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Einleitung

In vielen Bereichen der angewandten Mathematik, insbesondere der Wahrschein-

lichkeitstheorie, treten Probleme des optimalen Stoppens auf. Speziell in der Fi-

nanzmathematik wird in vielen F�allen die Berechnung fairer Preise und optimaler

Aus�ubungsstrategien von Finanzderivaten, z.B. Amerikanische oder Europ�aische

Optionen, auf das Problem des optimalen Stoppens stochastischer Prozesse zur�uck-

gef�uhrt (vgl. [Irle], [Ell], [Mus] und [Kal]).

Ein Vorgehen zur L�osung dieser Probleme liegt manchmal darin, zun�achst eine

optimale Strategie f�ur das Aus�uben dieser Derivate zu
"
erraten\ und anschlie�end

mittels martingaltheoretischer Methoden nachzuweisen, da� diese Strategie wirk-

lich optimal ist. Versucht man diese Problemstellung in einem mathematischen

Modell zu erfassen, so besteht dieses Modell in der Regel aus folgenden Hauptbe-

standteilen:

(a) einer Teilmenge T � R+, die die Zeitachse symbolisiert,

(b) einem Wahrscheinlichkeitsraum (
;A; P ) mit einer Filtration (Ft)t�0,

(c) dem Preisproze� des Finanzguts (Xt)t�0, der zu (Ft)t�0 adaptiert ist und

(d) einem Auszahlungsproze� ( t)t�0 = ( (Xt))t�0 der Option.

Die Suche nach einer optimalen Aus�ubungsstrategie bedeutet in diesem Zusam-

menhang, da� versucht wird, eine Stopzeit � zu �nden, die den erwarteten, dis-

kontierten Wert des Auszahlungsprozesses Ee�r� � maximiert. Da� die Strategie

durch eine Stopzeit charakterisiert wird, begr�undet sich darin, da� der Besitzer

der Option den Zeitpunkt � , zu dem er die Option aus�ubt, nat�urlich unabh�angig

von der Zukunft bzw. unabh�angig von zuk�unftigen Informationen zu w�ahlen hat,
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denn zu einem bestimmten Zeitpunkt t verf�ugt der Besitzer lediglich �uber Infor-

mationen, die er bis t sukzessive gesammelt hat. Diese gesammelten Informationen

werden im folgenden durch die Filtration (Ft)t2T repr�asentiert.

Die angesprochene martingaltheoretische Beweismethode basiert darauf, mit Hilfe

der bekannten Itô-Formel (vgl. [Rev]) nachzuweisen, da� der Proze� (e�rtV (Xt))t�0

mit V (x) := sup� Exe
�r� � in einem gewissen Bereich ein Martingal bildet. Proble-

matisch an dieser Vorgehensweise erscheint allerdings, da� die Funktion V nur bis

auf Ausnahmepunkte zweimal stetig di�erenzierbar ist und daher die Anwendung

der Itô-Formel nicht gerechtfertigt erscheint.

An diesem Punkt setzt nun die vorliegende Arbeit an. Nachdem im ersten Kapitel

einige grundlegende, ben�otigte Hilfsmittel bereitgestellt werden, widmen wir uns

im zweiten Kapitel, dem Kern dieser Arbeit, einer auf diese Problematik zuge-

schnittenen Verallgemeinerung der Itô-Formel und liefern damit eine Rechtferti-

gung der oben skizzierten Beweismethode. Zun�achst stellen wir einen bekannten

Beweis ([Chu]) f�ur die G�ultigkeit der Itô-Formel f�ur eindimensionale Standard-

Brownsche Bewegungen vor, wobei lediglich vorausgesetzt wird, da� die Ableitung

der betrachteten Funktion absolut stetig ist. Sodann zeigen wir an diesen Beweis

anlehnend unter etwas st�arkeren Bedingungen an die Funktion, da� eine Verall-

gemeinerung der Itô-Formel auch im mehrdimensionalen Fall m�oglich ist, falls in

einer Komponente der Funktion ein geeignetes stetiges Semimartingal und in den

anderen Komponenten der Funktion ein stetiger (Vektor-)Proze� von lokal be-

schr�ankter Variation vorliegt.

In den folgenden Kapiteln sind einige Anwendungen dieser Formel in der Finanz-

mathematik zusammengestellt. Das dritte Kapitel befa�t sich mit dem Problem

des optimalen Stoppens des Preisprozesses eines Finanzgutes im Modell von Ba-

chelier. Es wird eine optimale Stopzeit vorgestellt und der zu erwartende Gewinn

berechnet.

Im vierten Kapitel betrachten wir eine Amerikanische Put-Option in dem po-

pul�aren und allgemein anerkannten Modell von Black und Scholes (vgl. [Bla1] und

[Bla2]). Auch hier stellen wir die optimale Stopstrategie vor und berechnen die bei

Anwendung dieser Strategie erwartete Auszahlung.

Als letztes widmen wir uns dann zwei weiteren Stopproblemen, die durch Shepp

und Shiryaev ([She1] und [She2]) bzw. Guo und Shepp ([Guo]) bekannt wurden.
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1993 f�uhrten Shepp und Shiryaev eine neue Put-Option ein, die sie abgrenzend zur

Amerikanischen und Europ�aischen Option als Russische Option bezeichneten. Der

K�aufer dieses Finanzderivats erwirbt dabei das Recht, sich zu einem von ihm w�ahl-

baren Aus�ubungszeitpunkt � entweder den maximalenWert, zu dem ein Finanzgut

bis dahin gehandelt wurde, oder alternativ einen vorher festgesetzten Mindestbe-

trag s auszahlen zu lassen. Mithilfe des
"
Principle of Smooth Fit\ gelangten Shepp

und Shiryaev zu einer optimalen Stopzeit und der erwarteten Auszahlung. Dieses

Prinzip beruht auf folgender heuristischer Vorgehensweise: Es wird zun�achst die

optimale Stopstrategie
"
geraten\. Aufgrund der Gestalt dieser Strategie kann dann

die Auszahlungsfunktion, abh�angig von s und dem Startwert x der Aktie, in einem

gewissen Bereich angegeben werden und letztlich anhand von intuitiv hergeleiteten

Di�erentialgleichungen exakt bestimmt werden.

Eine Abwandlung dieser Option f�uhrt uns schlie�lich zu dem von Guo und Shepp

betrachteten Stopproblem, bei dem sich der K�aufer einer Option zwischen dem

aktuellen Kurs einer Verm�ogensanlage und einem vorher vereinbarten Mindestbe-

trag s entscheiden kann. Auch dieses Problem l�a�t sich mit Hilfe des
"
Principle of

Smooth Fit\ vollst�andig l�osen.

Ich m�ochte mich herzlich bei Herrn Professor Dr. G. Alsmeyer f�ur die gute Betreu-

ung dieser Arbeit bedanken. Er hat mein Interesse f�ur das Thema geweckt, und

seine wertvollen Hinweise haben mir �uber manche H�urde hinweggeholfen.





Kapitel 1

Stochastische Prozesse und

stochastische Integration

Anliegen dieses Kapitels ist es, eine kurze �Ubersicht �uber die wichtigsten in dieser

Arbeit ben�otigten Resultate der Theorie der stochastischen Prozesse und stocha-

stischen Integration zu geben. Die hier dargelegten De�nitionen und S�atze folgen

dabei weitestgehend den Darstellungen in den Werken von [Rev], [Chu] und [Irle],

wobei wir allerdings auf die meisten Beweise verzichten und stattdessen auf die

Quelle verweisen.

1.1 Brownsche Bewegungen und Martingale

Es werden in dieser Arbeit h�au�g stochastische Prozesse auftreten. Ein stocha-

stischer Proze� ist eine Familie von Abbildungen (Xt)t2T mit T � R+ auf einem

Wahrscheinlichkeitsraum (
;A; P ), die Werte in einem me�baren Raum (E; E)
annehmen. Da f�ur die von uns betrachteten Probleme immer T = [0;1) gilt,

beschr�anken wir uns bei den folgenden Darstellungen auf diesen Spezialfall.

Bei den hier betrachteten stochastischen Prozessen handelt es sich in der Regel um

Brownsche Bewegungen bzw. Funktionale Brownscher Bewegungen, wobei einige

Eigenschaften dieser speziellen Prozesse f�ur uns von besonderem Interesse sind.

Wir formulieren daher an dieser Stelle zun�achst deren De�nition:
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1.1 De�nition. Ein stochastischer Proze� (Bt)t�0 hei�t Brownsche Bewegung mit

Drift � 2 R und Volatilit�at � > 0, falls er folgende Eigenschaften besitzt:

(a) B0 = 0:

(b) F�ur alle t > 0 besitzt Bt eine N (�t; �2t)�Verteilung.

(c) (Bt)t�0 besitzt stochastisch unabh�angigen Zuw�achse.

(d) (Bt)t�0 ist ein Proze� mit station�aren Zuw�achsen.

Gilt � = 0 und � = 1, so sprechen wir von einer Standard-Brownschen Bewegung.

Diesen Proze� bezeichnen wir im folgenden mit (Wt)t�0. Ein Proze� (Xt)t�0 der

Form

Xt = x exp (�Wt + �t) ; t � 0;

mit x > 0 hei�t geometrische Brownsche Bewegung mit Drift �, Volatilit�at � und

Startwert x .

200 400 600 800 1000 1200
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Abbildung 1.1: Pfad einer geometrischen Brownsche Bewegung mit

Drift � = 0; 15 und Volatilit�at � = 0:5

F�ur sp�atere Zwecke notieren wir eine Eigenschaft der geometrische Brownschen

Bewegung, die sich aus dem Gesetz vom iterierten Logarithmus ergibt.
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1.2 Satz. Sei (Xt)t�0 eine geometrische Brownsche Bewegung mit Drift �, Vola-

tilit�at � und Startwert x. Dann gilt

(a) limt!1Xt = 0 und sup0�t<1Xt <1 f:s:, falls � < 1
2
�2.

(b) inf0�t<1Xt > 0 und limt!1Xt =1 f:s:, falls � > 1
2
�2.

(c) inf0�t<1Xt = 0 und supt!1Xt =1 f:s:, falls � = 1
2
�2.

Beweis. Vgl. Satz 9.23, S. 112 und Aufgabe 5.31, S. 349 in [Kar1].

Es sei nun eine isotone Familie (Ft)t�0 von Unter-�-Algebren von A gegeben, d.h.

es ist Fs � Ft f�ur alle s < t. Eine solche Familie wird auch als Filtration bezeichnet.

Stellt man sich t als Zeitparameter vor, so kann Ft als ein System von Ereignissen

interpretiert werden, die bis zum Zeitpunkt t beobachtbar sind.

Betrachten wir weiter eine Familie (Xt)t�0 me�barer Abbildungen auf (
;A), so
k�onnen wir folgende n�utzliche De�nition festhalten:

1.3 De�nition. Eine Familie (Xt)t�0 me�barer Abbildungen auf (
;A) hei�t ad-
aptiert bez�uglich (Ft)t�0, wenn Xt f�ur alle t � 0 Ft-me�bar ist.

F�ur die Untersuchung stochastischer Prozesse, insbesondere auch f�ur unsere An-

wendungen der verallgemeinerten Itô-Formel (Satz 2.3), nehmen Zufallszeiten eine

zentrale Rolle ein. H�au�g handelt es sich dabei um Zufallszeiten der Form

� = infft � 0 : Xt 2 Ag

mit einer geeigneten me�baren Menge A. Wichtig dabei ist, da� � nicht auf zuk�unf-

tige Informationen zur�uckgreift. Dies f�uhrt zu

1.4 De�nition. Es seien (
;A; P ) ein Wahrscheinlichkeitsraum und (Ft)t�0 eine

isotone Familie von Unter-�-Algebren von A. Eine Abbildung � : 
 ! [0;1]

hei�t Stopzeit bez�uglich (Ft)t�0, falls f� � tg 2 Ft f�ur alle t � 0 gilt. Im Fall

Ft = �(Xs; s � t) f�ur eine Familie me�barer Abbildungen nennt man � auch

Stopzeit bez�uglich (Xt)t�0.

Von besonderem Interesse f�ur diese Arbeit sind Stopzeiten bzgl. Brownscher Be-

wegungen. F�ur die in dieser Arbeit am h�au�gsten verwendeten Stopzeiten legen

wir bis auf weiteres folgende Bezeichnungen fest:
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1.5 De�nition. Es seien (Wt)t�0 eine Standard-Brownsche Bewegung a; � 2 R
und � > 0. Wir de�nieren

�a;� := infft � 0 : Wt + �t � ag

sowie speziell f�ur � = 0

�a := infft � 0 : Wt � ag:

F�ur eine geometrische Brownsche Bewegung mit Startwert x 2 R setzen wir ferner

Ta;x := infft � 0 : x exp(�Wt + �t) � ag;

wobei jeweils die Konvention inf ; :=1 gelte.

Ein Beweis, da� es sich hierbei wirklich um Stopzeiten handelt, �ndet sich z.B. in

[Rev] (Satz 4.6, S. 43).

Eine weitere, wichtige Eigenschaft einer Brownsche Bewegung mit Drift � = 0

ist, da� sie ein Martingal bzgl. ihrer kanonischen Filtration (Ft)t�0 bildet. Dies

bedeutet:

1.6 De�nition. Es sei (Mt)t�0 ein reellwertiger stochastischer Proze�, der be-

z�uglich einer Filtration (Ft)t�0 adaptiert sei. (Mt)t�0 hei�t Martingal bez�uglich

(Ft)t�0, falls

(a) E(Mt) <1 f�ur alle t � 0,

(b) E(MtjFs) =Ms P -f:s f�ur alle s; t � 0 mit s � t.

Ferner wird (Mt)t�0 als Submartingal (bzw. Supermartingal) bez�uglich (Ft)t�0

bezeichnet, falls in Bedingung (b) E(MtjFs) � Ms (bzw. E(MtjFs) �Ms) P -f:s:

f�ur alle s; t � 0 mit s � t gilt.

F�ur p 2 [1;1) nennt man (Mt)t�0 L
p-Martingal, falls Mt 2 Lp f�ur alle t.

1.7 Bemerkungen. (a) Eine Brownsche Bewegung mit Drift � = 0 bildet ein

Martingal.

(b) Eine geometrische Brownsche Bewegung bildet genau dann ein Martingal,

wenn � = ��2=2 gilt (vgl. Satz 1.2, S. 52 in [Rev]).
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Eines der wichtigsten Resultate �uber Martingale bidet das sogenannte

1.8 Optional Sampling Theorem. Sei (Mt)t�0 ein rechtsseitig-stetiges Martin-

gal und �, � beschr�ankte Stopzeiten mit � � � . Dann gilt

M� = E(M� jF�) P � f:s:

Ist (Mt)t�0 zus�atzlich gleichgradig integrierbar, so existiert eine integrierbare Zu-

fallsgr�o�e M1 mit Mt !M1 in L1. F�ur beliebige Stopzeiten �, � mit � � �

gilt

M� = E(M� jF�) = E(M1jF�) P � f:s:

Beweis. Siehe Satz 3.2, S. 69 in [Rev].

1.9 Korollar. Ist (Xt)t�0 ein nichtnegatives, rechtseitigstetiges Supermartingal

und �, � beliebige Stopzeiten, so gilt mit X1 = 0

X� � E(X� jF�) P � f:s:

Beweis. Siehe Korollar 3.3, S. 70 in [Rev].

Sind eine Stopzeit � und ein Proze� (Xt)t�0 gegeben, so de�niertX
�
t (!) := Xt^� (!)

den sogenannten gestoppten Proze� X� . Im folgenden verzichten wir h�au�ger auf

die Angabe des Zeitparameters, falls deutlich ist, da� es sich um einen stochasti-

schen Proze� mit T = [0;1) handelt. Sei weiter eine Filtration (Ft)t�0 gegeben,

bzgl. der der Proze� X adaptiert ist.

Es ist w�unschenswert, da� der gestoppte Proze� X� nun auch F� -me�bar ist, wobei

F� de�niert wird durch F� := fA 2 F1 : A\f� � tg 2 Ft f�ur alle t 2 [0;1]g mit

F1 :=
S

t�0 Ft. Im allgemeinen ist dies jedoch nicht immer erf�ullt. Den Schl�ussel

zu dieser Eigenschaft liefert nachstehende De�nition:

1.10 De�nition. Ein Proze� (Xt)t�0 hei�t progressiv me�bar oder einfach pro-

gressiv bez�uglich einer Filtration (Ft)t�0, falls die Abbildung (s; !) 7! Xs(!) von

[0; t]� 
 nach (E; E) (B([0; t])
 Ft)-me�bar ist.

Wir erhalten
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1.11 Folgerungen. Es seien (Ft)t�0 eine Filtration, (Xt)t�0 ein stochastischer

Proze�, der zu (Ft)t�0 adaptiert ist, und � eine Stopzeit. Dann gilt:

(a) Besitzt X rechtsseitig- oder linksseitig-stetige Pfade, so ist er progressiv me�bar

bez�uglich (Ft)t�0.

(b) Ist X progressiv me�bar bez�uglich (Ft)t�0, so ist X
� F� -me�bar auf der Menge

f� <1g.

(c) Ist X progressiv me�bar bez�uglich (Ft)t�0, so ist X
� progressiv me�bar bez�uglich

der Filtration (Ft^� )t�0.

Beweis. Siehe S. 44 �. in [Rev].

Wir notieren noch eine weitere n�utzliche De�nition:

1.12 De�nition. Ein progressiv me�barer Proze� (Xt)t�0 hei�t lokal beschr�ankt,

falls eine Folge von Stopzeiten (Tn)n2N mit Tn " 1 f:s: und eine Folge von Kon-

stanten Cn � 0 existieren, so da� jXTn j � Cn gilt.

1.13 Bemerkung. W�ahlen wir Tn := infft � 0 : jXtj � ng, so sehen wir, da�

jeder stetige adaptierte Proze� X lokal beschr�ankt ist.

1.2 Stochastische Integration und die Itô-Formel

Die De�nition von stochastischen Integralen bedarf einiges an Vorarbeit und es

w�urde den Rahmen dieser Arbeit sprengen, eine ausf�uhrliche Darstellung dieser

Theorie zu geben. F�ur eine detaillierte Betrachtung von stochastischen Integralen

verweisen wir daher auf die Werke [Rev], [Chu] und [Irle], die einen f�ur unsere

Zwecke guten Einblick in die stochastische Integration liefern.

Einen wichtigen Aspekt f�ur sp�atere Beweise gew�ahrt allerdings die Verallgemei-

nerung der stochastischen Integration bzgl. rechtsseitig-stetiger L2-Martingale auf

rechtsseitig-stetige lokale L2-Martingale mit Hilfe des sogenannten Lokalisations-

prinzips. Diese Vorgehensweise wird daher kurz skizziert. Im weiteren beschr�anken

wir uns darauf, einige grundlegende Resultate der stochastischen Integrationstheo-

rie, die f�ur die vorliegende Arbeit von besonderem Interesse sind, ohne Beweis

vorzustellen.

Es sei nun zun�achst an die De�nition lokaler Lp-Martingale erinnert:
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1.14 De�nition. Es sei p 2 [1;1). Ein reellwertiger stochastischer Proze� (Mt)t�0,

der bez�uglich einer Filtration (Ft)t�0 adaptiert ist, hei�t lokales Lp-Martingal

bez�uglich (Ft)t�0, falls eine Folge von Stopzeiten (�n)n2N existiert, so da� �n " 1
f:s: und der Proze�

Mk
t =Mt^�k �M0

f�ur jedes k ein Lp-Martingal bildet. Die Folge (�n)n2N hei�t lokalisierende Folge

f�ur (Mt)t�0.

Sind ein stetiges lokales Martingal und ein stetiger Proze� gegeben, so erlaubt

uns folgendes Lemma eine Lokalisationsfolge (�n)n2N so zu w�ahlen, da� die beiden

Prozesse f�ur 0 � t � �n beschr�ankt bleiben.

1.15 Lemma. Es seien (Mt)t�0 ein stetiges lokales Martingal mit einer Lokalisa-

tionsfolge (�n)n2N, (Zt)t�0 ein stetiger Proze� und

�n := infft � 0 : jMtj _ jZtj � ng:

Dann ist auch (�n^�n)n2N eine Lokalisationsfolge f�ur (Mt)t�0, d.h.Mt^(�n^�n)�M0

bildet f�ur alle n 2 N ein Martingal.

Beweis. Da (Mt)t�0 und (Zt)t�0 stetige Prozesse sind gilt �n !1 f:s: f�ur n!1
und daher auch �n ^ �n ! 1 f:s: Aus Korollar 1.7 (ii), S. 17 in [Chu] folgt, da�

Mt^(�n^�k) �M0 f�ur alle n; k 2 N ein Martingal bildet.

Wir geben zun�achst einige Bezeichnungen an, mit denen wir im folgenden arbeiten:

1.16 De�nition. Es seien eine Filtration (Ft)t�0 und ein Proze�M 2 L2 gegeben.

Das System

R = ff0g � F0 : F0 2 F0g [ f(s; t]� Fs : Fs 2 Fs; s; t 2 [0;1) mit s < tg

wird als System der vorhersagbaren Rechtecke bezeichnet. Durch P := �(R) wird
die vorhersagbare �-Algebra de�niert, und ihre Elemente hei�en vorhersagbare

Mengen. Einen Proze� X : [0;1) � 
 ! E nennt man vorhersagbar, falls er

P-me�bar ist. Abk�urzend setzen wir

L2(M) := L2([0;1)� 
;P; �M)
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f�ur den Raum der P-me�baren, quadrat-integrierbaren Funktionen bez�uglich �M ,

wobei �M das sogenannte Dol�eansma� (siehe [Chu] S. 33 �.) bezeichnet, das f�ur

die De�nition stochastischer Integrale eine besondere Rolle spielt.

Es sei nun gem�a� [Chu] das stochastische Integral
R
[0;t]

XsdMs 2 L2 als lineare

Isometrie von L2(M) nach L2 de�niert. Da es ein Element von L2 ist, handelt es

sich streng genommen um eine �Aquivalenzklasse von Zufallsgr�o�en bzgl. der fast

sicheren Gleichheit. Dies spielt f�ur den folgenden Satz eine entscheidende Rolle.

1.17 Satz. Es seien M ein rechtsseitig-stetiges L2-Martingal und X 2 L2(M).

Dann existiert eine Version des stochastischen Integrals
R
1[0;t]Xs dMs, die rechts-

seitig-stetige Pfade besitzt.

Beweis. Vgl. Satz 2.5, S. 38 in [Chu].

1.18 Bemerkungen. (a) Besitzt der Proze� M stetige Pfade, so existiert eine

stetige Version von
R
1[0;t]Xs dMs.

(b) Im folgenden werden wir solche stetigen bzw. rechtsseitig-stetigen Versionen

mit
R
[0;t]

Xs dMs bezeichnen und sie in der Regel benutzen, ohne dies vorher

explizit zu erw�ahnen.

Wir kommen nun zu der angek�undigten Verallgemeinerung des stochastische In-

tegrals auf rechtsseitig-stetige lokale L2-Martingale. Dazu notieren wir das soge-

nannte Lokalisationslemma:

1.19 Lokalisationslemma. Es seien M ein rechtsseitig-stetiges L2-Martingal,

X 2 L2(M) und � eine beliebige Stopzeit. Dann gilt

(a) 1[0;� ]X 2 L2(M � ) und

(b)
R
1[0;� ]Xs dMs =

R
1[0;� ]Xs dM

�
s .

Beweis. Vgl. Lemma 10.15, S .190 in [Irle].

Dieses Lemma f�uhrt zur De�nition:
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1.20 De�nition. Es sei (Mt)t�0 ein rechtsseitig-stetiges lokales L2-Martingal. De-

�niere

O(M) := fX : X ist vorhersagbar, und es existiert eine lokalisierende Folge

von Stopzeiten (�n)n2N mit 1[0;�n]X 2 L2(M �n) f�ur alle ng;

F�ur X 2 O(M) setze

Zn
t :=

Z
[0;t]

1[0;�n]Xs dM
�n
s ; t � 0:

Das Lokalisationslemma liefert, da� der Proze� Zn+k eine Fortsetzung von Zn

bildet, d.h. es gilt

Zn+k
t = Zn

t f:s: f�ur 0 � t � �n:

Zumindest au�erhalb einer Nullmenge kann daher der Proze�

Zt := lim
n!1

Zn
t

de�niert werden. Auf der Nullmenge wird Zt := 0 gesetzt. Das stochastische Inte-

gral von X bez�uglich M wird dann durch den Proze�Z
[0;t]

Xs dMs := Zt

f�ur alle t � 0 de�niert.

1.21 Bemerkungen. (a) Mit Hilfe des Lokalisationslemmas sehen wir, da� dieses

Integral nicht von der gew�ahlten Lokalisationsfolge abh�angt, d.h die Prozes-

se stimmen f�ur unterschiedliche lokalisierende Folgen fast sicher �uberein. Das

Integral ist somit wohlde�niert.

(b) Aus der obigen De�nition des stochastischen Integrals ergibt sich f�urX 2 O(M)

und eine Lokalisationsfolge (�n)n�0 die GleichheitZ
[0;t^�n]

Xs dMs =

Z
[0;t]

1[0;�n]Xs dMs =

Z
[0;t]

1[0;�n]Xs dM
�n
s

f�ur alle t � 0: Unter R�uckgri� auf Satz 1.17 bildet
R
[0;t]

Xs dMs daher ein

rechtsseitig-stetiges lokales L2-Martingal.
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1.22 De�nition. Es sei (Vt)t�0 ein rechtssetig-stetiger Proze� mit beschr�ank-

tem V0. V hei�t Proze� von lokal beschr�ankter Variation, wenn s�amtliche Pfade

t 7! Vt(!) auf jedem endlichen Intervall von beschr�ankter Variation sind.

Als n�achstes wird der Begri� des stochastischen Integrals auf stetige Semimartin-

gale erweitert.

1.23 De�nition. Ein stetiger Proze� (Zt)t�0 wird als stetiges Semimartingal be-

zeichnet, falls ein stetiges lokales Martingal (Mt)t�0 und ein stetiger Proze� (Vt)t�0

von lokal beschr�ankter Variation existieren, so da� gilt

Z =M + V:

Weiter de�nieren wir das stochastische Integral f�ur X 2 O(M) bez�uglich eines

stetigen Semimartingals durchZ
[0;t]

Xs dZs =

Z
[0;t]

Xs dMs +

Z
[0;t]

Xs dVs:

Wir kommen zu einigen wichtigen Eigenschaften stochastischer Integrale, die wir

im Laufe dieser Arbeit ben�otigen. Zun�achst stellen wir ein Analogon zum Satz von

der majorisierten Konvergenz f�ur stochastische Integrale vor:

1.24 Satz. Es sei (Zt)t�0 ein stetiges Semimartingal und (Xn)n2N, Xn = (Xn
t )t�0,

eine Folge lokal beschr�ankter Prozesse mit Xn ! 0 punktweise f�ur n!1. Ferner

existiere ein lokal beschr�ankter Proze� K mit jXnj � K f�ur alle n 2 N. Dann giltZ
[0;�]

Xn
s dZs

P�! 0

gleichm�a�ig auf jedem kompakten Intervall.

Beweis. Siehe Satz 2.12, S. 142 in [Rev].

Eine bedeutende Rolle in der stochastischen Integration spielt der sogenannte qua-

dratische Variationsproze�, der folgenderma�en de�niert wird.

1.25 Satz und De�nition. Es sei (Mt)t�0 ein stetiges lokales Martingal. Dann

wird durch

hMit :=M2
t �M2

0 � 2

Z
[0;t]

MsdMs
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der quadratische Variationsproze� hMi = (hMit)t�0 de�niert. Der quadratische

Variationsproze� ist stetig, und es gilt hMi0 = 0. Ferner bildet der Proze�M2�hMi
ein stetiges lokales Martingal.

Beweis. Siehe Satz 4.7, S. 89 in [Chu].

1.26 Beispiel. F�ur eine Standard-Brownsche Bewegung (Wt)t�0 gilt

hW it = t f:s:

Ein Beweis �ndet sich z.B. auf S. 76 �. in [Chu].

Der quadratische Variationsproze� l�a�t sich folgenderma�en verallgemeinern: Sind

M und N stetige lokale Martingale, so sind auch M +N und M �N stetige lokale

Martingale. Satz 4.7, S. 89 in [Chu] liefert, da� auch (M + N)2 � hM + Ni und
(M �N)2 � hM �Ni lokale Martingale bilden und daher auch der Proze�

MN � 1

4
(hM +Ni � hM �Ni)

=
1

4
((M +N)2 � hM +Ni+ (M �N)2 � hM �Ni):

Dies gibt Anla� zu nachstehender De�nition.

1.27 De�nition. Es seien M und N stetige lokale Martingale. Dann hei�t der

Proze�

hM;Ni := 1

4
(hM +Ni � hM �Ni)

quadratischer Kovariationsproze� von M und N . F�ur zwei stetige Semimartingale

X =M + A und Y = N +B mit einer Zerlegung gem�a� De�nition 1.23 wird der

gemeinsame quadratische Variationsproze� durch

hX; Y i := hM;Ni = 1

4
(hM +Ni � hM �Ni)

de�niert.

Einen der gr�o�ten Meilensteine in der stochastischen Integrationstheorie stellt wohl

die bekannte Itô-Formel dar, die wir hier in folgender Form angeben wollen:
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1.28 Satz. (Itô-Formel)

Es seien X = (X1; � � � ; Xn) ein stetiges (Vektor-)Semimartingal, d.h. jede Kom-

ponente X i (1 � i � n) bildet ein stetiges Semimartingal, und f eine Funktion

mit f 2 C2(Rn). Dann bildet f(X) ein stetiges Semimartingal, und es gilt

f(Xt)� f(X0) =

nX
i=1

Z
[0;t]

@

@xi
f(Xs) dX

i
s +

1

2

X
1�i;j�n

Z
[0;t]

@2

@x2i
f(Xs) dhX i; Xjis:

Beweis. Satz 3.3, S. 147 in [Rev].

1.29 Bemerkungen. (a) Sind einige der Prozesse X i von lokal beschr�ankter Va-

riation, so gilt die Formel entsprechend, wenn die Funktion f in den jeweiligen

Komponenten nur einmal stetig partiell di�erenzierbar ist. Ist beispielsweise

X ein stetiges Semimartingal, V ein stetiger Proze� von lokal beschr�ankter

Variation und f : R2 ! R eine Funktion derart, da� @f

@x
, @f

@y
und @2f

@x2
existieren

und stetig sind, so gilt

f(Xt; Vt)� f(X0; V0) =

Z
[0;t]

@

@x
f(Xs; Vs) dXs +

Z
[0;t]

@

@y
f(Xs; Vs) dVs

+
1

2

Z
[0;t]

@2

@x2
f(Xs; Vs) dhXsis:

(b) Nimmt der Proze� (Xt)t�0 f:s: nur Werte in einem o�enen Intervall I � Rn

an, so gilt die Itô-Formel entsprechend f�ur eine Funktion f : I ! R mit den

obigen Di�erenzierbarkeitseigenschaften.

Ein weiteres zentrales Resultat bildet das Girsanov-Theorem. Es beschreibt das

Verhalten eines stetigen lokalen Martingals bei einem Wechsel des Wahrscheinlich-

keitsma�es. F�ur unsere Zwecke ist es hinreichend, die Formel f�ur den Fall einer

Brownschen Bewegung zu formulieren:

1.30 Satz. (Girsanov)

Es sei (Wt)t�0 eine Standard-Brownsche Bewegung, die zu einer gegebenen Filtra-

tion (Ft)t�0 adaptiert sei. Ferner sei (�t)0�t�T ein bez�uglich (Ft)t�0 adaptierter

Proze� derart, da�
R
[0;T ]

�2s��(ds) <1 gilt und der Proze�

Yt := exp

�
�
Z
[0;t]

�s dWs � 1

2

Z
[0;t]

�2s ��(ds)

�
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unter P f�ur 0 � t � T ein Martingal bez�uglich (Ft)t�0 bildet. De�niere ein neues

Ma� Q� durch

dQ�

dP
= Yt:

Dann bildet der Proze�

fWt :=Wt +

Z
[0;t]

�s ��(ds); 0 � t � T;

unter Q� eine Standard-Brownsche Bewegung bez�uglich der Filtration (Ft)t�0.

Beweis. Vgl. Satz 7.2.3, S. 138 in [Ell].

Zum Abschlu� unserer Vorbereitungen de�nieren wir die sogenannte Lokalzeit ei-

ner Brownschen Bewegung, die das Verhalten dieses Prozesses in einer kleinen

Umgebung eines jeden Punktes beschreibt. F�ur diesen Zweck ben�otigen wir das

folgende Lemma.

1.31 Lemma. Es sei (Wt)t�0 eine Standard-Brownsche Bewegung. Dann existie-

ren eine Familie von Zufallsvariablen J(t; x) mit x 2 R und t � 0 sowie eine

Menge 
0 mit P (
0) = 1, so da� die Abbildung (t; x) 7! J(t; x)(!) f�ur alle ! 2 
0

stetig ist und f�ur festes (t; x) gilt:

P

�Z
[0;t]

1[x;1)(Ws) dWs = J(t; x)

�
= 1:

Beweis. Siehe Lemma 7.2, S 146 in [Chu].

Verkleinert man den Grundraum 
 auf 
0, so d�urfen wir im weiteren annehmen,

da� J bereits f�ur alle ! stetig ist.

1.32 De�nition. Es sei (Wt)t�0 eine Standard-Brownsche Bewegung. Der Proze�

(t; x) 7! L(t; x), de�niert durch

1

2
L(t; x) = (Wt � x)+ � (W0 � x)+ � J(t; x);

mit (t; x) 2 R+ �R hei�t Lokalzeit von (Wt)t�0.



18 Kapitel 1 Stochastische Prozesse und stochastische Integration

1.33 Satz. Es sei (Wt)t�0 eine Standard-Brownsche Bewegung mit Lokalzeit L.

Dann gilt

L(t; x) = lim
"#0

1

2"

Z
[0;t]

1(x�";x+")(Ws)��(ds)

= lim
"#0

1

2"
��fs 2 [0; t] :Ws 2 (x� "; x+ ")g:

Beweis. Siehe S. 141 �. in [Chu].

Da das Bild von Ws(!) aus Stetigkeitsgr�unden kompakt ist, zeigt diese Darstel-

lung unter Beachtung von Lemma 1.31, da� f�ur festes ! die Lokalzeit eine stetige

Funktion mit kompaktem Tr�ager ist.

Eine interessante Rolle spielt f�ur uns die folgende Eigenschaft der Lokalzeit einer

Standard-Brownschen Bewegung.

1.34 Satz. Es sei (Wt)t�0 eine eindimensionale Standard-Brownsche Bewegung

mit Lokalzeit L(t; x). Dann gilt f�ur jede positive, Borel-me�bare und lokal inte-

grierbare Funktion f und f�ur jedes t � 0Z
[0;t]

f(Ws)��(ds) =

Z 1

�1
L(t; x) f(x)��(dx) f:s:

Beweis. Vgl. Korollar 7.4, S. 149 in [Chu].



Kapitel 2

Eine Verallgemeinerung der

Itô-Formel

In diesem Kapitel stellen wir eine Verallgemeinerung der bekannten Itô-Formel

vor. Bei der eigentlichen Itô-Formel wird ben�otigt, da� die Funktion f in den

Komponenten, in denen Prozesse von unbeschr�ankter Variation vorliegen, zweimal

stetig partiell di�erenzierbar ist.

Wir betrachten nun den Fall, da� nur ein Proze� von unbeschr�ankter Variation

vorliegt. Besitzt dieser Proze� einige zus�atzliche Eigenschaften, so k�onnen die Dif-

ferenzierbarkeitsvoraussetzungen der Funktion derartig abgeschw�acht werden, da�

die zweite partielle Ableitung nur bis auf eine diskrete Ausnahmemenge existieren

und stetig sein mu�.

2.1 Ein eindimensionaler Fall f�ur Brownsche Be-

wegungen

Wir betrachten zun�achst eine Verallgemeinerung der eindimensionalen Itô-Formel

speziell f�ur Standard-Brownsche Bewegungen. Der Beweis1 pr�asentiert eine Metho-

dik mit deren Hilfe auch der Nachweis der oben grob skizzierten Verallgemeinerung

gelingt.

1vgl. Satz 9.2 und Bemerkung 1, S. 185 in [Chu]
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2.1 Satz. Es seien eine Standard-Brownsche Bewegung (Wt)t�0 und eine Funktion

f: R! R gegeben, die folgende Eigenschaften besitzt:

(a) f 2 C(1)(R).

(b) f 0 ist absolut stetig. Dies bedeutet insbesondere, da� die zweite Ableitung f 00

��-f.�u. existiert und lokal integrierbar ist.

Dann gilt

f(Wt)� f(W0) =

Z
[0;t]

f 0(Ws) dWs +
1

2

Z
[0;t]

f 00(Ws)��(ds) f:s: (2.1)

Beweis. Wir beweisen diese Aussage, indem wir auf eine geeignete Approximati-

onsfolge (fn)n�1 aus C1(R) die Itô-Formel anwenden. F�ur n � 1 de�nieren wir

fn : R! R durch

fn(t) := 'n � f(t) =
Z
R

'n(t� x)f(x)��(dx);

wobei 'n : R! R gem�a�

'n(x) :=

(
cn exp

�� 1
n�2�x2

�
; falls jxj < 1=n;

0; falls jxj � 1=n
(2.2)

de�niert ist. Dabei seien die Konstanten cn so gew�ahlt, da� k'nk1 = 1 f�ur alle n

erf�ullt ist. F�ur fn gilt:

(i) fn 2 C(1)(R) f�ur alle n 2 N.

(ii) fn ! f und f 0n ! f 0 kompakt gleichm�a�ig.

Zum Beweis dieser Eigenschaften setzen wir hn(t; x) := 'n(t � x)f(x). F�ur hn

gelten folgende Aussagen:

(1) hn(t; �) 2 L1 f�ur alle t 2 R, denn 'n besitzt einen kompakten Tr�ager.

(2) @
@t
hn(t; x) existiert f�ur alle t 2 R, da 'n 2 C10 (R).
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(3) Wegen der Stetigkeit der Funktionen f und '0n gilt bei festem t0 2 R f�ur alle

t 2 (t0 � 1
n
; t0 +

1
n
) die Absch�atzung���� @@thn(t; x)
���� = jf(x)'0n(t� x)j � jf(x)jj'0n(t� x)j1[� 1

n
; 1
n ]
(t� x)

� M1[t0� 2
n
;t0+

2
n ]
(x)

mit einer geeigneten Konstanten M > 0. Dabei ist die rechte Funktion inte-

grierbar.

Daher darf man unter dem Integral di�erenzieren1, d.h.

f 0n(t) =
d

dt
('n � f)(t) =

Z
R

'0n(t� x)f(x)��(dx): (2.3)

Wegen 'n 2 C(1)
0 (R) erhalten wir durch eine sukzessive Fortsetzung dieser Schlu�-

weise die Behauptung (i).

F�ur den Beweis von (ii) seien " > 0 und K � R kompakt. Die Funktion f ist auf

dem Kompaktum K gleichm�a�ig stetig. Es existiert also ein Æ > 0, so da� f�ur alle

x 2 K und f�ur alle jyj < Æ die Ungleichung

jf(x+ y)� f(x)j < "

besteht. Wir w�ahlen n0 so gro�, da� supp('n) � [�Æ; Æ] f�ur alle n � n0 gilt. Es

folgt f�ur n � n0

j'n � f(x)� f(x)j =

����
Z
R

'n(y)f(x� y)��(dy)� f(x)

����
=

����
Z
[�Æ;Æ]

'n(y)(f(x� y)� f(x))��(dy)

����
�

Z
[�Æ;Æ]

'n(y) jf(x� y)� f(x)j ��(dy)

�
Z
[�Æ;Æ]

'n(y)" ��(dy)

= "

und damit die gleichm�a�ige Konvergenz von fn gegen f . Mittels Gleichung (2.3)

und partieller Integration, wobei 'n 2 C(1)
0 (R) zu ber�ucksichtigen ist, erhalten wir

1Vgl. Satz 5.7 und Zusatz S. 146 in [Els]
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f 0n(t) =
Z
R

'0n(t� x)f(x)��(dx) =

Z
R

'n(t� x)f 0(x)��(dx) = ('n � f 0) (t):

Die Ableitung f 0 ist ebenfalls stetig, so da� sich durch ein analoges Vorgehen die

gleichm�a�ige Konvergenz von f 0n gegen f 0 ergibt.

Wenden wir nun die Itô-Formel auf fn an, so liefert uns dies

fn(Wt)� fn(W0) =

Z
[0;t]

f 0n(Ws) dWs +
1

2

Z
[0;t]

f 00n(Ws)��(ds)

f�ur alle n 2 N. Aus Aussage (ii) erhalten wir

fn(Wt) ��!
n!1

f(Wt) f:s: f�ur alle t � 0:

Wir de�nieren f�ur k 2 N
�k := infft > 0 : jWtj > kg: (2.4)

Die Ableitung f 0 ist aus Stetigkeitsgr�unden auf [�k; k] beschr�ankt, und die Fol-

ge (f 0n)n�1 konvergiert dort gleichm�a�ig gegen f 0. Daher ist (f 0n)n�1 auf [�k; k]
gleichm�a�ig beschr�ankt, so da� der Satz von der majorisierten Konvergenz f�ur

stochstische Integrale (Satz 1.24)Z
[0;t]

1[0;t^�k](f
0
n(W

�k
s )� f 0(W �k

s )) dWs
P�! 0

liefert und folglichZ
[0;t^�k]

f 0n(W
�k
s ) dWs

P�!
Z
[0;t^�k]

f 0(W �k
s ) dWs

gilt. Seien nun " > 0 und Æ > 0 beliebig. W�ahle k so gro�, da� P (�k � t) < "
2
und

n0 derart, da� P
����R[0;t^�k](f 0n(Ws)� f 0(Ws)) dWs

��� > Æ
�
< "

2
f�ur alle n � n0 gilt.

Damit ergibt sich f�ur alle n � n0

P

�����
Z
[0;t]

(f 0n(Ws)dWs �
Z
[0;t]

f 0(Ws)) dWs

���� > Æ

�

= P

�����
Z
[0;t]

(f 0n(Ws)� f 0(Ws)) dWs

���� > Æ; �k � t

�

+P

�����
Z
[0;t]

(f 0n(Ws)� f 0(Ws)) dWs

���� > Æ; �k > t

�
(2.5)

� P (�k � t) + P

�����
Z
[0;t^�k]

(f 0n(Ws)� f 0(Ws)) dWs

���� > Æ

�
� ";
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und wir erhalten die gew�unschte KonvergenzZ
[0;t]

f 0n(Ws) dWs
P�!
Z
[0;t]

f 0(Ws) dWs f�ur alle t � 0:

Es sei noch angemerkt, da� der Grenzwert
R
[0;t]

f 0(Ws) dWs f:s: eindeutig bestimmt

ist. Als letztes bleibtZ
[0;t]

f 00n(Ws)��(ds) ��!
n!1

Z
[0;t]

f 00(Ws)��(ds) f:s:

nachzuweisen. Dazu sei g 2 C(2)0 (R) beliebig. Der Satz von der majorisierten Kon-

vergenz liefert wegen der gleichm�a�igen Konvergenz der Folge (fn)n�0Z
R

g(x)f 00n(x)��(dx) =

Z
R

g00(x)fn(x)��(dx)

��!
n!1

Z
R

g00(x)f(x)��(dx)

=

Z
R

g(x)f 00(x)��(dx):

Die erste und die letzte Identit�at erhalten wir mittels partieller Integration unter

Beachtung der absoluten Stetigkeit1 der Funktion f . Es konvergiert also f 00n(x)��

vage gegen das signierte Ma� f 00(x)��. Die Funktion x 7! L(t; x)(!), wobei L(t; x)

die Lokalzeit der Brownschen Bewegung bezeichnet, ist stetig f�ur fast alle ! 2 


und besitzt einen kompakten Tr�ager, so da� aus der vagen Konvergenz und Satz

1.34 Z
[0;t]

f 00n(Ws)��(ds) =

Z
R

L(t; x)f 00n(x)��(dx)

��!
n!1

Z
R

L(t; x)f 00(x)��(dx)

=

Z
[0;t]

f 00(Ws)��(ds) f:s:

folgt, was den Beweis des Satzes abschlie�t.

1Vgl. Satz 4.16, S. 303 in [Els]
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2.2 Ein mehrdimensionaler Fall f�ur stetige Se-

mimartingale

Betrachtet man die Itô-Formel im mehrdimensionalen Fall, so l�a�t sich erkennen,

da� durch ein �ahnliches Vorgehen wie im vorherigen Abschnitt auch hier die Formel

auf eine gr�o�ere Klasse von Funktionen erweitert werden kann.

Der Nachweis dieser Verallgemeinerung gelingt, indem man die betrachtete Funkti-

on wieder durch eine geeignete Funktionenfolge, hier aus C(1)(Rd+1), approximiert,

auf die man die Itô-Formel anwendet, und dann einen Grenz�ubergang durchf�uhrt.

F�ur den Beweis dieser Verallgemeinerung benutzen wir folgendes Lemma:

2.2 Lemma. Es sei f : Rd+1 ! R eine Funktion mit folgenden Eigenschaften:

(a) Es gebe eine diskrete Menge A � R, so da� die partielle Ableitung @
@x1
f f�ur

alle x =2 A�Rd existiert und stetig ist.

(b) De�niert man @
@x1
f(x) := 0 f�ur x 2 A�Rd, so ist @

@x1
f(x) lokal beschr�ankt.

Dann gilt f�ur jede Funktion ' 2 C0(Rd+1) und f�ur alle x =2 A�Rd

@

@x1
(' � f(x)) = ' �

�
@

@x1
f(x)

�
: (2.6)

Beweis. Siehe Anhang.

Wir formulieren nun die angek�undigte Verallgemeinerung der Itô-Formel:

2.3 Satz. Es sei f : Rd+1 ! R eine Funktion mit den Eigenschaften:

(a) f 2 C(1)(Rd+1).

(b) Es gibt eine diskrete Menge A � R, so da� die partielle Ableitung @2

@x21
f(x) f�ur

alle x =2 A�Rd existiert und stetig ist.

(c) De�niert man @2

@x21
f(x) := 0 f�ur x 2 A�Rd, so ist @2

@x21
f(x) lokal beschr�ankt.

Weiter seien ein stetiger (Vektor-)Proze� V := (V 1; : : : ; V d) von lokal beschr�ank-

ter Variation (d.h. jede Komponente V i = (V i
t )t�0 bildet einen stetigen Proze�

von lokal beschr�ankter Variation) und ein stetiges Semimartingal (Mt)t�0 gegeben.

(Mt)t�0 erf�ulle die Bedingungen:
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(1) F�ur den quadratischen Variationsproze� gilt dhMit = h(t)��(dt) mit einer

Lebesgue-me�baren, nichtnegativen Funktion h.

(2) F�ur festes t 2 R+ gilt �� (f0 � s � t :Ms 2 Ag) = 0 f:s:

Dann gilt

f(Mt; Vt)� f(M0; V0) =

Z
[0;t]

@

@x1
f(Ms; Vs) dMs +

dX
i=1

Z
[0;t]

@

@xi+1

f(Ms; Vs) dV
i
s

+
1

2

Z
[0;t]

@2

@x21
f(Ms; Vs) h(s)��(ds) f:s: (2.7)

f�ur alle t � 0.

Beweis. Die Prozesse (Mt)t�0 und (Vt)t�0 seien zun�achst als beschr�ankt vorausge-

setzt. Den allgemeinen Fall werden wir daraus mit Hilfe des Lokalisationsprinzips

herleiten. Es existiere also ein K > 0, so da� j(Ms; Vs)j < K f:s: gilt, wobei

j � j = k � k2 die euklidische Norm bezeichne. Wir de�nieren

f0 := fjBK+1(0)
2 L1

und eine Folge von Funktionen 'n : R
d+1 ! R durch

'n(x) :=

(
cn exp(� 1

n�2�jxj2 ) falls jxj < 1=n;

0 falls jxj � 1=n;
(2.8)

wobei die cn so gew�ahlt seien, da�
R
'n(x)��

d+1(dx) = 1 gilt. Au�erdem setzen wir

fn(x) := 'n � f0(x) =
Z
Rd+1

'n(x� t)f0(t)��
d+1(dt): (2.9)

Es gelten folgende Aussagen:

(i) fn 2 C(1)(Rd+1).

(ii) fn ! f0 gleichm�a�ig auf BK(0).

(iii) @
@xi
fn ! @

@xi
f0 gleichm�a�ig auf BK(0) f�ur 1 � i � d+ 1.

(iv) @2

@x21
fn(x)! @2

@x21
f0(x) f�ur alle x = (x1; : : : ; xd+1) 2 BK(0) mit x1 =2 A.
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Da f0 2 L1 und 'n 2 C(1)
0 (Rd+1) sind, ergibt sich Aussage (i) aus Satz 3.7, S. 193

in [Els].

F�ur den Nachweis von (ii) w�ahlen wir " > 0 beliebig. Wegen der gleichm�a�igen

Stetigkeit von f0 auf BK+1(0) existiert ein 0 < Æ < 1 derart, da� f�ur alle x 2 BK(0)

und f�ur alle y 2 Rd+1 mit jyj < Æ die Ungleichung

jf0(x+ y)� f0(x)j < "

erf�ullt ist. W�ahle n0 so gro�, da� supp('n) � BÆ(0) f�ur alle n � n0 gilt. Dann

erhalten wir f�ur alle x 2 BK(0) und n � n0

j'n � f0(x)� f0(x)j =

����
Z
Rd+1

'n(y)f0(x� y)��d+1(dy)� f0(x)

����
=

����
Z
BÆ(0)

'n(y)f0(x� y)��d+1(dy)� f0(x)

����
=

����
Z
BÆ(0)

'n(y)(f0(x� y)� f0(x))��
d+1(dy)

����
�

Z
BÆ(0)

'n(y) jf0(x� y)� f0(x)j ��d+1(dy)

�
Z
BÆ(0)

'n(y)" ��
d+1(dy)

= "

und folglich (ii). F�ur die partiellen Ableitungen gilt nach Lemma 2.2

@

@xi
fn(x) = 'n �

�
@

@xi
f0(x)

�

f�ur alle x 2 BK+1(0) (i = 1; : : : ; d+ 1). Die partiellen Ableitungen sind wiederum

stetig, so da� sich (iii) analog zu (ii) ergibt.

F�ur den Beweis von (iv) f�uhren wir eine abk�urzende Bezeichnung ein:

C := fx = (x1; : : : ; xd+1) 2 DK(0) : x1 2 Ag:

Als weitere Konsequenz aus Lemma 2.2 erhalten wir f�ur alle x 2 C die Identit�at

@2

@x21
fn(x) = 'n �

�
@2

@x21
f0(x)

�
:
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Sei nun x0 2 C beliebig. Wir zeigen

@2

@x21
fn(x0) �! @2

@x21
f0(x0)

f�ur n ! 1. Da die Menge C o�en ist, k�onnen wir n0 so gro� w�ahlen, da�

B 1
n
(x0) � C f�ur alle n � n0 gilt. Ist " > 0 beliebig, so existiert wegen der Stetigkeit

von @2

@x2
1

f0 in x0 ein Æ > 0, so da� f�ur alle y 2 Rd+1 mit jyj < Æ die Absch�atzung���� @2@x21 f0(x0 � y)� @2

@x21
f0(x0)

���� < "

besteht. Dies liefert f�ur n � n0���� @2@x21 fn(x0)�
@2

@x21
f0(x0)

����
=

����'n � @2

@x21
f0(x0)� @2

@x21
f0(x0)

����
=

����
Z
Rd+1

'n(y)
@2

@x21
f0(x0 � y)��d+1(dy)� @2

@x21
f0(x0)

����
=

�����
Z
B 1
n
(0)

'n(y)

�
@2

@x21
f0(x0 � y)� @2

@x21
f0(x0)

�
��d+1(dy)

�����
�

Z
B 1
n
(0)

'n(y)

���� @2@x21 f0(x0 � y)� @2

@x21
f0(x0)

���� ��d+1(dy)

�
Z
B 1
n
(0)

'n(y)" ��
d+1(dy)

= ":

was schlie�lich Aussage (iv) best�atigt.

Wir wenden nun die Itô-Formel 1.28 auf fn an und erhalten die fast sichere Identit�at

fn(Mt; Vt)� fn(M0; V0) =

Z
[0;t]

@

@x1
fn(Ms; Vs) dMs +

dX
i=1

Z
[0;t]

@

@xi+1

fn(Ms; Vs) dV
i
s

+
1

2

Z
[0;t]

@2

@x21
fn(Ms; Vs) h(s)��(ds):

Aus Aussage (ii) folgt

fn(Mt; Vt) ��!
n!1

f0(Mt; Vt) f:s: f�ur alle t � 0:
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Die partielle Ableitung @
@x1
f0 ist auf BK(0) beschr�ankt, und die Folge der Ablei-

tungen ( @
@x1
fn)n�0 konvergiert dort gleichm�a�ig gegen @

@x1
f0. Daher ist die Folge

( @
@x1
fn)n�0 auf BK(0) gleichm�a�ig beschr�ankt. Ferner gilt nach (iii)

@

@x1
fn(Ms; Vs) ��!

n!1
@

@x1
f0(Ms; Vs) f:s:;

so da� sich aus dem Satz von der majorisierten Konvergenz f�ur stochastische In-

tegrale 1.24 Z
[0;t]

@

@x1
fn(Ms; Vs) dMs

P�!
Z
[0;t]

@

@x1
f0(Ms; Vs) dMs

ergibt. Die Folge ( @
@xi+1

fn)n�0, 1 � i � d, ist ebenfalls gleichm�a�ig beschr�ankt, und

nach Aussage (iii) gilt

@

@xi+1

fn(Ms; Vs) ��!
n!1

@

@xi+1

f0(Ms; Vs) f:s:

f�ur 1 � i � d. Der Satz von der majorisierten Konvergenz impliziert daherZ
[0;t]

@

@xi+1

fn(Ms; Vs) dV
i
s ��!
n!1

Z
[0;t]

@

@xi+1

f0(Ms; Vs) dV
i
s f:s:

Betrachten wir zuletzt die Folge der Integrale
R
[0;t]

@2

@x21
fn(Ms; Vs) h(s)��(ds). Es sei

L das Supremum von @2

@x21
f0 auf B1(0). Unter Verwendung von Lemma 2.2 erhalten

wir f�ur x 2 C die Absch�atzung

@2

@x21
fn(x) = 'n � @2

@x21
f0(x)

=

Z
R2

'n(y)
@2

@x21
f0(x� y)��d+1(dy)

�
Z
D1(0)

'n(y)L��
d+1(dy)

= L;

woraus in Verbindung mit der Stetigkeit von @2

@x21
fn die gleichm�a�ige Beschr�anktheit

der Folge ( @2

@x21
fn)n�0 auf BK(0) folgt. Unter Hinweis auf

�� (f0 � s � t :Ms 2 Ag) = 0 f:s: (2.10)
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und Aussage (iv) folgt

@2

@x21
fn(Ms; Vs) ��!

n!1
@2

@x21
f0(Ms; Vs) f:s:

Der Satz von der majorisierten Konvergenz liefert wiederum die gew�unschte Kon-

vergenz

Z
[0;t]

@2

@x21
fn(Ms; Vs) h(s)��(ds) ��!

n!1

Z
[0;t]

@2

@x21
f0(Ms; Vs) h(s)��(ds) f:s:

F�ur beschr�anktes M und V haben wir somit Behauptung (2.7) best�atigt. F�ur den

allgemeinen Fall sei gem�a� De�nition 1.23 eine Zerlegung M = Z + N in ein

stetiges lokales Martingal Z und einen stetigen Proze� N von lokal beschr�ankter

Variation gegeben. Gem�a� Lemma 1.15 k�onnen wir eine Lokalisationsfolge (�n)n2N
f�ur M derart w�ahlen, da� die jeweiligen durch �n gestoppten Prozesse, f�ur die wir

kurz Mn; Zn; Nn und V n = (V 1;n; : : : ; V d;n) schreiben, beschr�ankt sind f�ur jedes

n. Nach dem gerade Bewiesenen gilt

f(Mn
t ; V

n
t )� f(Mn

0 ; V
n
0 ) =

Z
[0;t^�n]

@

@x
f(Mn

s ; V
n
s ) dM

n
s

+

dX
i=1

Z
[0;t^�n]

@

@xi+1

f(Mn
s ; V

n
s ) dV

i;n
s

+
1

2

Z
[0;t^�n]

@2

@x2
f(Mn

s ; V
n
s ) h(s)��(ds) f:s:

f�ur alle n 2 N. Grenz�ubergang n!1 liefert wegen �n !1 f:s:

f(Mn
t ; V

n
t ) ��!

n!1
f(Mt; Vt) f:s:

Weiter gilt f�ur die pfadweise gebildeten IntegraleZ
[0;t^�n]

@

@xi+1

f(Mn
s ; V

n
s ) dV

i;n
s =

Z
[0;t]

1[0;�n]
@

@xi+1

f(Mn
s ; V

n
s ) dV

i;n
s

=

Z
[0;t]

1[0;�n]
@

@xi+1

f(Ms; Vs) dV
i
s

=

Z
[0;t^�n]

@

@xi+1

f(Ms; Vs) dV
i
s ;
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so da� sich durch eine analoge Rechnung wie in (2.5) wegen P (�n � t)! 1Z
[0;t^�n]

@

@xi+1

f(Mn
s ; V

n
s ) dV

i;n
s

P�!
Z
[0;t]

@

@xi+1

f(Ms; Vs) dV
i
s

ergibt. Ebenso erhalten wirZ
[0;t^�n]

@2

@x2
f(Mn

s ; V
n
s ) h(s)��(ds)

P�!
Z
[0;t]

@2

@x2
f(Ms; Vs) h(s)��(ds):

F�ur das stochastische Integral giltZ
[0;t^�n]

@

@x
f(Mn

s ; V
n
s ) dM

n
s =

Z
[0;t^�n]

@

@x
f(Mn

s ; V
n
s ) dZ

n
s

+

Z
[0;t^�n]

@

@x
f(Mn

s ; V
n
s ) dN

n
s :

Das letzte Integral konvergiert nach Wahrscheinlichkeit gegen
R
[0;t]

@
@x
f(Ms; Vs) dNs,

was man durch eine identische Rechnung wie bei den anderen pfadweise gebilde-

ten Integralen veri�ziert. F�ur das stochastische Integral
R
[0;t^�n]

@
@x
f(Mn

s ; V
n
s ) dZ

n
s

erhalten wir unter Hinweis auf das Lokalisationslemma 1.19 sowie Bemerkung 1.21

(b) die Identit�atZ
[0;t^�n]

@

@x
f(Mn

s ; V
n
s ) dZ

n
s =

Z
[0;t]

1[0;t^�n]
@

@x
f(Mn

s ; V
n
s ) dZ

n
s

=

Z
[0;t]

1[0;t^�n]
@

@x
f(Ms; Vs) dZs

=

Z
[0;t^�n]

@

@x
f(Ms; Vs) dZs;

woraus nun auchZ
[0;t^�n]

@

@x
f(Mn

s ; V
n
s ) dZ

n
s

P�!
Z
[0;t]

@

@x1
f(Ms; Vs) dZs f�ur alle t � 0

folgt. Aufgrund der Eindeutigkeit des Grenzwertes garantiert dies letztlich die

gew�unschte Behauptung (2.7).

2.4 Bemerkung. Man veri�ziert leicht, da� analog zu Bemerkung 1.29 (b) auch

hier gilt: Nimmt der Proze� (M;V ) f:s: nur Werte in einem o�enen Intervall

I � Rd+1 an und weist f : I ! R dort die obigen Di�erenzierbarkeitseigenschaften

auf, so gilt Satz 2.3 entsprechend.
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Von besonderem Interesse f�ur unsere sp�ateren Anwendungen sind die Spezialf�alle,

in denen eine Brownsche Bewegung mit Drift bzw. eine geometrische Brownsche

Bewegung vorliegt. Wir notieren daher die Verallgemeinerung der Itô-Formel f�ur

diese Semimartingale in den folgenden beiden Korollaren:

2.5 Korollar. In der Situation von Satz 2.3 sei (Bt)t�0 eine Brownsche Bewegung

mit Drift � und Volatilit�at �, d.h. Bt besitze die Gestalt

Bt = �Wt + �t; t � 0;

wobei (Wt)t�0 eine eindimensionale Standard-Brownsche Bewegung bezeichnet.

Dann gilt

f(Bt; Vt)� f(B0; V0) =

Z
[0;t]

@

@x1
f(Bs; Vs) dBs +

dX
i=1

Z
[0;t]

@

@xi+1

f(Bs; Vs) dV
i
s

+
1

2
�2

Z
[0;t]

@2

@x21
f(Bs; Vs)��(ds) f:s:

Beweis. Es ist lediglich nachzuweisen, da� (Bt)t�0 die Voraussetzungen (a) und (b)

aus Satz 2.3 erf�ullt. Die quadratische Variation einer Brownschen Bewegung mit

Drift � und Volatilit�at �2 ergibt sich zu hBit = �2t, wodurch die Bedingung (a)

sichergestellt wird. Die zweite Bedingung ergibt sich aus folgenden �Uberlegungen:

Es gilt

�� (f0 � s � t : Bs = x0g) =
Z
[0;t]

1fx0g(Bs)��(ds) f:s:;

wobei die Me�barkeit der Menge f0 � s � t : Bs = x0g aus der pfadweisen

Stetigkeit der Brownschen Bewegung folgt. Der Wert des Integrals ergibt sich aber

zu Z
[0;t]

1fx0g(Bs)��(ds) = 0 f:s:;

denn der Satz von Fubini impliziert

E

�Z
[0;t]

1fx0g(Bs)��(ds)

�
=

Z
[0;t]

E
�
1fx0g(Bs)

�
��(ds)

=

Z
[0;t]

P (Bs = x0)��(ds)

= 0:
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Aus dieser Identit�at folgt wegen der Abz�ahlbarkeit der diskreten Menge A unter

Ber�ucksichtigung von

��f0 � s � t : Bs 2 Ag = ��

 [
x2A

f0 � s � t : Bs = xg
!

=
X
x2A

��f0 � s � t : Bs = xg

= 0 f:s:

wie gew�unscht Bedingung (b).

2.6 Korollar. In der Situation von Satz 2.3 sei (Xt)t�0 eine geometrische Brown-

sche Bewegung, d.h.

Xt = x0 exp

�
�Wt +

�
�� �2

2

�
t

�
; f�ur t � 0;

mit Drift � > 0 und Volatilit�at � > 0, wobei der Proze� (Wt)t�0 wiederum eine

Standard-Brownsche Bewegung bezeichnet. Dann gilt

f(Xt; Vt) = f(X0; V0) +

Z
[0;t]

�Xs

@

@x1
f(Xs; Vs) dWs +

dX
i=1

Z
[0;t]

@

@xi+1

f(Xs; Vs) dV
i
s

+

Z
[0;t]

�
�Xs

@

@x1
f(Xs; Vs) +

1

2
�2X2

s

@2

@x21
f(Xs; Vs)

�
��(ds) f:s:

Beweis. Wir de�nieren eine Hilfsfunktion g : Rd+1 ! R durch

g(x1; : : : ; xd+1) := f (x0e
x1 ; x2; : : : ; xd+1) ;

so da� mit f o�ensichtlich auch g die Voraussetzungen aus Korollar 2.5 erf�ullt.

Weiter setzen wir

Yt := �Wt +

�
�� �2

2

�
t; t � 0:

(Yt)t>0 bildet eine Brownsche Bewegung mit Volatilit�at � und Drift �� �2

2
. Ferner

gen�ugt der Proze� der stochastischen Di�erentialgleichung

dYt = �dWs +

�
�� �2

2

�
ds: (2.11)
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Aus dem vorangegangenen Korollar erhalten wir folglich

f(Xt; Vt)� f(X0; V0)

= g(Yt; Vt)� g(Y0; V0)

=

Z
[0;t]

@

@x1
g(Ys; Vs) dYs +

dX
i=1

Z
[0;t]

@

@xi+1

g(Ys; Vs) dV
i
s

+
1

2
�2

Z
[0;t]

@2

@x21
g(Ys; Vs)��(ds)

=

Z
[0;t]

Xs

@

@x1
f(Xs; Vs) dYs +

dX
i=1

Z
[0;t]

@

@xi+1

f(Xs; Vs) dV
i
s

+
1

2
�2

Z
[0;t]

�
Xs

@

@x1
f(Xs; Vs) +X2

s

@2

@x21
f(Xs; Vs)

�
��(ds)

(�)
=

Z
[0;t]

Xs

@

@x1
f(Xs; Vs)

�
� dWs +

�
�� �2

2

�
��(ds)

�

+

dX
i=1

Z
[0;t]

@

@xi+1

f(Xs; Vs) dV
i
s

+
1

2
�2

Z
[0;t]

�
Xs

@

@x1
f(Xs; Vs) +X2

s

@2

@x21
f(Xs; Vs)

�
��(ds)

=

Z
[0;t]

�Xs

@

@x1
f(Xs; Vs) dWs +

dX
i=1

Z
[0;t]

@

@xi+1

f(Xs; Vs) dV
i
s

+

Z
[0;t]

�
�Xs

@

@x1
f(Xs; Vs) +

1

2
�2X2

s

@2

@x21
f(Xs; Vs)

�
��(ds) f:s:;

wobei in (�) die Di�erentialgleichung (2.11) eingegangen ist.



Kapitel 3

Optimales Stoppen im Modell

von Bachelier

Im Modell von Bachelier (1870-1946), das er erstmals im Jahr 1900 vorstellte,

betrachten wir den Kursverlauf eines Finanzgutes und suchen nach einer optimalen

Strategie, diese Verm�ogensanlage zu verkaufen. Dabei gehen wir davon aus, da�

der Besitzer des Gutes an einem maximalen Gewinn interessiert ist.

3.1 Das Modell und die Problemstellung

Zun�achst beschreiben wir das Modell, welches wir in diesem Kapitel zugrunde

legen. F�ur den Handel mit Finanzg�utern tre�en wir folgende grunds�atzliche An-

nahmen:

� Der Handel mit Finanzg�utern �ndet in stetiger Zeit statt.

� Der Kauf und Verkauf von Finanzg�utern verursacht keine Transaktionsko-

sten.

� Auf Finanzg�uter wird keine Dividende ausgesch�uttet.

F�ur den Rest dieses Kapitels legen wir einen Wahrscheinlichkeitsraum (
;A; P )
zugrunde, auf dem eine Standard-Brownsche Bewegung (Wt)t�0 gegeben ist. Wir

betrachten nun einen Finanzmarkt, in dem lediglich zwei Finanzg�uter gehandelt

werden: Zum einen existiere eine risikolose, festverzinsliche Verm�ogensanlage, die
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auch als Bond bezeichnet wird, deren Kursentwicklung durch den exponentiellen

Preisproze� (Rt)t�0,

Rt := R0e
rt; t � 0; (3.1)

mit Anfangswert R0 > 0 und Verzinsungsrate r > 0 determiniert werde. Zum an-

deren sei eine risikobehaftete Verm�ogensanlage gegeben, deren Preisproze� (Bt)t�0

durch eine Brownsche Bewegung mit Drift � � 0, Volatilit�at � > 0 und Startwert

x � 0, also

Bt = x + �Wt + �t; t � 0; (3.2)

charakterisiert werde. Der Einfachheit halber gehen wir davon aus, da� es sich

bei dieser Verm�ogensanlage um eine Aktie handelt. Der Proze� (Bt)t�0 gen�ugt der

stochastischen Di�erentialgleichung

dBt = �dWt + �dt; t � 0: (3.3)

Die Variablen r; � und � seien dabei als bekannt vorausgesetzt. Der Besitzer der

Aktie wird in der Regel daran interessiert sein, dieses Gut zu einem m�oglichst

hohen Kurs zu verkaufen. Um allerdings eine Vergleichbarkeit der Kurse zu un-

terschiedlichen Zeitpunkten zu gew�ahrleisten, betrachten wir den diskontierten

Preisproze� (e�rtBt)t�0. Der Besitzer sucht also eine Stopzeit, die das Stoppro-

blem

V �(x) := sup
�

E(e�r�B� ) (3.4)

l�ost und so die erwartete, diskontierte Auszahlung maximiert. Dabei wird in (3.4)

das Supremum �uber s�amtliche Stopzeiten gebildet.

3.2 Optimales Stoppen eine Finanzgutes

3.2.1 Herleitung einer optimalen Stopzeit

Unter den gegebenen Umst�anden erweist es sich als plausibel, da� die optimale

Stopzeit f�ur das Problem (3.4) eine Gestalt der Form

�a;�;� = infft � 0 : Bt � ag
= infft � 0 : x + �Wt + �t � ag
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mit a � x besitzen k�onnte. Abk�urzend schreiben wir

�a := �a;�;�;

wobei wir den Index oben platzieren, um einer m�oglichen Verwechselung mit �a;�

und �a vorzubeugen. Der Besitzer verkauft also sein Finanzgut, sobald der Kurs

�uber ein gewisses Niveau a steigt. Wir betrachten daher zun�achst Stopzeiten dieser

Form und berechnen die erwartete, diskontierte Auszahlung E(e�r�
a

B�a). F�ur die

Berechnung dieses Erwartungswertes ben�otigen wir folgenden Satz:

3.1 Satz. Es seien (Wt)t�0 eine Standard-Brownsche Bewegung, a � 0, r > 0 und

� � 0. Dann gilt f�ur die Stopzeit �a;�, die durch

�a;� := infft � 0 : Wt + �t � ag;

de�niert wird, die Identit�at

E exp(�r�a;�) = exp
�
�a
�
�� +

p
�2 + 2r

��
:

Beweis. F�ur a = 0 ist die Behauptung trivialerweise erf�ullt. Sei also im folgenden

a > 0. Aus der Rekurrenz der Standard-Brownschen Bewegung in Verbindung mit

� � 0 erhalten wir direkt

P (�a;� <1) = P (infft � 0 : Wt + �t � ag <1)

� P (infft � 0 : Wt � ag <1)

= 1:

Da der Proze�
�
exp

�
�Wt � �2

2
t
��

t�0
f�ur � 2 R nach Bemerkung 1.7 ein Martingal

bildet, kann mithilfe des Optinal Sampling Theorems 1.8 auf

E exp

�
�W�a;�^t �

�2

2
(�a;� ^ t)

�
= E exp

�
�W0 � �2

2
� 0
�
= 1

f�ur jedes t � 0 geschlossen werden. F�ur � � 0 und 0 � t � �a;� gilt ferner die

Absch�atzung

exp

�
�Wt � �2

2
t

�
� exp

�
�(a� �t)� �2

2
t

�
� exp(�a);



3.2 Optimales Stoppen eine Finanzgutes 37

so da� verm�oge des Satzes von der majorisierten Konvergenz

E exp

�
�W�a;� �

�2

2
�a;�

�
= E lim

t!1
exp

�
�W�a;�^t �

�2

2
(�a;� ^ t)

�

= lim
t!1

E exp

�
�W�a;�^t �

�2

2
(�a;� ^ t)

�
(3.5)

= 1

folgt. W�ahlen wir speziell � := ��+
p
�2 + 2r, so ist � > 0 und

��+
�2

2
= r:

Beachtet man noch, da� W�a;� = a� ��a;� gilt, so erhalten wir unter Verwendung

dieser Identit�at

E exp

�
�W�a;� �

�2

2
�a;�

�
= E exp

�
�(a� ��a;�)� �2

2
�a;�

�

= e�aE exp

�
�
�
��+

�2

2

�
�a;�

�
= e�aEe�r�a;�:

In Verbindung mit (3.5) ergibt sich somit die gew�unschte Identit�at

Ee�r�a;� = e��a = e
�a
�
��+

p
�2+2r

�
:

Wir formulieren noch zwei direkte Folgerungen aus diesem Satz.

3.2 Korollar. Es seien (Wt)t�0 eine Standard-Brownsche Bewegung, a 2 R, r > 0

und

�a = infft � 0 : Wt = ag:

Dann gilt

E exp(�r�a) = exp(� jaj
p
2r):

Beweis. Der Fall a � 0 ist ein Spezialfall von Satz 3.1. F�ur a < 0 ist zu beachten,

da�

�a = infft � 0 : Wt = ag
= infft � 0 : �Wt = �ag
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gilt und (�Wt)t�0 ebenfalls eine Standard-Brownsche Bewegung bildet. Somit folgt

hier die Behauptung ebenfalls direkt aus Satz 3.1.

3.3 Korollar. Es sei (Bt)t�0 eine Brownsche Bewegung mit Drift � � 0, Volatilit�at

� > 0 und Startwert x 2 R , d.h.

Bt = x + �Wt + �t; t � 0:

Weiter sei

�a = infft � 0 : Bt � ag:

Dann gilt f�ur x < a

E exp(�r�a) = exp

�
1

�2
(x� a)

�
��+

p
�2 + 2�2r

��

und f�ur x � a

E exp(�r�a) = 1:

Beweis. F�ur x < a ergibt eine einfache Umformung

�a = infft � 0 : Bt � ag
= infft � 0 : x+ �Wt + �t � ag
= inf

�
t � 0 : Wt +

�

�
t � a� x

�

�
:

Indem wir in Satz 3.1 a durch (a � x)=� und � durch �=� ersetzen, erhalten wir

wie gew�unscht

E exp(�r�a) = exp

"
�a� x

�

 
��
�
+

r��
�

�2
+ 2r

!#

= exp

�
1

�2
(x� a)

�
��+

p
�2 + 2�2r

��
:

Die Behauptung f�ur x � a folgt aus �a = 0 f.s.

Wir kommen nun zu unserem urspr�unglichen Problem, der Berechnung von

E
�
e�r�

a

B�a

�
, zur�uck. Korollar 3.3 liefert f�ur x < a unter Hinweis auf B�a = a

E
�
e�r�

a

B�a

�
= a exp

�
1

�2
(x� a)

�
�� +

p
�2 + 2r

��
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und f�ur x � a

E
�
e�r�

a

B�a

�
= x:

Wir fassen den ersten Wert (x < a) als Funktion in a auf und bestimmen deren

Maximum. Dazu de�nieren wir

g(a) := a exp

�
1

�2
(x� a)

�
��+

p
�2 + 2r

��
:

Durch einige elementare Rechnungen erh�alt man, da� die Funktion g in dem Punkt

a� =
�2p

�2 + 2r � �

ein Maximum annimmt. Auf diese Rechnung wollen wir aber an dieser Stelle ver-

zichten.

V

-
x

(�e)�1

��1

V (x)

6

��

��

��

��

�
�
�
�
�
�
�
�

Abbildung 3.1: Erwartete Auszahlung
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3.2.2 Beweis der Optimalit�at

Die bisherigen �Uberlegungen f�uhren zu folgendem Satz:

3.4 Satz. Es sei eine Brownsche Bewegung (Bt)t�0 mit Drift � � 0 und Volatilit�at

� > 0 gegeben. Dann existiert eine Stopzeit � �, die Ee�r�B� maximiert, n�amlich

� � = inf ft � 0 : Bt � 1=�g

mit � := 1
�2

�p
�2 + 2r � �

�
. F�ur V �(x) = sup� E(e

�r�B� ) gilt V
�(x) = V (x) mit

V (x) :=

(
1
�
e�x�1; falls x � 1

�
;

x; falls x > 1
�
:

Beweis. F�ur die Stopzeit � � folgt aus Korollar 3.3 unter Beachtung von � > 0

Ee�r�
�

B�� =
1

�
Ee�r�

�

=
1

�
e�(x�

1
�
) =

1

�
e�x�1 = V (x)

f�ur alle x < 1=�. F�ur x � 1=� ergibt sich � � = 0 f:s: Folglich gilt

Ee�r�
�

B�� = Ee0B0 = x = V (x)

und daher

V �(x) = sup
�

Ee�r�B� � V (x):

F�ur die umgekehrte Ungleichung betrachten wir die Funktion f : R2 ! R,

f(x; y) := e�ryV (x) =

(
1
�
e�x�ry�1; falls x � 1

�
;

xe�ry; falls x > 1
�
:

Mit Hilfe dieser Funktion weisen wir nach, da� der Proze� (e�rtV (Bt))t�0 ein Su-

permartingal bildet. Die Funktion f ist einmal stetig partiell di�erenzierbar. Die

zweite partielle Ableitung nach x existiert und ist stetig f�ur alle x 6= 1
�
. Unter Ver-

wendung der Verallgemeinerung der Itô-Formel f�ur Brownsche Bewegungen mit
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Drift (Korollar 2.5) sowie der Di�erentialgleichung dBt = �dWt+�dt erhalten wir

f(Bt; t) = e�rtV (Bt)

= V (x) +

Z
[0;t]

e�rsV 0(Bs) dBs �
Z
[0;t]

re�rsV (Bs)��(ds)

+
1

2
�2

Z
[0;t]

e�rsV 00(Bs)��(ds)

= V (x) + �

Z
[0;t]

e�rsV 0(Bs) dWs +

Z
[0;t]

�e�rsV 0(Bs)��(ds)

�
Z
[0;t]

re�rsV (Bs)��(ds) +
1

2
�2

Z
[0;t]

e�rsV 00(Bs)��(ds)

= V (x) + �

Z
[0;t]

e�rsV 0(Bs) dWs

+

Z
[0;t]

e�rs
�
�rV (Bs) + �V 0(Bs) +

1

2
�2V 00(Bs)

�
��(ds) f:s:

Der Proze�

Mt := V (x) + �

Z
[0;t]

e�rsV 0(Bs) dWs

bildet ein Martingal, da bzgl. einer Standard-Brownschen Bewegung integriert

wird. F�ur den Proze� (Yt)t�0, der durch

Yt := e�rt
�
�rV (Bt) + �V 0(Bt) +

1

2
�2V 00(Bt)

�

de�niert sei, gilt Yt � 0 f:s:Dies l�a�t sich durch eine Fallunterscheidung best�atigen:

F�ur Bt > 1=� ergibt sich

Yt = e�rt
�
�rV (Bt) + �V 0(Bt) +

1

2
�2V 00(Bt)

�
= e�rt(�rBt + �)

� e�rt
�
� r
�
+ �
�

=
e�rt

�
(�r + ��)

=
e�rt

�

�
�r + �

�2

�p
�2 + 2�2r � �

��
=

e�rt

�

�
�r + 1

�2

�p
�4 + 2r�2�2 � �2

��
= 0;
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F�ur Bt � 1=� erhalten wir aus �r+ ��+ 1
2
�2�2 = 0 die gew�unschte Absch�atzung

durch folgende Umformungen:

Yt = e�rt
�
�rV (Bt) + �V 0(Bt) +

1

2
�2V 00(Bt)

�

= e�rt
�
�rV (Bt) + ��V (Bt) +

1

2
�2�2V (Bt)

�

= e�rtV (Bt)

�
�r + ��+

1

2
�2�2

�
= 0:

Die Ungleichung Yt � 0 f:s: liefert nun die in Aussicht gestellte Eigenschaft, da�

e�rtV (Bt) ein Supermartingal bildet, denn es gilt

E(e�rtV (Bt)jFs)

= E

�
Mt +

Z
[0;t]

Yu��(du)

����Fs

�

= E(MtjFs) + E

�Z
[0;s]

Yu ��(du)

����Fs

�
+ E

�Z
[s;t]

Yu ��(du)

����Fs

�
(3.6)

� Ms +

Z
[0;s]

Yu ��(du)

= e�rsV (Bs) f:s:

Aufgrund der Stetigkeit der Abbildung x 7! e�rtV (x) ist dieses Supermartingal

rechtsseitig stetig. Beachten wir noch, da� die bekannte Ungleichung ex � 1 + x

V (x) � x

f�ur alle x � 0 impliziert, so k�onnen wir mit Korollar 1.9 f�ur jede Stopzeit �

Ee�r�B� � Ee�r�V (B� )

� Ee0V (B0) (3.7)

= V (x)

schlie�en. Geht man nun auf beiden Seiten zum Supremum �uber, so erh�alt man

V �(x) = sup
�

Ee�r�B� � V (x):
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Zusammen ergibt sich das gew�unschte Resultat

V �(x) = sup
�

Ee�r�B� = V (x):



Kapitel 4

Optimales Stoppen im Modell

von Black und Scholes

In diesem Kapitel untersuchen wir die Amerikanische Put-Option in dem von Black

und Scholes 1973 entwickelten Modell (vgl. [Bla1] und [Bla2]). Dieses basiert auf

dem Prinzip der Arbitragefreiheit, das die Realisierung eines risikolosen Gewinns,

sogenanntes
"
free lunch\, ausschlie�t. Daher zeichnet es sich vor allem dadurch

aus, da� es f�ur die Berechnung von fairen Preisen f�ur Finanzderivate nicht n�otig

ist, die Risikopr�aferenzen der Investoren zu kennen. Unser Bestreben ist es, eine

geschlossene Form des fairen Preises einer Amerikanischen Put-Option herzuleiten

und eine optimale Aus�ubungsstrategie dieser Option zu formulieren.

4.1 Das Modell von Black und Scholes

Wir stellen zun�achst das Modell von Black und Scholes genauer vor. F�ur unse-

re Zwecke ist es ausreichend, einen Finanzmarkt zu studieren, in dem nur zwei

Finanzg�uter gehandelt werden. Zum einen sei wie schon im vorherigen Kapitel

eine risikolose, festverzinsliche Anlage gegeben, deren Kursentwicklung durch die

Gleichung

Rt = R0e
rt; t � 0; (4.1)

mit Anfangswert R0 > 0 und Verzinsungsrate r > 0 gegeben ist. Zum anderen

liege eine risikobehaftete Verm�ogensanlage, z.B. eine Aktie, vor, deren Kursverlauf

(Xt)t�0 durch eine geometrische Brownsche Bewegung mit Drift � > 0, Volatilit�at
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� > 0 und Startwert x > 0 charakterisiert wird, d.h.

Xt = x exp

�
�Wt +

�
�� 1

2
�2

�
t

�
; t � 0; (4.2)

wobei (Wt)t�0 eine Standard-Brownsche Bewegung bezeichnet. Der Proze� (Xt)t�0

gen�ugt der stochastischen Di�erentialgleichung

dXt = Xt(�dWt + �dt); t � 0: (4.3)

Die Variablen r, � und � seien im weiteren als bekannt vorausgesetzt. F�ur den

Rest dieses Kapitels gehen wir von den gleichen Annahmen bzgl. des Handels mit

Finanzg�utern wie im vorherigen Kapitel aus, die wir uns aber noch einmal kurz

ins Ged�achtnis zur�uckrufen:

� Der Handel mit Finanzg�utern �ndet in stetiger Zeit statt.

� Der Kauf und Verkauf von Finanzg�utern verursacht keine Transaktionsko-

sten.

� Finanzg�uter, die einem Finanzderivat, z.B. einer Option, unterliegen, zahlen

keine Dividende aus.

Wir erinnern zun�achst an eine De�nition aus der Finanzmathematik, die in diesem

Modell von besonderer Bedeutung ist, und stellen ein zugeh�origes Resultat vor, das

richtungsweisend f�ur unsere Berechnungen ist und uns zu einer entscheidenden

Vereinfachung f�uhrt.

4.1 De�nition. Ein W-Ma� eP mit eP � P hei�t �aquivalentes Martingalma�, falls

der diskontierte (Vektor-)Proze� (St)t�0, der durch

St := e�rt(Xt; Rt); t � 0;

de�niert wird, unter eP ein (Vektor-)Martingal bez�uglich der Filtration (Ft)t�0

bildet.

Die erfreuliche Nachricht lautet dann
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4.2 Satz. In dem vorgestellten Modell von Black und Scholes existiert ein �aquiva-

lentes Martingalma� eP , welches durch die Radon-Nikodym-Ableitung

d eP
dP

= exp

 
�
Z
[0;t]

�� r

�
dWs � 1

2

Z
[0;t]

�
�� r

�

�2

��(ds)

!
(4.4)

festgelegt ist.

Beweis. Es sei T > 0 fest gew�ahlt. Dann gilt
R
[0;T ]

�
��r
�

�2
��(ds) <1. Unter R�uck-

gri� auf Bemerkung 1.7 ist daher ersichtlich, da� der Proze� (Yt)0�t<T , de�niert

durch

Yt := exp

 
�
Z
[0;t]

�� r

�
dWs � 1

2

Z
[0;t]

�
�� r

�

�2

��(ds)

!

= exp

 
��� r

�
Wt � 1

2

�
�� r

�

�2

t

!
; 0 � t � T;

unter P ein Martingal bildet. Bei der Umformung haben wir von der Tatsache

Gebrauch gemacht, da�
R
[0;t]

dWs = Wt gilt. De�nieren wir

fWt := Wt �
Z t

0

�� r

�
��(ds) =Wt � �� r

�
t; 0 � t <1; (4.5)

so folgt aus dem Girsanov-Theorem 1.30, da� der Proze� (fWt)0�t�T unter dem neu-

en Ma� eP eine Standard-Brownsche Bewegung bildet. Da T beliebig gew�ahlt war,

gilt dieses auch schon f�ur den gesamten Proze� (fWt)0�t<1. F�ur den diskontierten

Preisproze�, den wir mit eX bezeichnen, erhalten wir die Darstellung

eXt = e�rtXt = x exp

�
�Wt +

�
(�� r)� 1

2
�2

�
t

�
:

Wir schreiben (4.5) in der Form

Wt = fWt +
�� r

�
t

und setzen diese Identit�at in den Proze� eX ein. Dies f�uhrt zu

eXt = x exp

�
�fWt � �2

2
t

�
;

was letztlich unter erneutem Hinweis auf Bemerkung 1.7 die Behauptung best�atigt.
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4.3 Bemerkungen. (a) Es l�a�t sich sogar nachweisen, da� das �aquivalente Mar-

tingalma� im Modell von Black und Scholes eindeutig bestimmt ist (vgl.

[Mus]). Wir wollen aber auf diese Tatsache nicht weiter eingehen, da sie von

keinem weiteren Interesse f�ur uns ist.

(b) Der obige Satz er�o�net uns die M�oglichkeit, die Berechnung des fairen Preises

einer Option unter dem �aquivalenten Martingalma� eP durchzuf�uhren, wobei

lediglich zu beachten ist, da� wir die Drift � des Preisprozesses im Ausgangs-

modell durch die Verzinsungsrate r zu ersetzen haben. F�ur den Rest dieses

Kapitels nehmen wir also � = r an.

4.2 Die Amerikanische Put-Option bei unendli-

chem Zeithorizont

4.2.1 Herleitung der optimalen Stopzeit

Im Modell von Black und Scholes betrachten wir eine Amerikanische Put-Option

und suchen nach einer optimalen Strategie, diese Option auszu�uben. Bei diesem

Derivat erwirbt der K�aufer des Kontraktes das Recht, ein bestimmtes Finanzgut

bis zu einem zuk�unftigen Zeitpunkt T zu einem vorher vereinbarten Preis K, dem

Aus�ubungs- oder Basispreis (engl. strike price), zu verkaufen. Im Gegensatz zu

einem sogenannten Future besteht allerdings keine Verp
ichtung zum Aus�uben

der Option. In unserem betrachteten Modell mit unendlichem Zeithorizont gilt

T =1.

Unter den obigen Voraussetzungen ergibt sich der innere Wert einer amerikani-

schen Put-Option mit Aus�ubungspreis K auf die Anlage (Xt)t�0 zum Zeitpunkt t

zu (K � Xt)
+. Der Auszahlungsproze� ( t)t�0 hat also zu einem beliebigen Zeit-

punkt t � 0 die Gestalt

 (Xt; t) = (K �Xt)
+:

Der K�aufer der Option wird daran interessiert sein, eine Stopzeit � � zu �nden, die

die erwartete diskontierte Auszahlung Ee�r� � maximiert, also das Stopproblem

V �(x) := sup
�

Ee�r� � = sup
�

Ee�r� (K �X� )
+ (4.6)
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in Abh�angigkeit vom Startwert x der Verm�ogensanlage l�ost, wobei das Supremum

�uber alle Stopzeiten gebildet wird. Diesen Wert werden wir auch als fairen Preis

des Kontraktes ansehen.

Die Vermutung ist naheliegend, da� die optimale Stopstrategie darin bestehen

k�onnte, die Option auszu�uben, sobald der Kurs der Verm�ogensanlage unter ein

gewisses Niveau a > 0 f�allt. Daher beschr�anken wir uns vorerst darauf, die Pro-

blemstellung f�ur Stopzeiten der Form

Ta = infft � 0 : Xt � ag
= infft � 0 : x exp(�Wt + �t) � ag (4.7)

zu studieren und berechnen f�ur a > 0 den Wert

Va(x) := Ee�rTa(K �XTa)
+ (4.8)

in Abh�angigkeit vom Startwert x des Finanzgutes. Anschlie�end werden wir den

Wert a so determinieren, da� Va maximal wird.

Die Stopzeit Ta unterteilt die positive reelle Achse in zwei Abschnitte: zum einen

in eine Stopregion

E = fx 2 R+ : Va(x) > (K � x)+g;
und zum anderen in eine Fortsetzungsregion

C = fx 2 R+ : Va(x) � (K � x)+g:
Der Besitzer der Option �ubt folglich die Option aus, sobald der Preisproze� die

Fortsetzungsregion verl�a�t.

Im Fall a � K ergibt sich trivialerweise

Va(x) = Ee�rTa(K �XTa)
+ = Ee�rTa(K � a)+ = 0:

Ergo betrachten wir das Problem im folgenden nur f�ur a < K. Unter Verwendung

von XTa = a erhalten wir

Va(x) =

(
K � x; falls x � a;

(K � a)Ee�rTa; falls x > a;

und erkennen, da� sich die Berechnung von Va auf die von Ee
�rTa reduziert. F�ur

letztere ben�otigen wir allerdings eine Verallgemeinerung von Satz 3.1, in der zuge-

lassen wird, da� a auch negative Werte annehmen kann.
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4.4 Satz. Es seien �; a 2 R, (Wt)t�0 eine Standard-Brownsche Bewegung und

�a;� = infft � 0 : Wt + �t = ag:

Dann gilt f�ur r > 0

E exp(�r�a;�) = exp
�
�a� jaj

p
�2 + 2r

�
:

Beweis. Den Nachweis f�uhren wir in zwei Schritten: Wir bestimmen als erstes die

Verteilung der Stopzeit f�ur den Spezialfall � = 0, also f�ur

�a = infft � 0 : Wt = ag; a 6= 0:

Anschlie�end leiten wir mit deren Hilfe die Verteilung von �a;� durch einen Wechsel

des zugrundeliegenden Ma�es her.

Wir de�nieren das laufende Maximum der Brownschen Bewegung als

Mt := sup
0�s�t

Ws:

F�ur die gemeinsame Lebesgue-Dichte von Wt und Mt gilt nach Folgerung 8.1, S.

95 in [Kar1]

P (Wt 2 dy;Mt 2 dx) = 2(2x� y)p
2�t3

exp

�
�(2x� y)2

2t

�
dy dx

f�ur y � x und x � 0. Dies liefert unter Beachtung der evidenten Ungleichung

Mt � Wt

P (�a � t) = P (Mt � a)

=

Z 1

a

Z x

�1

2(2x� y)p
2�t3

exp

�
�(2x� y)2

2t

�
dy dx

=

Z 1

a

2p
2�t

Z x

�1

(2x� y)

t
exp

�
�(2x� y)2

2t

�
dy dx

=

Z 1

a

2p
2�t

exp

�
�(2x� x)2

2t

�
dx

=

Z 1

a

2p
2�t

exp

�
�x

2

2t

�
dx

=
2p
2�

Z 1

ap
t

exp

�
�z

2

2

�
dz;
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wobei wir in der letzten Zeile z = xp
t
substituiert haben. Durch Di�erentiation

unter Ber�ucksichtigung des Hauptsatzes der Di�erential- und Integralrechnung er-

halten wir eine Dichte f�a der Verteilung von �a. Es gilt

f�a(t) =
d

dt
P (�a � t)

=
2p
2�

d

dt

Z 1

ap
t

exp

�
�z

2

2

�
dz

= � 2p
2�

exp

 
�1

2

�
ap
t

�2
!
� d
dt

�
ap
t

�

=
ap
2�t3

exp

�
�a

2

2t

�
:

Hieraus ergibt sich

Ee�r�a =

Z 1

0

e�rtf�a(t) dt

=

Z 1

0

ap
2�t3

exp

�
�rt� a2

2t

�
dt:

Eine Anwendung von Korollar 3.2, das die Identit�at Ee�r�a = e�jaj
p
2r f�ur a 6= 0

garantiert, liefert den Wert dieses Integrals:

Ee�r�a =
Z 1

0

ap
2�t3

exp

�
�rt� a2

2t

�
dt = e�jaj

p
2r: (4.9)

Wir kommen jetzt zur Betrachtung der Stopzeit �a;� zur�uck. Wir nehmen dazu

einen Wechsel des W-Ma�es in der Form vor, da� �a;� unter dem neuen Ma� Q die

gleiche Verteilung besitzt wie �a unter P . Den richtigen Zugang zur De�nition des

Ma�es Q weist uns wiederum das Girsanov-Theorem 1.30:

F�ur beliebiges T > 0 de�nieren wir Q durch die Radon-Nikodym-Ableitung

dQ

dP
= exp

�
�
Z
[0;T ]

� dWs � 1

2

Z
[0;T ]

�2 ��(ds)

�
:

Unter Beachtung von
R
[0;t]

dWs =Wt setzen wir nun f�ur 0 � t � T

Yt := exp

�
�
Z
[0;t]

� dWs � 1

2

Z
[0;t]

�2 ��(ds)

�

= exp

�
��Wt � 1

2
�2t

�
:
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Nach De�nition von Q gilt also

Q(A) = E(1AYT ) =

Z
A

YT dP; A 2 FT :

Aus dem Girsanov-Theorem 1.30 folgt, da� der Proze� (fWt)0�t�T , de�niert durch

fWt =Wt + �t; 0 � t � T;

unter Q eine Standard-Brownsche Bewegung ohne Drift bildet. Die Verteilung der

Stopzeit �a;� = infft � 0 : Wt + �t = ag unter dem W-Ma� Q ist also die gleiche

wie die der Stopzeit �a unter dem W-Ma� P . Daher gilt f�ur die Dichte ef�a;� von

�a;� unter Q

ef�a;� = f�a =
a

t
p
2�t

exp

�
�a

2

2t

�
:

Unter Verwendung der Gleichung

Yt = exp

�
��Wt � 1

2
�2t

�
= exp

�
��fWt +

1

2
�2t

�

erhalten wir f�ur 0 � t � T

P (�a;� � t) = EP

�
1f�a;��tg

�
= EQ

�
1f�a;��tg

1

YT

�

= EQ

�
1f�a;��tg exp

�
�fWT � 1

2
�2T

��
(�)
= EQ

�
1f�a;��tgEQ

�
exp

�
�fWT � 1

2
�2T

�����F�a;�^t

��
(��)
= EQ

�
1f�a;��tg exp

�
�fW�a;�^t �

1

2
�2(�a;� ^ t)

��

= EQ

�
1f�a;��tg exp

�
�a� 1

2
�2�a;�

��

=

Z t

0

exp

�
�a� 1

2
�2s

�
f�a;� ds

=

Z t

0

ap
2�s3

exp

�
�a� 1

2
�2s� a2

2s

�
ds

=

Z t

0

ap
2�s3

exp

�
�(a� �s)2

2s

�
ds:
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In (�) haben wir von der Gl�attungsregel f�ur bedingte Erwartungswerte Ge-

brauch gemacht, w�ahrend (��) aus der Martingaleigenschaft des Prozesses�
exp

�
�fWt � 1

2
�2t
��

0�t�T
folgt. Durch Di�erentiation dieses Terms nach t erhal-

ten wir die Dichte f�a;� von �a;� unter P . Es ist

f�a;�(t) =
ap
2�t3

exp

�
�(a� �t)2

2t

�
; 0 � t � T: (4.10)

Da der Zeitpunkt T beliebig gew�ahlt war, wird durch diese Formel bereits f�ur

0 � t < 1 die Dichte von �a;� beschrieben. Mit Hilfe dieser Dichte k�onnen wir

jetzt den Beweis vervollst�andigen. Es gilt

Ee�r�a;� =

Z 1

0

e�rtf�a;�(t) dt

=

Z 1

0

ap
2�t3

exp

�
�(a� �t)2

2t
� rt

�
dt

=

Z 1

0

ap
2�t3

exp

�
�a

2

2t
+ a�� 1

2
�2t� rt

�
dt

= ea�
Z 1

0

ap
2�t3

exp

�
�a

2

2t
� (

1

2
�2 + r)t

�
dt

= ea��jaj
p

�2+2r:

Im letzten Schritt haben wir dabei die Formel (4.9) f�ur Ee�r�a mit
�
1
2
�2 + r

�
anstelle von r benutzt.

Wir formen nun die Stopzeit Ta so um, da� wir obigen Satz f�ur die Berechnung

von Ee�rTa heranziehen k�onnen. Es gilt (beachte � = r)

Ta = infft � 0 : Xt � ag
= inf

�
t � 0 : x exp

�
�Wt + (r � 1

2
�2)t

�
� a

�

= inf

�
t � 0 :Wt +

1

�

�
r � �2

2

�
t =

1

�
log
�a
x

��
:

Als direkte Konsequenz aus Satz 4.4 ergibt sich daher wegen x > a und somit

log(a=x) < 0 die Identit�at

Ee�rTa = exp

 
log
�a
x

�" 1

�2

�
r � �2

2

�
+

1

�

r
1

�2

�
r � �

2

�2
+ 2r

#!

=
�x
a

��( r

�2
� 1

2)� 1

�2

r�
r��2

2

�2
+2r�2

:
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Abbildung 4.1: L�osung der Amerikanischen Put-Option

Der Exponent l�a�t sich mit Hilfe der elementaren Umformung

�
�
r

�2
� 1

2

�
� 1

�2

s�
r � �2

2

�2

+ 2r�2

= � r

�2
+
1

2
� 1

�2

r
r2 � r�2 +

�4

4
+ 2r�2

= � r

�2
+
1

2
� 1

�2

s�
r +

�2

2

�2

= � r

�2
+
1

2
� r

�2
� 1

2

= �2r

�2

vereinfachen, so da� wir nun in der Lage sind, eine geschlossene Form f�ur unser

Ausgangsproblem anzugeben. Es ist

Ee�r�a =
�x
a

�� 2r

�2
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und folglich

Va(x) =

(
K � x; falls x � a;

(K � a)
�
x
a

�� 2r

�2 ; falls x > a;

wobei nat�urlich immer noch a < K vorausgesetzt ist. Die Funktion Va besitzt

somit die Gestalt K(a)x�
2r

�2 f�ur x > a mit der von a abh�angigen Konstanten

K(a) = (K � a)a
2r

�2 . Wir m�ussen daher nur noch a so w�ahlen, da� K(a) maximal

wird. Eine einfache Rechnung liefert uns, da� das absolute Maximum im Punkt

a� =
2rK

�2 + 2r

angenommen wird. Eine graphische Darstellung der Funktion Va zeigt Abbildung

4.1.

4.2.2 Beweis der Optimalit�at

Im vorherigen Abschnitt haben wir lediglich Stopzeiten von der Gestalt

Ta = infft � 0 : Xt � ag betrachtet und unter diesen eine optimale bestimmt.

Den Beweis, da� diese Stopzeit bereits unter allen Stopzeiten die optimale Strategie

f�ur das Aus�uben der Put-Option darstellt und sich somit als L�osung des Stoppro-

blems V �(x) = sup� Ee
�r� (K � Xt)

+ erweist, blieben wir aber bislang schuldig.

Diesen Nachweis nehmen wir daher als n�achstes in Angri�.

Wir ben�otigen daf�ur allerdings einige Eigenschaften der Funktion Va�, die wir im

folgenden nur noch mit V bezeichnen.

4.5 Lemma. Es sei V : R+ ! R+ gegeben durch

V (x) =

(
K � x; falls x � a�;

(K � a�)
�
x
a�

�� 2r

�2 ; falls x > a�
(4.11)

mit a� = 2rK
�2+2r

. Dann ist V(x) in x = a� einmal stetig di�erenzierbar und f�ur

x 6= a� zweimal stetig di�erenzierbar. Ferner gilt

rV (x) = xrV 0(x) +
1

2
x2�2V 00(x) f�ur alle x > a�; (4.12)

V (a�) = K � a�; (4.13)

V 0(a�) = �1; (4.14)

V (x) � (K � x)+ f�ur alle x > 0: (4.15)
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Beweis. Es ist klar, da� die Funktion V f�ur x 6= a� zweimal stetig di�erenzierbar

ist, so da� wir uns direkt den Gleichungen (4.12) bis (4.15) widmen k�onnen. F�ur

den Beweis von (4.12) sei x > a�. Dann liefert die Rechnung

xrV 0(x) +
1

2
x2�2V 00(x)

= �2r2

�2
(K � a�)

� x
a�

�� 2r

�2

+
1

2
�2 2r

�2

�
2r

�2
+ 1

�
(K � a�)

� x
a�

�� 2r

�2

= (K � a�)
� x
a�

�� 2r

�2

�
�2r2

�2
+ r

�
2r

�2
+ 1

��

= r(K � a�)
� x
a�

�� 2r

�2

= rV (x)

die gew�unschte Di�erentialgleichung. Die Gleichung (4.13) ist trivial. F�ur (4.14)

berechnen wir die Ableitung von V f�ur x > a�: Es ist

V 0(x) = � 2r

�2a�
(K � a�)

� x
a�

�� 2r

�2
�1

= �2r(�2 + 2r)

2r�2K

�
K � 2rK

�2 + 2r

�� x
a�

�� 2r

�2
�1

= ��
2 + 2r

�2

�
�2 + 2r � 2r

�2 + 2r

�� x
a�

�� 2r

�2
�1

= �
� x
a�

�� 2r

�2
�1

:

Wir erhalten die Di�erenzierbarkeit in a� und als Wert der Ableitung

V 0(x) = lim
x"a�

V 0(x) = lim
x#a�

V 0(x) = �1:

F�ur (4.15) k�onnen wir uns wegen der einfachen Absch�atzung a� < K o�enbar auf

den Fall x > a� beschr�anken. Wir de�nieren f�ur x > a�

f(x) := V (x) + x�K:

Die Absch�atzung

f 0(x) = 1�
� x
a�

�� 2r

�2
�1

� 1�
�
a�

a�

�� 2r

�2
�1

= 0
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impliziert, da� die Funktion f auf dem Intervall [a�;1) monoton wachsend ist.

Verm�oge (4.13) f�uhrt uns das zu

f(x) = V (x) + x�K � V (a�) + a� �K = 0;

so da� wir wie gew�unscht

V (x) � K � x

erhalten. Es bleibt V (x) � 0 f�ur alle x > a� zu zeigen. Dies ist aber eine direkte

Folgerung aus der bereits erw�ahnten Ungleichung a� < K.

Wir fassen nun, da wir s�amtliche Ingredienzen f�ur den Optimalit�atsbeweis bereit-

gestellt haben, die bisherigen Ergebnisse in folgendem Satz zusammen:

4.6 Satz. Es sei (Xt)t�0 eine geometrische Brownsche Bewegung mit Drift r > 0

und Volatilit�at � > 0. Dann existiert eine Stopzeit � �, die das Stopproblem

V �(x) = sup� E(K �X� )e
�r� l�ost, n�amlich

� � = infft � 0 : Xt � a�g

mit a� = 2rK
�2+2r

. Ferner gilt V �(x) = V (x) mit

V (x) =

(
K � x; falls x � a�;

(K � a�)
�
x
a�

�� 2r

�2 ; falls x > a�:

Beweis. Wir haben bereits im vorherigen Abschnitt nachgewiesen, da� die Stopzeit

� � die Bedingung

Ee�r�
�

(K �X��)
+ = V (x)

erf�ullt, die uns die G�ultigkeit der Ungleichung

V (x) � sup
�

Ee�r� (K �X� )
+ = V �(x) (4.16)

garantiert. Wir m�ussen somit nur noch die umgekehrte Ungleichung veri�zieren.

Dazu betrachten wir den Proze� (e�rtV (Xt))t�0. Mit Korollar 2.6 k�onnen wir unter
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Beachtung von � = r

e�rtV (Xt) = V (x) +

Z
[0;t]

�e�rsXsV
0(Xs) dWs +

Z
[0;t]

�re�rsV (Xs)��(ds)

+

Z
[0;t]

e�rs
�
rXsV

0(Xs) +
1

2
�2X2

sV
00(Xs)

�
��(ds)

= V (x) +

Z
[0;t]

�e�rsXsV
0(Xs) dWs

+

Z
[0;t]

e�rs
�
�rV (Xs) + rXsV

0(Xs) +
1

2
�2X2

sV
00(Xs)

�
��(ds)

f:s. schreiben. Der Proze�

Mt := V (x) +

Z
[0;t]

e�rsXsV
0(Xs) dWs; t � 0;

bildet ein Martingal, da bzgl. einer Standard-Brownschen Bewegung integriert

wird. Wir de�nieren f�ur s � 0

Ys := e�rs
�
�rV (Xs) + rXsV

0(Xs) +
1

2
�2X2

sV
00(Xs)

�

und zeigen, da� Ys � 0 f:s: f�ur alle s gilt. Mittels einer analogen Rechnung wie

in (3.6) sehen wir dann, da� (Zt)t = (e�rtV (Xt))t ein Supermartingal bildet. F�ur

Xs � a� liefert uns die Absch�atzung

Ys = e�rt
�
�rV (Xs) + rXsV

0(Xs) +
1

2
�2X2

sV
00(Xs)

�
= e�rt (�r(K �Xs)� rXs)

= e�rt (�rK)

< 0

die Ungleichung Ys � 0. F�ur Xs > a� ergibt sich diese aus der Di�erentialgleichung

(4.12) gem�a�

Ys = e�rs
�
�rV (Xs) + rXsV

0(Xs) +
1

2
�2X2

sV
00(Xs)

�
= 0:

Der Proze� (e�rtV (Xt))t�0 bildet daher ein Supermartingal, und wir erhalten unter

Verwendung von Korollar 1.9 in Verbindung mit (4.15) f�ur jede Stopzeit � die
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Absch�atzung

Ee�r� (K �X� )
+ � Ee�r�V (X� )

� Ee0V (X0)

= V (x):

Bilden wir nun auf beiden Seiten das Supremum �uber alle Stopzeiten � , so liefert

dies die umgekehrte Ungleichung

V �(x) = sup
�

Ee�r� (K �Xt)
+ � V (x):

Insgesamt haben wir somit

V �(x) = V (x)

sichergestellt, so da� die Stopzeit � � die gesuchte L�osung unseres Stopproblems

bildet.



Kapitel 5

Exotische Optionen

Gegenstand dieses Kapitels sind zwei weitere Optionen: Zum einen befassen wir uns

mit der sogenannten Russischen Put-Option, die von Shepp und Shiryaev ([She2])

1993 eingef�uhrt wurde und zum anderen mit einer Option, die Guo und Shepp

[Guo] im Jahr 2000 zum ersten Mal analysierten.

5.1 Das Modell

Wir legen im folgenden das Modell von Black und Scholes aus dem vorherigen

Kapitel zugrunde mit der wichtigen �Anderung, da� wir nicht mehr auf dem Prin-

zip der Arbitragefreiheit bestehen. Allerdings werden die anderen Voraussetzungen

bzgl. des Handels mit Finanzg�utern �ubernommen. Diese besagen, da� der Handel

in stetiger Zeit statt�ndet, keine Transaktionskosten verursacht und keine Divi-

denden ausgesch�uttet werden. Der Zeithorizont ist auch hier wieder unendlich.

Die Kursentwicklung eines Bonds wird also durch den Proze�

Rt = ertR0; t � 0; (5.1)

mit Anfangswert R0 und Verzinsungsrate r > 0 gegeben, w�ahrend der Preisproze�

einer Aktie durch eine geometrische Brownsche Bewegung

Xt = x exp

�
�Wt +

�
�� 1

2
�2

�
t

�
; t � 0; (5.2)

mit Drift � > 0, Volatilit�at � > 0 und Startwert x > 0 festgelegt ist. Die Variablen

r, � und � seien im weiteren wieder als bekannt vorausgesetzt.
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Da wir nicht vom Prinzip der Arbitragefreiheit ausgehen, m�ussen die Investoren

in ihrer Annahme �uber die Drift � der geometrischen Brownschen Bewegung nicht

notwendig �ubereinstimmen. Wir k�onnen daher im folgenden auch � 6= r annehmen.

5.2 Die Russische Put-Option

5.2.1 Die Problemstellung

Bei der russischen Put-Option erwirbt der K�aufer der Option das Recht, sich zu

einem beliebigen Zeitpunkt entweder den maximalen Preis, zu dem die Aktie bis

zu diesem Zeitpunkt gehandelt wurde, oder aber einen vorher festgelegten Min-

destbetrag s � 0 auszahlen zu lassen. Der Auszahlungsproze� (St)t�0 der Option

wird dann durch

St = max

�
s; sup

0�u�t
Xu

�
; t � 0 (5.3)

gegeben. Der K�aufer des Kontraktes erh�alt daher zum von ihm w�ahlbaren Aus-

�ubungszeitpunkt � den Wert S� , wobei durch � nat�urlich wieder eine Stopzeit be-

zeichnet wird. Der K�aufer wird also nach einer Strategie bzw. Stopzeit � � suchen,

die den Wert Ee�r�S� maximiert. Gesucht ist also wie bereits in den vorangegan-

genen Beispielen

V �(x; s) = sup
�

Ee�r�S� ; (5.4)

sowie die optimale Stopzeit � �, die dieses Stopproblem l�ost. Wir nehmen im wei-

teren � < r an, da sich sonst die triviale L�osung V �(x; s) =1 ergeben w�urde.

An dieser Stelle sei auf die Arbeit von DuÆe und Harrison ([Duf]) verwiesen.

Sie analysierten die Russischen Put-Option unter G�ultigkeit des No-Arbitrage-

Prinzips, also f�ur � = r, und der zus�atzlichen Annahme, da� in stetiger Zeit

auf die Aktie Dividenden in H�ohe von Æ � 0 ausgesch�uttet werden. Durch die

Konstruktion von Handelsarbitrage haben sie einen fairen Preis f�ur die Option

hergeleitet. Speziell f�ur Æ = 0 ergibt sich ein unendlicher fairer Preis f�ur die Put-

Option, da� hei�t, wird die Option zu einem endlichen Preis verkauft, so ergeben

sich Arbitragem�oglichkeiten.
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5.2.2 Eine heuristische Herleitung

Wir
"
raten\ zun�achst anhand einiger intuitiver �Uberlegungen eine Funktion

V (x; s) = V (x; s; r; �; �2)

und weisen dann im n�achsten Abschnitt nach, da� sie mit der gesuchten Funktion

V � �ubereinstimmt.

Bei einem niedrigen Startwert des Finanzgutes ist es plausibel, sofort zu stoppen

und wenigstens den Betrag s zu realisieren, da es eher unwahrscheinlich ist, da� der

Wert der Aktie den Wert s �ubersteigt. Diese �Uberlegung bedeutet V (x; s) = s, falls

x � g(s) gilt, wobei g(s) < s eine Funktion ist, die eine von s abh�angige sogenannte

freie Grenze bezeichnet. Wir nehmen an, da� diese Funktion stetig di�erenzierbar

ist. Bei einem h�oheren Startwert des Finanzgutes x > g(s), d.h. ist der Proze�

St u.U. kurz davor, einen Anstieg zu verzeichnen, so ist es naheliegend, mit dem

Aus�uben der Option noch zu warten. Wir erhalten also eine Fortsetzungsregion

C = f(x; s) 2 R+ �R+ : g(s) < x � sg

und eine Stopregion

E = f(x; s) 2 R+ �R+ : x � g(s)g:

Anschaulich bedeuten diese folgendes: Be�ndet sich der (Vektor-) Proze� (Xt; St)

(beachte Xt � St) in der Fortsetzungsregion, so wartet man mit dem Aus�uben der

Option bis zu dem Zeitpunkt, zu dem er diese verl�a�t. Dabei betrachten wir den

Proze� (Xt; St), um die zeitliche Entwicklung sowohl des Aktienkurses als auch

des Auszahlungprozesses zu erfassen. Die Option ist somit auszu�uben, sobald der

Proze� (Xt; St) in die Stopregion eintritt, was gleichbedeutend mit Xt � g(St) ist.

In der Fortsetzungsregion sollte die gesuchte Funktion die Eigenschaft besitzen,

da� der Proze� e�rt V (Xt; St) ein Martingal bildet, was durch die Forderung

de�rt V (Xt; St) = 0

sichergestellt wird. In der sogenannten festen Grenze s �uberlegen wir uns, da� V

die Bedingung

@

@s
V (x; s)

���
x=s

= 0 (5.5)
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erf�ullen sollte. Diese Bedingung ist f�ur die Martingaleigenschaft von e�rtV (Xt; St)

in der Fortsetzungsregion notwendig und ergibt sich aus der Darstellung

St = max

�
s; sup

0�u�t
Xu

�
= sup

0�u�t
Xu (5.6)

f�ur s � x. Die Funktion V �(x; s) = sup� Ee
�r�S� ist f�ur s � x also unabh�angig

von s und somit ist ersichtlich, da� V die Gleichung (5.5) erf�ullen mu�.

F�ur Xt = St gilt also
@
@s
V (Xt; St) = 0. Andererseits gilt f�ur Xt < St nat�urlich

dSt = 0. Wir gehen weiter davon aus, da� wir auf die Funktion V die verallge-

meinerte Itô-Formel 2.3 bzw. Korollar 2.6 anwenden d�urfen, so da� wir aus dem

soeben Erw�ahnten die f:s: Identit�at

e�rtV (Xt; St)

= V (X0; S0) +

Z
[0;t]

�Xse
�rs @

@x
V (Xs; Ss) dWs �

Z
[0;t]

re�rsV (Xs; Ss)��(ds)

+

Z
[0;t]

e�rs
�
�Xs

@

@x
V (Xs; Ss) +

1

2
�2X2

s

@2

@x2
V (Xs; Ss)

�
��(ds)

+

Z
[0;t]

@

@s
e�rsV (Xs; Ss) dSs (5.7)

= V (X0; S0) +

Z
[0;t]

�Xse
�rs @

@x
V (Xs; Ss) dWs

+

Z
[0;t]

e�rs
�
�rV (Xs; Ss) + �Xs

@

@x
V (Xs; Ss) +

1

2
�2X2

s

@2

@x2
V (Xs; Ss)

�
��(ds)

erhalten. Das Integral
R
[0;t]

�Xse
�rs @

@x
V (Xs; Ss) dWs bildet ein Martingal. Damit

der gesamte Proze� ein Martingal bildet, mu� V also die gew�ohnliche Di�erenti-

algleichung

�rV + �x
@

@x
V +

1

2
�2x2

@2

@x2
V = 0 (5.8)

im Fortsetzungsbereich erf�ullen. Diese Gleichung wird auch als
"
Bellman-Di�eren-

tialgleichung\ bezeichnet. Die L�osungen dieser Di�erentialgleichung besitzen die

Gestalt

V (x) = A(s)x
0 +B(s)x
1 : (5.9)

Dabei bilden 
0 und 
1 die L�osungen der Gleichung

�r + �

1

2
�2
(
 � 1) = 0; (5.10)
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die auch Indexgleichung genannt wird. A(s) bzw. B(s) sind zwei von s abh�angige,

noch zu bestimmende Konstanten. Eine exakte Herleitung dieser L�osung �ndet

sich im Anhang.

An dieser Stelle greifen wir nun auf das sogenannte Principle of Smooth Fit zur�uck.

Erstmalig wurde dieses Prinzip von A. N. Kolmogorov in den 50er Jahren angewen-

det und unabh�angig davon 1961 von H. Cherno� ([Che]) entdeckt. Er analysierte

Sequentialtests f�ur den Erwartungswert von Normalverteilungen, wobei er eine

Verbindung zu Di�erentialgleichungen mit freien Grenzen herstellte.

Das Principle of Smooth Fit ist rein heuristischer Natur und besagt in diesem

Zusammenhang, da� die Funktion V in der freien Grenze g(s) m�oglichst
"
glatt\

sein sollte, was in den Gleichungen

V (g(s); s) = s (5.11)

und

@

@x
V (x; s)

���
x=g(s)

= 0 (5.12)

zum Ausdruck kommt. Anhand dieser beiden Gleichungen k�onnen wir nun die

genaue Gestalt der Funktion V herleiten. Dazu setzen wir die obige Darstellung

(5.9) in die Gleichungen (5.11) und (5.12) ein und erhalten

A(s)g(s)
0 +B(s)g(s)
1 = s

bzw.


0A(s)g(s)

0�1 + 
1B(s)g(s)


1�1 = 0:

Diesem Gleichungssystem entnehmen wir durch einige elementare Umformungen

die Werte A und B. Es ist

A(s) = � s
1


0 � 
1
g(s)�
0 und B(s) =

s
0


0 � 
1
g(s)�
1;

woraus sich durch Einsetzen in (5.9) ferner

V (x; s) =
s


0 � 
1

�

0

�
x

g(s)

�
1

� 
1

�
x

g(s)

�
0
�
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im Fortsetzungsbereich ergibt. Mit Hilfe dieser Gestalt bestimmen wir nun als

letztes die freie Grenze g. Unter Hinweis auf Gleichung (5.5) gilt o�enbar

@

@s
V (x; s)

���
x=s

=
1


0 � 
1

�

0

�
s

g(s)

�
1

� 
1

�
s

g(s)

�
0
�

+
s


0 � 
1

g0(s)
g(s)

�
�
1
0

�
s

g(s)

�
1

+ 
0
1

�
s

g(s)

�
0
�

!
= 0;

woraus folgt, da� g der gew�ohnlichen Di�erentialgleichung

g0(s) =

1

1

�
s

g(s)

�
1 � 1

0

�
s

g(s)

�
0
�

s
g(s)

�
1+1

�
�

s
g(s)

�
0+1
(5.13)

gen�ugen mu�. Eine einfache L�osung dieser Di�erentialgleichung stellt die Funktion

g : R! R,

g(s) := as

dar, wobei a 2 R eine noch zu bestimmende Konstante ist. Der Beweis im folgen-

den Abschnitt wird zeigen, da� die Funktion g bereits die gesuchte freie Grenze

ist. Daher verzichten wir an dieser Stelle auf eine genaue Herleitung dieser L�osung.

Zur Berechnung von a setzen wir g(s) = as in die Di�erentialgleichung (5.13) ein

und erhalten

a =

1

1
a�
1 � 1


0
a�
0

a�
1�1 � a�
0�1
:

Einige einfache Umformungen liefern schlie�lich

a =

�

0(
1 � 1)


1(
0 � 1)

� 1

1�
0

;

so da� wir nun die exakte Gestalt von V angeben k�onnen. Es ist

V (x; s) =

8>><
>>:

s; falls 0 < x � as;

s

0�
1

�

0
�
x
as

�
1 � 
1
�
x
as

�
0�
; falls as < x � s

x

0�
1

�

0
�
1
a

�
1 � 
1
�
1
a

�
0�
; falls s < x:

Dabei resultiert die Gestalt von V f�ur s < x aus Gleichung (5.6), die die Identit�at

V (x; s) = V (x; x) f�ur s � x liefert.
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V

V (x; s)

-
x

s

as s

6

�
�
�
�
�
�

Abbildung 5.1: L�osung der Russischen Put-Option

5.2.3 Beweis der Vermutung

Wir beweisen nun, da� die gerade heuristisch hergeleitete Funktion wirklich mit

der gesuchten Funktion V � �ubereinstimmt und �uberzeugen uns, da� die Stopzeit

� � = infft � 0 : Xt = aStg einen optimalen Aus�ubungszeitpunkt der Option

bildet.

F�ur den endg�ultigen Nachweis ist allerdings einige Vorarbeit zu leisten. Wir stellen

daher die ben�otigten Aussagen in einigen Lemmata dem eigentlichen Beweis voran.

5.1 Lemma. Es seien 
0 und 
1 die L�osungen der Indexgleichung �r + �
 +
1
2
�2
(
 � 1) = 0, d.h.


0 =
1

�2

0
@�2

2
� �+

s�
�� �2

2

�2

+ 2r�2

1
A und


1 =
1

�2

0
@�2

2
� ��

s�
�� �2

2

�2

+ 2r�2

1
A :

Weiter sei a =
�

0(
1�1)


1(
0�1)

� 1

1�
0 . Dann gilt 
1 < 0 < 1 < 
0 und ferner 0 < a < 1.
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Beweis. Die erste Behauptung erhalten wir aus den beiden Absch�atzungen


1 =
1

�2

0
@�2

2
� ��

s�
�2

2
� �

�2

+ 2�2r

1
A

<
1

�2

0
@�2

2
� ��

s�
�2

2
� �

�2

1
A

= 0

und


0 =
1

�2

0
@�2

2
� �+

s�
�2

2
� �

�2

+ 2�2r

1
A

=
1

�2

 
�2

2
� �+

r
�4

4
� �2�+ �2 + 2�2r

!

(�)
>

1

�2

 
�2

2
� �+

r
�4

4
+ �2�+ �2

!

= 1;

wobei in (�) die Ungleichung 2�2� < 2�2r eingegangen ist. Unter Ber�ucksichti-

gung von 
1 < 0 < 1 < 
0 und daher (
1 � 1)
�1
1 > 1 und 
0(
0 � 1)�1 > 1 sowie


1 � 
0 < 0 ergibt sich o�enbar

0 <

�

0(
1 � 1)


1(
0 � 1)

� 1

1�
0

< 1

und folglich die zweite Behauptung des Lemmas.

In folgendem Lemma sind nun einige grundlegende Eigenschaften der Funktion V

zusammengestellt.

5.2 Lemma. Die Funktion V : R+ �R+ ! R, de�niert durch

V (x; s) =

8>><
>>:

s; falls 0 < x � as;

s

0�
1

�

0
�
x
as

�
1 � 
1
�
x
as

�
0�
; falls as < x � s

x

0�
1

�

0
�
1
a

�
1 � 
1
�
1
a

�
0�
; falls s < x:
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ist stetig partiell di�erenzierbar. Ferner existiert @2

@x2
f f�ur x 6= as und ist stetig. Es

gilt f�ur as � x � s die Di�erentialgleichung

rV (x; s) = x�
@

@x
V (x; s) +

1

2
x2�2 @

2

@x2
V (x; s) (5.14)

sowie

V (x; s) � s f�ur alle 0 � x � s; (5.15)

V (as; s) = s; (5.16)

@

@x
V (x; s)

���
x=as

= 0; (5.17)

@

@s
V (x; s)

���
x=s

= 0: (5.18)

Beweis. Es ist nur noch die Ungleichung (5.15) nachzuweisen. F�ur die anderen

Gleichungen verweisen wir auf den vorherigen Abschnitt, in dem die Funktion

anhand dieser Gleichungen hergeleitet wurde. Diese Eigenschaften k�onnen jedoch

auch leicht elementar nachgerechnet werden. F�ur den Beweis der Gleichung (5.15)

betrachten wir die Ableitung von V f�ur x 2 (as; s) bei festem s:

@

@x
V (x; s) =

s
0
1


0 � 
1
x�1

�� x
as

�
1 � � x
as

�
0�

= � s
0
1


0 � 
1
x�1

� x
as

�
1
| {z }

>0

�� x
as

�
0�
1 � 1

�
| {z }

>0

> 0:

Dabei ist 
1 < 0 < 1 < 
0 und 
0 � 
1 > 0 zu beachten. Die Funktion V ist somit

in x monoton wachsend auf (as; s) und daher ist

V (x; s) � V (as; s) = s;

was den Beweis abschlie�t.

Die folgenden beiden Lemmata beleuchten die optimale Stopzeit � � und den Proze�

e�rtV (Xt; St) etwas genauer.

5.3 Lemma. F�ur die Stopzeit � � := infft � 0 : Xt = aStg gilt

P (� � <1) = 1:
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Beweis. Es sei T > 0 fest vorgegeben. Aus der De�nition von � � ergibt sich

P (� � > T )

= P (Xt > aSt 8 0 � t � T )

= P (logXt > log a + logSt 8 0 � t � T )

= P

�
�Wt +

�
�� 1

2
�2

�
t > log a+ �Ws +

�
�� 1

2
�2

�
s; 8 0 � s � t � T

�

= P

�
�(Wt �Ws) > log a�

�
�� 1

2
�2

�
(t� s) 8 0 � s � t � T

�

� P

�
Wt �Ws > log a�

������ 1

2
�2

���� (t� s) 8 0 � s � t � T

�

= P

�
Ws �Wt <

������ 1

2
�2

���� (t� s)� log a 8 0 � s � t � T

�
:

Abk�urzend setzen wir c :=
���� 1

2
�2
�� (t � s)� log a. Sei T = nÆ mit einem Æ > 0,

dann liefert diese Absch�atzung o�enkundig

P (� � > T ) � P (Ws �Wt < c 8 0 � s � t � T )

� P
�
WÆ �W0 < c; : : : ;WnÆ �W(n�1)Æ < c

�
:

Wegen der Unabh�angigkeit der Zuw�achse gilt daher

P (� � > T ) �
�

1p
2�Æ

Z c

�1
e�

x2

2Æ dx

�n

! 0

5.4 Lemma. Der Proze� Zt := e�r(�
�^t)V (X��^t; S��^t); 0 � t < 1; bildet ein

gleichgradig integrierbares Martingal.

Beweis. Die Martingaleigenschaft folgt aus der Di�erentialgleichung (5.14) und

der Rechnung (5.7). F�ur die gleichgradige Integriebarkeit ist es nach Korollar 50.3

in [Als] hinreichend zu zeigen, da�

E sup
0�t<1

Zt <1

gilt. Aus der De�nition der Funktion V erhalten wir die Absch�atzung

Zt = e�r(�
�^t)V (X��^t; S��^t) � e�r(�

�^t)V (S��^t; S��^t) = ce�r(�
�^t)S��^t
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mit c = 1

0�
1

�

0
�
1
a

�
1 � 
1
�
1
a

�
0�
. Daher ist es klar, da� es bereits gen�ugt, die

Ungleichung

E sup
0�t<1

e�rtSt =
Z 1

0

P

�
sup

0�t<1
e�rtSt > y

�
dy <1 (5.19)

nachzuweisen. Weiter gilt f�ur y > maxfx; sg die �Aquivalenz

sup
0�t<1

e�rtSt > y

() sup
0�t<1

e�rt sup
0�s�t

Xs > y

() sup
0�t<1

e�rt sup
0�s�t

x exp

�
�Ws +

�
�� 1

2
�2

�
s

�
> y

() sup
0�t<1

sup
0�s�t

�
�Ws +

�
�� 1

2
�2

�
s+ log x� rt

�
> log y

() sup
0�t<1

sup
0�s�t

�
�Ws +

�
�� 1

2
�2

�
s� log

y

x
� rt

�
> 0;

die

P

�
sup

0�t<1
e�rtSt > y

�

= P

�
sup

0�t<1
sup
0�s�t

�
�Ws +

�
�� 1

2
�2

�
s� log

y

x
� rt

�
> 0

� (5.20)

liefert. Nach einer bekannten Ungleichung von Doob (Satz 1.8, S. 55 in [Rev]) gilt

f�ur alle � > 0 und � > 0 die Absch�atzung

P (Wt � �t+ � 8 0 � t <1) � 1� e�2��: (5.21)

Wir w�ahlen speziell die Werte

� = ��1

�
r � �+

�2

2

�
und � = ��1 log

y

x
: (5.22)

Diese Wahl liefert uns f�ur Wt � �t+ �

sup
0�s�t

�
�Ws +

�
�� 1

2
�2

�
s

�
� sup

0�s�t

�
�(�s+ �) +

�
�� �2

2

�
s

�

= sup
0�s�t

�
log

y

x
+ rs

�
= log

y

x
+ rt:
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Folglich gilt f�ur alle t � 0 die Implikation

Wt � �t+ � =) sup
0�s�t

�
�Ws +

�
�� 1

2
�2

�
s

�
� log

y

x
� rt � 0;

die letztlich die Absch�atzung

P

�
sup

0�t<1
(Wt � �t� �) > 0

�

� P

�
sup

0�t<1
sup
0�s�t

�
�Ws +

�
�� 1

2
�2

�
s� log

y

x
� rt

�
> 0

�

garantiert. F�ur y > maxfx; sg erhalten wir daher unter Verwendung von (5.20),

(5.21) und (5.22) in Verbindung mit der Identit�at �� =
�
1
2
+ r��

�2

�
log y

x
die Un-

gleichung

P

�
sup

0�t<1
e�rtSt > y

�

= P

�
sup

0�t<1
sup
0�s�t

�
�Ws +

�
�� 1

2
�2

�
s� log

y

x
� rt

�
> 0

�

� P

�
sup

0�t<1
(Wt � �t� �) > 0

�
= 1� P (Wt � �t+ � 8 0 � t <1)

� e�2��

= exp

�
�
�
1 +

2(r � �)

�2

�
log

y

x

�

=
�y
x

��(1+ 2(r��)

�2
)
:

Die Existenz des IntegralsZ 1

s

�y
x

��(1+ 2(r��)

�2
)
dy <1

f�ur r > � und s > 0 liefert nun zusammen mit (5.19) die gew�unschte Absch�atzung

E sup0�t<1 e�rtSt <1, die den Beweis vervollst�andigt.

Wir haben nun s�amtliche Bestandteile beisammen, um den Beweis unserer Ver-

mutung zu erbringen. Der folgende Satz best�atigt unsere intuitiven �Uberlegungen

aus dem vorherigen Abschnitt:
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5.5 Satz. Es seien (Xt)t�0 und (St)t�0 de�niert gem�a� (5.1) bzw. (5.3). Dann

existiert f�ur das Stopproblem V �(x; s) = sup� Ee
�r�S� eine L�osung � �, falls � < r

ist. Die optimale Stopzeit wird durch

� � = infft � 0 : Xt = aStg
gegeben, wobei a 2 (0; 1) durch

a =

�

0(
1 � 1)


1(
0 � 1)

� 1

1�
0

de�niert ist. Die Werte 
1 < 0 < 1 < 
0 bilden dabei die L�osungen der Indexglei-

chung �r + �
 + 1
2
�2
(
 � 1) = 0. Weiter gilt V �(x; s) = V (x; s) mit

V (x; s) =

8>><
>>:

s; falls 0 < x � as;

s

0�
1

�

0
�
x
as

�
1 � 
1
�
x
as

�
0�
; falls as < x � s

x

0�
1

�

0
�
1
a

�
1 � 
1
�
1
a

�
0�
; falls s < x:

Beweis. Wir zeigen, da� der Proze� (e�rtV (Xt; St))t�0 ein Supermartingal bildet,

indem wir auf diesen Proze� die verallgemeinerte Itô-Formel anwenden. Wir erhal-

ten analog zur Rechnung (5.7)

e�rtV (Xt; St)

= V (X0; S0) +

Z
[0;t]

�Xse
�rs @

@x
V (Xs; Ss) dWs

+

Z
[0;t]

e�rs
�
�rV (Xs; Ss) + �Xs

@

@x
V (Xs; Ss) +

1

2
�2X2

s

@2

@x2
V (Xs; Ss)

�
��(ds)

f:s. Das erste Integral bildet ein Martingal, da wir bzgl. einer Standard-Brownschen

Bewegung integrieren. Wir de�nieren

Yt := e�rt
�
�rV (Xt; Ss) + �Xt

@

@x
V (Xt; Ss) +

1

2
�2X2

t

@2

@x2
V (Xt; Ss)

�
:

Im Bereich 0 < Xt � as gilt f�ur Yt

Yt = e�rt
�
�rV (Xt; Ss) + �Xt

@

@x
V (Xt; Ss) +

1

2
�2X2

t

@2

@x2
V (Xt; Ss)

�
= e�rt (�rV (Xt; St))

= e�rt (�rs)
< 0;
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w�ahrend f�ur as < Xt < s nach (5.14)

Yt = e�rt
�
�rV (Xt; Ss) + �Xt

@

@x
V (Xt; Ss) +

1

2
�2X2

t

@2

@x2
V (Xt; Ss)

�
= 0

gilt. Der Integrand des zweiten Integrals ist somit stets negativ. Dies liefert uns

wie schon in den beiden vorangegangenen Kapiteln, da� (e�rtV (Xt; St))t�0 ein Su-

permartingal bildet. Wegen der Stetigkeit der Funktion (x; s) 7! V (x; s) ist dieses

Supermartingal rechtseitig stetig und aus Gleichung (5.15) erhalten wir somit f�ur

eine beliebige Stopzeit � unter Verwendung von Korollar 1.9 die Absch�atzung

Ee�r�S� � Ee�r�V (X� ; S�)

= Ee0V (X0; S0)

= V (x; s):

Gehen wir zum Supremum �uber, so liefert dies die gew�unschte Ungleichung

V �(x; s) = sup
�

Ee�r�S� � V (x; s):

F�ur die umgekehrte Ungleichung betrachten wir die Stopzeit � � = infft � 0 :

Xt = aStg. Der gestoppte Proze�
�
e�r(t^�

�)V (Xt^��)
�
t�0

bildet nach Lemma (5.4)

ein gleichgradig integrierbares Martingal. Daher folgt aus dem Optional Sampling

Theorem

V �(x) = sup
�

Ee�r�S�

� Ee�r�
�

S��
(�)
= Ee�r�

�

V (aS��; S��)

(��)
= Ee�r�

�

V (X��; S��)

= V (x; s);

wobei wir in (�) von V (as; s) = s Gebrauch gemacht haben und in (��) die Iden-
tit�at X�� = aS�� benutzt haben.

5.6 Satz. In der Situation von Satz 5.5 sei � � r. Dann erhalten wir mit � � =1
eine optimale Stopzeit, und die erwartete Auszahlung ergibt sich zu V � =1.

Beweis. Diese Aussage ergibt sich aus Satz 1.2.
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5.3 Das Problem von Guo und Shepp

5.3.1 Die Problemstellung

In diesem Abschnitt befassen wir uns mit einem Stopproblem, da� gewisse �Ahn-

lichkeiten zur Russischen Option aufweist. Wir f�uhren eine Option ein, bei der

der K�aufer der Option das Recht erwirbt, sich zu einem beliebigen Zeitpunkt ent-

weder den aktuellen Preis, zu dem das Finanzgut zu diesem Zeitpunkt gehandelt

wird, oder aber einen vorher festgelegten Mindestbetrag l � 0 auszahlen zu lassen.

Diese Option unterscheidet sich also von der Russischen Put-Option darin, da�

der K�aufer nicht zwischen dem Supremum des Preisprozesses bis zum Zeitpunkt t

und dem festen Betrag l w�ahlen kann, sondern zwischen dem aktuellen Wert des

Finanzgutes und l. Die vorliegende Problemstellung resultiert aus der Betrachtung

eines risikoaversen Investors, der sich gegen fallende Kurse absichern will und we-

nigstens einen vorher garantierten Preis erhalten m�ochte. Der Auszahlungsproze�

(St)t�0 der Option wird durch

St = maxfl; Xtg; t � 0 (5.23)

gegeben. Der K�aufer der Option wird wiederum nach einer Strategie bzw. Stopzeit

� � suchen, die den Wert Ee�r�S� maximiert. Gegeben ist also das Stopproblem

V �(x; l) = sup
�

Ee�r�S� ; (5.24)

wobei nat�urlich das Supremum wieder �uber s�amtliche Stopzeiten gebildet wird. Da

wir im Gegensatz zum vorherigen Abschnitt nicht den Proze� sup0�s�tXt betrach-

ten, spielt hier die zweite Komponente von V (x; l) keine bedeutende Rolle mehr,

so da� wir im folgenden V als Funktion nur einer Ver�anderlichen au�assen und l

als festen Wert betrachten.

5.3.2 Eine heuristische Herleitung

Wir gehen bei dieser Option analog zur Russischen Put-Option vor, d.h. wir leiten

wiederum mittels heuristischer Argumente eine Funktion

V (x) = V (x; l; �; �2; r)



74 Kapitel 5 Exotische Optionen

und eine Stopzeit � � her, die wir dann als optimale L�osung f�ur das vorliegende

Stopproblem identi�zieren. Wir setzen auch hier � < r voraus.

Bei einem niedrigen Startwert der Aktie ist es vermutlich sinnvoll, sofort zu stoppen

und wenigstens den Betrag l zu realisieren, d.h. V (x) = l, falls x � g(l) (vgl.

Abbildung 5.2 auf S. 78). Bei einem hohen Startwert x w�urde man ebenfalls sofort

stoppen, da der Wert l eine eher untergeordnete Rolle spielt und der Proze� e�rtSt
ein Supermartingal bildet (r > �). Man w�urde sich also im Mittel verschlechtern,

und es erscheint daher ratsam, direkt den Wert x zu realisieren. Dies bedeutet

V (x) = x, falls x � h(l). Wir nehmen aufgrund der Ergebnisse im vorherigen

Abschnitt direkt an, da� die Funktionen g und h linear sind. Es seien also g(l) = al

und h(l) = bl mit 0 < a < 1 < b <1. Wir erhalten somit eine Fortsetzungsregion

C = fx 2 R+ : al < x < blg

und eine Stopregion

E = fx 2 R+ : x � al oder x � blg:

In der Fortsetzungsregion sollte der Proze� e�rt V (Xt) wiederum ein Martingal

bilden, d.h. es mu�

de�rtV (Xt) = 0:

gelten. F�ur unsere heuristische Herleitung gehen wir weiter davon aus, da� wir auf

die Funktion V die verallgemeinerte Itô-Formel 2.3 bzw. Korollar 2.6 anwenden

d�urfen, insbesondere sei V also in den Grenzen al und bl stetig di�erenzierbar. Wir

erhalten

e�rtV (Xt) = V (X0) +

Z
[0;t]

�e�rsXsV
0(Xs) dWs �

Z
[0;t]

re�rsV (Xs)��(ds)

+

Z
[0;t]

�
�e�rsXsV

0(Xs) +
1

2
�2e�rsX2

sV
00(Xs)

�
��(ds)

= V (x) +

Z
[0;t]

�e�rsXsV
0(Xs) dWs

+

Z
[0;t]

e�rs
�
�rV (Xs) + �XsV

0(Xs) +
1

2
�2X2

sV
00(Xs)

�
��(ds)
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f:s. Da das Integral
R
[0;t]

e�rsXsV
0(Xs) dWs ein Martingal bildet, mu� V die gew�ohn-

liche Di�erentialgleichung

�rV + �xV 0 +
1

2
�2x2V 00 = 0

im Fortsetzungsbereich erf�ullen, damit auch e�rt V (Xt) ein Martingal bildet. Die

L�osungen dieser Di�erentialgleichung haben nach Satz B.1 die Gestalt

V (x) = Ax
0 +Bx
1 ; (5.25)

wobei 
0 und 
1 die L�osungen der Indexgleichung �r + �
 + 1
2
�2
(
 � 1) = 0

bilden.

Nach dem Principle of Smooth Fit sind dabei A und B so zu w�ahlen, da� nachfol-

gende Gleichungen in den freien Grenzen al und bl erf�ullt sind:

V (al) = l; (5.26)

V (bl) = bl; (5.27)

V 0(al) = 0; (5.28)

V 0(bl) = 1: (5.29)

Anhand dieser Gleichungen und der Gestalt (5.25) von V leiten wir nun die Funk-

tion V im Intervall [al; bl] her.

Einsetzen von (5.25) in die Gleichungen (5.26) und (5.28) liefert

A(al)
0 +B(al)
1 = l

und


0A(al)

0�1 + 
1B(al)


1�1 = 0:

Hieraus lassen sich durch einige einfache Umformungen die Werte von A und B

bestimmen. Es ist

A = � l
1


0 � 
1
(al)�
0 und B =

l
0


0 � 
1
(al)�
1 ;

woraus sich eine genauere Gestalt von V ergibt. Unter Verwendung von (5.25)

erhalten wir

V (x) =
l


0 � 
1

�

0

� x
al

�
1 � 
1

� x
al

�
0�
: (5.30)
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Als n�achstes bestimmen wir aus (5.27) und (5.29) die freien Grenzen al und bl:

Setzen wir (5.30) in diese Gleichungen ein, so liefert dies

1


0 � 
1

�

0

�
b

a

�
1

� 
1

�
b

a

�
0
�

= b

und


0
1


0 � 
1
b�1

��
b

a

�
1

�
�
b

a

�
0
�

= 1:

Diese beiden Gleichungen formen wir zu


0 � 
1

�
b

a

�
0�
1
= b

�
b
a

��
1
(
0 � 
1) (5.31)

und


0
1

 
1�

�
b

a

�
0�
1
!

= b
�
b
a

��
1
(
0 � 
1)

um. Gleichsetzen und substituieren von � := b=a ergibt weiter


0 � 
1�

0�
1 = 
0
1

�
1� �
0�
1

�
:

L�osen wir diesen Ausdruck nach � auf, so ergibt sich

� =

�

0(
1 � 1)


1(
0 � 1)

� 1

0�
1

:

Setzen wir � in (5.31) ein, so erhalten wir


0 � 
1

 �

0(
1 � 1)


1(
0 � 1)

� 1

0�
1

!
0�
1

= b

 �

0(
1 � 1)


1(
0 � 1)

� 1

0�
1

!�
1

(
0 � 
1);

woraus wir durch einige elementare Umformungen schlie�lich

b = (
0 � 
1)
�1

�

0 � 
0(
1 � 1)


0 � 1

� �

0(
1 � 1)


1(
0 � 1)

� 1

0�
1

!
1

=

0


0 � 1

�

0(
1 � 1)


1(
0 � 1)

� 
1

0�
1
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bekommen. Den Wert von b setzen wir nun in � = b=a ein und erhalten den Wert

von a. Es gilt

a =
b

�

=

0


0 � 1

�

0(
1 � 1)


1(
0 � 1)

� 
1�1

0�
1

=

0


0 � 1

�

0(
1 � 1)


1(
0 � 1)

��1�

0(
1 � 1)


1(
0 � 1)

��1+
0

0�
1

=

1


1 � 1

�

1(
0 � 1)


0(
1 � 1)

� 1�
0

0�
1

:

Wir haben somit s�amtliche Variablen bestimmt, so da� sich unter Ber�ucksichtigung

obiger Berechnungen die genaue Gestalt von V zu

V (x) =

8>><
>>:

l; falls 0 < x � al;

l

0�
1

�

0
�
x
al

�
1 � 
1
�
x
al

�
0�
; falls al < x < bl;

x; falls bl � x

ergibt.

5.3.3 Beweis der Vermutung

Wir kommen nun zum expliziten Beweis, da� die obige Funktion mit der gesuchten

Funktion V �(x) = sup� e
�r�S� �ubereinstimmt und die Stopzeit � � = infft � 0 :

Xt =2 (al; bl)g den optimalen Aus�ubungszeitpunkt f�ur die oben dargestellte Option

bildet. Den Nachweis f�uhren wir wieder in einer Reihe von Lemmata.

5.7 Lemma. Es seien 
0 und 
1 die L�osungen der Indexgleichung �r + �
 +
1
2
�2
(
 � 1) = 0. Dann gilt 
1 < 0 < 1 < 
0 und 0 < a < 1 < b.

Beweis. F�ur die Ungleichung 
1 < 0 < 1 < 
0 verweisen wir auf Lemma (5.1).

Unter Ber�ucksichtigung von 
1 < 0 < 1 < 
0 und daher 0 < 
1(
1 � 
0)
�1 < 1;

0 < 
1(
1 � 1)�1 < 1 und 0 < 
�1
0 (
0 � 1) < 1 erhalten wir

0 <

1


1 � 1

�

1


1 � 1


0 � 1


0

� 1�
0

0�
1

< 1
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V

V (x)

-
x

l

lal bl

6

��

��

��

��

��

�
�
�
�
�
�

Abbildung 5.2: Erwartete Auszahlung

und


0


0 � 1

�

0(
1 � 1)


1(
0 � 1)

� 
1

0�
1

>

0


0 � 1

�

0


0 � 1

� 
1

0�
1

>

0


0 � 1

�

0 � 1


0

� 
1

1�
0

>

0


0 � 1


0 � 1


0
= 1;

also die zweite Ungleichungskette.

Wir stellen nun noch einmal einige grundlegende Eigenschaften der Funktion V

heraus:

5.8 Lemma. Die Funktion V : R+ ! R ist in den Grenzen x = al und x = bl

stetig di�erenzierbar und in R+nfal; blg zweimal stetig di�erenzierbar. Es gilt

rV (x) = x�V 0(x) +
1

2
x2�2V 00(x) f�ur x 2 (al; bl); (5.32)

V (x) � maxfx; lg f�ur alle x 2 R+; (5.33)
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V (al) = l; (5.34)

V (bl) = bl; (5.35)

V 0(al) = 0; (5.36)

V 0(bl) = 1: (5.37)

Beweis. Es fehlt lediglich der Nachweis von Gleichung (5.33). Hierf�ur betrachten

wir die Ableitung von V f�ur x 2 (al; bl):

V 0(x) =
l
0
1


0 � 
1
x�1

�� x
al

�
1 � � x
al

�
0�

= � l
0
1


0 � 
1
x�1

� x
al

�
1
| {z }

>0

�� x
al

�
0�
1 � 1

�
| {z }

>0

> 0:

Dabei ist auf 
1 < 0 und auf 
0 � 
1 > 0 zu achten. Die Funktion V ist somit

monoton wachsend auf (al; bl), und daher ist

V (x) � V (al) = l: (5.38)

Es bleibt V (x) � x oder anders ausgedr�uckt V (x)�x � 0 zu zeigen. Wir betrachten

die Funktion nur im Intervall (al; bl), denn f�ur x =2 (al; bl) ist die Ungleichung

trivial. Wir weisen nach, da� f�ur die Ableitung V 0(x) � 1 gilt. Dann ist V (x)� x

auf [al; bl] monoton fallend, und wir erhalten

V (x)� x � V (bl)� bl = 0

f�ur alle x 2 (al; bl). Um allerdings V 0(x) � 1 zu zeigen, m�ussen wir auch noch auf

die zweite Ableitung V 00 zur�uckgreifen. Wir berechnen also zun�achst die beiden

Ableitungen. Diese ergeben sich zu

V 0(x) =
l
0
1


0 � 
1
x�1

�� x
al

�
1 � � x
al

�
0�

und

V 00(x) =
l
0
1


0 � 
1
x�2

�
(
1 � 1)

� x
al

�
1 � (
0 � 1)
� x
al

�
0�
:
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Unter Verwendung von 
1 < 0 < 1 < 
0 und 
1 � 1 < 0 sowie 
0 � 1 > 0 erhalten

wir im Intervall (al; bl) f�ur die zweite Ableitung die Absch�atzung

V 00(x) =
l
0
1


0 � 
1
x�2

�
(
1 � 1)

� x
al

�
1 � (
0 � 1)
� x
al

�
0�

=
l
0
1


0 � 
1
x�2(
1 � 1)

� x
al

�
1
| {z }

>0

�
1� 
0 � 1


1 � 1

� x
al

�
0�
1�
| {z }

>0

> 0:

Die Ableitung V 0 ist daher monoton wachsend auf dem Intervall (al; bl), und somit

ist

V 0(x) < V 0(bl) = 1;

wodurch die gew�unschte Monotonie sichergestellt wird. Daher gilt V (x) � x � 0,

was o�enbar in Verbindung mit (5.38) Ungleichung (5.33) best�atigt.

5.9 Lemma. F�ur die Stopzeit � � = infft � 0 : Xt =2 (al; bl)g gilt

P (� � <1) = 1:

Beweis. Dies ist eine direkte Konsequenz aus der Unabh�angigkeit der Zuw�achse

einer Brownschen Bewegung.

5.10 Lemma. Der Proze� Zt := e�r(�
�^t)V (X��^t), 0 � t <1, bildet ein gleich-

gradig integrierbares Martingal.

Beweis. Die Martingaleigenschaft folgt aus Gleichung (5.32). Ferner ergibt sich

aus der De�nition von V

Zt = e�r(�
�^t)V (X��^t) � ce�r(�

�^t)maxfl; X��^tg

mit c = 1

0�
1

�

0
�
b
a

�
1 � 
1
�
b
a

�
0�
. Im Beweis von Lemma 5.4 haben wir

E sup
0�t<1

e�rtmax

�
l; sup

0�u�t
Xu

�
<1

nachgewiesen. Hieraus folgt nat�urlich auch die gleichgradige Integrierbarkeit von

(Zt)t�0.
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5.11 Satz. Es seien (Xt)t�0 und (St)t�0 gem�a� (5.2) bzw. (5.23) de�niert sowie

� < r. Dann existiert f�ur das Stopproblem (5.24) eine L�osung � � der Form

� � = infft � 0 : Xt =2 (al; bl)g;

wobei 0 < a < 1 < b durch

a =

1


1 � 1

�

1(
0 � 1)


0(
1 � 1)

� 1�
0

0�
1

und

b =

0


0 � 1

�

0(
1 � 1)


1(
0 � 1)

� 
1

0�
1

de�niert sind. Die Werte 
0 < 0 < 1 < 
1 bilden die L�osungen der Indexgleichung

�r + �
 + 1
2
�2
(
 � 1) = 0. Weiter gilt V �(x) = V (x) mit

V (x) =

8>><
>>:

l; falls 0 < x � al;

l

0�
1

�

0
�
x
al

�
1 � 
1
�
x
al

�
0�
; falls al < x < bl;

x; falls bl � x:

Beweis. Wir zeigen, da� der Proze� (e�rtV (Xt))t�0 ein Supermartingal bildet, in-

dem wir auf diesen Proze� die verallgemeinerte Itô-Formel anwenden. Wir erhalten

e�rtV (Xt) = V (x) +

Z
[0;t]

�e�rsXsV
0(Xs) dWs

+

Z
[0;t]

e�rs
�
�rV (Xs) + �XsV

0(Xs) +
1

2
�2X2

sV
00(Xs)

�
��(ds)

f:s. Das erste Integral bildet wiederum ein Martingal. De�nieren wir

Yt := e�rt
�
�rV (Xt) + �XtV

0(Xt) +
1

2
�2X2

t V
00(Xt)

�
;

so gilt im Bereich 0 < Xt � al f�ur Yt die Absch�atzung

Yt = e�rt
�
�rV (Xt) + �XsV

0(Xt) +
1

2
�2X2

t V
00(Xt)

�
= e�rt (�rV (Xt))

= e�rt (�rl)
< 0:
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F�ur al < Xt < bl ergibt sich aus der Di�erentialgleichung (5.32)

Yt = e�rt
�
�rV (Xt) + �XtV

0(Xt) +
1

2
�2X2

t V
00(Xt)

�
= 0;

und f�ur bl � Xt erhalten wir aus � < r schlie�lich

Yt = e�rt
�
�rV (Xt) + �XtV

0(Xt) +
1

2
�2X2

t V
00(Xt)

�
= e�rt (�rXt + �Xt)

< 0:

Der Integrand des zweiten Integrals ist somit stets negativ. Dies liefert uns analog

zu der Vorgehensweise im vorherigen Abschnitt, da� der Proze� (e�rtV (Xt))t�0 ein

Supermartingal bildet und wir erhalten aus V (x) � maxfx; lg f�ur eine beliebige

Stopzeit � die Absch�atzung

Ee�r�S� � Ee�r�V (X� ) � e0V (X0) = V (x):

Gehen wir auf beiden Seiten zum Supremum �uber, so liefert dies

V �(x) = sup
�

Ee�r�S� � V (x):

F�ur die umgekehrte Ungleichung betrachten wir die Stopzeit � � = infft � 0 : Xt =2
(al; bl)g. Der gestoppte Proze� bildet nach Lemma 5.10 ein gleichgradig integrier-

bares Martingal. Daher folgt aus dem Optional Sampling Theorem in Verbindung

mit X�� 2 fal; blg und somit maxfX��; lg = S�� die gew�unschte Ungleichung

V �(x) = sup
�

Ee�r�S�

� Ee�r�
�

S��

= Ee�r�
�

maxfX��; lg
= Ee�r�

�

V (X��)

= V (x):

5.12 Korollar. In der Situation von Satz 5.11 sei l = 0. Dann erhalten wir f�ur

das Stopproblem die triviale L�osung

V �(x) = x;

und die optimale Stoppzeit wird durch � � = 0 gegeben.
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Beweis. Es ist nur darauf hinzuweisen, da� der Proze� e�rt(Xt)t�0 ein Supermar-

tingal bildet.

5.13 Satz. Ist in der Situation von Satz 5.11 � � r, so gilt

V �(x) =1:

Beweis. Dies ist eine Folgerung aus Satz 1.2.



Anhang A

Der Beweis von Lemma 2.2

Beweis von Lemma 2.2. Wir w�ahlen uns x̂ = (x̂1; : : : ; x̂d+1) 2 Rd+1 mit x̂1 =2 A

und zeigen, da� ' � f in x̂ nach x1 partiell di�erenzierbar ist mit Ableitung

@

@x1
(' � f(x̂)) = ' �

�
@

@x1
f(x̂)

�
:

Abk�urzend schreiben wir im folgenden

C := fx = (x1; : : : ; xd+1) 2 Rd+1 : x1 =2 Ag:

Es sei " > 0 beliebig vorgegeben. Wir werden zeigen, da� der Di�erenzenquotient
1
t
(' � f(x̂+ te1)� ' � f(x̂)) in einer hinreichend kleinen Umgebung von x̂ um

weniger als " von ' �
�

@
@x1
f(x̂)

�
abweicht. Da " beliebig gew�ahlt ist, best�atigt dies

die Behauptung.

Wir w�ahlen n 2 N so gro�, da� supp(') � Bn(0) gilt und der Abstand d des

Tr�agers von ' zum Rand von Bn(0) echt positiv ist. Die partielle Ableitung @
@x1
f

ist aus Stetigkeitsgr�unden auf Bn(x̂) beschr�ankt und somit existiert ein K > 0,

derart da�
@

@x1
f(x) � K f�ur alle x 2 Bn(x̂):

Da die Menge A diskret ist, ist A \ [x̂1 � n; x̂1 + n] endlich, so da� wir

fx1; :::; xk0g = A \ [x̂1 � n; x̂1 + n]

mit k0 2 N schreiben k�onnen. Wir de�nieren f�ur 1 � k � k0

yk := x̂1 � xk:
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Zu jedem yk existiert ein Æk > 0 hinreichend klein, so da� die UngleichungZ
[yk�Æk;yk+Æk]�[�n;n]d

j'(x)j d��d+1(x) <
"

4k0K

erf�ullt ist. Weiter de�nieren wir

C1 :=

k0[
i=1

(([yi � Æi; yi + Æi]� [�n; n]d) \ Bn(0)):

Dann ergibt sich aus dieser Konstruktion die Absch�atzungZ
C1

j'(x)j d��d+1(x) � "

4K
: (A.1)

Wir setzen Æ0 :=
1
2
minfÆ1; :::; Æk0; dg und

C2 :=

k0[
i=1

��
[x̂1 � yi � Æ0; x̂1 � yi + Æ0]� [�n; n]d� \Bn(x̂)

�
:

Es bezeichne e1 den ersten Einheitsvektor. Aus der De�nition von C2 folgt somit

die Implikation

y 2 Rd+1 n C1 =) x̂� y + te1 2 Rd+1 n C2

f�ur alle jtj � Æ0. Die partielle Ableitung
@
@x1
f ist auf jedem Kompaktum in Rd+1nC

gleichm�a�ig stetig, daher existiert ein Æ̂ < Æ0, so da� die Ungleichung���� @@x1 f(x)�
@

@x1
f(y)

���� < "

2k'k1 (A.2)

f�ur alle x; y 2 Bn(x̂) n C2 mit kx� yk < Æ̂ besteht. Aus den Absch�atzungen (A.1)

und (A.2) erhalten wir f�ur alle jtj < Æ̂

����1t (' � f(x̂+ te1)� ' � f(x̂))� ' � @

@x1
f(x̂)

����
=

����
Z
Rd+1

'(y)

�
1

t
(f(x̂� y + te1)� f(x̂� y))� @

@x1
f(x̂� y)

�
d��d+1(y)

����
=

����
Z
Rd+1

'(y)

�
1

t

Z
[0;t]

@

@x1
f(x̂� y + se1)��(ds)� @

@x1
f(x̂� y)

�
d��d+1(y)

����
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=

����
Z
Bn(0)

'(y)

�
1

t

Z
[0;t]

@

@x1
f(x̂� y + se1)� @

@x1
f(x̂� y)��(ds)

�
d��d+1(y)

����
�
Z
Bn(0)nC1

j'(y)j
�
1

t

Z
[0;t]

���� @@x1 f(x̂� y + se1)� @

@x1
f(x̂� y)

���� ��(ds)
�
d��d+1(y)

+

Z
C1

j'(y)j
�
1

t

Z
[0;t]

���� @@x1 f(x̂� y + se1)� @

@x1
f(x̂� y)

���� ��(ds)
�
d��d+1(y)

�
Z
Bn(0)nC1

j'(y)j
�
1

t

Z
[0;t]

"

2k'k1 ��(ds)
�
d��d+1(y)

+

Z
C1

j'(y)j
�
1

t

Z
[0;t]

2K ��(ds)

�
d��d+1(y)

� "

2k'k1

Z
Bn(0)nC1

j'(y)j d ��d+1(y) + 2K

Z
C1

j'(y)j d��d+1(y)

< ";

wobei wir im 2. Schritt den Hauptsatz der Di�erential- und Integralrechnung an-

gewendet haben. 2



Anhang B

L�osung der

Bellman-Di�erentialgleichung

B.1 Satz. Es sei die Di�erentialgleichung

�ry + �xy0 +
1

2
�2x2y00 = 0 (B.1)

mit � > 0, r > 0 und �2 > 0 gegeben. Dann bilden f�ur x 6= 0 die Funktionen

y1(x) = x
0 und y2(x) = x
1

ein Fundamentalsystem des L�osungsraumes, wobei 
0 und 
1 die L�osungen der

Indexgleichung �r + �
 1
2
�2
(
 � 1) = 0 bilden.

Beweis. Die Di�erentialgleichung l�a�t sich auch in der Form

� 2r

�2x
y +

2�

�2x
y0 + y00 = 0

schreiben. Daher handelt es sich hierbei um eine Di�erentialgleichung 2. Ordnung

mit singul�arer Stelle 0. Wir gehen mit dem Ansatz y = x
 in Gleichung (B.1) und

erhalten die sogenannte Indexgleichung

�r + �
 +
1

2
�2
(
 � 1) = 0:

Die L�osungen dieser Indexgleichung sind


0 =

�2

2
� �+

q
(�� �2

2
)2 + 2r�2

�2



88 Kapitel B L�osung der Bellman-Di�erentialgleichung

und


1 =

�2

2
� ��

q
(�� �2

2
)2 + 2r�2

�2
:

Gilt 
0 6= 
1, so bilden

y1(x) = x
0 und y2(x) = x
1

f�ur x 6= 0 zwei linear unabh�angige L�osungen der Di�erentialgleichung, wovon man

sich durch eine einfache Rechung �uberzeugt. Ihre Wronski-Determinante ergibt

sich zu

W (x) = (
0 � 
1)x

0+
1�1 6= 0;

so da� die L�osungen y1 und y2 ein Fundamentalsystem der vorgelegten Di�erenti-

algleichung bilden. Allgemein hat eine L�osung der Di�erentialgleichung f�ur 
0 6= 
1

daher die Form

V (x) = Ax
0 +Bx
1 :

Lemma 5.1 zeigt, da� die Wahl von r; � und �2 
0 6= 
1 impliziert und der Spe-

zialfall 
0 = 
1 somit f�ur uns von keinem weiteren Interesse ist. Wir verzichten

daher auf die Darstellung der L�osung f�ur 
0 = 
1. F�ur eine genauere Betrachtung

von Di�erentialgleichungen mit Singularit�aten sei auf die Werke [Heu] und [Wal]

verwiesen.



Symbolverzeichnis

Grundlegende Bezeichnungen:

N Menge der nat�urlichen Zahlen

N0 Menge N [ f0g
Z Ring der ganzen Zahlen

Q K�orper der rationalen Zahlen

R K�orper der reellen Zahlen

R+ positive reelle Zahlen

Bd Borelsche �-Algebra �uber Rd

��d d-dimensionales Lebesgue-Ma� auf (Rd;Bd)

Br(x0) o�ene Kugel mit Radius r um x0 : fx : kxk2 < rg
supp(f) Tr�ager einer Funktion f : fx : f(x) 6= 0g
Lp Vektorraum der reellen p-fach �-integrierbaren Funktionen

C(Rd) Vektorraum der stetigen Funktionen von Rd nach R

C0(Rd) Teilraum von C(Rd) der stetigen Funktionen mit kompaktem Tr�ager

C(n)(Rd) Teilraum C(Rd) der n-fach stetig di�erenzierbaren Funktionen

(Wt)t�0 Standard-Brownsche Bewegung

(Bt)t�0 Brownsche Bewegung mit Drift � > 0 und Volatilit�at �2 > 0

E(XjF) bedingter Erwartungswert der Zufallsgr�o�e X unter der

Unter-�-Algebra F
N (�; �2) Normalverteilung mit Mittelwert � und Varianz �2

�a Stopzeit infft � 0 : �Wt + �t � ag
�a Stopzeit infft � 0 : Wt+ � ag
�a;� Stopzeit infft � 0 : Wt + �t � ag
Ta Stopzeit infft � 0 : exp(�Wt + �t) � ag
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