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Einleitung

Ziel dieser Arbeit ist es, den biologischen Prozess der Vermehrung von Parasiten
und deren Verteilung auf sich teilende Zellen in einem mathematischen Modell zu
beschreiben. Anstatt von Parasiten kann auch allgemeiner von biologischen Zellkom-
ponenten, wie zum Beispiel Mitochondrien, ausgegangen werden.

Eines der ersten Modelle zur Beschreibung des obigen Prozesses wurde von Kim-
mel [16] eingefiihrt. In seinem Modell lebt jede Zelle eine exponentialverteilte Le-
benszeit. Am Ende einer Lebenszeit teilt sich die Zelle dann in zwei Tochterzellen.
In jeder Zelle befindet sich weiter eine Anzahl von Parasiten, welche sich am Ende
der Lebenszeit der Zelle unabhéngig und geméak der gleichen Verteilung vermehren.
Die Nachkommen eines Parasiten verteilen sich dann unabhéngig von den Nachkom-
men der anderen Parasiten auf die beiden Tochterzellen. Diese Verteilung geschieht
symmetrisch, d.h. geben X(© und X die Anzahl der Nachkommen eines Parasiten
an, die in die erste und zweite Tochterzelle gehen, so gilt (X© X (1) 2 (XM x O,

In dieser Arbeit untersuchen wir ein anderes, von Bansaye [10] aufgestelltes sto-
chastisches Modell. Obwohl stark angelehnt an das Modell von Kimmel, unterschei-
det sich das hier betrachtete Modell in zwei entscheidenden Merkmalen. Als erstes
nehmen wir einen eher genealogischen Standpunkt ein und betrachten die Zellen ge-
nerationsweise. Wir haben also statt einer stetigen eine diskrete Zeit vorliegen und
nehmen an, dass sich jede Zelle in jeder Generation in zwei Tochterzellen aufspaltet.
Der andere wichtige Unterschied besteht in der Annahme, dass sich die Nachkommen
der Parasiten nicht symmetrisch auf die beiden Tochterzellen verteilen miissen. X (¥
und X kénnen also durchaus verschiedene Verteilungen besitzen. In dieser allge-
meinerern Situation wollen wir keinerlei spezielle Anforderungen an die Verteilung
der Parasiten auf die Tochterzellen geben. Beibehalten wird jedoch, dass sich die
Parasiten in einer Zelle unabhingig und geméfs der gleichen Verteilung vermehren.
In der Tat ist die Annahme, dass X und X nicht unbedingt identisch verteilt
sein miissen, durchaus verniinftig. Dies wurde bei einem Experiment am Bakterium
Escherichia coli in TaMaRa’s Laboratorium festgestellt (siehe [13] und [20]).

Nach einer ausfiihrlichen Einfithrung in das hier betrachtete Zellteilungsmodell
infizierter Zellen, geben wir im zweiten Kapitel einige wichtige Resultate aus dem
Gebiet der Galton-Watson-Prozesse (GWP) und Galton-Watson-Prozesse in zufillig
variierenden Umgebungen (GWPZVU) an. Der enge Zusammenhang zwischen dem
Zellteilungsmodell infizierter Zellen und den GWP und GWPZVU ist nicht schwer
zu erkennen. So bildet zum Beispiel der Prozess (Z,),>0, welcher die Anzahl der



Einleitung

Parasiten in jeder Generation angibt, einen GWP. Neben (Z,),>0 betrachten wir
auch den Prozess einer zufélligen Zelllinie (Zp,)n>0 und wie sich herausstellt, ist
dies ein Galton-Watson-Prozess in zuféllig variierenden Umgebungen. Die Theorie
der GWP und GWPZVU ist also unser Hauptinstrument bei der Untersuchung
des Zellteilungsmodells und der eben genannten Prozesse. Diese beiden Prozesse
definieren wir im dritten Kapitel genauer und wenden die Eigenschaften der GWP
und GWPZVU aus dem zweiten Kapitel auf diese an. Wir erhalten erste Resultate
fiir das Zellteilungsmodell.

Ist die Verteilung der Parasiten auf die Tochterzellen stark asymmetrisch, so ent-
stehen viele schwach infizierte oder sogar gesunde Zellen. Daraus ergeben sich fol-
gende Fragen: In welchen Féllen entstehen so viele gesunde Zellen, dass man von
einem sich erholenden Organismus sprechen kann? Welche Bedingungen miissen an
die Vermehrungsrate der Parasiten und deren Verteilung auf die Tochterzellen ge-
kniipft werden, damit sich ein infizierter Organismus regeneriert? Mit dieser Frage
beschéaftigt sich das vierte Kapitel. Wir geben Kriterien an, unter denen sich ein
infizierter Organismus fast sicher erholt. Mit Hilfe dieser Kriterien sehen wir dann,
wie ungleichméfig sich die Parasiten auf die Tochterzellen verteilen miissen, damit
dieser sich fast sicher regeneriert.

Im fiinften Kapitel befassen wir uns mit dem Baum infizierter Zellen. Sterben die
Parasiten nicht aus, so explodiert deren Anzahl nach der Theorie der GWP. Besitzt
also das Ereignis Ext¢ des Uberlebens der Parasiten eine positive Wahrscheinlichkeit,
so gilt P(Z,, — oo | Ezt®) = 1. Eine natiirliche Frage, die sich daraus ergibt, ist, ob
auch die Anzahl der infizierten Zellen #G in diesem Fall gegen unendlich strebt. Im
fiinften Kapitel beantworten wir diese Frage positiv. Insbesondere zeigen wir damit,
dass sich infizierte Zellen iiber den gesamten Zellbaum verteilen und somit nicht in
einer Zelllinie konzentriert sind. Dieses Resultat gilt auch im Fall P(Ext¢) = 0, wie
wir danach sehen werden.

Mit dem asymptotischen Verhéltnis Fi(n) infizierter Zellen mit einer bestimmten
Anzahl k£ an Parasiten zur Gesamtanzahl infizierter Zellen #G; befasst sich dann
das sechste und letzte Kapitel. Dies wird den grofsten Umfang der Arbeit in An-
spruch nehmen, da das asymptotische Verhalten von F(n) stark vom Verhalten der
Prozesse Z,, und Z,; abhéngt. Wir miissen hier daher mehrere Félle unterscheiden,
in denen wir Fj(n) untersuchen und unterschiedliche Konvergenzen zeigen. Insbe-
sondere erhalten wir dadurch auch das asymptotische Verhalten von #G.

Ich danke Herrn Prof. Dr. Gerold Alsmeyer fiir die Bereitstellung dieses inter-
essanten Themas und die Betreuung wéihrend der Anfertigung meiner Diplomarbeit.
Weiter danke ich meinen Eltern, die mich wéhrend meines Studiums wohlwollend
unterstiitzt haben. Mein besonderer Dank gilt auch Andrea Winkler und allen an-
deren, die mich in meiner Studiums- und Diplomzeit begleitet haben.



1 Das Zellteilungsmodell
infizierter Zellen

In diesem ersten Kapitel beschreiben wir das Zellteilungsmodell infizierter Zellen,
welches wir in dieser Arbeit behandeln werden. Wir stellen es uns wie folgt vor:
Man startet mit einer Zelle, die eine Anzahl von Parasiten enthélt. Jeder Parasit in
der Zelle vermehrt sich unabhéngig von den anderen gemafs der gleichen Verteilung.
Danach spaltet sich die Zelle in zwei Tochterzellen und die Nachkommen eines Para-
siten verteilen sich unabhéngig von den Nachkommen der anderen Parasiten auf die
beiden Tochterzellen. Die so entstandenen Tochterzellen bilden die neue Generati-
on. Alle Zellen der neuen Generation und deren Parasiten verhalten sich unabhéngig
voneinander in derselben Weise, wie oben beschrieben.

Zusammengefasst machen wir also fiir das Zellteilungsmodell infizierter Zellen die
folgenden vier Annahmen:

(1) Wir starten mit einer Zelle, die eine beliebige Anzahl an Parasiten enthélt.

(2) Alle Parasiten vermehren sich unabhéngig und geméfs der gleichen Verteilung
voneinander.

(3) Jede Zelle spaltet sich in zwei Tochterzellen.

(4) Die Nachkommen eines Parasiten verteilen sich unabhéngig von den Nachkom-
men der anderen Parasiten auf die Tochterzellen.

Wenden wir uns zuerst den Zellen zu. Da sich jede einzelne Zelle in jeder Genera-
tion in genau zwei Zellen aufspaltet, definieren wir den Zellbaum wie folgt:

Definition 1.1. (a) Fiir jedes n € N bezeichnet
G, :={0,1}"

die Menge der Zellen der n-ten Generation und {@} = Gy die Wurzel des
Zellbaums. Wir bezeichnen dann mit

']I'::U(Gn

n>0

den Zellbaum.
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(b) Fiir v € T und n € Ny sei P, die Menge der Parasiten in der v-ten Zelle und

P(n) := U P, bzw. P:= U P,

veGn veT
die Menge der Parasiten der n-ten Generation bzw. die Menge aller Parasiten.

(¢) Fiir v € T definieren wir mit
G, ={veG,:P,#0}
die Menge der infizierten Zellen der n-ten Generation.

Zwecks Ubersichtlichkeit schreiben wir vivs...v,, statt (v1, Vg, ..., vy,) fiir jedes Ele-
ment aus T. Ist v = wuy...u,, und v = vy...v,,, so schreiben wir uv fiir die Zelle
Up...Up V1 ... 0. w 1St also die Zelle der n-ten Generation in der Zelllinie von @ nach
uv.

Fir die Beschreibung der Parasitenvermehrung und -verteilung auf die Toch-
terzellen seien zwei Zufallsgrofen X(© und X mit Werten in Ny gegeben, wel-
che nicht unbedingt unabhéngig sein miissen. In jeder Generation vermehrt sich
dann jeder Parasit unabhéngig von den anderen gemif der Reproduktionsvertei-
lung P(X© + XM € .). Dabei gibt X© bzw. X die Anzahl der Nachkommen an,
die nach der Zellteilung in die erste bzw. zweite Tochterzelle gehen. Dies verdeutlicht
Abbildung 1.1.

Generation 0 Generation 1 Generation 2

Parasiten
Vermehrung der Parasiten

e = Nachkomme durch X(© gegeben

4 = Nachkomme durch X() gegeben

Abbildung 1.1: Parasitenvermehrung bei der Zellteilung.
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Sei Z, = #P,, v € T, die Anzahl der Parasiten der v-ten Zelle und gebe Xé?,z bzw.

Xéllz, 1 <k < Z,, die Anzahl der Nachkommen des k-ten Parasiten der v-ten Zelle
an,’ die in die erste bzw. zweite Tochterzelle gehen. Die Anzahl der Parasiten der
ersten Tochterzelle Z,¢ der Zelle v ist dann folglich die Summe der X qg?,z, 1<k<Z,.
Analoges gilt fiir die Anzahl der Parasiten der zweiten Tochterzelle Z,;. Damit

definieren wir also den Zellteilungsprozess infizierter Zellen wie folgt:

Definition 1.2. Seien (X© X)) und Z, Zufallsgrofen mit Werten in N2 bzw.
No und T ein Zellbaum. Seien weiter (Xé?,z,XS,z)veT,keN unabhéngige Kopien von
(X©@ XM welche aukerdem unabhingig von Zy sind. Dann ist der Zellteilungs-
prozess infizierter Zellen (ZTPIZ) (Z,)yer durch die folgende Abhéngigkeitsstruktur

gegeben:
Zy

1
(ZU07 Zvl) = Z(Xq(;JzaXé,k);) (]_]_)
k=1
fir v e T.

Wie man sofort sieht, ist (Z,),er nach Definition eine Markov-Kette indiziert
durch einen Baum (s. Anh., Def. A.4), da die Anzahl der Parasiten einer Zelle nur
von der Anzahl der Parasiten in deren Mutterzelle abhéngt.

Weiter betten wir den ZTPIZ in ein sogenanntes Standardmodell

(Qv -’47 (]Pj)jGNov (Xijgv XqS}lz)UGT,kGN7 (ZU)UE’E)
ein. Auf (€, A) seien dann Wahrscheinlichkeitsmafe P;, j € Ny, sowie Zufallsgrofen
Zy € Ny und (X(?Q,Xi}lz), v € T,k € N, mit Werten in NZ gegeben. Unter jedem

IP; seien die (Xé?,z, X 151,2) stochastisch unabhéngig und identisch verteilt und es gilt
P;(Zz = j) = 1. Unter P; startet der Prozess also mit einer Zelle, die j Parasiten
enthélt. Die Z,, v € T, seien dann rekursiv definiert wie in (1.1). Der Ubersicht
halber setzen wir P; = P. Zur Existenz eines Standardmodells siehe Kapitel 1.2 in
[6]. Sei von nun an ein ZTPIZ immer in einem solchen Standardmodell gegeben.
Werfen wir nochmal einen kurzen Blick auf den Zellbaum. Betrachten wir die Zel-
len der n-ten Generation, so kann man jede dieser Zellen als Wurzel eines Teilbaums
des gesamten Zellbaums auffassen. Die Struktur eines jeden Teilbaums entspricht
aber der des gesamten Zellbaums. Aufgrund des unabhéngigen Verhaltens der Para-
siten startet jede Zelle der n-ten Generation somit einen neuen ZTPIZ. Diese neuen
Prozesse sind unabhéingig voneinander. Dies halten wir kurz im folgenden Satz fest.

Satz 1.3. Sei (Z,)ver €in ZTPIZ. Jede Zelle v € T startet bedingt unter Z, = z
einen neuen ZTPIZ aus einer Zelle mit z Parasiten, deren Vermehrungsverhalten
durch (X©, XY gegeben ist. Bedingt unter {Z, = z, : v € G,,} sind die so aus der
n-ten Generation startenden Prozesse unabhdingig voneinander. Insbesondere gilt im
Standardmodell fiir w =uv € G,, n € Ny, und j, k >0

P,(Zy €| Zo=k)=Py(Z, € ) PjLs. (1.2)
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Beweis: Sei u € T. Wir definieren Z := Z, und (ZUO,Zvl) = (Zuvo, Zuy1) fiir
v € T. Damit ist der Prozess (ZU)UeT bedingt unter Z, = z ein ZTPIZ startend
mit einer Zelle und z Parasiten. Die so in der n-ten Generation startenden Prozesse
sind aufgrund der Unabhéngigkeit der (Xi(%,z,Xé}lz), v € T,k > 1, bedingt unter
{Z, = z, : v € G, } unabhéngig voneinander.

Insbesondere gilt dann fir w = w € G,, j,k,1 € Ny aufgrund der Markov-

Eigenschaft und der Definition von (Z,)er
Pi(Zy=1|Z,=k) = P(Z,=1]|2Z,=k)
= P(szl | Zz:k)
= Pu(Z, =) P, fs..
O

Zum Abschluss der Modellbeschreibung fithren wir noch einige wichtige Schreib-
weisen ein. Sei (Z,)yer €in ZTPIZ, dann ist

fuls) = E(s%5) = E(sX”), ae{0,1},
die erzeugende Funktion von X® und
po = E(X) = E(X@), ae{0,1},

das Reproduktionsmittel von X (®. Weiter setzen wir

1
p= 5o + ).

Fiir v = vy...v, € T definieren wir mit |v| die Ldnge des Pfades von der Wurzel zur
Zelle v, und mit v|k die k-te Zelle des Pfades, der nach v fihrt, d.h.

lv]=n und v|lk=uv..0p fur k<mn.
Weiter definieren wir eine partielle Ordnung ,,<* auf T durch
u<wv & es exisitiert ein k < n mit v|k = u.

Wir schreiben v < wv, falls ein k& < n existiert mit v|k = w. Diese Notationen
erleichtern es uns, spater besser durch den Zellbaum navigieren zu kénnen.
Ab jetzt nehmen wir an, dass

0 < pto, pi1 < 00 (1.3)

gilt. Damit konnen insbesondere sowohl in der ersten als auch zweiten Tochterzelle
Parasiten enthalten sein. Um triviale Félle auszuschlieffen, gelte aufserdem

P(X© <1, XM <1) <1, (1.4)

da sonst die Anzahl der Parasiten pro Zelle nicht steigen konnte.
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Bei der spéteren Untersuchung des Zellteilungsmodells greifen wir oft auf Eigen-
schaften eines Galton-Watson-Prozesses zuriick. Das folgende Kapitel dient daher
der Einfithrung dieses Prozesses und der Auflistung einiger fundamentaler und spéa-
ter benutzter Eigenschaften. Nachdem wir den einfachen Galton-Watson-Prozess
behandelt haben, werden wir den allgemeineren Galton-Watson-Prozess in zuféllig
variierenden Umgebungen einfiihren.

2.1 Der einfache Galton-Watson-Prozess

Bei der Einfiihrung des einfachen Galton-Watson-Prozesses und der Zusammenstel-
lung einiger wichtiger Eigenschaften orientieren wir uns im Wesentlichen an den
Ausfiithrungen in [6], [9] und [15].

2.1.1 Modellbeschreibung

Gegeben sei eine Population von Individuen. Jedes dieser Individuen bekommt un-
abhédngig von den anderen geméfs der gleichen Verteilung eine zuféllige Anzahl
von Nachkommen. Die Summe dieser Nachkommen bildet dann die Population der
nichsten Generation und alle Individuen dieser Generation verhalten sich so wie
die Individuen der vorherigen Generation. Ein Galton-Watson-Prozess beschreibt
demnach die genealogische Struktur einer Population und aufgrund des obigen Ver-
haltensmusters der Individuen, ist er wie folgt definiert:

Definition 2.1. Ein Galton- Watson-Prozess (GWP) mit Reproduktionsverteilung
(pi)izo ist eine zeitlich homogene diskrete Markov-Kette (Z,),>0 mit Zustandsraum
Ny (Def. A.1). Die Ubergangswahrscheinlichkeiten sind gegeben durch

IP>(Zn+1 = ]‘Zn = Z) = p’f(i)a

J

wobei p;(i) die i-fache Faltung der Verteilung (p;);>o ist. Fiir ¢ = 0 setzen wir

auferdem p;(o) = 0;-

Man kann einen GWP (Z,),>¢ auch immer in einer anschaulicheren, rekursiven
Schreibweise darstellen und diesen in ein Standardmodell

(Qa A, (Pi)izm (Xn,k)nzo,kZM (Zn)nZO)
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einbetten. Wie beim ZTPIZ seien auf (€2,.4) Wahrscheinlichkeitsmafe P;, i € No,
und Zufallsgrofen Zy und X, 5, n € Ny, k € N, mit Werten in Ny gegeben. Unter
jedem P; seien die X, ; stochastich unabhéngig und jeweils (p;);>o-verteilt und es
gilt P;(Zy = i) = 1. Z, gibt die Grofe der Startpopulation (Urahnen) an und X,
beschreibt die Anzahl der Nachkommen des k-ten Individuums der n-ten Generation.
Der GWP startet unter IP; also mit ¢ Individuen. Die Populationsgréfe der (n+1)-ten
Generation ist dann rekursiv definiert durch

Zn,
Zn+1 = E Xn,k
k=1

fir alle n € Ny. Wir setzen wieder P = P.
Aufgrund der Markov-Eigenschaft sowie der Unabhéngigkeit und identischen Ver-
teilung der X,, ;, erhalten wir dann:

Satz 2.2. Sei (Z,)n>0 ein GWP mit Reproduktionsverteilung (p;)i>o und j Urah-
nen. (Zn)n>o ist die Summe von j unabhdngigen GWP (Z,(Ll))nzo, 1 <1< 5, mit
Reproduktionsverteilung (p;)i>o und einem Urahnen. Insbesondere gilt dann
By ((Znnzo € ) = P((Zuhuzo € )" Pyts.
Um trivialen Fallen vorzubeugen setzen wir ab jetzt fiir dieses Kapitel

po+p1 <1

voraus.

2.1.2 Erzeugende Funktion und Aussterbewahrscheinlichkeit

Dieser Abschnitt dient der Auflistung einiger Eigenschaften der erzeugenden Funk-
tion eines GWP und deren Zusammenhang mit der Aussterbewahrscheinlichkeit des
Prozesses. Wir halten aufierdem fest, dass ein GWP entweder ausstirbt oder dessen
Population explodiert.

Wir bezeichnen mit

fs) =Es” =) pis?, —1<s<1
j=0

die erzeugende Funktion eines GWP (Z,),>0 und mit

Jni=fofo
ihre Iteration, wobei fj := id gesetzt wird. Weiter sei
p=EZ = f(1)
das Reproduktionsmittel des GWP.

Erste Eigenschaften der erzeugenden Funktion f, ihrer Iteration f,, und des Re-
produktionsmittels p sind in der folgenden Proposition festgehalten.
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0 0
0 1 0 1

Abbildung 2.1: Die erzeugende Funktion im Fall 4 <1 und p > 1.

Proposition 2.3. Sei (Z,),>0 ein GWP mit Reproduktionsverteilung (p;);>o0, er-
zeugender Funktion f und Reproduktionsmittel p. Dann gilt:

(i) E;s%t = f(s)t fiiri > 0.

(11) f ist nichtnegativ, strikt konvex und streng monoton wachsend auf [0,1].
(i1i) f, ist die erzeugende Funktion von Z, unter P;.
(iv) EZ, = u".

(v) Ist u < 00, so gilt

T T VB V% falls u # 1
Var Z,, = w1 '
n Var Zy, falls p = 1.

Es bezeichne
Ext :={Z, — 0} ={Z, =0 fiir ein n > 0}

das Ereignis des Aussterbens eines GWP (Z,),>¢. Der nachfolgende Satz zeigt den
Zusammenhang zwischen der Aussterbewahrscheinlichkeit P(FEzt), der erzeugenden
Funktion f und dem Reproduktionsmittel p eines GWP und beantwortet die Frage,
unter welchen Bedingungen ein GWP fast sicher ausstirbt.

Satz 2.4. Sei (Z,)n>0 ein GWP mit erzeugender Funktion f und Reproduktions-
mattel p. Dann gilt:

(1) P(Ext) ist der kleinste Fixpunkt von fin [0,1].
(11) Falls p <1 gilt, so ist P(Ext) =1 der einzige Fizpunkt von f in [0,1].

(i7i) Falls p > 1 gilt, so ist P(Ext) < 1 und im Intevall (P(Ext), 1) existiert kein
weiterer Fizpunkte von f.
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Aufgrund dieses vom Reproduktionsmittel p abhéngigen unterschiedlichen Ver-
haltens eines GWP definieren wir:

Definition 2.5. Ein GWP (Z,,),,>¢ mit Reproduktionsmittel p heilst superkritisch,
kritisch oder subkritisch, wenn p > 1, p =1 bzw. u < 1 ist.

Ein kritischer oder subkritischer GWP stirbt also nach Satz 2.4 fast sicher aus,
wahrend ein superkritischer GWP auch iiberleben kann. Geschieht dies, so explodiert
der Prozess, wie der folgende Satz zeigt. Dieses Verhalten nennt man FExtinktions-
Ezxplosions-Prinzip.

Satz 2.6. Fir einen GWP (Z,)n>0 (mit py # 1) gilt
P(Ext) =P(Z, —0)=1—-P(Z, — o), (2.1)

sowie lim,, o P(Z, = k) =0 fir alle k > 1.

2.1.3 Grenzwertsatze

Der folgende Abschnitt fasst einige Grenzwertsétze iber GWP zusammen. Dabei
unterscheiden wir zwischen dem superkritischen, kritischen und subkritischen Fall.
Zuerst geben wir aber noch einen Satz an, welcher fiir alle drei Félle gilt. Dieser
besagt, dass ein normierter GWP fast sicher gegen eine Zufallsgrofe W konvergiert.

Satz 2.7. Falls 0 < p < 00 ist, so existiert eine nichtnegative, integrierbare Zufalls-
grofse W, sodass

lim é =W Pifs.

n—00 ,u”

und E;W <4 fir alle i > 0 gilt.

Der superkritische Fall

Im superkritischen Fall explodiert die Population eines GWP nach Satz 2.4 mit
positiver Wahrscheinlichkeit. Trotzdem kann aber =" 7, fast sicher gegen 0 konver-
gieren. Der Satz von Kesten und Stigum gibt uns eine dquivalente Bedingung an die
Reproduktionsverteilung des GWP fiir das Auftreten dieses Phénomens.

Satz 2.8. (Kesten, Stigum) Sei (Z,)n>0 €in superkritischer GWP mit 1 < p < o0
und W wie aus Satz 2.7. Dann gilt

EW =1
< P(W>0)>0
& {W >0} = Ext® Pi-fs. fir alle i >0
& EZ)log 7y < 0.
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2.1 Der einfache Galton-Watson-Prozess

Der subkritische Fall

Ein subkritischer GWP (Z,,),>0 stirbt nach Satz 2.4 fast sicher aus. Bedingt man 7,
jedoch unter {Z,, > 0}, so konvergiert der GWP in Verteilung gegen die sogenann-
te Yaglom-quasistéationédre-Verteilung. Die beiden folgenden Sétze von Kolmogorov
und Yaglom beschreiben die Aussterbegeschwindigkeit des GWP und bestétigen die
behauptete Konvergenz.

Satz 2.9. (Kolmogorov) Fiir einen subkritischen GWP (Z,)n>0 gilt

1
¢:= lim —P(Z, > 0)

n—oo :un

{> 0, falls EZylog Z1 < oo (und py < 1)

=0, sonst.
Ist EZylog Z1 < o0, so gilt insbesondere
P(Z, > 0)"~" cu™

Satz 2.10. (Yaglom) Fiir einen subkritischen GWP (Z,,)n>0 (mit py < 1) und c wie
aus Satz 2.9 konvergiert (IP’(Zn =k|Z,> O))k>1 fiirn — oo gegen eine Wahrschein-
lichkeitsverteilung (by)k>1, die Yaglom-quasistationdre- Verteilung, mit erzeugender

Funktion
B(s) := lim E(s*" | Z, > 0)

n—oo

und Erwartungswert
/ 1
B(1)= = -
(1) =D kby =,
k>1
wobei wir % = oo setzen, falls ¢ =0 ust.

Wir bezeichnen mit ) eine Yaglom-quasistationér-verteilte Zufallsgroke. Da Y
eine fast sicher positive Zufallsgrofe ist, folgt

EY > 0. (2.2)

Durch die Kombination der Sétze von Kolmogorov und Yaglom erhalten wir aufer-
dem
EY <oo < EZlogZ < co. (2.3)
Eine leichte Verallgemeinerung der Situation im Satz von Yaglom ergibt sich, wenn
wir wissen, dass der Prozess k weitere Generationen iiberlebt. Wir bedingen also Z,,
unter {Z, 1, > 0} fiir ein £ > 0 anstatt unter {Z,, > 0}.
Zur Vereinfachung fithren wir folgende Notation ein:

Boi(s) == E(s”" | Z,yp > 0) fiir n, k € Np. (2.4)

Der folgende Satz gibt Aufschluss iiber das Verhalten von Z, bedingt unter
{Zp+r > 0} fiir n — oo.
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2 Der Galton-Watson-Prozess

Satz 2.11. Sei (Z,)n>0 ein subkritischer GWP und B(s) die erzeugende Funktion
der Yaglom-quasistationdren- Verteilung, sowie die B,, ;(s) wie in (2.4) definiert. Fiir
alle k > 0 konvergiert (P(Z, = j | Zypsi > O))j21 gegen eine Verteilung (bj(k));j>1
auf N fiir n — oo. Diese Verteilung konvergiert fiir k — oo gegen eine weitere
Verteilung auf N, falls EZ, log Z; < oo ist. Genauer gilt:

(1) T}Ln;ank(S) = W fiir jedes k> 0;

(ii) ]}LIEOTLILHJOBnk(S) = 85—((15)), falls EZ, log Z, < oc.

Fiir £k = 0 besagt der obige Satz also insbesondere

. . B(s) — B(s fo(0))
N R TA)

unter der Beachtung, dass fo = id und Y > 0 fast sicher und damit B(0) = 0 gilt.
Wir erhalten also die Aussage vom Satz von Yaglom als Spezialfall dieses Satzes.
Lisst man bei (P(Z, = j | Znyr > O))j21 nicht n sondern k£ gegen unendlich
laufen, so konvergiert diese Verteilung gegen eine grofenverzerrte Verteilung, wie
der folgende Satz besagt.
Eine grofenverzerrte Verteilung auf Ny ist dabei wie folgt definiert: Sei @) ein
Maf auf Ny mit positivem, endlichem Erwartungswert v := >, . kQ({k}). Die

= B(s),

Verteilung Q auf Ny, die durch die Einpunktwahrscheinlichkeiten

O({k}) = @, ke N (2.5)

gegeben ist, nennt man gréoffenverzerrte Verteilung von Q.

Satz 2.12. Sei (Z,)n>0 ein subkritischer GWP. Dann gilt fir allen > 0 undi,j > 1

klim Pi(Zy=j | Zpx >0) = #Pi(zn =J).

Einen Prozess (Zn)nZO mit IP’Z(Zn =j)= winpi(zn =j) furallen >0,4,j > 1 be-
zeichnet man als Q)-Prozess assoziiert zu (Z,)n>0 bzw. der Reproduktionsverteilung
(p;)j>0- Anschaulich beschreibt der Q-Prozess den Prozess Z,, bedingt darunter, in
entfernter Zukunft noch nicht ausgestorben zu sein, jedoch in noch weiter entfern-

terer Zukunft auszusterben.

Korollar 2.13. Gilt fir einen subkritischen GWP EZ;log Z, < oo, so folgt fiir
dessen Q)-Prozess .
. 5 . ] = .
lim P;(Z, =j) = =—=P(Y =
lim (2, = j) 5 V=17)
fur alle i,j > 0. Dabei ist Yy Yaglom-quasistationdr-verteilt.

Man nennt die Grenzverteilung (ﬁp(y = j))j>1 die stationdre Verteilung des
(Q)-Prozesses. -
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2.2 Der Galton-Watson-Prozess in zufillig variierenden Umgebungen

Der kritische Fall

Beim kritischen GWP gelten analoge Satze zu denen von Kolmogorov und Yaglom.
Die Aussterbegeschwindigkeit ist im kritischen Fall jedoch geringer als im subkriti-
schen Fall. Weiter konvergiert % bedingt unter {Z,, > 0} in Verteilung gegen eine
exponentialverteilte Zufallsgrofe. Dies bestatigen die zwei nachfolgenden Sétze.

Satz 2.14. Fir einen kritischen GWP (Z,,)n>0 mit 0 < Var Z; < oo gilt

n—oo 2
PZ,>0) ~ ——
( ) nVar Z;
Satz 2.15. Fir einen kritischen GWP (Z,)n>0 mit 0 < Var Z; < oo gilt
Z 2
IP’(—" | Z, ) LNy ( ) .
ne } >0) — Eap Var 7, n — 00

2.2 Der Galton-Watson-Prozess in zufallig
variierenden Umgebungen

Bei dem bisher betrachteten einfachen GWP war die Reproduktionsverteilung in
jeder Generation gleich. Eine Verallgemeinerung dieser Situation erhalten wir, wenn
diese von Generation zu Generation variieren kann. Das bedeutet, die Individuen
der n-ten Generation vermehren sich moglicherweise geméfs einer anderen Verteilung
als die Individuen der (n + k)-ten Generation fiir £ > 1. Die in diesem Abschnitt
stehenden Eigenschaften von Galton-Watson-Prozessen in zuféllig variierenden Um-
gebungen sind entnommen aus [2], [7], [8], [12] und [19]

2.2.1 Modellbeschreibung

Es bezeichne

W(Ny) = {(bk)kzo b= 0fiivalle k>0, Y =1, > kb < oo}

k>0 k>0

die Menge der Wahrscheinlichkeitsverteilungen auf Ny mit endlichem Erwartungs-
wert. Da 20(Np) ein Teilraum des Banachraums /' der absolut konvergenten Reihen
ist, wird durch die kanonische Metrik auf /! eine Borelsche o-Algebra B auf 20(Ny)
induziert. Sei i = (U, ),>1 eine Folge von Zufallsvariablen auf dem messbaren Raum
(2W(Np),B). Diese Folge liefert uns die Reproduktionsverteilungen der Individuen
in den verschiedenen Generationen. Wie beim einfachen GWP zeugen die Individu-
en unabhéngig voneinander Nachkommen und die Summe der Nachkommen einer
Generation bildet die Population der néchsten Generation. Alle Individuen einer
Generation vermehren sich geméaft der gleichen Reproduktionsverteilung. Diese ist
jedoch zufillig gewéhlt und kann von Generation zu Generation variieren.
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2 Der Galton-Watson-Prozess

Definition 2.16. Sei U = (U,),>1 eine Folge von Zufallsvariablen mit Werten in
20(Ny). Eine stochastische Folge (Z,,),>0 von Zufallsgrofen mit Werten in Ny heifst
Galton- Watson-Prozess in zufillig variierenden Umgebungen (GWPZVU) mit Um-
gebungsfolge U, falls gilt:

P(Zpsr € - | Zoy s Zns U) =P(Zpy1 € - | Zn, U) P-fs.; (2.6)
P(Zny € - | Zn =i, U = (ug)p>1) = U:L(ﬂ P, (2.7)

fiir alle i,n € Ny. Dabei ist u*( die i-fache Faltung der Verteilung u € 20(Ny). Fiir
i = 0 setzen wir u*©) = §,.

Die Eigenschaft (2.6) sichert uns, dass (Z,),>0 eine Markov-Kette unter P(-[/)
bildet, und (2.7) gibt die Ubergangswahrscheinlichkeiten des Prozesses an.
Auch hier kénnen wir den GWPZVU in einer rekursiven Darstellung in ein Stan-

dardmodell
(€, A, (Pi)izo, (Xnk)nz0k21, (Zn)nz0; (Un)n>1)

einbetten. In (€2, .A) seien wie beim GWP Wahrscheinlichkeitsmake P;, i € Ny, sowie
Zufallsgrofsen Zy, X, , n € No, k € N, mit Werten in Ny, und Zufallsvariablen U,
n € N, mit Werten in 20(Ny) gegeben. Die Umgebungsfolge U = (U, )n>0 besitzt
unter jedem P; dieselbe Verteilung und die X, ;, sind unter jedem P;(-|Uf) stochastisch
unabhéngig. Ferner gilt P;(Zy = i) = 1 fiir alle i € Ny. Insbesondere folgt damit
die Unabhéngigkeit von Z; und U. Wie beim GWP gibt Z; die Anzahl der Urahnen
und X, ; die Anzahl der Nachkommen des k-ten Individuums der n-ten Generation
an. Die Verteilung von X, ; ist jedoch zuféllig gegeben durch die Folge U mit

P(Xpp € |U) =Uppy P-fs..

Fiir n € Ny wird die Anzahl der Individuen der (n+1)-ten Generation dann rekursiv

definiert durch Z
ZnJrl = ZXn,k
k=1

Wie beim GWP setzen wir wieder P; = P.

Anders als beim einfachen GWP ist die Reproduktionsverteilung eines Individu-
ums und damit seine erzeugende Funktion zufillig gewahlt. Sei (Z,),>0 ein GWPZ-
VU mit Umgebungsfolge &. Dann bezeichnen wir mit

frtnir(8) == E(s** |U), ne€NykeN,
die erzeugende Funktion der Zufallsgrifie X, unter P(- [/) und mit
Pty =E(Xnp | U) = f, (1), neNykeN.

den Erwartungswert von X, unter P(- | U).
Die erzeugende Funktion und der Erwartungwert von Z,, unter P;(- | &) bzw. P;
lassen sich durch die fy;, und py,, darstellen. Dies zeigt die nachfolgende Proposition.
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2.2 Der Galton-Watson-Prozess in zufillig variierenden Umgebungen

Proposition 2.17. (vgl. [3] oder [7])
Sei (Zn)n>0 ein GWPZVU mit Umgebungsfolge U.

(1) Fiir alle i,n >0 und s € [0, 1] gilt

Ei(s|U) = (E(s”"[U))" = (for, © -+ © fu, (5))" Pi-Ls. (2.8)
sowie ‘
Ei(s”) = E((fu © - © fu, (5))"). (2.9)
(i1) Fir alle i,n >0 gilt
sowie .
Ei(Z,) = iB( ][ m,) = iEZ,. (2.11)

2.2.2 Grenzwertsatze

Sind bei einem GWPZVU mit Umgebungsfolge (U,,),>1 die U,,, n > 1, unabhén-
gig und identisch verteilt, so spricht man von einem GWPZVU mit unabhdngiger,
identisch verteilter (u.i.v.) Umgebungsfolge.

Da wir uns bei unseren spéteren Betrachtungen nur mit solchen Prozessen be-
schiftigen werden, geben wir im Folgenden die Grenzwertsdtze nur fiir diesen Spe-
zialfall an. Viele dieser Sétze, konnen jedoch allgemeiner bewiesen werden, z.B. bei
stationér, ergodischen Umgebungsfolgen. Siehe dazu Kapitel VI, Abschnitt 5 in [9].

Die Grenzwertséitze des einfachen GWP konnen im Wesentlichen auf den GWPZ-
VU mit u.i.v. Umgebungsfolge iibertragen werden, wenn man die Voraussetzungen
entsprechend &dndert. Als erstes sehen wir, dass auch bei GWPZVU mit unabhéngi-
ger, identisch verteilter Umgebungsfolge das Extinktions-Explosions-Prinzip erhal-
ten bleibt.

Satz 2.18. (vgl. [19], Satz 2.3)
Sei (Zy)n>o0 ein GWPZVU mit u.i.v. Ungebungsfolge U und P(U; = 6;) < 1. Dann
gilt

P(Z,—0)=1—-P(Z, — )

sowie fir alle N > 0
P(0< Z,<N) — 0.

n—oo

Der nachfolgende Satz gibt nun Bedingungen fiir das fast sichere Aussterben eines
GWPZVU mit unabhéngiger, identisch verteilter Umgebungsfolge an.
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2 Der Galton-Watson-Prozess

Satz 2.19. (vgl. [19], Satz 5.1)
Sei (Zp)n>o ein GWPZVU mit u.i.v. Umgebungsfolge U mit P(U; = 61) < 1, welcher
aufserdem E|log iy, | < oo erfillt.

(i) Gilt E(log ) <0, so folgt lim,,_,.. P(Z, > 0) = 0.
(it) Gilt dagegen E(log puy) > 0 und zusitzlich E(log(1 — fy,(0))) > —oo, so folgt
lim, oo P(Z, > 0) = ¢ > 0, fiir ein c € (0, 1].
Entsprechend zum GWP definieren wir:

Definition 2.20. Ein GWPZVU mit u.i.v. Umgebungsfolge heifst superkritisch, kri-
tisch oder subkritisch, wenn E(log iy, ) > 0, = 0 bzw. < 0 ist.

Wie beim GWP konvergiert ein GWPZVU mit unabhéngiger, identisch verteilter
Umgebungsfolge bei geeigneter Normierung fast sicher gegen eine Zufallsgrofse W.

Satz 2.21. (vgl. [8], Satz 1)

Sei (Zn)n>0 ein superkritischer GWPZVU mit u.i.v. Umgebungsfolge U, fiir welchen
0 < EZ; < o ist. Dann existiert eine integrierbare, nichtnegative Zufallsgrofie W,
sodass

Zn,
EZ. r:oW P-fs.

und EW < 1 gqilt. Ist zusdtzlich

1
IE< E(Z, logZ1|Z/I)> < 0,
Mgy

dann gilt
EW =1 wund {W =0}={Z,— 0} P-fs.

Bei einem subkritischen GWPZVU (Z,,),>0 mit unabhéngiger, identisch verteilter
Umgebungsfolge U existieren analoge Sétze zu Satz 2.10 von Yaglom und Satz 2.9
von Kolmogorov. Auch hier konvergiert die erzeugende Funktion von Z,, bedingt un-
ter {Z, > 0} gegen eine erzeugende Funktion und es lasst sich eine Aussage tiber die
Aussterbegeschwindigkeit treffen. Allerdings ist das asymptotische Verhalten dies-
mal abhéngig von E(uy, log s, )-

Definition 2.22. Wir nennen einen subkritischen GWPZVU mit u.i.v. Umgebungs-
folge stark subkritisch, moderat subkritisch oder schwach subkritisch genau dann,
wenn E(uqy, log iy, ) < 0, =0 bzw. > 0 ist.

Da der moderat und schwach subkritische Fall fiir unsere spéteren Betrachtungen
keine entscheidende Rolle spielt, geben wir hier nur die Ergebnisse im stark subkri-
tischen Fall an. In einigen wenigen Situationen greifen wir jedoch auf die analogen
Satz iiber moderat bzw. schwach subkritischen GWPZVU zuriick. Diese befinden
sich daher im Anhang (Satz A.8 und Satz A.9).
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2.2 Der Galton-Watson-Prozess in zufillig variierenden Umgebungen

Satz 2.23. (stark subkritischer Fall) (vgl. [12], Satz 1.1 und [2], Korollar 2.3)
Sei (Zn)n>0 ein stark subkritischer GWPZVU mit u.i.v. Umgebungsfolge U und

E(Zl log Zl) < Q.

Dann gilt

n—oo

]P)(Zn > 0) ~ cl(EZl)"
fiir ein ¢y € (0,1]. Des Weiteren existieren by(k) € [0,1], k > 1, mit

lim P(Z, =k | Z, > 0) =by(k), k>1,

sowte
o0 o0 1
bi(k) =1 wund kb (k) = — < 0.
; 1(k) ; 1(k) -

Auflerdem ist Z,, bedingt unter {Z, > 0} gleichgradig integrierbar, d.h.

lim supE(Z,1{z,>k} | Zn > 0) =0.
K—00 pneN
Wie beim einfachen GWP nennen wir die obige Grenzverteilung die Yaglom-
quasistationdre- Verteilung und bezeichnen mit ) eine Zufallsgrofe, die diese Ver-
teilung besitzt.
Im stark subkritischen Fall erhalten wir auch ein Analogon zu Satz 2.12.

Satz 2.24. (vgl. [2], Satz 1.4)
Sei (Zp)n>o ein stark subkritischer GWPZVU mit u.i.v. Umgebungsfolge U und
E(Zilog Z1) < 0o. Dann gilt fir alle n,j >0

J
EZ,

Jim P(Z, = j | Znir > 0) = 27 P(Zn = j).

Wir bezeichnen auch hier einen Prozess (Z,)n>o mit P(Z, = j) = ﬁP(Zn =7)
fiir alle j,n > 0 als Q-Prozess assoziiert zu (Z,)n>0-

Korollar 2.25. (vgl. [2], Korollar 2.2)
Gilt fiir einen stark subkritischen GWPZVU (Z,)n>0 mit u.i.v. Umgebungsfolge U
E(Z,log Z1) < 00, so folgt fiir dessen Q-Prozess

lim B(Z, = ) = 5P =)

fir alle i,5 > 0. Dabei ist Y Yaglom-quasistationdr-verteilt.

Man nennt auch hier die Verteilung (ﬁIP’(y = j))j>1 die stationdre Verteilung
des @)-Prozesses. N
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3 Zwei wichtige Prozesse und
erste Eigenschaften

Nachdem wir im vorigen Kapitel den GWP definiert und einige wichtige Resultate
angegeben haben, wenden wir uns jetzt wieder dem ZTPIZ zu. Als Einstieg definieren
wir in diesem Kapitel als erstes den Prozess der Gesamtanzahl an Parasiten in einer
Generation und sehen, dass dieser einen GWP bildet. Von grofer Wichtigkeit fiir
unsere spateren Betrachtungen wird auch der Prozess der Anzahl an Parasiten in
einer zufélligen Zelllinie sein, welchen wir als zweites betrachten wollen. Es stellt
sich heraus, dass dieser aufgrund seiner Definition ein GWPZVU mit unabhéngiger,
identisch verteilter Umgebungsfolge ist.

3.1 Der Parasitenprozess

In diesem Abschnitt fithren wir den Prozess der Gesamtzahl an Parasiten oder kurz
Parasitenprozess ein und zeigen, dass dieser einen GWP bildet.

Definition 3.1. Der Parasitenprozess (2,)n,>0 ist definiert durch

Zn::ZZv

'UEGn

fiir n € Ny. Weiter sei
Ext:={2Z, -0} ={2,=0 fireinn >0}
das Ereignis, dass die Parasiten aussterben.
Der Prozess (Z,),>0 ist ein GWP, wie die folgende Proposition zeigt.

Proposition 3.2. Der Parasitenprozess (Z,)n>0 ist ein GWP mit Reproduktions-
verteilung P(X© + XU € ) und Reproduktionsmittel pg + ji;.

Beweis: Die Parasiten bekommen unabhéngig voneinander und geméft der Ver-

teilung P(X(© + X ¢ .) Nachkommen. Da die Anzahl der Parasiten in einer Zelle
nur abhéngig von der Anzahl der Parasiten in der Mutterzelle ist, ist die Anzahl
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3.2 Der Prozess einer zufilligen Zelllinie

aller Parasiten einer Generation auch nur abhéngig von der Anzahl der Parasiten in
der vorherigen Generation. Aufgrund der Unabhéngigkeit der Parasiten gilt

P(Zun = j | 20 = i) = PXO + X0 = j)0

fiir alle n, i, j € No. Damit bildet (Z,,),>0 eine homogene Markov-Kette mit Werten
in Ny und nach Definition 2.1 einen GWP. Dass ug + p; das Reproduktionsmittel
ist, ergibt sich dann sofort. a

3.2 Der Prozess einer zufalligen Zelllinie

Des Weiteren ist fiir unsere Untersuchungen auch die Anzahl der Parasiten in einer
zufélligen Zelllinie von Interesse. Wir wollen uns also einen zufélligen Pfad durch
den Zellbaum wahlen und das Vermehrungsverhalten der Parasiten in dieser Zelllinie
betrachten. Dazu stellen wir uns vor, dass wir in jeder Generation, in einer Zelle
befindend, eine faire Miinze werfen und bei Kopf oder Zahl in die erste bzw. zweite
Tochterzelle gehen. Wir definieren uns daher zuerst eine geeignete Umgebungsfolge,
welche den Miinzwurf simuliert, und daraus dann den Prozess der zufélligen Zelllinie.

Definition 3.3. Seien (U,),>1 unabhéngige B(1, 1)-verteilte ZufallsgroRen, welche
auferdem unabhéngig von (Z,),er seien. Setzen wir [n] := U..U, fir n > 1 und
[0] := @, dann heifst

(Zin))nz0 = (Zuy..t4, )0

Prozess einer zufdlligen Zelllinie (PZZ).

Abbildung 3.1: Ein zufélliger Pfad durch den Zellbaum.

Zur Zeit n € Ny, in einer Zelle befindend, gibt uns U, € {0,1} also den Aus-
gang des nédchsten Miinzwurfes und damit die Tochterzelle an, in die wir gehen. Die
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3 Zwei wichtige Prozesse und erste Eigenschaften

Realisierung U;...U,, = uy...u,, der ersten n Umgebungsvariablen beschreibt somit
den Pfad von der Wurzel durch den Zellbaum zur Zelle u;...u,, € G,. Der zufillig
gewahlte Pfad bis zur vierten Generation in Abblidung 3.1 1st also U, ..Uy = 0010.

Bei einem normalen ZTPIZ vermehren sich die Parasiten unabhéingig und geméﬁé
der Reproduktionsverteilung P(X @ + XM ¢ .). Dabei geben X© bzw. X1 die
Anzahl der Nachkommen eines Parasiten an, welche in die erste bzw. zweite Toch-
terzelle gehen. Gehen wir nun bei einem PZZ von einer Zelle v € G,, in deren erste
Tochterzelle, so interessieren wir uns nur fiir die Anzahl an Parasiten in dieser Zelle.
Wieviele Parasiten sich in der zweiten Tochterzelle befinden ist fiir uns irrelevant.
Die Parasiten der Zelle v vermehren sich hier also gemik P(X© € -). Gehen wir
jedoch in die zweite Tochterzelle, so vermehren sich die Parasiten gemif P(X®1) € -).
Setzen wir U = (U, )m>1, dann gilt fiir alle n, k,1 € Ny

P(Z[n—I—l] =k ‘ Z[n} =, U= (um>m21) = ]P<Zu1 Untl k ‘ Zu1 SUn l)

- ( Z Xulll‘n-zfln S = )
= IP’(X(“"“) = k) PUmfg

wobei bei der ersten Gleichheit die Unabhéngigkeit von U und (Z;);er benutzt wurde.
Die U,, geben also die Reproduktionsverteilung in jedem Generationswechsel an,
welche aus der Menge {P(X© ¢ ) P(X®) € )} gewiihlt wird. Damit ist ein PZZ
ein GWPZVU mit unabhéngiger, identisch verteilter Umgebungsfolge U/. Die eben
gewonnenen Erkenntnisse halten wir in der folgenden Proposition fest.

Proposition 3.4. Sei (Z,)ver €in ZTPIZ undU = (U,)n>1 wie oben definiert. Dann
gilt:

(1) (Zn))n>0 ist ein GWPZVU mit u.i.v. Umgebungsfolge U.

(1) Firu=ui..u, € Gy, gilt P(Zpy € - | Uy = ur, ... Uy = up) =P(Z, € ).

(iii) Gilt X© £ XU 50 bildet (Zn))n>0 einen GWP mit Reproduktionsverteilung
P(X© ¢.).

Beweis: Da (Z,)yer eine Markov-Kette indiziert durch einen Baum und unabhén-
gig von U ist, bildet (Zp,))n>0 eine Markov-Kette bedingt unter ¢ und es gilt (2.6).
Die Eigenschaft (2.7) ergibt sich aus den Uberlegungen vor der Proposition. Damit
ist (Zpn))n>0 ein GWPZVU mit Umgebungsfolge ¢/. Die anderen beiden Behauptun-
gen ergeben sich sofort. O

Da (Zjy))n>0 nach der vorherigen Proposition ein GWPZVU mit unabhéngiger,
identisch verteilter Umgebungsfolge ist, erhalten wir mit Hilfe von (2.8) und (2.10),

20



3.2 Der Prozess einer zufilligen Zelllinie

dass fiir v = uy...u, € G, die erzeugende Funktion f, und der Erwartungswert i,
von Z, von der Gestalt

fu(8) = fuy 0.0 fu,(s)

~TLm,
j=1

sind. Wegen der Unabhéngigkeit und identischen Verteilung der U,,, n € N, folgt
weiter aus (2.8) und (2.11)

und

E(Zy) = 4" und Ei(s™) = fu(s)" (3.1)

fiir alle n,k € Ny, wobei an p = £ (po + 1) erinnert sei. Fiir alle uy...u, € {0,1}",
n € Ny, gilt aufserdem

P((Us,s s Uy) = (1, oy 1)) = 2in

woraus dann aus (2.9)

(%) = o 37 fuls (32)

uGGn

fiir alle n, k € Ny folgt.

Im Folgenden iibertragen wir die Resultate flir GWPZVU aus Abschnitt 2.2.2
auf den PZZ. Wir beginnen mit einer dquvalenten Bedingung fiir das fast sichere
Aussterben von Zj,).

Korollar 3.5. Fiir einen PZZ (Zy))n>o gilt:

Beweis: Um diese Behauptung zu zeigen, geniigt es, die Giiltigkeit der Vorausset-
zungen von Satz 2.19 fiir den PZZ nachzuweisen. Es gilt

1 1
Bllog(®(Zy ()| = 5 3 [log(®(Zy |th =w)| = 5 3 Jlogpu| < o,

ue{0,1} ue{0,1}

da 0 < po, puy < oo vorausgesetzt war. Durch analoge Rechnung ergibt sich
E(log(E(Zy | U))) = ! log 1, = 1log(uo/xl)
2 2

und damit
E(log(E(Zy |U))) <0 & pop < 1. (3.3)
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3 Zwei wichtige Prozesse und erste Eigenschaften

Des Weiteren erhalten wir
1
E(log(l1 —P(Zy =0|U))) = §(log(1 —P(X© =0)) +log(1 — P(XV =0)))
1
= ;log (1 -P(X9 =0)(1 -P(XY =0)))
> —o0,

da fig, 11 > 0, und damit P(X© = 0),P(X™) = 0) < 1 gilt. Somit sind alle Voraus-
setzungen von Satz 2.19 erfiillt. Durch dessen Anwendung und (3.3) folgt dann die
Behauptung des Korollars. O

Fiir einen PZZ (Z},))n>0 erhalten wir

E(E(Zy|U) log(E(ZyU))) = (Zlts = u) log(E(Z|th = u))

Z
Z w) log(E(Z,))

l\DII—‘ [\DI

1
= Slkologuo + pulog ).

Analog zum GWPZVU definieren wir daher:

Definition 3.6. Ein PZZ heiflt superkritisch, kritisch oder subkritisch genau dann,
wenn fiop; > 1, = 1 bzw. < 1 gilt. Ist gopus < 1, so nennen wir einen PZZ
stark subkritisch, moderat subkritisch oder schwach subkritisch genau dann, wenn
o log g + pq log iy < 0, = 0 bzw. > 0 gilt.

Aus Satz 2.23 folgen einige Eigenschaften fiir den stark subkritischen PZZ. Auch
fiir einen moderat bzw. schwach subkritischer PZZ gelten unter gewissen Annahmen
(z.B. wenn X (@ und X quadratisch integrierbar sind) #hnliche Eigenschaften (vgl.
Korollar A.11 im Anhang). Diese wollen wir hier jedoch nicht beweisen.

Korollar 3.7. Fiir einen stark subkritischen PZZ (Zjn))n>0 existiert im Fall
E(X@log X@) < 00, a€{0,1},

ein c; € (0,1], sodass
P(Z[n] > 0) nzoo ClM
gilt. Weiter gilt fir alle s € [0, 1]

E(s% | Zpy > 0) — E(s”),

wobei Y eine Yaglom-quasistationdar-verteilte Zufallsgroffe mit EY = é ist. 2y
bedingt unter {Zy,) > 0} ist ferner gleichgradig integrierbar, d.h.
lim sup E(Zlz,>K} | Zpm > 0) = 0. (3.4)

K—o0 n€eNp
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3.2 Der Prozess einer zufilligen Zelllinie

Beweis: Fiir den Beweis reicht es, die Voraussetzungen von Satz 2.23 nachzuprii-
fen. Diese sind erfillt, da

E(Zplog Zy) = = (E(X@log X©) + E(XW1log XV)) < o0

DO | =

gilt. a

Die erzeugende Funktion von ) lasst sich im stark subkritischen Fall eindeutig
charakterisieren. Fiir dieses Unterfangen benotigen wir allerdings folgendes Lemma.
Es sei daran erinnert, dass f, und f; die erzeugenden Funktion von X(© und X
sind, sowie 1 = 2 (po + f11).

Lemma 3.8. Eine stetige Funktion H : [0,1] — R mit

Hofy-fy+Hofif
2

H(1)=0 und H=

1st konstant 0.

Beweis: Angenommen es gilt H #Z 0. Da H stetig und H (1) = 0 ist, existiert ein
Tmae € [0,1) mit

0 <sup{|H(z)|:z €[0,1]} = [H(@maz)]-

Sei (z,,)n>1 eine Folge in [0,1) mit x,, — 1. Dann existiert fiir jedes n > 1 ein
B € [0, z,], sodass
sup {[H(@)] : 2 € (0,0} = |H(B) (35

ist. fo und f; kann man jeweils auch als erzeugende Funktion eines GWP mit Repro-
duktionsverteilung P(X(© € ) bzw. P(X®) € .) auffassen. Auf [0, 1] sind deswegen
beide konvex und monoton wachsend, und aufgrund der Voraussetzung (1.4) ist
mindestens eine nach Proposition 2.3 (ii) sogar strikt konvex. Daraus folgt

fo(s), f1(s) = 0 und  fo(s) + f1(s) < fo(1) + f1(1) = 2u

fir alle s € [0,1). Aufgrund dieser Eigenschaft, der Dreiecksungleichung, den Vor-
aussetzungen des Satzes und (3.5) gilt dann fiir alle n > 1

Sup{|H(ZL‘)| ‘T e [O,l‘n]} = |H(ﬁn)|
- % H(fo(B) fo(Ba) + H(fr(5)) 1 (50)

< %(IH(fo(ﬁn))l B+ THUA B - £(5)
< IH(fvmm)li(fé(ﬁn)+f{(ﬁn))
< |H(@maz)]-
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3 Zwei wichtige Prozesse und erste Eigenschaften

Da Tyee < 1 und x, — 1 gilt, existiert ein ng > 1 fiir welches 2,4, € [0, 2] ist.
Damit ist aber

sup {|H ()| : 2 € [0, 0] } = |H(Zpmaz)l,
was einen Widerspruch zur vorherigen Ungleichung darstellt. Demnach gilt H = 0.

|

Kommen wir nun zur eindeutigen Charakterisierung der erzeugenden Funktion
von Y im stark subkritischen Fall.

Proposition 3.9. Sei (Zp))n>0 ein stark subkritischer PZZ, der die Vorausset-
zungen des Korollars 3.7 erfillt. Bezeichne weiter ) eine Yaglom-quasistationdr-
verteilte Zufallsgrofie und G(s) := E(sY) deren erzeugende Funktion. Dann ist G
die durch die Figenschaften

GO0)=0, G(1)< oo
GM&D;G((D_MG

(s) + (1 —p) (3.6)

eindeutig bestimmte erzeugende Funktion.

Beweis: G(0) = P(Y = 0) = 0, da Y > 1 fast sicher gilt. Die Endlichkeit des
Erwartungswertes G (1) = EY < oo ergibt sich nach Korollar 3.7.
Als néchstes zeigen wir die Giiltigkeit der Funktionalgleichung (3.6).

1 —E(s%+1 | Zjpiq) > 0)
o IP>(Z[n+1] > 0) E(Sz[nﬂ]) — IP>(Z[n+1] = 0)
C P(Zppin > 0) P(Zjp41) > 0)
1 — E(sZm+)
" P(Zjnsn) > 0)

1 o0
= - 1 — E(s%mt1 | Ziy = kNP(Zi = k
P75 0 2 (L~ B | Ziy = 0)P(Zy) = F)

1

~ 5z s 2 (L BB (2 = )

P(Zy>0) 1 S>o- S Uol)* + Fi(5)9)B(Zy = 1)

_ P2 >0) Z (1= SUo()* + Fo(9)) B (Zpy = k | Zyy > 0)

(1 = 5 (EGo(s) | Zyy > 0) + E((s)7 | Zyy > 0))),
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3.2 Der Prozess einer zufilligen Zelllinie

dabei wurde in der fiinften Zeile Satz 1.3 und in der sechten (3.2) verwendet. Nach

Korollar 3.7 gilt P(Z}, > 0) ~ ¢y fiir ein ¢ > 0, und damit folgt

P(Zpy > 0)
P(Zjny1) > 0) n—oo

-1

Fiir n — oo ergibt sich mit Korollar 3.7 somit aus der obigen Gleichung

1= G(s) = 11— 2(@hls) + G )

1 2
o p=iG(s) = 1= 3(GUals) + GLh($))
S HG) () = S(GU) +CA(s))

und damit (3.6).

Als letztes ist noch die Eindeutigkeit zu zeigen. Seien G, F' zwei erzeugende Funk-
tionen, welche die im Satz stehenden Eigenschaften besitzen. Fiir F, G gilt damit
G(0) = F(0) =0und 0 < G'(1), F'(1) < oco. Daher gibt es ein eindeutiges o > 0,
sodass G'(1) = aF'(1) ist. Wir setzen

H:=G - aof.

Es gilt H' (1) = 0 und als erzeugende Funktionen sind G und F auf [0,1] stetig
differenzierbar. Damit ist auch H stetig differenzierber und somit insbesondere H'
stetig. Weiter ist mit der Kettenregel und (3.6)

i (H'(fo(s)) fols) + H'(f1(5)) 1 (5))

- %(H(fo(s)) + H(fi(s)))
1 /

= 5, (GU) + GUA(S) = a(F(n(s) + F(A(5))))

_ %(MG(S) +1—p—a(pF(s)+1-p)
= (G(s) — aF(s))

/

= H(s).

’

Damit gelten die Voraussetzungen von Lemma 3.8 und es folgt H = 0. Somit ist
H konstant. Da H(0) = 0 gilt, folgt H = 0. Also ist G(s) = aF(s). Nun ist aber
G(1) = F(1) = 1 und somit a = 1. Also ist F' = G. O

25



4 Erholungswahrscheinlichkeit

In diesem Kapitel beschéftigen wir uns mit der in der Einleitung aufgeworfenen
Frage: Unter welchen Bedingungen erholt sich ein Organismus? Wir sprechen von
einem sich erholenden Organismus, wenn die Anzahl infizierter Zellen im Vergleich
zur Gesamtanzahl an Zellen vernachlissigbar wird. Mit Hilfe der gefunden Bedin-
gungen fiir das fast sichere Erholen erhalten wir dann fest, dass bei hoher mittlerer
Vermehrungsrate po+ p1 die Parasiten sich sehr ungleichméfig auf die Tochterzellen
verteilen miissen, damit sich ein Organismus regeneriert.
Zuerst geben wir die formale Definition eines sich erholenden Organismus an.

Definition 4.1. Ein Organismus erholt oder regeneriert sich, wenn

#on o s

AN n—oo
gilt.

Kommen wir nun zum Hauptresultat dieses Abschnittes. Es besagt, dass sich ein
Organismus genau dann fast sicher erholt, wenn der PZZ nicht superkritisch ist.

Satz 4.2. Es existiert eine Zufallsgrofie L € [0, 1], sodass

#on L pis.
N oo
gilt. Ist popy < 1, so gilt P(L = 0) = 1. Ist popy > 1, so gilt P(L = 0) < 1 und
Ext = {L =0} fs..

Beweis: Fiir alle n > 1 ist #G < 2#G}_, fast sicher, da die Anzahl der infi-
zierten Zellen in einem Generationsschritt sich maximal verdoppeln kann. Damit ist
(%)nzo eine monoton fallende, nach unten durch 0 beschréankte Folge, die somit
fast sicher gegen eine Zufallsgrofe L € [0, 1] fiir n — oo konvergiert.

Weiter gilt

ek 1 1
E( "> - —E( 1 ) - — N pz, — P(Z, 41
o o UEZG (2,50} 7 2 (Z, > 0) (Zpy >0)  (41)

fiir alle n € Ny. Aus der monotonen Konvergenz folgt somit

EL = E( lim #2(32) ~ lim E(#qu;kL) = lim P(Z > 0) = 1 — P(Z}, — 0).

n—oo n—oo n—oo
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4 Erholungswahrscheinlichkeit

Korollar 3.5 liefert uns dann die Aquivalenzen
popn <1 & P(Zp—0)=1 & EL=0 & P(L=0)=1

und damit die ersten Behauptungen des Satzes. Es ist also nur noch {L = 0} = Euxt
fast sicher fiir den Fall popq > 1 zu zeigen.

Aus Z, — 0 folgt #G — 0 und damit sofort Ext C {L = 0} fast sicher. Fiir
die andere Inklusion benutzen wir die unabhingige Vermehrung der Parasiten. Wir
kreieren fiir jeden Parasiten der n-ten Generation einen neuen Prozess, der mit einer
Zelle mit einem Parasiten startet. Diese neuen Prozesse verhalten sich so wie der
urspriingliche Prozess und sind unabhéngig voneinander. Es ergibt sich, dass sich
der urspriingliche Prozess genau dann erholt, wenn sich auch alle neuen Prozesse
erholen. Lésst man nun n gegen unendlich laufen, folgt das gewiinschte Resultat.
Wir erwiahnen nochmals, dass P(n) die Menge der Parasiten der n-ten Generation
ist. Fiir p € P(n) definieren wir Ni(p) als die Anzahl infizierter Zellen der (n+k)-ten
Generation, die mindestens einen Nachkommen von p enthalten.

Fiir alle n, k € Ny und p € P(n) gilt nach der Definition von Ni(p)

Ni(p) < #Gy, < Z Ni(p)

2n+k — 2n+k

Konvergiert nun Ny (p)/2"t* — 0 fiir alle p € P(n) oder #Gi,/2"™F — 0 fiir
k — 00, so erhélt man damit

{L=0}= {Ngff’) k:{)o} P-f.s. (4.2)
)

peEP(n

fiir alle n € Ny. Da sich die Parasiten unabhéngig voneinander vermehren, kénnen
wir jeden Parasiten p € P(n) als Urahne eines neuen ZTPIZ anschen und die so
entstehenden Prozesse sind aukerdem unabhéngig voneinander. Fiir p € P(n) gibt
dann Ni(p) die Anzahl der infizierten Zellen der k-ten Generation des Prozesses
startend mit Prarasit p an. Damit gilt also nach dem zuvor Gezeigten

Ni(p)

fir alle p € P(n).

Fiir n € Ny sei T,, := inf{k > 0 : Z; > n} die Stoppzeit bzgl. der kanonischen
Filtration o(Z, : |v| < k) (Def. A.2), welche angibt, zu welchem Zeitpunkt die
Anzahl der Parasiten zum ersten mal groker als n ist. Mit der starken Markov-
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4 Erholungswahrscheinlichkeit

Eigenschaft (Satz A.3) sowie (4.2) und (4.3) folgt dann

P(L=0) < P(L=0|T, < c0)B(T, < 50) +P(T} = )

S]P)( :0|ZT >n, ZTn1<TL ZO<n7Tn<OO)+P(Tn:OO)

— P(L :O|ZTn>n T, < 00) + B(T, = )

—p( N (B o)z, a7 o) BT = 00
pEP(Th)
~ f Ni(p)

= ]P’(ﬂ{ P oo }>+P<T”:OO)
p=1

_ p(Nelp)

= P(L = 0)" +P(T, = o),

wobei in der vorletzten Zeile die Unabhéngigkeit der Ni(p) einging. Gilt nun P(L =
0) < 1, folgt aus der eben gezeigten Ungleichung fiir n — oo

P(L=0) < lim P(7,, = )

= ]P’( U {T,, = oo})
n>1
= IP’( U{Zk <n fiir alle £ > O}))
n>1
= P((Zn)nzo ist beschrélnkt)
= P(Ext)
nach dem Extinctions-Explosions-Prinzip (2.1). Damit ist der Satz bewiesen. O

Bemerkung 4.3. (a) Im Fall go+p; > 1 und popy < 1, folgt nach Satz 4.2, dass sich
ein Organismus erholt, selbst wenn die Anzahl der Parasiten gegen unendlich strebt.
In diesem Fall sehen wir, wie unausgeglichen die Parasiten auf die Tochterzellen
verteilt werden miissen, damit sich der Organismus fast sicher erholt.

Sei dazu a € [0, 1] mit pp = 2pa und py = 2u(1 — a). Ein Organismus erholt sich
nach Satz 4.2 genau dann fast sicher, wenn pop; < 1 gilt. Ist ¢ < 1, so ist auch
fopr < 1. Ist hingegen p > 1, dann folgt mit Hilfe der quadratische Ergdnzung die

Aquivalenz von popu; = a(1 — a)(2u)? < 1 und
1
(1+,/1—E)>. (4.4)

(1-1- )

DN =
N —

a¢(
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4 Erholungswahrscheinlichkeit

Ein Organismus erholt sich also genau dann fast sicher, wenn p < 1 oder (4.4) gilt.

Dies zeigt, je grofer die mittlere Vermehrungsrate po + p1 = 2u der Parasiten ist,
desto extremer muss das Gewicht a € [0,1] in Richtung 0 oder 1 verschoben und
somit die Verteilung der Parasiten auf die beiden Tochterzellen sehr unausgewogen
sein, damit der Organismus sich fast sicher erholt.

Die beiden Grafiken in Abbildung 4.1 zeigen jeweils 30 Pfade von 27"#G mit
unabhiingigen X©, X® und P(X© + X® ¢ .) = Poi(2.5), woraus u = 1.25 > 1
folgt. Wihrend in der ersten Grafik jedoch X und X" identisch Poi(1.25)-verteilt
sind und damit jiop; > 1 gilt, sind in der zweiten Grafik X© und X nicht identisch
verteilt, X© ~ P0i(0.3125) und X ~ Po0i(2.1875). Damit gilt in der zweiten
Grafik pop; < 1. Die Parasiten des zweiten Prozesses sterben somit fast sicher aus,
wahrend diese beim ersten auch tiberleben konnen.

1.00 1.00

0.75+ \k\ 0.75+

1 \\\‘\ S

;Fh 0.50] \‘§,: 0.50]
\,,

0.25 _ 0.25

Abbildung 4.1: 30 Pfade von 27 "#G* mit X© 4+ XM ~ Poi(2.5), X© X® unab-
hangig und a = 0.5 bzw. 0.125.

(b) Die Gleichung (4.1) im Zusammenspiel mit Korollar 3.7 und Korollar A.11 gibt
uns die Asymptotik von E(#G?) im Fall popy < 1. Fiir geeignete ¢, ..., ¢4 € (0, 00)
gilt namlich:

o E(#G?) "~ (2u)"¢; im stark subkritischen Fall;

o E(#G*) "~" (2u)"<% im moderat subkritischen Fall;

n
o E(#G*) "~" (27)"\/%, fiir ein y € (0, ) im schwach subkritischen Fall;

n—~0o0

o E(#G;) ~ (2u)"l(n)-t%5, fiir ein p € (0, 1) und eine geeignete Funktion I(n)

—p

im kritischen Fall, falls (o, p1) # (1, 1) ist.
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5 Baum infizierter Zellen

In diesem Kapitel betrachten wir den Baum infizierter Zellen und beantworten als
erstes folgende auch in der Einleitung gestellte motivierende Frage: In der Situation
po + > 1 gilt P(Z, — oo | Ext®) = 1, d.h. die Anzahl der Parasiten explodiert
im Uberlebensfall. Wie verteilen sich aber die unendlich vielen Parasiten auf die
Zellen? Gibt es nur wenige stark infizierte oder viele schwach infizierte Zellen? Gilt
in diesem Fall also auch

P(#G,; — oo | Eat®) =17

Satz 5.5 weiter unten gibt eine positive Antwort auf diese Fragen. Wir zeigen, dass
infizierte Zellen nicht in endlich vielen Zelllinien konzentriert sind. Das heifst, die
infizierten Zellen verteilen sich iiber den gesamten Zellbaum und sind nicht in einer
kleinen Umgebung anzutreffen.

Als néachstes betrachten wir den Fall ug + py < 1. Hier ist der Parasitenprozess
(Z,)n>0 nicht superkritisch, und die Parasiten sterben fast sicher aus. Insbesondere
konvergiert damit die Anzahl infizierter Zellen gegen 0. Unter der Bedingung, dass in
der n-ten Generation Parasiten {iberleben, strebt jedoch die Anzahl infizierter Zellen
des gesamten Baumes, deren Tochterzellen nicht mehr infiziert sind, fiir n — oo
gegen unendlich. Dies bestéatigt Satz 5.6. Deswegen konnen infizierte Zellen auch in
diesem Fall nicht in endlich vielen Zelllinien konzentriert sein, sondern verteilen sich
iiber den ganzen Zellbaum.

Um diese beiden Sétze zu beweisen, fiihren wir den Begriff des Randes des Zell-
baumes und die Menge der unendlichen Zelllinien infizierter Zellen ein.

Definition 5.1. Fiir einen Zellbaum T sei 4T := {0, 1} dessen Rand und
0T :={v € oT : Z,, > 0 fiir alle n € Ny}
die Menge der unendlichen Zelllinien infizierter Zellen.

Es sei noch erwahnt, dass fiir pg+ p1 > 1
P(OT* £ 0 | Ext®) =1 (5.1)

gilt, da in jeder Generation aus mindestens einer infizierten Zelle eine infizierte
Tochterzelle entstehen muss.
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5 Baum infizierter Zellen

(& O
O

‘ oder

Abbildung 5.1: Infizierungsméoglichkeiten eines Parasit im Fall P(X© XM = 0) =1

Bevor wir zu den angesprochenen Resultaten kommen, benotigen wir noch zwei
Lemmata. Das erste garantiert uns, dass ein Vorfahre einer beliebigen infizierten
Zelle eine nach unten beschrankte, positive Wahrscheinlichkeit dafiir besitzt, dass
beide Tochterzellen infiziert sind. Hierbei miissen wir die Falle

P(XOXD =0)%£1 und P(XOXD =0)=1

unterscheiden, denn im zweiten Fall muss der Zellvorfahre mindestens zwei Parasiten
enthalten, damit beide Tochterzellen infiziert werden kénnen (siche Abb. 5.1). Im
zweiten Lemma beweisen wir dann, dass es im Fall P(X(©X®) = 0) = 1 in einer
unendlichen Zelllinie infizierter Zellen unendlich viele Zellen mit mindestens zwei
Parasiten gibt.

Zunachst aber zum ersten Lemma. Es sei an die Schreibweise u < v fiir u,v € T,
falls v eine Vorfahrenzelle von v ist, erinnert.

Lemma 5.2. FEs existiert ein o > 0 derart, dass fir allev € T, u < v und k > 2
P(Zu0>0, Zuy1 >0 ‘ Zu:k, ZU>O)ZOZ

gilt. Falls P(X©OXW = 0) # 1, gilt das Resultat auch fiir k = 1. Insbesondere folgt
dann fir alle k > 2 (bzw. k> 1)

lim  inf {P(Zuo >0, Za>0| Zu=kh, Zy > 0)} > a.

n—00 VEG,u<v

Beweis: Seiv € T. Als erstes bedienen wir uns der monoton fallenden Hilfsfunktion
fiRyg— R, z— == Fiiralle 0 < r < s und p € (0,1) ergibt sich dann

1—p" _rf(=rlogp)
1—p* s f(=slogp)

,
> -
S

Falls r > s > 0 ist, folgt aukerdem 1 — p” > 1 — p® fiir p € [0,1) und damit

1—p" T

1—p° — max{r, s} (52)
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5 Baum infizierter Zellen

fir alle r,s > 0 und p € [0,1).

1. Fall: P(XOX® =0) # 1. Fiir u < v und k € N gilt
P(Zuw >0, Zpy>0|Z,=k,Z,>0) > P(Zy>0, Zu>0|Z,=1,7,>0).

Es reicht also den Fall £ = 1 zu betrachten.

Seien nun ko, k; € N, u; € {0,1} und uy € {0, 1}VI=1vul 5o gewihlt, dass v = wuius
und P(Zy = ko, Z; = k1) > 0 ist. Mit Hilfe von (1.2), (3.1) und (5.2) gilt dann fiir
alle (ky, ky) € N2 mit P(Zyo = ky, Zu1 =k, | Zu=1, Z,>0)>0

]P)(Zuo = k’o, Zul = k?l | Zu = 1, Zv > 0)
P(Zuo = ki, Zur = Ky | Zo =1, Z, > 0)

]P(ZO — ko, Zl — kl ‘ Zulu2 > 0)

]P<ZO = klOv Zy = kll ‘ Zuluz > 0)
( )
(

P(Zuyu, > 0| Zo = ko, Z1 = k1)P(Zy = ko, Z1 = k1)
Zu1u2 >0 | ZO = k’é, 71 = l{?ll)P(Zo = k’é, Z = k’ll)

~

P(Zy, = O)k“l)P(Zo = ko, Z1 = k1)
P(Zu, = 0)")P(Z = Ky, Z1 = k)
kU1 P(ZO = kOa Z) = kl)
max{k,,, k:;l} P(Zy = k:(/), 7y =k))

min{ko, kl} P(ZO = ko, Zl = kl)
ko+ ki +ky+ Kk P(Zg=ky, Zy=k))

(-
- &

>

>

Multipliziert man nun beide Seiten mit dem Produkt beider Nenner und summiert
iiber alle (ky, k) erhilt man

(E(ZO —|— Zl) —|— ko + kl)]P)<ZuO = ko, Zul = kl ‘ Zu == 1, ZU > 0)
Z min{k:o, k?l}]P)(ZQ = k?o, Z1 = k?l)

Hieraus folgt die Behauptung des ersten Falls, indem wir

_ min{ko, kl}P(ZO = ko, Zl = kl)

>0
E(Zo+ Z1) + ko + k1

setzen.

2. Fall: P(X©YX® = 0) = 1. Der Beweis dieses Falls liuft vollig analog zu dem
vorherigen Fall nur mit Z, = 2, denn fiir jedes & > 2 und u < v gilt

P(Zw>0, Zu>0|Zy=k, Z,>0) > P(Zy>0, Zu>0|2Z,=2, Z,>0).
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5 Baum infizierter Zellen

Es reicht also in diesem Fall £ = 2 zu betrachten.
Wihle (ko, k1) € N2 diesmal so, dass Py(Zy = ko, Zy = ki) > 0 ist, und seien
Uy, Usg, l{;{), k, wie im ersten Fall. Dann folgt durch analoge Rechnung

]P)(ZuO - kOa Lyl = k1 | Ly = 2, Zy > O)

P(Zy = ké, Zy =k | Zy=2, Z,>0)

]PQ(ZO - ko, Zl - kl | Zulug > O)

]PQ(ZO - ké, Zl - kll | Zulug > O)

P(Zuyuy, > 0| Zo = ko, Z1 = k1)Pa(Zy = ko, Z1 = k)

]P)(Zulug >0 | ZQ = k?(/), Z1 = k?/l)]P)Q(ZQ = k?(/), Zl = kj/l)
min{ko, ]{?1} ]P)Q(ZO = k?o, Zl = k?l)

k(] —|— ]{Zl —|— ]{Zg) —|— ]{le ]PQ(ZQ - ]{Zg), Zl — ]{le)

>

Wie im ersten Fall erhalt man so

(Ba(Zo+ Z1) + ko + k1 )P(Zuo = ko, Zur = k1 | Zu =2, Z, > 0)
> min{ko, k1 }P2(Zo = ko, Z1 = k1)

und damit als untere Schranke

_ min{k:o, k?l}]P)Q(ZO = k?o, Zl = k’l)
Ey(Zo + Z1) + ko + Ky

> 0.

O

Kommen wir nun zum oben angesprochenen zweiten Lemma. Bansaye [10] gibt in
diesem Lemma als weitere Voraussetzung

B=PXY>2 oder XM >2) >0
an und benutzt dann die Ungleichung
P(Zy > 2 oder Zy > 2| Z; > 0) > P(X© >2 oder XV >2) > 0

fiir alle k£ € T. Diese ist aber im Allgemeinen nicht erfiillt, wie das folgende Beispiel
zeigt.

Beispiel 5.3. Gelte P(X© =2, XU =0) =P(X® =0, X!V =1) = L. Dann ist
]P)(Z0220d67"2122 | Z1>0):]P)(Z122|Zl>0)20,
aber

1
P(ZO Z 2 oder Zl Z 2) = ]P(ZO Z 2) = 5
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5 Baum infizierter Zellen

Selbst wenn beide Tochterzellen zwei Parasiten enthalten konnen, muss die Un-
gleichung nicht erfiillt sein, denn fiir

1
P(xX© =2, X<1>=0)=5
und
1
P(X© =0, XM =1)=P(X© =0, X<1>=2)=Z
ist
1
IP’(ZOZZOderZ122|Z1>0)=P(Z122|Z1>0):§v
aber
P(Zy > 2 oder Z >2)—1+1—3
0= oaer 41 = —2 4—4

In beiden Féllen ist also P(Zy > 2 oder Z1 > 2 | Z1 > 0) < (3.

Wir miissen unsere untere Schranke 3 somit kleiner wéhlen und deswegen etwas
schérfere Anforderungen an die Reproduktionsverteilungen stellen. Wir beweisen
daher das zweite Lemma unter der Voraussetzung 3 = P(X© > 2)P(X(1) > 2) > 0.

Lemma 5.4. Gilt P(XOX® = 0) =1 und 3 := P(X© > 2)P(XL > 2) >0, so
folgt
inf P(#{u<v:Zu022 oder Z,; 22}2% ‘ Zv>0> — 1.

vEG, n—00

Beweis: Fiir alle v € G,,, u < v = uw fiir ein geeignetes w € {0, 1}~ yund 2 > 1
gilt

P(Zy >2oder Zy >2 | Zy =z, Z, > 0) (53
5.3
> P(Zy>2oder Zy >2 | Z, >0) > f.

Die erste Ungleichung in (5.3) ergibt sich aus

P(Zy >2oder Zy >2 | Z, =z, Z,>0)
> P(Zy>2oder Zy>2|2Z,=1, Z,>0)
= P(Zy>2oder Z; > 2| Z, > 0).

Die zweite Ungleichung folgt aufgrund der Voraussetzung, dass alle Parasiten ent-
weder in die erste oder in die zweite Zelle gehen, d.h. P(X@X®) = ) = 1. Ohne
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5 Baum infizierter Zellen

Einschrankung kann also P(Zy > 2 oder Zy, > 2| Z, > 0) =P(Zy > 2 | Z,, > 0)
angenommen werden und man erhalt

P(Zy > 2 oder Zy > 2 | Z,, > 0)
— P(Zy>2| Zy > 0)

P(Zy > 2, Zy > 0)
P(Z, > 0)
1

= — P(Z,>0|Zy=7)P(Zy =

ZIP’Z >0 Zo=1)P(Z = §)

= ——w ” P(Z,>2), wobeiw=0uw
> IP(

wobei in der letzten Ungleichung P(Z,, > 0) < P(Z, > 0) einging. Damit gilt
(5.3), das heift unabhéngig von der genauen Anzahl an Parasiten in einer Zelle
ist die Wahrscheinlichkeit in der nédchsten Generation zwei oder mehr Parasiten zu
erhalten mindestens (.

Seien nun G, k > 0, unabhéngige, identisch B(1, §)-verteilte Zufallsgréfsen. Dann
gilt fiir alle v € G,, und = € R mit Hilfe von (5.3)

n—1

Zﬁk>az>.

k=0

PH#{u<v:Zyo>2o0der Zy >2y>x | Z,>0) > P

/N

Aus dem starken Gesetz der groken Zahlen folgt * Zk 0 ﬁk — ﬁ fast sicher und

damit

3
,_.

P(#u<v:Zn>20dr 2, 2202 " | 2,50) = (T a2 ") 1,
0

i

was den Beweis abschliefst. O

Kommen wir nun zu den beiden am Anfang des Kapitels angekiindigten Hauptre-
sultaten. Wir beginnen mit dem Fall eines superkritischen Parasitenprozesses.

Satz 5.5. Ist po + p11 > 1, so konvergiert #G; bedingt unter Ext® fast sicher gegen
unendlich. Es gilt also
P(#G* % oo | Ext®) = 1.
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5 Baum infizierter Zellen

Wir werden den Beweis von Bansaye in [10] erweitern und den Satz damit auch
fiir die, durch die Beispiele verdeutlichten, Ausnahmen zeigen.

Beweis: Der Beweis teilt sich in drei Falle auf. Im ersten Fall betrachten wir die
Situation P(X @ X" = 0) # 1. Mit Hilfe von Lemma 5.2 folgt, dass in einer unendli-
chen Zelllinie infizierter Zellen unendlich viele Zellen existieren, deren Tochterzellen
beide infiziert sind. Jede dieser Tochterzellen, welche nicht in der vorher betrachte-
ten Zelllinie liegt, startet einen neuen ZTPIZ. Da die Uberlebenswahrscheinlichkeit
der Parasiten positiv ist, folgt dann mit dem Borel-Cantelli-Lemma und Satz 1.3,
dass bei unendlich vielen dieser neuen ZTPIZ Parasiten iiberleben. Damit konver-
giert auch die Anzahl der infizierten Zellen #G} gegen unendlich. Dieses Vorgehen
verdeutlicht Abbildung 5.2. In den anderen beiden Féllen gilt P(X X" = 0) = 1.
Wir zeigen, dass in diesen Féllen in einer infizierten Zelllinie unendlich viele Zellen
mit mindestens zwei Parasiten liegen. Jede dieser Zellen hat eine positive Chance
beide Tochterzellen zu infizieren und damit kénnen wir diese Félle auf den ersten

Fall zuriickfiithren.

ZM — 00

Z%2 — 00 K.\.<
Z3 — 0 S

Zn — 0
Z — 00

Abbildung 5.2: Die von einer unendlichen Zelllinie infizierter Zellen abzweigenden
neuen ZTPIZ.

Nach (5.1) gilt 6T* # ) fast sicher bedingt unter Ext¢. Sei dann v € 6T*.

1.Fall: P(X©X® = 0) # 1. Seien 3, [ > 0, unabhiingige und identisch B(1, a)-
verteilte Zufallsgrofsen, wobei a > 0 nach Lemma 5.2 gegeben ist. Dann folgt mit
Lemma 5.2 (k= 1)

Ka = Ka
]P)(#{U<’UZZU()>O,ZU1>0}>7|Zv>0> Z]P)(Zﬁl>7> — 1,

K—o0

da nach dem Gesetz der Groken Zahlen = ZzK 01 6] il fast sicher gilt. Wir
erhalten also bedingt unter {Z, > 0}

#{u<v:Z,y>0, Z,y >0} =00 fast sicher. (5.4)
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5 Baum infizierter Zellen

In einer Zelllinie infizierter Zellen gibt es somit unendlich viele Zellen vy, vy, ..., deren
Tochterzellen beide infiziert sind.

Betrachten wir die Tochterzellen dieser unendlich vielen Zellen vy, vs, ..., die nicht
in der zuvor betrachteten Zelllinie liegen. Diese starten nach Satz 1.3 neue, unabhén-
gige ZTPIZ (Z%)wer,© > 1, mit einer infizierten Zelle. Da po 4 p1 > 1 vorausgesetzt
war, folgt fiir alle ¢ > 1

P(Z% — 00| Z,>0) = P(Z% — 00) > P(Z, — o0) = P(Ext) > 0.

Damit ist die Wahrscheinlichkeit, dass bei unendlich vielen dieser Prozesse infizierte
Zellen iiberleben, nach dem Borel-Cantelli-Lemma 1, denn es gilt

iP(Zﬁ' — 00) > iP(EZL‘tC) = 00.
i=1 i=1

Aus der Unabhéngigkeit der Z7, ¢ > 1, folgt damit
P(Z — oo fiir unendlich viel i) = 1.

Von den unendlich vielen ZTPIZ existieren also unendlich viele, bei denen Parasiten
iberleben. Damit konvergiert #G; gegen unendlich. Die Behauptung fiir den erste
Fall ist somit bewiesen.

2.Fall: P(XOX® = 0) =1 und P(X© > 2)P(XM > 2) > 0. Mit Lemma 5.4
folgt bedingt unter {Z, > 0}

#H{u<wv:Zyy>2oder Z,y > 2} =00 fast sicher. (5.5)

In einer unendlichen Zelllinie infizierter Zellen existieren also unendlich viele Zellen
mit mindestens zwei Parasiten. Mit Lemma 5.2 erhalten wir daher analog zum ersten
Fall (diesmal fiir k& = 2)

K
P(#{u<v:Zuo>O,Zu1>0}>7a | Zv>0> — 1L
Also existieren auch in diesem Fall unendlich viele Zellen in einer unendlichen Zell-
linie infizierter Zellen, deren Tochterzellen beide infiziert sind und es gilt (5.4). Wir
befinden uns damit in der gleichen Situation wie im ersten Fall und es folgt die
Behauptung fiir den zweiten Fall.

8. Fall: PIXOX® = 0) = 1 und P(X© > 2)P(X® > 2) = 0. Sei also ohne
Einschrinkung P(X© < 1) = 1. Ist X© ~ §;, so folgt XV ~ §; aufgrund von
P(XO©X® = 0) = 1. Dies stellt jedoch einen Widerspruch zu jio + p; > 1 dar.
Demnach muss also 19 < 1 gelten. Aufgrund der Voraussetzung (1.4) folgt damit
aber P(X®M > 2) > 0.

37



5 Baum infizierter Zellen

Sind in der Folge v = (v5,)n>1 € 0T* nur endlich viele v, = 1, s0 ist (Zy};,)n>0 ab
einem ng € N wegen P(X(® < 1) = 1 eine monoton fallende Folge, welche aufgrund
von iy < 1 fast sicher gegen 0 konvergiert (Satz 2.4). Damit v € 6T* sein kann, muss
demnach v,, = 1 unendlich oft gelten.

Fiir u < v mit v = ulu’ folgt mit der gleichen Rechnung wie fiir (5.3)

P(Zu > 2 oder Zy, >2 | Zy =2, Z,>0) > P(XW >2) =7

fiir alle z > 1. Auf die gleiche Weise wie im Beweis von Lemma 5.4 und der Tatasache,
dass v, = 1 unendlich oft gilt, erhalten wir dann

K
P(#{u<v:Zu022 0derZu122}>76 | ZU>O) P 1.
Es gilt also auch (5.5). Wir befinden uns somit in der gleichen Situation wie im
zweiten Fall, womit die Behauptung des Satzes folgt. O

Wenden wir uns nun dem Fall eines nicht subkritischen Parasitenprozesses zu. Wie
zu Beginn des Kapitels angekiindigt, gilt auch in diesem Fall, dass die infizierten
Zellen nicht in einer Zelllinie konzentriert sind. Dies zeigt der folgende

Satz 5.6. Gilt P(XOX® = 0) # 1 oder P(X© > 2)P(XMD > 2) > 0 im Fall
wo + p1 < 1, so folgt fiir alle x € R
P#{veT:Z, #0, Zyp =Zn =0} >z | #G; > 0) — 1.

Beweis: Der Beweis verlduft in dhnlicher Weise wie der Beweis von Satz 5.5 und
wir benutzen wieder die Unabhangigkeit der von einer Zelllinie abzweigenden ZTPIZ.
Wir teilen den Beweis in zwei Félle auf. Nachdem wir die Behauptung fiir den Fall
P(X© XM = 0) # 1 gezeigt haben, betrachten wir die Situation unter der Annahme

P(X© > 2)P(X™ > 2) > 0 und spielen diesen Fall auf den ersten zuriick. So
erhalten wir dann die Behauptung des Satzes.

1. Fall: P(X®X® = 0) # 1. Nach Lemma 5.2 existiert ein o > 0, sodass
P(Zuo > 0, Zur > 0| Zu=k, Zy>0) > a (5.6)

fir alle n > 0, v € G,, v < v und k > 1 gilt. Mit den gleichen Argumenten wie im
ersten Schritt vom Beweis vorher folgt damit nach dem starken Gesetz der grofsen
Zahlen

inf {P(#{u <0 Zuy >0, Zuy > 0} > % | Z, > 0)} 1 (5.7)

veEGH, n—o00

Sind von einer Zelle u < v beide Tochterzellen infiziert, dann starten diese Tochter-
zellen nach Satz 1.3 zwei unabhéngige ZTPIZ. Aufgrund der Voraussetzung o+ <
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5 Baum infizierter Zellen

1 sterben die Parasiten des mit der Tochterzelle, welche nicht in der Zelllinie zu v
liegt, startenden ZTPIZ nach Satz 2.4 fast sicher aus. Dieser besitzt somit min-
destens eine infizierte Zelle, deren Tochterzellen keine Parasiten mehr enthalten. In
jedem von der Zelllinie nach v abzweigenden Teilbaum befindet sich also mindes-
tes eine infizierte Zelle, deren Tochterzellen nicht mehr infiziert sind. Aufgrund der
Unabhéngigkeit der so entstehenden Prozesse und (5.7) folgt dann fiir alle z € R

inf {P(#{ueT:ZuyéO, ZuO:ZM:O}Zx}ZU>O)}

'UEGn

> inf {P(#{u<v:Zo>0, Zu >0t =2 2,>0)}

vGGn

— 1.
n—oo

2. Fall: P(X© > 2)P(X® > 2) > 0. Die Ungleichung (5.6) gilt auch in diesem
Fall fiir £ > 2 und geeignetes o > 0. Nach Lemma 5.4 gilt

inf {P(#{u <wv:Zy>2oder Zy > 2} > % ’ Zy > 0)} — 1, (5.8)

vEGH, n—00

wobei 3 wie in Lemma 5.4 gewahlt ist. Setzen wir fiir v € T
Ay(v) == #{u <v: Zy > 2 oder Z,y > 2}.

Dann folgt aus (5.8) und (5.6) mit der gleichen Argumentation wie in (5.7)

inf {P(#{u<v:zu0>0,zu1>0}># | ZU>O)}

UeGn
> irg {P(#{u<v:Zu0 > 0,2, >0} > #, As(v) > % } Zy >0>}
vebyn
— 1.

Nun befinden wir uns in der gleichen Situation wie im ersten Fall und mit den
gleichen Argumenten folgt damit die Behauptung. a
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6 Anteil infizierter Zellen mit
gegebener Anzahl an Parasiten

Dieses letzte und langste Kapitel behandelt die Verteilung der Parasiten auf die
Zellen fiir gegen unendlich laufende Zeit. Dazu betrachten wir das Verhaltnis der
Anzahl an Zellen mit k Parasiten, k € Ny, zur Gesamtanzahl infizierter Zellen der
n-ten Generation und dessen asymptotisches Verhalten fiir n — oo. Dieses Verhalten
héngt jedoch vom Verhalten der beiden Prozesse (Z,)n,>0 und (Z},))n>0 ab. Wir
betrachten daher die folgenden fiinf Fille.

Dy = {(po, 1) € RZ : 1o + pn < 13
Dy := {(po, 1) € RZ 2 1o + . = 1}

Dy = {(po, 1) € R 2 pio + pun > 1,
to log(pto) + g1 log(pr) < 0}

Dy = {(po, 1) € RZ < propy < 1,
tolog(po) + palog(pn) > 0}

Ds := { (o, 1) € Ry propun > 1}

04‘5 \ 1?0 115 2.0 2.5 3.0
Dy
Da die Mengen Dy, ..., D5 paarweise disjunkt sind, folgt insbesondere

popn < 1, falls (o, p11) € Dy U Dy U D3 und (6.1)
6.1
po + > 1, falls (o, 1) € Dy U D5 gilt.

Im Fall Dy zeigen wir, dass die infizierten Zellen der n-ten Generation fiir n — oo
immer schon stark infiziert sind, also viele Parasiten enthalten. Weiter zeigen wir,
dass im Fall D3 bzw. Dy das Verhéltnis von infizierten Zellen mit £ Parasiten zur
Gesamtanzahl infizierter Zellen bedingt unter Ezt® in Wahrscheinlichkeit bzw. be-
dingt unter {Z,, > 0} in Verteilung gegen eine Yaglom-quasistationére-Verteilung
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konvergiert. Daraus erhalten wir unter anderem Erkenntnisse iiber das asymptoti-
sche Verhalten von #G;, fiir n — oo. Der Fall D; verhélt sich dhnlich zu den Féllen
D, und Ds3. Hier konvergiert die Anzahl infizierter Zellen mit k& Parasiten bedingt
unter {Z,, > 0} in Verteilung gegen eine integrierbare Zufallsgrofe. Daraus erhalten
wir dann die Verteilungskonvergenz von #G? und Z,, bedingt unter {Z,, > 0} gegen
integrierbare Zufallsgrofen. In die Beweise der Félle Dy, Dy und D3 geht entschei-
dend die stark subkritische Eigenschaft des PZZ (Z},))n>0 ein, weshalb diese auch
relativ ahnlich sind. Im Fall Dy ist der PZZ jedoch nicht stark subkritisch und man
kann die Beweisidee der vorherigen Félle nicht iibernehmen. Es liegen in diesem Fall
leider noch keine befriedigenden Resultate vor.

Bevor wir die eben angesprochenen Ergebnisse bestétigen, fithren wir noch einige
Definitionen und Notationen ein.

Definition 6.1. Fiir k,n € Ny definieren wir mit

_#{veGh:2Z,=k)

das Verhdltnis der Anzahl an infizierten Zellen mit k Parasiten zu der Anzahl aller
infizierten Zellen in Generation n.

Wir bezeichnen mit

IM(Np) = {(sz‘)zeNO : Z 2] < OO}

i€Np

den Banachraum der absolut konvergenten Reihen mit der zugehorigen 1-Norm ||-|];
definiert durch

(@) ieno |l = Z |4

1€Np

und mit

51<N0) = {(xi)ieNO cx; > 0 fir alle 1 € N, Z x; = 1}

1€Ng

den Teilraum der Verteilungen auf Nj.
Fiir z,y € I'(Ny), z,y # 0, gilt die folgende Ungleichung

z )

_ [z — ylh
2]l [yl

Tl 6.2)

1
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

denn mit Hilfe der Dreiecksungleichung folgt

T y _ T y y y
— — — + —
[zl [yl ] ol Ml Al Tyl
_ ||rzy, v [yl = [|z]]s
i Myl (2l )
< ||93—y||1+|| lylls = llz]l1 |1
eI |z|[1
< oIz =yl
||| |1

Da wir im Folgenden die Situation bedingt unter Ext® bzw. {Z, > 0} betrachten,
setzen wir zur besseren Ubersicht noch

P*:=P(- | Ext®) und P":=P(-| Z, >0) firn e N,.

Wir schreiben ferner E* bzw. E” fiir den Erwartungswert bzgl. P* bzw. P".

6.1 Superkritischer Parasitenprozess

6.1.1 Superkritischer Prozess einer zufdlligen Zelllinie, D;

In diesem Fall zeigen wir, dass bei fortschreitender Zeit infizierte Zellen sehr viele
Parasiten enthalten. Dies zeigt der folgende

Satz 6.2. Fir alle k € Ny konvergiert Fi(n) bedingt unter Ext® in Wahrscheinlich-
keit gegen 0 fiir n — oco. Das heifst, fir alle K,e > 0 gilt

— 0.
n—oo

P*<#{UEG;;L(;T;ZU<K} 25)

Beweis: Nach Satz 4.2 existiert eine Zufallsgrofe L € [0, 1] mit #2;% — L f.s. und
P(L = 0) = P(Ext) < 1. Damit gilt nattirlich P*(L = 0) = 0. Da (ﬁqi:‘)nzo monoton
fallend ist, gilt somit fiir alle n > 0

#G, >2"L P-fs.. (6.3)
Wir setzen fiir K, > 0 und n € Ny

#{veG:: Z, < K}
#G,

By(K.e) = { > e} nBat,
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6.1.1 Superkritischer PZZ, Dy

Dann ergibt sich mit (6.3) die Ungleichungskette

Z ]I{ZU<K} = #{’U € G:L . ZU < K} Z E#GzﬂBn(K,a) Z EQnLﬂBn(K75) ]P—f.S..

veG,

Nach Ubergang zum Erwartungswert und Division durch 2" auf beiden Seiten er-
halten wir

1
eE(L1p, (ko) < —E< Z 11{ZU<K}) = 3 P(Z < K) = P(0< Zu < K).

veGy,

Nach Satz 2.18 konvergiert die rechte Seite gegen 0 und damit auch E(L1p, (k)
fiir n — oo.
Da L > 0 fast sicher auf Ezt¢ gilt, folgt fiir alle « > 0

inf {E(L14) : A € F mit P(AN Ext) > a} > 0,
denn wihlt man x = inf{y € R: P{L <y} N Ext®) > a}, so ist
E<L]1A) Z E<L]1A0Extc> Z E<L]1{L§:v}ﬂE:vtc) > 0

fir alle A mit P(AN Ext) > «
Somit folgt aus E(L1p, (k) — 0 auch

P(B,(K,)) — 0.

n—oo

Aus P(B,(K,¢)) =P* (W > ¢)P(Ext®) ergibt sich dann

— 0.
n—oo

IP’*(#{UGG;‘(;T;U<K} 25)
O

Ist E(Z,log Z,) < oo fiir u € {0,1} und py = 1, so verhélt sich die Anzahl der
Parasiten in einer infizierten Zelle asymptotisch wie p. Dies besagt der folgende

Satz 6.3. Ist E(Z,log Z,) < oo fiir u € {0,1} und po = p1, so gilt fiir alle € > 0

ilgo) {IP’*<#{U € G;:GZZU < ang} > 6)} — 0.

Beweis: Der Beweis verlauft analog zu dem von Satz 6.2 und es gilt auch hier
(6.3). Wir definieren fiir ;e > 0und n >0

#{veGl:Z, <auy}
#G7,

A (apg,e) = { E} N Exte.
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Durch die gleichen Umformungen wie im vorherigen Beweis erhalten wir fiir alle
n > 0 die Ungleichung
a—0

1
E"(LLayauge) < P70 < Zpy < apg) — 0. (6.4)

Da jig = p vorausgesetzt war, ist nach (3.1) EZp,) = pg. Aufgrund der Vorausset-
zungen des Satzes sind die Bedingungen in Satz 2.21 erfiillt, denn

1
i
Mg

Dieser liefert dann die fast sichere Konvergenz von % gegen eine Zufallsgrofe L
0

mit {L = 0} = {Z},) — 0} fast sicher. Daraus folgt also

1,1 1
E(Zpy log Zp |u>) _ 5(%E(Zolog20)+EE(Zl long)) < oo

1

P*(0 < Zpp) < apg) — P(0< L < a),

n—oo

und somit erhalten wir

limsupP*(0 < Zpy < apg) =P (0< L <a) — 0. (6.5)

n—00 a—0

Aus (6.4) und (6.5) folgt dann

1
sup {E*(L]lAn(aug@)} < Zsup {P*(0 < Zpy < aug)} — 0.

n>0 n>0 a—0

Da L > 0 fast sicher auf Ezt¢ gilt, folgt dann wie im Beweis von Satz 6.2

— 0.
a—0

sup
n>0

e )

|

6.1.2 Stark subkritischer Prozess einer zufalligen Zelllinie, D;

Fiir diesen Fall setzen wir E(X (@?) < oo fiir a € {0,1} voraus. Nach (6.1) gilt hier
topr < 1, wodurch die Voraussetzungen des Korollars 3.7 erfiillt sind. Damit konver-
giert Zp,) in Verteilung gegen eine Yaglom-quasistationér-verteilte Zufallsgrofse ). In
diesem Abschnitt zeigen wir, dass (Fi(n))ren bedingt unter Fxt® in Wahrscheinlich-
keit gegen einen deterministischen Limes konvergiert. Es stellen sich heraus, dass
dieser Limes gerade die Verteilung von ) ist. Aus diesem Resultat schliefen wir
dann unter anderem auf das asymptotische Verhalten von #G}. Um jedoch die
angesprochenen Ergebnisse zeigen zu kénnen, bedarf es einiger Vorarbeit.
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6.1.2 Stark subkritischer PZZ, D5

Vorbemerkungen

Als erstes geben wir einige FEigenschaften an, die im spéateren Verlauf von Bedeutung
sein werden.

Satz 6.4. (i) Es existieren zwei fast sicher endliche Zufallsgroffen C und D, so-
dass fir alle n € Nqy gilt

Z,

“= Gy

fs. und P*(C=0)=P(D=0)=0. (6.6)

(ii) P™ konvergiert gegen P* in Totalvariation, d.h.

sup [P"(A) — P*(A4)] — 0. (6.7)

Ae n—oo

(11i) Es existiert ein M > 0, sodass fiir alle n > 0
P(Z[n] > 0)

M <
MTL

<1 (6.8)

gilt.
(iv) Es gilt
— Z (Zy > 0)% = o(u"), n — . (6.9)

veG,

Beweis: (i) Nach Satz 2.7 konvergier
Zufallsgrofe W. Diese ist fast sicher endlich und dank der Voraussetzungen in diesem
Abschnittgilt nach Satz 2.8 P*(W =0) = 0. Da

und  limsup —— =W < oo P-fs.
(2u) e (20)"
gilt, folgt
Z Z Z
C:= inf —— < - gD::sup—n<
nelo (2p)" 7 (2p)" neNo (2)"

Zn
pm

fast sicher. Weiter ist > ( fast sicher auf Ext¢ fiir alle n € Ny und daraus folgt

P*(D=0) < P*(C=0) = P*(liminf

minf o =0) = PP(W=0) = 0.

Damit gilt (i).
(ii) Fir alle n > 0 gilt {Z,, > 0} D {Z,41 > 0} und damit

{Z,>0} \, ﬂ{z >0} = Eaxte.

n—oo
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Aus dieser Eigenschaft ergibt sich dann die Ungleichung
sup [P (A) — P*(A)|
AeF

= sup |P"(A) — P"(AN Ext®) + P"(AN Ext®) — P*(A)]

AeF
P(AN Ext*N{Z, > 0})) P(AN Extc)

— sup [P"(AN Ext -

sup [B1(A 0 Eat) P(Z, > 0) P(Ext")

1 1
< P"(Ext P(AN Ext® -
< Br(Eat) + sup PAN Bel) | 5= ~ i)
1 1

< P"(Ext ) -
< PUE) + | 5z.570) ~ BEa)
— 0.

(iii) Mit (3.1) folgt
po= EZ, = ZP(Z["] > k) > ]P)(Z[n} > 0).
k>0

Fir alle n > 0 ist
P(Z,; >0 P(Z,; >0
A e inp ) )g (Zim > 0).
n>0 Mn Mn

w >0firallen>0 und liminf w
,un n—oo ,un
nach Korollar 3.7 gilt, ist auch M > 0. Damit folgt (iii).
(iv) Seien (Z[ln])nzo und (an])nzo zwei unabhéngige Prozesse zufilliger Zelllinien,
welche beide die gleiche Verteilung wie (Zp,))n>0 besitzen. Dann gilt

=c>0

P(Zy) > 0,Zj) > 0) = P(Zy,) > 0)P(Z, > 0) = P(Z > 0)*
Hieraus folgt somit
P(Z}

m > 0,28, >0) o 0
= n >
P(Z > 0) o= 0) 22,

mit Korollar 3.5, da nach (6.1) pop < 1 gilt. Korollar 3.7 liefert dann
P(Zjy > 0,22, >0) = o(P(Zy > 0)) = o(u"), n— oo. (6.10)
Wegen

1 2 1 1 2 1 2
on > P(Z,>0)* = o > P(Zy>0,Z;>0) = P(Z), > 0,Z3; > 0)

vEGy vEGH

folgt dann aus (6.10) die Behauptung. O
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6.1.2 Stark subkritischer PZZ, D5

Vernachlissigbarkeit der Anzahl an Parasiten in stark infizierten Zellen

Wir zeigen, dass die Anzahl an Parasiten in stark infizierten Zellen im Vergleich zu
der Gesamtanzahl an Parsiten vernachléssigbar ist.

Lemma 6.5. Fiir allen > 0 gilt

fr (e )

= — 0. (6.11)

Su
b K—oc

n>0

Insbesondere existiert fir alle e,n > 0 ein Ky > 0, sodass fir alle K > Ky,n >0

. Zylig,
Zy
qgilt.
Beweis: Sei n > 0. Fiir K,n > 0 definieren wir

> vecy Zoliz,> k)
Z,

A (K, n) = { > 77} N Ext.

Dann folgt mit (6.6)

Z Zvﬂ{ZU>K} > ]lAn(K,n)Znn > ]lA"(Km)C(ZM)nﬁ P-f.s.

veG,

fiir ein C' wie in (6.6) gewihlt. Nach Ubergang zum Erwartungswert, erhalten wir

E( > Zvﬂ{zv>K}) > (2p)"nE(Cla, k)

veGH,

und daraus dann

1 1 1
E(Zl500) = EEQ—H > Zlizow) = ME(Clauen).  (613)
veG},
Nach Korollar 3.7 gilt
B Zotiz,on) " =t = B | 2 > 0)

fir ein ¢ € (0, 1] und mit (3.4) folgt somit aus (6.13)

1
Sup{nE(C]lAn<K,n>)} < SUP{EE(ZM]I{Z[”PK})} — 0. (6.14)

n>0 n>0 K—oo
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Mit derselben Argumentation wie im Beweis von Satz 6.2 gilt fiir alle « > 0
inf {E(C14): A€ F mit P(AN Ext®) > a} > 0.
Aus (6.14) folgt damit, dass fiir alle € > 0 ein K > 0 existiert, sodass
P(AL(K,n)) < eP(Ext®)

fiir alle K > Ky und n > 0 gilt. Fiir alle £, > 0 existiert also ein Ky > 0, sodass

P*(Eve(}; Zoliz, 5Ky ) _ P(A,.(K,n)) (6.15)
z, P(Extc) '
fir alle K > Ky und n > 0 und damit (6.11) gilt.
(6.12) ergibt sich nun leicht aus (6.15) mit
 Zylig, vegr Zoliz,
P*<ZveGn d e —n) _ P*<Z cci % (ZoK) ?7)
. Zs,
_ W(Zve«;n - 1>k} n)
> 1—c.
O

Als direkte Folgerung aus dem vorigen Lemma erhalten wir

Proposition 6.6. Fir alle ¢ > 0 existiert ein K > 0, sodass fir alle N > 0 ein
ng > 0 existiert, fir welches

P*( > ZAze<xy = N)>1-¢

veGy,
fir alle n > ng qult.

Beweis: Sei € > 0. Nach Lemma 6.5 existiert ein K > 0, sodass fiir alle n > 0

Eve({}* Zv]l{ZU<K} 1
p (et )z 1
z z3)z € (6.16)
gilt. Da nach (2.1) P*(Z,, — o0) = 1 gilt, finden wir zu N > 0 ein ny > 0, sodass
fiir alle n > nyg

N 1
IP’*(—<—>>1— 1
z =3)2 € (6.17)

48



6.1.2 Stark subkritischer PZZ, D5

ist. Aus (6.16) und (6.17) ergibt sich somit fiir alle n > ng

ver Zolyz, N
IP’*( S Zer > N) _ P*(Z cc; Z RN Z_)
veG}, n n
 Zoig
. P*<Zv€Gn s NN _ 1)
Z, Z, Z, 2
 Zolig
. W(Eve«;n (Zsky 1N })
Z, 2" Z, " 2
> 1—2e.

Eine Schitzung fiir die Anzahl infizierter Zellen

Nach Lemma 6.5 sind Zellen mit einer grofen Wahrscheinlichkeit schwach infiziert.
Die Anzahl infizierter Zellen verhélt sich damit asymptotisch wie die Anzahl der
Parasiten. Dadurch erhalten wir eine Schétzung fiir die Anzahl infizierter Zellen
#G der n-ten Generation.

Proposition 6.7. Fir alle € > 0 emistieren Konstanten a,b > 0, sodass fir alle

n>0
P(as # <b)z1-¢
(2p)"
qgilt.
Beweis: Sei ¢ > 0. Nach (6.6) gilt

#G> Z,
n o< <D P-s., 6.18
20 = py = (6.18)

wobei D wie in (6.6) gegeben ist. Da D fast sicher endlich ist, finden wir ein b > 0,
sodass
P(D<b)>1-¢ (6.19)
ist.
Aus (6.6) folgt weiter die Existenz einer auf Ext¢ fast sicher positiven Zufallsgrofse
C, fir welche

#Gh 2 desy Lolizicy | C Luesy Lolizi<ny
2u)r — Z, K (2p)" T K Zn

P-f.s. (6.20)

fiir alle K > 1 gilt. Nach Lemma 6.5 existiert weiter ein Ky € N, sodass fiir alle
K>Kyundn>0

W(Eas;; Zliz <k} })
z, =32)=
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

gilt. Wahle nun ein n > 0, sodass
C
P >n)21-
I >n)>1—c¢

ist. Setzen wir a := 7/2, dann folgt aus den eben gezeigten beiden Ungleichungen
fir alle n >0

IP’*(Q > veer Zol{z, <Ko} > a) > pr (E - EZver Zoliz,<Ko} . a)
KO Zn K() KO Zn
C > vees Zoliz,<k0)
> P (— > 7, n - > )
> K, n,n z >a
> 1-2

Aus dieser Ungleichung, (6.18), (6.19) und (6.20) folgt dann fir alle n > 0

. Zdy
P* <a < #Cn b) > P (a < C Lves Zelizizr)

,ng) > 13

Vernachlassigbarkeit stark infizierter Zellen

In Lemma 6.5 haben wir gezeigt, dass die Anzahl der Parasiten in stark infizierten
Zellen im Vergleich zur Gesamtanzahl der Parasiten vernachlissigbar ist. Im Fol-
genden zeigen wir nun, dass auch die stark infizierten Zellen in einer Generation
n € Ny keinen besonderen Beitrag zu der Anzahl infizierter Zellen der folgenden
Generationen liefern.

Proposition 6.8. Fir alle n > 0 gilt

lim sup
K—o00p >0

{]}D*<#{v S G;:émqvm > K} . n)} _ 0.

Beweis: Seien £, > 0. Nach Proposition 6.7 finden wir ein a > 0, fiir welches
]P)* ( #GZ‘FQ
(2p)+a

fiir alle n,q > 0 gilt. Fiir dieses a > 0 definieren wir fiir n,q, K > 0

< a) <e (6.21)

#{0 € Gyt Zow > K} > 77} N { o = a}-

FI(K,n):=
n( ’ ?7> { #GnJrq (Q,M)n—i—q

Es folgt

#{U € Gn-{—q U\n > K} > n#GZ—i—qﬂFg(K,n) > na’(Zﬂ)n+q]ng(K,n) P-fs.
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6.1.2 Stark subkritischer PZZ, D5

und nach Ubergang zum Erwartungswert dann

na(2u) BEN(K.n) < E(#{v € Glyy: Zun > K))

= E( Z Liz,,.>kK, ZU>0}>

VEGn1q
= Y D) PZy=k Z >0
VEGp4q k>K
= Y Y P(Zyu=kP(Z,> 0| Zyp = k)
k>K v€EGhpq
= > Y PZu=k) >  P(Z,>0]|Z,=k)
kE>K ueGy, VEGn4q,v|n=1u
= > Y P(Zu=k) ) _ Pi(Z,>0).
k>K ueGy, vEGy

Weiter gilt nach der bernoullischen Ungleichung fiir £ > 1
Pu(Z,>0) = 1-Pu(Z,=0) = 1—-(1-P(Z, >0))" < kP(Z, >0),

wobei beim zweiten Gleichheitszeichen (3.1) verwendet wurde. Wir erhalten damit
fiir alle n,q > 0

Ek>K 27" EuEGn ]P)<Zu = k)2_q EUEGQ ]P)k(Zv > 0)

P(FI(K, ) <

na,unJrq
< Ek>K 27" EuEGn ]P(Zu = k)27q EUEGQ kP(ZU > O>
- ?7a,u"+q
_ Ek>K ]{;P(Z[n} = k)P(Z[q} > O)
na,u’“Lq
< 2o MP(Zw = k)
- nap"
 E(Zlz,5x1)
nau® ’

wobei bei der letzten Ungleichung (6.8) einging. Fiir den letzten Term gilt fiir ein
geeignetes ¢ € (0, 1] nach Korollar 3.7

E(Z[n]]l{z[npl(}) n—o0 CE(Z[n]]l{Z[n]>K}) _ iE(Z 1 | Zi > 0)
nalu/n ~ na]P(Z[n} > O) na [n] {Z[n]>K} [n] .

Mit Hilfe von (3.4) erhalten wir dann

lim sup {P(Fg(K, 7)))} = 0.

K—00p,q>0
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Es existiert also ein Ky > 0, sodass fiir alle K > Ky und n,q >0
P(F(K,n) N Ext®) < P(FI(K,n) < eP(Ext”)

gilt. Mit (6.21) folgt daraus

(#{UEGnJrq: o > K} _n>

#GnJrq
e G Loin > K G* G*
< P (#{'U ntq - | } > n, # n+q > a) + P*( # n+q < CL)
#GnJrq (ZM)TH_q (Q,M)n—I—q
< 2¢
fiir alle n,q > 0 und K > K. O

Trennung der Parasitennachkommen

Bevor wir zum Hauptresultat kommen, zeigen wir noch folgendes: Wahlt man ¢ grofs
genug, so stammen alle Parasiten einer Zelle v € Gy, der (n+q)-ten Generation von
demselben Parasiten der n-ten Generation ab. Anschaulich sollte dies klar sein, denn
startet man mit zwei unabhéngigen PZZ mit je einem Parasiten, so sterben diese
nach (6.1) und Korollar 3.5 fast sicher aus. Bedingt man die PZZ nun darunter, dass
iiberhaupt Parasiten iiberleben, so sollte durch den Drang zum Aussterben nur einer
von beiden nicht aussterben. Sind in einer Zelle also mehr als ein Parasit, so enthalten
die infizierten Nachkommenzellen in ferner Zukunft nur Parasitennachkommen eines
dieser Parasiten.

Wir bezeichnen mit N, (v) die Anzahl der Parasiten aus Zelle v|n, deren Nach-

kommen in Zelle v € G;,, , immer noch am Leben sind.

Proposition 6.9. Fir alle K > 0 und n > 0 gilt

{P*(#{v €Gy, Zon < K, Ny(v) > 2} > 77)} o
#GnJrq

Beweis: Seien K > 0 und ¢, > 0. Nach Proposition 6.7 finden wir ein a > 0, fiir
welches

lim sup
q—00 TLZO

G*

IP’*<# it <a) <e (6.22)
(2p)rta
fiir alle n,q > 0 gilt. Fiir dieses a > 0 definieren wir fiir n,q, K > 0
€G . Zyn < K, Np(v) > 2 G},
Eﬁi(Kn)z—{ Y | ) }Zn}ﬂ{# *an}.
#Gn—I—q (ZM)TH_q
Es folgt

#{U S Gn—i—q v|n < K N ( )> 2} > n#G;+q1EZ(K,n) > na’(zu)n+q]lEg(K,n) f.s.
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6.1.2 Stark subkritischer PZZ, D5

und nach Ubergang zum Erwartungswert dann

na(2p)" P(E; (K, n))

E(#{ve G, : Zyn < K, N,(v) >2})

n+q
E( > Lzyex, Nn(v)z2}>
veGr
> P(Zuw < K, Nu(v) > 2)
VEGp 14
K
S N P(Zu =k Nav) > 2)
vEGp44 k=1
K
D Y P(Zug = K)B(Na(v) 2 2| Zyj = k)
vEGp44 k=1
K
> P(Zun = B)P(N,(v) > 2 | Zyy = K)
VEGp4 4 k=1

> P0< Zyn < K)P(N,(v) > 2| Zyp = K)

UEGn+q

> PO0<Z,<K) > PNJ(v)>2]2,

ueGn VEGn44,v|n=1u
Y P(0< Z,<K) Y Pr(No(v) > 2).
ucGn veEG

Aus dieser Ungleichung ergibt sich dann

2" e PO < Z, < K)277Y)

P(E(K,n)) <

vEGy
na,unJrq
P(0 < Zjy < K)279Y 6, Pic(No(v) > 2)
na,unJrq

]P)(ZM > 0)27(] Z

Px(No(v) > 2)

vEG

na,unJrq

2795 e, Pr(No(v) > 2)

9

najy

wobei in der letzten Zeile (6.8) einging.

Man hat (12() viele Moglichkeiten aus K Parasiten zwei auszuwahlen. Da sich die
Parasiten unabhéngig voneinander vermehren, betragt die Wahrscheinlichkeit, dass
beide ausgewihlten Parasiten in Zelle v noch Nachkommen haben P(Z, > 0)?. Wir

(6.23)
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

erhalten daraus also

Pr(No(v) >2) = IPK( U {p1 und p, haben Nachkommen in Zelle v})

p1,p2€P(0),
P1#£D2

< <I2() P(Z, > 0)>.
Somit erhalten wir aus dem eben Gezeigten, der Ungleichung (6.23) und (6.9)

2-4 Py (Ny(v) > 2 Kyg—q P(Z, > 0)2
P ) < et N0 2D GRS MA 208,
naj naj g—00

Wir finden also ein gy > 0, sodass fiir alle ¢ > ¢o und n > 0
P(EL(K, ) N Bat®) < P(EY(K,n) < P(Eat)
gilt. Mit (6.22) folgt damit

P*(#{v €Gyy: Zon < K, Np(v) > 2}
#G:H-q

P* (Eg(K, n)) + IP’*(ZES’ZE < a)

> )

IN

IN

2e

fiir alle ¢ > go und n > 0. O

Das Hauptresultat

Nach dieser Vorarbeit konnen wir uns nun dem Hauptresultat dieses Abschnittes
zuwenden. Wir erinnern noch einmal daran, dass Fj(n) das Verhéltnis der Zellen
mit £ Parasiten zur Gesamtanzahl infizierter Zellen in der n-ten Generation und )
eine Yaglom-quasitationér-verteilte Zufallsgrofe angibt.

Satz 6.10. (Fy(n))ken, konvergiert bedingt unter Ext® in Wahrscheinlichkeit in
S1(Ny) gegen (P(Y = k))ren,- Fiir alle k > 0 gilt also

*

Fi(n) Z5P(Y =k), n— oo,

Bevor wir zu dem doch recht langen Beweis dieses Satzes kommen, wollen wir
zuvor noch ein paar Bemerkungen machen.

Bemerkung 6.11. (a) Satz 6.10 liefert uns die Moglichkeit durch eine Realisierung
von Zufallsgroflen die Verteilung von ) numerisch zu berechnen. Diese Verteilung
hiangt nur von X© und X™ ab, wie Proposition 3.9 aussagt.
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6.1.2 Stark subkritischer PZZ, D5

(b) Aufgrund der Trennung der Parasitennachkommen (Proposition 6.9) gilt der
obige Satz 6.10 auch dann, wenn man mit mehreren Parasiten startet. Bei fortlaufen-
der Zeit sind in einer Zelle ndmlich nur noch Parasiten, die alle einen gemeinsamen
Vorfahren haben. Teilt sich eine Zelle nicht in zwei sondern in N € N Tochterzellen,
so kann man analog alle Beweise aus Abschnitt D3 tibernehmen und erhélt auch
hier als Resultat Satz 6.10.

(c) Nach (a) und (b) kénnen wir somit fiir jeden subkritischen GWP die Yaglom-
quasistationdre-Verteilung numerisch berechnen. Gebe dazu X die Reproduktions-
verteilung eines GWP mit y = EX < 1 an. Wahle dann N € N so grof, dass
Np > 1 gilt. Betrachte nun ein Zellteilungsmodell in dem jede Zelle N Tochter-

zellen bekommt. Gebe X £ X , 1 <[ < N, die Verteilung der Parasiten auf die
Tochterzelle [ an. Simuliert man nun diesen Prozess und berechnet das Verhaltnis
infizierter Zellen mit £ > 1 Parasiten zur Gesamtanzahl an Parasiten in jeder Gene-
ration, so erhilt man aus Satz 6.10 eine Naherung fiir P(Y = k). Da der PZZ nach
Proposition 3.4 (iii) ein GWP mit Reproduktionsverteilung P(X € -) ist, gibt Y
die Yaglom-quasistationére-Verteilung assoziiert zu P(X € -) an. Ist P(Exzt) > 0, so
kann man mit mehreren Parasiten starten, um so die Aussterbewahrscheinlichkeit
zu senken und damit die Chance zu erhéhen, einen tiberlebenden Pfad zu simulieren.

Abbildung 6.1 zeigt das Verhéltnis infizierter Zellen mit £ = 1,2 oder 3 Parasiten
zur Gesamtanzahl infizierter Zellen fiir die ersten 30 Generationen. Dabei sind X (©)
und X unabhiingig und jeweils Poi(0.75)-verteilt. Sofern Parasiten iiberleben,
strebt Fj(n) fiir k£ = 1,2, 3 gegen einen konstanten Grenzwert.

0.97

Abbildung 6.1: Simulation von Fj(n), k = 1,2,3 mit X X® unabhingig und
jeweils Poi(0.75)-verteilt.
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

(d) Allgemeiner kann man auch die Yaglom-quasistationéire-Verteilung eines stark
subkritischen GWPZVU mit K € N Umgebungen numerisch berechnen. Seien dazu
XW 1 <1< K, die Zufallsvariablen, die gemif der K Umgebungen verteilt sind,
und piq, ..., px ihre Erwartungswerte. Wéhle nun ein N € N, sodass N Zfil i > 1
gilt. Wir betrachten dann ein Zellteilungsmodell mit K'N Tochterzellen, wobei fiir
jedes 1 <1 < K genau N dieser Zellen gemif der Verteilung P(X® € ) Parasiten
enthalten. Wie in (c) ldsst sich dann mit Satz 6.10 die Yaglom-quasistationére-
Verteilung des GWPZVU numerisch annahern.

Wir geben noch zwei Beispiele an, in denen man die Yaglom-quasistationére-
Verteilung P(Y € -) eines GWP sogar direkt berechnen kann.

Beispiel 6.12. (a) Im trivialen Fall P(X© + X1 < 1) =1 folgt P(Y = 1) = 1.

(b) Gebrochen-rationale Reproduktionsverteilung: Fiir ausfiihrlichere Rechnungen
siehe Kapitel 1.4 in [9]. Seien p € (0,1) und b € (0, (1 — p)?). Die Verteilungen von
X© und XM seien gegeben durch

bpF1, falls £ > 1

PXO =) =P(XY = k) =
( ) ( ) 1—%, falls £ = 0.

Aufgrund der identischen Verteilung von X(© und X® bildet der PZZ (Zn))n>0
nach Proposition 3.4 (iii) einen GWP mit Reproduktionsmittel

b
1—p)?

Damit existiert ein Fixpunkt sy > 1 von fy(s). Fiir alle v € G,, gilt weiter

< 1.

,U/OI//IJ:
(

2
n{ 1l—s
1—80 ) n /”LO(M(;—SO) S

B(s%) = fuls) = 1w N
1-— (%)s
Ko —Ss0

und es folgt dann fir v € G,

( 1_80 )S

— T -1
lim E(SZ["] | Zppyp > 0) = lim M — lim Ho —S0 _ (s0 )5.
n—oo n—00 1 — fv<0> n—oo 1 - <u8—1 )S So— S

g =50

Da (Z))n>o ein GWP ist, gilt nach Satz 2.10 E(s¥) = (o—Ds Djie k-te Ableitung

S0—S

dieser erzeugenden Funktion an der Stelle 0 liefert dann fiir £ > 1

]:P)(y:kj):S(];l

So
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6.1.2 Stark subkritischer PZZ, D5

Wenden wir uns nun dem Beweis von Satz 6.10 zu.

Beweis: Wir teilen den Beweis in drei Schritte auf. Im ersten Schritt zeigen wir,
dass zu jeder Abweichungsgrenze 1 und Toleranzwahrscheinlichkeit ¢ Elemente aus
S'(Np) existieren, die sich mit geringerer Wahrscheinlichkeit als ¢ um mehr als 7
von (Fj(n))g>o unterscheiden. Im zweiten Schritt werden wir dann mit Hilfe der
Vollstandigkeit von ['(Ny) die Existenz des Limes zeigen und im letzten Schritt die
im Satz angegebene Form bestéatigen.

1. Schritt: Beh.: Fiir alle €,1 > 0 existiert ein ng > 0 und ein f € S*(Np), sodass
fiir alle n > ng gilt

P*(|[(Fi(n))r=0 — fllh > ) <e.

Beweisidee: Nach Proposition 6.8 stammen die infizierten Zellen der (n + g)-ten
Generation von schwach infizierten Zellen der n-ten Generation ab. Fiir grofe ¢,
befinden sich nach Proposition 6.9 in einer infizierten Zelle der (n+¢)-ten Generation
nur noch Parasiten, die von ein und demselben Parasiten abstammen. Dies bedeutet,
dass sich fiir ¢ — oo die infizierten Zellen so verhalten, als wenn die Parasiten der
n-ten Generation aus unterschiedlichen Zellen stammen wiirden. Da g + pq > 1
vorausgesetzt ist, konvergiert die Anzahl der Parasiten bedingt unter Fxt® gegen
unendlich. Da sich die Parasiten unabhéngig voneinander vermehren, kann man so
mit einer Art Gesetz der grofen Zahlen auf die Existenz einer Folge aus S*(Ny)
schliefsen.

Notation: Als erstes fithren wir einige Notationen ein, welche wir spéter gebrau-
chen werden. Fir p € P(n) setzen wir plk, 0 < k < n, als den Vorfahren des
Parasiten p in der k-ten Generation. Dann definieren wir fiir £ > 1, n,q > 0 und
p € P(n) mit

YIp) = D Ligprep, : rinmpi=h}

veG;‘L_HZ

die Anzahl der Zellen der (n+q)-ten Generation, welche genau k Parasiten enthalten,
die von p abstammen. Fir £ = 0 setzen wir Y (p) := 0. Da sich die Parasiten
unabhéngig voneinander und geméfs der gleichen Verteilung vermehren, sind die
(Y(p))k>0, p € P(n), unabhéngig und identisch verteilt. Wir bezeichnen mit (Y;!)x>o
eine Zufallsvariable, die solch eine Verteilung besitzt.

Fir K,n > 0 setzen wir aufterdem

Pr(n):= |J P

'UEGn,
Zo<K

als die Menge der Parasiten der n-ten Generation, die zu einer mit hochstens K
Parasiten infizierten Zelle gehéren. Weiter sei N,,(v) wie in Proposition 6.9 definiert.
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Beweis von Schritt 1: Fir K, k,n,q > 0 definieren wir mit den eben eingefiihrten

Notationen 5 Yq( )
GK(n q> pEPK (n)
P >0 ZpEPK (n) (p)
und
g E(Y})
fk =

Zk’zo E(qu/) .

Aus der oben gegebenen Beweisidee sollte klar sein, dass Fj,(n+q) und GF (n, ) fiir
ein geeignetes ¢ > 0 nur noch geringfiigig voneinander abweichen und dass G (n, q)
fiir n — oo gegen fi konvergiert. (f{)r>o stellt somit einen idealen Kandidaten fiir
das gesuchte f € S'(Ny) dar. Aus der Dreiecksungleichung erhalten wir in der Tat
fiir alle n > 0

P*(|[(Fe(n + q))k=0 — (froll1 > 1)
< P*([|(Fr(n + q)k=0 — (GE (n, @)kl = 771)1

-~

(a)

+ P ([I(G (n,9)iz0 — (fi)rzoll = 12)
(®)
fiir alle 1, 72 > 0 mit 1, +n2 = 1. Es reicht also fiir alle e, > 0 geeignete Konstanten
Ko, 10,90 € Ng und 11,72 > 0 zu finden, sodass fiir alle n > ny und ¢qq die beiden

rechten Summanden (a) und (b) kleiner als € sind. Seien von nun an fiir den Rest
des Beweises €, > 0 gegeben.

Abschatzung von (a): Mit Hilfe der Dreiecksungleichung gilt fiir alle n, ¢, K € Ny

S eGL, 2=k - 3 Vi)

k>1 PEPK (n)
= )#{v €Ghy: Zy =k Zup > K}
k>1
+#HE Gy Zo =k, Zn K} = > Vi) (6.24)

PEPK (n)

< #{U € GnJrq U\" > K}

+ Z ’#{U S GnJrq Z - k Zv\n < K} - Z qu<p)’ P-fs..

k>1 pEPK (n)
*)
Fir v € G;, gilt
Liz,=k, Z,pu<k, Na@w=1} = Lin,() Z Lisirep, : rin=py=ty P-fs.  (6.25)
pEPK(n)
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6.1.2 Stark subkritischer PZZ, D5

und
Z Ligprer, : rn=py>0y < Klyz, <k} P-Ls, (6.26)

PEPK (n)

denn ist die Linke Seite in (6.25) gleich 1, so gibt es nur einen Parasiten, dessen
Nachkommen noch in der v-ten Zelle enthalten sind. (6.26) gilt, da sich hier in
Zelle v|n maximal K Parasiten befinden und deswegen in Zelle v von maximal K
verschiedenen Parasiten Nachkommen enthalten sein konnen. Des Weiteren erhalten
wir

SN Vi) =D > D> Vpper, : rnmppery < K29 Pfs, (6.27)
)

k>1 pePy (n k>1 pePy (n) veG,

da fiir jedes p € Pg(n) und v € G, , maximal ein k > 1 existiert, fiir welches eine
Indikatorfunktion 1iu(rep, : rin=pj=+} den Wert 1 annimmt. Damit lassen sich insbe-
sondere alle Summanden vertauschen. Aus dieser Tatsache, der Dreiecksungleichung,
(6.25) und (6.26), folgt dann aus (x)

S |Hv e, 2=k Zn <K} - > Vi)

k>1 pEPK (n)

= Z’ Z Lyz,=k, 2,,<Kx} — Z Z Liggrer, - Tln:p}:k}’
k>1 veG,, VEGn4+q pEPK (n)

S Z Z IL{Z'U:kv Z’U\nSK} - Z 1{#{7’67)11 : T‘n:p}:k}‘
k>1veG PEPK (1)

=> > lﬂ{zv:k, Zin<y = D Ligpgrer, s r|n:p}:k}’
k>1 vGGj‘LJrq,Nn(v)zQ PEPK (n)
k>1 vEG}, |, Nn(v)>2 PEPK (n)

= #{'U € G;.i_q | Zv|n < Ka Nn(v) > 2} + Z Z 1{#{7’67% : rln=p}>0}

vEG;, 4 Nn(v)>2 pEPK ()
< FHveG,, | Zyn < K, Ny(v) 22} + K Z Lz, ,<r

vEG;, 4, Nn(v)>2

= #{ve G, | Zyn < K, Npy(v) 22} + K##H{v € G, | Zyn < K, Ny(v) > 2}
= (K+1D)#{veG,, | Zyn < K, Ny(v) >2} Pfs.

n+q
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Aus (6.24) erhalten wir somit fiir alle n,q, K > 0

> ‘#{“ €EGhy | Zo=k}— ) qu(p)‘ (6.28)

E>1 pEPK (n)

< Ho G, | Zum> K} + (K + D#{v Gy, | Zun < K, Ny(v) > 2} fs..

Da #Px(n) = > ,cer Zol{z,<k)} ist, existiert nach Proposition 6.6 ein K; > 0,
sodass wir fiir jedes N > 0 ein ng(N) > 0 finden, sodass

P*(#Pr,(n) 2 N) 21—« (6.29)

fir alle n > ng(N) gilt. Fiir K > K ist #Px(n) > #Pxk,(n), und daher gilt die
Abschétzung (6.29) sogar fir alle K > K. Wegen (6.7) konnen wir ng(N) > 0 so
grof wihlen, sodass fiir alle n > ng(NV) zusétzlich

sup [P (4) — P*(A)| < e
AeF

gilt. Mit (6.29) folgt dann
P"(#Px(n) > N)>1—2¢ (6.30)

fir alle K > Ki,n > nog(N). Nach Proposition 6.8 existiert ein Ky > K, sodass fiir
alle n,q > 0

#{’U e G + v|n > KQ}
IP*( ntq > n) <e 6.31
#GnJrq ( )
ist. Proposition 6.9 liefert uns weiter die Existenz eines gy > 0, sodass
€ G;, 1 Z v|n < K. ) Nn > 2
<#{U n-+qo | 2 (,U) } Z n ) S (632)
#Gn-f—qo K2 + 1

fir alle n > 0 gilt. Aus der Ungleichung (6.28) folgt nun mit (6.31) und (6.32) fiir
allen >0

(Zk>1 #0 € Ghp | 2o =B} = Epepn ¥ ()] > 277)
4G, >
< EM(#{U € Gyt Zopn > Ko} . 7})
#Ghy
—i—]P’*(#{U € Gy yt Zoin < Ky, Ny(v) > 2} - n )
#Gn—i—qo KQ + 1
< 2e.
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6.1.2 Stark subkritischer PZZ, D5

Durch Anwenden der Ungleichung (6.2) erhalten wir somit fiir alle n > 0

P (|| (Fin + do)zo — (G2, 00))ao | 2 4n)

‘ #{v € Gn+q0 Zy = k})i>0 B (EpEPKQ(n) Y2 (p))rk=o
n+q0 Zkgo ZpG'PK2 (n) quo (p)

||(#{v € Gn+qo 1 Zy = kD kzo = (Cpeppe, () Yie (0)rzol |,

P
< P #Cirg
(

Zk>1 }#{U € Gy | Zy =k} — Zpng(n) Y, (p)’ 277)

> 4?7)
1

> 2n> (6.33)

>

#GnJrqo
< 2

Abschatzung von (b): Fiir jedes k > 0 sind die Y,*(p), p € Pk, (n), bedingt unter
{Z, > 0} stochastisch unabhéngig und identisch verteilt. Dasselbe gilt auch fiir
> ks Vi (P), P € Pr,(n), fiir alle I € Ny. Mit den gleichen Argumenten wie in (6.27)

ist
Yi(p) < ) Y(p) < 2%
k>0

und mit der monotonen Konvergenz erhalten wir so
E(Y") < E()_V®) = Y EY®) < . (6.34)
k>0 k>0

Fiir jedes ny,m2 > 0, 1,69 > 0 und k,l > 0 finden wir also nach dem Gesetz der
groften Zahlen ein N > 0, sodass fiir alle n > 0

1
]Pn< Y(IO — K Y(IO > , P \ > N) < 6.35
] 2 W) —EY)| zm #Pem) 2 N) <a (63))
PEPK, (n)
und
Pn( #pK2< > 2V ZE(Y:,O) >, #Pry(n) 2 N) < &5 (6.36)
PEPK, () k' >1 K>l
gilt.
Aus (6.34) folgt die Existienz eines ko > 1, fiir welches
E(Y,
Z f]g = Z]Dko—(qo) < n (6.37)
k>ko Zk >0 (Y ) 4

gilt. Fiir £ > 0 ist

1 q
G, go) = TP 2 pepicy(n) Yi (P)

Zk >0 #PK2 #Pr, (n) ZPEPKQ (n) Yk/ (p)
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

und da man nach (6.27) die Summenzeichen vertauschen darf, existiert nach (6.35)
und (6.36) (mit { =0 und ko) ein N > 0, sodass fiir alle n > 0

P (|1Gy2(n, qo) —
fiir alle 0 < k < kg und

Pn(‘ Z GkK2<n7q0) - Z f]go‘ > Z’ #PKQ(n) > N) < ¢

k>ko k>ko

gilt. Aus diesen beiden Abschitzungen, (6.37) und G (n, ¢o) = f& = 0 folgt dann
P"(|(Gy* (1, q0))wz0 — (fi)rzoll1 = 1 #Prey(n) = N)

= P"(D |G (n,q0) — f*| > n, #Px,(n) > N)

k>0

< P Z‘GKano ‘—FZGKQWJQO +Z ‘>, #PK2<n>ZN)

3

k>ko k>kg
n 3
<P (Z G123 (n, q0) — f°] +k>Zk Gi*(n, @) = S, #Pi,(n) > N)
= 0

ko
< (Y160 a0) — £ 2 Z #Pre,(n)
k=1

N)

k>k0
=1

+ Z G a0) = 32 S| 2 s #Pra(n) 2 N)

k>kg k>ko
< 2e.

Aus (6.30) folgt dann weiter fiir alle n > ng(N)
P" ([1(Gi*(n, g0))rz0 — (fi)kzollt = n)

< P*([[(GE2(n,q0))ks0 — (Fkzolly = 0, #Pry(n) > N) + P (#Px, (n) < N)
< A4e.

Nach (6.7) konvergiert P™ gegen P* in Totalvariation, weshalb die Existenz eines
ny > no(N) folgt, sodass fiir alle n > ny

P*([[(GE (1, q0) k0 — (fE)kzoll1 = 1) < 5e
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6.1.2 Stark subkritischer PZZ, D5

gilt. Mit (6.33) und der eben gezeigten Ungleichung folgt also fiir alle n > n,

P*([(Fr(n + q0))k=0 — (/) roll1 = 5n)

< PH([[(Fu(n + g0))r=0 — (G2(n,60) kol > 4n)
+ P (I1(GL2(n, q0))k=0 — (Fi)kzol i > 1)
< Te

und damit die Behauptung des ersten Schrittes.

2. Schritt: Beh.: Es existiert ein f € S*(Ny), fiir welches gilt

(Fi(m))iz0 — .

Beweis von Schritt 2: Wir setzen F(n) := (Fg(n))r>0. Nach Schritt 1 existiert zu

jedem [ > 0 ein n; > 0 und ein f(1) € S'(Ny), sodass fiir alle n > n,

P(IF () - £l > (3)) < (3

gilt. Fiir alle 2 <1 < und n grok genug ist dann

P (I70)— £ > (3))

< P(IF®) — 7l > () + B (1F ) — 70l > (5)1)
)+ ()
< 1.

Daraus folgt, dass fiir alle 2 < [ <[

£ ~ £ < ()

gelten muss. (f(1));>o bildet somit eine Cauchyfolge und konvergiert wegen der Voll-
stindigkeit des Banachraums ['(Ny) und der Abgeschlossenheit von S'(Np) gegen

einen Grenzwert f € S*(Ny). Damit gilt insbesondere fiir alle [ > 2

17D ~ £l < (5
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Fir alle { > 2 und n > n; erhalten wir so

P(IFm) — b > () < B — FOl+ 10 ~ Sl > (6)')
< P(IFm) H1+<§> > (3)7)
= P(IFm) - fOlh > ()
< <§>“

und damit die Aussage des zweiten Schrittes.

3. Schritt: Beh.: Sei f = (fi)i>0 € S'(Np) der Limes der Folge (F(n)),>o. Dann
ist

fir alle £ > 0.
Beweis von Schritt 3: Nach Korollar 3.7 gilt fiir alle £ > 0

P(Zn] =k | Z[n > O) — IP’()/ k?)

n—oo

Es reicht also zu zeigen, dass
P(Zy =k | Zny > 0) — fi

fiir alle £ > 0 gilt, denn dann folgt aus der Eindeutigkeit des Limes die Behauptung.
Fir alle £ > 1 gilt durch analoge Rechnung wie in (4.1)

PZpm =k) _ E@Hi€Gn: Zi=k}) _ EE()#G;)
P(Zpn > 0) E(#G},) E(#G;},)
Weiter ist fir 1 > e >0
E(#G;},) #G;,
e > Bl
- P(Extc)E*(

(6.38)

]lExt )

#Gy, )

(2p)"

#Gr,

(zu)nﬂ{%zaJ
#G,,

2o = a)

aP(Ezt®)(1 —¢),

v

P(ExtC)E*(

v

aP(Ext®)P* (

v
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6.1.2 Stark subkritischer PZZ, D5

wobei a > 0 nach Proposition 6.7 gewahlt ist. Es existiert also eine Konstante ¢ > 0,

fiir welche E(4G?
inf E(#C.) > c (6.39)
20 (2p)"

gilt. Wegen |Fi(n) — fi] < 1, #G! < Z, fast sicher fiir alle k,n > 0 und (6.39)

erhalten wir fiir n > 0

E(F(W)#Gy)
E(#Gr,)

‘E(#GZ(Fk(n) — fr)) ‘
E(#Gy,)
E(#G| Fi(n) — fil)
- E(#G},)
n E(#G;|Fu(n) — fl Tymw—rsizny) (6.40)
E(#Gy,)
E(ZnLpm)—sil>m)
E(#Gy,)
E(ZnLrm)—sil>m)
c(2p)"
Da 2p > 1 und 2, quadratisch integrierbar in diesem Abschnitt vorausgesetzt waren,
erhalten wir mit Proposition 2.3
(i)z _ VarZ, + (EZ,)? 1—(2u)™" < Var 24
2um’ (2p)* 2u(2u—1) " T 2p(2p—1)
und damit die Lo-Beschrinktheit sowie daraus die gleichgradige Integrierbarkeit von
(o8

W)”zo (Satz A.6). Dank des zweiten Schritts konvergiert daher der zweite Term

am Ende von (6.40) fiir n — oo gegen 0 (Satz A.6). Insgesamt erhalten wir aus
(6.38) und (6.40) somit

- h| =

VAN

n+

< n+

= Var(2,) +1 < o0

P(Zp) =k | Z) > 0) — fi-

Damit ist der Satz bewiesen. O

Korollare

Mit Hilfe von Satz 6.10 kdnnen wir nun auf das asymptotische Verhalten von #G
schliefien.

Korollar 6.13. Es gilt

#Gr pr 1 #G; pr W
— —— und ———— — ——,

wober W die Zufallsgrofie aus Proposition 2.7 und Y, wie aus dem vorherigen Satz,
eine Yaglom-quasistationdr-verteilte Zufallsgrifie ist.

n — 00,
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Beweis: Als erstes halten wir fest, dass EY € (0,00) nach Korollar 3.7 ist. Fiir
alle K > 1 gilt die Gleichung

#G* o #G* EUGG;‘L Zvﬂ{ZUSK} o EUGG;‘L ZU]I{ZUSK}
! nEszl k’#{’l} S G:L DLy = k} E?:l k:Fk(n)

Da EveG;; Zyliz,<ky < Z, fast sicher ist, folgt somit

‘#GZ S
Zz, EY
1 vea: Zvlyz, 1
> k1 KFy(n) Zn EY
_ Zve«;;;Zv]l{zvsmH 1 Ly, 1 ’ZUEG;ZU]I{%SK} .
- Z, S kF(n) EYI O EY Z,
. Zylz,
< |t Ly L hemPlEen by
S kFy(n) EYI EY Z,

Seien €, > 0. Nach Lemma 6.5 existiert ein Ky > 1, sodass fiir alle K > Ky und
n >0

. Zyy
P*(ZUGG” 72y > n) <e (6.42)

Zy

gilt. Nach dem Satz der monotonen Konvergenz finden wir weiter ein K > K,

sodass
1 1

= R 6.43
’E(y]l{ygm) EJ” = (6.43)
ist. Satz 6.10 liefert dann
K - K
D kFi(n) — Y PV =k) = EV1y<xy)
k=1 k=1
und damit
1 P* 1

i —_—
S kFe(n)  EQly<xy)
fiir n — oo. Es existiert also ein ng > 0, sodass fiir alle n > ny

P (

1 1
S kFi(n)  EQVLpy<x

)) > 77) <e (6.44)
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gilt. Dann folgt aus (6.41), (6.42), (6.43) und (6.44) fir alle n > ny

#G;, 1
(152 - gl 2 o+ )
z, Eyl=71TEy"
1 1 1 D vec Zoliz,>K 1
S M TS Sy T
SK kR(n) EYI ' EY z, EY
1 1 veGr Zolyz,
(N P B
YK kFy(n) EY Zn
< P(| g — |+ g5 |z 2) +
< — ——=|>2n) +¢
S kE(n)  EQlgp<ry)! [EQLpy<xy) EY
< ]P*( 1 — 1 ’ > 77) +¢
N K kFu(n)  EQlpy<rxy) !~
< 2e.

Damit folgt die erste Behauptung. Die zweite Behauptung ergibt sich nun leicht aus
der ersten und Satz 2.7, denn es gilt

#G;, Z, #G, » W
— —_—

(po + pua)" (o + 1) 2, EY

Wir definieren fiir k,n,q > 0

{Z c Gn+q Z|n = k‘}
#Gn—l—q

als das Verhéltnis infizierter Zellen der (n + ¢)-ten Generation, deren Zellvorfahren
in Generation n genau k Parasiten hatten, zur Gesamtanzahl infizierter Zellen der
(n+ q)-ten Generation. Lassen wir g gegen unendlich laufen, so konvergiert F(n,q)
bedingt unter Ezt¢ stochastisch gegen eine Zufallsgrofie, welche das obige Verhalt-
nis fiir die Zellen aus dT* angibt. Lésst man dann auch noch n gegen unendlich
laufen, so erhilt man eine grofenverzerrte Yaglom-quasistationére-Verteilung. Fiir
grofenverzerrte Verteilung siehe (2.5).

Fi(n,q) =

Korollar 6.14. (Fi(n,q))k>o konvergiert bedingt unter Ext® in Wahrscheinlichkeit
in SY(Ny) fiir ¢ — oo. Dieser Limes konvergiert weiter in Wahrscheinlichkeit in
SY(Ny) fiir n — oo. Genauer gilt

P
Jim Jim Fy(n,0) & S
fiir alle k > 0.
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Beweis: Fiir k,n,q > 0 gilt

Fir(n,q) = Z

ueGk:Zy=k

#{veG, , vn=u, Z, =k}
#G:Hrq
und fiir jeden Summanden der rechten Summe weiter

#lv€G ivn=u Z,=k}  #{veG,  vn=u, Z,=k N,(v)=1}

P-f.s. (6.45)

n+q ° n+q °
#G;kl+q #G;kz—f—q
N #{ve G, vn=u, Z,=k, Ny(v)>2}

#G:H-q
fast sicher. Aus Proposition 6.9 folgt fiir den zweiten Summanden

#lveG),, vin=u, Z, =k, Ny(v) >2} p-
" — 0, q¢ — oo.
#Gn+q

In ferner Zukunft sind in einer infizierten Zelle also nur noch Nachkommen eines
Parasiten. Anstatt des asymptotischen Verhaltens eines Prozesses startend in ei-
ner Zelle mit k£ Parasiten zu betrachten, konnen wir daher auch das asymptotische
Verhalten von k Prozessen startend mit je einem Parasiten untersuchen. Es gilt

o H#lveG,, ivin=u, Z, =k}
lim

i nta
s #Gr,,
P #{veG,, vn=u, Z,=k, Ny(v)=1}
= lim

=00 #Ghg
k *

lim (2p)" #Gq(s’ ) 5

a—co #G;, (2p)

ntq =1

(6.46)

I3

wobei #G7 (s, u) der Prozess der infizierten Zellen eines ZTPIZ startend mit Parasit
Ps € Pj = {ph s 7pk} ist.
Nach Proposition 2.7 gilt {W = 0} = Fxt fast sicher und aus Korollar 6.13 folgt
damit i
#Gy p W
é —’
2pe EY
Hieraus erhalten wir fir 1 < s <k
4Gi(s,u) 5 Wi(su)
é s
(2p) EY
wobei die W (1,u), ..., W(k,u) unabhéngig und wie W verteilt sind. Setzen wir dann
Wi (u) = Z§:1 W(s,u), so gilt

q — 00.

qg— o0,

k

Z#Gz;(s,u) o Wilu)

@u7  EY

q — o0,

s=1
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6.1.2 Stark subkritischer PZZ, D5

und durch eine weitere Anwendung von Korollar 6.13 fiir ¢ — oo

(207 ~#Gi(suw) p 1 EYWiw) 1 Wi(u)
#Grrg s=1 (2) 2p)r W EY 2w W

Mit (6.45) und (6.46) folgt dann fiir ¢ — oo

G, g = * 1 W,
F(n,q) = Z e #é* e = v = (2p)" Z Il;[(/u_)a

u€G}:Zy=k n+q u€G}:Zy=k

und damit die erste Behauptung.
Fiir die zweite Behauptung betrachten wir den eben erhalten Grenzwert. Fiir
diesen gilt

1 1 1 Ty =k weGr 7 —k Wi(u
(2u)» W G Tk W (2u)n #{ueGy: Z,=k}
fast sicher. Nach Satz 6.10 und Korollar 6.13 folgt
#{ueG:Z,=k} #Gr  pr w
L = In)—— — PQY=k)=——, n— o0 6.48
u) gy P Ey (045

und damit konvergiert (6.47) in Wahrscheinlichkeit gegen 0, wenn Fi(n) in Wahr-
scheinlichkeit gegen 0 konvergiert. Konvergiere also Fy(n) in Wahrscheinlichkeit ge-
gen einen Grenzwert grofser 0. Da #G), — oo P*-f.s. fiir n — oo nach Satz 5.5 gilt,
muss also auch #{i € G} : Z; = k} — oo P*-f.s. gelten.

Mit Satz 2.8 erhalten wir fiir Wy (u)

EW, (1) = E(ZW@,@) — KEW(Lu) = kEW = k.

Da die (W (u))uec: bedingt unter {#G;, > 0} nach Satz 1.3 unabhéngig und iden-
tisch verteilt sind, folgt mit dem Gesetz der groften Zahlen fiir alle £,7 > 0 die
Existenz eines ng > 0, sodass fiir alle n > ny

]P’"( Zue@,;:zu:k Wi(u)

#{ueG::Z, =k}
gilt. Nach (6.7) konvergiert P gegen P* in Totalvariation und wir erhalten

ZUEG*'Z =k Wk(u) P*
=t — k ) 6.49
#lue G : Z, = k) e (6.49)

—k‘2n>§€
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Aus den zwei Konvergenzen (6.48) und (6.49) folgt somit aus (6.47)
1 1

. k
= Wi(u) == By = k)=, n— o,
g, 2 W TRy Bgg no e

und damit die zweite Behauptung.

O

Bemerkung 6.15. Nach Korollar 2.25 ist (%P()f = l{:))k>1 die stationdre Ver-
teilung des zu (Zpn))n>0 assoziierten Q-Prozesses. Korollar 6.14 gibt uns also die
Moglichkeit, die stationédre Verteilung des Q-Prozesses eines subkritischen GWP nu-

merisch zu berechnen (vgl. Bem. 6.11).

6.1.3 Kritischer und nicht stark subkritischer Prozess einer
zufalligen Zelllinie, D,

In diesem Abschnitt ist der PZZ (Zp,))n>0 nicht stark subkritisch. Das asymptotische
Verhalten von E(#G?) weicht daher von demjenigen aus Fall D3 ab. Genauer gibt
es drei Falle - der PZZ ist kritisch, moderat subkritisch oder schwach subkritisch -
in denen sich E(#G}) jeweils anders verhélt (vgl. Bem. 4.3).

Dass der PZZ stark subkritisch war, spielte in den Beweisen aus D3 jedoch ei-
ne entscheidende Rolle. Wir konnen daher die Beweisidee bedauerlicherweise nicht
iibernehmen. So ist zum Beispiel der Beweis fiir die Trennung der Parasitennach-
kommen (Proposition 6.9) oder die Vernachléssigbarkeit der stark infizierten Zellen
(Proposition 6.8) auf diesen Fall nicht tibertraghar. Man benotigt somit einen neuen
Ansatz um das Grenzverhalten von Fi(n) zu bestimmen. Es liegen daher im Fall D,
leider noch keine vollstdndigen Ergebnisse vor.

Wir konnen jedoch eine erste Annédherung an die Losung dieses Problems mit der
folgenden Proposition geben. Wie in Abschnitt Dj sei E(X(@?) < oo fiir a € {0,1}
vorausgesetzt.

Proposition 6.16. Sei (Z,),er ein ZTPIZ mit (po, 1) € Dy und pg < 1 < py.
Dann folgt

o P (e, s 2 4)} i (050
und 4G .
ig% {P*(W < Z>} - 0, (6.51)

wobei fig = (1 + /1 +4(uo — pi3)) > 1 ist.

Beweis: Fir n > 0 und A > 0 setzen wir

_ #Gy,
Bln. 4) = {2"IP’(ZM ~0) A}'
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6.1.3 Kritischer und nicht subkritischer PZZ, D,

Dann folgt
#Gy,
2n

> AP(ZM > 0)]13(n,14) P-f.s.

und nach Ubergang zum Erwartungswert

E(#GZ> > AP(Z,) > 0)P(B(n, A)).

on
Aufgrund von Gleichung (4.1) erhalten wir damit
1> AP(B(n, A))

fir alle n € Ny und A > 0. Fiir A — oo muss somit P(B(n, A)) — 0 gelten und
damit folgt (6.50).
Fiir die Aussage (6.51) stellt man sofort fest, dass
p* ( #ij < 1)
(o + fo)" — A

é 0
A—oo

fiir alle n € Ny gilt. Damit ist nur noch

#Gn 1)

— 0 (6.52)

A—oo

lim su IP’*( ~ <
o, (o + )" A

zu zeigen. Mit Argumenten der Analysis erhilt man, dass (uo, fio) € D3 ist. Insbe-
sondere gilt damit fip < py. Seien nun (Z,),er und (Z,)yer zwel ZTPIZ auf einem
Wahrscheinlichkeitsraum (£, Ao, P) gegeben mit

P((Zv)ve']l‘ S ) = ]P)((ZU)’UET € ')7

EX®M = [iy, sowie der Abhingigkeitsstruktur

Zy =y P-fs. und P(Xéolz = Xéolz, f(ﬂ < Xff/i) =1

firallev € T, k > 1. Der k-te Parasit der v-ten Zelle des Prozesses (Z,)yer bekommt
also genau so viele Nachkommen, die in die erste Tochterzelle gehen, und héchstens
so viele Nachkommen, die in die zweite Tochterzelle gehen, wie der k-te Parasit der
v-ten Zelle des Prozesses (ZU)UE']T- Insbesondere folgt damit

#G < #G: P-fs. (6.53)
fiir alle n € Ny. Aufgrund der Definition der Prozesse gilt aullerdem

EXO = pX© = (o und EX® = 151
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

sowie
Exte C Exte  P-fs., (6.54)

wobei Ext¢ bzw. Exte das Ereignis beschreibt, dass Parasiten des Prozesses (ZU)UE'IF
bzw. (ZU)UGT iiberleben. Wiahrend sich also (Zv)ve']r wie (Z,)yer verhdlt, ist (Zv)ve']f
ein Prozess des Falls Ds. Es lassen sich daher die Resultate aus dem Abschnitt Ds
auf (Zv)ve']r anwenden. Genau dies werden wir uns spéter zunutze machen.

Sei e > 0. Da pig + fig > 1 ist, gilt P(Ext) < 1 nach Satz 2.4 (iii) und mit Hilfe
von Satz 2.2 (ii) finden wir somit ein K € N, sodass

Pi(Exst) = P(Ext)f < ¢ (6.55)

gilt. Wir bezeichnen mit T(K) := inf{n € Ny | #G* > K} die Stoppzeit (Def. A.2)
bzgl. der kanonischen Filtration o(Z, : [v| < n), die angibt, zu welchem Zeitpunkt
der Prozess (ZU)UGT zum ersten Mal mehr als K infizierte Zellen hat. Setzen wir
P* = P(-|Extc), so folgt nach Satz 5.5 P*(#G* — oo) = 1. Wir erhalten also die
P*-f.s. Endlichkeit von T'(K'). Somit existiert ein ny € Ny, fiir welches

PHT(K) > ng) < e (6.56)

gilt. Nach diesen ganzen Vorbemerkungen erhalten wir nun aus (6.53), (6.54), (6.55)
und (6.56) die Ungleichung

P*( #GT(K i l)
(ko + fig)TF)Hm = A

< P§<(MO#+A§0),L < %(Mo + ﬂo)m) +e

< PK({WﬁW %(No + Jio)™ } N ESctC) + Pi(Ext) 4 ¢
< P*({% < %(Mo +/?Lo)"°} N EE:tC) + %EZ&% +e
< P<(Mo#+G§o)n < %(Mo + fio)"™ | E;«tc> i Egg; + o (2;#)
< PG g 2o+ 0" | 55) s
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6.2 Kritischer Parasitenprozess, D,

fir alle n > 0 und A > 0. Da (uo, fio) € D3 liegt, folgt dann mit Korollar 6.13 fiir
alle A >0

lim sup P*(L(;’f < l)
n—oo (to + i)™ — A
. # G* 1 . ~ 2e
< limsu P( — < = + fig)™ E:Etc> 4+ —
mswp {7 gy = Ao T )™ | P(Exte)
w 1 ~ 2e
- P( + i)™ Extc> b
By = Aot i) | P(Exte)

wobei W und Y wie aus Korollar 6.13 gegeben sind. Da W > 0 P-f.s. auf Exte ist
(Satz 2.8), folgt

w1
JEEOP(Ey Aot o)™ | Brtc) =0,

Es gilt somit

po + i)™ — A
fir alle € > 0 und damit (6.52). O

A—00  poo

hm lim sup P*( #G’f < i) < 27&:
( P(Extc)

Nach dieser Proposition wichst #G; exponentiell und man kann vermuten, dass
sich #G;, asymptotisch wie E(#G) = 2"P(Z},) > 0) verhalt.
Ist der PZZ kritisch (pop; = 1, Rand von D5), so gilt

P(Zp > K | Zpyp > 0) — 1
fiir alle K > 0 (siehe Satz A.10 und Kor. A.11). Dies legt also die Vermutung nahe,
dass in diesem Fall die stark infizierten Zellen asymptotisch den Hauptbeitrag zur

Gesamtanzahl infizierter Zellen geben und die schwach infizierten Zellen vernachlas-
sighar sind (vgl. Satz 6.2).

6.2 Kritischer Parasitenprozess, D2

Wie in D3 setzen wir E(X (“)) < o0, a € {0,1}, voraus, wodurch zusammen mit
(1.4) insbesondere 0 < Var Z; < oo folgt.

In diesem Abschnitt zeigen wir als Analogon zum Satz 6.10, dass bedingt unter
{Z, > 0} die Folge (Fi(n))x>o in Verteilung auf S*(Ny) gegen (P(Y = k))i>o kon-
vergiert. Dabei ist ) wie in D3 eine Yaglom-quasistationér-verteilte Zufallsgrofe.
Dass wir in diesem Abschnitt ein analoges Resultat zu Dj erhalten, hat folgenden
Grund: Im Fall D, ist (Z,,),>0 ein kritischer GWP und daher gilt po + g = 1. Nun
ist jedoch piope1 < 1 nach (6.1) und damit der PZZ (Z,))n>0 stark subkritisch. Wie
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

im vorherigen Abschnitt gelten somit die Eigenschaften (3.4), (6.8) und (6.9) sowie
nach Korollar 3.7
P(Zpy > 0) "= e = 27"

fiir ein ¢ € (0,1]. Da (Z},))n>0 einen stark subkritischen PZZ bildet, konnen wir
viele der Beweise aus D3 tibernehmen. Anstatt unter P* miissen wir jedoch unter P”
arbeiten und die Grenzwertsétze fiir kritische GWP (Abschnitt 2.1.3) anstelle der
fiir superkritische benutzen. Um das oben genannte Resultat zu beweisen, zeigen wir
daher eine Reihe von Propositionen, welche zu denen aus D3 analog sind und mit
deren Hilfe wir den Beweis von Satz 6.10 dann fast vollstdndig iibertragen konnen.

Fiir den Rest dieses Abschnittes bezeichne € eine mit Parameter 2/Var Z; expo-
nentialverteilte Zufallsgrofse, d.h.

&~ Exp(vale)'

Vernachlassigbarkeit der Anzahl an Parasiten in stark infizierten Zellen

Wir zeigen hier analog zum Abschnitt Ds, dass die Anzahl der Parasiten in stark
infizierten Zellen einen geringen Beitrag zur Gesamtanzahl der Parasiten bildet.
Dafiir bendtigen wir noch zwei kleine Lemmata.

Lemma 6.17. Fir allen > 0 gilt

. Z1y
sup {Pn<2ve@n (7oK} ?7)} N

n>1 n K—oo

Beweis: Der Beweis verlauft fast analog zu dem von Lemma 6.5. Sei also n > 0.
Wir definieren fir K > 0und n > 1

Z1,
An(K,7) = {ZUEG" . 72k n} N {zn > 0}.

Dann folgt
Z Zv]l{Zv>K} Z nn]lAn(K,n) P-f.s.

veG,

und nach Ubergang zum Erwartungswert erhalten wir

E( >, Zv]l{zv>1<}> > nnP(An(K,7n)).

veGy,

Da (2u)™ =1 ist, folgt daraus

1 1 1
EE(Z[”]]I{ZMPK}) = EE(ﬁ E ZU]]-{ZU>K}) > nnP(An(K,ﬁ))-
veGH,

74



6.2 Kritischer Parasitenprozess, Do

Nach Korollar 3.7 gilt

n—o0 CE<Z[n} 1{Z[n]>K})

1
—E(Zi1 ~

= CE(Z[n}]l{Z[n]>K} ‘ Z[n] > O)

fiir ein ¢ € (0, 1] und aus (3.4) folgt somit

1
sup {nnIP’(An(K, n))} < sup {—HE(Z[n]]l{Z[n]>K})} — 0. (6.57)
n>0 n>0 LU K—o0
Nach Satz 2.14 gilt
n—oo 2
PZ,>0) ~ ——
(20> 0) n Var Z;
und damit folgt
1 n—oo N Varz
PYA(K,n) = —P(A,(K, 2 DY 2pg (K on).
(4K = Gz =P Kom) 2B (K. )
Aus (6.57) folgt daraus die Behauptung des Lemmas. O

Lemma 6.18. Fir alle ¢ > 0 existiert einn > 0 und K > 0, sodass fir alle n > 1

iy
Pn(ZUeGn (Z,<K} 277) N
n

qgilt.
Beweis: Sei ¢ > 0. Es existiert ein ny > 0, sodass fiir alle 0 < n < ng
PE>2n)>1—c¢

gilt. Nach Satz 2.15 konvergiert % bedingt unter {Z,, > 0} in Verteilung gegen &.
Nach dem Satz von Glivenko-Cantelli finden wir dann ein ng > 1, sodass fiir alle
n>neund 0 <n <n

IP’"(% > 277) _PE> 277)‘ <e

und damit =
IP’"(—" > 277) >1-—2¢
n

gilt. Wéhle nun ein n € (0, 1), sodass aufserdem

z
inf {IP"(—" > 277)} >1-2¢

1<n<no n

I0)



6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

gilt. Damit erhalten wir also fiir alle n > 1
Zn
IP’"(— > 2n> > 1 2. (6.58)
n
Nach Lemma 6.17 existiert ein X > 0 fiir welches

>1—c¢

n

fiir alle n > 1 ist. Mit dieser Ungleichung und (6.58) folgt dann fiir alle n > 1

- (Eve@; Zolyz,<K} . 77)
n
_ P”(é Zoesy bz )

n n

P"(é 2vesy Zol{z>K) >y 2vesy Zol{z>K) <77)

v

— ) [

n n n

v

s
]Pm<Zn > 2?7’ ZUEGn {Zv>K} < 7])
n
O

Mit diesen zwei Lemmata kénnen wir nun zeigen, dass die Anzahl der Parasiten
in stark infizierten Zellen vernachléssigbar ist.

Proposition 6.19. Fir alle n > 0 gilt

— 0.
K—oo

{Pn<zve<@;§ Zoliz,> K} > ?7)}

sup Z

n>0

3
= N =

gilt. Mit Satz 2.14 konnen wir dann alanog zum vorherigen Beweis ein N > N,
finden, sodass

sup {P”(é < %)} < 2 (6.59)

n>1 n

gilt. Nach Lemma 6.17 existiert nun ein K > 1 fiir welches

Zdis
sup {]P)n<ZU6Gn {Z,>K} > %)} <e

n>1 n o
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6.2 Kritischer Parasitenprozess, D,

ist und mit (6.59) folgt

g
sup {]Pm(Eve@n {Z,>K} > ?7)}

n>1 zzn
o {P"(i 2vey Zoliz>K) . )}
n>1 Z, n
Z, 1 n Y vegr Zoliz,>K1 Z, 1
< IP’"(—<—) ]P"(— i >, _>_>}
<P (TS §) (g TN e ey
z 1 Yvee: Zoliz,>ky
< IP’"(—<—) ]P"( n >_>}
< s {F (0 <)+ 2y
Z, 1 >ve: Zoliz,>Kky 7
< sup {P (T < ) |+ sup B (FUE >3}
< sup {F"(S < ) s 2y
< 3e.

Wir erhalten ein zu Proposition 6.6 analoges Resultat.

Proposition 6.20. Fir alle ¢ > 0 existiert ein K > 0, sodass fir alle N > 0 ein
ng > 1 existiert, sodass

]Pn( jg: QZLH{ZUSK} Eij) Ei],—'E

veG},

fur alle n > ng gilt.

Beweis: Sei ¢ > 0. Nach Lemma 6.18 existiert ein > 0 und K > 0, sodass fiir
allen > 1

>1—c¢

- (Zve«;; Zolz,<K) . ?7)
n

gilt. Dann ergibt sich fiir alle n > Nn=!

* ZUH v N
Pn( Z Zliz,<K} = N) = IP’"(ZUEGn {ZosKy _)

n n
veGH
. Zy
. ]Pm(ZveGn (ZosK} 77)
n
> 1—c.
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Eine Schitzung fiir die Anzahl infizierter Zellen

Wir erhalten wie im Fall D3 auch hier eine Schétzung fiir #G;,.
Proposition 6.21. Fiir alle € > 0 existieren Konstanten a,b > 0, sodass fiir alle

n>1
P"(a§&§b>21—e
n

gilt.

Beweis: Sei € > 0. Wie in den Beweisen zuvor kann man ein b > 0 finden, sodass
fir allen > 1

z
P"(—"gb) >1—¢
n

gilt. Da #G; < Z, fast sicher fiir alle n > 1 ist, erhalten wir somit

G Z,
]P’”(# n gb) > ]P"(— gb) > 1-¢ (6.60)
n n
fir alle n > 1.
Weiter ist
. . Zy
#G, o 2oes; Lol
n Kn
fiir alle K, n > 1 und damit
G veg: Zoliz,
pn(b > a) > IP’"(Z €6y TV ER) Ka). (6.61)
n n

Nach Lemma 6.18 existiert ein Ky > 1 und ein 7y > 0, sodass fiir alle n > 1

pr ( ZUEG:; Zoliz,<K0)

Zﬁo)Zl—E
n

gilt. Setzt man nun a := 15/ Ky, so folgt aus (6.61) fiir K

ZUEG; Zolz,<Ko}
n

(5 20) = v

2?70) > l—e.

In Kombination mit (6.60) folgt dann die Behauptung, denn fiir alle n > 1 gilt

" . Z g,
P (a < #G < b) > ]P)n(ZUEGn {Z,<Ko}

z,
>, St <b) 2 12
n n

n
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6.2 Kritischer Parasitenprozess, D,

Vernachl3ssigbarkeit stark infizierter Zellen

Analog zum Abschnitt D3 zeigen wir hier, dass die Nachkommen stark infizierter
Zellen einen vernachléssigbaren Beitrag zur Gesamtanzahl infizierter Zellen geben.

Proposition 6.22. Fir alle n > 0 gilt

{P"+q(#{v - G;:é;ﬂm “5 n)}

Beweis: Der Beweis verlauft analog zu dem von Proposition 6.8 nur unter Benut-
zung der in diesem Abschnitt gezeigten Resultate.
Seien ¢, > 0. Nach Proposition 6.21 finden wir ein a > 0, fiir welches

— 0.

su
P K—oo

n,q>0

sup {qu (#Gnﬂ <a(n+ q)) } <e (6.62)

n,q>0
gilt. Fiir diese a > 0 definieren wir fiir n,q, K > 0

#{U - G;kz-i—q . U‘n > K}
#Gn—l—q

Fi(K.m) = { >0} 0 {#6y 2 aln+0)}.

Es folgt
#{v € Gyt Zyw > K} = n#Gry Lpaky = naln+q)lpyk, P-Ls.

Nach Ubergang zum Erwartungswert, der Tatsache, dass (2u)" = 1 fiir alle n > 0,
und vollig analoger Rechnung wie im Beweis von Proposition 6.8 folgt dann

(e PEE ) = DR )
< na(;u) (#{'U € Gn+q v\n > K})
< Elwliz,-r)
nay”

fiir alle n, ¢ > 0. Wir erhalten wieder mit Korollar 3.7

lim sup {(n +q)P(FYK, 77))} =0.

K—o0p g>0

Aus Satz 2.14 folgt

P(FIK,n) ntgsoo Var 2,

P (FI(K ) =
(FH(K,m) P(Zn1q > 0) 2

——(n+ )P(F(K,n))
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

und damit
lim sup {IP’"+Q(F§(K, n))} = 0.
K—o0 n,q>0
Es existiert somit ein Ky > 0, sodass fiir alle K > Ky und n,q > 0
PrH(FI(K 1)) < =

gilt. Mit (6.62) folgt daraus

Pn+q<#{v€(}n+q v|n>K} >
#GnJrq - n

< PRI, ) + P (#G, < a(n+q))

< 2¢

fiir alle ¢,n > 0 und K > K. O

Trennung der Parasitennachkommen

Auch die Eigenschaft, dass sich Nachkommen unterschiedlicher Parasiten in weit
entfernter Zukunft nicht mehr in derselben Zelle befinden, lasst sich aus Abschnitt
Dj tbertragen. Es bezeichne wieder N, (v) die Anzahl der Parasiten aus Zelle v|n,
deren Nachkommen in Zelle v anzutreffen sind.

Proposition 6.23. Fiir alle K > 0 und n > 0 gilt

lim sup
400 >

{IP)TLJFC](#{U €Ghyy: ;g}i K, Nu(v) =2} > ?7)} _o.

Beweis: Dieser Beweis verlauft analog zu dem von Proposition 6.9. Wir benutzen
lediglich die Ergebnisse dieses Abschnittes.
Seien K > 0 und ,n7 > 0. Nach Proposition 6.21 finden wir ein a > 0, fiir welches

sup {qu (#Gnﬂ <a(n+ q))} <e (6.63)

n,qg>0

gilt. Fiir diese a > 0 definieren wir fiir alle n,q, K > 0

EZ(KJ])::{#{UEG : Zn < K, N()>2}

o >} 0 {#6G,,, 2 an+9)}.

Es folgt

#{v € Gypy: Zopw < K, No(v) 22} > n#Gy, Apyky = nan+ @) lpyky s
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6.2 Kritischer Parasitenprozess, Do

und nach Ubergang zum Erwartungswert, der Tatsache, dass (2u)" = 1 fiir alle
n > 0, und vollig analoger Rechnung wie im Beweis von Proposition 6.9 dann

a 1
(n+ QBB ) < o

(5)27 Coeq, P(Zs > 0)?
nau
fiir alle n,q > 0. Aus (6.9) erhalten wir somit

E(#{v € G, : Zyn < K, Nyp(v) > 2})

<

sup { (n + )P(EL(K,n)) } — 0.

n>0 q—00
Wie im Beweis vorher folgt aus Satz 2.14

]P)(Eg(K,T])) n—oo Var z
P(Z,44>0) 2

P(EY(K, ) = (n+q)P(EL(K, 7))

und damit
lim sup {]P”*%Eg([(, ?7))} ~0.
4= >0

Wir finden also ein ¢y > 1, sodass fiir alle ¢ > go und n > 0

P B (K, ) < e
gilt. Mit (6.63) folgt daraus
#{ve G, Zyn < K, Ny(v) > 2}
#Griq
< P"M(EL(K,n)) +P"M(#G),, < a(n +q))

n-+q

Ipm—i—q ( Z n)

< 2¢

fiir alle ¢ > go und n > 0. O

Das Hauptresultat

Kommen wir zu dem, am Anfang von D, angekiindigten, Hauptresultat, welches ein
Analogon zu Satz 6.10 darstellt. Die Konvergenz ist hier jedoch schwach und nicht
stochastisch.

Satz 6.24. (Fy(n))ken, konvergiert bedingt unter {Z,, > 0} in Verteilung in S*(Ny)
gegen (P(Y = k))ren,. Genauer gilt

P"(Fk(n) S ) = 5p(y:k), n — 00.

fir alle & > 0. Dabei ist Y eine Yaglom-quasistationdr-verteilte Zufallsgrofe.
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Beweis: Durch die in diesem Abschnitt gezeigten Propositionen ist es nun nicht
mehr schwer, einen analogen Beweis von Satz 6.10 zu fithren. Alle Schritte des Be-
weises von Satz 6.10 lassen sich fast vollstiandig {ibertragen, wenn wir hier unter P"
anstatt unter P* arbeiten. Wir benutzen die gleiche Notation wie im Beweis von
Satz 6.10.

1. Schritt: Beh.: Fiir alle €, > 0 existiert ein ng > 0 und ein f € S*(Ny), sodass
fiir alle n > nq gilt

P (|[(Fs(n)kz0 — fllh 2 m) <e.

Beweis von Schritt 1: Folgt man dem ersten Schritt des Beweises von Satz 6.10
und wendet die in diesem Abschnitt gezeigten Propositionen an, so erhélt man fiir
e,n > 0ein Ky > 0 sowie gy, n; > 0, fiir welche

Pt (’ ’(Fk(n + q0))kz0 — (G12(n, G0)) k0

)1 > n) < e (6.64)
und

P"([[(GE*(n, g0)rz0 = (fi®)kzolh 2 m) < e
fiir alle n > n, gilt. Nach Satz 2.14 gilt P(Z, > 0) "~ 2/(n Var Z;) und daher folgt

n
lim P(Z,,,, >0| Z,>0) = lim = 1.
lim P(Z,10> 0| 2,>0) = lim ——

Aus

P ([[(GR2(n, g0))is0 — (fE)ksolli = 1) P(Zp4q > 0| 2, > 0)

P* ([[(G2(n, q0) =0 — (f)kzoll1 > 1)
< ¢

fiir alle n > n; folgt somit die Existens eines ny > nq, sodass fiir alle n > ny

P (1|(Gr(n, go) k=0 — (Fi)kzollr > n) < 2

gilt. Mit (6.64) erhalten wir daraus die Behauptung von Schritt 1, denn fiir alle
n > ny gilt

P ([ (Fy(n + q0))kzo — (fi)rol 1 = 2n)

< PO (]|(Fi(n + g0) k=0 — (G (1, 60))iol 1 = 1)
+ P (1[G (n, 0)ikz0 — (Fi)ksoll1 = 1)
3e.

IN
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2. Schritt: Beh.: Es existiert ein f € S'(Ny), sodass fiir alle > 0 gilt
B ([ (Fulm)iso — Fll > 1) — .

Beweis von Schritt 2: Der Beweis des zweiten Schrittes lasst sich vollstandig aus
dem Beweis von Satz 6.10 {ibernehmen.

3. Schritt: Sei (fi)k>0 der aus den ersten beiden Schritten ermittelte schwache
Limes von (Fj(n))g>1. Dann ist zu zeigen, dass P(Y = k) = f; fiir alle £ > 0 gilt.
Beweis von Schritt 3: Auch hier gilt nach Korollar 3.7 fiir alle £ > 0

]P(Z[n] =k ‘ Z[n} > 0) — ]P’(;)/ = ]{Z),

n—0o0

sodass es zu zeigen reicht, dass
P(Zp) =k | Z) > 0) — fi

fiir alle £ > 0 gilt.
Wie im Beweis von Satz 6.10 erhalten wir fiir alle &k > 1

P(Zpn) =k | Zpm > 0) = %gff) (6.65)
Weiter ist fir 1 > e >0 und allen > 1
E#G,) = E"#G,)P(Z, >0)
> En (@1{@2@)7@(@ )
> aIP’"(#%GZ > a)nlP(Z, > 0)
> a(l—¢e)nP(Z, >0),
wobei @ > 0 nach Proposition 6.21 gewdhlt war. Setzen wir ¢ := a(1 — ¢), dann

erhalten wir wegen |Fj(n) — fx| < 1, #G! < Z, fast sicher fiir alle k,n > 0 und dem
eben Gezeigten durch analoge Rechnung wie im Beweis von Satz 6.10 fiir n > 0

E(F(n)#G;,) E(Z.15(n)ful>n})
— T Rl < o+ 2
E#Gy M =7 E(#G:)
E(Z.15.(n)ful>n})
= TRz, S 0) (6.66)

1 .(Z
- —E”(—"]l . )
n R MU= ful 20
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Da 2p = 1 und Z; als quadratisch integrierbar vorausgesetzt war, folgt somit aus
Proposition 2.3

E((F)Q}Zn>0> - %

Var(Z,) + (EZ,)?

n2P(Z, > 0)
_ Var(Zy) 1
- nP(Z,>0) n?P(Z,>0)
< 00,

fir alle n > 1. Da lim,, o, nP(Z,, > 0) = 2/Var Z; nach Satz 2.14 gilt, folgt weiter

Var(Z;) 1 1

E(—”2 z, ): Z,)? .
(5) [ 2n>0 WB(Z, > 0) | WB(Z, 5 0) o 30 VATE) < oo

(%|Zn > 0),>0 ist also Lo-beschrankt und damit auch gleichgradig integrierbar
(Satz A.6). Dank des zweiten Schrittes gilt

P*(|Fr(n) — fil > n) — 0,

wodurch dann der zweite Term am Ende von (6.66) fiir n — oo gegen 0 konvergiert
(Satz A.6). Insgesamt erhalten wir aus (6.65) und (6.66) somit

P(Zp =k | Zin) > 0) — fi-

Damit ist der Satz bewiesen. O

Als direkte Folgerung erhalten wir auch hier ein Korollar, welches uns die Asym-
ptotik der Verteilung der Anzahl infizierter Zellen angibt.

Korollar 6.25. Es gilt bedingt unter {Z, > 0}

#Gy, a1 und #G, 4, & n — 00
_— s — _— s — — 00.
Z, EY n EY’
Beweis: Die erste Behauptung ergibt sich vollig analog zu der aus Korollar 6.13
nur unter P” anstatt P* und natiirlich den entsprechenden Propositionen. Die zweite
Behauptung folgt dann aus der ersten in Kombination mit Satz 2.15. O
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6.3 Subkritischer Parasitenprozess, D

6.3 Subkritischer Parasitenprozess, D,

Wir setzen wieder E(X(®?) < oo fiir a € {0,1} voraus. Wie in D, sterben die Para-
siten fast sicher aus. Wir erhalten daher ein analoges Resultat zu dem aus Dy und
zeigen, dass die Anzahl infizierter Zellen mit k& Parasiten bedingt unter {Z,, > 0} in
Verteilung gegen eine nichtdeterministische Zufallsgrofse konvergiert. Daraus schlie-
fsen wir dann, dass #G und Z,, bedingt unter {Z,, > 0} in Verteilung gegen fast
sicher endliche Zufallsgrofsen konvergieren. Fiir die Beweise dieser Resultate beno-
tigt man jedoch einige Eigenschaften iiber die Menge der Wahrscheinlichkeitsmafse
auf ['(Ny), welche im Anhang A.4 kurz zusammengefasst sind.

Das Hauptresultat

Der Beweis verlduft in der selben Weise wie in den beiden vorherigen Abschnitten
und benutzt die Trennung der Parasitennachkommen. Wir zeigen daher zuerst ein
Lemma, welches uns diese Eigenschaft liefert.

Wie in den vorherigen Abschnitten bezeichnet N, (v) die Anzahl der Parasiten aus
Zelle v|n, deren Nachkommen in Zelle v € G}, , immer noch am Leben sind.

*
n-+q

Lemma 6.26 (Trennung der Parasitennachkommen). Fir alle e > 0 und K > 0
existiert ein qy > 0, sodass fir alle ¢ > qo und n > 0

P (#{v e G, : No(v) > 2} #0, 2, <K) <e

n+q :
qgilt.
Beweis: Fir n,q, K > 0 setzen wir

EIK) ={#{ve G, : No(v) =22} #£0, Z, < K}.

n+q °

Dann gilt
Loy < Y Liwuwse, zo<xy PEs. (6.67)

UEGn+q

Da E(X@?) < oo fiir a € {0,1} vorausgesetzt war, gilt EZ, log Z, < co. Nach Satz

2.9 ist daher C' := inf, > P((‘QZZ;O) > (), sodass

P(Zaiy > 0) = C(2)"
fiir alle n, ¢ > 0 gilt. Auch im Fall D ist der PZZ (Z},))n>0 stark subkritisch und es

gilt die Eigenschaft (6.9). Die Behauptung des Lemmas folgt jetzt aus (6.67) nach
Ubergang zum Erwartungswert und, zu der im Beweis von Proposition 6.9, analoger
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Rechnung bei den letzten beiden Ungleichungen

PUUEYK) <Y PUUN,() 22, 2, < K)

UEGn+q
> <
UEGn+q P<Zn+q > 0)
Z’UEG + ]P)(Nn('l}) > 27 Zn < K)
< nra
B C(2p)+
< ZveGn+q ]P)(Nn(’l}) > 27 Zv\n < K)
- C(2p)te
. PO<Zy < K27, Pr(Molv) 2 2)
> C,u"+q
(9215 (2> 0
> C,Uﬂ
— 0.
g—00

|

Nachdem wir die Trennung der Parasitennachkommen gezeigt haben, konnen wir
uns dem oben angesprochenen Resultat zuwenden.

Satz 6.27. (#{v € G} : Z, = k})k>0 konvergiert bedingt unter {Z, > 0} fir
n — oo in Verteilung auf I'(Ny) gegen eine Folge (Ny,)i=0 von Zufallsgrfen mit der
Figenschaft E( Zkzo k;Nk) < 0. Des Weiteren gilt

lim E"(#{v € G : Z, = k}) = E(N}).

n—oo

Beweis: Da ['(Np) ein separabler, metrischer Raum ist, ist auch die Menge der
Verteilungen auf ' (Ny) metrisierbar (Satz A.12) mit der Metrik

111, Q:) =swn {| [ faQi - [ raa,

I fllse £ 1, f gleichmiifig stetig}

fiir Q1, Qo Verteilungen auf I*(Np). Diese Metrik ist assoziiert zur schwachen Kon-
vergenz von Verteilungen auf ['(Np) (vgl. Bem. A.14).

Den Beweis gliedern wir in dhnliche Schritte auf wie den von Satz 6.10. In den ers-
ten beiden Schritten zeigen wir mit Hilfe der Trennung der Parasitennachkommen,
dass fiir alle € > 0 eine Zufallsgrofse existiert, sodass die Verteilung dieser Zufallsgro-
Re fiir nur endlich viele n > 0 von der Verteilung von (#{v € G}, : Z, = k}) psp UM
maximal & abweicht. Im dritten Schritt folgern wir dann mit Hilfe der Vollstandig-
keit von [!(Ny) die Existenz des schwachen Limes. Im letzten Schritt zeigen wir noch
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6.3 Subkritischer Parasitenprozess, D

die Endlichkeit des oben angegebenen Erwartungswertes. Geschenkt bekommen wir
dabei die im Satz stehende Konvergenz der Erwartungswerte.

Wir benutzen die gleiche Notation wie im Beweis von Satz 6.10 und setzen fiir
q>0,k>1und peP(n),n>0,

qu(p) = Z ]l{#{rer : rln=p}=k}

vGG;‘L_HZ

und Y/ (p) = 0. Des Weiteren setzen wir fiir n, g,k > 0

Ni(n,q) == Y _ Yi(p)

pEP(n)

und

Gi(n) =#{ve G} : Z, =k}.

1. Schritt: Beh.: Fiir alle € > 0 existieren ng, o > 0, sodass fiir alle n > ng und
q 2 Qo
P (J[(Gr(n + @))kzo — (Ni(n, @))izoll1 #0) < ¢
gilt.
Beweis von Schritt 1: Sei € > 0. Aus Satz 2.11 folgt fir k£ > 1
lim lim P""(Z, = k) = c(k),

gq—00 N—00

wobei (¢(k))g>1 eine Verteilung auf N bildet. Daraus folgt also insbesondere, dass
ein K > 0 existiert, sodass

lim lim P"*(Z, > K) <e¢

q—00 N—00

ist. Somit finden wir ein gg > 0 und ny > 0, sodass fiir alle n > ng und q > qq
P"(Z, > K) < 2¢ (6.68)

gilt. Nach Lemma 6.26 folgt die Existenz eines ¢; > ¢, sodass fiir alle n > ny und
42 q
PP (#{v € G}y Na(v) 22} #£0, Z, < K) <e

n-+q

gilt. Aufgrund dieser Abschitzung und mit Hilfe von (6.68) erhalten wir weiter

P (#{v € G}, : Na(v) > 2} #0)

n-+q

< PM(#{v e G, No(v) >2}#0, 2, <K)+P"(Z, > K) (6.69)

n+q

< 3¢
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fiir alle n > ng und ¢ > ¢;. Des Weiteren gilt die Implikation

{#{v € G}y, Nu(v) = 2} =0} € {(Gi n+q))k>0 (Ni(n,q )k>0} £.s., (6.70)

denn ist #{v € Gj,,, : Nu(v) > 2} = 0, so befinden sich in jeder Zelle v € G;,,,
nur Parasiten, die von demselben Parasiten aus der Zelle v|n € G} abstammen. Das
bedeutet aber, dass fiir jedes v € G}, genau ein p € P(n) und k > 1 existiert,
fiir welche 1(u(rep, : rin=p}=k} POsitiv ist. Somit gibt N (n,q) die Anzahl der Zellen
der (n + ¢)-ten Generation an, welche genau k Parasiten enthalten. Damit ist also
Ni(n, q) = Gi(n +q).

Aus (6.69) und (6.70) erhalten wir somit fiir alle n > ng und ¢ > ¢

P ([[(Gr(n + q))rz0 — (Ni(n,0))r=ol 1 # 0)

= P"(|[(Gr(n + q))rz0 — (Ne(n,@))rzol[1 # 0, #{v € Gy : Nu(v) > 2} # 0)
P"*(#{v € G; 1 : Nalv) = 2} #0)
3e.

IN

IN

Dies zeigt den ersten Schritt.

2. Schritt: Beh.: Fiir alle [ > 0 existiert ein ny(l) > 0 und eine Verteilung Q(!)
auf [*(Ny), sodass fiir alle n > ng(l) gilt

A (Gl)izo € ). QW) < ().

Beweis von Schritt 2: Sei | > 0. Nach dem ersten Schritt existieren gg,ng > 0,
sodass fiir alle n > ny und gleichméRig stetigen Funktionen f : I'(Ng) — [—1,1]

’/fdPnJrqO((Gk(n +qo))k>0 € ) — /fdPnJrqO((Nk(”a ) )r>0 € )’

— ‘/f((Gk(n+qo))k20)dP"+qo_/f((Nk(n,qo))kZO)dP"‘FQO

F(Gre(n+ qo))k0)

’/{||(Gk(n+% k>0~ (Nk(n,q)) k>o||1750}
— [ ((Nk(n, qo) ko) dP™

< 2P (||(Grln + o) ko — (Ni(n, 40) kol 1 # 0)

1

< (5)“—1
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6.3 Subkritischer Parasitenprozess, D

gilt. Daraus erhalten wir also fiir alle n > ny

d(P"((Gr(n + go))x0 € -), P"FO((Ni(n, q0))rz0 € ©)) < (%)Hl' (6.71)

Wir erinnern daran, dass die (Y,?°(p))x>0,p € P(n), unabhéngig und identisch wie
(Y,2) >0 verteilt sind. Da ein Parasit unabhéngig von der derzeitigen Gesamtanzahl
an Parasiten Nachkommen bekommt, sind die (Y (p))r>o auferdem unabhingig
von Z,,. Weiter ist #P(n) = Z,, und

{Zoia > 0} = {Z DR } P-fs.

k>0 peP(n)

fir alle n > 0.
Nach Satz 2.11 folgt

Prteo(Z, € ) =5 v, n— oo,

fir eine Verteilung v auf N. Sei V eine Zufallsgrofe mit Verteilung v und (Y, (p)) x>0,
p € N, eine Folge unabhéngiger, identisch wie (Y;**)r>o verteilter Zufallsgrofen,
welche zudem unabhéngig von V sei. Weiter definieren wir dann die Verteilung Q(1)

wie folgt
%

Q(l)::P((ZYqO b0 € }ZZWO )

p=1 k>0 p=1
Hieraus ergibt sich dann
P ((Ny(n, go))k0 € )
= P((Ne(n,90))rz0 € - | Zntqy > O)

Zn

_ p((;yqo b0 € }Z%;yqo >0)

_ ;p((;yqo " \;;y% 0)B(Z, = = | Zuigy >0)
= 2 ZY‘“’ 0 €| ;ZY > 0)P(v=2)

_ p(éyw v ;ZY -~ 0)

= Q).
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Es existiert also ein n; > ng, sodass fiir alle n > ny

1

d(IP’"Jrqo((Nk(n,qO))kZO c .)7 Q(l)) < (§)l+1

gilt. Hieraus und aus (6.71) folgt mit Hilfe der Dreiecksungleichung

AP ((Gr(n + qo))k=0 € +), Q1))
< AF((Guln+ a0))eso € )y BR((Ne(n,g0))iso € )
+ d(P"" ((N(n, q0))ez0 € -), Q1))

fiir alle n > n; und damit die Behauptung des zweiten Schritts.

3. Schritt: Beh.: Es existiert eine Verteilung @ auf ['(Ny), fiir welche
P"((Gr(n))ks0 € 1) — Q, n — o0

gilt. Fiir alle £ > 0 gilt damit insbesondere lim,, ., P"(Gk(n) € -) = P(Ny € ) fir
eine geeignete Zufallsgrofse N, mit Werten in Nj.

Beweis von Schritt 3: Da ['(Np) ein vollstindiger Raum ist, ist der Raum der
Verteilungen auf [*(Ny) ebenfalls vollstindig (Satz A.13). Seien 2 < I < ['. Dann
folgt nach Schritt 2 und der Dreiecksungleichung fiir grofes n

dQ(1), Q1)) < dP"((Gr(n)kso € ), Q) + d(P"((Gr(n))kso € ), QL))
1, 1y
< (5) +(5)

DR

(Q(1));>1 bildet damit eine Cauchyfolge und ist somit konvergent. Sei ) ihr Grenz-
wert. Dann gilt insbesondere fiir alle [ > 1

IN

1

AQW.Q) < ()

Fiir jedes [ > 2 finden wir nach Schritt 2 weiter ein ng > 0, sodass fiir alle n > ng

d(P"((Ge(n)iz0 € ), Q) < d(P"((Gr(m)i=o € ), QD) +d(Q), Q) < ()™

gilt. Damit ist der dritte Schritt gezeigt.
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4.Schritt: Beh.: Seien Ni, k > 0, die nach Schritt 3 existierenden Zufallsgréfien
mit limy, oo P"(Gi(n) € ) = P(Nj, € -). Dann gilt E( - k:Nk> < o0.

Beweis von Schritt 4: Z, ist bedingt unter {Z, > 0} _Eg-beschréinkt, denn nach
Satz 2.9 gilt C' := inf, > HZn20) ~ () und damit

2p)m
EZ2
E(Z2|Z,) = —— 12—
(201 20) P(Z, > 0)
. _E2
- O@u)
1
< Z,+EZ
= 0(2#)”(\/ar ntEZ)
11— (2"
= (2 varz 41
C(Zu—(Q,u)Z a 1+)
1 1
< —(—=VarZ, +1
- C(Zu—(Q,u)Z a 1+)
<

nach den Voraussetzungen in diesem Abschnitt und Proposition 2.3. Wir erhal-
ten somit die gleichgradige Integrierbarkeit von (Z,|Z, > 0),>0 (Satz A.6). Da
kGr(n) < Z, fast sicher fiir alle k,n > 0 gilt, ist somit auch (Gg(n)|Z, > 0),>0
gleichgradig integrierbar ( Satz A.6). Fiir alle £ > 1 gilt

P*(Gy(n) € ) == P(N, € ), n— 00

und aus der gleichgradigen Integrierbarkeit folgt damit die Konvergenz der Erwa-
tungswerte (Satz A.7). Fiir alle K > 1 erhalten wir also

E"(ika(n)) - ikE"(Gk(n)) — ik:ENk - E(ikzvk). (6.72)
k=1 k=1 k=1 k=1

Weiter ist 1

E' (D kGi(n)) < E"(Zulizon) < —E'(2D),
k>K

woraus dann zusammen mit der Lo-Beschranktheit von Z, bedingt unter {Z,, > 0}

sup {E”( Z ka(n)> } e 0

n>0

folgt. Fiir alle £ > 0 existiert somit ein Ky > 0, sodass

sup {E"( Z ka(n)>} <e

nz0 k>Ky
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gilt. Daraus folgt fiir alle n > 0
Ko
E"(Z ka(n)) < E”(Z ka(n)> te

k>0 k=1

und mit (6.72) dann weiter
Ko

imsupE" (Y kGi(n)) < B( Y kNy) +e < B( Y kNi) +e.
n=eo k>0 k=1 k>0

Da ¢ > 0 begliebig gewéhlt war, folgt somit

limsupE”<Zka(n)> < E(Zka). (6.73)

e k>0 k>0

Die andere Ungleichung ergibt sich aus

ligiong"(Zk:Gk(n)) > lirrlrig)le"( 3 ka(n)) - E( 3 ka>

k>0 1<k<K 1<k<K

fiir alle K > 0. Mit Hilfe der monotonen Konvergenz folgt dann

hgiogflﬁzn(kzzokak(n)) > fgiﬂ"E(lgkngkNO - E(Zka>. (6.74)

k>0

Aus (6.73) und (6.74) erhalten wir also

lim E” ( - ka(n)> - E( 3y ka> .

k>0 k>0

Da aber (Z,|2, > 0),>0 gleichgradig integrierbar ist, folgt nach Satz 2.10

lim E*( Y kGi(n)) = lim E*(Z,) = EY,

n—o00 n—o00
k>0

wobei Y wie in Satz 2.10 gegeben ist. Nach den Voraussetzungen in diesem Abschnitt
ist EZ; log Z; < 0o und aus (2.3) folgt dann

E(Zka) — EY < oo
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Korollare

Mit Hilfe des Satzes 6.27 erhalten wir nun eine Aussage iiber das Grenzverhalten

von #G; und Z,.

Korollar 6.28. #G} konvergiert fiirn — oo bedingt unter {#G* > 0} in Verteilung
gegen eine positive, fast sicher endliche Zufallsgroffe. Des Weiteren konvergieren
auch die ersten Momente. Genauer gilt

Pn(#@;e-)LP(ZNke-) und E"(#G;)—>E(2Nk>, n — oo,

k>0 k>0
wobei die Ny, k >0, wie in Satz 6.27 gegeben sind.

Beweis: Wie im Beweis von Satz 6.27 setzen wir fir n, k > 0
Gi(n) :=#{v e G, : Z, = k}.

Nach Satz 6.27 ist E( > k>0 kNj) < oo und damit insbesondere > k>0 Vi, fast sicher
endlich. Weiter folgt aus Satz 6.27 und der Stetigkeit der Summe fiir alle K > 1

JE&P"(in(n) € ) — P(iNk e )
k=1 k=1

Fir alle x € R und K > 1 folgt dann

o] K K
limsup]P’”(ZGk(n) < :c) < limsupIP’"(ZGk(n) < x) = ]P’(ZNk < :c)
oo k=1 nmoe k=1 k=1

Lassen wir K gegen unendlich laufen, folgt aus dem Satz der monotonen Konvergenz
fiir alle x € R

limsupP"(in(n) < x) < P(i]\fk < x) (6.75)

Nach Satz 2.10 existiert fiir alle € > 0 ein Ky > 0, sodass fiir alle n > 0
P*"(Z, > Ky) <¢

gilt. Daraus ergibt sich die Ungleichung

P"(kZKOGk(n) >0> < PYZ,>Ky) < ¢
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fir alle n > 0. Somit erhalten wir fir alle n > 0 und z € R

(S <o) 2 B(YGutn) <2) B 3 Guln) 0)
k=1 k=1 k=Ko
> pn in(n) gx) e
k=1
Daraus folgt dann
ligi;}fl[”"(i(?k(n) < :L‘) > ligiOI.}fP"(in(n) < x) —€
k=1 k=1
= P<§Nk < a:) —€
> P(g]\@ g:c) —¢.

Da ¢ > 0 beliebig gewahlt war, folgt somit fiir alle z € R

n—0o0

liminf]P’”<§:Gk(n) < :c) > P(im < :c) (6.76)

Aus (6.75) und (6.76) erhalten wir also fiir alle x € R

Tim P#G, <) = m P( Y Gin) <a) = (Y M <e)
k=1 k=1
und damit die erste Behauptung des Korollars.

In Schritt 4 des Beweises von Satz 6.27 wurde die gleichgradige Integrierbarkeit
von (2,2, > 0),>0 gezeigt. Da #G} < Z, fast sicher fiir alle n > 0 gilt, ist
auch (#G}|Z, > 0),>0 gleichgradig integrierbar und es folgt die noch fehlende
Konvergenz der ersten Momente (Satz A.6 und Satz A.7). O

Korollar 6.29. Z, konvergiert fiir n — oo bedingt unter {Z, > 0} in Verteilung
gegen eine positive, fast sicher endliche ZufallsgrifSe. Des Weiteren konvergieren die
ersten Momente. Genauer gilt

P"(zne-)LP(Zkae) und E"(zn)HE(Zka), n — 0.

k>0 k>0
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6.3 Subkritischer Parasitenprozess, D

Beweis: Der Beweis ergibt sich mit den gleichen Argumenten wie in Korollar 6.28
und der Tatsache, dass

Z,=)Y k#{veG,:Z, =k} Pis
k=1

ist. O

Wir erinnern an die Notation aus D3 und setzen fiir n, g,k > 0

_#HvEG,  Zun=k)

Fk(”? q) : #G*
n+q

Da der Parasitenprozess (Z,),>0 subkritisch ist, sterben die Parasiten fast sicher aus.
Die Parasiten der n-ten Generation starten jeweils neue unabhéngige ZTPIZ mit je
einem Parasiten. Betrachtet man nun fiir groes ¢ die (n + ¢)-te Generation bedingt
unter dem Ereignis, dass Parasiten iiberlebt haben, so sollte durch den Drang zum
Aussterben nur noch einer, der in Generation n gestarteten Prozesse, infizierte Zellen
haben. (Fy(n, q))r>o bedingt unter { 2,4, > 0} sollte daher fir ¢ — oo in Verteilung
gegen eine Zufallsgrofe F' mit Werten in

A= {(zp)n>0 | xn € {0,1} fur alle n > 0, z, =1 fiir genau ein n > 0}

konvergieren. Diese Anschauung bestétigt das folgende Korollar. Da kein Parasit
gegeniiber den anderen ausgezeichnet ist, erhalten wir weiter, dass F' eine grofsen-
verzerrte Verteilung besitzt. Fiir grofenverzerrte Verteilung siehe (2.5).

Korollar 6.30. Fir alle n > 0 konvergiert (Fi(n,q))i>o auf S*(No) bedingt unter
{Z,+4 > 0} fiir ¢ — oo in Verteilung gegen eine Zufallsgrofse mit Werten in A. Diese
Grenzfolge konvergiert weiter in Verteilung fiir n — oo. Genauer gilt fir k > 0

#lveG,, : Zyn =k} _ ) _ EEN,
#warq E(Zk’zo k/Nk’)

lim lim P”+q(

n—00 g—00

Beweis: Zuerst sei festgehalten, dass 0 < E( Y, ., kNi) < 0o nach Satz 6.27 gilt.
Als néchstes beweisen wir die vor dem Korollar gemachte Anmerkung. Wir zeigen,
dass bei mehreren startenden ZTPIZ auf lange Sicht nur Nachkommen eines dieser
Prozesse iiberleben, wenn man darunter bedingt, dass iiberhaupt Parasiten iiber-
lebt haben. Seien dazu (Z,(1)),>0 und (Z,(2)),>0 zwei unabhéngige subkritische
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Parasitenprozesse. Dann erhalten wir
P(Z,(1) >0, Z,(2) > 0| Z,(1) + Z,(2) > 0)
= P(Z,(1) > 0] Z,(1) + Z,(2) > 0, Z,(2) > 0)
P(Z,(2) > 0| Z,(1) + Z,(2) > 0)
< P(Z2,(1)>0] Z,(2) >0)
= P(2,(1)>0)
== 0,

wobei in der vorletzten Zeile die Unabhéngigkeit der Prozesse und bei der Konver-
genz pg + p1 < 1 einging. Durch Induktion kann man dann zeigen, dass auch bei
beliebig vielen startenden Parasitenprozessen nur einer von diesen iiberlebt. Fiir den
Zellbaum bedeutet dies also, dass von den infizierten Zellen der n-ten Generation
nur noch die Nachkommenzellen einer dieser Zellen in Generation (n+¢) fir ¢ — oo
infiziert sind.

Wir setzen fiir n, k > 0

Gu(k) ={veG :Z,=k}

und sei weiter Gj (u) die Menge infizierter Zellen, welche von Zelle u € G, (k)

abstammen. Damit und mit dem zuvor Gezeigten erhalten wir die Gleichung

veGl  Zy, =k
e )
— lim ]pn-l—q( Z #{v € G;kl+q*: vln = u} _ 1)
L u€G;: Zu=k #Cntg

= lim P (#G, (k) > 0, #G,,(u) > 0 fiir cin u € G,(k)) (6.77)
= lim D P (#G (k) > 0, #G,(u) > 0 fiir ein u € G (k) | 2, = 2)

1

_ P"t(Z, = z)
= lim > PUHG,(u) > 0 fiir ein w € G, (k) | 2, = 2, #G,(k) = g)

9,221

P (#G, (k) =g | Z, = 2)P"(Z, = 2).

Unter P"*? fiir ¢ — oo gilt nun folgendes: Da kein Parasit gegeniiber den ande-
ren ausgezeichnet ist, iiberleben die Nachkommen eines bestimmten Parasiten der
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6.3 Subkritischer Parasitenprozess, D

n-ten Generation mit Wahrscheinlichkeit %, wenn Z, = z gilt. Fiir eine Zelle mit
k Parasiten bedeutet dies, dass mit Wahrscheinlichkeit g die infizierten Zellen von
dieser Zelle abstammen. Gibt es nun g Zellen mit k Parasiten, so sind die Nachkom-
menzellen einer dieser Zellen mit Wahrscheinlichkeit % immer noch infiziert. Es gilt
also

lim P*"(#G;, (u) > 0 fiir ein u € G, (k) | Z, = z, #G,(k) =g) = %. (6.78)

g—o0 ntq
Nach Satz 2.12 erhalten wir weiter

z
lim P"*9(Z, = 2) = —P(Z, = 2). .
Jim P2 = 2) = P20 = 2) (6.79)

Da das Uberleben von Parasiten unabhéngig von der derzeitigen Verteilung auf die
Zellen ist, folgt fiir den noch verbliebenen Term der letzten Zeile aus (6.77)

P #Gn (k) = g | 20 = 2)
. ]P)(#gn(k:) =9, Zn =z, Zn+q > O)
- P(Z, = 2, Znrg > 0)
_ g, 2= o) P> O #G:(F) = 9. 20 = 2)
- P(#gn<k> =9, Zn - ’Z) ]P(Zn =z, Zn+q > 0)
B B P2 >0 2, =2)
- P(#gn(k) =9, Zn - Z) ]P)(Zn =z, ZnJrq > O)
= P(#Gu(k) =g | 20 = 2).
Aus (6.77), (6.78), (6.79) und (6.80) erhalten wir somit

(6.80)

' #{v € G, : Zyp =k}
-+ q _
Jim (S 1)
I _ _ -
= Zl SP#G.(0) = g | 20 = 2)g=P(20 = 2)
k
= 55 O B#G.(K) =g | .= 2)B(Z, = 2)
" gz>1
k n _
_ EZnP(Z" > 0) g;gIP’ (#Gn(k) = 9)

k n
= 5 E#G.K)

Damit ware die erste Behauptung des Korollars bewiesen.
Die zweite Behauptung ergibt sich dann aus Satz 6.27 und Korollar 6.29, denn

L REM#G(R) _ KE(N)
n— o0 EnZn E<Zk/zo Nk/) .
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7 Ausblick

Fiir die mathematische Beschreibung der Vermehrung von Parasiten und deren Ver-
teilung auf sich teilende Zellen war das in dieser Arbeit betrachtete Zellteilungsmo-
dell infizierter Zellen eine gute erste Version. Wir haben durch die in dieser Arbeit
erzielten Resultate einen ersten mathematischen Einblick in diesen biologischen Pro-
zess gewonnen. So erhielten wir im vierten Kapitel Bedingungen, unter denen sich
ein infizierter Organismus fast sicher erholt, sowie im fiinften Kapitel Aussagen iiber
das Langzeitverhalten infizierter Zellen und deren Verteilung auf den Zellbaum. Das
sechste Kapitel lieferte uns dann Informationen iiber die Verteilung der Parasiten
auf die Zellen. Trotzdem bleiben noch einige Fragen offen.

So ist vor allem das Konvergenzverhalten von Fj(n) im Fall Dy noch nicht be-
friedigend geklart worden. Wir wissen zwar, dass die Anzahl infizierter Zellen bei
fortlaufender Zeit exponentiell wichst, haben aber dadurch noch wenig Informatio-
nen iiber die Verteilung der Parasiten auf die Zellen gewonnen. Wir vermuten, dass
im Fall eines kritischen PZZ die schwach infizierten Zellen vernachlassighar werden.
Aber auch in den Fillen aus Kapitel 6, in denen wir schon Ergebnisse iiber die Vertei-
lung der Parasiten auf die Zellen erzielt haben, bestehen noch Moglichkeiten, diese
zu verbessern. So sollte genauer untersucht werden, ob die in diesen Abschnitten
gezeigten Konvergenzarten sich nicht verschérfen lassen. Konvergiert zum Beispiel
Fi(n) nicht sogar P*-f.s. gegen P() = k) im Fall D37

Auch in den Kapiteln 4 und 5 gibt es noch interessante, weiterfithrende Fragestel-
lungen. Nach den Ergebnissen des vierten Kapitels konvergiert #G? /2" fast sicher
gegen eine Zufallsgrofe L € [0, 1], die genau dann fast sicher verschwindet, wenn
top1 < 1 ist. Doch wie sieht die Verteilung oder Laplace-Transformierte von L im
Fall popq > 1 aus? Auch ist Satz 5.6 im fiinften Kapitel fiir den Fall pou; < 1 und
P(X©® < 1) = 1 noch nicht bewiesen. Verteilen sich in diesem Fall die infizierten
Zellen iiber den gesamten Zellbaum oder sind sie in endlich vielen Zelllinien konzen-
triert?

Dass das Zellteilungsmodell infizierter Zellen nicht das Maf aller Dinge ist, wird
schnell klar. So teilen sich in realen biologischen Systemen nicht alle Zellen zur glei-
chen Zeit. Eine verniinftige Erweiterung des in dieser Arbeit betrachteten Modell ist
demnach die Einfithrung einer exponentialverteilten Lebenszeit der Zellen. Geschieht
dies, so erhélt man das in der Einleitung kurz vorgestellte Modell von Kimmel [16]
mit dem Unterschied, dass die Verteilung der Parasiten auf die Tochterzellen nicht
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symmetrisch erfolgen muss, d.h. (X(©@ X)) < (XM X©) nicht unbedingt gilt. In
wie weit lassen sich die in dieser Arbeit bewiesenen Sdtze auf das zeitstetige Mo-
dell iibertragen? Man wiirde auf diese Weise die von Kimmel erzielten Resultate
verallgemeinern und erweitern.

Nun ist ein Organismus kein geschlossenes System und neue Parasiten konnen je-
derzeit Zellen infiltrieren. Eine andere mogliche Erweiterung des Zellteilungsmodells
ist daher die Hinzunahme der Immigration. Neben den schon in einer Zelle vor-
handenen Parasiten konnen dann zu jedem Zeitpunkt neue Parasiten geméfs einer
Verteilung () immigrieren. Nachdem diese in die Zelle eingedrungen sind, verhalten
sie sich genauso wie die schon im Organismus befindlichen Parasiten und vermehren
sich gemif P(X© + XM ¢ .). Der Prozess Z, ist in diesem Modell ein Galton-
Watson-Prozess mit Immigration. Kann man im Immigrationsmodell dhnliche Re-
sultate, zu denen in dieser Arbeit gezeigten, herleiten? Dass sich die hier bewiesenen
Satze nicht so einfach auf das Immigrationsmodell {ibertragen lassen, sollte sofort
einleuchten. Gilt ndmlich @) # dy, so sind die beiden Modelle verschieden und es kon-
nen in jeder Generation neue Parasiten auch in gesunde Zellen eindringen. Selbst
wenn die Parasiten eines Organismus schon ausgestorben sind, konnen neue diesen
wieder infizieren. Dadurch kann ein Organismus sich nie fast sicher erholen. Es ist
daher zu erwarten, dass im Zellteilungsmodell mit Immigration viel Ergebnisse von
den hier gezeigten abweichen werde.
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A Anhang

Im Anhang geben wir in den ersten beiden Abschnitten A.1 und A.2 einen kleinen
Einblick in die Theorie der Markov-Ketten und der gleichgradigen Integrierbarkeit.
Wir beschrinken uns jedoch nur auf die von uns in dieser Arbeit bendtigten Defini-
tionen und Sétze. Fiir weiterfithrende Diskussionen zu diesen Themen siehe [5] und
[6]. In Abschnitt A.3 geben wir die im 2. Kapitel angekiindigten zwei Sétze iiber das
asymptotische Verhalten moderat und schwach subkritischer GWPZVU an. Auch
findet sich hier der im 4. Kapitel und im Abschnitt 6.1.3 benétigte Satz iiber den
kritischen GWPZVU. Weiter zeigen wir dann, dass der ZTPIZ die Voraussetzungen
dieser Sétze erfiillt. Den Abschluss des Anhangs bildet der Abschnitt A.4 mit einer
kurzen Einfiihrung in die in Abschnitt 6.3 bendtigte schwache Topologie auf dem
Raum der Verteilungen.

A.1 Markov-Ketten

Eine Markov-Kette ist eine stochastische Folge von Zufallsgréften, die eine einfa-
che Abhéngigkeitsstruktur aufweisen. Bedingt unter der Vergangenheit, héngt das
Verhalten einer Markov-Kette immer nur vom aktuellen Zustand ab. Hier die genaue

Definition A.1. (a) Eine stochastische Folge (M,,),>0 von Zufallsgrofen mit Wer-
ten in (S, &) heikt Markov-Kette (MK), falls sie die Markov-Eigenschaft,

P(Mys1 € - | My, o, M) = P(Mysy € - | M) P-fs.
fiir alle n > 0, besitzt.
(b) Eine MK heift (zeitlich) homogen, wenn fiir alle n > 0 und s € S
P(My1€-| M,=5s)=P(M, €| My=s) P-fs.
gilt.

Die erste Frage, die man sich stellen sollte, ist, ob die Markov-Eigenschaft nicht nur
bei fest gewéhlten sondern vielleicht sogar bei zufélligen Zeitpunkten giiltig bleibt.
Dies ist in vielen Situationen richtig. Man nennt diese Eigenschaft sinngeméfs die
starke Markov-FEigenschaft. Bevor wir aber zu dieser Eigenschaft kommen konnen,
benotigen wir die Definition der Stoppzeit.
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A.1 Markov-Ketten

Definition A.2. Sei (€2, .A) ein mefbarer Raum.

(a) Eine aufsteigende Folge (F,)n>0 von Unter-o-Algebren von A heifst Filtration
von (2, A).

(b) Sei (M,)n>o eine MK. Die Filtration (O'(Mo, e Mn))n>0 heillt kanonische Fil-
tration bzgl. (M,)n>0. -

(c¢) Eine mefsbare Abbildung 7 : Q — NoU{oo} heit Stoppzeit bzgl. der Filtration
(Fn)n>0, wenn {7 = n} € F, fiir alle n > 0 gilt.

Fiir eine Markov-Kette gilt die starke Markov-Eigenschaft bei Stoppzeiten bzgl.
der kanonischen Filtration.

Satz A.3. (starke Markov-FEigenschaft) (vgl. [4], Satz 4.3)
Sei (My)n>0 eine MK. Fir jede Stoppzeit T bzgl. der kanonischen Filtration von
(My)n>0 gilt die starke Markov-Eigenschaft

P((Myin)nzo € - | Mo, ..., My, 7 <00) = P((Mrin)azo € | My, 7 < 00) P-fs..

Anstelle die Markov-Kette mit einer linearen Zeit zu indizieren, kann man auch
eine Markov-Kette auf einem Baum betrachten, wie zum Beispiel den Zellteilungs-
prozess infizierter Zellen. Wir geben hier die Definition einer solchen Markov-Kette
an. Fir die benétigten graphentheoretischen Ausdriicke siche [14].

Definition A.4. (Markov-Kette indiziert durch einen Baum)

(a) Unter einem Baum verstehen wir einen unendlichen, lokal endlichen, zusammen-
héngenden ungerichteten Graphen (7', ), welcher einen ausgezeichneten Knoten
@ € T (Wurzel) und keine Kreise enthiélt.

Fiir 0 € T existiert ein eindeutiger Pfad von @ nach o, und sei |o| seine Lénge.
Ferner schreiben wir 7 < o, falls der Knoten 7 € T auf diesem eindeutigen Pfad
liegt. 7 wird auch Vorfahre von o genannt.

Weiter bezeichnet o A 7 den ersten gemeinsamen Vorfahren von ¢ und 7, also
den am weitesten von @ entferntesten Knoten p, der p < o und p < 7 erfiillt.

(b) Sei (7, FE) ein Baum. Eine Familie (M, ),er mit Werten in (S, &) heifst Markov-
Kette indiziert durch T, falls fiir alle 0 € T

PM,e-|M,:7TNoc<5) = P(M, €| M;) P-fs.

gilt, wobei ¢ € T der eindeutige Knoten mit den Eigenschaften ¢ < ¢ und
|o| = |o] — 1 ist.
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A Anhang

A.2 Gleichgradige Integrierbarkeit
Konvergiert eine Folge von Zufallsgrofen (X,,),>o in Verteilung gegen eine Zufalls-
groke X, so folgt im Allgemeinen nicht die Konvergenz der Erwartungswerte. Eine

hinreichende sowie notwendige Bedingung hierfiir bildet jedoch die gleichgradige
Integrierbarkeit, die wie folgt definiert ist.

Definition A.5. Eine Folge (X,,),>0 von Zufallsgrofen auf einem Wahrscheinlich-
keitsraum (€2, .4, P) heilt gleichgradig integrierbar (g.i.), falls

lim sup/ | X| dP =0
{IXn|>a}

a—00 p>(0
gilt.
Wir geben nun einige dquivalente und hinreichende Bedingungen fiir die gleich-
gradige Integrierbarkeit und die oben angesprochene Aquivalenz der gleichgradigen

Integrierbarkeit mit der Konvergenz der Erwartungswerte im Fall verteilungskonver-
genter Zufallsgrofsen an. Fiir ausfiihrlichere Ergebnisse siehe [5].

Satz A.6. (vgl. [5], Satz 50.2 und Korollar 50.3)
Sei (X,)n>0 eine Folge von Zufallsgrifsen. Dann gilt:

(i) (Xpn)n>o0 ist genau dann g.i., wenn fir jede absteigende Nullfolge (Ap)m>0 C A
lim,;, o0 SUP, >0 fAm | X| dP = 0 und sup,,>o E|X,| < oo gilt.

(ii) Ist X,, <Y, fir allen > 0 und (Y,)n>o0 €ine g.i. Folge von Zufallsgrifien, so
15t (Xn)nZO gl

(111) Ist (X,)n>0 Lp-beschrinkt fir ein p > 1, so ist (X,,)n>0 .4

Satz A.7. (vgl. [5], Satz 50.5)

Gilt X, N X, dann sind dquivalent:
(Z) (Xn)nZO ist gl
(ii) E|X,| < oo fir allen > 0, E|X| < co und lim,, ., E|X,| = E|X]|.

Aus (i) und (ii) folgt insbesondere lim,, .., EX, = EX.
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A.3 Moderat und schwach subkritischer sowie kritischer GWPZVU

A.3 Der Galton-Watson-Prozess in zufillig
variierenden Umgebungen: Der moderat und
schwach subkritische und kritische Fall

Mit der Notation aus Abschnitt 2.2 gelten die folgenden Sétze iiber moderat und
schwach subkritische sowie kritische GWPZVU mit u.i.v. Umgebungsfolge.

Satz A.8. (moderat subkritischer Fall) (vgl. [12], Satz 1.2)
Sei (Zp)n>o ein moderat subkritischer GWPZVU mit unabhdngiger, identisch ver-
teilter Umgebungsfolge U mit

E(pu log” puy ) < 0o und E((1+ log~ uul)fzi;l(l)) < 0.

Dann gilt

n—00 Co
P(Z, > 0) "~ =
it

fiir ein cy € (0,00). Des Weiteren existieren bo(k) € [0,1], k > 1, mit

lim P(Z, = k | Z, > 0) = by(k), k> 1,

n—oo

und Y oo bo(k) =1

Satz A.9. (schwach subkritischer Fall) (vgl. [12], Satz 1.3)
Sei (Zp)n>o ein schwach subkritischer GWPZVU mit unabhdngiger, identisch ver-
teilter Umgebungsfolge U mit

E(p log ) < oo

Nehme weiter an, dass

fru (1)

)<oo und E<(Mu1)

) <o

i
(( (1)

fa )t~
gilt, wobei o € [0,1] mit v = E((f, (1)), 7 := infoco<1 E((f, (1))?) < (1 AEZ))
1st. Dann gilt

n—00 C n
P(Z, > 0) "= ﬁy

fir ein c3 € (0,00). Des Weiteren existieren bs(k) € [0,1], k > 1, mit

lim P(Z, =k | Z, > 0) = bs(k), k> 1,

n—oo

und Y77, bs(k) = 1.
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A Anhang

Wir geben den folgenden Satz tiber kritische GWPZVU mit u.i.v. Umgebungsfolge
nur in einer fiir uns ausreichenden Form an. Fiir allgemeinere Resultate siehe [1] und
[17].

Satz A.10. (vgl. [1], Korollar 1.2 und Satz 1.3)
Sei (Zn)n>o €in kritischer GWPZVU mit unabhdngiger, identisch verteilter Umge-
bungsfolge U mit

0 < E(log® iy, ) < o0

und
1

(Hs, )?

fiir ein x € Ng und d € (0,00). Dann existieren Konstanten ¢ € (0,00) und p € (0,1)
sowie eine Funktion [ : (0,00) — (0,00) mit lim,_, l(an)/l(n) = 1 fir alle a > 0,
sodass gilt

E(Xiln{xl,lzm} |U)<d P-fs.

P(Z, > 0) "~ en~1=PI(n).

Weiter folgt unter den obigen Annahmen

Zn w
P(EZn €| Z">O> — @

wobei Q) eine Verteilung mit Q((O, oo)) =1 ist.

Wir kommen zuriick zum ZTPIZ und zeigen, dass die Ergebnisse der drei obigen
Séatze auch fiir einen kritischen oder moderat bzw. schwach subkritischen PZZ gelten.

Korollar A.11. Gilt E(X@?) < 0o, a € {0,1}, so erfiillt ein moderat bzw. schwach
subkritischer PZZ (Zjy))n>o die Voraussetzungen der Sitze A.8 bzw. A.9. Gilt zu-
sdtzlich noch (po, p1) # (1,1), so erfillt ein kritischer PZZ Satz A.10.

Beweis: Fiir den moderat subkritischen Fall betrachte

E(pias, log? pug,) = %(Mo log? 1o + 11 1og” 1) (A1)
und
E((1+1log™ pun) fiy, (1)
= (1 +1og™ 1) fo (1) + (1 +log™ ) 1 (1)) (A.2)

(14 log™ o) ECXO(X© = 1)) + (1 + log™ p) (XD (XD —1))).

N~ N~

Aufgrung von (1.3) und E(X@?) < 0o, a € {0,1}, sind beide obigen Erwartungs-
werte (A.1) und (A.2) endlich. Damit sind die Voraussetzungen fiir den moderat
subkritischen Fall erfiillt.
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A .4 Moderat und schwach subkritischer sowie kritischer GWPZVU

Die Voraussetzungen fiir den schwach subkritischen Fall sind ebenfalls erfiillt, denn
fiir k € {1,2} gilt wieder wegen (1.3) und E(X@?) < o0, a € {0,1},

E(M) 3 }(fé’(l)Jrf{'(l))

e, AV
O LEXOXO—1))  EXD(XD 1))
s )
< o0

Auch die Voraussetzungen im kritischen Fall gelten, denn aufgrund von (1.3) und
(1o, 1) # (1,1) gilt

1
0 < E(log? my,) = §(log2uo+log2u1) < 00.

Da der PZZ nur zwei Umgebungen hat, folgt fiir x =0

1 1 1
(,UZ/{ )QE(X(UI)Q]I{X(%)ZQ}) S EE(X(OW) + ?E(X(lp) < oo [P-fs.
1 0 1
nach Voraussetzung und (1.3). O

A.4 Schwache Topologie im Raum der
Verteilungen

Die Ergebnisse dieses Abschnittes sind entnommen aus [18].
Sei X ein metrischer Raum und By die Borelsche o-Algebra auf X. Weiter be-
zeichne

W(X):={P:Bx —[0,1] | P(X) =1, P o-additiv}
die Menge der Wahrscheinlichkeitsmafe auf X und

C(X):={f: X — R f ist beschriankt und stetig}

die Menge der stetigen, beschrinkten, reellen Funktionen auf X.
Die offenen Umgebungen einer Verteilung P € 20(.X) sind von der Form

Vp(fl,...,fk,el,...,sk):{QGQﬂ(X) : ‘/fidP—/fidQ‘<ei, z:lk}

fir f1,...,fr € C(X) und €q,...,e, > 0. Die durch diese offenen Umgebungen
erzeugte Topologie auf 2J(X) bezeichnet man als schwache Topologie.
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A Anhang

Eine Folge von Verteilungen (P,),>1 € 20(X) konvergiert dann bzgl. der schwa-

chen Topologie oder schwach gegen P € 25(X), in Zeichen P, — P, genau dann,
wenn fiir alle f € C(X) gilt

lim tmgf:/fwé

Ist X =R bzw. X =R", n > 1, dann erhalten wir die wohlbekannte Definition der
schwachen Konvergenz von Verteilungen auf den reellen Zahlen.

Satz A.12. (vgl. [18], Satz 6.2)
W(X) kann metrisiert werden zu einem separablen, metrischen Raum genau dann,
wenn X ein separabler, metrischer Raum ist.

Satz A.13. (vgl. [18], Satz 6.5)
Sei X ein separabler, metrischer Raum. Dann ist 20(X) vollstindig genau dann,
wenn X vollstdindig ist.

Bemerkung A.14. Die geméif Satz A.12 induzierte Metrik d auf 20(X) ist gegeben
durch

d(P,Q) = sup {‘ /fdP — /fdQ‘ S flleo < 1, f gleichmékig stetig}

fur P,Q € W(X).
Fiir eine Folge (P,)n>0 € W(X) und P € W(X) gilt also

P, P & lim d(P,, P) =0.

n—0o0
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