
Westfälische Wilhelms-Universität Münster

Institut für Mathematische Statistik

Ein Modell zur Parasitenvermehrung

in sich teilenden Zellen

Diplomarbeit

von

Sören Gröttrup

b b

b

b
b

b

b
b

b

b

b

b
b

b
b

b

b

b

b

b

b

16. September 2009





Westfälische Wilhelms-Universität Münster

Institut für Mathematische Statistik

Ein Modell zur Parasitenvermehrung

in sich teilenden Zellen

Diplomarbeit

von

Sören Gröttrup

Betreut durch

Prof. Dr. Gerold Alsmeyer

16. September 2009



ii



Inhaltsverzeichnis

Einleitung 1

1 Das Zellteilungsmodell infizierter Zellen 3

2 Der Galton-Watson-Prozess 7

2.1 Der einfache Galton-Watson-Prozess . . . . . . . . . . . . . . . . . . 7
2.1.1 Modellbeschreibung . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Erzeugende Funktion und Aussterbewahrscheinlichkeit . . . . 8
2.1.3 Grenzwertsätze . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Der Galton-Watson-Prozess in zufällig variierenden Umgebungen . . . 13
2.2.1 Modellbeschreibung . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Grenzwertsätze . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Zwei wichtige Prozesse und erste Eigenschaften 18

3.1 Der Parasitenprozess . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Der Prozess einer zufälligen Zelllinie . . . . . . . . . . . . . . . . . . . 19

4 Erholungswahrscheinlichkeit 26

5 Baum infizierter Zellen 30

6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten 40

6.1 Superkritischer Parasitenprozess . . . . . . . . . . . . . . . . . . . . . 42
6.1.1 Superkritischer Prozess einer zufälligen Zelllinie, D5 . . . . . . 42
6.1.2 Stark subkritischer Prozess einer zufälligen Zelllinie, D3 . . . . 44
6.1.3 Kritischer und nicht stark subkritischer Prozess einer zufälli-

gen Zelllinie, D4 . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2 Kritischer Parasitenprozess, D2 . . . . . . . . . . . . . . . . . . . . . 73
6.3 Subkritischer Parasitenprozess, D1 . . . . . . . . . . . . . . . . . . . 85

7 Ausblick 98

A Anhang 100

Literaturverzeichnis 107

iii



iv



Einleitung

Ziel dieser Arbeit ist es, den biologischen Prozess der Vermehrung von Parasiten
und deren Verteilung auf sich teilende Zellen in einem mathematischen Modell zu
beschreiben. Anstatt von Parasiten kann auch allgemeiner von biologischen Zellkom-
ponenten, wie zum Beispiel Mitochondrien, ausgegangen werden.

Eines der ersten Modelle zur Beschreibung des obigen Prozesses wurde von Kim-
mel [16] eingeführt. In seinem Modell lebt jede Zelle eine exponentialverteilte Le-
benszeit. Am Ende einer Lebenszeit teilt sich die Zelle dann in zwei Tochterzellen.
In jeder Zelle befindet sich weiter eine Anzahl von Parasiten, welche sich am Ende
der Lebenszeit der Zelle unabhängig und gemäß der gleichen Verteilung vermehren.
Die Nachkommen eines Parasiten verteilen sich dann unabhängig von den Nachkom-
men der anderen Parasiten auf die beiden Tochterzellen. Diese Verteilung geschieht
symmetrisch, d.h. geben X(0) und X(1) die Anzahl der Nachkommen eines Parasiten

an, die in die erste und zweite Tochterzelle gehen, so gilt (X(0), X(1))
d
= (X(1), X(0)).

In dieser Arbeit untersuchen wir ein anderes, von Bansaye [10] aufgestelltes sto-
chastisches Modell. Obwohl stark angelehnt an das Modell von Kimmel, unterschei-
det sich das hier betrachtete Modell in zwei entscheidenden Merkmalen. Als erstes
nehmen wir einen eher genealogischen Standpunkt ein und betrachten die Zellen ge-
nerationsweise. Wir haben also statt einer stetigen eine diskrete Zeit vorliegen und
nehmen an, dass sich jede Zelle in jeder Generation in zwei Tochterzellen aufspaltet.
Der andere wichtige Unterschied besteht in der Annahme, dass sich die Nachkommen
der Parasiten nicht symmetrisch auf die beiden Tochterzellen verteilen müssen. X(0)

und X(1) können also durchaus verschiedene Verteilungen besitzen. In dieser allge-
meinerern Situation wollen wir keinerlei spezielle Anforderungen an die Verteilung
der Parasiten auf die Tochterzellen geben. Beibehalten wird jedoch, dass sich die
Parasiten in einer Zelle unabhängig und gemäß der gleichen Verteilung vermehren.
In der Tat ist die Annahme, dass X(0) und X(1) nicht unbedingt identisch verteilt
sein müssen, durchaus vernünftig. Dies wurde bei einem Experiment am Bakterium
Escherichia coli in TaMaRa’s Laboratorium festgestellt (siehe [13] und [20]).

Nach einer ausführlichen Einführung in das hier betrachtete Zellteilungsmodell
infizierter Zellen, geben wir im zweiten Kapitel einige wichtige Resultate aus dem
Gebiet der Galton-Watson-Prozesse (GWP) und Galton-Watson-Prozesse in zufällig
variierenden Umgebungen (GWPZVU) an. Der enge Zusammenhang zwischen dem
Zellteilungsmodell infizierter Zellen und den GWP und GWPZVU ist nicht schwer
zu erkennen. So bildet zum Beispiel der Prozess (Zn)n≥0, welcher die Anzahl der
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Einleitung

Parasiten in jeder Generation angibt, einen GWP. Neben (Zn)n≥0 betrachten wir
auch den Prozess einer zufälligen Zelllinie (Z[n])n≥0 und wie sich herausstellt, ist
dies ein Galton-Watson-Prozess in zufällig variierenden Umgebungen. Die Theorie
der GWP und GWPZVU ist also unser Hauptinstrument bei der Untersuchung
des Zellteilungsmodells und der eben genannten Prozesse. Diese beiden Prozesse
definieren wir im dritten Kapitel genauer und wenden die Eigenschaften der GWP
und GWPZVU aus dem zweiten Kapitel auf diese an. Wir erhalten erste Resultate
für das Zellteilungsmodell.

Ist die Verteilung der Parasiten auf die Tochterzellen stark asymmetrisch, so ent-
stehen viele schwach infizierte oder sogar gesunde Zellen. Daraus ergeben sich fol-
gende Fragen: In welchen Fällen entstehen so viele gesunde Zellen, dass man von
einem sich erholenden Organismus sprechen kann? Welche Bedingungen müssen an
die Vermehrungsrate der Parasiten und deren Verteilung auf die Tochterzellen ge-
knüpft werden, damit sich ein infizierter Organismus regeneriert? Mit dieser Frage
beschäftigt sich das vierte Kapitel. Wir geben Kriterien an, unter denen sich ein
infizierter Organismus fast sicher erholt. Mit Hilfe dieser Kriterien sehen wir dann,
wie ungleichmäßig sich die Parasiten auf die Tochterzellen verteilen müssen, damit
dieser sich fast sicher regeneriert.

Im fünften Kapitel befassen wir uns mit dem Baum infizierter Zellen. Sterben die
Parasiten nicht aus, so explodiert deren Anzahl nach der Theorie der GWP. Besitzt
also das Ereignis Extc des Überlebens der Parasiten eine positive Wahrscheinlichkeit,
so gilt P(Zn → ∞ | Extc) = 1. Eine natürliche Frage, die sich daraus ergibt, ist, ob
auch die Anzahl der infizierten Zellen #G∗

n in diesem Fall gegen unendlich strebt. Im
fünften Kapitel beantworten wir diese Frage positiv. Insbesondere zeigen wir damit,
dass sich infizierte Zellen über den gesamten Zellbaum verteilen und somit nicht in
einer Zelllinie konzentriert sind. Dieses Resultat gilt auch im Fall P(Extc) = 0, wie
wir danach sehen werden.

Mit dem asymptotischen Verhältnis Fk(n) infizierter Zellen mit einer bestimmten
Anzahl k an Parasiten zur Gesamtanzahl infizierter Zellen #G∗

n befasst sich dann
das sechste und letzte Kapitel. Dies wird den größten Umfang der Arbeit in An-
spruch nehmen, da das asymptotische Verhalten von Fk(n) stark vom Verhalten der
Prozesse Zn und Z[n] abhängt. Wir müssen hier daher mehrere Fälle unterscheiden,
in denen wir Fk(n) untersuchen und unterschiedliche Konvergenzen zeigen. Insbe-
sondere erhalten wir dadurch auch das asymptotische Verhalten von #G∗

n.

Ich danke Herrn Prof. Dr. Gerold Alsmeyer für die Bereitstellung dieses inter-
essanten Themas und die Betreuung während der Anfertigung meiner Diplomarbeit.
Weiter danke ich meinen Eltern, die mich während meines Studiums wohlwollend
unterstützt haben. Mein besonderer Dank gilt auch Andrea Winkler und allen an-
deren, die mich in meiner Studiums- und Diplomzeit begleitet haben.
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1 Das Zellteilungsmodell

infizierter Zellen

In diesem ersten Kapitel beschreiben wir das Zellteilungsmodell infizierter Zellen,
welches wir in dieser Arbeit behandeln werden. Wir stellen es uns wie folgt vor:
Man startet mit einer Zelle, die eine Anzahl von Parasiten enthält. Jeder Parasit in
der Zelle vermehrt sich unabhängig von den anderen gemäß der gleichen Verteilung.
Danach spaltet sich die Zelle in zwei Tochterzellen und die Nachkommen eines Para-
siten verteilen sich unabhängig von den Nachkommen der anderen Parasiten auf die
beiden Tochterzellen. Die so entstandenen Tochterzellen bilden die neue Generati-
on. Alle Zellen der neuen Generation und deren Parasiten verhalten sich unabhängig
voneinander in derselben Weise, wie oben beschrieben.

Zusammengefasst machen wir also für das Zellteilungsmodell infizierter Zellen die
folgenden vier Annahmen:

(1) Wir starten mit einer Zelle, die eine beliebige Anzahl an Parasiten enthält.

(2) Alle Parasiten vermehren sich unabhängig und gemäß der gleichen Verteilung
voneinander.

(3) Jede Zelle spaltet sich in zwei Tochterzellen.

(4) Die Nachkommen eines Parasiten verteilen sich unabhängig von den Nachkom-
men der anderen Parasiten auf die Tochterzellen.

Wenden wir uns zuerst den Zellen zu. Da sich jede einzelne Zelle in jeder Genera-
tion in genau zwei Zellen aufspaltet, definieren wir den Zellbaum wie folgt:

Definition 1.1. (a) Für jedes n ∈ N bezeichnet

Gn := {0, 1}n

die Menge der Zellen der n-ten Generation und {∅} := G0 die Wurzel des
Zellbaums. Wir bezeichnen dann mit

T :=
⋃

n≥0

Gn

den Zellbaum.
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1 Das Zellteilungsmodell infizierter Zellen

(b) Für v ∈ T und n ∈ N0 sei Pv die Menge der Parasiten in der v-ten Zelle und

P(n) :=
⋃

v∈Gn

Pv bzw. P :=
⋃

v∈T

Pv

die Menge der Parasiten der n-ten Generation bzw. die Menge aller Parasiten.

(c) Für v ∈ T definieren wir mit

G
∗
n := {v ∈ Gn : Pv 6= ∅}

die Menge der infizierten Zellen der n-ten Generation.

Zwecks Übersichtlichkeit schreiben wir v1v2...vn statt (v1, v2, ..., vn) für jedes Ele-
ment aus T. Ist u = u1...un und v = v1...vm, so schreiben wir uv für die Zelle
u1...unv1...vm. u ist also die Zelle der n-ten Generation in der Zelllinie von ∅ nach
uv.

Für die Beschreibung der Parasitenvermehrung und -verteilung auf die Toch-
terzellen seien zwei Zufallsgrößen X(0) und X(1) mit Werten in N0 gegeben, wel-
che nicht unbedingt unabhängig sein müssen. In jeder Generation vermehrt sich
dann jeder Parasit unabhängig von den anderen gemäß der Reproduktionsvertei-
lung P(X(0) +X(1) ∈ ·). Dabei gibt X(0) bzw. X(1) die Anzahl der Nachkommen an,
die nach der Zellteilung in die erste bzw. zweite Tochterzelle gehen. Dies verdeutlicht
Abbildung 1.1.
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Abbildung 1.1: Parasitenvermehrung bei der Zellteilung.
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1 Das Zellteilungsmodell infizierter Zellen

Sei Zv = #Pv, v ∈ T, die Anzahl der Parasiten der v-ten Zelle und gebe X
(0)
v,k bzw.

X
(1)
v,k , 1 ≤ k ≤ Zv, die Anzahl der Nachkommen des k-ten Parasiten der v-ten Zelle

an, die in die erste bzw. zweite Tochterzelle gehen. Die Anzahl der Parasiten der
ersten Tochterzelle Zv0 der Zelle v ist dann folglich die Summe der X

(0)
v,k , 1 ≤ k ≤ Zv.

Analoges gilt für die Anzahl der Parasiten der zweiten Tochterzelle Zv1. Damit
definieren wir also den Zellteilungsprozess infizierter Zellen wie folgt:

Definition 1.2. Seien (X(0), X(1)) und Z∅ Zufallsgrößen mit Werten in N2
0 bzw.

N0 und T ein Zellbaum. Seien weiter (X
(0)
v,k , X

(1)
v,k)v∈T,k∈N unabhängige Kopien von

(X(0), X(1)), welche außerdem unabhängig von Z∅ sind. Dann ist der Zellteilungs-
prozess infizierter Zellen (ZTPIZ) (Zv)v∈T durch die folgende Abhängigkeitsstruktur
gegeben:

(Zv0, Zv1) =

Zv∑

k=1

(X
(0)
v,k , X

(1)
v,k) (1.1)

für v ∈ T.

Wie man sofort sieht, ist (Zv)v∈T nach Definition eine Markov-Kette indiziert
durch einen Baum (s. Anh., Def. A.4), da die Anzahl der Parasiten einer Zelle nur
von der Anzahl der Parasiten in deren Mutterzelle abhängt.

Weiter betten wir den ZTPIZ in ein sogenanntes Standardmodell

(Ω,A, (Pj)j∈N0, (X
(0)
v,k , X

(1)
v,k)v∈T,k∈N, (Zv)v∈T)

ein. Auf (Ω,A) seien dann Wahrscheinlichkeitsmaße Pj , j ∈ N0, sowie Zufallsgrößen
Z∅ ∈ N0 und (X

(0)
v,k , X

(1)
v,k), v ∈ T, k ∈ N, mit Werten in N

2
0 gegeben. Unter jedem

Pj seien die (X
(0)
v,k , X

(1)
v,k) stochastisch unabhängig und identisch verteilt und es gilt

Pj(Z∅ = j) = 1. Unter Pj startet der Prozess also mit einer Zelle, die j Parasiten
enthält. Die Zv, v ∈ T, seien dann rekursiv definiert wie in (1.1). Der Übersicht
halber setzen wir P1 = P. Zur Existenz eines Standardmodells siehe Kapitel I.2 in
[6]. Sei von nun an ein ZTPIZ immer in einem solchen Standardmodell gegeben.

Werfen wir nochmal einen kurzen Blick auf den Zellbaum. Betrachten wir die Zel-
len der n-ten Generation, so kann man jede dieser Zellen als Wurzel eines Teilbaums
des gesamten Zellbaums auffassen. Die Struktur eines jeden Teilbaums entspricht
aber der des gesamten Zellbaums. Aufgrund des unabhängigen Verhaltens der Para-
siten startet jede Zelle der n-ten Generation somit einen neuen ZTPIZ. Diese neuen
Prozesse sind unabhängig voneinander. Dies halten wir kurz im folgenden Satz fest.

Satz 1.3. Sei (Zv)v∈T ein ZTPIZ. Jede Zelle v ∈ T startet bedingt unter Zv = z
einen neuen ZTPIZ aus einer Zelle mit z Parasiten, deren Vermehrungsverhalten
durch (X(0), X(1)) gegeben ist. Bedingt unter {Zv = zv : v ∈ Gn} sind die so aus der
n-ten Generation startenden Prozesse unabhängig voneinander. Insbesondere gilt im
Standardmodell für w = uv ∈ Gn, n ∈ N0, und j, k ≥ 0

Pj(Zw ∈ · | Zu = k) = Pk(Zv ∈ · ) Pj-f.s.. (1.2)

5



1 Das Zellteilungsmodell infizierter Zellen

Beweis: Sei u ∈ T. Wir definieren Z̃∅ := Zu und (Z̃v0, Z̃v1) := (Zuv0, Zuv1) für
v ∈ T. Damit ist der Prozess (Z̃v)v∈T bedingt unter Zu = z ein ZTPIZ startend
mit einer Zelle und z Parasiten. Die so in der n-ten Generation startenden Prozesse
sind aufgrund der Unabhängigkeit der (X

(0)
v,k , X

(1)
v,k), v ∈ T, k ≥ 1, bedingt unter

{Zv = zv : v ∈ Gn} unabhängig voneinander.
Insbesondere gilt dann für w = uv ∈ Gn, j, k, l ∈ N0 aufgrund der Markov-

Eigenschaft und der Definition von (Z̃v)v∈T

Pj(Zw = l | Zu = k) = P(Zw = l | Zu = k)

= P(Z̃v = l | Z̃∅ = k)

= Pk(Zv = l) Pj-f.s..

2

Zum Abschluss der Modellbeschreibung führen wir noch einige wichtige Schreib-
weisen ein. Sei (Zv)v∈T ein ZTPIZ, dann ist

fa(s) := E(sX
(a)
v,k) = E(sX(a)

), a ∈ {0, 1},
die erzeugende Funktion von X(a) und

µa := E(X
(a)
v,k ) = E(X(a)), a ∈ {0, 1},

das Reproduktionsmittel von X(a). Weiter setzen wir

µ :=
1

2
(µ0 + µ1).

Für v = v1...vn ∈ T definieren wir mit |v| die Länge des Pfades von der Wurzel zur
Zelle v, und mit v|k die k-te Zelle des Pfades, der nach v führt, d.h.

|v| = n und v|k = v1...vk für k ≤ n.

Weiter definieren wir eine partielle Ordnung „≤“ auf T durch

u ≤ v :⇔ es exisitiert ein k ≤ n mit v|k = u.

Wir schreiben u < v, falls ein k < n existiert mit v|k = u. Diese Notationen
erleichtern es uns, später besser durch den Zellbaum navigieren zu können.

Ab jetzt nehmen wir an, dass

0 < µ0, µ1 < ∞ (1.3)

gilt. Damit können insbesondere sowohl in der ersten als auch zweiten Tochterzelle
Parasiten enthalten sein. Um triviale Fälle auszuschließen, gelte außerdem

P
(
X(0) ≤ 1, X(1) ≤ 1

)
< 1, (1.4)

da sonst die Anzahl der Parasiten pro Zelle nicht steigen könnte.
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2 Der Galton-Watson-Prozess

Bei der späteren Untersuchung des Zellteilungsmodells greifen wir oft auf Eigen-
schaften eines Galton-Watson-Prozesses zurück. Das folgende Kapitel dient daher
der Einführung dieses Prozesses und der Auflistung einiger fundamentaler und spä-
ter benutzter Eigenschaften. Nachdem wir den einfachen Galton-Watson-Prozess
behandelt haben, werden wir den allgemeineren Galton-Watson-Prozess in zufällig
variierenden Umgebungen einführen.

2.1 Der einfache Galton-Watson-Prozess

Bei der Einführung des einfachen Galton-Watson-Prozesses und der Zusammenstel-
lung einiger wichtiger Eigenschaften orientieren wir uns im Wesentlichen an den
Ausführungen in [6], [9] und [15].

2.1.1 Modellbeschreibung

Gegeben sei eine Population von Individuen. Jedes dieser Individuen bekommt un-
abhängig von den anderen gemäß der gleichen Verteilung eine zufällige Anzahl
von Nachkommen. Die Summe dieser Nachkommen bildet dann die Population der
nächsten Generation und alle Individuen dieser Generation verhalten sich so wie
die Individuen der vorherigen Generation. Ein Galton-Watson-Prozess beschreibt
demnach die genealogische Struktur einer Population und aufgrund des obigen Ver-
haltensmusters der Individuen, ist er wie folgt definiert:

Definition 2.1. Ein Galton-Watson-Prozess (GWP) mit Reproduktionsverteilung
(pi)i≥0 ist eine zeitlich homogene diskrete Markov-Kette (Zn)n≥0 mit Zustandsraum
N0 (Def. A.1). Die Übergangswahrscheinlichkeiten sind gegeben durch

P(Zn+1 = j|Zn = i) = p
∗(i)
j ,

wobei p
∗(i)
j die i-fache Faltung der Verteilung (pj)j≥0 ist. Für i = 0 setzen wir

außerdem p
∗(0)
j = δ0j .

Man kann einen GWP (Zn)n≥0 auch immer in einer anschaulicheren, rekursiven
Schreibweise darstellen und diesen in ein Standardmodell

(Ω,A, (Pi)i≥0, (Xn,k)n≥0,k≥1, (Zn)n≥0)

7



2 Der Galton-Watson-Prozess

einbetten. Wie beim ZTPIZ seien auf (Ω,A) Wahrscheinlichkeitsmaße Pi, i ∈ N0,
und Zufallsgrößen Z0 und Xn,k, n ∈ N0, k ∈ N, mit Werten in N0 gegeben. Unter
jedem Pi seien die Xn,k stochastich unabhängig und jeweils (pj)j≥0-verteilt und es
gilt Pi(Z0 = i) = 1. Z0 gibt die Größe der Startpopulation (Urahnen) an und Xn,k

beschreibt die Anzahl der Nachkommen des k-ten Individuums der n-ten Generation.
Der GWP startet unter Pi also mit i Individuen. Die Populationsgröße der (n+1)-ten
Generation ist dann rekursiv definiert durch

Zn+1 :=
Zn∑

k=1

Xn,k

für alle n ∈ N0. Wir setzen wieder P1 = P.
Aufgrund der Markov-Eigenschaft sowie der Unabhängigkeit und identischen Ver-

teilung der Xn,k erhalten wir dann:

Satz 2.2. Sei (Zn)n≥0 ein GWP mit Reproduktionsverteilung (pi)i≥0 und j Urah-

nen. (Zn)n≥0 ist die Summe von j unabhängigen GWP (Z
(l)
n )n≥0, 1 ≤ l ≤ j, mit

Reproduktionsverteilung (pi)i≥0 und einem Urahnen. Insbesondere gilt dann

Pj

(
(Zn)n≥0 ∈ ·

)
= P

(
(Zn)n≥0 ∈ ·

)∗(j)
Pj-f.s..

Um trivialen Fällen vorzubeugen setzen wir ab jetzt für dieses Kapitel

p0 + p1 < 1

voraus.

2.1.2 Erzeugende Funktion und Aussterbewahrscheinlichkeit

Dieser Abschnitt dient der Auflistung einiger Eigenschaften der erzeugenden Funk-
tion eines GWP und deren Zusammenhang mit der Aussterbewahrscheinlichkeit des
Prozesses. Wir halten außerdem fest, dass ein GWP entweder ausstirbt oder dessen
Population explodiert.

Wir bezeichnen mit

f(s) := EsZ1 =
∑

j≥0

pjs
j , −1 ≤ s ≤ 1

die erzeugende Funktion eines GWP (Zn)n≥0 und mit

fn := f ◦ fn−1

ihre Iteration, wobei f0 := id gesetzt wird. Weiter sei

µ := EZ1 = f
′

(1)

das Reproduktionsmittel des GWP.
Erste Eigenschaften der erzeugenden Funktion f , ihrer Iteration fn und des Re-

produktionsmittels µ sind in der folgenden Proposition festgehalten.

8



2.1 Der einfache Galton-Watson-Prozess

0

1

0 1
0

1

0 1

Abbildung 2.1: Die erzeugende Funktion im Fall µ ≤ 1 und µ > 1 .

Proposition 2.3. Sei (Zn)n≥0 ein GWP mit Reproduktionsverteilung (pj)j≥0, er-
zeugender Funktion f und Reproduktionsmittel µ. Dann gilt:

(i) Eis
Z1 = f(s)i für i ≥ 0.

(ii) f ist nichtnegativ, strikt konvex und streng monoton wachsend auf [0,1].

(iii) fn ist die erzeugende Funktion von Zn unter P1.

(iv) EZn = µn.

(v) Ist µ < ∞, so gilt

VarZn =






µn−1(µn−1)
µ−1

Var Z1, falls µ 6= 1

n VarZ1, falls µ = 1.

Es bezeichne
Ext := {Zn → 0} = {Zn = 0 für ein n ≥ 0}

das Ereignis des Aussterbens eines GWP (Zn)n≥0. Der nachfolgende Satz zeigt den
Zusammenhang zwischen der Aussterbewahrscheinlichkeit P(Ext), der erzeugenden
Funktion f und dem Reproduktionsmittel µ eines GWP und beantwortet die Frage,
unter welchen Bedingungen ein GWP fast sicher ausstirbt.

Satz 2.4. Sei (Zn)n≥0 ein GWP mit erzeugender Funktion f und Reproduktions-
mittel µ. Dann gilt:

(i) P(Ext) ist der kleinste Fixpunkt von f in [0,1].

(ii) Falls µ ≤ 1 gilt, so ist P(Ext) = 1 der einzige Fixpunkt von f in [0,1].

(iii) Falls µ > 1 gilt, so ist P(Ext) < 1 und im Intevall (P(Ext), 1) existiert kein
weiterer Fixpunkte von f .

9



2 Der Galton-Watson-Prozess

Aufgrund dieses vom Reproduktionsmittel µ abhängigen unterschiedlichen Ver-
haltens eines GWP definieren wir:

Definition 2.5. Ein GWP (Zn)n≥0 mit Reproduktionsmittel µ heißt superkritisch,
kritisch oder subkritisch, wenn µ > 1, µ = 1 bzw. µ < 1 ist.

Ein kritischer oder subkritischer GWP stirbt also nach Satz 2.4 fast sicher aus,
während ein superkritischer GWP auch überleben kann. Geschieht dies, so explodiert
der Prozess, wie der folgende Satz zeigt. Dieses Verhalten nennt man Extinktions-
Explosions-Prinzip.

Satz 2.6. Für einen GWP (Zn)n≥0 (mit p1 6= 1) gilt

P(Ext) = P(Zn → 0) = 1 − P(Zn → ∞), (2.1)

sowie limn→∞ P(Zn = k) = 0 für alle k ≥ 1.

2.1.3 Grenzwertsätze

Der folgende Abschnitt fasst einige Grenzwertsätze über GWP zusammen. Dabei
unterscheiden wir zwischen dem superkritischen, kritischen und subkritischen Fall.
Zuerst geben wir aber noch einen Satz an, welcher für alle drei Fälle gilt. Dieser
besagt, dass ein normierter GWP fast sicher gegen eine Zufallsgröße W konvergiert.

Satz 2.7. Falls 0 < µ < ∞ ist, so existiert eine nichtnegative, integrierbare Zufalls-
größe W , sodass

lim
n→∞

Zn

µn
= W Pi-f.s.

und EiW ≤ i für alle i ≥ 0 gilt.

Der superkritische Fall

Im superkritischen Fall explodiert die Population eines GWP nach Satz 2.4 mit
positiver Wahrscheinlichkeit. Trotzdem kann aber µ−nZn fast sicher gegen 0 konver-
gieren. Der Satz von Kesten und Stigum gibt uns eine äquivalente Bedingung an die
Reproduktionsverteilung des GWP für das Auftreten dieses Phänomens.

Satz 2.8. (Kesten, Stigum) Sei (Zn)n≥0 ein superkritischer GWP mit 1 < µ < ∞
und W wie aus Satz 2.7. Dann gilt

EW = 1

⇔ P(W > 0) > 0

⇔ {W > 0} = Extc Pi-f.s. für alle i ≥ 0

⇔ EZ1 log Z1 < ∞.
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2.1 Der einfache Galton-Watson-Prozess

Der subkritische Fall

Ein subkritischer GWP (Zn)n≥0 stirbt nach Satz 2.4 fast sicher aus. Bedingt man Zn

jedoch unter {Zn > 0}, so konvergiert der GWP in Verteilung gegen die sogenann-
te Yaglom-quasistätionäre-Verteilung. Die beiden folgenden Sätze von Kolmogorov
und Yaglom beschreiben die Aussterbegeschwindigkeit des GWP und bestätigen die
behauptete Konvergenz.

Satz 2.9. (Kolmogorov) Für einen subkritischen GWP (Zn)n≥0 gilt

c := lim
n→∞

1

µn
P(Zn > 0)

{
> 0, falls EZ1 log Z1 < ∞ (und p0 < 1)

= 0, sonst.

Ist EZ1 log Z1 < ∞, so gilt insbesondere

P(Zn > 0)
n→∞≃ cµn.

Satz 2.10. (Yaglom) Für einen subkritischen GWP (Zn)n≥0 (mit p0 < 1) und c wie
aus Satz 2.9 konvergiert

(
P(Zn = k | Zn > 0)

)
k≥1

für n → ∞ gegen eine Wahrschein-

lichkeitsverteilung (bk)k≥1, die Yaglom-quasistationäre-Verteilung, mit erzeugender
Funktion

B(s) := lim
n→∞

E(sZn | Zn > 0)

und Erwartungswert

B′

(1) =
∑

k≥1

kbk =
1

c
,

wobei wir 1
c

:= ∞ setzen, falls c = 0 ist.

Wir bezeichnen mit Ỹ eine Yaglom-quasistationär-verteilte Zufallsgröße. Da Ỹ
eine fast sicher positive Zufallsgröße ist, folgt

EỸ > 0. (2.2)

Durch die Kombination der Sätze von Kolmogorov und Yaglom erhalten wir außer-
dem

EỸ < ∞ ⇔ EZ1 log Z1 < ∞. (2.3)

Eine leichte Verallgemeinerung der Situation im Satz von Yaglom ergibt sich, wenn
wir wissen, dass der Prozess k weitere Generationen überlebt. Wir bedingen also Zn

unter {Zn+k > 0} für ein k ≥ 0 anstatt unter {Zn > 0}.
Zur Vereinfachung führen wir folgende Notation ein:

Bn,k(s) := E(sZn | Zn+k > 0) für n, k ∈ N0. (2.4)

Der folgende Satz gibt Aufschluss über das Verhalten von Zn bedingt unter
{Zn+k > 0} für n → ∞.
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2 Der Galton-Watson-Prozess

Satz 2.11. Sei (Zn)n≥0 ein subkritischer GWP und B(s) die erzeugende Funktion
der Yaglom-quasistationären-Verteilung, sowie die Bn,k(s) wie in (2.4) definiert. Für
alle k ≥ 0 konvergiert

(
P(Zn = j | Zn+k > 0)

)
j≥1

gegen eine Verteilung (bj(k))j≥1

auf N für n → ∞. Diese Verteilung konvergiert für k → ∞ gegen eine weitere
Verteilung auf N, falls EZ1 log Z1 < ∞ ist. Genauer gilt:

(i) lim
n→∞

Bn,k(s) = B(s)−B(sfk(0))
1−B(fk(0))

für jedes k ≥ 0;

(ii) lim
k→∞

lim
n→∞

Bn,k(s) = sB′
(s)

B′
(1)

, falls EZ1 log Z1 < ∞.

Für k = 0 besagt der obige Satz also insbesondere

lim
n→∞

Bn,0(s) =
B(s) − B(sf0(0))

1 − B(f0(0))
= B(s),

unter der Beachtung, dass f0 = id und Ỹ > 0 fast sicher und damit B(0) = 0 gilt.
Wir erhalten also die Aussage vom Satz von Yaglom als Spezialfall dieses Satzes.

Lässt man bei
(
P(Zn = j | Zn+k > 0)

)
j≥1

nicht n sondern k gegen unendlich
laufen, so konvergiert diese Verteilung gegen eine größenverzerrte Verteilung, wie
der folgende Satz besagt.

Eine größenverzerrte Verteilung auf N0 ist dabei wie folgt definiert: Sei Q ein
Maß auf N0 mit positivem, endlichem Erwartungswert γ :=

∑
k≥0 kQ({k}). Die

Verteilung Q̂ auf N0, die durch die Einpunktwahrscheinlichkeiten

Q̂({k}) :=
kQ({k})

γ
, k ∈ N0 (2.5)

gegeben ist, nennt man größenverzerrte Verteilung von Q.

Satz 2.12. Sei (Zn)n≥0 ein subkritischer GWP. Dann gilt für alle n ≥ 0 und i, j ≥ 1

lim
k→∞

Pi(Zn = j | Zn+k > 0) =
j

iµn
Pi(Zn = j).

Einen Prozess (Z̃n)n≥0 mit Pi(Z̃n = j) = j

iµn Pi(Zn = j) für alle n ≥ 0, i, j ≥ 1 be-
zeichnet man als Q-Prozess assoziiert zu (Zn)n≥0 bzw. der Reproduktionsverteilung
(pj)j≥0. Anschaulich beschreibt der Q-Prozess den Prozess Zn bedingt darunter, in
entfernter Zukunft noch nicht ausgestorben zu sein, jedoch in noch weiter entfern-
terer Zukunft auszusterben.

Korollar 2.13. Gilt für einen subkritischen GWP EZ1 log Z1 < ∞, so folgt für
dessen Q-Prozess

lim
n→∞

Pi(Z̃n = j) =
j

EỸ
P(Ỹ = j)

für alle i, j ≥ 0. Dabei ist Ỹ Yaglom-quasistationär-verteilt.

Man nennt die Grenzverteilung
(

j

EY P(Y = j)
)

j≥1
die stationäre Verteilung des

Q-Prozesses.
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2.2 Der Galton-Watson-Prozess in zufällig variierenden Umgebungen

Der kritische Fall

Beim kritischen GWP gelten analoge Sätze zu denen von Kolmogorov und Yaglom.
Die Aussterbegeschwindigkeit ist im kritischen Fall jedoch geringer als im subkriti-
schen Fall. Weiter konvergiert Zn

n
bedingt unter {Zn > 0} in Verteilung gegen eine

exponentialverteilte Zufallsgröße. Dies bestätigen die zwei nachfolgenden Sätze.

Satz 2.14. Für einen kritischen GWP (Zn)n≥0 mit 0 < VarZ1 < ∞ gilt

P(Zn > 0)
n→∞≃ 2

n VarZ1

Satz 2.15. Für einen kritischen GWP (Zn)n≥0 mit 0 < VarZ1 < ∞ gilt

P

(Zn

n
∈ ·

∣∣ Zn > 0
)

w−→ Exp
( 2

VarZ1

)
, n → ∞.

2.2 Der Galton-Watson-Prozess in zufällig

variierenden Umgebungen

Bei dem bisher betrachteten einfachen GWP war die Reproduktionsverteilung in
jeder Generation gleich. Eine Verallgemeinerung dieser Situation erhalten wir, wenn
diese von Generation zu Generation variieren kann. Das bedeutet, die Individuen
der n-ten Generation vermehren sich möglicherweise gemäß einer anderen Verteilung
als die Individuen der (n + k)-ten Generation für k ≥ 1. Die in diesem Abschnitt
stehenden Eigenschaften von Galton-Watson-Prozessen in zufällig variierenden Um-
gebungen sind entnommen aus [2], [7], [8], [12] und [19]

2.2.1 Modellbeschreibung

Es bezeichne

W(N0) :=
{

(bk)k≥0

∣∣ bk ≥ 0 für alle k ≥ 0,
∑

k≥0

bk = 1,
∑

k≥0

kbk < ∞
}

die Menge der Wahrscheinlichkeitsverteilungen auf N0 mit endlichem Erwartungs-
wert. Da W(N0) ein Teilraum des Banachraums l1 der absolut konvergenten Reihen
ist, wird durch die kanonische Metrik auf l1 eine Borelsche σ-Algebra B auf W(N0)
induziert. Sei U = (Un)n≥1 eine Folge von Zufallsvariablen auf dem messbaren Raum
(W(N0), B). Diese Folge liefert uns die Reproduktionsverteilungen der Individuen
in den verschiedenen Generationen. Wie beim einfachen GWP zeugen die Individu-
en unabhängig voneinander Nachkommen und die Summe der Nachkommen einer
Generation bildet die Population der nächsten Generation. Alle Individuen einer
Generation vermehren sich gemäß der gleichen Reproduktionsverteilung. Diese ist
jedoch zufällig gewählt und kann von Generation zu Generation variieren.
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2 Der Galton-Watson-Prozess

Definition 2.16. Sei U = (Un)n≥1 eine Folge von Zufallsvariablen mit Werten in
W(N0). Eine stochastische Folge (Zn)n≥0 von Zufallsgrößen mit Werten in N0 heißt
Galton-Watson-Prozess in zufällig variierenden Umgebungen (GWPZVU) mit Um-
gebungsfolge U , falls gilt:

P(Zn+1 ∈ · | Z0, ..., Zn, U) = P(Zn+1 ∈ · | Zn, U) P-f.s.; (2.6)

P(Zn+1 ∈ · | Zn = i, U = (uk)k≥1) = u
∗(i)
n+1 P

(Zn,U)-f.s. (2.7)

für alle i, n ∈ N0. Dabei ist u∗(i) die i-fache Faltung der Verteilung u ∈ W(N0). Für
i = 0 setzen wir u∗(0) = δ0.

Die Eigenschaft (2.6) sichert uns, dass (Zn)n≥0 eine Markov-Kette unter P(·|U)
bildet, und (2.7) gibt die Übergangswahrscheinlichkeiten des Prozesses an.

Auch hier können wir den GWPZVU in einer rekursiven Darstellung in ein Stan-
dardmodell

(Ω,A, (Pi)i≥0, (Xn,k)n≥0,k≥1, (Zn)n≥0, (Un)n≥1)

einbetten. In (Ω,A) seien wie beim GWP Wahrscheinlichkeitsmaße Pi, i ∈ N0, sowie
Zufallsgrößen Z0, Xn,k, n ∈ N0, k ∈ N, mit Werten in N0, und Zufallsvariablen Un,
n ∈ N, mit Werten in W(N0) gegeben. Die Umgebungsfolge U = (Un)n≥0 besitzt
unter jedem Pi dieselbe Verteilung und die Xn,k sind unter jedem Pi(·|U) stochastisch
unabhängig. Ferner gilt Pi(Z0 = i) = 1 für alle i ∈ N0. Insbesondere folgt damit
die Unabhängigkeit von Z0 und U . Wie beim GWP gibt Z0 die Anzahl der Urahnen
und Xn,k die Anzahl der Nachkommen des k-ten Individuums der n-ten Generation
an. Die Verteilung von Xn,k ist jedoch zufällig gegeben durch die Folge U mit

P(Xn,k ∈ · | U) = Un+1 P-f.s..

Für n ∈ N0 wird die Anzahl der Individuen der (n+1)-ten Generation dann rekursiv
definiert durch

Zn+1 :=

Zn∑

k=1

Xn,k.

Wie beim GWP setzen wir wieder P1 = P.
Anders als beim einfachen GWP ist die Reproduktionsverteilung eines Individu-

ums und damit seine erzeugende Funktion zufällig gewählt. Sei (Zn)n≥0 ein GWPZ-
VU mit Umgebungsfolge U . Dann bezeichnen wir mit

fUn+1(s) := E(sXn,k | U), n ∈ N0, k ∈ N,

die erzeugende Funktion der Zufallsgröße Xn,k unter P(· |U) und mit

µUn+1 := E(Xn,k | U) = f
′

Un+1
(1), n ∈ N0, k ∈ N.

den Erwartungswert von Xn,k unter P(· | U).
Die erzeugende Funktion und der Erwartungwert von Zn unter Pi(· | U) bzw. Pi

lassen sich durch die fUn
und µUn

darstellen. Dies zeigt die nachfolgende Proposition.
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2.2 Der Galton-Watson-Prozess in zufällig variierenden Umgebungen

Proposition 2.17. (vgl. [3] oder [7])
Sei (Zn)n≥0 ein GWPZVU mit Umgebungsfolge U .

(i) Für alle i, n ≥ 0 und s ∈ [0, 1] gilt

Ei(s
Zn |U) = (E(sZn |U))i = (fU1 ◦ ... ◦ fUn

(s))i
Pi-f.s. (2.8)

sowie
Ei(s

Zn) = E
(
(fU1 ◦ ... ◦ fUn

(s))i
)
. (2.9)

(ii) Für alle i, n ≥ 0 gilt

Ei(Zn | U) = i
n∏

j=1

µUj
Pi-f.s. (2.10)

sowie

Ei(Zn) = iE
( n∏

j=1

µUj

)
= iEZn. (2.11)

2.2.2 Grenzwertsätze

Sind bei einem GWPZVU mit Umgebungsfolge (Un)n≥1 die Un, n ≥ 1, unabhän-
gig und identisch verteilt, so spricht man von einem GWPZVU mit unabhängiger,
identisch verteilter (u.i.v.) Umgebungsfolge.

Da wir uns bei unseren späteren Betrachtungen nur mit solchen Prozessen be-
schäftigen werden, geben wir im Folgenden die Grenzwertsätze nur für diesen Spe-
zialfall an. Viele dieser Sätze, können jedoch allgemeiner bewiesen werden, z.B. bei
stationär, ergodischen Umgebungsfolgen. Siehe dazu Kapitel VI, Abschnitt 5 in [9].

Die Grenzwertsätze des einfachen GWP können im Wesentlichen auf den GWPZ-
VU mit u.i.v. Umgebungsfolge übertragen werden, wenn man die Voraussetzungen
entsprechend ändert. Als erstes sehen wir, dass auch bei GWPZVU mit unabhängi-
ger, identisch verteilter Umgebungsfolge das Extinktions-Explosions-Prinzip erhal-
ten bleibt.

Satz 2.18. (vgl. [19], Satz 2.3)
Sei (Zn)n≥0 ein GWPZVU mit u.i.v. Umgebungsfolge U und P(U1 = δ1) < 1. Dann
gilt

P(Zn → 0) = 1 − P(Zn → ∞)

sowie für alle N > 0
P(0 < Zn < N) −→

n→∞
0.

Der nachfolgende Satz gibt nun Bedingungen für das fast sichere Aussterben eines
GWPZVU mit unabhängiger, identisch verteilter Umgebungsfolge an.
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2 Der Galton-Watson-Prozess

Satz 2.19. (vgl. [19], Satz 3.1)
Sei (Zn)n≥0 ein GWPZVU mit u.i.v. Umgebungsfolge U mit P(U1 = δ1) < 1, welcher
außerdem E| log µU1 | < ∞ erfüllt.

(i) Gilt E(log µU1) ≤ 0, so folgt limn→∞ P(Zn > 0) = 0.

(ii) Gilt dagegen E(log µU1) > 0 und zusätzlich E
(
log(1 − fU1(0))

)
> −∞, so folgt

limn→∞ P(Zn > 0) = c > 0, für ein c ∈ (0, 1].

Entsprechend zum GWP definieren wir:

Definition 2.20. Ein GWPZVU mit u.i.v. Umgebungsfolge heißt superkritisch, kri-
tisch oder subkritisch, wenn E(log µU1) > 0, = 0 bzw. < 0 ist.

Wie beim GWP konvergiert ein GWPZVU mit unabhängiger, identisch verteilter
Umgebungsfolge bei geeigneter Normierung fast sicher gegen eine Zufallsgröße W .

Satz 2.21. (vgl. [8], Satz 1)
Sei (Zn)n≥0 ein superkritischer GWPZVU mit u.i.v. Umgebungsfolge U , für welchen
0 < EZ1 < ∞ ist. Dann existiert eine integrierbare, nichtnegative Zufallsgröße W ,
sodass

Zn

EZn

−→
n→∞

W P-f.s.

und EW ≤ 1 gilt. Ist zusätzlich

E

( 1

µU1

E(Z1 log Z1|U)
)

< ∞,

dann gilt
EW = 1 und {W = 0} = {Zn → 0} P-f.s..

Bei einem subkritischen GWPZVU (Zn)n≥0 mit unabhängiger, identisch verteilter
Umgebungsfolge U existieren analoge Sätze zu Satz 2.10 von Yaglom und Satz 2.9
von Kolmogorov. Auch hier konvergiert die erzeugende Funktion von Zn bedingt un-
ter {Zn > 0} gegen eine erzeugende Funktion und es lässt sich eine Aussage über die
Aussterbegeschwindigkeit treffen. Allerdings ist das asymptotische Verhalten dies-
mal abhängig von E(µU1 log µU1).

Definition 2.22. Wir nennen einen subkritischen GWPZVU mit u.i.v. Umgebungs-
folge stark subkritisch, moderat subkritisch oder schwach subkritisch genau dann,
wenn E(µU1 log µU1) < 0, = 0 bzw. > 0 ist.

Da der moderat und schwach subkritische Fall für unsere späteren Betrachtungen
keine entscheidende Rolle spielt, geben wir hier nur die Ergebnisse im stark subkri-
tischen Fall an. In einigen wenigen Situationen greifen wir jedoch auf die analogen
Sätz über moderat bzw. schwach subkritischen GWPZVU zurück. Diese befinden
sich daher im Anhang (Satz A.8 und Satz A.9).
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2.2 Der Galton-Watson-Prozess in zufällig variierenden Umgebungen

Satz 2.23. (stark subkritischer Fall) (vgl. [12], Satz 1.1 und [2], Korollar 2.3)
Sei (Zn)n≥0 ein stark subkritischer GWPZVU mit u.i.v. Umgebungsfolge U und

E(Z1 log Z1) < ∞.

Dann gilt

P(Zn > 0)
n→∞≃ c1(EZ1)

n

für ein c1 ∈ (0, 1]. Des Weiteren existieren b1(k) ∈ [0, 1], k ≥ 1, mit

lim
n→∞

P(Zn = k | Zn > 0) = b1(k), k ≥ 1,

sowie ∞∑

k=1

b1(k) = 1 und

∞∑

k=1

kb1(k) =
1

c1
< ∞.

Außerdem ist Zn bedingt unter {Zn > 0} gleichgradig integrierbar, d.h.

lim
K→∞

sup
n∈N

E(Zn1{Zn>K} | Zn > 0) = 0.

Wie beim einfachen GWP nennen wir die obige Grenzverteilung die Yaglom-
quasistationäre-Verteilung und bezeichnen mit Y eine Zufallsgröße, die diese Ver-
teilung besitzt.

Im stark subkritischen Fall erhalten wir auch ein Analogon zu Satz 2.12.

Satz 2.24. (vgl. [2], Satz 1.4)
Sei (Zn)n≥0 ein stark subkritischer GWPZVU mit u.i.v. Umgebungsfolge U und
E(Z1 log Z1) < ∞. Dann gilt für alle n, j ≥ 0

lim
k→∞

P(Zn = j | Zn+k > 0) =
j

EZn

P(Zn = j).

Wir bezeichnen auch hier einen Prozess (Z̃n)n≥0 mit P(Z̃n = j) = j

EZn
P(Zn = j)

für alle j, n ≥ 0 als Q-Prozess assoziiert zu (Zn)n≥0.

Korollar 2.25. (vgl. [2], Korollar 2.2)
Gilt für einen stark subkritischen GWPZVU (Zn)n≥0 mit u.i.v. Umgebungsfolge U
E(Z1 log Z1) < ∞, so folgt für dessen Q-Prozess

lim
n→∞

Pi(Z̃n = j) =
j

EY P(Y = j)

für alle i, j ≥ 0. Dabei ist Y Yaglom-quasistationär-verteilt.

Man nennt auch hier die Verteilung
(

j

EYP(Y = j)
)

j≥1
die stationäre Verteilung

des Q-Prozesses.
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3 Zwei wichtige Prozesse und

erste Eigenschaften

Nachdem wir im vorigen Kapitel den GWP definiert und einige wichtige Resultate
angegeben haben, wenden wir uns jetzt wieder dem ZTPIZ zu. Als Einstieg definieren
wir in diesem Kapitel als erstes den Prozess der Gesamtanzahl an Parasiten in einer
Generation und sehen, dass dieser einen GWP bildet. Von großer Wichtigkeit für
unsere späteren Betrachtungen wird auch der Prozess der Anzahl an Parasiten in
einer zufälligen Zelllinie sein, welchen wir als zweites betrachten wollen. Es stellt
sich heraus, dass dieser aufgrund seiner Definition ein GWPZVU mit unabhängiger,
identisch verteilter Umgebungsfolge ist.

3.1 Der Parasitenprozess

In diesem Abschnitt führen wir den Prozess der Gesamtzahl an Parasiten oder kurz
Parasitenprozess ein und zeigen, dass dieser einen GWP bildet.

Definition 3.1. Der Parasitenprozess (Zn)n≥0 ist definiert durch

Zn :=
∑

v∈Gn

Zv

für n ∈ N0. Weiter sei

Ext := {Zn → 0} = {Zn = 0 für ein n ≥ 0}

das Ereignis, dass die Parasiten aussterben.

Der Prozess (Zn)n≥0 ist ein GWP, wie die folgende Proposition zeigt.

Proposition 3.2. Der Parasitenprozess (Zn)n≥0 ist ein GWP mit Reproduktions-
verteilung P(X(0) + X(1) ∈ ·) und Reproduktionsmittel µ0 + µ1.

Beweis: Die Parasiten bekommen unabhängig voneinander und gemäß der Ver-
teilung P(X(0) + X(1) ∈ ·) Nachkommen. Da die Anzahl der Parasiten in einer Zelle
nur abhängig von der Anzahl der Parasiten in der Mutterzelle ist, ist die Anzahl
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3.2 Der Prozess einer zufälligen Zelllinie

aller Parasiten einer Generation auch nur abhängig von der Anzahl der Parasiten in
der vorherigen Generation. Aufgrund der Unabhängigkeit der Parasiten gilt

P(Zn+1 = j | Zn = i) = P(X(0) + X(1) = j)∗(i)

für alle n, i, j ∈ N0. Damit bildet (Zn)n≥0 eine homogene Markov-Kette mit Werten
in N0 und nach Definition 2.1 einen GWP. Dass µ0 + µ1 das Reproduktionsmittel
ist, ergibt sich dann sofort. 2

3.2 Der Prozess einer zufälligen Zelllinie

Des Weiteren ist für unsere Untersuchungen auch die Anzahl der Parasiten in einer
zufälligen Zelllinie von Interesse. Wir wollen uns also einen zufälligen Pfad durch
den Zellbaum wählen und das Vermehrungsverhalten der Parasiten in dieser Zelllinie
betrachten. Dazu stellen wir uns vor, dass wir in jeder Generation, in einer Zelle
befindend, eine faire Münze werfen und bei Kopf oder Zahl in die erste bzw. zweite
Tochterzelle gehen. Wir definieren uns daher zuerst eine geeignete Umgebungsfolge,
welche den Münzwurf simuliert, und daraus dann den Prozess der zufälligen Zelllinie.

Definition 3.3. Seien (Un)n≥1 unabhängige B(1, 1
2
)-verteilte Zufallsgrößen, welche

außerdem unabhängig von (Zv)v∈T seien. Setzen wir [n] := U1...Un für n ≥ 1 und
[0] := ∅, dann heißt

(Z[n])n≥0 = (ZU1...Un
)n≥0

Prozess einer zufälligen Zelllinie (PZZ).

Z[0]

Z[1]

Z[2]

Z[3]

Abbildung 3.1: Ein zufälliger Pfad durch den Zellbaum.

Zur Zeit n ∈ N0, in einer Zelle befindend, gibt uns Un+1 ∈ {0, 1} also den Aus-
gang des nächsten Münzwurfes und damit die Tochterzelle an, in die wir gehen. Die
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3 Zwei wichtige Prozesse und erste Eigenschaften

Realisierung U1...Un = u1...un der ersten n Umgebungsvariablen beschreibt somit
den Pfad von der Wurzel durch den Zellbaum zur Zelle u1...un ∈ Gn. Der zufällig
gewählte Pfad bis zur vierten Generation in Abblidung 3.1 ist also U1...U4 = 0010.

Bei einem normalen ZTPIZ vermehren sich die Parasiten unabhängig und gemäß
der Reproduktionsverteilung P(X(0) + X(1) ∈ ·). Dabei geben X(0) bzw. X(1) die
Anzahl der Nachkommen eines Parasiten an, welche in die erste bzw. zweite Toch-
terzelle gehen. Gehen wir nun bei einem PZZ von einer Zelle v ∈ Gn in deren erste
Tochterzelle, so interessieren wir uns nur für die Anzahl an Parasiten in dieser Zelle.
Wieviele Parasiten sich in der zweiten Tochterzelle befinden ist für uns irrelevant.
Die Parasiten der Zelle v vermehren sich hier also gemäß P(X(0) ∈ ·). Gehen wir
jedoch in die zweite Tochterzelle, so vermehren sich die Parasiten gemäß P(X(1) ∈ ·).
Setzen wir U = (Um)m≥1, dann gilt für alle n, k, l ∈ N0

P(Z[n+1] = k | Z[n] = l, U = (um)m≥1) = P(Zu1...un+1 = k | Zu1...un
= l)

= P

( l∑

s=1

X(un+1)
u1...un,s = k

)

= P(X(un+1) = k)∗l P
(Z[n],U)-f.s.,

wobei bei der ersten Gleichheit die Unabhängigkeit von U und (Zi)i∈T benutzt wurde.
Die Un geben also die Reproduktionsverteilung in jedem Generationswechsel an,
welche aus der Menge {P(X(0) ∈ ·), P(X(1) ∈ ·)} gewählt wird. Damit ist ein PZZ
ein GWPZVU mit unabhängiger, identisch verteilter Umgebungsfolge U . Die eben
gewonnenen Erkenntnisse halten wir in der folgenden Proposition fest.

Proposition 3.4. Sei (Zv)v∈T ein ZTPIZ und U = (Un)n≥1 wie oben definiert. Dann
gilt:

(i) (Z[n])n≥0 ist ein GWPZVU mit u.i.v. Umgebungsfolge U .

(ii) Für u = u1...un ∈ Gn gilt P(Z[n] ∈ · | U1 = u1, ...,Un = un) = P(Zu ∈ · ).

(iii) Gilt X(0) d
= X(1), so bildet (Z[n])n≥0 einen GWP mit Reproduktionsverteilung

P(X(0) ∈ ·).

Beweis: Da (Zv)v∈T eine Markov-Kette indiziert durch einen Baum und unabhän-
gig von U ist, bildet (Z[n])n≥0 eine Markov-Kette bedingt unter U und es gilt (2.6).
Die Eigenschaft (2.7) ergibt sich aus den Überlegungen vor der Proposition. Damit
ist (Z[n])n≥0 ein GWPZVU mit Umgebungsfolge U . Die anderen beiden Behauptun-
gen ergeben sich sofort. 2

Da (Z[n])n≥0 nach der vorherigen Proposition ein GWPZVU mit unabhängiger,
identisch verteilter Umgebungsfolge ist, erhalten wir mit Hilfe von (2.8) und (2.10),
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3.2 Der Prozess einer zufälligen Zelllinie

dass für u = u1...un ∈ Gn die erzeugende Funktion fu und der Erwartungswert µu

von Zu von der Gestalt
fu(s) = fu1 ◦ ... ◦ fun

(s)

und

µu =
n∏

j=1

µuj

sind. Wegen der Unabhängigkeit und identischen Verteilung der Un, n ∈ N, folgt
weiter aus (2.8) und (2.11)

E(Z[n]) = µn und Ek(s
Zu) = fu(s)

k (3.1)

für alle n, k ∈ N0, wobei an µ = 1
2
(µ0 + µ1) erinnert sei. Für alle u1...un ∈ {0, 1}n,

n ∈ N0, gilt außerdem

P((U1, ...,Un) = (u1, ..., un)) =
1

2n
,

woraus dann aus (2.9)

Ek(s
Z[n]) =

1

2n

∑

u∈Gn

fu(s)
k (3.2)

für alle n, k ∈ N0 folgt.
Im Folgenden übertragen wir die Resultate für GWPZVU aus Abschnitt 2.2.2

auf den PZZ. Wir beginnen mit einer äquvalenten Bedingung für das fast sichere
Aussterben von Z[n].

Korollar 3.5. Für einen PZZ (Z[n])n≥0 gilt:

P(Z[n] → 0) = 1 ⇔ µ0µ1 ≤ 1.

Beweis: Um diese Behauptung zu zeigen, genügt es, die Gültigkeit der Vorausset-
zungen von Satz 2.19 für den PZZ nachzuweisen. Es gilt

E
∣∣ log(E(Z[1] | U))

∣∣ =
1

2

∑

u∈{0,1}

∣∣ log(E(Z[1] | U1 = u))
∣∣ =

1

2

∑

u∈{0,1}
| log µu| < ∞,

da 0 < µ0, µ1 < ∞ vorausgesetzt war. Durch analoge Rechnung ergibt sich

E
(
log(E(Z[1] | U))

)
=

1

2

∑

u∈{0,1}
log µu =

1

2
log(µ0µ1)

und damit
E
(
log(E(Z[1] | U))

)
≤ 0 ⇔ µ0µ1 ≤ 1. (3.3)
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3 Zwei wichtige Prozesse und erste Eigenschaften

Des Weiteren erhalten wir

E
(
log(1 − P(Z[1] = 0 | U1))

)
=

1

2

(
log(1 − P(X(0) = 0)) + log(1 − P(X(1) = 0))

)

=
1

2
log

(
(1 − P(X(0) = 0))(1 − P(X(1) = 0))

)

> −∞,

da µ0, µ1 > 0, und damit P(X(0) = 0), P(X(1) = 0) < 1 gilt. Somit sind alle Voraus-
setzungen von Satz 2.19 erfüllt. Durch dessen Anwendung und (3.3) folgt dann die
Behauptung des Korollars. 2

Für einen PZZ (Z[n])n≥0 erhalten wir

E
(
E(Z[1]|U) log(E(Z[1]|U))

)
=

1

2

∑

u∈{0,1}
E(Z[1]|U1 = u) log(E(Z[1]|U1 = u))

=
1

2

∑

u∈{0,1}
E(Zu) log(E(Zu))

=
1

2
(µ0 log µ0 + µ1 log µ1).

Analog zum GWPZVU definieren wir daher:

Definition 3.6. Ein PZZ heißt superkritisch, kritisch oder subkritisch genau dann,
wenn µ0µ1 > 1, = 1 bzw. < 1 gilt. Ist µ0µ1 < 1, so nennen wir einen PZZ
stark subkritisch, moderat subkritisch oder schwach subkritisch genau dann, wenn
µ0 log µ0 + µ1 log µ1 < 0, = 0 bzw. > 0 gilt.

Aus Satz 2.23 folgen einige Eigenschaften für den stark subkritischen PZZ. Auch
für einen moderat bzw. schwach subkritischer PZZ gelten unter gewissen Annahmen
(z.B. wenn X(0) und X(1) quadratisch integrierbar sind) ähnliche Eigenschaften (vgl.
Korollar A.11 im Anhang). Diese wollen wir hier jedoch nicht beweisen.

Korollar 3.7. Für einen stark subkritischen PZZ (Z[n])n≥0 existiert im Fall

E(X(a) log X(a)) < ∞, a ∈ {0, 1},
ein c1 ∈ (0, 1], sodass

P(Z[n] > 0)
n→∞≃ c1µ

n

gilt. Weiter gilt für alle s ∈ [0, 1]

E(sZ[n] | Z[n] > 0) −→
n→∞

E(sY),

wobei Y eine Yaglom-quasistationär-verteilte Zufallsgröße mit EY = 1
c1

ist. Z[n]

bedingt unter {Z[n] > 0} ist ferner gleichgradig integrierbar, d.h.

lim
K→∞

sup
n∈N0

E(Z[n]1{Z[n]>K} | Z[n] > 0) = 0. (3.4)
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3.2 Der Prozess einer zufälligen Zelllinie

Beweis: Für den Beweis reicht es, die Voraussetzungen von Satz 2.23 nachzuprü-
fen. Diese sind erfüllt, da

E(Z[1] log Z[1]) =
1

2

(
E(X(0) log X(0)) + E(X(1) log X(1))

)
< ∞

gilt. 2

Die erzeugende Funktion von Y lässt sich im stark subkritischen Fall eindeutig
charakterisieren. Für dieses Unterfangen benötigen wir allerdings folgendes Lemma.
Es sei daran erinnert, dass f0 und f1 die erzeugenden Funktion von X(0) und X(1)

sind, sowie µ = 1
2
(µ0 + µ1).

Lemma 3.8. Eine stetige Funktion H : [0, 1] → R mit

H(1) = 0 und H =
H ◦ f0 · f ′

0 + H ◦ f1 · f ′

1

2µ

ist konstant 0.

Beweis: Angenommen es gilt H 6≡ 0. Da H stetig und H(1) = 0 ist, existiert ein
xmax ∈ [0, 1) mit

0 < sup
{
|H(x)| : x ∈ [0, 1]

}
= |H(xmax)|.

Sei (xn)n≥1 eine Folge in [0, 1) mit xn → 1. Dann existiert für jedes n ≥ 1 ein
βn ∈ [0, xn], sodass

sup
{
|H(x)| : x ∈ [0, xn]

}
= |H(βn)| (3.5)

ist. f0 und f1 kann man jeweils auch als erzeugende Funktion eines GWP mit Repro-
duktionsverteilung P(X(0) ∈ ·) bzw. P(X(1) ∈ ·) auffassen. Auf [0, 1] sind deswegen
beide konvex und monoton wachsend, und aufgrund der Voraussetzung (1.4) ist
mindestens eine nach Proposition 2.3 (ii) sogar strikt konvex. Daraus folgt

f
′

0(s), f
′

1(s) ≥ 0 und f
′

0(s) + f
′

1(s) < f
′

0(1) + f
′

1(1) = 2µ

für alle s ∈ [0, 1). Aufgrund dieser Eigenschaft, der Dreiecksungleichung, den Vor-
aussetzungen des Satzes und (3.5) gilt dann für alle n ≥ 1

sup
{
|H(x)| : x ∈ [0, xn]

}
= |H(βn)|

=
1

2µ

∣∣H(f0(βn))f
′

0(βn) + H(f1(βn))f
′

1(βn)
∣∣

≤ 1

2µ

(
|H(f0(βn))| · f ′

0(βn) + |H(f1(βn))| · f ′

1(βn)
)

≤ |H(xmax)|
1

2µ
(f

′

0(βn) + f
′

1(βn))

< |H(xmax)|.
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3 Zwei wichtige Prozesse und erste Eigenschaften

Da xmax < 1 und xn → 1 gilt, existiert ein n0 ≥ 1 für welches xmax ∈ [0, xn0] ist.
Damit ist aber

sup
{
|H(x)| : x ∈ [0, xn0]

}
= |H(xmax)|,

was einen Widerspruch zur vorherigen Ungleichung darstellt. Demnach gilt H ≡ 0.
2

Kommen wir nun zur eindeutigen Charakterisierung der erzeugenden Funktion
von Y im stark subkritischen Fall.

Proposition 3.9. Sei (Z[n])n≥0 ein stark subkritischer PZZ, der die Vorausset-
zungen des Korollars 3.7 erfüllt. Bezeichne weiter Y eine Yaglom-quasistationär-
verteilte Zufallsgröße und G(s) := E(sY) deren erzeugende Funktion. Dann ist G
die durch die Eigenschaften

G(0) = 0, G
′

(1) < ∞,

G(f0(s)) + G(f1(s))

2
= µG(s) + (1 − µ) (3.6)

eindeutig bestimmte erzeugende Funktion.

Beweis: G(0) = P(Y = 0) = 0, da Y ≥ 1 fast sicher gilt. Die Endlichkeit des
Erwartungswertes G

′
(1) = EY < ∞ ergibt sich nach Korollar 3.7.

Als nächstes zeigen wir die Gültigkeit der Funktionalgleichung (3.6).

1 − E(sZ[n+1] | Z[n+1] > 0)

=
P(Z[n+1] > 0)

P(Z[n+1] > 0)
− E(sZ[n+1]) − P(Z[n+1] = 0)

P(Z[n+1] > 0)

=
1 − E(sZ[n+1])

P(Z[n+1] > 0)

=
1

P(Z[n+1] > 0)

∞∑

k=1

(
1 − E(sZ[n+1] | Z[n] = k)

)
P(Z[n] = k)

=
1

P(Z[n+1] > 0)

∞∑

k=1

(
1 − Ek(s

Z[1])
)
P(Z[n] = k)

=
P(Z[n] > 0)

P(Z[n+1] > 0)

1

P(Z[n] > 0)

∞∑

k=1

(
1 − 1

2
(f0(s)

k + f1(s)
k)

)
P(Z[n] = k)

=
P(Z[n] > 0)

P(Z[n+1] > 0)

∞∑

k=1

(
1 − 1

2
(f0(s)

k + f1(s)
k)

)
P(Z[n] = k | Z[n] > 0)

=
P(Z[n] > 0)

P(Z[n+1] > 0)

(
1 − 1

2

(
E(f0(s)

Z[n] | Z[n] > 0) + E(f1(s)
Z[n] | Z[n] > 0)

))
,
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3.2 Der Prozess einer zufälligen Zelllinie

dabei wurde in der fünften Zeile Satz 1.3 und in der sechten (3.2) verwendet. Nach
Korollar 3.7 gilt P(Z[n] > 0)

n→∞≃ c1µ
n für ein c1 > 0, und damit folgt

P(Z[n] > 0)

P(Z[n+1] > 0)
−→
n→∞

µ−1.

Für n → ∞ ergibt sich mit Korollar 3.7 somit aus der obigen Gleichung

1 − G(s) =
1

µ

(
1 − 1

2

(
G(f0(s)) + G(f1(s))

))

⇔ µ − µG(s) = 1 − 1

2

(
G(f0(s)) + G(f1(s))

)

⇔ µG(s) + (1 − µ) =
1

2

(
G(f0(s)) + G(f1(s))

)

und damit (3.6).
Als letztes ist noch die Eindeutigkeit zu zeigen. Seien G, F zwei erzeugende Funk-

tionen, welche die im Satz stehenden Eigenschaften besitzen. Für F, G gilt damit
G(0) = F (0) = 0 und 0 < G

′
(1), F

′
(1) < ∞. Daher gibt es ein eindeutiges α > 0,

sodass G
′
(1) = αF

′
(1) ist. Wir setzen

H := G − αF.

Es gilt H
′
(1) = 0 und als erzeugende Funktionen sind G und F auf [0, 1] stetig

differenzierbar. Damit ist auch H stetig differenzierber und somit insbesondere H
′

stetig. Weiter ist mit der Kettenregel und (3.6)

1

2µ

(
H

′

(f0(s))f
′

0(s) + H
′

(f1(s))f
′

1(s)
)

=
1

2µ

(
H(f0(s)) + H(f1(s))

)′

=
1

2µ

(
G(f0(s)) + G(f1(s)) − α

(
F (f0(s)) + F (f1(s))

))′

=
1

µ

(
µG(s) + 1 − µ − α(µF (s) + 1 − µ)

)′

= (G(s) − αF (s))
′

= H
′

(s).

Damit gelten die Voraussetzungen von Lemma 3.8 und es folgt H
′ ≡ 0. Somit ist

H konstant. Da H(0) = 0 gilt, folgt H ≡ 0. Also ist G(s) = αF (s). Nun ist aber
G(1) = F (1) = 1 und somit α = 1. Also ist F = G. 2
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4 Erholungswahrscheinlichkeit

In diesem Kapitel beschäftigen wir uns mit der in der Einleitung aufgeworfenen
Frage: Unter welchen Bedingungen erholt sich ein Organismus? Wir sprechen von
einem sich erholenden Organismus, wenn die Anzahl infizierter Zellen im Vergleich
zur Gesamtanzahl an Zellen vernachlässigbar wird. Mit Hilfe der gefunden Bedin-
gungen für das fast sichere Erholen erhalten wir dann fest, dass bei hoher mittlerer
Vermehrungsrate µ0+µ1 die Parasiten sich sehr ungleichmäßig auf die Tochterzellen
verteilen müssen, damit sich ein Organismus regeneriert.

Zuerst geben wir die formale Definition eines sich erholenden Organismus an.

Definition 4.1. Ein Organismus erholt oder regeneriert sich, wenn

#G
∗
n

2n
−→
n→∞

0 P-f.s.

gilt.

Kommen wir nun zum Hauptresultat dieses Abschnittes. Es besagt, dass sich ein
Organismus genau dann fast sicher erholt, wenn der PZZ nicht superkritisch ist.

Satz 4.2. Es existiert eine Zufallsgröße L ∈ [0, 1], sodass

#G∗
n

2n
−→
n→∞

L P-f.s.

gilt. Ist µ0µ1 ≤ 1, so gilt P(L = 0) = 1. Ist µ0µ1 > 1, so gilt P(L = 0) < 1 und
Ext = {L = 0} f.s..

Beweis: Für alle n ≥ 1 ist #G∗
n ≤ 2#G∗

n−1 fast sicher, da die Anzahl der infi-
zierten Zellen in einem Generationsschritt sich maximal verdoppeln kann. Damit ist
(#G∗

n

2n )n≥0 eine monoton fallende, nach unten durch 0 beschränkte Folge, die somit
fast sicher gegen eine Zufallsgröße L ∈ [0, 1] für n → ∞ konvergiert.

Weiter gilt

E

(#G
∗
n

2n

)
=

1

2n
E

( ∑

v∈Gn

1{Zv>0}

)
=

1

2n

∑

v∈Gn

P(Zv > 0) = P(Z[n] > 0) (4.1)

für alle n ∈ N0. Aus der monotonen Konvergenz folgt somit

EL = E

(
lim

n→∞

#G∗
n

2n

)
= lim

n→∞
E

(#G∗
n

2n

)
= lim

n→∞
P(Z[n] > 0) = 1 − P(Z[n] → 0).
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4 Erholungswahrscheinlichkeit

Korollar 3.5 liefert uns dann die Äquivalenzen

µ0µ1 ≤ 1 ⇔ P(Z[n] → 0) = 1 ⇔ EL = 0 ⇔ P(L = 0) = 1

und damit die ersten Behauptungen des Satzes. Es ist also nur noch {L = 0} = Ext
fast sicher für den Fall µ0µ1 > 1 zu zeigen.

Aus Zn → 0 folgt #G∗
n → 0 und damit sofort Ext ⊆ {L = 0} fast sicher. Für

die andere Inklusion benutzen wir die unabhängige Vermehrung der Parasiten. Wir
kreieren für jeden Parasiten der n-ten Generation einen neuen Prozess, der mit einer
Zelle mit einem Parasiten startet. Diese neuen Prozesse verhalten sich so wie der
ursprüngliche Prozess und sind unabhängig voneinander. Es ergibt sich, dass sich
der ursprüngliche Prozess genau dann erholt, wenn sich auch alle neuen Prozesse
erholen. Lässt man nun n gegen unendlich laufen, folgt das gewünschte Resultat.
Wir erwähnen nochmals, dass P(n) die Menge der Parasiten der n-ten Generation
ist. Für p ∈ P(n) definieren wir Nk(p) als die Anzahl infizierter Zellen der (n+k)-ten
Generation, die mindestens einen Nachkommen von p enthalten.

Für alle n, k ∈ N0 und p ∈ P(n) gilt nach der Definition von Nk(p)

Nk(p)

2n+k
≤ #G

∗
n+k

2n+k
≤

∑

p∈P(n)

Nk(p)

2n+k
P-f.s..

Konvergiert nun Nk(p)/2n+k → 0 für alle p ∈ P(n) oder #G
∗
n+k/2n+k → 0 für

k → ∞, so erhält man damit

{L = 0} =
⋂

p∈P(n)

{
Nk(p)

2k
−→
k→∞

0

}
P-f.s. (4.2)

für alle n ∈ N0. Da sich die Parasiten unabhängig voneinander vermehren, können
wir jeden Parasiten p ∈ P(n) als Urahne eines neuen ZTPIZ ansehen und die so
entstehenden Prozesse sind außerdem unabhängig voneinander. Für p ∈ P(n) gibt
dann Nk(p) die Anzahl der infizierten Zellen der k-ten Generation des Prozesses
startend mit Prarasit p an. Damit gilt also nach dem zuvor Gezeigten

Nk(p)

2k
−→
k→∞

L P-f.s. (4.3)

für alle p ∈ P(n).
Für n ∈ N0 sei Tn := inf{k ≥ 0 : Zk ≥ n} die Stoppzeit bzgl. der kanonischen

Filtration σ(Zv : |v| ≤ k) (Def. A.2), welche angibt, zu welchem Zeitpunkt die
Anzahl der Parasiten zum ersten mal größer als n ist. Mit der starken Markov-

27



4 Erholungswahrscheinlichkeit

Eigenschaft (Satz A.3) sowie (4.2) und (4.3) folgt dann

P(L = 0) ≤ P(L = 0 | Tn < ∞)P(Tn < ∞) + P(Tn = ∞)

≤ P(L = 0 | ZTn
≥ n, ZTn−1 < n, ...,Z0 < n, Tn < ∞) + P(Tn = ∞)

= P(L = 0 | ZTn
≥ n, Tn < ∞) + P(Tn = ∞)

= P

( ⋂

p∈P(Tn)

{Nk(p)

2k
−→
k→∞

0
} ∣∣ ZTn

≥ n, Tn < ∞
)

+ P(Tn = ∞)

≤ P

( n⋂

p=1

{Nk(p)

2k
−→
k→∞

0
})

+ P(Tn = ∞)

= P

(Nk(p)

2k
−→
k→∞

0
)n

+ P(Tn = ∞)

= P(L = 0)n + P(Tn = ∞),

wobei in der vorletzten Zeile die Unabhängigkeit der Nk(p) einging. Gilt nun P(L =
0) < 1, folgt aus der eben gezeigten Ungleichung für n → ∞

P(L = 0) ≤ lim
n→∞

P(Tn = ∞)

= P

( ⋃

n≥1

{Tn = ∞}
)

= P

( ⋃

n≥1

{Zk < n für alle k ≥ 0})
)

= P
(
(Zn)n≥0 ist beschränkt

)

= P(Ext)

nach dem Extinctions-Explosions-Prinzip (2.1). Damit ist der Satz bewiesen. 2

Bemerkung 4.3. (a) Im Fall µ0+µ1 > 1 und µ0µ1 ≤ 1, folgt nach Satz 4.2, dass sich
ein Organismus erholt, selbst wenn die Anzahl der Parasiten gegen unendlich strebt.
In diesem Fall sehen wir, wie unausgeglichen die Parasiten auf die Tochterzellen
verteilt werden müssen, damit sich der Organismus fast sicher erholt.

Sei dazu a ∈ [0, 1] mit µ0 = 2µa und µ1 = 2µ(1 − a). Ein Organismus erholt sich
nach Satz 4.2 genau dann fast sicher, wenn µ0µ1 ≤ 1 gilt. Ist µ ≤ 1, so ist auch
µ0µ1 ≤ 1. Ist hingegen µ > 1, dann folgt mit Hilfe der quadratische Ergänzung die
Äquivalenz von µ0µ1 = a(1 − a)(2µ)2 ≤ 1 und

a /∈
( 1

2

(
1 −

√
1 − 1

µ2

)
,

1

2

(
1 +

√
1 − 1

µ2

) )
. (4.4)
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4 Erholungswahrscheinlichkeit

Ein Organismus erholt sich also genau dann fast sicher, wenn µ ≤ 1 oder (4.4) gilt.
Dies zeigt, je größer die mittlere Vermehrungsrate µ0 + µ1 = 2µ der Parasiten ist,

desto extremer muss das Gewicht a ∈ [0, 1] in Richtung 0 oder 1 verschoben und
somit die Verteilung der Parasiten auf die beiden Tochterzellen sehr unausgewogen
sein, damit der Organismus sich fast sicher erholt.

Die beiden Grafiken in Abbildung 4.1 zeigen jeweils 30 Pfade von 2−n#G∗
n mit

unabhängigen X(0), X(1) und P(X(0) + X(1) ∈ ·) = Poi(2.5), woraus µ = 1.25 > 1
folgt. Während in der ersten Grafik jedoch X(0) und X(1) identisch Poi(1.25)-verteilt
sind und damit µ0µ1 > 1 gilt, sind in der zweiten Grafik X(0) und X(1) nicht identisch
verteilt, X(0) ∼ Poi(0.3125) und X(0) ∼ Poi(2.1875). Damit gilt in der zweiten
Grafik µ0µ1 ≤ 1. Die Parasiten des zweiten Prozesses sterben somit fast sicher aus,
während diese beim ersten auch überleben können.

n

2
−

n
#

G
∗ n

0.25

0.50

0.75

1.00

5 10 15 20
n

0.25

0.50

0.75

1.00

5 10 15 20

Abbildung 4.1: 30 Pfade von 2−n#G
∗
n mit X(0) + X(1) ∼ Poi(2.5), X(0), X(1) unab-

hängig und a = 0.5 bzw. 0.125.

(b) Die Gleichung (4.1) im Zusammenspiel mit Korollar 3.7 und Korollar A.11 gibt
uns die Asymptotik von E(#G∗

n) im Fall µ0µ1 ≤ 1. Für geeignete c1, ..., c4 ∈ (0,∞)
gilt nämlich:

• E(#G∗
n)

n→∞≃ (2µ)nc1 im stark subkritischen Fall;

• E(#G
∗
n)

n→∞≃ (2µ)n c2√
n

im moderat subkritischen Fall;

• E(#G∗
n)

n→∞≃ (2γ)n c3√
n3

, für ein γ ∈ (0, µ) im schwach subkritischen Fall;

• E(#G∗
n)

n→∞≃ (2µ)nl(n) c4
n1−ρ , für ein ρ ∈ (0, 1) und eine geeignete Funktion l(n)

im kritischen Fall, falls (µ0, µ1) 6= (1, 1) ist.
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5 Baum infizierter Zellen

In diesem Kapitel betrachten wir den Baum infizierter Zellen und beantworten als
erstes folgende auch in der Einleitung gestellte motivierende Frage: In der Situation
µ0 + µ1 > 1 gilt P(Zn → ∞ | Extc) = 1, d.h. die Anzahl der Parasiten explodiert
im Überlebensfall. Wie verteilen sich aber die unendlich vielen Parasiten auf die
Zellen? Gibt es nur wenige stark infizierte oder viele schwach infizierte Zellen? Gilt
in diesem Fall also auch

P(#G
∗
n → ∞ | Extc) = 1?

Satz 5.5 weiter unten gibt eine positive Antwort auf diese Fragen. Wir zeigen, dass
infizierte Zellen nicht in endlich vielen Zelllinien konzentriert sind. Das heißt, die
infizierten Zellen verteilen sich über den gesamten Zellbaum und sind nicht in einer
kleinen Umgebung anzutreffen.

Als nächstes betrachten wir den Fall µ0 + µ1 ≤ 1. Hier ist der Parasitenprozess
(Zn)n≥0 nicht superkritisch, und die Parasiten sterben fast sicher aus. Insbesondere
konvergiert damit die Anzahl infizierter Zellen gegen 0. Unter der Bedingung, dass in
der n-ten Generation Parasiten überleben, strebt jedoch die Anzahl infizierter Zellen
des gesamten Baumes, deren Tochterzellen nicht mehr infiziert sind, für n → ∞
gegen unendlich. Dies bestätigt Satz 5.6. Deswegen können infizierte Zellen auch in
diesem Fall nicht in endlich vielen Zelllinien konzentriert sein, sondern verteilen sich
über den ganzen Zellbaum.

Um diese beiden Sätze zu beweisen, führen wir den Begriff des Randes des Zell-
baumes und die Menge der unendlichen Zelllinien infizierter Zellen ein.

Definition 5.1. Für einen Zellbaum T sei δT := {0, 1}N dessen Rand und

δT
∗ := {v ∈ δT : Zv|n > 0 für alle n ∈ N0}

die Menge der unendlichen Zelllinien infizierter Zellen.

Es sei noch erwähnt, dass für µ0 + µ1 > 1

P(δT
∗ 6= ∅ | Extc) = 1 (5.1)

gilt, da in jeder Generation aus mindestens einer infizierten Zelle eine infizierte
Tochterzelle entstehen muss.
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5 Baum infizierter Zellen

b

b
b

b

oder b

u
u

Abbildung 5.1: Infizierungsmöglichkeiten eines Parasit im Fall P(X(0)X(1) = 0) = 1

Bevor wir zu den angesprochenen Resultaten kommen, benötigen wir noch zwei
Lemmata. Das erste garantiert uns, dass ein Vorfahre einer beliebigen infizierten
Zelle eine nach unten beschränkte, positive Wahrscheinlichkeit dafür besitzt, dass
beide Tochterzellen infiziert sind. Hierbei müssen wir die Fälle

P(X(0)X(1) = 0) 6= 1 und P(X(0)X(1) = 0) = 1

unterscheiden, denn im zweiten Fall muss der Zellvorfahre mindestens zwei Parasiten
enthalten, damit beide Tochterzellen infiziert werden können (siehe Abb. 5.1). Im
zweiten Lemma beweisen wir dann, dass es im Fall P(X(0)X(1) = 0) = 1 in einer
unendlichen Zelllinie infizierter Zellen unendlich viele Zellen mit mindestens zwei
Parasiten gibt.

Zunächst aber zum ersten Lemma. Es sei an die Schreibweise u < v für u, v ∈ T,
falls u eine Vorfahrenzelle von v ist, erinnert.

Lemma 5.2. Es existiert ein α > 0 derart, dass für alle v ∈ T, u < v und k ≥ 2

P(Zu0 > 0, Zu1 > 0 | Zu = k, Zv > 0) ≥ α

gilt. Falls P(X(0)X(1) = 0) 6= 1, gilt das Resultat auch für k = 1. Insbesondere folgt
dann für alle k ≥ 2 (bzw. k ≥ 1)

lim
n→∞

inf
v∈Gn,u<v

{
P(Zu0 > 0, Zu1 > 0 | Zu = k, Zv > 0)

}
≥ α.

Beweis: Sei v ∈ T. Als erstes bedienen wir uns der monoton fallenden Hilfsfunktion
f : R>0 → R, x 7→ 1−e−x

x
. Für alle 0 < r < s und p ∈ (0, 1) ergibt sich dann

1 − pr

1 − ps
=

r

s

f(−r log p)

f(−s log p)
≥ r

s
.

Falls r ≥ s > 0 ist, folgt außerdem 1 − pr ≥ 1 − ps für p ∈ [0, 1) und damit

1 − pr

1 − ps
≥ r

max{r, s} (5.2)
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5 Baum infizierter Zellen

für alle r, s > 0 und p ∈ [0, 1).

1. Fall: P(X(0)X(1) = 0) 6= 1. Für u < v und k ∈ N gilt

P(Zu0 > 0, Zu1 > 0 | Zu = k, Zv > 0) ≥ P(Zu0 > 0, Zu1 > 0 | Zu = 1, Zv > 0).

Es reicht also den Fall k = 1 zu betrachten.
Seien nun k0, k1 ∈ N, u1 ∈ {0, 1} und u2 ∈ {0, 1}|v|−|uu1| so gewählt, dass v = uu1u2

und P(Z0 = k0, Z1 = k1) > 0 ist. Mit Hilfe von (1.2), (3.1) und (5.2) gilt dann für
alle (k

′

0, k
′

1) ∈ N
2
0 mit P(Zu0 = k

′

0, Zu1 = k
′

1 | Zu = 1, Zv > 0) > 0

P(Zu0 = k0, Zu1 = k1 | Zu = 1, Zv > 0)

P(Zu0 = k
′

0, Zu1 = k
′

1 | Zu = 1, Zv > 0)

=
P(Z0 = k0, Z1 = k1 | Zu1u2 > 0)

P(Z0 = k
′

0, Z1 = k
′

1 | Zu1u2 > 0)

=
P(Zu1u2 > 0 | Z0 = k0, Z1 = k1)P(Z0 = k0, Z1 = k1)

P(Zu1u2 > 0 | Z0 = k
′

0, Z1 = k
′

1)P(Z0 = k
′

0, Z1 = k
′

1)

=
(1 − P(Zu2 = 0)ku1 )P(Z0 = k0, Z1 = k1)

(1 − P(Zu2 = 0)k
′
u1 )P(Z0 = k

′

0, Z1 = k
′

1)

≥ ku1

max{ku1 , k
′

u1
}

P(Z0 = k0, Z1 = k1)

P(Z0 = k
′

0, Z1 = k
′

1)

≥ min{k0, k1}
k0 + k1 + k

′

0 + k
′

1

P(Z0 = k0, Z1 = k1)

P(Z0 = k
′

0, Z1 = k
′

1)
.

Multipliziert man nun beide Seiten mit dem Produkt beider Nenner und summiert
über alle (k

′

0, k
′

1) erhält man
(
E(Z0 + Z1) + k0 + k1

)
P(Zu0 = k0, Zu1 = k1 | Zu = 1, Zv > 0)

≥ min{k0, k1}P(Z0 = k0, Z1 = k1).

Hieraus folgt die Behauptung des ersten Falls, indem wir

α :=
min{k0, k1}P(Z0 = k0, Z1 = k1)

E(Z0 + Z1) + k0 + k1
> 0

setzen.

2. Fall: P(X(0)X(1) = 0) = 1. Der Beweis dieses Falls läuft völlig analog zu dem
vorherigen Fall nur mit Zu = 2, denn für jedes k ≥ 2 und u < v gilt

P(Zu0 > 0, Zu1 > 0 | Zu = k, Zv > 0) ≥ P(Zu0 > 0, Zu1 > 0 | Zu = 2, Zv > 0).
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5 Baum infizierter Zellen

Es reicht also in diesem Fall k = 2 zu betrachten.
Wähle (k0, k1) ∈ N2

0 diesmal so, dass P2(Z0 = k0, Z1 = k1) > 0 ist, und seien
u1, u2, k

′

0, k
′

1 wie im ersten Fall. Dann folgt durch analoge Rechnung

P(Zu0 = k0, Zu1 = k1 | Zu = 2, Zv > 0)

P(Zu0 = k
′

0, Zu1 = k
′

1 | Zu = 2, Zv > 0)

=
P2(Z0 = k0, Z1 = k1 | Zu1u2 > 0)

P2(Z0 = k
′

0, Z1 = k
′

1 | Zu1u2 > 0)

=
P(Zu1u2 > 0 | Z0 = k0, Z1 = k1)P2(Z0 = k0, Z1 = k1)

P(Zu1u2 > 0 | Z0 = k
′

0, Z1 = k
′

1)P2(Z0 = k
′

0, Z1 = k
′

1)

≥ min{k0, k1}
k0 + k1 + k

′

0 + k
′

1

P2(Z0 = k0, Z1 = k1)

P2(Z0 = k
′

0, Z1 = k
′

1)
.

Wie im ersten Fall erhält man so

(
E2(Z0 + Z1) + k0 + k1

)
P(Zu0 = k0, Zu1 = k1 | Zu = 2, Zv > 0)

≥ min{k0, k1}P2(Z0 = k0, Z1 = k1)

und damit als untere Schranke

α :=
min{k0, k1}P2(Z0 = k0, Z1 = k1)

E2(Z0 + Z1) + k0 + k1
> 0.

2

Kommen wir nun zum oben angesprochenen zweiten Lemma. Bansaye [10] gibt in
diesem Lemma als weitere Voraussetzung

β = P(X(0) ≥ 2 oder X(1) ≥ 2) > 0

an und benutzt dann die Ungleichung

P(Z0 ≥ 2 oder Z1 ≥ 2 | Zk > 0) ≥ P(X(0) ≥ 2 oder X(1) ≥ 2) > 0

für alle k ∈ T. Diese ist aber im Allgemeinen nicht erfüllt, wie das folgende Beispiel
zeigt.

Beispiel 5.3. Gelte P(X(0) = 2, X(1) = 0) = P(X(0) = 0, X(1) = 1) = 1
2
. Dann ist

P(Z0 ≥ 2 oder Z1 ≥ 2 | Z1 > 0) = P(Z1 ≥ 2 | Z1 > 0) = 0,

aber

P(Z0 ≥ 2 oder Z1 ≥ 2) = P(Z0 ≥ 2) =
1

2
.
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5 Baum infizierter Zellen

Selbst wenn beide Tochterzellen zwei Parasiten enthalten können, muss die Un-
gleichung nicht erfüllt sein, denn für

P(X(0) = 2, X(1) = 0) =
1

2

und

P(X(0) = 0, X(1) = 1) = P(X(0) = 0, X(1) = 2) =
1

4

ist

P(Z0 ≥ 2 oder Z1 ≥ 2 | Z1 > 0) = P(Z1 ≥ 2 | Z1 > 0) =
1

2
,

aber

P(Z0 ≥ 2 oder Z1 ≥ 2) =
1

2
+

1

4
=

3

4
.

In beiden Fällen ist also P(Z0 ≥ 2 oder Z1 ≥ 2 | Z1 > 0) < β.

Wir müssen unsere untere Schranke β somit kleiner wählen und deswegen etwas
schärfere Anforderungen an die Reproduktionsverteilungen stellen. Wir beweisen
daher das zweite Lemma unter der Voraussetzung β = P(X(0) ≥ 2)P(X(1) ≥ 2) > 0.

Lemma 5.4. Gilt P(X(0)X(1) = 0) = 1 und β := P(X(0) ≥ 2)P(X(1) ≥ 2) > 0, so
folgt

inf
v∈Gn

P

(
#{u < v : Zu0 ≥ 2 oder Zu1 ≥ 2} ≥ nβ

2

∣∣ Zv > 0
)
−→
n→∞

1.

Beweis: Für alle v ∈ Gn, u < v = uw für ein geeignetes w ∈ {0, 1}|v|−|u| und z ≥ 1
gilt

P(Zu0 ≥ 2 oder Zu1 ≥ 2 | Zu = z, Zv > 0)

≥ P(Z0 ≥ 2 oder Z1 ≥ 2 | Zw > 0) ≥ β.
(5.3)

Die erste Ungleichung in (5.3) ergibt sich aus

P(Zu0 ≥ 2 oder Zu1 ≥ 2 | Zu = z, Zv > 0)

≥ P(Zu0 ≥ 2 oder Zu1 ≥ 2 | Zu = 1, Zv > 0)

= P(Z0 ≥ 2 oder Z1 ≥ 2 | Zw > 0).

Die zweite Ungleichung folgt aufgrund der Voraussetzung, dass alle Parasiten ent-
weder in die erste oder in die zweite Zelle gehen, d.h. P(X(0)X(1) = 0) = 1. Ohne
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5 Baum infizierter Zellen

Einschränkung kann also P(Z0 ≥ 2 oder Z1 ≥ 2 | Zw > 0) = P(Z0 ≥ 2 | Zw > 0)
angenommen werden und man erhält

P(Z0 ≥ 2 oder Z1 ≥ 2 | Zw > 0)

= P(Z0 ≥ 2 | Zw > 0)

=
P(Z0 ≥ 2, Zw > 0)

P(Zw > 0)

=
1

P(Zw > 0)

∑

j≥2

P(Zw > 0 | Z0 = j)P(Z0 = j)

≥ 1

P(Zw > 0)

∑

j≥2

P(Zw > 0 | Z0 = 1)P(Z0 = j)

=
P(Zw

′ > 0)

P(Zw > 0)
P(Z0 ≥ 2), wobei w = 0w

′

≥ P(Z0 ≥ 2),

wobei in der letzten Ungleichung P(Zw > 0) ≤ P(Zw
′ > 0) einging. Damit gilt

(5.3), das heißt unabhängig von der genauen Anzahl an Parasiten in einer Zelle
ist die Wahrscheinlichkeit in der nächsten Generation zwei oder mehr Parasiten zu
erhalten mindestens β.

Seien nun βk, k ≥ 0, unabhängige, identisch B(1, β)-verteilte Zufallsgrößen. Dann
gilt für alle v ∈ Gn und x ∈ R mit Hilfe von (5.3)

P(#{u < v : Zu0 ≥ 2 oder Zu1 ≥ 2} > x | Zv > 0) ≥ P

( n−1∑

k=0

βk > x
)
.

Aus dem starken Gesetz der großen Zahlen folgt 1
n

∑n−1
k=0 βk −→

n→∞
β fast sicher und

damit

P

(
#{u < v : Zu0 ≥ 2 oder Zu1 ≥ 2} ≥ nβ

2
| Zv > 0

)
≥ P

( n−1∑

k=0

βk ≥ nβ

2

)
−→
n→∞

1,

was den Beweis abschließt. 2

Kommen wir nun zu den beiden am Anfang des Kapitels angekündigten Hauptre-
sultaten. Wir beginnen mit dem Fall eines superkritischen Parasitenprozesses.

Satz 5.5. Ist µ0 + µ1 > 1, so konvergiert #G∗
n bedingt unter Extc fast sicher gegen

unendlich. Es gilt also

P(#G
∗
n

n→∞−→ ∞ | Extc) = 1.
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5 Baum infizierter Zellen

Wir werden den Beweis von Bansaye in [10] erweitern und den Satz damit auch
für die, durch die Beispiele verdeutlichten, Ausnahmen zeigen.

Beweis: Der Beweis teilt sich in drei Fälle auf. Im ersten Fall betrachten wir die
Situation P(X(0)X(1) = 0) 6= 1. Mit Hilfe von Lemma 5.2 folgt, dass in einer unendli-
chen Zelllinie infizierter Zellen unendlich viele Zellen existieren, deren Tochterzellen
beide infiziert sind. Jede dieser Tochterzellen, welche nicht in der vorher betrachte-
ten Zelllinie liegt, startet einen neuen ZTPIZ. Da die Überlebenswahrscheinlichkeit
der Parasiten positiv ist, folgt dann mit dem Borel-Cantelli-Lemma und Satz 1.3,
dass bei unendlich vielen dieser neuen ZTPIZ Parasiten überleben. Damit konver-
giert auch die Anzahl der infizierten Zellen #G∗

n gegen unendlich. Dieses Vorgehen
verdeutlicht Abbildung 5.2. In den anderen beiden Fällen gilt P(X(0)X(1) = 0) = 1.
Wir zeigen, dass in diesen Fällen in einer infizierten Zelllinie unendlich viele Zellen
mit mindestens zwei Parasiten liegen. Jede dieser Zellen hat eine positive Chance
beide Tochterzellen zu infizieren und damit können wir diese Fälle auf den ersten
Fall zurückführen.

v1

Zv1
n → ∞

v2

Zv2
n → ∞

v3

Zv3
n → 0

v4

Zv4
n → 0

v5

Zv5
n → ∞

Abbildung 5.2: Die von einer unendlichen Zelllinie infizierter Zellen abzweigenden
neuen ZTPIZ.

Nach (5.1) gilt δT
∗ 6= ∅ fast sicher bedingt unter Extc. Sei dann v ∈ δT

∗.

1.Fall: P(X(0)X(1) = 0) 6= 1. Seien βl, l ≥ 0, unabhängige und identisch B(1, α)-
verteilte Zufallsgrößen, wobei α > 0 nach Lemma 5.2 gegeben ist. Dann folgt mit
Lemma 5.2 (k = 1)

P

(
#{u < v : Zu0 > 0, Zu1 > 0} >

Kα

2
| Zv > 0

)
≥ P

( K−1∑

l=0

βl >
Kα

2

)
−→
K→∞

1,

da nach dem Gesetz der Großen Zahlen 1
K

∑K−1
l=0 βl −→

K→∞
α fast sicher gilt. Wir

erhalten also bedingt unter {Zv > 0}
#{u < v : Zu0 > 0, Zu1 > 0} = ∞ fast sicher. (5.4)
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5 Baum infizierter Zellen

In einer Zelllinie infizierter Zellen gibt es somit unendlich viele Zellen v1, v2, ..., deren
Tochterzellen beide infiziert sind.

Betrachten wir die Tochterzellen dieser unendlich vielen Zellen v1, v2, ..., die nicht
in der zuvor betrachteten Zelllinie liegen. Diese starten nach Satz 1.3 neue, unabhän-
gige ZTPIZ (Zvi

w )w∈T, i ≥ 1, mit einer infizierten Zelle. Da µ0 +µ1 > 1 vorausgesetzt
war, folgt für alle i ≥ 1

P(Zvi
n → ∞ | Zv > 0) = P(Zvi

n → ∞) ≥ P(Zn → ∞) = P(Extc) > 0.

Damit ist die Wahrscheinlichkeit, dass bei unendlich vielen dieser Prozesse infizierte
Zellen überleben, nach dem Borel-Cantelli-Lemma 1, denn es gilt

∞∑

i=1

P(Zvi
n → ∞) ≥

∞∑

i=1

P(Extc) = ∞.

Aus der Unabhängigkeit der Zvi
n , i ≥ 1, folgt damit

P(Zvi
n → ∞ für unendlich viel i) = 1.

Von den unendlich vielen ZTPIZ existieren also unendlich viele, bei denen Parasiten
überleben. Damit konvergiert #G∗

n gegen unendlich. Die Behauptung für den erste
Fall ist somit bewiesen.

2.Fall: P(X(0)X(1) = 0) = 1 und P(X(0) ≥ 2)P(X(1) ≥ 2) > 0. Mit Lemma 5.4
folgt bedingt unter {Zv > 0}

#{u < v : Zu0 ≥ 2 oder Zu1 ≥ 2} = ∞ fast sicher. (5.5)

In einer unendlichen Zelllinie infizierter Zellen existieren also unendlich viele Zellen
mit mindestens zwei Parasiten. Mit Lemma 5.2 erhalten wir daher analog zum ersten
Fall (diesmal für k = 2)

P

(
#{u < v : Zu0 > 0, Zu1 > 0} >

Kα

2
| Zv > 0

)
−→

K→∞
1.

Also existieren auch in diesem Fall unendlich viele Zellen in einer unendlichen Zell-
linie infizierter Zellen, deren Tochterzellen beide infiziert sind und es gilt (5.4). Wir
befinden uns damit in der gleichen Situation wie im ersten Fall und es folgt die
Behauptung für den zweiten Fall.

3.Fall: P(X(0)X(1) = 0) = 1 und P(X(0) ≥ 2)P(X(1) ≥ 2) = 0. Sei also ohne
Einschränkung P(X(0) ≤ 1) = 1. Ist X(0) ∼ δ1, so folgt X(1) ∼ δ0 aufgrund von
P(X(0)X(1) = 0) = 1. Dies stellt jedoch einen Widerspruch zu µ0 + µ1 > 1 dar.
Demnach muss also µ0 < 1 gelten. Aufgrund der Voraussetzung (1.4) folgt damit
aber P(X(1) ≥ 2) > 0.
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5 Baum infizierter Zellen

Sind in der Folge v = (vn)n≥1 ∈ δT∗ nur endlich viele vn = 1, so ist (Zv|n)n≥0 ab
einem n0 ∈ N wegen P(X(0) ≤ 1) = 1 eine monoton fallende Folge, welche aufgrund
von µ0 < 1 fast sicher gegen 0 konvergiert (Satz 2.4). Damit v ∈ δT∗ sein kann, muss
demnach vn = 1 unendlich oft gelten.

Für u < v mit v = u1u
′
folgt mit der gleichen Rechnung wie für (5.3)

P(Zu0 ≥ 2 oder Zu1 ≥ 2 | Zu = z, Zv > 0) ≥ P(X(1) ≥ 2) =: β

für alle z ≥ 1. Auf die gleiche Weise wie im Beweis von Lemma 5.4 und der Tatasache,
dass vn = 1 unendlich oft gilt, erhalten wir dann

P

(
#{u < v : Zu0 ≥ 2 oder Zu1 ≥ 2} >

Kβ

2
| Zv > 0

)
−→
K→∞

1.

Es gilt also auch (5.5). Wir befinden uns somit in der gleichen Situation wie im
zweiten Fall, womit die Behauptung des Satzes folgt. 2

Wenden wir uns nun dem Fall eines nicht subkritischen Parasitenprozesses zu. Wie
zu Beginn des Kapitels angekündigt, gilt auch in diesem Fall, dass die infizierten
Zellen nicht in einer Zelllinie konzentriert sind. Dies zeigt der folgende

Satz 5.6. Gilt P(X(0)X(1) = 0) 6= 1 oder P(X(0) ≥ 2)P(X(1) ≥ 2) > 0 im Fall
µ0 + µ1 ≤ 1, so folgt für alle x ∈ R

P
(
#{v ∈ T : Zv 6= 0, Zv0 = Zv1 = 0} ≥ x | #G

∗
n > 0

)
−→
n→∞

1.

Beweis: Der Beweis verläuft in ähnlicher Weise wie der Beweis von Satz 5.5 und
wir benutzen wieder die Unabhängigkeit der von einer Zelllinie abzweigenden ZTPIZ.
Wir teilen den Beweis in zwei Fälle auf. Nachdem wir die Behauptung für den Fall
P(X(0)X(1) = 0) 6= 1 gezeigt haben, betrachten wir die Situation unter der Annahme
P(X(0) ≥ 2)P(X(1) ≥ 2) > 0 und spielen diesen Fall auf den ersten zurück. So
erhalten wir dann die Behauptung des Satzes.

1. Fall: P(X(0)X(1) = 0) 6= 1. Nach Lemma 5.2 existiert ein α > 0, sodass

P(Zu0 > 0, Zu1 > 0 | Zu = k, Zv > 0) ≥ α (5.6)

für alle n ≥ 0, v ∈ Gn, u < v und k ≥ 1 gilt. Mit den gleichen Argumenten wie im
ersten Schritt vom Beweis vorher folgt damit nach dem starken Gesetz der großen
Zahlen

inf
v∈Gn

{
P

(
#{u < v : Zu0 > 0, Zu1 > 0} >

nα

2

∣∣ Zv > 0
)}

−→
n→∞

1. (5.7)

Sind von einer Zelle u < v beide Tochterzellen infiziert, dann starten diese Tochter-
zellen nach Satz 1.3 zwei unabhängige ZTPIZ. Aufgrund der Voraussetzung µ0+µ1 ≤
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5 Baum infizierter Zellen

1 sterben die Parasiten des mit der Tochterzelle, welche nicht in der Zelllinie zu v
liegt, startenden ZTPIZ nach Satz 2.4 fast sicher aus. Dieser besitzt somit min-
destens eine infizierte Zelle, deren Tochterzellen keine Parasiten mehr enthalten. In
jedem von der Zelllinie nach v abzweigenden Teilbaum befindet sich also mindes-
tes eine infizierte Zelle, deren Tochterzellen nicht mehr infiziert sind. Aufgrund der
Unabhängigkeit der so entstehenden Prozesse und (5.7) folgt dann für alle x ∈ R

inf
v∈Gn

{
P

(
#{u ∈ T : Zu 6= 0, Zu0 = Zu1 = 0} ≥ x

∣∣ Zv > 0
)}

≥ inf
v∈Gn

{
P

(
#{u < v : Zu0 > 0, Zu1 > 0} ≥ x

∣∣ Zv > 0
)}

−→
n→∞

1.

2. Fall: P(X(0) ≥ 2)P(X(1) ≥ 2) > 0. Die Ungleichung (5.6) gilt auch in diesem
Fall für k ≥ 2 und geeignetes α > 0. Nach Lemma 5.4 gilt

inf
v∈Gn

{
P

(
#{u < v : Zu0 ≥ 2 oder Zu1 ≥ 2} ≥ nβ

2

∣∣ Zv > 0
)}

−→
n→∞

1, (5.8)

wobei β wie in Lemma 5.4 gewählt ist. Setzen wir für v ∈ T

A2(v) := #{u < v : Zu0 ≥ 2 oder Zu1 ≥ 2}.

Dann folgt aus (5.8) und (5.6) mit der gleichen Argumentation wie in (5.7)

inf
v∈Gn

{
P

(
#{u < v : Zu0 > 0, Zu1 > 0} >

nαβ

4

∣∣ Zv > 0
)}

≥ inf
v∈Gn

{
P

(
#{u < v : Zu0 > 0, Zu1 > 0} >

nαβ

4
, A2(v) ≥ nβ

2

∣∣ Zv > 0
)}

−→
n→∞

1.

Nun befinden wir uns in der gleichen Situation wie im ersten Fall und mit den
gleichen Argumenten folgt damit die Behauptung. 2
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6 Anteil infizierter Zellen mit

gegebener Anzahl an Parasiten

Dieses letzte und längste Kapitel behandelt die Verteilung der Parasiten auf die
Zellen für gegen unendlich laufende Zeit. Dazu betrachten wir das Verhältnis der
Anzahl an Zellen mit k Parasiten, k ∈ N0, zur Gesamtanzahl infizierter Zellen der
n-ten Generation und dessen asymptotisches Verhalten für n → ∞. Dieses Verhalten
hängt jedoch vom Verhalten der beiden Prozesse (Zn)n≥0 und (Z[n])n≥0 ab. Wir
betrachten daher die folgenden fünf Fälle.

D1

D3

D5D4

D4

D2

0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.5 1.0 1.5 2.0 2.5 3.0

D1 := {(µ0, µ1) ∈ R
2
>0 : µ0 + µ1 < 1}

D2 := {(µ0, µ1) ∈ R
2
>0 : µ0 + µ1 = 1}

D3 := {(µ0, µ1) ∈ R
2
>0 : µ0 + µ1 > 1,

µ0 log(µ0) + µ1 log(µ1) < 0}

D4 := {(µ0, µ1) ∈ R
2
>0 : µ0µ1 ≤ 1,

µ0 log(µ0) + µ1 log(µ1) ≥ 0}

D5 := {(µ0, µ1) ∈ R
2
>0 : µ0µ1 > 1}

Da die Mengen D1, . . . , D5 paarweise disjunkt sind, folgt insbesondere

µ0µ1 ≤ 1, falls (µ0, µ1) ∈ D1 ∪ D2 ∪ D3 und

µ0 + µ1 > 1, falls (µ0, µ1) ∈ D4 ∪ D5 gilt.
(6.1)

Im Fall D5 zeigen wir, dass die infizierten Zellen der n-ten Generation für n → ∞
immer schon stark infiziert sind, also viele Parasiten enthalten. Weiter zeigen wir,
dass im Fall D3 bzw. D2 das Verhältnis von infizierten Zellen mit k Parasiten zur
Gesamtanzahl infizierter Zellen bedingt unter Extc in Wahrscheinlichkeit bzw. be-
dingt unter {Zn > 0} in Verteilung gegen eine Yaglom-quasistationäre-Verteilung
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konvergiert. Daraus erhalten wir unter anderem Erkenntnisse über das asymptoti-
sche Verhalten von #G∗

n für n → ∞. Der Fall D1 verhält sich ähnlich zu den Fällen
D2 und D3. Hier konvergiert die Anzahl infizierter Zellen mit k Parasiten bedingt
unter {Zn > 0} in Verteilung gegen eine integrierbare Zufallsgröße. Daraus erhalten
wir dann die Verteilungskonvergenz von #G∗

n und Zn bedingt unter {Zn > 0} gegen
integrierbare Zufallsgrößen. In die Beweise der Fälle D1, D2 und D3 geht entschei-
dend die stark subkritische Eigenschaft des PZZ (Z[n])n≥0 ein, weshalb diese auch
relativ ähnlich sind. Im Fall D4 ist der PZZ jedoch nicht stark subkritisch und man
kann die Beweisidee der vorherigen Fälle nicht übernehmen. Es liegen in diesem Fall
leider noch keine befriedigenden Resultate vor.

Bevor wir die eben angesprochenen Ergebnisse bestätigen, führen wir noch einige
Definitionen und Notationen ein.

Definition 6.1. Für k, n ∈ N0 definieren wir mit

Fk(n) :=
#{v ∈ G∗

n : Zv = k}
#G∗

n

das Verhältnis der Anzahl an infizierten Zellen mit k Parasiten zu der Anzahl aller
infizierten Zellen in Generation n.

Wir bezeichnen mit

l1(N0) :=
{

(xi)i∈N0 :
∑

i∈N0

|xi| < ∞
}

den Banachraum der absolut konvergenten Reihen mit der zugehörigen 1-Norm || · ||1
definiert durch

||(xi)i∈N0||1 =
∑

i∈N0

|xi|

und mit

S1(N0) :=
{

(xi)i∈N0 : xi ≥ 0 für alle i ∈ N0,
∑

i∈N0

xi = 1
}

den Teilraum der Verteilungen auf N0.
Für x, y ∈ l1(N0), x, y 6= 0, gilt die folgende Ungleichung

∣∣∣∣∣

∣∣∣∣∣
x

||x||1
− y

||y||1

∣∣∣∣∣

∣∣∣∣∣
1

≤ 2
||x− y||1
||x||1

, (6.2)
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

denn mit Hilfe der Dreiecksungleichung folgt
∣∣∣∣∣

∣∣∣∣∣
x

||x||1
− y

||y||1

∣∣∣∣∣

∣∣∣∣∣
1

=

∣∣∣∣∣

∣∣∣∣∣
x

||x||1
− y

||x||1
+

y

||x||1
− y

||y||1

∣∣∣∣∣

∣∣∣∣∣
1

=

∣∣∣∣∣

∣∣∣∣∣
x − y

||x||1
+

y

||y||1
||y||1 − ||x||1

||x||1

∣∣∣∣∣

∣∣∣∣∣
1

≤ ||x − y||1
||x||1

+
|| ||y||1 − ||x||1 ||1

||x||1

≤ 2
||x − y||1
||x||1

.

Da wir im Folgenden die Situation bedingt unter Extc bzw. {Zn > 0} betrachten,
setzen wir zur besseren Übersicht noch

P
∗ := P(· | Extc) und P

n := P(· | Zn > 0) für n ∈ N0.

Wir schreiben ferner E∗ bzw. En für den Erwartungswert bzgl. P∗ bzw. Pn.

6.1 Superkritischer Parasitenprozess

6.1.1 Superkritischer Prozess einer zufälligen Zelllinie, D5

In diesem Fall zeigen wir, dass bei fortschreitender Zeit infizierte Zellen sehr viele
Parasiten enthalten. Dies zeigt der folgende

Satz 6.2. Für alle k ∈ N0 konvergiert Fk(n) bedingt unter Extc in Wahrscheinlich-
keit gegen 0 für n → ∞. Das heißt, für alle K, ε > 0 gilt

P
∗
(#{v ∈ G∗

n : Zv < K}
#G∗

n

≥ ε
)
−→
n→∞

0.

Beweis: Nach Satz 4.2 existiert eine Zufallsgröße L ∈ [0, 1] mit #G∗
n

2n → L f.s. und
P(L = 0) = P(Ext) < 1. Damit gilt natürlich P∗(L = 0) = 0. Da (#G∗

n

2n )n≥0 monoton
fallend ist, gilt somit für alle n ≥ 0

#G
∗
n ≥ 2nL P-f.s.. (6.3)

Wir setzen für K, ε > 0 und n ∈ N0

Bn(K, ε) :=
{#{v ∈ G∗

n : Zv < K}
#G∗

n

≥ ε
}
∩ Extc.
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6.1.1 Superkritischer PZZ, D5

Dann ergibt sich mit (6.3) die Ungleichungskette
∑

v∈G∗
n

1{Zv<K} = #{v ∈ G
∗
n : Zv < K} ≥ ε#G

∗
n1Bn(K,ε) ≥ ε2nL1Bn(K,ε) P-f.s..

Nach Übergang zum Erwartungswert und Division durch 2n auf beiden Seiten er-
halten wir

εE(L1Bn(K,ε)) ≤ 1

2n
E

( ∑

v∈G∗
n

1{Zv<K}

)
=

∑

v∈G∗
n

1

2n
P(Zv < K) = P(0 < Z[n] < K).

Nach Satz 2.18 konvergiert die rechte Seite gegen 0 und damit auch E(L1Bn(K,ε))
für n → ∞.

Da L > 0 fast sicher auf Extc gilt, folgt für alle α > 0

inf
{
E(L1A) : A ∈ F mit P(A ∩ Extc) > α

}
> 0,

denn wählt man x = inf{y ∈ R : P({L ≤ y} ∩ Extc) ≥ α}, so ist

E(L1A) ≥ E(L1A∩Extc) ≥ E(L1{L≤x}∩Extc) > 0

für alle A mit P(A ∩ Extc) ≥ α.
Somit folgt aus E(L1Bn(K,ε)) −→

n→∞
0 auch

P(Bn(K, ε)) −→
n→∞

0.

Aus P(Bn(K, ε)) = P∗(#{v∈G∗
n:Zv<K}

#G∗
n

≥ ε
)
P(Extc) ergibt sich dann

P
∗
(#{v ∈ G∗

n : Zv < K}
#G∗

n

≥ ε
)
−→
n→∞

0.

2

Ist E(Zu log Zu) < ∞ für u ∈ {0, 1} und µ0 = µ1, so verhält sich die Anzahl der
Parasiten in einer infizierten Zelle asymptotisch wie µn

0 . Dies besagt der folgende

Satz 6.3. Ist E(Zu log Zu) < ∞ für u ∈ {0, 1} und µ0 = µ1, so gilt für alle ε > 0

sup
n≥0

{
P
∗
(#{v ∈ G∗

n : Zv ≤ αµn
0}

#G∗
n

≥ ε
)}

−→
α→0

0.

Beweis: Der Beweis verläuft analog zu dem von Satz 6.2 und es gilt auch hier
(6.3). Wir definieren für α, ε > 0 und n ≥ 0

An(αµn
0 , ε) :=

{#{v ∈ G∗
n : Zv ≤ αµn

0}
#G∗

n

≥ ε
}
∩ Extc.
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Durch die gleichen Umformungen wie im vorherigen Beweis erhalten wir für alle
n ≥ 0 die Ungleichung

E
∗(L1An(αµn

0 ,ε)) ≤ 1

ε
P
∗(0 < Z[n] ≤ αµn

0) −→
α→0

0. (6.4)

Da µ0 = µ1 vorausgesetzt war, ist nach (3.1) EZ[n] = µn
0 . Aufgrund der Vorausset-

zungen des Satzes sind die Bedingungen in Satz 2.21 erfüllt, denn

E

( 1

µU1

E(Z[1] log Z[1] | U)
)

=
1

2

( 1

µ0
E(Z0 log Z0) +

1

µ1
E(Z1 log Z1)

)
< ∞.

Dieser liefert dann die fast sichere Konvergenz von
Z[n]

µn
0

gegen eine Zufallsgröße L̃

mit {L̃ = 0} = {Z[n] → 0} fast sicher. Daraus folgt also

P
∗(0 < Z[n] ≤ αµn

0) −→
n→∞

P
∗(0 < L̃ ≤ α),

und somit erhalten wir

lim sup
n→∞

P
∗(0 < Z[n] ≤ αµn

0 ) = P
∗(0 < L̃ ≤ α) −→

α→0
0. (6.5)

Aus (6.4) und (6.5) folgt dann

sup
n≥0

{
E
∗(L1An(αµn

0 ,ε))
}

≤ 1

ε
sup
n≥0

{
P
∗(0 < Z[n] ≤ αµn

0 )
}

−→
α→0

0.

Da L > 0 fast sicher auf Extc gilt, folgt dann wie im Beweis von Satz 6.2

sup
n≥0

{
P
∗
(#{v ∈ G

∗
n : Zv ≤ αµn

0}
#G∗

n

≥ ε
)}

−→
α→0

0.

2

6.1.2 Stark subkritischer Prozess einer zufälligen Zelllinie, D3

Für diesen Fall setzen wir E(X(a)2) < ∞ für a ∈ {0, 1} voraus. Nach (6.1) gilt hier
µ0µ1 < 1, wodurch die Voraussetzungen des Korollars 3.7 erfüllt sind. Damit konver-
giert Z[n] in Verteilung gegen eine Yaglom-quasistationär-verteilte Zufallsgröße Y . In
diesem Abschnitt zeigen wir, dass (Fk(n))k∈N bedingt unter Extc in Wahrscheinlich-
keit gegen einen deterministischen Limes konvergiert. Es stellen sich heraus, dass
dieser Limes gerade die Verteilung von Y ist. Aus diesem Resultat schließen wir
dann unter anderem auf das asymptotische Verhalten von #G

∗
n. Um jedoch die

angesprochenen Ergebnisse zeigen zu können, bedarf es einiger Vorarbeit.
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6.1.2 Stark subkritischer PZZ, D3

Vorbemerkungen

Als erstes geben wir einige Eigenschaften an, die im späteren Verlauf von Bedeutung
sein werden.

Satz 6.4. (i) Es existieren zwei fast sicher endliche Zufallsgrößen C und D, so-
dass für alle n ∈ N0 gilt

C ≤ Zn

(2µ)n
≤ D P-f.s. und P

∗(C = 0) = P
∗(D = 0) = 0. (6.6)

(ii) Pn konvergiert gegen P∗ in Totalvariation, d.h.

sup
A∈F

|Pn(A) − P
∗(A)| −→

n→∞
0. (6.7)

(iii) Es existiert ein M > 0, sodass für alle n ≥ 0

M ≤ P(Z[n] > 0)

µn
≤ 1 (6.8)

gilt.

(iv) Es gilt
1

2n

∑

v∈Gn

P(Zv > 0)2 = o(µn), n → ∞. (6.9)

Beweis: (i) Nach Satz 2.7 konvergiert Zn

(2µ)n für n → ∞ fast sicher gegen eine
Zufallsgröße W . Diese ist fast sicher endlich und dank der Voraussetzungen in diesem
Abschnittgilt nach Satz 2.8 P∗(W = 0) = 0. Da

Zn

(2µ)n
< ∞ P-f.s. für alle n ∈ N0 und lim sup

n→∞

Zn

(2µ)n
= W < ∞ P-f.s.

gilt, folgt

C := inf
n∈N0

Zn

(2µ)n
≤ Zn

(2µ)n
≤ D := sup

n∈N0

Zn

(2µ)n
< ∞

fast sicher. Weiter ist Zn

(2µ)n > 0 fast sicher auf Extc für alle n ∈ N0 und daraus folgt

P
∗(D = 0) ≤ P

∗(C = 0) = P
∗( lim inf

n→∞

Zn

(2µ)n
= 0

)
= P

∗(W = 0) = 0.

Damit gilt (i).
(ii) Für alle n ≥ 0 gilt {Zn > 0} ⊇ {Zn+1 > 0} und damit

{Zn > 0} ց
n→∞

⋂

n≥0

{Zn > 0} = Extc.
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Aus dieser Eigenschaft ergibt sich dann die Ungleichung

sup
A∈F

|Pn(A) − P
∗(A)|

= sup
A∈F

|Pn(A) − P
n(A ∩ Extc) + P

n(A ∩ Extc) − P
∗(A)|

= sup
A∈F

∣∣∣Pn(A ∩ Ext) +
P(A ∩ Extc ∩ {Zn > 0})

P(Zn > 0)
− P(A ∩ Extc)

P(Extc)

∣∣∣

≤ P
n(Ext) + sup

A∈F
P(A ∩ Extc)

∣∣∣
1

P(Zn > 0)
− 1

P(Extc)

∣∣∣

≤ P
n(Ext) +

∣∣∣
1

P(Zn > 0)
− 1

P(Extc)

∣∣∣

−→
n→∞

0.

(iii) Mit (3.1) folgt

µn = EZ[n] =
∑

k≥0

P(Z[n] > k) ≥ P(Z[n] > 0).

Für alle n ≥ 0 ist

M := inf
n≥0

P(Z[n] > 0)

µn
≤ P(Z[n] > 0)

µn
.

Da
P(Z[n] > 0)

µn
> 0 für alle n ≥ 0 und lim inf

n→∞

P(Z[n] > 0)

µn
= c > 0

nach Korollar 3.7 gilt, ist auch M > 0. Damit folgt (iii).
(iv) Seien (Z1

[n])n≥0 und (Z2
[n])n≥0 zwei unabhängige Prozesse zufälliger Zelllinien,

welche beide die gleiche Verteilung wie (Z[n])n≥0 besitzen. Dann gilt

P(Z1
[n] > 0, Z2

[n] > 0) = P(Z1
[n] > 0)P(Z2

[n] > 0) = P(Z[n] > 0)2.

Hieraus folgt somit

P(Z1
[n] > 0, Z2

[n] > 0)

P(Z[n] > 0)
= P(Z[n] > 0) −→

n→∞
0

mit Korollar 3.5, da nach (6.1) µ0µ1 < 1 gilt. Korollar 3.7 liefert dann

P(Z1
[n] > 0, Z2

[n] > 0) = o(P(Z[n] > 0)) = o(µn), n → ∞. (6.10)

Wegen

1

2n

∑

v∈Gn

P(Zv > 0)2 =
1

2n

∑

v∈Gn

P(Z1
v > 0, Z2

v > 0) = P(Z1
[n] > 0, Z2

[n] > 0)

folgt dann aus (6.10) die Behauptung. 2
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6.1.2 Stark subkritischer PZZ, D3

Vernachlässigbarkeit der Anzahl an Parasiten in stark infizierten Zellen

Wir zeigen, dass die Anzahl an Parasiten in stark infizierten Zellen im Vergleich zu
der Gesamtanzahl an Parsiten vernachlässigbar ist.

Lemma 6.5. Für alle η > 0 gilt

sup
n≥0

{
P
∗
(∑

v∈G∗
n
Zv1{Zv>K}

Zn

≥ η
)}

−→
K→∞

0. (6.11)

Insbesondere existiert für alle ε, η > 0 ein K0 ≥ 0, sodass für alle K ≥ K0, n ≥ 0

P
∗
(∑

v∈G∗
n
Zv1{Zv≤K}

Zn

≥ 1 − η
)
≥ 1 − ε (6.12)

gilt.

Beweis: Sei η > 0. Für K, n ≥ 0 definieren wir

An(K, η) :=
{∑

v∈G∗
n
Zv1{Zv>K}

Zn

≥ η
}
∩ Extc.

Dann folgt mit (6.6)

∑

v∈G∗
n

Zv1{Zv>K} ≥ 1An(K,η)Znη ≥ 1An(K,η)C(2µ)nη P-f.s.

für ein C wie in (6.6) gewählt. Nach Übergang zum Erwartungswert, erhalten wir

E

( ∑

v∈G∗
n

Zv1{Zv>K}

)
≥ (2µ)nηE

(
C1An(K,η)

)

und daraus dann

1

µn
E
(
Z[n]1{Z[n]>K}

)
=

1

µn
E

( 1

2n

∑

v∈G∗
n

Zv1{Zv>K}

)
≥ ηE

(
C1An(K,η)

)
. (6.13)

Nach Korollar 3.7 gilt

1

µn
E
(
Z[n]1{Z[n]>K}

) n→∞≃
cE

(
Z[n]1{Z[n]>K}

)

P(Z[n] > 0)
= cE

(
Z[n]1{Z[n]>K} | Z[n] > 0

)

für ein c ∈ (0, 1] und mit (3.4) folgt somit aus (6.13)

sup
n≥0

{
ηE(C1An(K,η))

}
≤ sup

n≥0

{ 1

µn
E(Z[n]1{Z[n]>K})

}
−→
K→∞

0. (6.14)
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Mit derselben Argumentation wie im Beweis von Satz 6.2 gilt für alle α > 0

inf
{
E(C1A) : A ∈ F mit P(A ∩ Extc) > α

}
> 0.

Aus (6.14) folgt damit, dass für alle ε > 0 ein K0 ≥ 0 existiert, sodass

P(An(K, η)) ≤ εP(Extc)

für alle K ≥ K0 und n ≥ 0 gilt. Für alle ε, η > 0 existiert also ein K0 ≥ 0, sodass

P
∗
(∑

v∈G∗
n
Zv1{Zv>K}

Zn

> η
)

=
P(An(K, η))

P(Extc)
≤ ε (6.15)

für alle K ≥ K0 und n ≥ 0 und damit (6.11) gilt.
(6.12) ergibt sich nun leicht aus (6.15) mit

P
∗
(∑

v∈G∗
n
Zv1{Zv≤K}

Zn

≥ 1 − η
)

= P
∗
(∑

v∈G∗
n
Zv1{Zv>K}

Zn

≤ η
)

= 1 − P
∗
(∑

v∈G∗
n
Zv1{Zv>K}

Zn

> η
)

≥ 1 − ε.

2

Als direkte Folgerung aus dem vorigen Lemma erhalten wir

Proposition 6.6. Für alle ε > 0 existiert ein K ≥ 0, sodass für alle N ≥ 0 ein
n0 ≥ 0 existiert, für welches

P
∗( ∑

v∈G∗
n

Zv1{Zv≤K} ≥ N
)
≥ 1 − ε

für alle n ≥ n0 gilt.

Beweis: Sei ε > 0. Nach Lemma 6.5 existiert ein K ≥ 0, sodass für alle n ≥ 0

P
∗
(∑

v∈G∗
n
Zv1{Zv≤K}

Zn

≥ 1

2

)
≥ 1 − ε (6.16)

gilt. Da nach (2.1) P∗(Zn → ∞) = 1 gilt, finden wir zu N ≥ 0 ein n0 ≥ 0, sodass
für alle n ≥ n0

P
∗
( N

Zn

≤ 1

2

)
≥ 1 − ε (6.17)
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ist. Aus (6.16) und (6.17) ergibt sich somit für alle n ≥ n0

P
∗
( ∑

v∈G∗
n

Zv1{Zv≤K} ≥ N
)

= P
∗
(∑

v∈G∗
n
Zv1{Zv≤K}

Zn

≥ N

Zn

)

≥ P
∗
(∑

v∈G∗
n
Zv1{Zv≤K}

Zn

≥ N

Zn

,
N

Zn

≤ 1

2

)

≥ P
∗
(∑

v∈G∗
n
Zv1{Zv≤K}

Zn

≥ 1

2
,

N

Zn

≤ 1

2

)

≥ 1 − 2ε.

2

Eine Schätzung für die Anzahl infizierter Zellen

Nach Lemma 6.5 sind Zellen mit einer großen Wahrscheinlichkeit schwach infiziert.
Die Anzahl infizierter Zellen verhält sich damit asymptotisch wie die Anzahl der
Parasiten. Dadurch erhalten wir eine Schätzung für die Anzahl infizierter Zellen
#G∗

n der n-ten Generation.

Proposition 6.7. Für alle ε > 0 existieren Konstanten a, b > 0, sodass für alle
n ≥ 0

P
∗
(
a ≤ #G

∗
n

(2µ)n
≤ b

)
≥ 1 − ε

gilt.

Beweis: Sei ε > 0. Nach (6.6) gilt

#G∗
n

(2µ)n
≤ Zn

(2µ)n
≤ D P-f.s., (6.18)

wobei D wie in (6.6) gegeben ist. Da D fast sicher endlich ist, finden wir ein b > 0,
sodass

P
∗(D ≤ b) ≥ 1 − ε (6.19)

ist.
Aus (6.6) folgt weiter die Existenz einer auf Extc fast sicher positiven Zufallsgröße

C, für welche

#G∗
n

(2µ)n
≥

Zn

∑
v∈G∗

n
Zv1{Zv≤K}

ZnK(2µ)n
≥ C

K

∑
v∈G∗

n
Zv1{Zv≤K}

Zn

P-f.s. (6.20)

für alle K ≥ 1 gilt. Nach Lemma 6.5 existiert weiter ein K0 ∈ N, sodass für alle
K ≥ K0 und n ≥ 0

P
∗
(∑

v∈G∗
n
Zv1{Zv≤K}

Zn

≥ 1

2

)
≥ 1 − ε
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gilt. Wähle nun ein η > 0, sodass

P
∗
( C

K0
> η

)
≥ 1 − ε

ist. Setzen wir a := η/2, dann folgt aus den eben gezeigten beiden Ungleichungen
für alle n ≥ 0

P
∗
( C

K0

∑
v∈G∗

n
Zv1{Zv≤K0}

Zn

≥ a
)

≥ P
∗
( C

K0
> η,

C

K0

∑
v∈G∗

n
Zv1{Zi≤K0}

Zn

≥ a
)

≥ P
∗
( C

K0

> η, η

∑
v∈G∗

n
Zv1{Zv≤K0}

Zn

≥ a
)

≥ 1 − 2ε.

Aus dieser Ungleichung, (6.18), (6.19) und (6.20) folgt dann für alle n ≥ 0

P
∗
(
a ≤ #G

∗
n

(2µ)n
≤ b

)
≥ P

∗
(
a ≤ C

K0

∑
v∈G∗

n
Zv1{Zv≤K0}

Zn

, D ≤ b
)

≥ 1 − 3ε.

2

Vernachlässigbarkeit stark infizierter Zellen

In Lemma 6.5 haben wir gezeigt, dass die Anzahl der Parasiten in stark infizierten
Zellen im Vergleich zur Gesamtanzahl der Parasiten vernachlässigbar ist. Im Fol-
genden zeigen wir nun, dass auch die stark infizierten Zellen in einer Generation
n ∈ N0 keinen besonderen Beitrag zu der Anzahl infizierter Zellen der folgenden
Generationen liefern.

Proposition 6.8. Für alle η > 0 gilt

lim
K→∞

sup
n,q≥0

{
P
∗
(#{v ∈ G∗

n+q : Zv|n > K}
#G∗

n+q

≥ η
)}

= 0.

Beweis: Seien ε, η > 0. Nach Proposition 6.7 finden wir ein a > 0, für welches

P
∗
( #G∗

n+q

(2µ)n+q
< a

)
≤ ε (6.21)

für alle n, q ≥ 0 gilt. Für dieses a > 0 definieren wir für n, q, K ≥ 0

F q
n(K, η) :=

{#{v ∈ G∗
n+q : Zv|n > K}
#G∗

n+q

≥ η
}
∩

{ #G∗
n+q

(2µ)n+q
≥ a

}
.

Es folgt

#{v ∈ G
∗
n+q : Zv|n > K} ≥ η#G

∗
n+q1F

q
n(K,η) ≥ ηa(2µ)n+q

1F
q
n(K,η) P-f.s.
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und nach Übergang zum Erwartungswert dann

ηa(2µ)n+q
P(F q

n(K, η)) ≤ E
(
#{v ∈ G

∗
n+q : Zv|n > K}

)

= E

( ∑

v∈Gn+q

1{Zv|n>K, Zv>0}

)

=
∑

v∈Gn+q

∑

k>K

P(Zv|n = k, Zv > 0)

=
∑

k>K

∑

v∈Gn+q

P(Zv|n = k)P(Zv > 0 | Zv|n = k)

=
∑

k>K

∑

u∈Gn

P(Zu = k)
∑

v∈Gn+q,v|n=u

P(Zv > 0 | Zu = k)

=
∑

k>K

∑

u∈Gn

P(Zu = k)
∑

v∈Gq

Pk(Zv > 0).

Weiter gilt nach der bernoullischen Ungleichung für k ≥ 1

Pk(Zv > 0) = 1 − Pk(Zv = 0) = 1 − (1 − P(Zv > 0))k ≤ kP(Zv > 0),

wobei beim zweiten Gleichheitszeichen (3.1) verwendet wurde. Wir erhalten damit
für alle n, q ≥ 0

P(F q
n(K, η)) ≤

∑
k>K 2−n

∑
u∈Gn

P(Zu = k)2−q
∑

v∈Gq
Pk(Zv > 0)

ηaµn+q

≤
∑

k>K 2−n
∑

u∈Gn
P(Zu = k)2−q

∑
v∈Gq

kP(Zv > 0)

ηaµn+q

=

∑
k>K kP(Z[n] = k)P(Z[q] > 0)

ηaµn+q

≤
∑

k>K kP(Z[n] = k)

ηaµn

=
E(Z[n]1{Z[n]>K})

ηaµn
,

wobei bei der letzten Ungleichung (6.8) einging. Für den letzten Term gilt für ein
geeignetes c ∈ (0, 1] nach Korollar 3.7

E(Z[n]1{Z[n]>K})

ηaµn

n→∞≃
cE(Z[n]1{Z[n]>K})

ηaP(Z[n] > 0)
=

c

ηa
E(Z[n]1{Z[n]>K} | Z[n] > 0).

Mit Hilfe von (3.4) erhalten wir dann

lim
K→∞

sup
n,q≥0

{
P(F q

n(K, η))
}

= 0.
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Es existiert also ein K0 ≥ 0, sodass für alle K ≥ K0 und n, q ≥ 0

P(F q
n(K, η) ∩ Extc) ≤ P(F q

n(K, η)) ≤ εP(Extc)

gilt. Mit (6.21) folgt daraus

P
∗
(#{v ∈ G∗

n+q : Zv|n > K}
#G∗

n+q

≥ η
)

≤ P
∗
(#{v ∈ G∗

n+q : Zv|n > K}
#G∗

n+q

≥ η,
#G∗

n+q

(2µ)n+q
≥ a

)
+ P

∗
( #G∗

n+q

(2µ)n+q
< a

)

≤ 2ε

für alle n, q ≥ 0 und K ≥ K0. 2

Trennung der Parasitennachkommen

Bevor wir zum Hauptresultat kommen, zeigen wir noch folgendes: Wählt man q groß
genug, so stammen alle Parasiten einer Zelle v ∈ G

∗
n+q der (n+q)-ten Generation von

demselben Parasiten der n-ten Generation ab. Anschaulich sollte dies klar sein, denn
startet man mit zwei unabhängigen PZZ mit je einem Parasiten, so sterben diese
nach (6.1) und Korollar 3.5 fast sicher aus. Bedingt man die PZZ nun darunter, dass
überhaupt Parasiten überleben, so sollte durch den Drang zum Aussterben nur einer
von beiden nicht aussterben. Sind in einer Zelle also mehr als ein Parasit, so enthalten
die infizierten Nachkommenzellen in ferner Zukunft nur Parasitennachkommen eines
dieser Parasiten.

Wir bezeichnen mit Nn(v) die Anzahl der Parasiten aus Zelle v|n, deren Nach-
kommen in Zelle v ∈ G∗

n+q immer noch am Leben sind.

Proposition 6.9. Für alle K ≥ 0 und η > 0 gilt

lim
q→∞

sup
n≥0

{
P
∗
(#{v ∈ G∗

n+q : Zv|n ≤ K, Nn(v) ≥ 2}
#G∗

n+q

≥ η
)}

= 0.

Beweis: Seien K ≥ 0 und ε, η > 0. Nach Proposition 6.7 finden wir ein a > 0, für
welches

P
∗
( #G∗

n+q

(2µ)n+q
< a

)
≤ ε (6.22)

für alle n, q ≥ 0 gilt. Für dieses a > 0 definieren wir für n, q, K ≥ 0

Eq
n(K, η) :=

{#{v ∈ G∗
n+q : Zv|n ≤ K, Nn(v) ≥ 2}

#G∗
n+q

≥ η
}
∩

{ #G∗
n+q

(2µ)n+q
≥ a

}
.

Es folgt

#{v ∈ G
∗
n+q : Zv|n ≤ K, Nn(v) ≥ 2} ≥ η#G

∗
n+q1E

q
n(K,η) ≥ ηa(2µ)n+q

1E
q
n(K,η) f.s.
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und nach Übergang zum Erwartungswert dann

ηa(2µ)n+q
P(Eq

n(K, η)) ≤ E
(
#{v ∈ G

∗
n+q : Zv|n ≤ K, Nn(v) ≥ 2}

)

= E

( ∑

v∈G∗
n+q

1{Zv|n≤K, Nn(v)≥2}

)

=
∑

v∈Gn+q

P(Zv|n ≤ K, Nn(v) ≥ 2)

=
∑

v∈Gn+q

K∑

k=1

P(Zv|n = k, Nn(v) ≥ 2)

=
∑

v∈Gn+q

K∑

k=1

P(Zv|n = k)P(Nn(v) ≥ 2 | Zv|n = k)

≤
∑

v∈Gn+q

K∑

k=1

P(Zv|n = k)P(Nn(v) ≥ 2 | Zv|n = K)

=
∑

v∈Gn+q

P(0 < Zv|n ≤ K)P(Nn(v) ≥ 2 | Zv|n = K)

=
∑

u∈Gn

P(0 < Zu ≤ K)
∑

v∈Gn+q ,v|n=u

P(Nn(v) ≥ 2 | Zu = K)

=
∑

u∈Gn

P(0 < Zu ≤ K)
∑

v∈Gq

PK(N0(v) ≥ 2).

Aus dieser Ungleichung ergibt sich dann

P(Eq
n(K, η)) ≤

2−n
∑

u∈Gn
P(0 < Zu ≤ K)2−q

∑
v∈Gq

PK(N0(v) ≥ 2)

ηaµn+q

=
P(0 < Z[n] ≤ K)2−q

∑
v∈Gq

PK(N0(v) ≥ 2)

ηaµn+q

≤
P(Z[n] > 0)2−q

∑
v∈Gq

PK(N0(v) ≥ 2)

ηaµn+q

≤
2−q

∑
v∈Gq

PK(N0(v) ≥ 2)

ηaµq
,

(6.23)

wobei in der letzten Zeile (6.8) einging.
Man hat

(
K

2

)
viele Möglichkeiten aus K Parasiten zwei auszuwählen. Da sich die

Parasiten unabhängig voneinander vermehren, beträgt die Wahrscheinlichkeit, dass
beide ausgewählten Parasiten in Zelle v noch Nachkommen haben P(Zv > 0)2. Wir
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erhalten daraus also

PK(N0(v) ≥ 2) = PK

( ⋃

p1,p2∈P(0),
p1 6=p2

{p1 und p2 haben Nachkommen in Zelle v}
)

≤
(

K

2

)
P(Zv > 0)2.

Somit erhalten wir aus dem eben Gezeigten, der Ungleichung (6.23) und (6.9)

P(Eq
n(K, η)) ≤

2−q
∑

v∈Gq
PK(N0(v) ≥ 2)

ηaµq
≤

(
K

2

)
2−q

∑
v∈Gq

P(Zv > 0)2

ηaµq
−→
q→∞

0.

Wir finden also ein q0 ≥ 0, sodass für alle q ≥ q0 und n ≥ 0

P(Eq
n(K, η) ∩ Extc) ≤ P(Eq

n(K, η)) ≤ εP(Extc)

gilt. Mit (6.22) folgt damit

P
∗
(#{v ∈ G∗

n+q : Zv|n ≤ K, Nn(v) ≥ 2}
#G∗

n+q

≥ η
)

≤ P
∗
(
Eq

n(K, η)
)

+ P
∗
( #G∗

n+q

(2µ)n+q
< a

)

≤ 2ε

für alle q ≥ q0 und n ≥ 0. 2

Das Hauptresultat

Nach dieser Vorarbeit können wir uns nun dem Hauptresultat dieses Abschnittes
zuwenden. Wir erinnern noch einmal daran, dass Fk(n) das Verhältnis der Zellen
mit k Parasiten zur Gesamtanzahl infizierter Zellen in der n-ten Generation und Y
eine Yaglom-quasitationär-verteilte Zufallsgröße angibt.

Satz 6.10. (Fk(n))k∈N0 konvergiert bedingt unter Extc in Wahrscheinlichkeit in
S1(N0) gegen (P(Y = k))k∈N0. Für alle k ≥ 0 gilt also

Fk(n)
P∗

−→ P(Y = k), n → ∞.

Bevor wir zu dem doch recht langen Beweis dieses Satzes kommen, wollen wir
zuvor noch ein paar Bemerkungen machen.

Bemerkung 6.11. (a) Satz 6.10 liefert uns die Möglichkeit durch eine Realisierung
von Zufallsgrößen die Verteilung von Y numerisch zu berechnen. Diese Verteilung
hängt nur von X(0) und X(1) ab, wie Proposition 3.9 aussagt.
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(b) Aufgrund der Trennung der Parasitennachkommen (Proposition 6.9) gilt der
obige Satz 6.10 auch dann, wenn man mit mehreren Parasiten startet. Bei fortlaufen-
der Zeit sind in einer Zelle nämlich nur noch Parasiten, die alle einen gemeinsamen
Vorfahren haben. Teilt sich eine Zelle nicht in zwei sondern in N ∈ N Tochterzellen,
so kann man analog alle Beweise aus Abschnitt D3 übernehmen und erhält auch
hier als Resultat Satz 6.10.

(c) Nach (a) und (b) können wir somit für jeden subkritischen GWP die Yaglom-
quasistationäre-Verteilung numerisch berechnen. Gebe dazu X die Reproduktions-
verteilung eines GWP mit µ = EX < 1 an. Wähle dann N ∈ N so groß, dass
Nµ > 1 gilt. Betrachte nun ein Zellteilungsmodell in dem jede Zelle N Tochter-

zellen bekommt. Gebe X(l) d
= X, 1 ≤ l ≤ N , die Verteilung der Parasiten auf die

Tochterzelle l an. Simuliert man nun diesen Prozess und berechnet das Verhältnis
infizierter Zellen mit k ≥ 1 Parasiten zur Gesamtanzahl an Parasiten in jeder Gene-
ration, so erhält man aus Satz 6.10 eine Näherung für P(Y = k). Da der PZZ nach
Proposition 3.4 (iii) ein GWP mit Reproduktionsverteilung P(X ∈ ·) ist, gibt Y
die Yaglom-quasistationäre-Verteilung assoziiert zu P(X ∈ ·) an. Ist P(Ext) > 0, so
kann man mit mehreren Parasiten starten, um so die Aussterbewahrscheinlichkeit
zu senken und damit die Chance zu erhöhen, einen überlebenden Pfad zu simulieren.

Abbildung 6.1 zeigt das Verhältnis infizierter Zellen mit k = 1, 2 oder 3 Parasiten
zur Gesamtanzahl infizierter Zellen für die ersten 30 Generationen. Dabei sind X(0)

und X(1) unabhängig und jeweils Poi(0.75)-verteilt. Sofern Parasiten überleben,
strebt Fk(n) für k = 1, 2, 3 gegen einen konstanten Grenzwert.

k = 1
k = 2
k = 3

n

F
k
(n

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25 30

Abbildung 6.1: Simulation von Fk(n), k = 1, 2, 3 mit X(0), X(1) unabhängig und
jeweils Poi(0.75)-verteilt.
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(d) Allgemeiner kann man auch die Yaglom-quasistationäre-Verteilung eines stark
subkritischen GWPZVU mit K ∈ N Umgebungen numerisch berechnen. Seien dazu
X(l), 1 ≤ l ≤ K, die Zufallsvariablen, die gemäß der K Umgebungen verteilt sind,
und µ1, . . . , µK ihre Erwartungswerte. Wähle nun ein N ∈ N, sodass N

∑K

i=1 µi > 1
gilt. Wir betrachten dann ein Zellteilungsmodell mit KN Tochterzellen, wobei für
jedes 1 ≤ l ≤ K genau N dieser Zellen gemäß der Verteilung P(X(l) ∈ ·) Parasiten
enthalten. Wie in (c) lässt sich dann mit Satz 6.10 die Yaglom-quasistationäre-
Verteilung des GWPZVU numerisch annähern.

Wir geben noch zwei Beispiele an, in denen man die Yaglom-quasistationäre-
Verteilung P(Y ∈ ·) eines GWP sogar direkt berechnen kann.

Beispiel 6.12. (a) Im trivialen Fall P(X(0) + X(1) ≤ 1) = 1 folgt P(Y = 1) = 1.
(b) Gebrochen-rationale Reproduktionsverteilung: Für ausführlichere Rechnungen

siehe Kapitel I.4 in [9]. Seien p ∈ (0, 1) und b ∈ (0, (1 − p)2). Die Verteilungen von
X(0) und X(1) seien gegeben durch

P(X(0) = k) = P(X(1) = k) =

{
bpk−1, falls k ≥ 1

1 − b
1−p

, falls k = 0.

Aufgrund der identischen Verteilung von X(0) und X(1) bildet der PZZ (Z[n])n≥0

nach Proposition 3.4 (iii) einen GWP mit Reproduktionsmittel

µ0 = µ1 =
b

(1 − p)2
< 1.

Damit existiert ein Fixpunkt s0 > 1 von f0(s). Für alle v ∈ Gn gilt weiter

E(sZ[n]) = fv(s) = 1 − µn
0

( 1 − s0

µn
0 − s0

)
+

µn
0

(
1−s0

µn
0−s0

)2

s

1 −
(

µn
0−1

µn
0−s0

)
s
,

und es folgt dann für v ∈ Gn

lim
n→∞

E(sZ[n] | Z[n] > 0) = lim
n→∞

fv(s) − fv(0)

1 − fv(0)
= lim

n→∞

(
1−s0

µn
0−s0

)
s

1 −
(

µn
0−1

µn
0−s0

)
s

=
(s0 − 1)s

s0 − s
.

Da (Z[n])n≥0 ein GWP ist, gilt nach Satz 2.10 E(sY) = (s0−1)s
s0−s

. Die k-te Ableitung
dieser erzeugenden Funktion an der Stelle 0 liefert dann für k ≥ 1

P(Y = k) =
s0 − 1

sk
0

.
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Wenden wir uns nun dem Beweis von Satz 6.10 zu.

Beweis: Wir teilen den Beweis in drei Schritte auf. Im ersten Schritt zeigen wir,
dass zu jeder Abweichungsgrenze η und Toleranzwahrscheinlichkeit ε Elemente aus
S1(N0) existieren, die sich mit geringerer Wahrscheinlichkeit als ε um mehr als η
von (Fk(n))k≥0 unterscheiden. Im zweiten Schritt werden wir dann mit Hilfe der
Vollständigkeit von l1(N0) die Existenz des Limes zeigen und im letzten Schritt die
im Satz angegebene Form bestätigen.

1. Schritt: Beh.: Für alle ε, η > 0 existiert ein n0 ≥ 0 und ein f ∈ S1(N0), sodass
für alle n ≥ n0 gilt

P
∗(||(Fk(n))k≥0 − f ||1 ≥ η

)
≤ ε.

Beweisidee: Nach Proposition 6.8 stammen die infizierten Zellen der (n + q)-ten
Generation von schwach infizierten Zellen der n-ten Generation ab. Für große q,
befinden sich nach Proposition 6.9 in einer infizierten Zelle der (n+q)-ten Generation
nur noch Parasiten, die von ein und demselben Parasiten abstammen. Dies bedeutet,
dass sich für q → ∞ die infizierten Zellen so verhalten, als wenn die Parasiten der
n-ten Generation aus unterschiedlichen Zellen stammen würden. Da µ0 + µ1 > 1
vorausgesetzt ist, konvergiert die Anzahl der Parasiten bedingt unter Extc gegen
unendlich. Da sich die Parasiten unabhängig voneinander vermehren, kann man so
mit einer Art Gesetz der großen Zahlen auf die Existenz einer Folge aus S1(N0)
schließen.

Notation: Als erstes führen wir einige Notationen ein, welche wir später gebrau-
chen werden. Für p ∈ P(n) setzen wir p|k, 0 ≤ k ≤ n, als den Vorfahren des
Parasiten p in der k-ten Generation. Dann definieren wir für k ≥ 1, n, q ≥ 0 und
p ∈ P(n) mit

Y q
k (p) :=

∑

v∈G∗
n+q

1{#{r∈Pv : r|n=p}=k}

die Anzahl der Zellen der (n+q)-ten Generation, welche genau k Parasiten enthalten,
die von p abstammen. Für k = 0 setzen wir Y q

0 (p) := 0. Da sich die Parasiten
unabhängig voneinander und gemäß der gleichen Verteilung vermehren, sind die
(Y q

k (p))k≥0, p ∈ P(n), unabhängig und identisch verteilt. Wir bezeichnen mit (Y q
k )k≥0

eine Zufallsvariable, die solch eine Verteilung besitzt.
Für K, n ≥ 0 setzen wir außerdem

PK(n) :=
⋃

v∈Gn,

Zv≤K

Pv

als die Menge der Parasiten der n-ten Generation, die zu einer mit höchstens K
Parasiten infizierten Zelle gehören. Weiter sei Nn(v) wie in Proposition 6.9 definiert.
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Beweis von Schritt 1: Für K, k, n, q ≥ 0 definieren wir mit den eben eingeführten
Notationen

GK
k (n, q) :=

∑
p∈PK(n) Y q

k (p)
∑

k
′≥0

∑
p∈PK(n) Y q

k
′(p)

und

f q
k :=

E(Y q
k )∑

k
′≥0 E(Y q

k
′ )

.

Aus der oben gegebenen Beweisidee sollte klar sein, dass Fk(n+ q) und GK
k (n, q) für

ein geeignetes q ≥ 0 nur noch geringfügig voneinander abweichen und dass GK
k (n, q)

für n → ∞ gegen f q
k konvergiert. (f q

k)k≥0 stellt somit einen idealen Kandidaten für
das gesuchte f ∈ S1(N0) dar. Aus der Dreiecksungleichung erhalten wir in der Tat
für alle η > 0

P
∗(||(Fk(n + q))k≥0 − (f q

k )k≥0||1 ≥ η
)

≤ P
∗(||(Fk(n + q))k≥0 − (GK

k (n, q))k≥0||1 ≥ η1

)
︸ ︷︷ ︸

(a)

+ P
∗(||(GK

k (n, q))k≥0 − (f q
k )k≥0||1 ≥ η2

)
︸ ︷︷ ︸

(b)

für alle η1, η2 > 0 mit η1+η2 = η. Es reicht also für alle ε, η > 0 geeignete Konstanten
K0, n0, q0 ∈ N0 und η1, η2 > 0 zu finden, sodass für alle n ≥ n0 und q0 die beiden
rechten Summanden (a) und (b) kleiner als ε sind. Seien von nun an für den Rest
des Beweises ε, η > 0 gegeben.

Abschätzung von (a): Mit Hilfe der Dreiecksungleichung gilt für alle n, q, K ∈ N0

∑

k≥1

∣∣∣#{v ∈ G
∗
n+q : Zv = k} −

∑

p∈PK(n)

Y q
k (p)

∣∣∣

=
∑

k≥1

∣∣∣#{v ∈ G
∗
n+q : Zv = k, Zv|n > K}

+ #{v ∈ G
∗
n+q : Zv = k, Zv|n ≤ K} −

∑

p∈PK(n)

Y q
k (p)

∣∣∣ (6.24)

≤ #{v ∈ G
∗
n+q : Zv|n > K}

+
∑

k≥1

∣∣∣#{v ∈ G
∗
n+q : Zv = k, Zv|n ≤ K} −

∑

p∈PK(n)

Y q
k (p)

∣∣∣

︸ ︷︷ ︸
(∗)

P-f.s..

Für v ∈ G∗
n+q gilt

1{Zv=k, Zv|n≤K, Nn(v)=1} = 1{Nn(v)=1}
∑

p∈PK(n)

1{#{r∈Pv : r|n=p}=k} P-f.s. (6.25)
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und ∑

p∈PK(n)

1{#{r∈Pv : r|n=p}>0} ≤ K1{Zv|n≤K} P-f.s., (6.26)

denn ist die Linke Seite in (6.25) gleich 1, so gibt es nur einen Parasiten, dessen
Nachkommen noch in der v-ten Zelle enthalten sind. (6.26) gilt, da sich hier in
Zelle v|n maximal K Parasiten befinden und deswegen in Zelle v von maximal K
verschiedenen Parasiten Nachkommen enthalten sein können. Des Weiteren erhalten
wir

∑

k≥1

∑

p∈PK(n)

Y q
k (p) =

∑

k≥1

∑

p∈PK(n)

∑

v∈G∗
n+q

1{#{r∈Pv : r|n=p}=k} ≤ K2n+q
P-f.s., (6.27)

da für jedes p ∈ PK(n) und v ∈ G∗
n+q maximal ein k ≥ 1 existiert, für welches eine

Indikatorfunktion 1{#{r∈Pv : r|n=p}=k} den Wert 1 annimmt. Damit lassen sich insbe-
sondere alle Summanden vertauschen. Aus dieser Tatsache, der Dreiecksungleichung,
(6.25) und (6.26), folgt dann aus (∗)
∑

k≥1

∣∣∣#{v ∈ G
∗
n+q : Zv = k, Zv|n ≤ K} −

∑

p∈PK(n)

Y q
k (p)

∣∣∣

=
∑

k≥1

∣∣∣
∑

v∈G∗
n+q

1{Zv=k, Zv|n≤K} −
∑

v∈Gn+q

∑

p∈PK(n)

1{#{r∈Pv : r|n=p}=k}

∣∣∣

≤
∑

k≥1

∑

v∈G∗
n+q

∣∣∣1{Zv=k, Zv|n≤K} −
∑

p∈PK(n)

1{#{r∈Pv : r|n=p}=k}

∣∣∣

=
∑

k≥1

∑

v∈G∗
n+q,Nn(v)≥2

∣∣∣1{Zv=k, Zv|n≤K} −
∑

p∈PK(n)

1{#{r∈Pv : r|n=p}=k}

∣∣∣

≤
∑

k≥1

∑

v∈G∗
n+q ,Nn(v)≥2

(
1{Zv=k, Zv|n≤K} +

∑

p∈PK(n)

1{#{r∈Pv : r|n=p}=k}

)

= #{v ∈ G
∗
n+q | Zv|n ≤ K, Nn(v) ≥ 2} +

∑

v∈G∗
n+q,Nn(v)≥2

∑

p∈PK(n)

1{#{r∈Pv : r|n=p}>0}

≤ #{v ∈ G
∗
n+q | Zv|n ≤ K, Nn(v) ≥ 2} + K

∑

v∈G∗
n+q ,Nn(v)≥2

1{Zv|n≤K}

= #{v ∈ G
∗
n+q | Zv|n ≤ K, Nn(v) ≥ 2} + K#{v ∈ G

∗
n+q | Zv|n ≤ K, Nn(v) ≥ 2}

= (K + 1)#{v ∈ G
∗
n+q | Zv|n ≤ K, Nn(v) ≥ 2} P-f.s..
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Aus (6.24) erhalten wir somit für alle n, q, K ≥ 0

∑

k≥1

∣∣∣#{v ∈ G
∗
n+q | Zv = k} −

∑

p∈PK(n)

Y q
k (p)

∣∣∣ (6.28)

≤ #{v ∈ G
∗
n+q | Zv|n > K} + (K + 1)#{v ∈ G

∗
n+q | Zv|n ≤ K, Nn(v) ≥ 2} f.s..

Da #PK(n) =
∑

v∈G∗
n
Zv1{Zv≤K} ist, existiert nach Proposition 6.6 ein K1 ≥ 0,

sodass wir für jedes N ≥ 0 ein n0(N) ≥ 0 finden, sodass

P
∗(#PK1(n) ≥ N) ≥ 1 − ε (6.29)

für alle n ≥ n0(N) gilt. Für K ≥ K1 ist #PK(n) ≥ #PK1(n), und daher gilt die
Abschätzung (6.29) sogar für alle K ≥ K1. Wegen (6.7) können wir n0(N) ≥ 0 so
groß wählen, sodass für alle n ≥ n0(N) zusätzlich

sup
A∈F

|Pn(A) − P
∗(A)| ≤ ε

gilt. Mit (6.29) folgt dann

P
n(#PK(n) ≥ N) ≥ 1 − 2ε (6.30)

für alle K ≥ K1, n ≥ n0(N). Nach Proposition 6.8 existiert ein K2 ≥ K1, sodass für
alle n, q ≥ 0

P
∗
(#{v ∈ G

∗
n+q : Zv|n > K2}
#G∗

n+q

≥ η
)
≤ ε (6.31)

ist. Proposition 6.9 liefert uns weiter die Existenz eines q0 ≥ 0, sodass

P
∗
(#{v ∈ G∗

n+q0
: Zv|n ≤ K2, Nn(v) ≥ 2}

#G∗
n+q0

≥ η

K2 + 1

)
≤ ε (6.32)

für alle n ≥ 0 gilt. Aus der Ungleichung (6.28) folgt nun mit (6.31) und (6.32) für
alle n ≥ 0

P
∗
(∑

k≥1

∣∣#{v ∈ G∗
n+q0

| Zv = k} − ∑
p∈PK(n) Y q0

k (p)
∣∣

#G∗
n+q0

≥ 2η
)

≤ P
∗
(#{v ∈ G∗

n+q0
: Zv|n > K2}

#G∗
n+q0

≥ η
)

+ P
∗
(#{v ∈ G∗

n+q0
: Zv|n ≤ K2, Nn(v) ≥ 2}

#G∗
n+q0

≥ η

K2 + 1

)

≤ 2ε.
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Durch Anwenden der Ungleichung (6.2) erhalten wir somit für alle n ≥ 0

P
∗
(∣∣∣

∣∣∣(Fk(n + q0))k≥0 − (GK2

k (n, q0))k≥0

∣∣∣
∣∣∣
1
≥ 4η

)

= P
∗
(∣∣∣

∣∣∣
(#{v ∈ G

∗
n+q0

: Zv = k})k≥0

#G∗
n+q0

−
(
∑

p∈PK2
(n) Y q0

k (p))k≥0
∑

k≥0

∑
p∈PK2

(n) Y q0

k (p)

∣∣∣
∣∣∣
1
≥ 4η

)

≤ P
∗
(∣∣∣∣(#{v ∈ G∗

n+q0
: Zv = k})k≥0 − (

∑
p∈PK2

(n) Y q0

k (p))k≥0

∣∣∣∣
1

#G∗
n+q0

≥ 2η
)

(6.33)

= P
∗
(∑

k≥1

∣∣#{v ∈ G∗
n+q0

| Zv = k} − ∑
p∈PK(n) Y q0

k (p)
∣∣

#G∗
n+q0

≥ 2η
)

≤ 2ε.

Abschätzung von (b): Für jedes k ≥ 0 sind die Y q0

k (p), p ∈ PK2(n), bedingt unter
{Zn > 0} stochastisch unabhängig und identisch verteilt. Dasselbe gilt auch für∑

k≥l Y
q
k (p), p ∈ PK2(n), für alle l ∈ N0. Mit den gleichen Argumenten wie in (6.27)

ist
Y q0

k (p) ≤
∑

k≥0

Y q0

k (p) ≤ 2q0

und mit der monotonen Konvergenz erhalten wir so

E(Y q0

k ) ≤ E
( ∑

k≥0

Y q0

k

)
=

∑

k≥0

E(Y q0

k ) < ∞. (6.34)

Für jedes η1, η2 > 0, ε1, ε2 > 0 und k, l ≥ 0 finden wir also nach dem Gesetz der
großen Zahlen ein N ≥ 0, sodass für alle n ≥ 0

P
n
(∣∣∣

1

#PK2(n)

∑

p∈PK2
(n)

Y q0

k (p) − E(Y q0

k )
∣∣∣ ≥ η1 , #PK2(n) ≥ N

)
≤ ε1 (6.35)

und

P
n
(∣∣∣

1

#PK2(n)

∑

p∈PK2
(n)

∑

k
′≥l

Y q0

k
′ (p)−

∑

k
′≥l

E(Y q0

k
′ )

∣∣∣ ≥ η2 , #PK2(n) ≥ N
)
≤ ε2 (6.36)

gilt.
Aus (6.34) folgt die Existienz eines k0 ≥ 1, für welches

∑

k>k0

f q0

k =

∑
k>k0

E(Y q0

k )
∑

k
′≥0 E(Y q0

k
′ )

≤ η

4
(6.37)

gilt. Für k ≥ 0 ist

GK2
k (n, q0) =

1
#PK2

(n)

∑
p∈PK2

(n) Y q
k (p)

∑
k
′≥0

1
#PK2

(n)

∑
p∈PK2

(n) Y q

k
′(p)

,
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und da man nach (6.27) die Summenzeichen vertauschen darf, existiert nach (6.35)
und (6.36) (mit l = 0 und k0) ein N ≥ 0, sodass für alle n ≥ 0

P
n
(
|GK2

k (n, q0) − f q0

k | ≥ η

4k0

, #PK2(n) ≥ N
)

≤ ε

k0

für alle 0 ≤ k ≤ k0 und

P
n
(∣∣

∑

k>k0

GK2

k (n, q0) −
∑

k>k0

f q0

k

∣∣ ≥ η

4
, #PK2(n) ≥ N

)
≤ ε

gilt. Aus diesen beiden Abschätzungen, (6.37) und GK2
0 (n, q0) = f q0

0 = 0 folgt dann

P
n
(
||(GK2

k (n, q0))k≥0 − (f q0

k )k≥0||1 ≥ η, #PK2(n) ≥ N
)

= P
n
(∑

k≥0

|GK2
k (n, q0) − f q0

k | ≥ η, #PK2(n) ≥ N
)

≤ P
n
( k0∑

k=1

|GK2
k (n, q0) − f q0

k | +
∑

k>k0

GK2
k (n, q0) +

∑

k>k0

f q0

k ≥ η, #PK2(n) ≥ N
)

≤ P
n
( k0∑

k=1

|GK2
k (n, q0) − f q0

k | +
∑

k>k0

GK2
k (n, q0) ≥

3

4
η, #PK2(n) ≥ N

)

≤ P
n
( k0∑

k=1

|GK2
k (n, q0) − f q0

k | ≥ η

4
, #PK2(n) ≥ N

)

+ P
n
( ∑

k>k0

GK2
k (n, q0) ≥

η

2
, #PK2(n) ≥ N

)

≤
k0∑

k=1

P
n
(
|GK2

k (n, q0) − f q0

k | ≥ η

4k0
, #PK2(n) ≥ N

)

+ P
n
(∣∣

∑

k>k0

GK2

k (n, q0) −
∑

k>k0

f q0

k

∣∣ ≥ η

4
, #PK2(n) ≥ N

)

≤ 2ε.

Aus (6.30) folgt dann weiter für alle n ≥ n0(N)

P
n
(
||(GK2

k (n, q0))k≥0 − (f q0

k )k≥0||1 ≥ η
)

≤ P
n
(
||(GK2

k (n, q0))k≥0 − (f q0

k )k≥0||1 ≥ η, #PK2(n) ≥ N
)

+ P
n
(
#PK2(n) < N

)

≤ 4ε.

Nach (6.7) konvergiert Pn gegen P∗ in Totalvariation, weshalb die Existenz eines
n1 ≥ n0(N) folgt, sodass für alle n ≥ n1

P
∗(||(GK2

k (n, q0))k≥0 − (f q0

k )k≥0||1 ≥ η
)
≤ 5ε
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gilt. Mit (6.33) und der eben gezeigten Ungleichung folgt also für alle n ≥ n1

P
∗(||(Fk(n + q0))k≥0 − (f q0

k )k≥0||1 ≥ 5η
)

≤ P
∗(||(Fk(n + q0))k≥0 − (GK2

k (n, q0))k≥0||1 ≥ 4η
)

+ P
∗(||(GK2

k (n, q0))k≥0 − (f q0

k )k≥0||1 ≥ η
)

≤ 7ε

und damit die Behauptung des ersten Schrittes.

2. Schritt: Beh.: Es existiert ein f ∈ S1(N0), für welches gilt

(Fk(n))k≥0
P∗

−→ f.

Beweis von Schritt 2: Wir setzen F (n) := (Fk(n))k≥0. Nach Schritt 1 existiert zu
jedem l ≥ 0 ein nl ≥ 0 und ein f(l) ∈ S1(N0), sodass für alle n ≥ nl

P
∗(||F (n) − f(l)||1 ≥ (

1

2
)l+1

)
≤ (

1

2
)l

gilt. Für alle 2 ≤ l ≤ l
′
und n groß genug ist dann

P
∗(||f(l) − f(l

′

)||1 ≥ (
1

2
)l
)

≤ P
∗(||F (n) − f(l)||1 ≥ (

1

2
)l+1

)
+ P

∗(||F (n) − f(l
′

)||1 ≥ (
1

2
)l+1

)

≤ (
1

2
)l + (

1

2
)l

′

< 1.

Daraus folgt, dass für alle 2 ≤ l ≤ l
′

||f(l) − f(l
′

)||1 ≤ (
1

2
)l

gelten muss. (f(l))l≥0 bildet somit eine Cauchyfolge und konvergiert wegen der Voll-
ständigkeit des Banachraums l1(N0) und der Abgeschlossenheit von S1(N0) gegen
einen Grenzwert f ∈ S1(N0). Damit gilt insbesondere für alle l ≥ 2

||f(l) − f ||1 ≤ (
1

2
)l.
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Für alle l ≥ 2 und n ≥ nl erhalten wir so

P
∗(||F (n) − f ||1 ≥ (

1

2
)l−1

)
≤ P

∗(||F (n) − f(l)||1 + ||f(l) − f ||1 ≥ (
1

2
)l−1

)

≤ P
∗(||F (n) − f(l)||1 + (

1

2
)l ≥ (

1

2
)l−1

)

= P
∗(||F (n) − f(l)||1 ≥ (

1

2
)l
)

≤ (
1

2
)l−1

und damit die Aussage des zweiten Schrittes.

3. Schritt: Beh.: Sei f = (fk)k≥0 ∈ S1(N0) der Limes der Folge (F (n))n≥0. Dann
ist

fk = P(Y = k)

für alle k ≥ 0.
Beweis von Schritt 3: Nach Korollar 3.7 gilt für alle k ≥ 0

P(Z[n] = k | Z[n] > 0) −→
n→∞

P(Y = k).

Es reicht also zu zeigen, dass

P(Z[n] = k | Z[n] > 0) −→
n→∞

fk

für alle k ≥ 0 gilt, denn dann folgt aus der Eindeutigkeit des Limes die Behauptung.
Für alle k ≥ 1 gilt durch analoge Rechnung wie in (4.1)

P(Z[n] = k)

P(Z[n] > 0)
=

E(#{i ∈ Gn : Zi = k})
E(#G∗

n)
=

E(Fk(n)#G∗
n)

E(#G∗
n)

. (6.38)

Weiter ist für 1 > ε > 0

E(#G∗
n)

(2µ)n
≥ E

( #G∗
n

(2µ)n
1Extc

)

= P(Extc)E∗
( #G∗

n

(2µ)n

)

≥ P(Extc)E∗
( #G∗

n

(2µ)n
1{ #G∗

n
(2µ)n

≥a}

)

≥ aP(Extc)P∗
( #G∗

n

(2µ)n
≥ a

)

≥ aP(Extc)(1 − ε),
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wobei a > 0 nach Proposition 6.7 gewählt ist. Es existiert also eine Konstante c > 0,
für welche

inf
n≥0

E(#G∗
n)

(2µ)n
≥ c (6.39)

gilt. Wegen |Fk(n) − fk| ≤ 1, #G
∗
n ≤ Zn fast sicher für alle k, n ≥ 0 und (6.39)

erhalten wir für η > 0

∣∣∣
E(Fk(n)#G∗

n)

E(#G∗
n)

− fk

∣∣∣ =
∣∣∣
E
(
#G∗

n(Fk(n) − fk)
)

E(#G∗
n)

∣∣∣

≤ E
(
#G∗

n|Fk(n) − fk|
)

E(#G∗
n)

≤ η +
E
(
#G∗

n|Fk(n) − fk| 1{|Fk(n)−fk |≥η}
)

E(#G∗
n)

≤ η +
E(Zn1{|Fk(n)−fk |≥η})

E(#G∗
n)

≤ η +
E(Zn1{|Fk(n)−fk |≥η})

c(2µ)n
.

(6.40)

Da 2µ > 1 und Z1 quadratisch integrierbar in diesem Abschnitt vorausgesetzt waren,
erhalten wir mit Proposition 2.3

E
( Zn

(2µ)n

)2
=

VarZn + (EZn)2

(2µ)2n
= Var(Z1)

1 − (2µ)−n

2µ(2µ − 1)
+1 ≤ VarZ1

2µ(2µ − 1)
+1 < ∞

und damit die L2-Beschränktheit sowie daraus die gleichgradige Integrierbarkeit von
( Zn

(2µ)n )n≥0 (Satz A.6). Dank des zweiten Schritts konvergiert daher der zweite Term
am Ende von (6.40) für n → ∞ gegen 0 (Satz A.6). Insgesamt erhalten wir aus
(6.38) und (6.40) somit

P(Z[n] = k | Z[n] > 0) −→
n→∞

fk.

Damit ist der Satz bewiesen. 2

Korollare

Mit Hilfe von Satz 6.10 können wir nun auf das asymptotische Verhalten von #G∗
n

schließen.

Korollar 6.13. Es gilt

#G∗
n

Zn

P∗

−→ 1

EY und
#G∗

n

(µ0 + µ1)n

P∗

−→ W

EY , n → ∞,

wobei W die Zufallsgröße aus Proposition 2.7 und Y, wie aus dem vorherigen Satz,
eine Yaglom-quasistationär-verteilte Zufallsgröße ist.
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Beweis: Als erstes halten wir fest, dass EY ∈ (0,∞) nach Korollar 3.7 ist. Für
alle K ≥ 1 gilt die Gleichung

#G
∗
n = #G

∗
n

∑
v∈G∗

n
Zv1{Zv≤K}

∑K
k=1 k#{v ∈ G∗

n : Zv = k}
=

∑
v∈G∗

n
Zv1{Zv≤K}

∑K
k=1 kFk(n)

P-f.s..

Da
∑

v∈G∗
n
Zv1{Zv≤K} ≤ Zn fast sicher ist, folgt somit

∣∣∣
#G

∗
n

Zn

− 1

EY
∣∣∣

=
∣∣∣

1
∑K

k=1 kFk(n)

∑
v∈G∗

n
Zv1{Zv≤K}

Zn

− 1

EY
∣∣∣ (6.41)

≤
∣∣∣
∑

v∈G∗
n
Zv1{Zv≤K}

Zn

∣∣∣
∣∣∣

1
∑K

k=1 kFk(n)
− 1

EY
∣∣∣ +

1

EY
∣∣∣
∑

v∈G∗
n
Zv1{Zv≤K}

Zn

− 1
∣∣∣

≤
∣∣∣

1
∑K

k=1 kFk(n)
− 1

EY
∣∣∣ +

1

EY

∑
v∈G∗

n
Zv1{Zv>K}

Zn

P-f.s..

Seien ε, η > 0. Nach Lemma 6.5 existiert ein K0 ≥ 1, sodass für alle K ≥ K0 und
n ≥ 0

P
∗
(∑

v∈G∗
n
Zv1{Zv>K}

Zn

≥ η
)
≤ ε (6.42)

gilt. Nach dem Satz der monotonen Konvergenz finden wir weiter ein K ≥ K0,
sodass ∣∣∣

1

E(Y1{Y≤K})
− 1

EY
∣∣∣ ≤ η (6.43)

ist. Satz 6.10 liefert dann

K∑

k=1

kFk(n)
P∗

−→
K∑

k=1

kP(Y = k) = E(Y1{Y≤K})

und damit
1

∑K

k=1 kFk(n)

P∗

−→ 1

E(Y1{Y≤K})

für n → ∞. Es existiert also ein n0 ≥ 0, sodass für alle n ≥ n0

P
∗
(∣∣∣

1
∑K

k=1 kFk(n)
− 1

E(Y1{Y≤K})

∣∣∣ ≥ η
)
≤ ε (6.44)
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gilt. Dann folgt aus (6.41), (6.42), (6.43) und (6.44) für alle n ≥ n0

P
∗
(∣∣∣

#G∗
n

Zn

− 1

EY
∣∣∣ ≥ 2η +

1

EY η
)

≤ P
∗
(∣∣∣

1
∑K

k=1 kFk(n)
− 1

EY
∣∣∣ +

1

EY

∑
v∈G∗

n
Zv1{Zv>K}

Zn

≥ 2η +
1

EY η
)

≤ P
∗
(∣∣∣

1
∑K

k=1 kFk(n)
− 1

EY
∣∣∣ ≥ 2η

)
+ P

∗
(∑

v∈G∗
n
Zv1{Zv>K}

Zn

≥ η
)

≤ P
∗
(∣∣∣

1
∑K

k=1 kFk(n)
− 1

E(Y1{Y≤K})

∣∣∣ +
∣∣∣

1

E(Y1{Y≤K})
− 1

EY
∣∣∣ ≥ 2η

)
+ ε

≤ P
∗
(∣∣∣

1
∑K

k=1 kFk(n)
− 1

E(Y1{Y≤K})

∣∣∣ ≥ η
)

+ ε

≤ 2ε.

Damit folgt die erste Behauptung. Die zweite Behauptung ergibt sich nun leicht aus
der ersten und Satz 2.7, denn es gilt

#G
∗
n

(µ0 + µ1)n
=

Zn

(µ0 + µ1)n

#G
∗
n

Zn

P∗

−→ W

EY .

2

Wir definieren für k, n, q ≥ 0

Fk(n, q) :=
#{i ∈ G

∗
n+q : Zi|n = k}
#G∗

n+q

als das Verhältnis infizierter Zellen der (n + q)-ten Generation, deren Zellvorfahren
in Generation n genau k Parasiten hatten, zur Gesamtanzahl infizierter Zellen der
(n+ q)-ten Generation. Lassen wir q gegen unendlich laufen, so konvergiert Fk(n, q)
bedingt unter Extc stochastisch gegen eine Zufallsgröße, welche das obige Verhält-
nis für die Zellen aus δT∗ angibt. Lässt man dann auch noch n gegen unendlich
laufen, so erhält man eine größenverzerrte Yaglom-quasistationäre-Verteilung. Für
größenverzerrte Verteilung siehe (2.5).

Korollar 6.14. (Fk(n, q))k≥0 konvergiert bedingt unter Extc in Wahrscheinlichkeit
in S1(N0) für q → ∞. Dieser Limes konvergiert weiter in Wahrscheinlichkeit in
S1(N0) für n → ∞. Genauer gilt

lim
n→∞

lim
q→∞

Fk(n, q)
P∗

=
kP(Y = k)

EY
für alle k ≥ 0.
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Beweis: Für k, n, q ≥ 0 gilt

Fk(n, q) =
∑

u∈G∗
n:Zu=k

#{v ∈ G∗
n+q : v|n = u, Zu = k}

#G∗
n+q

P-f.s. (6.45)

und für jeden Summanden der rechten Summe weiter

#{v ∈ G∗
n+q : v|n = u, Zu = k}

#G∗
n+q

=
#{v ∈ G∗

n+q : v|n = u, Zu = k, Nn(v) = 1}
#G∗

n+q

+
#{v ∈ G∗

n+q : v|n = u, Zu = k, Nn(v) ≥ 2}
#G∗

n+q

fast sicher. Aus Proposition 6.9 folgt für den zweiten Summanden

#{v ∈ G∗
n+q : v|n = u, Zu = k, Nn(v) ≥ 2}

#G∗
n+q

P∗

−→ 0, q → ∞.

In ferner Zukunft sind in einer infizierten Zelle also nur noch Nachkommen eines
Parasiten. Anstatt des asymptotischen Verhaltens eines Prozesses startend in ei-
ner Zelle mit k Parasiten zu betrachten, können wir daher auch das asymptotische
Verhalten von k Prozessen startend mit je einem Parasiten untersuchen. Es gilt

lim
q→∞

#{v ∈ G∗
n+q : v|n = u, Zu = k}

#G∗
n+q

P∗

= lim
q→∞

#{v ∈ G∗
n+q : v|n = u, Zu = k, Nn(v) = 1}

#G∗
n+q

(6.46)

P∗

= lim
q→∞

(2µ)q

#G∗
n+q

k∑

s=1

#G∗
q(s, u)

(2µ)q
,

wobei #G∗
q(s, u) der Prozess der infizierten Zellen eines ZTPIZ startend mit Parasit

ps ∈ Pj = {p1, . . . , pk} ist.
Nach Proposition 2.7 gilt {W = 0} = Ext fast sicher und aus Korollar 6.13 folgt

damit
#G∗

q

(2µ)q

P−→ W

EY , q → ∞.

Hieraus erhalten wir für 1 ≤ s ≤ k

#G∗
q(s, u)

(2µ)q

P−→ W (s, u)

EY , q → ∞,

wobei die W (1, u), . . . , W (k, u) unabhängig und wie W verteilt sind. Setzen wir dann
Wk(u) =

∑k
s=1 W (s, u), so gilt

k∑

s=1

#G∗
q(s, u)

(2µ)q

P−→ Wk(u)

EY , q → ∞,
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6.1.2 Stark subkritischer PZZ, D3

und durch eine weitere Anwendung von Korollar 6.13 für q → ∞

(2µ)q

#G∗
n+q

k∑

s=1

#G∗
q(s, u)

(2µ)q

P∗

−→ 1

(2µ)n

EY
W

Wk(u)

EY =
1

(2µ)n

Wk(u)

W
.

Mit (6.45) und (6.46) folgt dann für q → ∞

Fk(n, q) =
∑

u∈G∗
n:Zu=k

#{v ∈ G∗
n+q : v|n = u}

#G∗
n+q

P∗

−→ 1

(2µ)n

∑

u∈G∗
n:Zu=k

Wk(u)

W
,

und damit die erste Behauptung.
Für die zweite Behauptung betrachten wir den eben erhalten Grenzwert. Für

diesen gilt

1

(2µ)n

1

W

∑

u∈G∗
n:Zu=k

Wk(u) =
1

W

#{u ∈ G∗
n : Zu = k}

(2µ)n

∑
u∈G∗

n:Zu=k Wk(u)

#{u ∈ G∗
n : Zu = k} (6.47)

fast sicher. Nach Satz 6.10 und Korollar 6.13 folgt

#{u ∈ G∗
n : Zu = k}

(2µ)n
= Fk(n)

#G∗
n

(2µ)n

P∗

−→ P(Y = k)
W

EY , n → ∞ (6.48)

und damit konvergiert (6.47) in Wahrscheinlichkeit gegen 0, wenn Fk(n) in Wahr-
scheinlichkeit gegen 0 konvergiert. Konvergiere also Fk(n) in Wahrscheinlichkeit ge-
gen einen Grenzwert größer 0. Da #G∗

n −→ ∞ P∗-f.s. für n → ∞ nach Satz 5.5 gilt,
muss also auch #{i ∈ G∗

n : Zi = k} −→ ∞ P∗-f.s. gelten.
Mit Satz 2.8 erhalten wir für Wk(u)

EWk(u) = E

( k∑

s=1

W (s, u)
)

= kEW (1, u) = kEW = k.

Da die (Wk(u))u∈G∗
n

bedingt unter {#G∗
n > 0} nach Satz 1.3 unabhängig und iden-

tisch verteilt sind, folgt mit dem Gesetz der großen Zahlen für alle ε, η > 0 die
Existenz eines n0 ≥ 0, sodass für alle n ≥ n0

P
n
(∣∣∣

∑
u∈G∗

n:Zu=k Wk(u)

#{u ∈ G∗
n : Zu = k} − k

∣∣∣ ≥ η
)
≤ ε

gilt. Nach (6.7) konvergiert Pn gegen P∗ in Totalvariation und wir erhalten

∑
u∈G∗

n:Zu=k Wk(u)

#{u ∈ G∗
n : Zu = k}

P∗

−→ k, n → ∞. (6.49)
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Aus den zwei Konvergenzen (6.48) und (6.49) folgt somit aus (6.47)

1

(2µ)n

1

W

∑

u∈G∗
n:Zu=k

Wk(u)
P∗

−→ P(Y = k)
k

EY , n → ∞,

und damit die zweite Behauptung.
2

Bemerkung 6.15. Nach Korollar 2.25 ist
(

k
EY P(Y = k)

)
k≥1

die stationäre Ver-
teilung des zu (Z[n])n≥0 assoziierten Q-Prozesses. Korollar 6.14 gibt uns also die
Möglichkeit, die stationäre Verteilung des Q-Prozesses eines subkritischen GWP nu-
merisch zu berechnen (vgl. Bem. 6.11).

6.1.3 Kritischer und nicht stark subkritischer Prozess einer

zufälligen Zelllinie, D4

In diesem Abschnitt ist der PZZ (Z[n])n≥0 nicht stark subkritisch. Das asymptotische
Verhalten von E(#G∗

n) weicht daher von demjenigen aus Fall D3 ab. Genauer gibt
es drei Fälle - der PZZ ist kritisch, moderat subkritisch oder schwach subkritisch -
in denen sich E(#G∗

n) jeweils anders verhält (vgl. Bem. 4.3).
Dass der PZZ stark subkritisch war, spielte in den Beweisen aus D3 jedoch ei-

ne entscheidende Rolle. Wir können daher die Beweisidee bedauerlicherweise nicht
übernehmen. So ist zum Beispiel der Beweis für die Trennung der Parasitennach-
kommen (Proposition 6.9) oder die Vernachlässigbarkeit der stark infizierten Zellen
(Proposition 6.8) auf diesen Fall nicht übertragbar. Man benötigt somit einen neuen
Ansatz um das Grenzverhalten von Fk(n) zu bestimmen. Es liegen daher im Fall D4

leider noch keine vollständigen Ergebnisse vor.
Wir können jedoch eine erste Annäherung an die Lösung dieses Problems mit der

folgenden Proposition geben. Wie in Abschnitt D3 sei E(X(a)2) < ∞ für a ∈ {0, 1}
vorausgesetzt.

Proposition 6.16. Sei (Zv)v∈T ein ZTPIZ mit (µ0, µ1) ∈ D4 und µ0 < 1 < µ1.
Dann folgt

sup
n≥0

{
P

( #G∗
n

2nP(Z[n] > 0)
≥ A

)}
−→
A→∞

0 (6.50)

und

sup
n≥0

{
P
∗
( #G

∗
n

(µ0 + µ̃0)n
≤ 1

A

)}
−→
A→∞

0, (6.51)

wobei µ̃0 = 1
2

(
1 +

√
1 + 4(µ0 − µ2

0)
)

> 1 ist.

Beweis: Für n ≥ 0 und A > 0 setzen wir

B(n, A) :=
{ #G∗

n

2nP(Z[n] > 0)
≥ A

}
.
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Dann folgt
#G∗

n

2n
≥ AP(Z[n] > 0)1B(n,A) P-f.s.

und nach Übergang zum Erwartungswert

E

(#G∗
n

2n

)
≥ AP(Z[n] > 0)P(B(n, A)).

Aufgrund von Gleichung (4.1) erhalten wir damit

1 ≥ AP(B(n, A))

für alle n ∈ N0 und A > 0. Für A → ∞ muss somit P(B(n, A)) → 0 gelten und
damit folgt (6.50).

Für die Aussage (6.51) stellt man sofort fest, dass

P
∗
( #G∗

n

(µ0 + µ̃0)n
≤ 1

A

)
−→
A→∞

0

für alle n ∈ N0 gilt. Damit ist nur noch

lim sup
n→∞

P
∗
( #G∗

n

(µ0 + µ̃0)n
≤ 1

A

)
−→
A→∞

0 (6.52)

zu zeigen. Mit Argumenten der Analysis erhält man, dass (µ0, µ̃0) ∈ D3 ist. Insbe-
sondere gilt damit µ̃0 < µ1. Seien nun (Ẑv)v∈T und (Z̃v)v∈T zwei ZTPIZ auf einem
Wahrscheinlichkeitsraum (Ω0,A0, P ) gegeben mit

P
(
(Ẑv)v∈T ∈ ·

)
= P

(
(Zv)v∈T ∈ ·

)
,

EX̃(1) = µ̃0, sowie der Abhängigkeitsstruktur

Z̃∅ = Ẑ∅ P -f.s. und P (X̃
(0)
v,k = X̂

(0)
v,k , X̃

(1)
v,k ≤ X̂

(1)
v,k) = 1

für alle v ∈ T, k ≥ 1. Der k-te Parasit der v-ten Zelle des Prozesses (Z̃v)v∈T bekommt
also genau so viele Nachkommen, die in die erste Tochterzelle gehen, und höchstens
so viele Nachkommen, die in die zweite Tochterzelle gehen, wie der k-te Parasit der
v-ten Zelle des Prozesses (Ẑv)v∈T. Insbesondere folgt damit

#G̃
∗
n ≤ #Ĝ

∗
n P -f.s. (6.53)

für alle n ∈ N0. Aufgrund der Definition der Prozesse gilt außerdem

EX̂(0) = EX̃(0) = µ0 und EX̂(1) = µ1
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

sowie
˜Extc ⊆ ˆExtc P -f.s., (6.54)

wobei ˜Extc bzw. ˆExtc das Ereignis beschreibt, dass Parasiten des Prozesses (Z̃v)v∈T

bzw. (Ẑv)v∈T überleben. Während sich also (Ẑv)v∈T wie (Zv)v∈T verhält, ist (Z̃v)v∈T

ein Prozess des Falls D3. Es lassen sich daher die Resultate aus dem Abschnitt D3

auf (Z̃v)v∈T anwenden. Genau dies werden wir uns später zunutze machen.
Sei ε > 0. Da µ0 + µ̃0 > 1 ist, gilt P (Ẽxt) < 1 nach Satz 2.4 (iii) und mit Hilfe

von Satz 2.2 (ii) finden wir somit ein K ∈ N, sodass

PK(Ẽxt) = P (Ẽxt)K ≤ ε (6.55)

gilt. Wir bezeichnen mit T (K) := inf{n ∈ N0 | #Ĝ∗
n ≥ K} die Stoppzeit (Def. A.2)

bzgl. der kanonischen Filtration σ(Ẑv : |v| ≤ n), die angibt, zu welchem Zeitpunkt
der Prozess (Ẑv)v∈T zum ersten Mal mehr als K infizierte Zellen hat. Setzen wir
P ∗ = P (·| ˆExtc), so folgt nach Satz 5.5 P ∗(#Ĝ∗

n → ∞) = 1. Wir erhalten also die
P ∗-f.s. Endlichkeit von T (K). Somit existiert ein n0 ∈ N0, für welches

P ∗(T (K) > n0) ≤ ε (6.56)

gilt. Nach diesen ganzen Vorbemerkungen erhalten wir nun aus (6.53), (6.54), (6.55)
und (6.56) die Ungleichung

P ∗
( #Ĝ∗

T (K)+n

(µ0 + µ̃0)T (K)+n
≤ 1

A

)

≤ P ∗
( #Ĝ∗

T (K)+n

(µ0 + µ̃0)T (K)+n
≤ 1

A
, T (K) ≤ n0

)
+ P ∗(T (K) > n0)

≤ P ∗
K

( #Ĝ
∗
n

(µ0 + µ̃0)n
≤ 1

A
(µ0 + µ̃0)

n0

)
+ ε

≤ P ∗
K

({ #Ĝ∗
n

(µ0 + µ̃0)n
≤ 1

A
(µ0 + µ̃0)

n0

}
∩ ˜Extc

)
+ P ∗

K(Ẽxt) + ε

≤ P ∗
({ #Ĝ∗

n

(µ0 + µ̃0)n
≤ 1

A
(µ0 + µ̃0)

n0

}
∩ ˜Extc

)
+

PK(Ẽxt)

PK( ˆExtc)
+ ε

≤ P
( #Ĝ

∗
n

(µ0 + µ̃0)n
≤ 1

A
(µ0 + µ̃0)

n0
∣∣ ˜Extc

)P ( ˜Extc)

P ( ˆExtc)
+

2ε

PK( ˆExtc)

≤ P
( #G̃∗

n

(µ0 + µ̃0)n
≤ 1

A
(µ0 + µ̃0)

n0
∣∣ ˜Extc

)
+

2ε

P ( ˆExtc)

72



6.2 Kritischer Parasitenprozess, D2

für alle n ≥ 0 und A > 0. Da (µ0, µ̃0) ∈ D3 liegt, folgt dann mit Korollar 6.13 für
alle A > 0

lim sup
n→∞

P ∗
( #Ĝ∗

n

(µ0 + µ̃0)n
≤ 1

A

)

≤ lim sup
n→∞

P
( #G̃∗

n

(µ0 + µ̃0)n
≤ 1

A
(µ0 + µ̃0)

n0
∣∣ ˜Extc

)
+

2ε

P ( ˆExtc)

= P
( W

EY ≤ 1

A
(µ0 + µ̃0)

n0
∣∣ ˜Extc

)
+

2ε

P ( ˆExtc)

wobei W und Y wie aus Korollar 6.13 gegeben sind. Da W > 0 P -f.s. auf ˜Extc ist
(Satz 2.8), folgt

lim
A→∞

P
( W

EY ≤ 1

A
(µ0 + µ̃0)

n0
∣∣ ˜Extc

)
= 0.

Es gilt somit

lim
A→∞

lim sup
n→∞

P ∗
( #Ĝ

∗
n

(µ0 + µ̃0)n
≤ 1

A

)
≤ 2ε

P ( ˆExtc)

für alle ε > 0 und damit (6.52). 2

Nach dieser Proposition wächst #G
∗
n exponentiell und man kann vermuten, dass

sich #G∗
n asymptotisch wie E(#G∗

n) = 2nP(Z[n] > 0) verhält.
Ist der PZZ kritisch (µ0µ1 = 1, Rand von D5), so gilt

P(Z[n] ≥ K | Z[n] > 0) −→
n→∞

1

für alle K ≥ 0 (siehe Satz A.10 und Kor. A.11). Dies legt also die Vermutung nahe,
dass in diesem Fall die stark infizierten Zellen asymptotisch den Hauptbeitrag zur
Gesamtanzahl infizierter Zellen geben und die schwach infizierten Zellen vernachläs-
sigbar sind (vgl. Satz 6.2).

6.2 Kritischer Parasitenprozess, D2

Wie in D3 setzen wir E
(
X(a)

)
< ∞, a ∈ {0, 1}, voraus, wodurch zusammen mit

(1.4) insbesondere 0 < VarZ1 < ∞ folgt.
In diesem Abschnitt zeigen wir als Analogon zum Satz 6.10, dass bedingt unter

{Zn > 0} die Folge (Fk(n))k≥0 in Verteilung auf S1(N0) gegen (P(Y = k))k≥0 kon-
vergiert. Dabei ist Y wie in D3 eine Yaglom-quasistationär-verteilte Zufallsgröße.
Dass wir in diesem Abschnitt ein analoges Resultat zu D3 erhalten, hat folgenden
Grund: Im Fall D2 ist (Zn)n≥0 ein kritischer GWP und daher gilt µ0 + µ1 = 1. Nun
ist jedoch µ0µ1 ≤ 1 nach (6.1) und damit der PZZ (Z[n])n≥0 stark subkritisch. Wie
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

im vorherigen Abschnitt gelten somit die Eigenschaften (3.4), (6.8) und (6.9) sowie
nach Korollar 3.7

P(Z[n] > 0)
n→∞≃ cµn = c2−n

für ein c ∈ (0, 1]. Da (Z[n])n≥0 einen stark subkritischen PZZ bildet, können wir
viele der Beweise aus D3 übernehmen. Anstatt unter P∗ müssen wir jedoch unter Pn

arbeiten und die Grenzwertsätze für kritische GWP (Abschnitt 2.1.3) anstelle der
für superkritische benutzen. Um das oben genannte Resultat zu beweisen, zeigen wir
daher eine Reihe von Propositionen, welche zu denen aus D3 analog sind und mit
deren Hilfe wir den Beweis von Satz 6.10 dann fast vollständig übertragen können.

Für den Rest dieses Abschnittes bezeichne E eine mit Parameter 2/VarZ1 expo-
nentialverteilte Zufallsgröße, d.h.

E ∼ Exp
( 2

VarZ1

)
.

Vernachlässigbarkeit der Anzahl an Parasiten in stark infizierten Zellen

Wir zeigen hier analog zum Abschnitt D3, dass die Anzahl der Parasiten in stark
infizierten Zellen einen geringen Beitrag zur Gesamtanzahl der Parasiten bildet.
Dafür benötigen wir noch zwei kleine Lemmata.

Lemma 6.17. Für alle η > 0 gilt

sup
n≥1

{
P

n
(∑

v∈G∗
n
Zv1{Zv>K}

n
≥ η

)}
−→

K→∞
0.

Beweis: Der Beweis verläuft fast analog zu dem von Lemma 6.5. Sei also η > 0.
Wir definieren für K ≥ 0 und n ≥ 1

An(K, η) :=
{∑

v∈G∗
n
Zv1{Zv>K}

n
≥ η

}
∩

{
Zn > 0

}
.

Dann folgt ∑

v∈G∗
n

Zv1{Zv>K} ≥ nη1An(K,η) P-f.s.

und nach Übergang zum Erwartungswert erhalten wir

E

( ∑

v∈G∗
n

Zv1{Zv>K}

)
≥ nηP

(
An(K, η)

)
.

Da (2µ)n = 1 ist, folgt daraus

1

µn
E
(
Z[n]1{Z[n]>K}

)
=

1

µn
E

( 1

2n

∑

v∈G∗
n

Zv1{Zv>K}

)
≥ nηP

(
An(K, η)

)
.
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Nach Korollar 3.7 gilt

1

µn
E(Z[n]1{Z[n]>K})

n→∞≃
cE(Z[n]1{Z[n]>K})

P(Z[n] > 0)
= cE(Z[n]1{Z[n]>K} | Z[n] > 0)

für ein c ∈ (0, 1] und aus (3.4) folgt somit

sup
n≥0

{
nηP(An(K, η))

}
≤ sup

n≥0

{ 1

µn
E(Z[n]1{Z[n]>K})

}
−→
K→∞

0. (6.57)

Nach Satz 2.14 gilt

P(Zn > 0)
n→∞≃ 2

n VarZ1

und damit folgt

P
n(An(K, η)) =

1

P(Zn > 0)
P(An(K, η))

n→∞≃ n VarZ1

2
P(An(K, η)).

Aus (6.57) folgt daraus die Behauptung des Lemmas. 2

Lemma 6.18. Für alle ε > 0 existiert ein η > 0 und K ≥ 0, sodass für alle n ≥ 1

P
n
(∑

v∈G∗
n
Zv1{Zv≤K}

n
≥ η

)
≥ 1 − ε

gilt.

Beweis: Sei ε > 0. Es existiert ein η0 > 0, sodass für alle 0 < η < η0

P(E ≥ 2η) ≥ 1 − ε

gilt. Nach Satz 2.15 konvergiert Zn

n
bedingt unter {Zn > 0} in Verteilung gegen E .

Nach dem Satz von Glivenko-Cantelli finden wir dann ein n0 ≥ 1, sodass für alle
n ≥ n0 und 0 < η < η0

∣∣∣Pn
(Zn

n
≥ 2η

)
− P(E ≥ 2η)

∣∣∣ ≤ ε

und damit

P
n
(Zn

n
≥ 2η

)
≥ 1 − 2ε

gilt. Wähle nun ein η ∈ (0, η0), sodass außerdem

inf
1≤n≤n0

{
P

n
(Zn

n
≥ 2η

)}
≥ 1 − 2ε
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gilt. Damit erhalten wir also für alle n ≥ 1

P
n
(Zn

n
≥ 2η

)
≥ 1 − 2ε. (6.58)

Nach Lemma 6.17 existiert ein K ≥ 0 für welches

P
n
(∑

v∈G∗
n
Zv1{Zv>K}

n
≤ η

)
≥ 1 − ε

für alle n ≥ 1 ist. Mit dieser Ungleichung und (6.58) folgt dann für alle n ≥ 1

P
n
(∑

v∈G∗
n
Zv1{Zv≤K}

n
≥ η

)

= P
n
(Zn

n
−

∑
v∈G∗

n
Zv1{Zv>K}

n
≥ η

)

≥ P
n
(Zn

n
−

∑
v∈G∗

n
Zv1{Zv>K}

n
≥ η,

∑
v∈G∗

n
Zv1{Zv>K}

n
≤ η

)

≥ P
n
(Zn

n
≥ 2η,

∑
v∈G∗

n
Zv1{Zv>K}

n
≤ η

)

≥ 1 − 3ε.

2

Mit diesen zwei Lemmata können wir nun zeigen, dass die Anzahl der Parasiten
in stark infizierten Zellen vernachlässigbar ist.

Proposition 6.19. Für alle η > 0 gilt

sup
n≥0

{
P

n
(∑

v∈G∗
n
Zv1{Zv>K}

Zn

≥ η
)}

−→
K→∞

0.

Beweis: Seien ε, η > 0. Es existiert ein N0 ≥ 1, sodass für alle N ≥ N0

P

(
E ≤ 1

N

)
≤ ε

gilt. Mit Satz 2.14 können wir dann alanog zum vorherigen Beweis ein N ≥ N0

finden, sodass

sup
n≥1

{
P

n
(Zn

n
≤ 1

N

)}
≤ 2ε (6.59)

gilt. Nach Lemma 6.17 existiert nun ein K ≥ 1 für welches

sup
n≥1

{
P

n
(∑

v∈G∗
n
Zv1{Zv>K}

n
≥ η

N

)}
≤ ε
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ist und mit (6.59) folgt

sup
n≥1

{
P

n
(∑

v∈G∗
n
Zv1{Zv>K}

Zn

≥ η
)}

= sup
n≥1

{
P

n
( n

Zn

∑
v∈G∗

n
Zv1{Zv>K}

n
≥ η

)}

≤ sup
n≥1

{
P

n
(Zn

n
≤ 1

N

)
+ P

n
( n

Zn

∑
v∈G∗

n
Zv1{Zv>K}

n
≥ η,

Zn

n
≥ 1

N

)}

≤ sup
n≥1

{
P

n
(Zn

n
≤ 1

N

)
+ P

n
(∑

v∈G∗
n
Zv1{Zv>K}

n
≥ η

N

)}

≤ sup
n≥1

{
P

n
(Zn

n
≤ 1

N

)}
+ sup

n≥1

{
P

n
(∑

v∈G∗
n
Zv1{Zv>K}

n
≥ η

N

)}

≤ 3ε.

2

Wir erhalten ein zu Proposition 6.6 analoges Resultat.

Proposition 6.20. Für alle ε > 0 existiert ein K ≥ 0, sodass für alle N ≥ 0 ein
n0 ≥ 1 existiert, sodass

P
n
( ∑

v∈G∗
n

Zv1{Zv≤K} ≥ N
)
≥ 1 − ε

für alle n ≥ n0 gilt.

Beweis: Sei ε > 0. Nach Lemma 6.18 existiert ein η > 0 und K ≥ 0, sodass für
alle n ≥ 1

P
n
(∑

v∈G∗
n
Zv1{Zv≤K}

n
≥ η

)
≥ 1 − ε

gilt. Dann ergibt sich für alle n ≥ Nη−1

P
n
( ∑

v∈G∗
n

Zv1{Zv≤K} ≥ N
)

= P
n
(∑

v∈G∗
n
Zv1{Zv≤K}

n
≥ N

n

)

≥ P
n
(∑

v∈G∗
n
Zv1{Zv≤K}

n
≥ η

)

≥ 1 − ε.

2
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Eine Schätzung für die Anzahl infizierter Zellen

Wir erhalten wie im Fall D3 auch hier eine Schätzung für #G
∗
n.

Proposition 6.21. Für alle ε > 0 existieren Konstanten a, b > 0, sodass für alle
n ≥ 1

P
n
(
a ≤ #G∗

n

n
≤ b

)
≥ 1 − ε

gilt.

Beweis: Sei ε > 0. Wie in den Beweisen zuvor kann man ein b > 0 finden, sodass
für alle n ≥ 1

P
n
(Zn

n
≤ b

)
≥ 1 − ε

gilt. Da #G∗
n ≤ Zn fast sicher für alle n ≥ 1 ist, erhalten wir somit

P
n
(#G∗

n

n
≤ b

)
≥ P

n
(Zn

n
≤ b

)
≥ 1 − ε (6.60)

für alle n ≥ 1.
Weiter ist

#G∗
n

n
≥

∑
v∈G∗

n
Zv1{Zv≤K}

Kn
P-f.s.

für alle K, n ≥ 1 und damit

P
n
(#G

∗
n

n
≥ a

)
≥ P

n
(∑

v∈G∗
n
Zv1{Zv≤K}

n
≥ Ka

)
. (6.61)

Nach Lemma 6.18 existiert ein K0 ≥ 1 und ein η0 > 0, sodass für alle n ≥ 1

P
n
(∑

v∈G∗
n
Zv1{Zv≤K0}

n
≥ η0

)
≥ 1 − ε

gilt. Setzt man nun a := η0/K0, so folgt aus (6.61) für K0

P
n
(#G

∗
n

n
≥ a

)
≥ P

n
(∑

v∈G∗
n
Zv1{Zv≤K0}

n
≥ η0

)
≥ 1 − ε.

In Kombination mit (6.60) folgt dann die Behauptung, denn für alle n ≥ 1 gilt

P
n
(
a ≤ #G∗

n

n
≤ b

)
≥ P

n
(∑

v∈G∗
n
Zv1{Zv≤K0}

n
≥ η0,

Zn

n
≤ b

)
≥ 1 − 2ε.

2
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Vernachlässigbarkeit stark infizierter Zellen

Analog zum Abschnitt D3 zeigen wir hier, dass die Nachkommen stark infizierter
Zellen einen vernachlässigbaren Beitrag zur Gesamtanzahl infizierter Zellen geben.

Proposition 6.22. Für alle η > 0 gilt

sup
n,q≥0

{
P

n+q
(#{v ∈ G∗

n+q : Zv|n > K}
#G∗

n+q

≥ η
)}

−→
K→∞

0.

Beweis: Der Beweis verläuft analog zu dem von Proposition 6.8 nur unter Benut-
zung der in diesem Abschnitt gezeigten Resultate.

Seien ε, η > 0. Nach Proposition 6.21 finden wir ein a > 0, für welches

sup
n,q≥0

{
P

n+q
(
#G

∗
n+q < a(n + q)

)}
≤ ε (6.62)

gilt. Für diese a > 0 definieren wir für n, q, K ≥ 0

F q
n(K, η) :=

{#{v ∈ G∗
n+q : Zv|n > K}
#G∗

n+q

≥ η
}
∩

{
#G

∗
n+q ≥ a(n + q)

}
.

Es folgt

#{v ∈ G
∗
n+q : Zv|n > K} ≥ η#G

∗
n+q1F

q
n(K,η) ≥ ηa(n + q)1F

q
n(K,η) P-f.s..

Nach Übergang zum Erwartungswert, der Tatsache, dass (2µ)n = 1 für alle n ≥ 0,
und völlig analoger Rechnung wie im Beweis von Proposition 6.8 folgt dann

(n + q)P(F q
n(K, η)) =

(n + q)

(2µ)n
P(F q

n(K, η))

≤ 1

ηa(2µ)n
E(#{v ∈ G

∗
n+q : Zv|n > K})

≤
E(Z[n]1{Z[n]>K})

ηaµn

für alle n, q ≥ 0. Wir erhalten wieder mit Korollar 3.7

lim
K→∞

sup
n,q≥0

{
(n + q)P(F q

n(K, η))
}

= 0.

Aus Satz 2.14 folgt

P
n+q

(
F q

n(K, η)
)

=
P
(
F q

n(K, η)
)

P(Zn+q > 0)

n+q→∞≃ VarZ1

2
(n + q)P

(
F q

n(K, η)
)
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und damit
lim

K→∞
sup
n,q≥0

{
P

n+q(F q
n(K, η))

}
= 0.

Es existiert somit ein K0 ≥ 0, sodass für alle K ≥ K0 und n, q ≥ 0

P
n+q(F q

n(K, η)) ≤ ε

gilt. Mit (6.62) folgt daraus

P
n+q

(#{v ∈ G∗
n+q : Zv|n > K}
#G∗

n+q

≥ η
)

≤ P
n+q

(
F q

n(K, η)
)

+ P
n+q

(
#G

∗
n+q < a(n + q)

)

≤ 2ε

für alle q, n ≥ 0 und K ≥ K0. 2

Trennung der Parasitennachkommen

Auch die Eigenschaft, dass sich Nachkommen unterschiedlicher Parasiten in weit
entfernter Zukunft nicht mehr in derselben Zelle befinden, lässt sich aus Abschnitt
D3 übertragen. Es bezeichne wieder Nn(v) die Anzahl der Parasiten aus Zelle v|n,
deren Nachkommen in Zelle v anzutreffen sind.

Proposition 6.23. Für alle K ≥ 0 und η > 0 gilt

lim
q→∞

sup
n≥0

{
P

n+q
(#{v ∈ G∗

n+q : Zv|n ≤ K, Nn(v) ≥ 2}
#G∗

n+q

≥ η
)}

= 0.

Beweis: Dieser Beweis verläuft analog zu dem von Proposition 6.9. Wir benutzen
lediglich die Ergebnisse dieses Abschnittes.

Seien K ≥ 0 und ε, η > 0. Nach Proposition 6.21 finden wir ein a > 0, für welches

sup
n,q≥0

{
P

n+q
(
#G

∗
n+q < a(n + q)

)}
≤ ε (6.63)

gilt. Für diese a > 0 definieren wir für alle n, q, K ≥ 0

Eq
n(K, η) :=

{#{v ∈ G
∗
n+q : Zv|n ≤ K, Nn(v) ≥ 2}

#G∗
n+q

≥ η
}
∩

{
#G

∗
n+q ≥ a(n + q)

}
.

Es folgt

#{v ∈ G
∗
n+q : Zv|n ≤ K, Nn(v) ≥ 2} ≥ η#G

∗
n+q1E

q
n(K,η) ≥ ηa(n + q)1E

q
n(K,η) f.s.
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und nach Übergang zum Erwartungswert, der Tatsache, dass (2µ)n = 1 für alle
n ≥ 0, und völlig analoger Rechnung wie im Beweis von Proposition 6.9 dann

(n + q)P(Eq
n(K, η)) ≤ 1

ηa(2µ)n
E(#{v ∈ G

∗
n+q : Zv|n ≤ K, Nn(v) ≥ 2})

≤
(

K

2

)
2−q

∑
v∈Gq

P(Zv > 0)2

ηaµq

für alle n, q ≥ 0. Aus (6.9) erhalten wir somit

sup
n≥0

{
(n + q)P(Eq

n(K, η))
}

−→
q→∞

0.

Wie im Beweis vorher folgt aus Satz 2.14

P
n+q

(
Eq

n(K, η)
)

=
P
(
Eq

n(K, η)
)

P(Zn+q > 0)

n→∞≃ VarZ1

2
(n + q)P

(
Eq

n(K, η)
)

und damit
lim
q→∞

sup
n≥0

{
P

n+q(Eq
n(K, η))

}
= 0.

Wir finden also ein q0 ≥ 1, sodass für alle q ≥ q0 und n ≥ 0

P
n+q(Eq

n(K, η)) ≤ ε

gilt. Mit (6.63) folgt daraus

P
n+q

(#{v ∈ G∗
n+q : Zv|n ≤ K, Nn(v) ≥ 2}

#G∗
n+q

≥ η
)

≤ P
n+q

(
Eq

n(K, η)
)

+ P
n+q

(
#G

∗
n+q < a(n + q)

)

≤ 2ε

für alle q ≥ q0 und n ≥ 0. 2

Das Hauptresultat

Kommen wir zu dem, am Anfang von D2 angekündigten, Hauptresultat, welches ein
Analogon zu Satz 6.10 darstellt. Die Konvergenz ist hier jedoch schwach und nicht
stochastisch.

Satz 6.24. (Fk(n))k∈N0 konvergiert bedingt unter {Zn > 0} in Verteilung in S1(N0)
gegen (P(Y = k))k∈N0. Genauer gilt

P
n(Fk(n) ∈ ·) w−→ δP(Y=k), n → ∞.

für alle k ≥ 0. Dabei ist Y eine Yaglom-quasistationär-verteilte Zufallsgröße.
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Beweis: Durch die in diesem Abschnitt gezeigten Propositionen ist es nun nicht
mehr schwer, einen analogen Beweis von Satz 6.10 zu führen. Alle Schritte des Be-
weises von Satz 6.10 lassen sich fast vollständig übertragen, wenn wir hier unter Pn

anstatt unter P∗ arbeiten. Wir benutzen die gleiche Notation wie im Beweis von
Satz 6.10.

1. Schritt: Beh.: Für alle ε, η > 0 existiert ein n0 ≥ 0 und ein f ∈ S1(N0), sodass
für alle n ≥ n0 gilt

P
n
(
||(Fk(n))k≥0 − f ||1 ≥ η

)
≤ ε.

Beweis von Schritt 1: Folgt man dem ersten Schritt des Beweises von Satz 6.10
und wendet die in diesem Abschnitt gezeigten Propositionen an, so erhält man für
ε, η > 0 ein K2 ≥ 0 sowie q0, n1 ≥ 0, für welche

P
n+q0

(∣∣∣
∣∣∣(Fk(n + q0))k≥0 − (GK2

k (n, q0))k≥0

∣∣∣
∣∣∣
1
≥ η

)
≤ ε (6.64)

und
P

n
(
||(GK2

k (n, q0))k≥0 − (f q0

k )k≥0||1 ≥ η
)

≤ ε

für alle n ≥ n1 gilt. Nach Satz 2.14 gilt P(Zn > 0)
n→∞≃ 2/(n VarZ1) und daher folgt

lim
n→∞

P(Zn+q0 > 0 | Zn > 0) = lim
n→∞

n

n + q0
= 1.

Aus

P
n+q0

(
||(GK2

k (n, q0))k≥0 − (f q0

k )k≥0||1 ≥ η
)
P(Zn+q0 > 0 | Zn > 0)

= P
n
(
||(GK2

k (n, q0))k≥0 − (f q0

k )k≥0||1 ≥ η
)

≤ ε

für alle n ≥ n1 folgt somit die Existens eines n2 ≥ n1, sodass für alle n ≥ n2

P
n+q0

(
||(GK2

k (n, q0))k≥0 − (f q0

k )k≥0||1 ≥ η
)

≤ 2ε

gilt. Mit (6.64) erhalten wir daraus die Behauptung von Schritt 1, denn für alle
n ≥ n2 gilt

P
n+q0

(
||(Fk(n + q0))k≥0 − (f q0

k )k≥0||1 ≥ 2η
)

≤ P
n+q0

(
||(Fk(n + q0))k≥0 − (GK2

k (n, q0))k≥0||1 ≥ η
)

+ P
n+q0

(
||(GK2

k (n, q0))k≥0 − (f q0

k )k≥0||1 ≥ η
)

≤ 3ε.
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2. Schritt: Beh.: Es existiert ein f ∈ S1(N0), sodass für alle η > 0 gilt

P
n
(
||(Fk(n))k≥0 − f ||1 ≥ η

)
−→
n→∞

0.

Beweis von Schritt 2: Der Beweis des zweiten Schrittes lässt sich vollständig aus
dem Beweis von Satz 6.10 übernehmen.

3. Schritt: Sei (fk)k≥0 der aus den ersten beiden Schritten ermittelte schwache
Limes von (Fk(n))k≥1. Dann ist zu zeigen, dass P(Y = k) = fk für alle k ≥ 0 gilt.

Beweis von Schritt 3: Auch hier gilt nach Korollar 3.7 für alle k ≥ 0

P(Z[n] = k | Z[n] > 0) −→
n→∞

P(Y = k),

sodass es zu zeigen reicht, dass

P(Z[n] = k | Z[n] > 0) −→
n→∞

fk

für alle k ≥ 0 gilt.
Wie im Beweis von Satz 6.10 erhalten wir für alle k ≥ 1

P(Z[n] = k | Z[n] > 0) =
E(Fk(n)#G∗

n)

E(#G∗
n)

. (6.65)

Weiter ist für 1 > ε > 0 und alle n ≥ 1

E(#G
∗
n) = E

n(#G
∗
n)P(Zn > 0)

≥ E
n
(#G∗

n

n
1{#G∗

n
n

≥a}

)
nP(Zn > 0)

≥ aP
n(

#G∗
n

n
≥ a)nP(Zn > 0)

≥ a(1 − ε)nP(Zn > 0),

wobei a > 0 nach Proposition 6.21 gewählt war. Setzen wir c := a(1 − ε), dann
erhalten wir wegen |Fk(n)−fk| ≤ 1, #G∗

n ≤ Zn fast sicher für alle k, n ≥ 0 und dem
eben Gezeigten durch analoge Rechnung wie im Beweis von Satz 6.10 für η > 0

∣∣∣
E(Fk(n)#G∗

n)

E(#G∗
n)

− fk

∣∣∣ ≤ η +
E(Zn1{|Fk(n)−fk |≥η})

E(#G∗
n)

≤ η +
E(Zn1{|Fk(n)−fk |≥η})

cnP(Zn > 0)
(6.66)

= η +
1

c
E

n
(Zn

n
1{|Fk(n)−fk |≥η}

)
.
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Da 2µ = 1 und Z1 als quadratisch integrierbar vorausgesetzt war, folgt somit aus
Proposition 2.3

E

((Zn

n

)2 ∣∣ Zn > 0
)

=
E(Z2

n)

n2P(Zn > 0)

=
Var(Zn) + (EZn)2

n2P(Zn > 0)

=
Var(Z1)

nP(Zn > 0)
+

1

n2P(Zn > 0)

< ∞,

für alle n ≥ 1. Da limn→∞ nP(Zn > 0) = 2/VarZ1 nach Satz 2.14 gilt, folgt weiter

E

((Zn

n

)2 ∣∣ Zn > 0
)

=
Var(Z1)

nP(Zn > 0)
+

1

n2P(Zn > 0)
−→
n→∞

1

2
(VarZ1)

2 < ∞.

(Zn

n
|Zn > 0)n≥0 ist also L2-beschränkt und damit auch gleichgradig integrierbar

(Satz A.6). Dank des zweiten Schrittes gilt

P
n(|Fk(n) − fk| ≥ η) −→

n→∞
0,

wodurch dann der zweite Term am Ende von (6.66) für n → ∞ gegen 0 konvergiert
(Satz A.6). Insgesamt erhalten wir aus (6.65) und (6.66) somit

P(Z[n] = k | Z[n] > 0) −→
n→∞

fk.

Damit ist der Satz bewiesen. 2

Als direkte Folgerung erhalten wir auch hier ein Korollar, welches uns die Asym-
ptotik der Verteilung der Anzahl infizierter Zellen angibt.

Korollar 6.25. Es gilt bedingt unter {Zn > 0}

#G∗
n

Zn

d−→ 1

EY und
#G∗

n

n

d−→ E
EY , n → ∞.

Beweis: Die erste Behauptung ergibt sich völlig analog zu der aus Korollar 6.13
nur unter Pn anstatt P∗ und natürlich den entsprechenden Propositionen. Die zweite
Behauptung folgt dann aus der ersten in Kombination mit Satz 2.15. 2
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6.3 Subkritischer Parasitenprozess, D1

Wir setzen wieder E(X(a)2) < ∞ für a ∈ {0, 1} voraus. Wie in D2 sterben die Para-
siten fast sicher aus. Wir erhalten daher ein analoges Resultat zu dem aus D2 und
zeigen, dass die Anzahl infizierter Zellen mit k Parasiten bedingt unter {Zn > 0} in
Verteilung gegen eine nichtdeterministische Zufallsgröße konvergiert. Daraus schlie-
ßen wir dann, dass #G∗

n und Zn bedingt unter {Zn > 0} in Verteilung gegen fast
sicher endliche Zufallsgrößen konvergieren. Für die Beweise dieser Resultate benö-
tigt man jedoch einige Eigenschaften über die Menge der Wahrscheinlichkeitsmaße
auf l1(N0), welche im Anhang A.4 kurz zusammengefasst sind.

Das Hauptresultat

Der Beweis verläuft in der selben Weise wie in den beiden vorherigen Abschnitten
und benutzt die Trennung der Parasitennachkommen. Wir zeigen daher zuerst ein
Lemma, welches uns diese Eigenschaft liefert.

Wie in den vorherigen Abschnitten bezeichnet Nn(v) die Anzahl der Parasiten aus
Zelle v|n, deren Nachkommen in Zelle v ∈ G∗

n+q immer noch am Leben sind.

Lemma 6.26 (Trennung der Parasitennachkommen). Für alle ε > 0 und K ≥ 0
existiert ein q0 ≥ 0, sodass für alle q ≥ q0 und n ≥ 0

P
n+q

(
#{v ∈ G

∗
n+q : Nn(v) ≥ 2} 6= 0, Zn ≤ K

)
≤ ε

gilt.

Beweis: Für n, q, K ≥ 0 setzen wir

Eq
n(K) :=

{
#{v ∈ G

∗
n+q : Nn(v) ≥ 2} 6= 0, Zn ≤ K

}
.

Dann gilt

1E
q
n(K) ≤

∑

v∈Gn+q

1{Nn(v)≥2, Zn≤K} P-f.s.. (6.67)

Da E(X(a)2) < ∞ für a ∈ {0, 1} vorausgesetzt war, gilt EZ1 logZ1 < ∞. Nach Satz
2.9 ist daher C := infn≥0

P(Zn>0)
(2µ)n > 0, sodass

P(Zn+q > 0) ≥ C(2µ)n+q

für alle n, q ≥ 0 gilt. Auch im Fall D1 ist der PZZ (Z[n])n≥0 stark subkritisch und es
gilt die Eigenschaft (6.9). Die Behauptung des Lemmas folgt jetzt aus (6.67) nach
Übergang zum Erwartungswert und, zu der im Beweis von Proposition 6.9, analoger
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Rechnung bei den letzten beiden Ungleichungen

P
n+q(Eq

n(K)) ≤
∑

v∈Gn+q

P
n+q(Nn(v) ≥ 2, Zn ≤ K)

≤
∑

v∈Gn+q

P(Nn(v) ≥ 2, Zn ≤ K)

P(Zn+q > 0)

≤
∑

v∈Gn+q
P(Nn(v) ≥ 2, Zn ≤ K)

C(2µ)n+q

≤
∑

v∈Gn+q
P(Nn(v) ≥ 2, Zv|n ≤ K)

C(2µ)n+q

≤
P(0 < Z[n] ≤ K)2−q

∑
v∈Gn+q

PK(N0(v) ≥ 2)

Cµn+q

≤
(

K

2

)
2−q

∑
v∈Gq

P(Zv > 0)2

Cµq

−→
q→∞

0.

2

Nachdem wir die Trennung der Parasitennachkommen gezeigt haben, können wir
uns dem oben angesprochenen Resultat zuwenden.

Satz 6.27.
(
#{v ∈ G∗

n : Zv = k}
)

k≥0
konvergiert bedingt unter {Zn > 0} für

n → ∞ in Verteilung auf l1(N0) gegen eine Folge (Nk)k≥0 von Zufallsgrößen mit der
Eigenschaft E

( ∑
k≥0 kNk

)
< ∞. Des Weiteren gilt

lim
n→∞

E
n(#{v ∈ G

∗
n : Zv = k}) = E(Nk).

Beweis: Da l1(N0) ein separabler, metrischer Raum ist, ist auch die Menge der
Verteilungen auf l1(N0) metrisierbar (Satz A.12) mit der Metrik

d(Q1, Q2) = sup
{∣∣∣

∫
fdQ1 −

∫
fdQ2

∣∣∣ : ||f ||∞ ≤ 1, f gleichmäßig stetig
}

für Q1, Q2 Verteilungen auf l1(N0). Diese Metrik ist assoziiert zur schwachen Kon-
vergenz von Verteilungen auf l1(N0) (vgl. Bem. A.14).

Den Beweis gliedern wir in ähnliche Schritte auf wie den von Satz 6.10. In den ers-
ten beiden Schritten zeigen wir mit Hilfe der Trennung der Parasitennachkommen,
dass für alle ε > 0 eine Zufallsgröße existiert, sodass die Verteilung dieser Zufallsgrö-
ße für nur endlich viele n ≥ 0 von der Verteilung von

(
#{v ∈ G∗

n : Zv = k}
)

k≥0
um

maximal ε abweicht. Im dritten Schritt folgern wir dann mit Hilfe der Vollständig-
keit von l1(N0) die Existenz des schwachen Limes. Im letzten Schritt zeigen wir noch
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6.3 Subkritischer Parasitenprozess, D1

die Endlichkeit des oben angegebenen Erwartungswertes. Geschenkt bekommen wir
dabei die im Satz stehende Konvergenz der Erwartungswerte.

Wir benutzen die gleiche Notation wie im Beweis von Satz 6.10 und setzen für
q ≥ 0, k ≥ 1 und p ∈ P(n), n ≥ 0,

Y q
k (p) :=

∑

v∈G∗
n+q

1{#{r∈Pv : r|n=p}=k}

und Y q
0 (p) = 0. Des Weiteren setzen wir für n, q, k ≥ 0

Nk(n, q) :=
∑

p∈P(n)

Y q
k (p)

und
Gk(n) := #{v ∈ G

∗
n : Zv = k}.

1. Schritt: Beh.: Für alle ε > 0 existieren n0, q0 ≥ 0, sodass für alle n ≥ n0 und
q ≥ q0

P
n+q

(
||(Gk(n + q))k≥0 − (Nk(n, q))k≥0||1 6= 0

)
≤ ε

gilt.
Beweis von Schritt 1: Sei ε > 0. Aus Satz 2.11 folgt für k ≥ 1

lim
q→∞

lim
n→∞

P
n+q(Zn = k) = c(k),

wobei (c(k))k≥1 eine Verteilung auf N bildet. Daraus folgt also insbesondere, dass
ein K ≥ 0 existiert, sodass

lim
q→∞

lim
n→∞

P
n+q(Zn > K) ≤ ε

ist. Somit finden wir ein q0 ≥ 0 und n0 ≥ 0, sodass für alle n ≥ n0 und q ≥ q0

P
n+q(Zn > K) ≤ 2ε (6.68)

gilt. Nach Lemma 6.26 folgt die Existenz eines q1 ≥ q0, sodass für alle n ≥ n0 und
q ≥ q1

P
n+q

(
#{v ∈ G

∗
n+q : Nn(v) ≥ 2} 6= 0, Zn ≤ K

)
≤ ε

gilt. Aufgrund dieser Abschätzung und mit Hilfe von (6.68) erhalten wir weiter

P
n+q

(
#{v ∈ G

∗
n+q : Nn(v) ≥ 2} 6= 0

)

≤ P
n+q

(
#{v ∈ G

∗
n+q : Nn(v) ≥ 2} 6= 0, Zn ≤ K

)
+ P

n+q
(
Zn > K

)
(6.69)

≤ 3ε

87



6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

für alle n ≥ n0 und q ≥ q1. Des Weiteren gilt die Implikation

{
#{v ∈ G

∗
n+q : Nn(v) ≥ 2} = 0

}
⊆

{(
Gk(n + q)

)
k≥0

=
(
Nk(n, q)

)
k≥0

}
f.s., (6.70)

denn ist #{v ∈ G∗
n+q : Nn(v) ≥ 2} = 0, so befinden sich in jeder Zelle v ∈ G∗

n+q

nur Parasiten, die von demselben Parasiten aus der Zelle v|n ∈ G∗
n abstammen. Das

bedeutet aber, dass für jedes v ∈ G∗
n+q genau ein p ∈ P(n) und k ≥ 1 existiert,

für welche 1{#{r∈Pv : r|n=p}=k} positiv ist. Somit gibt Nk(n, q) die Anzahl der Zellen
der (n + q)-ten Generation an, welche genau k Parasiten enthalten. Damit ist also
Nk(n, q) = Gk(n + q).

Aus (6.69) und (6.70) erhalten wir somit für alle n ≥ n0 und q ≥ q1

P
n+q

(
||(Gk(n + q))k≥0 − (Nk(n, q))k≥0||1 6= 0

)

= P
n+q

(
||(Gk(n + q))k≥0 − (Nk(n, q))k≥0||1 6= 0, #{v ∈ G

∗
n+q : Nn(v) ≥ 2} 6= 0

)

≤ P
n+q

(
#{v ∈ G

∗
n+q : Nn(v) ≥ 2} 6= 0

)

≤ 3ε.

Dies zeigt den ersten Schritt.

2. Schritt: Beh.: Für alle l ≥ 0 existiert ein n0(l) ≥ 0 und eine Verteilung Q(l)
auf l1(N0), sodass für alle n ≥ n0(l) gilt

d
(
P

n((Gk(n))k≥0 ∈ ·), Q(l)
)
≤ (

1

2
)l.

Beweis von Schritt 2: Sei l ≥ 0. Nach dem ersten Schritt existieren q0, n0 ≥ 0,
sodass für alle n ≥ n0 und gleichmäßig stetigen Funktionen f : l1(N0) −→ [−1, 1]

∣∣∣
∫

fdP
n+q0

(
(Gk(n + q0))k≥0 ∈ ·

)
−

∫
fdP

n+q0
(
(Nk(n, q0))k≥0 ∈ ·

)∣∣∣

=
∣∣∣
∫

f
(
(Gk(n + q0))k≥0

)
dP

n+q0 −
∫

f
(
(Nk(n, q0))k≥0

)
dP

n+q0

∣∣∣

=
∣∣∣
∫
{
||(Gk(n+q0))k≥0−(Nk(n,q))k≥0||1 6=0

} f
(
(Gk(n + q0))k≥0

)

− f
(
(Nk(n, q0))k≥0

)
dP

n+q0

∣∣∣

≤ 2P
n+q0

(
||(Gk(n + q0))k≥0 − (Nk(n, q0))k≥0||1 6= 0

)

≤ (
1

2
)l+1
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gilt. Daraus erhalten wir also für alle n ≥ n0

d
(
P

n+q0((Gk(n + q0))k≥0 ∈ ·), P
n+q0((Nk(n, q0))k≥0 ∈ ·)

)
≤ (

1

2
)l+1. (6.71)

Wir erinnern daran, dass die (Y q0

k (p))k≥0, p ∈ P(n), unabhängig und identisch wie
(Y q0

k )k≥0 verteilt sind. Da ein Parasit unabhängig von der derzeitigen Gesamtanzahl
an Parasiten Nachkommen bekommt, sind die (Y q0

k (p))k≥0 außerdem unabhängig
von Zn. Weiter ist #P(n) = Zn und

{Zn+q0 > 0} =
{∑

k≥0

∑

p∈P(n)

Y q0

k (p) > 0
}

P-f.s.

für alle n ≥ 0.
Nach Satz 2.11 folgt

P
n+q0(Zn ∈ ·) w−→ ν, n → ∞,

für eine Verteilung ν auf N. Sei V eine Zufallsgröße mit Verteilung ν und (Y q0

k (p))k≥0,
p ∈ N, eine Folge unabhängiger, identisch wie (Y q0

k )k≥0 verteilter Zufallsgrößen,
welche zudem unabhängig von V sei. Weiter definieren wir dann die Verteilung Q(l)
wie folgt

Q(l) := P

(( V∑

p=1

Y q0

k (p)
)

k≥0
∈ ·

∣∣
∑

k≥0

V∑

p=1

Y q0

k (p) > 0
)
.

Hieraus ergibt sich dann

P
n+q0

(
(Nk(n, q0))k≥0 ∈ ·

)

= P
(
(Nk(n, q0))k≥0 ∈ · | Zn+q0 > 0

)

= P

(( Zn∑

p=1

Y q0

k (p)
)

k≥0
∈ ·

∣∣
∑

k≥0

Zn∑

p=1

Y q0

k (p) > 0
)

=
∑

z≥1

P

(( z∑

p=1

Y q0

k (p)
)

k≥0
∈ ·

∣∣
∑

k≥0

z∑

p=1

Y q0

k (p) > 0
)

P
(
Zn = z | Zn+q0 > 0

)

w−−−→
n→∞

∑

z≥1

P

(( z∑

p=1

Y q0

k (p)
)

k≥0
∈ ·

∣∣
∑

k≥0

z∑

p=1

Y q0

k (p) > 0
)

P
(
V = z

)

= P

(( V∑

p=1

Y q0

k (p)
)

k≥0
∈ ·

∣∣
∑

k≥0

V∑

p=1

Y q0

k (p) > 0
)

= Q(l).
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Es existiert also ein n1 ≥ n0, sodass für alle n ≥ n1

d
(
P

n+q0((Nk(n, q0))k≥0 ∈ ·), Q(l)
)
≤ (

1

2
)l+1

gilt. Hieraus und aus (6.71) folgt mit Hilfe der Dreiecksungleichung

d
(
P

n+q0((Gk(n + q0))k≥0 ∈ ·), Q(l)
)

≤ d
(
P

n+q0((Gk(n + q0))k≥0 ∈ ·), P
n+q0((Nk(n, q0))k≥0 ∈ ·)

)

+ d
(
P

n+q0((Nk(n, q0))k≥0 ∈ ·), Q(l)
)

≤ (
1

2
)l+1 + (

1

2
)l+1

= (
1

2
)l

für alle n ≥ n1 und damit die Behauptung des zweiten Schritts.

3. Schritt: Beh.: Es existiert eine Verteilung Q auf l1(N0), für welche

P
n
(
(Gk(n))k≥0 ∈ ·

) w−→ Q, n → ∞

gilt. Für alle k ≥ 0 gilt damit insbesondere limn→∞ Pn(Gk(n) ∈ ·) = P(Nk ∈ ·) für
eine geeignete Zufallsgröße Nk mit Werten in N0.

Beweis von Schritt 3: Da l1(N0) ein vollständiger Raum ist, ist der Raum der
Verteilungen auf l1(N0) ebenfalls vollständig (Satz A.13). Seien 2 ≤ l ≤ l

′
. Dann

folgt nach Schritt 2 und der Dreiecksungleichung für großes n

d(Q(l), Q(l
′

)) ≤ d
(
P

n((Gk(n))k≥0 ∈ ·), Q(l)
)

+ d
(
P

n((Gk(n))k≥0 ∈ ·), Q(l
′

)
)

≤ (
1

2
)l + (

1

2
)l

′

≤ (
1

2
)l−1.

(Q(l))l≥1 bildet damit eine Cauchyfolge und ist somit konvergent. Sei Q ihr Grenz-
wert. Dann gilt insbesondere für alle l ≥ 1

d(Q(l), Q) ≤ (
1

2
)l−1.

Für jedes l ≥ 2 finden wir nach Schritt 2 weiter ein n0 ≥ 0, sodass für alle n ≥ n0

d
(
P

n((Gk(n))k≥0 ∈ ·), Q
)

≤ d
(
P

n((Gk(n))k≥0 ∈ ·), Q(l)
)

+ d
(
Q(l), Q

)
≤ (

1

2
)l−2

gilt. Damit ist der dritte Schritt gezeigt.
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4.Schritt: Beh.: Seien Nk, k ≥ 0, die nach Schritt 3 existierenden Zufallsgrößen

mit limn→∞ P
n(Gk(n) ∈ ·) = P(Nk ∈ ·). Dann gilt E

( ∑
k≥0 kNk

)
< ∞.

Beweis von Schritt 4: Zn ist bedingt unter {Zn > 0} L2-beschränkt, denn nach
Satz 2.9 gilt C := infn≥0

P(Zn>0)
(2µ)n > 0 und damit

E(Z2
n | Zn) =

EZ2
n

P(Zn > 0)

≤ EZ2
n

C(2µ)n

≤ 1

C(2µ)n
(VarZn + EZn)

=
1

C

( 1 − (2µ)n

2µ − (2µ)2
VarZ1 + 1

)

≤ 1

C

( 1

2µ − (2µ)2
VarZ1 + 1

)

< ∞

nach den Voraussetzungen in diesem Abschnitt und Proposition 2.3. Wir erhal-
ten somit die gleichgradige Integrierbarkeit von (Zn|Zn > 0)n≥0 (Satz A.6). Da
kGk(n) ≤ Zn fast sicher für alle k, n ≥ 0 gilt, ist somit auch (Gk(n)|Zn > 0)n≥0

gleichgradig integrierbar ( Satz A.6). Für alle k ≥ 1 gilt

P
n(Gk(n) ∈ ·) w−→ P(Nk ∈ ·), n → ∞

und aus der gleichgradigen Integrierbarkeit folgt damit die Konvergenz der Erwa-
tungswerte (Satz A.7). Für alle K ≥ 1 erhalten wir also

E
n
( K∑

k=1

kGk(n)
)

=

K∑

k=1

kE
n(Gk(n)) −→

n→∞

K∑

k=1

kENk = E

( K∑

k=1

kNk

)
. (6.72)

Weiter ist

E
n
( ∑

k>K

kGk(n)
)

≤ E
n
(
Zn1{Zn>K}

)
≤ 1

K
E

n
(
Z2

n

)
,

woraus dann zusammen mit der L2-Beschränktheit von Zn bedingt unter {Zn > 0}

sup
n≥0

{
E

n
( ∑

k>K

kGk(n)
)}

−→
K→∞

0

folgt. Für alle ε > 0 existiert somit ein K0 ≥ 0, sodass

sup
n≥0

{
E

n
( ∑

k>K0

kGk(n)
)}

≤ ε
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gilt. Daraus folgt für alle n ≥ 0

E
n
(∑

k≥0

kGk(n)
)

≤ E
n
( K0∑

k=1

kGk(n)
)

+ ε

und mit (6.72) dann weiter

lim sup
n→∞

E
n
(∑

k≥0

kGk(n)
)

≤ E

( K0∑

k=1

kNk

)
+ ε ≤ E

(∑

k≥0

kNk

)
+ ε.

Da ε > 0 begliebig gewählt war, folgt somit

lim sup
n→∞

E
n
( ∑

k≥0

kGk(n)
)

≤ E

( ∑

k≥0

kNk

)
. (6.73)

Die andere Ungleichung ergibt sich aus

lim inf
n→∞

E
n
(∑

k≥0

kGk(n)
)

≥ lim inf
n→∞

E
n
( ∑

1≤k≤K

kGk(n)
)

= E

( ∑

1≤k≤K

kNk

)

für alle K ≥ 0. Mit Hilfe der monotonen Konvergenz folgt dann

lim inf
n→∞

E
n
(∑

k≥0

kGk(n)
)

≥ lim
K→∞

E

( ∑

1≤k≤K

kNk

)
= E

(∑

k≥0

kNk

)
. (6.74)

Aus (6.73) und (6.74) erhalten wir also

lim
n→∞

E
n
(∑

k≥0

kGk(n)
)

= E

( ∑

k≥0

kNk

)
.

Da aber (Zn|Zn > 0)n≥0 gleichgradig integrierbar ist, folgt nach Satz 2.10

lim
n→∞

E
n
( ∑

k≥0

kGk(n)
)

= lim
n→∞

E
n
(
Zn

)
= EỸ ,

wobei Ỹ wie in Satz 2.10 gegeben ist. Nach den Voraussetzungen in diesem Abschnitt
ist EZ1 logZ1 < ∞ und aus (2.3) folgt dann

E

( ∑

k≥0

kNk

)
= EỸ < ∞.

2
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Korollare

Mit Hilfe des Satzes 6.27 erhalten wir nun eine Aussage über das Grenzverhalten
von #G∗

n und Zn.

Korollar 6.28. #G∗
n konvergiert für n → ∞ bedingt unter {#G∗

n > 0} in Verteilung
gegen eine positive, fast sicher endliche Zufallsgröße. Des Weiteren konvergieren
auch die ersten Momente. Genauer gilt

P
n(#G

∗
n ∈ ·) w−→ P

(∑

k≥0

Nk ∈ ·
)

und E
n(#G

∗
n) −→ E

( ∑

k≥0

Nk

)
, n → ∞,

wobei die Nk, k ≥ 0, wie in Satz 6.27 gegeben sind.

Beweis: Wie im Beweis von Satz 6.27 setzen wir für n, k ≥ 0

Gk(n) := #{v ∈ G
∗
n : Zv = k}.

Nach Satz 6.27 ist E
( ∑

k≥0 kNk

)
< ∞ und damit insbesondere

∑
k≥0 Nk fast sicher

endlich. Weiter folgt aus Satz 6.27 und der Stetigkeit der Summe für alle K ≥ 1

lim
n→∞

P
n
( K∑

k=1

Gk(n) ∈ ·
)

= P

( K∑

k=1

Nk ∈ ·
)
.

Für alle x ∈ R und K ≥ 1 folgt dann

lim sup
n→∞

P
n
( ∞∑

k=1

Gk(n) ≤ x
)

≤ lim sup
n→∞

P
n
( K∑

k=1

Gk(n) ≤ x
)

= P

( K∑

k=1

Nk ≤ x
)
.

Lassen wir K gegen unendlich laufen, folgt aus dem Satz der monotonen Konvergenz
für alle x ∈ R

lim sup
n→∞

P
n
( ∞∑

k=1

Gk(n) ≤ x
)

≤ P

( ∞∑

k=1

Nk ≤ x
)
. (6.75)

Nach Satz 2.10 existiert für alle ε > 0 ein K0 ≥ 0, sodass für alle n ≥ 0

P
n(Zn ≥ K0) ≤ ε

gilt. Daraus ergibt sich die Ungleichung

P
n
( ∞∑

k=K0

Gk(n) > 0
)

≤ P
n(Zn ≥ K0) ≤ ε
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für alle n ≥ 0. Somit erhalten wir für alle n ≥ 0 und x ∈ R

P
n
( ∞∑

k=1

Gk(n) ≤ x
)

≥ P
n
( K0∑

k=1

Gk(n) ≤ x
)
− P

n
( ∞∑

k=K0

Gk(n) > 0
)

≥ P
n
( K0∑

k=1

Gk(n) ≤ x
)
− ε.

Daraus folgt dann

lim inf
n→∞

P
n
( ∞∑

k=1

Gk(n) ≤ x
)

≥ lim inf
n→∞

P
n
( K0∑

k=1

Gk(n) ≤ x
)
− ε

= P

( K0∑

k=1

Nk ≤ x
)
− ε

≥ P

( ∞∑

k=1

Nk ≤ x
)
− ε.

Da ε > 0 beliebig gewählt war, folgt somit für alle x ∈ R

lim inf
n→∞

P
n
( ∞∑

k=1

Gk(n) ≤ x
)

≥ P

( ∞∑

k=1

Nk ≤ x
)
. (6.76)

Aus (6.75) und (6.76) erhalten wir also für alle x ∈ R

lim
n→∞

P
n(#G

∗
n ≤ x) = lim

n→∞
P

n
( ∞∑

k=1

Gk(n) ≤ x
)

= P

( ∞∑

k=1

Nk ≤ x
)

und damit die erste Behauptung des Korollars.
In Schritt 4 des Beweises von Satz 6.27 wurde die gleichgradige Integrierbarkeit

von (Zn|Zn > 0)n≥0 gezeigt. Da #G∗
n ≤ Zn fast sicher für alle n ≥ 0 gilt, ist

auch (#G∗
n|Zn > 0)n≥0 gleichgradig integrierbar und es folgt die noch fehlende

Konvergenz der ersten Momente (Satz A.6 und Satz A.7). 2

Korollar 6.29. Zn konvergiert für n → ∞ bedingt unter {Zn > 0} in Verteilung
gegen eine positive, fast sicher endliche Zufallsgröße. Des Weiteren konvergieren die
ersten Momente. Genauer gilt

P
n(Zn ∈ ·) w−→ P

(∑

k≥0

kNk ∈ ·
)

und E
n(Zn) −→ E

( ∑

k≥0

kNk

)
, n → ∞.
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6.3 Subkritischer Parasitenprozess, D1

Beweis: Der Beweis ergibt sich mit den gleichen Argumenten wie in Korollar 6.28
und der Tatsache, dass

Zn =
∞∑

k=1

k#{v ∈ G
∗
n : Zv = k} P-f.s.

ist. 2

Wir erinnern an die Notation aus D3 und setzen für n, q, k ≥ 0

Fk(n, q) :=
#{v ∈ G∗

n+q : Zv|n = k}
#G∗

n+q

.

Da der Parasitenprozess (Zn)n≥0 subkritisch ist, sterben die Parasiten fast sicher aus.
Die Parasiten der n-ten Generation starten jeweils neue unabhängige ZTPIZ mit je
einem Parasiten. Betrachtet man nun für großes q die (n+ q)-te Generation bedingt
unter dem Ereignis, dass Parasiten überlebt haben, so sollte durch den Drang zum
Aussterben nur noch einer, der in Generation n gestarteten Prozesse, infizierte Zellen
haben. (Fk(n, q))k≥0 bedingt unter {Zn+q > 0} sollte daher für q → ∞ in Verteilung
gegen eine Zufallsgröße F mit Werten in

A := {(xn)n≥0 | xn ∈ {0, 1} für alle n ≥ 0, xn = 1 für genau ein n ≥ 0}

konvergieren. Diese Anschauung bestätigt das folgende Korollar. Da kein Parasit
gegenüber den anderen ausgezeichnet ist, erhalten wir weiter, dass F eine größen-
verzerrte Verteilung besitzt. Für größenverzerrte Verteilung siehe (2.5).

Korollar 6.30. Für alle n ≥ 0 konvergiert (Fk(n, q))k≥0 auf S1(N0) bedingt unter
{Zn+q > 0} für q → ∞ in Verteilung gegen eine Zufallsgröße mit Werten in A. Diese
Grenzfolge konvergiert weiter in Verteilung für n → ∞. Genauer gilt für k ≥ 0

lim
n→∞

lim
q→∞

P
n+q

(#{v ∈ G∗
n+q : Zv|n = k}
#G∗

n+q

= 1
)

=
kENk

E
( ∑

k
′≥0 k′Nk

′

) .

Beweis: Zuerst sei festgehalten, dass 0 < E
(∑

k≥0 kNk

)
< ∞ nach Satz 6.27 gilt.

Als nächstes beweisen wir die vor dem Korollar gemachte Anmerkung. Wir zeigen,
dass bei mehreren startenden ZTPIZ auf lange Sicht nur Nachkommen eines dieser
Prozesse überleben, wenn man darunter bedingt, dass überhaupt Parasiten über-
lebt haben. Seien dazu (Zn(1))n≥0 und (Zn(2))n≥0 zwei unabhängige subkritische
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6 Anteil infizierter Zellen mit gegebener Anzahl an Parasiten

Parasitenprozesse. Dann erhalten wir

P
(
Zn(1) > 0, Zn(2) > 0 | Zn(1) + Zn(2) > 0

)

= P
(
Zn(1) > 0 | Zn(1) + Zn(2) > 0, Zn(2) > 0

)

P
(
Zn(2) > 0 | Zn(1) + Zn(2) > 0

)

≤ P
(
Zn(1) > 0 | Zn(2) > 0

)

= P
(
Zn(1) > 0

)

n→∞−→ 0,

wobei in der vorletzten Zeile die Unabhängigkeit der Prozesse und bei der Konver-
genz µ0 + µ1 < 1 einging. Durch Induktion kann man dann zeigen, dass auch bei
beliebig vielen startenden Parasitenprozessen nur einer von diesen überlebt. Für den
Zellbaum bedeutet dies also, dass von den infizierten Zellen der n-ten Generation
nur noch die Nachkommenzellen einer dieser Zellen in Generation (n+q) für q → ∞
infiziert sind.

Wir setzen für n, k ≥ 0

Gn(k) := {v ∈ G
∗
n : Zv = k}

und sei weiter G∗
n+q(u) die Menge infizierter Zellen, welche von Zelle u ∈ Gn(k)

abstammen. Damit und mit dem zuvor Gezeigten erhalten wir die Gleichung

lim
q→∞

P
n+q

(#{v ∈ G∗
n+q : Zv|n = k}
#G∗

n+q

= 1
)

= lim
q→∞

P
n+q

( ∑

u∈G∗
n:Zu=k

#{v ∈ G∗
n+q : v|n = u}

#G∗
n+q

= 1
)

= lim
q→∞

P
n+q

(
#Gn(k) > 0, #G

∗
n+q(u) > 0 für ein u ∈ Gn(k)

)
(6.77)

= lim
q→∞

∑

z≥1

P
n+q

(
#Gn(k) > 0, #G

∗
n+q(u) > 0 für ein u ∈ Gn(k) | Zn = z

)

P
n+q

(
Zn = z

)

= lim
q→∞

∑

g,z≥1

P
n+q

(
#G

∗
n+q(u) > 0 für ein u ∈ Gn(k) | Zn = z, #Gn(k) = g

)

P
n+q

(
#Gn(k) = g | Zn = z

)
P

n+q
(
Zn = z

)
.

Unter P
n+q für q → ∞ gilt nun folgendes: Da kein Parasit gegenüber den ande-

ren ausgezeichnet ist, überleben die Nachkommen eines bestimmten Parasiten der
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6.3 Subkritischer Parasitenprozess, D1

n-ten Generation mit Wahrscheinlichkeit 1
z
, wenn Zn = z gilt. Für eine Zelle mit

k Parasiten bedeutet dies, dass mit Wahrscheinlichkeit k
z

die infizierten Zellen von
dieser Zelle abstammen. Gibt es nun g Zellen mit k Parasiten, so sind die Nachkom-
menzellen einer dieser Zellen mit Wahrscheinlichkeit gk

z
immer noch infiziert. Es gilt

also

lim
q→∞

P
n+q

(
#G

∗
n+q(u) > 0 für ein u ∈ Gn(k) | Zn = z, #Gn(k) = g

)
=

gk

z
. (6.78)

Nach Satz 2.12 erhalten wir weiter

lim
q→∞

P
n+q(Zn = z) =

z

EZn

P(Zn = z). (6.79)

Da das Überleben von Parasiten unabhängig von der derzeitigen Verteilung auf die
Zellen ist, folgt für den noch verbliebenen Term der letzten Zeile aus (6.77)

P
n+q(#Gn(k) = g | Zn = z)

=
P(#Gn(k) = g, Zn = z, Zn+q > 0)

P(Zn = z,Zn+q > 0)

= P(#Gn(k) = g, Zn = z)
P(Zn+q > 0 | #Gn(k) = g,Zn = z)

P(Zn = z, Zn+q > 0)
(6.80)

= P(#Gn(k) = g, Zn = z)
P(Zn+q > 0 | Zn = z)

P(Zn = z, Zn+q > 0)

= P(#Gn(k) = g | Zn = z).

Aus (6.77), (6.78), (6.79) und (6.80) erhalten wir somit

lim
q→∞

P
n+q

(#{v ∈ G∗
n+q : Zv|n = k}
#G∗

n+q

= 1
)

=
∑

g,z≥1

gk

z
P(#Gn(k) = g | Zn = z)

z

EZn

P(Zn = z)

=
k

EZn

∑

g,z≥1

gP(#Gn(k) = g | Zn = z)P(Zn = z)

=
k

EZn

P(Zn > 0)
∑

g≥1

gP
n(#Gn(k) = g)

=
k

EnZn

E
n(#Gn(k)).

Damit wäre die erste Behauptung des Korollars bewiesen.
Die zweite Behauptung ergibt sich dann aus Satz 6.27 und Korollar 6.29, denn

lim
n→∞

kEn(#Gn(k))

EnZn

=
kE(Nk)

E(
∑

k
′≥0 Nk

′ )
.

2
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7 Ausblick

Für die mathematische Beschreibung der Vermehrung von Parasiten und deren Ver-
teilung auf sich teilende Zellen war das in dieser Arbeit betrachtete Zellteilungsmo-
dell infizierter Zellen eine gute erste Version. Wir haben durch die in dieser Arbeit
erzielten Resultate einen ersten mathematischen Einblick in diesen biologischen Pro-
zess gewonnen. So erhielten wir im vierten Kapitel Bedingungen, unter denen sich
ein infizierter Organismus fast sicher erholt, sowie im fünften Kapitel Aussagen über
das Langzeitverhalten infizierter Zellen und deren Verteilung auf den Zellbaum. Das
sechste Kapitel lieferte uns dann Informationen über die Verteilung der Parasiten
auf die Zellen. Trotzdem bleiben noch einige Fragen offen.

So ist vor allem das Konvergenzverhalten von Fk(n) im Fall D4 noch nicht be-
friedigend geklärt worden. Wir wissen zwar, dass die Anzahl infizierter Zellen bei
fortlaufender Zeit exponentiell wächst, haben aber dadurch noch wenig Informatio-
nen über die Verteilung der Parasiten auf die Zellen gewonnen. Wir vermuten, dass
im Fall eines kritischen PZZ die schwach infizierten Zellen vernachlässigbar werden.
Aber auch in den Fällen aus Kapitel 6, in denen wir schon Ergebnisse über die Vertei-
lung der Parasiten auf die Zellen erzielt haben, bestehen noch Möglichkeiten, diese
zu verbessern. So sollte genauer untersucht werden, ob die in diesen Abschnitten
gezeigten Konvergenzarten sich nicht verschärfen lassen. Konvergiert zum Beispiel
Fk(n) nicht sogar P

∗-f.s. gegen P(Y = k) im Fall D3?
Auch in den Kapiteln 4 und 5 gibt es noch interessante, weiterführende Fragestel-

lungen. Nach den Ergebnissen des vierten Kapitels konvergiert #G∗
n/2n fast sicher

gegen eine Zufallsgröße L ∈ [0, 1], die genau dann fast sicher verschwindet, wenn
µ0µ1 ≤ 1 ist. Doch wie sieht die Verteilung oder Laplace-Transformierte von L im
Fall µ0µ1 > 1 aus? Auch ist Satz 5.6 im fünften Kapitel für den Fall µ0µ1 ≤ 1 und
P(X(0) ≤ 1) = 1 noch nicht bewiesen. Verteilen sich in diesem Fall die infizierten
Zellen über den gesamten Zellbaum oder sind sie in endlich vielen Zelllinien konzen-
triert?

Dass das Zellteilungsmodell infizierter Zellen nicht das Maß aller Dinge ist, wird
schnell klar. So teilen sich in realen biologischen Systemen nicht alle Zellen zur glei-
chen Zeit. Eine vernünftige Erweiterung des in dieser Arbeit betrachteten Modell ist
demnach die Einführung einer exponentialverteilten Lebenszeit der Zellen. Geschieht
dies, so erhält man das in der Einleitung kurz vorgestellte Modell von Kimmel [16]
mit dem Unterschied, dass die Verteilung der Parasiten auf die Tochterzellen nicht
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symmetrisch erfolgen muss, d.h. (X(0), X(1))
d
= (X(1), X(0)) nicht unbedingt gilt. In

wie weit lassen sich die in dieser Arbeit bewiesenen Sätze auf das zeitstetige Mo-
dell übertragen? Man würde auf diese Weise die von Kimmel erzielten Resultate
verallgemeinern und erweitern.

Nun ist ein Organismus kein geschlossenes System und neue Parasiten können je-
derzeit Zellen infiltrieren. Eine andere mögliche Erweiterung des Zellteilungsmodells
ist daher die Hinzunahme der Immigration. Neben den schon in einer Zelle vor-
handenen Parasiten können dann zu jedem Zeitpunkt neue Parasiten gemäß einer
Verteilung Q immigrieren. Nachdem diese in die Zelle eingedrungen sind, verhalten
sie sich genauso wie die schon im Organismus befindlichen Parasiten und vermehren
sich gemäß P(X(0) + X(1) ∈ ·). Der Prozess Zn ist in diesem Modell ein Galton-
Watson-Prozess mit Immigration. Kann man im Immigrationsmodell ähnliche Re-
sultate, zu denen in dieser Arbeit gezeigten, herleiten? Dass sich die hier bewiesenen
Sätze nicht so einfach auf das Immigrationsmodell übertragen lassen, sollte sofort
einleuchten. Gilt nämlich Q 6= δ0, so sind die beiden Modelle verschieden und es kön-
nen in jeder Generation neue Parasiten auch in gesunde Zellen eindringen. Selbst
wenn die Parasiten eines Organismus schon ausgestorben sind, können neue diesen
wieder infizieren. Dadurch kann ein Organismus sich nie fast sicher erholen. Es ist
daher zu erwarten, dass im Zellteilungsmodell mit Immigration viel Ergebnisse von
den hier gezeigten abweichen werde.
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A Anhang

Im Anhang geben wir in den ersten beiden Abschnitten A.1 und A.2 einen kleinen
Einblick in die Theorie der Markov-Ketten und der gleichgradigen Integrierbarkeit.
Wir beschränken uns jedoch nur auf die von uns in dieser Arbeit benötigten Defini-
tionen und Sätze. Für weiterführende Diskussionen zu diesen Themen siehe [5] und
[6]. In Abschnitt A.3 geben wir die im 2. Kapitel angekündigten zwei Sätze über das
asymptotische Verhalten moderat und schwach subkritischer GWPZVU an. Auch
findet sich hier der im 4. Kapitel und im Abschnitt 6.1.3 benötigte Satz über den
kritischen GWPZVU. Weiter zeigen wir dann, dass der ZTPIZ die Voraussetzungen
dieser Sätze erfüllt. Den Abschluss des Anhangs bildet der Abschnitt A.4 mit einer
kurzen Einführung in die in Abschnitt 6.3 benötigte schwache Topologie auf dem
Raum der Verteilungen.

A.1 Markov-Ketten

Eine Markov-Kette ist eine stochastische Folge von Zufallsgrößen, die eine einfa-
che Abhängigkeitsstruktur aufweisen. Bedingt unter der Vergangenheit, hängt das
Verhalten einer Markov-Kette immer nur vom aktuellen Zustand ab. Hier die genaue

Definition A.1. (a) Eine stochastische Folge (Mn)n≥0 von Zufallsgrößen mit Wer-
ten in (S, S) heißt Markov-Kette (MK), falls sie die Markov-Eigenschaft,

P(Mn+1 ∈ · | M0, ..., Mn) = P(Mn+1 ∈ · | Mn) P-f.s.

für alle n ≥ 0, besitzt.

(b) Eine MK heißt (zeitlich) homogen, wenn für alle n ≥ 0 und s ∈ S

P(Mn+1 ∈ · | Mn = s) = P(M1 ∈ · | M0 = s) P-f.s.

gilt.

Die erste Frage, die man sich stellen sollte, ist, ob die Markov-Eigenschaft nicht nur
bei fest gewählten sondern vielleicht sogar bei zufälligen Zeitpunkten gültig bleibt.
Dies ist in vielen Situationen richtig. Man nennt diese Eigenschaft sinngemäß die
starke Markov-Eigenschaft. Bevor wir aber zu dieser Eigenschaft kommen können,
benötigen wir die Definition der Stoppzeit.
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A.1 Markov-Ketten

Definition A.2. Sei (Ω,A) ein meßbarer Raum.

(a) Eine aufsteigende Folge (Fn)n≥0 von Unter-σ-Algebren von A heißt Filtration
von (Ω,A).

(b) Sei (Mn)n≥0 eine MK. Die Filtration
(
σ(M0, . . . , Mn)

)
n≥0

heißt kanonische Fil-

tration bzgl. (Mn)n≥0.

(c) Eine meßbare Abbildung τ : Ω −→ N0∪{∞} heißt Stoppzeit bzgl. der Filtration
(Fn)n≥0, wenn {τ = n} ∈ Fn für alle n ≥ 0 gilt.

Für eine Markov-Kette gilt die starke Markov-Eigenschaft bei Stoppzeiten bzgl.
der kanonischen Filtration.

Satz A.3. (starke Markov-Eigenschaft) (vgl. [4], Satz 4.3)
Sei (Mn)n≥0 eine MK. Für jede Stoppzeit τ bzgl. der kanonischen Filtration von
(Mn)n≥0 gilt die starke Markov-Eigenschaft

P
(
(Mτ+n)n≥0 ∈ · | M0, . . . , Mτ , τ < ∞

)
= P

(
(Mτ+n)n≥0 ∈ · | Mτ , τ < ∞

)
P-f.s..

Anstelle die Markov-Kette mit einer linearen Zeit zu indizieren, kann man auch
eine Markov-Kette auf einem Baum betrachten, wie zum Beispiel den Zellteilungs-
prozess infizierter Zellen. Wir geben hier die Definition einer solchen Markov-Kette
an. Für die benötigten graphentheoretischen Ausdrücke siehe [14].

Definition A.4. (Markov-Kette indiziert durch einen Baum)

(a) Unter einem Baum verstehen wir einen unendlichen, lokal endlichen, zusammen-
hängenden ungerichteten Graphen (T, E), welcher einen ausgezeichneten Knoten
∅ ∈ T (Wurzel) und keine Kreise enthält.

Für σ ∈ T existiert ein eindeutiger Pfad von ∅ nach σ, und sei |σ| seine Länge.
Ferner schreiben wir τ ≤ σ, falls der Knoten τ ∈ T auf diesem eindeutigen Pfad
liegt. τ wird auch Vorfahre von σ genannt.

Weiter bezeichnet σ ∧ τ den ersten gemeinsamen Vorfahren von σ und τ , also
den am weitesten von ∅ entferntesten Knoten ρ, der ρ ≤ σ und ρ ≤ τ erfüllt.

(b) Sei (T, E) ein Baum. Eine Familie (Mσ)σ∈T mit Werten in (S, S) heißt Markov-
Kette indiziert durch T, falls für alle σ ∈ T

P(Mσ ∈ · | Mτ : τ ∧ σ ≤ σ̃) = P(Mσ ∈ · | Mσ̃) P-f.s.

gilt, wobei σ̃ ∈ T der eindeutige Knoten mit den Eigenschaften σ̃ ≤ σ und
|σ̃| = |σ| − 1 ist.
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A Anhang

A.2 Gleichgradige Integrierbarkeit

Konvergiert eine Folge von Zufallsgrößen (Xn)n≥0 in Verteilung gegen eine Zufalls-
größe X, so folgt im Allgemeinen nicht die Konvergenz der Erwartungswerte. Eine
hinreichende sowie notwendige Bedingung hierfür bildet jedoch die gleichgradige
Integrierbarkeit, die wie folgt definiert ist.

Definition A.5. Eine Folge (Xn)n≥0 von Zufallsgrößen auf einem Wahrscheinlich-
keitsraum (Ω,A, P) heißt gleichgradig integrierbar (g.i.), falls

lim
a→∞

sup
n≥0

∫

{|Xn|>a}
|Xn| dP = 0

gilt.

Wir geben nun einige äquivalente und hinreichende Bedingungen für die gleich-
gradige Integrierbarkeit und die oben angesprochene Äquivalenz der gleichgradigen
Integrierbarkeit mit der Konvergenz der Erwartungswerte im Fall verteilungskonver-
genter Zufallsgrößen an. Für ausführlichere Ergebnisse siehe [5].

Satz A.6. (vgl. [5], Satz 50.2 und Korollar 50.3)
Sei (Xn)n≥0 eine Folge von Zufallsgrößen. Dann gilt:

(i) (Xn)n≥0 ist genau dann g.i., wenn für jede absteigende Nullfolge (Am)m≥0 ⊆ A
limm→∞ supn≥0

∫
Am

|Xn| dP = 0 und supn≥0 E|Xn| < ∞ gilt.

(ii) Ist Xn ≤ Yn für alle n ≥ 0 und (Yn)n≥0 eine g.i. Folge von Zufallsgrößen, so
ist (Xn)n≥0 g.i..

(iii) Ist (Xn)n≥0 Lp-beschränkt für ein p > 1, so ist (Xn)n≥0 g.i..

Satz A.7. (vgl. [5], Satz 50.5)

Gilt Xn
d−→ X, dann sind äquivalent:

(i) (Xn)n≥0 ist g.i.

(ii) E|Xn| < ∞ für alle n ≥ 0, E|X| < ∞ und limn→∞ E|Xn| = E|X|.

Aus (i) und (ii) folgt insbesondere limn→∞ EXn = EX.
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A.3 Moderat und schwach subkritischer sowie kritischer GWPZVU

A.3 Der Galton-Watson-Prozess in zufällig

variierenden Umgebungen: Der moderat und

schwach subkritische und kritische Fall

Mit der Notation aus Abschnitt 2.2 gelten die folgenden Sätze über moderat und
schwach subkritische sowie kritische GWPZVU mit u.i.v. Umgebungsfolge.

Satz A.8. (moderat subkritischer Fall) (vgl. [12], Satz 1.2)
Sei (Zn)n≥0 ein moderat subkritischer GWPZVU mit unabhängiger, identisch ver-
teilter Umgebungsfolge U mit

E(µU1 log2 µU1) < ∞ und E
(
(1 + log− µU1)f

′′

U1
(1)

)
< ∞.

Dann gilt

P(Zn > 0)
n→∞≃ c2√

n
µn

1

für ein c2 ∈ (0,∞). Des Weiteren existieren b2(k) ∈ [0, 1], k ≥ 1, mit

lim
n→∞

P(Zn = k | Zn > 0) = b2(k), k ≥ 1,

und
∑∞

k=1 b2(k) = 1.

Satz A.9. (schwach subkritischer Fall) (vgl. [12], Satz 1.3)
Sei (Zn)n≥0 ein schwach subkritischer GWPZVU mit unabhängiger, identisch ver-
teilter Umgebungsfolge U mit

E(µU1 log µU1) < ∞.

Nehme weiter an, dass

E

( f
′′

U1
(1)

(µU1)
1−α

)
< ∞ und E

( f
′′

U1
(1)

(µU1)
2−α

)
< ∞

gilt, wobei α ∈ [0, 1] mit γ = E
(
(f

′

U1
(1))α

)
, γ := inf0≤θ≤1 E

(
(f

′

U1
(1))θ

)
< (1 ∧ EZ1)

ist. Dann gilt

P(Zn > 0)
n→∞≃ c3√

n3
γn

für ein c3 ∈ (0,∞). Des Weiteren existieren b3(k) ∈ [0, 1], k ≥ 1, mit

lim
n→∞

P(Zn = k | Zn > 0) = b3(k), k ≥ 1,

und
∑∞

k=1 b3(k) = 1.
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A Anhang

Wir geben den folgenden Satz über kritische GWPZVU mit u.i.v. Umgebungsfolge
nur in einer für uns ausreichenden Form an. Für allgemeinere Resultate siehe [1] und
[17].

Satz A.10. (vgl. [1], Korollar 1.2 und Satz 1.3)
Sei (Zn)n≥0 ein kritischer GWPZVU mit unabhängiger, identisch verteilter Umge-
bungsfolge U mit

0 < E(log2 µU1) < ∞
und

1

(µU1)
2
E(X2

1,11{X1,1≥x} | U) ≤ d P-f.s.

für ein x ∈ N0 und d ∈ (0,∞). Dann existieren Konstanten c ∈ (0,∞) und ρ ∈ (0, 1)
sowie eine Funktion l : (0,∞) → (0,∞) mit limn→∞ l(an)/l(n) = 1 für alle a > 0,
sodass gilt

P(Zn > 0)
n→∞≃ cn−(1−ρ)l(n).

Weiter folgt unter den obigen Annahmen

P

( Zn

EZn

∈ ·
∣∣ Zn > 0

)
w−→ Q,

wobei Q eine Verteilung mit Q
(
(0,∞)

)
= 1 ist.

Wir kommen zurück zum ZTPIZ und zeigen, dass die Ergebnisse der drei obigen
Sätze auch für einen kritischen oder moderat bzw. schwach subkritischen PZZ gelten.

Korollar A.11. Gilt E(X(a)2) < ∞, a ∈ {0, 1}, so erfüllt ein moderat bzw. schwach
subkritischer PZZ (Z[n])n≥0 die Voraussetzungen der Sätze A.8 bzw. A.9. Gilt zu-
sätzlich noch (µ0, µ1) 6= (1, 1), so erfüllt ein kritischer PZZ Satz A.10.

Beweis: Für den moderat subkritischen Fall betrachte

E(µU1 log2 µU1) =
1

2
(µ0 log2 µ0 + µ1 log2 µ1) (A.1)

und

E((1 + log− µU1)f
′′

U1
(1))

=
1

2

(
(1 + log− µ0)f

′′

0 (1) + (1 + log− µ1)f
′′

1 (1)
)

(A.2)

=
1

2

(
(1 + log− µ0)E(X(0)(X(0) − 1)) + (1 + log− µ1)E(X(1)(X(1) − 1))

)
.

Aufgrung von (1.3) und E(X(a)2) < ∞, a ∈ {0, 1}, sind beide obigen Erwartungs-
werte (A.1) und (A.2) endlich. Damit sind die Voraussetzungen für den moderat
subkritischen Fall erfüllt.
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A.4 Moderat und schwach subkritischer sowie kritischer GWPZVU

Die Voraussetzungen für den schwach subkritischen Fall sind ebenfalls erfüllt, denn
für k ∈ {1, 2} gilt wieder wegen (1.3) und E(X(a)2) < ∞, a ∈ {0, 1},

E

(f
′′

U1
(1)

µk−α
U1

)
=

1

2

(f
′′

0 (1)

µk−α
0

+
f

′′

1 (1)

µk−α
1

)

=
1

2

(
E(X(0)(X(0) − 1))

µk−α
0

+
E(X(1)(X(1) − 1))

µk−α
1

)

< ∞

Auch die Voraussetzungen im kritischen Fall gelten, denn aufgrund von (1.3) und
(µ0, µ1) 6= (1, 1) gilt

0 < E(log2 µU1) =
1

2
(log2 µ0 + log2 µ1) < ∞.

Da der PZZ nur zwei Umgebungen hat, folgt für x = 0

1

(µU1)
2
E(X(U1)2

1{X(U1)≥0}) ≤ 1

µ2
0

E(X(0)2) +
1

µ2
1

E(X(1)2) < ∞ P-f.s.

nach Voraussetzung und (1.3). 2

A.4 Schwache Topologie im Raum der

Verteilungen

Die Ergebnisse dieses Abschnittes sind entnommen aus [18].
Sei X ein metrischer Raum und BX die Borelsche σ-Algebra auf X. Weiter be-

zeichne
W(X) := {P : BX → [0, 1] | P (X) = 1, P σ-additiv}

die Menge der Wahrscheinlichkeitsmaße auf X und

C(X) := {f : X → R | f ist beschränkt und stetig}

die Menge der stetigen, beschränkten, reellen Funktionen auf X.
Die offenen Umgebungen einer Verteilung P ∈ W(X) sind von der Form

VP (f1, . . . , fk, ε1, . . . , εk) =
{

Q ∈ W(X) :
∣∣∣
∫

fidP −
∫

fidQ
∣∣∣ < εi, i = 1, . . . , k

}
,

für f1, . . . , fk ∈ C(X) und ε1, . . . , εk > 0. Die durch diese offenen Umgebungen
erzeugte Topologie auf W(X) bezeichnet man als schwache Topologie.
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A Anhang

Eine Folge von Verteilungen (Pn)n≥1 ⊆ W(X) konvergiert dann bzgl. der schwa-
chen Topologie oder schwach gegen P ∈ W(X), in Zeichen Pn

w−→ P , genau dann,
wenn für alle f ∈ C(X) gilt

lim
n→∞

∫
fdPn =

∫
fdP.

Ist X = R bzw. X = Rn, n ≥ 1, dann erhalten wir die wohlbekannte Definition der
schwachen Konvergenz von Verteilungen auf den reellen Zahlen.

Satz A.12. (vgl. [18], Satz 6.2)
W(X) kann metrisiert werden zu einem separablen, metrischen Raum genau dann,
wenn X ein separabler, metrischer Raum ist.

Satz A.13. (vgl. [18], Satz 6.5)
Sei X ein separabler, metrischer Raum. Dann ist W(X) vollständig genau dann,
wenn X vollständig ist.

Bemerkung A.14. Die gemäß Satz A.12 induzierte Metrik d auf W(X) ist gegeben
durch

d(P, Q) = sup
{∣∣∣

∫
fdP −

∫
fdQ

∣∣∣ : ||f ||∞ ≤ 1, f gleichmäßig stetig
}

für P, Q ∈ W(X).
Für eine Folge (Pn)n≥0 ⊆ W(X) und P ∈ W(X) gilt also

Pn
w−→ P ⇔ lim

n→∞
d(Pn, P ) = 0.
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