

2 ·
1

n− 1 −
|N(x)| − 1
n− 1

)

= n− 2 · |N(x)|
2 · n · (n− 1)
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und für x /∈ {v, w}

|pbig
x − qbig

x | =
(
|N(x)| − 1
n− 1 − |N(x)| − 1

n

)

= |N(x)| − 1
n · (n− 1) .

Zusammen erhalten wir also∑
x∈Vt
|pbig
x − qbig

x |

= n− 2 · |N(v)|
2 · n · (n− 1) + n− 2 · |N(w)|

2 · n · (n− 1) +
∑

x∈Vt\{v,w}

|N(x)| − 1
n · (n− 1)

= 1
n · (n− 1)

n− 2 · |N(v)| − 2 · |N(w)| − (n− 2) +
∑
x∈Vt
|N(x)|


= 2 · n− |N(v)| − |N(w)|

n · (n− 1) ,

wenn wir erneut (2.8) anwenden. Damit ergeben sich die restlichen Behauptungen.

Wir gehen nun unser eigentliches Anliegen (Lemma 2.1.1) an. In den bisherigen
Resultaten ist der Baum t fixiert, und die Verteilungen von psmall, qsmall, pbig und qbig

hängen nur von den auf Et bzw. Vt gleichverteilten Variablen e(t) bzw. v(t) ab. Mit
Hilfe einer maximalen Kopplung (siehe Kapitel I, Theorem 5.2 in [13]) nehmen wir
daher ohne Einschränkung

P (tsmall 6= tsmall(e(t))) = dV (psmall, qsmall) und
P (tbig 6= tbig(e(t))) = dV (pbig, qbig)

(2.23)

an. Aus∣∣∣P (B(tsmall(e(t))) ≤ x
)
− P

(
B(tsmall) ≤ x

)∣∣∣ ≤ P (B(tsmall(e(t))) 6= B(tsmall))
≤ P (tsmall 6= tsmall(e(t)))
= dV (psmall, qsmall)

und (2.22) folgt dann (2.1). Die analoge Ungleichung für den „big“-Teil sichert (2.2).

2.2. Fixpunktgleichung für B(PGW(1))
Wir widmen uns in diesem Abschnitt der Folge (T small

n )n∈N. Diese konvergiert in
Verteilung gegen einen endlichen Zufallsbaum, womit Lemma 1.5.1 anwendbar wird.
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Lemma 2.2.1 Es gilt
B(T small

n ) d−→ B(T ),
mit T ∼ PGW(1).

Beweis. Dies folgt direkt aus Satz 1.3.4 und Lemma 1.5.1, wenn wir P (T ∈ Sfin) = 1
beachten.

Satz 2.2.2 Es sei (Ti)i∈N eine Folge stochastisch unabhängiger Zufallsbäume mit
F -verteilten Kantengewichten und Ti ∼ PGW(1) für alle i ∈ N. Ist ein weiterer
Zufallsbaum T ∼ PGW(1) mit F -verteilten Kantengewichten gegeben, so gilt

B(T ) d= max{0, ξi −B(Ti) : 1 ≤ i ≤ N}, (2.24)

wobei N ∼ Poi(1) und jedes ξi ∼ F , derart, dass die Variablen (Ti)i∈N, (ξi)i∈N und
N stochastisch unabhängig sind.

Beweis. Der Satz 1.5.2 liefert zunächst

B(T ) d=
∑
t∈Sfin

1{T=t} ·max{0, ξti −B(ti) : i ∈ C(t)}

= max{0, ξTi −B(T i) : i ∈ C(T )}.

Es gebe X die Anzahl der Kinder der Wurzel von T an. Gemäß Lemma 1.2.5 sind,
gegeben X = k, die Teilbäume {T i : 1 ≤ i ≤ k} bedingt stochastisch unabhängig
voneinander und alle wie T verteilt.
Aufgrund von |C(T )| = X ∼ N , ξTi ∼ ξi, B(T i) ∼ B(Ti) und der Unabhängigkeit

von G, X und (T i)i∈N schließen wir, wie in (2.24) behauptet,

max{0, ξTi −B(T i) : i ∈ C(T )} d= max{0, ξi −B(Ti) : 1 ≤ i ≤ N}.

Verteilungsgleichheiten der Form

X
d= g((Xn)n∈N, (ξn)n∈N, N),

für eine Funktion g und unabhängige X1, X2, . . . mit Xn ∼ X für alle n ∈ N, nennen
wir stochastische Fixpunktgleichungen.
Wir haben in (2.24) gesehen, dass B(T ) die stochastische Fixpunktgleichung

X
d= max{0, ξi −Xi : 1 ≤ i ≤ N}

löst. Eine sinnvolle Frage ist nun, ob die Lösung auch eindeutig ist. Dies motiviert
die folgende Definition:
Seien F und G zwei gegebene Verteilungen auf [0,∞). Ferner seien Zufallsgrößen

(Yi)i∈N, (ξi)i∈N undN derart gegeben, dass die Familie {Yi, ξi, N : i ∈ N} stochastisch
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unabhängig ist, ξi ∼ F, Yi ∼ G für alle i ∈ N und N ∼ Poi(1) gilt. Wir definieren
DF (G) als die Verteilung der Zufallsgröße

max{0, ξi − Yi : 1 ≤ i ≤ N}. (2.25)

Wir beachten, dass auf dem Ereignis {N = 0} das Maximum als 0 gesetzt ist.

Theorem 2.2.3 Ist F eine Verteilung auf [0,∞) und T ∼ PGW(1) mit F -ver-
teilten Kantengewichten, so ist die Verteilung von B(T ) die eindeutige Lösung der
stochastischen Fixpunktgleichung

DF (G) = G. (2.26)

Beweis. Wir haben in Satz 2.2.2 eingesehen, dass B(T ) die Fixpunktgleichung löst.
Was zu zeigen bleibt, ist die Eindeutigkeit. Sei G eine Verteilung mit DF (G) = G
und T ∼ PGW(1) mit F -verteilten Kantengewichten.
Für den Nachweis von B(T ) ∼ G bedienen wir uns der Konstruktion des Galton-

Watson-Baumes GW als Teilmenge des Ulam-Harris-Baumes V und geben uns zu-
nächst Familien von Zufallsgrößen

{Xv : v ∈ V} und {ξw, Yw : w ∈ V \ {∅}}

mit Xv ∼ Poi(1), ξw ∼ F und Yw ∼ G vor, so dass die Familie aller Variablen

{Xv, Yw, ξw : v ∈ V, w ∈ V \ {∅}} (2.27)

stochastisch unabhängig ist.
Erinnern wir uns, dass der Galton-Watson-Baum definiert ist als

GW =
⋃
n∈N

GWn

mit GW0 = {∅} und

GWn = {v1 . . . vn ∈ Nn : v1 . . . vn−1 ∈ GWn−1 und 1 ≤ vn ≤ Xv1...vn−1}

für n ≥ 1 (siehe (1.16)).
Wir benutzen im Folgenden den Ausdruck B(GW), indem wir auf jeden Baum aus

T die Gewichte {ξw : w ∈ V \ {∅}} ansetzen: Eine Kante zwischen dem Knoten v
und einem Kind w erhält das Gewicht ξw. Offenbar gilt B(T ) ∼ B(GW), wenn wir
B(GW) auf diese Weise definieren.
Wir setzen für v = v1 . . . vn ∈ V die Zufallsgröße Zv als

Zv = max{0, ξvvn+1 − Yvvn+1 : 1 ≤ vn+1 ≤ Xv}.
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Aufgrund der Fixpunkteigenschaft (2.26) von G, Xv ∼ Poi(1) und den Unabhängig-
keitsannahmen aus (2.27) folgt

Zv ∼ G für alle v ∈ V. (2.28)

Andererseits gilt, gegeben v ∈ GWn mit Xv = 0,

Zv = 0 = B(GWv) P -f. s.

Alle Blätter v von GW erfüllen demnach Zv ∼ B(GWv), bedingt darunter, dass
sie tatsächlich von GW realisiert werden. Unter Beachtung der Tatsache, dass der
betrachtete Galton-Watson-Baum gemäß Satz 1.2.6 P -f. s. ausstirbt, fahren wir in-
duktiv fort:
Gegeben, w ∈ GWm und B(GWwwm+1) ∼ Zwwm+1 für alle Nachkommen von w, gilt

B(GWw) d= max{0, ξwwm+1 −B(GWwwm+1) : 1 ≤ wm+1 ≤ Xw}
d= max{0, ξwwm+1 − Zwwm+1 : 1 ≤ wm+1 ≤ Xw}
= Zw.

Insbesondere können wir mit w = ∅ schließen, dass

B(T ) d= B(GW) = B(GW∅) d= Z∅

gilt, womit wie gewünscht B(T ) ∼ G aus (2.28) folgt.

Bemerkung 2.2.4 (a) Der Beweis zeigt, dass die stochastische Fixpunktgleichung

Y
d= max{0, ξi − Yi : 1 ≤ i ≤ N}

für jede andere Zufallsgröße N auf N0 mit EN ≤ 1 und P (N = 1) < 1 eindeutig
lösbar ist. Wir beschränken uns aber weiterhin auf den Fall N ∼ Poi(1).

(b) Eine ähnliche Fixpunktgleichung erhalten wir, wenn wir das folgende Problem
betrachten: Eine Menge von Knoten W ⊆ Vt eines Baumes t = (Vt, Et, r) heißt
unabhängig, falls je zwei Knoten ausW nicht durch eine Kante verbunden sind,
d. h. für alle v, w ∈ W gilt {v, w} /∈ Et.
Wie beim Paarungsproblem auch, suchen wir nun für Zufallsbäume mit zufäl-
ligen Knotengewichten das maximale Gewicht einer unabhängigen Menge von
Knoten. Ist die Variable C(T ) für einen endlichen Zufallsbaum T mit Wurzel
r und F -verteilten Knotengewichten durch

C(T ) = maximale Gewicht einer unabhängigen Menge von Knoten von T
−maximale Gewicht einer unabhängigen Menge von Knoten von T \ {r}
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definiert, so ist die Verteilung von C(T ) mit T ∼ PGW(1) die eindeutige Lösung
der stochastischen Fixpunktgleichung

X
d= max{0, ξ −

N∑
i=1

Xi}. (2.29)

Hierbei sei wieder (Xi)i∈N eine unabhängige Folge mit Xi ∼ X für alle i, ξ ∼ F
und N ∼ Poi(1) derart, dass die Variablen (Xi)i∈N, ξ und N stochastisch
unabhängig sind.
(2.29), und andere Fixpunktgleichungen, lassen sich in einem Übersichtsartikel
von Aldous und Bandyopadhyay finden, siehe [3].

Bevor wir den Grenzwert von (B(T big
n ))n∈N untersuchen, berechnen wir für ein

einfaches Beispiel die Lösung der Gleichung (2.26).

Beispiel 2.2.5 Für p ∈ [0, 1] wählen wir F = B(1, p), die Bernoulli-Verteilung mit
Erfolgsparameter p. In den Fällen p = 0 bzw. p = 1 sei B(1, p) die Dirac-Verteilung
in 0 bzw. 1.
Dann ist G = B(1, 1− q) mit

q = e−qp (2.30)

die eindeutige Lösung der stochastischen Fixpunktgleichung DF (G) = G.

Beweis. Sei T ∼ PGW(1) mit B(1, p)-verteilten Kantengewichten, d. h. jede Kante
von T erhält mit Wahrscheinlichkeit p das Gewicht 1 und mit Wahrscheinlichkeit
1− p das Gewicht 0.
Die Differenz einer größten gewichteten Paarung und einer größten gewichteten

Paarung, die die Wurzel nicht enthalten darf, nimmt somit nur die Werte 0 und 1
an. B(T ) genügt also einer Bernoulli-Verteilung, dessen Erfolgsparameter 1− q es zu
finden gilt.
Wir wählen unabhängige Zufallsgrößen N , Y , (Yi)i∈N, ξ und (ξi)i∈N mit N ∼

Poi(1), Y ∼ G, Yi ∼ G, ξ ∼ F und ξi ∼ F . Dann gilt

q = P (Y = 0) = P (max{0, ξi − Yi : 1 ≤ i ≤ N} = 0)
= P (ξi ≤ Yi für alle 1 ≤ i ≤ N)

=
∞∑
n=0

P (ξi ≤ Yi für alle 1 ≤ i ≤ n) · P (N = n)

= 1
e

∞∑
n=0

1
n!P (ξ ≤ Y )n

= 1
e

exp(P (ξ ≤ Y ))

= exp(−P (ξ > Y ))
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= exp(−P (ξ = 1, Y = 0))
= exp(−P (ξ = 1) · P (Y = 0))
= exp(−pq),

was (2.30) zeigt.

Bemerkung 2.2.6 Analog zur obigen Rechnung erhalten wir, dass für ein beliebiges
ξ ∼ F , Y ∼ G mit DF (G) = G, für alle k ≥ 0 die Gleichung

P (Y ≤ k) = exp(−P (ξ > Y + k)) (2.31)

gilt. Ist F gedächtnislos, so lässt sich (2.31) weiter vereinfachen. Im Abschnitt 2.5
werden wir dies für den Fall F ∼ Exp(λ) unternehmen.

2.3. Der Grenzwert von B(Tbig
n )

In diesem Abschnitt führen wir eine ähnliche Untersuchung für (B(T big
n ))n∈N durch

und erinnern zunächst daran, dass wir in Satz 1.3.4 u. a. die Verteilungskonvergenz

T big
n

d−→ T∞

eingesehen haben, wobei T∞ ∼ PGW∞(1).
Wie in Lemma 2.2.1 würden wir nun gerne folgern, dass auch B(T big

n ) in Verteilung
konvergiert. Der Grenzwert kann, sofern existent, jedoch nicht B(T∞) sein, denn
dieser Ausdruck ist nicht wohldefiniert, da T∞ stets ein Baum mit unendlich vielen
Knoten ist. Eine größte gewichtete Paarung würde demnach – unabhängig davon, ob
sie die Wurzel enthalten darf oder nicht – ein unendliches Gewicht besitzen. Damit
wäre B(T∞) die Differenz zweier unendlicher Größen.
Nichtsdestotrotz werden wir sehen, dass B(T big

n ) einen Verteilungslimes besitzt, den
wir erneut als eindeutige Lösung einer stochastischen Fixpunktgleichung beschreiben
können. Diese Gleichung leiten wir kurz heuristisch her, indem wir mit B(T∞) weiter
rechnen – wohl wissend, dass es kein wohldefinierter Ausdruck ist.

2.3.1. Heuristische Herleitung
Erinnern wir uns an die Definition 1.2.15 von T∞, so zerlegt sich T∞ in die Bäume
T small
∞ und T big

∞ mit Wurzeln v und w. Es sei Cs die Kindermenge von v im Baum
T small
∞ (d. h. Cs = Cv \ {w}) und für i ∈ Cs sei T i der Teilbaum von T small

∞ , dessen
Wurzel i ist.
Eine größte gewichtete Paarung von T∞, die die Wurzel v nicht enthält, würde

durch die Größe M(T∞)−B(T∞) eingefangen, die wir auch als

M(T∞)−B(T∞) = M(T big
∞ ) +

∑
i∈Cs

M(T i) (2.32)
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schreiben können.
Für eine größte gewichtete Paarung, die die Wurzel v enthalten muss, gibt es zwei

Fälle zu betrachten: Im ersten Fall enthält die Paarung einen Knoten j aus Cs, womit
das Gewicht dieser Paarung auch als

ξj +M(T j)−B(T j) +
∑
i∈Cs
i 6=j

M(T i) +M(T big
∞ ),

oder kürzer

ξj −B(T j) +M(T big
∞ ) +

∑
i∈Cs

M(T i), (2.33)

geschrieben werden kann. ξj sei hierbei das Gewicht der Kante zwischen j und seiner
Mutter v.
Im zweiten Fall enthält die Paarung die Kante {v, w}, womit sein Gewicht durch

ξw +
∑
i∈Cs

M(T i) +M(T big
∞ )−B(T big

∞ ) (2.34)

gegeben ist.
Die Maximierung der Größen (2.32), (2.33) und (2.34) liefert eine alternative Dar-

stellung für M(T∞):

M(T∞) = M(T big
∞ ) +

∑
i∈Cs

M(T i) + max{0, max{ξj −B(T j) : j ∈ Cs}, ξw −B(T big
∞ )}.

Durch das Umstellen nach B(T∞) in (2.32) erhalten wir dann

B(T∞) = max{0, max{ξj −B(T j) : j ∈ Cs}, ξw −B(T big
∞ )}. (2.35)

Da T small
∞ ∼ PGW(1), gilt nach Theorem 2.2.3

B(T small
∞ ) ∼ max{ξj −B(T j) : j ∈ Cs}.

T big
∞ ∼ PGW∞(1) impliziert B(T big

∞ ) ∼ B(T∞), und schliesslich vereinfacht sich (2.35)
zu

B(T∞) ∼ max{B(T small
∞ ), ξ −B(T∞)}, (2.36)

wobei abkürzend ξ = ξw gesetzt ist.
Im Folgenden geht es darum, die soeben erhaltene Fixpunktgleichung (2.36) zu

studieren. Im Gegensatz zur Fixpunktgleichung DF (G) = G ist nun keineswegs klar,
ob es eine Lösung gibt, denn wir erinnern noch einmal daran, dass B(T∞) kein wohl-
definierter Ausdruck ist und demnach auch keine Lösung von (2.36) sein kann.
Es wird sich jedoch zeigen, dass für gegebene F ∼ ξ und G mit DF (G) = G ∼

B(T small
∞ ) die Fixpunktgleichung (2.36) eindeutig lösbar und ihre Lösung der Vertei-

lungslimes von B(T big
n ) ist.
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2.3.2. Die Fixpunktgleichung
Die heuristische Überlegung aus Abschnitt 2.3.1 gibt Anlass zu einer Definition. Sei
F eine Verteilung auf [0,∞) und G die eindeutige Lösung der Fixpunktgleichung
DF (G) = G aus Theorem 2.2.3. Gegeben eine Verteilung H und stochastisch unab-
hängige Zufallsgrößen Z, Y und ξ mit

Z ∼ H, Y ∼ G und ξ ∼ F,

sei D̃F (H) die Verteilung der Zufallsgröße

max{Y, ξ − Z}. (2.37)

Theorem 2.3.1 Für eine Verteilung F auf [0,∞) besitzt die stochastische Fixpunkt-
gleichung

D̃F (H) = H (2.38)
genau eine Lösung H. Ferner gilt im Fall, dass F kein Dirac-Maß ist, die Konvergenz

B(T big
n ) d−→ H. (2.39)

Der Beweis erfordert einigen Aufwand. Wir beginnen damit, die Existenz von H zu
zeigen und greifen auf die Theorie der Markov-Ketten zurück. Für eine ausführlichere
Diskussion der folgenden Resultate verweisen wir auf [15].
Für festes F , G und unabhängige Zufallsgrößen ξ ∼ F und Y ∼ G betrachten wir

den stochastischen Kern K : [0,∞)×B([0,∞))→ [0, 1] mit

K(z, A) = P (max{Y, ξ − z} ∈ A), (2.40)

der den Übergangskern für eine zeitlich diskrete und zeitlich homogene Markov-Kette
mit Zustandsraum [0,∞) auf folgende Weise definiert:

Definition 2.3.2 Gegeben sei ein stochastischer Kern K : [0,∞) × B([0,∞)) →
[0, 1] und eine Verteilung λ auf [0,∞). Ein stochastischer Prozess M = (Mn)n∈N0 mit
Werten in [0,∞) heißt zeitlich homogene Markov-Kette mit Übergangskern K und
Anfangsverteilung λ, falls P (M0 ∈ · ) = λ und

PMn+1|Mn = K(Mn, · ) P -f. s.

für alle n ∈ N0 erfüllt ist.

Wir interessieren uns nur für den Übergangskern K aus (2.40). Dessen ungeachtet
formulieren wir die nächsten Definitionen und Lemmas allgemein. Alleinig beim Exis-
tenzbeweis einer invarianten Verteilung werden wir nur kurz auf die entsprechende
Verallgemeinerung eingehen. Außerdem halten wir den Zustandsraum [0,∞) fixiert,
auch wenn dies nicht notwendig ist, da wir ihn durch einen beliebigen metrischen
Raum ersetzen könnten.
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Definition 2.3.3 Für n ∈ N0 definieren wir induktiv den n-Schritt Übergangskern
Kn durch K0(x,A) = δx(A) = 1A(x) und

Kn(x,A) =
∫

[0,∞)

Kn−1(y, A)K(x, dy) (2.41)

für alle x ∈ [0,∞) und A ∈ B([0,∞)). Insbesondere gilt K1 = K.

Kn(x,A) gibt die Wahrscheinlichkeit an, dass eine Markov-Kette M mit Über-
gangskern K nach n Schritten in der Menge A landet, wenn sie in M0 = x gestartet
ist.

Definition 2.3.4 Ein σ-endliches Maß π 6= 0 auf [0,∞) heißt invariant für K, falls

π(A) =
∫

[0,∞)

K(x,A) π(dx) (2.42)

für alle A ∈ B([0,∞)) gilt. Ist π zudem ein Wahrscheinlichkeitsmaß, so heißt π auch
invariante Verteilung für K.

Ist π eine invariante Verteilung für K aus (2.40) und Z eine von Y und ξ unab-
hängige Zufallsgröße mit Verteilung π, so gilt gemäß (2.42)

P (Z ∈ · ) =
∫

[0,∞)

K(z, · )PZ(dz)

=
∫

[0,∞)

P (max{Y, ξ − z} ∈ · )PZ(dz)

= P (max{Y, ξ − Z} ∈ · ).

Mit anderen Worten: π ist eine Lösung der Fixpunktgleichung (2.38).
Eine hilfreiche Eigenschaft für die Suche nach einer invarianten Verteilung ist die

Feller-Eigenschaft eines Übergangskernes.

Definition 2.3.5 K besitzt die Feller-Eigenschaft, falls für jede Folge (xn)n∈N in
[0,∞) mit lim

n→∞
xn = x die schwache Konvergenz

K(xn, · ) w−→ K(x, · ) (2.43)

gilt.

Wir weisen (2.43) für den Kern K aus (2.40) nach. Geben wir uns eine gegen x
konvergente Folge (xn)n∈N und einen Stetigkeitspunkt k ≥ 0 der Verteilung K(x, · )
vor, so ist k auch ein Stetigkeitspunkt der Verteilung P (ξ − x ∈ · ), denn aus der
Definition von K und der Unabhängigkeit von Y und ξ folgt zunächst

P (Y ≤ k) · P (ξ − x ≤ k) = K(x, [0, k]) Vor.= K(x, [0, k)) = P (Y < k) · P (ξ − x < k),
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also
P (Y ≤ k) · P (ξ − x ≤ k) ≤ P (Y ≤ k) · P (ξ − x < k).

Mit Bemerkung 2.2.6 erhalten wir P (Y ≤ k) > 0 und folglich

P (ξ − x ≤ k) = P (ξ − x < k),

d. h. die Stetigkeit der Verteilung P (ξ − x ∈ · ) in k. Dies impliziert

K(xn, (∞, k]) = P (max{Y, ξ − xn} ≤ k)
= P (Y ≤ k) · P (ξ − xn ≤ k)
n→∞−→ P (Y ≤ k) · P (ξ − x ≤ k) = K(x, (∞, k]).

Der für uns interessante Kern K besitzt in der Tat die Feller-Eigenschaft. Einen
ersten Anhaltspunkt für den Nutzen dieser Eigenschaft gibt das nächste Lemma,
welches für allgemeine Übergangskerne K formuliert ist.

Lemma 2.3.6 Es seien µ, (µn)n∈N endliche Maße auf [0,∞) mit µn w→ µ.

(a) Ist h : [0,∞)→ [0,∞) mit der Eigenschaft

lim inf
x→y

h(x) ≥ h(y) (2.44)

für alle y ≥ 0, so ist h messbar und es gilt

lim inf
n→∞

∫
[0,∞)

h dµn ≥
∫

[0,∞)

h dµ. (2.45)

(b) Besitzt der Kern K die Feller-Eigenschaft, so gilt∫
[0,∞)

K(y, · )µn(dy) w−→
∫

[0,∞)

K(y, · )µ(dy). (2.46)

Beweis. Der Prototyp einer Funktion h mit der Eigenschaft (2.44) ist h = 1A für eine
offene Menge A. Ist h von dieser Gestalt, so gilt

∫
[0,∞) h dµn = µn(A) und aufgrund

des Portmanteau-Theorems (Theorem 1.1.17) auch (2.45).
Im allgemeinen Fall zeigen wir zunächst, dass die Mengen {h > y}, y ≥ 0, offen

sind. Ist (xn)n∈N eine Folge in {h ≤ y} mit xn → x, so folgt aus (2.44) und h(xn) ≤ y
für alle n

h(x) ≤ lim inf
n→∞

h(xn) ≤ y,

und somit x ∈ {h ≤ y}, d. h. {h ≤ y} ist abgeschlossen für jedes y ≥ 0. h ist folglich
messbar.
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Da h nichtnegativ ist, gilt (siehe Kapitel III, Korollar A.2. in [6])

∫
[0,∞)

h dµn =
∞∫
0

µn({h > y}) dy.

Eine Anwendung von Fatous Lemma liefert

lim inf
n→∞

∫
[0,∞)

h dµn = lim inf
n→∞

∞∫
0

µn({h > y}) dy ≥
∞∫
0

lim inf
n→∞

µn({h > y}) dy. (2.47)

Teil (c) des Portmanteau-Theorems 1.1.17, angewandt auf die offene Menge {h > y},
zeigt

lim inf
n→∞

µn({h > y}) ≥ µ({h > y}).

Zusammen mit (2.47) folgt nun (2.45).
Teil (b) des Lemmas ist eine Anwendung des ersten Teils auf die Funktion h =

K( · , A), für eine offene Menge A ⊆ [0,∞). Aufgrund der Feller-Eigenschaft (2.43)
von K und des Portmanteau-Theorems erfüllt h die Voraussetzung (2.44) und wir
erhalten

lim inf
n→∞

∫
[0,∞)

K(y, A)µn(dy) ≥
∫

[0,∞)

K(y, A)µ(dy)

für alle offenen A, welches wiederum mit Portmanteau (2.46) beweist, wenn wir
zusätzlich∫

[0,∞)

K(y, [0,∞))µn(dy) = µn([0,∞)) → µ([0,∞)) =
∫

[0,∞)

K(y, [0,∞))µ(dy)

beachten.

Finden wir also Verteilungen µ, (µn)n∈N mit µn w→ µ und∫
[0,∞)

K(y, · )µn(dy) w−→ µ, (2.48)

so ist nach Teil (b) des Lemmas µ eine invariante Verteilung für K.

Definition 2.3.7 Die Okkupationsmaße (µn(x, · ))n∈N, für x ∈ [0,∞), seien gegeben
durch

µn(x, · ) = 1
n

n−1∑
i=0

Ki(x, · ). (2.49)
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Da jedes Ki(x, · ) gemäß (2.41) eine Verteilung ist, ist auch jedes µn(x, · ) eine
Verteilung.
Konvergiert (µn(x, · ))n∈N schwach gegen ein µ, so ist (2.48) automatisch erfüllt,

wie das nächste Lemma zeigt. Ein derartiger Limes µ ist also stets invariant für K,
vorausgesetzt K erfüllt (2.43).

Lemma 2.3.8 Besitzt K die Feller-Eigenschaft und existiert ein x ≥ 0, für dass
die Folge der Okkupationsmaße (µn(x, · ))n∈N eine schwach konvergente Teilfolge
(µnk(x, · ))k∈N mit Limes πx besitzt, so ist πx eine invariante Verteilung für K.

Beweis. Einerseits gilt

∫
[0,∞)

K(y, · )µnk(x, dy) = 1
nk

nk−1∑
i=0

∫
[0,∞)

K(y, · )Ki(x, dy)

= 1
nk

nk−1∑
i=0

Ki+1(x, · )

= 1
nk

nk−1∑
i=0

Ki(x, · ) + 1
nk

(Knk(x, · )−K0(x, · ))

= µnk(x, · ) + 1
nk

(Knk(x, · )−K0(x, · ))
d−→ πx + 0 = πx.

Andererseits erhalten wir mit Lemma 2.3.6 (b) die Verteilungskonvergenz∫
[0,∞)

K(y, · )µnk(x, dy) d−→
∫

[0,∞)

K(y, · ) πx(dy),

womit wir aus der Eindeutigkeit des Limes

πx =
∫

[0,∞)

K(y, · ) πx(dy)

schließen. D. h. πx ist eine invariante Verteilung für K.

Existenzbeweis von H in Theorem 2.3.1. Im Anschluss an Definition (2.43) haben
wir eingesehen, dass der Kern K(z, A) = P (max{Y, ξ − z} ∈ A) die Feller-Eigen-
schaft (2.43) besitzt. Wir verifizieren nun, dass die Voraussetzung von Lemma 2.3.8
an (µn(x, · ))n∈N für ein x ≥ 0 erfüllt ist. Es ist unerheblich, welches x wir dabei
wählen – der Einfachheit halber sei x = 0 und abkürzend µn = µn(0, · ) gesetzt.
Als Folge von Wahrscheinlichkeitsmaßen besitzt (µn)n∈N nach dem Satz von Helly-

Bray genau dann eine schwach konvergente Teilfolge, wenn (µn)n∈N straff ist (vgl.
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Satz 44.4 in [6]), d. h. wir haben zu zeigen, dass für beliebiges ε > 0 eine kompakte
Menge K ⊆ [0,∞) mit

sup
n∈N

µn(Kc) < ε (2.50)

existiert (vgl. Definition 43.3 in [6]).
Für alle k ≥ 0 und z ≥ 0 gilt aufgrund der Ungleichung ξ − z ≤ ξ

K(0, [0, k]) = P (max{Y, ξ} ≤ k) ≤ P (max{Y, ξ − z} ≤ k) = K(z, [0, k]).
Mit anderen Worten: K(0, · ) wird von jedem K(z, · ), z ≥ 0, dominiert. Induktiv
folgt daraus

K(0, [0, k]) ≤ Kn(z, [0, k]) (2.51)
für alle n ∈ N, k ≥ 0 und z ≥ 0, denn der Induktionsschritt ergibt sich aus der
Definition (2.41) und aus

Kn(z, [0, k]) =
∫
Kn−1(y, [0, k])︸ ︷︷ ︸
≥K(0,[0,k])

K(z, dy) ≥ K(0, [0, k]).

Ist ε > 0 gegeben, so können wir ein k ≥ 0 mit K(0, [0, k]c) < ε finden, denn eine
einzelne Verteilung auf R ist stets straff. Mit K = [0, k] und (2.51) folgt

sup{Kn(z,Kc) : z ≥ 0, n ∈ N} < ε,

d. h. die Familie {Kn(z, · ) : z ≥ 0, n ∈ N} ist straff.
Die Straffheit der Folge (µn)n∈N ergibt sich dann vermöge

µn(Kc) = 1
n

n−1∑
i=0

Ki(0,Kc)︸ ︷︷ ︸
<ε

< ε

für alle n ∈ N.

Die Existenz einer invarianten Verteilung für ein beliebiges K lässt sich verallge-
meinern, wenn wir die entscheidende Ungleichung (2.51) anpassen: Ist ein Übergangs-
kern K mit Feller-Eigenschaft gegeben, und existieren ein x0 aus dem Zustandsraum
sowie eine aufsteigende Folge kompakter Mengen (Kn)n∈N, die gegen den gesamten
Zustandsraum konvergiert und

K(x0,Kn) ≤ K(x,Kn)
für alle n ∈ N und alle x aus dem Zustandsraum erfüllt, so besitzt K eine invariante
Verteilung.
Die Eindeutigkeit der invarianten Verteilung könnten wir ebenfalls mit der all-

gemeinen Theorie verifizieren. Wir verwenden jedoch ein Kopplungsargument, das
später nützlich sein wird, um die Verteilungskonvergenz B(T big

n )→ H nachzuweisen.
Für das nächste Lemma sei F wie üblich die Kantengewichtsverteilung und G die

eindeutige Lösung der Fixpunktgleichung DF (G) = G aus Theorem 2.2.3.
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Lemma 2.3.9 Sei F kein Dirac-Maß. Gegeben stochastisch unabhängige Zufallsgrö-
ßen ξ und Y mit ξ ∼ F und Y ∼ G, gilt dann

P (ξ ≥ Y ) < 1. (2.52)

Beweis. Ist T ein von ξ unabhängiger PGW(1)-Baum mit F -verteilten Kantenge-
wichten, so können wir Y = B(T ) annehmen. Sei t2 der einzige Baum aus S2, also
der Baum mit zwei Knoten und einer Kante. Sei ξ′ die Gewichtsfunktion dieser Kan-
te, die als unabhängig von ξ angenommen wird. Dann gilt offenbar P (T = t2) = e−2

und B(t2) = ξ′, womit wir die Ungleichung

P (ξ < B(T )) ≥ P (ξ < B(T ), T = t2) = P (ξ < ξ′, T = t2) = P (ξ < ξ′) · P (T = t2)

erhalten. Da ξ und ξ′ stochastisch unabhängig und nicht P -f. s. konstant sind, gilt
P (ξ < ξ′) > 0. Es folgt

P (ξ ≥ B(T )) = 1− P (ξ < B(T )) ≤ 1− P (T = t2) = 1− e−2 < 1.

Beweis der Eindeutigkeit von H. Der Fall F = δc für ein c ≥ 0 ist separat zu betrach-
ten. Die Fälle c = 0 und c = 1 behandeln wir in Beispiel 2.3.10. Für ein beliebiges
c > 0 beachten wir, dass sich beide Fixpunktgleichungen unproblematisch unter ska-
larer Multiplikation verhalten: Haben wir die Lösungen Y und Z für den Fall c = 1
bestimmt, so ergeben sich die Lösungen für ein allgemeines c durch cY und cZ (siehe
dazu auch Lemma 2.5.1).
Wir nehmen nun an, dass die Verteilung F nicht auf einen Punkt konzentriert ist,

womit Lemma 2.3.9 anwendbar wird. Sei eine Familie von unabhängigen Zufallsgrö-
ßen

{ξn, Yn : n ∈ N}
mit ξn ∼ F und Yn ∼ G für alle n gegeben. Für jedes z ≥ 0 definieren wir eine
Markov-Kette M(z) = (Mn(z))n∈N0 durch M0(z) = z und

Mn(z) = max{ξn −Mn−1(z), Yn}, (2.53)

d. h. M(z) startet in z und der Übergangskern ist gemäß K aus (2.40) gegeben.
Für z, z′ ≥ 0 gilt dann offenbar

Mn(z) ≥Mn(z′) ⇒ Mn+1(z) ≤Mn+1(z′) ⇒ Mn+2(z) ≥Mn+2(z′),

womit aus M0(z) ≥M0(0)

M2k(z) ≥M2k(0) (2.54)

für alle z ≥ 0 und alle k ∈ N0 folgt. Durch

τ = inf{2k + 1 : M2k+1(0) = Y2k+1} (2.55)
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wird eine Stoppzeit definiert, von der wir zeigen, dass sie fast sicher endlich ist.
Zunächst bemerken wir, dass τ nur ungerade Werte annimmt und aufgrund von
(2.54)

Mτ−1(z) ≥Mτ−1(0)
für alle z gilt. Folglich erhalten wir

Mτ (0) = Yτ ≥ ξτ −Mτ−1(0) ≥ ξτ −Mτ−1(z)

und somit Mτ (z) = Yτ für alle z. Die Stoppzeit τ erfüllt demnach

Mτ+k(z) = Mτ+k(0) für alle z ≥ 0 und alle k ∈ N0. (2.56)

Da P (ξn ≥ Yn) nicht von n abhängt, setzen wir ρ = P (ξn ≥ Yn). Aus

{τ ≥ 2k + 1} ⊆ {ξ2i+1 ≥ Y2i+1 für alle i = 0, . . . , k − 1}

folgt P (τ ≥ 2k + 1) ≤ ρk für alle k ∈ N0, und τ ist fast sicher endlich, da nach
Lemma 2.3.9 ρ < 1 ist.
Ist X eine Zufallsgröße auf [0,∞), so ist τ gemäß (2.56) eine Kopplungszeit für

(Mn(X))n∈N0 und (Mn(0))n∈N0 . Aufgrund der Kopplungsungleichung (siehe [5], Ka-
pitel II, Abschnitt 11) gilt

sup
A∈B(R)

|P (Mn(X) ∈ A)− P (Mn(0) ∈ A)| ≤ P (τ > n) ≤ ρk (2.57)

für alle n ≥ 2k + 1, d. h. der Totalvariationsabstand zwischen P (Mn(X) ∈ · ) und
P (Mn(0) ∈ · ) konvergiert für n→∞ gegen 0.
Ist H eine Lösung der Fixpunktgleichung (2.38) und Z eine von {ξn, Yn : n ∈ N}

unabhängige Zufallsgröße mit Z ∼ H, so gilt Mn(Z) ∼ H für alle n ∈ N0.
(2.57) impliziert dann P (Mn(0) ∈ · ) → H in Totalvariation. Insbesondere ist H

eindeutig, da der Totalvariationslimes dies ist.

Um den Eindeutigkeitsbeweis abzuschließen, fehlt noch der Nachweis im Fall F =
δc. Wir greifen das Beispiel 2.2.5 auf und berechnen die Lösung von (2.38) per Hand.

Beispiel 2.3.10 Sei p ∈ [0, 1], F = B(1, p) und G = B(1, 1− q) mit

q = e−qp,

die eindeutige Lösung der Fixpunktgleichung DF (G) = G. Dann ist H = B(1, 1− r)
mit

r = q

qp+ 1 (2.58)

die eindeutige Lösung der Fixpunktgleichung D̃F (H) = H.
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Beweis. Beginnen wir mit der Eindeutigkeit von H. Seien dazu ξ, Y und Z stochas-
tisch unabhängige Zufallsgrößen mit den Verteilungen F , G und H.
Aus Z ∼ max{Y, ξ − Z}, P (Y ≥ 0) = 1 und P (ξ ≤ 1) = 1 folgt

P (0 ≤ Z ≤ 1) = 1.

Da die Variablen stochastisch unabhängig sind, erhalten wir

P (Z = 0) = P (Y = 0) · P (ξ ≤ Z)
= P (Y = 0) · (P (ξ = 0) + P (ξ = 1) · P (Z = 1))
= q · ((1− p) + p · P (Z = 1)).

(2.59)

Die Wahrscheinlichkeit P (Z = 1) hingegen berechnet sich zu

P (Z = 1) = P (Y = 1) + P (Y = 0) · P (ξ − Z = 1)
= P (Y = 1) + P (Y = 0) · P (ξ = 1) · P (Z = 0)
= (1− q) + q · p · P (Z = 0).

(2.60)

Addieren wir die Gleichungen (2.59) und (2.60), erhalten wir P (Z = 0)+P (Z = 1) =
1, also ist Z tatsächlich B(1, 1− r)-verteilt. Stellen wir eine der beiden Gleichungen
nach r = P (Z = 0) um, so folgt auch die Eindeutigkeit von H, die sich durch (2.58)
ausdrückt.
Ist umgekehrt H = B(1, 1 − r) mit r = q

qp+1 gegeben, so sehen wir wie in (2.59)
und (2.60), dass

P (Z = k) = P (max{Y, ξ − Z} = k)
für k ∈ {0, 1} gilt, d. h. H löst die Fixpunktgleichung D̃F (H) = H.

Um den Beweis von Theorem 2.3.1 zu vollenden, fehlt noch der Nachweis der
Verteilungskonvergenz von B(T big

n ) gegen H, im Fall, dass F kein Dirac-Maß ist.

Lemma 2.3.11 Sei F wie üblich eine Verteilung auf [0,∞) und G bzw. H seien die
eindeutigen Lösungen der Fixpunktgleichungen DF (G) = G bzw. D̃F (H) = H. Es
sei k ∈ N fixiert und

(a) {Y n
m : −2k + 2 ≤ m ≤ 0} für jedes n ∈ N eine Familie von Zufallsgrößen, die(

Y n
−2k+2, . . . , Y

n
0

)
d−→ G⊗ · · · ⊗G︸ ︷︷ ︸

2k−1 mal

(2.61)

für n→∞ erfüllt,

(b) {Xn
m : −2k + 1 ≤ m ≤ 0} durch

Xn
m = max{ξnm −Xn

m−1, Y
n
m} (2.62)

definiert, wobei Xn
−2k+1 eine beliebige nichtnegative Zufallsgröße sei und
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(c) {ξnm : −2k+2 ≤ m ≤ 0} eine Familie unabhängiger Zufallsgrößen mit Verteilung
F sei, die zudem unabhängig von Xn

−2k+1 und {Y n
m : −2k + 2 ≤ m ≤ 0} sei.

Dann gilt für alle x ∈ R

lim sup
n→∞

|P (Xn
0 ≤ x)−H(x)| ≤ ρk, (2.63)

wobei ρ sich aus
ρ =

∫
[0,∞)

∫
(y,∞)

F (dx)G(dy)

ergibt. Zudem impliziert Lemma 2.3.9 ρ < 1, falls F keine Dirac-Verteilung ist.

Beweis. Wir übernehmen die Notation aus dem Eindeutigkeitsbeweis von H: Seien
M(z) = (Mi(z))i∈N0 und τ wie in (2.53) bzw. (2.55) gegeben, d. h. M0(z) = z,
Mi(z) = max{ξi − Mi−1(z), Yi} und τ = inf{2i + 1 : M2i+1(0) = Y2i+1} für eine
unabhängige Familie {ξi, Yi : i ∈ N}, die auch unabhängig von (Xn

−2k+1)n∈N ist,
ξi ∼ F und Yi ∼ G für alle i ∈ N erfüllt.
Ferner sei Z eine von {ξi, Yi : i ∈ N} unabhängige Zufallsgröße mit Verteilung H.

τ ist gemäß (2.56) eine Kopplungszeit für (Mi(Xn
−2k+1))i∈N0 und (Mi(Z))i∈N0 , d. h. es

gilt
Mτ+i(Xn

−2k+1) = Mτ+i(Z) für alle i ∈ N0.

Aus Mi(Z) ∼ Z für alle i ≥ 0 erhalten wir mittels der Kopplungsungleichung

|P (M2k−1(Xn
−2k+1) ≤ x)− P (Z ≤ x)| ≤ P (τ > 2k − 1) = P (τ ≥ 2k + 1) ≤ ρk

für alle x ∈ R und n ∈ N.
Für (2.63) genügt es demnach

lim
n→∞

|P (Xn
0 ≤ x)− P (M2k−1(Xn

−2k+1) ≤ x)| = 0 (2.64)

zu zeigen, d. h. Xn
0 verhält sich für n → ∞ wie die Markov-Kette M , wenn diese in

Xn
−2k+1 gestartet und 2k − 1 Schritte gelaufen ist.
Doch Xn

0 haben wir durch (2.62) genau so konstruiert. Es gilt überdies

lim
n→∞

|P (Xn
m ≤ x)− P (M2k−1+m(Xn

−2k+1) ≤ x)| = 0 (2.65)

für alle −2k + 1 ≤ m ≤ 0. Der Fall m = −2k + 1 in (2.65) ergibt sich offenkundig
aus M0(Xn

−2k+1) = Xn
−2k+1.

Die Voraussetzung (2.61) impliziert(
Y n
−2k+2, . . . , Y

n
0

)
d−→ (Y1, . . . , Y2k−1) .
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Für −2k+2 ≤ m ≤ 0 sind Xn
m−1 und ξnm nach Annahme (c) stochastisch unabhängig.

Zusammen mit (ξn−2k+2, . . . , ξ
n
0 ) ∼ (ξ1, . . . , ξ2k−1) für alle n ∈ N sehen wir

|P (Xn
m ≤ x)−P (M2k−1−m(Xn

−2k+1) ≤ x)|
= |P (max{ξnm −Xn

m−1, Y
n
m} ≤ x)

− P (max{ξ−2k−1−m −M2k−2−m(Xn
−2k+1), Y−2k−1−m}) ≤ x)|

n→∞−→ 0.

Insbesondere ergibt sich mit m = 0 die Behauptung (2.64).

Mit dieser Vorbereitung beweisen wir nun die Behauptung (2.39) aus Theorem
2.3.1.

Beweis für B(T big
n ) d→ H. Sei T∞ ∼ PGW∞(1) mit F -verteilten Kantengewichten.

Wir nehmen ohne Einschränkung T big
n → T∞ P -f. s. an, unter Beachtung des Theo-

rems 1.1.21 und Satz 1.3.4.
Für k ∈ N und P -fast alle ω ∈ Ω finden wir nun ein N(k, ω) ∈ N, so dass für alle

n ≥ N(k, ω) ein Pfad π = π(ω, n) aus 2k Knoten des Baumes T big
n (ω) existiert, der

den folgenden beiden Eigenschaften genügt:

(a) Der erste Knoten in π ist die Wurzel von T big
n (ω).

(b) Schreiben wir π als vn0 → vn1 → · · · → vn2k−1, dann führt die Entfernung der
Kanten {vni , vni+1}, i = 0, . . . , 2k − 2, zu Teilbäumen T n0 (ω), . . . , T n2k−1(ω) von
T big
n (ω) mit Wurzeln vni und es gilt die Verteilungskonvergenz(

T n0 , . . . , T
n
2k−2

)
d−→

(
T∞0 , . . . , T∞2k−2

)
,

wobei (T∞i )0≤i≤2k−2 eine unabhängige Familie von F -gewichteten PGW(1)-Bäu-
men sei.

T n0 T n1 T n2k−2 T n2k−1

vn0 vn1 vn2k−2 vn2k−1

Abbildung 2.2. Die Bäume T n0 , . . . , T n2k−1.

Die Existenz eines derartigen Pfades liefert das sukzessive Anwenden von Satz
1.3.4: Wir setzen vn1 als Wurzel von (T big

n )big, sofern diese Wurzel von vn0 verschieden
ist, d. h. n groß genug ist. vn2 setzen wir als Wurzel von ((T big

n )big)big, sofern n wieder
groß genug ist usw.
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Da wir diesen Schritt nur endlich oft durchführen, erhalten wir auch ein endliches
N(k, ω) mit den gewünschten Eigenschaften.
Für 0 ≤ i ≤ 2k − 1 sei nun Rn

i der Teilbaum von T big
n , der an vni hängt, d. h.

Rn
i = (T big

n )vni .

Wir beachten, dass Rn
0 = T big

n gilt. Ist nun ξni das Gewicht der Kante {vni , vni+1}, so
gilt

B(Rn
i ) = max{ξni −B(Rn

i+1), B(T ni )} (2.66)

für alle 0 ≤ i ≤ 2k − 2.
Die Gleichung (2.66) erhalten wir durch die in Abschnitt 2.3.1 gegebenen Argu-

mente mit v = vni und w = vni+1. Wir beachten dabei, dass die auftretenden Bäume
endlich sind und deshalb mit keiner nicht definierten Größe gerechnet wird.
Eine Anwendung von Lemma 2.3.11 auf m = −i, also Y n

m = B(T n−m) und Xn
m =

B(Rn
−m) für alle −2k + 2 ≤ m ≤ 0, liefert zusammen mit Rn

0 = T big
n

lim sup
n→∞

|P (B(T big
n ) ≤ x)−H(x)| ≤ ρk

für alle x. Weil k beliebig ist, folgt die Behauptung (2.39).

2.4. Asymptotik von EMn

Den Abschluss des ersten Kapitels bildet Korollar 1.5.5, welches eine nützliche Re-
kursionsgleichung für EMn bereitstellt und die Vermutung nahelegt, dass EMn sich
für n→∞ wie n · γ verhält. Wir halten jetzt das Hauptresultat der beiden Kapitel
fest:
Gegeben eine stetige Verteilung F auf [0,∞) mit endlichem Erwartungswert, seien

G undH die eindeutigen Lösungen der stochastischen FixpunktgleichungenDF (G) =
G und D̃F (H) = H aus den Theoremen 2.2.3 und 2.3.1.
Ferner seien ξ, Y und Z stochastisch unabhängige Zufallsgrößen mit den Vertei-

lungen F , G und H. ξ sei zudem unabhängig von den Gewichten G aus (1.49) und
der Folge (Tn)n∈N aus (1.9).

Theorem 2.4.1 Für Mn = M(Tn) gilt

lim
n→∞

1
n

EMn = E(ξ · 1{ξ >Y+Z}). (2.67)

Beweis. Wir lassen die Ergebnisse der beiden Kapitel Revue passieren. In Korollar
1.5.5 wird festgehalten, dass

EMn = (n− 1) · E(ξ · 1{ξ >B(T small
n (en)) +B(Tbig

n (en))}) (2.68)
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gilt. Auf die gleiche Weise, wie wir in Satz 1.3.4

(T small
n , T big

n ) d−→ (T small
∞ , T big

∞ )

gezeigt haben, folgern wir aus den beiden Fixpunkttheoremen 2.2.3 und 2.3.1

(B(T small
n ), B(T big

n )) d−→ (Y, Z).

Satz 1.1.22 liefert dann

B(T small
n ) +B(T big

n ) d−→ Y + Z,

und zusammen mit Lemma 2.1.1 folgt

B(T small
n (en)) +B(T big

n (en)) d−→ Y + Z. (2.69)

Nach Voraussetzung ist Eξ <∞ und somit bildet

(ξ · 1{ξ >B(T small
n (en)) +B(Tbig

n (en))})n∈N (2.70)

eine gleichgradig integrierbare Folge. Unter Beachtung der Unabhängigkeit von ξ, G
und (Tn)n∈N folgt mit (2.69)

ξ · 1{ξ >B(T small
n (en)) +B(Tbig

n (en))}
d−→ ξ · 1{ξ >Y+Z}.

Letztlich schließen wir aus dieser Verteilungskonvergenz und der gleichgradigen In-
tegrierbarkeit von (2.70) auch

lim
n→∞

E(ξ · 1{ξ >B(T small
n (en)) +B(Tbig

n (en))}) = E(ξ · 1{ξ >Y+Z}). (2.71)

Für den letzten Schluss siehe Satz 50.5 in [6]. Das Einsetzen von (2.68) in (2.71) zeigt
(2.67).

Wir schließen den Abschnitt mit der Berechnung im Fall F = B(1, p) ab, auch wenn
dies keine stetige Verteilung ist. Die Fixpunktlösungen haben wir in den Beispielen
2.2.5 und 2.3.10 bestimmt: G = B(1, 1− q) und H = B(1, 1− r) mit

q = e−qp und r = q

qp+ 1

sind die eindeutigen Lösungen der Fixpunktgleichungen DF (G) = G und D̃F (H) =
H. Sind ξ, Y und Z unabhängige Zufallsgrößen mit den Verteilungen F , G und H,
so gilt aufgrund von {ξ > Y + Z} = {ξ = 1, Y = 0, Z = 0} offenbar

E(ξ · 1{ξ >Y+Z}) = p · q · r.
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2.5. Exponentialverteilte Gewichte
Wir untersuchen in diesem Abschnitt den Fall F = Exp(λ). Lemma 2.5.1 gestattet
es uns, dabei nur den Fall λ = 1 betrachten zu müssen.
Für eine Verteilung R auf [0,∞) und c > 0 sei die Verteilung Rc auf [0,∞) gegeben

durch die Verteilungsfunktion

Rc(x) = R(xc−1).

In Termen von Zufallsgrößen ausgedrückt ist Rc die Verteilung von cX, wenn X eine
Zufallsgröße mit Verteilung R ist.

Lemma 2.5.1 Gegeben c > 0 und eine Verteilung F auf [0,∞), seien G und H die
eindeutigen Lösungen der Fixpunktgleichungen DF (G) = G und D̃F (H) = H. Dann
sind Gc und Hc die eindeutigen Lösungen der Fixpunktgleichungen DFc(Gc) = Gc

und D̃Fc(Hc) = Hc.

Beweis. Dies folgt direkt aus der Beobachtung c ·max{x, y} = max{cx, cy} für alle
c > 0, x ≥ 0, y ≥ 0.

Satz 2.5.2 Ist λ > 0 und F = Exp(λ), so sind die Verteilungsfunktionen der Fix-
punktlösungen DF (G) = G bzw. D̃F (H) = H durch

G(y) = exp(−ce−λy) · 1[0,∞)(y) bzw. (2.72)
H(z) = (1− be−λz) · exp(−ce−λz) · 1[0,∞)(z) (2.73)

gegeben, wobei c die eindeutige positive Lösung der Gleichung

c2 + e−c = 1 (2.74)

ist, und b sich aus

b = c2

c2 + 2c− 1 (2.75)

ergibt.

Beweis. Unter Beachtung des Lemmas 2.5.1 setzen wir ohne Einschränkung λ = 1,
denn für F = Exp(1) und c = λ−1 gilt Fc = Exp(λ), und die entsprechenden
Gleichungen für G und H, wie ein Blick auf (2.72) und (2.73) zeigt.
Sei also von nun an F = Exp(1). Wir wählen unabhängige Zufallsgrößen N , Y ,

(Yi)i∈N, ξ und (ξi)i∈N mit N ∼ Poi(1), Y ∼ G, Yi ∼ G, ξ ∼ F und ξi ∼ F .
Die Gleichung DF (G) = G impliziert

P (Y ≤ y) = P (ξi − Yi ≤ y für alle 1 ≤ i ≤ N)
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für alle y ≥ 0.
Das Bedingen unter den Werten von N liefert

P (Y ≤ y) =
∞∑
n=0

P (ξi − Yi ≤ y für alle 1 ≤ i ≤ n) · P (N = n)

= 1
e

∞∑
n=0

1
n! · P (ξ − Y ≤ y)n

= 1
e
· exp(P (ξ − Y ≤ y))

= exp(−P (ξ − Y > y)).

Mit c := P (ξ > Y ) und der Gedächtnislosigkeit der Exponentialverteilung folgt

exp(−P (ξ − Y > y)) = exp(−P (ξ > y + Y ))
= exp(−P (ξ > Y ) · P (ξ > y))
= exp(−ce−y),

wie in (2.72) behauptet. (2.74) lässt sich aus der definierenden Gleichung von c und
(2.72) beweisen:

c = P (ξ > Y ) = P (ξ ≥ Y ) =
∫

[0,∞)

∫
[0, y]

P Y (dx)P ξ(dy)

=
∞∫
0

e−y · P (Y ≤ y) dy

=
∞∫
0

e−y · exp(−ce−y) dy

=
1∫

0

exp(−cz) dz

= 1− e−c
c

.

Beim vorletzten Gleichheitszeichen wurde z = e−y substituiert. Die Eindeutigkeit
von c in (2.74) folgt aus einer simplen Kurvendiskussion der Funktion x 7→ x2 + ex.
Für die Bestimmung von H sei eine von ξ und Y unabhängige Zufallsgröße Z ∼ H

gegeben. Es gilt dann Z ∼ max{Y, ξ − Z} und folglich

P (Z ≤ z) = P (Y ≤ z, ξ − Z ≤ z)
= P (Y ≤ z) · P (ξ − Z ≤ z)
= exp(−ce−z) · P (ξ ≤ z + Z)
= exp(−ce−z) · (1− e−z · P (ξ > Z))
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für alle z ≥ 0, unter erneuter Benutzung der Gedächtnislosigkeit von ξ.
Mit b := P (ξ > Z) folgt dann (2.73) und es bleibt (2.75) zu zeigen. Zunächst gilt

b = P (ξ > Z) = P (ξ ≥ Z)

=
∫

[0,∞)

∫
[0, z]

PZ(dx)P ξ(dz)

=
∞∫
0

e−z · P (Z ≤ z) dz

=
∞∫
0

e−z · (1− be−z) · exp(−ce−z) dz

= c− b
c2 + b− c+ bc

c2 · e−c,

wobei wir wieder s = e−z substituieren, um das Integral zu lösen. Mit (2.74) erhalten
wir e−c = 1− c2, womit wie gewünscht

b = c− b
c2 + b− c+ bc

c2 ·
(
1− c2

)
= b ·

(
c−1 − 1− c

)
+ c

⇔ b = c2

c2 + 2c− 1
folgt.

Wir beachten, dass c der Schranke ρ aus (2.57) entspricht. Die Gleichungen für b
und c lassen sich numerisch lösen, näherungsweise gilt

b = 0.543353 . . . und c = 0.714556 . . . ,

siehe Abschnitt 3.8, Lemma 2 in [4].
Mit Hilfe des Theorems 2.4.1 und der Verteilungen (2.72) und (2.73) berechnen

wir nun den Grenzwert von n−1 EMn für exponentialverteilte Gewichte.
Wir beschränken uns erneut auf den Fall λ = 1, denn den Grenzwert im allgemeinen

Fall erhalten wir durch Multiplikation von λ−1 mit dem Grenzwert im Fall F =
Exp(1), wenn wir Lemma 2.5.1 und

E(c · ξ · 1{c ξ > c Y+cZ}) = c · E(ξ · 1{ξ >Y+Z})

für alle c > 0 beachten.

Theorem 2.5.3 Ist F = Exp(1), so gilt

lim
n→∞

1
n

EMn =
∞∫
0

s∫
0

c (e−y − be−s) exp(−ce−y − ce−(s−y)) se−s dy ds. (2.76)
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Näherungsweise ergibt sich

lim
n→∞

1
n

EMn = 0.239583 . . . ,

siehe Abschnitt 3.8, Theorem 2 in [4].

Beweis. Im Angesicht des Theorems 2.4.1 haben wir nur E(ξ ·1{ξ >Y+Z}) für stochas-
tisch unabhängige ξ, Y und Z mit ξ ∼ F , Y ∼ G und Z ∼ H zu berechnen.
G ist gemäß (2.72) auf (0,∞) differenzierbar mit G′(s) = ce−s exp(−ce−s) für alle

s > 0. Daher gilt

E(ξ · 1{ξ >Y+Z}) =
∫

(0,∞)

s
∫

(0, s)

∫
(0, s−y)

PZ(dz)P Y (dy)P ξ(ds)

=
∫

(0,∞)

s
∫

(0, s)

H(s− y)P Y (dy)P ξ(ds)

=
∫

(0,∞)

s∫
0

s ·G′(y) ·H(s− y) dy P ξ(ds)

=
∞∫
0

s∫
0

G′(y) ·H(s− y) · se−s dy ds.

Ferner ist für s, y > 0 mit s− y > 0 die Gleichung

G′(y) ·H(s− y) = ce−y exp(−ce−y) · (1− be−(s−y)) · exp(−ce−(s−y))
= c · (e−y − be−s) · exp(−ce−s) · exp(−ce−(s−y))

gültig. Insgesamt zeigt dies (2.76).





3. Fransenverteilungen
Dieses Kapitel beruht auf einem, aus dem Jahr 1991 stammenden, Artikel von Aldous
[2]. Wir beschäftigen uns mit einer speziellen Klasse von Verteilungen auf Sfin – ge-
nannt Fransenverteilungen. Sfin ist dabei die in (1.5) definierte Menge aller endlichen
unmarkierten Bäume.
Im ersten Abschnitt führen wir Fransenverteilungen ein und leiten einige elementa-

re Eigenschaften aus der Definition ab. Des Weiteren beweisen wir in Beispiel 3.1.4,
dass die Verteilung eines kritischen Galton-Watson-Baumes dieser Klasse angehört.

3.1. Definition und Eigenschaften
Für s, t ∈ Sfin sei Q(s, t) definiert als

Q(s, t) = |{c ∈ C(s) : sc = t}|. (3.1)

Q(s, t) gibt also an, wie viele der Bäume sv, v ∈ C(s), zu t isomorph sind. Erinnern
wir uns an die Definition von Qv(s, t) in (1.7), so gilt offenbar Q(s, t) = Qr(s, t),
wenn r die Wurzel von s bezeichnet.
Wir fassen Q als Matrix auf und definieren Qn als das n-fache Matrixprodukt von

Q mit sich selbst. Q0 sei dabei als Einheitsmatrix gesetzt.
Als einfache Konsequenz der Definition halten wir das folgende Lemma ohne Beweis

fest. In Teil (d) gibt |L(t)| die Anzahl der Blätter von t an, vgl. Definition 1.1.4.

Lemma 3.1.1 Für alle n ∈ N0 und s ∈ Sfin gilt

(a) Qn(s, t) = |{v ∈ Vs : v befindet sich in Generation n, und es gilt sv = t}|,

(b) ∑t∈Sfin Q
n(s, t) = |{v ∈ Vs : v befindet sich in Generation n}|,

(c) ∑∞i=0
∑
t∈Sfin Q

i(s, t) = |s| und

(d) ∑∞i=0Q
i(s, t1) = |L(s)|, wobei t1 der einzige Baum aus S1 sei.

Definition 3.1.2 Eine Verteilung π auf Sfin heißt Fransenverteilung (engl. fringe
distribution), falls für alle t ∈ Sfin die Gleichung

π(t) =
∑
s∈Sfin

π(s) ·Q(s, t) (3.2)



64 Kapitel 3. Fransenverteilungen

erfüllt ist.
Ist T ein Zufallsbaum mit Verteilung π, so ist (3.2) offenbar äquivalent zu

EQ(T, t) = P (T = t)

für alle t ∈ Sfin.
In Matrizenschreibweise muss für π die Gleichung πQ = π gelten. Ist dies der Fall,

so folgt induktiv πQi = π für alle i ∈ N0.

Über elementare Eigenschaften einer Fransenverteilung gibt das nächste Lemma
Auskunft.

Lemma 3.1.3 Sei π eine Fransenverteilung und t1 ∈ S1, der einzige Baum mit einem
Knoten. Dann gelten die folgenden Aussagen:

(a) Sind s, t ∈ Sfin und ist s ein Teilbaum von t, so gilt π(s) ≥ π(t). Insbesondere
folgt π(t1) ≥ π(t) für alle t ∈ Sfin.

(b) 0 < π(t1) < 1.

(c) ∑t∈Sfin π(t) · |C(t)| = 1.

(d) ∑t∈Sfin π(t) · |L(t)| =∞.

(e) ∑t∈Sfin π(t) · |t| =∞.

Beweis. Seien s, t ∈ Sfin. Dann gilt gemäß Lemma 3.1.1 (a)

s ist ein Teilbaum von t ⇔ Qn(t, s) ≥ 1 für ein n ∈ N.

Ist dies erfüllt, so folgt aufgrund von π = πQn

π(s) =
∑

s′∈Sfin

π(s′) ·Qn(s′, s) ≥ π(t) ·Qn(t, s) ≥ π(t),

welches (a) zeigt. Damit folgt auch π(t1) > 0, denn im anderen Fall wäre π ≡ 0.
Wäre π(t1) = 1, so würden wir mit (3.2)

1 = π(t1) =
∑
s∈Sfin

π(s) ·Q(s, t1) = 0

erhalten, denn sowohl Q(t1, t1) als auch π(s), s 6= t1, sind 0.
Für (c) bemerken wir zunächst, dass aus Lemma 3.1.1 (b) mit n = 1

|C(t)| =
∑
s∈Sfin

Q(t, s) (3.3)
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folgt. Das Einsetzen von (3.3) in (c) liefert

∑
t∈Sfin

π(t) · |C(t)| =
∑
t∈Sfin

π(t)
∑
s∈Sfin

Q(t, s)

=
∑
s∈Sfin

∑
t∈Sfin

π(t) ·Q(t, s)

=
∑
s∈Sfin

π(s) = 1.

Aussage (d) folgt mit Lemma 3.1.1 (d) durch

∑
t∈Sfin

π(t) · |L(t)| =
∑
t∈Sfin

π(t)
∞∑
i=0

Qi(t, t1)

=
∞∑
i=0

∑
t∈Sfin

π(t) ·Qi(t, t1)

=
∞∑
i=0

π(t1) =∞,

wenn wir zusätzlich (b) und πQi = π beachten.
Der Teil (e) folgt aus (d) und |L(t)| ≤ |t|.

Die Aussage (a) des Lemmas sichert eine gewisse Monotoniebedingung an eine
Fransenverteilung: Ein Teilbaum darf unter π nicht weniger Wahrscheinlichkeit tragen
als der ursprünglich größere Baum.
Ist T ein Zufallsbaum mit einer Fransenverteilung, so besagt (e), dass die erwartete

Größe der Gesamtpopulation∞ beträgt. Für einen fast sicher aussterbenden Galton-
Watson-Baum T ist dies nur im kritischen Fall erfüllt. Das nächste Beispiel zeigt, dass
ein kritischer Galton-Watson-Baum tatsächlich eine Fransenverteilung besitzt.

Beispiel 3.1.4 Sei T ein kritischer Galton-Watson-Baum mit Reproduktionsvertei-
lung (pj)j∈N0 und Werten in Sfin. Dann ist P (T ∈ · ) eine Fransenverteilung.

Beweis. Sei t ∈ Sfin. Dann gilt mit Akq = {s ∈ Sfin : |C(s)| = k und Q(s, t) = q}

∑
s∈Sfin

P (T = s) ·Q(s, t) =
∞∑
k=1

k∑
q=1

∑
s∈Akq

P (T = s) · q

=
∞∑
k=1

k∑
q=1

q · P (T ∈ Akq).
(3.4)
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Gibt X die Größe der 1. Generation von T an, so gilt mit Lemma 1.2.5

P (T ∈ Akq) = P (T ∈ Akq , X = k)
= P (T ∈ Akq | X = k) · P (X = k)

=
(
k

q

)
· P (T = t)q · (1− P (T = t))k−q · P (X = k),

denn q der k Teilbäume T v, v ∈ C(T ), müssen zu t isomorph sein, während die
anderen k − q Teilbäume beliebige, aber von t verschiedene, Bäume sein müssen.
Summieren wir über alle Möglichkeiten von q, so ergibt sich

k∑
q=1

q · P (T ∈ Akq) = P (T = t) · k · P (X = k),

und das Einsetzen in (3.4) liefert

∑
s∈Sfin

P (T = s) ·Q(s, t) =
∞∑
k=1

P (T = t) · k · P (X = k)

= P (T = t) · EX.

Da X nach (pj)j∈N0 verteilt ist und wir uns im kritischen Fall befinden, ist EX = 1
und damit P (T ∈ · ) eine Fransenverteilung.

Auf weitere Beispiele von Fransenverteilungen verzichten wir an dieser Stelle und
verweisen dafür auf die Abschnitte 3 und 6 in [2].

3.1.1. Die Pπ-Kette
Dieser kurze Abschnitt dient der Einführung einer Markov-Kette, die wir aus einer
Fransenverteilung π gewinnen. Diese Kette wird später für die Konstruktion einer
Fortsetzung von π nützlich sein, siehe dazu Lemma 3.2.4 (b).
Zu einer Fransenverteilung π definieren wir eine zeitlich diskrete und zeitlich ho-

mogene Markov-Kette mit Zustandsraum Zπ = {t ∈ Sfin : π(t) > 0} durch die
Übergangsmatrix

Pπ(s, t) = π(t)
π(s) ·Q(t, s). (3.5)

Einige essentielle Eigenschaften der Kette fasst das nächste Lemma zusammen.

Lemma 3.1.5 Sei π eine Fransenverteilung und (Xn)n∈N0 eine Markov-Kette mit
Übergangsmatrix Pπ und Anfangsverteilung P (X0 ∈ · ). Dann gilt

(a) π(s) · Pnπ(s, t) = π(t) ·Qn(t, s) für alle n ∈ N und t, s ∈ Zπ,
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(b) |Xn| > |Xn+1| für alle n ∈ N0,

(c) H(Xn) > H(Xn+1) für alle n ∈ N0, und

(d) mit Ln = {t ∈ Sfin : |t| < n} gilt

∑
s∈Ln

∑
s′∈Sfin\Ln

∞∑
i=0

Pπ(s, s′) · Piπ(t, s) = 1

für alle t ∈ Ln ∩ Zπ.

Beweis. Der Teil (a) folgt aus einer einfachen Induktion: Für n = 1 ist die Behaup-
tung korrekt, nach Definition von Pπ in (3.5). Der Induktionsschritt n 7→ n+ 1 folgt
via

π(s) · Pn+1
π (s, t) =

∑
s′∈Sfin

π(s) · Pπ(s, s′) · Pnπ(s′, t)

=
∑

s′∈Sfin

Q(s′, s) · π(t) ·Qn(t, s′)

= π(t) ·Qn+1(t, s),

unter zweifacher Ausnutzung der Induktionsvoraussetzung im vorletzten Gleichheits-
zeichen. Die Aussagen (b) und (c) folgen unmittelbar dadurch, dass Pπ(s, t) > 0 be-
reits Q(t, s) ≥ 1, und somit |t| > |s| als auch H(t) > H(s) impliziert. Um (d) zu
zeigen, setzen wir den Startpunkt der Kette als t, d. h. X0 = t. Dann gilt

Pπ(s, s′) · Piπ(t, s) = P (Xi = s,Xi+1 = s′)

und folglich

∑
s∈Ln

∑
s′∈Sfin\Ln

∞∑
i=0

Pπ(s, s′) · Piπ(t, s) =
∞∑
i=0

∑
s∈Ln

∑
s′∈Sfin\Ln

P (Xi = s,Xi+1 = s′)

=
∞∑
i=0

P (Xi ∈ Ln, Xi+1 /∈ Ln)

= 1,

wenn wir Teil (b) und X0 = t ∈ Ln beachten.

3.1.2. Charakterisierungssatz
Gegeben eine Folge von Zufallsbäume (Sn)n∈N mit Werten in Sfin, wählen wir für jedes
n einen Teilbaum (Sn)v, wobei v ein gleichverteilt gewählter Knoten von Sn sei. Die
auf diese Weise entstandene Folge von Zufallsbäumen steht nun im Zentrum unseres
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Interesses. Wir werden sehen, dass Verteilungslimiten von derart konstruierten Folgen
im Wesentlichen genau die Fransenverteilungen sind.
Wir formalisieren zunächst die beschriebene Teilbaum-Konstruktion: Für s, t ∈ Sfin

sei

U(s, t) = 1
|s|

∞∑
i=0

Qi(s, t). (3.6)

U(s, t) gibt also die Wahrscheinlichkeit an, dass ein gleichverteilt gewählter Teilbaum
sv, v ∈ Vs, den Baum t ergibt.
Für einen endlichen Zufallsbaum S mit Verteilung θ sei US der Zufallsbaum, der

entsteht, wenn wir einen Knoten v von S gleichverteilt wählen und den zugehörigen
Teilbaum Sv bilden. Es gilt also

P (US = s) =
∑
t∈Sfin

U(t, s) · P (S = t). (3.7)

Wir schreiben für die Verteilung von US auch Uθ.
Die Definition (3.7) von Uθ kann für jedes endliche Maß θ auf Sfin gegeben werden.

Dann gilt

Uθ(Sfin) = θ(Sfin), (3.8)

wie wir ohne großen Aufwand nachrechnen:

Uθ(Sfin) =
∑
s∈Sfin

Uθ(s) =
∑
s∈Sfin

∑
t∈Sfin

U(t, s) · θ(t)

=
∑
s∈Sfin

∑
t∈Sfin

1
|t|

∞∑
i=0

Qi(t, s) · θ(t)

=
∑
t∈Sfin

θ(t) · 1
|t|

∑
s∈Sfin

∞∑
i=0

Qi(t, s)

=
∑
t∈Sfin

θ(t)

= θ(Sfin).

Im vorletzten Gleichheitszeichen haben wir Lemma 3.1.1 (c) angewendet.

Theorem 3.1.6 Ist π eine Fransenverteilung, so existiert eine Folge von Zufallsbäu-
men (Sn)n∈N mit Werten in Sfin, die

|Sn|
d−→ ∞ und USn

d−→ π (3.9)

erfüllt.
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Beweis. Es sei Ln = {t ∈ Sfin : |t| < n} und Lcn = Sfin \ Ln. Wir definieren ein
endliches Maß θn auf Ln ∩ Zπ durch

θn(t) = |t|
∑
s∈Lcn

π(s) ·Q(s, t). (3.10)

Für das zu θn gehörige Maß Uθn aus (3.7) gilt für alle s ∈ Ln ∩ Zπ

Uθn(s) =
∑
t∈Ln

θn(t) · U(t, s)

=
∑
t∈Ln

θn(t) · 1
|t|

∞∑
i=0

Qi(t, s)

=
∑
t∈Ln

∑
s′∈Lcn

π(s′) ·Q(s′, t)
∞∑
i=0

Qi(t, s)

= π(s)
∑
t∈Ln

∑
s′∈Lcn

∞∑
i=0

Pπ(t, s′) · Piπ(s, t)

= π(s),

wobei die beiden letzten Gleichheitszeichen aus Lemma 3.1.5 (a) bzw. (d) folgen.
(3.8) impliziert θn(Sfin) = Uθn(Sfin) = π(Ln). Für Zufallsbäume Sn mit Verteilung
1

π(Ln)θn gilt dann
USn ∼ π|Ln ,

welches USn
d→ π beweist.

Ist (Xn)n∈N0 eine Pπ-Kette mit Anfangsverteilung π, so gilt für alle k ∈ N

P (|Sn| < k) = P (Sn ∈ Lk)

= 1
π(Ln)

∑
t∈Lk

θn(t)

= 1
π(Ln)

∑
t∈Lk
|t|

∑
s∈Lcn

π(s) ·Q(s, t)

≤ k

π(Ln)
∑
t∈Lk

∑
s∈Lcn

π(t) · Pπ(t, s)

= k

π(Ln)
∑
t∈Lk

∑
s∈Lcn

P (X0 = t,X1 = s)

= k

π(Ln) · P (X0 ∈ Lk, X1 /∈ Ln) n→∞−→ 0,

denn (Ln)n∈N bildet eine aufsteigende Mengenfolge mit Ln → Sfin. Damit ist das
Theorem vollständig bewiesen.
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Geben wir uns umgekehrt eine Folge endlicher Zufallsbäume mit |Sn| → ∞ vor,
für die USn in Verteilung gegen π konvergiert, so stellt sich die Frage, ob π eine
Fransenverteilung ist.
Dazu betrachten wir zwei einfache Beispiele.

Beispiel 3.1.7 (a) Ist Sn der „Pfadbaum“ mit n Knoten, d. h. der Baum aus Sn,
der nur ein Blatt besitzt, so gilt P (USn = t) n→∞−→ 0 für alle t ∈ S. USn kon-
vergiert hier zwar in Verteilung, jedoch nicht gegen ein Maß auf Sfin, sondern
gegen das Dirac-Maß im „unendlichen Pfadbaum“ aus S∞.

(b) Ist Sn der „Sternbaum“ mit n Knoten, d. h. der Baum s ∈ Sn, der |C(s)| = n−1
erfüllt, so gilt P (USn = t1) = n

n−1
n→∞−→ 1 für den trivialen Baum t1 ∈ S1. Auch

hier konvergiert USn zwar in Verteilung, jedoch gegen keine Fransenverteilung.

Vorausgesetzt der Limes P (USn = t)→ π(t) existiert für alle t ∈ Sfin, muss π nicht
zwingend eine Fransenverteilung sein. π muss nicht einmal ein Wahrscheinlichkeits-
maß auf Sfin sein. Setzen wir jedoch zusätzlich ∑t∈Sfin π(t) · |C(t)| = 1 voraus, so ist
π tatsächlich eine Fransenverteilung, wie das nächste Theorem zeigt.

Theorem 3.1.8 Ist (Sn)n∈N eine Folge endlicher Zufallsbäume mit

|Sn|
d−→ ∞ und P (USn = t) n→∞−→ π(t) (3.11)

für alle t ∈ Sfin, und erfüllt π die Bedingung (c) aus Lemma 3.1.3, d. h. gilt

∑
t∈Sfin

π(t) · |C(t)| = 1, (3.12)

so ist π eine Fransenverteilung. Insbesondere gilt π(Sfin) = 1.

Beweis. Sei t ∈ Sfin. Aus dem Lemma von Fatou und der Voraussetzung (3.11) folgt

lim inf
n→∞

∑
s∈Sfin

P (USn = s) ·Q(s, t) ≥
∑
s∈Sfin

π(s) ·Q(s, t).

Andererseits gilt

∑
s∈Sfin

P (USn = s) ·Q(s, t) = P (USn = t)− 1
|t|
· P (Sn = t) n→∞−→ π(t), (3.13)
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denn ∑
s∈Sfin

P (USn = s) ·Q(s, t)

=
∑
s∈Sfin

∑
s′∈Sfin

∞∑
i=0

1
|s′|
·Qi(s′, s) ·Q(s, t) · P (Sn = s′)

=
∑

s′∈Sfin

1
|s′|
· P (Sn = s′)

∞∑
i=0

∑
s∈Sfin

Qi(s′, s) ·Q(s, t)

=
∑

s′∈Sfin

1
|s′|
· P (Sn = s′)

∞∑
i=0

Qi+1(s′, t)

=
∑

s′∈Sfin

1
|s′|
· P (Sn = s′)

∞∑
i=0

Qi(s′, t)−
∑

s′∈Sfin

1
|s′|

Q0(s′, t) · P (Sn = s′)

= P (USn = t)− 1
|t|
· P (Sn = t) n→∞−→ π(t),

unter erneuter Benutzung beider Voraussetzungen aus (3.11). Insgesamt erhalten wir

π(t) = lim inf
n→∞

∑
s∈Sfin

P (USn = s) ·Q(s, t) ≥
∑
s∈Sfin

π(s) ·Q(s, t) (3.14)

für alle t ∈ Sfin. Wenn wir zeigen, dass∑
t∈Sfin

π(t) = 1 =
∑
t∈Sfin

∑
s∈Sfin

π(s) ·Q(s, t) (3.15)

gilt, folgt mit (3.14) auch wie gewünscht π(t) = ∑
s∈Sfin π(s) ·Q(s, t) für alle t ∈ Sfin.

Der Nachweis von (3.15) ergibt sich zum einen aus der Voraussetzung (3.12), denn∑
t∈Sfin

∑
s∈Sfin

π(s) ·Q(s, t) =
∑
s∈Sfin

π(s)
∑
t∈Sfin

Q(s, t)

=
∑
s∈Sfin

π(s) · |C(s)|

(3.12)= 1,

zum anderen aus (3.13) durch∑
t∈Sfin

∑
s∈Sfin

P (USn = s) ·Q(s, t) =
∑
t∈Sfin

P (USn = t)− 1
|t|
P (Sn = t)

= 1− E|Sn|−1 ≤ 1

für alle n ∈ N. Damit folgt wie gewünscht∑
t∈Sfin

π(t) = 1,

und das Theorem ist bewiesen.
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Der folgende Charakterisierungssatz ist lediglich eine Zusammenfassung der Theo-
reme 3.1.6 und 3.1.8 und bedarf daher keines Beweises.

Satz 3.1.9 (Charakterisierungssatz) Eine Verteilung π auf S mit∑
t∈Sfin

π(t) · |C(t)| = 1

ist genau dann eine Fransenverteilung, wenn es eine Folge endlicher Zufallsbäume
(Sn)n∈N mit

|Sn|
d−→ ∞ und P (USn = t) n→∞−→ π(t)

für alle t ∈ Sfin gibt.

Wenden wir uns wieder den kritischen Galton-Watson-Bäumen zu. Für sie lässt
sich eine einfache Folge (Sn)n∈N finden, deren Teilbaumfolge (USn)n∈N in Verteilung
gegen den kritischen Galton-Watson-Baum konvergiert.

Beispiel 3.1.10 Sei T ein kritischer Galton-Watson-Baum mit Werten in Sfin und
Reproduktionsverteilung p = (pj)j∈N0 . p habe endliche Varianz und sei arithmetisch
mit Spanne d(p) = 1. Sei Sn mit

Sn ∼ P (T ∈ · | |T | = n). (3.16)

Dann gilt

P (USn = t) n→∞−→ P (T = t) (3.17)

für alle t ∈ Sfin, gemäß Korollar 1.1.19 also

USn
d−→ T. (3.18)

Beweis. (3.17) lässt sich auf den Spezialfall zurückführen, dass t der triviale Baum
aus S1 ist. Für ihn lautet die zu zeigende Aussage

1
n
· E|L(Sn)| n→∞−→ p0, (3.19)

die in [12], Theorem 2.3.1, bewiesen wird. Die technische Voraussetzung d(p) = 1
wird dort benötigt.
Da wir die Reproduktionsvarianz als endlich annehmen, gilt gemäß Theorem 2.1.4

in [12]

P (|T | = n) ∼ n−3/2 (2π · V ar(p))−1/2. (3.20)

Es sei RT der in der Wurzel von T verwurzelte Baum, der entsteht, wenn wir den
Baum UT bis auf seine Wurzel aus T entfernen (siehe auch Abbilung 3.1).
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UT (ω)

RT (ω)

Abbildung 3.1. Eine Realisierung von UT und RT .

Für alle s, t ∈ Sfin mit |s|+ |t| = n+ 1 gilt dann

P (UT = t, RT = s) = |L(s)|
n
· P (T = s) P (T = t)

p0
, (3.21)

denn der rechte Faktor gibt die Wahrscheinlichkeit an, dass der Galton-Watson-Baum
T den Baum ergibt, der entsteht, wenn wir einen Blattknoten von s durch t ersetzen.
Der linke Faktor gibt die Wahrscheinlichkeit an, einen Knoten von T gleichverteilt
zu wählen, der UT = t und RT = s impliziert. Aus (3.21) folgern wir

P (UTn = t)
P (T = t) = 1

P (T = t)
∑

s∈Sn−|t|+1

P (UT = t, RT = s)
P (|T | = n)

= 1
p0 · P (|T | = n) · n

∑
s∈Sn−|t|+1

|L(s)| · P (T = s)

= P (|T | = n− |t|+ 1)
P (|T | = n) · n− |t|+ 1

n
· 1
p0
· 1
n− |t|+ 1 · E|L(Sn−|t|+1)|.

Mit Hilfe von (3.19) und (3.20) erhalten wir damit gewünscht

P (UTn = t)
P (T = t)

n→∞−→ 1

für alle t ∈ Sfin.

Im Fall T ∼ PGW(1) lässt sich (3.20) mit Hilfe des Korollars 1.2.10 verifizieren.
Wir beachten, dass in diesem Fall Sn ∼ Tn gemäß Satz 1.2.12 gilt.
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3.2. Sin-Bäume
Das Ziel dieses letzten Abschnittes ist es, die Aussage von Theorem 3.1.8 zu ver-
schärfen. Mit dieser Verschärfung sind wir dann in der Lage Grimmetts Lemma (vgl.
Abschnitt 1.3) zu beweisen.
Wir erinnern zunächst an Definition 1.2.14: t∞i=1bi ist der Baum, der entsteht, wenn

wir die Bäume bi entlang ihrer Wurzeln verbinden und die neue Wurzel als Wurzel
von b1 festlegen. Analog definieren wir für endlich viele Bäume t1, . . . , tn den Baum
tni=1bi.
Ist eine Folge endlicher Bäume (bi)i∈N gegeben, so entsteht durch t∞i=1bi ein Baum,

der einen eindeutigen, unendlich langen, in der Wurzel startenden Pfad besitzt.

Definition 3.2.1 Es sei

I = {
∞⊔
i=1

bi : bi ∈ Sfin für alle i ∈ N},

die Menge der sogenannten sin-Bäume. Die Bezeichnung geht auf die Arbeit [2] von
Aldous zurück, in der „sin“ für „single infinite path“ steht.
Ist t ∈ I gegeben, so lässt sich eine eindeutige Folge (bi)i∈N mit t = t∞i=1bi finden.

Diese Darstellung nennen wir auch Zweigdarstellung von t. bn bezeichnet den n-ten
Zweig.

b1 b2 b3

Abbildung 3.2. Visualisierung der Zweigdarstellung eines sin-Baumes.

Eine andere Darstellung von t lässt sich wie folgt beschreiben: Ist rn die Wurzel von
bn aus der Zweigdarstellung von t, so sei fn(t) der in rn verwurzelte Baum, der aus
denjenigen Knoten besteht, die sich nicht im Baum trn+1 befinden. Die Kantenmenge
von fn(t) sei hierbei wie üblich von t induziert.
Offenkundig gilt fn(t) = tni=1bn+1−i (siehe Abbildung 3.3). Wir nennen (fn(t))n∈N

die monotone Darstellung von t.
Wir beachten, dass f1(t) = b1 und Q(fn+1(t), fn(t)) ≥ 1 für alle n ∈ N gilt.
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f1 f2 f3

Abbildung 3.3. Die monotone Darstellung des gleichen sin-Baumes.

Als nächstes setzen wir die Zählvariable Q aus (3.1) auf I zu QI fort: Sind zwei
Bäume t = t∞i=1bi und s = t∞i=1ci aus I gegeben, und ist v ein Kind der Wurzel von
b1, so können wir t als sin-Baum mit Wurzel v ansehen. QI(t, s) gebe an, für wieviele
v diese Konstruktion zum Baum s führt, d. h.

QI(t, s) = |{v ∈ C(b1) : t als Baum mit Wurzel v ist zu s isomorph}|. (3.22)

Erneut wirft dies die Frage der Wohldefiniertheit von (3.22) auf, die hier allerdings
gegeben ist, da wir mit QI(t, s) eine Zählvariable definieren, die für alle Repräsen-
tanten von t einen identischen Wert ergibt.
Es ist außerdem klar, dass QI(t, s) ≥ 1 nur dann gelten kann, wenn

(a) Q(b1, c1) ≥ 1 gilt,

(b) c2 der Baum b1 \c1 ist, der entsteht, wenn wir einen zu c1 isomorphen Teilbaum
(b1)v, v ∈ C(b1), von b1 entfernen, und

(c) cn = bn−1 für alle n ≥ 3 gilt.

Sind (a), (b) und (c) erfüllt, so gilt QI(t, s) = Q(b1, c1). Ist eine der drei Bedingung
verletzt, so istQI(t, s) = 0. Die Definition (3.22) lässt sich demnach im FallQI(t, s) ≥
1 auch schreiben als

QI(
∞⊔
i=1

bi, c1 t (b1 \ c1)
∞⊔
i=2

bi) = Q(b1, c1). (3.23)

Für uns wird jedoch zweckmäßiger sein, (3.22) bzw. (3.23) mit Hilfe der monotonen
Darstellungen (fn(t))n∈N und (fn(s))n∈N zu formulieren: Aus QI(t, s) ≥ 1 folgt

fn(t) = fn+1(s)
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für alle n ∈ N, und wir können QI(t, s) als

QI(t, s) = Q(f1(t), f1(s)) (3.24)

schreiben.
Ähnlich der Definition einer Fransenverteilungen als bzgl. Q invariante Verteilung

auf Sfin, betrachten wir im Folgenden invariante Verteilungen bzgl. QI auf I.
Da I eine Teilmenge von S ist, statten wir I mit der von S induzierten Topologie

aus. Ein Maß auf I soll dementsprechend stets auf den Borel-Mengen B(I) definiert
sein.

Definition 3.2.2 Für einen Zufallsbaum T mit Werten in I, Verteilung µ und mo-
notoner Darstellung (fn(T ))n∈N sei µi die Verteilung von (f1(T ), . . . , fi(T )).

(a) µ heißt invariant bzgl. QI oder auch QI-invariant, falls

µi(t1, . . . , ti) = µi−1(t2, · · · , ti) ·Q(t2, t1) (3.25)

für alle t1, . . . , ti ∈ Sfin und alle i ≥ 2 gilt.

(b) Die Verteilung µ̂ auf Sfin sei definiert als Verteilung von f1(T ), d. h. µ̂ = µ1 und
für alle b1 ∈ Sfin ist

µ̂(b1) = µ({
∞⊔
i=1

bi : bi ∈ Sfin für alle i ≥ 2}).

Bemerkung 3.2.3 Mit einem Blick auf (3.23) lässt sich die Definition der QI-
Invarianz auch in Termen der Ästeverteilungen (Bn)n∈N von T schreiben. Die Vertei-
lung von T ist genau dann QI-invariant, falls

P (B1 = t1, . . . , Bn = tn) = P (B1 = t2 t t1, B2 = t3, . . . , Bn−1 = tn) · (1 +Q(t2, t1))

für alle n ∈ N und t1, . . . , tn ∈ Sfin gilt.

Das nächste Lemma besagt, dass QI-invariante Verteilungen nichts anderes sind
als Fortsetzungen von Fransenverteilungen auf I.

Lemma 3.2.4 (a) Ist µ eine QI-invariante Verteilung auf I, so ist µ̂ eine Fran-
senverteilung.

(b) Ist umgekehrt π eine Fransenverteilung auf Sfin gegeben, so existiert genau eine
QI-invariante Verteilung µ auf I, für die µ̂ = π gilt.

Beweis. Für den Nachweis von (a) setzen wir zunächst i = 2 in (3.25) ein: Es gilt für
alle t, s ∈ Sfin

µ2(t, s) = µ1(s) ·Q(s, t) = µ̂(s) ·Q(s, t).
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Das Summieren über alle Möglichkeiten von s liefert wie gewünscht∑
s∈Sfin

µ̂(s) ·Q(s, t) =
∑
s∈Sfin

µ2(t, s) = µ2({t} × Sfin) = µ1(t) = µ̂(t),

d. h. µ̂ ist eine Fransenverteilung.
Für den Nachweis von (b) zeigen wir zunächst die Eindeutigkeit von µ. Induktiv

folgt die Äquivalenz von (3.25) mit der Bedingung

µi(t1, . . . , ti) = µ1(ti)
i∏

j=2
Q(tj, tj−1) (3.26)

für alle t1, . . . , ti ∈ Sfin und alle i ≥ 2. Da die Verteilung µ eindeutig durch (µi)i∈N
festgelegt ist und jedes µi gemäß (3.26) nur von µ1 = π abhängt, folgt die Eindeu-
tigkeit.
Für die Existenz von µ setzen wir µi als Verteilung von (X1, . . . , Xi) an, wobei

(Xn)n∈N eine Pπ-Kette mit Anfangsverteilung µ1 = π sei. Gemäß Lemma 3.1.5 (a)
gilt

µi(t1, . . . , ti) = µ1(t1)
i∏

j=2
Pπ(tj−1, tj)

= π(ti)
i∏

j=2
Q(tj, tj−1)

für alle t1, . . . , ti ∈ Sfin und i ∈ N. Ein Vergleich mit (3.26) zeigt die Invarianz bzgl
QI .

Sei nun t ein endlicher Baum mit Wurzel r, v ein gleichverteilt gewählter Knoten
von t und r = v1 → · · · → vj = v der eindeutige Pfad von der Wurzel zu v. Falls
v = r gewählt wurde, setzen wir j = 1 und v1 = r. Sei t(v) der Baum t, verwurzelt
in v.
Für n = 1, . . . , j sei der Teilbaum f̂n(t) verwurzelt in vj−n+1 und bestehe aus allen

Knoten von t(v), die sich nicht im Baum t(v)vj−n befinden. Wir beachten, dass stets
f̂1(t) = tv und f̂j(t) = t gilt, j aber ein zufälliger Index ist, der von v abhängt.
In Analogie zu (fn(t))n∈N nennen wir

f̂(t) = (f̂n(t))n∈N (3.27)

die monotone Darstellung des Baumes t, wobei wir f̂n(t) = ∅ für alle n > j setzen.
Abbildung 3.4 visualisiert die Konstruktion anhand eines Beispiels.
Ist ein endlicher Zufallsbaum S gegeben, so definieren wir f̂(S) punktweise, wie in

(3.27). Alle Gleichverteilungen seien dabei unabhängig voneinander und unabhängig
von S.
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vr
f̂1f̂2f̂3

Abbildung 3.4. Monotone Darstellung eines endliches Baumes.

Bilden wir

ÛS =
∞⊔
i=1

f̂i(S), (3.28)

so ist ÛS nichts anderes als der Zufallsbaum S, verwurzelt in einem neuen gleich-
verteilt gewählen Knoten. Wir beachten, dass f̂1(S) = US, der zufällig gewählte
Teilbaum von S aus (3.7), ist.
Außerdem merken wir an, dass die Folge f̂(S) Werte in Sfin ∪ {∅} annimmt. Das

Symbol ∅ steht hier für den „leeren Baum“, den wir einführen müssen, um f̂(S) exakt
zu definieren. Die Verteilung der Folge f̂(S) auf Sfin lässt sich wie folgt beschreiben:

Lemma 3.2.5 Ist S ein Zufallsbaum mit Werten in Sfin, so gilt

P (f̂1(S) = t1, . . . , f̂i(S) = ti) = P (f̂1(S) = t2, . . . , f̂i−1(S) = ti) ·Q(t2, t1)

= P (US = ti)
i∏

j=2
Q(tj, tj−1)

für alle t1, . . . , ti ∈ Sfin und alle i ∈ N.

Beweis. Die erste Gleichung folgt unmittelbar aus der Konstruktion von f̂(S), die
zweite induktiv aus der ersten, wenn wir f̂1(S) = US beachten.

Kommen wir nun zum Hauptresultat dieses Abschnittes.

Theorem 3.2.6 Ist (Sn)n∈N eine Folge endlicher Zufallsbäume, für die USn in Ver-
teilung gegen eine Fransenverteilung π konvergiert, so konvergiert ÛSn in Verteilung
gegen µ, die eindeutige QI-invariante Fortsetzung von π aus Lemma 3.2.4 (b).
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Beweis. Sei f̂(Sn) = (f̂1(Sn), f̂2(Sn), . . . ) die monotone Darstellung von ÛSn . Dann
gilt für alle t1, . . . , ti ∈ Sfin und alle i ∈ N gemäß Lemma 3.2.5

P (f̂1(Sn) = t1, . . . , f̂i(Sn) = ti) = P (USn = ti)
i∏

j=2
Q(tj, tj−1).

Nach Voraussetzung konvergiert P (USn = ti) für n → ∞ gegen π(ti), womit aus
(3.26)

lim
n→∞

P (f̂1(Sn) = t1, . . . , f̂i(Sn) = ti) = µi(t1, . . . , ti),

und mit Korollar 1.1.19 auch

(f̂1(Sn), . . . , f̂i(Sn)) d−→ (X1, . . . , Xi) (3.29)

folgt. (Xn)n∈N sei hierbei eine Pπ-Kette mit Anfangsverteilung π.
(3.29) impliziert die Verteilungskonvergenz ÛSn → µ, denn µ haben wir im Beweis

von Lemma 3.2.4 (b) durch die Markov-Kette (Xn)n∈N konstruiert.

Eine berechtigte Frage ist, ob wir einen Zufallsbaum mit QI-invarianter Verteilung
nicht auch durch die Verteilung von t∞i=1Bi konstruieren können, wobei die Folge
(Bi)i∈N unabhängig ist, und jedes Bi nach derselben Fransenverteilung verteilt ist.
Im Allgemeinen ist dies jedoch falsch.
Es ist aber nicht verwunderlich, dass zumindest im Fall Bi ∼ PGW(1) eine QI-

invariante Verteilung mit dieser Konstruktion entsteht, kündigten wir doch zu Beginn
dieses Abschnittes an, Grimmetts Lemma aus der Theorie zu folgern.
Wir greifen das Beispiel kritischer Galton-Watson-Bäume auf, und berechnen die

Fortsetzung aus Lemma 3.2.4 (b) für diesen Fall.

Satz 3.2.7 Sei T ein kritischer Galton-Watson-Baum mit Werten in Sfin und Repro-
duktionsverteilung p = (pj)j∈N0 . Sei (Bi)i∈N eine unabhängige Folge mit B1 ∼ T und
Bi ∼ T̂ für alle i ≥ 2. Die Verteilung des modifizierten Galton-Watson-Baumes T̂ sei
wie folgt gegeben:

(a) Ein Urahne erzeuge Nachkommen gemäß der Verteilung p̂ = (p̂j)j∈N0 , die durch

p̂j = (j + 1) · pj+1 (3.30)

gegeben ist,

(b) alle weiteren Individuen erzeugen Nachkommen gemäß der Verteilung p, und

(c) alle Individuen erzeugen ihre Nachkommen unabhängig voneinander.

Der auf diese Weise definierte Zufallsbaum T̂ nimmt f. s. Werte in Sfin an. Die Ver-
teilung von t∞i=1Bi ist die QI-invariante Fortsetzung der Verteilung von T .
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Beweis. Für s, t ∈ Sfin mit Q(s, t) ≥ 1 sei s \ t der Baum, der entsteht, wenn wir
einen zu t isomorphen Teilbaum der 1. Generation von s entfernen.
Sei nun (Fn)n∈N die monotone Darstellung des Zufallsbaumes t∞i=1Bi. Zu zeigen

ist, dass für alle t1, . . . , tn ∈ Sfin, n ∈ N, die Gleichung

P (F1 = t1, . . . , Fn = tn) = P (F1 = tn)
n∏
i=2

Q(ti, ti−1) (3.31)

gilt. Wir beschränken uns beim Nachweis von (3.31) auf den Fall n = 2. Der allge-
meine Fall lässt sich dann mit den gleichen Argumenten und längeren Rechnungen
beweisen.
Für t, s ∈ Sfin mit Q(t, s) ≥ 1 gilt zunächst

AT(s \ t) · AT(t) · |C(s)| = AT(s), (3.32)

denn sind Repräsentanten von s \ t und t aus T gegeben, so gibt es |C(s)| Möglich-
keiten, t in die erste Generation von s\ t einzufügen, um einen Repräsentanten von s
zu erhalten. Umgekehrt erhalten wir auf diese Weise alle Repräsentanten von s. Mit
Lemma 1.2.2 lässt sich diese kombinatorische Überlegung auch direkt überprüfen.
Bezeichnet r die Wurzel von s\ t, so gilt aufgrund der Unabhängigkeit von B1 und

B2, der Definition der Verteilung von Bi und (3.32)

P (B1 = t, B2 = s \ t) = P (B1 = t) · P (B2 = s \ t)
= (AT(t) ·

∏
v∈Vt

p|Cv | ) · (AT(s \ t) · p̂|C(s)|−1 ·
∏

r 6=v∈Vs\t

p|Cv | )

= AT(t) · AT(s \ t) · |C(s)| ·
∏
v∈Vt

p|Cv |
∏

v∈Vs\t

p|Cv |

= AT(s) ·
∏
v∈Vs

p|Cv |

= P (B1 = s).

Damit erhalten wir

P (F1 = t, F2 = s) = P (B1 = t, B2 tB1 = s)
= P (B1 = t, B2 = s \ t) ·Q(s, t)
= P (B1 = s) ·Q(s, t),

also (3.31) für n = 2.

Satz 3.2.7 lässt sich auf andere Fransenverteilungen verallgemeinern, vgl. dazu Ab-
schnitt 4.4. in [2]. Kombinieren wir Beispiel 3.1.10 mit dem eben Gezeigtem, erhalten
wir für

Sn ∼ P (T ∈ · | |T | = n)
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die Konvergenz
ÛSn

d−→
∞⊔
i=1

Bi.

Ist speziell T ∼ PGW(1), so lässt sich auch Grimmetts Lemma (siehe Satz 1.3.1) fol-
gern. Die Anwendung, der in diesem Kapitel entwickelten Theorie, bildet gleichzeitig
den Abschluss dieser Arbeit:

Satz 3.2.8 Für die Folge der Zufallsbäume (Tn)n∈N aus (1.9) gilt

Tn
d−→ PGW∞(1). (3.33)

Beweis. Aus Lemma 1.2.12 und Beispiel 3.1.10 folgt

UTn
d−→ PGW(1).

Da offenbar ÛTn
d= Tn gilt, konvergiert Tn gemäß Theorem 3.2.6 gegen die QI-inva-

riante Fortsetzung der PGW(1)-Verteilung, die wir in Satz 3.2.7 bestimmt haben.
Mit der Bezeichnung aus (3.30) gilt für p = Poi(1)

p̂j = (j + 1) · pj+1 = (j + 1)
(j + 1)! · e = 1

j! · e = pj,

d. h. jeder Ast Bi ist nach PGW(1) verteilt. Damit ist PGW∞(1) die QI-invariante
Fortsetzung der PGW(1)-Verteilung und Grimmetts Lemma bewiesen.





Literaturverzeichnis
[1] Aldous, David: The random walk construction of uniform spanning trees and

uniform labelled trees. In: SIAM J. Discrete Math. 3 (1990), Nr. 4, S. 450–465

[2] Aldous, David: Asymptotic fringe distributions for general families of random
trees. In: Ann. Appl. Probab. 1 (1991), Nr. 2, S. 228–266

[3] Aldous, David und Bandyopadhyay, Antar: A survey of max-type recursive
distributional equations. In: Ann. Appl. Probab. 15 (2005), Nr. 2, S. 1047–1110

[4] Aldous, David und Steele, Michael: The objective method: probabilistic com-
binatorial optimization and local weak convergence. In: Probability on discrete
structures Bd. 110. Springer, 2004, S. 1–72

[5] Alsmeyer, Gerold: Stochastische Prozesse, Teil 1: Diskrete Markov-Ketten,
Martingale und Erneuerungstheorie. 3. Auflage. Skripten zur Mathematischen
Statistik Nr. 33, Universität Münster, 2005

[6] Alsmeyer, Gerold: Wahrscheinlichkeitstheorie. 4. Auflage. Skripten zur Ma-
thematischen Statistik Nr. 30, Universität Münster, 2005

[7] Alsmeyer, Gerold: Manuskript zur Vorlesung Verzweigungsprozesse. 2008

[8] Cayley, Arthur: A theorem on trees. In: Quart. J. Math. 23 (1889)

[9] Devroye, Luc: Branching processes and their applications in the analysis of
tree structures and tree algorithms. In: Probabilistic methods for algorithmic
discrete mathematics Bd. 16. Springer, 1998, S. 249–314

[10] Grimmett, G. R.: Random labelled trees and their branching networks. In: J.
Austral. Math. Soc. Ser. A 30 (1980/81), Nr. 2, S. 229–237

[11] Kallenberg, Olav: Foundations of modern probability. 2. Auflage. Springer,
2002

[12] Kolchin, Valentin: Random mappings. Optimization Software Inc. Publications
Division, 1986 (Translation Series in Mathematics and Engineering)

[13] Lindvall, Torgny: Lectures on the coupling method. Dover Publications Inc.,
2002

83



84 Kapitel Literaturverzeichnis

[14] Lyons, Russell und Peres, Yuval: Probability on Trees and Networks. Cam-
bridge University Press, 2008. – Vorläufige Version erhältlich unter
http://mypage.iu.edu/~rdlyons/

[15] Meyn, Sean und Tweedie, Richard: Markov Chains and Stochastic Stability.
Cambridge University Press, 2005. – Erhältlich unter
http://probability.ca/MT/

[16] Prüfer, Heinz: Neuer Beweis eines Satzes über Permutationen. In: Arch. Math.
Phys. 27 (1918), S. 742–744

[17] Steele, Michael: Probability theory and combinatorial optimization. 1997
(CBMS-NSF Regional Conference Series in Applied Mathematics)



Erklärung
Ich versichere, dass ich die vorliegende Arbeit selbständig angefertigt und keine weite-
ren Hilfsmittel als die im Literaturverzeichnis aufgeführten Quellen verwendet habe.

Münster, den 15. September 2009

Matti Schneider


