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1 Einleitung

Unter einer (Standard-)Irrfahrt auf Z verstehen wir einen stochastischen Prozess
(M,)n>o auf einem Wahrscheinlichkeitsraum (2,2, P) mit Werten in Z, der sich
startend in My = 0 im Zeitpunkt n > 1 an der Position M,, befindet, in jedem Zeit-
punkt eine Position weiter nach rechts bzw. eine Position nach links zuriickspringt
und dies mit einer bekannten Wahrscheinlichkeit p € (0,1) bzw. 1 — p unabhéngig
von seinen Zuwéchsen zu anderen Zeitpunkten tut. Die Irrfahrt hat also stochastisch
unabhéngig und identisch verteilte Zuwéchse X, Xo, ..., die Werte aus {+1, —1} an-
nehmen,
M, =M+ Xz n>1
k=1
Bei einer Irrfahrt (M,),>o auf Z handelt es sich um eine diskrete Markov-Kette

(DMK), d.h.
PMn-!—l‘MO:-an — PMTL-H‘M”

fir alle n > 0. Nach Definition kann sich eine Irrfahrt namlich nur um eine Positi-
on pro Zeiteinheit weiterbewegen und sie tut dies unabhéngig von den Zuwichsen
zu anderen Zeitpunkten. Gegeben den gesamten Verlauf der Irrfahrt bis zu einem
Zeitpunkt n, miissen wir nur ihren gegenwartigen Aufenthaltspunkt kennen, um zu
wissen, wohin die Irrfahrt im néichsten Zeitpunkt mit positiver Wahrscheinlichkeit
springen kann. Eine Anwendung der Theorie der DMK liefert nachfolgende Resultate

iiber das Konvergenzverhalten von Irrfahrten:

e Falls p # %, so gilt lim,, ., M,, = 0o bzw. = —oo und lim,,_, % = FX;.



2 Einleitung

e Falls p = %, so ist die Irrfahrt rekurrent, also —oo = liminf, .. M, <

limsup,, . M,, = oo und lim,, % =FEX; =0.

(Vgl. hierzu [Als2], S.46f.)

Gegenstand dieser Arbeit sind allerdings Irrfahrten in zufillig variierenden Umge-
bungen. Eine Irrfahrt in zuféllig variierenden Umgebungen unterscheidet sich von
einer Standard-Irrfahrt auf 7Z dadurch, dass zum einen die Wahrscheinlichkeit, in
einem Punkt nach rechts zu springen, nicht in jedem ¢ € Z gleich ist, und zum an-
deren, dass diese Wahrscheinlichkeiten nicht fest, sondern selbst Zufallsgréfien sind.
Wir werden die Folge dieser Zufallsgrofien mit (U;);ez bezeichnen. In dieser Arbeit
vereinfachen wir die Situation insoweit, dass wir die U; als stochastisch unabhéngig
und identisch verteilt voraussetzen.

Die eigentliche Irrfahrt bezeichnen wir mit (.S,),>0. Eine Realisierung besteht nicht
nur aus einem Pfad w € ZY, sondern auch aus einer Umgebung u € [0, 1]%, wobei
natiirlich nur der Pfad beobachtet werden kann. Wir iiberlegen uns leicht, dass die
Irrfahrt in zuféllig variierenden Umgebungen keine DMK darstellt. Denn verfolgen
wir einen Pfad bis zu einem Zeitpunkt n bei unbekannter Umgebung u, so erhalten
wir sehr wohl Informationen aus der Vergangenheit dariiber, wie sich die Irrfahrt
im n#chsten Schritt verhalten wird. Haben wir ndmlich schon sehr haufig gesehen,
wie die Irrfahrt in einem bestimmten Punkt weitergesprungen ist, weicht nach dem
starken Gesetz der groflen Zahlen die relative Haufigkeit von der theoretischen, un-
bekannten Wahrscheinlichkeit mit sehr geringer Wahrscheinlichkeit stark ab. Dies
ist der entscheidende Unterschied zwischen der Standard-Irrfahrt und der Irrfahrt
in zuféllig variierenden Umgebungen: Die Standard-Irrfahrt ist eine DMK, wéhrend
wir bei der Irrfahrt in zuféllig variierenden Umgebungen aus ihrem vergangenen
Verlauf Informationen iiber ihren zukiinftigen Weg erhalten.

Obwohl eine Irrfahrt in zufillig variierenden Umgebungen keine DMK ist, werden
wir in den Beweisen iiber ihr Konvergenzverhalten die Theorie diskreter Markov-
Ketten anwenden konnen. Denn gegeben eine feste Umgebung ist eine Irrfahrt in
zuféllig variierenden Umgebungen eine DMK aus den gleichen Griinden wie die
Standard-Irrfahrt. Wir werden viele Aussagen zunéchst unter einer festen Umge-
bung u beweisen und unter Beachtung, dass eine Irrfahrt in zufillig variierenden

Umgebungen eine bestimmte Eigenschaft f.s. besitzt, wenn die Irrfahrt bei gege-



bener Umgebungsfolge diese Eigenschaft fiir PV-f.a. Umgebungen u P,-f.s. besitzt,
dann die eigentliche Aussage zeigen kénnen.

Die in dieser Arbeit vorgestellten Ergebnisse entstammen dem Artikel ,Random
walks in a random environment“ von Solomon [Sol]. Zu Beginn werden wir zunéchst
das Irrfahrten in zuféllig variierenden Umgebungen zugrunde liegende Modell ange-
ben. Dann werden wir uns mit dem Konvergenzverhalten von Irrfahrten beschéftigen
und als Resultat erhalten, dass eine Irrfahrt in Abhéngigkeit von der Verteilung der
U; entweder gegen oo bzw. —oo konvergiert oder rekurrent ist. Anschliefend wer-
den wir mit Hilfe des Birkhoffschen Ergodensatzes die Konvergenzgeschwindigkeit
einer Irrfahrt bestimmen konnen. Dabei werden wir feststellen, dass eine Irrfahrt in
zuféllig variierenden Umgebungen im Vergleich zu einer entsprechenden Standard-
Irrfahrt langsamer ist: Vergleichen wir eine Irrfahrt in zuféllig variierenden Umge-
bungen mit einer Standard-Irrfahrt, die in jedem Punkt die Ubergangswahrschein-
lichkeit EU; besitzt, so konvergiert letztere schneller. Die allgemeine Theorie ab-
schliefend bestimmen wir die erwartete Anzahl der Besuche einer Irrfahrt in Punk-
ten aus Z.

Im dritten Kapitel betrachten wir ein Beispiel einer Irrfahrt, fiir die lim,,_,., .S, = oo
und lim,, S—TZ’ = 0 gilt, die also mit Geschwindigkeit 0 gegen oo konvergiert. Die-
sen ungewohnlichen Fall gibt es unter bestimmten Voraussetzungen bei Irrfahrten in
zuféllig variierenden Umgebungen. In unserem Beispiel wird die Umgebungsfolge der
Irrfahrt (U;);ez aus nicht f.s. konstanten ZufallsgroBen bestehen, die entweder mit
Wahrscheinlichkeit 1 — p den Wert 1 annehmen, also rechtsreflektierende Barrieren
sind, oder einen anderen festen Wert echt zwischen 0 und % mit Wahrscheinlichkeit
p. Definieren wir 7, als die Ersteintrittszeit der Irrfahrt in den Punkt n, n € N,
dann wird es unser Ziel sein, Funktionen f zu finden, fiir die % bzw. % in Wahr-
scheinlichkeit gegen zu bestimmende Grenzwerte konvergiert.

Herzlich bedanke ich mich bei Herrn Alsmeyer fiir die gute Betreuung und geduldige
Hilfe bei der Erstellung dieser Diplomarbeit.






2 Irrfahrten in zufdllig variierenden

Umgebungen

2.1 Das Modell

Zur Modellierung einer Irrfahrt in zufélligen Umgebungen wéhlen wir die von den
Zylindermengen erzeugten o-Algebren 2(; und 2, iiber dem Raum der Umgebungen
[0,1]% bzw. der Menge der Pfade der Irrfahrt Z~. Durch Produktbildung erhalten
wir 2 := 2y ® 2y als o-Algebra iiber [0,1]% x ZN.

Wir definieren nun die Irrfahrt S durch S := (S,,),en mit

Sy [0,1)% x ZN — 7, (u,w) — w,
und die zufillige Umgebung U durch U := (U;);ez mit
Ui [0,1]% x ZN — [0,1], (u,w) — u;.

Da die U; als stochastisch unabhéngig und identisch verteilt vorausgesetzt werden
sollen, withlen wir auf ([0, 1]%,2;) das Produkt eines WahrscheinlichkeitmaBes auf
0,1] als Verteilung von U und bezeichnen dieses mit Q.

Zu gegebenem u € [0,1]% sei M, die Verteilung der zeitlich homogenen diskreten
Markov-Kette, die eindeutig durch ihre Anfangsverteilung &, und ihre Ubergangs-

matrix P = (p;;) ez mit
Dij = 1 —uy, 7=1—1

0, sonst
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bestimmt ist. Nun kann ein Maf3 P auf ([0, 1)” x ZN, ) durch

P(A x B) /M

definiert werden. (Zur Wohldefiniertheit und den zu erfiillenden Mafleigenschaften
vergleiche [Sol].) Nun koénnen wir fiir die bedingten Verteilungen abkiirzend definie-
ren

Py(:):=P(S€-|U) und P,(-):=P(Se-|U=u)=M,/).

Um das Grenzverhalten von Irrfahrten in zufélligen Umgebungen herzuleiten, be-
dienen wir uns nachfolgender Argumentation: Eine Irrfahrt in zuféllig variierenden
Umgebungen besitzt eine bestimmte Eigenschaft P-f.s., wenn die Irrfahrt bei gege-

bener Umgebungsfolge diese Eigenschaft fiir PV-f.a. Umgebungen u P,-f.s. besitzt.

Lemma 2.1 Sei B € Ay mit PYV=%(B) = 1 fir PV-fa. u € [0,1]%. Dann ist
P(SeB)=1.

Beweis: P(S € B) = PU9([0,1]* x B) = f[o 1z PSU=(BYPY (du) = 1. U

2.2 Das Grenzverhalten

Wir untersuchen nun also zunéchst das Grenzverhalten von Irrfahrten bei gegebener
Umgebungsfolge, um dann mit Hilfe von Lemma 2.1 auf das Grenzverhalten von

Irrfahrten in zufélligen Umgebungen zu schlieflen.

Satz 2.2 Sei (up)nez eine barrierefreie Umgebung, also eine Folge reeller Zahlen
mit 0 <wu, <1 fir allen € Z.
Wir definieren

hl'...'hn, n>0
Up = 1 — uy, hn::U—n und  gp = {1, n =

hn-...'h_l, n <0
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Die Wahrscheinlichkeit, von i nach j in endlicher Zeit zu gelangen, definieren wir
durch f =", GG e Z mit

1Y
fi = P(Ty=n| S =1)

wobei

T; :=inf{k > 1: S, =j}.

Sei auflerdem pigy = -, nfé?) die erwartete Zeitdauer um zum ersten Mal von 0

nach 1 zu gelangen.

(a) Seii> j.
N e S e hy
Falls )" | gn < 00, s0 ist f}; = Sy < 1.
Falls 37" | gn = 00, s0 ist f; = 1.
(b) Seii < j.
(g hy) T
Falls 307 (g—n) ™" < 00, so ist f}; = Z?:_C’O( : )71 < 1.
S (hje. - hy)
Falls 370 (g-n) " = 00, soist f; = 1.

(c) Aus fi; =1 folgt po1 = Zjl.zfoo(l +hj_1)-h;-...-he.

Beweis: (a) Sei k € Z mit j < i < k. Wir definieren die Tabuwahrscheinlichkeit
durch 4 f5 == 320" 1k fl-(]m mit

K i(j") =P,(T; =n;T), >n | Sy=1)

fiir i # j,k und n > 1 sowie ¢ f}; := 1 und 1. fy; := 0. (1 f7;) ist die eindeutige Losung

des Gleichungssystems

(Zj = 1
a; = UGi+1 + Vi1 ] <i<k (21)
ap = 0

(siche Anhang, Beh.1). Sei r € Z mit j < r < k. Dann gilt

Qr = (ur + Ur)ar = UpQry1 + VpQp_1



8 [rrfahrten in zuféllig variierenden Umgebungen

und somit
Apy1 — Qp = hr(ar - ar—l)-

Hieraus folgt induktiv

Ap41 — (H hl) Aj4+1 — )

l=j5+1
und Summation liefert fir j <i <k
i—1
a; —a; = Z(arﬂ — = <Z H hl) Ajt1 — aj). (22)
r=j r=j l=j5+1
Damit erhalten wir
k—1 r
—1= Qap — aj = (Z H h,l) (aj-i-l — 1)
r=j l=j+1
und so
(£t )
Zk : h]+1 hr

k—1
Zr:j+1 hj—i—l et hr
k—1 ’
S i hy

aj+1 =

Einsetzen dieses Wertes in (2.2) liefert fir j <i <k

i—1
a; = (Zhjﬂ'---'hr) (@ —1)+1
r=j

1—1 r]+1 ]+1‘ hr—zl:;]lhj_}-lhT
= Zhj—H o hy 1
! Z h]+1 - By
-h
-h

r

Zk -

Zf:; hjir-.

fo;;h’j-‘rl""'h‘r_Z:.;?h]q_l‘...'hr
Zf;jl hjyi+...hy

+

r
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fo;ilhjﬂ-...-hr.
St hjer o hy

Da die  f}; die eindeutige Losung von (2.1) sind, erhalten wir

kf*:fo;zlh]"‘lh'T
LS S T

Nach [Chul], S.66 gilt
Zf;zl hj—i—l ot hr

lim ,f" = lim , = fr
T —
k—o0 E k—»oogT:;hj+1-...'hr+§:":?hj+1'...'hr “
und damit f; = 1 genau dann, wenn » > hjiq - ... h, = 0o ist.

Da Addition bzw. Subtraktion von endlich vielen Summanden am Konvergenzver-
halten der Reihe nichts veréndert, folgt die Aquivalenz zu Yoo hjrr oo hy =00
und weiter zu Y -, g, = 0.

(b) Wir fiithren diesen Fall auf (a) zuriick und betrachten dazu die im Null-
punkt gespiegelte Irrfahrt (gn)nzo, definiert durch S, := —S,, n > 0. Analog zur
Irrfahrt (S,)n>0 definieren wir fiir die gespiegelte Irrfahrt die Wahrscheinlichkeiten
s Up, ﬁn, Jn und f;; Wie man sich leicht iiberlegt, gelten dann u,, = v_,,, 0,, = u_,,
n="(h_)™Y g, = (9_n)" " und f;; = f*; ;- Ist j > i, dann gilt nach (a)

>

fi=lig = S

Ty
iszoo(hj L hn)fl

;.10:1 (g—n)il = Q.

¢) Wir unterscheiden zwei Fille. Zundchst nehmen wir an, dass 7] unter

. . 0o A
und weiter fi5 = 1 genau dann, wenn » >, g, = >

P,(- | Sy = 0) unendlichen Erwartungswert besitzt. Wir definieren '™ := Ty A m

fiir alle m € N und bezeichnen den Erwartungswert einer Zufallsgrofie X unter
P,(- | So =0) mit E,,X. Dann ist

Eu,0T1(m) =1+ U()(Eﬁ71u70T1(m_1) + Eu,OTl(m_Q)),

wobei ¥ die Shift-Operation, definiert durch 9(..., u_1, ug, ug, ...) := (..., ug, U1, Uz, ...),

sei. Wir schéatzen ab

EuoT™ > 14 vg(Eg-ra 0T + B, oT™)
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und erhalten, da Eu’oTl(m) < m < oo und nach Voraussetzung ug # 0 gelten, die
Ungleichung

und iterativ weiter fiir alle n < m —1

1
EuoTi™ = 3" (Lt hj)ho oo hj+hoo oo hoyBynma oI Y,

j=—n+1
Fiir n = m — 1 folgt also

1

1
E o™ = > (Lt+hjhe by <Y (Lt hya)hg ... hy
=

j=—m+2
Lassen wir m gegen oo laufen, ergibt sich aufgrund der Satzes von der monotonen
Konvergenz

1
EuoTi < Y (L4 hja)ho-...-h.
Jj=—00
Wir hatten E, o171 = oo vorausgesetzt, erhalten folglich auch die Divergenz der Reihe
Zl (1 + h]‘_1>h0 o hj und damit, dass Eu70T1 = Zl (1 + hj_l)h() L hj

J=—00 j=—00
gilt.
Im zweiten Fall betrachten wir E, (77 < oo und zeigen zunéchst, dass dann auch
Z;:_Oo(l +hj_1)ho ... hj < oo gilt. Wir nehmen an, es gelte

1

Z (]_—I—h]_l)hoh]:()o

j=—o00
und beachten, dass aus F, 17 = uio + hoEy-1,T1 < oo die Endlichkeit von Ey-1,T7
folgt. Nun iterieren wir und erhalten

1
B,y = u_—l'hOEﬁ*luTl
0

1

= Z (1+hj_)ho-...-hj+ho-... - heyEyn1,0T}

Z (14 h;_1)ho-... h;

v
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fiir alle n € IN. Da die rechte Seite der Ungleichung fiir n — oo gegen oo konvergiert,
folgt der Widerspruch E, o7y = oo. Deshalb muB 32} (1+h;_1)ho-...-hj < o0

j=—o0

gelten. So liefert uns weitere Tteration Fy,oTh = S0 (1+h;_1)ho - ... h;. O

j==oc

Nun kann auf das Konvergenzverhalten von Irrfahrten bei gegebenen barrierefreien

Umgebungen geschlossen werden.

Satz 2.3 Sei (up)nez €in Folge reeller Zahlen mit 0 < u,, < 1 fiir alle n € Z. Dann
qilt:

(a) Aus > 27 (g-n) P =00 und Y >0 g, < 00 folgt lim, o0 Sy, = 00 Py-f.s.
(b) Aus 377 (g—pn)™! <00 und > 07, gn = 00 folgt lim,, oo S, = —00 P,-f.s.

(¢c) Aus 327 (g-n) P =00 =" g, folgt die Rekurrenz von (S,)nen. Insbeson-

dere gilt —oo = liminf, .., S, < limsup,,_,. S, = 0o P,-f.s.

Beweis: (a) Aus den Voraussetzungen folgt mit Satz 2.2, dass f;; = 1 fiir i < j und
Ji; < 1fire> j gilt. Wir setzen og = 0 und definieren fiir alle n € N die Stopzeit
o beziiglich (G,)n>0, G = 0(X1,...,X,), wobei (X;);>1 die Folge der Zuwéchse
der Irrfahrt sei, durch

op =1inf{k >0,.1:5,=0,5=—1firein 0,1 < j < k}.

Demnach ist oy der erste Zeitpunkt, in dem die Irrfahrt wieder in 0 ist, nachdem sie
mindestens einmal in —1 war. Da f*; ; = 1 gilt, ist P,(01 < 00) = f5 ;. Wir zeigen
nun, dass

Py(0n < 00) = ff)k,—l

auf {o,,_1 < oo} fiir alle n € N gilt. Fiir beliebiges A € B(Z)* x 7>, k > 1, geniigt
PU((XUn+17 s 7X0'n+k) S A|gan) = Pu((Xh cee vXk) S A)

auf {0, < oo} zu zeigen, wobei G,, = {B € Z¥ : BN{o, = k} € G, fiir alle k € N}.

Dann ist namlich
qusﬁnw‘*k)kz()'gﬂ'n _ qusk)kzo
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auf {0, < oo}. Da, gegeben eine Umgebung u, (S, ),>0 eine Markov-Kette bildet

und deshalb P%n+119n — pSni1lSn fiir alle n € N gilt, rechnen wir nach:

Pu((XUn+17 B aXUn—i-k) € A|gan)
= Y Puon=174,8=0,(Xj1,.... Xj1x) € AlGs,)

JeN
= Y Pu(on =190, ) Pul(X1, .., Xi) € A)
JjeEN

= Pu((Xlaan’) € A)
auf {0, < co}. Wir erhalten

Py(00 <00,...,0041 =00) = (fo_1)" (1= f5_1),

und damit

[o.¢]
ZPu(JO <00, ..., 0501 =00) = 1.
n=0

In endlicher Zeit besucht die Irrfahrt also letztmalig —1 und springt von dort nach
rechts weiter. Dieselbe Aussage 1483t sich fiir jedes n € Z zeigen, so dass lim,, .o, S,, =
oo gelten muf.

(b) Analog zu (a).

(c) Aus den Voraussetzungen folgt f; = 1 fiir sowohl ¢ < j als auch i > j.

Damit ist f; = w;f,, +vif,; =1 fir alle i € Z, also ist die Irrfahrt rekurrent. O

Um im Anschluss auch Aussagen iiber das Grenzverhalten von Irrfahrten in zufillig

variierenden Umgebungen machen zu kénnen, wird nachfolgendes Lemma benétigt.

Lemma 2.4 Sei (Y,,)n,>1 eine Folge unabhingig identisch verteilter, nicht f.s. kon-
stanter endlicher Zufallsgrifien und (Z,)n>0 der zugehorige Standard-Random- Walk.
Dann gilt:

(a) S 2P(Z, > 0) < 0o genau dann, wenn limy, .o Z, = —oo f.s., und beide

Aussagen implizieren Y oo e?n < oo f.s.

(b) S tP(Z, > 0) = 0o = Y07 2P(Z, < 0) genau dann, wenn —oo =

n=1n

liminf, . Z, < limsup,_, . Z, = oo fs., und beide Aussagen implizieren

Do =00=3770 €% fs.
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Beweis: (a) Nach [Chu2], S.244, 265, gilt

2: P(Z, > 0)

genau dann, wenn

limsup Z, < oo fs.

n—oo

Die letzte Aussage ist nach [Alsl], S.165, dquivalent zu

lim Z,, = —o0.

Unter den Voraussetzungen des Satzes gilt nach [Sto|, dass entweder lim sup,,_, \Z/—’i =

oo f.s. oder lim,,_, . 22 = -0 f.s. ist. Hier kann nur lim,,_,., % T = -0 f.s. gelten.

Es existiert also n’ € N mit Z,, < —/n fiir alle n > n/. Damit gilt

0<Ze <Ze‘f<oo

woraus die Behauptung folgt.
(b) Analog zu (a) gilt

1 1
—P(Z, >0) = —P(-Z,>0
D P
genau dann, wenn
limsupZ, =occ und limsup—Z%, = —liminf Z, =00 fs.

n—o0 n—oo

Die letzte Behauptung ist klar, da sowohl gegen oo als auch gegen —oo konvergie-

rende Teilfolgen von (Z,),>0 existieren. O

Jetzt konnen wir beweisen, dass es fiir das Grenzverhalten einer Irrfahrt in zuféllig
variierenden Umgebungen in Abhéngigkeit von der Verteilung der Umgebung drei
Moglichkeiten gibt: die Irrfahrt lduft entweder gegen co oder gegen —oo oder sie ist

rekurrent.

Satz 2.5 Fir die Folge (Uy)nen unabhingig identisch verteilter, nicht f.s. konstan-
ter Zufallsgrifien gelte 0 < U, < 1 oder 0 < U, < 1 fiir alle n € 7Z. Wir definieren

Hl'-~-'Hn7 n>0
1-0U,

Gn =11, n=0 mit H,:= 0

H,-....H, n<0
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(a) Y07  2P(Gy > 1) < oo impliziert lim,,_.o, S, = 00 f.s.
(b) S LP(G, < 1) < 0o impliziert lim, .o S, = —00 f.s.

(¢c) v LP(G, > 1) = 00 = Y07 2P(G,, < 1) impliziert die Rekurrenz von

n=1n

(Sn)nez, insbesondere gilt —oo = liminf,_., S, < limsup,, ., S, = o0 f.s.

Beweis: (a) Wir betrachten zunéchst den Fall, dass keine Barrieren existieren, also
0 < U, <1 fiir alle n € Z gilt. Wir definieren Z,, := )", log H;, n € N. Unter der
Voraussetzung

o0 o

Z %P(anlog H;>0) = Z %P(eZ?ﬂlogHi > 1)
i=1 n=1

n=1
= i%P(ﬁHi > 1) < 00
i=1

n=1

folgt mit Lemma 2.4
ZG” = ZGZ" < oo fs.
n=1 n=1

Folglich ist (G),)nez f.s. eine Nullfolge und, da die U;,i € Z, identisch verteilt sind,
gilt damit

|
= fs.
;G_n o0 S

Satz 2.3 impliziert lim, .. S, = oo P,-f:s fiir PV-f.a Umgebungen u. Mit Lemma
2.1 folgt die Behauptung.
Seien nun rechtsreflektierende Barrieren erlaubt, es gelte also P(U,, = 1) > 0 und

U, > 0 fir alle n € Z. Dann ist
> PU,=1) =00
n>1

Mit dem Lemma von Borel-Cantelli folgt

P(limsup{U, = 1}) = 1.

n—oo

Es gibt also f.s. unendlich viele nach rechts reflektierende Barrieren. Also gilt

lim S, = fs.

n—oo
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Es bleibt

o0

1
Y PG, >1) < o0
n

n=1
zu zeigen. Beachten wir, dass die H;, @ € 7Z, positiv, stochastisch unabhéngig und

identisch verteilt sind, erhalten wir nachfolgende Ungleichungen:

o0

=1 1
;nPG >1) < ZEP(Gn>0)

n=1
o0

= > (P > 0)

n=1
9]

D (P(U < 1)" < oo

n=1

IA

Die Aussagen (b) und (c) lassen sich weitestgehend analog zu (a) beweisen.
Nur zu (b) ist anzumerken, dass, vorausgesetzt Barrieren treten nicht mit positiver

Wahrscheinlichkeit auf, die Voraussetzung

=1 =1
ZP(Z,<0)=Y —P(-Z,>0) <
;H ) ;H ) < o0

die fast sichere Konvergenz der Reihe

Z T _ Z S logH Y ZG

n=1

impliziert.

Und im anderen Fall, dass mit jeweils positiver Wahrscheinlichkeit nach links re-
flektierende Barrieren auftreten, kann man vollig analog zu (a) die Konvergenz der
Reihe 2, £ P(G, < 1) und die der Irrfahrt gegen —oo beweisen. O

Satz 2.6 Fuxistiert, gegeben die Voraussetzungen von Satz 2.5, der Erwartungswert
Elog Hy, dann gilt

(a) >0 2P(G, > 1) < 00 & Elog Hy < 0.

(b) > LP(G, < 1) < o0 < Elog Hy > 0.

(¢c) S tP(Gy>1)=00=> " +P(G, <1) & Elog H, =0.
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Beweis: (a) Es existiere Elog H;. Dieser ist nach [Als1], S.166, genau dann negativ,

wenn Z, f.s. gegen —oo konvergiert. Nach Lemma 2.4 ist dies dquivalent zu

Die Aussagen (b) und (c¢) kénnen analog zu (a) bewiesen werden, bei (c) unter

Beriicksichtigung, dass U; nicht f.s. konstant ist und daher

1

P(log Hy =0) = P(Hy =1) = P(U1 = 5) < 1

gilt. O

Bemerkung 2.7 Der Fall, dass

gleichzeitig erfiillt sind, kann nicht eintreten, da nach [Chu2], S.261, die Reihe
S>> LP(G, = 1) immer konvergiert. Es gibt also nur die drei oben betrachteten

n=1n

Falle.

P(G, >1) <oco und Z —P(G,<1) <

n= 1

3IH

2.3 Die Konvergenzgeschwindigkeit

Zur Untersuchung des Grenzverhaltens der Folge (22),>1 kénnen weder das starke
Gesetz der grolen Zahlen noch der Birkhoffsche Ergodensatz angewandt werden, da
die Zuwéchse X,, := S,,—S,,_1,n € N, weder unabhéngig und identisch verteilt noch

stationér sind, wie der anschliefende Satz zeigt.

Satz 2.8 Die Irrfahrt (S,)nen hat genau dann stationdre Zuwdchse X,,n € N,
wenn die Umgebung U f.s. aus Konstanten besteht, wenn also EUZ = (EUy)?* gilt.

Beweis: "=": Aus der Stationaritéit der Zuwéchse folgt insbesondere

P(Xl:1,X2:1):P<X2:1,X3:1> (23)
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Wir definieren fiir alle n € Ng die o-Algebra F,, durch F,, := o(U, X, ..., X,,). Fiir
alle n € Ny ist dann

P(Xpn=1,Xpp=1|F) = E(lx, -n3P(Xno =1 Fon) | F2)
= E(lyx,.,-1Us,., | Fn)
= BE(lyx,,=1Us, 11 | Fn)
= P(X,1=1|F)Ug+1 [Us 41 Fn-messbar]
= UsUs,s1  fos. (24)

Mit (2.4) gelten weiter, da die U; unabhéngig und identisch verteilt sind,

P(X,=1,X,=1) = E(P(X;=1,X,=1]|0))
= E(UU,)
= (EU,)?

und

P(X;=1,X3=1) = > E(lx-3P(X2=1Xs=1|7F))

jE{l,—l}

= ) BE(lx=pUiUj)

jG{l,—l}

= Z E(P(X1=j|U)U;Uj11)
jG{l,—l}

= E((U(]UlUQ + (1 — UO)UflU(J))
= B(UUyUs) + E((Uy — UU_y)
= (EUy)’ + EUy(EU, — EUY).

Mit (2.3) erhalten wir die Gleichung
(EUy)* = (EUy)* + EUy(EU, — EU)
und damit
0= (EUy)? — EUGEU; = ((EUy)? — EUZ)EU,. (2.5)

(2.5) ist erfiillt, wenn Uy = 0 f.s. oder wenn (EUy)? = EUZ, also wenn U f.s. kon-

stant ist.
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7«<": Sind die U, f.s. konstant, hat (.S,),>0 unabhéngig und identisch verteilte

Zuwéchse. Damit ist die Folge der Zuwéchse insbesondere stationér. O

Auch wenn die Folge der Zuwéchse (X,,),>1 selbst nicht stationér ist, so kénnen
dennoch mit Hilfe des Birkhoffschen Ergodensatzes Aussagen iiber das Grenzverhal-
ten von (22),>; gemacht werden. Wir definieren dazu die Ersteintrittszeit in n fiir
n > 1 durch

T, = inf{k > 0: Sx = n}, (inf @ := o)

und setzen Ty = 0. Wir definieren weiter die Dauer vom ersten Besuch in n — 1 bis

zum ersten Besuch in n durch
T =1, —T,_1 firn>1.

T_, und 7_, definieren wir analog.
Zum anschliefenden Beweis der Ergodizitéit der Folge (7,)nen benotigen wir das

folgende Lemma.

Lemma 2.9 Seien m,k,j € N mit m > k, und ferner Cy,...,Cy,Dy,...,D; CN

mit Dy C (0,m — k| fir s=1,...,7. Setzen wir (7,)nen als stationdr voraus, gilt

P(r, € Co,1 <7 < k;Typys € Ds, 1 < 5 <)

(2.6)
= P(r, € C,,1 <1 < k)P(7, € D,,1 <5< ).

Beweis: Wir definieren A := A; N A, mit
Ay ={r,€C,1<r<k} und Ay :={mns € Ds,1 <s<j}.

Ay héngt nur von den Komponenten Sy, ..., Sp, der Irrfahrt ab und Ay von den

Komponeneten St , ..., Da (S, )nen unter allen P,, u € [0, 1]%, eine Markov-

Trty+

Kette ist und m > k gilt, sind A; und A, unter allen P, stochastisch unabhéngig,

also

Wir zeigen als néchstes, dass aufgrund der speziellen Bedingung an die D, sogar
Py(Ay) und Py(As) stochastisch unabhéngig sind. Py(A;) ist messbar bzgl. der von
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(Un)EZt . erzeugten o-Algebra. Ist 7,1, € Dy, 1 < 5 < j, 80 ist Tpuys < m — k, und

n=-—oo
da S,.1 = S, £ 1 gilt, die Irrfahrt also pro Zeiteinheit nur einen Schritt vor oder

zuriick gehen kann, ist
m—k m+k
2 2
auf dem Weg von m nach m + j. Also féllt die Irrfahrt insbesondere nicht weiter als

auf k zuriick. Darum ist Py (Ay) messbar bzgl. o((U,,)22,). Weil die U, stochastisch
k-1

n=—oo

S, > m —

unabhéngig sind, sind die o-Algebren o ((U,,) ) und o((U,)22,.) unabhéngig und

deshalb auch Py(A;) und Py(As). Daraus folgt nun unter Beriicksichtigung der

Stationaritét der Folge (7,)n>1

P(7, € Cp, 1 <7 < ki Tynys € Dyy1 < 5 < )

= /Pu(n € Cr1 <r <kiTpmys € Dy, 1 <5< 5)PY(du)
= /Pu(n € Cry1 <7 < k)Py(Tigs € Dy, 1 < 5 < 5)PY(du)
= /Pu(rr € C., 1 <r <k)PY(du) /Pu(Tm+s € D,,1 <5< j)PY(du)

= /PU(TT €C,l<r< k)PU(dU)/Pu(TS € D,,1 <5< j)PY(du)
= P(r,€C,,1<7r<Ek)P(r, € D,,1 <5 <35).

Satz 2.10 Se:limsup, .. S, = oo f.s. Dann sind die 7, f.s. endlich, und die Folge

(Tn)n>1 ist stationdr und ergodisch.

Beweis: Ist limsup,, ., S, = oo f.s., dann ist klar, dass 7, fiir alle n € N f.s. endlich
ist. Zum Beweis der Stationéritédt von (7,),>;1 iiberlegen wir, dass es eine Funktion

f gibt, so dass fiir alle k£ > 1

(Tn)nZk = f((UTk_1+n)n€Z> (STk—1+n - STk_l)nZO)

gilt, da die 7, fiir n > k£ nur von der Umgebungsfolge U und der Irrfahrt ab deren

Ersteintritt in £ — 1 abhéngen. Kann gezeigt werden, dass

(Un)nexs (Sn)nz0) = (Unesn)nezs (Sten — St dnzo)
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fir alle £ > 1 gilt, so folgt die Stationaritdt der Folge (7,,)n>1. Sei ¥ die Shift-
Operation, definiert durch 9(...,u_1, ug, us,...) := (..., ug, u1, us, ...). Fiir alle j > 1,
k> 1 und B,C € BN gilt dann, da die Irrfahrt, gegeben eine feste Umgebung u,

stochastisch unabhéngige Zuwéchse besitzt,

3

Ty, = 5,9"U € B, (S1,4n — Sty )nz0 € C)
Ty = 5,%°U € B, (Sj1n — Sj)nz0 € O)
P(Ty = 4, (Sj1n — S;)nz0 € C | 91U = u) PV (du)

I
3

P(Ty, = j | U = w)P((Sj1n — Sj)nzo € C | ¥'U = u) PV (du)

Py5u(Tr = §)Pu((Sn)nso € C)PY(du)  [Usi € 7, uiv.]

I
By~

P(Ty = j | 977U)1p(U)P((Sp)nz0 € C | U)]

ELin=p1p(U)P((Su)nzo € C | U) [97'0])  [Lp(U), P(S € C'| U) o(U)-messb.]
Lir=pp 1 (U)P((Sn)nz0 € C' | U)]

L7, = E(1(U) 1o ((Sn)nxo) | U)] [15(U) o(U)-messb.].

I
e

= F
= F

Summation iiber j liefert

P(ﬁTkU € B, (STk+n — STk)HZO € C)
= E(E[1(U)Lo((Sn)nz0) | U])
= P(U € B, (Sn)nzo € C)

Damit ist die Stationaritét von (7,),>1 gezeigt.
Im Nachfolgenden wird die Ergodizitdat der Folge 7 := (7,,),>1 nicht direkt gezeigt,
sondern die stiarkere Aussage, dass 7 mischend ist, d.h. dass

lim P(re€ A, 7 € 9"™(B)) = lim P(t € A, (Ty41,..) € B) = P(t € A)P(1 € B)

m—00 m—00

fir alle A, B € @, B(N) gilt, wobei ¢ wieder die Shift-Operation bezeichnet. Nach
[Dur|, S.310, geniigt es, die obige Gleichung fiir die Mengen eines durchschnittsta-

bilen Erzeugers von ).~ ; B(N) zu zeigen. Wir definieren also

5::{(6’1><...xC’lxle...)eé‘B(lN):lelN}
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und betrachten (C7 x ... x Cpy x Nx ...),(Dy x...x D xNx...)e€& Zue>0
wahlen wir N derart, dass P(Ui<s<j{7s € Ds\(0, N)}) < ¢ gilt. Wir konnen unter

Beriicksichtigung der Stationaritéit der Folge 7 abschétzen:

P(r, € Coy1 <1 < k;Tias € DsN (0, N], 1 < 5 <)

IN

P(r, € Cp)1 <7 < ki Topys € Dy, 1 <5 <)

IN

P(r, € Coy1 <1 < k;Tias € DsN (0, N], 1 < 5 <)
+P(Tiis € Di\(0, N), 1 <5 <)

P(r, € Co,1 <71 < k;Tiss € Ds N (0, N], 1 < 5 <)
+P(1s € DA(O,N), 1 < s <)

P(r, € Coy1 <1 < k;Tias € DsN (0, N], 1 < 5 <)
+P(Uicsgi{ms € D\(0,N)})

< P, €Cr,1<r<k;Tpmis € D;,N(0,N],1 <s<j)+e.

IN

IA

Nun gilt weiter unter Verwendung obiger Abschétzung und (2.6)

P(r, € Co.,1 <r <k)P(r; € D;N (0,N],1 < s <)
lim P(1, € Cp, 1 <r < k;Tpmes € DyN(0,N],1 <5< 7)

< j};rZP(rreCr,lgrgk;rmHeDs,lgsgj)
< Tiii{l)oP(TrGCT,lST’ﬁk;Tm_,_sGDSH(O,N],lﬁsﬁj)—FE
= %E%OP(TTEC’T,ISTSkJ)P(TSEDSO(O,N],l§s§j)+5
= P(r, €C,1<r<k)P(rs € D;N(0,N],1 <s<j)+e.
Laufen nun N gegen oo und e gegen 0, so folgt die Behauptung. O

Wie eben gezeigt wurde, ist unter der Voraussetzung limsup,, .. S, = oo f.s. die
Folge (7,,)n>1 ergodisch und somit eine wichtige Voraussetzung des Birkhoffschen Er-
godensatzes erfiillt. Um den Ergodensatz anschliefend anwenden zu konnen, miissen

wir noch untersuchen, wann 7, integrierbar ist.

Lemma 2.11 Aus EH; < 1 folgt lim,, ., S,, = 00 f.s.
Beweis: Da GG, > 0 P-f.s., kénnen wir wie folgt abschétzen:

P(G,>1)< EG,=EH,-...-H,=EH,-...- EH, = (EH,)"
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fiir alle n € N. Ist nun FHy < 1, dann folgt

~ 4 ~ 4 0
nzl ~P(Gy > 1) Zg EHy)" < ;(EHO)" < 0.
Nach Satz 2.5 konvergiert S,, daher f.s. gegen co. O
Lemma 2.12
B — T, EH0<1'
0, EFHy>1
Beweis: Sei zunédchst limsup,,_, . S, < oo f.s. Dann ist lim, ., S, = —o0 f.s., und

nach der Bemerkung 2.11 gilt damit £ Hy > 1. Aulerdem folgt aus lim,, .., .S,, = —o0
f.s., dass P(m; = 00) > 0 ist. Daher ist £y = oc.

Wir betrachten jetzt den Fall limsup,, .., S, = oo f.s. Dann ist f§; = 1 f.s. Nach
Satz 2.2 ist daher E(ry |U) =3 _ (14 H;_1)H, - ... H,.

j=—o0

Integration liefert

Er, = E(E(n |U))

1

= > E((1+H;_1)H;-...- H)

j=—o0
1

= Z (14 EH,)(EHy)'™

j==o0

= (1+EHy) Y (EH)"’

j=—0c0

— (1+ EH,) i(EHO)j

Aus FH, < 1 folgt somit Emy = % Ist hingegen FHy > 1, gilt By = 0. O

Satz 2.13 (a) Aus EHy < 1 folgt

. T, 1+ EH, f I S, 1—FH, f
1m — = —— .S. m — = —— .S.
n—oo 1 1— FEH, 7 n—oo 1 1+ EH,
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(b) Aus E(Hy') < 1 folgt

T, 1+E(H;"

1— E(Hy!
lim = — [, lim & =— ( 0_1) fs
n—oo 1 1—E(Hy") n—oo M 1+ E(Hy ")
(c) Aus (EHy) ™' <1< E(H,") folgt
T, T
lim —* =00 = lim —% fs., lim & =0 fs
n—oo M n—oo N

n—oo M

Beweis: (a) Nach Lemma 2.11 gilt lim,, ., S,, = oo f.s. und nach Satz 2.10 ist daher

(T)n>1 stationédr und ergodisch. Lemma 2.12 liefert By = % Da E|ln| = En <
oo, impliziert der Birkhoffsche Ergodensatz (vgl. [Brei], S.118)

T DoiT 1+ EH,
— L= Er=-—"—""0 g
n n e YT 1_EH, >

Zum Beweis der Behauptung, dass die Konvergenzgeschwindigkeit der Irrfahrt f.s.
;ggﬂ betragt, also % f.s. gegen L‘rggg konvergiert, bezeichnen wir fiir jedes n € N

den grofiten Wert, der nach n Schritten erreicht wird, mit k,,, also

ky, :=max{S; : 0 < j <n}.

Nach der Definition von k,, ist dann

Tkn <n< Tkn+1~ (27)

Aus lim,,_ . S, = oo f.s. folgt offenkundig lim,,_., k, = oo f.s. Ferner gilt

kn S Sn + (n - Tkn) S Sn + (Tkn—i—l - Tk’n)

(2.8)

Hat die Irrfahrt ndmlich moglicherweise zu einem fritheren Zeitpunkt als n schon

zum ersten Mal k,, erreicht, kann sie von da an maximal (n — T, ) Positionen nach
links gesprungen sein. Wir erhalten mit (2.8)

Ty — T
Fn _ (—’“““ ’“) < Sn (2.9)
n n n n

Lo, Tint1 — Thntr | kntl 1+EHy .
o als auch == il f.s. gegen - oS konvergiert, erhalten
wir mit der Ungleichung (2.7)

Da sowohl
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insbesondere folgt auflerdem limnﬂw(w) =0 f.s. Aus (2.9) konnen wir

lim @ — lim (M) < lim & < lim K f.s.

n n
schliefen und erhalten die Behauptung.

(b) Analoga zu den unter (a) verwendeten Sdtzen konnen gezeigt werden. Mit
ihnen folgen die hier zu beweisenden Aussagen auf gleiche Weise wie unter (a).

(c) Wir unterscheiden zwei Fille. Falls limsup,,_,. S, = 0o f.s., s0 ist (7,)n>0
stationdr und ergodisch, und aus der Voraussetzung FH, > 1 folgt mit Lemma
2.12, dass 71 unendlichen Erwartungswert besitzt. % konvergiert dann f.s. gegen oo
([Brei], S.116). Gilt andererseits limsup,,_,., S, < oo f.s., so existiert das Maximum
M = max{S; : j > 0}, es ist also T,, = oo fiir alle n > M und daher konvergiert

n

% f.s. gegen oco. Durch analoge Argumentation kann lim,, % = oo f.s. gezeigt
werden.
Sei —[, definiert als der kleinste Wert, der nach n Schritten schon angenommen
wurde,

—l, :=min{S, : 0 <v <n}.

Nach Definition gelten 0 <7}, <nund 0 <7T_; <n. Damit erhalten wir

fi = o = oo v i T =l =00 s
und daraus
lim — =0= lim — fs.
n—oo N n—oo M,
Nach Definition ist S,, < k, + 1 und —[,, — 1 < S,,. Also gilt
I, o1 .S, .k, )
Im —— — lim — < lim — < lim — + lim — fs.
n—oo n n—oo N, n—oo N n—oo N n—oo M,
und damit lim,,_ % =0 f.s. O

Bemerkung 2.14 Die drei Fille des obigen Satzes sind die einzig moglichen und
schlielen sich zudem gegenseitig aus. (Die beiden ersten Félle schliefen sich aus, weil

aus F(Hy') < 1 mit der Jensenschen Ungleichung zm < L, also EHy > 1 folgt.)

Im nun folgendem Korollar werden den Irrfahrten in zufdlligen Umgebungen Irr-

fahrten mit bekannten Ubergangswahrscheinlichkeiten gegeniibergestellt: Zu einer
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gegebenen Irrfahrt in zufallig variierenden Umgebungen wird gerade die Irrfahrt be-
trachtet, die in jedem Punkt die Ubergangswahrscheinlichkeit EU, besitzt, also die
Standard-Irrfahrt mit p = EUj.

Korollar 2.15 Sei (S))nen die Standard-Irrfahrt mit p = EU,.

(a) Aus EHy < 1 folgt lim,,_ % < BEUy— EVy = lim,, . %‘ f.s.
(b) Aus EH;* < 1 folgt lim,,_. % > EUy — EVy = lim,, 5;_; fs.

¢) Aus (EHo)™t <1< E(H;Y) und EUy # L folgt lim,, o0 52 # 0 = lim,,_,o 22
0 2 n n
f.s.

Beweis: Die Irrfahrt (S)),en hat im Gegensatz zur zugehorigen Irrfahrt in zufillig
variierenden Umgebungen unabhéngig und identisch verteilte Zuwéchse. Deshalb ist
das starke Gesetz der groflen Zahlen anwendbar, und es folgt lim,, . % =EX]| =

EUy — EVy fs. Es gilt unter Anwendung der Jensenschen Ungleichung folgende

Ungleichung
1-EH,  2-E(F)
1+EHy,  E(g)
1
< (2-E(7))EU
Uo
EU,
< 28Uy — ——
< T B,
= FEU,— EVj.
Ist EHy < 1, folgt mit Satz 2.13
S, 1—FEH, .S
lim — =——— < FEUy— EVy = lim —=.
nose n 14+ EHy Uo = EVo = lim =
Vollig analog berechnen wir
1-BE(HY)  2-E()
1+ E(H E(Vio)
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> 1-2FEV,
= EU, — EW,
und EH; ' < 1 impliziert
o 1— EH;! !
lim S—:——O_1 > EUy — EVy = lim i.

Betrachten wir den Fall (EH) ™' <1 < E(Hy') und EUy # % Dann gilt lim,, STZL =
0 f.s. nach Satz 2.13, wahrend lim,, % = FkUy— EVy=2FEUy—1#0fs.ist. O

2.4 Die erwartete Anzahl von Besuchen

Jetzt wollen wir berechnen, wie oft die Irrfahrt startend in 0 ein j € Z im Mittel

besucht.

Satz 2.16 Sei L : P(Z) — [0,00], B — E ), -,0s,(B) das Erneuerungsmafl von

(Sp)n>0 und gelte limsup,,_, . S, = oo f.s.

WEHo (B E =, i< —1
(a) Aus EHy < 1 folgt L({j}) = =, (B ) ! .

1+FEHg :
1—EH, J=20

(b) Aus EHy > 1 folgt L({j}) = oo fiir alle j € Z.

Beweis: Wir betrachten zunachst den Fall

—o0 = liminf S, < limsup S,, = o0 f.s.

n—oo n—00

Mit Bemerkung 2.11 folgt dann EHy > 1 und es gilt L({j}) = oo fiir alle j € Z.

Sei jetzt lim,, .o S, = oo f.s. Wie schon in vorherigen Beweisen betrachten wir auch
hier zuerst die Irrfahrt bei gegebener Umgebungsfolge, um mit dem dabei erhal-
tenen Ergebnis die Aussage iiber die Irrfahrt in zufillig variierenden Umgebungen
zu beweisen. Wir definieren pj; := Yoo pg;z) mit der Wahrscheinlichkeit pgy), bei

gegebener Umgebung v in n Schritten von i nach j zu gelangen. Es gilt

;= EQ_0s,({7}) | So =i, U =),

n>0
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also ist pj; der Wert der Menge {;j} unter dem Erneuerungsmafl von (S, ),>0 und der
Anfangsverteilung d;, gegeben eine feste Umgebung u. Zur Berechnung der p;; ben6ti-
gen wir die erzeugenden Funktionen, die definiert sind durch p;;(s) == >~ pg;l)s"
und ﬁ-j(s) =y, fi(f)s” mit s € (—1,1). Nach [Als2], S.45, gilt fiir alle i,j € Z
und s € (—1,1)
Pij(s) = 0i5 + fij(s)Di;(s).

Es ist limgq > o0 g ans™ = > oo an, falls a, > 0 fir alle n € N (vgl. [Chul], S.55),
und deshalb gilt

pfj = 5z’j + {;p}kj (2'10)

Nun miissen wir also noch [

Voraussetzung lim,,_., S, = oo f.s. folgt mit Satz 2.3 "7, g, < ocound >, g%ﬂ =

und pj; berechnen um pj; zu bestimmen. Aus der

00. Satz 2.2 impliziert

* 1, 1<y
R e IR
Damit erhalten wir
fii = wili T vl

(Do i by b)) F o Q0T Ry )
(Zzo:j hj-...-hy)
Ujhj+2?:j+1hj-...-hn
= )

< 1.

Wir setzen dieses Ergebnis nun in (2.10) ein:

oo -1
” 1_f;j Zzo:jhj'--.'hn

S hye .y
hj—Ujhj

1 oo
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Es kann geschlossen werden, dass

Pt = frpt. = 1'(%Zf=jhﬂ'""'h") ES

ij — Jighji T 3200 hjrchn 00 > ]
(i) G omhi ) iy

(EZin) <

(Uijzzozihj-...-hn> i>

Nun koénnen wir mit Hilfe des Satzes von der monotonen Konvergenz und unter
Beriicksichtigung, dass der Erwartungswert des bedingten Erwartungswertes einer

Zufallsgrofle ihr Erwartungswert ist, L({j}) berechnen. Fiir j < —1 gilt
4 RS
L({j}) = E VZHj-...-Hn
j
U; + U;
p(en), (z o)
— E(H;+1) (Z )

= (EHy+1)) (EHy)"™
n=0
_JEa(EH) T, EHy <1
o0, EHO Z 1

und analog fiir j > 0

. 1 «
L({j}) = E<vj;Hj-...-Hn>
- (EH0+1)§:(EHO)”J

1+FEHy
1-EHy’ FHy <1

oo, EHO Z 1
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Bemerkung 2.17 Wenn eine Umgebungsfolge die beiden Bedingungen Flog Hy <
0 und EHy > 1 erfiillt, liegt eine ungewohnliche Situation vor: Dann konvergiert
Sy f.s. gegen co und S—n” f.s. gegen 0, d.h. die Irrfahrt 1duft mit Geschwindigkeit 0
gegen oco. (Aus Flog Hy < 0 folgt EH;* > 1. Unter Anwendung der Jensenschen
Ungleichung ist ndmlich log EHy < E'log Hy < 0, woraus FHy < 1 folgt und damit
ist 1 < E+q0 < EHLO) Und auflerdem ist L({—1}) = oo, obwohl aus lim,,_,, S,, = 0o
fs. P(S, = —1 wo.| Sy =0) = 0 folgt. Obwohl also die Wahrscheinlichkeit fiir
unendlich viele Besuche in —1 startend in 0 null betrdagt, werden unendlich viele

Besuche erwartet.






3 Eine langsam konvergierende
Irrfahrt

3.1 Das Modell

Wir betrachten nun ein Beispiel fiir eine Irrfahrt in zuféllig variierenden Umgebun-
gen, die mit Gewschwindigkeit 0 gegen oo konvergiert, d.h. fiir die Irrfahrt gelten
lim, .o S, = oo und lim,,_, % = 0 f.s. Die Umgebungsfolge U = (U;);ez beste-
he dazu aus unabhéngig und identisch verteilten Zufallsgrofien U;, die mit Wahr-
scheinlichkeit 1 — p den Wert 1 und mit Wahrscheinlichkeit p den Wert 1%19 an-
nehmen, wobei 0 < p < 1 und 0 < ¢ < oo gelte. Damit nehmen die H; die Wer-
te 0 oder ¢ an, und zwar mit Wahrscheinlichkeit 1 — p bzw. p. So erhalten wir
Elog Hy = (1 —p)log0 + plog¥ = —oo. Daraus folgt zum einen FH;' > 1, vgl.
dazu Bemerkung 2.17, und zum anderen kénnen wir

lim S, = fs.

n—oo

aus den Sdtzen 2.5 und 2.6 schlieen. Setzen wir FHy = pv > 1 voraus, so dass
(EHp) ™' <1< EH,"' gilt, dann liefert Satz 2.13

lim & =0 fIs.
n—oo N,

Da wir hier nur den Fall EHy, = pi > 1 betrachten wollen, konnen wir im Nachfol-

genden 9 > 1 voraussetzen, womit 1%9, der eine mogliche Wert der U;, zwischen 0

und % liegt. Wir definieren nun rekursiv die Position der n-ten Barriere rechts von
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0 dadurch, dass wir Wy = 0 setzen und W, := min{k > W,,_; : Uy = 1} definieren.
Wir bemerken, dass aus der Konvergenz der Irrfahrt gegen oo und daraus, dass die
W, f.s. endlich sind, die fast sichere Endlichkeit der Ty, folgt.

3.2 Vorbereitungen

Unser Ziel ist es Funktionen f zu finden, fiir die % bzw. % in Wahrscheinlichkeit

gegen zu berechnende Grenzwerte konvergiert. In diesem Abschnitt bestimmen wir

Tw,,
fn)
Wert konvergiert, um damit dann im n#chsten die eigentlichen Aussagen zu bewei-

zunéchst eine Funktion f derart, dass

in Wahrscheinlichkeit gegen einen reellen

sen. Unser Vorgehen wird sein als erstes die Laplace-Transformierte von Ty, , —Tw,

n

zu bestimmen, dann fiir diese einen einfacheren Ausdruck gleicher Groflenordnung
zu finden und schliellich mit Hilfe des Stetigkeitsatzes fiir Laplace-Transformierte

und unter Beriicksichtigung der stochastischen Unabhéngigkeit und identischen Ver-

Tw,
f(n)
stimmen. Zur Bestimmung der Laplace-Transformierten der Ty, ,, — T, zeigen wir

teilung der Folge (Tw, — Tw,_, )n>2 den Grenzwert von fiir geeignetes f zu be-

zunéachst

Lemma 3.1 Sei U eine Umgebungsfolge mit limsup,,_,., S, = oo f.s. Wir bezeich-
nen mit px die Laplace-Transformierte (L.T.) einer Zufallsgrofie X, gegeben eine
feste Umgebungsfolge u € [0,1]%, also ¢px(t,u) := E(exp(—tX) | U = u),t > 0.
Dann gilt fir allen € N, t > 0

—t —t

1 O upe N Up€
@Tn (t7 u) ¢Tn+1 (t7 u) @Tn—l (t’ U/) ‘

Beweis: Gegeben eine feste Umgebung u, hat die Irrfahrt stochastisch unabhéngi-

ge Zuwichse X,, := 5, — S,,_1, und damit sind auch die 7;, ¢ > 1 stochastisch

unabhéngig, die, da limsup,,_,., S, = oo vorausgesetzt ist, f.s. endlich sind. Es ist

Uy, k=1
Pu<7—i+1 = k’) = .
UiPu(Ti—&—l—’_Ti:k_l)y k>1

Daher gilt fiir alle t > 0

Orpy(t,bu) = Elexp(—trip1) | U =u)
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= Z e " Py (Tiy1 = m)

m>1
—t —1
= we "+ E v;e mPu(TiJrl +T7=m— 1)
m>2
_ —t —t —th _
= we "+ e e (Tiv1 + 7 =m)

m>1

—t N
= w;e "+ e <)07'7;+1-‘r7'i<t’u)

= Uieit + Uieit(:bnﬂ (ta u)@ﬂ (t? u)

Wegen der stochastischen Unabhéngigkeit der 7; ist

o, (tu) = Pyn g, (Guw) = Pyn o (tu) = On (tu) oo @r, (F ).
Daher gilt
~ @Tn <t7 u)
P, (tv u) = = :
(an,]_ (t7 u)

Hieraus folgt

@Tn+1 (t7 u) _ une_t + Une_t S?TTH»I (ta u)

@Tn (t7 u) (an—l (t7 u) ’
also die Behauptung. O

Im Nachfolgenden bezeichnen wir die L.T. einer Zufallsgrofie X mit ¢x.

Lemma 3.2 FEs gilt fir allen € N, t >0

_lop~ cW@B®)Y
P, 1T, (t) = D ; a(t) + o) (V32(1))7’

wobet
M(t) = %t(ﬁ F 1404 1)% — 40e 2V,
Ao(t) = %t(ﬁ F1—[(9+ 1) — d9e]1/2),
a(t) = \(t)—¢, ct) = M(t) = ha(t),
b(t) = e — N\(2), Bt) = 97N ().

Beweis: Gegeben eine Umgebung u, sei k € N mit W,,(u,w) = w, < k < wy41 =
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W1 (u,w), n > 1. Da in unserem Beispiel lim sup,,_, .. S, = oo gilt, folgt mit Lemma
3.1

¢ —t

A urge A Vi€
T n(tvu) - = P n(t>u)+

) " PTht1 (tv u) "

— D t,u).
P, (t,u )(PTW,L( )

¢Tk—1 (ta u
Wegen

k ~
A A A 90Tk(t7U>
P~y (L u) = @5e (tu) = Gr,(t,u) = ————=,
o —Tw 2 i=Wn 41 Ti ilv;L—l o1y, (1)

erhalten wir fiir w, < k < w41

1 1 et 9 et
_— = - + - .(3.1)
PTp—Tw,, (t7 U) 1+ PTir1—Tw,, (t7 U) 1+ PTy_1-Tw,, (t’ u)

Im Folgenden wollen wir beweisen, dass

A 0L Ot
P () = L b 0P

=: xk(t,u) (3.2)

gilt. Zunédchst tiberpriifen wir, dass xx(t,u) eine Losung der Gleichung (3.1) ist. Bei
den Rechnungen hierzu lassen wir, aufler bei der Exponentialfunktion, die Argumen-

te der Funktionen fiir eine bessere Ubersichtlichkeit weg.

a+b(Wp*)F " 1 e t(a+b(WFP)FH) N 9 e~t(a+ b(9R)E-1-Wn)
k= Wn 941 cBk+1=Wn 9+ 1 cGF—1-Wn

ist dquivalent zu
(94 1)(a+ bW ") =787 (a + b)) + e 9B(a + b(9B%) ),
Weiter formen wir zu
a(@+1—e'pt —e 9B) = —b(WFH)F MW+ 1 —e 57 —eB)
um und erhalten die Gleichwertigkeit zu
V+1—elpt—e 9B =0.

Durch Einsetzen erhalten wir die Giiltigkeit der letzten Gleichung. Wir definieren
M= +1+[(0+1)%—49e2]"?) und K := [(¥ + 1)? — 49¢2]1/2. Es ist dann

(I+1—e 8 —e ')
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et

2

— 1= et (S 14 (04 1) — 406
M 2
<(19+ D@+ 1+ K) —20e — %(19—1- 1 +K)2)

((19 + 1)+ (9 + 1)K — 20e ' — %(19 +1)? - W+ 1)K — %[(19 +1)% - 419@—%])

S El- -

Nun iiberlegen wir, dass offensichtlich @7y, _7y, (t,u) = 1 fiir alle t > 0 gilt. Da
W, eine nach rechts reflektierende Barriere ist, ist Ty, 11 — Ty, = 1 und damit

DTy, o1~Ty, (T, u) = e~ fiir alle ¢ > 0. Wir rechnen nach: Zum einen ist

c(t
) =
_ A (t) — Aa(t) _1
A(t) —et+ et — Xy(t) ’
und da A () - Ao(t) = % (9 +1)%— (9 +1)% +49e ) = 9 gilt, erhalten wir zum
anderen
XW,+1(t; w) #@52)
_ (M — o)
S e+ (=)D
B A2 — Ao
UM — et + Net — N2Xy
_ A —0 _

et()\% — 19) + )\1(’[9 — )\1)\2)
Sei nun (&w, (¢, w), ..., &wnyo (6, 1)) eine weitere Losung von (3.1), die &, (t,u) =1

und &y, o1 (¢, u) = et fiir alle ¢ > 0 erfiillt. Dann kénnen wir wie folgt schliefien:

1 1
Xwot1(tu)  Ew,i(t,u)

B 1 ( et et >+ v ( et et )
O+ 1 \xwpa2(t,u)  Ewga(t,u) U+1 \xw,(t,u)  Ew,(t,u))’

also

0— 1 ( et et >
U+ 1 \xwps2(t,u)  Ewpgalt,u) )’
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und damit muss xw, +2(t, u) = &w,12(t, u) gelten. Iterativ erhalten wir die Eindeu-
tigkeit der Losung.
Unter Beriicksichtigung, dass die U; unabhéngig und identisch verteilt sind, gilt

QDTW,LH —Tw,, (t)

= E(E(exp(— (Tw,y — Tw,)) | Wi — Wa))

= ZE exp TWn+1 TWn)) | Wn+1 - W, = j)P(Wn-I—l - W, = j)

i
, 1

= ZE exp(—t(Tw,+; — Tw,)) | W1 — Wi :J>HP (Ui B 1+19) PU; =1)

- ZE exp(—t(Tw,+j — Tw,)) | Wosr — Wo = )P’ 1 (1 = p)

= S (e (T~ T)) | Was ~ W =)

Gegeben eine Umgebung u, héingt ‘ﬁTWnH—Twn von der Umgebungsfolge nur iiber
den Abstand zwischen den Barrieren ab, da die Irrfahrt, nachdem sie die Barriere
W,, erreicht hat, von da ab nicht mehr weiter als auf W,, zuriickfallen kann und die
Umgebung auflerdem in allen Punkten zwischen den Barrieren denselben Wert - + T
annimmt. Daher folgt mit (3.2)

0 B(t))

_1-p
Ty (! p Z alt (962(t))7

SDTWTL+1

O

Nun rechnen wir nach, dass ein einfacherer Ausdruck von der gleichen Grofienord-

n

nung 1st wie OTw, \~Tw,

Lemma 3.3 Wir definieren

[e.e]

_1-p
P ;14—%&1

Dann gilt fir alle n > 1

t >0, mitu—w R

CTyw, . ~Tw, (1) — () = O(t), 0.
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Beweis: Zundchst machen wir Aussagen iiber das Grenzverhalten der Funktionen
a, b, cund g fiir ¢t \, 0.

a(t)

plt) =

Wir definieren

t

%W+1+Kﬁ+m”ﬂW€ﬂ”5—&

t

S0 = 1+ [(0+1)° — 49e7]'")
S0 =1+ [0+ 1)~ 49(1 — 20 + O[]

%W—1+Kﬁ—n2—&%+0@5W”)

%(01+ wlf(l@ﬁ%?>1uj

1*5“)Oﬁ4ﬁwﬂ—w<l_ﬁg%7)>
¥ —1+0(t)

t

¢ S0+ [0+ 1) — e

S0+ [0+ 1) — 49e2]'2)

§(1—0+0“‘U(L_@#%?>>

b4t 20t 20t >
g'w_ly—a—1“+0“”‘5?7+0“)

S2[(0 +1)* = d9e=]/2)

(om0 -1 (1- 525
v —1+0(t)

}j%?ﬁ(ﬁ+1+0“‘n(y_ﬁgéﬁ>>
1+ O(t)

oo

(0 —1)p!

At) = ery,,, 1w, (t) — D %;qw+meWV
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Alsoist ory,

_1y, =¥ = A1 +As+As. Daher geniigt es zu zeigen, dass A;(t) = O(1),

£\, 0, fiir j = 1,2, 3 gilt.

A1 (2)]

| A ()]

IN

IN

IN

1 —p = c(t)( ﬁt — (= 1)p
; (t) + b(t)(IB(t)?)7 ‘

~(@-1)

( >—<z9—1>2pj+<19—1>>

Ly () i1,
(1—pﬁ<t>_c(t)_1—p+w ”)

L—-p V—14+0@t) V-1 -
(t) (1 —p(1+0(t) 1-p +O(t>) =0(1)

B et s

a(t) +b@)(W61)?)7 alt) + b(t)v

J

I B (pB(t)%)
a(t) + b)) a(t)B(t)% + b(t)(VB(¢)?)

P — (pB(t)?)
a(t) +b(t)(96(t)?)!
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|As(t)| =

1—p (o (W—-1p P
T(jzla(t)+b(t)19j_1+ut19j>'

:1792

p

P —1)+ (9 — Dt — alt) — b(t)v?)
( )+ b(£)9)(1 + vtdd)

IN

p .
Z (a(t) + b(t )(1 + vty)

Pt — p19)
JZ W) (1 4 vtd)

1

(a(t) —

Lo - f -1l

IN

’ffltjt O(t?) — 525 (9 — 1)t‘

= (W=14+0@1) -9+ 1)M + . M
O(t2)
= Ot)M + ——= : = 0(t),

da fiir t > 0, ¢ klein, M und M’ aus [0, co0) existieren mit

AN
<

und

(1-p)t (p9)?
P Z (a(t) + b(t)97) (1 + vt)

VAN
g~

’5»—
= |
T
(]
=

IN
S

Unter Anwendung von Lemma 3.3 beweisen wir
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Lemma 3.4 (a) Aus pd =1 folgt fiir allet > 0,n > 2
lim 11— t = —21%
yooo? PTw 0 =T ylogy ) ) (9 —1)logd’
(b) Aus pU > 1 folgt fir alle t > 0

' (p9)it L ®I-AW)
yh_)Iglo (?J <1 PTw, —Tw, ( )) Kt Z 1 + vt WI=A) =0

mit v = %, K = V(lgp), AMy) := logy ,y und o :=log;,, 9 > 1.

Beweis: Wir bemerken zunéchst, dass lim,_.o ——— = 0 und lim,_.,, -5 = 0 gelten,
ylogy y
so dass es deshalb geniigt, die Aussagen mit ¢ durch 1 ersetzt zu zeigen. Sei o :=

o(x) :=logy z fir x € R. Dann ist ¥ = x und somit

tN _ 1-p( p < P
o (3) - T(Tp Z—Hy;w)

_ 1—p pj+pjl/£z9j—p7
Z 1—|—u 99

B Ktzl—i-l/tﬁﬂ o

= Ktp° Z 1+ywn+w—<f (3.3)

j=1-l0o]

(a) Setzen wir pd = 1 voraus, ist p° = (5)"°%¢® = 2. Zuniichst bemerken wir

aullerdem
> 1 > 1 1 o= 1 1
Zl—i—ytﬁﬂﬂﬂ—” _Zl—i—ytﬁﬂ - VtZﬁJ vty — 1 o0
J=1 Jj=0 J=0

und

0 ; _ lo]-1 lo]-1 j 00 j
vtitlol=o . 1\’ 1Y’
E § —Jjt+lo)-o § - E -
1 4+ ptditlol—o < vty s vt (?9) <v — <19) = o0

j=1-|0o] Jj=0 §=0
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So erhalten wir mit (3.3) fiir x — oo

0

t t 1 00 1
1-— -] = K- A |
v <x) T\ 1+ vtyitlol-o + Z 1+ vtitlol—o
j=1-|o] j=1
t 0 1
= K- : o(1
x .Z [T oira— O
j=1-|0o]
0 .
t Vt/&]"rl_O'J—O'
= Ko \ll= 2 e O

j=1-1o]

K2 (lo] +0(1)).

Nun lassen wir  gegen oo laufen und erhalten

i 2 (1 y <f)) — Jim =L (llog, «] + O(1)
Kt
~ log
_1-p 20 t
T p (W—1)? log¥
o
(W —1)log¥’

Fiir x setzen wir ylogy ein,

20t
(¥ —1)log ¥’

. ylogy
y—oo logy + loglogy

(1_w(y1§gy))

und es folgt die Behauptung, da lim, .. bgy% =1 gilt.

+log log y

(b) Setzen wir pJ > 1 voraus, dann ist p? = exp(logy(x) - logp) = z'°8P =

rlgp )™ — p=1/e Wir erhalten damit

+ - o) (pﬁ)j+LaJ_U
1/e _ d _ ,1/e 1/e
x (1 ¢(x>) /¢ Ktx | Z T 9ol
j=1-l0o]
und deshalb fir x € R
. " 0o (pﬁ)j-ﬂaj—a
1 Vel1—9(=)) - Kt
o (o4 (10 (4)) - 2

1+ vtgitlol—o
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—lo] ; _
B _ (pﬁ)gﬂaj o B
n xh—{go — ki Z 1+ ptgitlol—o 0,

da lim, . |o(z)] = lim, o |logy x| = co. Fiir  setzen wir nun y? ein und es folgt

die Behauptung, weil

o(x) = a(y?) = logy(y*1/»") = log, ,(9) logy y = log, , y = A(y)
ist. 0

Mit dem soeben bewiesenen Lemma koénnen wir Funktionen f so bestimmen, dass

Iwe in Wahrscheinlichkeit gegen eine Konstante bzw. il "’“ fiir spezielle Teilfolgen

f(n) Flnk)
(ng)k>1 in Verteilung gegen eine Zufallsgroe konvergiert. Dlese Resultate werden in

der anschlieBenden Argumentation von entscheidender Bedeutung sein.

Lemma 3.5 (a) Aus pd =1 folgt QnTIZg;n it %.

(b) Ist p¥ > 1 und (nyg)g>1 eine Folge natiirlicher Zahlen die gegen oo konvergiert

mit limy,_.o logy , i — [logy ,ni| = €, dann gzlt "’“ 4 Y, wobei Y eine
Zufallsgrifse mit L.T.

o ()—exp< Kt Z 1fi;;€>, (3.4)

t >0, ist, mit v .= ﬁ, K = @ und g :=logy , 9 > 1.

Beweis: Man iiberlegt sich leicht, dass (Tw, —Tw,,_,)n>2 eine Folge unabhingig und
identisch verteilter Zufallsgrofien ist, die stochastisch unabhangig von Ty, sind. Fiir

jede Funktion f: N — (0,00) mit lim, . f(n) = oo gilt
t Tw,

lim —— ] = lim E(exp (—t = ))

e T (f(n)) o ( f(n)

- . Z?:l TWj - TWj—l
= T}I—{EOE (exp (—t () ))

=t (2 (o (™)) (oo (503))

n—1
- (oo () o

))
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= lim (@TWQ—TM (ﬁ) )"

(a) Aus Lemma 3.4 folgt fiir t > 0

. t . t "
Jm o1y, <n log n) = (cpTWQ ~t (” log ”) )

t n

n—o00 n

- i - ()
— exp (%)

Der Stetigkeitssatz fiir L.T. ([Alsl], S.233) impliziert

Tw. 4 29
—
nlogn (¥ —1)log?

und, da der Grenzwert konstant ist, sogar die Konvergenz in Wahrscheinlichkeit.

Daraus folgt
TWn TWn log 9 P 0
_

2nloggn  2nlogn -1
(b) Fiir alle ¢ > 0 gilt nach Lemma 3.4

. t _ t Mt
e (g) =t (e ()
Ny (1 — PTyw, ~Tw, (#)) "
1 _ k

= lim
k—o0 N
o 1 X, (p)I A=A ) "
= N 1_n_k (Kt Z 1 pt0i+IAmn) ] —A(mr) +o(1)
Jj=—00
00 . n
: 1 (pU)*
= lim [1-— ( Kt — 4 o(1
i, n< 2 T W)

_ L
= exp ( Ktj;oo T otie | = wo(t)

mit A(ny) := log; ,, ny. Da

B oy, g (0) = 1= lim o (),
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T,
konvergiert die Verteilung von —z%& schwach gegen die Verteilung einer Zufallsgrofie

Y, die die L.T. py(t) = exp ( Kt ZF_OO

1+utw 8) besitzt. O

Wir beenden unsere Vorbereitungen mit

Bemerkung 3.6 Sei (Y;)22_ eine Folge unabhingiger Zufallsgrofien, die die Ver-
teilungen
| Kp ==\ o KPP )" L)
Y; — _ . P 7 prn
P =exp ( ” ) Z . P;

n=0

und P*(n als

n-fache Faltung von P; die Erlang-Verteilung I'(n, k;) bezeichne. Y; ist zusammen-

gesetzt Poisson-verteilt und hat nach [Fel|, S.427, da die L.T. der Exp(k;)-Verteilung

durch @;(t) =
o () = exp(—Kp] €+Kp7 © R )

v v t+ K
o 1 1 (1/199'*5)*1
= —K(p9)—¢ — — . -
P < (pV) <m9a—e vt + (msw—e)—1>>
. 1 1 1
— — J—¢ — .
exp ( K(pﬁ) (Vﬁj_&* Vﬁj-g 1 n Vtﬁj_g))

— e (K0 ).

1+ vtdi—e

besitzen, wobei P; die Exponentialverteilung Exp(x;), &; = W—E,

Weiter gilt nach Feller

o Kp—= 1
oy, (t) = exp (—/0 (1—6”)( ]jj i &P (_ngf—s))dx)’

also hat das Lévy-Mafl von Y; die Wahrscheinlichkeitsdichte

o= 5 (2) o (-5

Da die Y} stochastisch unabhingig sind, erhalten wir

— (p)ye
WZ?‘;_ij(t) = €xp (‘Kt Z T4 vtgi—s |

also (3.4) als L.T. von 372 ¥j. Der Satz von der monotonen Konvergenz impli-
ziert, dass das Lévy-Maf von )72 Y], bezeichnet mit P, die Dichte

—oo ~ ]

=25 (2) e ()




3.3 Die Konvergenzgeschwindigkeit 45

besitzt. Es ist nun fir ¢ > 0

A

P((t,00)) = f(@)A(dz)

(t,00)

- [EX () ()

< K . t
s 0— PR —€ _ -
> e (< =)
K < .. t
- 3 X e (o).

Damit folgt P((0,00)) = limy o P((t,00)) = oo und nach [Kes], S.11, hat daher
die Verteilung von » 72 _Y; keine Atome. Da 372 Y fs. nur positive Werte

j=—o00

annimmt, folgt, dass ihre Verteilung stetig ist und nur Werte in (0, co) besitzt.

3.3 Die Konvergenzgeschwindigkeit

Ty
fn)
Konstante konvergiert, benttigen wir die nachfolgenden Abschétzungen, um mit

Zur Bestimmung von Funktionen f, so dass in Wahrscheinlichkeit gegen eine

Hilfe von Lemma 3.5 argumentieren zu kénnen.

Lemma 3.7 Seien (Wy)ac,00): (T)zcio0) Nicht fallende Familien von positiven
Zufallsgréfien mait % ER %, 0 < v < o0. Dann gilt fiir jedes 0 < § < v und jede

Folge reeller Zahlen (yx)g>1 mit limy_, yp = 00

Tw T,
lim inf & J) < nmmf.z( y’f) 3.5
k—00 ( f(yr) T koo J (k) (3:5)
T, Tw, s
< limsup.? <i) < limsup ¥ (y’“—h) (3.6

wobei L (X) die L.T. von X bezeichne und f > 0 gelte.

Beweis: Wir definieren x := xj := (7 + 0)y, und damit [ := I, := (ﬁ, ﬁ)
Wir bemerken, dass aus W, € I, also wenn W, > ﬁ gilt, Tw, > T /y4s = Ty, folgt.

Damit zeigen wir unter Beachtung, dass L.T. durch 1 beschrankt sind,

w))

< (f (yk)f1 TWI) (t) = FE (E (exp (—tf (yk)f1 TWE)
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= /IE (eXp <—tf ()™ Tows, | W = yk)) P (dyy)
+/c E (eXp (-tf (yw) ™" T,

< /E (6XP ( tf (ye) ' Ty | W = yk)) PYe(dyy,) + P+ (1°)

W, = yk)) PYe(dyy,)

< (exp ( tf (ye) " Ty | W = m)) PYe(dyg) + P (I°)
= Z(f ()" + P (I°).

Weil nach Voraussetzung = Wz in Wahrscheinlichkeit gegen %y konvergiert, ist

lim P(W, € I) = lim P (W, <—vwx_ -
_ nmp(\wi_w(s):

womit die Richtigkeit von (3.5) folgt. Die Ungleichung (3.6) kann auf gleiche Weise

bewiesen werden. O

Unter Anwendung des starken Gesetzes der groen Zahlen erhalten wir

Satz 3.8 (a) Aus p¥ =1 folgt L1

2n log n

(b) Ist pd > 1 und (ng)r>1 eine Folge natiirlicher Zahlen, die gegen oo konvergiert

und fiir die limy,_.o logy ;, ny, — [logy k| = € gilt, dann gilt TLQ’“ R Z, wobei

pz(t) = exp(— LtZJ*—oo 1(+p§m9] 5) mit po= ((19 )1)2 , L= ( ), n:i=¢e+
10g1/p(1 -p)— Uogl/p(l —p)| und o := log;/, 0 > 1.

Led 10y
Beweis: Sowohl % als auch # geben den Anteil der Barrieren in der

Umgebungsfolge an. Das starke Gesetz der grofien Zahlen impliziert

Wm:h U/'J _ 1 1 fg
PU=1) 1-p 5

H{Ug:l}
(a) Fir0 <d <yund ¢t >0 folgt mit Lemma 3.5 und dem Stetigkeitssatz fiir

TWLn(wié)J _ TWLn(wié)J (v £0)logy(n(y £0))
< (2n log, n) 6 = ¥ (27%(7 + ) log,(n(y £4)) logy n ) ©)
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. td(y £ 6)

% X —_——_—

n—o0 p ¥ -1 7

da % — 1 fiir n gegen co. Damit konnen wir mit Hilfe von Lemma 3.7
abschitzen:

exp (_“91(97%;5)) = liminf F <exp( 2:{3;”2 )
n—oo 9

liminf £ { exp | -t ———
n—00 2n lOglg n

: -
< limsupE (exp | ~t—7—
n—oo 2n ]‘Og'ﬂ n
T
< limsup F | exp | —t——1—= Wintr=9)
n—o0 2nlogyn

SPWRTIED)

Lassen wir 0 gegen 0 laufen, erhalten wir

T, tdy
lim £ —t——1] ] = — .
(o (<)) = (575)

Wieder folgt mit dem Stetigkeitssatz fiir L.T.

T, a Uy Y 1
— = 1——-)=1
2nlogyn 9 -1 ¥ — 1< 19)

Da der Grenzwert konstant ist, folgt die Behauptung.

(b) Analog zu (a) folgt fiir 0 <6 <yund t >0

2 (M) = (e i 2

ny, ng(y £ 9))e

—— exp (—Kt(’yié)g Z (po)" ._A)

n— o0 je—oo 1 + Vt(’7 + 5)9793 1

mit 7 := € + log, (v £ ) — [logy (v £ )], da

log, 4, % +log, , (v £ 6) — [log, s, (v £ 6)] |

= logy, nk — [logy , ni] +logy (v £ 6) — [log, (v £0)]
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ng(y +9)
— e+ logl/p('y +0) — Llogl/p(’y +94)] mod 1.

Ferner gilt analog zu (a)
N (po) "
—Kt 9)° —
P ( (v+9) Z L+ vt(y+0)ei—n
T,
n

N
‘)
k
T

< hmsupg( n’“)
n

o
k—o0 k

)7
— oxp <_Kt(7 =0 > 5 n wf((pv >— 5)"19”> |

j=—o00

< lilgn inf & <

(t)
(1)

Damit folgt, dass % fiir 6 N\, 0 in Verteilung gegen die Zufallsgréfie Z konvergiert,
k

da 7) = € +logy (7 £ ) — [logy,(y = 6)| filr § \, 0 gegen n = € + logy (1 — p) —
|log;,(1 — p)] konvergiert. 0

log T,

Korollar 3.9 Ist pv > 1, dann konvergiert Tog

in Wahrscheinlichkeit gegen o =
log,, U > 1.

Beweis: Es reicht zu zeigen, dass zu jeder wachsenden Folge (ng)g>; natiirlicher

log ka

p . R
— log,,, ¥. Definieren wir ndmlich
log my, /p

Zahlen eine Teilfolge (my)x>1 existiert mit

a, = P <|% —o| > 5> zu gegebenem € > 0 beliebig und existiert zu jeder Teilfolge

(An, )k>1 von (an)n>1 eine Teilfolge (@, )ik>1, die gegen 0 konvergiert, dann konver-

log T,

giert auch (a,),>1 gegen 0 und damit T

in Wahrscheinlichkeit gegen log, ;, J. Wir
betrachten daher nun eine Teilfolge einer Teilfolge der natiirlicher Zahlen, bezeichnet

mit (my)g>1, fiir die limg_,o my = 0o und limg_o log, , M, — Llogl/p my| = € gel-

m

—4 gegen Z, wobei Z wie
k

oben die Zufallsgrofe mit der L.T. ¢z (t) = exp(—=Lt(3_7 18?32;:7,)) bezeichne.

Mit Bemerkung 3.6 folgt PZ((0,00)) = 1. Fiir § > 0 gilt dann

)

ten. Satz 3.8 impliziert die Konvergenz in Verteilung von

1 = Fz(OO) - Fz(())

k—o0

S|H
~on

= lim Fka/mi (mg) - Fka/mi (
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1 T
(<)

k—o0 mk mi

= klim P((o—0)logmy <logTp, < (o+9)logmy)

log T,
= limP(—Og k—Q)<(5>.
k—00 log my,
Daraus konnen wir folgern, dass lim,HooP< _1;)ng7;,1: — 0| > (5) = 0 gilt, also dass
lffgin: in Wahrscheinlichkeit gegen ¢ = log, ,, ¥ konvergiert. O

Abermals mafigeblich unter Verwendung von Lemma 3.5 konnen wir nun beweisen:

Satz 3.10 (a) Aus pd =1 folgt —2» Ei 1

n/loggyn

(b) Ist pY > 1 und (ng)r>1 eine Folge natirlicher Zahlen mit limy_,» ng = 00 und

limy o logy ng — [logy ni| = €, dann gilt fir alle > 0

k—o0

lim P (Sln/’“g < x) =1— Feay(((1—=p)x)~9),

wobei ((x) := ¢ +logy ,,((1 — p)x) und Fy) die Verteilungsfunktion der Zu-

. . 0o 9)7—¢ (@)
fallsgrofe Ye(y mit L.T. goYc(m)(t) = exp(—Kt ij_oo %).

Beweis: Sei N(n) die Anzahl der Barrieren, die nach n Zeiteinheiten tiberschritten
wurden, also das Niveau, auf dem sich die Irrfahrt nach n Zeiteinheiten befindet.
N(n) ist also die eindeutig bestimmte natiirliche Zahl mit Wy < S < W41
Aus der Definition folgt

P(N(n) > y) = P(Tiy,,, < n). (3.7)

Wir bemerken auflerdem, dass

Sn < WN(n)+1

1< 1 P-fs.
"Wy Wiy nooe
gilt, % also P-f.s. gegen 1 konvergiert.

(a) Sei g(t) :=tlogyt, t >0, und s > 0. Dann folgt mit (3.7)

P (g_l(n) < N(”)) = P <TWrg*1<n>/sw = n)

S
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_p Twiy oy "
alogya  ~ alogya |’

wobel « ;= @. Wir formen die rechte Seite um:
n B s
g~ 1(n) log, g tn) — g~i(m) log, g~1(n) — g~(n) log, s
s

)

1— —g_;(") log, s
weil fiir m,, mit g(m,,) = m, logym, =n

gil(n) My

logy g~ (n) = logy my, =1

my logy my,

gilt. Wir erhalten mit Lemma 3.5 und unter Beriicksichtigung, dass @ fiir n — oo

gegen 0 konvergiert

P9 o) p( Ve o - P2 ).
N(n) alogga = 1 — W og g | nooo -1

n

Da lim,,_o 2 = -1 P-f.s., folgt mit dem Satz von Slutzky ([Als1], S.185)
n P

g'n) _g'n) N a 20 (
Wymy  N(n) Wye  0-1

1—p)=2

und daraus

Sh Sh WN(n) a 1
prm— . —_— -
gtn)  Wyw g7'n) 2
Unter Beriicksichtigung, dass
my logy my, _n

-1 . ~ _
g~ (n) = mn = logy(m, logym,) logyn

gilt und der Grenzwert konstant ist, folgt die Behauptung.
(b) Fiir z > 0 gilt mit Gleichung (3.7) und Lemma 3.5
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PR oy (#79)

wegen

logy ,(zn}/%) — [log, (a1,

= logl/p T+ logl/p nllc/ logy/pd Llogl/p nllf/ log, /p ﬂj mod 1
1
= 1 —1 — | —1 d1
081/, T + log,, 0 081 /) Mk Llogl/pﬂ 081 /p ng|] mo

logy /, @ + logy ng — [logyng| mod 1

x
E} logl/p:v—l—szg“(ﬂ) mod 1.

Also folgt, da lim,,_oc ¥2(1 — p) =1 P-fs.,

P (W]f%” > a:) _p (ZJ(V;’:)) (1-p) ]\;(,175) <a(l- p)) —— Fey((x(1-p))~°)

und daraus die Behauptung

2 )
lim P| £ <z|=1lml1-P . ) s o | = 1= Fr (w(1—p))9).
b0 (n}/g > b0 (WN(W) e = ) (@ ((z(1=p))~°)

Analog zu Korollar 3.9 gilt

Korollar 3.11 Aus pd > 1 folgt % il logy %-

Beweis: Wie im Beweis von Korollar 3.9 betrachten wir eine Teilfolge einer Teil-
folge der natiirlichen Zahlen, bezeichnet mit (my)g>1, die limy o mr = oo und

limy_, o logy my — [logy my | = € erfiillt. Dann gilt nach Satz 3.10 fiir alle z > 0

k—o0

lim P (ST/’“Q < x) =1—-F) (1 =p)z)~°) =: G(z).

Es geniigt zu zeigen, dass G die Verteilungsfunktion einer Zufallsgrofie Z¢(,) ist, fiir
die P%@ ((0,00)) = 1 gilt. Wir zeigen hier, dass G(x) \, 0 fiir = \, 0 gilt. G(z) /1
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fiir x /" oo kann analog bewiesen werden. Zunéchst bemerken wir, dass Fy. =: F.

in € periodisch mit Periode 1 ist, da die L.T.

pﬁ“

t > 0, in € periodisch mit Periode 1 ist. Nach Bemerkung 3.6 gilt Fy.(z) / 1,z / co.
Deshalb existiert zu jedem § > 0 ein xg, so dass F.((x(1 —p))~¢) > 1 —§ fiir alle
0 < z <z gilt. Nun wéhlen wir ein z; mit 0 < x; < z und ((z1) = 5+log1/p((1 —
p)r1) =€ mod 1. Dann ist F(,,)((z1(1—p))7¢) = F.((x1(1—p))~?) > 1—=0. Deshalb
ist G(z1) < 0, und da G als Limes von Verteilungsfunktionen monoton wichst, gilt
auch G(x) < ¢ fir 0 < z < x1. Weiter schlieen wir wie im Beweis von Korollar 3.9.
Fiir 6 > 0 gilt
1= limP(%—l‘<5),

k—o0 lOg myg 1Y

so dass lgg—b;:’“ in Wahrscheinlichkeit gegen = logﬁ konvergiert. O



4 Anhang

Behauptung 1 (,f;) ist die eindeutige Lisung des Gleichungssystems

Clj = 1
@i = Wilit1 + V-1 , J<i<k
ap = 0

Beweis: a) Existenz: Es gilt ,f#; = 1 und ;. f;; = 0 nach Definition, und fiir 7 € Z
mit j < i < k ist

[e.o]

kf;; = Z kfi(jn)

n=1
(o]
_ (n—1) (n-1)
= E U; kfi-i,-Lj + v kfz‘—Lj
n=2
_ * *
= Wi kfipry T VRSl

b) Eindeutigkeit: Seien a = (a;,...,ax),a = (aj,...,a;) zwei Losungen des
Gleichungssystems. Wir definieren A, := a, — a,, k < j < k. Dann ist Ay = 0,
A;=0und A; = w;Ajyq +v;A;_4. Sei nun r € Z mit j < r < k. Dann gilt

Ar = (ur + UT)AT = UTAT+1 + UrAr—l
und damit
ArJrl - Ar = hr(Ar - Ar71>-

Hieraus folgt induktiv

j—1
A7"+1 — A, = (H hl) (AJ - Aj*1)7
l=r
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und Summation liefert fiir j <i <k
i1 i-1
Ai - AJ - Z(AT+1 - Ar) - (Z H hl) (A]’+1 - A]>
r=j r=j l=j+1

Damit erhalten wir

0=A,—A; = (i H hl> (A1),

r=j l=j+1

Da (Zf;]l | | hl) > 0 ist, gilt Aj;; =0 und deshalb A, =0fiir j <i<k. O
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