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Einleitung

Eine Paarung eines Baumes ist eine Teilmenge der Kantenmenge, die nur Kanten ent-
halt, die paarweise keinen gemeinsamen Knoten verbinden. Wéhlen wir einen Baum
T,, gleichverteilt aus der n"!-elementigen Menge aller verwurzelten Biume mit einer
festen, m-elementigen Knotenmenge und versehen die Kanten von 7T, mit identisch
nach F' verteilten, unabhangig voneinander gewéhlten und nichtnegativen Gewichten,
so gebe M, das maximale Gewicht einer Paarung von 7;, an.

Das erste Ziel der vorliegenden Arbeit ist es, die Asymptotik des Erwartungswertes
der Zufallsgroie M,, zu verstehen. Dabei folgen wir einer Arbeit von Aldous und Steele
[4] aus dem Jahr 2004.

Die Methode, die hier zum Erfolg fiihrt, wird in der Literatur haufig objective me-
thod genannt. Dabei handelt es sich weniger um ein festes Schema zur Problemlésung
als um eine philosophische Herangehensweise (vgl. [17], Kapitel 5): Gegeben sei eine
Folge endlicher Objekte, die wir auf eine gewisse Eigenschaft untersuchen. Finden wir
ein unendliches Objekt, fiir das die zu untersuchende Eigenschaft nahezu der der Fol-
ge entspricht, so ist die Hoffnung grof3, dass die Eigenschaft der Folge approximativ
mit der Eigenschaft des unendlichen Objektes tibereinstimmt.

Auch wenn diese Formulierung sehr ungenau ist und ungewiss scheint, was ein
derartiges unendliches Objekt iiberhaupt ist und wie wir es finden, so gibt es doch
bemerkenswert viele Beispiele, bei denen diese Philosophie zum Ziel fiihrt.

In unserem Fall ist die Folge endlicher Objekte die Folge der Zufallsbdume 7T;,. Die
Eigenschaft, die untersucht wird, ist das maximale Gewicht einer Paarung von 7,,.
Hier scheint klar zu sein, was ein unendliches Objekt ist: Es muss ein Zufallsbaum
T, sein, der unendlich viele Knoten besitzt und bestenfalls der Limes der Folge T,
ist.

Um die objective method anzuwenden, miissen wir also zunéchst untersuchen, wel-
che Konvergenzart hier die richtige ist und gegen welchen Zufallsbaum die Folge T,
konvergiert. Es wird sich herausstellen, dass die Verteilungskonvergenz der geeignete
Konvergenzbegriff ist, und dass der unendliche Baum T, derjenige Zufallsbaum ist,
der entsteht, wenn wir eine unabhéangige Folge kritischer Galton-Watson-Baume mit
Poissonscher Reproduktionsverteilung entlang ihrer Wurzeln verbinden.

Die fiir die Formulierung dieser Aussage notwendigen Formalitdten fithren wir im
ersten Kapitel dieser Arbeit ein. Beginnen werden wir damit, den passenden Wertebe-
reich der Zufallsbdume T,, festzulegen, ihn mit einer geeigneten Metrik auszustatten
und anschliefend die Verteilungskonvergenz auf diesem metrischen Raum zu unter-
suchen.
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Der darauffolgende Abschnitt 1.2 dient zur Einfithrung der Galton-Watson-Baume
und zur Wiederholung einiger Eigenschaften derselbigen.

Nachdem wir die Konvergenz von T,, gegen T, festgemacht haben, befassen wir
uns damit, ob das maximale Gewicht einer Paarung von 7}, — oder zumindestens sein
Erwartungswert — approximativ durch 7, ausgedriickt werden kann.

Dies wird uns das zweite Kapitel hindurch beschéftigen. In Abschnitt 2.4 werden
wir dann das Hauptresultat beweisen: Im Fall einer stetigen Gewichtsverteilung F
mit endlichem Erwartungswert gilt

1
nh_{glo n EM, = E(f ) ﬂ{§>Y+Z}>7
wobei £, Y und Z unabhéngige Zufallsgrofen mit den Verteilungen F, G und H seien.
Die Verteilungen G und H ergeben sich als Losungen zweier stochastischer Fizpunkt-
gleichungen:
G ist die eindeutige Losung der Gleichung

Y £ max{0, & - Yi:1<i <N} (%)
und H ist die eindeutige Losung der Gleichung
Z £ max{y, ¢ - 2}, ()

wobei die Variablen (Y;), (&) und N unabhéngig voneinander mit Y¥; ~ Y, & ~ F
und N ~ Poi(1) seien. Beiden Fixpunktgleichungen widmen wir uns ebenfalls im
zweiten Kapitel, sieche Theoreme 2.2.3 und 2.3.1.

Den Abschluss des Kapitels bildet eine Untersuchung des Falles exponentialverteil-
ter Gewichte, also F' = Exp(\). In diesem Fall werden wir die Fixpunktverteilungen
aus () und (#x*) explizit bestimmen, und auch den gesuchten Erwartungswert geben
wir ndherungsweise an.

Im letzten Kapitel der Arbeit verlassen wir das Paarungsproblem und beschéftigen
uns mit einer Klasse von endlichen Zufallsbdumen S, die von Aldous in [2] eingefiihrt
wurde: Sei EQ(S, ) die erwartete Anzahl von Teilbdumen der ersten Generation von
S, die zu t isomorph sind. S besitzt eine Fransenverteilung, falls

EQ(S,t) = P(S = 1)

fir alle ¢ gilt. Wir werden sehen, dass kritische Galton-Watson-Baume diese Bedin-
gung erfiillen (Beispiel 3.1.4). Allerdings treten auch bei anderen Anwendung derar-
tige Verteilungen auf.

Die Abschnitte 3.1.2 und 3.2 werden kliaren, warum Zufallsbidume mit Fransenver-
teilungen im Kontext der objective method wichtig sind: Sie lassen sich stets fortsetzen
zu unendlichen Baumen, die als Approximationsobjekt endlicher Folgen dienen.
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1. Das Paarungsproblem fiir zufallig
gewichtete Zufallsbaume

Bevor wir das Paarungsproblem fiir zuféllig gewichtete Zufallsbaume einfithren, legen
wir formal exakt fest, wie der Bildraum eines Zufallsbaumes aussieht und welche o-
Algebra auf dieser Menge die ,richtige“ ist. Am Anfang dieser Formalitaten steht die
Frage, was genau ein Baum eigentlich ist.

1.1. Markierte und unmarkierte Baume

Definition 1.1.1 Unter einem markierten Baum mit Wurzel verstehen wir ein Tupel
t = (V4, By, 1), wobei

(a) V, eine Menge ist, genannt Knotenmenge des Baumes,

(b) r € V; ein ausgezeichnetes Element ist, genannt Wurzel des Baumes, und

(c) E; eine Menge von zwei-elementigen Teilmengen von V; ist, genannt Kanten-
menge des Baumes.

Zudem muss es zwischen zwei verschiedenen Knoten v, w € V, genau einen Pfad
von v nach w geben.

Ein Pfad von v nach w ist hierbei eine endliche Folge vy, ..., v, in V; mit vy = v,
vy, = w, v; # v; fiir alle ¢ # j und {v;,v,_1} € E; fiir alle ¢ = 1,...,n. Wir schreiben
auch vg — -+ — v, fiir einen derartigen Pfad, und nennen n die Ldnge des Pfades

von v nach w.

Einen Baum t = (V, E}, r) visualisieren wir dadurch, dass wir uns fiir jeden Knoten
v € V; einen Punkt mit Markierung v vorstellen und fiir jede Kante e = {v,w} € E;
eine Linie zwischen den Punkten v und w. Aulerdem muss die Wurzel gekennzeichnet
werden. Abbildung 1.1 zeigt ein Beispiel fiir diese Visualisierung.

Es scheint naheliegend, dass wir einen Baum ¢ mit allen Baumen s identifizieren
sollten, deren graphische Visualisierung mit der von ¢ tibereinstimmt, obwohl die
Knotenmenge von s aus ganz anderen Elementen besteht. De facto sind derartige
Baume jedoch unterschiedlich, und Gleichheit zwischen diesen Baumen herrscht nur
dann, wenn die Knotenmengen tatsachlich iibereinstimmen.
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Abbildung 1.1. Der Baum ({1,2,3,4,5},{{4,2},{4,5},{2,1},{2,3}},4).

In Definition 1.1.7 werden wir die konkrete Markierung der Knoten vergessen, um
diese Baume tatséchlich miteinander zu identifizieren.

Dadurch, dass wir einen ausgezeichneten Knoten r gegeben haben, konnen wir auf
der Knotenmenge V; auf natiirliche Weise eine Ordnung definieren, indem wir fir
zwei Knoten vergleichen, auf welchem Pfad wir zur Wurzel r gelangen. Eine exaktere
Auskunft gibt die nachste Definition:

Definition 1.1.2 Sei t = (V}, Ey,r) ein Baum, v,w € V;, w # r mit eindeutigem
Pfad r = vy — -+ — v,, = w von der Wurzel zu dem Knoten w.

(a) Existiert ein 0 < j < n — 1 mit v; = v, so heit v Vorfahre von w sowie
umgekehrt w ein Nachkomme von v.

(b) Gilt in (a) speziell 7 = n — 1, so heifit v Mutter von w sowie umgekehrt w
Kind von v. Die Menge aller Kinder von v bezeichnen wir mit C,. Ist v = r, so
werden wir auch C' oder C(t) statt C, schreiben.

Die oben erwahnte Ordnung < auf V; erhalten wir, indem wir v < w fiir alle
Nachkommen w von v und fiir w = v definieren.

Die Begriffe ,Mutter® und ,Kind“ in obiger Definition lassen darauf schlieflen,
dass wir einen Baum auch als Stammbaum einer Population ansehen. Die Wurzel des
Baumes werden wir auch als Urahnen bezeichnen, jeden Knoten als Individuum. Der
Urahne bildet somit die 0. Generation der Population, die Kinder des Urahnen die
1. Generation der Population, alle Kinder der 1. Generation bilden die 2. Generation
Usw.

Definition 1.1.3 Sei t = (V;, E;,r) ein Baum, v € V; und n € N,.

(a) v befinde sich in Generation n, falls die Lange des Pfades von r nach v genau
n betrigt. Die Generation der Wurzel r setzen wir hierbei auf 0.

(b) t, sei der Teilbaum von ¢, der aus den ersten n Generationen besteht.
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(c) t¥ sei der Teilbaum von ¢, der am Knoten v héangt, d. h. die Knotenmenge Vj.
von t¥ besteht aus v und allen Nachkommen von v, die Wurzel von t¥ sei v und
die Kantenmenge von t* besteht aus den Kanten von ¢, welche Knoten aus Vv
miteinander verbinden.

Weitere interessante Grofen fir (Zufalls-)Baume sind die Hohe des Baumes, die
Grofle der gesamten Population sowie die Anzahl der Blatter des Baumes.

Definition 1.1.4 Sei t = (V;, E}, r) ein Baum.
(a) H(t) sei die Hohe des Baumes t, gegeben durch H(t) = inf{n € Ny : ¢, = t}.

(b) |t| sei die Anzahl der Knoten des Baumes ¢, d.h. |[t| = |V;|. || nennen wir auch
die Populationsgréfse von t.

(¢) v € V; heiBBt Blatt von t, falls v keine Nachkommen besitzt. Es bezeichne L(t)
die Menge aller Bldtter von t. |L(t)| gibt dann die Anzahl der Blatter von t an.

Zurtickkehrend zur Interpretation eines Baumes als Stammbaum einer Population
scheint es sinnvoll, wenn wir uns auf diejenigen Baume ¢ einschrénken, bei denen jedes
Individuum nur endlich viele Kinder gebart. Ein derartiger Baum hat die Eigenschaft,
dass jeder der Baume t|,,, n € N, endlich ist.

Schneiden wir den Baum ¢ ab der Generation n ab, so erhalten wir einen endlichen
Baum. Dies erkléart die Begriffsbildung in der nichsten Definition:

Definition 1.1.5 (a) Ein Baum ¢ = (V;, E;,r) heifit lokal endlich, wenn jeder
Knoten von ¢t nur endlich viele Kinder besitzt.

(b) Es sei S, die Menge aller verwurzelten Baume mit Knotenmenge {1,...,n} und

S die Menge aller lokal endlichen, verwurzelten Bdume mit Knotenmenge N.

Ein Resultat von Arthur Cayley aus dem Jahr 1889 gibt Auskunft tiber die Méch-
tigkeit von S,,, d.h. iiber die Anzahl verwurzelter Bdéume mit fester n-elementiger
Knotenmenge.

Satz 1.1.6 (Cayley) Die Menge der unverwurzelten markierten Baume mit n Knoten
besitzt die Méachtigkeit n"~2. Folglich gilt

S, | = n"t, (1.1)

da es fiir einen unverwurzelten Baum mit n Knoten n verschiedene Moglichkeiten
gibt, diesen zu einem verwurzelten Baum zu machen.

Beweis. Siehe Korollar 4.3 in [14] oder [8] fiir den urspriinglichen Beweis von Cayley.
[
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Im Anschluss an Definition 1.1.1 haben wir bereits motiviert, auf welche Art wir
zwei markierte Badume miteinander identifizieren. Ein weiterer Grund fiir die Ein-
fithrung eines Isomorphiebegriffs auf der Menge aller Baume ist, dass es fiir viele
graphentheoretische Probleme — das Paarungsproblem eingeschlossen — unerheblich
ist, welche konkrete Markierung der Baum tragt.

Definition 1.1.7 Zwei Baume t = (V;, E;,r) und t' = (V, Ey, ') heilen isomorph,
wenn es eine Bijektion f: V; — Vy mit f(r) =7’ gibt, die

{fu), f(v)} e By & A{u,v}cE

erfiillt. Wir schreiben in diesem Fall ¢t = ¢. Die E{estklasse eines Baumes ¢ bezeichnen
wir mit [t]. f induziert offenbar eine Bijektion f : E; — FEy.

Abbildung 1.2. Zwei isomorphe Baume aus S:.

112

Eine Restklasse [t] nennen wir nun unmarkierten Baum. Wenn wir von der Kan-
tenmenge V; eines unmarkierten Baumes sprechen, so heifit das stets, dass wir einen
Représentanten gewéhlt haben, dessen Kantenmenge wir betrachten. Ausdriicke der
Form

[T o(IC]) wnd >~ g(ICul) (1.2)

veVy veV;

fiir eine Funktion g : Ny — R werden dadurch wohldefiniert und uns im weiteren
Verlauf einige Male begegnen.

Auch die Hohe von [t], die Teilbdume von [t] bis zur Generation n, die Popula-
tionsgrofe von [t] und die Anzahl der Blatter von [t| sind Eigenschaften, die fir
unmarkierte Baume miihelos definiert werden kénnen.

Definition 1.1.8 Fiir n € N = NU {oo} sei
S,={[t]:teS,}. (1.3)
Wir setzen ferner

S=S, wmd S={JS. (1.4)

neN neN
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Die Menge der endlichen Bdume sei als Sg, definiert, d. h.
={teS:|t|<oc}=JS. (1.5)

neN

Die Menge aller unmarkierten, lokal endlichen Baume S wird der passende Wer-
tebereich fir die Zufallshaume sein, die wir betrachten werden. Bevor wir uns mit
Zufallsbaumen beschéftigen, klaren wir zunéchst die Frage, ob wir einer Restklasse
[t], t € S,, ansehen konnen, aus wie vielen Elementen sie besteht.

Fuar t € §,, sei

As(t) = {Ee S, : [l =t}]. (1.6)

Az(t) gibt demnach an, auf wie viele Arten wir ¢ als einen markierten Baum aus

:S’; darstellen kénnen.
Wir definieren fiir markierte Baume ¢, s und einen Knoten v von ¢ die Zahlvariable

Qu(t,s) = |{i € C,: t = s}. (1.7)

Der Ausdruck Q,(t,s) ist nur fiir markierte Baume ¢ definiert, weil wir den Knoten
v direkt ,,ansprechen®.

Wenn wir (1.7) iiber alle Knoten von ¢ summieren oder multiplizieren, erhalten wir
eine Zahl, die fiir alle Bdume aus [t| identisch ist (siche dazu auch (1.2)).

Wir erhalten ebenso einen vom Représentanten unabhéngigen Ausdruck, wenn wir
(1.7) iber alle Knoten v in einer festen Generation summieren oder multiplizieren.

Suchen wir nach einer alternativen Darstellung von (1.6), so ist klar, dass jede der
n! moglichen Belegungen der n Knoten von ¢ mit paarweise verschiedenen Zahlen aus
{1,...,n} einen Baum ¢ € S, mit [f] = ¢ liefert. Die Frage ist, bei wie vielen dieser
Belegungen identische Baume entstehen.

Um dies zu beantworten, fixieren wir einen Knoten v und betrachten seine Kin-
dermenge C,. Sind fiir 7,7 € C, die Teilbiume ¢' und ¢/ isomorph, so liefert die
Transposition (i7) auf jeder Belegung stets denselben Baum. Diese Beobachtung
lasst sich miihelos verallgemeinern:

Lemma 1.1.9 Fur t € Sg, gilt
=n! ] I (1.8)
vEVY SESHN Qv(t S

Beweis. Ist eine Belegung der n Knoten von ¢ mit paarweise verschiedenen Zahlen
aus {1,...,n} gegeben, so liefert jede Permutation auf der Menge

{ieC,:[t=sl,

fiir festes v € V; und s € Sgy, die urspriingliche Belegung. Mit dieser Uberlegung
folgt (1.8). Siehe auch Abbildung 1.3 fiir ein Beispiel. O
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312!

Abbildung 1.3. Ein Baum ¢ € 8o mit Ax(t) % — 75600. An jedem Knoten

— 321202
v ist [ses,, @u(t, s)! notiert.

Wir definieren nun erste Zufallsvariablen mit Werten in S. Dabei nehmen wir die
Existenz eines nicht néher spezifizierten Wahrscheinlichkeitsraumes (€2, A, P) an, auf
dem alle in dieser Arbeit vorkommenden Zufallsvariablen definiert sind.

Die Zufallsvariable

T,: (A P)— S,
wahle geméaf einer Gleichverteilung einen Baum aus der Menge S,. Ferner sei

T,=[-]10T, : (Q,AP)—S,
w = [T (w)].

Wir beachten, dass T,, nicht gleichverteilt auf S,, ist, sondern

P(T, =t) = Ag(t) - n'™" (1.9)

fir alle t € S, gilt.

Die zufalligen Baume 7,, spielen eine wichtige Rolle und lassen sich allgemein in
die Klasse der einfach erzeugten Bdume einordnen (siehe dazu [1] oder [9]). Einen
einfachen Algorithmus zur Simulation einer Gleichverteilung auf der Menge der un-
verwurzelten Baume mit Knotenmenge {1,...,n} gibt das nichste Lemma an.

Lemma 1.1.10 Es seien n > 2 und Us, ..., U, unabhéngige, gleichverteilte Zufalls-
grofen auf {1,...,n}.

e Fiir 2 < ¢ < n verbinden wir den Knoten ¢ durch eine Kante mit dem Knoten

Vi = min{U;, i — 1}.

e Wir wihlen gleichverteilt eine Permutation 7 auf {1,...,n} und durchmischen
die Markierung des oben erhaltenen Baumes gemaf .
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Der deraus resultierende Zufallsbaum T, ist gleichverteilt auf der Menge der unver-
wurzelten Baume mit Knotenmenge {1,...,n}, d.h. es gilt

fir jeden unverwurzelten Baum t = ({1,...,n},V}).
Beweis. Siehe Proposition 3 in [1]. O

Alternativ konnen wir jeden konstruktiven Beweis des Satzes von Cayley (Satz
1.1.6) nutzen, um einen Algorithmus zur Simulation einer Gleichverteilung auf der
Menge der unverwurzelten Baume zu finden. Erwéahnt sei hierbei der von Heinz Prii-
fer entdeckte und nach ihm benannte Priifer-Code, der eine Bijektion zwischen der
Menge {1,...,n}" 2 und der Menge der unverwurzelten Baume mit Knotenmenge
{1,...,n} beschreibt. Fiir Details verweisen wir auf [16].

In Satz 1.2.12 werden wir sehen, dass wir die Verteilung von 7T,, auch erhalten,
indem wir einen gewissen Galton-Watson-Baum darunter bedingen, dass er aus n
Knoten besteht.

Dies deutet an, dass wir Zufallsvariablen betrachten, die nicht nur Werte in einer
diskreten Teilmenge von S annehmen, sondern in ganz S. Um von Messbarkeit von
Abbildungen mit Bildraum S sprechen zu kénnen, benoétigen wir eine o-Algebra auf
S, die hier durch eine Metrik induziert werden kann.

Fiir die nichste Definition legen wir co™! = 0 als Konvention fest.

Satz 1.1.11 Durch ds : § x § — [0, 1] mit
ds(t,t") = (1 +sup{n € No : tj, = t,})~" (1.10)

wird S zu einem polnischen Raum, d.h. zu einem vollstdndigen, separablen metri-
schen Raum. Eine abzahlbare dichte Teilmenge von § ist durch Sg, gegeben.

Bemerkung 1.1.12 (a) Gilt fir ¢, s € S und k € Ny die Ungleichung
ds(t, sk) < (1+k)7,

folgt ¢|x = sj;. Sind ¢ und s endlich, und lésst sich k > H(t) V H(s) wahlen, so
folgt offenbar t = s.

(b) Wie in (1.10) wird S via dz zu einem polnischen Raum. Die Restklassenpro-
jektion [-] ist dann eine stetige Abbildung, denn die Topologie auf S ist die
Quotiententopologie von S bzgl. =.

Beweis von Satz 1.1.11. Die Symmetrie von dg und die Eigenschaft

ds(t, ) =0 & t=t
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sind offenkundig erfiillt. Fir den Nachweis der Dreiecksungleichung seien ¢, ¢, " € S.
Dann gilt

sup{n € Ny : tj, =1}, } > sup{n € No : tj, = t],} Asup{n € No : ¢, = 1],
und folglich
ds(t,t") < (1+sup{n € No: t;, =], } Asup{n € N : t|, =], })7"
=ds(t,t') Vds(t',t")
< ds(t, t,) + ds(t/, t”).

Die Menge Sg, = Upen Sy, ist als abzéahlbare Vereinigung endlicher Mengen abzéhl-
bar und fir ¢ € S gilt ds(t,t),) = (14+n)~" — 0, welches zusammen mit ¢, € Sgn
fiir alle n > 1 die Dichtheit von Sz, € S und die Separabilitidt von S zeigt.

Fiir den Nachweis der Vollstandigkeit sei (%, )nen eine Cauchy-Folge in S und k €
Ny. Dann gilt

dS((tn>\k7 (tm)\k) < d8<<tn)|k:a tn) + dS(tma tn) + dS((tm)\ka tm)
=2 - (L+ k) ds(tmty) "= 2-(14+ k)7L
Fir jedes k € Ny wird aufgrund der Bemerkung 1.1.12 (a) die Folge ((tn)k)nen
konstant, etwa gegen t(k). Offenbar gilt fir alle | < k die Gleichheit
t(k)p = t(0),

und somit existiert ein Baum ¢ mit ¢, = t(k) fiir alle & € Ny. Insgesamt folgt ¢, — ¢
fir n — oo. O

Definition 1.1.13 Fiir einen topologischen Raum (X, ¥) sei ®B(X) die kleinste o-Al-
gebra auf X, welche alle offenen Mengen enthélt. ®B(X) heifit die Borelsche o-Algebra
auf X.

Einer Zufallsvariablen mit Werten in S bzw. S unterstellen wir ab sofort die Mess-
barkeit bzgl. B(S) bzw. B(S). Diese Variable nennen wir auch zufilligen unmarkier-
ten Baum bzw. zufdlligen markierten Baum.

Fir den Nachweis der Messbarkeit einer Abbildung ist es von Vorteil, wenn wir
einen ,, moglichst einfachen* Erzeuger der o-Algebra kennen. Im Falle eines separablen
metrischen Raumes ist ein dementsprechender Erzeuger stets durch das System aller

e-Balle gegeben. In § konnen wir diese Balle einfach beschreiben.

Lemma 1.1.14 Fir ¢t € S und n € Ny sei
t],={t' e S:t, = ‘/n} (1.11)

Dann bildet
E={0} U{[t],:t € S,neNy}

einen N-stabilen Erzeuger von B(S).
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Beweis. Fur t € S und € > 0 sei
B.(t) ={t' € §: ds(t,t") < €},

der offene e-Ball um ¢.
Da ds nur Werte in der abzéhlbaren Menge {0} U {(1 + k)™! : k € Ny} annimmt
und B(t) = S fiir alle € > 1 erfiillt ist, gilt

{B(t) :t€S,e>0} = {Bayry1(t) : t €S,k € No} U{S}
= {[t]k te 87]{7 c No},

wobei sich die zweite Gleichung mittels [¢t]o = S und
t'€Bya(t) & sup{neNy:it,=t,}>k-1 & tp=t, < el

fiir alle £ € N ergibt.

Es folgt nun (&) = B(S), denn in einem separablen Raum l4sst sich jede nichtleere
offene Menge als abzdhlbare Vereinigung von e-Béllen schreiben. Fiir den Nachweis
der N-Stabilitat seien t,¢' € S und 7 > k& > 0. Dann gilt

t];, falls t|k:t1k,

tiNtlh={se€S:s;=ty,sn=t)}=
[t N[t = {s S|j lj> Sk \k} {@7 falls ¢y %tik

Bemerkung 1.1.15 Die offenen e-Bélle um ¢ sind durch die Mengen [t]x, k € N,
gegeben und zudem abgeschlossen.

Der Grund dafir liegt darin, dass ds eine Ultra-Metrik ist, d.h. es gilt die ver-
schérfte Dreiecksungleichung

dg(t, tl> < dg(t, t”) V ds(lf/, t//)

fir alle t, ¢/, t" € S.

Ferner haben wir im Beweis gesehen, dass zwei e-Balle entweder disjunkt oder inein-
ander enthalten sind. Diese spezielle Topologie vereinfacht den Begriff der schwachen
Konvergenz auf S, den wir als nichstes definieren werden.

Definition 1.1.16 Es sei (X, ¥) ein topologischer Raum und p, (445, )nen endliche Ma-
Be auf (X,B(X)). Es bezeichne Cy(X) die Menge aller stetigen, beschrankten Funk-
tionen X — R.

(a) p, konvergiert schwach gegen p, falls

lim /fdun - / f g
n—oo Jx x

fiir alle f € Cp(X) gilt. Wir schreiben in diesem Fall auch p,, — pu.
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(b) Sind X, (X, )nen Zufallsvariablen mit Werten in X, so konvergiert X,, in Ver-
teilung gegen X, falls P(X,, € -) schwach gegen P(X € -) konvergiert. Wir

schreiben in diesem Fall auch X, 4 x.

Eine wichtige Charakterisierung der schwachen Konvergenz gibt das Portmanteau-
Theorem.

Satz 1.1.17 (Portmanteau-Theorem) Es sei X ein metrischer Raum und g, (15,)nen
endliche MaBle auf (X,8(X)). Dann sind dquivalent:

(a) pn = .
(b) lim p,(X) = p(X) und fir jede abgeschlossene Menge A C X gilt

n—oo

lim sup p, (A) < pu(A).

n—oo

(¢) lim p,(X) = p(X) und fir jede offene Menge B C X gilt

n—oo

liggfun(B) > u(B).

(d) Fiir jedes C' € B(X) mit u(0C) = 0 gilt lim 4, (C) = p(C).
Beweis. Siehe Theorem 3.25 in [11]. O

Sind g, (ptn)nen als Wahrscheinlichkeitsmafle vorausgesetzt, so ist trivialerweise die
Bedingung p,,(X) — p(X) erfullt. Ist X = S, so vereinfacht sich das Theorem erneut,
denn hier gentigt es die Mengen [t]; aus (1.11) zu untersuchen.

Korollar 1.1.18 Es seien X, (X, )nen zuféllige unmarkierte Baume. Dann sind
aquivalent:

(a) X, % Xo..
(b) lim P(X, € [tx) = P(Xs € [ty) firallet € S, k > 1.
(¢) liminf P(X,, € [t]y) > P(Xo € [t]y) fir alle t € S, k > 1.

Beweis. ,(a) = (b)“: Aufgrund der Bemerkung 1.1.15 ist [¢] offen und abgeschlossen.
Mit Hilfe des Portmanteau-Theorems folgt dann (b).

»(b) = (c¢)*: Klar.

»(c) = (a)“: Da S separabel ist, lasst sich jede nichtleere offene Menge A C S
als hochstens abzahlbare Vereinigung von e-Ballen schreiben, d. h. es existiert eine
Menge I C N, Baume (t;);c; und Zahlen (k;);c; mit

A= U [tl]kz

i€l
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Unter Beachtung der Bemerkung 1.1.15 kénnen wir annehmen, dass diese Vereinigung
aus paarweise disjunkten Mengen besteht. Dann folgt mit Hilfe von (c¢) und Fatous
Lemma (siche Lemma 9.12 in [6])

liminf P(X, € A) =liminf Y P(X, € [t]x)

n—oo n—oo 4
el

>3 liminf P(X, € [ti]s,)
el

> Y P(Xac € [t))

=P(Xo €A
und mit Portmanteau wiederum die Behauptung. O

Betrachten wir zuféllige unmarkierte Baume mit Werten in der abzahlbaren Menge
Shin, S0 geniigt es, fir die Verteilungskonvergenz P(X,, = t) — P(X. = t) fur alle
t € Sgn, nachzuweisen.

Korollar 1.1.19 Es seien X, (X,,)nen zufallige unmarkierte Baume mit Werten in
Shn. Dann sind dquivalent:

(a) X, % X

(b) lim P(X, =t) = P(X, =1t) fir alle t € Sg,.

n—oo

Beweis. ,(a) = (b)“: Wir wéahlen k = H(t) in Korollar 1.1.18 (b).
»(b) = (a)*: Da (X,), oy eine Folge endlicher Zufallsbaume mit Werten in der
abzéhlbaren Menge Sy, ist, gilt

P(X,€ltl)= Y P(X,=s)

5€San N[tk
fir alle t € S, k > 1, n € N. Eine erneute Anwendung des Lemmas von Fatou zeigt

liminf P(X, € [t]y) =liminf Y P(X,=s)

n—oo n—oo

SGSﬁnﬂ[t]k
> Y liminf P(X, = s)
SGSﬁnﬂ[t}k oo
QY P(Xye=2s)
Sesﬁnm[t}k
= P(XOO c [t]k),

und (a) folgt mit Korollar 1.1.18. O
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Korollar 1.1.20 Es seien X, (X, )nen zuféllige unmarkierte Baume. Wir setzen
XF = (X,) fir alle k € N und n € N. Dann sind dquivalent:

(a) X, -5 Xoo.

(b) X* 4 X* fir alle k > 1.
Beweis. Die Behauptung folgt durch eine Kombination der vorangegangenen Korol-

lare und der Beobachtung {X} = ¢} = {X,, € [tly} fir allet € S, k € N und
n € N. O

Die Topologie von § gibt der schwachen Konvergenz auf S einen lokalen Charakter.
Daher wird in der Literatur die Bezeichnung local weak convergence verwendet.

Da die Definition X, N X ausschlieBlich von den Verteilungen der Variablen
abhiingt, stellt sich die Frage, ob wir nicht auch Variablen X/, n € N, konstruieren
konnen, die X,, ~ X/ erfiillen, und fir die eine starkere Konvergenz vorliegt. Das
folgende Theorem gibt eine positive Antwort auf diese Frage.

Theorem 1.1.21 Sind X, (X,,)neny Zufallsvariablen auf (€, .4, P) mit Werten in
einem polnischen Raum und konvergiert X,, in Verteilung gegen X, so existieren
Zufallsvariablen (X)), . auf einem geeigneten Wahrscheinlichkeitsraum (€Y', A’, P')
derart, dass X,, ~ X, fur alle n € N und X/ — X! P'-fast sicher gilt.

Beweis. Siehe Theorem 3.30 in [11]. O

Der Nutzen dieses Theorems in der Theorie kann nicht genug herausgestellt werden.
Ein treffendes Beispiel fiir seine Anwendung ist der folgende Satz.

Satz 1.1.22 Sind X, (X, )nen Zufallsvariablen auf (€2, A, P) mit Werten in einem
polnischen Raum und konvergiert X,, gegen X, in Verteilung, so konvergiert auch
f(X,) fiir jede PX>~-f.s. stetige Funktion f in Verteilung gegen f(X.).

Beweis. In Anbetracht des Theorems 1.1.21 lasst sich ohne Einschrinkung X,, — X
f.s. voraussetzen. Daraus folgt f(X,) — f(X) f.s. (siehe Lemma 34.3 in [6]) und die
Behauptung, da fast sichere Konvergenz die Konvergenz in Verteilung impliziert. [J

Ist eine Folge von Zufallsbaumen (X,),eny mit X, 4 X4 gegeben, so konvergieren
beispielsweise auch

(a) [Xal,
(b) H(X),
(¢) Zr(X,) = Anzahl der Individuen von X, in festen Generation k, und

(d) |L(Xn)|
fir n — oo in Verteilung gegen |Xo|, H(Xs), Zr(Xs) und |L(X)|, denn alle
auftretenden Abbildungen sind stetig.
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1.2. Galton-Watson-Baume

In diesem Abschnitt fiihren wir eine wichtige Klasse von Zufallsbaumen ein, die Gal-
ton-Watson-Baume. Wahrend 7;, eher aus kombinatorischer Sicht interessant ist,
sind Galton-Watson-Baume biologisch motiviert: Stellen wir uns eine Population mit
einem Urahnen vor, in der sich jedes Individuum geméB einer Verteilung (p;);en,
vermehrt, so erhalten wir einen zufélligen Stammbaum, also eine Zufallsvariable mit
Werten in S.

Uber einen Umweg gelangen wir zu der Definition dieses Zufallsbaumes: Die Werte
der Zufallsvariable sind zunachst Teilmengen des Ulam-Harris- Baumes

V= J N, (1.12)

n€Ng

wobei N? = {&} gesetzt wird. & ist das Symbol, welches den Urahnen kennzeichnet.

Zur Ubersichtlichkeit werden wir fiir ein Element (vy,...,v,) € N® auch v; ...,
schreiben. Die elementaren Definitionen und Sétze dieses Abschnittes lassen sich in
[7] wieder finden.

Definition 1.2.1 Eine Teilmenge 7 C V heifit Baum, falls folgendes gilt:
(a) @ €,
(b) Aus v;...v, € 7 folgt vy ...v, € 7 fur alle 1 <k <n und alle n > 1,
(c) Aus vy ...v,q1v, € T fOlgt vy ... v, 17 €7 firalle 1 <j <wv, und alle n > 1.

Ein Baum heifit — wie zuvor auch — lokal endlich, wenn jedes Individuum nur endlich
viele Kinder besitzt. Fiir 7 C V halten wir diese Bedingung als

lTNN"| < oo fir allen > 1

fest.

Ein Baum 7 C V induziert einen Baum im Sinne von Definition 1.1.1, indem
wir die Knotenmenge als 7 und die Wurzel als @ setzen, und die Kantenmenge E;
dadurch gegeben ist, dass wir jeden Knoten v; ... v, € 7 mit seiner Mutter vy ... v,
verbinden, die definitionsgeméf} in 7 enthalten ist (siehe auch Abbildung 1.4 fiir ein
Beispiel).

Wir setzen

T = {7 C V: 7ist ein lokal endlicher Baum},
T,={r€T:|r|=n}und (1.13)
Ton ={7€T:|7| <o} ={r CV:ristein endlicher Baum}.
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%]

2

A,

(1, (1,2) (3,1)

(1,2,1) (3,1,1) (3,1,2)

Abbildung 1.4. Ein Baum aus T.

Die Béaume aus T unterscheiden sich von denen aus S darin, dass die Kindermenge
jedes Knotens geordnet ist. In der Literatur ist deshalb auch von verwurzelten, ge-
ordneten Baumen die Rede. Es ist also fiir jeden Knoten v von Bedeutung, in welcher
Reihenfolge die Teilbdume 7%, w € C,, an der Mutter v hangen.

Den bereits bekannten Isomorphiebegriff aus Definition 1.1.7 fiihren wir auch fir
Béaume aus T ein, um die Markierung und Anordnung zu ,vergessen“. Den Quotienten
T modulo Isomorphie identifizieren wir mit S. Da es keine Probleme bereitet, werden
wir die Restklassenprojektion T — S auch mit [ -] bezeichnen.

Analog zu Ag(t) in (1.6) definieren wir fiir jeden Baum t € Sg, die Zéhlvariable
Ar(t) als die Anzahl der Baume 7 € T mit [7] =, d.h.

Arp(t) = {7 € T : [7] = t}]. (1.14)
Genau wie fiir Az(#) in Lemma 1.1.9 suchen wir eine Produktdarstellung fiir Ar(t).

Lemma 1.2.2 Fir alle t € S, gilt

1
=T 1 5 (1.15)

veVy SESfn

Beweis. Gemafl Definition 1.2.1 (a) kann die Wurzel r von t nur die Markierung
@ erhalten. Die |C,| Kinder der Wurzel miissen mit den Zahlen 1 bis |C,| verschen
werden. Dafiir gibt es |C,|! Moglichkeiten, wobei bei jeder derartigen Belegung ein
identischer Baum entsteht, wenn die Markierung innerhalb der Menge {i € C, : [t'] =
s}, fir ein festes s € Sgy, identisch ist.

Sukzessiv setzen wir dies fir jeden Knoten v fort und erhalten dann (1.15). O

Alle Bezeichnungen, die wir fiir Baume aus S bereits eingefiihrt haben, verwenden
wir auch fiir Bdume aus T, und so wie wir § in Satz 1.1.11 mit der Metrik ds versehen
haben, lasst sich auch eine Metrik auf T definieren.
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Abbildung 1.5. t aus Abbildung 1.3. Es ist Ar(t) = 10 und Az(t) = 75600.

Satz 1.2.3 (a) Durch dy: T x T — [0, 1] mit
dr(r,7") = (1+sup{n € Ng : 7, = 71, }) "
wird T zu einem polnischen Raum und [-] : T — S zu einer stetigen Abbildung.
(b) & = {0} U{[7],: 7 € T,n € Ny} ist ein N-stabiler Erzeuger von B(T).

Beweis. Analog zu den Beweisen aus Satz 1.1.11 und Lemma 1.1.14 folgen die Be-
hauptungen. O]

Wir kommen nun zur Definition des Galton-Watson-Baumes GW als Zufallsvariable
mit Werten in (T,B(T)), bei gegebener Reproduktionsverteilung (p;),en, auf No.

Sei {X, : v € V} eine Familie von unabhéngigen, nach (p;);en, verteilten Zufalls-
grofien auf dem Wahrscheinlichkeitsraum (2,4, P). Wir definieren

GW = J GW, (1.16)

n>0
durch GWy = {@} und
GW, ={vi...v, eN":1v...v,1 €W,y und 1 < v, < Xy, 0., }-

Offensichtlich ist GW eine T-wertige Abbildung und wir nennen GW den Galton-
Watson-Baum mit Reproduktionsverteilung (pj);en,. Den Erwartungswert

n=>7jp;
j=1

der Reproduktionsverteilung bezeichnen wir als Reproduktionsmittel.
Das néchste Lemma klart, dass es sich bei GW tatsachlich um eine messbare Ab-
bildung handelt.

Lemma 1.2.4 Die Abbildung GW : (2, A, P) — T ist A-B(T)-messbar. Folglich ist
die Komposition

GW: (A4, P) T L g
A-B(S)-messbar.
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Beweis. GemaB Satz 1.2.3 (b) geniigt es GW ™' (&) C A zu zeigen.
Es sei A = [7], fir ein 7 € T und n € No. Mit 7; = 7 NN fiir j € Ny und |v] =n
firv=wv;...v, € V gilt dann

GWfl(A) = {w SV GW‘n(w) = 7’|n}

= ﬁ{w € Q:GWj(w) =15}

j=1

co({X,:|v] <n—1}) C A O

Das Lemma berechtigt, von den Verteilungen von GW und [GW] zu sprechen. Ge-
geben, dass die Wurzel k£ Kinder besitzt, scheint aufgrund des rekursiven Aufbaus
von GW klar zu sein, dass die Teilbdume, die an den Kindern der Wurzeln héngen,
stochastisch unabhéngig voneinander und geméfl GW verteilt sind.

Lemma 1.2.5 Seien GW, X = X4 wie in Definition (1.16) und 7" = [GW] sowie
pr > 0. Gegeben X = k, ist die Familie {77 : 1 < i < k} bedingt stochastisch
unabhéingig und jede Variable T* genauso verteilt wie 7.

Beweis. Siehe Satz 2.3 in [7]. O

Eine naheliegende Frage ist, mit welcher Wahrscheinlichkeit die Population eines
Galton-Watson-Baumes ausstirbt. Ubersetzen wir diese in das gegebene mathemati-
sche Modell, so suchen wir nach der Aussterbewahrscheinlichkeit

q= P(GW € Tg,) = P([GW] € Sgn). (1.17)

Eine Untersuchung der erzeugenden Funktion f der Reproduktionsverteilung be-
antwortet die Frage grofitenteils. Allerdings sollte nicht verschwiegen werden, dass
eine genaue Angabe von ¢ im Fall (b) nur in seltenen Fallen moglich ist.

Satz 1.2.6 Die Aussterbewahrscheinlichkeit ¢ ist der kleinste Fixpunkt von f in
[0, 1]. Setzen wir 0 < pg < po + p1 < 1 voraus, so gelten die folgenden Implikationen:

(a) 4 < 1= f hat keinen Fixpunkt in [0, 1) und folglich ist ¢ = 1,
(b) u > 1= f hat genau einen Fixpunkt in [0, 1) und es gilt pg < g < 1.
Beweis. Siehe Satz 3.1 in [7] oder Theorem 2.1.1 in [12]. O

Ist das Reproduktionsmittel ¢ < 1 und p; # 1, so stirbt die Population fast sicher
aus. In diesem Fall nimmt GW fast sicher Werte in Tg, an. Der Satz gibt Anlass zu
einer Definition.

Definition 1.2.7 Ein Galton-Watson-Baum mit Reproduktionsverteilung (p;);en,
und Reproduktionsmittel p =372, j - p; heifit
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(a) subkritisch, falls u < 1,
(b) kritisch, falls p = 1, und
(c) superkritisch, falls p > 1 gilt.

Der Grund fiir die Unterscheidung der Félle 4 = 1 und p < 1 liegt darin, dass z. B.
Aussagen tliber die Aussterbegeschwindigkeit in beiden Féllen variieren.

Unser Interesse gilt einer besonderen Reproduktionsverteilung, der Poisson-Vertei-
lung mit Erwartungswert p = 1.

Definition 1.2.8 Sei (p;)jen, ~ Poi(1), d.h. p; = (e-5!)~* fiir alle j € Ny. Sei ferner
GW ein Galton-Watson-Baum mit Reproduktionsverteilung (p;);en,. Wir definieren
die Verteilung

PGW(1) (1.18)

auf Sg, als die Verteilung von [GW].

Der Grund fiir unser Interesse liegt darin: Ist 7'~ PGW(1), so gilt
P(Te-||T|=n)=P(T,€") (1.19)

fir alle n € N. Bedingt darunter, dass die Gesamtpopulation von 7" aus n Individuen
besteht, ist T genauso verteilt wie die in (1.9) definierten Zufallsbdume 7,,. Um dies
einzusehen, bedarf es einiger Vorbereitungen.

Satz 1.2.9 (Dwass) Sei GW ein Galton-Watson-Baum mit Reproduktionsverteilung
(pj)jen, und (IV;);en eine Folge unabhéngiger, jeweils nach (p;);en, verteilter Zufalls-
groflen. Dann gilt fir alle n € N

P(|GW|=n)=n"1-P(N;+---+ N, =n— 1), (1.20)
sowie P(|GW| =00) =1 —g¢.
Beweis. Siehe Kapitel I, Satz 10.1 in [5] oder Theorem 6.3 in [9]. O

Eine zusitzlich Anmerkung ist, dass die Verteilung von |GW| beim Ubergang nach

S unverédndert bleibt, da die Knotenanzahl eines Baum invariant unter Isomorphie
ist, d.h. mit 7" = [GW] gilt

P(IGW| € -) = P(IT] € -).

Wenden wir Satz 1.2.9 auf die fiir uns interessante PGW/(1)-Verteilung an, so
erhalten wir das folgende:
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Korollar 1.2.10 Ist 7'~ PGW(1), so gilt fur alle n > 1

P(T| =n) = ”n e, (1.21)

Beweis. Ist (N;);en eine Folge unabhéngiger Zufallsgrofen mit N; ~ Poi(1) fiir alle
i € N, so gilt aufgrund von (1.20) und Ny + - -- + N,, ~ Poi(n)

P(|T}=n)=n""" Poi(n)({n —1})

o nnfl Y

=n- e
(n—1)!

n—1

= nn' e ", O
Lemma 1.2.11 Ist 7'~ PGW(1), so gilt
As(t
P(T=t)= st) e (1.22)

fur alle t € S,,.

Beweis. Es bezeichne GW den zu T gehorigen Galton-Watson-Baum mit Werten in
T. Es sei 7 € T ein fester Baum mit [7] = t. Dann gilt offenbar

P(T =t) = Ag(t) - P(GW = 7). (1.23)

Da sich die Individuen v € 7 unabhéngig voneinander gemés8 einer Poi(1)-Verteilung
vermehren, gilt

P(GW = 7) Poi(1)(|Cy]) = = =e "
=1 O "I, e
Aus Lemma 1.1.9 und Lemma 1.2.2 ergibt sich
H 1 _ Ag(t)
ey, [Colt nl- Ar(2)
und das Einsetzen in (1.23) liefert die Behauptung (1.22). O

Nun verifizieren wir das in (1.19) angekiindigte Resultat:
Satz 1.2.12 Ist '~ PGW(1), so gilt fiir alle n > 1
P(Te-||IT|=n)=P(T,€"). (1.24)
Beweis. Ist t € S, so folgt mit Korollar 1.2.10, Lemma 1.2.11 und (1.9)

PI=0 4 ). nt = (T, = 1), O

P(I'=t||T|=n)= P(T =n) ~ 8
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+1
Bemerkung 1.2.13 Ist (p;);en, ~ Geo (%), d.h.p; = (%)]Jr , und GW der zugeho-
rige Galton-Watson-Baum mit Werten in T, so konnen wir analog — wie in Korollar
1.2.10 und Lemma 1.2.11 —

1 2n—1
P(GW = 7) = (2) fiir alle 7 € T, und

1.25)
N (2. (n—1)\ 1 (
P(|GW[ =n) = () ' ( (n >> -—fir allen € N
2 n—1 n
einsehen. Da P(GW = 7) von 7 nur iiber |7| abhéngt, folgt unmittelbar
P(GW € - ||GW| = n) = Uniform(T,,). (1.26)

Hierbei sei Uniform(T,,) die Gleichverteilung auf T,,. Aus (1.25) und (1.26) lasst sich
|T,|, die Anzahl aller verwurzelten, geordneten Béaume mit n Knoten, ablesen. Es

gilt
2-(n—1)\ 1
|Tn| B < 1 ) . n’
n— n

auch besser bekannt als (n — 1)-te Catalan-Zahl.

Verbinden wir eine unabhéngige Folge von PGW(1)-Bédumen entlang ihrer Wur-
zeln, so erhalten wir einen weiteren wichtigen Zufallsbaum, der gerade der Vertei-
lungslimes der 7;, ist. Um das ,Verbinden“ mathematisch zu formulieren, definieren
wir:

Definition 1.2.14 Sei (b,),en eine Folge von Baumen aus S, und fir n € N sei
$p = (Vp, Ep,7y) ein Repréasentant von b, derart, dass (V,),en eine Folge paarweiser
disjunkter Mengen ist. Es sei

|| b e S (1.27)
=1

die Restklasse des Baumes

(U Vi, U E, U U {rn, rns1}, 71).

neN neN neN

Fiir eine Folge von Zufallsbaumen (B,,),en sei LS, B; punktweise wie in (1.27) defi-
niert.

Wir beachten, dass L2, b; unabhangig von der Wahl der Reprasentanten ist, und
dass die Reihenfolge der b; eine Rolle spielt, da z. B. die Wurzel von L2, b; der Wurzel
von by entspricht (siehe auch Abbildung 1.6).
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M)

by by bs

Abbildung 1.6. Der Baum L2, b;.

Definition 1.2.15 Fiir eine unabhéngige Folge (B,,)nen mit B, ~ PGW(1) fiir alle
n € N, definieren wir

PGW™(1) (1.28)
als die Verteilung von L2, B;.

Ist in (1.27) jedes b; ein endlicher Baum, so ist LI$°, b; ein Baum, der einen ein-
deutigen, unendlich langen, in der Wurzel startenden Pfad besitzt. In Abschnitt 3.2
untersuchen wir die Menge dieser Baume genauer.

Wir merken an, dass die Verteilung PGW® (1) nur Masse in dieser speziellen Béau-
memenge besitzt, da jede der Variablen B; nach PGW(1) verteilt ist und somit fast
sicher ausstirbt.

1.3. Grimmetts Lemma

Die Folge (7},)nen sei wie in (1.9) gegeben. Grimmetts Lemma stellt die Verbindung
zwischen den ersten beiden Abschnitten her.

Satz 1.3.1 (Grimmetts Lemma) Es sei To ~ PGW>(1). Mit T = (T,,), gilt
" L TE firn — oo
fur alle k > 1. Das Korollar 1.1.20 impliziert

d ;
T, — T, firn — oo.

Beweis. Wir verzichten an dieser Stelle auf einen Beweis. Verifizieren werden wir die
Aussage in Kapitel 3, Satz 3.2.8. Fiir den urspriinglichen Beweis von Grimmett siehe
Theorem 3 in [10]. O

Als nachstes untersuchen wir die Verteilungskonvergenz gewisser Teilbdume von
T,, gegen Teilbaume von T,,. Fir t € S und Kindermenge C' der Wurzel sei

m; = max{|t'| : i € C'} und

e (1.29)
Chax(t) ={t/ : 7 € C mit [t/| = my}.
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Die Zufallsvariable ¢y, : (2,4, P) — S wahle gleichverteilt einen Baum aus
Chax(t). Entfernen wir den Teilbaum t,,., von ¢, so erhalten wir einen Baum ¢,
der wieder in der Wurzel von ¢t verwurzelt ist.

Anschliefend nennen wir die beiden Baume ¢, und ¢ . in tsmall hyw . P8 um, je
nachdem, welcher der beiden Teilbdume aus mehr Knoten besteht. Im Gleichheitsfall

werfen wir eine Miinze, d. h.

tmax an |tmaX| < |trcnax|
gomall trcnax auf ‘tmax| > ‘tlfnax| (130)
X : tmax + (1 - X) : trcnax auf ‘tmax’ = ‘tgiax’
und
tmax an |tmaX| > |trcnax|
big — e auf |tmax| < |tfnax| (1.31)

(1= X) tmax + X - £€ auf |tmax| = [t&

max’ max ‘ ?

mit einer ZufallsgroBe X ~ B(1,1/2), die unabhéngig von .y sei. Sieche Abbildung
1.7 fiir ein Beispiel.

2fbig

tsmall /

Abbildung 1.7. Baum ¢ mit ™ und ¢"® visualisiert. Hier gilt #,,,, = t5™al.,

Fiir einen Zufallsbaum T definieren wir 7™ und T punktweise, wie in (1.30)
und (1.31) beschrieben. Alle auftretenden Miinzwiirfe und Gleichverteilungen seien
unabhéngig voneinander und unabhéangig von T

Lemma 1.3.2 Ist T, ~ PGW®(1), so sind 75" und TP unabhingig, und es gilt

Tmall o PGW(1)  bzw. TRE ~ PGW™(1).



22 Kapitel 1. Das Paarungsproblem fiir zuféllig gewichtete Zufallsbdume

Beweis. Die Behauptung folgt direkt aus der Konstruktion der PGW®(1)-Verteilung.
Der Teilbaum 7Y, j € C, der den unendlichen Pfad enthélt, besitzt stets unendlich
viele Knoten. Der restliche Teil von T, besteht P-fast sicher nur aus endlich vielen
Knoten, d. h. es gilt mit den Bezeichnungen aus Definition 1.2.15

Timall — By ~ PGW(1) und

o0

o = | | B; ~PGW™(1).
=2
Die Unabhéngigkeit von 75! und 72 ist damit ebenso klar. O

Lemma 1.3.3 Seien ¢, (t,),eny Badume aus S mit ¢, — ¢ und ¢ besitze einen eindeu-
tigen groSten Teilbaum ¢/, j € C, d.h. es gelte

|Crnax (1) = 1. (1.32)

Dann gilt |Cpax(t,)| = 1 fiir fast alle n, d.h. wir konnen ¢5™a! und P8 als Elemente
von § ansehen, und es gilt

timall N tsmall und tl;)ng N tblg‘

Beweis. Aufgrund von (1.32) gilt insbesondere [t5™#!| < oo. Damit kénnen wir ein
ko € N finden, so dass

75smaull — (t|k)small (133)

fiir alle k > ko gilt. Wir wéhlen dafiir ein ko mit |(¢5,)"8] > [t5™2!], das nach Voraus-
setzung existiert.

Aus t, — t folgt, dass die Folge ((t,)i)nen flir jedes [ konstant ¢; wird. Demnach
gilt |Crax(tn)| = 1 fiir fast alle n und wir erhalten wie gewtinscht ¢5mall — ¢small ynd
thie — P wenn wir (1.33) beachten. O

Satz 1.3.4 Fiir die Folge der Zufallsbaume (7},),en gilt
d
—

(Trslmall7 TTIL)ig> (Tsomall 7 ng) 7 ( 1 34)

wobei T5mall und T2 unabhéingig mit 75m! ~ PGW(1) und T2 ~ PGW®°(1) sind.

Beweis. Aus Grimmetts Lemma folgt T}, % Ty, ~ PGW>(1). Gemé Theorem 1.1.21
existiert eine Kopienfolge Sy, (Sy)nen auf einem geeigneten Wahrscheinlichkeitsraum
(, A, P') mit S,, — So P'-fast sicher und S,, ~ T, fiir alle n € N.

Fir S, ist P’-fast sicher die Voraussetzung von Lemma 1.3.3 erfillt, somit folgt

(S, 1) — (S, SU%) - Plts. (1.35)
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Wir beachten nun, dass die Verteilungen von (Ssmall SPie) und (7Tsmall) TPig) iiber-
einstimmen, auch wenn wir S,, nur so gewahlt haben, dass S,, ~ T,, gilt. Der Grund
dafiir liegt darin, dass die Verteilung von (Ssmall SPi8) nur von der Verteilung von S,
abhangt.

Die fast sichere Konvergenz in (1.35) impliziert die Verteilungskonvergenz der Fol-
ge, also gilt, wie in (1.34) behauptet,

(Tgmet, Ty L (st sbie) L (gomt gty AL (pmall i)

Die restlichen Behauptungen ergeben sich aus Lemma 1.3.2. O

1.4. Die Problemstellung

Wir fithren nun den Begriff der gewichteten Paarung ein, beschranken uns in diesem
Abschnitt aber auf eine feste Kantengewichtsfunktion und einen fixierten Baum, um
uns mit den Definitionen vertraut zu machen.

Paarungen fiir Zufallsbaume mit zufilligen Gewichten werden im anschliefenden
Abschnitt 1.5 definiert.

Definition 1.4.1 (a) Eine Paarung (oder auch: ein matching) eines Baumes t =
(Vi, Ey,r) ist eine Teilmenge S C Ej, so dass je zwei verschiedene Kanten aus
S keinen gemeinsamen Knoten besitzen, d. h. fiir alle {vy,v2} # {w,ws} aus
S gilt {vy,v2} N{wy, wy} = 0.

(b) Es bezeichne P(t) die Menge aller Paarungen von t.

Wir sagen, dass eine Paarung S einen Knoten v enthélt, wenn es eine Kante e in
S gibt, die den Knoten v enthalt.

Paarungen werden unter Isomorphismen auf Paarungen abgebildet, genauer gilt:
Sind ¢,t' zwei markierte Baume, die via f isomorph sind, und ist S eine Paarung von
t, so wird durch

f(8) = {f(v), fw)} : {v,w} € 5}
eine Paarung von t’ definiert. Wie wir schnell erkennen, induziert f auf diese Weise
eine Bijektion zwischen P(t) und P(t').

Definition 1.4.2 Sei t = (V}, E;, r) ein endlicher markierter Baum und w : E; —
[0,00) eine Kantengewichtsfunktion. w induziert das Gewicht der Paarung S durch

w(S) => w(e).
ecS
Ist S* eine Paarung von ¢ mit w(S*) > w(S) fur alle S € P(t), so nennen wir S* eine
mazimal gewichtete Paarung von t. Wir definieren

M(t) =w(S") = Srggé)w(S), (1.36)
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das maximale Gewicht einer Paarung von t.

Wir geben die Definition M (t) auch fiir Baume ¢ € Sgy,: Sind #/,¢ zwei markierte
Baume, die via f : Vi, — V; isomorph sind, und ist w eine Kantengewichtsfunktion
von t, so wird durch w’ = w o f eine Kantengewichtsfunktion von #' definiert, die

max w'(S) = max w(S)

SeP(t') SEP(t)
erfiillt. Demzufolge ist der Ausdruck M (t) fur ¢t € Sg, wohldefiniert, wenn wir w auf
einem Reprasentanten von ¢ definiert haben und auf allen anderen Repréasentanten
die Gewichte entsprechend der Definition w’ setzen.

Fiir den Rest des Abschnittes sei ein Baum t € S, und eine Kantengewichtsfunk-
tion w auf einem Reprasentanten von ¢ fixiert. Auf jedem Teilbaum von ¢ induziert
w eine Kantengewichtsfunktion des Teilbaumes.

Abbildung 1.8. Beispiel eines Baumes ¢ mit M(t) = 16. Wir beachten, dass ¢ zwei
maximal gewichtete Paarungen besitzt.

Lemma 1.4.3 Sei C' die Kindermenge der Wurzel r von ¢. Existiert fiir ¢ eine ma-
ximal gewichtete Paarung, die die Wurzel nicht enthalt, so gilt

M(t) =Y M(t"). (1.37)
ieC
Beweis. Die Behauptung ergibt sich dadurch, dass es zwischen #* und #/, i # j, keine

Verbindungskanten gibt. O]

Ist die Voraussetzung des Lemmas nicht erfiillt, so gilt (1.37) im Allgemeinen nicht
mehr. Mit der néchsten Definition fangen wir die Grofle ein, die angibt, um wie viel
sich beide Seiten unterscheiden. Sei dazu P, (t) die Menge aller Paarungen von ¢, die
die Wurzel nicht enthalten, d. h.

P.(t)={S € P(t):r¢efiraleeec S} (1.38)
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fiur ¢t = (Vi, By, r).
Wir definieren B(t) so, dass M (t) — B(t) das maximale Gewicht einer Paarung
angibt, die die Wurzel von ¢ nicht enthélt, d. h.

M(t) = B(t) = max w(S). (1.39)

Wir beachten, dass B(t) ebenfalls fiir Baume ¢ € S, ein wohldefinierter Ausdruck
ist.

Lemma 1.4.4 Fiir t € Sg, gilt stets B(t) > 0 und

M(t) = B(t) = 3 M(#). (1.40)

Beweis. Aus der Optimalitét von M (t) folgt B(t) > 0. (1.40) ergibt sich daraus, dass
es zwischen t* und ¢/, i # j, keine Verbindungskanten gibt. O

Lemma 1.4.5 Existiert fiir ¢ € Sg, eine maximal gewichtete Paarung, die die Wurzel
r enthalt, so gilt

M(t) = max{w({r,j}) - B(t')} + ;M(ti)- (1.41)

Beweis. Ist S; eine maximal gewichtete Paarung von ¢, die die Kante e; = {r,j}
zwischen der Wurzel r und einem j € C enthalt, so gilt nach Definition von B( -)

M(t) = w(e;) + M(H') = B(t') + > M(t') = w(e;) = B{t)) + > M(t').
2135 ieC

Eine Maximierung tiber alle j € C' liefert (1.41), unter Beachtung der Voraussetzung.
]

Wir kommen nun zur wichtigsten Darstellung von B(t). Aus ihr leiten wir im
zweiten Kapitel eine stochastische Fixpunktgleichung ab (siche Satz 2.2.2).

Satz 1.4.6 Fiir t € S, mit Wurzel r gilt

B(t) = r?eaox{o, w({r,i}) — B(t)}. (1.42)

Beweis. Existiert fiir ¢t eine maximal gewichtete Paarung, die die Wurzel enthélt, so
gilt aufgrund von (1.40) und (1.41)

B(t) = M(t) - ;M(t") = max{w({r, j}) = B(’)},

und da B(t) > 0 ist, folgt (1.42).
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Im anderen Fall ist B(t) = 0 und wir haben

B(t') = w({r,j})

fiir alle 7 € C' zu zeigen.
Sei dazu j fixiert und S* eine maximal gewichtete Paarung von ¢, die die Wurzel
nicht enthalt. Wir definieren eine Paarung S durch:

e S enthalte die Kante {r, j},

e S enthalte alle Kanten einer maximal gewichteten Paarung von ¢/, die die Wur-
zel von #/ nicht enthélt, und

e S enthalte alle Kanten aus S*, die sich in den Teilbdumen %, i # j, befinden.

Damit gilt ' ' '
w(S) =w({r,j}) + ME) - B(t') + > M(t")
2
und aufgrund von (1.37) und der Optimalitat von S*
B(t') —w({r,j}) = w(S") —w(S) = 0. N

Wir nutzen die rekursive Struktur eines Baumes aus, um eine alternative Darstel-
lung fir M (t) zu finden: Fiir t € S und eine Kante e € E; von ¢ seien

tmall(e)  und  t"8(e) (1.43)

die beiden Teilbdume von ¢, die durch das Entfernen von e aus t entstehen und deren
Wurzeln die beiden Knoten seien, die von e verbunden werden.

Wie in (1.30) soll die Méchtigkeit der Knotenmenge von #™2l!(¢) kleiner sein als die
Miéchtigkeit der Knotenmenge von t"¢(e). Im Gleichheitsfalle werfen wir eine faire
Miinze.

Wir beachten, dass der Ausgang des Miinzwurfes keinen Einfluss auf die Summen

Mt (e)) + M(t"8(e)) und  B(t"*(e)) + B(t"5(e))
hat.

Lemma 1.4.7 Ist t € S, und S* eine maximal gewichtete Paarung von ¢ mit der
Eigenschaft

ecS* = M) > M@E™(e))+ M(t"E(e)), (1.44)
so gilt
S* ={ec E:w(e) > B(t™(e)) + B(t"%(e))}. (1.45)

Insbesondere ist S* die einzige maximal gewichtete Paarung von ¢.
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Beweis. Wir merken als erstes an, dass stets
M(t) > M (™ (e)) + M (t"8(e)) (1.46)

gilt, da t™all(¢e) und t"8(e) zwei disjunkte Teilbdume von ¢ sind.
Fiir e € B, gelten nun folgende Aquivalenzen:

ed S* o M) =M™ (e)) + M(t"(e)) und (1.47)
e€S* &  M(t) > MEm(e)) + M(t"8(e)). (1.48)

Die Hinrichtung von (1.47) ist klar und die Riickrichtung folgt aus (1.44). Die Aussage
(1.48) ist nur die Verneinung von (1.47), unter Beachtung von (1.46). Fur e € S* gilt
jedoch nach Definition von B(-)

M(t) = w(e) + ME™"(e)) — B(t™(e)) + M(t"%(e)) — B(t"*(e)).
Ein Vergleich mit (1.48) zeigt,
e€S* o wle) > BE™(e) + B(t"(e)),

wie in (1.45) behauptet. O

1.5. Zufallige Gewichte

Wie bereits mehrfach erwéhnt, sind wir nicht an einer festen Gewichtsfunktion in-
teressiert, sondern betrachten zuféllige Baume mit zufélligen Gewichten. Fir t € S
und jede Kante e von ¢t nehmen wir die Existenz einer Zufallsgrofie

£t (A P) — [0,00)
an, derart, dass die Familie aller Gewichte
G={¢ :teS,ecE} (1.49)

stochastisch unabhéngig ist, und jedes & die Verteilung F' besitzt. Fiir ein festes
t € S und w € 2 betrachten wir die Kantengewichtsfunktion

e & (w)

und nennen einen von G unabhéngigen Zufallsbaum 7' einen Zufallsbaum mit F'-
verteilten Kantengewichten.

Wir halten eine Verteilung F" auf [0, co) fixiert und unterstellen fiir alle betrachteten
Zufallsbaume, dass sie F-verteilte Kantengewichte besitzen.
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In Anlehnung an die Ausgangsproblemstellung fithren wir jetzt die Zufallsgrofien
M(T) und B(T) ein. Sei dazu T ein endlicher Zufallsbaum mit F-verteilten Kanten-
gewichten. Wir definieren M (T') als die Zufallsgrofie

M(T): (92, A, P) — [0,00),

die fir w € Q das maximale Gewicht einer Paarung des Baumes t = T'(w) mit
zugrundeliegender Gewichtsfunktion e — & (w) angibt. Also gilt
M(T)= > Lir—y - max » ¢&. (1.50)
t€San SePW®) ces

Die Zufallsgrofie B(T') auf (€2, A, P) sei so definiert, dass M (T) — B(T') das maximale
Gewicht einer Paarung angibt, die die Wurzel nicht enthélt, d. h.
M(T)—=B(T) = Y_ Lyr—y - max > ¢&. (1.51)
teSan SePr(t) eeS

Lemma 1.5.1 Sind (X,,)nen, Xoo endliche Zufallshaume mit F-verteilten Kantenge-
wichten und konvergiert X,, in Verteilung gegen X, so gilt

M(X,) -5 M(Xy) und B(X,) -5 B(X.).

Beweis. Unter Beachtung des Theorems 1.1.21 nehmen wir ohne Einschrankung
X, — X P-f.s. an.
Ist (t,)nen eine Folge endlicher Baume mit ¢, — ¢ und ¢ € Sg,, so wird die Folge
(tn)nen ab einem Index konstant ¢, denn alle auftretenden Baume sind endlich.
Damit ist auch M (t,) ab einem Index konstant. Insbesondere folgt M (t,) — M (t)
P-f.s.und M(X,) — M(X) P-f.s. Analog folgern wir B(X,,) — B(X) P-f.s. O

Der néchste Satz bildet das Pendant zu Satz 1.4.6. Auch wenn ein Beweis nicht
notig ist, halten wir diese wichtige Verteilungsgleichheit fiir B(7') in einem eigenen
Satz fest.

Satz 1.5.2 Fiir einen endlichen Zufallsbaum 7" mit F-verteilten Kantengewichten
gilt
B(T) £ 3 Ty -max{0, & — B(t') :i € C(t)}, (1.52)
tEShn

wobei ¢! das Gewicht der Kante zwischen der Wurzel von ¢ und dem Kind i € C(t)
sei.

Beweis. In Satz 1.4.6 wurde (1.52) punktweise tiberpriift. O

Abbildung 1.4 auf Seite 24 gibt ein Beispiel fiir einen Baum, der zwei maximal
gewichtete Paarungen besitzt. Ist die Kantengewichtsverteilung F' stetig, so tritt
dieses Phédnomen fast sicher nicht auf.
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Satz 1.5.3 Ist F eine stetige Verteilung auf [0, co) und 7" ein endlicher Zufallsbaum
mit F-verteilten Kantengewichten, so gilt

M(T) £ 3 Tgreg - D €L Tyer = prsmane)) 1 B(vis(e))- (1.53)

tE€Shn eckEy

Beweis. Die Behauptung folgt, wenn wir zeigen, dass fiir P-fast alle w die Voraus-
setzung (1.44) von Lemma 1.4.7 an ¢ = T'(w) erfiillt ist.

Zu zeigen ist demnach, dass fiir P-fast alle w eine maximal gewichtete Paarung
S* = S*(w) von t = T'(w) derart existiert, dass

M(t) > Mt (e)) + M (t"®(e)) P-fast sicher (1.54)

fir jede Kante e € S* gilt.
Ist S* eine maximal gewichtete Paarung von t und e € S*, so gilt

M(t) = &+ Mt (e)) — B(t™(e)) + M(t"%(e)) — B(t"%(e)),

also

M(t) — M(£™(e)) — M(t"5(e)) = & — B(t™\(e)) — B(t"%(e)).
Die zu zeigende Ungleichung (1.54) vereinfacht sich dadurch zu
¢ > Bt (e)) + B(t"(e)) P-fast sicher. (1.55)

Da B(t™l(e)) + B(t"(e)) stochastisch unabhingig von &, und € nach Vorausset-
zung stetig verteilt ist, gilt

¢+ B(t™ W (e)) + B(t"(e)) P-fast sicher,
und mit Blick auf (1.46) folgt auch (1.55). O

Fiir jeden Baum ¢ € S, sei e(t) eine auf F; gleichverteilte und von den Gewichten
G stochastisch unabhéngige Zufallsvariable. Fiir alle t € S, erhalten wir

ZE S Lers pemanien + Bavse)y = Bl &y - Ler ) > Bemaie(0)) + Buvs(e())
echy

(1.56)
Aus (1.53) leiten wir auch eine niitzliche Darstellung von EM (T') fir stetige F ab:

Korollar 1.5.4 Ist F eine stetige Verteilung auf [0,00) und T ein endlicher Zufalls-
baum mit F-verteilten Kantengewichten, so gilt

EM(T) - Z |Et’ . E(]]_{T:t} : 5 : IL{£>B(tsmall(e(t)))+B(tbig(e(t)))}), (157)

t€San

wobei & nach F' verteilt und stochastisch unabhéngig von 7" und G ist.
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Beweis. Aus (1.53) und (1.56) folgt

EM(T) = Y E(lr=y - Y & Ligrs psmati(e)) + B(tvis(e))})

tGSﬁn SGEt

= 25: ’Et| 'E(B{Tﬁ} ) €Z(t) ) ]1{§§<t) >B(tsmall(e(t)))+B(tbig(e(t)))})-
te fin

Da jedes &' unabhangig von 7' und G \ {¢!} ist und die gleiche Verteilung F besitzt,
konnen wir &/, durch £ ersetzen. O

Wir halten die Ergebnisse aus Satz 1.5.3 und Korollar 1.5.4 noch einmal fir die
speziellen Baume T, aus (1.9) fest. (1.57) vereinfacht sich in diesem Fall, denn es gilt
|Er,| =n — 1. Wir setzen abkiirzend e,, = e(7,) und M, = M(T,).

Korollar 1.5.5 Ist F eine stetige Verteilung auf [0, 00), so gilt fir alle n > 1

d
My = 30 Lim=n D & L > Bemane) + Bs) (1.58)

tesS, ecky

sowie

EM, = (n—1) > E(lir,=n & Lies pasmete(e)) + Bevie(e(t)))})
tes, (1.59)

= (= DB Lies pergmane,) + Brbs(e)y)
mit £ ~ F und stochastisch unabhangig von (7},)neny und G.

Fiir das weitere Verstehen der Asymptotik von [EM,, werden wir im anschlieSen-
den Kapitel die Folgen B(T5™(¢,)) und B(T"8(e,)) genauer untersuchen miissen.
Vorweg sei erwahnt, dass unter den Voraussetzungen, dass F' stetig ist und einen
endlichen Erwartungswert besitzt, EM,, sich fiir n — oo wie n - v verhéalt, wobei die
Konstante v nur von F' abhéngt. In einigen Féllen konnen wir v explizit berechnen.



2. Charakterisierung der Grenzwerte
von B(Tomall) und B(T))

Wie in (1.9) seien die Zufallsbdume T,, so geschaffen, dass wir zunéchst gleichverteilt
einen Baum aus der n" !-elementigen Menge aller verwurzelten Baume mit n Knoten
wahlen. Anschlieend vergessen wir die Knotenmarkierung, d. h. wir sehen den Baum
als Element der in (1.3) definierten Menge S, an.

Des Weiteren erinnern wir an die Definition von M,, = M(T,,) aus (1.50). M,, gibt
das maximale Gewicht einer Paarung von 7}, an, wenn wir auf den Kanten von 7,
unabhéangige, nichtnegative und nach F' verteilte Gewichte G ansetzen.

Das Ziel des Kapitels ist es, die Asymptotik von [EM,, zu verstehen. Korollar 1.5.5
zeigt, dass wir dafiir die Folgen B(T5™l(e,,)) und B(T"*%(e,)) genauer untersuchen
miissen.

Die Verteilungslimiten von T5™#! und TP# kennen wir bereits aus Abschnitt 1.3,
Satz 1.3.4. Der erste Abschnitt dieses Kapitels gibt eine positive Antwort auf die Fra-
ge, ob mit B(T5ma) bzw. B(TP ®) auch B(T5™(e,)) bzw. B(T"%(e,)) in Verteilung
konvergieren.

2.1. tomall ys, tomall(e(t))

Das Ziel dieses technischen Abschnittes sind die Abschéitzungen (2.1) und (2.2).
Lemma 2.1.1 Fiir alle n € N und x € R gilt

P (BTN (en)) < x) = P (B(T3™) < z)| < (2.1)

SRS

und
P (B(TY5(en)) < ) — P (B(T®) < z)| < i (2.2)

Wir bestimmen zunéchst die Wahrscheinlichkeit, dass ein Knoten v von ¢ die Wur-
zel von "Ml (e(t)) bzw. t"8(e(t)) wird. e(t) sei wie vor Korollar 1.5.4 definiert als eine
von den Gewichten G unabhéangige und auf E; gleichverteilte Zufallsvariable.

Wir beachten, dass die gesuchten Wahrscheinlichkeiten

pall — Py ist die Wurzel von ™*(e(¢))) und
big _ P(v ist die Wurzel von e (e(t)))

(2

(2.3)



32 Kapitel 2. Charakterisierung der Grenzwerte von B(Ts™all) yund B(Ths)

iiberhaupt wohldefiniert sind, weil sie nicht von einer Reprasentantenwahl vom Baum
t € S, abhéngen. Zudem héngt (2.3) nicht davon ab, in welchem Knoten ¢ verwurzelt
ist. Wir gehen deshalb im Folgenden davon aus, dass t ein unverwurzelter, markierter
Baum mit Knotenmenge V; und Kantenmenge E; ist.

Wir betrachten nun die beiden Aussagen:

A Fiir t = (V;, E;) existiert genau ein u € V; mit u ¢ t*™(e) fiir alle e € E;.!

B Fiir t = (V;, ;) existiert genau ein e = {v,w} € F; mit [t5™(e)| = |tP8(e).

Lemma 2.1.2 Ist t = (V}, E;) ein unverwurzelter Baum mit n > 2 Knoten, so gilt:
(a) Ist n ungerade, so hat ¢ die Eigenschaft A.

(b) Ist n gerade, so hat ¢ entweder die Eigenschaft A oder die Eigenschaft B.

Beweis. Es ist klar, dass A und B sich ausschlielen, denn im Fall B ist ein Minzwurf
erforderlich, um ™! (¢) bzw. t"(e) festzulegen (vgl. Definition (1.43)).

Fiir den Beweis von (a) und (b) konstruieren wir fiir jeden unverwurzelten Baum
t = (V;, E;) einen Pfad vy — - -+ — vy in ¢, auf dem wir nach den Knoten u, v und w
suchen.

Sei vy ein Blatt von ¢ und t(v;) der Baum ¢, verwurzelt in v;. Als Blatt besitzt
v1 nur ein Kind vy. Induktiv fahren wir fort: Ist v1 — - -+ — v; definiert, so wahlen
wir einen Kinderknoten v;,; von v; derart, dass der Teilbaum, der an v;;; hangt,
maximale Grofie besitzt unter allen Kinderteilbdumen von v;, d. h.

vi1 € {v € Cy, ¢ |t°] = max{|t'| : j € C,,}}. (2.4)

Dies liefert einen Pfad v; — - -+ — v, in ¢, dessen Endknoten v, wiederum ein Blatt
ist. Entfernen wir fir i = 1,...,k — 1 die Kante zwischen v; und v;11, so zerlegt sich
t in zwei Baume, ¢; und #§ (vgl. dazu Abbildung 2.1).

(%1

Abbildung 2.1. Der Pfad v; — --- — v und die Zerlegung von ¢ in ¢; und ¢.

Wir wihlen nun ¢ € {1,...,k — 1} maximal, so dass

[t] < [¢] (2.5)

Lu ¢ t5mall(e) bedeutet, dass u nicht in der Knotenmenge von ¢! (e) vorkommt.
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gilt. Dieses i existiert, da ¢; nur aus dem Blatt vy besteht, d. h. [t;] =1 <n—1 = |t{|
gilt.

Herrscht in (2.5) Gleichheit, so befinden wir uns im Fall B mit v = v; und w = v;4.
Die Eindeutigkeit dieser Knoten ist — genauso wie die Tatsache, dass n aufgrund von
|t:| + [tS| = |t| = n gerade sein muss — unmittelbar klar.

Von nun an gelte also

il < [¢7], (2.6)

und wir weisen die Eigenschaft A mit © = v;;; nach. Sei dafiir e eine Kante von t.
Durch einige Fallunterscheidungen zeigen wir u ¢ t"mll(¢):

e Ist e eine Kante von t;, so folgt aus (2.6), dass t*™!(¢) ein Teilbaum von t;
ist. Fiir e = {v;,u} ist "™ (e) = ¢;, gemiB (2.6). In beiden Féllen gilt somit

u ¢ t5mall(e),

e Sei jetzt e eine Kante von &, oder e = {u,v;12}. Durch die Maximalitét von
iin (2.5) gilt
[tisa| > [E7 ]

Dies impliziert, dass ¢™!(e) ein Teilbaum von ¢5,, ist. Im Fall e = {u, v; 12}
ist t5mall(e) = 5, . Mit u ¢ t¢,, gilt auch u ¢ t5™a!(e).

e Es bleibt der Fall, dass e eine Kante von r;;; ist (vgl. Abbildung 2.1). Hier
sichert aber die Wahl des Knotens v;15 in (2.4), dass [t (e)] < [t¢,,] + 1 gilt.
Mithin ist u ¢ #=mall(e).

Zu zeigen ist nun noch die Eindeutigkeit von u in A. Ist x ein von u verschiedener
Knoten und e eine Kante des Pfades u — --- — x, so gilt nach Voraussetzung
u ¢ t™all(e), nach Wahl von e dann z € t™#(¢), d. h. = kann A nicht erfiillen. [

Je nachdem, ob ¢ die Eigenschaft A oder B besitzt, lassen sich jetzt die Wahr-
scheinlichkeiten (2.3) bestimmen. Dazu setzen wir fiir einen unverwurzelten Baum
t = (V4, E;) und ein = € V; die Menge der Nachbarn von z als

N(@) = {y e Vi: {x,y} € B}, (2.7)
Es gilt offenbar
§;|N($)|=2-!Et| =2-(n—1). (2.8)

Lemma 2.1.3 Hat ¢ die Eigenschaft A, so gilt

. N
pzmall =0 und p21g — | (ui’ (29)
n J—
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und fir x # u

m 1 e IN(@)] -1
pi all = n— 1 und p:g = ﬁ (210)
Hat ¢ die Eigenschaft B, so gilt fir x € {v,w}
, 1 1 . 1 1 |IN(z)|—1
small bi
_ L g o L 2.11
Pa 2 n—1 M P TorT n—1 (2.11)
und fir x ¢ {v,w}
1 . |IN(z)| -1
small bi
— ~ und phe= TR 2.12

Beweis. Die Gleichungen (2.9) sind aufgrund von u ¢ "™ (e(t)) klar. Fiir den Nach-
weis von (2.10) sei 7 # v und v; =z — - -+ — v, = u der Pfad von z nach w.
Ist e eine Kante von ¢, so gilt u ¢ t™2!(¢e) und damit

 ist die Wurzel von £(e) & e = {z,1},

sowie
 ist die Wurzel von t"8(e) < e = {x,y} fiir ein y # vo.

Dies zeigt (2.10).

t habe nun die Eigenschaft B. (2.11) ergibt sich aus der Randomisierung im Fall
e(t) = {v,w}. Fir (2.12) argumentieren wir genauso wie in (2.10), diesmal mit dem
Plad vy =2 — -+ — v, = 0. O

Um dhnliche Untersuchungen fiir ™! durchzufiihren, muss ¢ eine Wurzel besitzen,
da der Ausdruck ™! sonst gar nicht definiert ist. Sei v(t) eine von G unabhingige,
auf V, gleichverteilte Zufallsvariable. Wir betrachten ¢ von nun an als Zufallsbaum,
der in v(t) verwurzelt ist. Analog zu (2.3) definieren wir

¢ = P(x ist die Wurzel von ™) und

bie — P(x ist die Wurzel von t"#).

(2.13)

Wir erinnern an die Notation (1.29) aus Abschnitt 1.3:

m; = max{|t| : i € C'} und
Crax(t) = {t/ : j € C mit |t/| = my}.

Eine einfache Uberlegung zeigt, dass |Cax(t)] > 1 nur gelten kann, wenn ¢ die
Eigenschaft A besitzt und v(t) = u gilt. Daher setzen wir

M(u)={j € N(u) : t € Cpax(t)} (2.14)

fiir einen Baum ¢, der die Eigenschaft A besitzt und in u verwurzelt ist.
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Lemma 2.1.4 Fiir den in v(t) verwurzelten Zufallshaum ¢ gilt:
Hat t die Eigenschaft A, so ist

. 14+ |N
qzmall —0 und qzlg — M (215)
n
und fiir x # u
qsmall — l + l . ; 1 (l’) und qbig = M (2 16)
T M) MY ’ | |
Hat ¢ die Eigenschaft B, so gilt fir z € {v,w}
. N
;mall == und Elg — M (217)
n n
und fir x ¢ {v, w}
1 . N —1
qgscmall = und qglg — HL (218)
n n
Beweis. Beginnen wir mit Fall A.
Da u stets ein Knoten des Baumes "8 ist, gilt ¢5ma! = 0,

o Ist v(t) € N(u) U {u}, so ist u die Wurzel von t"®. Aufgrund der Gleichung

1+ [N(u)|

P(v(t) € N(u)U{u}) =

folgt (2.15).

e Im Fall v(t) = u ist die Wurzel von "™ ein Element aus M (u), welches gleich-

verteilt gewahlt wird. Dies erklart den Summanden n™" - [M (uw)|™" - L) (2) in
(2.16).

e Nehmen wir nun an, dass v(t) = = # wu gilt. In diesem Fall ist |Cpax(t)| = 1
und x die Wurzel von 2!, Bezeichnet u = v; — - -+ — v, = x den Pfad von u
nach x, so ist fiir v(t) € N(z) \ {vx_1} die Wurzel von t"® der Knoten z, denn
der Teilbaum ¢* enthalt u.

Alle Falle zusammen ergeben (2.16).
Es liege nun Fall B vor.

e Fiir v(t) € {v,w} muss ein Miinzwurf entscheiden, welcher Teilbaum 52! bzw.
P8 ist. Ist v(t) € N(v) \ {w}, so ist v stets die Wurzel von t"®. Eine analoge
Aussage lasst sich fiir w formulieren.
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e Fiir v(t) = z ¢ {v,w} ist x offenbar die Wurzel von "™ denn der Teilbaum
t/, j € C, der v und w enthélt, besitzt mindestens 5 + 1 Knoten.

o Ist z ¢ {v,w}, v =v; — -+ — v, = x der Pfad von v nach z und v(t) €
N(z)\ {vi_1}, so ist = die Wurzel von t"&, denn der Teilbaum ¢* enthélt v und

w.

Fassen wir alle Félle zusammen, so erhalten wir (2.17) und (2.18). O

Wir berechnen nun jeweils den Totalvariationsabstand zwischen den Verteilungen

psmall (pimall)xevt und qsmall (q;mall)xe‘/t
bzw.
P8 = (07%)eev, und "% = (¢;%)sev;-
Dieser ist durch
dv(psmall small Z | small srnall| bZW.
xev’f (2.19)
dv(pblg blg Z |pb1g 1g’
a:EVt

gegeben.

Korollar 2.1.5 Sei t = (V;, E;) ein unverwurzelter Baum mit n > 2 Knoten, der in
small small

v(t) verwurzelt ist. Fir die in (2.3) und (2.13) definierten Verteilungen p*™2", ¢"™*",
pP8 und ¢ gilt:

v e O
bzw.
n—1-|N(u)| ,
w0 - (s g 2
Insbesondere gilt stets
dy (pFmall, gmall) < 711 und  dy (P75, ¢"%) < 711 (2.22)
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Beweis. Betrachten wir zunéchst den Fall A. Unter Beachtung von (2.9), (2.10),
(2.15) und (2.16) folgt

small small
zeVy

— Z |pimall . q;mall

u#zzeVy

1 1 1 1 1 1
_me%m) (n— 1 n) fr%(u) (n M@ = 1)
gL e L M)
=(n—1—|M(u)|) n_(n_1)+|M( )| n (= 1) M)
1 M)

n-(n—1)
und

> pbE — gb
zeVy

- <1+ Nl |N<u>|> s <|N<x>| —1_ IN@)| - 1)

n n—1 uFtzeV, n—1 "
~n—1—|N(u)| IN(z)[ -1
T n-(n—1) +u¢xzevtn-(n—1)
:% n—1-2-|N@W)|—-n-1)+ 3 |N)
n-(n—1) z€V;
_ o = 1= |N(u)

n-(n—1) ~’

wobei im letzten Gleichheitszeichen (2.8) benutzt wurde.
Wir haben damit (2.20) und (2.21) fiir den Fall A bewiesen und widmen uns nun
dem Fall B. Hier liefern (2.11), (2.12), (2.17) und (2.18)

1 1 1 1 1
Z ’pimall_qascmaH’:Q. <_21>+ Z ( . _>
zeVy n n-— zeVi\{v,w} n-— n
n—2 n—2 n—2

n-(n—1)+n-(n—1) 2.n-(n—l)’

fur x € {v,w}

n 2 n—1 n—1
_n—2-|N()|
C2n-(n—1)

[phe — gb8| =

(e 11 W@l
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und fir x ¢ {v,w}
|pb1g big|: (lN(aj)‘_l_ ‘N(Z‘”—l)

n—1 n
IN@)I -1
n-(n—1)

Zusammen erhalten wir also

> I — g

 n—2NW) | n—2-|N(w) N(@)| 1
_2-n-(n—1)+2-n-(n—1) 2 n-(n—1)

zeVi\{v,w}
1
= ——— |n=2-INW)|=2-[Nw)| = (n=2)+ > [N(z)]
n-(n—1) ( xg‘;t
1 INW) -~ [Nw)]
n-(n—1) ’
wenn wir erneut (2.8) anwenden. Damit ergeben sich die restlichen Behauptungen.
O
Wir gehen nun unser eigentliches Anliegen (Lemma 2.1.1) an. In den bisherigen
Resultaten ist der Baum ¢ fixiert, und die Verteilungen von psmall, gsmall pbie ynd ¢bie

héngen nur von den auf F; bzw. V; gleichverteilten Variablen e(t) bzw. v(t) ab. Mit
Hilfe einer maximalen Kopplung (siehe Kapitel I, Theorem 5.2 in [13]) nehmen wir

daher ohne Einschrinkung
P(tsmall 7& tsmall(e(t))) — dv(psmall’ qsmall) und (2 23)
P £ 17%(e(t))) = dv (p”*®, ¢”®) '

an. Aus

P (BE™"(e(t) <x) - P(BE™") <)

IA

P(B(t™(e(t))) # B(t™))
P(tsmall 3Atsmall( (t)))
dy

( small

IN

small)

Y

und (2.22) folgt dann (2.1). Die analoge Ungleichung fiir den ,big“-Teil sichert (2.2).

2.2. Fixpunktgleichung fiir B(PGW(1))

Wir widmen uns in diesem Abschnitt der Folge (7TF™2!),cy. Diese konvergiert in
Verteilung gegen einen endlichen Zufallsbaum, womit Lemma 1.5.1 anwendbar wird.
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Lemma 2.2.1 Es gilt
BTy L B(T)

Y

mit 7' ~ PGW(1).

Beweis. Dies folgt direkt aus Satz 1.3.4 und Lemma 1.5.1, wenn wir P(T" € Sg,) = 1
beachten. O

Satz 2.2.2 Es sei (T});en eine Folge stochastisch unabhéngiger Zufallsbdume mit
F-verteilten Kantengewichten und 7; ~ PGW(1) fir alle © € N. Ist ein weiterer
Zufallsbaum 7'~ PGW(1) mit F-verteilten Kantengewichten gegeben, so gilt

B(T) £ max{0, & — B(T)) : 1 <i < N}, (2.24)

wobei N ~ Poi(1) und jedes & ~ F, derart, dass die Variablen (T;);en, (&)ien und
N stochastisch unabhangig sind.

Beweis. Der Satz 1.5.2 liefert zunéchst

B(T) £ Y Lyr—y - max{0, & = B(t) : i € C(1)}

tE€Shn

=max{0, & — B(T") :i € C(T)}.

Es gebe X die Anzahl der Kinder der Wurzel von T an. Gemaf Lemma 1.2.5 sind,
gegeben X = k, die Teilbaume {T° : 1 < i < k} bedingt stochastisch unabhéngig
voneinander und alle wie T verteilt.

Aufgrund von |C(T)| = X ~ N, &' ~ &, B(T?) ~ B(T;) und der Unabhéngigkeit
von G, X und (T"%);ey schlieen wir, wie in (2.24) behauptet,

max{0, & — B(T") :i € C(T)} £ max{0, & — B(T}) : 1 <i < N}. O

Verteilungsgleichheiten der Form

X 4 g((Xn)neNa (fn)neNa N)7

fiir eine Funktion g und unabhéngige X, X, ... mit X,, ~ X fiir alle n € N, nennen
wir stochastische Fizpunktgleichungen.
Wir haben in (2.24) gesehen, dass B(T') die stochastische Fixpunktgleichung

X L max{0, & — X, :1<i < N}

l6st. Eine sinnvolle Frage ist nun, ob die Losung auch eindeutig ist. Dies motiviert
die folgende Definition:

Seien F' und G zwei gegebene Verteilungen auf [0, 00). Ferner seien Zufallsgrofen
(Y)ien, (&i)ien und N derart gegeben, dass die Familie {Y;, &, N : i € N} stochastisch
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unabhéngig ist, & ~ F, Y; ~ G fir alle i € N und N ~ Poi(1) gilt. Wir definieren
Dp(G) als die Verteilung der Zufallsgrofie

max{0, § —Y;: 1 <i < N}, (2.25)

Wir beachten, dass auf dem Ereignis { N = 0} das Maximum als 0 gesetzt ist.

Theorem 2.2.3 Ist F' eine Verteilung auf [0,00) und 7' ~ PGW(1) mit F-ver-
teilten Kantengewichten, so ist die Verteilung von B(T) die eindeutige Losung der
stochastischen Fixpunktgleichung

Dr(G) =G. (2.26)

Beweis. Wir haben in Satz 2.2.2 eingesehen, dass B(T) die Fixpunktgleichung l6st.
Was zu zeigen bleibt, ist die Eindeutigkeit. Sei G eine Verteilung mit Dp(G) = G
und 7'~ PGW(1) mit F-verteilten Kantengewichten.

Fiir den Nachweis von B(T') ~ G bedienen wir uns der Konstruktion des Galton-
Watson-Baumes GW als Teilmenge des Ulam-Harris-Baumes V und geben uns zu-
néchst Familien von Zufallsgrofien

{X,:veV} und {&,, Y, :weV\{o}}
mit X, ~ Poi(1), &, ~ F und Y,, ~ G vor, so dass die Familie aller Variablen
{Xy, Yo, & :veVoweV\ {a}} (2.27)

stochastisch unabhéngig ist.
Erinnern wir uns, dass der Galton-Watson-Baum definiert ist als

GW = | J GW,

neN
mit GWy = {@} und
GW, ={vy...v, eN" 10,0, €GW,,yund 1 < v, < Xy, 0., }

fir n > 1 (siehe (1.16)).
Wir benutzen im Folgenden den Ausdruck B(GW), indem wir auf jeden Baum aus
T die Gewichte {{, : w € V\ {@}} ansetzen: Eine Kante zwischen dem Knoten v
und einem Kind w erhélt das Gewicht &,. Offenbar gilt B(T) ~ B(GW), wenn wir
B(GW) auf diese Weise definieren.
Wir setzen fir v = vy ...v, € V die Zufallsgrofie 7, als
Z, = max{0, &,y — Yo

VUn+1

1 <wv, <X}
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Aufgrund der Fixpunkteigenschaft (2.26) von G, X, ~ Poi(1) und den Unabhéngig-
keitsannahmen aus (2.27) folgt

Z, ~ G fir alle v € V. (2.28)
Andererseits gilt, gegeben v € GW,, mit X, = 0,
Z,=0=B(GW") P-f.s.

Alle Blatter v von GW erfiillen demnach Z, ~ B(GW"), bedingt darunter, dass
sie tatsachlich von GW realisiert werden. Unter Beachtung der Tatsache, dass der
betrachtete Galton-Watson-Baum gemafl Satz 1.2.6 P-f.s. ausstirbt, fahren wir in-
duktiv fort:

Gegeben, w € GW,,, und B(GW""“™*) ~ Z,,,,. ., fiir alle Nachkommen von w, gilt

B(GW™)

max{0, uww,,, — B(GWY ) 1 1 < wppr < X}

max{0, Luwwyir — Zwwmis @ 1 < Wi < X}
= Zw-

Il

Insbesondere konnen wir mit w = @ schlieflen, dass

B(T) £ B(GW) = B(GW?) £ 7,

gilt, womit wie gewiinscht B(T") ~ G aus (2.28) folgt. O

Bemerkung 2.2.4 (a) Der Beweis zeigt, dass die stochastische Fixpunktgleichung
Yimax{(),fi—Yi:lgigN}

fir jede andere Zufallsgrofie N auf Ny mit EN <1 und P(N = 1) < 1 eindeutig
16sbar ist. Wir beschrénken uns aber weiterhin auf den Fall N ~ Poi(1).

(b) Eine dhnliche Fixpunktgleichung erhalten wir, wenn wir das folgende Problem
betrachten: Eine Menge von Knoten W C V; eines Baumes t = (V;, E;, r) heifit
unabhdngig, falls je zwei Knoten aus W nicht durch eine Kante verbunden sind,
d.h. fiir alle v,w € W gilt {v,w} ¢ E;.

Wie beim Paarungsproblem auch, suchen wir nun fiir Zufallshaume mit zufal-
ligen Knotengewichten das maximale Gewicht einer unabhingigen Menge von
Knoten. Ist die Variable C'(T') fir einen endlichen Zufallsbaum 7" mit Wurzel
r und F-verteilten Knotengewichten durch

C(T) = maximale Gewicht einer unabhéngigen Menge von Knoten von T'

— maximale Gewicht einer unabhéngigen Menge von Knoten von 7"\ {r}
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definiert, so ist die Verteilung von C'(7") mit ' ~ PGW(1) die eindeutige Losung
der stochastischen Fixpunktgleichung

N
X £ max{0, £ = 3 X;}. (2.29)
=1

Hierbei sei wieder (X;);en eine unabhéngige Folge mit X; ~ X fiir alle i, £ ~ F
und N ~ Poi(1l) derart, dass die Variablen (X;);en, £ und N stochastisch
unabhéngig sind.

(2.29), und andere Fixpunktgleichungen, lassen sich in einem Ubersichtsartikel
von Aldous und Bandyopadhyay finden, siehe [3].

Bevor wir den Grenzwert von (B(T"#)),cy untersuchen, berechnen wir fiir ein
einfaches Beispiel die Losung der Gleichung (2.26).

Beispiel 2.2.5 Fir p € [0, 1] wéhlen wir ' = B(1,p), die Bernoulli-Verteilung mit
Erfolgsparameter p. In den Féllen p = 0 bzw. p = 1 sei B(1,p) die Dirac-Verteilung
in 0 bzw. 1.

Dann ist G = B(1,1 — ¢) mit

g=e® (2.30)
die eindeutige Losung der stochastischen Fixpunktgleichung Dr(G) = G.

Beweis. Sei T ~ PGW(1) mit B(1,p)-verteilten Kantengewichten, d.h. jede Kante
von T erhélt mit Wahrscheinlichkeit p das Gewicht 1 und mit Wahrscheinlichkeit
1 — p das Gewicht 0.

Die Differenz einer grofiten gewichteten Paarung und einer grofiten gewichteten
Paarung, die die Wurzel nicht enthalten darf, nimmt somit nur die Werte 0 und 1
an. B(T') gentigt also einer Bernoulli-Verteilung, dessen Erfolgsparameter 1 — ¢ es zu
finden gilt.

Wir wéahlen unabhéngige Zufallsgrofien N, Y, (Yi)ien, £ und (&;)iey mit N ~
Poi(1), Y ~G,Y; ~G, £ ~ Fund & ~ F. Dann gilt

q=PY =0)=Pmax{0,§ —-Y;: 1 <i< N} =0)
=P <Y fiurallel <i<N)

=> P <Yfiralel <i<n) -P(N=n)
n=0
131
— -5 S PE<Y)
SERTE

€ =

= Lep(P(E<Y))

= exp(—P({>Y))
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=exp(-P({=1Y =0))
— exp(—P(£ = 1)- P(Y = 0))
= exp(—pq),
was (2.30) zeigt. O

Bemerkung 2.2.6 Analog zur obigen Rechnung erhalten wir, dass fiir ein beliebiges
E~FY ~Gmit Dp(G) =G, fir alle k > 0 die Gleichung

P(Y <k)=exp(—P(>Y + k) (2.31)

gilt. Ist ' gedéchtnislos, so lasst sich (2.31) weiter vereinfachen. Im Abschnitt 2.5
werden wir dies fiir den Fall F' ~ Exp(\) unternehmen.

2.3. Der Grenzwert von B(T)#)

In diesem Abschnitt fiihren wir eine dhnliche Untersuchung fiir (B(T%)),en durch
und erinnern zunachst daran, dass wir in Satz 1.3.4 u. a. die Verteilungskonvergenz

bi d
e — Ty

eingesehen haben, wobei T, ~ PGW®>(1).

Wie in Lemma 2.2.1 wiirden wir nun gerne folgern, dass auch B(T>®) in Verteilung
konvergiert. Der Grenzwert kann, sofern existent, jedoch nicht B(T,,) sein, denn
dieser Ausdruck ist nicht wohldefiniert, da T, stets ein Baum mit unendlich vielen
Knoten ist. Eine grofite gewichtete Paarung wiirde demnach — unabhéangig davon, ob
sie die Wurzel enthalten darf oder nicht — ein unendliches Gewicht besitzen. Damit
wire B(T,) die Differenz zweier unendlicher Groen.

Nichtsdestotrotz werden wir sehen, dass B(T>#) einen Verteilungslimes besitzt, den
wir erneut als eindeutige Losung einer stochastischen Fixpunktgleichung beschreiben
konnen. Diese Gleichung leiten wir kurz heuristisch her, indem wir mit B(7,) weiter
rechnen — wohl wissend, dass es kein wohldefinierter Ausdruck ist.

2.3.1. Heuristische Herleitung

Erinnern wir uns an die Definition 1.2.15 von T, so zerlegt sich T, in die Badume
Tsmall ynd TR mit Wurzeln v und w. Es sei C* die Kindermenge von v im Baum
Tsmall (d.h. C® = C, \ {w}) und fiir i € C® sei T" der Teilbaum von T3 dessen
Wurzel ¢ ist.

Eine grofite gewichtete Paarung von T, die die Wurzel v nicht enthélt, wiirde
durch die Grofle M(Ty) — B(Tw) eingefangen, die wir auch als

M(Ty) — B(Tw) = M(T28) + > M(T") (2.32)

i€Cs



44 Kapitel 2. Charakterisierung der Grenzwerte von B(Ts™all) yund B(Ths)

schreiben konnen.

Fiir eine grofite gewichtete Paarung, die die Wurzel v enthalten muss, gibt es zwei
Falle zu betrachten: Im ersten Fall enthélt die Paarung einen Knoten j aus C®, womit
das Gewicht dieser Paarung auch als

&+ M(T?) — B(T?) + > M(T") + M(T2®),
icCs
i
oder kurzer

& — B(T7) + M(T2#) + > M(T", (2.33)
i€Cs
geschrieben werden kann. {; sei hierbei das Gewicht der Kante zwischen j und seiner
Mutter v.
Im zweiten Fall enthélt die Paarung die Kante {v, w}, womit sein Gewicht durch

Eo+ D M(T") + M(TZ¥) — B(TY¥) (2.34)
i€Cs

gegeben ist.
Die Maximierung der Groflen (2.32), (2.33) und (2.34) liefert eine alternative Dar-
stellung fir M (T ):

M(Tw) = M(T28) + >~ M(T") 4+ max{0, max{¢; — B(T?) : j € C°}, &, — B(T2#)}.
icCs
Durch das Umstellen nach B(T,,) in (2.32) erhalten wir dann
B(Ty) = max{0, max{¢&; — B(TY) : j € C*}, &, — B(T2#)}. (2.35)
Da chomau ~ PGW(1), gilt nach Theorem 2.2.3
B(Tsomau) ~ max{{; — B(Tj) 1 j € C°}

TP ~ PGW>(1) impliziert B(T28) ~ B(Ty,), und schliesslich vereinfacht sich (2.35)
zu

B(Ty) ~ max{B(T:™M), ¢ — B(Ty)}, (2.36)

wobei abkiirzend £ = &, gesetzt ist.

Im Folgenden geht es darum, die soeben erhaltene Fixpunktgleichung (2.36) zu
studieren. Im Gegensatz zur Fixpunktgleichung Dp(G) = G ist nun keineswegs klar,
ob es eine Losung gibt, denn wir erinnern noch einmal daran, dass B(Ty,) kein wohl-
definierter Ausdruck ist und demnach auch keine Losung von (2.36) sein kann.

Es wird sich jedoch zeigen, dass fiir gegebene F' ~ ¢ und G mit Dp(G) = G ~
B(Tzmal) die Fixpunktgleichung (2.36) eindeutig 16sbar und ihre Losung der Vertei-
lungslimes von B(TP#) ist.
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2.3.2. Die Fixpunktgleichung

Die heuristische Uberlegung aus Abschnitt 2.3.1 gibt Anlass zu einer Definition. Sei
F eine Verteilung auf [0,00) und G die eindeutige Losung der Fixpunktgleichung
Dp(G) = G aus Theorem 2.2.3. Gegeben eine Verteilung H und stochastisch unab-
héangige ZufallsgroBen Z, Y und & mit

Z~HY~Gund &~ F,
sei Dp(H) die Verteilung der Zufallsgrofe
max{Y, £ — Z}. (2.37)

Theorem 2.3.1 Fiir eine Verteilung F' auf [0, co) besitzt die stochastische Fixpunkt-
gleichung

Dp(H)=H (2.38)
genau eine Losung H. Ferner gilt im Fall, dass F' kein Dirac-Ma8 ist, die Konvergenz
B(TY®) -4 H (2.39)

Der Beweis erfordert einigen Aufwand. Wir beginnen damit, die Existenz von H zu
zeigen und greifen auf die Theorie der Markov-Ketten zuriick. Fiir eine ausfithrlichere
Diskussion der folgenden Resultate verweisen wir auf [15].

Fiir festes F', G und unabhéngige Zufallsgroflen £ ~ F' und Y ~ G betrachten wir
den stochastischen Kern K : [0,00) x B([0,00)) — [0, 1] mit

K(z,A) = P(max{Y, { — z} € A), (2.40)

der den Ubergangskern fiir eine zeitlich diskrete und zeitlich homogene Markov-Kette
mit Zustandsraum [0, co) auf folgende Weise definiert:

Definition 2.3.2 Gegeben sei ein stochastischer Kern K : [0,00) x B([0,00)) —
[0, 1] und eine Verteilung A auf [0, o). Ein stochastischer Prozess M = (M,,),en, mit

Werten in [0,00) heiit zeitlich homogene Markov-Kette mit Ubergangskern K und
Anfangsverteilung A, falls P(My € -) = A und

pMritlMe — )C(M,, -) P
fiir alle n € Ny erfiillt ist.

Wir interessieren uns nur fiir den Ubergangskern K aus (2.40). Dessen ungeachtet
formulieren wir die nachsten Definitionen und Lemmas allgemein. Alleinig beim Exis-
tenzbeweis einer invarianten Verteilung werden wir nur kurz auf die entsprechende
Verallgemeinerung eingehen. Aufierdem halten wir den Zustandsraum [0, co) fixiert,
auch wenn dies nicht notwendig ist, da wir ihn durch einen beliebigen metrischen
Raum ersetzen konnten.
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Definition 2.3.3 Fiir n € Ny definieren wir induktiv den n-Schritt Ubergangskern
K™ durch K%z, A) = §,(A) = 14(x) und
K"(z, A) = / K™Yy, A) K (z, dy) (2.41)

[0, 00)
fiir alle x € [0,00) und A € B([0,00)). Insbesondere gilt K' = K.
K™(z,A) gibt die Wahrscheinlichkeit an, dass eine Markov-Kette M mit Uber-

gangskern K nach n Schritten in der Menge A landet, wenn sie in M, = x gestartet
ist.

Definition 2.3.4 Ein o-endliches Mafl m # 0 auf [0, c0) heifit invariant fir K, falls
7(A) = / K(z, A) n(dz) (2.42)

[0, 00)
fir alle A € 9B([0,00)) gilt. Ist 7 zudem ein Wahrscheinlichkeitsma8, so heifit 7 auch

invariante Verteilung fiir K.

Ist 7 eine invariante Verteilung fir K aus (2.40) und Z eine von Y und £ unab-
héngige ZufallsgroBe mit Verteilung 7, so gilt geméaf (2.42)

Pize )= [ K(-)P(d)
0,)
= / P(max{Y, £ — 2z} € -) P?(dz)
0,)

= P(max{Y, £ —Z} € -).

Mit anderen Worten: 7 ist eine Losung der Fixpunktgleichung (2.38).
Eine hilfreiche Eigenschaft fiir die Suche nach einer invarianten Verteilung ist die
Feller-Eigenschaft eines Ubergangskernes.

Definition 2.3.5 K besitzt die Feller-Figenschaft, falls fir jede Folge (x,)nen in
[0, 00) mit lim z, = die schwache Konvergenz

K@) - K (2.43)
gilt.

Wir weisen (2.43) fiir den Kern K aus (2.40) nach. Geben wir uns eine gegen z
konvergente Folge (z,,)neny und einen Stetigkeitspunkt & > 0 der Verteilung K (z,-)
vor, so ist k auch ein Stetigkeitspunkt der Verteilung P({ — z € -), denn aus der
Definition von K und der Unabhéngigkeit von ¥ und ¢ folgt zunachst

P(Y <k)-P(6—x<k)=K([0,k]) "2 K(z,[0,k)) = P(Y < k) - P(€ —x < k),
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also
PY<k)-P—xz<k)<PY<k) -P—z<k).

Mit Bemerkung 2.2.6 erhalten wir P(Y < k) > 0 und folglich

Pl —x<k)=PE—-x<k),

d. h. die Stetigkeit der Verteilung P({ — x € -) in k. Dies impliziert

K(x,, (00, k]) = P(max{Y, { —x,} < k)
=PY <k)-P—x,<k)
X P(Y <k)-P(E—x<k)=K(z,(c0,k]).

Der fiir uns interessante Kern K besitzt in der Tat die Feller-Eigenschaft. Einen
ersten Anhaltspunkt fiir den Nutzen dieser Eigenschaft gibt das néchste Lemma,
welches fiir allgemeine Ubergangskerne K formuliert ist.

Lemma 2.3.6 Es seien p, (i, )nen endliche MaBle auf [0, 00) mit j,, — pu.
(a) Ist h:[0,00) — [0,00) mit der Eigenschaft

liminf A(x) > h(y) (2.44)

r—y

fiir alle y > 0, so ist h messbar und es gilt

n—oo

[0, 00

lim inf / hdu, > /hd,u. (2.45)
) [0, 00)

(b) Besitzt der Kern K die Feller-Eigenschaft, so gilt

[ K dmay) [ Ky, ) ptay). (2.46)

[0, 00) [0, 00)

Beweis. Der Prototyp einer Funktion h mit der Eigenschaft (2.44) ist h = 1 4 fiir eine
offene Menge A. Ist h von dieser Gestalt, so gilt [jy .y b du, = tn(A) und aufgrund
des Portmanteau-Theorems (Theorem 1.1.17) auch (2.45).

Im allgemeinen Fall zeigen wir zunéchst, dass die Mengen {h > y}, y > 0, offen
sind. Ist (x,,)nen eine Folge in {h < y} mit x,, — z, so folgt aus (2.44) und h(z,) <y
fir alle n

h(z) < liminf h(z,) <y,

und somit z € {h <y}, d.h. {h <y} ist abgeschlossen fiir jedes y > 0. h ist folglich
messbar.
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Da h nichtnegativ ist, gilt (siehe Kapitel III, Korollar A.2. in [6])

/hwaﬁM%>W@~

[0, o0)

Eine Anwendung von Fatous Lemma liefert

lim inf / hdp, = li%ri)golf/,un({h >y})dy > /ligrlglfpn({h >y})dy.  (2.47)

n—oo

[0, 00) 0 0

Teil (c¢) des Portmanteau-Theorems 1.1.17, angewandt auf die offene Menge {h > y},
zeigt
lim inf i, ({h > y}) = p({h > y}).
Zusammen mit (2.47) folgt nun (2.45).
Teil (b) des Lemmas ist eine Anwendung des ersten Teils auf die Funktion h =
K(-,A), fiur eine offene Menge A C [0,00). Aufgrund der Feller-Eigenschaft (2.43)

von K und des Portmanteau-Theorems erfillt h die Voraussetzung (2.44) und wir
erhalten

liminf [ K(y, A) pn(dy) > / K(y, A) p(dy)

n—oo

[0, 00) [0, 00)

fiur alle offenen A, welches wiederum mit Portmanteau (2.46) beweist, wenn wir
zusétzlich

| K(w.10,50)) pu(dy) = n([0,50) = p((0,00)) = [ K(y,[0,00)) u(dy)

[0, 00) [0, 00)
beachten. O

Finden wir also Verteilungen g, (ftn )neny mit i, — g und
/ K(y, ) paldy) — p, (2.48)
[0,00)
so ist nach Teil (b) des Lemmas p eine invariante Verteilung fir K.

Definition 2.3.7 Die Okkupationsmafle (fin(x, - ))nen, fiir € [0, 00), seien gegeben
durch

1 n—1

pn(z, - ) = - ;) Ki(x, ). (2.49)
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Da jedes K'(z, -) gemafl (2.41) eine Verteilung ist, ist auch jedes p,(z, -) eine
Verteilung.

Konvergiert (p,(x, - ))nen schwach gegen ein p, so ist (2.48) automatisch erfiillt,
wie das néchste Lemma zeigt. Ein derartiger Limes p ist also stets invariant fur K,
vorausgesetzt K erfillt (2.43).

Lemma 2.3.8 Besitzt K die Feller-Eigenschaft und existiert ein z > 0, fir dass
die Folge der Okkupationsmafie (p,(z, - ))nen eine schwach konvergente Teilfolge
(ftn, (T, - ))ken mit Limes 7, besitzt, so ist m, eine invariante Verteilung fiir K.

Beweis. Einerseits gilt

Andererseits erhalten wir mit Lemma 2.3.6 (b) die Verteilungskonvergenz

| K@ dmedy) S [ K, ) m(dy),

[0, 00) [0, 00)

womit wir aus der Eindeutigkeit des Limes

= [ K ) m(dy)
[0, 00)

schlieen. D. h. 7, ist eine invariante Verteilung fiir K. O]

Existenzbeweis von H in Theorem 2.53.1. Im Anschluss an Definition (2.43) haben
wir eingesehen, dass der Kern K(z, A) = P(max{Y, £ — 2z} € A) die Feller-Eigen-
schaft (2.43) besitzt. Wir verifizieren nun, dass die Voraussetzung von Lemma 2.3.8
an (fn(z, - ))nen fur ein x > 0 erfiillt ist. Es ist unerheblich, welches x wir dabei
wihlen — der Einfachheit halber sei x = 0 und abkurzend p,, = 11,,(0, - ) gesetzt.

Als Folge von WahrscheinlichkeitsmaBen besitzt (g, )nen nach dem Satz von Helly-
Bray genau dann eine schwach konvergente Teilfolge, wenn (i, )nen straff ist (vgl.
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Satz 44.4 in [6]), d.h. wir haben zu zeigen, dass fiir beliebiges € > 0 eine kompakte
Menge K C [0, 00) mit

sup i, (K°) < € (2.50)

neN

existiert (vgl. Definition 43.3 in [6]).
Fiir alle £ > 0 und z > 0 gilt aufgrund der Ungleichung & — z < &

K(0,[0,k]) = P(max{Y, £} < k) < P(max{Y, £ — z} < k) = K(z,[0, k]).

Mit anderen Worten: K (0, -) wird von jedem K(z, -), z > 0, dominiert. Induktiv
folgt daraus

K(0,10,k)) < K" (2,0, ) (2.51)
fir alle n € N, £ > 0 und z > 0, denn der Induktionsschritt ergibt sich aus der
Definition (2.41) und aus

K"(z,]0,k]) = /K”_l(y, [0,k]) K(z,dy) > K(0,]0, k]).
—_———
>K(0,[0,k])

Ist € > 0 gegeben, so kénnen wir ein k& > 0 mit K (0, [0, k]°) < € finden, denn eine
einzelne Verteilung auf R ist stets straff. Mit I = [0, k] und (2.51) folgt

sup{ K" (z,K°) : 2 >0, n € N} <¢,

d.h. die Familie {K"(z, ) : 2 > 0, n € N} ist straff.
Die Straffheit der Folge (p,)nen ergibt sich dann vermoge

1n—1 ]
R () = — K*(0,K% <
() = B 0K <
fir alle n € N. O

Die Existenz einer invarianten Verteilung fiir ein beliebiges K lasst sich verallge-
meinern, wenn wir die entscheidende Ungleichung (2.51) anpassen: Ist ein Ubergangs-
kern K mit Feller-Eigenschaft gegeben, und existieren ein zy aus dem Zustandsraum
sowie eine aufsteigende Folge kompakter Mengen (KC,,),en, die gegen den gesamten
Zustandsraum konvergiert und

K(zo,K,) < K(z,K,)

fiir alle n € N und alle z aus dem Zustandsraum erfiillt, so besitzt K eine invariante
Verteilung.

Die Eindeutigkeit der invarianten Verteilung koénnten wir ebenfalls mit der all-
gemeinen Theorie verifizieren. Wir verwenden jedoch ein Kopplungsargument, das
spéter niitzlich sein wird, um die Verteilungskonvergenz B(T>®) — H nachzuweisen.

Fir das néchste Lemma sei F' wie tiblich die Kantengewichtsverteilung und G die
eindeutige Losung der Fixpunktgleichung Dp(G) = G aus Theorem 2.2.3.
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Lemma 2.3.9 Sei F' kein Dirac-Mafl. Gegeben stochastisch unabhéngige Zufallsgro-
Ben £ und Y mit £ ~ F und Y ~ G, gilt dann

PE=Y) <1 (2.52)

Beweis. Ist T ein von ¢ unabhingiger PGW(1)-Baum mit F-verteilten Kantenge-
wichten, so konnen wir Y = B(T') annehmen. Sei ¢y der einzige Baum aus Ss, also
der Baum mit zwei Knoten und einer Kante. Sei ¢’ die Gewichtsfunktion dieser Kan-
te, die als unabhéingig von & angenommen wird. Dann gilt offenbar P(T = ty) = e 2
und B(ty) = £, womit wir die Ungleichung

PE<B(T)=PE<B(IT),T=t)=PE<T=t)=PE<¢) P(I'=1)

erhalten. Da £ und & stochastisch unabhéangig und nicht P-f.s. konstant sind, gilt
P <) > 0. Es folgt

PE>B(T)=1-PE<BIT)<1-P(T=t)=1—e?<1. O

Beweis der Eindeutigkeit von H. Der Fall F' = ¢, fiir ein ¢ > 0 ist separat zu betrach-
ten. Die Falle ¢ = 0 und ¢ = 1 behandeln wir in Beispiel 2.3.10. Fiir ein beliebiges
¢ > 0 beachten wir, dass sich beide Fixpunktgleichungen unproblematisch unter ska-
larer Multiplikation verhalten: Haben wir die Losungen Y und Z fiir den Fall ¢ =1
bestimmt, so ergeben sich die Losungen fiir ein allgemeines ¢ durch ¢Y und ¢Z (siehe
dazu auch Lemma 2.5.1).

Wir nehmen nun an, dass die Verteilung F' nicht auf einen Punkt konzentriert ist,
womit Lemma 2.3.9 anwendbar wird. Sei eine Familie von unabhangigen Zufallsgro-
Ben

{&, Y, :n e N}

mit £, ~ F und Y, ~ G fir alle n gegeben. Fiir jedes z > 0 definieren wir eine
Markov-Kette M (z) = (M, (2))nen, durch My(z) = z und

M, (z) = max{&, — M,,—1(2), Yo}, (2.53)

d.h. M(z) startet in z und der Ubergangskern ist gemifl K aus (2.40) gegeben.
Fir z, 2’ > 0 gilt dann offenbar

Mn(z) = Mp(2') = Mpia(2) < Mo (2) = Maga(2) 2 Maga(2),
womit aus My(z) > M;(0)
Moy (2) > Moy (0) (2.54)
fiir alle z > 0 und alle k € Ny folgt. Durch

T = 1nf{2k +1: M2k+1 (0) = }/2k+1} (255)
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wird eine Stoppzeit definiert, von der wir zeigen, dass sie fast sicher endlich ist.
Zunachst bemerken wir, dass 7 nur ungerade Werte annimmt und aufgrund von
(2.54)

M;_1(2) > M;_1(0)

fiir alle z gilt. Folglich erhalten wir
M, (0) = Y, > & — M, 1(0) > & — M, (2)
und somit M, (z) =Y, fiir alle z. Die Stoppzeit 7 erfiillt demnach
M. kx(2) = M;41(0) fir alle z > 0 und alle k£ € Ny. (2.56)
Da P(&, > Y,,) nicht von n abhingt, setzen wir p = P(§, > Y,,). Aus
{r >2k+1} C{&1 > Yoy furallei =0,... k—1}

folgt P(1 > 2k + 1) < pF fiir alle k& € Ny, und 7 ist fast sicher endlich, da nach
Lemma 2.3.9 p < 1 ist.

Ist X eine Zufallsgrofie auf [0, 00), so ist 7 geméaf (2.56) eine Kopplungszeit fiir
(M, (X))nen, und (M, (0))pen,- Aufgrund der Kopplungsungleichung (siche [5], Ka-
pitel II, Abschnitt 11) gilt

suI() | |P(M,(X) € A) — P(M,(0) € A)| < P(1 >n) < p (2.57)
AeB(R

fir alle n > 2k + 1, d. h. der Totalvariationsabstand zwischen P(M,(X) € -) und
P(M,(0) € -) konvergiert fiir n — oo gegen 0.

Ist H eine Losung der Fixpunktgleichung (2.38) und Z eine von {¢,,, Y,, : n € N}
unabhéangige Zufallsgrofe mit Z ~ H, so gilt M, (Z) ~ H fur alle n € Ny.

(2.57) impliziert dann P(M,(0) € -) — H in Totalvariation. Insbesondere ist H
eindeutig, da der Totalvariationslimes dies ist. O]

Um den Eindeutigkeitsbeweis abzuschliefen, fehlt noch der Nachweis im Fall F' =
.. Wir greifen das Beispiel 2.2.5 auf und berechnen die Lésung von (2.38) per Hand.

Beispiel 2.3.10 Sei p € [0,1], F = B(1,p) und G = B(1,1 — ¢q) mit
q=e",

die eindeutige Losung der Fixpunktgleichung Dp(G) = G. Dann ist H = B(1,1 —r)
mit

r= qp‘i : (2.58)

die eindeutige Losung der Fixpunktgleichung EF(H )=H.
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Bewets. Beginnen wir mit der Eindeutigkeit von H. Seien dazu &, Y und Z stochas-
tisch unabhéngige Zufallsgrofien mit den Verteilungen F', G und H.
Aus Z ~max{Y, £ —Z}, P(Y >0) =1 und P({ <1) =1 folgt

PO<Z<1) =1
Da die Variablen stochastisch unabhéngig sind, erhalten wir

P(Z=0)=P(Y =0)-P(<2)
=PY =0)-(P(=0)+PE=1)-P(Z=1)) (2.59)
=q-(1=p)+p-P(Z=1)).

Die Wahrscheinlichkeit P(Z = 1) hingegen berechnet sich zu

P(Z=1)=P(Y=1)+PY =0)-P(—-Z=1)
P(Y =1)+P(Y =0)- P(¢=1)- P(Z = 0) (2.60)
(1

—q)+q-p-P(Z=0).

Addieren wir die Gleichungen (2.59) und (2.60), erhalten wir P(Z = 0)+P(Z =1) =
1, also ist Z tatséchlich B(1,1 — r)-verteilt. Stellen wir eine der beiden Gleichungen
nach r = P(Z = 0) um, so folgt auch die Eindeutigkeit von H, die sich durch (2.58)
ausdriickt.

Ist umgekehrt H = B(1,1 — r) mit r = 1 gegeben, so sehen wir wie in (2.59)
und (2.60), dass

P(Z=k)=Pmax{Y,{—Z} =k)
fiir k € {0,1} gilt, d.h. H 16st die Fixpunktgleichung Dy(H) = H. O

Um den Beweis von Theorem 2.3.1 zu vollenden, fehlt noch der Nachweis der
Verteilungskonvergenz von B(T8) gegen H, im Fall, dass F kein Dirac-Ma8 ist.

Lemma 2.3.11 Sei I’ wie tiblich eine Verteilung auf [0, 00) und G bzw. H seien die
eindeutigen Losungen der Fixpunktgleichungen Dp(G) = G bzw. Dp(H) = H. Es
sei k € N fixiert und

(a) {Y: =2k +2 <m <0} fir jedes n € N eine Familie von Zufallsgrofien, die
(Yoppor - Yy) -5 G®---0G (2.61)
2k—1 mal
fiir n — oo erfiillt,
(b) {X : —2k+1<m <0} durch
X, = max{¢,, — X,

m—1

Yy (2.62)

definiert, wobei X™,, ; eine beliebige nichtnegative Zufallsgrofie sei und
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(c) {&" : —2k+2 < m < 0} eine Familie unabhéngiger ZufallsgroBen mit Verteilung
F sei, die zudem unabhéangig von X"y, und {Y," : =2k +2 < m < 0} sei.

Dann gilt fir alle x € R

limsup |P(X{ < x) — H(z)| < p*, (2.63)

n—oo

wobei p sich aus

o= |/ | F(d) G(dy)

[0,00) (y, 00

ergibt. Zudem impliziert Lemma 2.3.9 p < 1, falls F' keine Dirac-Verteilung ist.

Beweis. Wir iibernehmen die Notation aus dem Eindeutigkeitsbeweis von H: Seien
M(z) = (M;i(2))ien, und 7 wie in (2.53) bzw. (2.55) gegeben, d.h. My(z) = z,
M;(z) = max{§; — M;_1(2), Y;} und 7 = inf{2i + 1 : My;1(0) = Y341} fur eine
unabhangige Familie {&;, Y; : ¢ € N}, die auch unabhéngig von (X", . )nen ist,
&~ Fund Y; ~ G fir alle ¢ € N erfiillt.

Ferner sei Z eine von {¢;, Y; : ¢ € N} unabhéngige Zufallsgrofie mit Verteilung H.
7 ist gemaf (2.56) eine Kopplungszeit fiir (M;(X" o, 1))ien, und (M;(Z2))ien,, d. h. es
gilt

My i(X 9 ) = M-14(Z) fir alle i € Ny.

Aus M;(Z) ~ Z fir alle i > 0 erhalten wir mittels der Kopplungsungleichung
|P(Map 1 (X 1) <3) = P(Z <) <P(r>2k—1)=P(r >2k+1) < p*

fir alle z € R und n € N.
Fiir (2.63) geniigt es demnach

lim |P(X < 2) = P(Myy(Xy) < )] = 0 (2.64)

n—oo

zu zeigen, d.h. X' verhélt sich fir n — oo wie die Markov-Kette M, wenn diese in
X"y, gestartet und 2k — 1 Schritte gelaufen ist.
Doch X§ haben wir durch (2.62) genau so konstruiert. Es gilt iiberdies

lim [P(X? < 2) — P(Mag_1sm(X"501y) < 2)| = 0 (2.65)

n—oo

fir alle =2k +1 < m < 0. Der Fall m = —2k + 1 in (2.65) ergibt sich offenkundig
aus MO(XE%H) = X441
Die Voraussetzung (2.61) impliziert

(Vg oY) =5 (Vi Yae).
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Fir —2k+2 <m < 0sind X _, und £ nach Annahme (c) stochastisch unabhangig.
Zusammen mit (§%o540,.-.,&5) ~ (&1, ..., &ok—1) fiir alle n € N sehen wir

|P(X), < @)= P(Map—1-m (X g 4,) < )
= [P(max{§;, — X}, ,, Y1} <)
— P(max{{_or_1-m — M2k727m(Xﬁgk+1)7 Y oop—1-m}) < )

== 0.

Insbesondere ergibt sich mit m = 0 die Behauptung (2.64). O

Mit dieser Vorbereitung beweisen wir nun die Behauptung (2.39) aus Theorem
2.3.1.

Beweis fiir B(TY8) % H. Sei Ty, ~ PGW>(1) mit F-verteilten Kantengewichten.
Wir nehmen ohne Einschrinkung T?¢ — T, P-f.s. an, unter Beachtung des Theo-
rems 1.1.21 und Satz 1.3.4.

Fir £ € N und P-fast alle w € Q finden wir nun ein N(k,w) € N, so dass fur alle
n > N(k,w) ein Pfad 7 = m(w,n) aus 2k Knoten des Baumes T (w) existiert, der
den folgenden beiden Eigenschaften gentigt:

(a) Der erste Knoten in 7 ist die Wurzel von T®(w).

(b) Schreiben wir 7 als vj — o} — -+ — o,._,, dann fithrt die Entfernung der
Kanten {v}",v]',}, i = 0,...,2k — 2, zu Teilbdumen T (w),..., T3, ;(w) von
T8 (w) mit Wurzeln v und es gilt die Verteilungskonvergenz

(13, .. T3,) - (T, .. T5).

wobei (T7°)p<i<or—2 eine unabhéngige Familie von F-gewichteten PGW (1)-Béu-
men sei.

Abbildung 2.2. Die Baume T3, ..., T3, ;.

Die Existenz eines derartigen Pfades liefert das sukzessive Anwenden von Satz
1.3.4: Wir setzen v} als Wurzel von (T®)Pe sofern diese Wurzel von v verschieden
ist, d.h. n grof genug ist. v} setzen wir als Wurzel von ((TP#)P#)be gofern n wieder
grofl genug ist usw.
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Da wir diesen Schritt nur endlich oft durchfithren, erhalten wir auch ein endliches
N(k,w) mit den gewiinschten Eigenschaften.
Fiir 0 <4 <2k — 1 sei nun R? der Teilbaum von T8, der an v? hingt, d. h.

Ry = (TP).

Wir beachten, dass Ry = T gilt. Ist nun £ das Gewicht der Kante {v, v7,,}, so
gilt

B(R}) = max{¢' — B(R},,), B(T}")} (2.66)

fur alle 0 <7 <2k — 2.

Die Gleichung (2.66) erhalten wir durch die in Abschnitt 2.3.1 gegebenen Argu-
mente mit v = v’ und w = vy ;. Wir beachten dabei, dass die auftretenden Baume
endlich sind und deshalb mit keiner nicht definierten Grofie gerechnet wird.

Eine Anwendung von Lemma 2.3.11 auf m = —i, also Y,» = B(T",,) und X =
B(R",) fiir alle =2k + 2 < m < 0, liefert zusammen mit R} = T

limsup |P(B(T"®) < x) — H(z)| < p

n—oo

fir alle . Weil k beliebig ist, folgt die Behauptung (2.39). ]

2.4. Asymptotik von EM,,

Den Abschluss des ersten Kapitels bildet Korollar 1.5.5, welches eine niitzliche Re-
kursionsgleichung fiir EM,, bereitstellt und die Vermutung nahelegt, dass EM,, sich
fiir n — oo wie n - verhalt. Wir halten jetzt das Hauptresultat der beiden Kapitel
fest:

Gegeben eine stetige Verteilung F' auf [0, 00) mit endlichem Erwartungswert, seien
G und H die eindeutigen Lésungen der stochastischen Fixpunktgleichungen Dy (G) =
G und Dp(H) = H aus den Theoremen 2.2.3 und 2.3.1.

Ferner seien £, Y und Z stochastisch unabhéngige Zufallsgroflen mit den Vertei-
lungen F'; G und H. £ sei zudem unabhéngig von den Gewichten G aus (1.49) und
der Folge (T),)nen aus (1.9).

Theorem 2.4.1 Fir M, = M(T,) gilt

.1
lim — EMn == E(g : 1{£>Y+Z}>- (267)

n—oon,

Beweis. Wir lassen die Ergebnisse der beiden Kapitel Revue passieren. In Korollar
1.5.5 wird festgehalten, dass

EMy = (n—1) €  Lies pergmone,)) + Bres(e.) (2.68)
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gilt. Auf die gleiche Weise, wie wir in Satz 1.3.4
(T, T L (T, )
gezeigt haben, folgern wir aus den beiden Fixpunkttheoremen 2.2.3 und 2.3.1
(BT, BLY) 5 (Y. 2).
Satz 1.1.22 liefert dann
B(T™) + B(TY®) -4 v 427,
und zusammen mit Lemma 2.1.1 folgt
B(T™(e,)) + B(T”(¢e,)) - Y +Z. (2.69)
Nach Voraussetzung ist E¢ < oo und somit bildet

(5 . ]l{£> B(Tsmall(e,)) +B(T};ig(en))})n€N (270)

eine gleichgradig integrierbare Folge. Unter Beachtung der Unabhéangigkeit von &, G
und (7,)nen folgt mit (2.69)

d
£- 1{§>B(Tgmaﬂ(en))+B(T£ig(en))} — & 1{€>Y+Z}~

Letztlich schlieflen wir aus dieser Verteilungskonvergenz und der gleichgradigen In-
tegrierbarkeit von (2.70) auch

M B(E - L pirgenen)+ Batseny) = EE Le>vizy). (2.71)

Fiir den letzten Schluss siehe Satz 50.5 in [6]. Das Einsetzen von (2.68) in (2.71) zeigt
(2.67). O

Wir schliefen den Abschnitt mit der Berechnung im Fall F' = B(1, p) ab, auch wenn
dies keine stetige Verteilung ist. Die Fixpunktlosungen haben wir in den Beispielen
2.2.5 und 2.3.10 bestimmt: G = B(1,1 —¢) und H = B(1,1 — r) mit

q
qp + 1

g=e® und r=

sind die eindeutigen Losungen der Fixpunktgleichungen Dp(G) = G und Dy (H) =
H. Sind &, Y und Z unabhéangige Zufallsgrolen mit den Verteilungen F', G und H,
so gilt aufgrund von {{ > Y+ 7} ={{ =1,Y =0, Z = 0} offenbar

E( liesyyzy) =p-q 7
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2.5. Exponentialverteilte Gewichte

Wir untersuchen in diesem Abschnitt den Fall F' = Exp()\). Lemma 2.5.1 gestattet
es uns, dabei nur den Fall A = 1 betrachten zu miissen.

Fiir eine Verteilung R auf [0, c0) und ¢ > 0 sei die Verteilung R. auf [0, 00) gegeben
durch die Verteilungsfunktion

R.(z) = R(xc™).

In Termen von Zufallsgrofien ausgedriickt ist R, die Verteilung von ¢X, wenn X eine
Zufallsgrofle mit Verteilung R ist.

Lemma 2.5.1 Gegeben ¢ > 0 und eine Verteilung I auf [0, 00), seien G und H die
eindeutigen Losungen der Fixpunktgleichungen Dp(G) = G und Dp(H) = H. Dann
sind G. und H, die eindeutigen Lésungen der Fixpunktgleichungen Dp,(G.) = G.
und Dy (H.) = H..

Beweis. Dies folgt direkt aus der Beobachtung ¢ - max{x,y} = max{cz, cy} fir alle
c>0,2>0,y>0. O

Satz 2.5.2 Ist A > 0 und F' = Ewp()), so sind die Verteilungsfunktionen der Fix-
punktlosungen Dp(G) = G bzw. Dp(H) = H durch

G(y) = exp(—ce ™) - Ljg.o0)(y) bzw. (2.72)
H(z) = (1 —be ) -exp(—ce ™) - L) (2) (2.73)

gegeben, wobei ¢ die eindeutige positive Losung der Gleichung

Ate =1 (2.74)
ist, und b sich aus
2
c
b= — 2.
2+2c—1 (2.75)

ergibt.

Beweis. Unter Beachtung des Lemmas 2.5.1 setzen wir ohne Einschrankung A = 1,
denn fir F = Fap(l) und ¢ = \7! gilt F, = Exp()\), und die entsprechenden
Gleichungen fiir G und H, wie ein Blick auf (2.72) und (2.73) zeigt.

Sei also von nun an F' = Ezp(1). Wir wihlen unabhéngige Zufallsgrofien N, Y,
(Y)ien, € und (&;)jeny mit N ~ Poi(1), Y ~G,Y; ~G, £ ~ Fund & ~ F.

Die Gleichung Dp(G) = G impliziert

P(Y <y)=P&—-Y;<yfiralel <i<N)
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fir alle y > 0.
Das Bedingen unter den Werten von NN liefert
PY <y)=> P(&-Y, <yfiralel <i<n)-P(N=n)
n=0
JRa | "
=-) - PE-Y<y)
e = n!
1
— - ep(PE—Y <))
— exp(—P(E— Y > ).
Mit ¢ := P(§ > Y') und der Gedéchtnislosigkeit der Exponentialverteilung folgt

exp(—P({ =Y >y)) =exp(-P({ >y +Y))
=exp(—P(E>Y)- P& >y))

— exp(—ce ™),

wie in (2.72) behauptet. (2.74) lasst sich aus der definierenden Gleichung von ¢ und
(2.72) beweisen:

c=PE>Y)=P2Y)= [ [ P'(de)Pi(ay)
[0, 00) [0, ]

:/e’y~P(Y§y)dy
0

e Y- exp(—ce ™) dy

Beim vorletzten Gleichheitszeichen wurde z = e™¥ substituiert. Die Eindeutigkeit
von ¢ in (2.74) folgt aus einer simplen Kurvendiskussion der Funktion z +— x? + €®.

Fiir die Bestimmung von H sei eine von £ und Y unabhéangige ZufallsgroBe Z ~ H
gegeben. Es gilt dann Z ~ max{Y, £ — Z} und folglich

P(Z<z)=P(Y <z (-7Z<z)
—P(Y <2) - P6—Z<2)
=exp(—ce ) - P((<z+ 2)
=exp(—ce ). (1—e*- P> 2))
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fir alle z > 0, unter erneuter Benutzung der Gedéachtnislosigkeit von &.
Mit b := P(§ > Z) folgt dann (2.73) und es bleibt (2.75) zu zeigen. Zunéchst gilt

— P(¢>2) = P(¢ > 2)

- / / P?(dx) PE(dz)
[0,00) [0, 2]

:/e*Z.P(Zgz)dz

0
00

= /e’z (1 —be™?) - exp(—ce ?)dz
0

c—b b—c+bc _,
= 7 c? R

wobei wir wieder s = e~* substituieren, um das Integral zu 16sen. Mit (2.74) erhalten

wir e7¢ = 1 — ¢%, womit wie gewiinscht
c—b b—c+bc 9 1
b= 2 + 2 -(1—0)2()-(0 —1—c>—|—c
2
c
o b=
2+2c—1
folgt. O

Wir beachten, dass ¢ der Schranke p aus (2.57) entspricht. Die Gleichungen fir b
und c lassen sich numerisch 16sen, naherungsweise gilt

b=0.543353... und c¢=0.714556...,

siche Abschnitt 3.8, Lemma 2 in [4].

Mit Hilfe des Theorems 2.4.1 und der Verteilungen (2.72) und (2.73) berechnen
wir nun den Grenzwert von n~ ' EM,, fiir exponentialverteilte Gewichte.

Wir beschrénken uns erneut auf den Fall A = 1, denn den Grenzwert im allgemeinen
Fall erhalten wir durch Multiplikation von A™! mit dem Grenzwert im Fall F =
FExp(1), wenn wir Lemma 2.5.1 und

E(C ’ £ ’ ]l{c£>cY+cZ}) =cC- E(§ : 1{§>Y+Z})
fir alle ¢ > 0 beachten.
Theorem 2.5.3 Ist F' = Exp(1), so gilt

lim — ETMn //c —be™*) exp(—ce ¥ — ce” 7)) se™* dy ds. (2.76)
n—oo
00
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Néherungsweise ergibt sich

lim ~EM, — 0.239583 ..

n—oo n,
siehe Abschnitt 3.8, Theorem 2 in [4].

Beweis. Im Angesicht des Theorems 2.4.1 haben wir nur E(§- 1i¢ -y zy) fiir stochas-
tisch unabhéngige £, Y und Z mit £ ~ F, Y ~ G und Z ~ H zu berechnen.

G ist gemaB (2.72) auf (0, 00) differenzierbar mit G’'(s) = ce™® exp(—ce™*) fiir alle
s > 0. Daher gilt

E(E Ligsyizy) = / s / / PZ(dz) PY (dy) PS(ds)

(0,00)  (0,5) (0,s—y)

_ / s / H(s —y) PY (dy) P*(ds)

//G' —y) - se *dyds.
00

Ferner ist fiir s, y > 0 mit s —y > 0 die Gleichung

G'(y) - H(s —y) = ce Y exp(—ce™) - (1 — be~ ™) . exp(—ce 7¥))
—c-(e7V —be™®) - exp(—ce™®) - exp(—ce V)

giltig. Insgesamt zeigt dies (2.76). O






3. Fransenverteilungen

Dieses Kapitel beruht auf einem, aus dem Jahr 1991 stammenden, Artikel von Aldous
[2]. Wir beschéaftigen uns mit einer speziellen Klasse von Verteilungen auf Sg, — ge-
nannt Fransenverteilungen. Sg, ist dabei die in (1.5) definierte Menge aller endlichen
unmarkierten Baume.

Im ersten Abschnitt fiihren wir Fransenverteilungen ein und leiten einige elementa-
re Eigenschaften aus der Definition ab. Des Weiteren beweisen wir in Beispiel 3.1.4,
dass die Verteilung eines kritischen Galton-Watson-Baumes dieser Klasse angehort.

3.1. Definition und Eigenschaften
Fir s, t € S sei Q(s,t) definiert als

Q(s,t) = [{c e C(s) : s =t}|. (3.1)

Q(s,t) gibt also an, wie viele der Baume s, v € C(s), zu t isomorph sind. Erinnern
wir uns an die Definition von Q,(s,t) in (1.7), so gilt offenbar Q(s,t) = Q.(s,1),
wenn r die Wurzel von s bezeichnet.

Wir fassen () als Matrix auf und definieren Q" als das n-fache Matrixprodukt von
Q mit sich selbst. Q sei dabei als Einheitsmatrix gesetzt.

Als einfache Konsequenz der Definition halten wir das folgende Lemma ohne Beweis
fest. In Teil (d) gibt |L(t)| die Anzahl der Blétter von ¢ an, vgl. Definition 1.1.4.

Lemma 3.1.1 Fir alle n € Ny und s € Sg, gilt
(a) Q"(s,t) = |{v € Vi : v befindet sich in Generation n, und es gilt s* = t}|,
(b) Yies,, Q"(s,t) = [{v € V5 : v befindet sich in Generation n},
(¢) X220 Yiess, @'(s,t) = |s| und
(d) 32, Q(s,t1) = |L(s)|, wobei t; der einzige Baum aus S sei.

Definition 3.1.2 Eine Verteilung 7 auf Sg, heiBt Fransenverteilung (engl. fringe
distribution), falls fiir alle ¢ € Sg, die Gleichung

m(t) = > 7(s)- Qs 1) (3-2)

SESﬁn
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erfillt ist.
Ist T ein Zufallsbaum mit Verteilung 7, so ist (3.2) offenbar dquivalent zu

EQ(T,t) = P(T =1t)

fur alle t € Sgy.
In Matrizenschreibweise muss fiir 7 die Gleichung 7() = 7 gelten. Ist dies der Fall,
so folgt induktiv 7Q! = 7 fiir alle i € Nj.

Uber elementare Eigenschaften einer Fransenverteilung gibt das nichste Lemma
Auskunft.

Lemma 3.1.3 Sei 7 eine Fransenverteilung und ¢; € Sy, der einzige Baum mit einem
Knoten. Dann gelten die folgenden Aussagen:

(a) Sind s, t € Sgp und ist s ein Teilbaum von ¢, so gilt 7(s) > w(t). Insbesondere
folgt m(t1) > = (t) fur alle t € Sgy.

(b) 0 < m(ty) < 1.
(©) Tres,, m(t) - 1C@H)| = 1.
(d) Xeesq, (1) - [L(t)] = oo.
(€) Yiesy, m(t) - [t] = oo.
Beweis. Seien s, t € Sg,. Dann gilt gemafl Lemma 3.1.1 (a)

s ist ein Teilbaum vont < Q"(t,s) > 1 fiir einn € N.

Ist dies erfiillt, so folgt aufgrund von 7 = 7Q"

m(s)= > 7(s)-Q"(s"s) 2 w(t) - Q"(t,5) = m(t),

s’ esﬁn

welches (a) zeigt. Damit folgt auch 7(¢;) > 0, denn im anderen Fall wére = = 0.
Wire 7(t1) = 1, so wiirden wir mit (3.2)

L=n(t) = 3 w(s)-Q(s,t) =0

SESﬁn

erhalten, denn sowohl Q(¢;,t1) als auch 7(s), s # t;, sind 0.
Fiir (¢) bemerken wir zunéchst, dass aus Lemma 3.1.1 (b) mit n =1

Ct) = > Qt.s) (3.3)

SE€ESfn
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folgt. Das Einsetzen von (3.3) in (c) liefert

D w)-ICH)= > () Y Qlts)

tESﬁn tESﬁn SESﬁn

= Z Z ﬂ-(t)'Q(t?S)

SGSﬁn tGSﬁn
=Y 7(s)=1

SESfn

Aussage (d) folgt mit Lemma 3.1.1 (d) durch

S wlt) (L) = 3 w(t) S Qi)

tESfn tESan =0
w .
=2 2 7(t) Q'(tt)
=0 tE€SgHn
= 7T(t1) = 0Q,
=0

wenn wir zusétzlich (b) und 7Q? = 7 beachten.
Der Teil (e) folgt aus (d) und |L(t)| < |¢]. O

Die Aussage (a) des Lemmas sichert eine gewisse Monotoniebedingung an eine
Fransenverteilung: Ein Teilbaum darf unter 7 nicht weniger Wahrscheinlichkeit tragen
als der urspriinglich gréflere Baum.

Ist T" ein Zufallshaum mit einer Fransenverteilung, so besagt (e), dass die erwartete
Grofle der Gesamtpopulation oo betragt. Fiir einen fast sicher aussterbenden Galton-
Watson-Baum T ist dies nur im kritischen Fall erfiillt. Das nédchste Beispiel zeigt, dass
ein kritischer Galton-Watson-Baum tatséchlich eine Fransenverteilung besitzt.

Beispiel 3.1.4 Sei T ein kritischer Galton-Watson-Baum mit Reproduktionsvertei-
lung (p;)jen, und Werten in Sg,. Dann ist P(T" € -) eine Fransenverteilung.

Beweis. Sei t € Sgy. Dann gilt mit A} = {s € Sgn : |C(s)| = k und Q(s,t) = ¢}

X PI=9 Q=33 ¥ PT=9q

(3.4)
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Gibt X die Grofle der 1. Generation von 7" an, so gilt mit Lemma 1.2.5

P(T € Ab)=P(T € AL, X = k)
=P(TeAl|X=k) - -P(X=k)

k

= ( ) P(T=t)1-(1-P(T=t)"7 P(X =k),

q

denn ¢ der k Teilbdume T, v € C(T), missen zu t isomorph sein, wéhrend die

anderen k — ¢ Teilbaume beliebige, aber von t verschiedene, Baume sein miissen.
Summieren wir iiber alle Méglichkeiten von ¢, so ergibt sich

zk:q-P(TeA’q“):P(T:t)-k-P(X:k),

q=1
und das Einsetzen in (3.4) liefert

o0

> PT=5)Qs.t) =Y. P(T=1)-k-P(X =})

SESHn

= P(T =t)-EX.

Da X nach (p;)jen, verteilt ist und wir uns im kritischen Fall befinden, ist EX =1
und damit P(T" € ) eine Fransenverteilung. O

Auf weitere Beispiele von Fransenverteilungen verzichten wir an dieser Stelle und
verweisen daftir auf die Abschnitte 3 und 6 in [2].

3.1.1. Die P,-Kette

Dieser kurze Abschnitt dient der Einfiihrung einer Markov-Kette, die wir aus einer
Fransenverteilung 7 gewinnen. Diese Kette wird spater fiir die Konstruktion einer
Fortsetzung von 7 niitzlich sein, siche dazu Lemma 3.2.4 (b).

Zu einer Fransenverteilung 7 definieren wir eine zeitlich diskrete und zeitlich ho-
mogene Markov-Kette mit Zustandsraum Z, = {t € Sg, : 7(t) > 0} durch die
Ubergangsmatrix

P(s, ) = 77:8 Ot 5). (3.5)

Einige essentielle Eigenschaften der Kette fasst das nachste Lemma zusammen.

Lemma 3.1.5 Sei 7 eine Fransenverteilung und (X,,),en, eine Markov-Kette mit
Ubergangsmatrix P, und Anfangsverteilung P(X, € - ). Dann gilt

(a) m(s) -P(s,t) =7(t) - Q"(t,s) fir allen € Nund t,s € Z,
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(b) | X,| > | Xpya| fiir alle n € Ny,
(¢) H(X,) > H(X,41) fir alle n € Ny, und
(d) mit L, = {t € Sqn : [t| < n} gilt
SN Y Rlsd) Bl =1
$€Ln s'€San\Ln i=0
far allet € L, N Z,.

Beweis. Der Teil (a) folgt aus einer einfachen Induktion: Fir n = 1 ist die Behaup-
tung korrekt, nach Definition von P, in (3.5). Der Induktionsschritt n — n 4 1 folgt
via

m(s) - Prti(s,t) = Y w(s) - Pr(s,s) P2, 1)

s'€Skn

= 3 Q) () Q)

s’ €Skn

= ﬂ-(t) ) Qn+1(t7 S>’

unter zweifacher Ausnutzung der Induktionsvoraussetzung im vorletzten Gleichheits-
zeichen. Die Aussagen (b) und (c) folgen unmittelbar dadurch, dass P (s,t) > 0 be-
reits Q(t,s) > 1, und somit [t| > |s| als auch H(t) > H(s) impliziert. Um (d) zu
zeigen, setzen wir den Startpunkt der Kette als ¢, d. h. Xy = ¢. Dann gilt

P.(s,8) P.(t,s) = P(X; =5, X;41 = 5)

und folglich

SO SR B =3 Y Y P(X=s X =)

SE€Ln §'€Sgn\Ln =0 i=0 s€Ln &'E€San\Ln
= i P(X; € L,, X1 ¢ L)
L
wenn wir Teil (b) und Xy =t € L,, beachten. O

3.1.2. Charakterisierungssatz

Gegeben eine Folge von Zufallsbaume (.S, ),en mit Werten in Sgy,, wihlen wir fiir jedes
n einen Teilbaum (S,,)", wobei v ein gleichverteilt gewéhlter Knoten von S, sei. Die
auf diese Weise entstandene Folge von Zufallsbdumen steht nun im Zentrum unseres
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Interesses. Wir werden sehen, dass Verteilungslimiten von derart konstruierten Folgen
im Wesentlichen genau die Fransenverteilungen sind.
Wir formalisieren zunéchst die beschriebene Teilbaum-Konstruktion: Fiir s, t € Sgy,
sei
1
El

io (3.6)

U(s,t) gibt also die Wahrscheinlichkeit an, dass ein gleichverteilt gewéhlter Teilbaum
s’, v € Vy, den Baum t ergibt.
Fiir einen endlichen Zufallsbaum S mit Verteilung 6 sei Ug der Zufallsbaum, der

entsteht, wenn wir einen Knoten v von S gleichverteilt wahlen und den zugehérigen
Teilbaum S? bilden. Es gilt also

P(Us=s)= Y Ul(ts)- =1). (3.7)

tESkn

Wir schreiben fiir die Verteilung von Ug auch Uy.
Die Definition (3.7) von Uy kann fiir jedes endliche Mafl 6 auf Sg,, gegeben werden.
Dann gilt

U@(Sﬁn) = Q(Sﬁn)a (38)

wie wir ohne groflen Aufwand nachrechnen:

UQ(Sﬁn) = Z UQ(S) = Z Z Ult,s

SE€ESan S$€San t€Shn

=2 7|Z ‘(t,s)-0(t)

SESHn tESﬁn =0

— Y- Y S Qi)
el it S5 o

= > 0t
tE€Shn

:H(Sﬁn)-

Im vorletzten Gleichheitszeichen haben wir Lemma 3.1.1 (¢) angewendet.

Theorem 3.1.6 Ist 7 eine Fransenverteilung, so existiert eine Folge von Zufallsbau-
men (S, )nen mit Werten in S, die

1S, & 0o und Us, -& 7 (3.9)

erfullt.
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Beweis. Es sei L, = {t € Sgn : |t| < n} und LS = Sin \ L,. Wir definieren ein

endliches Maf3 #,, auf L, N Z, durch

t)=1t] Y 7(s

seLg

Fiir das zu 6,, gehorige MaBl Uy, aus (3.7) gilt fur alle s € L,, N 2,

=2 Ou(t)- Ult, s)

teELn
— S 0.0)- qu
1T [t &
=D, > 7(s) Q) Y_Q'(t,s)
teLy, s'eLg 1=0
s)> > Z P (t,s") - P (s,t)
teL, s’'eLg i=

(3.10)

wobei die beiden letzten Gleichheitszeichen aus Lemma 3.1.5 (a) bzw. (d) folgen.
(3.8) impliziert 0,,(Spn) = Uy, (Sin) = 7(Ly,). Fiir Zufallsbaume S,, mit Verteilung

1 .
D Ln)en gilt dann ;
Sn ™ T Ly

d .
welches Ug, — 7 beweist.
Ist (X, )nen, eine P.-Kette mit Anfangsverteilung m, so gilt fir alle k£ € N

P([Sn] < k) = (S € L)

= ZQ

7T( tGLk

teLk seLg

y 2 2

tELk seL¢

ZZP =t,X,=53)

teLy s€Lg

7T(

(L

P(Xo€ Ly, X1 ¢ L,) == 0

denn (L, )nen bildet eine aufsteigende Mengenfolge mit L, — Sg,. Damit ist das

Theorem vollstandig bewiesen.

]
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Geben wir uns umgekehrt eine Folge endlicher Zufallsbaume mit |S,| — oo vor,
fir die Ug, in Verteilung gegen m konvergiert, so stellt sich die Frage, ob 7 eine
Fransenverteilung ist.

Dazu betrachten wir zwei einfache Beispiele.

Beispiel 3.1.7 (a) Ist S, der ,Pfadbaum® mit n Knoten, d.h. der Baum aus S,
der nur ein Blatt besitzt, so gilt P(Us, = t) > 0 fiir alle t € S. Us, kon-
vergiert hier zwar in Verteilung, jedoch nicht gegen ein Mafl auf Sg,, sondern

gegen das Dirac-Maf} im ,unendlichen Pfadbaum® aus S..

(b) Ist S, der ,Sternbaum* mit n Knoten, d. h. der Baum s € S,,, der |C(s)| =n—1

erfillt, so gilt P(Us, = t;) = =%z "= 1 fiir den trivialen Baum ¢, € S;. Auch

hier konvergiert Ug  zwar in Verteilung, jedoch gegen keine Fransenverteilung.

Vorausgesetzt der Limes P(Usg, = t) — 7(t) existiert fir alle ¢ € Sgy, muss 7 nicht
zwingend eine Fransenverteilung sein. 7 muss nicht einmal ein Wahrscheinlichkeits-
maf auf Sg, sein. Setzen wir jedoch zusétzlich 3, 5. m(t) - |C(t)| = 1 voraus, so ist
7 tatsachlich eine Fransenverteilung, wie das nachste Theorem zeigt.

Theorem 3.1.8 Ist (S,),en eine Folge endlicher Zufallshaume mit
1S, -5 0o und P(Us, =t) == x(t) (3.11)

fir alle t € Sgy, und erfiillt 7 die Bedingung (c) aus Lemma 3.1.3, d. h. gilt

S w(t) - [C)] = 1, (3.12)

tESHR

so ist 7 eine Fransenverteilung. Insbesondere gilt 7(Sg,) = 1.

Beweis. Seit € Sgy. Aus dem Lemma von Fatou und der Voraussetzung (3.11) folgt

lim inf > P(Us, =5)-Q(s,t) > > 7(s)-Q(s,1).
SESHn s€Sfin

Andererseits gilt

Y P(Us, =s)-Q(s,t) = P(Us, =t) — — - P(S, =t) = 7(t), (3.13)

SESﬁn
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denn
> P(Us, =5)-Q(s,1)
SESﬁn
o.] 1 ,
= > Zf ',8) - Q(s,t) - P(Sn =)
Sesﬁn ES =0
1 ’L
= D i N Q) Qs )
s'€Sfin |S | i=0 sESfn
1 ©
= Y - P(S,=5) Y Q" (s,1)
s €Sfin ’5 | i=0
1 s 1 , ,
=Y —.P Eyyst > —Q%s ) P(S, =5
s'€Sqn | s'€San ’S |
= P(Us, =1t) - |tl| - P(S,=1) = =(t),

unter erneuter Benutzung beider Voraussetzungen aus (3.11). Insgesamt erhalten wir

()—hmmf Z P(Us, = s)-Q(s,t) > Z (3.14)

SESﬁn SESﬁn
fir alle t € Sg,. Wenn wir zeigen, dass
dMrt)y=1= > > w(s)-Q(s,1) (3.15)
t€Shn t€S6n $€Shn
gilt, folgt mit (3.14) auch wie gewiinscht 7(t) = > ,cs. 7(s) - Q(s, 1) fiir alle t € Sg.

Der Nachweis von (3.15) ergibt sich zum einen aus der Voraussetzung (3.12), denn

SO ws)Qls.t)= Y w(s) Y Qs.t)

tESHn SESHn SEShn tEShn
= > m(s)|C(s)]
Sesﬁn
(12 |

Y

zum anderen aus (3.13) durch

1
Z ZP(USn:S)Q(S,t)ZZP(USnZt)—fP(S )
tESHn SE€ESHn tEShn |t|
=1-FE|S,|'<1

fiir alle n € N. Damit folgt wie gewiinscht

Yo ow(t) =1,

t€San

und das Theorem ist bewiesen. O
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Der folgende Charakterisierungssatz ist lediglich eine Zusammenfassung der Theo-
reme 3.1.6 und 3.1.8 und bedarf daher keines Beweises.

Satz 3.1.9 (Charakterisierungssatz) Eine Verteilung 7 auf S mit

> () -lC@) =1

t€Shn

ist genau dann eine Fransenverteilung, wenn es eine Folge endlicher Zufallsbaume
(Sn)neN mit

1S, % 0o und  P(Us, =t) "= x(t)
fiir alle t € S, gibt.

Wenden wir uns wieder den kritischen Galton-Watson-Béumen zu. Fiir sie lasst
sich eine einfache Folge (.S, )nen finden, deren Teilbaumfolge (Ug, )nen in Verteilung
gegen den kritischen Galton-Watson-Baum konvergiert.

Beispiel 3.1.10 Sei T ein kritischer Galton-Watson-Baum mit Werten in Sg, und
Reproduktionsverteilung p = (p;);jen,. p habe endliche Varianz und sei arithmetisch
mit Spanne d(p) = 1. Sei S,, mit

Sy, ~P(T e€-||T|=n). (3.16)
Dann gilt
PUs, =t) == P(T =1 (3.17)

fir alle t € Sgp, gemafl Korollar 1.1.19 also

Us, -% T (3.18)

n

Beweis. (3.17) lasst sich auf den Spezialfall zuriickfithren, dass t der triviale Baum
aus S; ist. Fir ihn lautet die zu zeigende Aussage

1 n—oo
Lo BlLs) = m, (3.19)

die in [12], Theorem 2.3.1, bewiesen wird. Die technische Voraussetzung d(p) = 1
wird dort benotigt.

Da wir die Reproduktionsvarianz als endlich annehmen, gilt gemafl Theorem 2.1.4
in [12]

P(|T| =n) ~ n=32 (2 - Var(p)) "> (3.20)

Es sei Ry der in der Wurzel von T' verwurzelte Baum, der entsteht, wenn wir den
Baum Ur bis auf seine Wurzel aus T" entfernen (siche auch Abbilung 3.1).
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RT(w)

) Q
() o/ %

Abbildung 3.1. Eine Realisierung von Ur und Ry.

Fir alle s, t € Sg, mit |s| + [t| = n + 1 gilt dann

P(Ur =1t Ry =s)= |LS)| P = S;HT = (3.21)

denn der rechte Faktor gibt die Wahrscheinlichkeit an, dass der Galton-Watson-Baum
T den Baum ergibt, der entsteht, wenn wir einen Blattknoten von s durch ¢ ersetzen.
Der linke Faktor gibt die Wahrscheinlichkeit an, einen Knoten von 7' gleichverteilt
zu wéhlen, der Ur =t und Ry = s impliziert. Aus (3.21) folgern wir

P(UTn:t) 1 P(UT:t,RT:S)

P(T=t) P(T=t) SESHZHH P(IT| =n)
1
= L(s)|- P(T = s
- P(T[=n)-n S€S§t+1| ()] - P(T = s)
P(IT)=n—1t|+1) n—|t|+1 1 1
- - L CEIL(Sy_ 1)
P(IT] = n) PR R
Mit Hilfe von (3.19) und (3.20) erhalten wir damit gewiinscht
P(Ur, =t) n—co |
P(T =t)
fur alle t € Sg,. O

Im Fall T~ PGW(1) lasst sich (3.20) mit Hilfe des Korollars 1.2.10 verifizieren.
Wir beachten, dass in diesem Fall S,, ~ T;, gemafl Satz 1.2.12 gilt.
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3.2. Sin-Baume

Das Ziel dieses letzten Abschnittes ist es, die Aussage von Theorem 3.1.8 zu ver-
schéarfen. Mit dieser Verscharfung sind wir dann in der Lage Grimmetts Lemma (vgl.
Abschnitt 1.3) zu beweisen.

Wir erinnern zunachst an Definition 1.2.14: U2, b; ist der Baum, der entsteht, wenn
wir die Baume b; entlang ihrer Wurzeln verbinden und die neue Wurzel als Wurzel
von by festlegen. Analog definieren wir fiir endlich viele Baume t;,...,t, den Baum
LI b;.

Ist eine Folge endlicher Baume (b;);en gegeben, so entsteht durch LI, b; ein Baum,
der einen eindeutigen, unendlich langen, in der Wurzel startenden Pfad besitzt.

Definition 3.2.1 Es sei

I:{|_| b; : b; € Sqy fiir alle i € N},

i=1

die Menge der sogenannten sin-Bdume. Die Bezeichnung geht auf die Arbeit [2] von
Aldous zurtick, in der ,sin“ fiir ,,single infinite path* steht.

Ist t € T gegeben, so lasst sich eine eindeutige Folge (b;);en mit ¢ = L2, b; finden.
Diese Darstellung nennen wir auch Zweigdarstellung von t. b, bezeichnet den n-ten
Zweig.

by by

Abbildung 3.2. Visualisierung der Zweigdarstellung eines sin-Baumes.

Eine andere Darstellung von ¢ lasst sich wie folgt beschreiben: Ist r,, die Wurzel von
b, aus der Zweigdarstellung von ¢, so sei f,(t) der in r, verwurzelte Baum, der aus
denjenigen Knoten besteht, die sich nicht im Baum ¢+ befinden. Die Kantenmenge
von f,(t) sei hierbei wie tiblich von ¢ induziert.

Offenkundig gilt f,(¢) = U ,b,+1-; (sieche Abbildung 3.3). Wir nennen (f,,(¢))nen
die monotone Darstellung von t.

Wir beachten, dass fi(t) = by und Q(fn11(t), fu(t)) > 1 fiir alle n € N gilt.



3.2. Sin-Baume 75

h f2
~

Abbildung 3.3. Die monotone Darstellung des gleichen sin-Baumes.

Als néchstes setzen wir die Zahlvariable @ aus (3.1) auf Z zu Q7 fort: Sind zwei
Baume ¢ = LI72,0; und s = LI, ¢; aus Z gegeben, und ist v ein Kind der Wurzel von
b1, so konnen wir ¢ als sin-Baum mit Wurzel v ansehen. Qz(¢, s) gebe an, fir wieviele
v diese Konstruktion zum Baum s fithrt, d. h.

Qz(t,s) = |{v € C(by) : t als Baum mit Wurzel v ist zu s isomorph}|. (3.22)

Erneut wirft dies die Frage der Wohldefiniertheit von (3.22) auf, die hier allerdings
gegeben ist, da wir mit Qz(t, s) eine Zahlvariable definieren, die fir alle Reprasen-
tanten von ¢ einen identischen Wert ergibt.

Es ist auflerdem klar, dass Qz(¢,s) > 1 nur dann gelten kann, wenn

(a) Q(br,c1) > 1 gilt,

(b) ¢y der Baum by \ ¢; ist, der entsteht, wenn wir einen zu ¢; isomorphen Teilbaum
(by)", v € C(by), von by entfernen, und

(¢) ¢, = by, fiir alle n > 3 gilt.
Sind (a), (b) und (c) erfillt, so gilt Qz(t,s) = Q(b1,c1). Ist eine der drei Bedingung

verletzt, so ist Qz(t, s) = 0. Die Definition (3.22) l4sst sich demnach im Fall Qz(¢, s) >
1 auch schreiben als

Qz(g bz‘, C1 LJ (bl \ Cl) g bz) = Q(bl,cl). (323)

Fiir uns wird jedoch zweckmaBiger sein, (3.22) bzw. (3.23) mit Hilfe der monotonen
Darstellungen (f,,(t))neny und (f,(s))nen zu formulieren: Aus Qz(t,s) > 1 folgt

fn(t) = fn+1<5)
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fir alle n € N, und wir kénnen Qz(¢, s) als

Qz(t,5) = Q(f1(t), f1(s)) (3.24)

schreiben.

Ahnlich der Definition einer Fransenverteilungen als bzgl. ) invariante Verteilung
auf Sgy, betrachten wir im Folgenden invariante Verteilungen bzgl. Q7 auf Z.

Da 7 eine Teilmenge von § ist, statten wir Z mit der von § induzierten Topologie
aus. Ein Maf3 auf Z soll dementsprechend stets auf den Borel-Mengen 9B(Z) definiert
sein.

Definition 3.2.2 Fiir einen Zufallsbaum 7" mit Werten in Z, Verteilung p und mo-
notoner Darstellung (f,,(T))nen sei u; die Verteilung von (fi(7T'),. .., fi(T)).

(a) p heiit invariant bzgl. Q7 oder auch Qz-invariant, falls

pi(te, oo t) = pica(to, -+ o) - Q(ta, th) (3.25)
fur alle t1,...,t; € Sg, und alle ¢ > 2 gilt.

(b) Die Verteilung fi auf Sg, sei definiert als Verteilung von fi(7"), d. h. i = p; und
fur alle by € Sgy, ist

i(b1) = p({] ] bi: b € San filr alle i > 2}).

i=1

Bemerkung 3.2.3 Mit einem Blick auf (3.23) ldsst sich die Definition der Qz-
Invarianz auch in Termen der Asteverteilungen (B,,),en von T schreiben. Die Vertei-
lung von 7T ist genau dann ()z-invariant, falls

P(Blztl,...,Bn:tn) :P(Bl:tQUtl,BQ:tg,...,Bn_l:tn)'(1+Q(t2,t1))
fir alle n € Nund t,...,t, € S, gilt.

Das néchste Lemma besagt, dass (Qz-invariante Verteilungen nichts anderes sind
als Fortsetzungen von Fransenverteilungen auf Z.

Lemma 3.2.4 (a) Ist u eine Qz-invariante Verteilung auf Z, so ist i eine Fran-
senverteilung.

(b) Ist umgekehrt 7 eine Fransenverteilung auf Sg, gegeben, so existiert genau eine
@z-invariante Verteilung p auf Z, fir die i = 7 gilt.

Beweis. Fiir den Nachweis von (a) setzen wir zunéchst i = 2 in (3.25) ein: Es gilt fiir
alle t, s € Spn

pa(t, ) = p(s) - Q(s,t) = fi(s) - Q(s, 1).
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Das Summieren iiber alle Moglichkeiten von s liefert wie gewtinscht

S () Qs t) = Y paltys) = pua({) x Sa) = pult) = jlt).

SEShn SE€San

d.h. /i ist eine Fransenverteilung.
Fir den Nachweis von (b) zeigen wir zunéchst die Eindeutigkeit von p. Induktiv
folgt die Aquivalenz von (3.25) mit der Bedingung

paltrs o) = ma(6) [ QU t54) (3.26)

fur alle tq,...,t; € Sgy und alle ¢ > 2. Da die Verteilung u eindeutig durch (u;);en
festgelegt ist und jedes p; geméfl (3.26) nur von p; = m abhéngt, folgt die Eindeu-
tigkeit.

Fir die Existenz von u setzen wir u; als Verteilung von (X7,...,X;) an, wobei
(X3 )nen eine P.-Kette mit Anfangsverteilung p; = 7 sei. Geméf Lemma 3.1.5 (a)
gilt

7

#i<t1a"'>ti) :Ml(tl) ]P)W(tj—l?tj)
=2

<.

= 7(t;) 1:[262(%'7%‘—1)

~

fir alle ¢q,...,t; € Sy und @ € N. Ein Vergleich mit (3.26) zeigt die Invarianz bzgl

Q7. O
Sei nun ¢ ein endlicher Baum mit Wurzel r, v ein gleichverteilt gewéhlter Knoten
von t und r = v; — --- — v; = v der eindeutige Pfad von der Wurzel zu v. Falls

v = r gewdhlt wurde, setzen wir j = 1 und v; = r. Sei t(v) der Baum ¢, verwurzelt
in v.

Firn=1,...,j sei der Teilbaum f,(t) verwurzelt in Vj_p+1 und bestehe aus allen
Knoten von ¢(v), die sich nicht im Baum ¢(v)%-" befinden. Wir beachten, dass stets
fi(t) = t" und f;(t) =t gilt, j aber ein zufilliger Index ist, der von v abhéngt.

In Analogie zu (f,,(f))nen nennen wir

A

f(t) = (fn(t))nEN (3.27)

die monotone Darstellung des Baumes t, wobei wir fn(t) = () fur alle n > j setzen.
Abbildung 3.4 visualisiert die Konstruktion anhand eines Beispiels.

Ist ein endlicher Zufallsbaum S gegeben, so definieren wir f (S) punktweise, wie in
(3.27). Alle Gleichverteilungen seien dabei unabhéngig voneinander und unabhéngig
von S.
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Abbildung 3.4. Monotone Darstellung eines endliches Baumes.

Bilden wir

fi(9), (3.28)

8

Us =

=1

so ist Usg nichts anderes als der Zufallshaum S, verwurzelt in einem neuen gleich-
verteilt gewdhlen Knoten. Wir beachten, dass fi1(S) = Ug, der zufillig gewihlte
Teilbaum von S aus (3.7), ist.

AuBerdem merken wir an, dass die Folge f(S) Werte in Sg, U {0} annimmt. Das
Symbol @) steht hier fiir den ,leeren Baum®, den wir einfithren mitissen, um f(.9) exakt
zu definieren. Die Verteilung der Folge f(S) auf Sg, lasst sich wie folgt beschreiben:

Lemma 3.2.5 Ist S ein Zufallshaum mit Werten in Sg,, so gilt

A

P(fi(S) =t1,..., fi(S) =t;) = P(Ai(S) =ta,..., fi1(S) =t;) - Q(ta, 1)
=PUs =1,) ﬁQ(tjatj—l)

fur alle t1,...,t; € Sg, und alle 7 € N.

Beweis. Die erste Gleichung folgt unmittelbar aus der Konstruktion von f (9), die
zweite induktiv aus der ersten, wenn wir f;(S) = Ug beachten. O

Kommen wir nun zum Hauptresultat dieses Abschnittes.

Theorem 3.2.6 Ist (S, )nen eine Folge endlicher Zufallsbdume, fur die Ug, in Ver-
teilung gegen eine Fransenverteilung 7 konvergiert, so konvergiert Ug, in Verteilung
gegen i, die eindeutige Q)z-invariante Fortsetzung von 7 aus Lemma 3.2.4 (b).
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Beweis. Sei f(Sn) = (f1(Sn), f2(S,),...) die monotone Darstellung von Ug,. Dann
gilt fiir alle tq,...,t; € Sgn und alle i € N gemafl Lemma 3.2.5

A A

P(fl(Sn) — tl, ey fz(Sn> - tz) — P(Usn - tz) li[ Q(tj,tjfl).

Nach Voraussetzung konvergiert P(Ug, = t;) fir n — oo gegen w(t;), womit aus
(3.26)

JLI&P(fl(Sn) = tl? ey ﬁ(Sn) - tz) = ui(tlv e ati)7
und mit Korollar 1.1.19 auch

(Fi(Sn), - Fi(Sh) -5 (X4, X)) (3.29)
folgt. (X, )nen sei hierbei eine P-Kette mit Anfangsverteilung 7.

(3.29) impliziert die Verteilungskonvergenz Ugn — 1, denn p haben wir im Beweis
von Lemma 3.2.4 (b) durch die Markov-Kette (X,,)nen konstruiert. O

Eine berechtigte Frage ist, ob wir einen Zufallsbaum mit ()z-invarianter Verteilung
nicht auch durch die Verteilung von U2, B; konstruieren kénnen, wobei die Folge
(B;)ien unabhéngig ist, und jedes B; nach derselben Fransenverteilung verteilt ist.
Im Allgemeinen ist dies jedoch falsch.

Es ist aber nicht verwunderlich, dass zumindest im Fall B; ~ PGW(1) eine Qz-
invariante Verteilung mit dieser Konstruktion entsteht, kiindigten wir doch zu Beginn
dieses Abschnittes an, Grimmetts Lemma aus der Theorie zu folgern.

Wir greifen das Beispiel kritischer Galton-Watson-Baume auf, und berechnen die
Fortsetzung aus Lemma 3.2.4 (b) fiir diesen Fall.

Satz 3.2.7 Sei T ein kritischer Galton-Watson-Baum mit Werten in Sg, und Repro-
duktionsverteilung p = (p;)jen,- Sei (B;)ien eine unabhéngige Folge mit By ~ T" und
B; ~ T fiir alle i > 2. Die Verteilung des modifizierten Galton-Watson-Baumes T sei
wie folgt gegeben:

(a) Ein Urahne erzeuge Nachkommen geméf der Verteilung p = (p;)jen,, die durch
pi=0+1) pin (3.30)
gegeben ist,
(b) alle weiteren Individuen erzeugen Nachkommen geméf der Verteilung p, und
(c) alle Individuen erzeugen ihre Nachkommen unabhéngig voneinander.

Der auf diese Weise definierte Zufallsbaum 7" nimmt f.s. Werte in Sin an. Die Ver-
teilung von L2, B; ist die (z-invariante Fortsetzung der Verteilung von 7.
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Beweis. Fir s,t € Sg, mit Q(s,t) > 1 sei s\ t der Baum, der entsteht, wenn wir
einen zu ¢ isomorphen Teilbaum der 1. Generation von s entfernen.

Sei nun (F,)nen die monotone Darstellung des Zufallsbaumes LS°, B;. Zu zeigen
ist, dass fiir alle t1,...,t, € Sin, n € N, die Gleichung

n

P(Fy=t,...,F, =t,) = P(Fy = t,) [[ Q(ti, t: 1) (3.31)

=2

gilt. Wir beschranken uns beim Nachweis von (3.31) auf den Fall n = 2. Der allge-
meine Fall lasst sich dann mit den gleichen Argumenten und lingeren Rechnungen
beweisen.

Fir ¢, s € Sgy mit Q(t,s) > 1 gilt zunéchst

Arp(s\ 1) - Ap(t) - |C(s)] = Az(s), (3.32)

denn sind Représentanten von s\ ¢t und ¢ aus T gegeben, so gibt es |C(s)| Moglich-
keiten, ¢ in die erste Generation von s\ ¢ einzufiigen, um einen Représentanten von s
zu erhalten. Umgekehrt erhalten wir auf diese Weise alle Repréasentanten von s. Mit
Lemma 1.2.2 lisst sich diese kombinatorische Uberlegung auch direkt iiberpriifen.

Bezeichnet r die Wurzel von s\ t, so gilt aufgrund der Unabhéngigkeit von By und
By, der Definition der Verteilung von B; und (3.32)

P(Blzt,BQZS\t): (B]_:t)P<B2:S\t)
) I pieu ) - (Ae(s\ ) - Do - T1 pret)

veEV: r#VEVe\¢
= Ar(t) - Ar(s\t) - [C(s)| - T] picwt 11 prcul
veVy ’UEVS\t
= AT H Py
vEVs
= P(Bl = S)

Damit erhalten wir

P(Fl:t,FQZS):P(Blzt,B2U31:S)
(Bi=t,By =s\1) Q(s,1)
(Bl = S)'Q(‘S?t)v

also (3.31) fiir n = 2. O

P
P

Satz 3.2.7 lasst sich auf andere Fransenverteilungen verallgemeinern, vgl. dazu Ab-
schnitt 4.4. in [2]. Kombinieren wir Beispiel 3.1.10 mit dem eben Gezeigtem, erhalten
wir fiir

Su~ P(T €-||T| =n)
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die Konvergenz

n

Us, -- || B.
1=1

Ist speziell ' ~ PGW(1), so lésst sich auch Grimmetts Lemma (siehe Satz 1.3.1) fol-
gern. Die Anwendung, der in diesem Kapitel entwickelten Theorie, bildet gleichzeitig
den Abschluss dieser Arbeit:

Satz 3.2.8 Fir die Folge der Zufallsbaume (7},)nen aus (1.9) gilt
T, -4 PGW>(1). (3.33)

Beweis. Aus Lemma 1.2.12 und Beispiel 3.1.10 folgt

d

n

Da offenbar UTn 4 T, gilt, konvergiert T;, gemafl Theorem 3.2.6 gegen die ()z-inva-
riante Fortsetzung der PGW(1)-Verteilung, die wir in Satz 3.2.7 bestimmt haben.
Mit der Bezeichnung aus (3.30) gilt fiir p = Poi(1)

G+1) 1
j+Dl-e  jlee

ﬁj:(j+1)'pj+1:( = Dj;

d.h. jeder Ast B; ist nach PGW(1) verteilt. Damit ist PGW>(1) die Qz-invariante
Fortsetzung der PGW(1)-Verteilung und Grimmetts Lemma bewiesen. O]
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