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Chapter 0

Einleitung

In der vorliegenden Arbeit wird eine Population unter Beriicksichtigung sowohl
ihrer zeitlichen als auch ihrer genetischen Entwicklung modelliert und mithilfe
dieses Modells ihr asymptotisches Verhalten untersucht.

Zielsetzung der Modellierung ist unter anderem, dafl unsere Population -
angelehnt an die biologische Wirklichkeit - folgende beiden Eigenschaften erfiillt:
1. Individuen erben ihren Genotyp und entwickeln sich - diesen gegeben -
unabhéngig von ihren Vorfahren.

2. Disjunkte Populationszweige héngen nur durch ihre gemeinsamen Vorfahren
voneinander ab und entwickeln sich ansonsten unabhéngig voneinander.

Dies motiviert den Versuch, die Population mithilfe der Markov-Theorie zu
modellieren. Da aber auch die zeitliche Entwicklung beriicksichtigt werden soll,
fithrt uns dies in die Markov-Erneuerungstheorie (genaueres dazu in 2.7), die
wir daher als theoretische Grundlage in dieser Arbeit behandeln.

Gehen wir zunéchst néher auf die in Kapitel 1 behandelten Themen ein:

Nachdem wir in den Abschnitten 1.1 und 1.2 grundlegende Definitionen
und Notationen festlegen, werden wir in Abschnitt 1.3 einige fiir uns im
folgenden wichtige Eigenschaften von Kernen behandeln. Dabei halten wir
uns im wesentlichen sehr eng an Nummelins (weitaus umfassenderes und
ausfiihrlicheres) Buch “General Irreducible Markov Chains and Non-Negative
Operators”([12]). In zwei Merkmalen unterscheiden wir uns von der Arbeit
Nummelins: In jener werden Kerne auf einem Zustandsraum (S, S) betrachtet.
Wir dagegen iibertragen die Ergebnisse und Definitionen auf Kerne der
Form p : S x (8§ ® B) — [0,00). Bis auf die in Unterabschnitt 1.3.2
festgehaltenen Aussagen iiber die Minorisierungsbedingung kénnen wir jedoch
alles in kanonischer Form iibertragen, indem wir von p zu p(-, - X R) iibergehen.
Die zweite Abweichung liegt in der Definition des Konvergenzparameters und
der damit zusammenhéngenden a-Rekurrenz(-Transienz). Wéhrend Nummelin
die in der sogenannten R-Theorie iibliche Definition wéhlt, entscheiden wir
uns fiir eine davon abweichende, z.B. auch in dem von Niemi und Nummelin
verfaiten Artikel “On non-singular renewal kernels with an application to
a semigroup of transition kernels” ([11]) gewéhlte Form. Auch hier lassen
sich jedoch die Aussagen und Beweise in meist nur leicht modifizierter Art
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iibertragen.

Aufbauend auf diesen grundlegenden FKEigenschaften von Kernen beweisen
wir in Abschnitt 1.4 nach der von Nummelin in “Uniform and ratio limit
theorems for Markov renewal and semi-regenerative processes on a general
state space” ([13]) vorgestellten Idee ein Markov-Erneuerungstheorem. Dabei
behandeln wir zuerst den von Arjas, Nummelin und Tweedie 1978 ([3])
nachgewiesenen Spezialfall, den sogenannten Atom-Fall. Danach 143t sich der
allgemeine Fall durch Zuriickziehen auf den Spezialfall nachweisen, indem
wir den sogenannten gesplitteten Markov-Random-Walk konstruieren. Diese
Konstruktion 148t sich in &hnlicher Weise in zahlreicher Literatur (z.B.
Nummelin[13],[14]) wiederfinden.

Im zweiten Kapitel kénnen wir nun mit den bisher behandelten Hilfsmitteln die
Population modellieren und untersuchen. Dabei stiitzen wir uns grundlegend auf
den 1988 erschienenen Artikel Jagers “General Branching Processes as Markov
Fields”([7]). Die in der Modellierung zu beriicksichtigenden Eigenschaften der
Population wurden oben schon kurz erldutert, finden sich im Detail aber auch
in der Motivation (2.1). Zu bemerken bleibt noch, dafl in der Einschréinkung
auf asexuelle Vermehrung eine sehr starke Vereinfachung vorgenommen wird.
Vererbungsprozesse wie Rekombination finden in unserem Modell demnach
keine Beriicksichtigung. Dennoch gehen wir nicht von dem Trivialfall aus, dafl
der Genotyp einer Mutter an ihre Kinder weitergegeben wird, sondern lassen
genetische Verdnderungen von Generation zu Generation zu.

Nach der Modellierung weisen wir in den Abschnitten 2.3 bis 2.5 wichtige
Eigenschaften der Population nach und stellen in 2.7 einige grundlegende
Voraussetzungen an sie, die uns spéter die Anwendungen der im ersten Kapitel
erhaltenen Ergebnisse ermoglichen werden. In den Abschnitten 2.7 und 2.8
behandeln wir das sogenannte intrinsische Martingal, dessen Nutzen sich erst
in nachfolgendem Abschnitt offenbaren wird. Dort betrachten wir dann das
asymptotische Verhalten der Population, indem wir Konvergenzaussagen bzgl.
Konvergenz in Erwartung, schwacher £1- und starker £;-Konvergenz aufstellen.
Dabei erkaufen wir den Ubergang zu einer stirkeren Konvergenzart stets mit
zusétzlichen Voraussetzungen an die Population. Der Nachweis der Konvergenz
erfolgt stets fiir eine ganze Klasse von Funktionen. Auf diese Weise lassen sich
ganz verschiedene Aspekte der Populationsentwicklung, wie z.B. die Grofie der
Population, die Anzahl der Individuen mit bestimmtem Genotyp etc. mit nur
einem Theorem behandeln.

Zu bemerken bleibt, dafl die von Jagers urspriinglich aufgestellte Behauptung
tiber die starke £1-Konvergenz in der Form nicht aufrechterhalten werden kann,
da seine Beweisfiihrung fehlerhaft ist. Die von uns stattdessen entwickelte
Aussage ist weitaus schwicher, da wir Jagers Konvergenzaussage nur mit
erheblichen Zusatzvoraussetzungen retten kénnen.
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Kerne

1.1 Praliminarien

In diesem Abschnitt werden héufig benutzte Schreibweisen und Definitionen
bereitgestellt, sowie einige Basisannahmen gemacht.

Im gesamten Kapitel bezeichne (5,S) einen abzéhlbar erzeugten mefibaren
Raum.

B bezeichne die Borelsche o-Algebra und A das Lebesgue-Mafl auf RR.

M bezeichne die Menge aller signierten Mafie auf (S,S) mit positiver
Gesamtmasse.

St sei die Menge aller nichtnegativen meBbaren Funktionen auf (5,S) mit
Werten in (IR, B)

Es sei stets, wenn nicht anders gesagt, A€ S, Be B, z € S.

Sind (£, %), (Q,%) zwei meBbare Riume, so heift eine numerische Funktion
1 Qx X — [0,00] ein (nichtnegativer) Kern von (Q, %) nach (Q, %), wenn u
die Eigenschaften

e Fiir alle w € Q ist p(w,-) ein MaB auf Q
e Fiir alle A € ¥ ist u(-, A) eine meBbare Funktion auf (Q, %)

erfiillt.
1 heift Ubergangskem oder (sub)stochastisch, wenn p(w, )

()1 Vw e .
Im Fall Q = Q, ¥ = ¥ spricht man auch von einem Kern auf (Q,%

)-

Seien nun p, 1,2 @ S X (S®B) — Ry sowie Q,Q1,Q2 : S xS — Ry
nichtnegative Kerne , ¢; (¢2) ein Maf auf (S x R,S ® B) ((S,S)) , f1 (f2)
eine mefibare Funktion auf (S x R,S ® B) ((S,S)) mit Werten in (IR, B).

Die Faltung g1 * po wird definiert durch

s, A x B) = [ paly A (B = w) pa(a,dy x du).
X
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Die n-fache Faltung von u, kurz p” | wird so fiir jedes n € IN induktiv definiert
durch

pia Ax B) = [ ply Ax (B = w) " (a,dy x du).
SxB

Entsprechend werden die Faltungen von p mit ¢1, von f; mit p sowie von f|
mit ¢, definiert durch

qﬁl*,u(AxB):/S R,u(m,AxB—u) ¢1(dx x du)

px fi(s,t) = /SXRfl(a;,t —u) p(s,dz x du)

o1 % f1(t) = /S fi(z,t —u) ¢1(dx x du)

xR

Weiter definieren wir

QQa(w,4) = | Qaly, A) Qi dy)
Q. 4) = [ Q. 4) Q" V(a,dy)
Gai(Ax B) = [ pla, Ax B) o(de)
52Q(4) = [ Q. 4) Ga(dy)
Qfale) = [ o) Qlady)

balf2) = [ 12(w) fnlay)
f2® ¢a(z, A) = fs(z)9s(A)
v (U) bezeichne stets den Erneuerungskern von p (von Q) definiert durch
v(z,Ax B) = Z p'(x, A x B) U(z,A) = Z Q"(x, A),
n=0 n>0
wobei p(x, A x B) := 6(B)dz(A) und Q°(z, A) := 0,(A).
Fiir ein A € IR sei u), der durch
pr(z, A x B) = / e Mu(x, A x dt)
B

definierte Kern und vy der zugehorige Erneuerungskern.
Entsprechend sei fiir ein Mafl ¢ auf (S x R,S ® B) ¢, das durch

éx(A x B) = /B e M (A x di)

definierte Mafi.
Die in kanonischer Weise durch p und gy induzierten Kerne auf (S,S)
bezeichnen wir mit g bzw. iy, d.h.

a(x, A) := pu(x, A x R) ax(x, A) == pr(z, A x R),

und die zugehdrigen Erneuerungskerne entsprechend mit v und vy.
Genauso wird das durch ¢ auf (S,S) induzierte Mafl ¢ definiert durch

#1(A) == ¢1(A x R).
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1.2 Markov-Random-Walks: Definition und
Standardmodell

Definition 1.2.1 Gegeben ein stochastischer Kern p: S x (S®B) — [0,1] und
ein Wahrscheinlichkeitsmaf§ A auf (S x R,S ® B).

Es sei (Mp,X,)n>0 eine zeitlich homogene Markov-Kette (siehe A.1) mit
Ubergangskern p und Startverteilung A, d.h.

P(My € A, Xy € B) = A(A x B)
P(Myy1 € A, Xni1 € B|My, X)) = p(Myn, Ax B) P-fs. ¥n > 0.

Mit S, = Xo+. ..+ X, heiBt (M, S,)n>0 dann Markov-Random- Walk (MRW).
Gilt zusétzlich p(z,S x (—00,0]) = 0 Vx € S, so heiBt (M,, Sp)n>0 auch
Markov-Erneuerungsprozefs (MEP).

Ohne Beweis geben wir an: (zum Beweis siche Nummelin[11])

Bemerkung 1.2.2 Ist 4 : S x (S® B) — [0, 1] substochastisch, so existiert ein
MRW mit Ubergangskern pu.

Definition 1.2.3 Sei 4 : S x S ® B — [0, 1] ein stochastischer Kern.

(2, A, (My, Sn)n>0, (Px)xew(sen)) heiBt Standardmodell zu y1, wenn

(M, Sp) : (2,4) — (S xR,S®B), n > 0 unter jedem Py einen Markov-
Random-Walk mit Startverteilung A und Ubergangskern p bildet.

Fiir ein Wahrscheinlichkeitsmafl ¢ auf (S,S) schreiben wir nur kurz Py fiir
Pogso-

Fir Py, schreiben wir auch nur P, ; und fiir P, ¢ nur P, (wobei z € S,t € R).
Folgende Gleichung 148t sich leicht nachrechnen:

Pz, Ax (B—t))=Pp¢(M,€AS,e€B) VreSl

1.3 Eigenschaften von Kernen

Gegeben sei ein nichtnegativer Kern p: S x (8§ ® B) — [0, o0].

In diesem Abschnitt werden wir Eigenschaften eines solchen Kernes, wie
Irreduzibilitéit, a-Rekurrenz, Rekurrenz und Existenz von invarianten Maflen
und Funktionen, und ihre Zusammenhénge untersuchen. Dabei werden wir uns
nah an Nummelin[12] halten. Wir werden allerdings in der Definition von a-
Rekurrenz und a-Invarianz von der von Nummelin zugrundegelegten R-Theorie
abweichen. Dennoch ldt sich die Beweisfithrung in leicht modifizierter Form
hdufig ibertragen.

1.3.1 Irreduzible Kerne

Hier werden wir die “Kommunikationsstruktur” von Kernen, d.h. welche
Zustandsmengen von welchen aus erreichbar sind, untersuchen.
(Der Begriff der Erreichbarkeit wird nachfolgend erldutert.)
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Definition 1.3.1 Sei A€ S,z € S.

A heiit erreichbar von x, kurz x — A,wenn ein n > 1 existiert mit g"(x, A) > 0.
A heifit abgeschlossen, wenn A nicht-leer und A€ von keinem x € A erreichbar
ist.

Offenbar ist schon fi(z, A°) =0 Vz € A hinreichend fiir die Abgeschlossenheit
von A.

Satz und Definition 1.3.2 (irreduzible Mafle) Ein o-endliches, positives
Maf ¢ auf (S,S) heifit irreduzibel fiir i und p heifst p-irreduzibel, wenn gilt

(A >0=z— A Vz b

w heif$t irreduzibel,wenn p p-irreduzibel ist fiir ein geeignetes .
¥ heifst maximales irreduzibles Maf$ fir p,wenn 1 irreduzibel fir p und jedes
weitere fur p irreduzible Maf$ absolut stetig bzgl. i ist.
Ist p irreduzibel, gilt (sieche Nummelin[12], Proposition 2.4):

(i) Es existiert ein mazimales irreduzibles Majfs.

(ii) Ein fir p irreduzibles Maf 1 ist genau dann ein mazximales irreduzibles

MaB fiir p, wenn ¥ < .

Ist ¢ mazimales irreduzibles Maf3 , so heifst eine Menge A voll, wenn ¢(A€) = 0.
(Offensichilich sind abgeschlossene Mengen stets voll.)
Wir definieren ST = {f € Sy;¢(f) > 0} und schreiben auch kurz A € ST,
wenn 14 € ST.

Bemerkung 1.3.3 Ist p irreduzibel, so gilt das auch fiir die Kerne py, A € R,
und die Mengen ihrer irreduziblen Mafle stimmen iiberein. Damit haben diese
Kerne auch (bis auf Aquivalenzen) dasselbe maximale irreduzible MaSf.

Im folgenden sei p stets als irreduzibel angenommen und % bezeichne ein
maximales irreduzibles Maf fiir p.

1.3.2 Die Minorisierungsbedingung

Definition 1.3.4 (Minorisierungsbedingung)
w erfilllt die Minorisierungsbedingung M (myg, 3,8,¢) mit mg € IN | 3 > 0,
s € 8T, p ein positives MaB auf (S x R, S ® B), wenn

wm(x, Ax B) > (3s(x)p(Ax B) Ve € SYBe BVYAE€S.

¢ heifit kleines Maf$ fiir u,wenn p die Minorisierungsbedingung M (my, 3, s, )
fiir ein mg € IN, >0, s € ST erfiillt.

s heit kleine Funktion fir p, wenn p die Minorisierungsbedingung
M (mo, B3, s, ) fiir ein mg € IN, 5> 0, positives Mafl ¢ erfiillt.

C € S heifit kleine Menge fiir i, wenn 1¢ eine kleine Funktion ist.

Es bezeichne ¥ die Menge aller kleinen Funktionen.

Obige Definitionen koénnen alle auf einen Kern auf (S,S) iibertragen werden,
mit dem einzigen Unterschied, dafi ¢ dann ein Maf auf (S, S) bezeichne.
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Nach Nummelin[12], Theorem 2.1 erfiillt jeder irreduzible Kern p auf (S,S)
eine Minorisierungsbedingung. Da wir dies aber nicht weiter benttigen, gehen
wir darauf nicht nidher ein. Wichtiger fiir unsere Zwecke sind folgende einfache
Bemerkungen:

Bemerkung 1.3.5 Ein kleines Ma$ ¢ ist stets irreduzibel fiir . (Im Falle, daf
¢ auf (S ® B) definiert ist, bedeute dies, da8 ¢ irreduzibel sei.)

Bemerkung 1.3.6 Erfiillt y M(myg, 3, s, ¢) kann ohne Einschrinkung g = 1
angenommen werden, denn p erfiillt offensichtlich auch M (my, 1, s, ).

Bemerkung 1.3.7 Ist u stochastisch und erfillt u M(myg, 3, s, ¢), so kénnen
8=1,0<s<1und ¢ als Wahrscheinlichkeitsmafl angenommen werden.

Bemerkung 1.3.8 Erfillt u  M(mo,S5,s,¢), so erfiillt p  die
Minorisierungsbedingung M (myg, 3, S, ).

Der Kern puy erfiillt M(mo,[,s,0x) und entsprechend erfiillt fy die
Minorisierungsbedingung M (my, 3, S, @x)-

Wir werden
in Satz 1.3.10 ein Kriterium fiir die Giiltigkeit der Minorisierungsbedingung
kennenlernen, welches wesentlich leichter zu iiberpriifen ist als ein direkter
Nachweis der Minorisierungsbedingung.

Dazu zuerst folgende

Definition 1.3.9 p heifit quasi-p @ A-stetig fiir ein MaBl ¢ auf (S, S), wenn fiir
Y-fa. x € S ein n € IN existiert, so dal u™(z,-) eine ¢ ® A-stetige Komponente
hat, d.h. es existieren ein ¢ ® X-stetiges Mafl uf # 0 und ein weiteres Mafl u3,

so daB (2, ) = ui() + 15 ().

Satz 1.3.10 Ist u quasi-y ® A-stetig, so erfillt p die Minorisierungsbedingung
M (mo, B, s,¢) mit mg, 3, s, geeignet.

Beweis:

Vorab einige Bezeichnungen:

Wir bezeichnen die Dichten der 1 ® A-stetigen Komponenten von p™(zx,-) mit
E™(z,-).

Nach Orey[15], Abschnitt 1.1 kénnen wir stets Versionen von k™ (x,-) finden,
die verbunden mefibar sind, in dem Sinne, dal £ aufgefafit als Funktion in
(z,y) meBbar bzgl. (R x R, B® B) ist, was wir im folgenden voraussetzen.
FirAceS@S@Bund BeS®B®S ® B sei

Ao B:={(a,b,c,dye) € Sx SxR xS xR; (a,b,c) € A, (bc,de) € B}.

Da (S, S) als abziihlbar erzeugt vorausgesetzt wurde, existiert eine Folge (S%);en
endlicher Partitionen von S, wobei S**! als feiner als S? angenommen werde,
so daB S = o(U;S?).

Fiir # € S bezeichne S! die eindeutig bestimmte Menge aus S, in der x
enthalten ist.
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Entsprechend bezeichnen D’ endliche Partitionen von B mit zunehmender
Feinheit und D! fiir ein ¢t € R die Menge aus D?, in der ¢ enthalten ist.
Kommen wir nun zum Beweis des Satzes:

Da p quasi-y ® A-stetig, existieren mq, my € IN so dafl

/ E™2 (y, z,t —v) K™ (z,y,0)
RXxSxSxRxS

P RAR Y @Y RANdz X dt X dy x dz x dv) > 0.

Demnach kann ein § > 0 gefunden werden, so dafl mit
A:={(z,y,v) € S x SxR; k™ (z,y,v) >0}
B:={(y,v,z2,t) e SxR xS xR; k" (y,z,t —v) >}

AoB P ®1Y ARy ®A-positiv ist.
Nach dem Differentiationstheorem von Doob (Doob[6],S.612 ,Theorem 2.5)
existiert eine ¥ ® 1 ® ANullmenge N7 sowie eine ¥ @ A ® ¥ ® ANullmenge
Ny, so dafl
; Y@y @A(AN (S xS} x D))
im
=00 4 @b ®>,\(5;; x Si Dg)

=1 V(z,y,v) € A\ V;

Y @AY @A(BN(S] x D x Si x D))
lim ‘
e @AY eA(S) x Di x S x D)

=1 VY(y,v,zt)€ B\ Ny

Sei nun ein (a,b, k,c,l) € Ao B fest.
Wir wéhlen j so grofl, dafl A
vy @A(AN(S]x 8] x D)) >3/4¢p @y e (S] xS x D)
und
YeAR Y @A(BN(S] x Dy x 8I x D)) > 3/4 ¢ @ A@ v
A(S] x Df x 81 x D}).
Wir definieren

C = {w € 850 @M A1) N (S] x D)) > 50 @ XS] x D))

D = {(2,1) € 81 x D)) @ X(Bsa(,) 1 (8] x DY) = 2w © XS] x D))

wobei A;(z) = {(y,v) € SxR; (z,y,v) € A}

und Bs4(z,t) = {(y,v) € S xR ; (y,v,2,t) € B}.

Offensichtlich sind C und D - bzw. ¥ & Adpositive Mengen und fiir
x € C,(z,t) € D gilt

P X )\(Al (l’) M 3374(2, t))
> x A(A1(2) N (8] x DY) = < A((Bsa(zt) N (8] x D}))

1 , .
Ziwx}\\(é}fxDi) =~ >0.
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Damit folgt fiir beliebige x € S,V € S, W € B
prE (4, Vo W)
Z ]_C(.TI)/ 1V><W(Z7t>]—AOB(x7 Y, v, Z,t)].D(Z,t) ka <y7 Z,t - U)
SXxSXxRxSxR

E™ (2, y,0)Y @A® Y @ Ndy x dv x dz x dt)

> 10(33)52/ 14, (@)nBsa(zt) (¥ 0)Lvxw (2, 1) 1p(z, 1)
SxSxRxSxR
P RAR Y RNdy X dv x dz x dt)
> 1o(2)8? /S o L (2 0 O MAL(@) 1 Bya(2,1) ¥ © M=  di)
XOX

> 1c(z) >y @A((V x W)N D).

Mit s =1¢, B =062y, ¢ =1 xX-ND) gilt also die Behauptung.

Wir werden spéter s und ¢ aus der Minorisierungsbedingung mit der speziellen
Eigenschaft benétigen, dal [¢ s(x) ¢(dx x -) quasi-A-stetig ist. Daf} dies keine
zusétzlichen Schwierigkeiten verursacht, zeigt folgendes

Lemma 1.3.11 Ist 7 quasi-
Y @ A-stetig, so erfillt p die Minorisierungsbedingung M (myg, 3,s,¢) derart,
daf$ [¢s(x) @(dx x -) nichttrivial und absolut stetig bzgl. N, also insbesondere
quasi-A-stetig ist.

Bewezis:

Im Beweis von Lemma 1.3.10 ergibt sich, dal u M (my, 3, s, p) mit s = 1¢ fiir
ein C € 8T und mit ¢ = x (D N -) fiir eine 1) @ A-positive Menge D erfiillt.
Wir wihlen m > 1 so grof},daf

/D,um(:v,C' xRy) ¥ @Ndz x dt) >0 (1.1)

(solch ein m muB aufgrund der Irreduzibilitdtsannahme existieren, wie man sich
leicht iiberlegen kann). Damit folgt

pmtmo(zods x dt) = / w™(y,ds x d(t —u))u™ (z,dy x du)
SxR
> /D,um(y,ds x d(t —u))Ble(x) ¥ x Ndy x du)

= Ple(@)e*p™(ds x dt),

d.h. p erfiillt M(m + mo,,1c,¢ * u™) und wegen (1.1) und der speziellen
Gestalt von ¢ ist [qs(x) ¢ * ™ (dx x -) nichttrivial und absolut stetig bzgl. A.

a
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1.3.3 «a-Rekurrenz und a-Transienz

Mit den in diesem Abschnitt eingefiihrten Begriffen des Konvergenzparameters,
der a-Rekurrenz und a-Transienz wird die Wachstumsrate der gefalteten Kerne
©™ mit n — oo beschrieben. Diese Rate wird dabei jedoch anders als in der R-
Theorie exponentiell angegeben.

Definition 1.3.12 (Konvergenzparameter)
Erfiillt x die Minorisierungsbedingung, so heit @ € R := R U {—o0, 0}
Konvergenzparameter von p, wenn es eine abgeschlossene Menge F' gibt, so
dafl

(i) [s(y) va(z,dy) < oo auf F Vs € XV > «

(ii) [ f(y) oa(z,dy) =0 Yz € SVfeSTVA<a
w heiBt a-transient, wenn |a| < oo und fiir A = « (i) gilt.
w heiBt a-rekurrent, wenn |a| < co und fiir A = « (ii) gilt.

Die Begriffe “a-Rekurrenz”, “a-Transienz” und “Konvergenzparameter” im
Zusammenhang mit p mogen im folgenden schon implizieren, dafl u die
Minorisierungsbedingung erfiillt.

Nun ist keineswegs offensichtlich, dal der Konvergenzparameter iiberhaupt
existieren muf}. Es gilt jedoch sogar noch mehr:

Satz 1.3.13 Erfillt

w die Minorisierungsbedingung existiert der Konvergenzparameter o und im
Falle seiner Endlichkeit ist u entweder a-rekurrent oder

a-transient.

Beweis:

Sei s € 3 fest. p erfiille also M (my, 3, s, @) fiir geeignete my, 3, .
a = inf{\ ;7\s(z) < oo fiir ein z € S}

(mit inf{0} := co und inf(R) := —o0)

Fiir A € R definieren wir Fy := {z € S ;vys(z) < o0o}.

Aufgrund der Ungleichungskette

o0 - i (z, FY) < / as(y) g (z, dy) < mys(x) Vn € N, Vo € F),
S

folgt die Abgeschlossenheit von F\ und damit auch die von F' := NysoF) als
Schnitt abgeschlossener Mengen. (siche Nummelin[12],Seite 14,Proposition 2.5)
Falls o = oo setzen wir F := S.

Wir zeigen nun, dafl o der Konvergenzparameter von p ist:
Seidazuxz € F ,A > aund s’ € X.

w erfiillt also M (m{, 3, s',¢').Wir wihlen k € N so, da @) jifs > 0 (moglich,
da py irreduzibel). Dann gilt:

o > [ sw)malady) = [ st) Bled) i (w0, dz) 7, dw)

> [ sw) () () [ () (e, du)

und somit [q §'(w) 7 (z, dw) < co.
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Seinimmz €S, A<aund feST.
Wir wihlen k € IN so, dafl @Aﬂlf\f > (0. Dann gilt:

Loy = [ 1) i dy) 5 (0, dz) ma(a,du)
S S

> B [ 1) iy oa(d2) [ stw) oae,du)

und somit [q f(y) oa(z, dy) = oo.

Ist a endlich und existiert kein x € S mit v,s(z) < oo, lafit sich analog die
a-Rekurrenz nachweisen. Mit F' N Fy, als abgeschlossene Menge folgt ebenfalls
analog die a-Transienz.

Daf sich die a-Rekurrenz von p auf alle u'™ iibertragt zeigt folgendes

Lemma 1.3.14 Erfillt p die Minorisierungsbedingung M (mo, 3, s, p) und hat
w den Konvergenzparameter o, so hat auch p™ Konvergenzparameter o fiir
jedes m € IN.

w ist genau dann a-rekurrent, wenn p'™ a-rekurrent ist fiir alle m € IN.

Beweis:

Dafl mit p auch p™ die Minorisierungsbedingung erfiillt und s auch fiir ¢ als
kleine Funktion dient, ist leicht nachzuweisen.

Es bezeichne a(™ den Konvergenzparameter von p™ und (™) := Yoo UM
den zu p™ gehorigen Erneuerungskern. F' sei die abgeschlossene Menge aus der
Definition des Konvergenzparameters c.

Es sei A > a.

Da s eine kleine Funktion fiir ¢ ist und daher

/ s(x) o™ (y, da) < / s(x)v(y,dr) < oo Yy € F,
S S

folgt (™ < X\, und da X > « beliebig gewiihlt war, somit o™ < q.

Die Ungleichung a < a(™) ist schwieriger nachzuweisen:

Sei dazu A > a(™.

Nach Nummelin[12],Cyclicity,S.20ff existiert ein d € IN, so dafl ) einen d-
Zyklus durchléuft, d.h. es gibt nichtleere Mengen Sy, S1,...,S¢_1, so dafl fiir
0<i<d

pa(x,85) =0  Vzes; fiir j = (i+ 1)mod d.
Weiter existiert ein ¢ € {0,...,d — 1} und eine 1)-Nullmenge N mit
{s >0} C S;UN.

Ohne Einschrankung sei dieser Index 0.
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Wir definieren

I:={neIN; a, erfillt M(n,B,,s,p,) fir ein 8, > 0}
d:= ggT(I) cm = ggT(d, m) dp = UL
Cm

S .= Sy U S, USs, U...USq_,
Folgende Eigenschaften sind leicht nachzurechnen:
Da I abgeschlossen ist bzgl. der Addition, existiert ein ng € IN mit {dn ; n >
no} C I (x). Fiir x € Sp ist gy™(z, (S™)°) = 0.
Fir z € So und n & {kd ; k € IN} gilt g3(z, {s > 0}) < @} (z, Sp) = 0 (%x).
Definieren wir nun noch

yi= /S s(x) @aldz) > 0,

gibt es wegen (%) ein ng € IN mit

—nodm—jd . m
[ost@) Bty da) < sy V=0 T
S Cm
Ist nun x € SpN F, gilt
_ () _
YY s (x) = 4> s (z)
n>0 n>0
m/em—1
_ndm+jd
= 7> > s (a)
n>0 =0
(+) m/em =1 . .
S Z Z ﬂzdm+]d /]'S\Lodmfjd s (l‘)
n>0 j=0
m _(n+no)dm
= X ()
‘m >0
< S mms@) < oo,
Em n>0

daher also a < X, und da A > a(™ beliebig gewiihlt war, folgt o < a(™).
Die Aquivalenz der a-Rekurrenzen von p und p™ ergibt sich analog.

Fiir den Abschnitt iiber invariante Mafle und Funktionen benétigen wir noch
folgendes

Lemma 1.3.15 p erfille die Minorisierungsbedingung M (1,1, s, ) und habe
endlichen Konvergenzparameter o.

Mat
uy =1 up = @aiy s, ne N\ {0}
by =0 by = @a(fin —s® @) 's, nelN\ {0}
b(\) == Z o w(A) == u) = @aips + 1
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qgult
o = inf{\ ;4(\) < oo} = inf{\ ;b()) < 1}
[ ist a-rekurrent <= i(a) = 0o <= b(a) = 1

Beweis:
Eine Induktion liefert

fin_y = (ix—s@@r+s5@@\)" "
n—1
= (ax—s®@@\)"" T4 Z [15) —S®<P/\) (3®@/\)ﬂ2_m_1
m=1
und damit
up = QARY s
n
= oa(a—s@@0)" s+ Y aalfin —s®@@\)" H(s@ ey " s
m=1
n
= So({n})+ D bhup
m=0
also

=S = Z zn: b u 14+ b\)a(N). (1.2)

n>0

Sei F' die abgeschlossene Menge aus Definition 1.3.12.
Wir wéhlen zuerst ein A > aund z € {s >0} NF ({s >0} NF # 0, da F mit
der Abgeschlossenheit schon voll ist).

o> [swnledy) = [ [ s@me e, dz)
> Bs(a) [ [ s)malz dy)ea(dz)

~

= u(\) < 00

Sei nun A < a.
00 = / Y)oa(x, dy) = u(\) = o0

Damit folgt die Behauptung a = inf{\ ;4(\) < oco}.

Analog ist p a-rekurrent <= (o) = oo zu zeigen und wegen (1.2) und
monotoner Konvergenz (A1 > Ay & (px, < @, und p1y, —s®@@y, < fir, —5Qpx, )
folgen die entsprechenden Behauptungen fiir b
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1.3.4 Rekurrenz

Wir werden nun neben der a-Rekurrenz einen weiteren Rekurrenzbegriff
einfiihren, der die Eigenschaft einer Markov-Kette beschreibt, gewisse
Zustandsmengen fast sicher immer wieder aufzusuchen. Insbesondere werden
wir den Zusammenhang zwischen a-Rekurrenz und Rekurrenz untersuchen.
Betrachten wir dazu den speziellen Fall, da} p ein stochastischer Kern von
(S,8) nach (S x R,S ® B) ist.

Definition 1.3.16 (Rekurrenz) Ist u stochastisch und
(4, A, (My)n>0, (Px)rew(s)) ein Standardmodell zu fi (siehe A.1), so heifit u

(oder auch (My,)n>0) rekurrent, wenn

P.(M, € Bu.o.)>0 Vze€SYBeST
P.(M,, € Bu.o.) =1 fiir -fa.x € SYB e St

Den Zusammenhang zwischen a-Rekurrenz und Rekurrenz liefert nun

Satz 1.3.17 Hat u endlichen Konvergenzparameter o und ist po stochastisch,
so gilt

W ist a-rekurrent <= o, ist rekurrent

Beweis:

" :>//

Sei (M, )nen die Markov-Kette aus dem Standardmodell zu ji,, Fiir ein B € St
definieren wir h% (v) = P,(M, € B u.0.).

Wir zeigen:

h% (x) =1 fiir y-fa. z € B. (1.3)

Die leicht nachweisbare, aber auch anschaulich offensichtliche Abgeschlossenheit
der Mengen {h% = 1} und {h% = 0} liefert dann das Gewiinschte, denn da
wegen (1.3) {h§ = 1} # 0, muB aufgrund der Irreduzibilitit ¢ ({h% =1}¢) =0
und {h% > 0} = S gelten.

Bleibt also nur noch die Behauptung (1.3) zu zeigen:

Wir nehmen an, diese sei nicht erfiillt.

Dann ist (1 — h%)1p € ST und daher

> P(M, € B,My,  BVk>1)1p(-) = P(Mp,€B e.0.)lp(")
n>0

= (1-hE)()1B() €8T,
also

g() =Y 2"""VP(M, € B, My ¢ BYE > 1)1p(-) € S*.
n>0
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Fiir y € S beliebig gilt
[ 9(@)7aly.do)

_ Y g meD Z/ Po(My, € B,Mpyr € B Yk > 1) g(y, d)
B

m>0 n>0

<N 27N P (Myyin € B, Mysniis € B k> 1)
m>0 n>0

=3 27 IP (S {Mysn € B,Myinsr € B Yk > 1})
m>0 n>0

<1< o0,

was im Widerspruch zur geforderten a-Rekurrenz steht.

" "

<
Sei C eine kleine Menge.
Da C € ST, gilt wegen der Rekurrenz P,.(M,, € Cu.0.) >0 Vzr € S

/S 10(y)a(z,dy) = S Pu(M, € C)

n>0

=E, (Z lc(Mn)> = o0,

nelN

w ist also a-rekurrent.

Wegen der grofien Bedeutung fiir uns im nachfolgenden Kapitel halten wir noch
einmal fest:

Korollar 1.3.18 Fiir einen  stochastischen, irreduziblen Kern  mit
Konvergenzparameter 0, sind Rekurrenz und 0-Rekurrenz dquivalent.
1.3.5 Invariante Mafle und Funktionen

In diesem Abschnitt werden wir die Existenz und (im wesentlichen)
Eindeutigkeit von a-invarianten Maflen und Funktionen fiir a-rekurrente Kerne
nachweisen.

Definition 1.3.19 (a-invariante Mafle) m € M heifit a-invariant fir p,
wenn

m(A) < oo fiir ein A € ST und 7 = 7jiq.

Ein O-invariantes Mafl nennen wir auch einfach invariant.

Ist  Ubergangskern und 7 endlich, so ist 7 also gerade die stationire Verteilung
der von p induzierten Markov-Kette.
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Bemerkung 1.3.20 Ist u irreduzibel und besitzt p ein a-invariantes Mafl 7,
so ist dieses o-endlich.

Beweis:
Nach Definition existiert ein B € ST mit 7(B) < oo. Sei (A, )ren eine disjunkte
Zerlegung von S derart, dafl u(z,B x R) >0V z € A,. Da

0 > 7(B) > / P (2, B x R) m(d),
gibt es eine Folge A} T A,, mit 7(A}) < oo VEkelN.
Mit B, := ALUA2U...UA” gilt B, 1 S und 7(B,) <o VnelN.

Definition 1.3.21 (a-invariante Funktionen) Eine mefbare Funktion
h:(S,S8) — (R4, B+) heiit a-invariant fir p, wenn

h €St , h#oound h = Jigh.
h heifit wieder nur invariant, wenn h O-invariant ist.

Theorem 1.3.22 Erfillt i die Minorisierungsbedingung M (mqg, 3, s, @) und ist
w a-rekurrent, so existiert ein a-invariantes Maf$ © fir p der Form

T=)_ Galliy’ —5®a)".
n>0
m st ein mazimales irreduzibles Maf fir p, m(s) = 1 und w ist bis auf
Skalarmultiplikation eindeutiges a-invariantes MafS .

Beweis:

Ohne Einschrinkung kann § = 1 angenommen werden.
1. Fall: mg =1

Nach Lemma 1.3.15 ist mit den dortigen Bezeichnungen

m(s) = Z Palfla — S ® Pa)"s = B(O‘) = 1.
n>0
Damit ist insbesondere m € M4 und 7(s > 0) < oo.
7 ist in der Tat a-invariant fiir p, denn

7() = [ Y0~ 5 60)"(@,4) Palde)

n>0

= [ [0 = 59 @)z, 4) X (0 = 5@ )" (@.d2)0(de) + £al4)

n>0
= mfia(A) = Ga(A)T(s) + Pal(A) = Tha(A).

Die {ibrigen Behauptungen sowie die Verallgemeinerung auf den Fall mg > 1
sind Nummelin[12], Theorem 5.2 zu entnehmen. Die einzige Abweichung von
dortiger Beweisfithrung liegt in dem Nachweis, dafl mit p auch p™° a-rekurrent
ist, was wir in Lemma 1.3.14 jedoch schon nachgewiesen haben.

O
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Theorem 1.3.23 Erfiillt ju die Minorisierungsbedingung M (mqg, 3, s, ) und ist
u a-rekurrent, so besitzt u eine a-invariante Funktion h der Form

h=> (E° —5©@a)"s,
n>0

fir die weiter gilt
(i) {h < oo} ist abgeschlossen, also insbesondere voll.
(i) h > 0 dberall
(i1i) Po(h) =1 und 0 < 94 (h) < oo fiir jedes kleine Mafs 9
(w)Ist h eine weitere a-invariante Funktion fiir mit go(h) =1,
so ist h > h dberall und h = h -f.i. (b mazimales irreduzibles Maj3)

Beweis:

Es sei wieder ohne Einschrankung 8 = 1 angenommen.
1. Fall : mg =1

Nach Lemma 1.3.15 ist mit den dortigen Bezeichnungen

1= B(CM) = Z Pallla — 8 ® Pa)"s = Pa(h).
n>0

Damit gilt also insbesondere h € ST und h # cc.
Die a-Invarianz ergibt sich durch

nw) = [ [ 50) X G~ 5© @)z dy) o — 5© o). d2) + 5(a)

n>0

— [ h@)ia(w.dy) ~ [ hy)s(a)paldy) + s(a)
S S
— /S h(y)fia(z, dy).

Die {ibrigen Behauptungen sowie die Verallgemeinerung auf den Fall mg > 1
sind wieder Nummelin[12], Theorem 5.1 in Verbindung mit Lemma 1.3.14 zu
entnehmen.
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1.4 Ein Markov-Erneuerungstheorem

Gegeben ein irreduzibler, stochastischer Kern p : S x (S ® B) — [0, 1] mit
Standardmodell (Qa Aa (Mna Sn)nE]N7 (P)\)AGW(«S@B))‘
v bezeichne den Markov-Erneuerungskern »° - p™ und fiir A € W(S ® B) ist

Axv(-) =Y P\((My,S,) € )
n>0

das Erneuerungsmafl bei Startverteilung A.
1 bezeichne wieder ein zu p gehodriges maximales irreduzibles Mafl und 7 (im
Falle der Existenz) ein invariantes Maf fiir p.
Wir wollen in diesem Kapitel fiir melbare Funktionen
f:(SxR,S®B)— (R, B) das Verhalten von
vx f(x,t) = [gup fly,t —u) v(z,dy x du) fiir gegen unendlich strebendes ¢
untersuchen. Um eine einheitliche Aussage iiber das Langzeitverhalten solcher
Faltungen treffen zu konnen, bedarf es allerdings offensichtlich noch einiger
Zusatzvoraussetzungen an f und p.
Dazu vorerst folgende Definition:

Definition 1.4.1 p heifit positiv-a-rekurrent, wenn p a-rekurrent ist und

0<//tua(x,S><dt)7r(dac) < 0o
SJR

(Da unter den gegebenen Voraussetzungen das invariante Maf} eindeutig bis auf
Skalarmultiplikation ist die Definition unabhéngig von der speziellen Wahl
von 7).

Statt positiv-0-rekurrent schreiben wir auch nur kurz positiv-rekurrent

und wir benutzen im folgenden die Abkiirzung

w(m) = /S/Rtua(:v,S X dt) 7(dx).

1.4.1 Ein Markov-Erneuerungstheorem fiir den Atom-Fall

Nun werden wir ein Markov-Erneuerungstheorem fiir einen Spezialfall, den
unten erliuterten sogenannten Atom-Fall, beweisen.

Das Besondere an diesem Fall ist die M&glichkeit, den MRW in unabhéngige,
identisch verteilte Zyklen zu zerlegen, was wir in nachfolgendem Satz
zeigen werden. Diese zyklische Zerlegung geht grundlegend in den Beweis
des Markov-Erneuerungstheorems im Atom-Fall ein, da mit ihrer Hilfe das
Erneuerungstheorem fiir Random-Walks (siehe A.2) zum Beweis herangezogen
werden kann.

Durch Zuriickfithrung auf diesen Spezialfall werden wir dann eine allgemeinere
Form des Markov-Erneuerungstheorems beweisen kénnen.

Definition 1.4.2 Eine Menge B € ST heifit Atom fiir einen irreduziblen Kern
w:Sx(S®B)— Ry, wenn
/,L(.T, ) = /’L(y7 ) vxvy € B.

Ist p stochastisch, so sei im zu p gehorigen Standardmodell Pp := P, mit z € B
beliebig.
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Satz und Definition 1.4.3 Sei u ein stochastischer, irreduzibler, rekurrenter
Kern, der ein Atom besitzt. (M, Sp)nen bezeichne den MRW aus dem
zugehorigen Standardmodell.

Die sukzessiven Fintrittszeiten in B seien definiert durch

0

v
ot = inf{n > 7% ; M, € B} n>1,

wobei inf(P) := oo. Statt T4 schreiben wir auch einfach nur 1.
Die Zuwdichse dieser Folge werden mit o’y bezeichnet, also

n—1

n n—1
no.__ TB—TB : TB < 0
o : TB—OO

(A1, Ag) bezeichne irgendeinen Friedhof der Kette und wir definieren
(Mooa Xoo) = (Al, AQ)

Die Zyklen des MRW seien nun gegeben durch

Ly = 1{T§71<OO} (U%, (Mg, S, — Sfrg,*l)rg*1<k§7—g> n > 1.

Dann sind fir ¢-f.a.x € S die Zyklen (Zy)n>1 unter P, unabhdingig und fir
n > 2 identisch verteilt mit P/n = PEZ;".

Beweis:

Der Beweis ist einfach unter Ausnutzung der starken Markov-Eigenschaft und
der Atomeigenschaft von B. Zu bemerken ist lediglich, dafl aufgrund der
geforderten Rekurrenz fiir ¢-f.a. x € S P,(75 < 00) = 1 sowie Pg(1p < 00) =1
gilt.

a

Bemerkung 1.4.4 Ist p stochastischer, irreduzibler, rekurrenter Kern mit
Standardmodell (§2, A, (My, Sn)neN, (Px)rew(ses)), der ein Atom besitzt, 148t
sich das invariante Maf3 w direkt angeben:

~(A) = Bs(3" 14(My) (1.4
k=1

Fiir eine mefbare Funktion f : (S,S) — (R, B) gilt

B

/S f(@) w(dz) = Bp(> f(My). (1.5)

k=1

Beweis:

Wegen der Rekurrenz von p und da B € St ist 73 < oo Pp-f.s. Wir kénnen
daher in nachfolgenden Rechnungen ohne Einschrinkung 75 < co annehmen.
(1.5) ist leicht nachzuweisen.
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Da 0 < 7(B) < oo und wegen

/S u(y, Ax R) n(dy) = Ep(> p(My, A x R))

ist 7 in der Tat invariant.

Satz 1.4.5 (Markov-Erneuerungstheorem im Atom-Fall) Es sei
w:Sx(S®B) — [0,1] ein stochastischer, irreduzibler, positiv-rekurrenter Kern,
der ein Atom B besitze.

m bezeichne das invariante Maf$ aus Bemerkung 1.4.4.

¢ sei ein Wahrscheinlichkeitsmafs auf (S,S) mit Py(tp < 00) = 1.

f:S xR — R, sei eine mefbare Funktion, die mit f(z) := supierf(z,1)

i) [g f(z) m(dz) < oo
i) [oyr f(x,t) m@XNdx x dt) < oo
i) limy o f(2,t) =0 Vo € S
erfille. Gilt neben den schon vorausgesetzten Bedingungen an fund p auch noch
a) Fp = Pp(S;, € -) ist quasi-A-stetig
) Eo(S20 F(My)) < o0
so folgt
Jimy sup (645 +g(0) o o [LotewmtmaEn = o

lim sup |¢p*xv*xg(t)=0
=m0 lg<s
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Bewesis :

In nachfolgendem Lemma werden wir m(m) = Ep(S;,) nachweisen.

pxvxg(t) = //SXRg(x,t—u)V(s,dxxdu)qﬁ(ds)
= Z/ /S><]R (x,t —u) Ps(My, € dx, Sy, € du) ¢(ds)

n>0

= > Ey(g(Mp,t — Sn))
n>0
Tg+1

= B> (Mt —S0)+ S Bl S g(Mint— S)
k=0

n>1 k:Tg +1

n+1
= +Z/E¢ 9(Mp,t — (Sk — Sen) — w|Srn = w))
n>1 k= TB+1
S.n
s (dw)
= —I— Z/ Ep (Zg M, t —w— Sk)> (dw)
n>1
= +/ (t—w ZP B (dw)
n>1

7'1 T
mit C(8) = By(Sf2 g(Myst — Sx)) und h(t) i= Ep(X72, g(M, t — Si).
Es gilt

e sup,cg M(t) < [4 f(z)m(dz) < oo nach Voraussetzung

e lim),_ h(t) = 0 wegen majorisierter Konvergenz (mit [q f f(x) 7(dx) als
Majorante)

Pp(S;, € ) ist nach Voraussetzung quasi-A-stetig

0 < Ep(S7;) = m(m) < oo nach Voraussetzung (positiv rekurrent)

T _
e limy ., C(t) = 0 wegen majorisierter Konvergenz (mit Fy( ZB: f(My))
n=0
als Majorante)
Insbesondere sind fiir den RW T,, := Z(Sk - Sk 1),n > 1, die
k=

Voraussetzungen zur Anwendung der Stoneschen Zerlegung (s1ehe Alsmeyer|[2],

Syn
S.73) erfiillt, d.h. es existiert eine Darstellung der Form Y P, B = = Vi + Vs,
n>1
wobei V1, Vo Mafle auf IR, Vo endlich und V; eine beschriankte, stetige A-Dichte

vp mit limy_, o0 v1(t) = EB(}%B) = ﬂ(ln) und lim;—,_ o v1(t) = 0 besitzt.
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Dann folgt mit dem bisher Gezeigten

| xvxg(t) — ) /SXRg(a:,u) T @ Ndx x du)|
Sm 1
_ |C(t)+/Rh(t—u) S P, (du)—W/SXRg(x,u)w@)\(dxxdun

n>1

— () + /R h(t — ) Va(du) + /R h(t — w)or (u) Aldu)
1

/ g(z,u) T @XNdx x du)|
SxR

m(m)

< IC(t)\+/R|h(t—u)| Vo (du)

+Ep (;:zj:l/fi lg(My,t —u — Sg)||v1(u) — ﬁ| )\(du))
<1C(0) + [ bt = )] Va(du)

+FEp (,:z;/l%f(Mk’u)'Ul(t — Sk —u) — %\ A(du))

Die ersten beiden Summanden verschwinden fiir ¢ gegen unendlich gleichméfig
in g wegen majorisierter Konvergenz. Wegen [¢, g f(z,t) m @ Ndz x dt) < oo
und der Beschranktheit von vy 143t sich aber auch auf den letzten Summanden
majorisierte Konvergenz anwenden und wegen v;(t) — 1/7(m) verschwindet
auch dieser asymptotisch und trivialerweise gleichméflig in g.

In Hinblick auf nachfolgendes Lemma ist der erste Teil des Theorems damit
nachgewiesen.

lim¢ oo sUpg< ¢ [¢ * v * g(t)| = 0 weist man analog nach.

Das nachfolgende Lemma schlieffit nun den Beweis ab:
Lemma 1.4.6 Mit den Voraussetzungen und Bezeichnungen aus Satz 1.4.5 gilt
Ep(Srp) = m(m)

Beweis:
Eine Induktion liefert unter Ausnutzung der Markov-Eigenschaft und der
Tatsache, dafl M, nicht von S,, abhingt fiir x € S

/ t Px(Mk € Ac, 1<k <n, Mn+1 S A7Sn+1 € dt)
R

:Z// PAM; € A, 0<i<n—k, M, € A)
k‘OS SxR

t Py(My € dz, 51 € dt)P,(M; € A°, 1 <i <k, My, € dy)
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Dann folgt

TB—I

i s Atom—FEig.
/S m(y) m(dy) = / kz::lm(Mk) APy Ao / kz:jo m(Mj)dPg

:/ /th(Sledt) S Pp(M; € BY, 1< i <m, M, € dy)
S JR

m>0

12*// S" P.(M; € BS,0<i<n,M, € B)t Py(S € dt, M € dz)
S SXano
> Pp(M; € B, 1 <i<m, My € dy)

m>0

n
zzz/ Py(M; € B¢, 0<i<n—k, My € B)
n>0 k=0 S JSxR

t Py(Sl S dt, M € dZ)PB(MZ‘ S BC, 1< < k, Mk S dy)

S [t Pe(Mi € B 1 k<0, My € B Sun € d)
R
n>0

= EB(STB)7

wobei m(y) := [gt u(y, S x dt).

Im Beweis von Satz 1.4.5 benutzen wir von der geforderten 0-Rekurrenz von p
lediglich, dafi damit p (da stochastisch) schon rekurrent ist. Es wiirde hier
in der Tat geniigen, p als rekurrent nach Definition 1.3.16 vorauszusetzen.
(Die benotigte Eindeutigkeit - bis auf Skalarmultiplikation - des invarianten
MafBles unter allen invarianten Maflen m mit 0 < w(B) < oo liefle sich leicht
nachweisen). Stellt sich die Frage, weshalb der miihsame Weg iiber die 0-
Rekurrenz iiberhaupt gew&dhlt wurde. Ein Grund ist die Existenzaussage bzgl.
der invarianten Funktionen, die wir spéter - allerdings nicht mehr in diesem
Kapitel - bendtigen werden und die nur mit der Theorie der a-Rekurrenz
nachgewiesen werden konnte. Aber auch in diesem Kapitel werden wir uns
durch die Voraussetzung der a-Rekurrenz anstelle der Rekurrenz miihsame
Rechenarbeit ersparen. Wir werden an entsprechender Stelle darauf hinweisen.

Betrachten wir nun das Markov-Erneuerungstheorem fiir den allgemeinen Fall,
also ohne die Existenz eines Atoms vorauszusetzen. Die Grundidee ist, den
MRW so zu erweitern, dafl dieser erweiterte MRW ein Atom besitzt, auf
diesen das eben bewiesene Markov-Erneuerungstheorem anzuwenden und die
erhaltenen Ergebnisse wieder auf den urspriinglichen MRW zuriickzufiihren.
Diesen erweiterten MRW, den sogenannten gesplitteten MRW, werden wir in
nachfolgendem Abschnitt konstruieren.
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1.4.2 Der gesplittete Markov-Random-Walk

Sei p also nun ein stochastischer, irreduzibler, rekurrenter Kern, der die
Minorisierungsbedingung M (1, 3, s, ) erfiille. Die Einschrinkung my = 1
koénnen wir im Beweis des Markov-Erneuerungstheorems gliicklicherweise
aufheben. Nach Bemerkung 1.3.7 bedeutet es jedoch keine Einschrinkung
8=1,0<s<1und ¢ als Wahrscheinlichkeitsmafl anzunehmen.

Wir werden uns nun aus p den “gesplitteten MRW” (M, S*),en konstruieren
mit dem Ziel, daf sich dieser in den wesentlichen Eigenschaften nicht sehr von
1 unterscheidet, aber zusétzlich ein Atom besitze.

Sei im folgenden stets A € S,B € B,z € S.

S*:= (S x {0,1}) sei der neue Zustandsraum von M*.

S* := S®P({0,1}) die o-Algebra auf diesem, wobei P({0,1}) die Potenzmenge
auf {0, 1} bezeichne.

Wir schreiben

zo = (x,0) € S* r1 = (z,1) € S*

Ap=Ax {0} eS” A =Ax {1} eS&*
Fiir C' € S* sei

C¥:=p(CNSy) Cl:i=p(CNSy),

wobei p; die Projektion auf die erste Komponente bezeichne. Eine Funktion
f:(SxR,S®B)— R wird durch

f*((x70)7t) = f*((CC, 1)7t) = f(.’L‘,t)

zu einer Funktion auf S* x IR erweitert.
Ein Maf§ ¢ auf (S x R, S ® B) wird durch

¢* (Ao X B) = / (1= s(z)) d(dz x dt)

AxB

6" (A1 x B) = / s(x) d(de x di)
AxB

zu einem Maf} auf S* ® B erweitert.
Analog 1&8t sich ein Maf§ ¢ auf (S, S) zu einem Maf} auf (S*,S*) erweitern.
Fiir die Konstruktion des erweiterten Markov-Ubergangskerns p*, der dann
(M}, S} )n>0 festlege, definieren wir uns zuerst einen Kern i : S*x(S®B) — Ry
und spalten diesen dann, aufgefafit als Mafl auf S ® B, in der oben beschriebenen
Weise auf:

2o, A x B) ::{ (1 —s(z)) Yz, A x B) — s(z)p(A ;Azag ig;i

i(x1, A x B) :=p(A X B) (1.7)
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Wie schon angedeutet sei nun fiir z € S*

W (e Ao x B i= [ (1= s(y) iz, dy x do) (L8)

1*(2, Ay x B) = /AXBs(y) iz, dy x dt) (1.9)

Mit ¢ und p ist auch p* stochastisch. Den zugehorigen MRW bezeichnen wir

mit (M, S} )nen; v* sei der zugehorige Erneuerungskern.

Wir werden nun nachweisen, dafl ©* die Voraussetzungen des Markov-
Erneuerungstheorems im Atom-Fall erfiillt:

Satz 1.4.7 Mit den obigen Bezeichnungen gilt:
w* ist mit u stochastischer, irreduzibler, positiv-rekurrenter Kern, der ein Atom
besitzt.

Beweis:

w(x,Ax B) > 1g, (z)p*(A x B)

und da -wie wir nachfolgend sehen werden- ¢* irreduzibles Maf fiir p* ist und
P*(S1) > 0, erfiillt p* die Minorisierungsbedingung.

(1.7) zeigt, daBl Sy ein Atom fiir p* ist.

Fiir den Nachweis der Irreduzibilitdt und der 0-Rekurrenz bedarf es folgender
Gleichungen, die sich durch Doppelinduktionen ergeben:

Fiir eine Funktion f: (S*,8*) — (R4, By) gilt

@ Srdax®) = [ [ o, 1)s(0) 5 (g, dex R) pdyxR)(1.10)
S1 SJS

F@) ()" (S x R) = [ [ .01 = s(@) 5" (g do x R)
So S JS
o(dy x R)(1.11)

()" ((,0), 1) // 1Ny, do x R) ((2,0), dy x R) (1.12)
Wir zeigen zuerst, dafl ¥* irreduzibles Maf fiir p* ist:
DA >0 = / >O\//O(1—s(ac))¢(dm)>0
A
= vﬁz)(A1 N(s>0)>0 VvV A°N(s<1))>0

Ist (A N (s > 0)) > 0 folgt mit (1.10) und der Irreduzibilitit von pu fiir ein
nelN

()" (S, AxR) > (,u*)”(Sl,A1 x {1} x R)
p" 1y, dr x R) ¢(dy x R) > 0.

v

Al

n
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Analog fiir den Fall /(A% N (s < 1)) > 0.

Kommen wir nun zum Nachweis der 0-Rekurrenz:

Fiir A € R erfiillt py M(1,1,s,0x).

Jeden dieser Kerne konnen wir wie p in der oben geschilderten Weise zu einem
Kern 4} splitten. Offensichtlich gilt (px)* = (1*)a.

Unter Verwendung von (1.10) folgt dann

(13)°(S1, 81 x R) = 1 =: u)
(13)" (51,51 x R) // x) Py Yy, dz x R) px(dz x R) = , n>1

Z(uj)"(sl, S1 X IR) = V;(Sh S1 X ]R) = fL(/\)

n>0

Lemma 1.3.15 des vorherigen Kapitels liefert nun (p ist als O-rekurrent
vorausgesetzt)

V§(51,51XR):ﬂ(A)<OO VA>0
V;i(Sl,SlXIR):ﬂ()\):OO VA0

Da S kleine Menge fiir p* ist, folgt daraus direkt die 0-Rekurrenz von p*.
(Die Rekurrenz von p* aus der von u zu folgern, wire erheblich aufwendiger
gewesen. Hier zeigt sich also einer der angekiindigten Vorteile, den Umweg iiber
die 0-Rekurrenz zu gehen statt direkt die Rekurrenz von p vorauszusetzen.)
Dal p* auch positiv-rekurrent ist, liefert weiter unten (1.17) unter
Beriicksichtigung, dafl 7* invariantes Mafl fiir p* ist. (Der Nachweis der
Invarianz ist eine einfache Rechnung)

Wir benétigen noch folgende leicht nachzurechnende Gleichungen fiir ein Maf}
o1 (¢2) auf (S xR, B®S) (auf (S5,S)) und eine mefibare, numerische Funktion
f (g)auf S xR (5):

¢ * = (g1 % p)" (1.13)

G )= x f(t)  WER (1.14)

$3(9") = ¢2(9) (1.15)
und daraus offensichtlich

PRV () = vk f(t)  VtER. (1.16)

Durch einfaches Nachrechnen ergibt sich weiterhin

V= [ e ds x d) w(d) = m(m), (117)
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1.4.3 Ein Markov-Erneuerungstheorem fiir den allgemeinen
Fall

Die folgenden beiden Lemmata werden wir fiir den Beweis des Markov-
Erneuerungstheorems benétigen:

Lemma 1.4.8 Mit den gewohnten Notationen gilt
Ps: (15, < 00) =1 fiir m-f.a. x € S.

Beweis:
Aufgrund der Rekurrenz von p* gilt

P,(1s5, < o0) =1 fiir 7*-f.a. z € S* ().

Angenommen, es gibe eine Menge A € § mit 7(A) > 0 und
Ps: (15, < 00) <1 Vax € A. Dann ist einer der drei Félle erfiillt:

1) 7(B) >0, B:={ze€S; s(z) <1 /\P&’O)(Tsl < o0) <1}
2) 7(C)>0,C:={zxef; s(x) > ()/\PE‘;M)(TS1 < o0) <1}
3) 7(D) >0, D:={zxeS,; BP0y (Tsy <00) <TAFG (75, <o0) < 1}

Wegen 0 < m(D) = 7*(Do U D7) und (%) kann der dritte Fall nicht eintreten.
Auch der erste Fall ist wegen 7*(Bgy) = [5(1 — s(z)) w(dx) > 0 und (*)
auszuschlieen und analog kann auch der zweite Fall nicht eintreten.

Solch eine Menge A kann demnach nicht existieren.

a

Lemma 1.4.9 Ist f : (S,S) — (R4, By) eine w-integrierbare, nichtnegative
Funktion, so gilt fir m-f.a. x € S

Esx (zl: f*(M;:)) < oo fiir m-f.a. x € S.
n=0

Beweis:
Wir zeigen zuerst

TS,
Us, f( (Z (M ) fiir 7*-f.a. x € S*. (1.18)
Dazu definieren wir
l/Sl
vg, :=1inf{n >0; M, € Si} Gs, f(x): Z (M)

Fir z € Sy ist Ug, f(z) = [g f*(x) 7*(dz) = [g f(z) m(dx) < oo.
Fiir z € Sy ist Ug, f(z) = E (Z f*(M*)> — f(z) =Gg f(z) — f(7).



CHAPTER 1. KERNE 28

Es reicht also aus, die Endlichkeit von Gg, f(z) fir 7*-f.a.z € S* nachzuweisen.
Dafiir wiederum geniigt der Nachweis der Abgeschlossenheit von

F:={Ggs, f < oo}

Da x € F fir n*-f.a. x € S7 ist F nicht leer.

Seiz € S1NF.
/ Gs, f(y) 1" (z,dy x R) = (Z f*(M;;)) :/ £ (x) 7 (dz) < o0
n=1 S

Daher p*(z, F¢ x R) = 0.
Sei nun x € Sy N F.

/GS1 xdnyR (Zl:f M*):Gglf($)—f($)<00

Daher p*(z, F¢ x R) = 0.

F ist demnach abgeschlossen.

Zeigen wir damit nun die Aussage des Lemmas:
Wegen

Es: (zl: f*(M;:))
n=0

— f(2) + 5(x) B (fjf*(M;:)) (1 5())Eqeg) (if M*)
n=1

— (@) + s(@)7*(f*) + (1 = 5(2))Us, f((,0))
UL (@) + s(@)r(f) + (1 — s(2))Us, £((z0)

geniigt der Nachweis von
m{r €S ; s(x) <1AUs f*(x9) = 0} = 0.

Angenommen, es existiere ein A € S mit 7(A) > 0 und s(z) < 1 AUg, f*(z0) =
oo Vz € A.

Dann folgt 7*(Ag) > 0 und Us, f*(z) = 00V € Ay.

Dies ist aber ein Widerspruch zu gerade nachgewiesenem (1.18).

Theorem 1.4.10 (Markov-Erneuerungstheorem) FEs sei
w:Sx(S®B) — [0,1] ein stochastischer, irreduzibler, quasi-i) @ A-stetiger,
positiv-rekurrenter Kern und f : S x R — Ry erfiille i),ii),14) aus Satz 1.4.5.
Dann folgt fiir m-f.a. s € S

lim sup |v * g(s,t) / / z,u)m(dx)Ndu)| =
megl<s

lim sup |v *g(s, t)\ =0
mgl<s
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Beweis:

Nach Satz 1.3.10 erfiillt u die Minorisierungsbedingung M (my, 3, s, ¢) und ohne
Einschrénkung sei 3 = 1 gewéhlt und s und ¢ derart, da8 [¢s(z) o(dz x -)
quasi-X-stetig. (Bemerkung 1.3.6 bzw. Lemma 1.3.11)

1.Fall:mg=1

Wir werden nun das Markov-Erneuerungstheorem im Atom-Fall fiir
oben konstruierten MRW (M}, S¥), f* und Anfangsverteilung 6%, s €
S anwenden und die dadurch erhaltenen Ergebnisse zum Nachweis des
Markov-Erneuerungstheorems benutzen. Dazu zeigen wir zuerst, dal die
Voraussetzungen fiir die Anwendung des Markov-Erneuerungstheorems im
Atom-Fall tatsichlich erfiillt sind:

Die benétigte Voraussetzung Pjs:(7s, < o0o0) = 1 fiir 7-f.a. 2 € S haben
wir in Lemma 1.4.8 schon nachgewiesen. Die Bedingungen i) und ii) aus
Satz 1.4.5 sind aber wegen (1.15) erfiillt. Bedingung iii) folgt unmittelbar aus
limpy o f(z,2) = 0.

a) folgt aus

Ps, (Sisl € ) PS1(M1* € 51751k € )

- M*(Slasl X )
— [ s(@) el x )
S

und dieses Maf ist nach Voraussetzung quasi-A-stetig.
b) Wir bendtigen

TS,
Esx Z FA(ME) | < oo fiir n-fa. z € S.
n=0
Dies war aber gerade die Aussage aus Lemma 1.4.9.

Unter Verwendung des Markov-Erneuerungstheorems im Atom-Fall folgt nun:

lim sup |v*g(s,t) — 1/(mw(m)) /g(a:,t) m(dx) A(dt)

t=o0 g1<f

— lim sup |8, # v % g(t) — 1/(x(m)) / g(x, ) w(dx) Ndt)

t=o0 g1<f

= Jim sup (80" g (1) = 1/(x" (")) [ g"(@.0) 2" (dw) )
lgl<f

< tlim sup |05 x v % g*(t) — 1/(x*(m™)) /g*(x, t) 7 (dx) Ndt)
T gr|<fr
=0

und analog

lim sup |v*g(s,t)] < lim sup |05 v xg"(t)| =0.
=m0 g<s oo g < fr
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2.Fall:mg >1
Wir definieren fiir beliebiges 0 < o < 1 den stochastischen Kern

_az nln

n>1

Der zugehorige MRW im Standardmodell sei (MS, S9)nen.

Offensichtlich ist p® mit p quasi-¢) ® Xstetig und 7 ist auch fiir 4 invariant.
Erfiillt p M(mo,B3,s,¢) so erfiillt u® M(1,Ba(l — a)™ =1 s, ). DaB u®
irreduzibel ist mit den gleichen irreduziblen Maflen wie p geht aus der Gleichung
(1.19) in nachfolgendem Lemma 1.4.11 hervor. Insbesondere ist also ¢ auch
fiir 4 maximales irreduzibles Mafi. Die 0-Rekurrenz von u® resultiert aus
(1.20) unter Ausniitzung der Tatsache, daB kleine Funktionen von g auch
kleine Funktionen von p® sind. (Der einfache Nachweis der 0-Rekurrenz von pu®
bestétigt noch einmal, dafl der Weg iiber die 0-Rekurrenz durchaus vorteilhaft
ist.) Die positive Rekurrenz folgt daraufhin aus (1.21).

u® erfiillt damit alle Voraussetzungen aus dem schon gezeigten Fall.
Bezeichnet v das Markov-Erneuerungsmafl zu p® und

7(m®) = [q gt p¥(z,S x dt) m(dz) erhélt man nun in Anbetracht von
nachfolgendem Lemma fiir 7-f.a.s € S:

lim sup [ds * v * g(¢ m(dx)N(dt)]

t=o0 g1<f

= lim sup <|a6 * Y x g(t //g:rt (dx)X(dt)]

t=o0 g1<f

—lg(s.)])

+ (1= a)lf(s,)])

m(dx)AN(dt)]

1
< — lim sup [ |0s*v® *g(t
Qb0 jg)<f
=0
Wieder analog erfolgt der Nachweis von

lim sup |05 *v = g(t)| = 0.
TS

Lemma 1.4.11 Mit den Bezeichnungen aus Theorem 1.4.10 gilt fiir jedes
reS:

S = e )t = S () (1.19)

n>1 n>1 n21
(7)) =an()+(1—a)duel) VAER (1.20)
7(m®) = é (m) (1.21)

Bewets:
Fiir (1.19) verweisen wir auf die Resolvent-Gleichungen aus Nummelin[13],
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Seite 122. Dann folgt (1.20) direkt aus (1.19).
(1.21) 148t sich folgendermaflen verifizieren :

Sei m(my) = [¢ [gt 1*(x, S x dt) 7(dz) fir k € N.
Eine Induktion liefert w(my) = k w(m) Vk > 1:
(IA)k =1 ist trivial

(18)

m(mgt1) = / /SxR/ tpF(y, S x d(t — ) p(z,dy x du) w(dz)
= //SXR/ (t —u) pF(y, S x d(t — ) p(z, dy x du) 7(dz)
+/S/S><R/]Ruu (y,S x d(t —u)) pu(z,dy x du) m(dx)
= / / / t pF(y, S x dt) p(z,dy x R) w(dx)
+/ /S><R y,S X R) p(x,dy x du) m(dx)

= //tu (y, S x dt) n(dy) —I—//uuachdu) m(dx)

Dk r(m) + w(m) = (k+ 1)m(m)

Und damit dann

ay _ k-1 _ o Nk=1py m(m)
m®) =a 3 ((1=a) almy) = am(m) 3 ((1-a) k) ==~
k>1 k>1
O
Der Beweis des Markov-Erneuerungstheorems flir

Dirac-Mafle als Startverteilungen ist nun also vollsténdig abgeschlossen. Man
kann die Klasse der Startverteilungen auch noch erweitern, stellt man gewisse
Zusatzvoraussetzungen. Wir wollen darauf jedoch nur kurz hinweisen und die
Beweisidee nur knapp anreiflen, da fiir unsere Zwecke als Startverteilung das
Dirac-Maf} geniigen wird:

Satz 1.4.12 Seien p und f wie in Theorem 1.4.10 gegeben.
¢ sei ein f-requlires Wahrscheinlichkeitsmaf auf (S,S), d.h.

Ey (f: f(Mn)> <00 VAeSH
n=1

Weiterhin sei f ¢-integrierbar und Py (15, < oo) = 1.
Dann gilt das MET mit Startverteilung o, d.h.

lim sup |¢* v * g(t) // x,u)m(dx)Ndu)] =0

t=o0 g1<f

lim sup |¢p*v *g(t)| =0
o<y
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Bemerkung 1.4.13 Das von uns bewiesene Markov-Erneuerungstheorem
bildet einen Spezialfall von obigem Satz, da - wie im Beweis von 1.4.10
nachgewiesen - unter Hinweis auf Nummelin[13], S.134 und (1.18) ¢, fiir 7-f.a.
x € S die geforderten Voraussetzungen erfiillt.

Beweisskizze: B
Nach Nummelin[13], S.134 (5.4) ist, da ¢ f-regulér, auch

Eg- (Z f*(MZ)) <0
n=1
und wegen [ f*(x)¢*(dz) = [ f(x)¢(dxr) < co (nach Voraussetzung) auch

Ey (Z f*(M;)) < .
n=0

Die Voraussetzungen fiir die Anwendung des Markov-Erneuerungstheorem im
Atom-Fall auf p*, f* ¢* sind demnach erfiillt und der Beweis vollzieht sich
analog zum Beweis von Theorem 1.4.10.

Nun ist natiirlich die in Satz 1.4.12 geforderte Bedingung Py-(7s5, < 00) =
1 noch &uflerst unhandlich. Wir geben daher zwei hierfiir hinreichende
Bedingungen an. Daf} die erste tatséchlich hinreichend ist, &8t sich sehr leicht
nachweisen; bei der zweiten verweisen wir wieder nur auf Nummelin[14] fiir den
Nachweis.

1. ¢ K= Pye(15, <00) =1

2. pu werde als Harris-rekurrent angenommen, d.h.
P.(M, € Auo.)=1 VYreS VAecSt.

Dann ist (Nummelin[14],5.311 Theorem 2) auch p* Harris-rekurrent und
die Bedingung Pj.(7s, < oo) = 1 ist fiir jedes Wahrscheinlichkeitsmaf} ¢
erfiillt.
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Im Hinblick auf spétere Anwendungen wollen wir zum Ende dieses Kapitels
noch eine einfache Folgerung aus dem Markov-Erneuerungstheorem anfiihren.

Korollar 1.4.14 Sei pp : S x (S ® B) — R4 ein irreduzibler, quasi-p @ X —
stetiger, a-rekurrenter Kern (also nicht mehr notwendig stochastisch).

w bezeichne ein a-invariantes Mafl und h eine a-invariante Funktion. Gilt
zusdtzlich

0<pB:= / /S><R+ ) pa(r, ds x dt) w(dr) < oo (1.22)

und ist f : S xR — Ry eine mefbare Funktion, die die Bedingungen i),ii) und
iii) aus Satz 1.4.5 erfillt, so gilt fir n-f.a.s € S

hmsup\l/a*gst——// x,u)m(dx)Ndu)| =0

oo g <f
lim sup |vq *g(s,t)| =0
fmmeoygl<s
Beweis:
In nachfolgendem Lemma werden wir zeigen, dafl der durch

h
Q(s,dx x dt) = %ua(s,dx X dt)
definierte Kern die Voraussetzungen aus dem Markov-Erneuerungstheorem
erfiillt mit invariantem Maf} h.
Offenbar erfiillt die Funktion f(z,t) := 1/h(x)f(x,t) die Bedingungen 1),ii),iii)
aus Satz 1.4.5 ersetzt man dort m durch hm. Jetzt folgt leicht

hmsup\ua*gst——/ /gmu (dz)Ndu)|

t=oo <y

= lim su / T, t—u
t_)°°|9\<pf‘ SXRg( h(

ZQ”sdacxdu)

n>0
(s g(x,u)
—7 /R /S ey )
< lim sup | g(x,t —u)h(s) ZQ”(s,daj x du)
7g1<f ISR n>0

h(s)
h /R /S g, u)hr (dz)A(du)|

lim¢ oo SUpg< ¢ [Va * g(s, )| = 0 ist wieder analog nachzuweisen.

=0.

Lemma 1.4.15 Sei p wie tm obigen Korollar.

Dann ist Q(s,dx x dt) = h(x)/h(s)ua(s,dx x dt) stochastischer, irreduzibler,
quasi-y ® A-stetiger, positiv-rekurrenter Kern und hmw definiert durch

hr(A) := [, h(xz)m(dx) ist invariantes Maf fir Q.
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Beweis:

Q ist aufgrund der a-Invarianz von h stochastisch.

Die Irreduzibilitdt und quasi-i ® A-Stetigkeit von Q lassen sich unter Beachtung
von h > 0 leicht auf die von p bzw. u, zuriickfithren.

Die Invarianz von hr fiir Q ist leicht nachzurechnen.

Bleibt also nur noch die 0-Rekurrenz von Q nachzuweisen. Dann ist Q wegen
(1.22) offenbar schon positiv-rekurrent.

Sei dazu s eine kleine Funktion fiir u. Es 148t sich leicht nachrechnen, dafl dann
5(z) := s(x)/h(z) kleine Funktion fiir Q ist und mit A > 0 folgt

S [ 50 Qiudn) = o [ s(a)raa(y.da)

n>0 h(y)
< oo firy-fayes,

d.h. o(Q) <0 (bezeichnet a(Q) den Konvergenzparameter von Q.)
Mit analoger Rechnung folgt o(Q) > 0 sowie die 0-Rekurrenz von Q.

Wir werden spiéiter noch folgenden Satz bendtigen, dessen Beweis analog zu dem
Beweis von Theorem 6.1 in Alsmeyer[1] verlduft und den wir daher nicht noch
einmal angeben.

Satz 1.4.16 Ist p: S x (S ® By) — [0, 1] irreduzibler, stochastischer, quasi-
¥ ® A-stetiger und positiv-rekurrenter mit invariantem Maf§ m, so existiert ein
(eindeutiges) o-endliches Mafi G auf S ® By, welches G xv = 7 @ X erfiillt
und zwar der Form

G(A x B) //13 (s, A x (t,00)) 7(ds) X (dt).



Chapter 2

Ein Populationsmodell

2.1 Motivation

Nachdem wir in Kapitel 1 die theoretischen Grundlagen gesetzt haben, kommen
wir darauf aufbauend nun zum eigentlichen Anliegen dieser Arbeit:

Wir werden ein Populationsmodell aufstellen, in welchem sowohl die zeitliche als
auch die genetische Entwicklung der Population beriicksichtigt wird. Daraufhin
werden wir versuchen, Aussagen iiber das asymptotische Langzeitverhalten der
Population zu treffen. Die vorher entwickelte Markov-Erneuerungs-Theorie wird
uns dabei von groflem Nutzen sein.

Die Eigenschaften, die unsere Population erfiillen soll, fassen wir in folgenden
Punkten zusammen:

1. Jedes Individuum besitze einen sogenannten Typ, worunter sich am
besten der Genotyp eines Individuums, also die Gesamtheit seiner
Erbinformation, vorzustellen ist. Dieser Typ habe wiederum folgende
Eigenschaften:

(a) Allein der Typ determiniert die Verteilung auf dem “Raum der
moglichen Lebensliufe” fiir jedes Individuum. (AuBere Einfliisse
bleiben demnach unberiicksichtigt).

(b) Der Typ eines Individuums wird bei seiner Geburt festgelegt und
héngt allein vom Lebenslauf der Mutter ab, wird also in diesem Sinne
vererbt (was nicht bedeute, dafl jedes Kind denselben Typ wie seine
Mutter habe).

2. Verschiedene Populationszweige verhalten sich bedingt unabhéngig:
Aufgrund der in Punkt 1 geforderten “Vererbung von Typen” koénnen
die Zweige natiirlich nicht génzlich voneinander unabhéngig sein. Jedoch
bedingt unter den Informationen iiber all ihre Vorfahren sollen sich die
Zweige unabhéngig voneinander entwickeln.

Wir werden an den entsprechenden Stellen noch einmal néher darauf eingehen,
was diese Forderungen mathematisch prézisiert bedeuten sollen. Allerdings
lassen sich schon an dieser Stelle zumindest Markovsche Strukturen erahnen:
Dafl nur der Typ des direkten Vorfahren fiir den Lebenslauf eines Individuums

35
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ausschlaggebend ist und keine Informationen iiber dltere Vorfahren, erinnert
an die Markov-Eigenschaft. Dafl wir mit Markov-Erneuerungs-Theorie statt
mit einfacher Markov-Theorie arbeiten werden, ist in der oben genannten
Zielsetzung begriindet, dafl wir nicht nur die genetische, sondern auch die
zeitliche Entwicklung der Population untersuchen wollen.

2.2 Das Modell

2.2.1 Der Individuenraum

Die Identifikation von Individuen einer Population iibernehmen wir aus dem
klassischen Ulam-Harris-Modell: “Induktiv” wird jedes Individuum eindeutig
spezifiziert durch seine Vorfahren sowie die Information, das wievielte Kind
seines direkten Ahnen es ist.

Dies geschieht, indem ein Individuum = der n-ten Generation identifiziert wird
mit jenem n-Tupel (x1,...x,) € IN" fiir das « der x,,-te Nachfahre des x,,_1-ten
Nachfahren des ... z1-ten Nachfahren des Ursprungs ist. (Ursprung bezeichne
das zeitlich erste Individuum der Population und werde in obiger Notation
durch {0} =: IN? dargestellt.)

I = U,>oIN" ist also die Menge aller Individuen der Population, auch
Individuen-Raum genannt.

Finige haufig bendtigte Funktionen auf diesem Raum sind:

m(x) =mx = (1,...Tp_1) fir x = (x1,...2,) €1

welche den Ahnen, die Mutter des Individuums liefert. Per Konvention sei
m0 = 0.

r(z) =re=x, fir x = (x1,...2,) € I,
welche den sogenannten Rang des Individuums angibt.
g(z) =gr=n fir x = (x1,...2p) €1

gibt an, welcher Generation x angehort.
Fiir M C I definieren wir die (maximale) Generation von M

g(M) = sup g(z).
zeM

Wir fithren noch folgende Kurzschreibweisen ein: Fiir x = (z1,...2,),y =
(Y1,...Ym) € I sei zy das “konkatenierte” Individuum (x1, ... Zn, Y1, .. Ym)-
m'™ sei die n-malige Hintereinanderschaltung von m. Damit gibt offensichtlich
m"™*1(x) die n-te Gromutter von x an, sofern z einer Generation k > n (&
g(x) > n) angehort.
Fiir die Verwandtschaftsverhéltnisse zwischen Individuen benutzen wir folgende
Notationen, wobei z,y € I , M, L C I seien

r<y:=IkeNy:mby=2 = ystammt von x ab

M<z:edyeM:y<x = «stammt von M ab

M<L:sVxeLlL:M<z = L stammt von M ab
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r<y<=zx<yund x#y = vy ist echter Nachfahre von z

M<z:edye M:y<axz = xist echter Nachfahre von M

PrM :={xel; M <z} = Nachkommenschaft von M

hM:={zeM;y<z=y¢g M} = die Individuen aus M, aus denen

ganz M als Nachfahren hervorgegangen sind, auch nur kurz Kopf von M
genannt.

AnM :={zxe€l;ye M:x <y} = Menge aller Vorfahren von M.
Eine Folge (Ly)nen mit Ly, C I heiit aufsteigend, wenn L,, < L,y fiir alle n.
Analog heifit solch eine Folge absteigend, wenn L,1 < L, fiir alle n.

Man beachte, dafl « € I nach Definition von sich selbst abstammt und damit x
selbst Nachfahre von sich ist.

Ein im folgenden wichtiger Begriff ist der der “Populationslinie”; kurz Linie
oder Stoplinie genannt.

L C I heifit Linie :<=z,ye L=>x Ly

Eine Linie L dberdeckt M C I, wenn M < L und jedes x € PrM besitzt
Nachfahren in L oder stammt selbst schon von L ab, d.h.

L iiberdeckt M <= M < Lund Vx € PrM3iye L:z <yVy<z.

Linien, die den Ursprung iiberdecken, d.h. jedes Individuum der Population
hat Vor- oder Nachfahren in L, heiflen auch einfach berdeckend. IN™ ist ein
typisches, hidufig verwendetes Beispiel einer iiberdeckenden Linie.

Die Menge aller iiberdeckenden Linien werde auch mit C, die Menge der
iiberdeckenden Linien mit endlicher Generation mit Cy bezeichnet. Eine im
folgenden wesentliche Eigenschaft der iiberdeckenden Linien liefert folgender

Satz 2.2.1 AufC sowie auf Cy wird durch “<” eine Ordnung induziert in dem
Sinne, daf fir L, M € C (Cy) eine “untere Schranke” L N M € C (Cy) sowie
eine “obere Schranke” LN M € C (Cy) existiert, so dafs fir K C I

LAM <L LANM <M (K<M,K<L)=K<LANM
L<LVvVM M<LVvM (L<K,M<K)=LVM<K

Beweis:

Ly:={rel;qye M,z <y} Ly:={zeL;M <z}
My ={xeM;3ye L,z <y} My :={x € M;L < x}

Dann folgen die Behauptungen mit L A M := L1 UM; und LV M := Ly U M.
Wir zeigen nur die erste Aussage, da die zweite dhnlich zu beweisen ist.
Zu beachten ist, dafl -da L und M iiberdeckende Linien- gilt

rz €L =x¢€Lioder Ime My mit m < x.
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1. LAM e€C (Cy) :
Dal L A M Linie ist, ist einfach zu zeigen. Mit L und M hat auch
L A M endliche Generation. Bleibt noch die Uberdeckungseigenschaft
nachzuweisen:
Sei dazu = € I beliebig. Dann existieren | € L,m € M mit (z < [ oder | <
z) und (z < m oder m < x).
Wir nehmen z < [,z < m an (die anderen Félle sind &hnlich zu zeigen).
Dann ist [ € Ly oder 3m € My mit m < [ und (da M Linie) x < m.
Fiir die anderen Fille folgt dhnlich die Existenz eines y € M; U L
mit z < y oder y < x. Da zx beliebig aus I gewahlt ist L A M damit
iiberdeckend.

2 LANM<L
re€Ll=x€ljoder Iye My mity<x=LAM <z
(Entsprechend L A M < M)

3. K<L, K <M= K <LAM folgt direkt aus LAM C LU M.

2.2.2 Der Populationsraum

Mit den bisher vorgestellten Mitteln ist es also nun mdoglich, in unserem Modell
Individuen einer Population zu spezifizieren und ihre verwandtschaftliche
Beziehung untereinander zu bestimmen. Das ist natiirlich noch nicht besonders
viel, bedenkt man, dafl eines unserer Ziele in dieser Arbeit, die Untersuchung
des asymptotischen Verhaltens der Population ist und wir bisher nicht einmal
im Stande sind, die Lebensdauer oder -erwartung eines einzigen Individuums
zu beobachten. Sei also zuerst einmal ein mefibarer Raum (€2,.A) gegeben,
dessen Elemente w € () die moglichen Lebensldufe eines Individuums
repréisentieren, genannt Lebenslauf-Raum. Weiter sei (S5,S) ein mefibarer
Raum, dessen Elemente den sogenannten Typ der Individuen représentiere,
genannt Typenraum. Wie schon zu Beginn des Kapitels erwahnt, stelle man
sich hierunter den Genotyp eines Individuums vor.

Interessierende Meflgroflen eines Individuums lassen sich nun als meflbare
Funktionen auf dem Lebenslauf-Raum darstellen. Wichtiges Beispiel hierfiir
sind die Funktionen

7(n) : (Q,A) — (R, B) fiir n € N,

wobei 7(n)(w) gerade das Alter eines Individuums mit Lebenslauf w bei Geburt
des n-ten Kindes angebe. (Dabei bedeute 7(n)(w) = oo, dafl das n-te Kind nie
geboren wurde.)

Auch den Typ eines Individuums werden wir mithilfe der Zufallsvariablen

p(n): (Q,A) — (5,S) firn e N

beobachten, wobei p(n)(w) gerade der Typ des n-ten Kindes eines Individuums
mit Lebenslauf w sei.
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Um nun nicht nur jedes Individuum einzeln, sondern auch die Population als
Ganzes betrachten zu kénnen, definieren wir uns den sogenannten

Populationsraum(D, D) :== (S x QS @ Al).

(s, (wi)ier) € D gebe mit s den Typ des Ursprungs an, sowie fiir jedes
Individuum ¢ € I seinen Lebenslauf w;. Da der Typ eines Individuums, wie wir
in (2.2) sehen werden, allein vom Lebenslauf seiner Mutter abhéngt, ist hiermit
auch fiir jedes weitere Individuum neben dem Ursprung sein Typ festgelegt.
Definieren wir uns noch fiir M C I die Projektionen

Uy : S x Qf — QM Uy : QF — oM,

wobei U, ( U, ) kurz fiir Uz ( Tj{x}) stehe, so konnen wir jede auf
dem Lebenslauf-Raum definierte Zufallsvariable Z auf den Populationsraum
iibertragen durch

Ly = ZoU, fir x € I.

Z, gibt dann gerade den Wert von Z fiir das Individuum z der Population an.
Ahnlich definieren wir folgende beiden Funktionen

Ty :=T7(rx) oUpg = Alter der Mutter bei Geburt von z (2.1)

pz = prx)oUnyn, = Typvonz (2.2)

An (2.2) 148t sich nun erkennen, daf die erste unserer gestellten Forderungen an
die Population erfiillt ist: Der Typ eines Individuums hingt nur vom Lebenslauf
seiner Mutter ab.

Mithilfe der letzten Funktion p, kann man nun auch Zufallsvariablen Z auf
(S x Q) durch

Zy = Z(pz, Uy)

auf den Populationsraum iibertragen.

Weiter definieren wir eine Shiftfunktion, die die Beobachtung eines einzelnen
aus einem Indivduum x hervorgegangenen Populationszweig ermdglicht, indem
z in den Ursprung “geshiftet” wird:

Sg = (pwa UPr{x}) (23)

Interessanter als das Alter seiner Mutter bei Geburt eines Individuums x ist
natiirlich der absolute Zeitpunkt seiner Geburt, definiert man den Zeitpunkt
der “Geburt” des Ursprungs als 0. Dieser wird durch die Zufallsgréfie

Opr =Omg+Tz , 00=0

iterativ bestimmt.
Wir definieren weiter fiir L C I die sogenannten Prd-L-o-Algebren

Fr=8x0o(UyL £x)=8x0(Uy;x & PrlL).

Elemente aus Fp, sind also anschaulich Ereignisse, die nicht von Nachfahren von
L (und damit insbesondere auch nicht von L selbst) abhéngen. Wir schreiben
wieder nur kurz F, fir Fp,,.

Offensichtlich sind 7., pz, 0, Fp-mefB3bar.
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Folgende beiden Lemmata sind leicht nachzurechnen:

Lemma 2.2.2
{Fr; L C I} ist eine Filtration unter < .
Insbesondere fiir L, M C 1

LCM=M=<L=FyCFr

Lemma 2.2.3
From = Fu NFp, Fyv = Frm

2.2.3 Das Wahrscheinlichkeitsmafl

Nun geht es daran, ein geeignetes Wahrscheinlichkeitsmafl auf dem
Populationsraum zu definieren, welches unseren Vorstellungen von dem Modell,
also insbesondere Punkt 1a) unserer Forderungen, entspricht. Gegeben sei ein
stochastischer Kern P : Sx.A — [0, 1]. Dabei gebe P(s, -) gerade die Verteilung
auf dem Lebenslauf-Raum fiir ein Individuum mit Typ s an.

IN sei eine Aufzéhlung von I derart, dafl die Mutter in der Aufzihlung stets
ihren Kindern vorangestellt sei. (Die Funktionen m und r werden in kanonischer
Weise auf IN iibertragen, d.h. m(n) liefert die natiirliche Zahl, die in obiger
Aufzéhlung die Mutter des Individuums n représentiert und r(n) gibt den
Rang des Individuums n in der Aufzihlung an). Ebenso sei w,, entsprechend der
Schreibweise w,, x € I der Lebenslauf des Individuums n in der Aufzéhlung).
Fiir beliebiges, aber festes s € S, welches den Typ des Ursprungs festlege,
definieren wir

und den Kern P, von (2 x ... xQ,A®...® A) nach (2, .A)

n—mal n—mal

P, ((wo, Cwp1), A) = P(p(r(n))(wm(n)),A> . on>1,

wobei die spezielle Art der Aufzéhlung - Kinder folgen ihren Miittern -
garantiert, dafl wy,(n) € {wo, ... wn-1}.

Nach Ionescu-Tulcea existiert dann ein eindeutig bestimmtes Mafl P, auf
(Qf, A7) mit

Py(Ag x ... x Ay x QN0
:/ / Pa((@0s -+ wn1)s deon) Poi (@os- -+ wns), dim1)
Ao An
e P(](dbd())
-/ . /. P (o) i) o) Plp(r(n = 1)), don 1)
... P(s,dwp)

fir Ag,---A, € A. Durch P,(A) = P,({w! € Qf;(s,w!) € A}) wird ein
Wahrscheinlichkeitsmafl auf dem Populationsraum definiert, welches wir der
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Einfachheit halber auch wieder mit P bezeichnen. Aus der Konstruktion von
P folgt nun die gewiinschte Eigenschaft 1a) der Population, dafl die Lebenslauf-
Verteilung eines Individuums nur von seinem Typ abhéngt.

In Situationen, wo der Starttyp s beliebig, aber fest gewihlt sei, die spezielle
Wahl von s aber fiir unsere Zwecke unbedeutend ist, schreiben wir auch nur
kurz P statt Ps.

E; bezeichne den Erwartungswert unter dem Wahrscheinlichkeitsmafl P; und
auch hier schreiben wir der Einfachheit halber gelegentlich nur F.

2.3 Die Markov-Eigenschaft der Population

In diesem Abschnitt wollen wir die gewiinschte und nun vielleicht auch schon
zu vermutende bedingte Unabhéngigkeit verschiedener Populationszweige in
nachfolgendem Theorem verifizieren.

Theorem 2.3.1 Gegeben eine Stoplinie L C I und nichtnegative, mefbare
Funktionen ¢, : (D,D) — (R4,B4),x € L. S, sei die in (2.3) definierte
Shiftfunktion. Dann gilt fir jedes s € S

E, [H Qg O Sfo] = [[ Ep.lea]  Psfs. (2.4)

el z€L

Beweis:
Betrachten wir zunéchst den Fall, dal L endlich und ¢, fiir alle x € L
Indikatorfunktionen der Form

Nz
g = H 1Ai(Uzk) mit ngy € N, zg,...2,, € L und Aj,... AT, € A
k=0

sind. Ohne Einschréankung werde angenommen, dafl g = 0 und
An({zo,...zn,}) = {xo,...,2pn,}, d.h. mit jedem z seien auch all seine
Vorfahren in {zo,...zy,} enthalten.

Wir erinnern daran, dafl xzj, die Konkatenation von x und xj bezeichne. Damit
gilt offensichtlich

0z 08, = H lAi(Umk) Vo € L.
k=0

Sei nun B € Fy,. Also B = D x [71_\;“;(0) fiir C € ANNP™L und D € S geeignet.

Ohne Einschrénkung sei D = {s} (da der Rest Nullmenge unter P; ist). Wir
zeigen

P (Bm N ﬂ Syt oU;(Ai)) = /B 11 E..[¢.] dP

zeL k=0 €L

und damit die Behauptung, da p, fiir alle z € L Fr-mefibar und damit auch
[Tocr Ep, (pz) Fr-meBbar ist.

. . I\PrL .. Unpr
Wir schreiben kurz PS\ " i Py VTR
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P;(Bﬂﬂﬂs )) (Bﬁﬂﬂ zo )

zeL k=0 zeL k=0
/ zEHL< / [y PO Cnen, ) e,
< P(p(r(50)) (Win(az))» derny) ) PIVPE (dw)
< / [ P (En) @) de,
e
 P(p(r(@)) @iz, de) ) P (dw)

= / I Bo.()(pa) Ps(dw),

zeL

:/CH

zeL

wobei die Produktdarstellung durch die Linieneigenschaft von L ermoglicht
wird. In der 3. Gleichheit findet lediglich eine Umnumerierung unter
Beriicksichtigung von zo = 0 statt.

Fiir endliches L kann man nun leicht die Giiltigkeit von (2.4) auf Funktionen
der Form ", apuy, mit o > 0 und uy Indikatorfunktionen (von obiger Form)
erweitern. Dann folgt mit monotoner Konvergenz die Behauptung fiir endliches
L und nichtnegative, mefibare Funktionen. Die Erweiterung der Behauptung
auf unendliche L folgt mit Hilfe einer Folge endlicher Linien L, C L L, T L.
Denn da mit

Mn = ES[H Pz © Sl'|an]
z€eL

(My,)nen nach Lemma 2.2.2 inverses Martingal ist und wegen Fr, = N, Fr, gilt
M, 22 B[] v 0 Sul7]
z€eLl
und wegen
x € L\L, = x & PrL,, = S, ist Fr, -mefibar
folgt

B[] veoSelFi] = lim E[]] ¢u o SulFr,]

z€L z€L
= ,}E"&( II ¢eco8: 11 EJM)
IGL\Ln r€Ln

= HET[S%] P,-fs.
zeLl
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Theorem 2.3.2 Sei {P, , s € S} eine Menge von Wahrscheinlichkeitsmafen
auf dem Populationsraum (D, D) mit der Eigenschaft, daf$

Py(Sy € -|Fa) = Pp, () -

Dann sind fiir jede Linie L C I unter Ps; (mit s beliebig) die Sy, x € L bedingt
unter Fr, unabhdngig.

Beweis:
Sei L als endlich angenommen. Also L = {x1,...2,}. @4, seien fir i =1,...n
Indikatorfunktionen. Mit z; € L = F C F, folgt nun

E,

H Px; © Sxi’}—L] = Es ES[H Pa; © Sx¢|‘7:m1]|~7:L]

i=1 =1

[ n
= E; H Pu; © Sz, Es [y © Sy | Fary] ’}—L‘|
Li=2

n
Li=2

= prl [¢1] E, lH Px; © Sﬂ:¢|-7:L1 .
i=2

Iterativ erhélt man nun unter Beriicksichtigung von E . [0x;] = E, [0, 0S4, | FL]
(Argumentation wie oben)

n n

H Pz; © xi’fL] = H pri [pa;] = H ES[‘Pri 0 Sy, |FL]
=1

i=1 i=1

E;

und damit das Gewiinschte.
Die Verallgemeinerung auf unendliche L verlduft analog zur entsprechenden
Verallgemeinerung im Beweis von Theorem 2.3.1

Die Aussage der Theoreme 2.3.1 und 2.3.2 werden wir auch als Markov-
Eigenschaft der Population bezeichnen. Der Grund dafiir liegt auf der Hand: Der
Lebenslauf von Individuen aus der Nachkommenschaft einer Linie L gegeben
Fr, also die Informationen iiber sdmtliche Individuen aufler den Nachfahren
von L, hingt nur von den Typen der “Linien-Individuen” ab, also nur von
Informationen iiber die direkten Vorfahren von L. Dies ist aber doch gerade die
Markovsche Struktur.

Auch eine Form zeitlicher Homogenitét liegt vor:

Ist 1 € I Nachkomme von x2 € I, also 1 = xoy mit y € I geeignet, so ist
sein Lebenslauf gegeben die Informationen {iber alle “Nicht-Nachfahren” von
x2 verteilt wie der Lebenslauf von y unter dem Wahrscheinlichkeitsmall Py, _,
unter dem der Ursprung den Typ ps, hat.
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2.4 Optionalitit

Stellt sich nun die Frage, ob ein dhnliches Analogon zur starken Markov-
Figenschaft existiert. Dazu wire jedoch zuerst einmal ein Analogon zu
Stopzeiten fiir Markov-Ketten erforderlich, welches nachfolgende Definition
liefert:

Definition 2.4.1 Eine Abbildung J : S x Q! — P(I) (mit P(I) =
Potenzmenge von I) heifit optional, wenn

{J<L}eF, VLCIL (2.5)

Ist J(w) auch noch Stoplinie fiir jedes w € D, so heifit J optionale Linie.

Bemerkung 2.4.2 Es geniigt in obiger Definition (2.5) nur fiir Linien L C I
zu fordern, da sich unter Beriicksichtigung von {J < L} = {J < hL}, Fr, = Fpr
und der Tatsache, dafl AL Linie ist, an der Definition dann nichts &ndert.

Analog zu den Bezeichnungen fiir Linien sagen wir, dafl die optionale Linie J;
eine optionale Linie Jo tberdeckt, wenn

{Jz =< Jl} Ps—f.s. Vse S
und
Ve PrJodyeJ; : e <yVy<z Pyfs. Vsel.

Uberdeckt die optionale Linie J den Ursprung, so heifit sie wieder nur kurz
tiberdeckend, sie habe endliche Generation, wenn

g(J) < oo Pyfs. VseS.

Die Klasse der iiberdeckenden optionalen Linien bezeichnen wir mit C, die
Klasse der iiberdeckenden optionalen Linien mit endlicher Generation mit Cp.
Eine Folge (J;,)nen heifit wieder aufsteigend (absteigend), wenn

Jn =< i1 (Jng1 < Jyn) Pifs. VseS.

Nachfolgendes Lemma soll zeigen, dal auch auf Cy durch < eine (wenn auch
schwichere) Ordnung gegeben ist. (Diesselbe Aussage liefle sich auch fiir C
treffen, ist fiir unsere Zwecke aber unbedeutend.)

Satz 2.4.3 Cy ist mit der Relation < eine nach oben gerichtete Menge in dem
Sinne, daf

Jl,JQEC_0:>E|J€C_() i =<J AN Ty =< J

Beweis:
Wie schon im Beweis von Satz 2.2.1 definieren wir

J={ze ;o <z}U{z e Jy; J; <z}
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Dafl J eine iiberdeckende Linie endlicher Generation ist und J; < J sowie
Jo < J gilt, ist analog zum Beweis von Satz 2.2.1 zu zeigen.
J ist aber auch optional, denn

{J<M}y={i<Min{Ja<M}ecFy VMCI.

Denn:

"Ccrwe{J <M}

Sei m € M beliebig = Jz € J(w):x <m

1LFall: z € J1(w) ATy € Jo(w) :y <x = Ji(w) <mA Jo(w) <z <m
(Der 2.Fall 2 € Ja(w) verlduft analog)

Da m € M beliebig : w € {J1 < M} N{J2 < M}
"Mwe{h<M}n{Jy< M}

Sei m € M beliebig = (Fr € Ji(w) :x <m) A 3y € Ja(w) : y < m)
=dJacl:za=yVya==zx

Ohne Einschrinkung sei xa = y und damit y € J(w).

Da m € M beliebig gewihlt, also w € {J < M}.

Anders als Cy ist Cy keine nach unten gerichtete Menge mehr. Der Versuch
analog zu dem Vorgehen in Satz 2.2.1

Ny ={rx e J;Tyet:ax=<ytlU{x € Jy;dy € J1 : z <y} als untere
Schranke zu wahlen, scheitert an der Tatsache, daf3 J; A Jo nicht mehr optional
sein muf.

Anschaulich gibt eine optionale Linie die zufallsabhingige Auswahl von
Individuen an, deren Nachfahren ein Betrachter nicht mehr beobachtet. Das
Ereignis, “vor L zu stoppen”,{J < L}, d.h. die Nachfahren von L nicht mehr
zu beobachten, hingt dabei nur von den Beobachtungen bis zum Zeitpunkt L
ab.

Optionale Linien in unserem Modell sind also in der Tat mit dem Konzept der
Stopzeiten bei Markov-Ketten vergleichbar.

Nun einige Beispiele, um obige Begriffe etwas zu veranschaulichen:
Dabei ist zu beachten, dafl wenn stets 0 € J gilt, ist J optional, da {J < L} D
{0<L}=5xQ ¢ Fp.

o Vi ={z€l;o, <t},t € R = Menge der bis zum Zeitpunkt ¢ geborenen
Individuen.
Da 0 € Y ist wie oben erldutert ) optional.(Aber natiirlich im allgemeinen
keine Linie.)

e R = {z € I;0, < oo} = Menge aller “realisierten”, d.h. tatséchlich
geborenen Individuen ist aus dem selben Grund wie ) optional.

e Ist A : S x Q2 — IR eine meBbare Funktion, die die Lebensdauer eines
Individuums mit Lebenslauf w angibt, so ist
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L:={rxe€l;o, <t<oy+ A} die Menge der zum Zeitpunkt ¢ lebenden
Individuen. Da A, eine Funktion in U, ist und damit nicht F,-mef3bar,
ist £ nicht optional, denn {£ < 2} = Ur>0{0ky <t < Opphg + Ay b it
daher nicht F,-mefbar.

L ist offensichtlich im allgemeinen auch keine Linie.
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e Eine wichtige Rolle wird spéter die Menge der nach ¢ folgenden Generation
Zy:={x €Il;0m; <t <oy} spielen. Da} Z; die Eigenschaft der Stoplinie
erfiillt, ist aus der Definition gegeben. Die Optionalitdt folgt aus der
Darstellung {Z; < L} = Nzer, Up>o {t < o,%,} und der Tatsache, dafl
Oy Fr-meBbar ist fir z € L und k € INg (L sei ohne Einschrénkung
Linie).

e Z&ahlt man die Individuen geordnet nach ihrem Geburtszeitpunkt auf, so
sei X, das n-te Individuum in dieser Aufzihlung, d.h. das n.-Geborene.
X, ist trivialerweise eine Linie, da es nur aus einem Element besteht. Fiir
L C I gilt

{Xn < L} = Nger Upso {mFz = X5}

= Nger Uk>o {w € D;#{y & Pra;oy(w) < opr, (W)} =n—1}

= Mzer Upso {w € Dy #{y & PrL;oy(w) < o,y(w)} =n—1} € Fr.
Damit ist X,, also auch optional.

e Die “realisierte” n-te Generation N" N R = {x € IN";0, < oo} ist als
Teilmenge von IN" offenbar eine Linie.
Wegen
(N"NAR <L} = Nper{my® "z c R}
= meL{O—mg(z)nt < OO} € ‘FL

ist IN" N R also auch optional. (Existiert ein € L mit g(x) < n, so ist
{IN" N R < L} als leere Menge trivialerweise in 7, enthalten.)

Nun definieren wir uns fiir eine optionale Abbildung J analog zu F,, der o-
Algebra der 7-Vergangenheit fiir Stopzeiten 7, die Prdi-J -0-Algebra oder auch
o-Algebra der J -Vergangenheit Fj:

Definition 2.4.4 Sei J optionale Linie.
AcFy<=VLCI:An{J <L} e F

Wir werden jetzt einige niitzliche Eigenschaften und Rechenregeln fiir optionale
Abbildungen und ihre o-Algebra der J-Vergangenheit zusammenstellen, wozu
im folgenden stets L € I und J : S x Q! — P(I) angenommen werde.

Lemma 2.4.5
J ist optional <= {J < L} € Fy, fiir alle endlichen L

Ist J optional, so ist A € Fy <= AN{J < L} € Fy, fiir alle endlichen L

Beweis:

Wir zeigen nur die Riickrichtung der zweiten Behauptung, da ihre Hinrichtung
trivial und die erste Behauptung mit d&hnlichen Argumenten zu zeigen ist.

Es gelte AN{J < L} € Fp, fiir alle endlichen L. W&hle zu beliebigem L endliche
L, mit L, T L. Nach Lemma 2.2.2 ist F7, ., C Fr, und damit F;, = N, Fp,.
Mit N {J < L} = {J < Up Ly} folgt dann

AN{J <L}y =An{J <UpLpy}=Ann,{J <Ly} € Fr, ¥/n € N
— AN{J <L} € Fy.



CHAPTER 2. EIN POPULATIONSMODELL

Lemma 2.4.6 Sei M C I.

J =M = J ist optional und Fj = Fyr

Bewets:
{J <L}y €{0,S x Q'} und damit ist J optional.

AceF;=A=An{J <M} e Fy
0 : MAL

AGFM:>AO{J<L}:{A M <L

Und da aus M < L Fpy C Fy, folgt, damit AN{J < L} € Fy,
d.h. (L beliebig) A € F.

Lemma 2.4.7
J optional = {J < L} € F;

Beweis:
Mit Lemma 2.2.2 und Lemma 2.2.3 folgt

{J<L}nN{J<M}ye FrNFyu =Fruom C Fu-

Lemma 2.4.8 Seien J; und Jo optional.

J1 = Ja = Fj CFy,

Beweis:
Fiir A € Fy, ist wegen {Jo < L} C {J1 < L}

Aﬁ{JQ-<L}:AQ{J1-<L}H{J2-<L}E.FL.

Lemma 2.4.9 Sei J optionale Linie.

{rede FynF,

48
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Beweis:
Mit Hilfe von Lemma 2.4.7 folgt {x € J} I mie {J <z}n{J <ma}°eF,
und wegen F,, C F, ist {x € J} damit auch schon in F,.
O
Lemma 2.4.10 Sei J optionale Linie.
{LcJ}eFyNFrund{JC L} e Fy
Beweis:
{LcJ}= N{zx e J} € F;nach Lemma 2.4.9
reLl
(Lcay = N{zedy ™ N {J <z}n{J <mz)°)
zeL xE€L
= {J=<L}n{J<ma}° e FL
€L
wobei der letzte Schritt aus der Optionalitdt und Lemma 2.4.7 folgt.
{JcL}={LCcJ%= () {z € J}€Fsnach Lemma 2.4.9
xeLe
O
Lemma 2.4.11 Sei J optionale Linie.
{J=L}eF;
Beweis:
Folgt direkt aus {J = L} ={J C L} N{L C J} und Lemma 2.4.10.
O

Lemma 2.4.12 Sei J optionale Linie und A € Fr, oder A € Fj.

An{J=L}ye FyNFyg

Beweis:
Sei A € Fr. (Fir A € F; ist der Nachweis &hnlich.)

AN{J=L}=An{J=L}n{J <L} e Fi,
denn {J = L} € F; (Lemma 2.4.11)
An{J=L}n{J<M} = An{J=L}n{L <M}

0 : LAM
AN{J=L} : L<M

Und mit L < M = F;, C Fp; und dem schon Gezeigtem ist damit
An{J=L}Nn{J <M} € Fu.
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Lemma 2.4.13 Ist (J,)nen eine absteigende Folge optionaler Linien, gilt
J = hU Jn ist optionale Linie und Fj = mfjn.
n n

Beweis:
Sei L C I endlich, d.h. L = {z1,...2m}.

(J<L} = {LCPrUJ)}={LCUPrJ} 2 U (L Pry,)
= Up{Jn < L} € Fy,

denn offenbar ist U, PrJ, = Pr(U,Jy,) und die Gleichheit (*) gilt wegen

U {L C PrJ,} C {L C U,PrJ,} (klar) und L C U,PrJ,(w) = xp €
Prdp,(w) Yk=1...m (n1,...,n; geeignet) = L C Prdpapin,,.nm}(@)-
Nach Lemma 2.4.5 ist J optional und nach Definition (als Kopf einer Menge)
auch Linie. Fiir die zweite Behauptung des Lemmas erhélt man wegen J <
Jn ¥n und Lemma 2.4.8 F; C N, Fy,.

Fiir endliches L und A € N, Fy, gilt AN{J < L} 2 U, AN {J, < L} € F,
und mit Lemma 2.4.5 damit A € F;. Die Gleichheit bei (*) resultiert aus der
schon nachgewiesenen Beziehung {J < L} = U,{J, < L}.

Lemma 2.4.14 Sei J optionale Linie und K C I.

J N K ist optionale Linie.

Beweis:
Die Linieneigenschaft ist klar. Fiir den Nachweis der Optionalitét sei zuerst K
endlich.

{(JNnK<L}y= |J {McJ}er,
MCK; M<L

da nach Lemma 2.4.10 {M C J} € Fyy C Fy, fiir M < L.

(Die Endlichkeit von K wurde wegen der bendtigten Abz#ihlbarkeit der
Vereinigung gewiihlt.)

Sei nun K beliebig und K, T K mit K, endlich.

JNK = Uy (J N K,) "™ (U, (J N Ky))

und mit J N Ky < J N K,, Lemma 2.4.13 und eben Gezeigtem folgt die
Optionalitdt von J N K.

Lemma 2.4.15 Sei J optional.

JNR=JnN{x € I;0, < oo} ist optional.
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Beweis:

{JNR <L}

g9(x)
n U ({mFz e Jyn{o,x, < o0}

xzehL k=0
9(x)

N U {7 < Lyn{mbs e I} 0 {o, < oo}) € 7
x€hL k=0

In letzter Gleichung geht Lemma 2.4.9 ein.

Obiger Beweis 148t sich leicht erweitern fiir folgende Erweiterung von Lemma

2.4.15:

Lemma 2.4.16 Sei J; optionale Linie und Jo so, daff {x € Jo} € Fr Vx €

(LUAnL).

Dann ist Jy N Jo eine optionale Linie.

2.5 Die starke Markov-Eigenschaft der Population

Nachdem wir nun einige Rechenregeln zusammengestellt haben, bekommen wir
nun die ersten “interessanteren” Resultate:

Lemma 2.5.1 Sei ¢ : (D,D) — (Ry,By) eine meflbare, nichtnegative
Funktion, J eine optionale Linie und L C I. Dann gilt

Elo|Fillij=ry = Elp|FLl1 =1y P-fs.

Beweis:

Wir zeigen zuerst, dafl E[o|FL|11;—ry Fj-mefbar ist:
Sei A € By, M C I beliebig.

1Fall: 0¢ A

(ElelFuligmry) (AN {T < M)
= Blp|F] (4) N {J = L} 0 {T < M)

_{EwVﬂ1MNHJ—LNHJ<M}: Ll

0 : LAM c Fu

unter Berticksichtigung von {J = L} € F; (Lemma 2.4.11) und

L<M= Fr CFum.

Der Fall 0 € A verlauft analog unter Beachtung von

(ElolFulipmsy) (AN {T < M)
= ({(J#L}n{J < MY U ({J = L} n {J < M} N Elp|F1] 7 (4))
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Damit ist die Fj-Meflbarkeit gezeigt. Sei nun A € Fj.

/E[<P|fL]1{J:L}dP = / Elp|FLldP
A AN{J=L}

= / pdP,
An{J=L}

wobei die Gleichheit in (%) aus Lemma 2.4.12 folgt. Da nach Lemma 2.4.11
{J =L} € F; damit also

Elp|Fj1 =1y = Elplj=1}|Fs] = Elp|FL]1{j=1y P-fs.
O

Korollar 2.5.2 Sei ¢ : (D,D) — (Ry4,B;) eine mefbare, nichtnegative
Funktion und J eine optionale Linie, die nur abzdihlbar viele Werte annimmit.
L C P(I) bezeichne diese Menge. Dann gilt

Elp|Fsl =Y Elo|FLlly=ry P-fs.
Ler

Bewets:
Mit der Darstellung Efp|F;| = >° E[p|F]1;—ry P-f.s. ist unter Hinweis auf
Lel

Lemma 2.5.1 nichts mehr zu zeigen.

a

Unter Beachtung, daf§ die endlichen Teilmengen von I abzdhlbar sind, werden
wir dieses Korollar hdufig fiir endliche optionale Linien, d.h. optionale Linien,
die als Werte nur endliche Teilmengen aus I annehmen, anwenden.

Nun sind wir soweit, das entsprechende Pendant zur starken Markov-
Eigenschaft fiir Markov-Ketten zu beweisen, welches lautet:

Theorem 2.5.3 Seien @, : S x Q! — [0, 1] fiir jedes x € I mefbare Funktionen
und J eine optionale Linie. Dann gilt

E [H (pxosr‘fJ] = H E r[@x] P-fs.

xzeJ zeJ
Beweis:
p:= ] @z o Sz.
zeJ

Sei J als endlich angenommen und bezeichne fI die Menge der endlichen
Teilmengen von I. Mit Korollar 2.5.2 und Theorem 2.3.1 erhélt man

ElplFs] = Y E[[] ¢x0 SelFLlliyzry
Lefl z€L

= Z H Ep lz]15=13

Leflzel

= HEI[gpm} P-fs.
e
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Sei nun J nicht mehr als endlich vorausgesetzt.

Wir definieren fiir endliche K, C I mit K, 1 [ die (nach Lemma
2.4.14) optionalen, endlichen Linien J, := J N K,,. Da offensichtlich (J,)nen
absteigende Folge und h(U,J,) = h(J) = J gilt nach Lemma 2.4.13 F; =
NnFy, -

Wegen Fj,,, C Fy, ist (E[@|F,])pen inverses Martingal und daher (sieche
Neveu[9], Seite 118)

-f.s.
ElplFs] 5% ElplF)

und damit
E[¢|-¢J] = nh_{goE[H Pz OSx’fJn]
zeJ
ZBGJ\Jn z€Jy
=) .
= lim ] wooS [] Ep.ledl
z€J\Jn zE€Jp
= HEz[cpx] P-fs.
zeJ
Die in () benotigte Fj -MeBbarkeit von [[ ¢, o S, ldBit sich leicht
nachweisen.

Wir nennen die Aussage dieses Theorems im folgenden auch nur starke Markov-
Eigenschaft.

2.6 Die Malthusische Population

Um das asymptotische Verhalten der Population, also ihr Langzeitverhalten
untersuchen zu kénnen, miissen wir eine wesentliche Voraussetzung an sie stel-
len: Thr Wachstum muf8 “in den Griff zu bekommen sein”. Diese Forderung
werden wir nun mathematisch prézisieren:

Wir definieren den Reproduktionsprozefl £, den Reproduktionkern p sowie den
zugehorigen Erneuerungskern v durch

E(Ax B)=4#{n € N;p(n) € A,o(n) € B}
&:(AXx B)=¢A X B)oU,
(s, A x B) = /Qg(A % B)(w)P(s,dw) = Ey[€o(A x B)]

v(s,Ax B) = Z w(s, A x B)
n>0
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mitse S, AeS, BeB.

u werde als irreduzibel (7 bezeichne das maximale irreduzible Mafl ) und
quasi-m ® A-stetig angenommen. Nach Abschnitt 1.3.2, Satz 1.3.10 erfiillt
1 damit die Minorisierungsbedingung und p sei a-rekurrent, habe also
insbesondere endlichen Konvergenzparameter «. (Dies ist gerade die oben
genannte Voraussetzung an das Populationswachstum.)

Unter diesen Voraussetzungen existieren nach Abschnitt 1.3.5, Theorem 1.3.22
und Theorem 1.3.23 fiir p, eine invariante Funktion h sowie ein invariantes
Maf}, welches auch maximales irreduzibles Maf} fiir p ist und daher ohne
FEinschrinkung schon 7 selbst dieses Maf sei.

Nun definieren wir uns den Kern @ : S x (S ® B) — R4 durch

Q(r,ds x dt) = % o (1, ds X dt)

und setzen voraus, daf

0<p:= /S/S><R+ th(s)pa(r,ds x dt)m(dr) < oc. (2.6)

Nach Kapitel 1.4, Satz 1.4.15 ist Q nichtnegativer, irreduzibler, quasi-m ® M
stetiger, positiv-rekurrenter Ubergangskern mit invariantem Maf} Am, definiert
durch

h(A) = /A h(s)r(ds).

Wir nehmen zusétzlich an, dafl hn endlich ist, also ohne Einschrinkung ein
Wahrscheinlichkeitsmaf.

Sind all diese Voraussetzungen gegeben, nennen wir die Population Malthusisch
und o« den Malthusischen Parameter. Schauen wir uns diese gegebenen
Voraussetzungen nun noch einmal aus anschaulicher Perspektive an:

u(s, A x B) gibt offenbar die durchschnittliche Anzahl von Individuen erster
Generation an, deren Typ in A und Geburtszeitpunkt in B liegt. Entsprechend
erhélt man durch einfache Rechnung, dafl 4" die durchschnittliche Anzahl von
Individuen der n-ten Generation mit Typ in A und Geburtszeitpunkt in B
angibt. Der Erneuerungskern v ist also nichts anderes als die durchschnittliche
Anzahl aller Individuen der Population mit Typ in A und Geburtszeitpunkt
in B. Die durchschnittliche Anzahl der Individuen erster Generation kann nun
durch Ubergang zu s, exponentiell erhéht oder verringert werden. Dabei gibt
der Malthusische Paramter genau denjenigen Wert o an, dafl eine Abweichung
von « nach oben bzw. unten zum Aussterben zumindest einiger Typenmengen
(n&mlich den kleinen Mengen) bzw. zur Explosion der Population fithren wiirde.
Aus diesen Griinden heifit eine Population auch superkritisch, wenn a > 0,
kritisch, wenn o = 0 und subkritisch, wenn o < 0. Mit der Voraussetzung o > 0
schliefen wir den eher uninteressanten subkritischen Fall aus.

Irreduzibilitéit besagt gerade, dal keine “disjunkten Typenmengen” existieren
sollen, d.h. die Moglichkeit, dafl ein Individuum mit Typ s keine Nachfahren
mit Typ in A € ST haben kann, wird ausgeschlossen.
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2.7 Das intrinsische Martingal

Als wichtiges Hilfsmittel fiir die Untersuchung des Langzeitverhaltens einer
Malthusischen Population wird uns der folgende intrinsische Prozess {war; M C
I} dienen, definiert durch

wyr = Z e % h(py).
xeM

Offensichtlich gilt wy; = warng.
Wir nennen eine Folge (wr,, )nen auch aufsteigend, wenn dies fiir (Ly)nen gilt.
In den Theoremen 2.7.3 und 2.8.7 werden wir nachweisen, daf§ {wy; M € Cp}
sowie {wy;J € Co} Martingale bzgl. (Far)mec, bzw. (FJ)see, bilden. Im
nachfolgenden Kapitel werden wir dann ihr Konvergenzverhalten untersuchen.
Eine Theorie iiber Martingale mit nach oben gerichteter Indexmenge, wie sie
nach den Sitzen 2.2.1 und 2.4.3 mit der Relation < durch Cy und Cy gegeben
ist, findet sich in Neveu[9], Kapitel 5, worauf wir des 6fteren verweisen werden.
Bevor wir nun aber den intrinsischen Prozefl genauer betrachten, zwei im
folgenden sehr hilfreiche Lemmata:

Lemma 2.7.1 Seien z,y € I und S, die in (2.8) definierte Shift-Funktion.
Dann gilt

ny:Ux+Uyon pwy:pyosa:-
Beweis:

Fir oz = (z1,...x,) € I beliebig liefert eine einfache Induktion iiber n

n

Z 7(25) 0 U © S(zy,..e_ymit Sy die Identitit.

Unter Ausniitzung von Sgy = S, 0.5, und mit x = (v1,...2,),y = (y1,---Yn,)
folgt nun

ooy = > T(@)oUoo S0 ap )+ > (TWk)oUoo Sy 1) ©Sa)
k=1 1

= o,+0,05;
Pzy = p(r(zy)) o Uyo S, m(zy) — p(r(y)) o Upo Sm(y) 0S5y =pyoSy
Od

Lemma 2.7.2 Sei f: (SxR,S®B) — (R4, By) eine nichtnegative, mefsbare
Funktion.
Dann gilt fiir alle n € IN

Z Es[f(pz,02)] = flryt) u"(s,dr x dt) (2.7)
xeN™ SxR

und
ZE (pz,0z)] = f(rt) v(s,dr x dt). (2.8)

ey SxR
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Beweis:

Es gentigt, (2.7) nachzuweisen, da (2.8) direkt aus (2.7) folgt.

Fiir n=0 ist die Behauptung trivialerweise erfiillt.

Der Reproduktionsprozefl & 148t sich unter jedem P; ,s € S als das zufillige
Zahlmaf zu dem durch (7%)gen induzierten stochastischen Punktproze mit
Marken (pg)ken in (S, S) auffassen.

Dann ist Es[¢o(dr x dt)] = u(s,dr x dt) das zugehorige Campbell-Mafl und die
Behauptung fiir n = 1 folgt aus der Campbell-Formel fiir Punkt-Prozesse (siehe
Baccelli und Brémaud [4], Seite 20 (3.3.2)).

Induktiv folgt nun

Z Es[f(pz;0z)]

zeN'rH»l
= Z Z Eg [Eq[f(py 0 Sz, 05 + 0y 0 Sz)|F2]
2€N" yeN
= D > BB [f(py. 00+ 0y)]]
2€N" yeN
Z E, [/ f(y, 00 +1) p(pe, dy x dt)
zeN" R

W fut ) e dy x dt) g (s, de x du)
SxR JSXR

=/ / Fly, )" (s, dy x dt).
SxR JSxR

Theorem 2.7.3 Gegeben L < M Stoplinien, gilt

Elwy|Fr) <wp  P-fs.
und im Fall, daff g(M) < oo und M L iiberdeckt, gilt sogar Gleichheit.
Beweis:

Sei M als endlich angenommen, also M C L X UZ:()]NI" fur einn e N
Wir beweisen die Ungleichung durch eine Induktion iiber dieses n:

(IA):n=0
McCL— E[’LUM‘]:L] < E[wL\}"L] = wy,
(ISymn—1—n

M = (Mﬂ(LxU]Nk)) U (M N (LxIN")

=0
Mit A := {mz : :UGMQ(LX]N")}ist MnN(LxN") C{zi;z € A,i € N} und
dafLCfLXN'nl

Elwynwxnm) | Fr] < E lz E[Z e_aamh(Pxi”}—LxN”—l]|~7:L]
xEA €N

— B lz e—aach Ze @ UzOSx)h Pz oS, )|‘7:L><N” 1H]_‘L‘|
z€A i€EN
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[Z e E, Z e “%h(p |.7:L]

€A €N

=F [Z e_cww/ e “h(s) p(ps,ds x dt)|.7:L]
Py SxR
= Elwa|Fr] P-fs.

wobel in vorletzter Zeile Lemma 2.7.2 und in letzter Zeile die a-Invarianz von
h eingeht.
Damit also

(Iv)
E[U)M|fL] S E[w(Mﬂ(LXUZ;éNk))UA’FL] S wr, P-f.s.

(Die fiir die IV benétigte Tatsache, dal (M N (L x UfZgIN¥) U A) eine Linie ist
mit L < (M N (L x UZ;&IN’“) U A) und Untermenge von L X UZ;&]NI"’ ist, 1aBt
sich direkt auf die Definition von A und die gestellten Voraussetzungen an M
und L zuriickfiihren.)

Wird M nun nicht mehr als endlich vorausgesetzt, folgt die Behauptung mit
Hilfe endlicher M,, C I mit M, T M und monotoner Konvergenz.

Fiir die Gleichheit benotigen wir folgendes
Lemma 2.7.4 Fir L € Cy ist E[wr] = h(s) VseS.

Beweis:
Sei k € IN beliebig. Wieder unter Ausnutzung von Lemma 2.7.2 folgt

Z E ozo'zh )]

zeNF

_ Z Z ES[efaazES[efa(moSz)h(pi ° Sx)‘}"x]]
reNF—1i€N

Y B Y Bl hin)]
reNk-1 i€EN

= X Bl [ o dr i)
zeNk-1 SxR

= > B h(p.)),
zeNF-1

Iterativ erhalt man nun

> Bile ™ hips)] = 3 Esle " h(ps)]

zeNF z€N

= / e h(r) p(s,dr x dt)
SxR
= h(s).
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Sei nun L € Cy und n € IN so groB, dafl g(L) < n. Dann folgt mit obiger
Rechnung

h(s) = Y Esle™@hp)] = Y. Esle ™ h(py)]

zeN" zeL yeNn—9(2)
— Z Es e~ Q0 Z E[efaoyOSzh(py o Sa:)|fx]
z€el L yeNn—g<z)
= YE e Y Bl hipy)
zeLl L yeN"—9(@)
= E;s [Z eagzh(px)‘| = Es[wL] )
xcL

wobei in der ersten und fiinften Gleichung obige Rechnung benutzt wird und die
zweite Gleichung aus der Uberdeckungseigenschaft von L und g(L) < n folgt.

a

Mit Hilfe dieses Lemmas 148t sich nun die Gleichheit in Theorem 2.7.3 im Falle,
daB8 M L iiberdeckt und g(M) < oo beweisen:

Dazu definieren wir A, := {y;xy € M} und behaupten, daB A, € Cy fiir
jedes x € L. Dafl A, Linie ist, folgt sofort aus der Linieneigenschaft von M.
A, hat mit M offensichtlich auch endliche Generation. Bleibt also noch die
Uberdeckungseigenschaft nachzuweisen. Der Beweis formalisiert lediglich, was
man sich schon anschaulich leicht klarmachen kann.

Dazu sei z € I beliebig.

Dann gibt es ein m € M mit m < xz oder xz < m.

Nehmen wir erst einmal m < zz an.

Da L Linie und L < M, muf§ damit schon x < m < zz gelten und daraus
offensichtlich mit y € A, so gewéhlt, dafl xy=m schon A, >y < z.
Betrachten wir nun den Fall zz < m. Dann existiert ein y € I mit m=xzy, d.h.
zy € A, und damit offensichtlich z < zy € A,.

Jedes z € I hat also entweder Vorfahren oder Nachfahren in A,, was zu zeigen
war.

Fiir nachfolgende Rechnung ist zu beachten, daf fiir jedes m € M wegen L < M
und da L Linie ist, eine eindeutige Darstellung von m als ly mit [ € Lund y €
existiert.

Nun gilt mit Hilfe von obigem Lemma

Elwm|FL] = Elz e_ag’“h(Px)lfL]
reM

= Z e" Y9 F

> e h(py 0 sx>rﬂ]

zeL y;xye M
_ Z €_aUzEpm Z e—aayh(py)
zeLl y;xyeM
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= Z e_aUIEpz [wa]
z€eLl

= Z e “h(py) =wp P-fs.
el

wobei fiir die vorletzte Gleichung das vorangegangene Lemma benutzt wurde.

a

Wir haben nun also folgendes wie wir sehen werden noch sehr niitzliches

Korollar 2.7.5 {wp; L € Co} ist ein Martingal bzgl. der Filtration {Fp;L €
Co}, das sogenannte intrinsische Martingal.

2.8 Gleichgradige Integrierbarkeit und Konvergenz
des intrinsischen Martingals

Wie im vorangegangenen Korollar festgestellt, ist {wy; L € Cy} ein offensichtlich
nichtnegatives Martingal unter jedem P,, s € S. Fiir jede aufsteigende Folge
(Lp)nen in Cp konvergiert demnach wy,, Ps-f.s. gegen eine ZufallsgroBe ws.
Wir werden nun zur £;-Konvergenz iibergehen. Nach Neveu[9], Seite 96,
Lemma V-1-1 geniigt es, fiir die £1-Konvergenz des intrinsischen Martingals
die £1-Konvergenz jeder aufsteigenden Folge wy,, des intrinsischen Martingals
nachzuweisen. Hierfiir wiederum ist die gleichgradige Ps-Integrierbarkeit jeder
solcher Folge hinreichend, die unter geeigneten Zusatzvoraussetzungen der
nachfolgende Satz liefert.

Vorab aber eine

Definition 2.8.1 Mit

Ei= [ € ) bolds x d =i€ZNe“””h<ﬂi>

erfiillt eine Malthusische Population nach Definition die z log z- Bedingung, wenn
Er[€log*€] < oo,

wobei F; den Erwartungswert unter dem Wahrscheinlichkeitsmaf}
Jg Ps(dw) m(ds) bezeichne.

Satz 2.8.2 Erfillt die Malthusische Population die x log x-Bedingung, so ist fiir
w-f.a.s € S jede aufsteigende Folge in {wr; L € Co} gleichgradig Ps-integrierbar.
Die Menge der s € S, die dies erfiillen bezeichnen wir mit Sjog.

Beweis:

Sei s € S beliebig, aber fest.

Wir nehmen an, sup,,cn wnn sei Ps-integrierbar.
Sei L € Cyp und ng € IN mit g(L) < no.

Mit Theorem 2.7.3 folgt

wr, = Es[wne | Fr] < Es[sup wnn|Fr]  Ps-f.s. VYn > ng
neN
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Sei (Ly,)nen nun eine aufsteigende Folge in Cy.
Da Eg[sup,, wnn]| < oo ist mit

M,, := Es[sup wn»|Fr,] > wr, Psfs.
nelN

(Mp,)nen nichtnegatives Martingal, welches in £1 und Py-f.s. konvergiert.
Dabher ist (M,)nen und damit auch (wy, )nen gleichgradig Ps-integrierbar.

Es geniigt demnach die Ps-Integrierbarkeit von sup,cn wne fiir m-f.a. s € S
nachzuweisen, was wir nun verifizieren werden:
Dazu definieren wir zunéchst

n =& = h(po)

=608, xzel

e =108, =& —hlpy), z€I

5(s,t) ;== e “Eynlpyseat] selteR
In nachfolgenden Rechnungen ist zu beachten, daf

B[] = E.[§] - h(s) = h(s) — h(s) = 0.

Dann ist
wynt = Y Y e h(py) = Y ey e 7% h(p; 0 S,)
zeN" e N TeN™ iEN
= D ¢ EoSi= 3 e (e + hipr))
zEN™ zeN"
AT
€N
also
WNn+l — WNn = Z e Yy,
zeN™
= Z <e_ao';c’,7x1{|nx|§eaaz} + 6(px7 Ugg))
z€N™
+ Z (e_agzn:vl{lnzbem’w} - (5(p$,gz))
zeN™
= apy1+ by
Mit
B[l <cat] = Eq[n] — e6(s,t) = —e*6(s,1) (2.9)
folgt
Eslanial ] = 32 (€77 Eul(00 81 jpos, geoen | Fvn] + 6(pr, 02))
zeN™
= Z (e—aUrEpz [nl{ln‘geaoz}] —|—5(p$,0'x))
zeN™
(2.9)
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Damit dann auch Esla,+1] = 0 und mit analoger Rechnung Fg[b,41]|Fnn] = 0
und Fg[b,41] = 0.

Wir werden nun folgende beiden Ungleichungen nachweisen

E; (sup | Z ak+1|> < oo m7-fs. (2.10)

nelN k=0

E, (Z \bn+1\) <oo m-fs. (2.11)

n>0

Dann gilt

n

0 < supwnr» = sup Z(kaH — Wk) + Wyo

nelN neN,;
n n
= sup (Z Y bk+1> + h(po)
nelN \k=o k=0

n
sup | Y arq1| + Y [brral + h(po)
neN o k>0

IN

und nach den gezeigten Abschidtzungen (2.10) und (2.11) folgt die P,-
Integrierbarkeit von sup,, wn» fiir 7-f.a. s € S.

Weisen wir also zuerst (2.10) nach:

Unser erstes Teilziel ist die Abschiitzung Y Vars[a,+1] < co.
n>0

Varslant1] = Es[Vars[ans1|Fne]] + Vars Es[ant1|Fnn]]
= E[Varslani1|Fne]]

=B, | Y e (E2Lypn, <enony | Frer] = Bled g, enesy | Favn )
| TeN™

< E, Z 6—2040'93E[T]g.1{|nz|§6a01}‘f]Nn]
| TeN™

= F Z 6_20[0“3Epm[7721{‘77|§6a0m}] ,
| TeN™

wobei in dritter Gleichung die Fnn-Mefibarkeit von 6(pg, o) zu beachten ist.

Dann 148t sich der abzuschétzende Term unter Beachtung von Lemma 2.7.2
wie folgt schreiben:

0o 0o
Z Vars [an+1] < Z E,
n=0 n=0

Y e B, 1 <eans)]
reIN™
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= Es [Z 6_2aUIEp2 [7721{\77|§eaf’2}]
xzel

= / 6_2atE7»[7’]21|n‘<eat] I/(S, dr x dt)
SxR -

Es bezeichne G' das Maf} , welches G * }, >, Q" = hm ® AT erfiillt (siche Satz

1.4.16).
Wir falten nun dieses letzte Ergebnis mit G und erhalten

1
—2at 2
e E 0“1, 1<eat] v(s,dr x dt —u) — G(ds X du
/sm /sm " Ljgjeer] ) ) ¢ )

1
= at “)E 21 — "(s,d dt — u)G(d d
e N eor E Q" (s,dr x U s X du
/SXR/SXR [ i< t]h T ( ) ( )

a>0
< /leg_atET[n2ll77|Se“t ) G * Z Q" (dr x dt)

n>0

:// eiatET[UZ]-wSeat]/er(dt) (dr).
SJR

Dieser Term a8t sich nun nach oben gegen unendlich abschétzen (weshalb diese

Faltung iiberhaupt nur vorgenommen wurde) durch
Fugini / / ?72/ 1{‘n|<eat}€_at /Xi_(dt) Pr(dw) 7T(d7“)
1
= w(dr) = —FE,
// o7 Prd) wla) = < Bl
< o (e +/ ()
(// 8) o (r, ds X dt) (dr)+1>
SxR

QINQIHQ

Damit ist also

1
—2au —2at 2
Eon?1y, coat|v(s, dr x dt)——
e /SXRe (1L <eat]r(s )h(s)
1
< 2B 0?1, < etV (s, dr X dt — u)—— < oo G-fs.
< [ T B (s, dr e

und damit schliefllich (schaut man sich die genaue Gestalt von G an)

Z Vars[an+1] < / e_QatET[n21|n|<eaz]y(s,dr x dt) < oo m-fs.
n>0 SxR -

Da a,, Fnr-mefibar ist, wie man sich leicht iiberlegen kann, und wegen

n—1
Elans1|Fne] = 0 ist mit M, := > agt1 (My)n>1 Martingal bzgl. der
k=0
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Filtration (fN")nzl mit

n—1 n—1
sup E,(M?) = sup ES[(Z apg1)?] = sup Z Varsagy1]
neN neN k=0 neN g

= Z Varslags1] < oo w-fs.
k>0

Dann folgt nach Neveu (Seite 68,Proposition IV-2-8)
n
Edf(sup | S apsa)?) = Eyl(sup [Mo])?] < 00 m-fs.
neN "o neN
und damit auch (2.10), was zu zeigen war.

Kommen wir nun zum Nachweis von (2.11):
Unter Beachtung von

Eyle™ " 0oL {jp, s e0my] = Esle™ 7 Eyllns|1{jp, | canr ) [F2]]
= Eile " E,, [In|1{jy>ecor}]
folgt
0 < E; Z‘bn+1|
n>0
< E; (Z <€_aaw‘77x’1{|nz|>ea%} + |6(pa7a09:)‘>>
zel
< 2Y B (e By, Ly onsy] )
zel

= Q/SXRe—atEr[|77|1{n|>eat}] v(s,dr x dt),

wobei in letzter Gleichung wieder einmal Lemma 2.7.2 eingeht.
Nun falten wir wieder mit G analog zur Abschitzung der ay,1:

—a(t+u 1
/S><R /Sx]R et )Er[|77|1{|m>eat}]w v(s,dr x dt —u) G(ds x du)
+ +
1
< —Ol(t—U)Er 1 ety | 7+ 7d X dt_ G d X d
o ~/;XR+ /SXR+ € Hn’ {|77\> }] h(s) V(S r u) ( S u)
- /S/PL+ Er[[n[1{n>eaty] X (dt) m(dr)
- / / ul / Lijyi>eoty X (dt) Pr(dw) 7(dr)
SJD R4

1
=~ [ Brlinltog nf1y15)) ()

1 _ _ _ _
= o [ BlE Bl os( - B L0

+E[(Er[§] = &) 1og(Er[§] = )1k, (g>118] m(dr)
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1 - e — —
< /SET[£log§1{5—>1}]+ET[ET[§] log By [€]1 g, (g>1y] 7(dr)

2 _ _
<= [ 05" mlar)

@ Js
< oo nach Voraussetzung (x log x-Bedingung),

wobei in vorletzter Gleichung zu beachten ist, dafl zlog™ x eine konvexe Funktion
ist und daher die Jensensche Ungleichung anwendbar ist.

Man hat also die G-fast sichere Endlichkeit von

1
() B, [lp[1 oty _
| e ey (5o =)

— efa(t+2u)

SxR

1
_a(t+2u)_ B 9 ot
Z /SXRe h(S) <ET[|77|1{|7]‘>604}] E’I”HT" 1{|n|§ea(t+u)}]€ )
v(s,dr x dt)

1
Er[ynll{‘n|>ea(t+u)}]%l/(s, dr x dt)

1
20 at Er 1 o .
¢ /S'><R ¢ h(s) H"?‘ {Inl>e t}] V(S’ dr x dt)

1
_ —2a(t+u) 2
/SXRe ) Ep (0" Ly <catrun] v(s, dr x dt).

Da der sich der zweite Term schon bei der Abschéitzung der a,41 als G-fast
sicher endlich erwiesen hat, mufl auch der erste Term schon G-fast sicher endlich
sein und damit

/ e_atEr[|17\1|m>eat] v(s;dr x dt) < oo m-f.s.
SxR

Wir haben also nun die gewiinschte Abschitzung

(Z ‘bn+1|) < 2/ atE |77|1{|n\>eai}] v(s,dr x dt) < oo m-f.s.

n>0
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Wie schon zu Beginn des Kapitels angedeutet, haben wir nun folgendes

Korollar 2.8.3 Erfillt die Malthusische Population die x log z-Bedingung und
ist s € Siog, s0 konvergiert jede aufsteigende Folge (wr, )Jnen in {wr ; L € Co}
Ps-f.s. und in L1 (bzgl. Ps).

Insbesondere konvergiert also das intrinsische Martingal {wr; L € Co} in Ly
(bzgl Ps). Wir bezeichnen den Grenzwert mit ws.

Beweis:

Da unter den gegebenen Voraussetzungen nach dem vorher Gezeigten fiir
s € Sjpg jede solche Folge (wr,)nen ein gleichgradig Ps-integrierbares,
nichtnegatives Martingal ist, ist nichts zu zeigen.

Daf sémtliche aufsteigenden Folgen (wr,, )nen in {wy, ; L € Co} Ps-f.s. und in £4
bzgl. Ps konvergieren, heifit noch nicht, dal der Grenzwert auch stets mit dem
Grenzwert des intrinsischen Martingals wg iibereinstimmt. In Theorem 2.8.5
werden wir allerdings eine Klasse solcher Folgen ermitteln, die diese Eigenschaft
besitzen. Ein vorldufiges Ergebnis liefert

Lemma 2.8.4 Ist die x log x-Bedingung erfiillt und s € Sj,q, so gilt fiir jede
aufsteigende Folge (Ly)nen aus Co mit infyer, g(z) "= oo

wr, — ws in Ly (bzgl. Ps) und Ps-f.s.

n

Beweis:
Aufgrund der £;-Konvergenz des intrinsischen Martingals unter P; gilt

Ve >0dL. €(Cy : ESH’IUL—’LUSH<6 VL. < L € (Cy.

Da L. von endlicher Dimension und iiberdeckend ist, gilt aufgrund der gestellten
Bedingung an die L, schon L. < L,, Vn > ng mit ng geeignet und daher die
Behauptung.

Nachfolgendes Theorem liefert nun unter anderem eine noch schwichere
Voraussetzung an eine Folge L, fiir deren Konvergenz gegen wsy:

Theorem 2.8.5 Unter der x log x-Bedingung existiert eine Zufallsgrofie w > 0
auf dem Populationsraum, so daf fiir s € Siog

wy, = Es[w|.7:L] Ps—f.s. VL € Co (2.12)

und das intrinsische Martingal konvergiert in L1 bzgl. Ps gegen w. Insbesondere
gilt also nach Lemma 2.7.4 Es[w] = h(s).

Ist (Lp)nen eine aufsteigende Folge in Cy, so daf fir jedes x € I ein n € N
existiert, so daf$ © Nachfahren in L, hat, so konvergiert auch wr,, in L1 bzgl.
P und Ps-f.s. gegen w.
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Beweis:
Wir definieren w durch

w = lim inf wy~. (2.13)

n—oo

Dann gilt offenbar nach dem vorherigen Lemma fiir s € Sj,,4

w = liminf wn» = lim wn» = w; Ps-fs.
n—oo n—oo

und daher ist die behauptete Konvergenz des intrinsischen Martingals gegen
w klar. Um (2.12) nachzuweisen, wihlen wir zu beliebigem L € Cy eine
aufsteigende Folge (Lj,)pen mit infyer, g(z) — oo, in der L enthalten ist.
Nach Lemma 2.8.4 ist wy, gleichgradig Ps-integrierbares Martingal, welches
in L1 (bzgl. Ps) und Ps-f.s. gegen w, konvergiert (mit s € Sjog) und daher nach
Neveu[9], Seite 65, Proposition IV-2-3

wr, = Es[ws‘f[,] = Es[w|.7-'L] Ps—f.S.,
also (2.12). Ist nun (Ly,)nen eine Folge wie im Theorem gefordert, so gilt

(VzelIneN:agPrL,) = (Vo€ IIn e N: S xo(U,) C Fr,)
und daher D = o (UxS X U(Um)) C o(UpFr,) CD.
Nach Neveul9], Seite 29, Proposition II-2-11 folgt also unter Beriicksichtigung
von Fr, C Fr, 4

wr,, = Eslw|FL,] — Es[w|o(UnFL,)] = Eslw|D] =w
in £9 (bzgl. Ps) und Ps-f.s.

Wie wir spéter sehen werden, spielen nicht nur die wj, fiir feste Stoplinien
L, sondern auch die w; fiir optionale Linien J eine wichtige Rolle fiir unsere
asymptotische Betrachtungen. Aus diesem Grund richten wir nun auf den
vorangegangenen Beobachtungen basierend unseren Augenmerk auf diese.

Theorem 2.8.6 Es sei die x log z-Bedingung erfullt. Ist J eine tberdeckende
optionale Linie endlicher Generation, so gilt fiir s € Soq

Eslw|Fj] =wy Ps-f.s.
Insbesondere gilt also Es|wy] = Es[w] = h(s) < oo.

Beweis:

Sei J wie im Theorem gefordert und s € Sjyg.

Fiir eine Folge (K, )nen endlicher Teilmengen von I mit K, T I definieren wir
die endlichen optionalen Linien J; := J N K.

(Ist J selbst schon endlich, ist dies iiberfliissig, da sich die Behauptungen
direkter ergeben. Da aber der kompliziertere Beweis fiir den unendlichen Fall
den Beweis des endlichen Falls miteinschliefit, betrachten wir nur diesen.)
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Da offensichtlich J;11 < J; und h(U;J;) = h(J) = J ist nach Lemma 2.4.13
Fj = MiFy, und als inverses Martingal konvergiert Es[wnn|Fy,] in [ Ps-f.s.
gegen Eg[wnn| Ny Fy,] = Es[wnn|Fy]. (fiir n € N beliebig)

Da weiterhin

Bm 1egeny<ny = Lgy<ny  Phs.

gilt fiir n € IN beliebig aufgrund der Endlichkeit der J; (fI bezeichne wie schon
vorher die Menge der endlichen Teilmengen von I)

Elon|Fillignzny = Jim Blon|F5]11g0)<n)

= l]ggj Z Elwne | Fulignry<nylis=m

MefI

= lli)fglo Z Elwnm prav | Fu] g <ny g=nr}

Mefl

+llim Z Eloxnaprm | Fulligoany<ny 1=
—00 Merl

= llg?o Z E[wN”\PrM|fM]1{g(M)gn}1{Jl:M}

MefI

+lim > warligan<ny L=
T Mefr

= llgono (E[wN"\PrJl [ Frllig(my<ny + lel{g(Jl)gn}>

= le{g(J)Sn} P-fs.

Dabei ist zu beachten, dal auf {g(M) < n} M von PrM NIN" {iberdeckt wird
und daher Theorem 2.7.3 angewendet werden kann. Die Giiltigkeit von (x) folgt
aus

llircr)loE[w]N"\PrJl|‘7:Jl]1{g(Jl)§n} = lllrgoE[w]N"\PrJl1{g(J;)§n}|le]

IN

Jim Efwnem pr g <nylFon] VE € N
= Elwnm\pr, Ligg)<n}|Fs] Yk € N P-fs.
und daher

Jim Elwne prg | FalLgny<ny < B0 Elwnm pry Lo <nlFs] =0 P-fs.

da limg wnm prJy, Lg(s)<n} = limg W prg, Lig()<n} =0

denn da J iiberdeckend ist N" \ PrJy, | N"\ PrJ =0 auf {g(J) < n}.

Mit dem bisher Gezeigten 148t sich nun die Aussage des Theorems beweisen :
Da nach Lemma 2.8.4 wny» — w Ps-f.s. und sup,, wn» Ps-integrierbar ist (Beweis
von Satz 2.8.2), folgt

Es[w]Nn|fJ] I Es[w|f]] Ps—f.S.

Da g(J) < oo gilt weiterhin lim, oo 1¢4(5)<n} = 1 Ps-fs.
Also

Eslw|F)] = lim (Es[wNn\fJ]l{g(J)Sn})
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= lim wylig)<ny

= wy Ps—f.S.

Es ergibt sich nun sofort folgendes

Theorem 2.8.7 Es gelte die x log z-Bedingung und es sei s € Sj,q.

Dann ist {wy;J € Co} ein Martingal bzgl. (Fj)ec,, welches in Ly (bzgl.Ps)
gegen w konvergiert. Ist (J,)nen eine aufsteigende Folge in Cy mit der
Eigenschaft, daf jedes x € I Nachfahren in einem J, hat, so konvergiert w,
Ps-f.s. und in L1 bzgl. Ps gegen w.

Beweis:
Die Martingaleigenschaft ergibt sich sofort aus dem vorangegangenem Theorem.
Nach Neveu[9], Seite 96, Proposition V-1-2, gilt
(ws) gecy = (BlwlFo]) e, = Elwl | 7] © Elw|p] = w.
JeCo
(Die dafiir benétigte Voraussetzung Es[w] < oo ist erfiillt, da Eg[w] = h(s).)
(%), d.h.U e, Fs = D ist im nachfolgenden Teil des Beweises implizit enthalten.
Fiir eine Folge (J,)nen mit der im Theorem geforderten Eigenschaft, zeigen wir
nun Up,F;, =D und damit die Behauptung:
Seidazuz € I, A€ S, B € A beliebig.
Aufgrund der gestellten Voraussetzung an die J,, gilt
Un Uyeno {zy € Jn} = D. Daher

AxT1B) = ((Ax U1 (B)) N Uyenofay € Ju}) € UnFy,.

n

Denn (A x U;*(B)) N Uyenolzy € Jn} € F,, wie man sich leicht iiberlegen
kann. Und damit

D=S®A =0(Upe;S®0(U,)) C UyFy, CD,

also das Gewiinschte.

Satz 2.8.8 Es sei die x log x-Bedingung erfillt.
J1, Jo seien zwei optionale iberdeckende Linien mit J; < Jo. Jo habe endliche
Generation. Dann gilt fiir s € Siog

Eslwy,|Fr]=wy Ps-fs.

Beweis:
Da mit ¢g(J2) < oo auch ¢g(J1) < oo Ps-f.s. Vs € S folgt wie im Beweis von
Theorem 2.8.6 gezeigt

Jim Elwnn|Fy,] = Elw|Fy] = wy, Ps-fs. furi=1,2.
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und daher
wy, = Jim Eyfune|Fy)
= lim B, [Es[wnn|F ]| F]

= B[ lim Blwwe| 7170
= E[wJ2|fJ1] Ps—f.s.

wobei die 3. Gleichheit aus
sup,, Es[wn»|F] < Eslsup, wne|Fj| und der Ps-Integrierbarkeit von
sup,, wnn folgt.

a

2.9 Asymptotische Entwicklungen der Population
in reeller Zeit

Das letzte Kapitel warf vermutlich die Frage auf, weshalb das intrinsische
Martingal {iberhaupt definiert und mithsam seine Martingaleigenschaft sowie
Konvergenzen nachgewiesen wurde. In diesem Abschnitt folgt nun aber eine
niitzliche Anwendung dieser Ergebnisse, die Erfassung des “Langzeitverhaltens”
der Population, d.h. des asymptotischen Verhaltens bei gegen unendlich
strebendem Zeitparameter.

Was man nun explizit beobachten will, z.B. die Zahl der bisher Geborenen, die
Zahl der Individuen, die zum Zeitpunkt t jiinger als s Zeiteinheiten sind etc.
muf nicht genau spezifiziert werden, sondern man stellt solche Betrachtungen
allgemein auf fiir spezielle Funktionen auf dem Populationsraum, mit denen
man die eben genannten Groflien dann darstellen kann. Um Aussagen iiber das
asymptotische Verhalten dieser treffen zu konnen, bedarf es dann allerdings
noch gewisser Voraussetzungen, auf die wir an entsprechender Stelle genauer
eingehen werden.

2.9.1 Charakteristiken

Formal beginnen wir mit der Definition einer Charakteristik. Diese sei eine
mefibare Funktion

X:DxR-—R,

mit den zusétzlichen Bedingungen
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o x(s,wl,t)=0 Vt € [—o0,0] V(s,w!) € D

o x(s,w!, ") ist rechtsseitig stetig mit linksseitigem Limes fiir alle (s, w!) € D

Wir schreiben wie iiblich wieder . (s,w’,t) := x(Sz(s,w’), t).
Die sogenannte y-zihlende Population zur Zeit t, zX, wird definiert als

PARES Z X(Sz,t —0z).
zel

Statt x(Sz,t) schreiben wir im folgenden auch oft einfach x,(¢) und statt
X (So,t) auch nur x(¢).
An dieser Stelle drei einfache Beispiele :

1. Definieren wir die Charakteristik

X(37 wla t) = 1[0,00) (t)
ergibt sich als y-zéhlende Population
ch = ZX(vat_Um)

zel
#{rel; 0<t—o0, <oo}
= #{rel; o, <t}

= Anzahl der bis zum Zeitpunkt ¢ geborenen Individuen.

2. Definieren wir die Charakteristik

X(Sa wla t) = 1[0,8) (t)
ergibt sich als y-zéhlende Population
z = Z X(Sz,t — 0g)

zel
#{rel; 0<t—o0, <s}

Anzahl der Individuen, die zum Zeitpunkt ¢ jiinger

>

als s Zeiteinheiten sind.

3. Sei A : § x Q2 — Ry eine ZufallsgroBe derart, dafl A(s,w) die Lebensdauer
eines Individuums mit Typ s und Lebenslauf w angebe und sei A\, =

Definieren wir die Charakteristik

X(5,w, 1) = L 5o 5.0y (1)

ergibt sich als y-zéhlende Population

7 = > X(Set—0x) =Y Tyt —ou)

xel xzel
= #{relio, <t<oy+ M}

= Anzahl der zum Zeitpunkt ¢ lebenden Individuen.
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Die Beispiele machen deutlich, weshalb asymptotische Betrachtungen von z;*
durchaus von Interesse sind. Wir werden in diesem Kapitel unter gewissen
Voraussetzungen Aussagen iiber die Konvergenz von Ej[z)] sowie die schwache
und starke £i-Konvergenz von 2 treffen.

Zu beachten ist, dafl in obigen Beispielen y, allein von Typ und Lebenslauf
des Individuums z abhingt. Solche speziellen Charakteristiken werden als
Individual- Charakteristiken bezeichnet.

FEine im folgenden sehr niitzliche “Aufsplittung” der y-zdhlenden Population
liefert folgendes

Lemma 2.9.1 Sei J eine optionale dberdeckende Linie. Dann gilt die
sogenannte fundamentale Gleichung

ch = Z X(Szat - UI) + Z ch_o—z © S:E7
z<J e

wobei x < J:=3AyeJ:xz<uy.

Beweis:
7 = Y X(Sut —0u)

xzel
x<J zePrJ

= ZX(SWt_O-ﬂC)'i_ZZX(SJ:y7t_ny)
x<J zed yel

= > X(Set =)+ 33 X(Sy 08yt — 0y — 0y 0S,)
z<J zeJ yel

= ZX(vat—Ux)—l-Zzg(_%oSw
z<J zeJ

Zu bemerken ist, dal im letzten Term die Shift-Funktion S, nicht auf den
Ausdruck ¢t — g, angewandt wird. Diese etwas ungenaue Schreibweise werden
wir der Einfachheit halber noch des 6fteren verwenden. Definieren wir nun

G o= e M)

w(t) ==Y X(Su,t = 0a),
z<J

wird uns eine weitere Gleichung im folgenden bei vielen Rechnungen hilfreich
sein:

Lemma 2.9.2 Ist J optionale iiberdeckende Linie, so gilt mit obigen
Bezeichnungen

G=e"ps(t)+ > (o, 0 Spe . (2.14)
zeJ
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Der Beweis ist eine einfache Anwendung der fundamentalen Gleichung.

Aus dieser Gleichung 148t sich nun mit Hilfe des intrinsischen Prozesses
{wpr; M C I} weiter herleiten:
E[G|F)] = e ™Elp;(0)|Fs]1+ > e " El(i0, 0 Sz|FJ]

zeJ
1

= e “Elpst)|FJ] + SxRy h(s)

Eg[C—u] wy(ds x du)
und daraus offensichtlich

B[] = e “E[p,(1)] Jr/s ﬁES[Qu] Elwy(ds x du)].

xRy

2.9.2 Konvergenz des Erwartungswertes

72

Kommen wir also zum ersten Resultat, der Konvergenz des Erwartungswertes

von z\:

Theorem 2.9.3 Ist x eine Charakteristik, fir die gilt
o [s supier(e™ Es[x(t)]) m(ds) < oo
o [oure “Es[x()] T ®Ads x dt) < oo
o lim; o e Ey[x(t)] =0 Vse S

so gilt fiir m-f.a. s € S

lim e~ E, 2] = % /R /S e~ E, [y (w)] 7(dr) Adu),

t—oo

wobei B in (2.6) definiert wurde.

Beweis :

B[] = O, [ZEs[xwx,t—mw]
xel

- e 'E, [Z Ep. Ix(t - Um)]]
xel

Lemma2.7.2 efat/ Er[X(t _ u)] 1/(37 dr x dU)
SxR

= / e B Iy (t — u)] vals, dr x du)
SxR

und die Behauptung folgt mit Kapitel 1.4, Korollar 1.4.14.

Wir benutzen im folgenden der Einfachheit halber die Bezeichnungen

Exlx(a)] = /R /S VB [ (w)] 7(dr) Ndu) = %Eﬂbz(a)].
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2.9.3 schwache £;-Konvergenz

Wir erinnern an die Definition der iiberdeckenden optionalen Linie
Zi={x€l; ome <t <oy},

definieren
yr = #{ W} =#{x € [0, <t}

und zeigen folgendes

Lemma 2.9.4 Gilt fir eint € R ys < oo Ps-f.s. fiir alle s € S
S0 ist

9(Z4) < 00 Ps-f.s. Vs € S.

Z; ist also optionale, tiberdeckende Linie endlicher Generation.
Ist zusdtzlich £(S x R) < oo Ps-f.s. fir alle s € S, so ist weiter

H{ZNR}=H#{z€l; opy <t <o, <0} <0 Psfs. firalleseS.

Beweis:
Die erste Behauptung ergibt sich durch

9(Z) = sup{g(a);oms <t <oy}
< sup{g(z);omz <t}
= sup{g(z);o, <t} +1
= g)+1<o0 Psfs. VseSb.
(da y = #); als f.s. endlich vorausgesetzt wurde.)

Sei fiir den Nachweis der zweiten Behauptung s € S beliebig.

Ps({#(2: N R) = oo})
({Z Z 1too) Uwy —OO})
€Y yeN

zeYr yeN

PS(U{Zl(too Uccy —OO})

SES(ZP{thOO Ux"‘UyOS):OO}’fyt))
€YV yeN
<E ( ({Z 1R(0y o Sx) = OOH}—yt))

eV yeN

5 < Pz Z 1R UZ/ ))
yeN
= ZE p. ({6(S x R) = o0}))

zel
=0,

wobei die Endlichkeit von y; in dritter Gleichung eingeht.
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Theorem 2.9.5 Sei x eine Charakteristik, die die Bedingungen aus Theorem
2.9.3 erfillt.
Weiter gelte fiir die Population

e Die x log z-Bedingung ist erfillt
o {(SxR)< o0 Pi-fs.Vse S
e k:=inf h >0

e vy, ist fir jedes t € R gleichgradig integrierbar tber seinen Starttyp, d.h.
limg 00 SUPge g Es[l{lyt\>a}(|yt| —a)]=0

Dann konvergiert fiir -f.a. s € S e~z schwach in L1 bzgl. Ps gegen yw, d.h.

lim [ e 22X dPs = 7/ w dPs fiir alle A € S.
A

t—oo J A

Beweis:
Wir nehmen zuerst einmal an, daf} ein n € IN existiert, so dafl

x(t) =0Vt >nund x(t) <nVteR.

Seitg >nundt >ty > n.
Unter Beachtung von

< Z_p=>t—0,>n= x(Sz,t—o0y)=0also pz,  (1)=0 (2.15)
und

rE€EZ ., = t—oy<n
= x(SyoSy,t—0,—0y08;)=0 Vyelmito,oS,>n

folgt
(2.14) _
Ct - Z € agzgt—ax S SJ:

TEZi_p

= Z e‘“”ze_o‘(t_az)zgﬂ% 0S5,
CCEZt—n

S Z e—OzO'thX_Ux o Sz
$Ezt7n

= Z efa”zZX(Syon,t—ax—JyOSx)
TEZt_n yEI

< Z e rn#{y € l;oy05, <n}
TEZi_p

= n Z e 9y, 08,. (2.16)

TEZi_n

Mit Hilfe dieser Abschitzung werden wir nun die gleichgradige Integrierbarkeit
von ((¢)e>t, unter jedem P, s € Sjoq zeigen. Sei dazu nun s € Sj,g gegeben.
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1. Schritt : Es gilt

Ve>036>0Vt>tg: Ps(A|lZi—n) <= sup FEglynoS.14|2i-] <e.

TEZ4_pn
(2.17)
Denn:
Sup ES [yn o Sif]‘A’thfn]
TEZt_n

< sup Es[1{|ynoSz|>a}(yn 0 Sy —a)|Fz,_,]
IGZt—n
+a Slzlp Es[l{Aﬂ|ynoSz|>a}|thfn] + aES[lA‘thfn]

TEZt—m

< sup Ep,[l{y, 50 (Yn — @)] + 2aP5(A|Fz, )

TEZt—n

und daher die Behauptung wegen der gleichgradigen Integrierbarkeit von y,
bzgl. des Starttyps.

Mit Hilfe von (2.17) weisen wir im 2.Schritt nun nach, daf§

Ve>05|5>0:PS(A)<5:>sup/QdPs<e. (2.18)
A

t>1o

Da weiterhin nach dem schon Gezeigten

(2.16)
sup Es[G:] < supnk;
t>to t>to

S e By o sz\fztA]

.’EGZt—n

n
z sup Es[yn] sup Eslwz, ] < 00
seSs t>to

(nach Theorem 2.8.6 und der gleichgradigen Integrierbarkeit von y,), folgt
damit dann die gleichgradige Integrierbarkeit von ((¢)¢>¢, unter Ps.

Zeigen wir also nun (2.18):
Sei dazu € > 0 beliebig.
Nach (2.17) existiert ein g, so dal
e k
P,(A|F < o = E Sz1alF. < s Vit > to.
5( ’ Zt—n) 0 ‘ijeSlthIin S[yn © Oz A’ Zt—n] ZnES[w] 10
Aufgrund der Ps-Integrierbarkeit von w kann ein d; > 0 so gewéhlt werden, dafl

ek
2nsupgeg Exlyn]

P,(B) < &1 :>/ w dP, <
B

Wir definieren d := dpd; und weisen nach, dafl fiir § (2.18) erfiillt ist. Sei A € D
mit Ps(A) < 6 und ¢t > t( beliebig.
Mit B := {PS(A‘th_n) > 50} (:> PS(B) < (51) folgt
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(2.16) p
Es[1aG] < EES[IA Z € 7 h(pz)yn © Sa]
xEthn

n
- °BR,
k

1 Z e "7 h(pz) Es[1a yn 0 Sm‘fztn]]

xEZt—n

n
+EE5

TEZi_pn

1Bc Z e*&tﬂ:h(px)Es[lA Yn © Sﬂ?’j:ztn}]

IN

n €
— sSup Ez [yn]ES[]-szt—n] +5
k zeS 2

n €
< —sup Eglyn|Es[1pw] + =

k €S 2
< g

wobei in vorletzter Zeile die Z;_,-Mef3barkeit von B und Satz 2.8.6 zu beachten
sind.

Mit (Ct)i>t, ist aber auch (Es[C|Fz, ])i>t, gleichgradig integrierbar, wie man
sich leicht iiberlegen kann.

Nun ist (Es[Gt|Fz, ])ter aber auch Pi-f.s. konvergent fiir m-f.a. s € 5, wie man
wie folgt sieht:

Fiir ¢t > 2ty gilt

T<Zy =0, <to=>t—0, >t >n= 9z (t) = Z X(Sz,t —0z) =0.
Q?<Zt0

Damit und unter Ausniitzung der fundamentalen Gleichung folgt nun fiir
m-fa.se S

(2.14) oy
ESI:Ct"FZtO:I = Z € “ Epz[ct_o'z]

LEGZtO

_ —Qog —oa(t—ax)E X
Z € € Pz[zt—o'm]
TEZy,

= X ementIE, B,
a:eztoﬁ%

— 1 .

oy EEﬂ[x(a)]wgto =Ywz,, Ps-f.s.,

wobei fiir die fast sichere Konvergenz zu beachten ist, dafl wegen der Endlichkeit
von &(S x IR) und y, (da y, integrierbar) nach Lemma 2.9.4 Z;, N R endlich
ist und daher Theorem 2.9.3 auf die einzelnen Summanden anwendbar ist.

Fiir m-f.a. s € S ist (E5[G|Fz,,])i>t, demnach gleichgradig Ps-integrierbar und
Ps-f.s. konvergent gegen ywz, und damit auch konvergent in £y bzgl. Ps.
Insgesamt folgt jetzt die schwache £i-Konvergenz, denn fiir A € Fz, beliebig
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ist

\/ otz dPs—’Y/UJdPs! = r/ E[ct!fzto]dPs—v/ Elw|Fz,] dPi|
A A A A

< /D ‘E[Ct‘thO} - fwat0| dPs ti)o 0.

Da to > n beliebig gewahlt war und o((Fz,)t>n) = D (zur Begriindung siche
Beweis von Theorem 2.8.7) folgt die Behauptung fiir xy mit den gemachten
Voraussetzungen.

Diese Einschriankung gilt es nun aufzuheben:
Fiir beliebiges x definieren wir x,, durch

Xn(s,w' 1) == 1, () (x(s,w', t) An)  (s,w')€D,teR

und analog zu ~ definieren wir

Dann gilt fiir A € D

|/Ae_o‘tz2< dPs—y/des|
SI/De_O‘tZ?— "‘tX”dPIH/ TG = w dPs| + (7 — ) Es[w].

Der 2. Summand konvergiert fiir t gegen unendlich aber nach dem schon
bewiesenen Spezialfall gegen 0.

Der 1. Summand konvergiert nach Theorem 2.9.3 gegen h(s)(y — 7n)-

Da aber mit monotoner Konvergenz (y — 7,) "—> 0 gilt, ist das Theorem nun
vollstidndig bewiesen.

2.9.4 starke L£;-Konvergenz

Nun kommen wir zur stérksten Konvergenzart, die hier nachgewiesen werden
wird, der starken £;-Konvergenz.

Dazu vorab einige Vorbereitungen:

Wir definieren fiir eine Charakteristik y fir t € R,s € S

ms(t) = Es[(t] e == Ct mpo( )

Die Hauptarbeit des Beweises von Theorem 2.9.8 verlegen wir in Lemma 2.9.7.
Fiir dessen Beweis benétigen wir aber zuerst noch folgendes
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Lemma 2.9.6 FEs seien fir die Population und eine Charakteristik x die
Bedingungen aus Theorem 2.9.5 gegeben. Weiter existiere ein n € IN, so dafs

x <n und x(s,w! t) =0Vt > n, (s,w!) € D.
Dann sind fir ¢ € R beliebig die (n:)i<c gleichgradig integrierbar unter der
Startverteilung Ps, d.h.

Ve>0§|a0€]R:supsup/ |me| dPs < € Va > ap.
t<c s€S J{|n[>a}

Beweits :
Sei t < ¢ beliebig. Dann gilt

t<c
G <Y Xx(Seyt—0y) < n#{x €0, <c}=ny, (2.19)
zel
ES [Ct] < nEs [yc] (2.20)
und damit

{Inel > a} C{G > a} U{E,[¢] > a} C {ny. > a} U{nE,[y.] > a}. (2.21)
Also fiir € > 0 beliebig

/ o] dPy < / ¢ AP, + Ey[¢] dP,s

{inel>a} (el >a} {Inel>a}

< / ¢ dPs + / G dP, + / E.[¢] dP,
{nyc>a} {nEslyc]>a} {nyc>a}

+ / B,(¢] dP,s
(nBalyel>a)

und der Beweis wird nun durch geeignete Abschitzung dieser 4 Summanden
vervollstédndigt:
1. Summand:

sup sup/ G dPs < supn/ Yo dPs; < €Va > ap
t<c seS J{ny.>a} s€ES {ye>2}

fiir ein a1 € R, was aus der vorausgesetzten gleichgradigen Integrierbarkeit von

1y liber den Starttyp resultiert.

2. und 4. Summand:

Da aus der gleichgradigen Integrierbarkeit wvon . iiber den Starttyp

sup, Fs[ye] < oo folgt, gilt

Jag €R : {n Esly.] >a} =0 VseSVa>as

und daher verschwinden beide Summanden fiir a > as.
3. Summand:

sup sup / Es[G] dPs < sup / nEslyc] dPs
t<c se€S J{n yc.>a} s€S J{n ye>a}

a
< nsup Es[y]sup Ps(y. > —)
seS seS n

< € VYa>ag3
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fiir ein a3 € R, was sich wiederum aus der gleichgradigen Integrierbarkeit von
ye iiber den Starttyp ergibt.
Mit ag := max{ai, as, a3} folgt die Behauptung.

|

Lemma 2.9.7 Es seien fir die Population und eine Charakteristik x die
Bedingungen aus Theorem 2.9.5 gegeben. Weiter existiere ein n € IN, so dafs

x < n und x(s,wl,t) =0Vt > n, (s,w!) € D.
Mit ¢ > n gilt fir m-f.a. s€ S

¢ — BlG|Fz, ) =20 in Wahrscheinlichkeit bzgl. Pi.

Beweis:
Fiir t > ¢ (und damit ¢z, .(t) = 0) beliebig gilt

Ct - E[Ct|fzz—c] = Z e_atzi(—am © Sl“ - Z 6_atE[Z§<—Uw ° SI|th—c]
TEZs . T€EZt—c
= Y (G © o — Ep, [G0))
TEZ_¢
= > (-0, 0 S) (2.22)
TEZi_.

und weiter fiir beliebiges v € R

N P10, © Sule™%" > 0| Fz, )
:cGZt,C

= Y Fu(ln—o.] > ve®)
TEZ .

1 _
< Y Bo (Wi, svenee) i) e
TEZ .

1

<= By (L, venos i—oaDe ™ h(p2)

vk
$€Zt7C

S szt—c

fiir beliebiges € > 0 und ¢t > ag + ¢ mit ag so grof3, dafl

SUPges SUPi <. Bs (1, |>veaat[e]) < evk  Va > ag.
(und damit z € Z;_. = (t — 0, < cund o, > ag))

Sei nun eine Folge (t,)nen in R gegeben mit ¢, — oo und ein w aus der
unter jedem Py, s € Sjo4 sicheren Menge {w € D ; lim, wg, _ (w) existiert}.
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Wir definieren
kn(w) := #(2, —c(w) NR(w))
{r;z € 2y, _c(w)NR(w)} :={zn1y.. . Tnk, }

Xnj = My—0,, () 05 e 73 () J=1..ky
nj

Dann ist fiir jedes n (;, — E[¢,|Fz, .| unter P(-|Fz, _.)(w) eine Summe
unabhéngiger zentrierter Zufallsgréflen und zwar gerade die Summe der
Xnj,J = 1...ky,, die “asymptotisch gleichgradig vernachléssigbar” sind,

d.h. fiir v > 0 beliebig

max P(|X] = 0lFz, ) (@) "= 0,
Jj=1...kn

(Dies folgt aus der schon gezeigten Ungleichung

kn,

> P(|Xn;| > v]]:ztn_c)(w) < ewztn_e(w) und der Konvergenz von wgtn_g(w)
j=1

fiir n gegen unendlich.) )

Sei P ein Wahrscheinlichkeitsmaf fiir daf PXni = P(Xy; € +|Fz, _)(w) Vn,j
gelte und X eine unter P N (0, 0)-verteilte Zufallsgroie. Wir zeigen nun, wobei
wir uns eng an Loeve[8], Kapitel VI halten, die Behauptung

kn
Z X, ==X in Verteilung unter P. (2.23)
j=1

Dazu definieren wir analog zur Notation in Loéve

FnJ(A) = P(an (S A|fgtn_c)(w) VYA e D

anj(T) ::/||< x dFy;

03y (7) 1= /|$|<T 2 dFyj — (an;)”

Nach Loeve[8], Seite 316 sind zum Nachweis von (2.23) folgende drei Punkte
fiir jedes € > 0 und ein 7 > 0 nachzuweisen :

kn n—oo
a) L P(1Xng| 2 €| Fz,,_)(w) —0
j:
kn
b) > lan;(T)] =30
7=1

kn
¢) Y _lon; ()] =30
j=1
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a) haben wir bereits nachgewiesen.

zu b)
Wir wihlen 7 > 0, e > 0 beliebig
kn kn
Y olani(M = D IENx,,1<r Xnjl Fz,, ) (@)
j=1 j=1
kn
= Z |E[L{x,, 1> Xnj|Fz,, _J(@)] (Xn; zentriert)
j=1
= Y B —ou (i, oy |srecra) ) (@)]
xGZzn,C
1 _
S Y € h(pg) sup sup B[] 1y, sreoesy] (@)
2€2Z0, e seS t<c

< ewg, . Vn > n(e),

wobei die letzte Abschéitzung aus der gleichgradigen Integrierbarkeit der (1)<
iiber den Starttyp folgt. (Lemma 2.9.6)
zu c)
Fiir 7 > 0 beliebig gilt
kn kn kn 2
> o)l < ZI/ o? dFyl + > (/ z anj>
j=1 j=1 Jlzl<T = || <

=1
ki kn 9
= Y BIX 2 x, jor Pz, J@) + D (B Xnilx, 1<r |z, (@)
j=1 j=1

Der zweite Summand ist analog zur Abschétzung der Summe der a,; als
konvergent gegen 0 nachzuweisen.

Schéitzen wir also nur den ersten Summand weiter ab: Dazu sei € > 0 beliebig
gewihlt.

> El-0, 0 S2)* e Ly, o fe-ooe <Pz, ()
xEZtn,c

S Z E m[(ntn_o'm)2e_2ao—z1{‘7775“70'1‘<€6a0_z}] (CL))
CEEZtn—c

+| Z E cc[(ntn_gz)2€72aaz1{|7]tn—ow|<T6aaz}] (CU)
(EEZtnfc

- Z E 1[(ntnfgz)Qe_Qaaw1{|ntn*oz|<€€adz}](w)|
TEZ, —c

€ _
< psupsup Ellyl] D7 €7 hlpr)
seS t<c IGZtn—c

+ Z E :c[(ntn_o':c)2672&011{€eo‘am<|’f7tn—gr|<T€aaz}](w)
reztnﬂ.

€
< z sup sup Ey[|ni|Jwz,, .
seS t<c

T _
+E Z € aazh’(px)prHntn_o'x‘1{6€acx<"l7tn—gx‘}](w)
$€Ztn_c
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€
< % sup sup Eg[|ni|Jwz,, .
seS t<c

T _
LT Z e~ h(p,) sup sup Es[mt\l{eeam<|m|}](w)
k 2E€EZ o seS t<c

€
< o supsup Egfl[Jwz,, .
seS t<c

;
' E 1 a(tn —c
e SUDSUD s[Ime|1 feeatin—o) <y 3] (@)

+
Da e beliebig gewéhlt war, folgt c¢) mithilfe der fast sicheren Konvergenz von
wg, _, und der gleichgradigen Integrierbarkeit der (n;)i<.. (Lemma 2.9.6)
Damit ist also nun (2.23) gezeigt.
Daraus ergibt sich

lim P(C, — Bl |Fz,, ] < t1Fz, )W)

P2 lim PO o, 0 See % < 1]z, )W)

n—oo
xEZtn,c

k
_ n 1 : t>0
=1 '

und dann mit majorisierter Konvergenz fiir s € Sy

nll_{g() Ps({Ctn - E[Ctn|f3tn7c] < t})

. 1 : t>0
= Jim B, [P({ctn—E[cmfztnC]St}\fzwn—{o 0

und daher die Konvergenz in Wahrscheinlichkeit von (s, — E[(, |Fz,, .| unter
P; gegen 0.

Da t,, eine beliebige Folge in IR mit ¢,, — oo war, gilt damit also nach Neveu[9],
Seite 96 Lemma V-1-1

G — BlG|Fz,_ ] =50  in Wahrscheinlichkeit bzgl. P.

a

Jagers schliefit nun weiter in seinem Artikel, dafl unter den gegebenen
Voraussetzungen (; — ~w in Wahrscheinlichkeit bzgl. P, fiir n-f.a. s € S
gilt. Zusammen mit der schon nachgewiesenen schwachen £1-Konvergenz wiirde
dann nach Zaanen[17], Seite 385 die starke L£;-Konvergenz folgen. Leider ist
die Beweisfithrung in der Form falsch, so dafl wir die von ihm aufgestellte
Aussage iiber die starke £1-Konvergenz nur unter zusétzlichen Voraussetzungen
beweisen konnen. Wir stellen hier zwei Moglichkeiten vor, von denen die zweite
den Vorteil hat, dafl die in ihr gestellten Zusatzvoraussetzungen fiir den Fall
einer endlichen Typenmenge S kaum gravierend sind. Wir erinnern vorab an

1 A 1 1
v = BEﬂ[X(a)] = @tliglo Esle 2} = @tlirgo ms(t) fir m-fa. s €S,

wobei fiir die zweite Gleichung Theorem 2.9.3 heranzuziehen ist.
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1. Wir setzen voraus, dafl (E[(|Fz, .])ier monoton wachsend in ¢ ist. (Ps-
fs. Vs € S)
Aus

2.14 oo
ES[<t|th7c] ( = : Z € lEpz Kt—oz]

ert—c

1
< 7 Sup sup(Es[¢|)wz, . P-fs.
seS t<c

geht unter Beriicksichtigung von (2.19) und der vorausgesetzten
gleichgradigen Integrierbarkeit von y. zusétzlich die f.s.Beschranktheit
jeder Folge (E(Ct,|Fz,, .]J)nen mit ¢, T oo hervor. (Ps-fs. fir m-fa.
seS)

Fiir jede Folge t,, T co existiert demnach eine Zufallsgrofle X mit

Es[¢i, | Fz,, ] — X Psfs. fiir r-fa. s € S.

Aus G, — By[Ci |z, ] “55 0 ergibt sich direkt ¢, “% X und daher
aus der schon nachgewiesenen schwachen £;-Konvergenz mit Neveu[10],

Proposition IV-2-2 (; LW, ~yw. Daraus folgt jetzt zusammen mit der schon
nachgewiesenen schwachen £-Konvergenz die starke £1-Konvergenz bzgl.
P; von (; gegen yw. (Zaanen[17], Seite 385) fiir m-f.a.s € S.

2. Wir machen folgende beiden zusétzlichen Voraussetzungen:
o E(; — vh(s) gleichméBig in s, d.h.
tlim sup | Es[¢] — vh(s)| =0
— seS

(Diese Voraussetzung ist trivialerweise erfiillt, falls S endlich.)

e drelR : P((r,0)) =0 VzelVseS
Dies ist sogar eine sehr realitdtsnahe Einschrinkung, denn die
Tatsache, dal Individuen ab einem bestimmten Alter r Kkeine
Nachfahren mehr bekommen, wéire zum Beispiel schon durch eine
obere Altersschranke fiir die Individuen gegeben.

Damit gilt:
(2.14) B
E[|E[G|Fz, ) —ywz, ] < E[ Y e 7B, (G0 — vh(pa)l]
$€Zt—c
1
< pElwz. ] sup sup|E[G] = yh(s)]
u>c—r s€S

(dennz €2y o= oy <t—c=o0,<t—c+r=t—o,>c—r)
Man hat also

Ve>03cp >0 : t>c>cy = E[|E[G|Fz,_.]—ywz,_.|] <e
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Zusammen mit
Yywz, . — yw in L; bzgl. P fiir m-fa.s € S
folgt fir m-fa.s € S
Ve>03co > 0,80 >0 : t >ty = E[|E[G|Fz,_. ] —qwl] <e
Mit
G — ElG|Fz_., ] 50
folgt nun leicht
Gt W yw

und wie eben zusammen mit der schwachen Li-Konvergenz die starke
L1-Konvergenz bzgl. P; fiir m-f.a.s € S.

Zuletzt 1&8t sich nun noch die Einschrinkung an die Charakteristik (x <
n, x(t) = 0Vt > n) wie im Beweis von Theorem 2.9.5 aufheben.

Dazu definieren wir uns x, wie schon am Ende des Beweises von Theorem 2.9.5
Dann gilt

_ _ _ _ 1.
Blle™*2 —qwl[] < Elle™"2 — e™*z"|] + Efle™ 2" ~ BEﬂ[xn(oz)]wl]

+ EllZ (ExlXn(@)] = Ex[x(e))w]].

| 1
B
Der erste Summand 148t sich wie schon zum Ende von Theorem 2.9.5 gezeigt,
beliebig klein abschétzen. Fiir den zweiten Summanden gilt nach dem eben
behandelten Spezialfall dasselbe. Der dritte Summand konvergiert aufgrund
von monotoner Konvergenz gegen 0.

Wir fassen das Gezeigte in einem Theorem zusammen

Theorem 2.9.8 Es seien fir die Population und eine Charakteristik x die
Bedingungen aus Theorem 2.9.5 gegeben. Zusdtzlich sei

(E[¢t|Fz,_ ) ter monoton in t Ps-f.s. Vs € S
oder es gelte fir einr € R

lim sup |Es[¢] — vh(s)| =0 und P]*((r,00)) =0 VxelIVseS.
S

t—00 g¢

Dann gilt fiir m-f.a. s € S

—oo 1 _ )
e X e B/ / e “E,[x(u)] m(dr) Ndu) w =~yw in Ly bzgl. Ps.
RJS






Appendix A

Es sei (5, S) ein mefibarer Raum und A € S, B € B.

A.1 Markov-Ketten

Definition:

Gegeben ein stochastischer Kern p @ S x & —  [0,1] und ein
Wahrscheinlichkeitsmafi A auf (5, S).

Eine stochastische Folge (M,),>0 mit Zustandsraum (S,S) heifit zeitlich
homogene Markov-Kette (MK) mit Ubergangskern pund Startverteilung \, wenn

pMo =)
PMn+1|(Mlc)ogkgn(,) = pu(M,,") P-fs. Yn>0
Standardmodell:
Sei p: S xS —[0,1] ein stochastischer Kern.
(92, A, (M) nen; (Px)xew(s)) heiBt Standardmodell zu p, wenn M, : (2, A) —
(S,S) unter jedem Pj eine zeitlich homogene Markov-Kette mit Startverteilung

X und Ubergangskern p bildet.
Wir schreiben auch kurz P, statt Ps, fiir x € S.

A.2 Ein Erneuerungstheorem fiir Random-Walks

Fiir einen RW (Sy,),>0 mit quasi-A-stetigen Zuwichsen X, Xo,... und p =
EXy >0 gilt mit v:= 3,59 P

1
lim sup |v*g(t) — — / g(x) Ndz)| =0
oo g1<f H /R

lim sup [v*g(t)]=0
mmgl<s

fir alle 0 < f € L1 N Lo mit lim\t|—>oo f(t)=0.
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