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1.1 Präliminarien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Markov-Random-Walks: Definition und Standardmodell . . . . . 5
1.3 Eigenschaften von Kernen . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Irreduzible Kerne . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Die Minorisierungsbedingung . . . . . . . . . . . . . . . . 6
1.3.3 α-Rekurrenz und α-Transienz . . . . . . . . . . . . . . . . 10
1.3.4 Rekurrenz . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.5 Invariante Maße und Funktionen . . . . . . . . . . . . . . 15

1.4 Ein Markov-Erneuerungstheorem . . . . . . . . . . . . . . . . . . 18
1.4.1 Ein Markov-Erneuerungstheorem für den Atom-Fall . . . 18
1.4.2 Der gesplittete Markov-Random-Walk . . . . . . . . . . . 24
1.4.3 Ein Markov-Erneuerungstheorem für den allgemeinen Fall 27

2 Ein Populationsmodell 35
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Das Modell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Der Individuenraum . . . . . . . . . . . . . . . . . . . . . 36
2.2.2 Der Populationsraum . . . . . . . . . . . . . . . . . . . . 38
2.2.3 Das Wahrscheinlichkeitsmaß . . . . . . . . . . . . . . . . . 40

2.3 Die Markov-Eigenschaft der Population . . . . . . . . . . . . . . 41
2.4 Optionalität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Die starke Markov-Eigenschaft der Population . . . . . . . . . . . 51
2.6 Die Malthusische Population . . . . . . . . . . . . . . . . . . . . 53
2.7 Das intrinsische Martingal . . . . . . . . . . . . . . . . . . . . . . 55
2.8 Gleichgradige Integrierbarkeit und Konvergenz des intrinsischen

Martingals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.9 Asymptotische Entwicklungen der Population in reeller Zeit . . . 69

2.9.1 Charakteristiken . . . . . . . . . . . . . . . . . . . . . . . 69
2.9.2 Konvergenz des Erwartungswertes . . . . . . . . . . . . . 72
2.9.3 schwache L1-Konvergenz . . . . . . . . . . . . . . . . . . . 73
2.9.4 starke L1-Konvergenz . . . . . . . . . . . . . . . . . . . . 77

iii



CONTENTS iv

A 86
A.1 Markov-Ketten . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.2 Ein Erneuerungstheorem für Random-Walks . . . . . . . . . . . . 86



Chapter 0

Einleitung

In der vorliegenden Arbeit wird eine Population unter Berücksichtigung sowohl
ihrer zeitlichen als auch ihrer genetischen Entwicklung modelliert und mithilfe
dieses Modells ihr asymptotisches Verhalten untersucht.
Zielsetzung der Modellierung ist unter anderem, daß unsere Population -
angelehnt an die biologische Wirklichkeit - folgende beiden Eigenschaften erfüllt:
1. Individuen erben ihren Genotyp und entwickeln sich - diesen gegeben -
unabhängig von ihren Vorfahren.
2. Disjunkte Populationszweige hängen nur durch ihre gemeinsamen Vorfahren
voneinander ab und entwickeln sich ansonsten unabhängig voneinander.
Dies motiviert den Versuch, die Population mithilfe der Markov-Theorie zu
modellieren. Da aber auch die zeitliche Entwicklung berücksichtigt werden soll,
führt uns dies in die Markov-Erneuerungstheorie (genaueres dazu in 2.7), die
wir daher als theoretische Grundlage in dieser Arbeit behandeln.

Gehen wir zunächst näher auf die in Kapitel 1 behandelten Themen ein:
Nachdem wir in den Abschnitten 1.1 und 1.2 grundlegende Definitionen
und Notationen festlegen, werden wir in Abschnitt 1.3 einige für uns im
folgenden wichtige Eigenschaften von Kernen behandeln. Dabei halten wir
uns im wesentlichen sehr eng an Nummelins (weitaus umfassenderes und
ausführlicheres) Buch “General Irreducible Markov Chains and Non-Negative
Operators”([12]). In zwei Merkmalen unterscheiden wir uns von der Arbeit
Nummelins: In jener werden Kerne auf einem Zustandsraum (S,S) betrachtet.
Wir dagegen übertragen die Ergebnisse und Definitionen auf Kerne der
Form µ : S × (S ⊗ B) → [0,∞). Bis auf die in Unterabschnitt 1.3.2
festgehaltenen Aussagen über die Minorisierungsbedingung können wir jedoch
alles in kanonischer Form übertragen, indem wir von µ zu µ(·, ·×IR) übergehen.
Die zweite Abweichung liegt in der Definition des Konvergenzparameters und
der damit zusammenhängenden α-Rekurrenz(-Transienz). Während Nummelin
die in der sogenannten R-Theorie übliche Definition wählt, entscheiden wir
uns für eine davon abweichende, z.B. auch in dem von Niemi und Nummelin
verfaßten Artikel “On non-singular renewal kernels with an application to
a semigroup of transition kernels” ([11]) gewählte Form. Auch hier lassen
sich jedoch die Aussagen und Beweise in meist nur leicht modifizierter Art
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übertragen.
Aufbauend auf diesen grundlegenden Eigenschaften von Kernen beweisen
wir in Abschnitt 1.4 nach der von Nummelin in “Uniform and ratio limit
theorems for Markov renewal and semi-regenerative processes on a general
state space” ([13]) vorgestellten Idee ein Markov-Erneuerungstheorem. Dabei
behandeln wir zuerst den von Arjas, Nummelin und Tweedie 1978 ([3])
nachgewiesenen Spezialfall, den sogenannten Atom-Fall. Danach läßt sich der
allgemeine Fall durch Zurückziehen auf den Spezialfall nachweisen, indem
wir den sogenannten gesplitteten Markov-Random-Walk konstruieren. Diese
Konstruktion läßt sich in ähnlicher Weise in zahlreicher Literatur (z.B.
Nummelin[13],[14]) wiederfinden.

Im zweiten Kapitel können wir nun mit den bisher behandelten Hilfsmitteln die
Population modellieren und untersuchen. Dabei stützen wir uns grundlegend auf
den 1988 erschienenen Artikel Jagers “General Branching Processes as Markov
Fields”([7]). Die in der Modellierung zu berücksichtigenden Eigenschaften der
Population wurden oben schon kurz erläutert, finden sich im Detail aber auch
in der Motivation (2.1). Zu bemerken bleibt noch, daß in der Einschränkung
auf asexuelle Vermehrung eine sehr starke Vereinfachung vorgenommen wird.
Vererbungsprozesse wie Rekombination finden in unserem Modell demnach
keine Berücksichtigung. Dennoch gehen wir nicht von dem Trivialfall aus, daß
der Genotyp einer Mutter an ihre Kinder weitergegeben wird, sondern lassen
genetische Veränderungen von Generation zu Generation zu.
Nach der Modellierung weisen wir in den Abschnitten 2.3 bis 2.5 wichtige
Eigenschaften der Population nach und stellen in 2.7 einige grundlegende
Voraussetzungen an sie, die uns später die Anwendungen der im ersten Kapitel
erhaltenen Ergebnisse ermöglichen werden. In den Abschnitten 2.7 und 2.8
behandeln wir das sogenannte intrinsische Martingal, dessen Nutzen sich erst
in nachfolgendem Abschnitt offenbaren wird. Dort betrachten wir dann das
asymptotische Verhalten der Population, indem wir Konvergenzaussagen bzgl.
Konvergenz in Erwartung, schwacher L1- und starker L1-Konvergenz aufstellen.
Dabei erkaufen wir den Übergang zu einer stärkeren Konvergenzart stets mit
zusätzlichen Voraussetzungen an die Population. Der Nachweis der Konvergenz
erfolgt stets für eine ganze Klasse von Funktionen. Auf diese Weise lassen sich
ganz verschiedene Aspekte der Populationsentwicklung, wie z.B. die Größe der
Population, die Anzahl der Individuen mit bestimmtem Genotyp etc. mit nur
einem Theorem behandeln.
Zu bemerken bleibt, daß die von Jagers ursprünglich aufgestellte Behauptung
über die starke L1-Konvergenz in der Form nicht aufrechterhalten werden kann,
da seine Beweisführung fehlerhaft ist. Die von uns stattdessen entwickelte
Aussage ist weitaus schwächer, da wir Jagers Konvergenzaussage nur mit
erheblichen Zusatzvoraussetzungen retten können.



Chapter 1

Kerne

1.1 Präliminarien

In diesem Abschnitt werden häufig benutzte Schreibweisen und Definitionen
bereitgestellt, sowie einige Basisannahmen gemacht.

Im gesamten Kapitel bezeichne (S,S) einen abzählbar erzeugten meßbaren
Raum.
B bezeichne die Borelsche σ-Algebra und λλ das Lebesgue-Maß auf IR.
M+ bezeichne die Menge aller signierten Maße auf (S,S) mit positiver
Gesamtmasse.
S+ sei die Menge aller nichtnegativen meßbaren Funktionen auf (S,S) mit
Werten in (IR,B)
Es sei stets, wenn nicht anders gesagt, A ∈ S, B ∈ B, x ∈ S.

Sind (Ω,Σ), (Ω̃, Σ̃) zwei meßbare Räume, so heißt eine numerische Funktion
µ : Ω × Σ̃ → [0,∞] ein (nichtnegativer) Kern von (Ω,Σ) nach (Ω̃, Σ̃), wenn µ
die Eigenschaften

• Für alle ω ∈ Ω ist µ(ω, ·) ein Maß auf Ω̃

• Für alle Ã ∈ Σ̃ ist µ(·, Ã) eine meßbare Funktion auf (Ω,Σ)

erfüllt.
µ heißt Übergangskern oder (sub)stochastisch, wenn µ(ω, Ω̃) = (≤)1 ∀ω ∈ Ω.
Im Fall Ω = Ω̃,Σ = Σ̃ spricht man auch von einem Kern auf (Ω,Σ).

Seien nun µ, µ1, µ2 : S × (S ⊗ B) → IR+ sowie Q, Q1, Q2 : S × S → IR+

nichtnegative Kerne , φ1 (φ2) ein Maß auf (S × IR,S ⊗ B) ((S,S)) , f1 (f2)
eine meßbare Funktion auf (S × IR,S ⊗ B) ((S,S)) mit Werten in (IR,B).
Die Faltung µ1 ∗ µ2 wird definiert durch

µ1 ∗ µ2(x, A×B) =
∫

S×IR
µ2(y, A× (B − u)) µ1(x, dy × du).

3
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Die n-fache Faltung von µ, kurz µn , wird so für jedes n ∈ IN induktiv definiert
durch

µn(x, A×B) =
∫

S×B
µ(y, A× (B − u)) µ(n−1)(x, dy × du).

Entsprechend werden die Faltungen von µ mit φ1, von f1 mit µ sowie von f1

mit φ1 definiert durch

φ1 ∗ µ(A×B) =
∫

S×IR
µ(x, A×B − u) φ1(dx× du)

µ ∗ f1(s, t) =
∫

S×IR
f1(x, t− u) µ(s, dx× du)

φ1 ∗ f1(t) =
∫

S×IR
f1(x, t− u) φ1(dx× du)

Weiter definieren wir

Q1Q2(x, A) =
∫

S
Q2(y, A) Q1(x, dy)

Qn(x, A) =
∫

S
Q(y, A) Q(n−1)(x, dy)

φ2µ(A×B) =
∫

S
µ(x, A×B) φ(dx)

φ2Q(A) =
∫

S
Q(y, A) φ2(dy)

Qf2(x) =
∫

S
f2(y) Q(x, dy)

φ2(f2) =
∫

S
f2(y) φ2(dy)

f2 ⊗ φ2(x, A) = fs(x)φs(A)

ν (U) bezeichne stets den Erneuerungskern von µ (von Q) definiert durch

ν(x, A×B) =
∞∑

n=0

µn(x, A×B) U(x, A) =
∑
n≥0

Qn(x, A),

wobei µ0(x, A×B) := δ0(B)δx(A) und Q0(x, A) := δx(A).
Für ein λ ∈ IR sei µλ der durch

µλ(x, A×B) =
∫

B
e−λtµ(x, A× dt)

definierte Kern und νλ der zugehörige Erneuerungskern.
Entsprechend sei für ein Maß φ auf (S × IR,S ⊗ B) φλ das durch

φλ(A×B) =
∫

B
e−λtφ(A× dt)

definierte Maß.
Die in kanonischer Weise durch µ und µλ induzierten Kerne auf (S,S)
bezeichnen wir mit µ̄ bzw. µ̄λ, d.h.

µ̄(x, A) := µ(x, A× IR) µ̄λ(x, A) := µλ(x, A× IR),

und die zugehörigen Erneuerungskerne entsprechend mit ν̄ und ν̄λ.
Genauso wird das durch φ1 auf (S,S) induzierte Maß φ̄1 definiert durch

φ̄1(A) := φ1(A× IR).
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1.2 Markov-Random-Walks: Definition und
Standardmodell

Definition 1.2.1 Gegeben ein stochastischer Kern µ : S×(S⊗B)→ [0, 1] und
ein Wahrscheinlichkeitsmaß λ auf (S × IR,S ⊗ B).
Es sei (Mn, Xn)n≥0 eine zeitlich homogene Markov-Kette (siehe A.1) mit
Übergangskern µ und Startverteilung λ, d.h.

P (M0 ∈ A, X0 ∈ B) = λ(A×B)
P (Mn+1 ∈ A, Xn+1 ∈ B|Mn, Xn) = µ(Mn, A×B) P -f.s. ∀n ≥ 0.

Mit Sn = X0+. . .+Xn heißt (Mn, Sn)n≥0 dann Markov-Random-Walk (MRW).
Gilt zusätzlich µ(x, S × (−∞, 0]) = 0 ∀x ∈ S, so heißt (Mn, Sn)n≥0 auch
Markov-Erneuerungsprozeß (MEP).

Ohne Beweis geben wir an: (zum Beweis siehe Nummelin[11])

Bemerkung 1.2.2 Ist µ : S× (S ⊗B)→ [0, 1] substochastisch, so existiert ein
MRW mit Übergangskern µ.

Definition 1.2.3 Sei µ : S × S ⊗ B → [0, 1] ein stochastischer Kern.
(Ω, A, (Mn, Sn)n≥0, (Pλ)λ∈W(S⊗B)) heißt Standardmodell zu µ, wenn
(Mn, Sn) : (Ω,A) → (S × IR,S ⊗ B), n ≥ 0 unter jedem Pλ einen Markov-
Random-Walk mit Startverteilung λ und Übergangskern µ bildet.
Für ein Wahrscheinlichkeitsmaß φ auf (S,S) schreiben wir nur kurz Pφ für
Pφ⊗δ0 .
Für Pδ(x,t)

schreiben wir auch nur Px,t und für Px,0 nur Px (wobei x ∈ S, t ∈ IR).
Folgende Gleichung läßt sich leicht nachrechnen:

µn(x, A× (B − t)) = Px,t(Mn ∈ A, Sn ∈ B) ∀x ∈ S

1.3 Eigenschaften von Kernen

Gegeben sei ein nichtnegativer Kern µ : S × (S ⊗ B)→ [0,∞].
In diesem Abschnitt werden wir Eigenschaften eines solchen Kernes, wie
Irreduzibilität, α-Rekurrenz, Rekurrenz und Existenz von invarianten Maßen
und Funktionen, und ihre Zusammenhänge untersuchen. Dabei werden wir uns
nah an Nummelin[12] halten. Wir werden allerdings in der Definition von α-
Rekurrenz und α-Invarianz von der von Nummelin zugrundegelegten R-Theorie
abweichen. Dennoch läßt sich die Beweisführung in leicht modifizierter Form
häufig übertragen.

1.3.1 Irreduzible Kerne

Hier werden wir die “Kommunikationsstruktur” von Kernen, d.h. welche
Zustandsmengen von welchen aus erreichbar sind, untersuchen.
(Der Begriff der Erreichbarkeit wird nachfolgend erläutert.)
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Definition 1.3.1 Sei A ∈ S, x ∈ S.
A heißt erreichbar von x, kurz x→ A,wenn ein n ≥ 1 existiert mit µ̄n(x, A) > 0.
A heißt abgeschlossen, wenn A nicht-leer und Ac von keinem x ∈ A erreichbar
ist.
Offenbar ist schon µ̄(x, Ac) = 0 ∀x ∈ A hinreichend für die Abgeschlossenheit
von A.

Satz und Definition 1.3.2 (irreduzible Maße) Ein σ-endliches, positives
Maß ϕ auf (S,S) heißt irreduzibel für µ und µ heißt ϕ-irreduzibel, wenn gilt

ϕ(A) > 0 =⇒ x→ A ∀x ∈ S.

µ heißt irreduzibel,wenn µ ϕ-irreduzibel ist für ein geeignetes ϕ.
ψ heißt maximales irreduzibles Maß für µ,wenn ψ irreduzibel für µ und jedes
weitere für µ irreduzible Maß absolut stetig bzgl. ψ ist.
Ist µ irreduzibel, gilt (siehe Nummelin[12], Proposition 2.4):

(i) Es existiert ein maximales irreduzibles Maß.
(ii) Ein für µ irreduzibles Maß ψ ist genau dann ein maximales irreduzibles

Maß für µ, wenn ψµ̄¿ ψ.
Ist ψ maximales irreduzibles Maß , so heißt eine Menge A voll, wenn ψ(Ac) = 0.
(Offensichtlich sind abgeschlossene Mengen stets voll.)
Wir definieren S+ = {f ∈ S+;ψ(f) > 0} und schreiben auch kurz A ∈ S+,
wenn 1A ∈ S+.

Bemerkung 1.3.3 Ist µ irreduzibel, so gilt das auch für die Kerne µλ, λ ∈ IR,
und die Mengen ihrer irreduziblen Maße stimmen überein. Damit haben diese
Kerne auch (bis auf Äquivalenzen) dasselbe maximale irreduzible Maß.

Im folgenden sei µ stets als irreduzibel angenommen und ψ bezeichne ein
maximales irreduzibles Maß für µ.

1.3.2 Die Minorisierungsbedingung

Definition 1.3.4 (Minorisierungsbedingung)
µ erfüllt die Minorisierungsbedingung M(m0, β, s, ϕ) mit m0 ∈ IN , β > 0 ,
s ∈ S+, ϕ ein positives Maß auf (S × IR,S ⊗ B), wenn

µm0(x, A×B) ≥ βs(x)ϕ(A×B) ∀x ∈ S ∀B ∈ B ∀A ∈ S.

ϕ heißt kleines Maß für µ,wenn µ die Minorisierungsbedingung M(m0, β, s, ϕ)
für ein m0 ∈ IN , β > 0 , s ∈ S+ erfüllt.
s heißt kleine Funktion für µ, wenn µ die Minorisierungsbedingung
M(m0, β, s, ϕ) für ein m0 ∈ IN, β > 0 , positives Maß ϕ erfüllt.
C ∈ S heißt kleine Menge für µ, wenn 1C eine kleine Funktion ist.
Es bezeichne Σ die Menge aller kleinen Funktionen.
Obige Definitionen können alle auf einen Kern auf (S,S) übertragen werden,
mit dem einzigen Unterschied, daß ϕ dann ein Maß auf (S,S) bezeichne.
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Nach Nummelin[12], Theorem 2.1 erfüllt jeder irreduzible Kern µ auf (S,S)
eine Minorisierungsbedingung. Da wir dies aber nicht weiter benötigen, gehen
wir darauf nicht näher ein. Wichtiger für unsere Zwecke sind folgende einfache
Bemerkungen:

Bemerkung 1.3.5 Ein kleines Maß ϕ ist stets irreduzibel für µ. (Im Falle, daß
ϕ auf (S ⊗ B) definiert ist, bedeute dies, daß ϕ̄ irreduzibel sei.)

Bemerkung 1.3.6 Erfüllt µ M(m0, β, s, ϕ) kann ohne Einschränkung β = 1
angenommen werden, denn µ erfüllt offensichtlich auch M(m0, 1, βs, ϕ).

Bemerkung 1.3.7 Ist µ stochastisch und erfüllt µ M(m0, β, s, ϕ), so können
β = 1, 0 ≤ s ≤ 1 und ϕ als Wahrscheinlichkeitsmaß angenommen werden.

Bemerkung 1.3.8 Erfüllt µ M(m0, β, s, ϕ), so erfüllt µ̄ die
Minorisierungsbedingung M(m0, β, s, ϕ̄).
Der Kern µλ erfüllt M(m0, β, s, ϕλ) und entsprechend erfüllt µ̄λ die
Minorisierungsbedingung M(m0, β, s, ϕ̄λ).

Wir werden
in Satz 1.3.10 ein Kriterium für die Gültigkeit der Minorisierungsbedingung
kennenlernen, welches wesentlich leichter zu überprüfen ist als ein direkter
Nachweis der Minorisierungsbedingung.
Dazu zuerst folgende

Definition 1.3.9 µ heißt quasi-ϕ⊗λλ-stetig für ein Maß ϕ auf (S,S), wenn für
ψ-f.a. x ∈ S ein n ∈ IN existiert, so daß µn(x, ·) eine ϕ⊗ λλ-stetige Komponente
hat, d.h. es existieren ein ϕ⊗ λλ-stetiges Maß µx

1 6≡ 0 und ein weiteres Maß µx
2 ,

so daß µn(x, ·) = µx
1(·) + µx

2(·).

Satz 1.3.10 Ist µ quasi-ψ ⊗ λλ-stetig, so erfüllt µ die Minorisierungsbedingung
M(m0, β, s, ϕ) mit m0, β, s, ϕ geeignet.

Beweis:
Vorab einige Bezeichnungen:
Wir bezeichnen die Dichten der ψ ⊗ λλ-stetigen Komponenten von µm(x, ·) mit
km(x, ·).
Nach Orey[15], Abschnitt 1.1 können wir stets Versionen von km(x, ·) finden,
die verbunden meßbar sind, in dem Sinne, daß km aufgefaßt als Funktion in
(x, y) meßbar bzgl. (IR× IR,B ⊗ B) ist, was wir im folgenden voraussetzen.
Für A ∈ S ⊗ S ⊗ B und B ∈ S ⊗ B ⊗ S ⊗ B sei

A ◦B := {(a, b, c, d, e) ∈ S × S × IR× S × IR ; (a, b, c) ∈ A, (b, c, d, e) ∈ B}.

Da (S,S) als abzählbar erzeugt vorausgesetzt wurde, existiert eine Folge (Si)i∈IN

endlicher Partitionen von S, wobei Si+1 als feiner als Si angenommen werde,
so daß S = σ(∪iSi).
Für x ∈ S bezeichne Si

x die eindeutig bestimmte Menge aus Si, in der x
enthalten ist.
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Entsprechend bezeichnen Di endliche Partitionen von B mit zunehmender
Feinheit und Di

t für ein t ∈ IR die Menge aus Di, in der t enthalten ist.
Kommen wir nun zum Beweis des Satzes:
Da µ quasi-ψ ⊗ λλ-stetig, existieren m1, m2 ∈ IN so daß∫

IR×S×S×IR×S
km2(y, z, t− v) km1(x, y, v)

ψ ⊗ λλ⊗ ψ ⊗ ψ ⊗ λλ(dz × dt× dy × dx× dv) > 0.

Demnach kann ein δ > 0 gefunden werden, so daß mit

A := {(x, y, v) ∈ S × S × IR ; km1(x, y, v) ≥ δ}

B := {(y, v, z, t) ∈ S × IR× S × IR ; km2(y, z, t− v) ≥ δ}

A ◦B ψ ⊗ ψ ⊗ λλ⊗ ψ ⊗ λλ -positiv ist.
Nach dem Differentiationstheorem von Doob (Doob[6],S.612 ,Theorem 2.5)
existiert eine ψ ⊗ ψ ⊗ λλ-Nullmenge N1 sowie eine ψ ⊗ λλ ⊗ ψ ⊗ λλ-Nullmenge
N2, so daß

lim
i→∞

ψ ⊗ ψ ⊗ λλ
(
A ∩ (Si

x × Si
y ×Di

v)
)

ψ ⊗ ψ ⊗ λλ
(
Si

x × Si
y ×Di

v

) = 1 ∀(x, y, v) ∈ A \N1

lim
i→∞

ψ ⊗ λλ⊗ ψ ⊗ λλ
(
B ∩ (Si

y ×Di
v × Si

z ×Di
t)
)

ψ ⊗ λλ⊗ ψ ⊗ λλ
(
Si

y ×Di
v × Si

z ×Di
t

) = 1 ∀(y, v, z, t) ∈ B \N2

Sei nun ein (a, b, k, c, l) ∈ A ◦B fest.
Wir wählen j so groß, daß

ψ ⊗ ψ ⊗ λλ
(
A ∩ (Sj

a × Sj
b ×Dj

k)
)
≥ 3/4 ψ ⊗ ψ ⊗ λλ

(
Sj

a × Sj
b ×Dj

k

)
und

ψ ⊗ λλ⊗ ψ ⊗ λλ
(
B ∩ (Sj

b ×Dj
k × Sj

c ×Dj
l )
)
≥ 3/4 ψ ⊗ λλ⊗ ψ⊗

λλ
(
Sj

b ×Dj
k × Sj

c ×Dj
l

)
.

Wir definieren

C := {x ∈ Sj
a;ψ ⊗ λλ(A1(x) ∩ (Sj

b ×Dj
k)) ≥

3
4
ψ ⊗ λλ(Sj

b ×Dj
k)}

D := {(z, t) ∈ Sj
c ×Dj

l );ψ ⊗ λλ(B3,4(z, t) ∩ (Sj
b ×Dj

k)) ≥
3
4
ψ ⊗ λλ(Sj

b ×Dj
k)}

wobei A1(x) := {(y, v) ∈ S × IR ; (x, y, v) ∈ A}
und B3,4(z, t) = {(y, v) ∈ S × IR ; (y, v, z, t) ∈ B}.
Offensichtlich sind C und D ψ- bzw. ψ ⊗ λλ-positive Mengen und für
x ∈ C, (z, t) ∈ D gilt

ψ × λλ (A1(x) ∩B3,4(z, t))

≥ ψ × λλ
(
A1(x) ∩ (Sj

b ×Dj
k)
)
− ψ × λλ

(
(B3,4(z, t) ∩ (Sj

b ×Dj
k)
)c

≥ 1
2

ψ × λλ(Sj
b ×Dj

k) := γ > 0.
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Damit folgt für beliebige x ∈ S, V ∈ S, W ∈ B

µm1+m2(x, V ×W )

≥ 1C(x)
∫

S×S×IR×S×IR
1V×W (z, t)1A◦B(x, y, v, z, t)1D(z, t) km2(y, z, t− v)

km1(x, y, v)ψ ⊗ λλ⊗ ψ ⊗ λλ(dy × dv × dz × dt)

≥ 1C(x)δ2
∫

S×S×IR×S×IR
1A1(x)∩B3,4(z,t)(y, v)1V×W (z, t)1D(z, t)

ψ ⊗ λλ⊗ ψ ⊗ λλ(dy × dv × dz × dt)

≥ 1C(x)δ2
∫

S×S×IR
1(V×W )∩D(z, t)ψ ⊗ λλ(A1(x) ∩B3,4(z, t)) ψ ⊗ λλ(dz × dt)

≥ 1C(x) δ2 γ ψ ⊗ λλ ((V ×W ) ∩D) .

Mit s = 1C , β = δ2γ, ϕ = ψ × λλ(· ∩D) gilt also die Behauptung.

2

Wir werden später s und ϕ aus der Minorisierungsbedingung mit der speziellen
Eigenschaft benötigen, daß

∫
S s(x) ϕ(dx × ·) quasi-λλ-stetig ist. Daß dies keine

zusätzlichen Schwierigkeiten verursacht, zeigt folgendes

Lemma 1.3.11 Ist µ quasi-
ψ ⊗ λλ-stetig, so erfüllt µ die Minorisierungsbedingung M(m0, β, s, ϕ) derart,
daß

∫
S s(x) ϕ(dx × ·) nichttrivial und absolut stetig bzgl. λλ, also insbesondere

quasi-λλ-stetig ist.

Beweis:
Im Beweis von Lemma 1.3.10 ergibt sich, daß µ M(m0, β, s, ϕ) mit s = 1C für
ein C ∈ S+ und mit ϕ = ψ × λλ(D ∩ ·) für eine ψ ⊗ λλ-positive Menge D erfüllt.
Wir wählen m ≥ 1 so groß,daß∫

D
µm(x, C × IR+) ψ ⊗ λλ(dx× dt) > 0 (1.1)

(solch ein m muß aufgrund der Irreduzibilitätsannahme existieren, wie man sich
leicht überlegen kann). Damit folgt

µm+m0(x, ds× dt) =
∫

S×IR
µm(y, ds× d(t− u))µm0(x, dy × du)

≥
∫

D
µm(y, ds× d(t− u))β1C(x) ψ × λλ(dy × du)

= β1C(x)ϕ ∗ µm(ds× dt),

d.h. µ erfüllt M(m + m0, β,1C , ϕ ∗ µm) und wegen (1.1) und der speziellen
Gestalt von ϕ ist

∫
S s(x) ϕ ∗ µm(dx× ·) nichttrivial und absolut stetig bzgl. λλ.

2
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1.3.3 α-Rekurrenz und α-Transienz

Mit den in diesem Abschnitt eingeführten Begriffen des Konvergenzparameters,
der α-Rekurrenz und α-Transienz wird die Wachstumsrate der gefalteten Kerne
µn mit n→∞ beschrieben. Diese Rate wird dabei jedoch anders als in der R-
Theorie exponentiell angegeben.

Definition 1.3.12 (Konvergenzparameter)
Erfüllt µ die Minorisierungsbedingung, so heißt α ∈ ĪR := IR ∪ {−∞,∞}
Konvergenzparameter von µ, wenn es eine abgeschlossene Menge F gibt, so
daß

(i)
∫

s(y) ν̄λ(x, dy) <∞ auf F ∀s ∈ Σ ∀λ > α
(ii)

∫
f(y) ν̄λ(x, dy) =∞ ∀x ∈ S ∀f ∈ S+ ∀λ < α

µ heißt α-transient, wenn |α| <∞ und für λ = α (i) gilt.
µ heißt α-rekurrent, wenn |α| <∞ und für λ = α (ii) gilt.

Die Begriffe “α-Rekurrenz”, “α-Transienz” und “Konvergenzparameter” im
Zusammenhang mit µ mögen im folgenden schon implizieren, daß µ die
Minorisierungsbedingung erfüllt.

Nun ist keineswegs offensichtlich, daß der Konvergenzparameter überhaupt
existieren muß. Es gilt jedoch sogar noch mehr:

Satz 1.3.13 Erfüllt
µ die Minorisierungsbedingung existiert der Konvergenzparameter α und im
Falle seiner Endlichkeit ist µ entweder α-rekurrent oder
α-transient.

Beweis:
Sei s ∈ Σ fest. µ erfülle also M(m0, β, s, ϕ) für geeignete m0, β, ϕ.

α := inf{λ ; ν̄λs(x) <∞ für ein x ∈ S}
(mit inf{∅} :=∞ und inf(IR) := −∞)
Für λ ∈ IR definieren wir Fλ := {x ∈ S ; ν̄λs(x) <∞}.
Aufgrund der Ungleichungskette

∞ · µ̄n
λ(x, F c

λ) ≤
∫

S
ν̄λs(y) µ̄n

λ(x, dy) ≤ ν̄λs(x) ∀n ∈ IN, ∀x ∈ Fλ

folgt die Abgeschlossenheit von Fλ und damit auch die von F := ∩λ>αFλ als
Schnitt abgeschlossener Mengen. (siehe Nummelin[12],Seite 14,Proposition 2.5)
Falls α =∞ setzen wir F := S.
Wir zeigen nun, daß α der Konvergenzparameter von µ ist:
Sei dazu x ∈ F , λ > α und s′ ∈ Σ.
µ erfüllt also M(m′0, β

′, s′, ϕ′).Wir wählen k ∈ IN so, daß ϕ̄′λµ̄k
λs > 0 (möglich,

da µλ irreduzibel). Dann gilt:

∞ >

∫
S

s(y) ν̄λ(x, dy) ≥
∫

S
s(y) µ̄k

λ(z, dy) µ̄
m′0
λ (w, dz) ν̄λ(x, dw)

≥ β′
∫

S
s(y) µ̄k

λ(z, dy) ϕ̄′λ(dz)
∫

S
s′(w) ν̄λ(x, dw)

und somit
∫
S s′(w) ν̄λ(x, dw) <∞.
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Sei nun x ∈ S , λ < α und f ∈ S+.
Wir wählen k ∈ IN so, daß ϕ̄λµ̄k

λf > 0. Dann gilt:∫
S

f(y) ν̄λ(x, dy) ≥
∫

S
f(y) µ̄k

λ(z, dy) µ̄m0
λ (w, dz) ν̄λ(x, dw)

≥ β

∫
S

f(y) µ̄k
λ(z, dy) ϕ̄λ(dz)

∫
S

s(w) ν̄λ(x, dw)
= ∞

und somit
∫
S f(y) ν̄λ(x, dy) =∞.

Ist α endlich und existiert kein x ∈ S mit ν̄αs(x) < ∞, läßt sich analog die
α-Rekurrenz nachweisen. Mit F ∩ Fα als abgeschlossene Menge folgt ebenfalls
analog die α-Transienz.

2

Daß sich die α-Rekurrenz von µ auf alle µm überträgt zeigt folgendes

Lemma 1.3.14 Erfüllt µ die Minorisierungsbedingung M(m0, β, s, ϕ) und hat
µ den Konvergenzparameter α, so hat auch µm Konvergenzparameter α für
jedes m ∈ IN.
µ ist genau dann α-rekurrent, wenn µm α-rekurrent ist für alle m ∈ IN.

Beweis:
Daß mit µ auch µm die Minorisierungsbedingung erfüllt und s auch für µm als
kleine Funktion dient, ist leicht nachzuweisen.
Es bezeichne α(m) den Konvergenzparameter von µm und ν(m) :=

∑
n≥0 µnm

den zu µm gehörigen Erneuerungskern. F sei die abgeschlossene Menge aus der
Definition des Konvergenzparameters α.
Es sei λ > α.
Da s eine kleine Funktion für µm ist und daher∫

S
s(x)ν̄(m)(y, dx) ≤

∫
S

s(x)ν̄(y, dx) <∞ ∀y ∈ F,

folgt α(m) ≤ λ, und da λ > α beliebig gewählt war, somit α(m) ≤ α.
Die Ungleichung α ≤ α(m) ist schwieriger nachzuweisen:
Sei dazu λ > α(m).
Nach Nummelin[12],Cyclicity,S.20ff existiert ein d ∈ IN, so daß µ̄λ einen d-
Zyklus durchläuft, d.h. es gibt nichtleere Mengen S0, S1, . . . , Sd−1, so daß für
0 ≤ i < d

µ̄λ(x, Sc
j ) = 0 ∀x ∈ Si für j = (i + 1)mod d.

Weiter existiert ein i ∈ {0, . . . , d− 1} und eine ψ-Nullmenge N mit

{s > 0} ⊂ Si ∪N.

Ohne Einschränkung sei dieser Index 0.
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Wir definieren

I := {n ∈ IN ; µ̄λ erfüllt M(n, βn, s, ϕ̄λ) für ein βn > 0}

d := ggT (I) cm := ggT (d, m) dm :=
m

cm
d

S(m) := S0 ∪ Scm ∪ S2cm ∪ . . . ∪ Sd−cm

Folgende Eigenschaften sind leicht nachzurechnen:
Da I abgeschlossen ist bzgl. der Addition, existiert ein n0 ∈ IN mit {dn ; n ≥
n0} ⊂ I (∗). Für x ∈ S0 ist µ̄nm

λ (x, (S(m))c) = 0.
Für x ∈ S0 und n 6∈ {kd ; k ∈ IN} gilt µ̄n

λ(x, {s > 0}) ≤ µ̄n
λ(x, S0) = 0 (∗∗).

Definieren wir nun noch

γ :=
∫

S
s(x) ϕ̄λ(dx) > 0,

gibt es wegen (∗) ein n0 ∈ IN mit∫
S

s(x) µ̄n0dm−jd
λ (y, dx) ≤ s(y)γ ∀j = 0 · · · m

cm
− 1.

Ist nun x ∈ S0 ∩ F , gilt

γ
∑
n≥0

µ̄n
λ s (x)

(∗∗)
= γ

∑
n≥0

µ̄nd
λ s (x)

= γ
∑
n≥0

m/cm−1∑
j=0

µ̄ndm+jd
λ s (x)

(∗)
≤

∑
n≥0

m/cm−1∑
j=0

µ̄ndm+jd
λ µ̄n0dm−jd

λ s (x)

=
m

cm

∑
n≥0

µ̄
(n+n0)dm
λ s(x)

≤ m

cm

∑
n≥0

µ̄nm
λ s(x) < ∞,

daher also α ≤ λ, und da λ > α(m) beliebig gewählt war, folgt α ≤ α(m).
Die Äquivalenz der α-Rekurrenzen von µ und µm ergibt sich analog.

2

Für den Abschnitt über invariante Maße und Funktionen benötigen wir noch
folgendes

Lemma 1.3.15 µ erfülle die Minorisierungsbedingung M(1, 1, s, ϕ) und habe
endlichen Konvergenzparameter α.
Mit

uλ
0 := 1 uλ

n := ϕ̄λµ̄n−1
λ s, n ∈ IN \ {0}

bλ
0 := 0 bλ

n := ϕ̄λ(µ̄λ − s⊗ ϕ̄λ)n−1s, n ∈ IN \ {0}
b̂(λ) :=

∑
n≥1

bλ
n û(λ) :=

∑
n≥0

uλ
n = ϕ̄λν̄λs + 1
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gilt

α = inf{λ ; û(λ) <∞} = inf{λ ; b̂(λ) < 1}

µ ist α-rekurrent ⇐⇒ û(α) =∞⇐⇒ b̂(α) = 1

Beweis:
Eine Induktion liefert

µ̄λ
n−1 = (µ̄λ − s⊗ ϕ̄λ + s⊗ ϕ̄λ)n−1

= (µ̄λ − s⊗ ϕ̄λ)n−1 +
n−1∑
m=1

(µ̄λ − s⊗ ϕ̄λ)m−1(s⊗ ϕ̄λ)µ̄n−m−1
λ

und damit

uλ
n = ϕ̄λµ̄n−1

λ s

= ϕ̄λ(µ̄λ − s⊗ ϕ̄λ)n−1s +
n−1∑
m=1

ϕ̄λ(µ̄λ − s⊗ ϕ̄λ)m−1(s⊗ ϕ̄λ)µ̄n−m−1
λ s

= δ0({n}) +
n∑

m=0

bλ
muλ

n−m,

also

û(λ) =
∑
n≥0

uλ
n = 1 +

∑
n≥1

n∑
m=0

bλ
muλ

n−m = 1 + b̂(λ)û(λ). (1.2)

Sei F die abgeschlossene Menge aus Definition 1.3.12.
Wir wählen zuerst ein λ > α und x ∈ {s > 0} ∩ F ({s > 0} ∩ F 6= ∅, da F mit
der Abgeschlossenheit schon voll ist).

∞ >

∫
S

s(y)ν̄λ(x, dy) ≥
∫

S

∫
S

s(y)ν̄λ(z, dy)µ̄m0
λ (x, dz)

≥ βs(x)
∫

S

∫
S

s(y)ν̄λ(z, dy)ϕ̄λ(dz)

=⇒ û(λ) <∞

Sei nun λ < α.

∞ ≡
∫

S
s(y)ν̄λ(x, dy) =⇒ û(λ) =∞

Damit folgt die Behauptung α = inf{λ ; û(λ) <∞}.
Analog ist µ α-rekurrent ⇐⇒ û(α) = ∞ zu zeigen und wegen (1.2) und
monotoner Konvergenz (λ1 > λ2 ⇔ (ϕλ1 ≤ ϕλ2 und µλ1−s⊗ϕλ1 ≤ µλ2−s⊗ϕλ2)
folgen die entsprechenden Behauptungen für b̂

2
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1.3.4 Rekurrenz

Wir werden nun neben der α-Rekurrenz einen weiteren Rekurrenzbegriff
einführen, der die Eigenschaft einer Markov-Kette beschreibt, gewisse
Zustandsmengen fast sicher immer wieder aufzusuchen. Insbesondere werden
wir den Zusammenhang zwischen α-Rekurrenz und Rekurrenz untersuchen.
Betrachten wir dazu den speziellen Fall, daß µ ein stochastischer Kern von
(S,S) nach (S × IR,S ⊗ B) ist.

Definition 1.3.16 (Rekurrenz) Ist µ stochastisch und
(Ω,A, (Mn)n≥0, (Pλ)λ∈W(S)) ein Standardmodell zu µ̄ (siehe A.1), so heißt µ
(oder auch (Mn)n≥0) rekurrent, wenn

Px(Mn ∈ B u.o.) > 0 ∀x ∈ S ∀B ∈ S+

Px(Mn ∈ B u.o.) = 1 für ψ-f.a. x ∈ S ∀B ∈ S+

Den Zusammenhang zwischen α-Rekurrenz und Rekurrenz liefert nun

Satz 1.3.17 Hat µ endlichen Konvergenzparameter α und ist µα stochastisch,
so gilt

µ ist α-rekurrent⇐⇒ µα ist rekurrent

Beweis:
′′ =⇒′′
Sei (Mn)n∈IN die Markov-Kette aus dem Standardmodell zu µ̄α Für ein B ∈ S+

definieren wir h∞B (x) = Px(Mn ∈ B u.o.).
Wir zeigen:

h∞B (x) = 1 für ψ-f.a. x ∈ B. (1.3)

Die leicht nachweisbare, aber auch anschaulich offensichtliche Abgeschlossenheit
der Mengen {h∞B = 1} und {h∞B = 0} liefert dann das Gewünschte, denn da
wegen (1.3) {h∞B = 1} 6= ∅, muß aufgrund der Irreduzibilität ψ({h∞B = 1}c) = 0
und {h∞B > 0} = S gelten.
Bleibt also nur noch die Behauptung (1.3) zu zeigen:
Wir nehmen an, diese sei nicht erfüllt.
Dann ist (1− h∞B )1B ∈ S+ und daher∑

n≥0

P·(Mn ∈ B, Mn+k 6∈ B ∀k ≥ 1)1B(·) = P·(Mn ∈ B e.o.)1B(·)

= (1− h∞B )(·)1B(·) ∈ S+,

also

g(·) :=
∑
n≥0

2−(n+1)P·(Mn ∈ B, Mn+k 6∈ B ∀k ≥ 1)1B(·) ∈ S+.
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Für y ∈ S beliebig gilt∫
S

g(x)ν̄α(y, dx)

=
∑
m≥0

2−(m+1)
∑
n≥0

∫
B

Px(Mm ∈ B, Mm+k 6∈ B ∀k ≥ 1) µ̄n
α(y, dx)

≤
∑
m≥0

2−(m+1)
∑
n≥0

Py(Mm+n ∈ B, Mm+n+k 6∈ B ∀k ≥ 1)

=
∑
m≥0

2−(m+1)Py(
∑
n≥0

{Mm+n ∈ B, Mm+n+k 6∈ B ∀k ≥ 1})

≤ 1 <∞,

was im Widerspruch zur geforderten α-Rekurrenz steht.

′′ ⇐=′′

Sei C eine kleine Menge.
Da C ∈ S+, gilt wegen der Rekurrenz Px(Mn ∈ C u.o.) > 0 ∀x ∈ S∫

S
1C(y)ν̄α(x, dy) =

∑
n≥0

Px(Mn ∈ C)

= Ex

(∑
n∈IN

1C(Mn)

)
=∞,

µ ist also α-rekurrent.

2

Wegen der großen Bedeutung für uns im nachfolgenden Kapitel halten wir noch
einmal fest:

Korollar 1.3.18 Für einen stochastischen, irreduziblen Kern mit
Konvergenzparameter 0, sind Rekurrenz und 0-Rekurrenz äquivalent.

1.3.5 Invariante Maße und Funktionen

In diesem Abschnitt werden wir die Existenz und (im wesentlichen)
Eindeutigkeit von α-invarianten Maßen und Funktionen für α-rekurrente Kerne
nachweisen.

Definition 1.3.19 (α-invariante Maße) π ∈ M+ heißt α-invariant für µ,
wenn

π(A) <∞ für ein A ∈ S+ und π = πµ̄α.

Ein 0-invariantes Maß nennen wir auch einfach invariant.

Ist µ Übergangskern und π endlich, so ist π also gerade die stationäre Verteilung
der von µ induzierten Markov-Kette.
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Bemerkung 1.3.20 Ist µ irreduzibel und besitzt µ ein α-invariantes Maß π,
so ist dieses σ-endlich.

Beweis:
Nach Definition existiert ein B ∈ S+ mit π(B) <∞. Sei (An)n∈IN eine disjunkte
Zerlegung von S derart, daß µn

α(x, B × IR) > 0 ∀ x ∈ An. Da

∞ > π(B) ≥
∫

An
µn

α(x, B × IR) π(dx),

gibt es eine Folge An
k ↑ An mit π(An

k) <∞ ∀ k ∈ IN.
Mit Bn := A1

n ∪A2
n ∪ . . . ∪An

n gilt Bn ↑ S und π(Bn) <∞ ∀ n ∈ IN.

2

Definition 1.3.21 (α-invariante Funktionen) Eine meßbare Funktion
h : (S,S) −→ (IR+,B+) heißt α-invariant für µ, wenn

h ∈ S+ , h 6≡ ∞ und h = µ̄αh.

h heißt wieder nur invariant, wenn h 0-invariant ist.

Theorem 1.3.22 Erfüllt µ die Minorisierungsbedingung M(m0, β, s, ϕ) und ist
µ α-rekurrent, so existiert ein α-invariantes Maß π für µ der Form

π =
∑
n≥0

ϕ̄α(µ̄m0
α − s⊗ ϕ̄α)n.

π ist ein maximales irreduzibles Maß für µ, π(s) = 1 und π ist bis auf
Skalarmultiplikation eindeutiges α-invariantes Maß .

Beweis:
Ohne Einschränkung kann β = 1 angenommen werden.
1. Fall : m0 = 1
Nach Lemma 1.3.15 ist mit den dortigen Bezeichnungen

π(s) =
∑
n≥0

ϕ̄α(µ̄α − s⊗ ϕ̄α)ns = b̂(α) = 1.

Damit ist insbesondere π ∈M+ und π(s > 0) <∞.
π ist in der Tat α-invariant für µ, denn

π(A) =
∫

S

∑
n≥0

(µ̄α − s⊗ ϕ̄α)n(x, A) ϕ̄α(dx)

=
∫

S

∫
S
(µ̄α − s⊗ ϕ̄α)(z, A)

∑
n≥0

(µ̄α − s⊗ ϕ̄α)n(x, dz)ϕ̄α(dx) + ϕ̄α(A)

= πµ̄α(A)− ϕ̄α(A)π(s) + ϕ̄α(A) = πµ̄α(A).

Die übrigen Behauptungen sowie die Verallgemeinerung auf den Fall m0 > 1
sind Nummelin[12], Theorem 5.2 zu entnehmen. Die einzige Abweichung von
dortiger Beweisführung liegt in dem Nachweis, daß mit µ auch µm0 α-rekurrent
ist, was wir in Lemma 1.3.14 jedoch schon nachgewiesen haben.

2
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Theorem 1.3.23 Erfüllt µ die Minorisierungsbedingung M(m0, β, s, ϕ) und ist
µ α-rekurrent, so besitzt µ eine α-invariante Funktion h der Form

h =
∑
n≥0

(µ̄m0
α − s⊗ ϕ̄α)ns,

für die weiter gilt
(i) {h <∞} ist abgeschlossen, also insbesondere voll.
(ii) h > 0 überall
(iii) ϕ̄α(h) = 1 und 0 < ϑ̄α(h) <∞ für jedes kleine Maß ϑ
(iv)Ist h̃ eine weitere α-invariante Funktion für mit ϕ̄α(h̃) = 1,

so ist h̃ ≥ h überall und h̃ = h ψ-f.ü. (ψ maximales irreduzibles Maß)

Beweis:
Es sei wieder ohne Einschränkung β = 1 angenommen.
1. Fall : m0 = 1
Nach Lemma 1.3.15 ist mit den dortigen Bezeichnungen

1 = b̂(α) =
∑
n≥0

ϕ̄α(µ̄α − s⊗ ϕ̄α)ns = ϕ̄α(h).

Damit gilt also insbesondere h ∈ S+ und h 6≡ ∞.
Die α-Invarianz ergibt sich durch

h(x) =
∫

S

∫
S

s(y)
∑
n≥0

(µ̄α − s⊗ ϕ̄α)n(z, dy)(µ̄α − s⊗ ϕ̄α)(x, dz) + s(x)

=
∫

S
h(y)µ̄α(x, dy)−

∫
S

h(y)s(x)ϕ̄α(dy) + s(x)

=
∫

S
h(y)µ̄α(x, dy).

Die übrigen Behauptungen sowie die Verallgemeinerung auf den Fall m0 > 1
sind wieder Nummelin[12], Theorem 5.1 in Verbindung mit Lemma 1.3.14 zu
entnehmen.

2
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1.4 Ein Markov-Erneuerungstheorem

Gegeben ein irreduzibler, stochastischer Kern µ : S × (S ⊗ B) → [0, 1] mit
Standardmodell (Ω,A, (Mn, Sn)n∈IN, (Pλ)λ∈W(S⊗B)).
ν bezeichne den Markov-Erneuerungskern

∑
n∈IN µn und für λ ∈ W(S ⊗ B) ist

λ ∗ ν(·) =
∑
n≥0

Pλ((Mn, Sn) ∈ ·)

das Erneuerungsmaß bei Startverteilung λ.
ψ bezeichne wieder ein zu µ gehöriges maximales irreduzibles Maß und π (im
Falle der Existenz) ein invariantes Maß für µ.
Wir wollen in diesem Kapitel für meßbare Funktionen
f : (S × IR,S ⊗ B)→ (IR,B) das Verhalten von
ν ∗ f(x, t) =

∫
S×IR f(y, t − u) ν(x, dy × du) für gegen unendlich strebendes t

untersuchen. Um eine einheitliche Aussage über das Langzeitverhalten solcher
Faltungen treffen zu können, bedarf es allerdings offensichtlich noch einiger
Zusatzvoraussetzungen an f und µ.
Dazu vorerst folgende Definition:

Definition 1.4.1 µ heißt positiv-α-rekurrent, wenn µ α-rekurrent ist und

0 <

∫
S

∫
IR

t µα(x, S × dt) π(dx) <∞

(Da unter den gegebenen Voraussetzungen das invariante Maß eindeutig bis auf
Skalarmultiplikation ist die Definition unabhängig von der speziellen Wahl
von π).
Statt positiv-0-rekurrent schreiben wir auch nur kurz positiv-rekurrent
und wir benutzen im folgenden die Abkürzung

π(m) :=
∫

S

∫
IR

t µα(x, S × dt) π(dx).

1.4.1 Ein Markov-Erneuerungstheorem für den Atom-Fall

Nun werden wir ein Markov-Erneuerungstheorem für einen Spezialfall, den
unten erläuterten sogenannten Atom-Fall, beweisen.
Das Besondere an diesem Fall ist die Möglichkeit, den MRW in unabhängige,
identisch verteilte Zyklen zu zerlegen, was wir in nachfolgendem Satz
zeigen werden. Diese zyklische Zerlegung geht grundlegend in den Beweis
des Markov-Erneuerungstheorems im Atom-Fall ein, da mit ihrer Hilfe das
Erneuerungstheorem für Random-Walks (siehe A.2) zum Beweis herangezogen
werden kann.
Durch Zurückführung auf diesen Spezialfall werden wir dann eine allgemeinere
Form des Markov-Erneuerungstheorems beweisen können.

Definition 1.4.2 Eine Menge B ∈ S+ heißt Atom für einen irreduziblen Kern
µ : S × (S ⊗ B)→ IR+, wenn

µ(x, ·) = µ(y, ·) ∀x, y ∈ B.

Ist µ stochastisch, so sei im zu µ gehörigen Standardmodell PB := Px mit x ∈ B
beliebig.
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Satz und Definition 1.4.3 Sei µ ein stochastischer, irreduzibler, rekurrenter
Kern, der ein Atom besitzt. (Mn, Sn)n∈IN bezeichne den MRW aus dem
zugehörigen Standardmodell.
Die sukzessiven Eintrittszeiten in B seien definiert durch

τ0
B ≡ 0

τn+1
B = inf{n > τn

B ; Mn ∈ B} n ≥ 1,

wobei inf(∅) :=∞. Statt τ1
B schreiben wir auch einfach nur τB.

Die Zuwächse dieser Folge werden mit σn
B bezeichnet, also

σn
B :=

{
τn
B − τn−1

B : τn−1
B <∞

∞ : τn
B =∞ ∀n ∈ IN

(∆1,∆2) bezeichne irgendeinen Friedhof der Kette und wir definieren
(M∞, X∞) := (∆1,∆2).

Die Zyklen des MRW seien nun gegeben durch

Zn := 1{τn−1
B <∞}

(
σn

B, (Mk, Sk − Sτn−1
B

)τn−1
B <k≤τnB

)
n ≥ 1.

Dann sind für ψ-f.a.x ∈ S die Zyklen (Zn)n≥1 unter Px unabhängig und für
n ≥ 2 identisch verteilt mit PZn

x = PZn
B .

Beweis:
Der Beweis ist einfach unter Ausnutzung der starken Markov-Eigenschaft und
der Atomeigenschaft von B. Zu bemerken ist lediglich, daß aufgrund der
geforderten Rekurrenz für ψ-f.a. x ∈ S Px(τB <∞) = 1 sowie PB(τB <∞) = 1
gilt.

2

Bemerkung 1.4.4 Ist µ stochastischer, irreduzibler, rekurrenter Kern mit
Standardmodell (Ω,A, (Mn, Sn)n∈IN, (Pλ)λ∈W(S⊗B)), der ein Atom besitzt, läßt
sich das invariante Maß π direkt angeben:

π(A) = EB(
τB∑

k=1

1A(Mk)) (1.4)

Für eine meßbare Funktion f : (S,S)→ (IR,B) gilt∫
S

f(x) π(dx) = EB(
τB∑

k=1

f(Mk)). (1.5)

Beweis:
Wegen der Rekurrenz von µ und da B ∈ S+ ist τB < ∞ PB-f.s. Wir können
daher in nachfolgenden Rechnungen ohne Einschränkung τB <∞ annehmen.
(1.5) ist leicht nachzuweisen.
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Da 0 < π(B) <∞ und wegen∫
S

µ(y, A× IR) π(dy) = EB(
τB∑

k=1

µ(Mk, A× IR))

= EB

(
τB∑

k=1

1A(Mk+1)

)

= EB

(
τB∑

k=2

1A(Mk)

)
+ EB (1A(MτB+1))

= EB

(
τB∑

k=2

1A(Mk)

)
+ EB (1A(M1))

= EB

(
τB∑

k=1

1A(Mk)

)
= π(A),

ist π in der Tat invariant.

2

Satz 1.4.5 (Markov-Erneuerungstheorem im Atom-Fall) Es sei
µ : S×(S⊗B)→ [0, 1] ein stochastischer, irreduzibler, positiv-rekurrenter Kern,
der ein Atom B besitze.
π bezeichne das invariante Maß aus Bemerkung 1.4.4.
φ sei ein Wahrscheinlichkeitsmaß auf (S,S) mit Pφ(τB <∞) = 1.
f : S × IR→ IR+ sei eine meßbare Funktion, die mit f̄(x) := supt∈IRf(x, t)

i)
∫
S f̄(x) π(dx) <∞

ii)
∫
S×IR f(x, t) π ⊗ λλ(dx× dt) <∞

iii) lim|t|→∞ f(x, t) = 0 ∀x ∈ S

erfülle. Gilt neben den schon vorausgesetzten Bedingungen an f und µ auch noch

a) FB = PB(SτB ∈ ·) ist quasi-λλ-stetig

b) Eφ(
∑τB

n=0 f̄(Mn)) <∞

so folgt

lim
t→∞

sup
|g|≤f

|φ ∗ ν ∗ g(t)− 1
π(m)

∫
IR

∫
S

g(x, u)π(dx)λλ(du)| = 0

lim
t→−∞

sup
|g|≤f

|φ ∗ ν ∗ g(t)| = 0
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Beweis :

In nachfolgendem Lemma werden wir π(m) = EB(SτB ) nachweisen.

φ ∗ ν ∗ g(t) =
∫

S

∫
S×IR

g(x, t− u) ν(s, dx× du) φ(ds)

=
∑
n≥0

∫
S

∫
S×IR

g(x, t− u) Ps(Mn ∈ dx, Sn ∈ du) φ(ds)

=
∑
n≥0

Eφ(g(Mn, t− Sn))

= Eφ(
τ1
B∑

k=0

g(Mk, t− Sk)) +
∑
n≥1

Eφ(
τn+1
B∑

k=τnB+1

g(Mk, t− Sk))

= C(t) +
∑
n≥1

∫
IR

Eφ(
τn+1
B∑

k=τnB+1

g(Mk, t− (Sk − SτnB
)− w|SτnB

= w))

P
Sτn
B

φ (dw)

= C(t) +
∑
n≥1

∫
IR

EB

(
τB∑

k=1

g(Mk, t− w − Sk)

)
P

Sτn
B

φ (dw)

= C(t) +
∫

IR
h(t− w)

∑
n≥1

P
Sτn
B

φ (dw)

mit C(t) := Eφ(
∑τ1

B
k=0 g(Mk, t− Sk)) und h(t) := EB(

∑τB
k=1 g(Mk, t− Sk)).

Es gilt

• supt∈IR h(t) ≤
∫
S f̄(x)π(dx) <∞ nach Voraussetzung

• lim|t|→∞ h(t) = 0 wegen majorisierter Konvergenz (mit
∫
S f̄(x) π(dx) als

Majorante)

• PB(SτB ∈ ·) ist nach Voraussetzung quasi-λλ-stetig

• 0 < EB(SτB ) = π(m) <∞ nach Voraussetzung (positiv rekurrent)

• lim|t|→∞C(t) = 0 wegen majorisierter Konvergenz (mit Eφ(
τB∑

n=0
f̄(Mn))

als Majorante)

Insbesondere sind für den RW Tn :=
n∑

k=1
(SτkB

− Sτk−1
B

), n ≥ 1, die

Voraussetzungen zur Anwendung der Stoneschen Zerlegung (siehe Alsmeyer[2],

S.73) erfüllt, d.h. es existiert eine Darstellung der Form
∑

n≥1
P

Sτn
B

φ = V1 + V2,

wobei V1, V2 Maße auf IR, V2 endlich und V1 eine beschränkte, stetige λλ-Dichte
v1 mit limt→∞ v1(t) = 1

EB(SτB ) = 1
π(m) und limt→−∞ v1(t) = 0 besitzt.
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Dann folgt mit dem bisher Gezeigten

|φ ∗ ν ∗ g(t)− 1
π(m)

∫
S×IR

g(x, u) π ⊗ λλ(dx× du)|

= |C(t) +
∫

IR
h(t− u)

∑
n≥1

P
Sτn
B

φ (du)− 1
π(m)

∫
S×IR

g(x, u) π ⊗ λλ(dx× du)|

= |C(t) +
∫

IR
h(t− u) V2(du) +

∫
IR

h(t− u)v1(u) λλ(du)

− 1
π(m)

∫
S×IR

g(x, u) π ⊗ λλ(dx× du)|

≤ |C(t)|+
∫

R
|h(t− u)| V2(du)

+EB

(
τB∑

k=1

∫
IR
|g(Mk, t− u− Sk)||v1(u)− 1

π(m)
| λλ(du)

)

≤ |C(t)|+
∫

R
|h(t− u)| V2(du)

+EB

(
τB∑

k=1

∫
IR

f(Mk, u)|v1(t− Sk − u)− 1
π(m)

| λλ(du)

)

Die ersten beiden Summanden verschwinden für t gegen unendlich gleichmäßig
in g wegen majorisierter Konvergenz. Wegen

∫
S×IR f(x, t) π ⊗ λλ(dx × dt) < ∞

und der Beschränktheit von v1 läßt sich aber auch auf den letzten Summanden
majorisierte Konvergenz anwenden und wegen v1(t) → 1/π(m) verschwindet
auch dieser asymptotisch und trivialerweise gleichmäßig in g.
In Hinblick auf nachfolgendes Lemma ist der erste Teil des Theorems damit
nachgewiesen.
limt→−∞ sup|g|≤f |φ ∗ ν ∗ g(t)| = 0 weist man analog nach.

2

Das nachfolgende Lemma schließt nun den Beweis ab:

Lemma 1.4.6 Mit den Voraussetzungen und Bezeichnungen aus Satz 1.4.5 gilt

EB(SτB ) = π(m)

Beweis:
Eine Induktion liefert unter Ausnutzung der Markov-Eigenschaft und der
Tatsache, daß Mn+1 nicht von Sn abhängt für x ∈ S:∫

IR
t Px(Mk ∈ Ac, 1 ≤ k ≤ n, Mn+1 ∈ A, Sn+1 ∈ dt)

=
n∑

k=0

∫
S

∫
S×IR

Pz(Mi ∈ Ac, 0 ≤ i < n− k, Mn−k ∈ A)

t Py(M1 ∈ dz, S1 ∈ dt)Px(Mi ∈ Ac, 1 ≤ i ≤ k, Mk ∈ dy)
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Dann folgt∫
S

m(y) π(dy) =
∫ τB∑

k=1

m(Mk) dPB
Atom−Eig.

=
∫ τB−1∑

k=0

m(Mk)dPB

=
∫

S

∫
IR

t Py(S1 ∈ dt)
∑
m≥0

PB(Mi ∈ Bc, 1 ≤ i ≤ m, Mm ∈ dy)

Irr.=
∫

S

∫
S×IR

∑
n≥0

Pz(Mi ∈ Bc, 0 ≤ i < n, Mn ∈ B) t Py(S1 ∈ dt, M1 ∈ dz)

∑
m≥0

PB(Mi ∈ Bc, 1 ≤ i ≤ m, Mm ∈ dy)

=
∑
n≥0

n∑
k=0

∫
S

∫
S×IR

Pz(Mi ∈ Bc, 0 ≤ i < n− k, Mn−k ∈ B)

t Py(S1 ∈ dt, M1 ∈ dz)PB(Mi ∈ Bc, 1 ≤ i ≤ k, Mk ∈ dy)
Ind.=

∑
n≥0

∫
IR

t PB(Mk ∈ Bc, 1 ≤ k ≤ n, Mn+1 ∈ B, Sn+1 ∈ dt)

= EB(SτB ),

wobei m(y) :=
∫

IR t µ(y, S × dt).

2

Im Beweis von Satz 1.4.5 benutzen wir von der geforderten 0-Rekurrenz von µ
lediglich, daß damit µ (da stochastisch) schon rekurrent ist. Es würde hier
in der Tat genügen, µ als rekurrent nach Definition 1.3.16 vorauszusetzen.
(Die benötigte Eindeutigkeit - bis auf Skalarmultiplikation - des invarianten
Maßes unter allen invarianten Maßen π mit 0 < π(B) < ∞ ließe sich leicht
nachweisen). Stellt sich die Frage, weshalb der mühsame Weg über die 0-
Rekurrenz überhaupt gewählt wurde. Ein Grund ist die Existenzaussage bzgl.
der invarianten Funktionen, die wir später - allerdings nicht mehr in diesem
Kapitel - benötigen werden und die nur mit der Theorie der α-Rekurrenz
nachgewiesen werden konnte. Aber auch in diesem Kapitel werden wir uns
durch die Voraussetzung der α-Rekurrenz anstelle der Rekurrenz mühsame
Rechenarbeit ersparen. Wir werden an entsprechender Stelle darauf hinweisen.

Betrachten wir nun das Markov-Erneuerungstheorem für den allgemeinen Fall,
also ohne die Existenz eines Atoms vorauszusetzen. Die Grundidee ist, den
MRW so zu erweitern, daß dieser erweiterte MRW ein Atom besitzt, auf
diesen das eben bewiesene Markov-Erneuerungstheorem anzuwenden und die
erhaltenen Ergebnisse wieder auf den ursprünglichen MRW zurückzuführen.
Diesen erweiterten MRW, den sogenannten gesplitteten MRW, werden wir in
nachfolgendem Abschnitt konstruieren.
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1.4.2 Der gesplittete Markov-Random-Walk

Sei µ also nun ein stochastischer, irreduzibler, rekurrenter Kern, der die
Minorisierungsbedingung M(1, β, s, ϕ) erfülle. Die Einschränkung m0 = 1
können wir im Beweis des Markov-Erneuerungstheorems glücklicherweise
aufheben. Nach Bemerkung 1.3.7 bedeutet es jedoch keine Einschränkung
β = 1, 0 ≤ s ≤ 1 und ϕ als Wahrscheinlichkeitsmaß anzunehmen.
Wir werden uns nun aus µ den “gesplitteten MRW” (M∗

n, S∗n)n∈IN konstruieren
mit dem Ziel, daß sich dieser in den wesentlichen Eigenschaften nicht sehr von
µ unterscheidet, aber zusätzlich ein Atom besitze.

Sei im folgenden stets A ∈ S, B ∈ B, x ∈ S.
S∗ := (S × {0, 1}) sei der neue Zustandsraum von M∗.
S∗ := S⊗P({0, 1}) die σ-Algebra auf diesem, wobei P({0, 1}) die Potenzmenge
auf {0, 1} bezeichne.
Wir schreiben

x0 = (x, 0) ∈ S∗ x1 = (x, 1) ∈ S∗

A0 = A× {0} ∈ S∗ A1 = A× {1} ∈ S∗

Für C ∈ S∗ sei

C0 := p1(C ∩ S0) C1 := p1(C ∩ S1),

wobei p1 die Projektion auf die erste Komponente bezeichne. Eine Funktion
f : (S × IR,S ⊗ B)→ IR wird durch

f∗((x, 0), t) = f∗((x, 1), t) := f(x, t)

zu einer Funktion auf S∗ × IR erweitert.
Ein Maß φ auf (S × IR,S ⊗ B) wird durch

φ∗(A0 ×B) :=
∫

A×B
(1− s(x)) φ(dx× dt)

φ∗(A1 ×B) :=
∫

A×B
s(x) φ(dx× dt)

zu einem Maß auf S∗ ⊗ B erweitert.
Analog läßt sich ein Maß φ auf (S,S) zu einem Maß auf (S∗,S∗) erweitern.
Für die Konstruktion des erweiterten Markov-Übergangskerns µ∗, der dann
(M∗

n, S∗n)n≥0 festlege, definieren wir uns zuerst einen Kern µ̄ : S∗×(S⊗B)→ IR+

und spalten diesen dann, aufgefaßt als Maß auf S ⊗ B, in der oben beschriebenen
Weise auf:

µ̄(x0, A×B) :=

{
(1− s(x))−1(µ(x, A×B)− s(x)ϕ(A×B)) ; s(x) < 1

1A(x) ; s(x) = 1

(1.6)

µ̄(x1, A×B) := ϕ(A×B) (1.7)
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Wie schon angedeutet sei nun für z ∈ S∗

µ∗(z, A0 ×B) :=
∫

A×B
(1− s(y)) µ̄(z, dy × dt) (1.8)

µ∗(z, A1 ×B) :=
∫

A×B
s(y) µ̄(z, dy × dt) (1.9)

Mit ϕ und µ ist auch µ∗ stochastisch. Den zugehörigen MRW bezeichnen wir
mit (M∗

n, S∗n)n∈IN; ν∗ sei der zugehörige Erneuerungskern.
Wir werden nun nachweisen, daß µ∗ die Voraussetzungen des Markov-
Erneuerungstheorems im Atom-Fall erfüllt:

Satz 1.4.7 Mit den obigen Bezeichnungen gilt:
µ∗ ist mit µ stochastischer, irreduzibler, positiv-rekurrenter Kern, der ein Atom
besitzt.

Beweis:

µ∗(x, A×B) ≥ 1S1(x)ϕ∗(A×B)

und da -wie wir nachfolgend sehen werden- ψ∗ irreduzibles Maß für µ∗ ist und
ψ∗(S1) > 0, erfüllt µ∗ die Minorisierungsbedingung.
(1.7) zeigt, daß S1 ein Atom für µ∗ ist.
Für den Nachweis der Irreduzibilität und der 0-Rekurrenz bedarf es folgender
Gleichungen, die sich durch Doppelinduktionen ergeben:
Für eine Funktion f : (S∗,S∗)→ (IR+,B+) gilt∫

S1

f(x)(µ∗)n(S1, dx×IR) =
∫

S

∫
S

f(x, 1)s(x) µn−1(y, dx×IR) ϕ(dy×IR)(1.10)

∫
S0

f(x) (µ∗)n(S1, dx× IR) =
∫

S

∫
S

f(x, 0)(1− s(x)) µn−1(y, dx× IR)

ϕ(dy × IR)(1.11)

(µ∗)n((x, 0), S1) =
∫

S

∫
S

s(x) µn−1(y, dx× IR) µ̄((x, 0), dy × IR) (1.12)

Wir zeigen zuerst, daß ψ∗ irreduzibles Maß für µ∗ ist:

ψ∗(A) > 0 ⇒
∫

A1
s(x) ψ(dx) > 0 ∨

∫
A0

(1− s(x)) ψ(dx) > 0

⇒ ψ(A1 ∩ (s > 0)) > 0 ∨ ψ(A0 ∩ (s < 1)) > 0

Ist ψ(A1 ∩ (s > 0)) > 0 folgt mit (1.10) und der Irreduzibilität von µ für ein
n ∈ IN

(µ∗)n(S1, A× IR) ≥ (µ∗)n(S1, A
1 × {1} × IR)

≥
∫

S

∫
A1

s(x) µn−1(y, dx× IR) ϕ(dy × IR) > 0.
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Analog für den Fall ψ(A0 ∩ (s < 1)) > 0.

Kommen wir nun zum Nachweis der 0-Rekurrenz:
Für λ ∈ IR erfüllt µλ M(1, 1, s, ϕλ).
Jeden dieser Kerne können wir wie µ in der oben geschilderten Weise zu einem
Kern µ∗λ splitten. Offensichtlich gilt (µλ)∗ = (µ∗)λ.
Unter Verwendung von (1.10) folgt dann

(µ∗λ)0(S1, S1 × IR) = 1 =: uλ
0

(µ∗λ)n(S1, S1 × IR) =
∫

S

∫
S

s(x) µn−1
λ (y, dx× IR) ϕλ(dx× IR) =: uλ

n, n ≥ 1

∑
n≥0

(µ∗λ)n(S1, S1 × IR) = ν∗λ(S1, S1 × IR) =: û(λ)

Lemma 1.3.15 des vorherigen Kapitels liefert nun (µ ist als 0-rekurrent
vorausgesetzt)

ν∗λ(S1, S1 × IR) = û(λ) <∞ ∀ λ > 0

ν∗λ(S1, S1 × IR) = û(λ) =∞ ∀ λ ≤ 0

Da S1 kleine Menge für µ∗ ist, folgt daraus direkt die 0-Rekurrenz von µ∗.
(Die Rekurrenz von µ∗ aus der von µ zu folgern, wäre erheblich aufwendiger
gewesen. Hier zeigt sich also einer der angekündigten Vorteile, den Umweg über
die 0-Rekurrenz zu gehen statt direkt die Rekurrenz von µ vorauszusetzen.)
Daß µ∗ auch positiv-rekurrent ist, liefert weiter unten (1.17) unter
Berücksichtigung, daß π∗ invariantes Maß für µ∗ ist. (Der Nachweis der
Invarianz ist eine einfache Rechnung)

2

Wir benötigen noch folgende leicht nachzurechnende Gleichungen für ein Maß
φ1 (φ2) auf (S× IR,B⊗S) (auf (S,S)) und eine meßbare, numerische Funktion
f (g) auf S × IR (S):

φ∗1 ∗ µ∗ = (φ1 ∗ µ)∗ (1.13)

φ∗1 ∗ f∗(t) = φ1 ∗ f(t) ∀t ∈ IR (1.14)

φ∗2(g
∗) = φ2(g) (1.15)

und daraus offensichtlich

φ∗ ∗ ν∗ ∗ f∗(t) = φ ∗ ν ∗ f(t) ∀t ∈ IR. (1.16)

Durch einfaches Nachrechnen ergibt sich weiterhin

π∗(m∗) :=
∫

S∗

∫
S∗×IR

t µ∗(x, ds× dt) π∗(dx) = π(m). (1.17)
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1.4.3 Ein Markov-Erneuerungstheorem für den allgemeinen
Fall

Die folgenden beiden Lemmata werden wir für den Beweis des Markov-
Erneuerungstheorems benötigen:

Lemma 1.4.8 Mit den gewohnten Notationen gilt

Pδ∗x(τS1 <∞) = 1 für π-f.a. x ∈ S.

Beweis:
Aufgrund der Rekurrenz von µ∗ gilt

Px(τS1 <∞) = 1 für π∗-f.a. x ∈ S∗ (∗).

Angenommen, es gäbe eine Menge A ∈ S mit π(A) > 0 und
Pδ∗x(τS1 <∞) < 1 ∀x ∈ A. Dann ist einer der drei Fälle erfüllt:

1) π(B) > 0 , B := {x ∈ S ; s(x) < 1 ∧ P ∗(x,0)(τS1 <∞) < 1}

2) π(C) > 0 , C := {x ∈ S ; s(x) > 0 ∧ P ∗(x,1)(τS1 <∞) < 1}

3) π(D) > 0 , D := {x ∈ S ; P ∗(x,0)(τS1 <∞) < 1 ∧ P ∗(x,1)(τS1 <∞) < 1}

Wegen 0 < π(D) = π∗(D0 ∪D1) und (∗) kann der dritte Fall nicht eintreten.
Auch der erste Fall ist wegen π∗(B0) =

∫
B(1 − s(x)) π(dx) > 0 und (∗)

auszuschließen und analog kann auch der zweite Fall nicht eintreten.
Solch eine Menge A kann demnach nicht existieren.

2

Lemma 1.4.9 Ist f : (S,S) −→ (IR+,B+) eine π-integrierbare, nichtnegative
Funktion, so gilt für π-f.a. x ∈ S

Eδ∗x

 τS1∑
n=0

f∗(M∗
n)

 <∞ für π-f.a. x ∈ S.

Beweis:
Wir zeigen zuerst

US1f(x) := Ex

 τS1∑
n=1

f∗(M∗
n)

 <∞ für π∗-f.a. x ∈ S∗. (1.18)

Dazu definieren wir

νS1 := inf{n ≥ 0 ; M∗
n ∈ S1} GS1f(x) := Ex

 νS1∑
n=0

f∗(M∗
n)

 .

Für x ∈ S1 ist US1f(x) =
∫ ∗
S f∗(x) π∗(dx) =

∫
S f(x) π(dx) <∞.

Für x ∈ S0 ist US1f(x) = E∗x

(
νS1∑
n=0

f∗(M∗
n)

)
− f(x) = GS1f(x)− f(x).
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Es reicht also aus, die Endlichkeit von GS1f(x) für π∗-f.a.x ∈ S∗ nachzuweisen.
Dafür wiederum genügt der Nachweis der Abgeschlossenheit von
F := {GS1f <∞}:
Da x ∈ F für π∗-f.a. x ∈ S1 ist F nicht leer.
Sei x ∈ S1 ∩ F.∫

S∗
GS1f(y) µ∗(x, dy × IR) = Ex

 τS1∑
n=1

f∗(M∗
n)

 =
∫

S∗
f∗(x) π∗(dx) <∞

Daher µ∗(x, F c × IR) = 0.
Sei nun x ∈ S0 ∩ F.∫

S∗
GS1f(y) µ∗(x, dy × IR) = E∗x

 τS1∑
n=1

f∗(M∗
n)

 = GS1f(x)− f(x) <∞

Daher µ∗(x, F c × IR) = 0.
F ist demnach abgeschlossen.
Zeigen wir damit nun die Aussage des Lemmas:
Wegen

Eδ∗x

 τS1∑
n=0

f∗(M∗
n)


= f(x) + s(x)E(x,1)

 τS1∑
n=1

f∗(M∗
n)

+ (1− s(x))E(x,0)

 τS1∑
n=1

f∗(M∗
n)


= f(x) + s(x)π∗(f∗) + (1− s(x))US1f((x, 0))
(1.15)
= f(x) + s(x)π(f) + (1− s(x))US1f((x0))

genügt der Nachweis von

π{x ∈ S ; s(x) < 1 ∧ US1 f̄
∗(x0) =∞} = 0.

Angenommen, es existiere ein A ∈ S mit π(A) > 0 und s(x) < 1∧US1 f̄
∗(x0) =

∞ ∀x ∈ A.
Dann folgt π∗(A0) > 0 und US1 f̄

∗(x) =∞ ∀x ∈ A0.
Dies ist aber ein Widerspruch zu gerade nachgewiesenem (1.18).

2

Theorem 1.4.10 (Markov-Erneuerungstheorem) Es sei
µ : S × (S ⊗ B) → [0, 1] ein stochastischer, irreduzibler, quasi-ψ ⊗ λλ-stetiger,
positiv-rekurrenter Kern und f : S × IR→ IR+ erfülle i),ii),iii) aus Satz 1.4.5.
Dann folgt für π-f.a. s ∈ S

lim
t→∞

sup
|g|≤f

|ν ∗ g(s, t)− 1
π(m)

∫
IR

∫
S

g(x, u)π(dx)λλ(du)| = 0

lim
t→−∞

sup
|g|≤f

|ν ∗ g(s, t)| = 0
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Beweis:
Nach Satz 1.3.10 erfüllt µ die Minorisierungsbedingung M(m0, β, s, ϕ) und ohne
Einschränkung sei β = 1 gewählt und s und ϕ derart, daß

∫
S s(x) ϕ(dx × ·)

quasi-λλ-stetig. (Bemerkung 1.3.6 bzw. Lemma 1.3.11)

1.Fall : m0 = 1
Wir werden nun das Markov-Erneuerungstheorem im Atom-Fall für
oben konstruierten MRW (M∗

n, S∗n), f∗ und Anfangsverteilung δ∗s , s ∈
S anwenden und die dadurch erhaltenen Ergebnisse zum Nachweis des
Markov-Erneuerungstheorems benutzen. Dazu zeigen wir zuerst, daß die
Voraussetzungen für die Anwendung des Markov-Erneuerungstheorems im
Atom-Fall tatsächlich erfüllt sind:
Die benötigte Voraussetzung Pδ∗x(τS1 < ∞) = 1 für π-f.a. x ∈ S haben
wir in Lemma 1.4.8 schon nachgewiesen. Die Bedingungen i) und ii) aus
Satz 1.4.5 sind aber wegen (1.15) erfüllt. Bedingung iii) folgt unmittelbar aus
lim|t|→∞ f(x, t) = 0.
a) folgt aus

PS1(S
∗
τS1
∈ ·) ≥ PS1(M

∗
1 ∈ S1, S

∗
1 ∈ ·)

= µ∗(S1, S1 × ·)

=
∫

S
s(x) ϕ(dx× ·)

und dieses Maß ist nach Voraussetzung quasi-λλ-stetig.
b) Wir benötigen

Eδ∗x

 τS1∑
n=0

f̄∗(M∗
n)

 <∞ für π-f.a. x ∈ S.

Dies war aber gerade die Aussage aus Lemma 1.4.9.

Unter Verwendung des Markov-Erneuerungstheorems im Atom-Fall folgt nun:

lim
t→∞

sup
|g|≤f

|ν ∗ g(s, t)− 1/(π(m))
∫

g(x, t) π(dx) λλ(dt)

= lim
t→∞

sup
|g|≤f

|δs ∗ ν ∗ g(t)− 1/(π(m))
∫

g(x, t) π(dx) λλ(dt)

= lim
t→∞

sup
|g|≤f

|δ∗s ∗ ν∗ ∗ g∗(t)− 1/(π∗(m∗))
∫

g∗(x, t) π∗(dx) λλ(dt)

≤ lim
t→∞

sup
|g∗|≤f∗

|δ∗s ∗ ν∗ ∗ g∗(t)− 1/(π∗(m∗))
∫

g∗(x, t) π∗(dx) λλ(dt)

= 0

und analog

lim
t→−∞

sup
|g|≤f

|ν ∗ g(s, t)| ≤ lim
t→−∞

sup
|g∗|≤f∗

|δ∗s ∗ ν∗ ∗ g∗(t)| = 0.
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2.Fall : m0 > 1
Wir definieren für beliebiges 0 < α < 1 den stochastischen Kern

µα = α
∑
n≥1

(1− α)n−1µn.

Der zugehörige MRW im Standardmodell sei (Mα
n , Sα

n )n∈IN.
Offensichtlich ist µα mit µ quasi-ψ ⊗ λλ-stetig und π ist auch für µα invariant.
Erfüllt µ M(m0, β, s, ϕ) so erfüllt µα M(1, βα(1 − α)m0−1, s, ϕ). Daß µα

irreduzibel ist mit den gleichen irreduziblen Maßen wie µ geht aus der Gleichung
(1.19) in nachfolgendem Lemma 1.4.11 hervor. Insbesondere ist also ψ auch
für µα maximales irreduzibles Maß. Die 0-Rekurrenz von µα resultiert aus
(1.20) unter Ausnützung der Tatsache, daß kleine Funktionen von µ auch
kleine Funktionen von µα sind. (Der einfache Nachweis der 0-Rekurrenz von µα

bestätigt noch einmal, daß der Weg über die 0-Rekurrenz durchaus vorteilhaft
ist.) Die positive Rekurrenz folgt daraufhin aus (1.21).
µα erfüllt damit alle Voraussetzungen aus dem schon gezeigten Fall.
Bezeichnet να das Markov-Erneuerungsmaß zu µα und
π(mα) :=

∫
S

∫
IR t µα(x, S × dt) π(dx) erhält man nun in Anbetracht von

nachfolgendem Lemma für π-f.a.s ∈ S:

lim
t→∞

sup
|g|≤f

|δs ∗ ν ∗ g(t)− 1
π(m)

∫ ∫
g(x, t)π(dx)λλ(dt)|

= lim
t→∞

sup
|g|≤f

(
| 1
α

δs ∗ να ∗ g(t)− 1
π(m)

∫ ∫
g(x, t)π(dx)λλ(dt)|

+
1− α

α
|g(s, t)|

)
≤ 1

α
lim
t→∞

sup
|g|≤f

(
|δs ∗ να ∗ g(t)− 1

π(mα)

∫ ∫
g(x, t)π(dx)λλ(dt)|

+ (1− α)|f(s, t)|)
= 0

Wieder analog erfolgt der Nachweis von

lim
t→−∞

sup
|g|≤f

|δs ∗ ν ∗ g(t)| = 0.

2

Lemma 1.4.11 Mit den Bezeichnungen aus Theorem 1.4.10 gilt für jedes
x ∈ S: ∑

n≥1

µn
λ =

∑
n≥1

αn−1(
1
α

µα
λ)n =

1
α

∑
n≥1

(µα
λ)n, (1.19)

να
λ (x, ·) = α νλ(·) + (1− α) δ(x,0)(·) ∀λ ∈ IR (1.20)

π(mα) =
1
α

π(m) (1.21)

Beweis:
Für (1.19) verweisen wir auf die Resolvent-Gleichungen aus Nummelin[13],
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Seite 122. Dann folgt (1.20) direkt aus (1.19).
(1.21) läßt sich folgendermaßen verifizieren :
Sei π(mk) =

∫
S

∫
IR t µk(x, S × dt) π(dx) für k ∈ IN.

Eine Induktion liefert π(mk) = k π(m) ∀k ≥ 1:
(IA)k = 1 ist trivial
(IS)

π(mk+1) =
∫

S

∫
S×IR

∫
IR

t µk(y, S × d(t− u)) µ(x, dy × du) π(dx)

=
∫

S

∫
S×R

∫
IR

(t− u) µk(y, S × d(t− u)) µ(x, dy × du) π(dx)

+
∫

S

∫
S×IR

∫
IR

u µk(y, S × d(t− u)) µ(x, dy × du) π(dx)

=
∫

S

∫
S

∫
IR

t µk(y, S × dt) µ(x, dy × IR) π(dx)

+
∫

S

∫
S×IR

u µk(y, S × IR) µ(x, dy × du) π(dx)

=
∫

S

∫
IR

t µk(y, S × dt) π(dy) +
∫

S

∫
IR

u µ(x, S × du) π(dx)

(IV )
= k π(m) + π(m) = (k + 1)π(m)

Und damit dann

π(mα) = α
∑
k≥1

((1− α)k−1 π(mk)) = α π(m)
∑
k≥1

((1− α)k−1k) =
π(m)

α
.

2

Der Beweis des Markov-Erneuerungstheorems für
Dirac-Maße als Startverteilungen ist nun also vollständig abgeschlossen. Man
kann die Klasse der Startverteilungen auch noch erweitern, stellt man gewisse
Zusatzvoraussetzungen. Wir wollen darauf jedoch nur kurz hinweisen und die
Beweisidee nur knapp anreißen, da für unsere Zwecke als Startverteilung das
Dirac-Maß genügen wird:

Satz 1.4.12 Seien µ und f wie in Theorem 1.4.10 gegeben.
φ sei ein f̄-reguläres Wahrscheinlichkeitsmaß auf (S,S), d.h.

Eφ

(
τA∑

n=1

f̄(Mn)

)
<∞ ∀A ∈ S+.

Weiterhin sei f̄ φ-integrierbar und Pφ∗(τS1 <∞) = 1.
Dann gilt das MET mit Startverteilung φ, d.h.

lim
t→∞

sup
|g|≤f

|φ ∗ ν ∗ g(t)− 1
π(m)

∫
IR

∫
S

g(x, u)π(dx)λλ(du)| = 0

lim
t→−∞

sup
|g|≤f

|φ ∗ ν ∗ g(t)| = 0
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Bemerkung 1.4.13 Das von uns bewiesene Markov-Erneuerungstheorem
bildet einen Spezialfall von obigem Satz, da - wie im Beweis von 1.4.10
nachgewiesen - unter Hinweis auf Nummelin[13], S.134 und (1.18) δx für π-f.a.
x ∈ S die geforderten Voraussetzungen erfüllt.

Beweisskizze:
Nach Nummelin[13], S.134 (5.4) ist, da φ f̄ -regulär, auch

Eφ∗

 τS1∑
n=1

f̄∗(M∗
n)

 <∞

und wegen
∫

f̄∗(x)φ∗(dx) =
∫

f̄(x)φ(dx) <∞ (nach Voraussetzung) auch

Eφ∗

 τS1∑
n=0

f̄∗(M∗
n)

 <∞.

Die Voraussetzungen für die Anwendung des Markov-Erneuerungstheorem im
Atom-Fall auf µ∗, f∗, φ∗ sind demnach erfüllt und der Beweis vollzieht sich
analog zum Beweis von Theorem 1.4.10.

2

Nun ist natürlich die in Satz 1.4.12 geforderte Bedingung Pφ∗(τS1 < ∞) =
1 noch äußerst unhandlich. Wir geben daher zwei hierfür hinreichende
Bedingungen an. Daß die erste tatsächlich hinreichend ist, läßt sich sehr leicht
nachweisen; bei der zweiten verweisen wir wieder nur auf Nummelin[14] für den
Nachweis.

1. φ¿ π ⇒ Pφ∗(τS1 <∞) = 1

2. µ werde als Harris-rekurrent angenommen, d.h.

Px(Mn ∈ A u.o.) = 1 ∀x ∈ S ∀A ∈ S+.

Dann ist (Nummelin[14],S.311 Theorem 2) auch µ∗ Harris-rekurrent und
die Bedingung P ∗φ∗(τS1 < ∞) = 1 ist für jedes Wahrscheinlichkeitsmaß φ
erfüllt.
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Im Hinblick auf spätere Anwendungen wollen wir zum Ende dieses Kapitels
noch eine einfache Folgerung aus dem Markov-Erneuerungstheorem anführen.

Korollar 1.4.14 Sei µ : S × (S ⊗ B) → IR+ ein irreduzibler, quasi-ψ ⊗ λλ −
stetiger, α-rekurrenter Kern (also nicht mehr notwendig stochastisch).
π bezeichne ein α-invariantes Maß und h eine α-invariante Funktion. Gilt
zusätzlich

0 < β :=
∫

S

∫
S×IR+

th(s) µα(r, ds× dt) π(dr) <∞ (1.22)

und ist f : S× IR→ IR+ eine meßbare Funktion, die die Bedingungen i),ii) und
iii) aus Satz 1.4.5 erfüllt, so gilt für π-f.a.s ∈ S

lim
t→∞

sup
|g|≤f

|να ∗ g(s, t)− h(s)
β

∫
IR

∫
S

g(x, u)π(dx)λλ(du)| = 0

lim
t→−∞

sup
|g|≤f

|να ∗ g(s, t)| = 0

Beweis:
In nachfolgendem Lemma werden wir zeigen, daß der durch

Q(s, dx× dt) =
h(x)
h(s)

µα(s, dx× dt)

definierte Kern die Voraussetzungen aus dem Markov-Erneuerungstheorem
erfüllt mit invariantem Maß hπ.
Offenbar erfüllt die Funktion f̃(x, t) := 1/h(x)f(x, t) die Bedingungen i),ii),iii)
aus Satz 1.4.5 ersetzt man dort π durch hπ. Jetzt folgt leicht

lim
t→∞

sup
|g|≤f

|να ∗ g(s, t)− h(s)
β

∫
IR

∫
S

g(x, u)π(dx)λλ(du)|

= lim
t→∞

sup
|g|≤f

|
∫

S×IR
g(x, t− u)

h(s)
h(x)

∑
n≥0

Qn(s, dx× du)

−h(s)
β

∫
IR

∫
S

g(x, u)
h(x)

hπ(dx)λλ(du)|

≤ lim
t→∞

sup
|g|≤f̃

|
∫

S×IR
g(x, t− u)h(s)

∑
n≥0

Qn(s, dx× du)

−h(s)
β

∫
IR

∫
S

g(x, u)hπ(dx)λλ(du)|

= 0.

limt→−∞ sup|g|≤f |να ∗ g(s, t)| = 0 ist wieder analog nachzuweisen.

2

Lemma 1.4.15 Sei µ wie im obigen Korollar.
Dann ist Q(s, dx × dt) = h(x)/h(s)µα(s, dx × dt) stochastischer, irreduzibler,
quasi-ψ ⊗ λλ-stetiger, positiv-rekurrenter Kern und hπ definiert durch
hπ(A) :=

∫
A h(x)π(dx) ist invariantes Maß für Q.
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Beweis:
Q ist aufgrund der α-Invarianz von h stochastisch.
Die Irreduzibilität und quasi-ψ⊗λλ-Stetigkeit von Q lassen sich unter Beachtung
von h > 0 leicht auf die von µ bzw. µα zurückführen.
Die Invarianz von hπ für Q ist leicht nachzurechnen.
Bleibt also nur noch die 0-Rekurrenz von Q nachzuweisen. Dann ist Q wegen
(1.22) offenbar schon positiv-rekurrent.
Sei dazu s eine kleine Funktion für µ. Es läßt sich leicht nachrechnen, daß dann
s̃(x) := s(x)/h(x) kleine Funktion für Q ist und mit λ > 0 folgt∑

n≥0

∫
S

s̃(x) Q̄n
λ(y, dx) =

1
h(y)

∫
S

s(x)ν̄α+λ(y, dx)

< ∞ für ψ-f.a.y ∈ S ,

d.h. α(Q) ≤ 0 (bezeichnet α(Q) den Konvergenzparameter von Q.)
Mit analoger Rechnung folgt α(Q) ≥ 0 sowie die 0-Rekurrenz von Q.

2

Wir werden später noch folgenden Satz benötigen, dessen Beweis analog zu dem
Beweis von Theorem 6.1 in Alsmeyer[1] verläuft und den wir daher nicht noch
einmal angeben.

Satz 1.4.16 Ist µ : S × (S ⊗ B+) → [0, 1] irreduzibler, stochastischer, quasi-
ψ ⊗ λλ-stetiger und positiv-rekurrenter mit invariantem Maß π, so existiert ein
(eindeutiges) σ-endliches Maß G auf S ⊗ B+, welches G ∗ ν = π ⊗ λλ+ erfüllt
und zwar der Form

G(A×B) =
∫

S

∫
IR

1B(t)µ(s, A× (t,∞)) π(ds) λλ+(dt).



Chapter 2

Ein Populationsmodell

2.1 Motivation

Nachdem wir in Kapitel 1 die theoretischen Grundlagen gesetzt haben, kommen
wir darauf aufbauend nun zum eigentlichen Anliegen dieser Arbeit:
Wir werden ein Populationsmodell aufstellen, in welchem sowohl die zeitliche als
auch die genetische Entwicklung der Population berücksichtigt wird. Daraufhin
werden wir versuchen, Aussagen über das asymptotische Langzeitverhalten der
Population zu treffen. Die vorher entwickelte Markov-Erneuerungs-Theorie wird
uns dabei von großem Nutzen sein.
Die Eigenschaften, die unsere Population erfüllen soll, fassen wir in folgenden
Punkten zusammen:

1. Jedes Individuum besitze einen sogenannten Typ, worunter sich am
besten der Genotyp eines Individuums, also die Gesamtheit seiner
Erbinformation, vorzustellen ist. Dieser Typ habe wiederum folgende
Eigenschaften:

(a) Allein der Typ determiniert die Verteilung auf dem “Raum der
möglichen Lebensläufe” für jedes Individuum. (Äußere Einflüsse
bleiben demnach unberücksichtigt).

(b) Der Typ eines Individuums wird bei seiner Geburt festgelegt und
hängt allein vom Lebenslauf der Mutter ab, wird also in diesem Sinne
vererbt (was nicht bedeute, daß jedes Kind denselben Typ wie seine
Mutter habe).

2. Verschiedene Populationszweige verhalten sich bedingt unabhängig:
Aufgrund der in Punkt 1 geforderten “Vererbung von Typen” können
die Zweige natürlich nicht gänzlich voneinander unabhängig sein. Jedoch
bedingt unter den Informationen über all ihre Vorfahren sollen sich die
Zweige unabhängig voneinander entwickeln.

Wir werden an den entsprechenden Stellen noch einmal näher darauf eingehen,
was diese Forderungen mathematisch präzisiert bedeuten sollen. Allerdings
lassen sich schon an dieser Stelle zumindest Markovsche Strukturen erahnen:
Daß nur der Typ des direkten Vorfahren für den Lebenslauf eines Individuums

35
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ausschlaggebend ist und keine Informationen über ältere Vorfahren, erinnert
an die Markov-Eigenschaft. Daß wir mit Markov-Erneuerungs-Theorie statt
mit einfacher Markov-Theorie arbeiten werden, ist in der oben genannten
Zielsetzung begründet, daß wir nicht nur die genetische, sondern auch die
zeitliche Entwicklung der Population untersuchen wollen.

2.2 Das Modell

2.2.1 Der Individuenraum

Die Identifikation von Individuen einer Population übernehmen wir aus dem
klassischen Ulam-Harris-Modell: “Induktiv” wird jedes Individuum eindeutig
spezifiziert durch seine Vorfahren sowie die Information, das wievielte Kind
seines direkten Ahnen es ist.
Dies geschieht, indem ein Individuum x der n-ten Generation identifiziert wird
mit jenem n-Tupel (x1, . . . xn) ∈ INn, für das x der xn-te Nachfahre des xn−1-ten
Nachfahren des . . . x1-ten Nachfahren des Ursprungs ist. (Ursprung bezeichne
das zeitlich erste Individuum der Population und werde in obiger Notation
durch {0} =: IN0 dargestellt.)
I := ∪n≥0INn ist also die Menge aller Individuen der Population, auch
Individuen-Raum genannt.
Einige häufig benötigte Funktionen auf diesem Raum sind:

m(x) = mx = (x1, . . . xn−1) für x = (x1, . . . xn) ∈ I

welche den Ahnen, die Mutter des Individuums liefert. Per Konvention sei
m0 = 0.

r(x) = rx = xn für x = (x1, . . . xn) ∈ I,

welche den sogenannten Rang des Individuums angibt.

g(x) = gx = n für x = (x1, . . . xn) ∈ I

gibt an, welcher Generation x angehört.
Für M ⊂ I definieren wir die (maximale) Generation von M

g(M) = sup
x∈M

g(x).

Wir führen noch folgende Kurzschreibweisen ein: Für x = (x1, . . . xn), y =
(y1, . . . ym) ∈ I sei xy das “konkatenierte” Individuum (x1, . . . xn, y1, . . . ym).
mn sei die n-malige Hintereinanderschaltung von m. Damit gibt offensichtlich
mn+1(x) die n-te Großmutter von x an, sofern x einer Generation k > n (⇔
g(x) > n) angehört.
Für die Verwandtschaftsverhältnisse zwischen Individuen benutzen wir folgende
Notationen, wobei x, y ∈ I , M, L ⊂ I seien

x ≺ y :⇔ ∃k ∈ IN0 : mky = x =̂ y stammt von x ab
M ≺ x :⇔ ∃y ∈M : y ≺ x =̂ x stammt von M ab
M ≺ L :⇔ ∀x ∈ L : M ≺ x =̂ L stammt von M ab
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x < y :⇔ x ≺ y und x 6= y =̂ y ist echter Nachfahre von x
M < x :⇔ ∃y ∈M : y < x =̂ x ist echter Nachfahre von M
PrM := {x ∈ I ; M ≺ x} =̂ Nachkommenschaft von M
hM := {x ∈M ; y < x⇒ y 6∈M} =̂ die Individuen aus M , aus denen

ganz M als Nachfahren hervorgegangen sind, auch nur kurz Kopf von M
genannt.

AnM := {x ∈ I ; ∃y ∈M : x ≺ y} =̂ Menge aller Vorfahren von M .
Eine Folge (Ln)n∈IN mit Ln ⊂ I heißt aufsteigend, wenn Ln ≺ Ln+1 für alle n.
Analog heißt solch eine Folge absteigend, wenn Ln+1 ≺ Ln für alle n.
Man beachte, daß x ∈ I nach Definition von sich selbst abstammt und damit x
selbst Nachfahre von sich ist.
Ein im folgenden wichtiger Begriff ist der der “Populationslinie”, kurz Linie
oder Stoplinie genannt.

L ⊂ I heißt Linie :⇐⇒ x, y ∈ L⇒ x 6< y

Eine Linie L überdeckt M ⊂ I, wenn M ≺ L und jedes x ∈ PrM besitzt
Nachfahren in L oder stammt selbst schon von L ab, d.h.

L überdeckt M :⇐⇒M ≺ L und ∀x ∈ PrM∃y ∈ L : x ≺ y ∨ y ≺ x.

Linien, die den Ursprung überdecken, d.h. jedes Individuum der Population
hat Vor- oder Nachfahren in L, heißen auch einfach überdeckend. INn ist ein
typisches, häufig verwendetes Beispiel einer überdeckenden Linie.
Die Menge aller überdeckenden Linien werde auch mit C, die Menge der
überdeckenden Linien mit endlicher Generation mit C0 bezeichnet. Eine im
folgenden wesentliche Eigenschaft der überdeckenden Linien liefert folgender

Satz 2.2.1 Auf C sowie auf C0 wird durch “≺” eine Ordnung induziert in dem
Sinne, daß für L, M ∈ C (C0) eine “untere Schranke” L ∧M ∈ C (C0) sowie
eine “obere Schranke” L ∨M ∈ C (C0) existiert, so daß für K ⊂ I

L ∧M ≺ L L ∧M ≺M (K ≺M, K ≺ L)⇒ K ≺ L ∧M

L ≺ L ∨M M ≺ L ∨M (L ≺ K, M ≺ K)⇒ L ∨M ≺ K

Beweis:

L1 := {x ∈ L;∃y ∈M, x ≺ y} L2 := {x ∈ L;M ≺ x}

M1 := {x ∈M ;∃y ∈ L, x ≺ y} M2 := {x ∈M ;L ≺ x}

Dann folgen die Behauptungen mit L ∧M := L1 ∪M1 und L ∨M := L2 ∪M2.
Wir zeigen nur die erste Aussage, da die zweite ähnlich zu beweisen ist.
Zu beachten ist, daß -da L und M überdeckende Linien- gilt

x ∈ L⇒ x ∈ L1 oder ∃m ∈M1 mit m ≺ x.
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1. L ∧M ∈ C (C0) :
Daß L ∧ M Linie ist, ist einfach zu zeigen. Mit L und M hat auch
L ∧ M endliche Generation. Bleibt noch die Überdeckungseigenschaft
nachzuweisen:
Sei dazu x ∈ I beliebig. Dann existieren l ∈ L, m ∈M mit (x ≺ l oder l ≺
x) und (x ≺ m oder m ≺ x).
Wir nehmen x ≺ l, x ≺ m an (die anderen Fälle sind ähnlich zu zeigen).
Dann ist l ∈ L1 oder ∃m̃ ∈M1 mit m̃ ≺ l und (da M Linie) x ≺ m̃.
Für die anderen Fälle folgt ähnlich die Existenz eines y ∈ M1 ∪ L1

mit x ≺ y oder y ≺ x. Da x beliebig aus I gewählt ist L ∧ M damit
überdeckend.

2 L ∧M ≺ L
x ∈ L⇒ x ∈ L1 oder ∃y ∈M1 mit y ≺ x⇒ L ∧M ≺ x
(Entsprechend L ∧M ≺M)

3. K ≺ L, K ≺M ⇒ K ≺ L ∧M folgt direkt aus L ∧M ⊂ L ∪M .

2

2.2.2 Der Populationsraum

Mit den bisher vorgestellten Mitteln ist es also nun möglich, in unserem Modell
Individuen einer Population zu spezifizieren und ihre verwandtschaftliche
Beziehung untereinander zu bestimmen. Das ist natürlich noch nicht besonders
viel, bedenkt man, daß eines unserer Ziele in dieser Arbeit, die Untersuchung
des asymptotischen Verhaltens der Population ist und wir bisher nicht einmal
im Stande sind, die Lebensdauer oder -erwartung eines einzigen Individuums
zu beobachten. Sei also zuerst einmal ein meßbarer Raum (Ω,A) gegeben,
dessen Elemente ω ∈ Ω die möglichen Lebensläufe eines Individuums
repräsentieren, genannt Lebenslauf-Raum. Weiter sei (S,S) ein meßbarer
Raum, dessen Elemente den sogenannten Typ der Individuen repräsentiere,
genannt Typenraum. Wie schon zu Beginn des Kapitels erwähnt, stelle man
sich hierunter den Genotyp eines Individuums vor.
Interessierende Meßgrößen eines Individuums lassen sich nun als meßbare
Funktionen auf dem Lebenslauf-Raum darstellen. Wichtiges Beispiel hierfür
sind die Funktionen

τ(n) : (Ω,A)→ (ĪR, B̄) für n ∈ IN,

wobei τ(n)(ω) gerade das Alter eines Individuums mit Lebenslauf ω bei Geburt
des n-ten Kindes angebe. (Dabei bedeute τ(n)(ω) =∞, daß das n-te Kind nie
geboren wurde.)
Auch den Typ eines Individuums werden wir mithilfe der Zufallsvariablen

ρ(n) : (Ω,A)→ (S,S) für n ∈ IN

beobachten, wobei ρ(n)(ω) gerade der Typ des n-ten Kindes eines Individuums
mit Lebenslauf ω sei.
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Um nun nicht nur jedes Individuum einzeln, sondern auch die Population als
Ganzes betrachten zu können, definieren wir uns den sogenannten

Populationsraum(D,D) := (S × ΩI ,S ⊗AI).

(s, (ωi)i∈I) ∈ D gebe mit s den Typ des Ursprungs an, sowie für jedes
Individuum i ∈ I seinen Lebenslauf ωi. Da der Typ eines Individuums, wie wir
in (2.2) sehen werden, allein vom Lebenslauf seiner Mutter abhängt, ist hiermit
auch für jedes weitere Individuum neben dem Ursprung sein Typ festgelegt.
Definieren wir uns noch für M ⊂ I die Projektionen

UM : S × ΩI → ΩM ŨM : ΩI → ΩM ,

wobei Ux ( Ũx ) kurz für U{x} ( Ũ{x}) stehe, so können wir jede auf
dem Lebenslauf-Raum definierte Zufallsvariable Z auf den Populationsraum
übertragen durch

Zx := Z ◦ Ux für x ∈ I.

Zx gibt dann gerade den Wert von Z für das Individuum x der Population an.
Ähnlich definieren wir folgende beiden Funktionen

τx := τ(rx) ◦ Umx =̂ Alter der Mutter bei Geburt von x (2.1)

ρx := ρ(rx) ◦ Umx =̂ Typ von x (2.2)

An (2.2) läßt sich nun erkennen, daß die erste unserer gestellten Forderungen an
die Population erfüllt ist: Der Typ eines Individuums hängt nur vom Lebenslauf
seiner Mutter ab.
Mithilfe der letzten Funktion ρx kann man nun auch Zufallsvariablen Z auf
(S × Ω) durch

Zx := Z(ρx, Ux)

auf den Populationsraum übertragen.
Weiter definieren wir eine Shiftfunktion, die die Beobachtung eines einzelnen
aus einem Indivduum x hervorgegangenen Populationszweig ermöglicht, indem
x in den Ursprung “geshiftet” wird:

Sx := (ρx, UPr{x}) (2.3)

Interessanter als das Alter seiner Mutter bei Geburt eines Individuums x ist
natürlich der absolute Zeitpunkt seiner Geburt, definiert man den Zeitpunkt
der “Geburt” des Ursprungs als 0. Dieser wird durch die Zufallsgröße

σx = σmx + τx , σ0 ≡ 0

iterativ bestimmt.
Wir definieren weiter für L ⊂ I die sogenannten Prä-L-σ-Algebren

FL := S × σ(Ũx;L 6≺ x) = S × σ(Ũx;x 6∈ PrL).

Elemente aus FL sind also anschaulich Ereignisse, die nicht von Nachfahren von
L (und damit insbesondere auch nicht von L selbst) abhängen. Wir schreiben
wieder nur kurz Fx für F{x}.
Offensichtlich sind τx, ρx, σx Fx-meßbar.
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Folgende beiden Lemmata sind leicht nachzurechnen:

Lemma 2.2.2
{FL ; L ⊂ I} ist eine Filtration unter ≺ .

Insbesondere für L, M ⊂ I

L ⊂M ⇒M ≺ L⇒ FM ⊂ FL

Lemma 2.2.3
FL∪M = FM ∩ FL FM = FhM

2.2.3 Das Wahrscheinlichkeitsmaß

Nun geht es daran, ein geeignetes Wahrscheinlichkeitsmaß auf dem
Populationsraum zu definieren, welches unseren Vorstellungen von dem Modell,
also insbesondere Punkt 1a) unserer Forderungen, entspricht. Gegeben sei ein
stochastischer Kern P : S×A −→ [0, 1]. Dabei gebe P (s, ·) gerade die Verteilung
auf dem Lebenslauf-Raum für ein Individuum mit Typ s an.
IN sei eine Aufzählung von I derart, daß die Mutter in der Aufzählung stets
ihren Kindern vorangestellt sei. (Die Funktionen m und r werden in kanonischer
Weise auf IN übertragen, d.h. m(n) liefert die natürliche Zahl, die in obiger
Aufzählung die Mutter des Individuums n repräsentiert und r(n) gibt den
Rang des Individuums n in der Aufzählung an). Ebenso sei ωn entsprechend der
Schreibweise ωx, x ∈ I der Lebenslauf des Individuums n in der Aufzählung).
Für beliebiges, aber festes s ∈ S, welches den Typ des Ursprungs festlege,
definieren wir

P0 := P (s, ·)

und den Kern Pn von (Ω× . . .× Ω︸ ︷︷ ︸
n−mal

,A⊗ . . .⊗A︸ ︷︷ ︸
n−mal

) nach (Ω,A)

Pn

(
(ω0, . . . ωn−1), A) = P (ρ(r(n))(ωm(n)), A

)
, n ≥ 1,

wobei die spezielle Art der Aufzählung - Kinder folgen ihren Müttern -
garantiert, daß ωm(n) ∈ {ω0, . . . ωn−1}.
Nach Ionescu-Tulcea existiert dann ein eindeutig bestimmtes Maß Ps auf
(ΩI ,AI) mit

Ps(A0 × . . .×An × ΩIN\{0,...n})

=
∫

A0

. . .

∫
An

Pn((ω0, . . . , ωn−1), dωn) Pn−1((ω0, . . . , ωn−2), dωn−1)

. . . P0(dω0)

=
∫

A0

. . .

∫
An

P
(
ρ(r(n))(ωm(n)), dωn

)
P (ρ(r(n− 1))(ωm(n−1)), dωn−1)

. . . P (s, dω0)

für A0, · · ·An ∈ A. Durch P̃s(A) = Ps({ωI ∈ ΩI ; (s, ωI) ∈ A}) wird ein
Wahrscheinlichkeitsmaß auf dem Populationsraum definiert, welches wir der
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Einfachheit halber auch wieder mit Ps bezeichnen. Aus der Konstruktion von
Ps folgt nun die gewünschte Eigenschaft 1a) der Population, daß die Lebenslauf-
Verteilung eines Individuums nur von seinem Typ abhängt.
In Situationen, wo der Starttyp s beliebig, aber fest gewählt sei, die spezielle
Wahl von s aber für unsere Zwecke unbedeutend ist, schreiben wir auch nur
kurz P statt Ps.
Es bezeichne den Erwartungswert unter dem Wahrscheinlichkeitsmaß Ps und
auch hier schreiben wir der Einfachheit halber gelegentlich nur E.

2.3 Die Markov-Eigenschaft der Population

In diesem Abschnitt wollen wir die gewünschte und nun vielleicht auch schon
zu vermutende bedingte Unabhängigkeit verschiedener Populationszweige in
nachfolgendem Theorem verifizieren.

Theorem 2.3.1 Gegeben eine Stoplinie L ⊂ I und nichtnegative, meßbare
Funktionen ϕx : (D,D) → (IR+,B+), x ∈ L. Sx sei die in (2.3) definierte
Shiftfunktion. Dann gilt für jedes s ∈ S

Es

[∏
x∈L

ϕx ◦ Sx|FL

]
=
∏
x∈L

Eρx [ϕx] Ps-f.s. (2.4)

Beweis:
Betrachten wir zunächst den Fall, daß L endlich und ϕx für alle x ∈ L
Indikatorfunktionen der Form

ϕx =
nx∏

k=0

1Ax
k
(Uxk) mit nx ∈ IN, x0, . . . xnx ∈ I und Ax

0 , . . . Ax
nx ∈ A

sind. Ohne Einschränkung werde angenommen, daß x0 = 0 und
An({x0, . . . xnx}) = {xo, . . . , xnx}, d.h. mit jedem x seien auch all seine
Vorfahren in {x0, . . . xnx} enthalten.
Wir erinnern daran, daß xxk die Konkatenation von x und xk bezeichne. Damit
gilt offensichtlich

ϕx ◦ Sx =
nx∏

k=0

1Ax
k
(Uxxk) ∀x ∈ L.

Sei nun B ∈ FL. Also B = D× Ũ−1
I\PrL(C) für C ∈ AI\PrL und D ∈ S geeignet.

Ohne Einschränkung sei D = {s} (da der Rest Nullmenge unter Ps ist). Wir
zeigen

Ps

(
B ∩

⋂
x∈L

nx⋂
k=0

S−1
x ◦ U−1

xk
(Ax

k)

)
=
∫

B

∏
x∈L

Eρx [ϕx] dPs

und damit die Behauptung, da ρx für alle x ∈ L FL-meßbar und damit auch∏
x∈L Eρx(ϕx) FL-meßbar ist.

Wir schreiben kurz P
I\PrL
s für P

UI\PrL
s .
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Ps

(
B ∩

⋂
x∈L

nx⋂
k=0

S−1
x ◦ U−1

xk
(Ax

k)

)
= Ps

(
B ∩

⋂
x∈L

nx⋂
k=0

U−1
xxk

(Ax
k)

)

=
∫

C

∏
x∈L

(∫
Ax0

. . .

∫
Axnx

P (ρ(r(xxnx))(ωm(xxnx )), dωxxnx

. . . P (ρ(r(xx0))(ωm(xx0)), dωxx0)
)

P I\PrL
s (dω)

=
∫

C

∏
x∈L

(∫
Ax0

. . .

∫
Axnx

P (ρ(r(xnx))(ωm(xnx )), dωxnx

. . . P (ρ(r(x))(ωm(x)), dω0)
)

P I\PrL
s (dω)

=
∫

B

∏
x∈L

Eρx(ω)(ϕx) Ps(dω),

wobei die Produktdarstellung durch die Linieneigenschaft von L ermöglicht
wird. In der 3. Gleichheit findet lediglich eine Umnumerierung unter
Berücksichtigung von x0 = 0 statt.

Für endliches L kann man nun leicht die Gültigkeit von (2.4) auf Funktionen
der Form

∑n
k=1 αkuk mit αk > 0 und uk Indikatorfunktionen (von obiger Form)

erweitern. Dann folgt mit monotoner Konvergenz die Behauptung für endliches
L und nichtnegative, meßbare Funktionen. Die Erweiterung der Behauptung
auf unendliche L folgt mit Hilfe einer Folge endlicher Linien Ln ⊂ L Ln ↑ L.
Denn da mit

Mn := Es[
∏
x∈L

ϕx ◦ Sx|FLn ]

(Mn)n∈IN nach Lemma 2.2.2 inverses Martingal ist und wegen FL = ∩nFLn gilt

Mn
f.s.−→ Es[

∏
x∈L

ϕx ◦ Sx|FL]

und wegen

x ∈ L\Ln =⇒ x 6∈ PrLn =⇒ Sx ist FLn-meßbar

folgt

Es[
∏
x∈L

ϕx ◦ Sx|FL] = lim
n→∞

Es[
∏
x∈L

ϕx ◦ Sx|FLn ]

= lim
n→∞

 ∏
x∈L\Ln

ϕx ◦ Sx

∏
x∈Ln

Eρx [ϕx]


=

∏
x∈L

Eρx [ϕx] Ps-f.s.

2
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Theorem 2.3.2 Sei {P̃s , s ∈ S} eine Menge von Wahrscheinlichkeitsmaßen
auf dem Populationsraum (D,D) mit der Eigenschaft, daß
P̃s(Sx ∈ ·|Fx) = P̃ρx(·).
Dann sind für jede Linie L ⊂ I unter P̃s (mit s beliebig) die Sx, x ∈ L bedingt
unter FL unabhängig.

Beweis:
Sei L als endlich angenommen. Also L = {x1, . . . xn}. ϕxi seien für i = 1, . . . n
Indikatorfunktionen. Mit x1 ∈ L⇒ FL ⊂ Fx1 folgt nun

Ẽs

[
n∏

i=1

ϕxi ◦ Sxi |FL

]
= Ẽs

[
Ẽs[

n∏
i=1

ϕxi ◦ Sxi |Fx1 ]|FL

]

= Ẽs

[
n∏

i=2

ϕxi ◦ SxiẼs [ϕx1 ◦ Sx1 |Fx1 ] |FL

]

= Ẽs

[
n∏

i=2

ϕxi ◦ SxiẼρx1
[ϕx1 ]|FL

]

= Ẽρx1
[ϕx1 ] Ẽs

[
n∏

i=2

ϕxi ◦ Sxi |FL

]
.

Iterativ erhält man nun unter Berücksichtigung von Ẽρxi
[ϕxi ] = Ẽs[ϕxi◦Sxi |FL]

(Argumentation wie oben)

Ẽs

[
n∏

i=1

ϕxi ◦ Sxi |FL

]
=

n∏
i=1

Ẽρxi
[ϕxi ] =

n∏
i=1

Ẽs[ϕxi ◦ Sxi |FL]

und damit das Gewünschte.
Die Verallgemeinerung auf unendliche L verläuft analog zur entsprechenden
Verallgemeinerung im Beweis von Theorem 2.3.1

2

Die Aussage der Theoreme 2.3.1 und 2.3.2 werden wir auch als Markov-
Eigenschaft der Population bezeichnen. Der Grund dafür liegt auf der Hand: Der
Lebenslauf von Individuen aus der Nachkommenschaft einer Linie L gegeben
FL, also die Informationen über sämtliche Individuen außer den Nachfahren
von L, hängt nur von den Typen der “Linien-Individuen” ab, also nur von
Informationen über die direkten Vorfahren von L. Dies ist aber doch gerade die
Markovsche Struktur.
Auch eine Form zeitlicher Homogenität liegt vor:
Ist x1 ∈ I Nachkomme von x2 ∈ I, also x1 = x2y mit y ∈ I geeignet, so ist
sein Lebenslauf gegeben die Informationen über alle “Nicht-Nachfahren” von
x2 verteilt wie der Lebenslauf von y unter dem Wahrscheinlichkeitsmaß Pρx2

,
unter dem der Ursprung den Typ ρx2 hat.
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2.4 Optionalität

Stellt sich nun die Frage, ob ein ähnliches Analogon zur starken Markov-
Eigenschaft existiert. Dazu wäre jedoch zuerst einmal ein Analogon zu
Stopzeiten für Markov-Ketten erforderlich, welches nachfolgende Definition
liefert:

Definition 2.4.1 Eine Abbildung J : S × ΩI → P(I) (mit P(I) =
Potenzmenge von I) heißt optional, wenn

{J ≺ L} ∈ FL ∀L ⊂ I. (2.5)

Ist J(ω) auch noch Stoplinie für jedes ω ∈ D, so heißt J optionale Linie.

Bemerkung 2.4.2 Es genügt in obiger Definition (2.5) nur für Linien L ⊂ I
zu fordern, da sich unter Berücksichtigung von {J ≺ L} = {J ≺ hL},FL = FhL

und der Tatsache, daß hL Linie ist, an der Definition dann nichts ändert.

Analog zu den Bezeichnungen für Linien sagen wir, daß die optionale Linie J1

eine optionale Linie J2 überdeckt, wenn

{J2 ≺ J1} Ps-f.s. ∀s ∈ S

und

∀x ∈ PrJ2 ∃y ∈ J1 : x ≺ y ∨ y ≺ x Ps-f.s. ∀s ∈ S.

Überdeckt die optionale Linie J den Ursprung, so heißt sie wieder nur kurz
überdeckend; sie habe endliche Generation, wenn

g(J) <∞ Ps-f.s. ∀s ∈ S.

Die Klasse der überdeckenden optionalen Linien bezeichnen wir mit C̄, die
Klasse der überdeckenden optionalen Linien mit endlicher Generation mit C̄0.
Eine Folge (Jn)n∈IN heißt wieder aufsteigend (absteigend), wenn

Jn ≺ Jn+1 (Jn+1 ≺ Jn) Ps-f.s. ∀s ∈ S.

Nachfolgendes Lemma soll zeigen, daß auch auf C̄0 durch ≺ eine (wenn auch
schwächere) Ordnung gegeben ist. (Diesselbe Aussage ließe sich auch für C̄
treffen, ist für unsere Zwecke aber unbedeutend.)

Satz 2.4.3 C̄0 ist mit der Relation ≺ eine nach oben gerichtete Menge in dem
Sinne, daß

J1, J2 ∈ C̄0 =⇒ ∃J ∈ C̄0 : J1 ≺ J ∧ J2 ≺ J.

Beweis:
Wie schon im Beweis von Satz 2.2.1 definieren wir

J := {x ∈ J1;J2 ≺ x} ∪ {x ∈ J2;J1 ≺ x}.
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Daß J eine überdeckende Linie endlicher Generation ist und J1 ≺ J sowie
J2 ≺ J gilt, ist analog zum Beweis von Satz 2.2.1 zu zeigen.
J ist aber auch optional, denn

{J ≺M} = {J1 ≺M} ∩ {J2 ≺M} ∈ FM ∀M ⊂ I.

Denn:
′′ ⊂ “ : ω ∈ {J ≺M}
Sei m ∈M beliebig ⇒ ∃x ∈ J(ω) : x ≺ m
1.Fall : x ∈ J1(ω) ∧ ∃y ∈ J2(ω) : y ≺ x⇒ J1(ω) ≺ m ∧ J2(ω) ≺ x ≺ m
(Der 2.Fall x ∈ J2(ω) verläuft analog)
Da m ∈M beliebig : ω ∈ {J1 ≺M} ∩ {J2 ≺M}
′′ ⊃′′: ω ∈ {J1 ≺M} ∩ {J2 ≺M}
Sei m ∈M beliebig ⇒ (∃x ∈ J1(ω) : x ≺ m) ∧ (∃y ∈ J2(ω) : y ≺ m)
⇒ ∃a ∈ I : xa = y ∨ ya = x
Ohne Einschränkung sei xa = y und damit y ∈ J(ω).
Da m ∈M beliebig gewählt, also ω ∈ {J ≺M}.

2

Anders als C0 ist C̄0 keine nach unten gerichtete Menge mehr. Der Versuch
analog zu dem Vorgehen in Satz 2.2.1
J1 ∧ J2 := {x ∈ J1;∃y ∈ J2 : x ≺ y} ∪ {x ∈ J2;∃y ∈ J1 : x ≺ y} als untere
Schranke zu wählen, scheitert an der Tatsache, daß J1 ∧J2 nicht mehr optional
sein muß.

Anschaulich gibt eine optionale Linie die zufallsabhängige Auswahl von
Individuen an, deren Nachfahren ein Betrachter nicht mehr beobachtet. Das
Ereignis, “vor L zu stoppen”,{J ≺ L}, d.h. die Nachfahren von L nicht mehr
zu beobachten, hängt dabei nur von den Beobachtungen bis zum Zeitpunkt L
ab.
Optionale Linien in unserem Modell sind also in der Tat mit dem Konzept der
Stopzeiten bei Markov-Ketten vergleichbar.

Nun einige Beispiele, um obige Begriffe etwas zu veranschaulichen:
Dabei ist zu beachten, daß wenn stets 0 ∈ J gilt, ist J optional, da {J ≺ L} ⊃
{0 ≺ L} = S × ΩI ∈ FL.

• Yt = {x ∈ I;σx ≤ t}, t ∈ IR =̂ Menge der bis zum Zeitpunkt t geborenen
Individuen.
Da 0 ∈ Y ist wie oben erläutert Y optional.(Aber natürlich im allgemeinen
keine Linie.)

• < := {x ∈ I;σx < ∞} =̂ Menge aller “realisierten”, d.h. tatsächlich
geborenen Individuen ist aus dem selben Grund wie Y optional.

• Ist λ : S × Ω → IR eine meßbare Funktion, die die Lebensdauer eines
Individuums mit Lebenslauf ω angibt, so ist
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L := {x ∈ I;σx ≤ t < σx + λx} die Menge der zum Zeitpunkt t lebenden
Individuen. Da λx eine Funktion in Ux ist und damit nicht Fx-meßbar,
ist L nicht optional, denn {L ≺ x} = ∪k≥0{σmkx ≤ t < σmkx + λmkx} ist
daher nicht Fx-meßbar.
L ist offensichtlich im allgemeinen auch keine Linie.
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• Eine wichtige Rolle wird später die Menge der nach t folgenden Generation
Zt := {x ∈ I;σmx ≤ t < σx} spielen. Daß Zt die Eigenschaft der Stoplinie
erfüllt, ist aus der Definition gegeben. Die Optionalität folgt aus der
Darstellung {Zt ≺ L} = ∩x∈L ∪k≥0 {t < σmkx} und der Tatsache, daß
σmkx FL-meßbar ist für x ∈ L und k ∈ IN0 (L sei ohne Einschränkung
Linie).

• Zählt man die Individuen geordnet nach ihrem Geburtszeitpunkt auf, so
sei Xn das n-te Individuum in dieser Aufzählung, d.h. das n.-Geborene.
Xn ist trivialerweise eine Linie, da es nur aus einem Element besteht. Für
L ⊂ I gilt

{Xn ≺ L} = ∩x∈L ∪k≥0 {mkx = Xn}
= ∩x∈L ∪k≥0 {ω ∈ D; #{y 6∈ Prx;σy(ω) < σmkx(ω)} = n− 1}
= ∩x∈L ∪k≥0 {ω ∈ D; #{y 6∈ PrL;σy(ω) < σmkx(ω)} = n− 1} ∈ FL.

Damit ist Xn also auch optional.

• Die “realisierte” n-te Generation INn ∩ < = {x ∈ INn;σx < ∞} ist als
Teilmenge von INn offenbar eine Linie.
Wegen

{INn ∩ < ≺ L} = ∩x∈L{mg(x)−nx ∈ <}
= ∩x∈L{σmg(x)−nx <∞} ∈ FL

ist INn ∩ < also auch optional. (Existiert ein x ∈ L mit g(x) < n, so ist
{INn ∩ < ≺ L} als leere Menge trivialerweise in FL enthalten.)

Nun definieren wir uns für eine optionale Abbildung J analog zu Fτ , der σ-
Algebra der τ -Vergangenheit für Stopzeiten τ , die Prä-J -σ-Algebra oder auch
σ-Algebra der J -Vergangenheit FJ :

Definition 2.4.4 Sei J optionale Linie.

A ∈ FJ :⇐⇒ ∀L ⊂ I : A ∩ {J ≺ L} ∈ FL

Wir werden jetzt einige nützliche Eigenschaften und Rechenregeln für optionale
Abbildungen und ihre σ-Algebra der J-Vergangenheit zusammenstellen, wozu
im folgenden stets L ⊂ I und J : S × ΩI → P(I) angenommen werde.

Lemma 2.4.5
J ist optional ⇐⇒ {J ≺ L} ∈ FL für alle endlichen L

Ist J optional, so ist A ∈ FJ ⇐⇒ A ∩ {J ≺ L} ∈ FL für alle endlichen L

Beweis:
Wir zeigen nur die Rückrichtung der zweiten Behauptung, da ihre Hinrichtung
trivial und die erste Behauptung mit ähnlichen Argumenten zu zeigen ist.
Es gelte A∩{J ≺ L} ∈ FL für alle endlichen L. Wähle zu beliebigem L endliche
Ln mit Ln ↑ L. Nach Lemma 2.2.2 ist FLn+1 ⊂ FLn und damit FL = ∩nFLn .
Mit ∩n{J ≺ Ln} = {J ≺ ∪nLn} folgt dann

A ∩ {J ≺ L} = A ∩ {J ≺ ∪nLn} = A ∩ ∩n{J ≺ Ln} ∈ FLn ∀n ∈ IN
=⇒ A ∩ {J ≺ L} ∈ FL.
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2

Lemma 2.4.6 Sei M ⊂ I.

J ≡M =⇒ J ist optional und FJ = FM

Beweis:
{J ≺ L} ∈ {∅, S × ΩI} und damit ist J optional.

A ∈ FJ ⇒ A = A ∩ {J ≺M} ∈ FM

A ∈ FM ⇒ A ∩ {J ≺ L} =

{
∅ : M 6≺ L
A : M ≺ L

Und da aus M ≺ L FM ⊂ FL folgt, damit A ∩ {J ≺ L} ∈ FL,
d.h. (L beliebig) A ∈ FJ .

2

Lemma 2.4.7
J optional =⇒ {J ≺ L} ∈ FJ

Beweis:
Mit Lemma 2.2.2 und Lemma 2.2.3 folgt

{J ≺ L} ∩ {J ≺M} ∈ FL ∩ FM = FL∪M ⊂ FM .

2

Lemma 2.4.8 Seien J1 und J2 optional.

J1 ≺ J2 =⇒ FJ1 ⊂ FJ2

Beweis:
Für A ∈ FJ1 ist wegen {J2 ≺ L} ⊂ {J1 ≺ L}

A ∩ {J2 ≺ L} = A ∩ {J1 ≺ L} ∩ {J2 ≺ L} ∈ FL.

2

Lemma 2.4.9 Sei J optionale Linie.

{x ∈ J} ∈ FJ ∩ Fx
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Beweis:
Mit Hilfe von Lemma 2.4.7 folgt {x ∈ J} JLinie= {J ≺ x} ∩ {J ≺ mx}c ∈ FJ

und wegen Fmx ⊂ Fx ist {x ∈ J} damit auch schon in Fx.

2

Lemma 2.4.10 Sei J optionale Linie.

{L ⊂ J} ∈ FJ ∩ FL und {J ⊂ L} ∈ FJ

Beweis:
{L ⊂ J} =

⋂
x∈L
{x ∈ J} ∈ FJ nach Lemma 2.4.9

{L ⊂ J} =
⋂
x∈L

{x ∈ J} JLinie=
⋂
x∈L

({J ≺ x} ∩ {J ≺ mx}c)

= {J ≺ L} ∩
⋂
x∈L

{J ≺ mx}c ∈ FL

wobei der letzte Schritt aus der Optionalität und Lemma 2.4.7 folgt.

{J ⊂ L} = {Lc ⊂ Jc} =
⋂

x∈Lc

{x ∈ J}c ∈ FJ nach Lemma 2.4.9

2

Lemma 2.4.11 Sei J optionale Linie.

{J = L} ∈ FJ

Beweis:
Folgt direkt aus {J = L} = {J ⊂ L} ∩ {L ⊂ J} und Lemma 2.4.10.

2

Lemma 2.4.12 Sei J optionale Linie und A ∈ FL oder A ∈ FJ .

A ∩ {J = L} ∈ FJ ∩ FL

Beweis:
Sei A ∈ FL. (Für A ∈ FJ ist der Nachweis ähnlich.)

A ∩ {J = L} = A ∩ {J = L} ∩ {J ≺ L} ∈ FL,

denn {J = L} ∈ FJ (Lemma 2.4.11)

A ∩ {J = L} ∩ {J ≺M} = A ∩ {J = L} ∩ {L ≺M}

=

{
∅ : L 6≺M

A ∩ {J = L} : L ≺M

Und mit L ≺M ⇒ FL ⊂ FM und dem schon Gezeigtem ist damit

A ∩ {J = L} ∩ {J ≺M} ∈ FM .

2
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Lemma 2.4.13 Ist (Jn)n∈IN eine absteigende Folge optionaler Linien, gilt

J := h
⋃
n

Jn ist optionale Linie und FJ =
⋂
n

FJn .

Beweis:
Sei L ⊂ I endlich, d.h. L = {x1, . . . xm}.

{J ≺ L} = {L ⊂ Pr(∪nJn)} = {L ⊂ ∪nPrJn}
(∗)
= ∪n{L ⊂ PrJn}

= ∪n{Jn ≺ L} ∈ FL,

denn offenbar ist ∪nPrJn = Pr(∪nJn) und die Gleichheit (∗) gilt wegen
∪n{L ⊂ PrJn} ⊂ {L ⊂ ∪nPrJn} (klar) und L ⊂ ∪nPrJn(ω) ⇒ xk ∈
PrJnk(ω) ∀k = 1 . . . m (n1, . . . , nk geeignet) ⇒ L ⊂ PrJmax{n1,...nm}(ω).
Nach Lemma 2.4.5 ist J optional und nach Definition (als Kopf einer Menge)
auch Linie. Für die zweite Behauptung des Lemmas erhält man wegen J ≺
Jn ∀n und Lemma 2.4.8 FJ ⊂ ∩nFJn .

Für endliches L und A ∈ ∩nFJn gilt A ∩ {J ≺ L} (∗)
= ∪nA ∩ {Jn ≺ L} ∈ FL

und mit Lemma 2.4.5 damit A ∈ FJ . Die Gleichheit bei (*) resultiert aus der
schon nachgewiesenen Beziehung {J ≺ L} = ∪n{Jn ≺ L}.

2

Lemma 2.4.14 Sei J optionale Linie und K ⊂ I.

J ∩K ist optionale Linie.

Beweis:
Die Linieneigenschaft ist klar. Für den Nachweis der Optionalität sei zuerst K
endlich.

{J ∩K ≺ L} =
⋃

M⊂K; M≺L

{M ⊂ J} ∈ FL,

da nach Lemma 2.4.10 {M ⊂ J} ∈ FM ⊂ FL für M ≺ L.
(Die Endlichkeit von K wurde wegen der benötigten Abzählbarkeit der
Vereinigung gewählt.)
Sei nun K beliebig und Kn ↑ K mit Kn endlich.

J ∩K = ∪n(J ∩Kn) J∩K Linie= h(∪n(J ∩Kn))

und mit J ∩ Kn+1 ≺ J ∩ Kn, Lemma 2.4.13 und eben Gezeigtem folgt die
Optionalität von J ∩K.

2

Lemma 2.4.15 Sei J optional.

J ∩ < = J ∩ {x ∈ I;σx <∞} ist optional.
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Beweis:

{J ∩ < ≺ L} =
⋂

x∈hL

g(x)⋃
k=0

({mkx ∈ J} ∩ {σmkx <∞})

=
⋂

x∈hL

g(x)⋃
k=0

(
{J ≺ L} ∩ {mkx ∈ J}) ∩ {σmkx <∞}

)
∈ FL

In letzter Gleichung geht Lemma 2.4.9 ein.

2

Obiger Beweis läßt sich leicht erweitern für folgende Erweiterung von Lemma
2.4.15:

Lemma 2.4.16 Sei J1 optionale Linie und J2 so, daß {x ∈ J2} ∈ FL ∀x ∈
(L ∪AnL).
Dann ist J1 ∩ J2 eine optionale Linie.

2.5 Die starke Markov-Eigenschaft der Population

Nachdem wir nun einige Rechenregeln zusammengestellt haben, bekommen wir
nun die ersten “interessanteren” Resultate:

Lemma 2.5.1 Sei ϕ : (D,D) → (IR+,B+) eine meßbare, nichtnegative
Funktion, J eine optionale Linie und L ⊂ I. Dann gilt

E[ϕ|FJ ]1{J=L} = E[ϕ|FL]1{J=L} P -f.s.

Beweis:
Wir zeigen zuerst, daß E[ϕ|FL]1{J=L} FJ -meßbar ist:
Sei A ∈ B+, M ⊂ I beliebig.
1.Fall : 0 6∈ A(

E[ϕ|FL]1{J=L}
)−1

(A) ∩ {J ≺M}
= E[ϕ|FL]−1(A) ∩ {J = L} ∩ {J ≺M}

=

{
∅ : L 6≺M

E[ϕ|FL]−1(A) ∩ {J = L} ∩ {J ≺M} : L ≺M
∈ FM

unter Berücksichtigung von {J = L} ∈ FJ (Lemma 2.4.11) und
L ≺M ⇒ FL ⊂ FM .
Der Fall 0 ∈ A verläuft analog unter Beachtung von(

E[ϕ|FL]1{J=L}
)−1

(A) ∩ {J ≺M}

= ({J 6= L} ∩ {J ≺M}) ∪
(
{J = L} ∩ {J ≺M} ∩ E[ϕ|FL]−1(A)

)
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Damit ist die FJ -Meßbarkeit gezeigt. Sei nun A ∈ FJ .∫
A

E[ϕ|FL]1{J=L}dP =
∫

A∩{J=L}
E[ϕ|FL]dP

∗=
∫

A∩{J=L}
ϕdP,

wobei die Gleichheit in (∗) aus Lemma 2.4.12 folgt. Da nach Lemma 2.4.11
{J = L} ∈ FJ damit also

E[ϕ|FJ ]1{J=L} = E[ϕ1{J=L}|FJ ] = E[ϕ|FL]1{J=L} P -f.s.

2

Korollar 2.5.2 Sei ϕ : (D,D) → (IR+,B+) eine meßbare, nichtnegative
Funktion und J eine optionale Linie, die nur abzählbar viele Werte annimmt.
L ⊂ P(I) bezeichne diese Menge. Dann gilt

E[ϕ|FJ ] =
∑
L∈L

E[ϕ|FL]1{J=L} P -f.s.

Beweis:
Mit der Darstellung E[ϕ|FJ ] =

∑
L∈L

E[ϕ|FJ ]1{J=L} P -f.s. ist unter Hinweis auf

Lemma 2.5.1 nichts mehr zu zeigen.

2

Unter Beachtung, daß die endlichen Teilmengen von I abzählbar sind, werden
wir dieses Korollar häufig für endliche optionale Linien, d.h. optionale Linien,
die als Werte nur endliche Teilmengen aus I annehmen, anwenden.

Nun sind wir soweit, das entsprechende Pendant zur starken Markov-
Eigenschaft für Markov-Ketten zu beweisen, welches lautet:

Theorem 2.5.3 Seien ϕx : S×ΩI → [0, 1] für jedes x ∈ I meßbare Funktionen
und J eine optionale Linie. Dann gilt

E

[∏
x∈J

ϕx ◦ Sx|FJ

]
=
∏
x∈J

Eρx [ϕx] P -f.s.

Beweis:
ϕ :=

∏
x∈J

ϕx ◦ Sx.

Sei J als endlich angenommen und bezeichne fI die Menge der endlichen
Teilmengen von I. Mit Korollar 2.5.2 und Theorem 2.3.1 erhält man

E[ϕ|FJ ] =
∑

L∈fI

E[
∏
x∈L

ϕx ◦ Sx|FL]1{J=L}

=
∑

L∈fI

∏
x∈L

Eρx [ϕx]1{J=L}

=
∏
x∈J

Eρx [ϕx] P -f.s.
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Sei nun J nicht mehr als endlich vorausgesetzt.
Wir definieren für endliche Kn ⊂ I mit Kn ↑ I die (nach Lemma
2.4.14) optionalen, endlichen Linien Jn := J ∩ Kn. Da offensichtlich (Jn)n∈IN

absteigende Folge und h(∪nJn) = h(J) = J gilt nach Lemma 2.4.13 FJ =
∩nFJn .
Wegen FJn+1 ⊂ FJn ist (E[ϕ|FJn ])n∈IN inverses Martingal und daher (siehe
Neveu[9], Seite 118)

E[ϕ|FJn ]
P -f.s.→ E[ϕ|FJ ]

und damit

E[ϕ|FJ ] = lim
n→∞

E[
∏
x∈J

ϕx ◦ Sx|FJn ]

= lim
n→∞

E[
∏

x∈J\Jn
ϕx ◦ Sx

∏
x∈Jn

ϕx ◦ Sx|FJn ]

(∗)
= lim

n→∞

∏
x∈J\Jn

ϕx ◦ Sx

∏
x∈Jn

Eρx [ϕx]

=
∏
x∈J

Eρx [ϕx] P -f.s.

Die in (∗) benötigte FJn-Meßbarkeit von
∏

x∈J\Jn
ϕx ◦ Sx läßt sich leicht

nachweisen.

2

Wir nennen die Aussage dieses Theorems im folgenden auch nur starke Markov-
Eigenschaft.

2.6 Die Malthusische Population

Um das asymptotische Verhalten der Population, also ihr Langzeitverhalten
untersuchen zu können, müssen wir eine wesentliche Voraussetzung an sie stel-
len: Ihr Wachstum muß “in den Griff zu bekommen sein”. Diese Forderung
werden wir nun mathematisch präzisieren:
Wir definieren den Reproduktionsprozeß ξ, den Reproduktionkern µ sowie den
zugehörigen Erneuerungskern ν durch

ξ(A×B) = #{n ∈ IN; ρ(n) ∈ A, σ(n) ∈ B}

ξx(A×B) = ξ(A×B) ◦ Ux

µ(s, A×B) =
∫

Ω
ξ(A×B)(ω)P (s, dω) = Es[ξ0(A×B)]

ν(s, A×B) =
∑
n≥0

µn(s, A×B)
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mit s ∈ S, A ∈ S, B ∈ B.
µ werde als irreduzibel (π bezeichne das maximale irreduzible Maß ) und
quasi-π ⊗ λλ-stetig angenommen. Nach Abschnitt 1.3.2, Satz 1.3.10 erfüllt
µ damit die Minorisierungsbedingung und µ sei α-rekurrent, habe also
insbesondere endlichen Konvergenzparameter α. (Dies ist gerade die oben
genannte Voraussetzung an das Populationswachstum.)
Unter diesen Voraussetzungen existieren nach Abschnitt 1.3.5, Theorem 1.3.22
und Theorem 1.3.23 für µα eine invariante Funktion h sowie ein invariantes
Maß, welches auch maximales irreduzibles Maß für µ ist und daher ohne
Einschränkung schon π selbst dieses Maß sei.
Nun definieren wir uns den Kern Q : S × (S ⊗ B) −→ IR+ durch

Q(r, ds× dt) =
h(s)
h(r)

µα(r, ds× dt)

und setzen voraus, daß

0 < β :=
∫

S

∫
S×IR+

th(s)µα(r, ds× dt)π(dr) <∞. (2.6)

Nach Kapitel 1.4, Satz 1.4.15 ist Q nichtnegativer, irreduzibler, quasi-π ⊗ λλ-
stetiger, positiv-rekurrenter Übergangskern mit invariantem Maß hπ, definiert
durch

hπ(A) :=
∫

A
h(s)π(ds).

Wir nehmen zusätzlich an, daß hπ endlich ist, also ohne Einschränkung ein
Wahrscheinlichkeitsmaß.
Sind all diese Voraussetzungen gegeben, nennen wir die Population Malthusisch
und α den Malthusischen Parameter. Schauen wir uns diese gegebenen
Voraussetzungen nun noch einmal aus anschaulicher Perspektive an:
µ(s, A × B) gibt offenbar die durchschnittliche Anzahl von Individuen erster
Generation an, deren Typ in A und Geburtszeitpunkt in B liegt. Entsprechend
erhält man durch einfache Rechnung, daß µn die durchschnittliche Anzahl von
Individuen der n-ten Generation mit Typ in A und Geburtszeitpunkt in B
angibt. Der Erneuerungskern ν ist also nichts anderes als die durchschnittliche
Anzahl aller Individuen der Population mit Typ in A und Geburtszeitpunkt
in B. Die durchschnittliche Anzahl der Individuen erster Generation kann nun
durch Übergang zu µα exponentiell erhöht oder verringert werden. Dabei gibt
der Malthusische Paramter genau denjenigen Wert α an, daß eine Abweichung
von α nach oben bzw. unten zum Aussterben zumindest einiger Typenmengen
(nämlich den kleinen Mengen) bzw. zur Explosion der Population führen würde.
Aus diesen Gründen heißt eine Population auch superkritisch, wenn α > 0,
kritisch, wenn α = 0 und subkritisch, wenn α < 0. Mit der Voraussetzung α ≥ 0
schließen wir den eher uninteressanten subkritischen Fall aus.
Irreduzibilität besagt gerade, daß keine “disjunkten Typenmengen” existieren
sollen, d.h. die Möglichkeit, daß ein Individuum mit Typ s keine Nachfahren
mit Typ in A ∈ S+ haben kann, wird ausgeschlossen.
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2.7 Das intrinsische Martingal

Als wichtiges Hilfsmittel für die Untersuchung des Langzeitverhaltens einer
Malthusischen Population wird uns der folgende intrinsische Prozess {wM ;M ⊂
I} dienen, definiert durch

wM =
∑
x∈M

e−ασxh(ρx).

Offensichtlich gilt wM = wM∩<.
Wir nennen eine Folge (wLn)n∈IN auch aufsteigend, wenn dies für (Ln)n∈IN gilt.
In den Theoremen 2.7.3 und 2.8.7 werden wir nachweisen, daß {wM ;M ∈ C0}
sowie {wJ ;J ∈ C̄0} Martingale bzgl. (FM )M∈C0 bzw. (FJ)J∈C̄0 bilden. Im
nachfolgenden Kapitel werden wir dann ihr Konvergenzverhalten untersuchen.
Eine Theorie über Martingale mit nach oben gerichteter Indexmenge, wie sie
nach den Sätzen 2.2.1 und 2.4.3 mit der Relation ≺ durch C0 und C̄0 gegeben
ist, findet sich in Neveu[9], Kapitel 5, worauf wir des öfteren verweisen werden.
Bevor wir nun aber den intrinsischen Prozeß genauer betrachten, zwei im
folgenden sehr hilfreiche Lemmata:

Lemma 2.7.1 Seien x, y ∈ I und Sx die in (2.3) definierte Shift-Funktion.
Dann gilt

σxy = σx + σy ◦ Sx ρxy = ρy ◦ Sx.

Beweis:
Für x = (x1, . . . xn) ∈ I beliebig liefert eine einfache Induktion über n

σx =
n∑

k=1

τ(xk) ◦ U0 ◦ S(x1,...,xk−1)mit S∅ die Identität.

Unter Ausnützung von Sxy = Sy ◦Sx und mit x = (x1, . . . xnx), y = (y1, . . . yny)
folgt nun

σxy =
nx∑

k=1

τ(xk) ◦ U0 ◦ S(x1,...,xk−1) +
ny∑

k=1

(τ(yk) ◦ U0 ◦ S(y1,...,yk−1) ◦ Sx)

= σx + σy ◦ Sx

ρxy = ρ(r(xy)) ◦ U0 ◦ Sm(xy) = ρ(r(y)) ◦ U0 ◦ Sm(y) ◦ Sx = ρy ◦ Sx

2

Lemma 2.7.2 Sei f : (S× IR,S ⊗B)→ (IR+,B+) eine nichtnegative, meßbare
Funktion.
Dann gilt für alle n ∈ IN∑

x∈INn
Es[f(ρx, σx)] =

∫
S×IR

f(r, t) µn(s, dr × dt) (2.7)

und ∑
x∈I

Es[f(ρx, σx)] =
∫

S×IR
f(r, t) ν(s, dr × dt). (2.8)
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Beweis:
Es genügt, (2.7) nachzuweisen, da (2.8) direkt aus (2.7) folgt.
Für n=0 ist die Behauptung trivialerweise erfüllt.
Der Reproduktionsprozeß ξ0 läßt sich unter jedem Ps , s ∈ S als das zufällige
Zählmaß zu dem durch (τk)k∈IN induzierten stochastischen Punktprozeß mit
Marken (ρk)k∈IN in (S,S) auffassen.
Dann ist Es[ξ0(dr × dt)] = µ(s, dr × dt) das zugehörige Campbell-Maß und die
Behauptung für n = 1 folgt aus der Campbell-Formel für Punkt-Prozesse (siehe
Baccelli und Brémaud [4], Seite 20 (3.3.2)).
Induktiv folgt nun

∑
x∈INn+1

Es[f(ρx, σx)]

=
∑

x∈INn

∑
y∈IN

Es [Es[f(ρy ◦ Sx, σx + σy ◦ Sx)|Fx]]

=
∑

x∈INn

∑
y∈IN

Es [Eρx [f(ρy, σx + σy)]]

(IV )
=

∑
x∈INn

Es

[∫
S×IR

f(y, σx + t) µ(ρx, dy × dt)
]

(IV )
=

∫
S×IR

∫
S×IR

f(y, u + t) µ(x, dy × dt) µn(s, dx× du)

=
∫

S×IR

∫
S×IR

f(y, t)µn+1(s, dy × dt).

2

Theorem 2.7.3 Gegeben L ≺M Stoplinien, gilt

E[wM |FL] ≤ wL P -f.s.

und im Fall, daß g(M) <∞ und M L überdeckt, gilt sogar Gleichheit.

Beweis:
Sei M als endlich angenommen, also M ⊂ L× ∪n

k=0IN
k für ein n ∈ IN

Wir beweisen die Ungleichung durch eine Induktion über dieses n:
(IA):n=0

M ⊂ L =⇒ E[wM |FL] ≤ E[wL|FL] = wL

(IS):n− 1→ n

M = (M ∩ (L×
n−1⋃
k=0

INk)) ∪ (M ∩ (L× INn))

Mit A := {mx : x ∈M ∩ (L× INn)} ist M ∩ (L× INn) ⊂ {xi;x ∈ A, i ∈ IN} und
da FL ⊂ FL×INn−1

E[wM∩(L×INn)|FL] ≤ E

[∑
x∈A

E[
∑
i∈IN

e−ασxih(ρxi)|FL×INn−1 ]|FL

]

= E

[∑
x∈A

e−ασxE[
∑
i∈IN

e−α(σi◦Sx)h(ρi ◦ Sx)|FL×INn−1 ]|FL

]
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= E

[∑
x∈A

e−ασxEρx [
∑
i∈IN

e−ασih(ρi)]|FL

]

= E

[∑
x∈A

e−ασx

∫
S×IR

e−αth(s) µ(ρx, ds× dt)|FL

]
= E[wA|FL] P -f.s.

wobei in vorletzter Zeile Lemma 2.7.2 und in letzter Zeile die α-Invarianz von
h eingeht.
Damit also

E[wM |FL] ≤ E[w(M∩(L×∪n−1
k=0

INk))∪A|FL]
(IV )

≤ wL P -f.s.

(Die für die IV benötigte Tatsache, daß (M ∩ (L×∪n−1
k=0INk)∪A) eine Linie ist

mit L ≺ (M ∩ (L × ∪n−1
k=0INk) ∪ A) und Untermenge von L × ∪n−1

k=0INk ist, läßt
sich direkt auf die Definition von A und die gestellten Voraussetzungen an M
und L zurückführen.)
Wird M nun nicht mehr als endlich vorausgesetzt, folgt die Behauptung mit
Hilfe endlicher Mn ⊂ I mit Mn ↑M und monotoner Konvergenz.

Für die Gleichheit benötigen wir folgendes

Lemma 2.7.4 Für L ∈ C0 ist Es[wL] = h(s) ∀s ∈ S.

Beweis:
Sei k ∈ IN beliebig. Wieder unter Ausnutzung von Lemma 2.7.2 folgt

∑
x∈INk

Es[e−ασxh(ρx)]

=
∑

x∈INk−1

∑
i∈IN

Es[e−ασxEs[e−α(σi◦Sx)h(ρi ◦ Sx)|Fx]]

=
∑

x∈INk−1

Es[e−ασx
∑
i∈IN

Eρx [e
−ασih(ρi)]]

=
∑

x∈INk−1

Es[e−ασx

∫
S×IR

e−αth(r)µ(ρx, dr × dt)]

=
∑

x∈INk−1

Es[e−ασxh(ρx)].

Iterativ erhält man nun∑
x∈INk

Es[e−ασxh(ρx)] =
∑
x∈IN

Es[e−ασxh(ρx)]

=
∫

S×IR
e−αth(r) µ(s, dr × dt)

= h(s).
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Sei nun L ∈ C0 und n ∈ IN so groß, daß g(L) ≤ n. Dann folgt mit obiger
Rechnung

h(s) =
∑

x∈INn
Es[e−ασxh(ρx)] =

∑
x∈L

∑
y∈INn−g(x)

Es[e−ασxyh(ρxy)]

=
∑
x∈L

Es

e−ασx
∑

y∈INn−g(x)

E[e−ασy◦Sxh(ρy ◦ Sx)|Fx]


=

∑
x∈L

Es

e−ασx
∑

y∈INn−g(x)

Eρx [e
−ασyh(ρy)]


= Es

[∑
x∈L

e−ασxh(ρx)

]
= Es[wL] ,

wobei in der ersten und fünften Gleichung obige Rechnung benutzt wird und die
zweite Gleichung aus der Überdeckungseigenschaft von L und g(L) ≤ n folgt.

2

Mit Hilfe dieses Lemmas läßt sich nun die Gleichheit in Theorem 2.7.3 im Falle,
daß M L überdeckt und g(M) <∞ beweisen:
Dazu definieren wir Ax := {y;xy ∈ M} und behaupten, daß Ax ∈ C0 für
jedes x ∈ L. Daß Ax Linie ist, folgt sofort aus der Linieneigenschaft von M .
Ax hat mit M offensichtlich auch endliche Generation. Bleibt also noch die
Überdeckungseigenschaft nachzuweisen. Der Beweis formalisiert lediglich, was
man sich schon anschaulich leicht klarmachen kann.
Dazu sei z ∈ I beliebig.
Dann gibt es ein m ∈M mit m ≺ xz oder xz ≺ m.
Nehmen wir erst einmal m ≺ xz an.
Da L Linie und L ≺ M , muß damit schon x ≺ m ≺ xz gelten und daraus
offensichtlich mit y ∈ Ax, so gewählt, daß xy=m schon Ax 3 y ≺ z.
Betrachten wir nun den Fall xz ≺ m. Dann existiert ein y ∈ I mit m=xzy, d.h.
zy ∈ Ax und damit offensichtlich z ≺ zy ∈ Ax.
Jedes z ∈ I hat also entweder Vorfahren oder Nachfahren in Ax, was zu zeigen
war.
Für nachfolgende Rechnung ist zu beachten, daß für jedes m ∈M wegen L ≺M
und da L Linie ist, eine eindeutige Darstellung von m als ly mit l ∈ L und y ∈ I
existiert.
Nun gilt mit Hilfe von obigem Lemma

E[wM |FL] = E

[∑
x∈M

e−ασxh(ρx)|FL

]

=
∑
x∈L

e−ασxE

 ∑
y;xy∈M

e−ασy◦Sxh(ρy ◦ Sx)|FL


=

∑
x∈L

e−ασxEρx

 ∑
y;xy∈M

e−ασyh(ρy)


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=
∑
x∈L

e−ασxEρx [wAx ]

=
∑
x∈L

e−ασxh(ρx) = wL P -f.s.

wobei für die vorletzte Gleichung das vorangegangene Lemma benutzt wurde.

2

Wir haben nun also folgendes wie wir sehen werden noch sehr nützliches

Korollar 2.7.5 {wL;L ∈ C0} ist ein Martingal bzgl. der Filtration {FL;L ∈
C0}, das sogenannte intrinsische Martingal.

2.8 Gleichgradige Integrierbarkeit und Konvergenz
des intrinsischen Martingals

Wie im vorangegangenen Korollar festgestellt, ist {wL;L ∈ C0} ein offensichtlich
nichtnegatives Martingal unter jedem Ps, s ∈ S. Für jede aufsteigende Folge
(Ln)n∈IN in C0 konvergiert demnach wLn Ps-f.s. gegen eine Zufallsgröße ws.
Wir werden nun zur L1-Konvergenz übergehen. Nach Neveu[9], Seite 96,
Lemma V-1-1 genügt es, für die L1-Konvergenz des intrinsischen Martingals
die L1-Konvergenz jeder aufsteigenden Folge wLn des intrinsischen Martingals
nachzuweisen. Hierfür wiederum ist die gleichgradige Ps-Integrierbarkeit jeder
solcher Folge hinreichend, die unter geeigneten Zusatzvoraussetzungen der
nachfolgende Satz liefert.
Vorab aber eine

Definition 2.8.1 Mit

ξ̄ :=
∫

S×IR+

e−αth(s) ξ0(ds× dt) =
∑
i∈IN

e−ασih(ρi)

erfüllt eine Malthusische Population nach Definition die x log x-Bedingung, wenn

Eπ[ξ̄log+ξ̄] <∞,

wobei Eπ den Erwartungswert unter dem Wahrscheinlichkeitsmaß∫
S Ps(dω) π(ds) bezeichne.

Satz 2.8.2 Erfüllt die Malthusische Population die x log x-Bedingung, so ist für
π-f.a.s ∈ S jede aufsteigende Folge in {wL;L ∈ C0} gleichgradig Ps-integrierbar.
Die Menge der s ∈ S, die dies erfüllen bezeichnen wir mit Slog.

Beweis:
Sei s ∈ S beliebig, aber fest.
Wir nehmen an, supn∈IN wINn sei Ps-integrierbar.
Sei L ∈ C0 und n0 ∈ IN mit g(L) ≤ n0.
Mit Theorem 2.7.3 folgt

wL = Es[wINn |FL] ≤ Es[sup
n∈IN

wINn |FL] Ps-f.s. ∀n ≥ n0



CHAPTER 2. EIN POPULATIONSMODELL 60

Sei (Ln)n∈IN nun eine aufsteigende Folge in C0.
Da Es[supn wINn ] <∞ ist mit

Mn := Es[sup
n∈IN

wINn |FLn ] ≥ wLn Ps-f.s.

(Mn)n∈IN nichtnegatives Martingal, welches in L1 und Ps-f.s. konvergiert.
Daher ist (Mn)n∈IN und damit auch (wLn)n∈IN gleichgradig Ps-integrierbar.

Es genügt demnach die Ps-Integrierbarkeit von supn∈IN wINn für π-f.a. s ∈ S
nachzuweisen, was wir nun verifizieren werden:
Dazu definieren wir zunächst

η := ξ̄ − h(ρ0)

ξ̄x := ξ̄ ◦ Sx x ∈ I

ηx := η ◦ Sx = ξ̄x − h(ρx), x ∈ I

δ(s, t) := e−αtEs[η1|η|>eαt ] s ∈ I, t ∈ IR

In nachfolgenden Rechnungen ist zu beachten, daß

Es[η] = Es[ξ̄]− h(s) = h(s)− h(s) = 0.

Dann ist

wINn+1 =
∑

x∈INn

∑
i∈N

e−ασxih(ρxi) =
∑

x∈INn
e−ασx

∑
i∈N

e−ασi◦Sxh(ρi ◦ Sx)

=
∑

x∈INn
e−ασx ξ̄ ◦ Sx =

∑
x∈INn

e−ασx(ηx + h(ρx))

=

 ∑
x∈INn

e−ασxηx

+ wINn ,

also

wINn+1 − wINn =
∑

x∈INn
e−ασxηx

=
∑

x∈INn

(
e−ασxηx1{|ηx|≤eασx} + δ(ρx, σx)

)
+
∑

x∈INn

(
e−ασxηx1{|ηx|>eασx} − δ(ρx, σx)

)
=: an+1 + bn+1.

Mit

Es[η1|η|≤eαt ] = Es[η]− eαtδ(s, t) = −eαtδ(s, t) (2.9)

folgt

Es[an+1|FINn ] =
∑

x∈INn

(
e−ασxEs[(η ◦ Sx)1{|η◦Sx|≤eασx}|FINn ] + δ(ρx, σx)

)
=

∑
x∈INn

(
e−ασxEρx [η1{|η|≤eασx}] + δ(ρx, σx)

)
(2.9)≡ 0.
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Damit dann auch Es[an+1] = 0 und mit analoger Rechnung Es[bn+1|FINn ] ≡ 0
und Es[bn+1] = 0.

Wir werden nun folgende beiden Ungleichungen nachweisen

Es

(
sup
n∈IN
|

n∑
k=0

ak+1|
)

<∞ π-f.s. (2.10)

Es

∑
n≥0

|bn+1|
 <∞ π-f.s. (2.11)

Dann gilt

0 ≤ sup
n∈IN

wINn = sup
n∈IN

n∑
k=0

(wINk+1 − wINk) + wIN0

= sup
n∈IN

(
n∑

k=0

ak+1 +
n∑

k=0

bk+1

)
+ h(ρ0)

≤ sup
n∈IN
|

n∑
k=0

ak+1|+
∑
k≥0

|bk+1|+ h(ρ0)

und nach den gezeigten Abschätzungen (2.10) und (2.11) folgt die Ps-
Integrierbarkeit von supn wINn für π-f.a. s ∈ S.

Weisen wir also zuerst (2.10) nach:
Unser erstes Teilziel ist die Abschätzung

∑
n≥0

V ars[an+1] <∞.

V ars[an+1] = Es[V ars[an+1|FINn ]] + V ars[Es[an+1|FINn ]]
= Es[V ars[an+1|FINn ]]

= Es

 ∑
x∈INn

e−2ασx
(
E[η2

x1{|ηx|≤eασx}|FINn ]− E[ηx1{|ηx|≤eασx}|FINn ]2
)

≤ Es

 ∑
x∈INn

e−2ασxE[η2
x1{|ηx|≤eασx}|FINn ]


= Es

 ∑
x∈INn

e−2ασxEρx [η
21{|η|≤eασx}]

 ,

wobei in dritter Gleichung die FINn-Meßbarkeit von δ(ρx, σx) zu beachten ist.

Dann läßt sich der abzuschätzende Term unter Beachtung von Lemma 2.7.2
wie folgt schreiben:

∞∑
n=0

V ars[an+1] ≤
∞∑

n=0

Es

 ∑
x∈INn

e−2ασxEρx [η
21{|η|≤eασx}]


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= Es

[∑
x∈I

e−2ασxEρx [η
21{|η|≤eασx}]

]

=
∫

S×IR
e−2αtEr[η21|η|≤eαt ] ν(s, dr × dt)

Es bezeichne G das Maß , welches G ∗∑n≥0 Qn = hπ ⊗ λλ+ erfüllt (siehe Satz
1.4.16).
Wir falten nun dieses letzte Ergebnis mit G und erhalten∫

S×IR

∫
S×IR

e−2αtEr[η21|η|≤eαt ] ν(s, dr × dt− u)
1

h(s)
G(ds× du)

=
∫

S×IR

∫
S×IR

e−α(t+u)Er[η21|η|≤eαt ]
1

h(r)

∑
n≥0

Qn(s, dr × dt− u)G(ds× du)

α>0
≤
∫

S×IR
e−αtEr[η21|η|≤eαt ]

1
h(r)

G ∗
∑
n≥0

Qn(dr × dt)

=
∫

S

∫
IR

e−αtEr[η21|η|≤eαt ] λλ+(dt) π(dr).

Dieser Term läßt sich nun nach oben gegen unendlich abschätzen (weshalb diese
Faltung überhaupt nur vorgenommen wurde) durch

Fubini=
∫

S

∫
D

η2
∫

IR
1{|η|≤eαt}e

−αt λλ+(dt) Pr(dω) π(dr)

=
∫

S

∫
D

η2 1
α|η| Pr(dω) π(dr) =

1
α

Eπ[|η|]

≤ 1
α

(
Eπ[ξ̄] +

∫
S

h(s)π(ds)
)

=
1
α

(∫
S

∫
S×IR

h(s) µα(r, ds× dt) π(dr) + 1
)

=
2
α

<∞.

Damit ist also

e−2αu
∫

S×IR
e−2αtEr[η21|η|≤eαt ]ν(s, dr × dt)

1
h(s)

≤
∫

S×IR
e−2αtEr[η21|η|≤eαt ]ν(s, dr × dt− u)

1
h(s)

<∞ G-f.s.

und damit schließlich (schaut man sich die genaue Gestalt von G an)∑
n≥0

V ars[an+1] ≤
∫

S×IR
e−2αtEr[η21|η|≤eαt ]ν(s, dr × dt) <∞ π-f.s.

Da an FINn-meßbar ist, wie man sich leicht überlegen kann, und wegen

Es[an+1|FINn ] ≡ 0 ist mit Mn :=
n−1∑
k=0

ak+1 (Mn)n≥1 Martingal bzgl. der
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Filtration (FINn)n≥1 mit

sup
n∈IN

Es(M2
n) = sup

n∈IN
Es[(

n−1∑
k=0

ak+1)2] = sup
n∈IN

n−1∑
k=0

V ars[ak+1]

=
∑
k≥0

V ars[ak+1] <∞ π-f.s.

Dann folgt nach Neveu (Seite 68,Proposition IV-2-8)

Es[(sup
n∈IN
|

n∑
k=0

ak+1|)2] = Es[(sup
n∈IN
|Mn|)2] <∞ π-f.s.

und damit auch (2.10), was zu zeigen war.

Kommen wir nun zum Nachweis von (2.11):
Unter Beachtung von

Es[e−ασx |ηx|1{|ηx|>eασx}] = Es[e−ασxEs[|ηx|1{|ηx|>eασx}|Fx]]
= Es[e−ασxEρx [|η|1{|η|>eασx}]]

folgt

0 ≤ Es

∑
n≥0

|bn+1|


≤ Es

(∑
x∈I

(
e−ασx |ηx|1{|ηx|>eασx} + |δ(ρx, σx)|

))

≤ 2
∑
x∈I

Es

(
e−ασxEρx [|η|1{|η|>eασx}]

)
= 2

∫
S×IR

e−αtEr[|η|1{|η|>eαt}] ν(s, dr × dt),

wobei in letzter Gleichung wieder einmal Lemma 2.7.2 eingeht.
Nun falten wir wieder mit G analog zur Abschätzung der an+1:∫

S×IR+

∫
S×IR+

e−α(t+u)Er[|η|1{|η|>eαt}]
1

h(s)
ν(s, dr × dt− u) G(ds× du)

≤
∫

S×IR+

∫
S×IR+

e−α(t−u)Er[|η|1{|η|>eαt}]
1

h(s)
ν(s, dr × dt− u) G(ds× du)

=
∫

S

∫
IR+

Er[|η|1{|η|>eαt}] λλ+(dt) π(dr)

=
∫

S

∫
D
|η|
∫

IR+

1{|η|>eαt} λλ+(dt) Pr(dω) π(dr)

=
1
α

∫
S

Er[|η| log |η|1{|η|>1}] π(dr)

=
1
α

∫
S

Er[(ξ̄ − Er[ξ̄]) log(ξ̄ − Er[ξ̄])1{ξ̄>1+Er[ξ̄]}]

+Er[(Er[ξ̄]− ξ̄) log(Er[ξ̄]− ξ̄)1{Er[ξ̄]>1+ξ̄}] π(dr)
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≤ 1
α

∫
S

Er[ξ̄ log ξ̄1{ξ̄>1}] + Er[Er[ξ̄] log Er[ξ̄]1{Er[ξ̄]>1}] π(dr)

≤ 2
α

∫
S

Er[ξ̄ log+ ξ̄] π(dr)

<∞ nach Voraussetzung (x log x-Bedingung),

wobei in vorletzter Gleichung zu beachten ist, daß xlog+x eine konvexe Funktion
ist und daher die Jensensche Ungleichung anwendbar ist.

Man hat also die G-fast sichere Endlichkeit von∫
S×IR

e−α(t+u)Er[|η|1{|η|>eαt}]
1

h(s)
ν(s, dr × dt− u)

=
∫

S×IR
e−α(t+2u)Er[|η|1{|η|>eα(t+u)}]

1
h(s)

ν(s, dr × dt)

≥
∫

S×IR
e−α(t+2u) 1

h(s)

(
Er[|η|1{|η|>eαt}]− Er[|η|21{|η|≤eα(t+u)}]e

−αt
)

ν(s, dr × dt)

= e−2αu
∫

S×IR
e−αt 1

h(s)
Er[|η|1{|η|>eαt}] ν(s; dr × dt)

−
∫

S×IR
e−2α(t+u) 1

h(s)
Er[|η|21{|η|≤eα(t+u)}] ν(s, dr × dt).

Da der sich der zweite Term schon bei der Abschätzung der an+1 als G-fast
sicher endlich erwiesen hat, muß auch der erste Term schon G-fast sicher endlich
sein und damit∫

S×IR
e−αtEr[|η|1|η|>eαt ] ν(s; dr × dt) <∞ π-f.s.

Wir haben also nun die gewünschte Abschätzung

Es

∑
n≥0

|bn+1|
 ≤ 2

∫
S×IR

e−αtEr[|η|1{|η|>eαt}] ν(s, dr × dt) <∞ π-f.s.

2
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Wie schon zu Beginn des Kapitels angedeutet, haben wir nun folgendes

Korollar 2.8.3 Erfüllt die Malthusische Population die x log x-Bedingung und
ist s ∈ Slog, so konvergiert jede aufsteigende Folge (wLn)n∈IN in {wL ; L ∈ C0}
Ps-f.s. und in L1 (bzgl. Ps).
Insbesondere konvergiert also das intrinsische Martingal {wL;L ∈ C0} in L1

(bzgl Ps). Wir bezeichnen den Grenzwert mit ws.

Beweis:
Da unter den gegebenen Voraussetzungen nach dem vorher Gezeigten für
s ∈ Slog jede solche Folge (wLn)n∈IN ein gleichgradig Ps-integrierbares,
nichtnegatives Martingal ist, ist nichts zu zeigen.

2

Daß sämtliche aufsteigenden Folgen (wLn)n∈IN in {wL ; L ∈ C0} Ps-f.s. und in L1

bzgl. Ps konvergieren, heißt noch nicht, daß der Grenzwert auch stets mit dem
Grenzwert des intrinsischen Martingals ws übereinstimmt. In Theorem 2.8.5
werden wir allerdings eine Klasse solcher Folgen ermitteln, die diese Eigenschaft
besitzen. Ein vorläufiges Ergebnis liefert

Lemma 2.8.4 Ist die x log x-Bedingung erfüllt und s ∈ Slog, so gilt für jede
aufsteigende Folge (Ln)n∈IN aus C0 mit infx∈Ln g(x) n→∞−→ ∞

wLn −→ ws in L1 (bzgl. Ps) und Ps-f.s.

Beweis:
Aufgrund der L1-Konvergenz des intrinsischen Martingals unter Ps gilt

∀ε > 0 ∃Lε ∈ C0 : Es[|wL − ws|] < ε ∀Lε ≺ L ∈ C0.

Da Lε von endlicher Dimension und überdeckend ist, gilt aufgrund der gestellten
Bedingung an die Ln schon Lε ≺ Ln ∀n ≥ n0 mit n0 geeignet und daher die
Behauptung.

2

Nachfolgendes Theorem liefert nun unter anderem eine noch schwächere
Voraussetzung an eine Folge Ln für deren Konvergenz gegen ws:

Theorem 2.8.5 Unter der x log x-Bedingung existiert eine Zufallsgröße w ≥ 0
auf dem Populationsraum, so daß für s ∈ Slog

wL = Es[w|FL] Ps-f.s. ∀L ∈ C0 (2.12)

und das intrinsische Martingal konvergiert in L1 bzgl. Ps gegen w. Insbesondere
gilt also nach Lemma 2.7.4 Es[w] = h(s).
Ist (Ln)n∈IN eine aufsteigende Folge in C0, so daß für jedes x ∈ I ein n ∈ IN
existiert, so daß x Nachfahren in Ln hat, so konvergiert auch wLn in L1 bzgl.
Ps und Ps-f.s. gegen w.
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Beweis:
Wir definieren w durch

w = lim inf
n→∞

wINn . (2.13)

Dann gilt offenbar nach dem vorherigen Lemma für s ∈ Slog

w = lim inf
n→∞

wINn = lim
n→∞

wINn = ws Ps-f.s.

und daher ist die behauptete Konvergenz des intrinsischen Martingals gegen
w klar. Um (2.12) nachzuweisen, wählen wir zu beliebigem L ∈ C0 eine
aufsteigende Folge (Ln)n∈IN mit infx∈Ln g(x) → ∞, in der L enthalten ist.
Nach Lemma 2.8.4 ist wLn gleichgradig Ps-integrierbares Martingal, welches
in L1 (bzgl. Ps) und Ps-f.s. gegen ws konvergiert (mit s ∈ Slog) und daher nach
Neveu[9], Seite 65, Proposition IV-2-3

wL = Es[ws|FL] = Es[w|FL] Ps-f.s.,

also (2.12). Ist nun (Ln)n∈IN eine Folge wie im Theorem gefordert, so gilt

(∀x ∈ I ∃n ∈ IN : x 6∈ PrLn) =⇒
(
∀x ∈ I ∃n ∈ IN : S × σ(Ũx) ⊂ FLn

)
und daher D = σ

(
∪xS × σ(Ũx)

)
⊂ σ(∪nFLn) ⊂ D.

Nach Neveu[9], Seite 29, Proposition II-2-11 folgt also unter Berücksichtigung
von FLn ⊂ FLn+1

wLn = Es[w|FLn ] −→ Es[w|σ(∪nFLn)] = Es[w|D] = w

in L1 (bzgl. Ps) und Ps-f.s.

2

Wie wir später sehen werden, spielen nicht nur die wL für feste Stoplinien
L, sondern auch die wJ für optionale Linien J eine wichtige Rolle für unsere
asymptotische Betrachtungen. Aus diesem Grund richten wir nun auf den
vorangegangenen Beobachtungen basierend unseren Augenmerk auf diese.

Theorem 2.8.6 Es sei die x log x-Bedingung erfüllt. Ist J eine überdeckende
optionale Linie endlicher Generation, so gilt für s ∈ Slog

Es[w|FJ ] = wJ Ps-f.s.

Insbesondere gilt also Es[wJ ] = Es[w] = h(s) <∞.

Beweis:
Sei J wie im Theorem gefordert und s ∈ Slog.
Für eine Folge (Kn)n∈IN endlicher Teilmengen von I mit Kn ↑ I definieren wir
die endlichen optionalen Linien Jl := J ∩Kl.
(Ist J selbst schon endlich, ist dies überflüssig, da sich die Behauptungen
direkter ergeben. Da aber der kompliziertere Beweis für den unendlichen Fall
den Beweis des endlichen Falls miteinschließt, betrachten wir nur diesen.)
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Da offensichtlich Jl+1 ≺ Jl und h(∪lJl) = h(J) = J ist nach Lemma 2.4.13
FJ = ∩lFJl und als inverses Martingal konvergiert Es[wINn |FJl ] in l Ps-f.s.
gegen Es[wINn | ∩l FJl ] = Es[wINn |FJ ]. (für n ∈ IN beliebig)
Da weiterhin

lim
l→∞

1{g(Jl)≤n} = 1{g(J)≤n} P -f.s.

gilt für n ∈ IN beliebig aufgrund der Endlichkeit der Jl (fI bezeichne wie schon
vorher die Menge der endlichen Teilmengen von I)

E[wINn |FJ ]1{g(J)≤n} = lim
l→∞

E[wINn |FJl ]1{g(Jl)≤n}

= lim
l→∞

∑
M∈fI

E[wINn |FM ]1{g(M)≤n}1{Jl=M}

= lim
l→∞

∑
M∈fI

E[wINn\PrM |FM ]1{g(M)≤n}1{Jl=M}

+ lim
l→∞

∑
M∈fI

E[wINn∩PrM |FM ]1{g(M)≤n}1{Jl=M}

= lim
l→∞

∑
M∈fI

E[wINn\PrM |FM ]1{g(M)≤n}1{Jl=M}

+ lim
l→∞

∑
M∈fI

wM1{g(M)≤n}1{Jl=M}

= lim
l→∞

(
E[wINn\PrJl |FJl ]1{g(Jl)≤n} + wJl1{g(Jl)≤n}

)
(∗)
= wJ1{g(J)≤n} P -f.s.

Dabei ist zu beachten, daß auf {g(M) ≤ n} M von PrM ∩ INn überdeckt wird
und daher Theorem 2.7.3 angewendet werden kann. Die Gültigkeit von (∗) folgt
aus

lim
l→∞

E[wINn\PrJl |FJl ]1{g(Jl)≤n} = lim
l→∞

E[wINn\PrJl1{g(Jl)≤n}|FJl ]

≤ lim
l→∞

E[wINn\PrJk1{g(Jk)≤n}|FJl ] ∀k ∈ IN

= E[wINn\PrJk1{g(Jk)≤n}|FJ ] ∀k ∈ IN P -f.s.

und daher

lim
l→∞

E[wINn\PrJl |FJl ]1{g(Jl)≤n} ≤ lim
k→∞

E[wINn\PrJk1g(Jk)≤n|FJ ] = 0 P -f.s.

da limk wINn\PrJk1{g(Jk)≤n} = limk wINn\PrJk1{g(J)≤n} = 0
denn da J überdeckend ist INn \ PrJk ↓ INn \ PrJ = ∅ auf {g(J) ≤ n}.
Mit dem bisher Gezeigten läßt sich nun die Aussage des Theorems beweisen :
Da nach Lemma 2.8.4 wINn → w Ps-f.s. und supn wINn Ps-integrierbar ist (Beweis
von Satz 2.8.2), folgt

Es[wINn |FJ ] −→ Es[w|FJ ] Ps-f.s.

Da g(J) <∞ gilt weiterhin limn→∞ 1{g(J)≤n} = 1 Ps-f.s.
Also

Es[w|FJ ] = lim
n→∞

(
Es[wINn |FJ ]1{g(J)≤n}

)



CHAPTER 2. EIN POPULATIONSMODELL 68

= lim
n→∞

wJ1{g(J)≤n}

= wJ Ps-f.s.

2

Es ergibt sich nun sofort folgendes

Theorem 2.8.7 Es gelte die x log x-Bedingung und es sei s ∈ Slog.
Dann ist {wJ ;J ∈ C̄0} ein Martingal bzgl. (FJ)J∈C̄0, welches in L1 (bzgl.Ps)
gegen w konvergiert. Ist (Jn)n∈IN eine aufsteigende Folge in C̄0 mit der
Eigenschaft, daß jedes x ∈ I Nachfahren in einem Jn hat, so konvergiert wJn

Ps-f.s. und in L1 bzgl. Ps gegen w.

Beweis:
Die Martingaleigenschaft ergibt sich sofort aus dem vorangegangenem Theorem.
Nach Neveu[9], Seite 96, Proposition V-1-2, gilt

(wJ)J∈C̄0 = (E[w|FJ ])J∈C̄0
L1−→ E[w|

⋃
J∈C̄0
FJ ]

(∗)
= E[w|D] = w.

(Die dafür benötigte Voraussetzung Es[w] <∞ ist erfüllt, da Es[w] = h(s).)
(∗), d.h.

⋃
J∈C̄0 FJ = D ist im nachfolgenden Teil des Beweises implizit enthalten.

Für eine Folge (Jn)n∈IN mit der im Theorem geforderten Eigenschaft, zeigen wir
nun ∪nFJn = D und damit die Behauptung:
Sei dazu x ∈ I, A ∈ S, B ∈ A beliebig.
Aufgrund der gestellten Voraussetzung an die Jn gilt
∪n ∪y∈I\0 {xy ∈ Jn} = D. Daher

A× Ũ−1
x (B) =

⋃
n

(
(A× U−1

x (B)) ∩ ∪y∈I\0{xy ∈ Jn}
)
∈ ∪nFJn .

Denn (A × Ũ−1
x (B)) ∩ ∪y∈I\0{xy ∈ Jn} ∈ FJn , wie man sich leicht überlegen

kann. Und damit

D = S ⊗AI = σ(∪x∈IS ⊗ σ(Ũx)) ⊂ ∪nFJn ⊂ D,

also das Gewünschte.

2

Satz 2.8.8 Es sei die x log x-Bedingung erfüllt.
J1, J2 seien zwei optionale überdeckende Linien mit J1 ≺ J2. J2 habe endliche
Generation. Dann gilt für s ∈ Slog

Es[wJ2 |FJ1 ] = wJ1 Ps-f.s.

Beweis:
Da mit g(J2) < ∞ auch g(J1) < ∞ Ps-f.s. ∀s ∈ S folgt wie im Beweis von
Theorem 2.8.6 gezeigt

lim
n→∞

E[wINn |FJi ] = E[w|FJi ] = wJi Ps-f.s. für i = 1, 2.
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und daher

wJ1 = lim
n→∞

Es[wINn |FJ1 ]

= lim
n→∞

Es [Es[wINn |FJ2 ]|FJ1 ]

= Es

[
lim

n→∞
E[wINn |FJ2 ]|FJ1

]
= E[wJ2 |FJ1 ] Ps-f.s.

wobei die 3. Gleichheit aus
supn Es[wINn |FJ2 ] ≤ Es[supn wINn |FJ2 ] und der Ps-Integrierbarkeit von
supn wINn folgt.

2

2.9 Asymptotische Entwicklungen der Population
in reeller Zeit

Das letzte Kapitel warf vermutlich die Frage auf, weshalb das intrinsische
Martingal überhaupt definiert und mühsam seine Martingaleigenschaft sowie
Konvergenzen nachgewiesen wurde. In diesem Abschnitt folgt nun aber eine
nützliche Anwendung dieser Ergebnisse, die Erfassung des “Langzeitverhaltens”
der Population, d.h. des asymptotischen Verhaltens bei gegen unendlich
strebendem Zeitparameter.
Was man nun explizit beobachten will, z.B. die Zahl der bisher Geborenen, die
Zahl der Individuen, die zum Zeitpunkt t jünger als s Zeiteinheiten sind etc.
muß nicht genau spezifiziert werden, sondern man stellt solche Betrachtungen
allgemein auf für spezielle Funktionen auf dem Populationsraum, mit denen
man die eben genannten Größen dann darstellen kann. Um Aussagen über das
asymptotische Verhalten dieser treffen zu können, bedarf es dann allerdings
noch gewisser Voraussetzungen, auf die wir an entsprechender Stelle genauer
eingehen werden.

2.9.1 Charakteristiken

Formal beginnen wir mit der Definition einer Charakteristik. Diese sei eine
meßbare Funktion

χ : D × IR −→ IR+

mit den zusätzlichen Bedingungen
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• χ(s, ωI , t) = 0 ∀t ∈ [−∞, 0[ ∀(s, ωI) ∈ D

• χ(s, ωI , ·) ist rechtsseitig stetig mit linksseitigem Limes für alle (s, ωI) ∈ D

Wir schreiben wie üblich wieder χx(s, ωI , t) := χ(Sx(s, ωI), t).
Die sogenannte χ-zählende Population zur Zeit t, zχ

t , wird definiert als

zχ
t :=

∑
x∈I

χ(Sx, t− σx).

Statt χ(Sx, t) schreiben wir im folgenden auch oft einfach χx(t) und statt
χ(S0, t) auch nur χ(t).
An dieser Stelle drei einfache Beispiele :

1. Definieren wir die Charakteristik

χ(s, ωI , t) := 1[0,∞)(t)

ergibt sich als χ-zählende Population

zχ
t =

∑
x∈I

χ(Sx, t− σx)

= #{x ∈ I ; 0 ≤ t− σx <∞}
= #{x ∈ I ; σx ≤ t}
=̂ Anzahl der bis zum Zeitpunkt t geborenen Individuen.

2. Definieren wir die Charakteristik

χ(s, ωI , t) := 1[0,s)(t)

ergibt sich als χ-zählende Population

zχ
t =

∑
x∈I

χ(Sx, t− σx)

= #{x ∈ I ; 0 ≤ t− σx < s}
=̂ Anzahl der Individuen, die zum Zeitpunkt t jünger

als s Zeiteinheiten sind.

3. Sei λ : S × Ω → IR+ eine Zufallsgröße derart, daß λ(s, ω) die Lebensdauer
eines Individuums mit Typ s und Lebenslauf ω angebe und sei λx =
λ(ρx, Ux).
Definieren wir die Charakteristik

χ(s, ωI , t) = 1[0,λ0(s,ωI)[(t)

ergibt sich als χ-zählende Population

zχ
t =

∑
x∈I

χ(Sx, t− σx) =
∑
x∈I

1[0,λx[(t− σx)

= #{x ∈ I;σx ≤ t < σx + λx}
=̂ Anzahl der zum Zeitpunkt t lebenden Individuen.
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Die Beispiele machen deutlich, weshalb asymptotische Betrachtungen von zχ
t

durchaus von Interesse sind. Wir werden in diesem Kapitel unter gewissen
Voraussetzungen Aussagen über die Konvergenz von Es[z

χ
t ] sowie die schwache

und starke L1-Konvergenz von zχ
t treffen.

Zu beachten ist, daß in obigen Beispielen χx allein von Typ und Lebenslauf
des Individuums x abhängt. Solche speziellen Charakteristiken werden als
Individual-Charakteristiken bezeichnet.
Eine im folgenden sehr nützliche “Aufsplittung” der χ-zählenden Population
liefert folgendes

Lemma 2.9.1 Sei J eine optionale überdeckende Linie. Dann gilt die
sogenannte fundamentale Gleichung

zχ
t =

∑
x<J

χ(Sx, t− σx) +
∑
x∈J

zχ
t−σx ◦ Sx,

wobei x < J := ∃y ∈ J : x < y.

Beweis:

zχ
t =

∑
x∈I

χ(Sx, t− σx)

=
∑
x<J

χ(Sx, t− σx) +
∑

x∈PrJ

χ(Sx, t− σx)

=
∑
x<J

χ(Sx, t− σx) +
∑
x∈J

∑
y∈I

χ(Sxy, t− σxy)

=
∑
x<J

χ(Sx, t− σx) +
∑
x∈J

∑
y∈I

χ(Sy ◦ Sx, t− σx − σy ◦ Sx)

=
∑
x<J

χ(Sx, t− σx) +
∑
x∈J

zχ
t−σx ◦ Sx

2

Zu bemerken ist, daß im letzten Term die Shift-Funktion Sx nicht auf den
Ausdruck t − σx angewandt wird. Diese etwas ungenaue Schreibweise werden
wir der Einfachheit halber noch des öfteren verwenden. Definieren wir nun

ζt := e−αtzχ
t

ϕJ(t) :=
∑
x<J

χ(Sx, t− σx),

wird uns eine weitere Gleichung im folgenden bei vielen Rechnungen hilfreich
sein:

Lemma 2.9.2 Ist J optionale überdeckende Linie, so gilt mit obigen
Bezeichnungen

ζt = e−αtϕJ(t) +
∑
x∈J

ζt−σx ◦ Sxe−ασx . (2.14)



CHAPTER 2. EIN POPULATIONSMODELL 72

Der Beweis ist eine einfache Anwendung der fundamentalen Gleichung.

2

Aus dieser Gleichung läßt sich nun mit Hilfe des intrinsischen Prozesses
{wM ;M ⊂ I} weiter herleiten:

E[ζt|FJ ] = e−αtE[ϕJ(t)|FJ ] +
∑
x∈J

e−ασxE[ζt−σx ◦ Sx|FJ ]

= e−αtE[ϕJ(t)|FJ ] +
∫

S×IR+

1
h(s)

Es[ζt−u] wJ(ds× du)

und daraus offensichtlich

E[ζt] = e−αtE[ϕJ(t)] +
∫

S×IR+

1
h(s)

Es[ζt−u] E[wJ(ds× du)].

2.9.2 Konvergenz des Erwartungswertes

Kommen wir also zum ersten Resultat, der Konvergenz des Erwartungswertes
von zχ

t :

Theorem 2.9.3 Ist χ eine Charakteristik, für die gilt

•
∫
S supt∈IR(e−αtEs[χ(t)]) π(ds) <∞

•
∫
S×IR e−αtEs[χ(t)] π ⊗ λλ(ds× dt) <∞

• limt→∞ e−αtEs[χ(t)] = 0 ∀s ∈ S

so gilt für π-f.a. s ∈ S

lim
t→∞

e−αtEs[z
χ
t ] =

h(s)
β

∫
IR

∫
S

e−αuEr[χ(u)] π(dr) λλ(du),

wobei β in (2.6) definiert wurde.

Beweis :

e−αtEs[z
χ
t ] = e−αtEs

[∑
x∈I

Es[χ(Sx, t− σx)|Fx]

]

= e−αtEs

[∑
x∈I

Eρx [χ(t− σx)]

]
Lemma2.7.2= e−αt

∫
S×IR

Er[χ(t− u)] ν(s, dr × du)

=
∫

S×IR
e−α(t−u)Er[χ(t− u)] να(s, dr × du)

und die Behauptung folgt mit Kapitel 1.4, Korollar 1.4.14.

2

Wir benutzen im folgenden der Einfachheit halber die Bezeichnungen

Eπ[χ̂(α)] :=
∫

IR

∫
S

e−αuEr[χ(u)] π(dr) λλ(du) γ :=
1
β

Eπ[χ̂(α)].
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2.9.3 schwache L1-Konvergenz

Wir erinnern an die Definition der überdeckenden optionalen Linie

Zt = {x ∈ I ; σmx ≤ t < σx},
definieren

yt := #{Yt} = #{x ∈ I;σx ≤ t}
und zeigen folgendes

Lemma 2.9.4 Gilt für ein t ∈ IR yt <∞ Ps-f.s. für alle s ∈ S
so ist

g(Zt) <∞ Ps-f.s. ∀s ∈ S.

Zt ist also optionale, überdeckende Linie endlicher Generation.
Ist zusätzlich ξ(S × IR) <∞ Ps-f.s. für alle s ∈ S, so ist weiter

#{Zt ∩ <} = #{x ∈ I ; σmx ≤ t < σx <∞} <∞ Ps-f.s. für alle s ∈ S.

Beweis:
Die erste Behauptung ergibt sich durch

g(Zt) = sup{g(x);σmx ≤ t < σx}
≤ sup{g(x);σmx ≤ t}
= sup{g(x);σx ≤ t}+ 1
= g(Yt) + 1 <∞ Ps-f.s. ∀s ∈ S.

(da yt = #Yt als f.s. endlich vorausgesetzt wurde.)

Sei für den Nachweis der zweiten Behauptung s ∈ S beliebig.

Ps({#(Zt ∩ <) =∞})

= Ps

{∑
x∈Yt

∑
y∈IN

1(t,∞)(σxy) =∞}


= Ps

 ⋃
x∈Yt
{
∑
y∈IN

1(t,∞)(σxy) =∞}


≤ Es

∑
x∈Yt

Ps({
∑
y∈IN

1(t,∞)(σx + σy ◦ Sx) =∞}|FYt)


≤ Es

∑
x∈Yt

Ps({
∑
y∈IN

1IR(σy ◦ Sx) =∞}|FYt)


≤
∑
x∈I

Es

Pρx({
∑
y∈IN

1IR(σy) =∞})


=
∑
x∈I

Es (Pρx({ξ(S × IR) =∞}))

= 0,

wobei die Endlichkeit von yt in dritter Gleichung eingeht. 2
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Theorem 2.9.5 Sei χ eine Charakteristik, die die Bedingungen aus Theorem
2.9.3 erfüllt.
Weiter gelte für die Population

• Die x log x-Bedingung ist erfüllt

• ξ(S × IR) <∞ Ps-f.s. ∀s ∈ S

• k := inf h > 0

• yt ist für jedes t ∈ IR gleichgradig integrierbar über seinen Starttyp, d.h.
lima→∞ sups∈S Es[1{|yt|>a}(|yt| − a)] = 0

Dann konvergiert für π-f.a. s ∈ S e−αtzχ
t schwach in L1 bzgl. Ps gegen γw, d.h.

lim
t→∞

∫
A

e−αtzχ
t dPs = γ

∫
A

w dPs für alle A ∈ S.

Beweis:
Wir nehmen zuerst einmal an, daß ein n ∈ IN existiert, so daß

χ(t) = 0 ∀t ≥ n und χ(t) ≤ n ∀t ∈ IR.

Sei t0 > n und t ≥ t0 > n.
Unter Beachtung von

x < Zt−n ⇒ t− σx ≥ n⇒ χ(Sx, t− σx) = 0 also ϕZt−n(t) = 0 (2.15)

und

x ∈ Zt−n ⇒ t− σx < n

⇒ χ(Sy ◦ Sx, t− σx − σy ◦ Sx) = 0 ∀y ∈ I mit σy ◦ Sx ≥ n

folgt

ζt
(2.14)
=

∑
x∈Zt−n

e−ασxζt−σx ◦ Sx

=
∑

x∈Zt−n
e−ασxe−α(t−σx)zχ

t−σx ◦ Sx

≤
∑

x∈Zt−n
e−ασxzχ

t−σx ◦ Sx

=
∑

x∈Zt−n
e−ασx

∑
y∈I

χ(Sy ◦ Sx, t− σx − σy ◦ Sx)

≤
∑

x∈Zt−n
e−ασxn #{y ∈ I;σy ◦ Sx ≤ n}

= n
∑

x∈Zt−n
e−ασxyn ◦ Sx. (2.16)

Mit Hilfe dieser Abschätzung werden wir nun die gleichgradige Integrierbarkeit
von (ζt)t≥t0 unter jedem Ps, s ∈ Slog zeigen. Sei dazu nun s ∈ Slog gegeben.
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1. Schritt : Es gilt

∀ ε > 0 ∃ δ > 0 ∀t ≥ t0 : Ps(A|Zt−n) < δ ⇒ sup
x∈Zt−n

Es[yn ◦ Sx1A|Zt−n] < ε.

(2.17)

Denn:

sup
x∈Zt−n

Es[yn ◦ Sx1A|FZt−n ]

≤ sup
x∈Zt−n

Es[1{|yn◦Sx|>a}(yn ◦ Sx − a)|FZt−n ]

+a sup
x∈Zt−n

Es[1{A∩|yn◦Sx|>a}|FZt−n ] + aEs[1A|FZt−n ]

≤ sup
x∈Zt−n

Eρx [1{|yn|>a}(yn − a)] + 2aPs(A|FZt−n)

und daher die Behauptung wegen der gleichgradigen Integrierbarkeit von yn

bzgl. des Starttyps.

Mit Hilfe von (2.17) weisen wir im 2.Schritt nun nach, daß

∀ ε > 0 ∃ δ > 0 : Ps(A) < δ ⇒ sup
t≥t0

∫
A

ζt dPs < ε. (2.18)

Da weiterhin nach dem schon Gezeigten

sup
t≥t0

Es[ζt]
(2.16)

≤ sup
t≥t0

nEs

 ∑
x∈Zt−n

e−ασxE[yn ◦ Sx|FZt−n ]


≤ n

k
sup
s∈S

Es[yn] sup
t≥t0

Es[wZt−n ] <∞

(nach Theorem 2.8.6 und der gleichgradigen Integrierbarkeit von yn), folgt
damit dann die gleichgradige Integrierbarkeit von (ζt)t≥t0 unter Ps.

Zeigen wir also nun (2.18):
Sei dazu ε > 0 beliebig.
Nach (2.17) existiert ein δ0, so daß

Ps(A|FZt−n) < δ0 ⇒ sup
x∈Zt−n

Es[yn ◦ Sx1A|FZt−n ] <
ε

2
k

nEs[w]
∀ t ≥ t0.

Aufgrund der Ps-Integrierbarkeit von w kann ein δ1 > 0 so gewählt werden, daß

Ps(B) < δ1 =⇒
∫

B
w dPs <

εk

2n supx∈S Ex[yn]
.

Wir definieren δ := δ0δ1 und weisen nach, daß für δ (2.18) erfüllt ist. Sei A ∈ D
mit Ps(A) < δ und t ≥ t0 beliebig.
Mit B := {Ps(A|FZt−n) > δ0} (⇒ Ps(B) < δ1) folgt
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Es[1Aζt]
(2.16)

≤ n

k
Es[1A

∑
x∈Zt−n

e−ασxh(ρx)yn ◦ Sx]

=
n

k
Es

1B

∑
x∈Zt−n

e−ασxh(ρx)Es[1A yn ◦ Sx|FZt−n ]


+
n

k
Es

1Bc
∑

x∈Zt−n
e−ασxh(ρx)Es[1A yn ◦ Sx|FZt−n ]


≤ n

k
sup
x∈S

Ex[yn]Es[1BwZt−n ] +
ε

2

≤ n

k
sup
x∈S

Ex[yn]Es[1Bw] +
ε

2
≤ ε,

wobei in vorletzter Zeile die Zt−n-Meßbarkeit von B und Satz 2.8.6 zu beachten
sind.

Mit (ζt)t≥t0 ist aber auch (Es[ζt|FZt0 ])t≥t0 gleichgradig integrierbar, wie man
sich leicht überlegen kann.
Nun ist (Es[ζt|FZt0 ])t∈IR aber auch Ps-f.s. konvergent für π-f.a. s ∈ S, wie man
wie folgt sieht:
Für t ≥ 2t0 gilt

x < Zt0 ⇒ σx ≤ t0 ⇒ t− σx ≥ t0 > n⇒ ϕZt0 (t) =
∑

x<Zt0

χ(Sx, t− σx) = 0.

Damit und unter Ausnützung der fundamentalen Gleichung folgt nun für
π-f.a. s ∈ S

Es[ζt|FZt0 ]
(2.14)
=

∑
x∈Zt0

e−ασxEρx [ζt−σx ]

=
∑

x∈Zt0

e−ασxe−α(t−σx)Eρx [z
χ
t−σx ]

=
∑

x∈Zt0∩<
e−ασxe−α(t−σx)Eρx [z

χ
t−σx ]

t→∞−→ 1
β

Eπ[χ̂(α)]wZt0 = γwZt0 Ps-f.s.,

wobei für die fast sichere Konvergenz zu beachten ist, daß wegen der Endlichkeit
von ξ(S × IR) und yt0 (da yt0 integrierbar) nach Lemma 2.9.4 Zt0 ∩ < endlich
ist und daher Theorem 2.9.3 auf die einzelnen Summanden anwendbar ist.

Für π-f.a. s ∈ S ist (Es[ζt|FZt0 ])t≥t0 demnach gleichgradig Ps-integrierbar und
Ps-f.s. konvergent gegen γwZt0 und damit auch konvergent in L1 bzgl. Ps.
Insgesamt folgt jetzt die schwache L1-Konvergenz, denn für A ∈ FZt0 beliebig
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ist

|
∫

A
e−αtzχ

t dPs − γ

∫
A

w dPs| = |
∫

A
E[ζt|FZt0 ] dPs − γ

∫
A

E[w|FZt0 ] dPs|

≤
∫

D
|E[ζt|FZt0 ]− γwZt0 | dPs

t→∞−→ 0.

Da t0 > n beliebig gewählt war und σ((FZt)t>n) = D (zur Begründung siehe
Beweis von Theorem 2.8.7) folgt die Behauptung für χ mit den gemachten
Voraussetzungen.

Diese Einschränkung gilt es nun aufzuheben:
Für beliebiges χ definieren wir χn durch

χn(s, ωI , t) := 1[0,n[(t)(χ(s, ωI , t) ∧ n) (s, ωI) ∈ D, t ∈ IR

und analog zu γ definieren wir

γn :=
1
β

Eπ[χ̂n(α)].

Dann gilt für A ∈ D

|
∫

A
e−αtzχ

t dPs − γ

∫
A

w dPs|

≤ |
∫

D
e−αtzχ

t − e−αtzχn
t dPs|+ |

∫
A

e−αtzχn
t − γn w dPs|+ (γ − γn)Es[w].

Der 2. Summand konvergiert für t gegen unendlich aber nach dem schon
bewiesenen Spezialfall gegen 0.
Der 1. Summand konvergiert nach Theorem 2.9.3 gegen h(s)(γ − γn).
Da aber mit monotoner Konvergenz (γ − γn) n→∞−→ 0 gilt, ist das Theorem nun
vollständig bewiesen.

2

2.9.4 starke L1-Konvergenz

Nun kommen wir zur stärksten Konvergenzart, die hier nachgewiesen werden
wird, der starken L1-Konvergenz.
Dazu vorab einige Vorbereitungen:
Wir definieren für eine Charakteristik χ für t ∈ IR, s ∈ S

ms(t) := Es[ζt] ηt := ζt −mρ0(t)

Die Hauptarbeit des Beweises von Theorem 2.9.8 verlegen wir in Lemma 2.9.7.
Für dessen Beweis benötigen wir aber zuerst noch folgendes
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Lemma 2.9.6 Es seien für die Population und eine Charakteristik χ die
Bedingungen aus Theorem 2.9.5 gegeben. Weiter existiere ein n ∈ IN, so daß

χ ≤ n und χ(s, ωI , t) = 0 ∀t ≥ n, (s, ωI) ∈ D.

Dann sind für c ∈ IR beliebig die (ηt)t≤c gleichgradig integrierbar unter der
Startverteilung Ps, d.h.

∀ ε > 0 ∃ a0 ∈ IR : sup
t≤c

sup
s∈S

∫
{|ηt|>a}

|ηt| dPs < ε ∀a ≥ a0.

Beweis :
Sei t ≤ c beliebig. Dann gilt

ζt ≤
∑
x∈I

χ(Sx, t− σx)
t≤c
≤ n #{x ∈ I;σx ≤ c} = nyc (2.19)

Es[ζt] ≤ nEs[yc] (2.20)

und damit

{|ηt| > a} ⊂ {ζt > a} ∪ {Eρ0 [ζt] > a} ⊂ {nyc > a} ∪ {nEρ0 [yc] > a}. (2.21)

Also für ε > 0 beliebig∫
{|ηt|>a}

|ηt| dPs ≤
∫
{|ηt|>a}

ζt dPs +
∫
{|ηt|>a}

Es[ζt] dPs

≤
∫
{nyc>a}

ζt dPs +
∫
{nEs[yc]>a}

ζt dPs +
∫
{nyc>a}

Es[ζt] dPs

+
∫
{nEs[yc]>a}

Es[ζt] dPs

und der Beweis wird nun durch geeignete Abschätzung dieser 4 Summanden
vervollständigt:
1. Summand:

sup
t≤c

sup
s∈S

∫
{nyc>a}

ζt dPs ≤ sup
s∈S

n

∫
{yc> a

n
}
yc dPs < ε ∀a ≥ a1

für ein a1 ∈ IR, was aus der vorausgesetzten gleichgradigen Integrierbarkeit von
yc über den Starttyp resultiert.
2. und 4. Summand:
Da aus der gleichgradigen Integrierbarkeit von yc über den Starttyp
sups Es[yc] <∞ folgt, gilt

∃a2 ∈ IR : {n Es[yc] > a} = ∅ ∀s ∈ S ∀a ≥ a2

und daher verschwinden beide Summanden für a ≥ a2.
3. Summand:

sup
t≤c

sup
s∈S

∫
{n yc>a}

Es[ζt] dPs ≤ sup
s∈S

∫
{n yc>a}

nEs[yc] dPs

≤ n sup
s∈S

Es[yc] sup
s∈S

Ps(yc >
a

n
)

< ε ∀a ≥ a3
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für ein a3 ∈ IR, was sich wiederum aus der gleichgradigen Integrierbarkeit von
yc über den Starttyp ergibt.
Mit a0 := max{a1, a2, a3} folgt die Behauptung.

2

Lemma 2.9.7 Es seien für die Population und eine Charakteristik χ die
Bedingungen aus Theorem 2.9.5 gegeben. Weiter existiere ein n ∈ IN, so daß

χ ≤ n und χ(s, ωI , t) = 0 ∀t ≥ n, (s, ωI) ∈ D.

Mit c > n gilt für π-f.a. s ∈ S

ζt − E[ζt|FZt−c ]
t→∞−→ 0 in Wahrscheinlichkeit bzgl. Ps.

Beweis:
Für t > c (und damit ϕZt−c(t) = 0) beliebig gilt

ζt − E[ζt|FZt−c ] =
∑

x∈Zt−c
e−αtzχ

t−σx ◦ Sx −
∑

x∈Zt−c
e−αtE[zχ

t−σx ◦ Sx|FZt−c ]

=
∑

x∈Zt−c
e−ασx(ζt−σx ◦ Sx − Eρx [ζt−σx ])

=
∑

x∈Zt−c
e−ασx(ηt−σx ◦ Sx) (2.22)

und weiter für beliebiges v ∈ IR∑
x∈Zt−c

P (|ηt−σx ◦ Sx|e−ασx > v|FZt−c)

=
∑

x∈Zt−c
Pρx(|ηt−σx | > veασx)

≤
∑

x∈Zt−c
Eρx(1{|ηt−σx |>veασx}|ηt−σx |)

1
v
e−ασx

≤ 1
vk

∑
x∈Zt−c

Eρx(1{|ηt−σx |>veασx}|ηt−σx |)e−ασxh(ρx)

≤ εwZt−c

für beliebiges ε > 0 und t ≥ a0 + c mit a0 so groß, daß
sups∈S supt≤c Es(1{|ηt|>veαa}|ηt|) < εvk ∀a ≥ a0.
(und damit x ∈ Zt−c ⇒ (t− σx ≤ c und σx ≥ a0))

Sei nun eine Folge (tn)n∈IN in IR gegeben mit tn → ∞ und ein ω aus der
unter jedem Ps, s ∈ Slog sicheren Menge {ω ∈ D ; limn wZtn−c(ω) existiert}.
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Wir definieren

kn(ω) := #(Ztn−c(ω) ∩ <(ω))

{x;x ∈ Ztn−c(ω) ∩ <(ω)} := {xn1, . . . , xnkn}

Xnj := ηtn−σxnj (ω) ◦ Sxnje
−ασxnj (ω) j = 1 . . . kn

Dann ist für jedes n ζtn − E[ζtn |FZtn−c ] unter P (·|FZtn−c)(ω) eine Summe
unabhängiger zentrierter Zufallsgrößen und zwar gerade die Summe der
Xnj , j = 1 . . . kn, die “asymptotisch gleichgradig vernachlässigbar” sind,
d.h. für v > 0 beliebig

max
j=1...kn

P (|Xnj | ≥ v|FZtn−c)(ω) n→∞−→ 0.

(Dies folgt aus der schon gezeigten Ungleichung
kn∑
j=1

P (|Xnj | > v|FZtn−c)(ω) ≤ εwZtn−c(ω) und der Konvergenz von wZtn−c(ω)

für n gegen unendlich.)
Sei P̄ ein Wahrscheinlichkeitsmaß für daß P̄Xnj = P (Xnj ∈ ·|FZtn−c)(ω) ∀n, j
gelte und X̄ eine unter P̄ N(0, 0)-verteilte Zufallsgröße. Wir zeigen nun, wobei
wir uns eng an Loève[8], Kapitel VI halten, die Behauptung

kn∑
j=1

Xnj
n→∞−→ X̄ in Verteilung unter P̄ . (2.23)

Dazu definieren wir analog zur Notation in Loève

Fnj(A) := P (Xnj ∈ A|FZtn−c)(ω) ∀A ∈ D

anj(τ) :=
∫
|x|<τ

x dFnj

σ2
nj(τ) :=

∫
|x|<τ

x2 dFnj − (anj)2

Nach Loève[8], Seite 316 sind zum Nachweis von (2.23) folgende drei Punkte
für jedes ε > 0 und ein τ > 0 nachzuweisen :

a)
kn∑
j=1

P (|Xnj | ≥ ε|FZtn−c)(ω) n→∞−→ 0

b)
kn∑
j=1

|anj(τ)| n→∞−→ 0

c)
kn∑
j=1

|σ2
nj(τ)| n→∞−→ 0
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a) haben wir bereits nachgewiesen.
zu b)
Wir wählen τ > 0, ε > 0 beliebig

kn∑
j=1

|anj(τ)| =
kn∑
j=1

|E[1{|Xnj |<τ}Xnj |FZtn−c ](ω)|

=
kn∑
j=1

|E[1{|Xnj |>τ}Xnj |FZtn−c ](ω)| (Xnj zentriert)

=
∑

x∈Ztn−c
e−ασx |Eρx [ηtn−σx1{|ηtn−σx |>τeασx}](ω)|

≤ 1
k

∑
x∈Ztn−c

e−ασxh(ρx) sup
s∈S

sup
t≤c

Es[|ηt|1{|ηt|>τeασx}](ω)|

≤ εwZtn−c ∀n ≥ n(ε),

wobei die letzte Abschätzung aus der gleichgradigen Integrierbarkeit der (ηt)t≤c

über den Starttyp folgt. (Lemma 2.9.6)
zu c)
Für τ > 0 beliebig gilt

kn∑
j=1

|σ2
nj(τ)| ≤

kn∑
j=1

|
∫
|x|<τ

x2 dFnj |+
kn∑
j=1

(∫
|x|<τ

x dFnj

)2

=
kn∑
j=1

|E[X2
nj1|Xnj |<τ |FZtn−c ](ω)|+

kn∑
j=1

(
E[Xnj1|Xnj |<τ |FZtn−c ](ω)

)2
.

Der zweite Summand ist analog zur Abschätzung der Summe der anj als
konvergent gegen 0 nachzuweisen.
Schätzen wir also nur den ersten Summand weiter ab: Dazu sei ε > 0 beliebig
gewählt. ∑

x∈Ztn−c
E[(ηtn−σx ◦ Sx)2e−2ασx1{|ηtn−σx◦Sx|e−ασx≤τ}|FZtn−c ](ω)

≤
∑

x∈Ztn−c
Eρx [(ηtn−σx)

2e−2ασx1{|ηtn−σx |<εeασx}](ω)

+|
∑

x∈Ztn−c
Eρx [(ηtn−σx)

2e−2ασx1{|ηtn−σx |<τeασx}](ω)

−
∑

x∈Ztn−c
Eρx [(ηtn−σx)

2e−2ασx1{|ηtn−σx |<εeασx}](ω)|

≤ ε

k
sup
s∈S

sup
t≤c

Es[|ηt|]
∑

x∈Ztn−c
e−ασxh(ρx)

+
∑

x∈Ztn−c
Eρx [(ηtn−σx)

2e−2ασx1{εeασx<|ηtn−σx |<τeασx}](ω)

≤ ε

k
sup
s∈S

sup
t≤c

Es[|ηt|]wZtn−c

+
τ

k

∑
x∈Ztn−c

e−ασxh(ρx)Eρx [|ηtn−σx |1{εeασx<|ηtn−σx |}](ω)
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≤ ε

k
sup
s∈S

sup
t≤c

Es[|ηt|]wZtn−c

+
τ

k

∑
x∈Ztn−c

e−ασxh(ρx) sup
s∈S

sup
t≤c

Es[|ηt|1{εeασx<|ηt|}](ω)

≤ ε

k
sup
s∈S

sup
t≤c

Es[|ηt|]wZtn−c

+
τ

k
wZtn−c sup

s∈S
sup
t≤c

Es[|ηt|1{εeα(tn−c)<|ηt|}](ω)

Da ε beliebig gewählt war, folgt c) mithilfe der fast sicheren Konvergenz von
wZtn−c und der gleichgradigen Integrierbarkeit der (ηt)t≤c. (Lemma 2.9.6)
Damit ist also nun (2.23) gezeigt.
Daraus ergibt sich

lim
n→∞

P (ζtn − E[ζtn |FZtn−c ] ≤ t|FZtn−c)(ω)

(2.22)
= lim

n→∞
P (

∑
x∈Ztn−c

ηtn−σx ◦ Sxe−ασx ≤ t|FZtn−c)(ω)

= lim
n→∞

P (
kn∑
j=1

Xnj ≤ t|FZtn−c)(ω) =

{
1 : t > 0
0 : t < 0

und dann mit majorisierter Konvergenz für s ∈ Slog

lim
n→∞

Ps({ζtn − E[ζtn |FZtn−c ] ≤ t})

= lim
n→∞

Es
[
P ({ζtn − E[ζtn |FZtn−c ] ≤ t}|FZtn−c)

]
=

{
1 : t > 0
0 : t < 0

und daher die Konvergenz in Wahrscheinlichkeit von ζtn − E[ζtn |FZtn−c ] unter
Ps gegen 0.
Da tn eine beliebige Folge in IR mit tn →∞ war, gilt damit also nach Neveu[9],
Seite 96 Lemma V-1-1

ζt − E[ζt|FZt−c ]
t→∞−→ 0 in Wahrscheinlichkeit bzgl. Ps.

2

Jagers schließt nun weiter in seinem Artikel, daß unter den gegebenen
Voraussetzungen ζt −→ γw in Wahrscheinlichkeit bzgl. Ps für π-f.a. s ∈ S
gilt. Zusammen mit der schon nachgewiesenen schwachen L1-Konvergenz würde
dann nach Zaanen[17], Seite 385 die starke L1-Konvergenz folgen. Leider ist
die Beweisführung in der Form falsch, so daß wir die von ihm aufgestellte
Aussage über die starke L1-Konvergenz nur unter zusätzlichen Voraussetzungen
beweisen können. Wir stellen hier zwei Möglichkeiten vor, von denen die zweite
den Vorteil hat, daß die in ihr gestellten Zusatzvoraussetzungen für den Fall
einer endlichen Typenmenge S kaum gravierend sind. Wir erinnern vorab an

γ =
1
β

Eπ[ ˆχ(α)] =
1

h(s)
lim
t→∞

Es[e−αtzχ
t ] =

1
h(s)

lim
t→∞

ms(t) für π-f.a. s ∈ S,

wobei für die zweite Gleichung Theorem 2.9.3 heranzuziehen ist.
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1. Wir setzen voraus, daß (E[ζt|FZt−c ])t∈IR monoton wachsend in t ist. (Ps-
f.s. ∀s ∈ S)
Aus

Es[ζt|FZt−c ]
(2.14)
=

∑
x∈Zt−c

e−ασxEρx [ζt−σx ]

≤ 1
k

sup
s∈S

sup
t≤c

(Es[ζt])wZt−c P -f.s.

geht unter Berücksichtigung von (2.19) und der vorausgesetzten
gleichgradigen Integrierbarkeit von yc zusätzlich die f.s.Beschränktheit
jeder Folge (Es[ζtn |FZtn−c ])n∈IN mit tn ↑ ∞ hervor. (Ps-f.s. für π-f.a.
s ∈ S)
Für jede Folge tn ↑ ∞ existiert demnach eine Zufallsgröße X mit

Es[ζtn |FZtn−c ] −→ X Ps-f.s. für π-f.a. s ∈ S.

Aus ζtn − Es[ζtn |FZtn−c ]
i.W.−→ 0 ergibt sich direkt ζtn

i.W.−→ X und daher
aus der schon nachgewiesenen schwachen L1-Konvergenz mit Neveu[10],
Proposition IV-2-2 ζt

i.W.−→ γw. Daraus folgt jetzt zusammen mit der schon
nachgewiesenen schwachen L1-Konvergenz die starke L1-Konvergenz bzgl.
Ps von ζt gegen γw. (Zaanen[17], Seite 385) für π-f.a.s ∈ S.

2. Wir machen folgende beiden zusätzlichen Voraussetzungen:

• Esζt −→ γh(s) gleichmäßig in s, d.h.

lim
t→∞

sup
s∈S
|Es[ζt]− γh(s)| = 0

(Diese Voraussetzung ist trivialerweise erfüllt, falls S endlich.)

• ∃ r ∈ IR : P τx
s ((r,∞)) = 0 ∀x ∈ I ∀s ∈ S

Dies ist sogar eine sehr realitätsnahe Einschränkung, denn die
Tatsache, daß Individuen ab einem bestimmten Alter r keine
Nachfahren mehr bekommen, wäre zum Beispiel schon durch eine
obere Altersschranke für die Individuen gegeben.

Damit gilt:

E[|E[ζt|FZt−c ]− γwZt−c |]
(2.14)

≤ E[
∑

x∈Zt−c
e−ασx |Eρx [ζt−σx ]− γh(ρx)|]

≤ 1
k
E[wZt−c ] sup

u≥c−r
sup
s∈S
|Es[ζu]− γh(s)|.

(denn x ∈ Zt−c ⇒ σmx ≤ t− c⇒ σx ≤ t− c + r ⇒ t− σx ≥ c− r)
Man hat also

∀ε > 0 ∃c0 > 0 : t > c > c0 ⇒ E[|E[ζt|FZt−c ]− γwZt−c |] ≤ ε.
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Zusammen mit

γwZt−c −→ γw in L1 bzgl. Ps für π-f.a.s ∈ S

folgt für π-f.a.s ∈ S

∀ε > 0 ∃c0 > 0, t0 > 0 : t > t0 ⇒ Es[|E[ζt|FZt−c0 ]− γw|] ≤ ε.

Mit

ζt − E[ζt|FZt−c0 ] i.W.−→ 0

folgt nun leicht

ζt
i.W.−→ γw

und wie eben zusammen mit der schwachen L1-Konvergenz die starke
L1-Konvergenz bzgl. Ps für π-f.a.s ∈ S.

Zuletzt läßt sich nun noch die Einschränkung an die Charakteristik (χ ≤
n, χ(t) = 0 ∀t ≥ n) wie im Beweis von Theorem 2.9.5 aufheben.
Dazu definieren wir uns χn wie schon am Ende des Beweises von Theorem 2.9.5
Dann gilt

E[|e−αtzχ
t − γw|] ≤ E[|e−αtzχ

t − e−αtzχn
t |] + E[|e−αtzχn

t −
1
β

Eπ[χ̂n(α)]w|]

+ E[| 1
β

(Eπ[χ̂n(α)]− Eπ[χ̂(α)])w|].

Der erste Summand läßt sich wie schon zum Ende von Theorem 2.9.5 gezeigt,
beliebig klein abschätzen. Für den zweiten Summanden gilt nach dem eben
behandelten Spezialfall dasselbe. Der dritte Summand konvergiert aufgrund
von monotoner Konvergenz gegen 0.

Wir fassen das Gezeigte in einem Theorem zusammen

Theorem 2.9.8 Es seien für die Population und eine Charakteristik χ die
Bedingungen aus Theorem 2.9.5 gegeben. Zusätzlich sei

(E[ζt|FZt−c ])t∈IR monoton in t Ps-f.s. ∀s ∈ S

oder es gelte für ein r ∈ IR

lim
t→∞

sup
s∈S
|Es[ζt]− γh(s)| = 0 und P τx

s ((r,∞)) = 0 ∀x ∈ I ∀s ∈ S.

Dann gilt für π-f.a. s ∈ S

e−αtzχ
t

t→∞−→ 1
β

∫
IR

∫
S

e−αuEr[χ(u)] π(dr) λλ(du) w = γw in L1 bzgl. Ps.





Appendix A

Es sei (S,S) ein meßbarer Raum und A ∈ S, B ∈ B.

A.1 Markov-Ketten

Definition:
Gegeben ein stochastischer Kern µ : S × S → [0, 1] und ein
Wahrscheinlichkeitsmaß λ auf (S,S).
Eine stochastische Folge (Mn)n≥0 mit Zustandsraum (S,S) heißt zeitlich
homogene Markov-Kette (MK) mit Übergangskern µ und Startverteilung λ, wenn

PM0 = λ

PMn+1|(Mk)0≤k≤n(·) = µ(Mn, ·) P-f.s. ∀n ≥ 0

Standardmodell:
Sei µ : S × S → [0, 1] ein stochastischer Kern.
(Ω,A, (Mn)n∈IN, (Pλ)λ∈W(S)) heißt Standardmodell zu µ, wenn Mn : (Ω,A) →
(S,S) unter jedem Pλ eine zeitlich homogene Markov-Kette mit Startverteilung
λ und Übergangskern µ bildet.
Wir schreiben auch kurz Px statt Pδx für x ∈ S.

A.2 Ein Erneuerungstheorem für Random-Walks

Für einen RW (Sn)n≥0 mit quasi-λλ-stetigen Zuwächsen X1, X2, . . . und µ :=
EX1 > 0 gilt mit ν :=

∑
n≥0 PSn

lim
t→∞

sup
|g|≤f

|ν ∗ g(t)− 1
µ

∫
IR

g(x) λλ(dx)| = 0

lim
t→−∞

sup
|g|≤f

|ν ∗ g(t)| = 0

für alle 0 ≤ f ∈ L1 ∩ L∞ mit lim|t|→∞ f(t) = 0.
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