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Einfiuhrung

Stochastische Fixpunktgleichungen der allgemeinen Form

WEC+ > T, (0.1)

ieN
fiir (C,(T;)ien) mit bekannter gemeinsamer Verteilung und davon unabhéngige,
w.i.v. (W;);en treten in den verschiedensten Anwendungen stochastischer Prozesse

auf. Einen kleinen Eindruck davon liefern die folgenden

0.1 Beispiele. (a) Sei (Z,)nen, ein superkritischer einfacher Galton-Watson-
Prozess mit Reproduktionsverteilung ) und Reproduktionsmittel x4 > 1, der au-
flerdem die Bedingung E 7, log Z; < oo erfiillt. Nach einem Satz von Kesten und
Stigum konvergiert dann das Martingal ("7, )en, f-s. gegen eine Zufallsgroke W,
die auf der Menge {lim,,_,+, Z, = oo} positiv ist und den Erwartungswert 1 besitzt.
Dann erfiillt W die Fixpunktgleichung (0.1) mit C' =0, 7T} = --- =Ty = " und
T, =0 fiir n > N, wobei N gerade gemif () verteilt ist, also

N
WL N Z W;.
i=1
(b) Die Cantor-Verteilung auf [0, 1] erfiillt die Fixpunktgleichung
WL TW, + oW, + 271,

wobei T} Laplace-verteilt auf {0, %} und Ty = % — T; ist. Dies folgt leicht aus der
selbstdhnlichen Struktur der Cantor-Menge.

(c) Ein ahnliches Resultat liefert die Analyse des Sortieralgorithmus Quicksort
durch Résler: Bezeichnet X,, die Anzahl der notwendigen Vergleichsschritte zum

Sortieren einer n-elementigen Liste reeller Zahlen und X, = %(Xn — EX,) ihre
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2 Einfiihrung

Normalisierung, so konvergiert (Xn)neN in Verteilung gegen die eindeutig bestimmte

Losung der Fixpunktgleichung
W LT, + T, + g(Th),

wobei T; rechteckverteilt auf [0,1], 7o = 1 — 77 und g¢(t) = 1 + 2tlogt + 2(1 —
t)log(1 — t) ist (siehe [Rosl]).

Entsprechend breit gefichert sind die Resultate im Hinblick auf die Existenz
und die Eigenschaften von Losungen der Fixpunktgleichung (0.1), die bisher ge-
zeigt worden sind — jedoch stets unter zusitzlichen Annahmen an die Zufallsgrofsen
(T})ien, etwa beziiglich ihres Wertebereichs oder der Zufallsgréfe N := > 1720}
Wir greifen an dieser Stelle nur einige wenige heraus:

— Alsmeyer und Rosler geben in [AR] eine vollstandige Beschreibung der Losungen
im deterministischen Fall, d. h. fiir konstante (7});cn, sowohl fiir die homogene
(C' = 0) als auch fiir die inhomogene Version von (0.1). Die nichttrivialen Fix-
punkte sind im Wesentlichen Mischungen stabiler Verteilungen bzw. diskrete
Versionen davon. Auf diese Arbeit sei ferner fiir ein umfassendes Literaturver-
zeichnis fiir den Fall deterministischer Gewichte verwiesen.

— Fiir nichtnegative T; und konstantes N leiten Kahane und Peyriére eine dquiva-
lente Bedingung fiir die Existenz von Fixpunkten her, falls die 77, ..., Ty u.1.v.
sind. Ein entsprechendes Ergebnis zeigen Holley und Liggett fiir T; = ¢;T', wenn
also die T; Vielfache einer festen Zufallsgrofe T' sind (siehe [KP| bzw. [HL]).

— Durrett und Liggett erzielen denselben Voraussetzungen (nichtnegative 7; und
konstantes ), jedoch ohne weitere Voraussetzungen an die gemeinsame Vertei-
lung der 7;, umfassende Resultate zur Existenz und Struktur von Fixpunkten.
Liu erweitert diese auf f.s. endliches N aus, das wiederum zusétzlichen Bedin-
gungen wie EN < oo bzw. Y, E [T;(log T;) "] < co geniigen muss (siehe [DL]
bzw. |Liu]).

— Darauf aufbauend untersucht Caliebe in [Call| die symmetrische Fixpunkte un-

ter Riickgriff auf die verwandte Fixpunktgleichung
W T,
ieN
sowie in [CR]| gemeinsam mit Rosler Fixpunkte mit endlicher Varianz. [Cal2]

schlieflich beinhaltet eine allgemeine Darstellung von Fixpunkten als Mischun-

gen unendlich teilbarer Verteilungen.

Die vorliegende Arbeit stiitzt sich im Wesentlichen auf die in [DL] dargestellten
Ergebnisse und stellt eine Verbindung zum gewichteten Verzweigungsprozess von
Rosler [R6s2| her.



Das erste Kapitel dient neben der exakten Formulierung des Problems vor al-
lem der Zusammenstellung einer Reihe mathematischer Hilfsmittel, auf die wir im
weiteren Verlauf zuriickgreifen werden.

Im zweiten Kapitel zeigen wir das erste Hauptresultat: Wir geben eine hin-
reichende und notwendige Bedingung fiir die Existenz nichttrivialer Losungen der
Fixpunktgleichung an.

Nachdem wir die Frage nach der Existenz von Fixpunkten gekldart haben, kon-
nen wir uns im abschliefsenden dritten Kapitel ndher mit der Struktur der Fix-
punktmenge befassen. Wir stellen eine Funktionsklasse vor, die die Fixpunktmenge
parametrisiert. Mit Hilfe dieser Parametrisierung erhalten wir insbesondere eine
Eindeutigkeitsaussage im Fall von Losungen mit endlichem Erwartungswert. Ergeb-
nisse zur schwachen Konvergenz gegen Fixpunkte und zur Existenz von Momenten

héherer Ordnung runden unsere Betrachtungen ab.

Mein abschliefender Dank gilt Herrn Prof. Dr. G. Alsmeyer fiir die umfassende und
geduldige Betreuung bei der Entstehung dieser Arbeit und allen anderen, die auf

die eine oder andere Weise zu ihrem Gelingen beigetragen haben.






Kapitel 1

Grundlagen

Die ersten drei Abschnitte dieses Kapitels dienen der Einfiihrung in die Problemstel-
lung: Zunéchst stellen wir die Version der stochastischen Fixpunktgleichung (0.1)
vor, die wir ndher untersuchen wollen. Im zweiten Abschnitt leiten wir die Repré-
sentation der Fixpunktgleichung durch einen gewichteten Verzweigungsprozess her.
Anschliefsend fithren wir den Random Walk ein, der uns in den folgenden Kapiteln
gute Dienste beim Finden von Fixpunkten und der Analyse der Fixpunktmenge
leisten wird.

Die verbleibenden drei Abschnitte stellen einige Ergebnisse aus Erneuerungs-
und Fluktuationstheorie fiir Random Walks sowie Martingaltheorie zusammen, die
fiir die Beweisfiihrung unmittelbar von Bedeutung sind. Sie sind zumeist ohne Beweis

notiert. Die Darstellung orientiert sich hierbei hauptséchlich an [Als1-3].

1.1 Die stochastische Fixpunktgleichung

Bei allen nachfolgenden Betrachtungen wollen wir ausgehen von folgenden grundle-

genden

1.1 Voraussetzungen. Gegeben seien N > 2 nichtnegative Zufallsgrofen
Ti,...,Tx auf einem Wahrscheinlichkeitsraum (€, 2, P) mit bekannter gemeinsa-
mer Verteilung F'. Fiir alle i € {1,..., N} gelte T; o 0. Ferner sei

ET; < oo fiirein vy > 1 und allei € {1,..., N}.

Wir betrachten die Transformation

N
K: 99— M, uHE(ZTjo>,

J=1

5



6 Grundlagen

auf der Menge 9t der Verteilungen auf [0, 0o). Dabei seien W1, ..., Wy unabhéngige,
identisch geméaf p verteilte Zufallsgroften, die von T, ..., Ty unabhéngig sind, und
es bezeichne £(Z) die Verteilung einer Zufallsgrofe Z.

Die Fixpunkte von K sind gerade die Losungen der stochastischen Fixpunkt-

gleichung
N
Wi ZTW (1.1)
i=1

Ist ndmlich Kp = p fiir ein g € 9, so gilt (1.1) mit W, Wy,..., Wy ~ p.
Wir kénnen K auch als Transformation auf der Menge £ der Laplace-Transfor-
mierten (L.T.) der Elemente von 9t auffassen. (Da keine Verwechslungsgefahr be-

steht, werden wir diese Abbildung ebenfalls mit K bezeichnen.) Dann ist

N

Ko(0) = [K()](0) =E [ [ o(6T). (1.2)

=1

Ferner bezeichnen wir mit § die Menge der nichttrivialen Fixpunkte von K:

S={neM: Kp=p,p+#d}
={pel:Kp=p,p#1}

Die hinreichende und notwendige Bedingung fiir die Existenz eines nichttrivialen

Fixpunktes, die wir in Kapitel 2 herleiten, wird formuliert mittels der Funktion

m:  [0,00) = (0,00, QHZE[Tiaﬂ{Ti>O}], (1.3)

i=1
die nach Voraussetzung auf dem Intervall [0,~] endlich ist. m ist dort ferner diffe-
renzierbar (in 0 rechts-, in v linksseitig) und konvex mit

N N

m'(0) = Y E [10gTy) TP ir50)| und m"(a) = 3 |(10g? ) T sy |.

i=1 i=1
Wir benennen nun die wichtigsten Parameter der Verteilung F:
1.2 Definition. Sei m # 1. Existiert ein y > 0 mit
m(x) =1 und  m'(x) <0,

heilst x der charakteristische Exponent von F'.

1.3 Bemerkung. Der charakteristische Exponent braucht nicht zu existieren:
Ist etwa T; > 1 f.s. fiir alle s € {1,..., N}, so ist m(0) = N und m’ > 0. Falls er
jedoch existiert, ist er eindeutig bestimmt, denn die Konvexitdt von m ist wegen

m # 1 streng.



1.2 Der assoziierte gewichtete Verzweigungsprozess 7

1.4 Definition. Bezeichnen
Gg := R, Gq :=dZ (d € (0,00)), Gu := {0}

die abgeschlossenen additiven Untergruppen von R, so definieren wir die Spanne

von F' durch
d:=sup {d € [0,00] : P(log T; € Gy) = 1 fiir alle i € {1,...,N}}

und nennen F' d-arithmetisch, falls d € (0, 00), und nichtarithmetisch, falls d = 0.

1.5 Bemerkung. Der Fall d = oo wird durch die Voraussetzung L(T;) # d

ausgeschlossen.

Im d-arithmetischen Fall sind also die T; auf die Menge {e* : k € G4} konzen-

triert. Entsprechend liest sich beispielsweise (1.3) als

m(a) = Z Z eo‘kpi,;,c

=1 kEGd

mit p; = P(log T; = k).

1.2 Der assoziierte gewichtete Verzweigungsprozess

Wir betrachten den unendlichen N-adren Baum

T:= [ J{0,...,N}"
n€eNy

mit {0,..., N}° := 0. Jeder Knoten v = (vy,...,v,) € T (wir schreiben verkiirzt
v = vp...v,) der Linge |v| = n ist durch den eindeutigen Pfad ) — v; — vivy —

- — v ...v, mit der Wurzel () verbunden. Fiir zwei Knoten v = v;...v,, w =
wy ... w, € T bezeichnet vw := vy ...vwy ... 1wy, ihre Verkettung.

Nun definieren wir zu jedem v € T Zufallsvariablen X (v) und 7'(v) mit folgenden

Eigenschaften:
(i) X (v) ist eine nichtnegative Zufallsgrofe.
(ii) T'(v) ist ein Zufallsvektor (71 (v),...,Tn(v)) mit Verteilung F.
(iii) (X (v))yer und (T'(v))yer sind unabhéngige Familien von u.i.v. Zufallsvariablen.
Wir interpretieren X (v) als zuféllige Bewertung des Knotens v und 7;(v) als zufil-
liges Gewicht der Kante von v nach vi. Bild 1 zeigt einen Ausschnitt aus T mit den
zugehorigen Kantengewichten.

Setzen wir nun rekursiv

L(0) :=1 und L(vi):= L(v)T;(v) (i=1,...,N),
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[ 1 [ 2 ]
SN,
S E TR

Bild 1. Ausschnitt aus dem Baum T mit Kantengewichten T, (v).

so ist L(v) gerade das Gewicht des eindeutigen Pfades von der Wurzel () zum Knoten

v, das sich durch Multiplikation der einzelnen Kantengewichte ergibt, also
L(vi...v,) =Ty (0) - Ty (v1) oo - Ty, (01 oo 0p1).

Aus der Unabhéngigkeit der Familie (T'(v)), .y folgt dann fiir v,w € T:

(1.4)

1.6 Definition. Mit den obigen Bezeichnungen heift (Y},),en,, definiert durch

Yo=Y L(v)X(v),

|v|=n

der gewichtete Verzweigungsprozess (GVP) zur Familie (X (v), T'(v))yer-

1.7 Lemma. Definieren wir zu v € T die Folge (Y,,(v))nen, durch

|w|=n
so gilt
(a) (Yo(0))nen, ist der GVP zur Familie (X (vw), T (vw))yer und eine Kopie von
(Yn)nENo-
(b) Fir k € N sind die Prozesse (Y, (v))nen,, |v| = k, stochastisch unabhingig.
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(¢) Firn € N gilt die rekursive Identitit

Ya(v) = D Ti(0) Yoo (v3). (1.5)

BEWEIS. (a) und (b) ergeben sich sofort aus der Struktur von (X (v),T(v))yer-
Fiir (c) nehmen wir 0.B.d. A. v = () an. Offensichtlich ist Y, () = Y}, und es gilt
fiir allen € N

10
Y,=> 0 [ > L(Z_‘;)X(zw) =Y " T(0)Y. (i)
1=1 |w‘7n71 1=1
Damit ist alles gezeigt. a

Den Bezug zu unserem Fixpunktproblem stellt das folgende Lemma her:

1.8 Lemma. Gilt Yo = X (0) ~ p, so folgt
Y, ~ K"
fiir alle n € Ny.

BEWEIS. Per Induktion unter Benutzung von Lemma 1.7(c). O

Insbesondere ist ;1 also genau dann ein Fixpunkt von K, wenn der GVP (Y},),en,
bei Wahl von Y, ~ pu stationér ist, d.h. Y, ~ p fiir alle n € N.

1.3 Der zugehorige Random Walk

Wir betrachten nun fiir o € [0,7], n € Ny

Za,n = Z L(U)a]]_{L(U)>0},
lv|=n
das ist in der Sprechweise von Definition 1.6 der gewichtete Verzweigungsprozess
zur Familie (1, (T7(v) L1750y, - - - T (v) Liry 0}) Juer- Die Identitét (1.5) wird dann

zu
N

Zan =Y TLir50) Zam—1(i) (1.6)

=1

fiir n € Ny. Der Prozess (Zy 5 )nen, liefert uns das zuféllige Mafs

Sa,n = Z L(U)aﬂ{L(U)>0}5L('U)

[v|=n
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mit Gesamtmasse Z, ,. Aus (1.6) ergibt sich E Z,, , = m(«)", so dass das normierte

Intensitatsmaf
Za,n = m(a)—n Z E [L(U)a]l{L(U)>0}5L(U)]

|v|=n
eine Verteilung auf [0, 00) ist. Jetzt gehen wir zum negativen Logarithmus dieser
Verteilung iiber (d.h. wir betrachten £(—log X) fiir eine Zufallsgrofe X ~ Z,,,)

und erhalten

Ca,n = m(a)’” Z E [L(U)aﬂ{L(U)>0}5_ logL(v)]- (17)

[v|=n
Die Logarithmierung dient einzig dem Zweck, die multiplikative Struktur der Ver-
teilungen (2, )nen,, der die Definition der Gewichte L(v) zugrundeliegt, in eine ad-
ditive zu iiberfiihren, die einen bequemeren Zugang zur Random-Walk- und Erneue-
rungstheorie bietet. Die entscheidende Eigenschaft der Verteilungsfamilie (Con)nen,

ist nun nédmlich die folgende:

1.9 Lemma. Fir a € [0,v] bildet die Familie (Con)nen, unter der additiven
Faltung eine Halbgruppe, d. h.

Ca,m * Ca,n - Ca,ern

fiir alle m,n € Ny.

BEWwWEIS. Fiir m,n € Ny und x > 0 gilt

Comen([0.2)) = m(a) 3™ B (L)1 0 ) (L)) Lo — log L)

|u|=m+n

iy 5 (15t 105

[o]=m Jw|=n

)

= —(mtn) Z/ L(w) 1(0,00) (S L(w))

v|=m IW\

- Ljo,0)( — log s — log L(w))] PE®) (ds)

= )~ Z / (8)Cam ([0, 2 + log s]) PLO) (ds)

|v]=m
= /[ (0,7 = 5]) Con(l)
= Ca,m * Ca,n([oa 1‘]) .

Dabei resultiert die dritte Gleichheit aus der Identitdt (1.4) und die fiinfte aus
Lemma 1.10. O
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Ist also (Sp)nen, ein Standard-Random-Walk (SRW) mit Zuwachsverteilung
Ca,1, gilt somit fiir alle n € Ny

Sn ~ Coz,n-

Abschliefsend zeigen wir noch eine einfache Erweiterung der definierenden Iden-
titdt (1.7) der Verteilung Cy

1.10 Lemma. Ist X eine gemdf (o, verteilte Zufallsgrofie, n € Ny, o € [0,7],
so gilt
Ef(X) =m(a)™" 3 B [L(0)* Lz f(~ log L(v))]

[v|=n

fiir alle Borel-messbaren Funktionen f.

Der BEWEIS besteht lediglich in einer Anwendung des Funktions-Erweiterungs-
arguments: Fiir primitive Funktionen liefert (1.7) sofort das Gewiinschte, fiir mono-
ton wachsende Folgen nichtnegativer messbarer Funktionen nutzt man den Satz von
der monotonen Konvergenz, und durch Zerlegung in Positiv- und Negativteil erhalt

man die Behauptung schliefslich fiir beliebige messbare Funktionen. O
Der Spezialfall n = 1 liefert

1.11 Korollar. Ist X eine gemdf (.1 verteilte Zufallsgrifie, a € [0,7], so gilt

Ef(X) =m(0) 'S E [T Lm0 f(~ log T) (1.8)

=1

fiir alle Borel-messbaren Funktionen f.

1.12 Bemerkung. Wie man sofort aus (1.7) ersieht, sind die Verteilungen (,,,
im d-arithmetischen Fall auf G, konzentriert, so dass als Entsprechung zu Korollar
1.11 fiir beliebige Funktionen f : Gz — R

Ef(X)=m(@)' Y > (ke pi

=1 kGGd

gilt, wobei an p;;, := P(log T; = k) erinnert sei.

1.4 Das Erneuerungstheorem

Viele Eigenschaften der untersuchten Fixpunktverteilungen lassen sich durch Funk-

tionen des zuvor definierten SRWs (.S, ),en, ausdriicken. Aussagen iiber das asympto-
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tische Verhalten solcher Funktionen (sofern eine geeignete Integrabilitdtsbedingung
erfiillt ist) liefert das Erneuerungstheorem, das wir hier kurz zitieren wollen.
Wir betrachten fiir Mengen A € B das zufillige Zdhlmafs

N(w, A) := Y s, (A) = > La(Su(w)).

Von Interesse sind nun die folgenden durch Erwartungswertbildung entstehenden
Intensitatsmafke:

1.13 Definition. (a) Sei (Sy)nen, ein SRW. Dann heift
U= P™ (1.9)
neENg

das Erneuerungsmafl von (Sp)nen, -

(b) Ist 7 eine Stoppzeit beziiglich (o(So, ..., Sn))nen, (vgl. Def. 1.25), nennen wir

T—1
Vi .= ZIF’S”
n=0
das Pra-7-Okkupationsmafl von (Sp)nen, -

Ein hinreichendes Kriterium fiir die Anwendbarkeit des Erneuerungstheorems
liefert die folgende

1.14 Definition. Sei f : R — [0, 00) eine Funktion sowie fiir 6 > 0 und n € Z
I3 = (6n,6(n +1)],
md =inf {f(t):t€ )}, m:=sup{f(t):tell},
o(6) =6 m), F(0) :=6) _mi.

nez nez

Dann heikt f direkt Riemann-integrierbar (d. R. i.), falls o(0) und 7 (¢) fiir alle 6 > 0
konvergieren und

lim (+6) - 2(4)) = 0.

Im Hinblick auf die konkreten Anwendungen in den folgenden Kapiteln zeigen

wir zunichst die direkte Riemann-Integrierbarkeit einer speziellen Funktionenklasse:

1.15 Lemma. Sei f : R — [0,00) Riemann-integrierbar, und e=** f(x) sei

monoton fallend fiir ein o > 0. Dann ist f d. R. i.

BEWEIS. Fiir alle z € I? liefert die Monotonievoraussetzung

f(.fb') < ea((n+1)57:r)f(x) — 6a(n+1)567a:rf(x) < 6a(n+1)5efom5f(n5) — 6045]0(”6)
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und somit
me < e f(nod).

Eine ganz analoge Abschitzung ergibt
ml > e f((n+1)9),

woraus mit der Integral-Standardabschétzung sofort
(n+1)é
50 f ((n +1)8) < om’, < / f(z) da (1.10)

nd

folgt. Somit impliziert die Riemann-Integrierbarkeit von f die Konvergenz der o(9)
und 7(0). Auberdem gilt fiir r, s € Z mit r < s

] s s+1

ng —m’ < GQJZf(TL&) —e ™ Z f(nd)
n=r n=r n=r+1
< e f(ro) + (e* — ) Z f(nd).
n=r+1

Fiir r — —o0, s — oo folgt mit (1.10) unter Beachtung von lim,_, ., f(rd) =
schlieflich

7(8) — a(8) < §(e* — e ) Z f(nd) < (2 — / fz)dz 2% 0,
womit die direkte Riemann-Integrierbarkeit von f nachgewiesen ist. ad

Fiir die Formulierung des Erneuerungstheorems im d- bzw. im nichtarithmeti-

schen Fall ben6tigen wir noch folgende

1.16 Definition. Fiir eine Funktion f : G; — R sei

lim f(z), fallsd=0
d-lim f(z) := ¢ *7° :
rree lim f(nd), fallsd >0

n—o0

Ferner bezeichne X, das gewohnliche Lebesgue-Maf auf R und Ay fiir d > 0 das
d-fache Zahlmal auf Gy.

Das Erneuerungstheorem ermoglicht es uns nun, Aussagen iiber das asymptoti-

sche Verhalten von Faltungen der Form
f+U(x / f(z —s)U(ds)

fiir x — +o00 zu treffen, sofern f d.R.1i. ist:
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1.17 Erneuerungstheorem. (S, ),en, sei ein Random Walk mit Drift p =
ES; € (0,00]. Dann gilt fiir jede d. R.i. Funktion f

dilim f + U (x) = % /R F(#) No(dt)

T—r00

und

lim fxU(x)=0.

T—r—00

BEWEIS. [Als2], Satz 26.3. O

1.18 Bemerkungen. (a) Betrachten wir im d-arithmetischen Fall die Funktio-
nen f(-+r) fiir r € [0, d), so sind diese offenbar ebenfalls d. R.1i., und die erste Aus-
sage des Erneuerungstheorems impliziert die Existenz einer stetigen, d-periodischen

Funktion p mit
lim |f(z) - p(z)| = 0.

T—r00
(Im nichtarithmetischen Fall folgt dies fiir die Konstante p = i [ f(t) Xo(dt) trivia-
lerweise sofort.)
(b) Die Identitat (1.9) liefert die dquivalente Formulierung

im_ Y Ef(x—5,)=0.
neNy
Weiterhin gilt fiir Random Walks (R,,)nen, mit Drift p € [—00,0) und Erneuerungs-
mafk U gerade
lim f* U(x) = 0.

Tr—00

Setzt man speziell (R,)nen, = (—Sn)nen,, S0 folgt

lim Y Ef(z+5,) =0. (1.11)

neNy

Insbesondere in dieser Form werden wir das Erneuerungstheorem héufig verwenden.

1.5 Fluktuationstheorie

Die Fluktuationstheorie befasst sich mit der Feinstruktur von Random Walks und
liefert insbesondere Aussagen iiber den Zusammenhang zwischen dessen Zuwachs-

verteilung und der Verteilung der eingebetteten sogenannten Leiterhohenprozesse,
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Sn

Bild 2. Pfad eines SRWs mit streng aufsteigenden Leiterindizes 07, 05 und o7 .

die nur die Zeitpunkte beriicksichtigen, zu denen der Random Walk Maxima bzw.

Minima im bisherigen Verlauf annimmt.

1.19 Definition. Sei (S,),en, ein nichttrivialer zentrierter SRW (d.h. E S} = 0,
aber P(S; =0) < 1) und p € {>, >, <, <} eine Ordnungsrelation. Wir setzen o := 0
und definieren fiir n € N,

Sg:= Sy und oy, =inf{k >0:5,0,, 0 S2}.

Dann heift (02)nen, die Folge der streng aufsteigenden/schwach aufsteigenden/
streng absteigenden/schwach absteigenden Leiterindizes und (S2)nen, der streng
aufsteigende/schwach aufsteigende/streng absteigende/schwach absteigende Leiter-

hohenprozess zu (Sy)nen, -

1.20 Lemma. Ist (Sy)nen, e€in nichttrivialer zentrierter SRW und o € {>,>,
<, <}, so ist (02)nen, [ 5. endlich, und (02,S52)nen, st ein SRW mit Werten in
N() x R.

BEWEIS. [Als2], Korollar 25.5 und Satz 27.7. O

Einen moglicherweise unerwarteten Zusammenhang zwischen bestimmten Paa-

ren von LeiterhOhenprozessen liefert das

1.21 Dualitdtslemma. Bezeichnen U? und V2 das zu (S2)nen, gehorige Er-

neuerungsmafl bzw. Pra-o?-Okkupationsmaf, so gilt

Vgl — ng
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fiir jedes Paar (01, 02) € {(>,<),(>,<),(<,>), (<, >)}.
BEWEIS. [Als3], Satz 37.2. O

Die Namensgebung ergibt sich hierbei offensichtlich aus der Gestalt der betrach-
teten Paare. Mit Hilfe des Dualitidtslemmas kann man nun eine einfache Beziehung
zwischen der Zuwachsverteilung des zugrundeliegenden SRWs (.S, ),en, und den Zu-

wachsverteilungen je zweier dualer Leiterhohenprozesse beweisen:

1.22 Wiener-Hopf-Faktorisierung. Fs bezeichne ) die Zuwachsverteilung
von (Sp)nen, und Q° die von (S2)nen, - Dann gilt fir jedes duale Paar (o1, 02)

Q=0Q% + Q% — Q" x Q=.

BEWEIS. [Als3], Satz 37.1. O

Ubertragen wir die Wiener-Hopf-Faktorisierung auf die zugehérigen momenter-

zeugenden Funktionen, erhalten wir schliefslich das folgende
1.23 Lemma. Fiir t € (0,00) gilt: Aus Ee'S' < 0o folgt Ee'S7T < oo.

BEWEIS. Bezeichnen wir mit S5 eine von (S,),en, unabhingige Kopie von Sy,

/ St P > / ST P — / (ST +57) g
R R R

_ / ST (1 . e—t|5§\) dP
R

= Ee!S7 / (1—e") PISFl(dz),
R

gilt

wobei die erste Ungleichung direkt aus der Wiener-Hopf-Faktorisierung folgt. Wegen
P(|SS| > 0) > 0 und 1 — e~ > 0 fiir # € (0, 00) muss also mit E e’S* auch Ee!St

endlich sein. O

1.6 Martingale

Eine weitere wichtige Klasse stochastischer Prozesse stellen die sogenannten Mar-
tingale dar. Um sie zu definieren und die Eigenschaften, die fiir uns von Interesse

sind, zu formulieren, miissen wir zunichst einige Begriffe einfiihren:
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1.24 Definition. (a) Eine aufsteigende Folge F° := (F,),en, von Unter-o-
Algebren von 2 heifst Filtration von (£2,2).

(b) Eine messbare Abbildung 7 : Q@ — Ny U {oo} heift Stoppzeit beziiglich der
Filtration F° falls {T = n} € F, fiir alle n € N, gilt.

(c) Ein stochastischer Prozess (X, )nen, heifst Fo_adaptiert, falls X,, F,-messbar
ist fir alle n € Ny.

Die definierende Eigenschaft eines Martingals besagt, dass, gegeben den Zustand
des Prozesses zum Zeitpunkt n, der Zuwachs im folgenden Schritt im Mittel gleich
0 ist.

1.25 Definition. Ein F'-adaptierter Prozess (M, )nen, heibt F°-Martingal,
falls
E(M,1|F,) = M, fs.

fiir alle n € Ny gilt.

Aus der Martingaleigenschaft folgt offenbar insbesondere E M,, = E M, fiir alle
n € Ny. Die Verallgemeinerung von festen Zeitpunkten auf solche, die vom bisherigen

Verlauf des Prozesses abhingen, liefert das

1.26 Optional-Sampling-Theorem fiir beschrinkte Stoppzeiten. Es sei
(M,)nen, ein Fo-Martingal und 7 eine beschrinkte F°-Stoppzeit. Dann gilt

E M, =E M,.

BEWEIS. [Als2], Satz 20.2. O
Schlielich halten wir noch die folgende wichtige Konvergenzaussage fest:

1.27 Martingal-Konvergenzsatz. Jedes nichtnegative Martingal (M, )nen,
konvergiert f. s. gegen eine Zufallsgrofie M mit |E M < E M,.

BEWEIS. [Als2], Satz 21.2 und Korollar 21.4. O






Kapitel 2

Existenz von Fixpunkten

In diesem Kapitel geben wir mittels des charakteristischen Exponenten von F' ei-
ne notwendige und hinreichende Bedingung fiir die Existenz von (nichttrivialen)
Fixpunkten der Abbildung K an.

2.1 Der Spezialfall m =1

Zunichst behandeln wir kurz den Fall m = 1. Es zeigt sich, dass dann die Fixpunkt-
menge trivial ist, d. h. entweder die leere Menge oder bereits ganz 91, so dass eine

weitere Untersuchung im Folgenden unterbleiben kann.

2.1 Lemma. FEs ist m =1 genau dann, wenn

N
T; ~ B(1,p;) fiir allei € {1,...,N} wund Zpi:]_‘
i=1

BEWEIS. Ist m =1, so ist
N
1=> P(T;=1)+E [ﬂaﬂ{ne(o,n}] +E [ﬂaﬂ{nn}]
i=1

fiir alle a € [0, 00). Da fiir @« — oo der letzte Summand gegen oo und der mittlere
von oben gegen 0 strebt, muss schon P(T; > 1) = P(T; € (0,1)) = 0 fiir alle
i €{1,..., N} gelten. Also sind die T; samtlich {0, 1}-wertig mit

i]P’(TZ- —1)=1.

Die Riickrichtung ist trivial. O

19
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2.2 Lemma. Sei § # (. Dann ist m(0) > 1.
Definieren wir zu ¢ € §

fnp(t) = ZtkP (Z Liz,>0y = k) )

k=0 =1

gilt weiterhin:

Ist m(0) > 1, so ist p(00) = limy_, p(#) der eindeutig bestimmte Fizpunkt von f,
in [0,1).

Ist hingegen m(0) =1, so ist f,(t) =t, m =1 und

N
Z H{TiZI} =1 f S.
=1

BEWEIS. Wegen ¢ € § gilt zunéchst

N
p(0) =E] [ »(0T;) (2.1)
i=1
und somit
= elggo]E H ©(0T;)

=E

.::12

(]l{TiZO} + (10(00) ]l{Ti>0})

(o)

=1

Mz

Bl

=0

I
~

%))

Also ist ¢(o0) ein Fixpunkt von f,, der wegen ¢ # 4y in [0, 1) liegt.
Auferdem halten wir fest, dass f, als Polynom mit nichtnegativen Koeflizienten

konvex ist. Ferner gilt f,(1) =1 und

= i“” (i Liri>0p = k) = iP(Ti > 0) = m(0).

Somit ist m(0) < 1 bereits ausgeschlossen, wihrend im Fall m(0) > 1 die Eindeu-
tigkeit des Fixpunktes in [0, 1) folgt. Falls m(0) = 1, muss hingegen schon f,(t) =t

gelten. Ein Koeffizientenvergleich liefert

N
Z ]]'{Ti>0} =1 f. S.,
1=1
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d.h. die Trager der T; sind f.s. disjunkt. Setzen wir T := sz\; T;, liefert (2.1)

p(0) = E(0T),

also W £ WT fiir ein von T unabhéngiges W mit L. T. ¢. Dies impliziert 7' = 1
f.s., also T; = 1 f.s. auf {T; > 0} und somit m = 1 nach Lemma 2.1. Damit ist alles
gezeigt. O

2.3 Satz. Sei m = 1. Dann ist § = M\{dp} genau dann, wenn

N
Z lgp—ny=1 fs= (2.2)
i—1

Andernfalls ist § = 0.

BEWEIS. Nach Lemma 2.1 impliziert m = 1 die {0, 1}-Wertigkeit der T;. Ist
nun § # (), gilt gemék Lemma 2.2 bereits (2.2). Daraus folgt jedoch sofort

N
ZTizl f.s.,
i=1

und somit Ku = p fiir jede Verteilung p € 9. a

2.2 Der Existenzsatz und ein Beispiel

Fiir den Rest dieses Kapitels setzen wir m # 1 voraus. Zunédchst formulieren wir

den angekiindigten

2.4 Existenzsatz. Genau dann existiert ein Fixpunkt von K, wenn der cha-
rakteristische Exponent x von F existiert und im im Intervall (0, 1] liegt.
Ist x = 1 und m/(1) < 0, existiert sogar ein Fizpunkt mit endlichem Erwartungs-

wert.

Bevor wir uns dem Beweis des Existenzsatzes zuwenden, betrachten wir zur
Motivation das folgende Beispiel, das aufgrund der iiberschaubaren Anzahl an Pa-

rametern die Mdoglichkeit zu expliziter Rechnung bietet:

2.5 Beispiel. Sei N = 2. Wir definieren zwei Zufallsgrofen 7 und 75, mit
P(T,=A)=p=1-P(T;=A"") (i=1,2)
fiir Parameter A > 1 und p € (0,1). Dann ist

may(a) =2(pA* + (1 —p)A *)
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p
0.1 +
0 : // : /
0 1 4 5 6 7 8 9 10 A

Bild 3. M mit Parameterkombinationen fiic x =1 (fett), x = 2 (gepunktet).

fiir € [0, 00). Wir wollen herausfinden, fiir welche Wahlen von A und p der charak-

teristische Exponent x im Intervall (0, 1] existiert. Dazu untersuchen wir die Menge
M = {(A,p) € (1,00) x (0,1) : map(er) =1,my () <O fiir ein o € (0, 1]}.

Setzen wir also m4,(a) = 1 und l6sen nach p auf, erhalten wir

1 AY-2
2 A2

mapla) =1 & p fiir A > 2%/, (2.3)

Weiterhin ist
m'A’p(a) = 2logA(pAa —(1- p)A‘O‘).

Setzen wir nun zusétzlich m/, (a) < 0, ergibt sich mit (2.3) als Bedingung fiir die

Existenz von y gerade

1 Ax -2

_ -, = . . 1/ 1/
=5 1 fiir ein A € (2'/%, (2 + V/3)'/x]. (2.4)

p

Bild 3 zeigt die Parameterkurven fiir x = 1 und x = % in der Menge M.

2.3 Beweis des Existenzsatzes

Wir beweisen den Existenzsatz 2.4 in vier Schritten:

i) x=1,m(1)<0=>3peF: [zpu(dr) <oco (Satz 2.11)
(ii) x € (0,1), m'(x) <0=F #0 (Satz 2.13)
(iii) x € (0,1], m'(x) =0=F #0 (Satz 2.14)

(hinreichende Bedingung)
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(iv) §#0 = x € (0,1] (Satz 2.19)
(notwendige Bedingung)
Die Reihenfolge der Schritte (i)-(iii) ist hierbei mit Bedacht gewéhlt: Wir werden

sehen, dass sich (ii) auf (i) und (iii) auf (ii) zuriickfiihren l&sst.

Fiir den Beweis von Teil (i) benttigen wir die beiden folgenden Funktionen, die
wir auf den in Abschnitt 1.3 definierten Standard-Random-Walk gewinnbringend

anwenden werden:

2.6 Definition. Sei ¢ € £, ¢ Z 1 und « € (0, 1]. Wir setzen
Do(z) := €™ (1 — p(e™™)),
N

Go(z) =™ E [H o(e*T;) + Z (1—(e™T;)) — 1]

Weiterhin seien ¢ := K¢ sowie D, und G, analog zu D, und G, fiir ¢ definiert.
Schlieflich bezeichne X, eine Zufallsgrofe mit Verteilung (, 1 (vgl. (1.7)).

In den drei folgenden Lemmata sammeln wir zunéchst einige Eigenschaften der
soeben definierten Funktionen.

2.7 Lemma. D, (x) = m(a) E Dy (x + X,) — Gq(z).
BEWEIS. Aus den Definitionen ergibt sich sofort

Do () = e (1 = ¢(e™))

=e"E [1 - H cp(e"”Ti)]

=1

:‘“]EZ[l— *IT] G ()

Mz

E |T? Dl — 1og Ti) Liz;50) | — Gal2)

.

I

a)ED,(x + X,) — Gu(x),
wobei die letzte Gleichheit aus Korollar 1.11 folgt. 4

2.8 Lemma. (a) G,(z) > 0.
(b) e=**Gy(x) ist monoton fallend.
(¢) Aus ¢ > ¢ folgt Go < G4.
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BEWwWEIS. Wir betrachten die Funktion
h: [0,1]Y =R, (21,...,28) — Hxi+2(1 — ;) — L.

Dann gilt fir k£ € {1,...,N}
0

a—l‘kh(xl,...,l']v) = —1—|—Hl‘z S 0.

Also folgt fiir u; < wv;, i € {1,..., N},
h(ula"'auN) Z h’(vla"'a'UN)'

Wahlt man nun
(a) u;=p(e™T;), v; =1,
(b) u; = (e ™T;), v; = (e ™T;) mit x1 > xo

und
(C) Ui = 95(6_307—’2')7 vy = W(e_xTi)a
ergeben sich sofort die Behauptungen. O

Fiir das dritte Lemma, das unter anderem eine Abschéitzung fir G, liefert,

benotigen wir zundchst ein Resultat iiber L. T.:

2.9 Lemma. Ist ¢ eine L. T., so ist die Funktion f(u) := %ﬁ‘) monoton
fallend auf (0, 00).

BEWEIS. Sei u > 0. Wegen

a0 = (1= p(w)

u2

ist p(u) — ug'(u) <1 zu zeigen. Aus der Konvexitiat von ¢ folgt

und das ist die Behauptung. a
2.10 Lemma. (a) Mit
N
M = ZmaX{Ti, 1} und  B(u):=e ™) £ (uAN) -1
i=1

qilt
Go(r) < e EB(Me ** Dy () = e‘””EB(M(l - gp(e"”))).
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() lim Ze®

=00 Do (2)

= 0.
BEwEIS. (a) Unter Benutzung der Ungleichung u < e~(1=% folgt

(e=2T)
e +

’,:]2

Gule) < |

i1

(1- p(eT)) 1]

=1

— R [6_ PR (1—90(8_3”71‘)) +

-

(1= ple™T)) - 1]

=1

< B B(Y (1- pleT)).

i=1
denn sz\; (1 — cp(e"”Ti)) < N. Ist nun T; < 1, gilt
1= (e *T) <1— (e ), (25)

da 1 — ¢(u) monoton wichst; falls 7; > 1, folgt

1= (e T) _1-p(e™)
e T - e

, (2.6)

denn =2

fallt monoton nach Lemma 2.9. Multiplizieren wir (2.6) mit e~*7j}, ergibt

sich zusammen mit (2.5)
1 — (e ™T;) < max{T;,1}(1 — p(e™")).

Die Behauptung folgt nun aus der Tatsache, dass B auf [0, c0) monoton wéchst.
Fiir (b) halten wir zunéchst fest, dass

lim e=**D,(z) = lim (1 —¢(e™)) = 0.

T—00 Tr—r00

Substituieren wir e=**D,(z) ~ t, geniigt es im Hinblick auf (a) also,

zu zeigen. Dies folgt jedoch aus dem Satz von der majorisierten Konvergenz, da M

() B()

integrierbar und beschrankt ist mit lim; o —= = 0O

Nach diesen Voriiberlegungen kénnen wir nun die erste Existenzaussage be-
weisen, indem wir einen Fixpunkt von K durch Iteration konstruieren. Dabei ist
wesentlich, dass K als Transformation der Menge £, versehen mit der Topologie

der gleichméfigen Konvergenz, stetig ist. Es gilt ndmlich fiir eine Folge ¢,, € £ mit
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gleichméfigem Limes ¢, der dann nach dem Stetigkeitssatz fiir L. T. (siehe [Alsl],
Satz 45.7) auch ein Element von £ ist,

N

lim Kipn(0) = lim E [ [ 0n(0T:) = E] [ (0T:) = Kep(6)

n—00 n—00 .
=1

aufgrund des Satzes von der majorisierten Konvergenz. Wenn also fiir ein ¢, € £
die Folge (K™po)nen, gegen ¢ € £ konvergiert und nach dem Stetigkeitssatz somit

schon gleichméfige Konvergenz vorliegt, so ist wegen

K=K (lim K"p) = lim K"y = ¢
n—oo

n—o0

¢ ein Fixpunkt von K.

2.11 Existenzsatz, Teil (i). Sei x = 1 und m'(1) < 1. Dann enthdlt § eine

Verteilung mit endlichem Erwartungswert.

BEWEIS. Als Ausgangspunkt der Iteration wihlen wir oo(t) := e=? (also die
L.T. von ;) und setzen ¢, := Kp,. Eine Anwendung der Jensenschen Unglei-
chung auf die konkave Funktion x + e %% liefert fiir alle 6 € [0, co)

21(0) =1Eexp(—9§Njﬂ) > exp(—elEiji) = e70m0) = 4(9).
=1 =1

Durch Tteration folgt also
Pn+1 2 Pn (27)
fiir alle n € Ny. Setzen wir () := lim ¢, (6), so gilt
n—o00
1> p(8) > () =e’.

Insbesondere muss limg;p ¢(#) = 1 sein. Also ist ¢ ein Element von £ und nach den

obigen Uberlegungen ein Fixpunkt von K. Aukerdem folgt

©'(0) = ¢p(0) = —1 (2.8)

Die Verteilung mit L. T. ¢ hat also einen Erwartungswert < 1.

Um ¢ € § zu zeigen, miissen wir nun noch ¢ = 1 ausschlieflen. Dazu setzen
wir @ = 1 und definieren fiir ¢,, die Funktionen D, , und G, wie in Definition 2.6.
Dann folgt aus (2.7) und Lemma 2.8(c)

Gy <Gy
fiir alle n € Ny. Wegen m(1) = 1 liefert Lemma 2.7

D17n+1(fL’) = EDl,n(fL’ + Xl) - Gl,n(m)
Z EDl,n(fL’ + Xl) — Gl’g(fL’)
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mit einer geméf (i (vgl. (1.7)) verteilten Zufallsgrofe X,. Iterieren wir diese Ab-
schitzung, so erhalten wir

n—1
Din(z) > EDig(z+S,) —EY  Gio(z + Sp), (2.9)
k=0
wobei (Sp)nen, einen Standard-Random-Walk mit Zuwachsverteilung ¢;; bezeich-
net. Fiir seine Drift liefert die Eigenschaft (1.8) der Verteilung ¢; ;

N
EX,=-Y E [T logTi] — —m'(1) > 0,

=1

was lim S, = oo f.s. impliziert. Wir halten fest:
T—00

Dl,g stetig, lim Dl,g(!L’) = ]_, lim DL()(.'L’) =
T—00

T—r—00
Daraus folgt
T—00

sowie aus der Monotonie der Funktion B, Lemma 2.10(a) und dem Satz von Fubini

(der Integrand ist nichtnegativ)

/ Gip(x)dx < ]E/ e*B(Me ™ *) dx

oo

> B(t
= ]E/ M t(Q) dt < oo, (Substitution Me™® ~» t)
0

da M integrierbar und B auf [0, 00) beschriinkt ist mit B(t) ~ £* fiir ¢ | 0. Aus
der Riemann-Integrierbarkeit ergibt sich mit Lemma 1.15 die direkte Riemann-Inte-

grierbarkeit von G, so dass das Erneuerungstheorem (vgl. (1.11))

o0

xli_)r(r;o]EZGl,g(ijSk) =0 (2.11)

k=1

impliziert. Aus (2.9) folgt also mit (2.10) und (2.11)

—¢'(0) = lim (1 — (e ®)) = lim lim Dy, (z) > 1.

Tr—00 T—00 N—00

Zusammen mit (2.8) folgt also —¢'(0) = 1, insbesondere ¢ # 1. O

2.12 Bemerkung. Vollig analog laft sich offensichtlich zu jedem ¢ > 0 ein
Fixpunkt mit Erwartungswert ¢ konstruieren, indem wir die Iteration mit ¢q(f) :=
e~ (der L. T. von 6,) beginnen. In Kapitel 3 werden wir sehen, dass diese Fixpunkte

im Fall (i) auch die einzigen sind.
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Der erste Teil des Existenzsatzes 2.4 ist somit bewiesen und kann umgehend fiir

den Beweis von Teil (ii) genutzt werden:
2.13 Existenzsatz, Teil (ii). Sei x € (0,1) und m'(x) < 0. Dann ist § # 0.

BEwEIS. Wir definieren T := T)X fiir i = 1,..., N sowie F, , K und § fiir
(Ty,...,Ty) analog zu F, m, K und §. Dann ist m(8) = m(x8) und w'(8) =
xm'(xB), also m(1) = m(x) = 1 und m/(1) = xm'(x) < 0, d.h. x = 1 ist der
charakteristische Exponent von F. Nach Satz 2.11 existiert dann ein ¢ € § mit
endlichem Erwartungswert. Setzen wir () := 1¢(6%), so folgt

Ko(0) = E] [#(0T:) = E] [ (0 TY) = Ku(0) = v(0") = ¢(0).

Koénnen wir also ¢ als L. T. einer Verteilung auf [0, 00) identifizieren, ist der Satz

bewiesen. Dazu sei (X});>o ein Lévy-Prozess derart, dass X, die L. T.
0 (0) ;= e

besitzt. (Zur Existenz einer stabilen Verteilung mit L.T. ¢, siehe [Fel], XIII.6.)
Ferner sei 7 eine von (X;);>o unabhéngige Zufallsgrofe mit L. T. ¢). Betrachten wir

nun die Zufallsgréfse X, definiert durch

so gilt wegen PXr/7=t = pX:
e 0% — /e—exr(w)(w) P(dw) — //e—é’x IP’Xt(dx) PT(dt) = /e—tax IP’T(dt)
=Ee™ =(8) = o(0),

d.h. ¢ ist die L. T. von X,. 0O

2.14 Existenzsatz, Teil (iii). Sei x € (0, 1] und m'(x) = 0. Dann ist § # (.

BEWEIS. Da nach Voraussetzung m # 1, ist m auf (0, | streng konvex. Also ist
m/(5) < 0 und somit m(3) > 1 fiir alle 5 € (0, x). Nun definieren wir fiir 5 € (0, x)

Ty :=Tim(B)"7  (1<i<N)
sowie Fjg, mg, Kz und §4 fiir (T34, ...,Ts.n) analog zu F, m, K und §. Dann gilt

N N
)
ms(5) = ZE [Tg,iﬂ{Tﬁ,DO}] = m(ﬁ)*‘s/ﬁ Z]E [Tfﬂ{Tpo}] - %

=1 =1
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e w(6) _ logm(s)
m(8) = s — <E s (6)
Somit ist mg(3) = 1 und mj(B) < 0. Also ist x5 = 3 der charakteristische Expo-
nent von Fj. Nach Satz 2.13 hat fiir jedes 5 € (0, ) die Transformation Kz einen
Fixpunkt 15 # 1. Wegen {T; > 0} = {7 > 0} hiingt die Funktion fus aus Lemma
2.2 nicht von § ab, also ist auch ihr Fixpunkt 6 := 1)3(c0) unabhéngig von 3. Durch
Einsetzen in (2.1) stellen wir fest, dass mit 13 auch §(6) := g(ch) fiir jedes ¢ > 0

ein Fixpunkt von Kjp ist. Also konnen wir 0. B.d. A. zu jedem S € (0, x) ¢z derart

wahlen, dass
Oy + 1

Nun konstruieren wir aus den 3 ein ¢ € §: Sei (53,),>1 eine Folge in (0, x) mit

Limes . Wir konnen o. B.d. A. annehmen, dass die zugehorige Folge 115, € §p, vag
gegen ein Mak p konvergiert. (Ansonsten gehen wir unter Verwendung des Satzes
von Helly-Bray zu einer vag konvergenten Teilfolge iiber, vgl. [Als1]|, Korollar 44.3.)
Dann konvergieren die zugehorigen L. T. ¢, auf (0, 00) punktweise gegen die L. T.
¢ von 1. Insbesondere ist (1) = 2. Da 15, € Fs,, gilt fiir alle § € [0, o)

V5, (0) = E] ] ¢ (0Tim(8,) /7).

Wegen lim,, o, m(3,) = 1 erhalten wir mit dem Satz von der majorisierten Konver-

genz
o(0) =E[[ (0T} (212)

fiir alle 6 € [0, 00). Wiederum mit dem Satz von der majorisierten Konvergenz folgt

ferner fiir ¢(0+4) := limg, p(6)
N
s N\ N
p(0+) = 1;gIEHw(9T1) o(0-+)",

also p(0+) € {0, 1}. Wegen der Monotonie von ¢ auf (0, 00) und (1) > 0 muss dann
aber ¢(0+) = 1 sein. Somit ist ¢ als L. T. einer Verteilung auf [0, cc0) identifiziert,

die wegen (2.12) ein Element von § ist. Dies war zu zeigen. O

Nun zeigen wir Teil (iv), also die Riickrichtung von Satz 2.4. Wir beginnen mit

folgender

2.15 Definition. Zu a € (0, 1] bezeichne H, die Menge aller Funktionen g :
R — R mit

(i) 9(0) =1,
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(ii) g(y)e~* monoton fallend,
(iii) g(y)e" =¥ monoton wachsend,
(iv) g(y) = m(a) Eg(y + X,) fiir X, mit Verteilung (o1 (vgl. (1.7)).

2.16 Lemma. Ist die Menge H, nicht leer, so ist sie eine kompakte, konvexe
Teilmenge des Raumes C(R) der stetigen Funktionen auf R mit der Topologie der

kompakt gleichmdjf$igen Konvergenz.

BEWEIS. Zunéchst zeigen wir H, C C(R): Ist g € H,, liefern die definierenden
Eigenschaften (ii) und (iii) fiir beliebiges y € R und h > 0

e mhg(y) < g(y + h) < e*g(y)

und fiir h < 0 die umgekehrten Ungleichungen, also lim;, o g(y + h) = g(y).

Die Konvexitit von H, verifiziert man durch einfaches Nachrechnen der Eigen-
schaften (i)-(iv).

Als néchstes weisen wir die Abgeschlossenheit von #H, nach. Hierzu sei (g, )nen
eine kompakt gleichméfig konvergente Folge in H, mit Limes ¢g. Man iiberzeugt
sich sofort davon, dass g wiederum stetig ist und die Eigenschaften (i)-(iii) gelten.
Sei nun y € R beliebig. Wir zeigen die gleichgradige Integrierbarkeit der Familie
(gn(y+ X4o))nen, die fiir die Konvergenz der Erwartungswerte hinreichend ist: Unter
Verwendung von (2.13) bzw. der groberen Abschiitzung g, (y) < e/¥! erhalten wir fiir
t>1

/ Iy + Xo) dP
{9n(y+Xa)>t}

= E [gn(y + Xa) Liga gt Xa)>1}]

N
1
=—— E|\Tlirv019.(y —logTi) 11y (y—top T
m(e) 22:1: [ i H{T;>019 (y —logT;) {gn(y 1gT,)>t}]
1 N
< E[TF“IL o (TSI, T s
B m(a) 22:1: t {Tl>0}(e {ev—logTi 54} L{y>log T;}

+ e (1—a)(y—logT;) ﬂ{e,(y—IOg Ti) >t} ll{y<10g Ti})]

1 N
- Wwp(T e —(1-a)y _
~ m(a) ;6 P(Toe (0.5) +e E [Tilizsien],

und dieser von n unabhéingige Ausdruck geht fiir ¢ — oo gegen 0. Somit folgt fiir
alley € R

1
— lim g,(y) = —— lim Eg,(y+ X,) = ——F X,),
g(y) = lm g, (y) o) AmEg (y+ X,) m(a) g(y + Xa)

was schlieflich ¢ € H, und somit die Abgeschlossenheit von #, beweist.
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Schlieflich bleibt die relative Kompaktheit von #,, zu zeigen, die zusammen mit
der zuvor bewiesenen Abgeschlossenheit die Kompaktheit liefert. Damit wir den Satz
von Arzela-Ascoli (siehe [MV], Satz 4.12) anwenden konnen, muss die Familie H,,
auf jedem Kompaktum gleichméfig beschriankt und gleichgradig stetig sein. Fiir
beliebiges g € H, folgt wegen ¢(0) = 1 aus den Eigenschaften (ii) und (iii)

e (70 < g(y) < e fiir y > 0,

(2.13)
e < g(y) < e U7 fiir y < 0.

Dies impliziert die gleichméfige Beschrinktheit auf Kompakta. Fiir die gleichgradige
Stetigkeit sei K C R ein Kompaktum und M := sup,cq, ||g/|x. Dann gilt fiir jedes
g € Ho und alle 2,y € K mit |z — y| < 0 analog zu (2.13)

510

l9(z) — g(y)| < g(z)e™ — g(z)e™ 1727 < M (e — e=(1700) 2=

Somit ist die Familie H, in der Tat gleichgradig stetig. Damit ist alles gezeigt. O
Nun sind wir in der Lage, eine andere Darstellung von 4, anzugeben:

2.17 Lemma. Sei o € (0, 1]. Dann gilt:

(a) Im nichtarithmetischen Fall ist H, der Abschluss der konvexen Hiille von

ga,() = {gﬂ CY = e(a—,@’)y | 5 S [Ov 1]7 m(ﬁ) = 1}'

(b) Im d-arithmetischen Fall ist H, der Abschluss der konvexen Hiille von

Ead =985 Y = 98(¥)Ps(Y) 195 € Ea> Ps € Paa}-

Dabei bezeichnet Ps 4 die Menge der stetigen, d-periodischen Funktionen p mit
(1) p(0) =1,
(ii) p(y)e=P¥ monoton fallend,

(iii) p(y)e" =B monoton wachsend.

BEWEIS. Zunéchst bemerken wir, dass gg € H,, genau dann gilt, wenn 5 € [0, 1]
und m(f) = 1: Wihrend Eigenschaft (i) immer erfiillt ist, korrespondieren (ii) und
(iii) gerade mit den Schranken 0 bzw. 1 fiir die Wahl von  und (iv) mit m(8) = 1,
wie man unter Benutzung von (1.8) sofort nachrechnet. Im Fall H, = ) ist somit
alles bewiesen.

Ist H, # 0, so ist H, nach Lemma 2.16 eine kompakte, konvexe Teilmenge
des Raumes C(R) der stetigen Funktionen auf R mit der Topologie der kompakt
gleichméfigen Konvergenz. Nach dem Satz von Krein-Millman (siehe [MV], Satz
22.17) ist sie der Abschluss der konvexen Hiille ihrer Extremalpunkte. Es bleibt also

zu zeigen, dass jeder Extremalpunkt von H, ein Element von &, o bzw. &, 4 ist.
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Sei nun g € H, ein Extremalpunkt. Wegen ¢(0) = 1 liefern die Eigenschaften
(ii) und (iii) g(y) > e fiir y < 0 bzw. g(y) > e 1= fiir y > 0, also insbesondere
g > 0. Setzen wir fiir z € R nun

g(r +y)

9:(9) = g9(x)

)

so erhalten wir mit (iv)

oly) = mia) [

[ 4(y+2) P (da) = m(a) / 00(1)9(2) Can(d).

g ist also als Mischung der g, darstellbar. Wie man sofort iiberpriift, gilt g, € H,
fiir alle z € R, so dass aus der Extremalitit von g schon g, = g fiir alle x im Tréiger
T(m(a)g an) folgt. Dieser stimmt wegen m(a) > 0 und g > 0 mit T(,,1) iiberein.
Somit gilt nach der Definition der g,

9(@ +y) = g(x)g(y) (2.14)

fiir alle # € ((,,1) und y € R, mithin fiir beliebige € G4 und y € R.
Im nichtarithmetischen Fall folgt aus Gy = R und der Stetigkeit von ¢

g(y) = ae”™

fiir gewisse a,b € R. Wegen (i) muss nun a = 1 gelten, wegen (ii) und (iii) b €
[ —1,a], d.h. b ist von der Form o — 3 fiir ein 5 € [0, 1]. Mit (1.8) liefern (i) und
(iv) schlieklich

1= g(0) = m(a) Eel*=D¥e = m(p)

und somit g € &,.

Im d-arithmetischen Fall impliziert (2.14) mit der Stetigkeit von ¢

9(y) = ac”p(y)

fiir gewisse a,b € R und d-periodisches, stetiges p. Aus (i) folgt p(0) = 1/a; be-
trachten wir die Einschrinkung auf Gy, liefern (ii)-(iv) wie oben b = oo — 3 fiir ein
S € 10,1] mit m(f8) = 1. Also kénnen wir

9(y) = gs(y)p(y)

mit gz € .0 und p(0) = 1 schreiben. Schlieflich ergibt sich abermals mit (ii) und
(iii) die Monotonie von p(y)e ? bzw. p(y)e=?  also insgesamt g € &, 4. 0

2.18 Bemerkung. Setzen wir m # 1 und § # () voraus, so ist H, # 0 schon

hinreichend fiir die Existenz des charakteristischen Exponenten von F'in (0, 1]: Dies
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bedingt ndmlich nach Lemma 2.17 die Existenz eines § € (0, 1] mit m(3) =1 (=0
ist dann wegen Lemma 2.2 ausgeschlossen). Aufgrund der strengen Konvexitit von
m konnen hochstens zwei solche § existieren. Wéhlen wir  dann minimal, muss

bereits m/() < 0 gelten, und dieses /3 ist dann der charakteristische Exponent.

2.19 Existenzsatz, Teil (iv). Ist § # 0, so existiert der charakteristische
Ezponent x von F und liegt im Intervall (0, 1].

BEWEIS. Sei ¢ € §. Wir wihlen a € (0, 1] und setzen fiir x € R

Unser Ziel ist es, die Grenzfunktion fiir x — oo als Element von H,, zu identifizieren,
womit nach Bemerkung 2.18 bereits alles gezeigt ist.
Wegen ¢ € § liefert Lemma 2.7

Dqo(y) = m(a) E Doy + Xo) — Gal(y).

Werten wir diesen Ausdruck an der Stelle y + = aus und dividieren durch D, (z),

ergibt sich

Goly + o)
———h.(y). 2.15

Daly+ ) =W (2.15)

Wegen ¢ € £ist Dy(y)e ™ = 1—p(e~¥) monoton fallend und D, (y)e =% monoton

ha(y) = m(a) Ehy(y + Xo) —

wachsend (setze u = e ¥ in Lemma 2.9). Somit ist
—(1 = a)Da(y) < Di(y) < aDa(y). (2.16)
Eine erneute Auswertung an der Stelle x4+ y und Division durch D, (z) ergibt sofort

—(1 —a)hy(y) < hi(y) < ahgy(y)

sowie mit h,(0) = 1 genau wie im Beweis von Lemma 2.16

e~ (1—a)y < hy(y)
e™ < h,(y) < e~ 179y fiir y < 0.

IN

e fiir y > 0,
(2.17)

Die Familie (h,).cr ist also gleichméfig beschrénkt und gleichstetig auf jedem Kom-

paktum. Nach dem Satz von Arzela-Ascoli (siehe [MV], Satz 4.12) ist sie somit rela-

tiv kompakt in der Topologie der kompakt gleichméfkigen Konvergenz auf C(R). Sei

nun also (z,)pen, eine Folge in R mit x,, — oo und (hg, )nen, kompakt gleichméfbig

konvergent mit Limes h. Fiir den Grenziibergang in (2.15) liefert zunéchst (1.7)
m(0) m(1)

Ee*Xe = mia) <oo und Ee (% — m(a) < 00. (2.18)
m(o m(«



34 Existenz von Fixpunkten

Mit dem Satz von der majorisierten Konvergenz und Lemma 2.10(b) wird (2.15) fiir

r — 00 Zu

h(y) = m(a) Eh(y + Xa),

also erfiillt h die definierende Eigenschaft (iv) von #H,. Da auerdem h mit jedem

h, auch den Eigenschaften (i)-(iii) geniigt, ist h € H,, und das war zu zeigen. O

Zum Abschluss dieses Kapitels zeigen wir noch eine einfache Folgerung aus Satz

2.19, die uns im folgenden Kapitel von Nutzen sein wird.

2.20 Korollar. Ist ¢ € § und x € (0,1] der charakteristische Exponent von F,

so gilt
. Dy(z +y)
lim sup 22— 22 < 1, alls m'(x) <0,
mSup—p oy S f (x)
bzw.
: DX(I‘ + y) _ ! _
Ill)n;j W = ]_, falls m (X) = 0,

fir alle y € G4 N (0, 00).

BEWEIS. Zu Beginn des Beweises von Satz 2.19 wihlen wir nicht ein beliebiges
« € (0,1], sondern gerade x. Sei nun 3 € (0, 1] mit m(3) = 1.

Betrachten wir zunéchst den nichtarithmetischen Fall: Gilt m'(x) < 0, so ist
f > x nach Bemerkung 2.18, und £ ist als Konvexkombination von h, = 1 und
hs(y) = eX=% monoton fallend. Ist hingegen m'() = 0, ist schon 3 = y, und h ist
konstant. Wegen h(0) = 1 gilt also h(y) < 1 bzw. h(y) = 1 fiir alle y > 0. Da die
konvergente Teilfolge (hy, )nen, beliebig gewihlt war, folgt die Behauptung.

Im d-arithmetischen Fall bleibt die obige Argumentation giiltig, wenn wir die
Einschrankung von h auf G4 betrachten. Dort verschwinden nédmlich die periodischen
Anteile von h, das somit auf G, dieselbe Gestalt wie im nichtarithmetischen Fall
hat. O



Kapitel 3

Die Struktur der Fixpunktmenge

Nachdem wir im vorhergehenden Kapitel untersucht haben, unter welchen Voraus-
setzungen Losungen der Fixpunktgleichung existieren, wollen wir unser Augenmerk
nun auf die Struktur der Fixpunktmenge § legen.

Hauptresultat wird die Angabe einer Funktionenklasse sein, die § parametri-
siert, d. h. die sich bijektiv auf § abbilden ldsst. Ferner erhalten wir eine hinreichen-
de Bedingung fiir die Konvergenz von Elementen von £ gegen solche von § unter
[terationen von K. Zu guter Letzt geben wir ein Kriterium fiir die Existenz von
Fixpunkten mit Momenten héherer Ordnung an.

Wir setzen im Folgenden weiterhin m # 1 sowie zusitzlich § # 0 voraus und
erhalten somit aus Satz 2.19 die Existenz des charakteristischen Exponenten y von
F im Intervall (0, 1].

3.1 Parametrisierung von §

Zunéchst fithren wir die Funktionenklasse ein, durch die wir § parametrisieren wol-
len. Thre Gestalt ist dabei abhingig von den zentralen Parametern der Verteilung

F': der Spanne d und dem charakteristischen Exponenten y.

3.1 Definition. Fiir y € (0,1] und d € [0, 00) definieren wir B, 4 wie folgt:
(a) Fiir x < 1 und d > 0 sei B, 4 die Menge aller Funktionen p : R — (0, 00) mit
folgenden Eigenschaften:
(i) p ist d-periodisch und unendlich oft differenzierbar.
(ii) Die Funktion hy(#) := 0Xp(—log#) hat eine vollstindig monotone (in 0
rechtsseitige) Ableitung, d.h. A > 0 und (—1)"hS"™ > 0 fiir alle n € N,
(b) Fiir x =1 oder d = 0 sei B, 4 die Menge der positiven Konstanten auf R.

35
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Um den Zusammenhang zwischen § und ‘B, 4 herstellen zu konnen, benétigen

wir folgendes
3.2 Lemma. Sei ¢ € §. Dann ist G, d. R. .

BEWEIS. Im Hinblick auf Lemma 1.15 brauchen wir lediglich die gewhnliche
Riemann-Integrierbarkeit von G, nachzuweisen, da e X*G,(z) nach Lemma 2.8(b)
monoton fillt. Dabei bedienen wir uns einer dhnlichen Abschitzung wie im Beweis
von Satz 2.11: Wir haben bereits in den Lemmata 2.8(a) und 2.10(a) gezeigt, dass

0 < Gy(z) < X*EB[MD,(x)e "]

gilt. Da M beschréinkt ist, folgt zunéchst

/0 Gy (z)dx < oco.

o0

Fiir die Abschitzung auf [0, 00| setzen wir d := 1 im nichtarithmetischen Fall und
d :=d, falls d > 0. Wihlen wir nun ¢ > 0 beliebig, existiert gemif Korollar 2.20 ein

Ty > 0, so dass fiir alle z >

Dy(a+d) < (1+2)D, (@)
gilt. Da auferdem D, (z)e X" =1 — ¢(e~*) monoton fillt, ist fir y > 0

Dy (x +vy) < D,(z)eX". (3.1)

Schreiben wir also 2 > 7, in der Form 2 = 7y +nd +r mit n € Ny, und r € 0,d),
folgt

Dy(x) < (142)"Dy(Fo + 1) < Dy() < (1 +2)" Dy (&) < ceHH7.

Jetzt wihlen wir § > 0 derart, dass 3 < § und ﬁ < 7. Da obiges £ > 0 beliebig

gewahlt war, existiert insbesondere ein xy > 0, so dass fiir alle z > x
D, (z) < e’
gilt. Aus der Monotonie von B folgt nun
Gy (z) < "E B(MelF )7

fiir + > xo. Mit dem Satz von Fubini (der Integrand ist nichtnegativ) ergibt sich
nun

/ Gy (x)dx < ]E/ eX’”B(Me(’B_X)’”) dx

o xo
~° M*7F B(t)

<E
— Jo x—Bts

dt < 00, (Substitution MeP=27 ~; ¢)
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da M7 integrierbar und B auf [0, 00) beschriinkt ist mit B(f) ~ st fiirt 1 0. O

3.3 Parametrisierungssatz, Teil (i). Sei ¢ € §. Dann ezistiert ein eindeutig

bestimmtes p € Py g mit

. 1—p(f)
— =1 lls m’ <0
bzw.
: 1—o(0)
] =1 lls m'(x) =0.
I o (—Tog ) logg] — 1 Jallsm ()
BEWEIS. Wir bezeichnen mit (S, )nen, wiederum einen Standard-Random-Walk
mit Zuwachsverteilung ¢, und mit Xy, Xo,... seine Zuwichse. Wegen m(y) = 1

und ¢ € § liefert Lemma 2.7
D, (z) =ED,(z+ X;) — G,(2). (3.2)

Zunichst zeigen wir die Existenz einer Funktion p mit den geforderten Eigen-
schaften im Fall m’(x) < 0. Dann ist EX; = —m/(x) > 0. Iterieren wir (3.2),

erhalten wir

Dy(z) = lim EDy(z + S,) = Y EGy(z + 5)

n—o0
k=0
= lim ED,(x+S,) — G, «U (v),
n—o0
wobei U~ gerade das Erneuerungsmafs des Random Walks (—S,,),en, bezeichnet.
Nun setzen wir

p(x) == lim ED,(x + S,) = Dy(z) + G, * U (z).

n—oo

Mit D, und G, * U~ ist dann auch p positiv und stetig und erfiillt aukerdem
p(z) =Ep(z + X,)

fiir eine von (S, )nen, unabhingige Zufallsgrofe X, mit Verteilung ¢, ;. Weiterhin
folgt fiir jedes p,(7) := E D, (z+5S,), dass p,(z)e ** monoton fillt und p, (z)el=0*
monoton wéchst, da dies fiir D, gilt. p erfiillt somit die Eigenschaften (ii)-(iv) aus
Lemma 2.17 (beachte m(x) = 1), ist also eine Konvexkombination von Funktionen

der Form
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mit 8 € [0,1], m(5) = 1 und stetigem sowie d-periodischem bzw. konstantem g.
Wegen der Konvexitdt von m muss nun S > x sein. Nehmen wir 5 > x an, folgt
limsup,_, . p(x) = co. Das Erneuerungstheorem (Satz 1.17) liefert jedoch
limsupG, * U™ (z) < oo.
T——00
Wegen D, (x) < eX* gilt also limsup,_, ., p(x) < oo — Widerspruch! Also ist = x
und p selbst somit d-periodisch bzw. konstant. Aus der Anwendung des Erneue-
rungstheorems ,jin die andere Richtung“ folgt

lim G, «U (z) =0

T—r00

und somit
lim D, (xz) —p(xz) =0.

Tr—00

Substituieren wir e™* ~» f, gilt also

Lo 1—e0)
010 9xp(—logt)

Y

da p positiv und beschrinkt ist. Es bleibt nachzuweisen, dass h,(6) := 6Xp(—log#)
eine vollstdndig monotone Ableitung besitzt: Die Periodizitdt von p liefert fiir alle
née€Nyund 8 >0

hy(6) = 6%p(~ log 6 + nd)

. Y 0xe X"ip(—log O + nd
= eX d(l—cp(ﬁe d)) ( 1_50(96_nd) )>

Somit erhalten wir durch Grenziibergang n — oo

0*p(—logf) = lim X" (1 — p(ge™")). (3.3)

n—0o0

Differenziert man diese Identitéit sukzessive nach #, folgt aus der vollstdndigen Mo-
notonie von ¢ € £ sofort die von hj,.

Schliefslich stellen wir fest, das im Fall y = 1 aus der Monotonie von 1_+M)
(Lemma 2.16) und (3.3) schon die Monotonie von p folgt. Als periodische Funktion

muss p dann bereits konstant sein. Damit sind fiir m’(x) < 0 alle Félle abgehandelt.

Im Fall m/(x) = 0 gilt entsprechend E X; = 0. Wir konnen also das Erneue-
rungstheorem nicht direkt auf den Random Walk (S,,),en, anwenden. Stattdessen

setzen wir fiir n € N,

n—1
M, == D,(x + S,) ZGX r+ Sg) und F, = a((Sk)kgn).
k=0



3.1 Parametrisierung von § 39

Nun folgt mittels (3.2)

n

E(Mp1|Fo) = E [Dy (@ + Sni)|Fa] = S E [Gy (@ + Si) | 7]

k=0

=E [Dy(v+ Sy + Xpp1) — Gy + Sn)|F] Z]E (@ + S| F]

n—1
=Dy(z+58,) =Y Gy(z+S) =M

k=0

(M,)nen, ist also ein Martingal beziiglich der Filtration (F,)nen,. Das Optional-
Sampling-Theorem fiir beschrénkte Stoppzeiten (Satz 1.26) liefert nun

alAn 1

Dy(z) =EDy(z + S,>,) —E Z (T + S

fiir den ersten streng aufsteigenden Leiterindex o7, der nach Lemma 1.20 f.s. endlich
ist. Lemma 1.23 liefert mit (2.18) weiterhin

Ee’T < oo (3.4)

und somit wegen D, (z) < eX” und S,, < S7 fiir n < oy

Uf—l
Dy(zr) =ED\(z+S7) —E > Gy(z+Sk).
k=1
Wir setzen
Uf*l
W(x):=E Gy(x + Sg) =ED,(z+ S7) — D, (). (3.5)
.

Bezeichnen wir mit V> das zu (—S,)nen, gehorige Pra-o;-Okkupationsmaf, mit
(Ri)ken, den schwach absteigenden Leiterhohenprozess sowie mit US das Erneue-

rungsmafs von (—Ry)ken,, folgt aus dem Dualitétslemma 1.21
W(x) =Gy x V> (x) =Gy x US(x Z]EG (2 + Ry).
k=0
Wegen E R; € (0, 00| konnen wir auf den schwach absteigenden Leiterh6henprozess

nun das Erneuerungstheorem 1.17 anwenden und erhalten geméf Bemerkung 1.18(a)

lim R(xz) —p(z) =0 (3.6)

T—r00

fiir ein stetiges und konstantes bzw. d-periodisches p.
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Wir betrachten nun zunichst den nichtarithmetischen Fall. Dazu schreiben wir
(3.5) als

S,

W) =B [ D+ dy = /OOO DL (= + y)P(S, > y)dy, (3.7)

wobei wir wegen (3.4) und (2.16) die Integrationsreihenfolge vertauschen diirfen.
Integrieren wir beide Seiten nach z und vertauschen abermals (mit derselben Recht-

fertigung) die Integrationsreihenfolge, erhalten wir

/ W(z)dz+c= / D, (x + y)P(S; > y)dy (3.8)
0 0
mit ¢ := [ D, (y)P(S; > y) dy < oo. Da D, (z)e™" monoton fillt, gilt

Dim+y)
Dx(m) N

fiir alle y > 0. Wenden wir nun (3.4) und den Satz von der majorisierten Konvergenz
an, liefert die zweite Aussage von Korollar 2.20

J-O:E W(Z) dZ +c _ ]EST,

I
“"ggo D, (37)

und E S ist positiv und wegen (3.4) endlich. Invertieren wir die letzte Gleichung
und beachten, dass aus (3.6) [~ W (z)dz + ¢ ~ 2 folgt, ergibt sich

. D,(z) D
1 X\ .
Pt ES.

(3.9)

Im d-arithmetischen Fall ersetzen wir wie iiblich Integrale durch Summen und Ab-

leitungen durch Differenzen. Wir beginnen mit

W(x) =Y Dy(x+k)P(S, = k) — Dy() (3.5")

keGy

und erhalten nach analoger Rechnung fiir r € [0, d)

. Dy(x+r) p(r)
d-1 X = .
:v—)lorgl T+ ES-

(3.9')

Diese Aussage ist a priori schwécher als ihr Pendant (3.9): Schreiben wir fiir r € [0, d]

und n € N
D, (nd +r)

hp(r) =
(r) nd +r
entspricht (3.9’) der punktweisen Konvergenz der Folge (hy,)nen, wihrend (3.9) ge-

Y

rade die gleichméfige Konvergenz auf [0, d] impliziert. Mit (3.1) folgt jedoch

D, (nd+r) - D, (nd)eX”
nd+r nd




3.2 Konvergenz gegen Fixpunkte 41

und somit aus (3.9") bereits die Beschrianktheit von DXT(:”) in oo sowie mit (2.16) die

Beschrénktheit der Ableitung in co. Somit sind die (h,)nen gleichstetig auf [0, d], so
dass aus der punktweisen bereits die gleichméfige Konvergenz folgt.

Substituieren wir nun & ~» p und e~" ~» 6, erhalten wir somit die geforderte
Gleichung. Um den Existenzbeweis abzuschliefsen, ist jetzt nur noch zu zeigen, dass
p € PBy.q gilt. Die zugehorige Rechnung ist jedoch vollig analog zum Fall m/(y) < 0.

Zur Eindeutigkeit von p bleibt abschlieffend zu sagen, dass fiir zwei Funktionen
P1, P2 € Py g, die die geforderte Gleichung erfiillen,

lirn2M = lim Pi(z) =1

010 po(—logh)  a—o0 pa(x)

gelten muss und somit p; und py als konstante bzw. d-periodische Funktionen bereits

iibereinstimmen miissen. O

Leider gibt Satz 3.3 noch keine hinreichende Auskunft dariiber, ob die gew#hlte
Parametrisierung geeignet ist in dem Sinne, dass zwischen § und ‘B, 4 tatséchlich
eine Bijektion existiert: Wir wissen weder, ob jedes Element von ‘B3, ; eine Entspre-
chung in § hat, noch kdnnen wir ausschliefsen, dass zwei Elementen von § dasselbe

Element in ‘B, 4 zugeordnet wird.

3.2 Konvergenz gegen Fixpunkte

Um diesem Mangel abzuhelfen, zeigen wir zunéchst ein Konvergenzresultat, das wir
im anschliefsenden zweiten Teil des Parametrisierungssatzes fiir die Eindeutigkeits-

aussage heranziehen konnen.

Hierzu kehren wir noch einmal zum gewichteten Verzweigungsprozess aus Ab-

schnitt 1.2 zuriick. Wir erinnern an die Definition
L(0) =1, L(vi) := L(v)T;(v) (1=1,...,N),

so dass L(v) fiir v € T gerade das Gewicht des Pfades von () zu v angibt. Nun setzen
wir
R, := max L(v)

[v]=n

und zeigen

3.4 Lemma. FEs gilt
lim R, =0 f.s.

n— 00
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BEWEIS. Aus den Voraussetzungen folgt bereits

P(max T; =1) < 1,

1<i<N
denn sonst wire stets m > 1, also § = (. Ist nun max;<;<y 13 < 1 fs., folgt die
Behauptung sofort. Somit bleibt nur noch der Fall P(max <<y 7; > 1) > 0 zu
betrachten. Dann folgt

P(limsup R, = 0) + P(limsup R,, = +0o0) = 1.

n—0o0 n—0o0
Also geniigt es, sup,,cy, [t < 0o f.s. zu zeigen. Dazu definieren wir fiir n € Ny
M, =Y Lw)* und F, =0 ((L(v)))<n)-
|v|=n

Dann ist

E(MailF) =E | Y L) |F| =E| 3 3 L) Ti(w)"
|v|=n+1 |w|=n i=1
= > Lw)*> ET® = Mym(a) = M,.
|w|=n

=1

7|

Also ist (M,)nen, ein nichtnegatives Martingal beziiglich der Filtration (F,)nen,-
Nach dem Martingal-Konvergenzsatz 1.27 konvergiert daher (M, ),en, f.s. gegen
eine beschrinkte Zufallsgrofe M. Wegen Ry < M, ist somit auch sup, oy, R, < o0

f.s., und das war zu zeigen. a

3.5 Bemerkung. Die Aussage von Lemma 3.4 bleibt offensichtlich richtig, wenn

wir allgemeiner
LH(Q)) = 97 LG‘(UZ) = LG(U)T;(U) (Z = ]-7 s N)

fiir @ € R definieren, also die Gesamtgewichte mit dem Faktor # skalieren. Mit dieser
Verallgemeinerung konnen wir die Fixpunktgleichung (1.2) fiir L. T. iterieren und
erhalten
E"p(0) =E [ #(Ls(v)), (3.10)
v|=n

wie man induktiv miihelos nachrechnet.
Mit diesem Ergebnis beweisen wir nun den angekiindigten

3.6 Konvergenzsatz. Fir ¢ € § und ¢ € £ gelte

1— (0
limigp( )

T
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Dann ist
lim K™ = .

n— 00

BEWEIS. Falls m/(x) < 0, liefert Satz 3.3 fiir jedes ¢ > 0

- 1 —¢(ch) o L= o(0)
010 (cf)Xp(—logc — log#) 010 Oxp(—logh)

:]_:

fiir ein p € P, 4. Setzen wir erneut h,(0) := *p(—logh), folgt

lim infl—igo(cﬁ) = lim inf fip(c0) und lim sup L= o) o(ch) = lim sup fy (c6) .
0,0 1 — () 010 hy(0) oo 1—o(f) o0 hy(0)
Wegen
. logch
lim =1
010 log6

bleibt dies auch im Fall m/(x) = 0 giiltig. Nach Definition von B, 4 ist h, streng

monoton wachsend auf [0, 00). Daher gilt

lim infl—igo(cﬁ) > 1, falls¢> 1, und lim supl_igp(cg)

<1, fallse < 1. (3.11
00 1 — (f) o0 1—¢(0) 31

Wir wihlen ein beliebiges ¢ > 1 und setzen

p(0) = ¢(ch) und B(0) = p(c'0).

Offensichtlich sind mit ¢ auch ¢ und @ Elemente von §. Wegen der asymptotischen
Gleichheit von 1 — ¢ und 1 — ¢ folgt nun aus (3.11)

e(0) < () <p(0)

auf einem Intervall (0, ] fiir ein 6y > 0. Dies impliziert
[T e(zo@) < TT ¢(Low)) < T #(Lo(w))
[v|=n [v|=n lv|=n

auf der Menge {R,, < 6y}. Mit (3.10) und Lemma 3.4 folgt nun aus dem Satz von

der majorisierten Konvergenz

liminf K" p(f) < liminf K"(f) < limsup K"(0) < limsup K"3(0).

n—o0 n—oo n—oo0 n—o00

Wegen ¢, % € § liegen somit alle Teilfolgenlimites von K™i(0) in [p(ch), o(c™'0)].
Da ¢ > 1 beliebig gewéhlt war, folgt die Behauptung. ad

Jetzt konnen wir die vollstdndige Umkehrung von Satz 3.3 zeigen und erhalten

somit wie gewiinscht die Existenz einer Bijektion zwischen F' und ‘B, 4.
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3.7 Parametrisierungssatz, Teil (ii). Sei p € ‘B, 4. Dann existiert ein ein-
deutig bestimmtes @ € § mit

1—(0)

im—— =1 falls m'
I o logd) falls m'(x) <0,

bzw.

1—(0)

li =1
710 9xp(— log 0)| log 0]

, fallsm/(x) = 0.

BEWEIS. Die Eindeutigkeit ergibt sich sofort aus dem Konvergenzsatz 3.6.
Falls x = 1 oder d = 0, besteht 3, ; nur aus positiven Konstanten. Sei p > 0
vorgegeben und 1 € § beliebig. Dann existiert nach Satz 3.3 ein ¢ > 0 mit

- 1—9(0) . 1=9(0)
Setzen wir nun ¢ := & und ¢(f) := ¥(ct/x0), so ist ¢ offensichtlich ebenfalls ein
Element von §, und wir erhalten sofort

. 1—9(0) _ - 1—(0)

Im Folgenden sei nun x < 1 und d > 0. Wir setzen zur Abkiirzung h,(0) :=
0Xp(—log#) wie in Definition 3.1.
Ist m/(x) < 0, definieren wir

g(0) :=e".

Da g offenbar vollstdndig monoton ist, ist nach Kriterium 2 in [Fel|, XII1.4,

nach stetiger Fortsetzung in 0 ein Element von £, das auerdem

lim 71 — v(0)

o o) (3.12)

erfiillt. Da nach Voraussetzung § # () gilt, wihlen wir nun ein beliebiges Ve g
Nach Satz 3.3 existiert dann ein p € P, 4 derart, dass

lim L= v ()

im 5 = 1. (3.13)

Wegen p € B, 4 ist h, streng monoton wachsend mit h,(0+) = 0 und h,(co) = oo,
und Gleiches gilt fiir h;. Beide Funktionen sind also bijektive Transformationen von
[0, 00). Somit ist u := h;lohp wohldefiniert. Da h,, fiir & € Z die Funktionalgleichung

hy(0e™?) = X, (0)
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erfiillt (ebenso wie hj), folgt aus der Identitét
hy (u(0e"?)) = hy,(0e*) = X h,(0) = X" h; (u(9))
mit der Bijektivitdt von h; bereits
u(ferl) = eFu(h).
Setzen wir nun ¢ := 1 o u, folgt

p(0T;) = ) (u(0 T7)) = ¢ (u(0)T)

und somit
N N N .
E][«0T) =E][¢(uOT)) =E][¢(u®)T:) = (@) = #(0),
i=1 i=1 i=1
also Ko = . Weiterhin gilt unter Ausnutzung der Stetigkeit von u~' in 0 sowie
von (3.13)
1m0 L 1=9(@) . 1-0(0)
B Gp(—logh) ~WE h(0) 0B hpld) (30

© erfiillt also neben der Fixpunktgleichung auch die geforderte Identitiat. Es bleibt
noch ¢ € £ nachzuweisen. Aus (3.12) und (3.14) folgt

1—
im =20
010 1 — ()
Nun koénnen wir genau wie im Beweis von Satz 3.6 folgern, dass
lim K" = ¢
n—oo

gilt. (Hierfiir reicht bereits die Giiltigkeit von (3.14) anstelle der Voraussetzung ¢ €
§ des Satzes aus.) Da ¢ nach Konstruktion stetig ist, muss auerdem limgo ¢(6) =
©(0) = 1 sein. Somit ist ¢ € £, und alles ist gezeigt.

Der Beweis im Fall m/(x) = 0 verlauft weitgehend analog. Diesmal setzen wir

jedoch

g(0) == — /000 16; ;2 dz und ¥(6) := g(x""h,(0)).

Um das Aquivalent zu (3.12) zu erhalten, stellen wir fest, dass

9(0) . log x'h,(0)
— =1 d lim————= =
910 1 — 6| log 6| e log ¢ X
gelten. Somit ergibt sich mit der Stetigkeit von A, in 0
1= . gix'hp(0)) g(x "hp(0))
im———— =lim——————~ = lim
010 hy(0)|logf| 010 —h,(0)|logh| 610 —x~th,(0)|logx~1h, ()]
g -1 g(6)
00 —6|logh] 010 1— 0| logd]

(3.12')
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Fiir beliebiges ) € § existiert nun nach Satz 3.3 wiederum ein p € By,a mit

. 1 —(0)
lim —— "7 — 3.13’
oo h;(6)|1log 6| ( )
hp(0) _ p(—logh
Da wegen g2 = gg—logag
0 0
0< lirninfM < limsupM < 00
010 010
gilt, folgt
1 0
lim og u(6) =1,
010 log6
so dass wir schlielich )
. 1—¢
1 = 3.14
910 Oxp(—log )| log 0| ( )
erhalten. a

3.8 Bemerkung. Eine besonders anschauliche Interpretation hat der nun voll-
stdndig bewiesene Parametrisierungssatz im Fall x = 1, m/(1) < 0. Bei dieser Kon-
stellation gibt es zu jedem ¢ > 0 genau einen Fixpunkt, der zudem den Erwar-
tungswert ¢ besitzt. Somit ist klar, dass aufker den im Beweis von Satz 2.11 bzw. in

Bemerkung 2.12 konstruierten keine weiteren Fixpunkte existieren.

3.3 Ein Momentenresultat

Im letzten Abschnitt begeben wir uns nochmals in die in der letzten Bemerkung an-
gesprochene Situation y = 1, m/(1) < 0. Simtliche Fixpunkte von K besitzen dann
endlichen Erwartungswert. Der folgende Satz beantwortet die naheliegende Frage
nach der Existenz von Momenten hoherer Ordnung. Es diirfte keine Uberraschung

mehr darstellen, dass diese ebenfalls vom Verhalten der Funktion m abhéngt:

3.9 Satz. Sei x =1 und m/(1) < 0. Ist dann p € F und 5> 1, so gilt

/Oooxﬁ pldr) <oo < m(B) < 1.

BEWwWEIS. Fiir die Hinrichtung halten wir fest, dass fiir z1,...,2xxy > 0 wegen

g>1
N

(Zmi)ﬂzsz

=1 =1
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gilt und Gleichheit genau dann vorliegt, wenn hochstens ein x; > 0 ist. Sind dann

W, Wy, ..., Wy u.i.v. Zufallsgrofen mit Verteilung p, folgt aus p € §

N 3 N
we L (STmw) =S T,
i=1 i=1

Diese Ungleichung muss auf einer Menge von positiver Wahrscheinlichkeit streng
sein: Anderenfalls hiatten die T; bereits f.s. disjunkte Trager, und nach Lemma 2.2

wire m = 1 im Widerspruch zur Voraussetzung. Also gilt

N
EW? >EW?Y T = m(B)EW?

=1

und somit m(f) < 1.
Nun setzen wir umgekehrt m(/3) < 1 voraus und bezeichnen mit k die eindeutig
bestimmte natiirliche Zahl mit & < § < k + 1. Dann ist

(3oa) < ()™

=1

(3.15)
k+1 ) 8
=Y z + . . el E
Z (i Z <Jl--JN S
wobei
N
8= {(jnr - rin) €N smaxj <k, > ji =k +1}.
i=1
Nun seien Y, Y], ..., Yy u.i.v. nichtnegative Zufallsvariablen mit beliebiger Vertei-

lung v. Dann liefert eine Anwendung der Jensenschen Ungleichung auf die Funktion
Blx) = o,

die wegen j; < k und § < k + 1 konkav ist,

N JiB N i B N
HEYikﬂ _ HE [(YZ’“)W] H Eyk k(k+1) — (EYk)
=1 =1 =1

Setzen wir nun 7;Y; in (3.15) ein und bilden den Erwartungswert, erhalten wir

8
E

B
k

(ZTY) <m(B)EY? +c(EY*)

mit einer Konstanten ¢, die von  und der Verteilung F', nicht jedoch von v abhéngt.
In Integralschreibweise entspricht dies

B
k

/(O’OO) 2? Kv(dz) < m(B) /(0700) 2 v(dz) +C< /(Um) o o d$)> . (3.16)
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Bild 4. m(2) =1 (gestrichelt), Parameterkombinationen mit 2. Moment (fett).

O.B.d.A. sei nun EY =1 (vgl. Bemerkung 2.12). Dann ist p geméf Satz 2.11 der
schwache Limes der Verteilungsfolge (K"01),en,- Aus (3.16) folgt somit

[ utan <m) [ utan o [ otutan)

Wegen m(5) < 1 existiert also mit dem Moment der Ordnung k bereits das der
Ordnung . Falls § € (1,2], also £ = 1, ist alles gezeigt. Da wegen der strengen
Konvexitéit von m im Intervall (1, 5] notwendig m < 1 ist, konnen wir im Fall £ > 1

B
k

das Argument (k — 1)-mal wiederholen, indem wir sukzessive k, k —1,...,2 anstelle
von (3 wihlen, und erhalten wiederum aus der (gegebenen) Existenz des ersten die
O

des [-ten Momentes.

Abschliefsend werfen wir noch einmal einen Blick auf das in Kapitel 2 vorgestellte

3.10 Beispiel (Fortsetzung von 2.5). Aus (2.4) folgt, dass genau dann fiir
Fixpunkte von K das erste Moment existiert, wenn

1 A-2

p:i-ﬁfur ein A € (2,2+\/§)- (3.17)

Man rechnet leicht nach, dass m4 (/) fiir gegebenes 5 > 1 und p € (0,1) monoton
wachsend in A ist fiir A > 2. Dann erhalten wir durch Einsetzen von (3.17) in die

Definition von m.4 ()

A-2

1 .
5 T fiir ein A € (2, Ap),

x =1, m}, (1) <0und mu,(B) <1 &
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wobei Ag die eindeutig bestimmte Losung > 2 der Gleichung
(A=2)AP —24+1=0

ist. Offenbar fillt fiir 3 — oo die Intervallgrenze Az gegen 2 und somit die Menge
der Parameterkombinationen, fiir die Losungen mit einem Moment der Ordnung
[ existieren, gegen (), wihrend umgekehrt fiir A | 2 bzw. p | 0 die Ordnung der
existierenden Momente gegen oo strebt.

Bild 4 zeigt die Parameterkombinationen fiir § = 2; hier ergibt sich die Inter-

vallgrenze A, zu @
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