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Einleitung

In vielen Bereichen der angewandten Mathematik, insbesondere der Wahrschein-
lichkeitstheorie, treten Probleme des optimalen Stoppens auf. Speziell in der Fi-
nanzmathematik wird in vielen Féllen die Berechnung fairer Preise und optimaler
Ausiibungsstrategien von Finanzderivaten, z.B. Amerikanische oder Furopdische
Optionen, auf das Problem des optimalen Stoppens stochastischer Prozesse zuriick-
gefithrt (vgl. [Irle], [Ell], [Mus]| und [Kal]).

Ein Vorgehen zur Losung dieser Probleme liegt manchmal darin, zunichst eine
optimale Strategie fiir das Ausiiben dieser Derivate zu ,erraten“ und anschlielend
mittels martingaltheoretischer Methoden nachzuweisen, daf3 diese Strategie wirk-
lich optimal ist. Versucht man diese Problemstellung in einem mathematischen
Modell zu erfassen, so besteht dieses Modell in der Regel aus folgenden Hauptbe-

standteilen:

(a) einer Teilmenge T C R, die die Zeitachse symbolisiert,

(b) einem Wahrscheinlichkeitsraum (€2, A, P) mit einer Filtration (F;);>o,

(c) dem Preisprozef des Finanzguts (X;)i>o, der zu (F;);>o adaptiert ist und
(d) einem Auszahlungsprozef (v;);>0 = (¥/(X;))i>0 der Option.

Die Suche nach einer optimalen Ausiibungsstrategie bedeutet in diesem Zusam-
menhang, dafl versucht wird, eine Stopzeit 7 zu finden, die den erwarteten, dis-
kontierten Wert des Auszahlungsprozesses Fe ""t), maximiert. Daf} die Strategie
durch eine Stopzeit charakterisiert wird, begriindet sich darin, dafl der Besitzer
der Option den Zeitpunkt 7, zu dem er die Option ausiibt, natiirlich unabhéngig

von der Zukunft bzw. unabhingig von zukiinftigen Informationen zu wihlen hat,
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denn zu einem bestimmten Zeitpunkt ¢ verfiigt der Besitzer lediglich iiber Infor-
mationen, die er bis ¢ sukzessive gesammelt hat. Diese gesammelten Informationen

werden im folgenden durch die Filtration (F;);er représentiert.

Die angesprochene martingaltheoretische Beweismethode basiert darauf, mit Hilfe
der bekannten It6-Formel (vgl. [Rev]) nachzuweisen, dal der ProzeB (e "V (X}))i>0
mit V(z) := sup, E e "1}, in einem gewissen Bereich ein Martingal bildet. Proble-
matisch an dieser Vorgehensweise erscheint allerdings, daf§ die Funktion V' nur bis
auf Ausnahmepunkte zweimal stetig differenzierbar ist und daher die Anwendung

der Ito-Formel nicht gerechtfertigt erscheint.

An diesem Punkt setzt nun die vorliegende Arbeit an. Nachdem im ersten Kapitel
einige grundlegende, benotigte Hilfsmittel bereitgestellt werden, widmen wir uns
im zweiten Kapitel, dem Kern dieser Arbeit, einer auf diese Problematik zuge-
schnittenen Verallgemeinerung der Ito-Formel und liefern damit eine Rechtferti-
gung der oben skizzierten Beweismethode. Zunéchst stellen wir einen bekannten
Beweis ([Chu]) fiir die Giiltigkeit der It6-Formel fiir eindimensionale Standard-
Brownsche Bewegungen vor, wobei lediglich vorausgesetzt wird, dafl die Ableitung
der betrachteten Funktion absolut stetig ist. Sodann zeigen wir an diesen Beweis
anlehnend unter etwas stidrkeren Bedingungen an die Funktion, dal eine Verall-
gemeinerung der Ito-Formel auch im mehrdimensionalen Fall moglich ist, falls in
einer Komponente der Funktion ein geeignetes stetiges Semimartingal und in den
anderen Komponenten der Funktion ein stetiger (Vektor-)Prozef von lokal be-

schrinkter Variation vorliegt.

In den folgenden Kapiteln sind einige Anwendungen dieser Formel in der Finanz-
mathematik zusammengestellt. Das dritte Kapitel befa3t sich mit dem Problem
des optimalen Stoppens des Preisprozesses eines Finanzgutes im Modell von Ba-
chelier. Es wird eine optimale Stopzeit vorgestellt und der zu erwartende Gewinn

berechnet.

Im vierten Kapitel betrachten wir eine Amerikanische Put-Option in dem po-
puldren und allgemein anerkannten Modell von Black und Scholes (vgl. [Blal] und
[Bla2]). Auch hier stellen wir die optimale Stopstrategie vor und berechnen die bei

Anwendung dieser Strategie erwartete Auszahlung.

Als letztes widmen wir uns dann zwei weiteren Stopproblemen, die durch Shepp
und Shiryaev ([Shel] und [She2]) bzw. Guo und Shepp ([Guo|) bekannt wurden.
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1993 fiihrten Shepp und Shiryaev eine neue Put-Option ein, die sie abgrenzend zur
Amerikanischen und Européischen Option als Russische Option bezeichneten. Der
Kéufer dieses Finanzderivats erwirbt dabei das Recht, sich zu einem von ihm wihl-
baren Ausiibungszeitpunkt 7 entweder den maximalen Wert, zu dem ein Finanzgut
bis dahin gehandelt wurde, oder alternativ einen vorher festgesetzten Mindestbe-
trag s auszahlen zu lassen. Mithilfe des ,, Principle of Smooth Fit“ gelangten Shepp
und Shiryaev zu einer optimalen Stopzeit und der erwarteten Auszahlung. Dieses
Prinzip beruht auf folgender heuristischer Vorgehensweise: Es wird zunéchst die
optimale Stopstrategie ,,geraten”. Aufgrund der Gestalt dieser Strategie kann dann
die Auszahlungsfunktion, abhéngig von s und dem Startwert x der Aktie, in einem
gewissen Bereich angegeben werden und letztlich anhand von intuitiv hergeleiteten
Differentialgleichungen exakt bestimmt werden.

Eine Abwandlung dieser Option fiihrt uns schlielich zu dem von Guo und Shepp
betrachteten Stopproblem, bei dem sich der K&ufer einer Option zwischen dem
aktuellen Kurs einer Vermogensanlage und einem vorher vereinbarten Mindestbe-
trag s entscheiden kann. Auch dieses Problem 183t sich mit Hilfe des ,,Principle of

Smooth Fit“ vollstdndig 16sen.

Ich m&chte mich herzlich bei Herrn Professor Dr. G. Alsmeyer fiir die gute Betreu-
ung dieser Arbeit bedanken. Er hat mein Interesse fiir das Thema geweckt, und

seine wertvollen Hinweise haben mir iiber manche Hiirde hinweggeholfen.






Kapitel 1

Stochastische Prozesse und
stochastische Integration

Anliegen dieses Kapitels ist es, eine kurze Ubersicht iiber die wichtigsten in dieser
Arbeit benétigten Resultate der Theorie der stochastischen Prozesse und stocha-
stischen Integration zu geben. Die hier dargelegten Definitionen und Satze folgen
dabei weitestgehend den Darstellungen in den Werken von [Rev], [Chu] und [Irle],
wobei wir allerdings auf die meisten Beweise verzichten und stattdessen auf die

Quelle verweisen.

1.1 Brownsche Bewegungen und Martingale

Es werden in dieser Arbeit hiufig stochastische Prozesse auftreten. Ein stocha-
stischer Prozef} ist eine Familie von Abbildungen (X;);c7 mit 7 C R* auf einem
Wahrscheinlichkeitsraum (€2, A, P), die Werte in einem mefbaren Raum (E, )
annehmen. Da fiir die von uns betrachteten Probleme immer 7" = [0, 00) gilt,

beschrinken wir uns bei den folgenden Darstellungen auf diesen Spezialfall.

Bei den hier betrachteten stochastischen Prozessen handelt es sich in der Regel um
Brownsche Bewegungen bzw. Funktionale Brownscher Bewegungen, wobei einige
Eigenschaften dieser speziellen Prozesse fiir uns von besonderem Interesse sind.

Wir formulieren daher an dieser Stelle zunichst deren Definition:
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1.1 Definition. Ein stochastischer Prozef (B,);>o heifit Brownsche Bewegung mit
Drift p € R und Volatilitit o > 0, falls er folgende Eigenschaften besitzt:

(a) By =0.

(b) Fiir alle t > 0 besitzt B; eine N (ut, 0*t)—Verteilung.
(c) (Bt)i>o besitzt stochastisch unabhéngigen Zuwéchse.
(d) (Bt)i>o ist ein Prozef mit stationdren Zuwéchsen.

Gilt 4 = 0 und o = 1, so sprechen wir von einer Standard-Brownschen Bewegunyg.
Diesen Proze8 bezeichnen wir im folgenden mit (1});>o. Ein Proze (X;);>o der

Form
X, =zexp (oW, +pt), >0,

mit x > 0 heiflt geometrische Brownsche Bewegung mit Drift , Volatilitit o und

Startwert x .
5.

4 L

200 400 600 800 1000 1200

Abbildung 1.1: Pfad einer geometrischen Brownsche Bewegung mit
Drift © = 0,15 und Volatilitidt o = 0.5

Fiir spatere Zwecke notieren wir eine Eigenschaft der geometrische Brownschen

Bewegung, die sich aus dem Gesetz vom iterierten Logarithmus ergibt.
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1.2 Satz. Sei (X;);>o eine geometrische Brownsche Bewegung mit Drift j1, Vola-

tilitdt o und Startwert x. Dann gilt

(a) limy_,oo Xy = 0 und supyc; oo Xi < 00 fus., falls 1 < 30°.

(b) infocicoo Xy > 0 und limy_,oc Xy = 00 f.s., falls p > %O’2.

(¢) infocicoo Xy = 0 und sup,_, ., X; = 00 f.s., falls p = Lo

Beweis. Vgl. Satz 9.23, S. 112 und Aufgabe 5.31, S. 349 in [Karl]. O

Es sei nun eine isotone Familie (F;);>¢ von Unter-o-Algebren von A gegeben, d.h.
es ist F, C F, fiir alle s < t. Eine solche Familie wird auch als Filtration bezeichnet.
Stellt man sich ¢ als Zeitparameter vor, so kann F; als ein System von Ereignissen
interpretiert werden, die bis zum Zeitpunkt ¢ beobachtbar sind.

Betrachten wir weiter eine Familie (X;);>o mefibarer Abbildungen auf (€, .4), so

kénnen wir folgende niitzliche Definition festhalten:

1.3 Definition. Eine Familie (X;);>o mefbarer Abbildungen auf (€2, .4) heiit ad-
aptiert beziglich (F;)i>0, wenn X, fiir alle t > 0 F;-meBbar ist.

Fiir die Untersuchung stochastischer Prozesse, insbesondere auch fiir unsere An-
wendungen der verallgemeinerten It6-Formel (Satz 2.3), nehmen Zufallszeiten eine

zentrale Rolle ein. Haufig handelt es sich dabei um Zufallszeiten der Form
T=inf{t >0: X, € A}

mit einer geeigneten mebaren Menge A. Wichtig dabei ist, dafl 7 nicht auf zukiinf-

tige Informationen zuriickgreift. Dies fiihrt zu

1.4 Definition. Es seien (Q, A, P) ein Wahrscheinlichkeitsraum und (F;);> eine
isotone Familie von Unter-o-Algebren von A. Eine Abbildung 7 : Q — [0, o0]
heifit Stopzeit beziglich (F)i>o, falls {7 < t} € F; fiir alle ¢ > 0 gilt. Im Fall
Fi = o(X;, s < t) fir eine Familie mebarer Abbildungen nennt man 7 auch

Stopzeit beziglich (X;)i>o-

Von besonderem Interesse fiir diese Arbeit sind Stopzeiten bzgl. Brownscher Be-
wegungen. Fiir die in dieser Arbeit am h#ufigsten verwendeten Stopzeiten legen

wir bis auf weiteres folgende Bezeichnungen fest:
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1.5 Definition. Es seien (W});> eine Standard-Brownsche Bewegung a,p € R
und o > 0. Wir definieren

Tay = nf{t > 0: Wy + ut > a}
sowie speziell fiir y =0
T, = inf{t > 0: W; > a}.
Fiir eine geometrische Brownsche Bewegung mit Startwert x € R setzen wir ferner
Ty :=1inf{t > 0: zexp(cW; + ut) > a},
wobei jeweils die Konvention inf () := oo gelte.

Ein Beweis, dafl es sich hierbei wirklich um Stopzeiten handelt, findet sich z.B. in
[Rev| (Satz 4.6, S. 43).

Eine weitere, wichtige Eigenschaft einer Brownsche Bewegung mit Drift © = 0
ist, dafl sie ein Martingal bzgl. ihrer kanonischen Filtration (F;);>o bildet. Dies
bedeutet:

1.6 Definition. Es sei (M;);>o ein reellwertiger stochastischer Prozef}, der be-
ziiglich einer Filtration (F;);>o adaptiert sei. (M;)i>o heifit Martingal beziiglich
(ft)tzo, falls

(a) E(M;) < oo fiir alle t > 0,
(b) E(M;|Fs) = M P-f.s fiir alle s,t > 0 mit s < ¢.

Ferner wird (M,);>¢ als Submartingal (bzw. Supermartingal) beziiglich (F;)i>o
bezeichnet, falls in Bedingung (b) E(M;|F;) > M, (bzw. E(M|F,) < M) P-f.s.
fiir alle s,¢ > 0 mit s < ¢ gilt.

Fiir p € [1,00) nennt man (M,;);>o LP-Martingal, falls M, € L? fiir alle t.

1.7 Bemerkungen. (a) Eine Brownsche Bewegung mit Drift 4 = 0 bildet ein
Martingal.

(b) Eine geometrische Brownsche Bewegung bildet genau dann ein Martingal,
wenn p = —o?/2 gilt (vgl. Satz 1.2, S. 52 in [Rev]).
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Eines der wichtigsten Resultate {iber Martingale bidet das sogenannte

1.8 Optional Sampling Theorem. Sei (M;);>¢ ein rechtsseitig-stetiges Martin-

gal und o, T beschrinkte Stopzeiten mit o < 7. Dann gilt
M, = E(M,|F,) P — f.s.

Ist (My)i>o zusdtzlich gleichgradig integrierbar, so existiert eine integrierbare Zu-
fallsgrifie My mit M, — M., in L'. Fir beliebige Stopzeiten o, 7 mit 0 < T
qilt

M, = E(M,|F,) = E(My|F,) P — f.s.
Beweis. Siehe Satz 3.2, S. 69 in [Rev]. O

1.9 Korollar. Ist (X;);>0 ein nichtnegatives, rechtseitigstetiges Supermartingal

und o, T beliebige Stopzeiten, so gilt mit X, = 0
XUZE(XT|fU) P—f.S.
Beweis. Siehe Korollar 3.3, S. 70 in [Rev]. O

Sind eine Stopzeit 7 und ein Proze8 (X;);>o gegeben, so definiert X/ (w) := Xia,(w)
den sogenannten gestoppten Prozeff X7. Im folgenden verzichten wir haufiger auf
die Angabe des Zeitparameters, falls deutlich ist, daf es sich um einen stochasti-
schen Prozef mit T = [0, 00) handelt. Sei weiter eine Filtration (F;);>o gegeben,
bzgl. der der Prozefl X adaptiert ist.

Es ist wiinschenswert, dafl der gestoppte Prozef3 X™ nun auch F,.-mef3bar ist, wobei
F: definiert wird durch F, := {A € F, : An{r <t} € F, fiir alle t € [0, 00} mit
Foo = U,;>q Fi- Im allgemeinen ist dies jedoch nicht immer erfiillt. Den Schliissel

zu dieser Eigenschaft liefert nachstehende Definition:

1.10 Definition. Ein ProzeB (X;);>o heifit progressiv mefbar oder einfach pro-
gressiv beziiglich einer Filtration (F;);>o, falls die Abbildung (s,w) +— X;(w) von
[0,¢] x Q@ nach (E,&) (B([0,t]) ® F;)-mefibar ist.

Wir erhalten
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1.11 Folgerungen. Es seien (F;)i>o eine Filtration, (X;)i>o ein stochastischer

Prozefs, der zu (F;)i>0 adaptiert ist, und 7 eine Stopzeit. Dann gilt:

(a) Besitzt X rechtsseitig- oder linksseitig-stetige Pfade, so ist er progressiv mefbar
beziglich (F;)i>o-

(b) Ist X progressiv mefbar beziglich (Fy)i>o, so ist X7 Fr-mefbar auf der Menge
{T < o0}.

(¢) Ist X progressiv mefbar beziglich (Fy)i>o, so ist X7 progressiv mefibar beziglich
der Filtration (Finr)i>o0-

Beweis. Siehe S. 44 ff. in [Rev]. O
Wir notieren noch eine weitere niitzliche Definition:

1.12 Definition. Ein progressiv mefbarer Proze8 (X;);>¢ heifit lokal beschrdinkt,
falls eine Folge von Stopzeiten (7),)nen mit 7, T oo f.s. und eine Folge von Kon-
stanten C,, > 0 existieren, so da} | X7, | < C,, gilt.

1.13 Bemerkung. Wihlen wir 7, := inf{t > 0 : |X;| > n}, so sehen wir, daf}
jeder stetige adaptierte Prozefl X lokal beschrinkt ist.

1.2 Stochastische Integration und die It6-Formel

Die Definition von stochastischen Integralen bedarf einiges an Vorarbeit und es
wiirde den Rahmen dieser Arbeit sprengen, eine ausfiihrliche Darstellung dieser
Theorie zu geben. Fiir eine detaillierte Betrachtung von stochastischen Integralen
verweisen wir daher auf die Werke [Rev], [Chu| und [Irle], die einen fiir unsere
Zwecke guten Einblick in die stochastische Integration liefern.

Einen wichtigen Aspekt fiir spitere Beweise gewihrt allerdings die Verallgemei-
nerung der stochastischen Integration bzgl. rechtsseitig-stetiger L2-Martingale auf
rechtsseitig-stetige lokale L2-Martingale mit Hilfe des sogenannten Lokalisations-
prinzips. Diese Vorgehensweise wird daher kurz skizziert. Im weiteren beschrinken
wir uns darauf, einige grundlegende Resultate der stochastischen Integrationstheo-
rie, die fiir die vorliegende Arbeit von besonderem Interesse sind, ohne Beweis
vorzustellen.

Es sei nun zunéchst an die Definition lokaler LP-Martingale erinnert:
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1.14 Definition. Essei p € [1, 00). Ein reellwertiger stochastischer Prozef (M;);>o,
der beziiglich einer Filtration (F.);>o adaptiert ist, heifit lokales LP-Martingal
beziiglich (F;):>o, falls eine Folge von Stopzeiten (7,),en existiert, so dafl 7, T 0o
f.s. und der Prozef}

M = Mypg, — Mo

fiir jedes k ein LP-Martingal bildet. Die Folge (7,)nen heifit lokalisierende Folge
fﬁI‘ (Mt)tZO-

Sind ein stetiges lokales Martingal und ein stetiger Prozefl gegeben, so erlaubt
uns folgendes Lemma eine Lokalisationsfolge (73, )nen so zu wihlen, daf die beiden
Prozesse fiir 0 < ¢t < 7, beschrankt bleiben.

1.15 Lemma. Es seien (M,;);>o ein stetiges lokales Martingal mit einer Lokalisa-

tionsfolge (T, )nen, (Zi)i>o0 ein stetiger Prozeff und
op = inf{t > 0: | M|V |Zy| > n}.

Dann ist auch (T, Aoy )nen eine Lokalisationsfolge fiir (My)i>o, d.h. Mz, now)—Mo
bildet fir alle n € N ein Martingal.

Beweis. Da (M;);>o und (Z;);>¢ stetige Prozesse sind gilt o,, — oo f.s. fiir n — oo
und daher auch 7, A g, — 0o f.s. Aus Korollar 1.7 (ii), S. 17 in [Chu] folgt, daf
Min(rpnoy) — My fiir alle n, k& € N ein Martingal bildet. O

Wir geben zunéchst einige Bezeichnungen an, mit denen wir im folgenden arbeiten:

1.16 Definition. Es seien eine Filtration (F;);>o und ein Proze M € L? gegeben.
Das System

R ={{0} x Fy: Fy € Fo} U{(s,t] X Fy : Fs; € Fy;s,t € [0,00) mit s < ¢}

wird als System der vorhersagbaren Rechtecke bezeichnet. Durch P := o(R) wird
die vorhersagbare o-Algebra definiert, und ihre Elemente heiflen wvorhersagbare
Mengen. Einen Proze X : [0,00) x Q@ — FE nennt man vorhersagbar, falls er

P-mefBbar ist. Abkiirzend setzen wir

L2(M) == L*([0,00) x Q, P, pir)
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fiir den Raum der P-mefbaren, quadrat-integrierbaren Funktionen beziiglich pi,,
wobei py das sogenannte Doléansmafl (siehe [Chu] S. 33 ff.) bezeichnet, das fiir

die Definition stochastischer Integrale eine besondere Rolle spielt.

Es sei nun gemif [Chu] das stochastische Integral [, , X;dM, € L? als lineare
Isometrie von £2(M) nach L? definiert. Da es ein Element von L? ist, handelt es
sich streng genommen um eine Aquivalenzklasse von ZufallsgroBen bzgl. der fast

sicheren Gleichheit. Dies spielt fiir den folgenden Satz eine entscheidende Rolle.

1.17 Satz. Es seien M ein rechtsseitig-stetiges L*-Martingal und X € L*(M).
Dann existiert eine Version des stochastischen Integrals f Lo, Xs dMj, die rechts-

seitig-stetige Pfade besitzt.
Beweis. Vgl. Satz 2.5, S. 38 in [Chul]. O

1.18 Bemerkungen. (a) Besitzt der Prozefl M stetige Pfade, so existiert eine
stetige Version von [ 1jp X, dM,.

(b) Im folgenden werden wir solche stetigen bzw. rechtsseitig-stetigen Versionen
mit f[o 1 X, dM, bezeichnen und sie in der Regel benutzen, ohne dies vorher

explizit zu erwdhnen.

Wir kommen nun zu der angekiindigten Verallgemeinerung des stochastische In-
tegrals auf rechtsseitig-stetige lokale L?-Martingale. Dazu notieren wir das soge-

nannte Lokalisationslemma:

1.19 Lokalisationslemma. Es seien M ein rechtsseitig-stetiges L?-Martingal,
X € L2(M) und T eine beliebige Stopzeit. Dann gilt

(a) 14X € L2(M7) und
(b) f]]-[U,T}XSdMS == f]]-[U,T}Xde;
Beweis. Vgl. Lemma 10.15, S .190 in [Irle]. O

Dieses Lemma fiihrt zur Definition:
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1.20 Definition. Es sei (M;);> ein rechtsseitig-stetiges lokales L?-Martingal. De-

finiere

O(M) = {X: X ist vorhersagbar, und es existiert eine lokalisierende Folge
von Stopzeiten (7,)nen mit 1 X € L2(M™) fiir alle n},

Fiir X € O(M) setze

z ;:/ Lo 7y Xs dM]", > 0.
0,

Das Lokalisationslemma liefert, da8 der Proze Z"** eine Fortsetzung von Z"
bildet, d.h. es gilt

Zf““ =27 fs. fir0<t <7,
Zumindest auferhalb einer Nullmenge kann daher der Prozef}

Z, = lim Z7

n—oo

definiert werden. Auf der Nullmenge wird Z; := 0 gesetzt. Das stochastische Inte-

gral von X beziiglich M wird dann durch den Prozef3
X,dM; := 7,
[0,¢]

fiir alle ¢ > 0 definiert.

1.21 Bemerkungen. (a) Mit Hilfe des Lokalisationslemmas sehen wir, daf§ dieses
Integral nicht von der gewihlten Lokalisationsfolge abhéngt, d.h die Prozes-
se stimmen fiir unterschiedliche lokalisierende Folgen fast sicher iiberein. Das

Integral ist somit wohldefiniert.

(b) Aus der obigen Definition des stochastischen Integrals ergibt sich fiir X € O(M)

und eine Lokalisationsfolge (7,),>0 die Gleichheit
/ X,dM, = H[O,Tn}Xs dM, = ﬂ[O,Tn}Xs dMsT”
[0,tATn] [0,¢] [0,£]

fiir alle ¢ > 0. Unter Riickgriff auf Satz 1.17 bildet f[o q X,dM, daher ein
rechtsseitig-stetiges lokales L?-Martingal.
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1.22 Definition. Es sei (V});>¢ ein rechtssetig-stetiger Prozefi mit beschrénk-
tem Vy. V heiflt Prozel von lokal beschrinkter Variation, wenn sdmtliche Pfade

t — Vi(w) auf jedem endlichen Intervall von beschrinkter Variation sind.

Als néchstes wird der Begriff des stochastischen Integrals auf stetige Semimartin-

gale erweitert.

1.23 Definition. Ein stetiger Proze (Z;);>o wird als stetiges Semimartingal be-
zeichnet, falls ein stetiges lokales Martingal (M;);>¢ und ein stetiger Proze8 (V;);>0

von lokal beschrinkter Variation existieren, so daf} gilt
Z=M+V.

Weiter definieren wir das stochastische Integral fiir X € O(M) beziiglich eines

stetigen Semimartingals durch

X, dZ, = X, dM, + X, dV,.
[0,t] [0,t] [0,t]

Wir kommen zu einigen wichtigen Eigenschaften stochastischer Integrale, die wir
im Laufe dieser Arbeit benétigen. Zunéchst stellen wir ein Analogon zum Satz von

der majorisierten Konvergenz fiir stochastische Integrale vor:

1.24 Satz. Es sei (Z;)1>0 ein stetiges Semimartingal und (X™)pen, X™ = (X7) >0,
eine Folge lokal beschrdnkter Prozesse mit X™ — 0 punktweise fiir n — oc. Ferner
existiere ein lokal beschrinkter Prozefs K mit | X™| < K fiir alle n € N. Dann gilt

/ XrdzZ, 250
[0"}

gleichmdf$ig auf jedem kompakten Intervall.
Beweis. Siehe Satz 2.12, S. 142 in [Rev]. O

Eine bedeutende Rolle in der stochastischen Integration spielt der sogenannte qua-

dratische Variationsprozefs, der folgendermaflen definiert wird.

1.25 Satz und Definition. Es sei (););>o ein stetiges lokales Martingal. Dann

wird durch

(MY := M2 — M —2 | M,dM,
[0.4]
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der quadratische Variationsprozeff (M) = ((M););>o definiert. Der quadratische
Variationsprozef ist stetig, und es gilt (M), = 0. Ferner bildet der Prozef§ M?— (M)

ein stetiges lokales Martingal.
Beweis. Siehe Satz 4.7, S. 89 in [Chul]. O

1.26 Beispiel. Fiir eine Standard-Brownsche Bewegung (W;);>¢ gilt
<W>t =t f.S.
Ein Beweis findet sich z.B. auf S. 76 ff. in [Chu].

Der quadratische Variationsprozef§ 1483t sich folgendermafien verallgemeinern: Sind
M und N stetige lokale Martingale, so sind auch M + N und M — N stetige lokale
Martingale. Satz 4.7, S. 89 in [Chu] liefert, daB auch (M + N)?> — (M + N) und
(M — N)? — (M — N) lokale Martingale bilden und daher auch der Prozef}

1
MN — Z(<M+N> — (M — N))
1
= Z((M—l—N)Z— (M + N)+ (M — N)?> — (M — N)).
Dies gibt Anlafl zu nachstehender Definition.

1.27 Definition. Es seien M und N stetige lokale Martingale. Dann heif}t der
Prozef

(M, N = i((M +NY = (M — NY)

quadratischer Kovariationsprozeff von M und N. Fiir zwei stetige Semimartingale
X =M+ Aund Y = N + B mit einer Zerlegung gemif} Definition 1.23 wird der

gemeinsame quadratische Variationsprozefl durch

(X,¥) = (M, N) = 2(M + N} — (M = N))

definiert.

Einen der grofiten Meilensteine in der stochastischen Integrationstheorie stellt wohl

die bekannte Ito-Formel dar, die wir hier in folgender Form angeben wollen:
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1.28 Satz. (Ité6-Formel)

Es seien X = (X',--- | X™) ein stetiges (Vektor-)Semimartingal, d.h. jede Kom-
ponente X' (1 < i < n) bildet ein stetiges Semimartingal, und f eine Funktion
mit f € C*(R™). Dann bildet f(X) ein stetiges Semimartingal, und es gilt

(X, Z foxpaxi 2 S [ g xo),

[0,¢] amz 1<ij<n [0,t] 6:5
Beweis. Satz 3.3, S. 147 in [Rev]. O

1.29 Bemerkungen. (a) Sind einige der Prozesse X* von lokal beschriinkter Va-
riation, so gilt die Formel entsprechend, wenn die Funktion f in den jeweiligen
Komponenten nur einmal stetig partiell differenzierbar ist. Ist beispielsweise
X ein stetiges Semimartingal, V' ein stetiger Prozel von lokal beschréinkter
Variation und f : R? — R eine Funktion derart, daf 3;: , ‘;5 und [ existieren
und stetig sind, so gilt

0 0
F(X0VE) = F(Xou Vo) = / 9 (X, Vi) dX, + / 9 b(x, V) av,
0, 0 0,4 Y

1 0?
+5 /01t 55 (X Vi) d(X.),.

(b) Nimmt der ProzeB (X;);>¢ f.s. nur Werte in einem offenen Intervall 7 C R”
an, so gilt die Ito-Formel entsprechend fiir eine Funktion f : I — R mit den

obigen Differenzierbarkeitseigenschaften.

Ein weiteres zentrales Resultat bildet das Girsanov-Theorem. Es beschreibt das
Verhalten eines stetigen lokalen Martingals bei einem Wechsel des Wahrscheinlich-
keitsmafles. Fiir unsere Zwecke ist es hinreichend, die Formel fiir den Fall einer

Brownschen Bewegung zu formulieren:

1.30 Satz. (Girsanov)
Es sei (W,)i>0 eine Standard-Brownsche Bewegung, die zu einer gegebenen Filtra-
tion (Fi)i>o adaptiert sei. Ferner sei (0;)o<i<r ein beziglich (F;)i>o adaptierter

Prozef derart, dafs f[o 11 62N\ (ds) < oo gilt und der Prozef

1
Y, := exp (—/ 0, dW, — —/ 0? )k(ds))
[0, 2 Jio
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unter P fiir 0 <t < T ein Martingal beziglich (F;);>o bildet. Definiere ein neues
Mafs Qg durch

iQy
ap

Dann bildet der Prozefs

W, ::Wt+/ 0, \(ds), 0<t<T,

[0,¢]

unter Qg eine Standard-Brownsche Bewegung beziglich der Filtration (F;)i>o.
Beweis. Vgl. Satz 7.2.3, S. 138 in [Ell]. O

Zum Abschlufl unserer Vorbereitungen definieren wir die sogenannte Lokalzeit ei-
ner Brownschen Bewegung, die das Verhalten dieses Prozesses in einer kleinen
Umgebung eines jeden Punktes beschreibt. Fiir diesen Zweck benttigen wir das

folgende Lemma.

1.31 Lemma. Es sei (W});>o eine Standard-Brownsche Bewegung. Dann ezistie-

ren eine Familie von Zufallsvariablen J(t,z) mit x € R und t > 0 sowie eine
Menge Qo mit P() = 1, so daf$ die Abbildung (t,x) — J(t,x)(w) fir alle w € Qy
stetig ist und fir festes (t,x) gilt:

P (/ Ly ooy (W) dVV, = J(t,x)) —1
[0,2]
Beweis. Siehe Lemma 7.2, S 146 in [Chul]. O

Verkleinert man den Grundraum €2 auf 2y, so diirfen wir im weiteren annehmen,

daf3 J bereits fiir alle w stetig ist.

1.32 Definition. Es sei (W;);> eine Standard-Brownsche Bewegung. Der Prozef3
(t,x) — L(t, ), definiert durch

SL(Lx) = (W, — 2)* — (Wy —2)* — J(t,2),

mit (¢,2) € R x R heifit Lokalzeit von (W,);>o.
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1.33 Satz. Es sei (Wy)>o eine Standard-Brownsche Bewegung mit Lokalzeit L.
Dann gilt

1
Lit,z) = lim— | Tiyrpeo (W) Nd
(60 =t [ BV A
.1
= 16%12—6»\{8 €[0,t]: W€ (x—e,x+¢)}.
Beweis. Siehe S. 141 ff. in [Chu]. O

Da das Bild von W,(w) aus Stetigkeitsgriinden kompakt ist, zeigt diese Darstel-
lung unter Beachtung von Lemma 1.31, daf fiir festes w die Lokalzeit eine stetige
Funktion mit kompaktem Tréger ist.

Eine interessante Rolle spielt fiir uns die folgende Eigenschaft der Lokalzeit einer

Standard-Brownschen Bewegung.

1.34 Satz. Es sei (W,)i>o eine eindimensionale Standard-Brownsche Bewegung
mit Lokalzeit L(t,x). Dann gilt fir jede positive, Borel-mefbare und lokal inte-
grierbare Funktion f und fir jedes t > 0

ﬁmw»wazijmwﬂ@»w@.m.

[0,¢ )

Beweis. Vgl. Korollar 7.4, S. 149 in [Chul]. O



Kapitel 2

Eine Verallgemeinerung der
Ito-Formel

In diesem Kapitel stellen wir eine Verallgemeinerung der bekannten Ito-Formel
vor. Bei der eigentlichen Ito-Formel wird bendétigt, dafl die Funktion f in den
Komponenten, in denen Prozesse von unbeschrinkter Variation vorliegen, zweimal

stetig partiell differenzierbar ist.

Wir betrachten nun den Fall, dafl nur ein Prozefl von unbeschrinkter Variation
vorliegt. Besitzt dieser Prozef} einige zusétzliche Eigenschaften, so kénnen die Dif-
ferenzierbarkeitsvoraussetzungen der Funktion derartig abgeschwécht werden, daf3
die zweite partielle Ableitung nur bis auf eine diskrete Ausnahmemenge existieren

und stetig sein muf.

2.1 Ein eindimensionaler Fall fiir Brownsche Be-
wegungen

Wir betrachten zunéchst eine Verallgemeinerung der eindimensionalen [to-Formel
speziell fiir Standard-Brownsche Bewegungen. Der Beweis! prisentiert eine Metho-
dik mit deren Hilfe auch der Nachweis der oben grob skizzierten Verallgemeinerung

gelingt.

lygl. Satz 9.2 und Bemerkung 1, S. 185 in [Chu]
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2.1 Satz. Es seien eine Standard-Brownsche Bewegung (W;);>o und eine Funktion

f: R — R gegeben, die folgende Eigenschaften besitzt:

(a) f€CO(R).

(b) f' ist absolut stetig. Dies bedeutet insbesondere, daff die zweite Ableitung f"

N-f.4. existiert und lokal integrierbar ist.

Dann gilt

FOW) = F(Wy) = f’(Ws)dWs+% F1(W,) N(ds)  f.s. (2.1)
[0,t] [0,t]

Beweis. Wir beweisen diese Aussage, indem wir auf eine geeignete Approximati-
onsfolge (fn)n>1 aus C*°(R) die Ito-Formel anwenden. Fiir n > 1 definieren wir
fn R — R durch

Falt) = gu * () = /R oult — 2)f(2) Mda),

wobei ¢, : R = R geméf

(2.2)

Cp €XP (—n_}ﬂ,?) , falls |z| < 1/n,
on(T) ==

0, falls |z| > 1/n

definiert ist. Dabei seien die Konstanten ¢, so gewihlt, dafl ||¢,||; = 1 fiir alle n
erfiillt ist. Fiir f, gilt:

(i) fn € C™(R) fiir alle n € N.
(ii) fn — fund f, — f" kompakt gleichméBig.

Zum Beweis dieser Eigenschaften setzen wir h,(t,x) = ¢,(t — z)f(x). Fir h,

gelten folgende Aussagen:
(1) hy(t,-) € L' fiir alle t € R, denn ¢, besitzt einen kompakten Triiger.

(2) 2h,(t,z) existiert fiir alle ¢ € R, da ¢, € CF(R).
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(3) Wegen der Stetigkeit der Funktionen f und ¢! gilt bei festem ¢, € R fiir alle
t € (to — +,to + =) die Abschitzung
9,

= f@enlt = o) < [f@)llen(t = 2)[T_1 (= 2)
< Mﬂ[

to—%,to-i-%] (ZL‘)

mit einer geeigneten Konstanten A > 0. Dabei ist die rechte Funktion inte-

grierbar.

Daher darf man unter dem Integral differenzieren', d.h.

)= 5w DO = [ (e = a1 (@) M) (2.3

t

Wegen ¢, € Céoo) (R) erhalten wir durch eine sukzessive Fortsetzung dieser Schluf}-
weise die Behauptung (i).

Fiir den Beweis von (ii) seien ¢ > 0 und K C R kompakt. Die Funktion f ist auf
dem Kompaktum K gleichméBig stetig. Es existiert also ein § > 0, so daB fiir alle
x € K und fiir alle |y| < ¢ die Ungleichung

[f(z+y) - fle)] <e

besteht. Wir wihlen ny so gro, daB supp(y,) C [—4d, 0] fiir alle n > ng gilt. Es
folgt fiir n > nyg

on  f(x) = f2)] =

léwamﬂx—w»ww—f@>

= | [, U= = ) 2
< [ alfe-u) - @] My
[-8,0]

< [, ot na)

= £

und damit die gleichméBige Konvergenz von f,, gegen f. Mittels Gleichung (2.3)

und partieller Integration, wobei ¢, € Céoo)(lR) zu beriicksichtigen ist, erhalten wir

'Vgl. Satz 5.7 und Zusatz S. 146 in [Els]
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fi(t) = /}R (1 — ) () N (d) = /}R ult — 2) () M(d) = (0 * 1) ().

Die Ableitung f' ist ebenfalls stetig, so daf sich durch ein analoges Vorgehen die
gleichméfige Konvergenz von f; gegen f' ergibt.
Wenden wir nun die [t6-Formel auf f, an, so liefert uns dies

fa(We) = fu(Wo) = }f,'%(Ws) dW, + %

0.t

| Fo (W) A(ds)

(0.t

fiir alle n € N. Aus Aussage (ii) erhalten wir

fa(Wy) — f(W})  f.s. fiir alle ¢ > 0.

n— 00

Wir definieren fiir k € N
T :=inf{t > 0 : |Wy| > k}. (2.4)

Die Ableitung f’ ist aus Stetigkeitsgriinden auf [—Fk, k] beschrénkt, und die Fol-
ge (f!)n>1 konvergiert dort gleichméfig gegen f'. Daher ist (f]),>1 auf [—Fk, k]
gleichméBig beschrinkt, so daf§ der Satz von der majorisierten Konvergenz fiir
stochstische Integrale (Satz 1.24)

/[ ]ﬂ[o,tw](fé(WZ’“) — f/(W)) dW, = 0
0,t
liefert und folglich

/ fo W) dw, F1 (W) dw,
[O,t/\’l'k] [O,t/\’l'k]
gilt. Seien nun £ > 0 und 6 > 0 beliebig. Wihle k so grof, da§ P(r, <) < 5 und
no derart, daf P (‘ Jroanng (P (W) = F/ (W) W,
Damit ergibt sich fiir alle n > ny

> 6)

P ( [0,1]
-r(] [ (mowa — povoaw.

>6) < 5 fiir alle n > no gilt,

/[0 waw.— [ gy aw.

> 0, Th St)

P (‘/[O’t](f,;(ws) — W) AW, > 6.7 > t) (2.5)

)

<Pl <t)+P (\ /[ )=y a,

€,

IN
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und wir erhalten die gewiinschte Konvergenz

Wy dw, 2 [ f(W,)dW, fiir alle t > 0.
!

[0,¢ [0,¢]

Es sei noch angemerkt, dafl der Grenzwert f[o qf "(Wy) dW f.s. eindeutig bestimmt
ist. Als letztes bleibt

fa(W) M(ds) — [ f"(W) M(ds) f.s.

[0,1] o0 Jo,8]

nachzuweisen. Dazu sei g € CSZ)(]R) beliebig. Der Satz von der majorisierten Kon-

vergenz liefert wegen der gleichméfBigen Konvergenz der Folge (f,)n>0

/}R (@) f'(x) Ndz) = /}R o (2) o () M(de)

— [ ¢"(z)f(x) N(dx)

n—oo R

- /}R g(x) 1" (z) M(dz).

Die erste und die letzte Identitéit erhalten wir mittels partieller Integration unter
Beachtung der absoluten Stetigkeit! der Funktion f. Es konvergiert also f(z)N\
vage gegen das signierte Mafl f”(z)A. Die Funktion x +— L(t,z)(w), wobei L(t, z)
die Lokalzeit der Brownschen Bewegung bezeichnet, ist stetig fiir fast alle w € Q
und besitzt einen kompakten Triger, so dal aus der vagen Konvergenz und Satz
1.34

ROV = [ Lt s M)
[0,¢] R
— L(t,z)f"(x) M\(dx)
n—o0 R
= " (W) X(ds) f.s.
[0,2]
folgt, was den Beweis des Satzes abschlief}t. O

Vgl. Satz 4.16, S. 303 in [Els]
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2.2 Ein mehrdimensionaler Fall fiir stetige Se-
mimartingale

Betrachtet man die It6-Formel im mehrdimensionalen Fall, so 148t sich erkennen,
daf} durch ein &hnliches Vorgehen wie im vorherigen Abschnitt auch hier die Formel
auf eine groflere Klasse von Funktionen erweitert werden kann.

Der Nachweis dieser Verallgemeinerung gelingt, indem man die betrachtete Funkti-
on wieder durch eine geeignete Funktionenfolge, hier aus C(> (R4*1), approximiert,
auf die man die Ito6-Formel anwendet, und dann einen Grenziibergang durchfiihrt.

Fiir den Beweis dieser Verallgemeinerung benutzen wir folgendes Lemma:
2.2 Lemma. Fs sei f : R — R eine Funktion mit folgenden Figenschaften:

(a) Es gebe eine diskrete Menge A C R, so daf$ die partielle Ableitung 8%1]” fiir
alle v ¢ A x RY existiert und stetig ist.

(b) Definiert man a%lf(x) =0 fir v € A x R%, so ist a%lf(x) lokal beschrinkt.
Dann gilt fiir jede Funktion ¢ € Co(RY) und fiir alle v ¢ A x R?

0

sl fo) = ox (1) (26)

Beweis. Siehe Anhang. O
Wir formulieren nun die angekiindigte Verallgemeinerung der Ito-Formel:

2.3 Satz. Es sei f: R — R eine Funktion mit den Eigenschaften:

(a) feCORM.

(b) FEs gibt eine diskrete Menge A C R, so daf8 die partielle Ableitung 88—;%]”(30) fiir
alle v ¢ A x RY existiert und stetig ist.

(¢) Definiert man ;—;zf(x) =0 firv € AxRY, so ist ;—;f(x) lokal beschrdinkt.
1 1

Weiter seien ein stetiger (Vektor-)Prozef V := (V1 ..., V) von lokal beschrink-
ter Variation (d.h. jede Komponente V' = (V});>o bildet einen stetigen Prozefs
von lokal beschrinkter Variation) und ein stetiges Semimartingal (My)i>o gegeben.

(M;)i>o erfille die Bedingungen:
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(1) Fir den quadratischen Variationsprozefs gilt d(M), = h(t)N\(dt) mit einer

Lebesgue-mefsbaren, nichtnegativen Funktion h.
(2) Fiir festest € RY gilt AN({0<s<t:M;€ A})=0 f.s.

Dann gilt

K ol

f(My, V) = f (Mo, Vo) f(M;, Vs) dM; +

F(M,,V,)dV

0.4 021 — Jio. i1
1 0?

+= 5 [(M,, V) h(s) N(ds)  f.s. (2.7)
2 [O,t] 8.’1;1

fiir alle t > 0.

Beweis. Die Prozesse (M;);>o und (V;);>o seien zunéchst als beschrénkt vorausge-
setzt. Den allgemeinen Fall werden wir daraus mit Hilfe des Lokalisationsprinzips
herleiten. Es existiere also ein K > 0, so daB |(M,Vy)| < K f.s. gilt, wobei
|- | =] - || die euklidische Norm bezeichne. Wir definieren

__ 1
fo = f|BK+1(0) €L
und eine Folge von Funktionen ¢, : R — R durch

cnexp(—m) falls |z| < 1/n,
on(x) = 0 (2.8)

falls |z| > 1/n,

wobei die ¢, so gewihlt seien, daB [ ¢, ()N (dz) = 1 gilt. AuBerdem setzen wir

fu(@) :== @0n * fo(x) = / on( — 1) fo(t) N(dt). (2.9)

]Rd+1

Es gelten folgende Aussagen:
(i) fo € CN(RIH).
(i) fn — fo gleichméBig auf Bg(0).
(iil) 52-fo — 5= fo gleichmiBig auf By (0) fiir 1 <i <d+ 1.

(iv) g— (1) — %fg(x) fiir alle z = (21, ..., 2441) € Bx(0) mit z; ¢ A.
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Da fy € L' und ¢, € C™(R%) sind, ergibt sich Aussage (i) aus Satz 3.7, S. 193
in [Els].
Fiir den Nachweis von (ii) wéhlen wir ¢ > 0 beliebig. Wegen der gleichmiBigen

Stetigkeit von fy auf Bg1(0) existiert ein 0 < 6 < 1 derart, da8 fiir alle z € B (0)
und fiir alle y € R4 mit |y| < § die Ungleichung

[folw +y) — folx)] <&

erfiillt ist. Wahle ng so groB, dal supp(p,) C Bs(0) fiir alle n > ng gilt. Dann

erhalten wir fiir alle x € Bg(0) und n > ng

oot o) = i@l = | [ onl)fole =) N dy) = fola)

Pu(y) folz —y) X (dy) — fo(x)

UJ\;!U\
=

on @) ol — y) — fol) W(dy)‘
< / ) ol — 1) — folx)| A (dy)

< on(y)e AT (dy)

und folglich (ii). Fiir die partiellen Ableitungen gilt nach Lemma 2.2

) = o+ (ol

fiir alle z € Bg41(0) (¢ =1,...,d+ 1). Die partiellen Ableitungen sind wiederum

stetig, so daf sich (iii) analog zu (ii) ergibt.

Fiir den Beweis von (iv) fithren wir eine abkiirzende Bezeichnung ein:
C:={x=(r1,...,2a11) € Dk(0) : 7, € A}.

Als weitere Konsequenz aus Lemma 2.2 erhalten wir fiir alle z € C die Identitét

0? 0?
St = ux (o))
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Sei nun zy € C' beliebig. Wir zeigen

0? 0*

—J/n H R

8x%f (o) 8I% fo(zo)
fiir n — oo. Da die Menge C' offen ist, konnen wir ny so grof§ wihlen, daf
Bi(zg) C C fiir alle n > ny gilt. Ist £ > 0 beliebig, so existiert wegen der Stetigkeit
von aa—;fo in zy ein § > 0, so daB fiir alle y € R4 mit |y| < 6 die Abschiitzung

0? 0?
‘ <

8 2f0( )_8—x%f0(x0)

besteht. Dies liefert fiir n > ng

0? 0?
‘8 gfn(«To) 8x%f0($0)

0? 0?
= Wn*wf (xo) a—x%fo(xo)

o2
= /]Rd+1 a 2f0( y) A)\d+1(dy) - 8—x%f0(x0)
J 82 d+1

B /B (0) on(y) (8—:17%f0($0 —y) - G—x%fO(xO)> AT (dy)

0* 92
/Bl(o) en(y) ‘G—x%fo(% —y) - G—x%fo(%)

< on(y)e AT (dy)

IN

»\d+1 (dy)

= £&.

was schlielich Aussage (iv) bestétigt.

Wir wenden nun die [t6-Formel 1.28 auf f,, an und erhalten die fast sichere Identitét

P d
— fu(M,, Vy) M+

[0,t] Oxy i1

+1/ 8822fn(Ms,V)h( ) M\(ds).

Fu(My, V) — fu( Mo, Vo) = Fu( M, Vy) dV

0, Oit1

Aus Aussage (ii) folgt

fo(My, Vi) — fo(M, V) f.s. fiir alle ¢ > 0.
n—oo
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Die partielle Ableitung a%lfo ist auf By (0) beschrénkt, und die Folge der Ablei-
tungen (a%1 fn)n>0 konvergiert dort gleichmiBig gegen 8%1 fo. Daher ist die Folge
(a%1 fn)n>o0 auf B (0) gleichmiBig beschrénkt. Ferner gilt nach (iii)

0

Gy MLV —

a{I;lfO(MS’V) f.S.,

so daf} sich aus dem Satz von der majorisierten Konvergenz fiir stochastische In-
tegrale 1.24
/ O ponvydn, s [ L poa, vy i,
04 afL'l 8§ 0. afL'l 0 8§

ergibt. Die Folge ( fn)n>0, 1 <1 < d, ist ebenfalls gleichm#flig beschrinkt, und
nach Aussage (iii) gﬂt
0 0

ax—mf n(Ms, V) —

fO(MSa‘/s) f.S.

n—o0 a"L’Z_l_l

fiir 1 <7 < d. Der Satz von der majorisierten Konvergenz impliziert daher

O romvyavi— [ 2 pon,vyavi fe.

[0,¢] 041 n=00 10, 0Tiq1

Betrachten wir zuletzt die Folge der Integrale f[o,t] %fn(Ms, Vi) h(s) M\(ds). Es sei
L das Supremum von 8‘9—; fo auf B1(0). Unter Verwendung von Lemma 2.2 erhalten

wir fiir x € C' die Abschitzung

62

82
8—x§f"(x) = ©n *wa(«T)
- / 1) ol — ) AN (dy)
RZ
< L»d“(dy)
D1(0
= L

)

woraus in Verbindung mit der Stetigkeit von 8‘9—; fn die gleichmé&Bige Beschréinktheit
der Folge (aa—;fn)nzg auf B (0) folgt. Unter Hinweis auf

N{0<s<t:M,e AN =0 fs. (2.10)
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und Aussage (iv) folgt

0? 0?
—fn Ms;‘/s —

o a—x%fo(Ms, Vs) f.s.

Der Satz von der majorisierten Konvergenz liefert wiederum die gewiinschte Kon-
vergenz,

0? 0*
=5 fn(My, V) h(s) N(ds) — =5 fo(M,, Vi) h(s) N(ds) f.s.

[0,t] ﬁx n—00 [0,£] 8:17

Fiir beschrinktes M und V' haben wir somit Behauptung (2.7) bestétigt. Fiir den
allgemeinen Fall sei gemifl Definition 1.23 eine Zerlegung M = Z + N in ein
stetiges lokales Martingal Z und einen stetigen Prozefl N von lokal beschrinkter
Variation gegeben. Geméf Lemma 1.15 kénnen wir eine Lokalisationsfolge (7,,)nen
fiir M derart wihlen, daf die jeweiligen durch 7,, gestoppten Prozesse, fiir die wir
kurz M™, Z" N™ und V" = (Vin, . . V4") schreiben, beschrinkt sind fiir jedes
n. Nach dem gerade Bewiesenen gilt

ﬂww%ﬂwwwz/ 9 ¢ am vy au

0,tATR] al‘
. )
+> FOI V) avie
; [0,tA7n] OTit1 ( )

1 02
— M V') h(s) M(ds .S.
+/m (M VIV R(s) N(ds)  f

9.2
2 tATR] 8:17

fiir alle n € N. Grenziibergang n — oo liefert wegen 7,, — 0o f.s.
PO V) — FOLLV) s,

Weiter gilt fiir die pfadweise gebildeten Integrale

0 . 0
oV = [ wg S v ave
/[o,tmn] 0Tiq1 ( ) [0,t] o 011 ( )
0
= / ]]-[O,Tn]a f(M87 V) dvl
[0,] Tit1

= / ‘ F(M,, Vy)dVy,
0

AT 0T
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so daB sich durch eine analoge Rechnung wie in (2.5) wegen P(7, >1t) — 1

/[ O soarrvmyavin s Ot vy)avi
0

tnm] OTiv 0, OTit1
ergibt. Ebenso erhalten wir
» 02
[ S vy ) ws) Ly [ FOML ) ) M)
[0,tATn] af [0,t] Ox
Fiir das stochastische Integral gilt

/ O F(m vy dmr = / 9 F(nr, vy dz
0,tATR]

8:17 0,tATR] al‘
+ / 9 f(ar, vy anm.
0,tATR] al‘

Das letzte Integral konvergiert nach Wahrscheinlichkeit gegen f 2 f(M;, Vy) dN;,
was man durch eine identische Rechnung wie bei den anderen pfadwelse gebilde-
ten Integralen verifiziert. Fiir das stochastische Integral f 0,tATn] s [ (M3, V) dZ}
erhalten wir unter Hinweis auf das Lokalisationslemma 1.19 sowie Bemerkung 1.21

(b) die Identitit

0
MYV dZ" = 1 — F(M™. V™ dZ™
/[Ut/\Tn al'f( s Vs ) s /[;)ﬂ [0,tATR] 8£Uf( s Vs ) .

0
= 1 Tn _f Msa% dZ
/[;)7t} [07t/\ ]aflf ( )

)
— M,,V.)dZ,,
/m,mr | O ( )

woraus nun auch

/ 0 (M, VY dzr s (M,,V,)dZ, fiir alle t >0
0,tATR] al‘ [0,t] 8:51

folgt. Aufgrund der Eindeutigkeit des Grenzwertes garantiert dies letztlich die
gewiinschte Behauptung (2.7). O

2.4 Bemerkung. Man verifiziert leicht, da} analog zu Bemerkung 1.29 (b) auch
hier gilt: Nimmt der ProzeB (M,V) f.s. nur Werte in einem offenen Intervall
I ¢ R™" an und weist f : I — R dort die obigen Differenzierbarkeitseigenschaften
auf, so gilt Satz 2.3 entsprechend.
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Von besonderem Interesse fiir unsere spiateren Anwendungen sind die Spezialfille,
in denen eine Brownsche Bewegung mit Drift bzw. eine geometrische Brownsche
Bewegung vorliegt. Wir notieren daher die Verallgemeinerung der Ito-Formel fiir

diese Semimartingale in den folgenden beiden Korollaren:

2.5 Korollar. In der Situation von Satz 2.3 sei (By)i>o eine Brownsche Bewegung
mit Drift u und Volatilitat o, d.h. B, besitze die Gestalt

Bt:UWt+/1/t, tZO,

wobei (Wy)>o eine eindimensionale Standard-Brownsche Bewegung bezeichnet.
Dann gilt

d

FB) 1B = [ pBav s+ [

f(Bs, V2) dV?
0,4 971 — Jio.g OTi1

30t [ BN
—0 — s, Vs s .5.
2 [0,t] 8:5%

Beweis. Es ist lediglich nachzuweisen, daf} (B,);>( die Voraussetzungen (a) und (b)
aus Satz 2.3 erfiillt. Die quadratische Variation einer Brownschen Bewegung mit
Drift 1 und Volatilitit o2 ergibt sich zu (B); = o%¢, wodurch die Bedingung (a)
sichergestellt wird. Die zweite Bedingung ergibt sich aus folgenden Uberlegungen:
Es gilt

N{O<s<t:B,=m)) = / Loy (B)Nds)  fs.

[0,¢]

wobei die Mefbarkeit der Menge {0 < s < ¢t : By = xy} aus der pfadweisen
Stetigkeit der Brownschen Bewegung folgt. Der Wert des Integrals ergibt sich aber

zu
/ Ly (B)Ads) =0 fus.,
[0,¢]

denn der Satz von Fubini impliziert

E(/[O’ﬂﬂ{xo}(Bs)»\(dsO _ /m E (L (B,)) N(ds)
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Aus dieser Identitdt folgt wegen der Abzahlbarkeit der diskreten Menge A unter

Beriicksichtigung von

M0<s<t:Bye A} = »(U{Ogsgt:Bs:x}>

Tr€EA
= ) Mo<s<t:B,=ux}
€A
=0 f.s.
wie gewiinscht Bedingung (b). O

2.6 Korollar. In der Situation von Satz 2.3 sei (X;)i>o eine geometrische Brown-

sche Bewegung, d.h.

2
X, = xpexp (aWt—i— (/L—%> t), firt >0,

mit Drift ;1 > 0 und Volatilitit o > 0, wobei der Prozefs (W;);>o wiederum eine

Standard-Brownsche Bewegung bezeichnet. Dann gilt

f(Xt,W)zf(Xo,%)+/ o X, 0 — (X, V3) dW, +Z

00 O p

0 1
+/[mt} (qua—hf(Xs,V;) 2X28 Qf(Xs,Vs)> Nds)  fs.

— f( X, Vs dVZ
[0,t] OTiq1 ( )

Beweis. Wir definieren eine Hilfsfunktion g : R*' — R durch

g(w1,. . xqq1) = f(w0e™, 20, .., Tas)

so dal mit f offensichtlich auch ¢ die Voraussetzungen aus Korollar 2.5 erfiillt.

Weiter setzen wir

0.2
}/;::UWt‘f‘(/L_?)t, t>0.

(Y)¢>0 bildet eine Brownsche Bewegung mit Volatilitéit o und Drift p — %2 Ferner
geniigt der Prozef} der stochastischen Differentialgleichung

2
dY, = odW, + (u - %) ds. (2.11)
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Aus dem vorangegangenen Korollar erhalten wir folglich

f(X, Vi) = f(Xo, Vo)

= 0 g(Ye, Vi) dY+ Y

[0,t] 8x1 i1

1, 0?
+§U W!](Ys, Vi) A(ds)

0

Y, Vi dVl
[0,t] axz—l—l ( )

a
= X, (X Y, i
e — f(X,,V,)d +Z/ axm V,)dV.

[0,¢]

1 2 a 2
+50 /mt (X axlf(Xs,V)+Xs—ax%f(Xs,V;)> N (ds)
. b, 2

(:) Xsa—l‘lf(Xs’VS) (UdWs + (M - %) »‘(ds)>

[0,¢]
d

+Z/0 O F(X, Vi)V

i—1 7 0,t] 835z‘+1

1, 0 , 0
+50 /[Ot (X - lf(Xs,V)+Xsa—$%f(Xs,V;)> N (ds)

f(X,, Vi) dV

0
_ /MUX B — [ (X, Vs) dW, +Z

1
+/ <qu—a fX,, Vo) + 02X2 2f(Xs,Vs)> N(ds)
0. Oy "0z

[0,¢] OTiq1

wobei in (x) die Differentialgleichung (2.11) eingegangen ist.



Kapitel 3

Optimales Stoppen im Modell
von Bachelier

Im Modell von Bachelier (1870-1946), das er erstmals im Jahr 1900 vorstellte,
betrachten wir den Kursverlauf eines Finanzgutes und suchen nach einer optimalen
Strategie, diese Vermogensanlage zu verkaufen. Dabei gehen wir davon aus, dafl

der Besitzer des Gutes an einem maximalen Gewinn interessiert ist.

3.1 Das Modell und die Problemstellung

Zunichst beschreiben wir das Modell, welches wir in diesem Kapitel zugrunde
legen. Fiir den Handel mit Finanzgiitern treffen wir folgende grundséitzliche An-

nahmen:
e Der Handel mit Finanzgiitern findet in stetiger Zeit statt.

e Der Kauf und Verkauf von Finanzgiitern verursacht keine Transaktionsko-

sten.
e Auf Finanzgiiter wird keine Dividende ausgeschiittet.

Fiir den Rest dieses Kapitels legen wir einen Wahrscheinlichkeitsraum (€2, A, P)
zugrunde, auf dem eine Standard-Brownsche Bewegung (W;),;>o gegeben ist. Wir
betrachten nun einen Finanzmarkt, in dem lediglich zwei Finanzgiiter gehandelt

werden: Zum einen existiere eine risikolose, festverzinsliche Vermogensanlage, die
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auch als Bond bezeichnet wird, deren Kursentwicklung durch den exponentiellen

Preisprozef (R;);>0,
Rt = Rge”, t Z 07 (31)

mit Anfangswert Ry > 0 und Verzinsungsrate r > 0 determiniert werde. Zum an-
deren sei eine risikobehaftete Vermogensanlage gegeben, deren Preisprozef (B;);>o
durch eine Brownsche Bewegung mit Drift > 0, Volatilitdt o > 0 und Startwert

x > 0, also
By =x+ oW, + ut, t>0, (3.2)

charakterisiert werde. Der Einfachheit halber gehen wir davon aus, dafl es sich
bei dieser Vermogensanlage um eine Aktie handelt. Der Prozef3 (B;):>o geniigt der

stochastischen Differentialgleichung
dB; = odW,; + pdt, t>0. (3.3)

Die Variablen r, u und o seien dabei als bekannt vorausgesetzt. Der Besitzer der
Aktie wird in der Regel daran interessiert sein, dieses Gut zu einem moglichst
hohen Kurs zu verkaufen. Um allerdings eine Vergleichbarkeit der Kurse zu un-
terschiedlichen Zeitpunkten zu gewéhrleisten, betrachten wir den diskontierten
Preisprozel (e7"B;);>o. Der Besitzer sucht also eine Stopzeit, die das Stoppro-

blem
V*(z) :=sup E(e”""B;) (3.4)

16st und so die erwartete, diskontierte Auszahlung maximiert. Dabei wird in (3.4)

das Supremum iiber simtliche Stopzeiten gebildet.

3.2 Optimales Stoppen eine Finanzgutes

3.2.1 Herleitung einer optimalen Stopzeit

Unter den gegebenen Umstidnden erweist es sich als plausibel, dafl die optimale
Stopzeit fiir das Problem (3.4) eine Gestalt der Form
Tape = inf{t > 0: B, > a}
=inf{t>0:2+ oW, + ut > a}
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mit a > x besitzen konnte. Abkiirzend schreiben wir

[£—
T = Ty o

wobei wir den Index oben platzieren, um einer mdglichen Verwechselung mit 7, ,
und 7, vorzubeugen. Der Besitzer verkauft also sein Finanzgut, sobald der Kurs
iiber ein gewisses Niveau a steigt. Wir betrachten daher zunéichst Stopzeiten dieser
Form und berechnen die erwartete, diskontierte Auszahlung E(e™""" B,.). Fiir die

Berechnung dieses Erwartungswertes bendtigen wir folgenden Satz:

3.1 Satz. Es seien (W,);>o eine Standard-Brownsche Bewegung, a > 0, r > 0 und
p > 0. Dann gilt fir die Stopzeit 7,,, die durch

Tayp i= inf{t > 0: W, + ut > a},
definiert wird, die Identitdit

Eexp(—rr,,) = exp (—a (—u + \//m)) :

Beweis. Fiir a = 0 ist die Behauptung trivialerweise erfiillt. Sei also im folgenden
a > 0. Aus der Rekurrenz der Standard-Brownschen Bewegung in Verbindung mit

it > 0 erhalten wir direkt

P(1,, <o00) = P(inf{t>0: W, + ut > a} < o0)
> P(inf{t>0:W; > a} < c0)
1.

Da der Prozef (exp ()\Wt — ’\;t>> fiir A\ € R nach Bemerkung 1.7 ein Martingal
>0

bildet, kann mithilfe des Optinal Sampling Theorems 1.8 auf
2

A 2
Eexp ()\WTWM — ?( ap N\ t)) = Fexp ()\WO -5 0) =1

fiir jedes t > 0 geschlossen werden. Fiir A > 0 und 0 < ¢ < 7, , gilt ferner die
Abschéatzung

A2 A2
exp ()\Wt - 3t> < exp <)\(a — put) — 3t> < exp(Aa),
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so dafl vermoge des Satzes von der majorisierten Konvergenz

2

2 . A
Eexp <)\WTW — ?Ta’u> = Etlgglo exp <)\Wﬂw/\t — ?(Ta’” A t)>

: A2
= tlggo FE exp <)\WTWM - ?(Ta’” A t)) (3.5)
=1

folgt. Wahlen wir speziell A := —p + y/u? + 2r, so ist A > 0 und
2

)\/L—f-%:T.

Beachtet man noch, da8 W, = a — pur,, gilt, so erhalten wir unter Verwendung

a,p
dieser Identitit

A2 A2
Eexp ()\WTW — ?Ta’u> = Fexp <)\(a — UTay) — 77'@,”>

)\2
= eMFexp <— ()\u + ?> Ta,”>

— e)\aEe—rTa,# )

In Verbindung mit (3.5) ergibt sich somit die gewiinschte Identitét

Ee "o — ean — e—a(—lﬁ‘\/ M2+27").

Wir formulieren noch zwei direkte Folgerungen aus diesem Satz.

3.2 Korollar. Es seien (W,;);>o eine Standard-Brownsche Bewegung, a € R, 7 > 0

und
7, = inf{t > 0: W, = a}.

Dann gilt
E exp(—rT,) = exp(— |a| v2r).
Beweis. Der Fall a > 0 ist ein Spezialfall von Satz 3.1. Fiir a < 0 ist zu beachten,
dafl
T, = inf{t>0:W,=a}
= inf{t>0: -W;, = —a}
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gilt und (—W,);>o ebenfalls eine Standard-Brownsche Bewegung bildet. Somit folgt
hier die Behauptung ebenfalls direkt aus Satz 3.1. O

3.3 Korollar. Es sei (By)>o eine Brownsche Bewegung mit Drift n > 0, Volatilitat
o > 0 und Startwert v € R, d.h.

B, =x+ oW, + ut, t>0.
Weiter sei
7" =inf{t > 0: B; > a}.

Dann gilt fir z < a

Fexp(-rr*) = exp ( (o —a) (—p-+ i+ 207

und firx > a
Eexp(—rr®) = 1.

Beweis. Fiir x < a ergibt eine einfache Umformung

7 = inf{t >0: B, >a}
= inf{t >0: x4+ oW+ ut > a}

- inf{tZO:WmLHtZa_x}.

o o

Indem wir in Satz 3.1 a durch (a — z)/o und p durch p/o ersetzen, erhalten wir

wie gewiinscht

Eexp(—r7*) = exp [_a ; - <—H + (H)2 + 27“)

— exp <%(x—a) (—u+ \/m)> .

Die Behauptung fiir x > a folgt aus 7* = 0 f.s. O

Wir kommen nun zu unserem urspriinglichen Problem, der Berechnung von

E (e’”a BTa), zuriick. Korollar 3.3 liefert fiir + < a unter Hinweis auf B, = a

B (e ) = avxp (S50 - ) (-n+ ViE ) )
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und fiir x > «a
E (e_”aBTa) = .

Wir fassen den ersten Wert (z < a) als Funktion in @ auf und bestimmen deren

Maximum. Dazu definieren wir
1
g(a) := aexp <§(x —a) (—,u + e+ 27“)) :

Durch einige elementare Rechnungen erhélt man, dafl die Funktion g in dem Punkt

0.2

B w2+ 2r —p

ein Maximum annimmt. Auf diese Rechnung wollen wir aber an dieser Stelle ver-

zichten.

AL z

Abbildung 3.1: Erwartete Auszahlung
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3.2.2 Beweis der Optimalitit

Die bisherigen Uberlegungen fiihren zu folgendem Satz:

3.4 Satz. Es sei eine Brownsche Bewegung (By);>o mit Drift 1 > 0 und Volatilitit

o > 0 gegeben. Dann existiert eine Stopzeit 7*, die Ee™ B, maximiert, ndamlich
™ =inf{t >0: B, > 1/\}

mit A= % (\//ﬂ +2r — u). Fiir V*(z) = sup, E(e7""B;) gilt V*(x) =V (x) mit

V() := {

. 1 . 1 1

Ee '™ BT* — X‘Eefr'r — XeA(:er) — Xe/\:rfl — V(IL’)

fiir alle 2 < 1/A. Fiir £ > 1/) ergibt sich 7* = 0 f.s. Folglich gilt
EefrT*BT* = E60B0 =T = V(.CU)

und daher
V*(z) =sup Ee "B, > V(x).

Fiir die umgekehrte Ungleichung betrachten wir die Funktion f : R? — R,

. %e’\‘”_”’_l, falls z < %,
flxy) =eV(z) = _ 1
re Y, falls x> 5.

Mit Hilfe dieser Funktion weisen wir nach, da der Proze§ (e "'V (B,)),s, ein Su-
permartingal bildet. Die Funktion f ist einmal stetig partiell differenzierbar. Die
zweite partielle Ableitung nach z existiert und ist stetig fiir alle x # % Unter Ver-

wendung der Verallgemeinerung der Ito-Formel fiir Brownsche Bewegungen mit
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Drift (Korollar 2.5) sowie der Differentialgleichung dB; = odW; + pudt erhalten wir
f(Bt, t) == €_rtV(Bt)

= Vi) [ ervi(BYaB - [ re VB A
[0,t] [0,¢]

1
+—02/ e "*V"(Bs) \(ds)
2 Joa

— V)+o / TV (B,) IV, + / 1e"V(B,) M\ (ds)
[0,2]

[0,¢]

1
— / re "V (B,)\(ds) + =o? / e "V"(By) \(ds)
0.4 2 Jog

= V(x)—i—a/ e "*V'(By) dW,
(0,¢]

+/ e (—rV(BS)+uV'(Bs)+%02V"(Bs)> Alds)  fs.
04

Der Prozef

M, :=V(z) + a/ e "V'(Bs) dWy
[0,¢]

bildet ein Martingal, da bzgl. einer Standard-Brownschen Bewegung integriert
wird. Fiir den Prozef} (Y});>0, der durch

1
K = 67” <—7"V(Bt) + /LV,(Bt) + 50'2VI,(Bt)>

definiert sei, gilt Y; < 0 f.s. Dies 148t sich durch eine Fallunterscheidung bestétigen:
Fiir B; > 1/ ergibt sich

Y

e "t (—TV(Bt) + pV'(By) + %UZV”(Bt)>

VAN
)
2
|
> =
+
=
~—

I
)
>~
|
S
_l’_
L]
—
=
>
_l’_
)
<
S
DN
=
[\
|
=
N
N———
~

I
o
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Fiir B, < 1/X erhalten wir aus —r + pA + 502X = 0 die gewiinschte Abschéitzung

durch folgende Umformungen:
1
Vi = et (B4 (B0 + 505 )
1
— eﬂ*(—mvag-+MAVXBQ-F§U?VVXBQ>

1
= "V (By) (—r + p + 502)\2>
= 0.

Die Ungleichung Y; < 0 f.s. liefert nun die in Aussicht gestellte Eigenschaft, dafl
e~ "V (B;) ein Supermartingal bildet, denn es gilt

)

_ MMM@+E<AMEAWQ

E(e "'V (B))|F)

= E(th/ Y, M (du)
0,

g>+E<Aﬂn»um

]-“s> (3.6)
< M.+ [ V,Md

/m R
= e "V(Bs) f.s.

Aufgrund der Stetigkeit der Abbildung = — e "V (z) ist dieses Supermartingal
rechtsseitig stetig. Beachten wir noch, dafl die bekannte Ungleichung ¢* > 1 + x

V(z) >z

fiir alle x > 0 impliziert, so kénnen wir mit Korollar 1.9 fiir jede Stopzeit 7

Ee "B, < FEe "V(B;)
< EV(By) (3.7)
= V()

schlieflen. Geht man nun auf beiden Seiten zum Supremum {iber, so erhélt man

V*(z) =sup Ee”"" B, <V (x).
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Zusammen ergibt sich das gewiinschte Resultat

V*(z) =sup Ee™"" B, = V(x).



Kapitel 4

Optimales Stoppen im Modell
von Black und Scholes

In diesem Kapitel untersuchen wir die Amerikanische Put-Option in dem von Black
und Scholes 1973 entwickelten Modell (vgl. [Blal] und [Bla2]). Dieses basiert auf
dem Prinzip der Arbitragefreiheit, das die Realisierung eines risikolosen Gewinns,
sogenanntes , free lunch®, ausschlieffit. Daher zeichnet es sich vor allem dadurch
aus, daf} es fiir die Berechnung von fairen Preisen fiir Finanzderivate nicht nétig
ist, die Risikopriferenzen der Investoren zu kennen. Unser Bestreben ist es, eine
geschlossene Form des fairen Preises einer Amerikanischen Put-Option herzuleiten

und eine optimale Ausiibungsstrategie dieser Option zu formulieren.

4.1 Das Modell von Black und Scholes

Wir stellen zunichst das Modell von Black und Scholes genauer vor. Fiir unse-
re Zwecke ist es ausreichend, einen Finanzmarkt zu studieren, in dem nur zwei
Finanzgiiter gehandelt werden. Zum einen sei wie schon im vorherigen Kapitel
eine risikolose, festverzinsliche Anlage gegeben, deren Kursentwicklung durch die

Gleichung
Ry = Rye', t >0, (4.1)

mit Anfangswert Ry > 0 und Verzinsungsrate r > 0 gegeben ist. Zum anderen
liege eine risikobehaftete Vermogensanlage, z.B. eine Aktie, vor, deren Kursverlauf

(X¢)i>0 durch eine geometrische Brownsche Bewegung mit Drift ;2 > 0, Volatilitit
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o > 0 und Startwert x > 0 charakterisiert wird, d.h.

1
X, = zexp (aWt + <u — 502> t) , t>0, (4.2)

wobei (W;)>o eine Standard-Brownsche Bewegung bezeichnet. Der Proze8 (X);>o

geniigt der stochastischen Differentialgleichung

Die Variablen r, p und o seien im weiteren als bekannt vorausgesetzt. Fiir den
Rest dieses Kapitels gehen wir von den gleichen Annahmen bzgl. des Handels mit
Finanzgiitern wie im vorherigen Kapitel aus, die wir uns aber noch einmal kurz

ins Gedéchtnis zuriickrufen:
e Der Handel mit Finanzgiitern findet in stetiger Zeit statt.

e Der Kauf und Verkauf von Finanzgiitern verursacht keine Transaktionsko-

sten.

e Finanzgiiter, die einem Finanzderivat, z.B. einer Option, unterliegen, zahlen

keine Dividende aus.

Wir erinnern zunéchst an eine Definition aus der Finanzmathematik, die in diesem
Modell von besonderer Bedeutung ist, und stellen ein zugehoriges Resultat vor, das
richtungsweisend fiir unsere Berechnungen ist und uns zu einer entscheidenden

Vereinfachung fiihrt.

4.1 Definition. Ein W-Ma$l P mit P ~ P heifit dquivalentes Martingalmajs, falls
der diskontierte (Vektor-)ProzeB (S;);>o, der durch

St = e_rt(Xt, Rt)a t 2 0,

definiert wird, unter P ein (Vektor-)Martingal beziiglich der Filtration (Ft)i>0
bildet.

Die erfreuliche Nachricht lautet dann
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4.2 Satz. In dem vorgestellten Modell von Black und Scholes existiert ein dquiva-
lentes Martingalmafs ﬁ, welches durch die Radon-Nikodym-Ableitung

dpP / = 1 / (u - 7") 2
— =exp | — dWs — = N(ds 4.4
dp ( 00 O 2Jog \ @ @ -y

festgelegt ist.

Beweis. Essei T > 0 fest gewéhlt. Dann gilt f[O,T} (“;7")2 A(ds) < oo. Unter Riick-
griff auf Bemerkung 1.7 ist daher ersichtlich, daf der Prozef (Y;)o<;<r, definiert

durch
w—=r 1 w—=r 2
Y, = exp| — dWs — - A(ds)
o4 2Joa\ ©
w—r 1 /pp—r 2
= exp|— Wy — = t], 0<t<T,
o 2 o

unter P ein Martingal bildet. Bei der Umformung haben wir von der Tatsache
Gebrauch gemacht, daf f[o g @Ws = W gilt. Definieren wir

o

—_—~ t j— _—
W, =W, — / H r»\(dS) =W, — ut, 0<t<o0, (45)
0 g

so folgt aus dem Girsanov-Theorem 1.30, dafl der Prozef3 (Wt)ggtST unter dem neu-
en Ma$ P eine Standard-Brownsche Bewegung bildet. Da T beliebig gewéhlt war,
gilt dieses auch schon fiir den gesamten Prozef3 (Wt)0§t<w. Fiir den diskontierten

Preisprozef3, den wir mit X bezeichnen, erhalten wir die Darstellung

1
X, =e "X, =zexp <0Wt + <(u —r)— 502> t) .

Wir schreiben (4.5) in der Form
Wt — Wt + ut
o
und setzen diese Identitiit in den ProzeB X ein. Dies fiihrt zu
X, =xexp (aWt — 715) ,

was letztlich unter erneutem Hinweis auf Bemerkung 1.7 die Behauptung bestétigt.
O
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4.3 Bemerkungen. (a) Es i}t sich sogar nachweisen, daf§ das dquivalente Mar-
tingalmafl im Modell von Black und Scholes eindeutig bestimmt ist (vgl.
[Mus]). Wir wollen aber auf diese Tatsache nicht weiter eingehen, da sie von

keinem weiteren Interesse fiir uns ist.

(b) Der obige Satz eroffnet uns die Moglichkeit, die Berechnung des fairen Preises
einer Option unter dem &dquivalenten Martingalmaf} P durchzufiihren, wobei
lediglich zu beachten ist, dafl wir die Drift u des Preisprozesses im Ausgangs-
modell durch die Verzinsungsrate r zu ersetzen haben. Fiir den Rest dieses

Kapitels nehmen wir also g = r an.

4.2 Die Amerikanische Put-Option bei unendli-
chem Zeithorizont

4.2.1 Herleitung der optimalen Stopzeit

Im Modell von Black und Scholes betrachten wir eine Amerikanische Put-Option
und suchen nach einer optimalen Strategie, diese Option auszuiiben. Bei diesem
Derivat erwirbt der Kaufer des Kontraktes das Recht, ein bestimmtes Finanzgut
bis zu einem zukiinftigen Zeitpunkt 7' zu einem vorher vereinbarten Preis K, dem
Ausiibungs- oder Basispreis (engl. strike price), zu verkaufen. Im Gegensatz zu
einem sogenannten Future besteht allerdings keine Verpflichtung zum Ausiiben
der Option. In unserem betrachteten Modell mit unendlichem Zeithorizont gilt
T = oc.

Unter den obigen Voraussetzungen ergibt sich der innere Wert einer amerikani-
schen Put-Option mit Ausiibungspreis K auf die Anlage (X;);>o zum Zeitpunkt ¢
zu (K — X;)". Der Auszahlungsprozefl (1;);>o hat also zu einem beliebigen Zeit-
punkt ¢ > 0 die Gestalt

(X, t) = (K — X)T.

Der Kéaufer der Option wird daran interessiert sein, eine Stopzeit 7* zu finden, die

die erwartete diskontierte Auszahlung EFe™ "1, maximiert, also das Stopproblem

V*(z) :=sup Ee "™, =sup Ee”"" (K — X,)* (4.6)
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in Abhéngigkeit vom Startwert x der Vermogensanlage 16st, wobei das Supremum
iiber alle Stopzeiten gebildet wird. Diesen Wert werden wir auch als fairen Preis
des Kontraktes ansehen.

Die Vermutung ist naheliegend, daf} die optimale Stopstrategie darin bestehen
konnte, die Option auszuiiben, sobald der Kurs der Vermo6gensanlage unter ein
gewisses Niveau a > 0 fillt. Daher beschrianken wir uns vorerst darauf, die Pro-

blemstellung fiir Stopzeiten der Form

Ta:inf{tZO:Xtﬁa}

(4.7)
=inf{t > 0: zexp(cW; + ut) < a}
zu studieren und berechnen fiir ¢ > 0 den Wert
Vo(z) = Be™™ (K — Xp,)* (4.8)

in Abhéngigkeit vom Startwert x des Finanzgutes. Anschliefend werden wir den
Wert a so determinieren, dafl V, maximal wird.
Die Stopzeit T, unterteilt die positive reelle Achse in zwei Abschnitte: zum einen

in eine Stopregion
E={zeR":V,(z) > (K —=x)"},
und zum anderen in eine Fortsetzungsregion
C={reR":V,(z) <(K-2)"}

Der Besitzer der Option iibt folglich die Option aus, sobald der Preisprozef§ die
Fortsetzungsregion verlafit.

Im Fall a« > K ergibt sich trivialerweise
Vo(r) = Be (K — X7,)" = Ee ™™ (K —a)* = 0.

Ergo betrachten wir das Problem im folgenden nur fiir « < K. Unter Verwendung

von Xp, = a erhalten wir

K —x, falls x <a,
Va( ) = _rT
(K —a)Ee ™, falls x> a,
und erkennen, daf sich die Berechnung von V, auf die von Fe "’ reduziert. Fiir

letztere benétigen wir allerdings eine Verallgemeinerung von Satz 3.1, in der zuge-

lassen wird, dal a auch negative Werte annehmen kann.



4.2 Die Amerikanische Put-Option bei unendlichem Zeithorizont 49

4.4 Satz. Es seien p,a € R, (W,);>0 eine Standard-Brownsche Bewegung und
Tap = inf{t > 0: W, + pt = a}.

Dann gilt firr >0

Eexp(—r7,,) = exp (ua — lal\/p? + Qr) :

Beweis. Den Nachweis fiithren wir in zwei Schritten: Wir bestimmen als erstes die

Verteilung der Stopzeit fiir den Spezialfall © = 0, also fiir
T, =inf{t > 0: W, = a}, a % 0.

Anschliefend leiten wir mit deren Hilfe die Verteilung von 7, , durch einen Wechsel
des zugrundeliegenden Mafles her.

Wir definieren das laufende Mazimum der Brownschen Bewegung als

M, := sup W;.
0<s<t

Fiir die gemeinsame Lebesgue-Dichte von W; und M, gilt nach Folgerung 8.1, S.
95 in [Karl]

2(2x — 20 — y)?
P(W; € dy, M, € dz) = % exp (—%) dy dx
T

fiir y < x und x > 0. Dies liefert unter Beachtung der evidenten Ungleichung
M, > Wy

P(r,<t) = P(M,> a)

[ e
e L
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wobei wir in der letzten Zeile z = % substituiert haben. Durch Differentiation
unter Beriicksichtigung des Hauptsatzes der Differential- und Integralrechnung er-

halten wir eine Dichte f, der Verteilung von 7,. Es gilt

d
fTa(t) = EP(Ta < t)

b

- (A (5))2()

CH
N——
QL
Q

Hieraus ergibt sich

Ee e = / e " f (t) dt
0

00 a CL2
= exp | —rt — — ) dt.
0 23 2t

Eine Anwendung von Korollar 3.2, das die Identitiit Ee™"™ = ¢~V fiir ¢ £ 0

garantiert, liefert den Wert dieses Integrals:

00 a 2
Ee 7 = / ex (—rt — —) dt = e lalv2r, 4.9
0o V2rt3 P 2t (49)

Wir kommen jetzt zur Betrachtung der Stopzeit 7,, zuriick. Wir nehmen dazu

einen Wechsel des W-Mafles in der Form vor, daf 7, , unter dem neuen Maf} () die
gleiche Verteilung besitzt wie 7, unter P. Den richtigen Zugang zur Definition des
Mafles ) weist uns wiederum das Girsanov-Theorem 1.30:

Fiir beliebiges T" > 0 definieren wir () durch die Radon-Nikodym-Ableitung

dQ ( / 1 / 5
— =exp | — pwdWs — — weN(ds) | .
ap 0,71 2 Jom )

Unter Beachtung von f[o q dW, = W, setzen wir nun fiir 0 <¢ <T

1
Y; = exp (—/ pdWs — —/ /ﬂ»\(ds)>
0. 2 Jio

1
= exp (—th — §u2t> .
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Nach Definition von @ gilt also
Q(A) = E(1,Yy) = / YrdP, Ac Fr.
A

Aus dem Girsanov-Theorem 1.30 folgt, da3 der Prozef (Wt)ogth, definiert durch
W,=W,+ut, 0<t<T,

unter () eine Standard-Brownsche Bewegung ohne Drift bildet. Die Verteilung der
Stopzeit 7,, = inf{t > 0 : W + pt = a} unter dem W-Ma$ () ist also die glelche
wie die der Stopzeit 7, unter dem W-Mafl P. Daher gilt fiir die Dichte fTW

Ta,u Unter

~ a a?
Ta — Ta: ex —_— .
== e ()

Unter Verwendung der Gleichung

1 ~ 1
Y, = exp (—th — §u2t> = exp (—th + §u2t>

erhalten wir fiir 0 < ¢ < T

= Eo

P(rop <1) = Ep(Lin,<n)
= Fgl 1,
Q ( {7a,n<t} YT)
1
= FEg |1, L <t} €XpP MWT - 5;“ ‘T
® Eqg (1{Ta L<t1Eq {exp (MWT - _M2T> ‘ Fra u/\t:|>
(x5) L
— EQ ]]'{Ta #<t} exp MWTa AV 2/‘L (Ta,H A t)

1
Lis, <t} €XP <ua - 2M2Ta,u>>

1
exp </w — §u28> fra, ds

( 1, a2> p
= exp | pa — —pu°s — — | ds
\/27r3 pa=5h s =5

exp (_M) ds.

2s

Il
S S~

- [
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In (x) haben wir von der Gliattungsregel fiir bedingte Erwartungswerte Ge-

brauch gemacht, wihrend (*%) aus der Martingaleigenschaft des Prozesses

(exp (/[th — % ,th)) folgt. Durch Differentiation dieses Terms nach ¢ erhal-
0<t<T
ten wir die Dichte f;  von 7,, unter P. Es ist
a (a — ut)?
- (t) = —_—, 0<t<T. 4.10
() = s exp (-2 <is (4.10)

Da der Zeitpunkt T beliebig gew#hlt war, wird durch diese Formel bereits fiir
0 <t < oo die Dichte von 7,, beschrieben. Mit Hilfe dieser Dichte kénnen wir

jetzt den Beweis vervollstindigen. Es gilt

Be—rmn = / eTUp (8 dt
0

* a (@ — pt)? )
= ex —— —rt) dt
/0 vV ort3 p( 2t
/Oo a ( a2+ L 2 t) dt
= exp | —— +ap— -p‘t—r
o Vore P\ T TR

a

o a® 1

= e“”/ exp(——— —2+rt> dt
Y 5~ (GH+T)

—  ean—laly/ w4

Im letzten Schritt haben wir dabei die Formel (4.9) fir Ee™™™ mit (1% +r)

anstelle von r benutzt. O

Wir formen nun die Stopzeit T, so um, dafl wir obigen Satz fiir die Berechnung

von Fe™"'e heranziehen konnen. Es gilt (beachte p = r)

Ta = 1nf{tZOXt§a}
1
= inf {t >0:zexp (UWt + (r — 502)75) < a}

1 2 1
= inf{tEO:Wt+—(r—a—>t:—log(g)}.
o 2 o T

Als direkte Konsequenz aus Satz 4.4 ergibt sich daher wegen x > a und somit
log(a/z) < 0 die Identitit

FEe ™= = exp (log (g
x

~—
1
QM|,_.
N

=

|
w|qw
N——

+
Q|+
«
QN|,_.
—

=

|

N | Q
~—
[N}

+
[\

=
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Abbildung 4.1: Losung der Amerikanischen Put-Option

Der Exponent 148t sich mit Hilfe der elementaren Umformung

1y 1 2\ 2
—<%—§)—; <r—%> + 2ro?

1 1 4
:—% SR r2 = ro? + 4 g2
o o
oo 1 o2\?
BRI A Uy
_oor 1 r 1
o2 2 o2 2
o 2r
o2

vereinfachen, so dafl wir nun in der Lage sind, eine geschlossene Form fiir unser

Ausgangsproblem anzugeben. Es ist
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und folglich
K —z, falls = <a,
xr) = 2r
(K —a) (%) -2, falls z>a,

wobei natiirlich immer noch ¢ < K vorausgesetzt ist. Die Funktion V, besitzt
somit die Gestalt K(a)x*% fiir x > a mit der von a abhéingigen Konstanten
K(a) = (K — a)a%. Wir miissen daher nur noch a so wihlen, da§ K (a) maximal
wird. Eine einfache Rechnung liefert uns, dafi das absolute Maximum im Punkt
2rK
o? +2r

angenommen wird. Eine graphische Darstellung der Funktion V, zeigt Abbildung
4.1.

*

4.2.2 Beweis der Optimalitit

Im vorherigen Abschnitt haben wir lediglich Stopzeiten von der Gestalt
T, = inf{t > 0 : X; < a} betrachtet und unter diesen eine optimale bestimmt.
Den Beweis, daf} diese Stopzeit bereits unter allen Stopzeiten die optimale Strategie
fiir das Ausiiben der Put-Option darstellt und sich somit als Lésung des Stoppro-
blems V*(z) = sup, Fe " (K — X;)" erweist, blieben wir aber bislang schuldig.
Diesen Nachweis nehmen wir daher als nichstes in Angriff.

Wir benétigen dafiir allerdings einige Eigenschaften der Funktion V., die wir im

folgenden nur noch mit V' bezeichnen.

4.5 Lemma. Es sei V : Rt — R™" gegeben durch

K -z, falls x <a*,

Vi) = o 4.11
(@) {(K—a*)(x)_ﬁ, falls = > a* —

a*
2rK
o24+2r”
x # a* zweimal stetig differenzierbar. Ferner gilt

mit a* = Dann ist V(z) in x = a* einmal stetig differenzierbar und fir
4.12
4.13
4.14
4.15

rViz) = arV'(z)+ %x%ZV"(x) fir alle v > a*,
V(") = K—a',
V'i(a*) = -1,

V() > (K—z)"  firallex > 0.

*

a

~—~~ Y~
~—_ ~— ~— ~—
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Beweis. Es ist klar, daf} die Funktion V fiir z # o* zweimal stetig differenzierbar
ist, so da} wir uns direkt den Gleichungen (4.12) bis (4.15) widmen konnen. Fiir

den Beweis von (4.12) sei x > a*. Dann liefert die Rechnung

1
orV'(z) + 5302021/"(36)

o (2)
=rV(x)

die gewiinschte Differentialgleichung. Die Gleichung (4.13) ist trivial. Fiir (4.14)
berechnen wir die Ableitung von V' fiir x > a*: Es ist

Vi) = — 2r (K —a*) (i)_z_g—l

o2a* a*

_ 2r(0®+2r) K, 2rK (ﬁ)j’él
N 2ro?K o?+2r/) \a*

I <02+2r—2r><x>—§—3—1

o2 o2+ 2r a*

T\ 251
= (= .

Wir erhalten die Differenzierbarkeit in a* und als Wert der Ableitung

V'(z) = lim V'(2) = lim V'(z) = —1.

zta* zla*

Fiir (4.15) konnen wir uns wegen der einfachen Abschitzung ¢* < K offenbar auf

den Fall x > a* beschrianken. Wir definieren fir z > a*
flx)=V(z)+z— K.

Die Abschétzung
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impliziert, da} die Funktion f auf dem Intervall [a*,00) monoton wachsend ist.

Vermoge (4.13) fiihrt uns das zu
fley=V(x)+z—-K>V(a")+a* — K =0,
so dafl wir wie gewiinscht
Vir) > K —x

erhalten. Es bleibt V'(x) > 0 fiir alle z > a* zu zeigen. Dies ist aber eine direkte
Folgerung aus der bereits erwéhnten Ungleichung a* < K. O

Wir fassen nun, da wir simtliche Ingredienzen fiir den Optimalitdtsbeweis bereit-

gestellt haben, die bisherigen Ergebnisse in folgendem Satz zusammen:

4.6 Satz. Es sei (X;);>o eine geometrische Brownsche Bewegung mit Drift r > 0
und Volatilitdit o > 0. Dann existiert eine Stopzeit 7, die das Stopproblem
V*(x) = sup, E(K — X, )e™ "7 ldst, namlich

™ =inf{t >0: X; <a*}

mit a* = 022’::;7,. Ferner gilt V*(z) = V(x) mit

2r

K — z, falls x <a*,
V() = oy
(K—a*) (L) =, falls z>a"

Beweis. Wir haben bereits im vorherigen Abschnitt nachgewiesen, dafl die Stopzeit

7* die Bedingung
Eefr’r* (K — X»,—*)+ = V(:U)
erfiillt, die uns die Giiltigkeit der Ungleichung

V(z) <supFEe "(K — X,)" =V*(z) (4.16)

T

garantiert. Wir miissen somit nur noch die umgekehrte Ungleichung verifizieren.

Dazu betrachten wir den Prozef (e ™'V (X;));>o. Mit Korollar 2.6 kénnen wir unter
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Beachtung von p =r

e V(X)) = V(x)—l—/ ae”XsV'(Xs)dWsnL/ —re” "V (X5) A(ds)
[0,¢] [0,t]

1
+ / e (msv'(xs) +§o—2x3v"(xs)> N(ds)
[0,¢]

_ V() + / e X V(X)) dW,
[0,¢]

1
+/ e "’ (—TV(XS) +r X, V' (X,) + 502X3V”(Xs)> A\(ds)
[0,¢]

f.s. schreiben. Der Prozef3

M= V() + [ XV AW, ez

[0,£]
bildet ein Martingal, da bzgl. einer Standard-Brownschen Bewegung integriert
wird. Wir definieren fiir s > 0

1
Y, = (—rV(Xs) + X,V (X,) + 50—2)(31/"'()(5)>

und zeigen, dal Y; < 0 f.s. fiir alle s gilt. Mittels einer analogen Rechnung wie
in (3.6) sehen wir dann, daB (Z;); = (e™"*V(X;)), ein Supermartingal bildet. Fiir
X < a* liefert uns die Abschiatzung
1
Y, = e (—rV(Xs)+rXsV’(Xs)+502XfV”(Xs)>
= e " (—r(K - X,) —rX,)
= ¢ " (-rK)

< 0

die Ungleichung Y, < 0. Fiir X; > a* ergibt sich diese aus der Differentialgleichung
(4.12) gemiB

1
Y, = ¢'* (—TV(XS)+rXsV’(Xs)+§(72XSZV”(Xs)>
= 0.

Der Prozef} (e7"'V (X}))i>o bildet daher ein Supermartingal, und wir erhalten unter

Verwendung von Korollar 1.9 in Verbindung mit (4.15) fiir jede Stopzeit 7 die
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Abschéatzung

Ee™ "™ (K — X,)*

IN

Ee"V(X,)
< EV(Xy)
V(z).

Bilden wir nun auf beiden Seiten das Supremum iiber alle Stopzeiten 7, so liefert

dies die umgekehrte Ungleichung

V*(z) =sup Be " (K — X;)T < V().

T

Insgesamt haben wir somit

sichergestellt, so daf} die Stopzeit 7* die gesuchte Losung unseres Stopproblems
bildet. [



Kapitel 5

Exotische Optionen

Gegenstand dieses Kapitels sind zwei weitere Optionen: Zum einen befassen wir uns
mit der sogenannten Russischen Put-Option, die von Shepp und Shiryaev ([She2])
1993 eingefiihrt wurde und zum anderen mit einer Option, die Guo und Shepp

[Guo] im Jahr 2000 zum ersten Mal analysierten.

5.1 Das Modell

Wir legen im folgenden das Modell von Black und Scholes aus dem vorherigen
Kapitel zugrunde mit der wichtigen Anderung, da$ wir nicht mehr auf dem Prin-
zip der Arbitragefreiheit bestehen. Allerdings werden die anderen Voraussetzungen
bzgl. des Handels mit Finanzgiitern iibernommen. Diese besagen, dafl der Handel
in stetiger Zeit stattfindet, keine Transaktionskosten verursacht und keine Divi-
denden ausgeschiittet werden. Der Zeithorizont ist auch hier wieder unendlich.

Die Kursentwicklung eines Bonds wird also durch den Prozef3
R, = €' Ry, t>0, (5.1)

mit Anfangswert Ry und Verzinsungsrate r > 0 gegeben, wihrend der Preisprozef3

einer Aktie durch eine geometrische Brownsche Bewegung

1
X; = zexp (aWt + <u — 502> t) , t>0, (5.2)

mit Drift x4 > 0, Volatilitat o > 0 und Startwert > 0 festgelegt ist. Die Variablen

r, p und o seien im weiteren wieder als bekannt vorausgesetzt.
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Da wir nicht vom Prinzip der Arbitragefreiheit ausgehen, miissen die Investoren
in ihrer Annahme iiber die Drift ;z der geometrischen Brownschen Bewegung nicht

notwendig {ibereinstimmen. Wir kénnen daher im folgenden auch ;2 # r annehmen.

5.2 Die Russische Put-Option

5.2.1 Die Problemstellung

Bei der russischen Put-Option erwirbt der Kaufer der Option das Recht, sich zu
einem beliebigen Zeitpunkt entweder den maximalen Preis, zu dem die Aktie bis
zu diesem Zeitpunkt gehandelt wurde, oder aber einen vorher festgelegten Min-
destbetrag s > 0 auszahlen zu lassen. Der Auszahlungsprozef (S;);>¢ der Option

wird dann durch

S; = max {s, sup Xu} , t>0 (5.3)
0<u<t
gegeben. Der Kéufer des Kontraktes erhélt daher zum von ihm wéhlbaren Aus-
iibungszeitpunkt 7 den Wert S, wobei durch 7 natiirlich wieder eine Stopzeit be-
zeichnet wird. Der Kaufer wird also nach einer Strategie bzw. Stopzeit 7* suchen,
die den Wert Fe™"" S, maximiert. Gesucht ist also wie bereits in den vorangegan-

genen Beispielen

V*(x,s) =sup Ee™"7S,, (5.4)
sowie die optimale Stopzeit 7, die dieses Stopproblem 16st. Wir nehmen im wei-
teren p < r an, da sich sonst die triviale Losung V*(x, s) = oo ergeben wiirde.
An dieser Stelle sei auf die Arbeit von Duffie und Harrison ([Duf]) verwiesen.
Sie analysierten die Russischen Put-Option unter Giiltigkeit des No-Arbitrage-
Prinzips, also fiir 4 = r, und der zuséitzlichen Annahme, dal in stetiger Zeit
auf die Aktie Dividenden in Héhe von § > 0 ausgeschiittet werden. Durch die
Konstruktion von Handelsarbitrage haben sie einen fairen Preis fiir die Option
hergeleitet. Speziell fiir 6 = 0 ergibt sich ein unendlicher fairer Preis fiir die Put-
Option, dafl heifit, wird die Option zu einem endlichen Preis verkauft, so ergeben

sich Arbitrageméglichkeiten.
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5.2.2 Eine heuristische Herleitung

Wir ,raten“ zuniichst anhand einiger intuitiver Uberlegungen eine Funktion
V(z,s)=V(z, s, po?)

und weisen dann im néchsten Abschnitt nach, dafl sie mit der gesuchten Funktion
V* {ibereinstimmt.

Bei einem niedrigen Startwert des Finanzgutes ist es plausibel, sofort zu stoppen
und wenigstens den Betrag s zu realisieren, da es eher unwahrscheinlich ist, dafl der
Wert der Aktie den Wert s iibersteigt. Diese Uberlegung bedeutet V (z, s) = s, falls
x < g(s) gilt, wobei g(s) < s eine Funktion ist, die eine von s abhéingige sogenannte
freie Grenze bezeichnet. Wir nehmen an, dafl diese Funktion stetig differenzierbar
ist. Bei einem hoheren Startwert des Finanzgutes x > g(s), d.h. ist der Prozef}
S; u.U. kurz davor, einen Anstieg zu verzeichnen, so ist es naheliegend, mit dem

Ausiiben der Option noch zu warten. Wir erhalten also eine Fortsetzungsregion
C={(r,s) eRT xR":¢g(s) <z <s}
und eine Stopregion
E={(z,5) e R" xR*: 2 < g(s)}.

Anschaulich bedeuten diese folgendes: Befindet sich der (Vektor-) Prozef (X, Sy)
(beachte X; < S;) in der Fortsetzungsregion, so wartet man mit dem Ausiiben der
Option bis zu dem Zeitpunkt, zu dem er diese verldfit. Dabei betrachten wir den
Proze (X, S;), um die zeitliche Entwicklung sowohl des Aktienkurses als auch
des Auszahlungprozesses zu erfassen. Die Option ist somit auszuiiben, sobald der
Prozefl (X, S;) in die Stopregion eintritt, was gleichbedeutend mit X; < ¢(.S;) ist.
In der Fortsetzungsregion sollte die gesuchte Funktion die Eigenschaft besitzen,
dafBl der Prozef§ e "V (X}, S;) ein Martingal bildet, was durch die Forderung

def’"t V(Xt, St) =0

sichergestellt wird. In der sogenannten festen Grenze s iiberlegen wir uns, daf3 V'

die Bedingung

——Vi(z,s)] =0 (5.5)
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erfiillen sollte. Diese Bedingung ist fiir die Martingaleigenschaft von e "V (X, Sy)
in der Fortsetzungsregion notwendig und ergibt sich aus der Darstellung

Sy = max{s, sup XU} = sup X, (5.6)

0<u<t 0<u<t

fir s < z. Die Funktion V*(z,s) = sup, Ee 7S, ist fiir s < z also unabhéingig
von s und somit ist ersichtlich, da§ V' die Gleichung (5.5) erfiillen muf.
Fir X; = S; gilt also %V(Xt,st) = 0. Andererseits gilt fiir X; < S; natiirlich
dS; = 0. Wir gehen weiter davon aus, dafl wir auf die Funktion V' die verallge-
meinerte [to-Formel 2.3 bzw. Korollar 2.6 anwenden diirfen, so dafl wir aus dem

soeben Erwahnten die f.s. Identitét

eirtV(Xt; St)

= V(Xo, So) +/ oX e_TSEV(XS,S ) dWs — re "V (Xs, Ss) A(ds)
0. Oz 0.
+/ e’ XQV(X S)+102X28—2V(X Ss) | N(ds)
[O’t} /‘L Sal_ S S a 2
%)
e "V (X, Sy) d :
+/0t35 V (X5, Ss) dSs (5.7)
:V(XO,SO)+/ aXse*TSEV(Xs,SS)dWS
[0,t] 81’
—Trs a ]- 2 2 82
+ [ e —TV(XS,SS)Jrqu%V(Xs,SH UXsa SVI(X, S5) ) A(ds)
[0,1]

erhalten. Das Integral f[o q aXse_”%V(Xs, Ss) dWy bildet ein Martingal. Damit

der gesamte Prozefl ein Martingal bildet, mufl V' also die gewthnliche Differenti-
algleichung

0 1 22 0?

—rV + uxa—V + a 57

im Fortsetzungsbereich erfiillen. Diese Glelchung wird auch als ,, Bellman-Differen-

~_V =0 (5.8)

tialgleichung® bezeichnet. Die Losungen dieser Differentialgleichung besitzen die
Gestalt

V(z) = A(s)x™ + B(s)x™. (5.9)
Dabei bilden 7y und ~; die Losungen der Gleichung

1
—r+ 50 (y=1) =0, (5.10)
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die auch Indezxgleichung genannt wird. A(s) bzw. B(s) sind zwei von s abhéingige,
noch zu bestimmende Konstanten. Eine exakte Herleitung dieser Lésung findet
sich im Anhang.

An dieser Stelle greifen wir nun auf das sogenannte Principle of Smooth Fit zuriick.
Erstmalig wurde dieses Prinzip von A. N. Kolmogorov in den 50er Jahren angewen-
det und unabhingig davon 1961 von H. Chernoff ([Che]) entdeckt. Er analysierte
Sequentialtests fiir den Erwartungswert von Normalverteilungen, wobei er eine
Verbindung zu Differentialgleichungen mit freien Grenzen herstellte.

Das Principle of Smooth Fit ist rein heuristischer Natur und besagt in diesem
Zusammenhang, daf} die Funktion V' in der freien Grenze ¢(s) moglichst , glatt“

sein sollte, was in den Gleichungen
Vig(s),s) = s (5.11)
und

0
—Vi(z,s = 0 5.12
55V (2:5) . (5.12)

zum Ausdruck kommt. Anhand dieser beiden Gleichungen konnen wir nun die
genaue Gestalt der Funktion V' herleiten. Dazu setzen wir die obige Darstellung
(5.9) in die Gleichungen (5.11) und (5.12) ein und erhalten

A(s)g(s)” + B(s)g(s)" = s
bzw.
Y0A(s)g(s)°~" + 1 B(s)g(s)" ™" = 0.

Diesem Gleichungssystem entnehmen wir durch einige elementare Umformungen
die Werte A und B. Es ist

SN - 570 _
A(s) = — s)"7 und B(s) = s) M,
(s) %_%g() (s) %_%g()

woraus sich durch Einsetzen in (5.9) ferner

o= (o) i)
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im Fortsetzungsbereich ergibt. Mit Hilfe dieser Gestalt bestimmen wir nun als

letztes die freie Grenze g. Unter Hinweis auf Gleichung (5.5) gilt offenbar

%V(ﬁ’ N = % - 7 (7(: (958))71 o (ffg)%) .
e Creli) () )

=0,

woraus folgt, dal g der gewohnlichen Differentialgleichung
() —% ()
g'(s) = LA 0 9 (5.13)

y1+1 Yo+1
_s S5
(g(S)) (g(S)>

geniigen muf. Eine einfache Losung dieser Differentialgleichung stellt die Funktion
g:R—R,

g(s) :=as

dar, wobei a € R eine noch zu bestimmende Konstante ist. Der Beweis im folgen-
den Abschnitt wird zeigen, dafl die Funktion g bereits die gesuchte freie Grenze
ist. Daher verzichten wir an dieser Stelle auf eine genaue Herleitung dieser Losung.
Zur Berechnung von a setzen wir g(s) = as in die Differentialgleichung (5.13) ein
und erhalten

Lo — Lg—

71 70
a1 — g1’

a =

Einige einfache Umformungen liefern schlief8lich

- (70(71 - 1)) 0
7i(0—1) ’
so dafl wir nun die exakte Gestalt von V' angeben kénnen. Es ist
s, falls 0 < x < as,
V(z,s) =< 755 (o (Z)" =7 (£)"), falls as<z<s

’Yoffyl (70 (%)71 -Nn (%)70) ; falls s < z.

Dabei resultiert die Gestalt von V' fiir s < = aus Gleichung (5.6), die die Identitét
V(z,s) =V(x,z) fiir s < x liefert.
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as S x

Abbildung 5.1: Lésung der Russischen Put-Option

5.2.3 Beweis der Vermutung

Wir beweisen nun, daf§ die gerade heuristisch hergeleitete Funktion wirklich mit
der gesuchten Funktion V* {ibereinstimmt und iiberzeugen uns, dafl die Stopzeit
™ = inf{t > 0 : X; = aS;} einen optimalen Ausiibungszeitpunkt der Option
bildet.

Fiir den endgiiltigen Nachweis ist allerdings einige Vorarbeit zu leisten. Wir stellen

daher die benotigten Aussagen in einigen Lemmata dem eigentlichen Beweis voran.

5.1 Lemma. FEs seien vy und v, die Lisungen der Indexgleichung —r + uy +
s0%y(y—1) =0, d.h.

1 [o? o2\’
N o= ?—u+ <u—?> + 2ro? und

1 [ o? o2\ ?
_ 2
w= |G ory(ng) v

Weiter sei a = (%) " Dann gilt v, <0< 1< v und ferner 0 < a < 1.
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Beweis. Die erste Behauptung erhalten wir aus den beiden Abschétzungen

1 [ o2 o? 2
_ 2
"= 2 2—#— (2—u> + 20°r

und

_ 1 ’ o’ ’ 2
Yo = 52 ?—/L—i— ?—/L + 20%r

1 2 ot

T B o _ 2 2 | 942
pol W+ 1 o+ p= + 07")

= 1 (o2 N a4+ 2,4 2
2\ KT\ ToRTH

= 1

wobei in (%) die Ungleichung 202y < 20%r eingegangen ist. Unter Beriicksichti-
gung von y; < 0 < 1 < 7 und daher (y; — 1)y, ' > 1 und (v — 1)7! > 1 sowie
Y1 — Y < 0 ergibt sich offenbar

1)\ e

0 < <M> "<
(v —1)

und folglich die zweite Behauptung des Lemmas. O

In folgendem Lemma sind nun einige grundlegende Eigenschaften der Funktion V'

zusammengestellt.

5.2 Lemma. Die Funktion V : RT x Rt — R, definiert durch

s, falls 0 < x <as,

Viz,s) =< 5 (o ()" =% (£)"), falls as<z<s

’Yof’h (,YO (%)71 -N (%)’YO) y falls s <.




5.2 Die Russische Put-Option 67

ist stetig partiell differenzierbar. Ferner existiert g—;f fiir x # as und ist stetig. Es

qilt fiir as < x < s die Differentialgleichung

B 0 1., ,0?
rV(z,s) = xua—ng(x, s) + oilid @V(x, s) (5.14)
sowte
V(z,s) > s firale0 <z <s, (5.15)
V(as,s) = s, (5.16)
%V(x, s) = 0, (5.17)
0

- = 0. q

8SV(x,S) - 0 (5.18)

Beweis. Es ist nur noch die Ungleichung (5.15) nachzuweisen. Fiir die anderen
Gleichungen verweisen wir auf den vorherigen Abschnitt, in dem die Funktion
anhand dieser Gleichungen hergeleitet wurde. Diese Eigenschaften konnen jedoch
auch leicht elementar nachgerechnet werden. Fiir den Beweis der Gleichung (5.15)

betrachten wir die Ableitung von V fiir = € (as, s) bei festem s:

Vs = 2 ()" - (3))

Yo — M as as
SYo1 4 ( x )71 (( T )70*71 )
= ——0 — — -1
Yo —mn as as
>0 >0
> 0.

Dabei ist 71 <0 <1 <7 und 79 — 71 > 0 zu beachten. Die Funktion V' ist somit

in 2 monoton wachsend auf (as, s) und daher ist
V(z,s) > Vi(as,s)=s,
was den Beweis abschlief3t. O

Die folgenden beiden Lemmata beleuchten die optimale Stopzeit 7* und den Prozef}

e "V (X4, Sy) etwas genauer.
5.3 Lemma. Fir die Stopzeit 7 := inf{t > 0: X; = aS;} gilt

P(m" < 00) = 1.
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Beweis. Es sei T > 0 fest vorgegeben. Aus der Definition von 7* ergibt sich

P(t*>T)
= P(logX; >loga+1logS, V 0<t<T)

1 1
= P(aWt—i—(u—502>t>loga+aWs+(u—502>s, V0§s§t§T>
1
= P(a(Wt—Ws)>10ga—(u—502>(t—s)V0§s§t§T>

1
< P(Wt—Ws>loga—‘u—502 (t—s) VO0<s<t<T

- P(Ws—Wt<

1 2
M—QU

(t—s)—loga V 0§s§t§T>.

Abkiirzend setzen wir ¢ := |u — 10?| (t — s) — loga. Sei T = nd mit einem & > 0,

dann liefert diese Abschétzung offenkundig

P(r*>T) < PW;—W;<e V¥V 0<s<t<T)
< PWs=Wo<e,o.,Wns — Wp_iys < ¢) .

Wegen der Unabhéngigkeit der Zuwéchse gilt daher

1 ¢ 22 "
P(r*>T) < / e?édx) — 0
( )< <\/27r5 —c

0

5.4 Lemma. Der Prozef 7, := ¢ """V (X p, Srept), 0 < t < 00, bildet ein

gleichgradig integrierbares Martingal.

Beweis. Die Martingaleigenschaft folgt aus der Differentialgleichung (5.14) und
der Rechnung (5.7). Fiir die gleichgradige Integriebarkeit ist es nach Korollar 50.3

in [Als] hinreichend zu zeigen, daf

E sup Z; < o0
0<t<oo

gilt. Aus der Definition der Funktion V' erhalten wir die Abschétzung

Zy = 67T(T*M)V(Xr*/\ta Srent) < eir(T*M)V(Sr*/\t; Srent) = ce TG Ly
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mit ¢ = 70171 (70 (%)71 - (%)70) Daher ist es klar, dafl es bereits geniigt, die

Ungleichung

E sup e"S, :/ P( sup e 'Sy > y) dy < oo (5.19)
0

0<t<oo 0<t<oo

nachzuweisen. Weiter gilt fiir y > max{z, s} die Aquivalenz

sup e S, >y

0<t<0
< sup e " sup X, >y
0<t<0 0<s<t
1
< sup e " sup rexp (aWs + <u — —a2> s) >y
0<t<oo 0<s<t 2

02> s+ logx — rt) > logy

a2> s—logg—rt> >0,
x

<= sup sup <0W3+ (u—

0<t<o0 0<s<t

N — N =

<= sup sup (aWs + <u—
0<t<o0 0<s<t

die
P ( sup e 'S, > y)

0<t<oo

1
=P ( sup sup <0W5+ (,u— —02> s—logg —rt) > 0)
0<t<oo 0<s<t 2 x

liefert. Nach einer bekannten Ungleichung von Doob (Satz 1.8, S. 55 in [Rev]) gilt
fiir alle @« > 0 und 8 > 0 die Abschitzung

(5.20)

PW,<at+8 V 0<t<oo)>1—e 2P, (5.21)

Wir wihlen speziell die Werte

-1 02 —1 Y
a=o0 (r—pt und f=0 "log=. (5.22)
x

Diese Wahl liefert uns fiir W, < at + 8

1 2
sup <0Ws + (/L - —02> s) < sup (U(as +0) + </L — U—) s)
0<s<t 2 0<s<t 2

= sup (log Y + rs)
0<s<t x

= logg + rt.
x
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Folglich gilt fiir alle ¢ > 0 die Implikation
1
Wy <at+ == sup <0W3+<u——02>8>—logg—rtgo,
0<s<t 2 x
die letztlich die Abschitzung

P( sup (Wt—at—ﬁ)>0>

0<t<oo

1
> P ( sup sup (aWs + (u— —02> s —logrg —rt) > 0)
0<t<00 0<s<t 2 x

garantiert. Fiir y > max{z, s} erhalten wir daher unter Verwendung von (5.20),
(5.21) und (5.22) in Verbindung mit der Identitéit af = (3 + =#)log¥ die Un-

o2

gleichung

P ( sup e S, > y)

0<t<oo
1, y
=P sup sup (ocWs+ |p—z0")s—log=—1rt| >0
0<t<oo 0<s<t 2 x

§P< sup (Wt—at—ﬁ)>0>

0<t<oo
=1-PW, <at+p V 0<t<o0)
§6—2aﬁ

e (- (122 )

()
- |

X

Die Existenz des Integrals

[ e

fiir r > p und s > 0 liefert nun zusammen mit (5.19) die gewiinschte Abschétzung

Esupyc;. € 'S < 00, die den Beweis vervollsténdigt. O

Wir haben nun simtliche Bestandteile beisammen, um den Beweis unserer Ver-
mutung zu erbringen. Der folgende Satz bestitigt unsere intuitiven Uberlegungen

aus dem vorherigen Abschnitt:
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5.5 Satz. Es seien (X;)i>o und (S;)i>o definiert gemdf (5.1) bzw. (5.8). Dann
existiert fiir das Stopproblem V*(x,s) = sup, Ee™""S, eine Lisung 7, falls p < r

ist. Die optimale Stopzeit wird durch
T = 1nf{t Z 0: Xt = ClSt}
gegeben, wobei a € (0,1) durch
1
. <70(71 - 1)) 0
71(% —1)

definiert ist. Die Werte v < 0 < 1 < 7y bilden dabei die Losungen der Indexglei-
chung —r + py + 302y(y — 1) = 0. Weiter gilt V*(z,s) = V(z,s) mit

s, falls 0 < x <as,

Vizg,s) =13 55 (0 ()" =0 (5)7), falls as <z <s
Wf,n (’}/0 (%)71 -m (%)70) , falls s < x.

Beweis. Wir zeigen, daBl der Proze8 (e "'V (X, Si)),s, ein Supermartingal bildet,

indem wir auf diesen Prozef} die verallgemeinerte [t6-Formel anwenden. Wir erhal-

ten analog zur Rechnung (5.7)

6_rtV(Xt; St)

= V(X So) + / o X 2V (X,, S AW,
[0,t] &r
+/ e | —rV(X,,S,) + XQV(X S)+102X28—2V(X S,) ) \(ds)
[07t} S S ,u Sal‘ S S 2 S a"L’Z S S

f.s. Das erste Integral bildet ein Martingal, da wir bzgl. einer Standard-Brownschen

Bewegung integrieren. Wir definieren

Y, = e (—rV(Xt, S,) + uXt%V(Xt, S,) + %UQXfaa—;V(Xt, 5;)) .
Im Bereich 0 < X; < as gilt fiir Y}
o= et (SrVLS) X (X )+ 3otV (XS,
Ox 2 Ox?
= e " (—rV (X, S))
= e " (—rs)
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wiahrend fiir as < X; < s nach (5.14)
Vi=e " —rV(Xy, Ss) + uX iV(X Sy) + 1aQXQa—ZV(X S,)
t ts S tam ty s 2 t 81‘2 ts S
=0
gilt. Der Integrand des zweiten Integrals ist somit stets negativ. Dies liefert uns
wie schon in den beiden vorangegangenen Kapiteln, dafl (e™"*V (X}, St))¢>o €in Su-
permartingal bildet. Wegen der Stetigkeit der Funktion (z, s) — V'(z, s) ist dieses
Supermartingal rechtseitig stetig und aus Gleichung (5.15) erhalten wir somit fiir

eine beliebige Stopzeit 7 unter Verwendung von Korollar 1.9 die Abschidtzung

Ee ™S, < Ee"V(X,,S,)
= EQOV(X(),SO)
= V(z,s).

Gehen wir zum Supremum iiber, so liefert dies die gewiinschte Ungleichung

V*(x,s) =sup Ee ""S,; < V(x,s).

T

Fiir die umgekehrte Ungleichung betrachten wir die Stopzeit 7* = inf{¢t > 0 :
X; = aS;}. Der gestoppte Prozef (e*”(“\T*)V(Xt,\T*))DO bildet nach Lemma (5.4)
ein gleichgradig integrierbares Martingal. Daher folgt aus dem Optional Sampling

Theorem

V*(x) sup Ee™"7S;

T

Ee™"™ S,

Ee "7V (aS;, S;-)
Ee "V (X, Spe)
V(z,s),

IV

*
1%
N

wobei wir in (%) von V(as, s) = s Gebrauch gemacht haben und in (%) die Iden-
titdt X, = a5, benutzt haben. O

5.6 Satz. In der Situation von Satz 5.5 sei jp > r. Dann erhalten wir mit 7" = 0o

eine optimale Stopzeit, und die erwartete Auszahlung ergibt sich zu V* = oo.

Beweis. Diese Aussage ergibt sich aus Satz 1.2. U
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5.3 Das Problem von Guo und Shepp

5.3.1 Die Problemstellung

In diesem Abschnitt befassen wir uns mit einem Stopproblem, dafi gewisse Ahn-
lichkeiten zur Russischen Option aufweist. Wir fiihren eine Option ein, bei der
der Kaufer der Option das Recht erwirbt, sich zu einem beliebigen Zeitpunkt ent-
weder den aktuellen Preis, zu dem das Finanzgut zu diesem Zeitpunkt gehandelt
wird, oder aber einen vorher festgelegten Mindestbetrag [ > 0 auszahlen zu lassen.
Diese Option unterscheidet sich also von der Russischen Put-Option darin, dafl
der K&ufer nicht zwischen dem Supremum des Preisprozesses bis zum Zeitpunkt ¢
und dem festen Betrag [ wihlen kann, sondern zwischen dem aktuellen Wert des
Finanzgutes und [. Die vorliegende Problemstellung resultiert aus der Betrachtung
eines risikoaversen Investors, der sich gegen fallende Kurse absichern will und we-
nigstens einen vorher garantierten Preis erhalten mo6chte. Der Auszahlungsprozef3
(Si)i>0 der Option wird durch

St = max{l, Xt}, t Z 0 (523)

gegeben. Der Kéufer der Option wird wiederum nach einer Strategie bzw. Stopzeit

7* suchen, die den Wert Fe™"7S, maximiert. Gegeben ist also das Stopproblem

V*(z,l) =sup Ee ""S,, (5.24)
wobei natiirlich das Supremum wieder iiber siémtliche Stopzeiten gebildet wird. Da
wir im Gegensatz zum vorherigen Abschnitt nicht den Prozef sup,, X; betrach-
ten, spielt hier die zweite Komponente von V' (z,[) keine bedeutende Rolle mehr,
so dafl wir im folgenden V' als Funktion nur einer Verénderlichen auffassen und [
als festen Wert betrachten.

5.3.2 Eine heuristische Herleitung

Wir gehen bei dieser Option analog zur Russischen Put-Option vor, d.h. wir leiten

wiederum mittels heuristischer Argumente eine Funktion

V(z) =V(z,l,p0% 1)
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und eine Stopzeit 7* her, die wir dann als optimale Losung fiir das vorliegende
Stopproblem identifizieren. Wir setzen auch hier p < r voraus.

Bei einem niedrigen Startwert der Aktie ist es vermutlich sinnvoll, sofort zu stoppen
und wenigstens den Betrag [ zu realisieren, d.h. V(z) = [, falls < g(I) (vgl
Abbildung 5.2 auf S. 78). Bei einem hohen Startwert = wiirde man ebenfalls sofort
stoppen, da der Wert [ eine eher untergeordnete Rolle spielt und der Prozeff e "S5,
ein Supermartingal bildet (r > p). Man wiirde sich also im Mittel verschlechtern,
und es erscheint daher ratsam, direkt den Wert x zu realisieren. Dies bedeutet
V(z) = z, falls © > h(l). Wir nehmen aufgrund der Ergebnisse im vorherigen
Abschnitt direkt an, daf die Funktionen g und h linear sind. Es seien also ¢(l) = al
und A(l) = bl mit 0 < a < 1 < b < oo. Wir erhalten somit eine Fortsetzungsregion

C={zxeR":al <z <bl}
und eine Stopregion
E={r eR": 2 <al oder x> bl}.

In der Fortsetzungsregion sollte der Prozel e " V(X;) wiederum ein Martingal
bilden, d.h. es muf}

de_’"tV(Xt) =0.

gelten. Fiir unsere heuristische Herleitung gehen wir weiter davon aus, dal wir auf
die Funktion V' die verallgemeinerte Ito-Formel 2.3 bzw. Korollar 2.6 anwenden
diirfen, insbesondere sei V" also in den Grenzen al und bl stetig differenzierbar. Wir

erhalten

eV (X)) = V(Xg)—!—/ oe X V(X)) dW, — re” "V (X;) \(ds)
[0,¢] [0,¢]
1
+/ <,ue”XsV'(Xs) —|—5026TSX82V”(X5)> A(ds)
[0,¢]
= V(:E)+/ oe "X V(X)) dW
[0,¢]

1
+/ e "* (—TV(XS) + puX V' (X5) + §a2X32V"(XS)> A(ds)
[0,]
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f.s. Da das Integral f[o q e " X, V' (X) dWs ein Martingal bildet, mufl V' die gewéhn-
liche Differentialgleichung
1
—rV 4+ pxV' + §a2x2V” =0
im Fortsetzungsbereich erfiillen, damit auch e~V (X,) ein Martingal bildet. Die
Losungen dieser Differentialgleichung haben nach Satz B.1 die Gestalt

V(z) = Az™ + Ba"', (5.25)

wobei 79 und v, die Losungen der Indexgleichung —r + py + %027(7 -1)=0
bilden.
Nach dem Principle of Smooth Fit sind dabei A und B so zu wéhlen, dal nachfol-

gende Gleichungen in den freien Grenzen al und bl erfiillt sind:

Vial) = 1, (5.26)
V() = bl (5.27)
V'(al) = 0, (5.28)
Vi) = 1. (5.29)

Anhand dieser Gleichungen und der Gestalt (5.25) von V' leiten wir nun die Funk-
tion V' im Intervall [al, bl] her.
Einsetzen von (5.25) in die Gleichungen (5.26) und (5.28) liefert

A(al)™ 4+ B(al)™ = 1
und
YoA(al)™® '+ v Bla)" ! = 0.

Hieraus lassen sich durch einige einfache Umformungen die Werte von A und B

bestimmen. Es ist

z z
A=——"" (a) und B=—2L
Yo~ N Yo~ N

(al)if)/l Y

woraus sich eine genauere Gestalt von V' ergibt. Unter Verwendung von (5.25)

v = (o () (2)7) b

erhalten wir
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Als néchstes bestimmen wir aus (5.27) und (5.29) die freien Grenzen al und bl:

Setzen wir (5.30) in diese Gleichungen ein, so liefert dies

Yo | — -7\ - = b
Yo — N1 a a
Yo — N a a

Diese beiden Gleichungen formen wir zu

und

- (2) =@ - ) (531

a

- (1 ; (g)“) =5 (&) (0—)

um. Gleichsetzen und substituieren von £ := b/a ergibt weiter

und

Yo = MEOT =y (1—-§°07M).

Losen wir diesen Ausdruck nach & auf, so ergibt sich
1
¢ = (70(71 — 1)) -1
7i(0—1)

Setzen wir & in (5.31) ein, so erhalten wir

woraus wir durch einige elementare Umformungen schlief3lich

= = (=)

Y1
Yo (%(% — 1)) oM
Yo —1 \n(w—1)
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bekommen. Den Wert von b setzen wir nun in £ = b/a ein und erhalten den Wert

von a. Es gilt

b
a = -
3
v1—1
. Yo (’70(’71 — 1)) Y0—71
Yo —1\m(w—-1)
_ —1+70
_ _ M (70(71 - 1)) ' (70(71 - 1)) o
Yo —1\m(w—-1) V(v — 1)
1-7v9
_ (71(70 — 1)) 0=
71 =1 \(n —1) '

Wir haben somit simtliche Variablen bestimmt, so daf} sich unter Beriicksichtigung

obiger Berechnungen die genaue Gestalt von V zu

[, falls 0 <z <al,
V) = 70£71 (% (%)71 - (%)W) , falls al < x <bl,
x, falls bl <z

ergibt.

5.3.3 Beweis der Vermutung

Wir kommen nun zum expliziten Beweis, daf} die obige Funktion mit der gesuchten
Funktion V*(z) = sup, e™""S; iibereinstimmt und die Stopzeit 7" = inf{t > 0 :
X ¢ (al,bl)} den optimalen Ausiibungszeitpunkt fiir die oben dargestellte Option

bildet. Den Nachweis fiihren wir wieder in einer Reihe von Lemmata.

5.7 Lemma. Fs seien vy und v, die Lisungen der Indexgleichung —r + puy +
10%y(y=1)=0. Dann gilt 1 <0< 1<y und0<a<1<b.

Beweis. Fiir die Ungleichung v; < 0 < 1 < v verweisen wir auf Lemma (5.1).
Unter Beriicksichtigung von 7; < 0 < 1 < 7y und daher 0 < (7, —7)~' < 1,
0<y(yn—1"t<1lund 0 <, (v — 1) <1 erhalten wir

1—7g

_1 —
0< 1 < n_Y )70 R
Mm=1I\n—-1 7%
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Abbildung 5.2: Erwartete Auszahlung

und
71 1
Yo <70(71 - 1)) 0 Yo < Yo >”0‘”1
>
Y —1 \n(o—1) Yo—1\%w-1
S <’Yo - 1> T
Yo —1 Yo
-1
> Yo Yo
Yo—1 %
= 1,
also die zweite Ungleichungskette. O

Wir stellen nun noch einmal einige grundlegende Eigenschaften der Funktion V
heraus:

5.8 Lemma. Die Funktion V : Rt — R ist in den Grenzen v = al und © = bl

stetig differenzierbar und in R\ {al,bl} zweimal stetig differenzierbar. Es gilt

ﬁ

=

=
I

1
wuV'(z) + §x202V"(x) fir z € (al,bl), (5.32)
V(r) > max{z,I} fiir alle v € R, (5.33)
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Via) = 1, (5.34)
V(b)) = b, (5.35)
V'(al) = 0, (5.36)
V(b)) = 1. (5.37)

Beweis. Es fehlt lediglich der Nachweis von Gleichung (5.33). Hierfiir betrachten
wir die Ableitung von V fiir = € (al, bl):

oy = S () ()

- (@)

>0 >0

> 0.

Dabei ist auf v; < 0 und auf vy — v, > 0 zu achten. Die Funktion V ist somit

monoton wachsend auf (al,bl), und daher ist
Vi(z) > V(al) = 1. (5.38)

Es bleibt V() > = oder anders ausgedriickt V' (z)—z > 0 zu zeigen. Wir betrachten
die Funktion nur im Intervall (al,bl), denn fiir x ¢ (al,bl) ist die Ungleichung
trivial. Wir weisen nach, da$ fiir die Ableitung V'(z) <1 gilt. Dann ist V' (z) — z

auf [al, bl] monoton fallend, und wir erhalten
V(z) — 2> V(bl) — bl =0

fiir alle z € (al, bl). Um allerdings V'(z) < 1 zu zeigen, miissen wir auch noch auf
die zweite Ableitung V" zuriickgreifen. Wir berechnen also zunéchst die beiden

Ableitungen. Diese ergeben sich zu

o= () ()

und

o = (-0 (3 -0 (2)°)

Yo — N
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Unter Verwendung von 7, < 0 <1 < 7 und v; — 1 < 0 sowie 79 — 1 > 0 erhalten
wir im Intervall (al, bl) fiir die zweite Ableitung die Abschétzung

Vi(z) = Ivom 2 <(% ~1) (x>71 o= 1) (x>70>

Yo — N al al
[ g -1 Yo=Y
_ _omn 2y — 1) (ﬁ) 1(1_% (ﬁ) 0 1)
Jo— M al/ _\ v — 1 \al g
>0 >0
> 0.

Die Ableitung V" ist daher monoton wachsend auf dem Intervall (al, bl), und somit
ist
V'(z) < V'(bl) =1,

wodurch die gewiinschte Monotonie sichergestellt wird. Daher gilt V' (z) — z > 0,
was offenbar in Verbindung mit (5.38) Ungleichung (5.33) bestétigt. O

5.9 Lemma. Fir die Stopzeit 7" = inf{t > 0: X, ¢ (al,bl)} gilt
P(r" < o0) = 1.

Beweis. Dies ist eine direkte Konsequenz aus der Unabhéngigkeit der Zuwéchse

einer Brownschen Bewegung. O

5.10 Lemma. Der Prozef§ Z; .= e_’"(T*At)V(XT*,\t), 0 <t < oo, bildet ein gleich-

gradig integrierbares Martingal.

Beweis. Die Martingaleigenschaft folgt aus Gleichung (5.32). Ferner ergibt sich

aus der Definition von V

Zy = e "TMIV(X ) < ce " T max{l, Xy}

1
Yo—71

mit ¢ = (70 (g)71 -M (g)%) Im Beweis von Lemma 5.4 haben wir

E sup e”max{l, sup Xu} < 00
0<t<o0 0<u<t

nachgewiesen. Hieraus folgt natiirlich auch die gleichgradige Integrierbarkeit von
(Zt)tzo- O
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5.11 Satz. Es seien (X;);>0 und (S;)i>0 gemdf (5.2) bzw. (5.23) definiert sowie
p < r. Dann ezistiert fir das Stopproblem (5.24) eine Lisung 7% der Form

™ =inf{t >0:X; ¢ (al,b)},

wober 0 < a <1 < b durch

1-70

Lo <71(% — 1)) 707
Y1 =1 \(n—1)

und

71

o 0 (70(71 - 1)) o0
Yo—1\n(w-1)

definiert sind. Die Werte v9 < 0 < 1 < 7y bilden die Losungen der Indexgleichung
—r + py + 3502y(y — 1) = 0. Weiter gilt V*(z) =V (z) mit

[, falls 0 < x <al,
Vie) =S (w0 (E)" =7 (5)"), fols al <z <,
x, falls bl < x.

Beweis. Wir zeigen, daf der Prozef (e ""'V(X}));>o ein Supermartingal bildet, in-

dem wir auf diesen Prozef} die verallgemeinerte [t6-Formel anwenden. Wir erhalten
e"V(Xy) = Vz)+ /[ }ae_”XsV'(Xs) dW,
0,
+/[0t} e " (—TV(XS) + pX V(X)) + %UQXEV"(XS)> A(ds)
f.s. Das erste Integral bildet wiederum ein Martingal. Definieren wir
Y, :=e " <—7"V(Xt) + u X, V'(Xy) + %0'2XEV”(Xt)> )
so gilt im Bereich 0 < X; < al fiir Y; die Abschétzung

1
1/; = 67“ <—7"V(Xt) + /I/XSV,(Xt) + §U2X,52V”(Xt)>

= e " (—rV(Xy)
e " (=rl)
< 0.
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Fiir al < X; < bl ergibt sich aus der Differentialgleichung (5.32)
1
Vim e (<Y 00 + X 00) + o XV ) =0
und fiir bl < X, erhalten wir aus p < r schliefilich

1
Vi = e (<P X0 + X6
= e " (—rX, + pXy)
< 0.
Der Integrand des zweiten Integrals ist somit stets negativ. Dies liefert uns analog
zu der Vorgehensweise im vorherigen Abschnitt, dafl der Prozef (e "'V (X;));>0 ein
Supermartingal bildet und wir erhalten aus V' (x) > max{z,[} fiir eine beliebige

Stopzeit 7 die Abschétzung
Ee™""S, < Ee"V(X,) < V(X)) = V().
Gehen wir auf beiden Seiten zum Supremum iiber, so liefert dies

V*(z) =sup Ee™"" S, < V(x).

Fiir die umgekehrte Ungleichung betrachten wir die Stopzeit 7 = inf{t > 0: X, ¢
(al,bl)}. Der gestoppte Prozef bildet nach Lemma 5.10 ein gleichgradig integrier-
bares Martingal. Daher folgt aus dem Optional Sampling Theorem in Verbindung
mit X« € {al,bl} und somit max{X,, [} = S,« die gewiinschte Ungleichung
V*(z) = supFe ""S,

> Ee '™ S,

= Ee™ max{X,.,[}

= Ee " V(X,)

= V(x).

O

5.12 Korollar. In der Situation von Satz 5.11 sei | = 0. Dann erhalten wir fiir

das Stopproblem die triviale Losung
V*(r) ==,

und die optimale Stoppzeit wird durch 7 = 0 gegeben.
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Beweis. Es ist nur darauf hinzuweisen, daf der ProzeB e "*(X});>o ein Supermar-
tingal bildet. O

5.13 Satz. Ist in der Situation von Satz 5.11 p > r, so gilt
V*(z) = oo.

Beweis. Dies ist eine Folgerung aus Satz 1.2. O



Anhang A

Der Beweis von Lemma 2.2

Beweis von Lemma 2.2. Wir wihlen uns & = (#1,...,%4;1) € R mit 2, ¢ A

und zeigen, dal ¢ * f in & nach x; partiell differenzierbar ist mit Ableitung

ail(w* (@) = ¢+ (a%f@)) -

Xz

Abkiirzend schreiben wir im folgenden
C:={zx=(x1,...,0401) € R™ 12, ¢ A}.

Es sei ¢ > 0 beliebig vorgegeben. Wir werden zeigen, dafl der Differenzenquotient
F(p* f(&+te)) — = f(2)) in einer hinreichend kleinen Umgebung von Z um
weniger als € von ¢ * (%f(i)) abweicht. Da e beliebig gewéhlt ist, bestétigt dies
die Behauptung.

Wir wihlen n € N so gro, daf supp(¢) C B,(0) gilt und der Abstand d des
Trégers von ¢ zum Rand von B, (0) echt positiv ist. Die partielle Ableitung 3%1 f
ist aus Stetigkeitsgriinden auf B, (%) beschrinkt und somit existiert ein K > 0,
derart dafl

if(x) < K fiir alle z € B, ().
8.%‘1

Da die Menge A diskret ist, ist A N [Z; — n, 21 + n] endlich, so daf wir
{z1,.yxp } = AN [T — n, 31 + n]
mit ky € N schreiben kénnen. Wir definieren fiir 1 < k < k

Y = X1 — T
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Zu jedem vy, existiert ein dx > 0 hinreichend klein, so daf die Ungleichung

£
()] AT (@) <
/[;/k_‘sk,yk+6k]><[_n’n]d Ako K
erfiillt ist. Weiter definieren wir
ko
Cr = (s = 811 + 8] x [=n,n]") N By (0)).
i=1
Dann ergibt sich aus dieser Konstruktion die Abschitzung
(@) AN () < - (A1)
Ci 4
Wir setzen & := $ min{é, ..., dg,, d} und
ko
Cy = U (([»%1 — i — 00, B1 — yi + Go] X [, n]d) N Bn(f)) .
i=1

Es bezeichne e; den ersten Einheitsvektor. Aus der Definition von C5 folgt somit

die Implikation
y e R™\C, = i—y+teg € RN\,

fiir alle |t| < dy. Die partielle Ableitung 8%1]” ist auf jedem Kompaktum in R4\ C
gleichméfig stetig, daher existiert ein 5 < &, so daB die Ungleichung

£
2[jolly

o210 = 5t )] < (A2)

fiir alle 2,y € B, (7) \ Cy mit ||z — y|| < § besteht. Aus den Abschitzungen (A.1)
und (A.2) erhalten wir fiir alle |¢| < 6

8:51

‘%((p*f(i-ktﬁ)—QO*f(j))_QO*i ()

t

[ (5 g =t s At = 5060 ) a3 )

t Jio 01 oz,

[ o) (506 =y te) = 56 =) = 5166 =) ) ax )
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[ o0 (5[ gt e e = st =) 2 ) i)

!
t
< /Bn<0)\c|fo(y)| G o %lf(:i — Y +se1) — a%lf(f - y)‘ AWS)) A (y)
# [ 1601 (7 [ a5 st v+ 0 = 5mp(a )| M) ani
<[ oWl (5 [ g A ) avr

o[ 1ol (5 2mena) ) aneni

C1

9
<o [ Wl )+ 2K [ elw)] )
el B (0)\C1 Cy

<k,

wobei wir im 2. Schritt den Hauptsatz der Differential- und Integralrechnung an-

gewendet haben. O



Anhang B

LOsung der
Bellman-Differentialgleichung

B.1 Satz. FEs sei die Differentialgleichung

1
—ry + pxy' + §a2x2y" =0 (B.1)

mit ;1> 0, r > 0 und 0® > 0 gegeben. Dann bilden fiir x # 0 die Funktionen
yi(z) =2 und yo(z) =27

ein Fundamentalsystem des Ldsungsraumes, wobei vy und 7y, die Lésungen der

Indezxgleichung —r + py30°y(y — 1) = 0 bilden.

Beweis. Die Differentialgleichung 148t sich auch in der Form

2r 2
— S+ oy Y =0
o o?x
schreiben. Daher handelt es sich hierbei um eine Differentialgleichung 2. Ordnung
mit singulérer Stelle 0. Wir gehen mit dem Ansatz y = 7 in Gleichung (B.1) und

erhalten die sogenannte Indexgleichung
L,
—r+uy+ 5o y(y—1)=0.

Die Losungen dieser Indexgleichung sind

%2—u+\/(u—%2)2+2ra2
Yo = 2
o
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und

SR
’)/1 = 2 .
g

Gilt v # 71, so bilden
yi(e) = 2™ und  g(s) = 2

fiir © # 0 zwei linear unabhéingige Losungen der Differentialgleichung, wovon man
sich durch eine einfache Rechung iiberzeugt. Thre Wronski-Determinante ergibt

sich zu

W(z) = (v0 — y1)2a™ ™~ £ 0,

so daf} die Lésungen y; und gy ein Fundamentalsystem der vorgelegten Differenti-
algleichung bilden. Allgemein hat eine Losung der Differentialgleichung fiir vy # 11

daher die Form
V(z) = Az™ + Ba".

Lemma 5.1 zeigt, da8 die Wahl von 7, 4 und o2 vy # 7, impliziert und der Spe-
zialfall 79 = 7, somit fiir uns von keinem weiteren Interesse ist. Wir verzichten
daher auf die Darstellung der Losung fiir 79 = 7. Fiir eine genauere Betrachtung
von Differentialgleichungen mit Singularitéten sei auf die Werke [Heu] und [Wal]

verwiesen. O



Symbolverzeichnis

Grundlegende Bezeichnungen:

N
No
Z
Q
R
Rt

Menge der natiirlichen Zahlen

Menge N U {0}

Ring der ganzen Zahlen

Korper der rationalen Zahlen

Korper der reellen Zahlen

positive reelle Zahlen

Borelsche o-Algebra iiber R?

d-dimensionales Lebesgue-Maf$ auf (R4, BY)

offene Kugel mit Radius r um zq : {z : ||z]|s < r}

Triger einer Funktion f: {z: f(z) # 0}

Vektorraum der reellen p-fach p-integrierbaren Funktionen
Vektorraum der stetigen Funktionen von R? nach R
Teilraum von C(RY) der stetigen Funktionen mit kompaktem Triger
Teilraum C(R?) der n-fach stetig differenzierbaren Funktionen
Standard-Brownsche Bewegung

Brownsche Bewegung mit Drift ;2 > 0 und Volatilitit o2 > 0
bedingter Erwartungswert der Zufallsgrofie X unter der
Unter-o-Algebra F

Normalverteilung mit Mittelwert ;1 und Varianz o
Stopzeit inf{t > 0: oW, 4+ ut > a}

Stopzeit inf{t > 0: Wi+ > a}

Stopzeit inf{t > 0: W} + ut > a}

Stopzeit inf{t > 0 : exp(cW; + ut) > a}

2
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