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1 Einleitung

Unter einer (Standard-)Irrfahrt auf Z verstehen wir einen stochastischen Prozess

(Mn)n≥0 auf einem Wahrscheinlichkeitsraum (Ω,A, P ) mit Werten in Z, der sich

startend in M0 = 0 im Zeitpunkt n ≥ 1 an der Position Mn befindet, in jedem Zeit-

punkt eine Position weiter nach rechts bzw. eine Position nach links zurückspringt

und dies mit einer bekannten Wahrscheinlichkeit p ∈ (0, 1) bzw. 1 − p unabhängig

von seinen Zuwächsen zu anderen Zeitpunkten tut. Die Irrfahrt hat also stochastisch

unabhängig und identisch verteilte Zuwächse X1, X2, ..., die Werte aus {+1,−1} an-

nehmen,

Mn = M0 +
n∑

k=1

Xk, n ≥ 1.

Bei einer Irrfahrt (Mn)n≥0 auf Z handelt es sich um eine diskrete Markov-Kette

(DMK), d.h.

PMn+1|M0,...,Mn = PMn+1|Mn

für alle n ≥ 0. Nach Definition kann sich eine Irrfahrt nämlich nur um eine Positi-

on pro Zeiteinheit weiterbewegen und sie tut dies unabhängig von den Zuwächsen

zu anderen Zeitpunkten. Gegeben den gesamten Verlauf der Irrfahrt bis zu einem

Zeitpunkt n, müssen wir nur ihren gegenwärtigen Aufenthaltspunkt kennen, um zu

wissen, wohin die Irrfahrt im nächsten Zeitpunkt mit positiver Wahrscheinlichkeit

springen kann. Eine Anwendung der Theorie der DMK liefert nachfolgende Resultate

über das Konvergenzverhalten von Irrfahrten:

• Falls p 6= 1
2
, so gilt limn→∞Mn = ∞ bzw. = −∞ und limn→∞

Mn

n
= EX1.
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• Falls p = 1
2
, so ist die Irrfahrt rekurrent, also −∞ = lim infn→∞Mn <

lim supn→∞Mn = ∞ und limn→∞
Mn

n
= EX1 = 0.

(Vgl. hierzu [Als2], S.46f.)

Gegenstand dieser Arbeit sind allerdings Irrfahrten in zufällig variierenden Umge-

bungen. Eine Irrfahrt in zufällig variierenden Umgebungen unterscheidet sich von

einer Standard-Irrfahrt auf Z dadurch, dass zum einen die Wahrscheinlichkeit, in

einem Punkt nach rechts zu springen, nicht in jedem i ∈ Z gleich ist, und zum an-

deren, dass diese Wahrscheinlichkeiten nicht fest, sondern selbst Zufallsgrößen sind.

Wir werden die Folge dieser Zufallsgrößen mit (Ui)i∈Z bezeichnen. In dieser Arbeit

vereinfachen wir die Situation insoweit, dass wir die Ui als stochastisch unabhängig

und identisch verteilt voraussetzen.

Die eigentliche Irrfahrt bezeichnen wir mit (Sn)n≥0. Eine Realisierung besteht nicht

nur aus einem Pfad ω ∈ ZN, sondern auch aus einer Umgebung u ∈ [0, 1]Z, wobei

natürlich nur der Pfad beobachtet werden kann. Wir überlegen uns leicht, dass die

Irrfahrt in zufällig variierenden Umgebungen keine DMK darstellt. Denn verfolgen

wir einen Pfad bis zu einem Zeitpunkt n bei unbekannter Umgebung u, so erhalten

wir sehr wohl Informationen aus der Vergangenheit darüber, wie sich die Irrfahrt

im nächsten Schritt verhalten wird. Haben wir nämlich schon sehr häufig gesehen,

wie die Irrfahrt in einem bestimmten Punkt weitergesprungen ist, weicht nach dem

starken Gesetz der großen Zahlen die relative Häufigkeit von der theoretischen, un-

bekannten Wahrscheinlichkeit mit sehr geringer Wahrscheinlichkeit stark ab. Dies

ist der entscheidende Unterschied zwischen der Standard-Irrfahrt und der Irrfahrt

in zufällig variierenden Umgebungen: Die Standard-Irrfahrt ist eine DMK, während

wir bei der Irrfahrt in zufällig variierenden Umgebungen aus ihrem vergangenen

Verlauf Informationen über ihren zukünftigen Weg erhalten.

Obwohl eine Irrfahrt in zufällig variierenden Umgebungen keine DMK ist, werden

wir in den Beweisen über ihr Konvergenzverhalten die Theorie diskreter Markov-

Ketten anwenden können. Denn gegeben eine feste Umgebung ist eine Irrfahrt in

zufällig variierenden Umgebungen eine DMK aus den gleichen Gründen wie die

Standard-Irrfahrt. Wir werden viele Aussagen zunächst unter einer festen Umge-

bung u beweisen und unter Beachtung, dass eine Irrfahrt in zufällig variierenden

Umgebungen eine bestimmte Eigenschaft f.s. besitzt, wenn die Irrfahrt bei gege-
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bener Umgebungsfolge diese Eigenschaft für PU -f.a. Umgebungen u Pu-f.s. besitzt,

dann die eigentliche Aussage zeigen können.

Die in dieser Arbeit vorgestellten Ergebnisse entstammen dem Artikel
”
Random

walks in a random environment“ von Solomon [Sol]. Zu Beginn werden wir zunächst

das Irrfahrten in zufällig variierenden Umgebungen zugrunde liegende Modell ange-

ben. Dann werden wir uns mit dem Konvergenzverhalten von Irrfahrten beschäftigen

und als Resultat erhalten, dass eine Irrfahrt in Abhängigkeit von der Verteilung der

Ui entweder gegen ∞ bzw. −∞ konvergiert oder rekurrent ist. Anschließend wer-

den wir mit Hilfe des Birkhoffschen Ergodensatzes die Konvergenzgeschwindigkeit

einer Irrfahrt bestimmen können. Dabei werden wir feststellen, dass eine Irrfahrt in

zufällig variierenden Umgebungen im Vergleich zu einer entsprechenden Standard-

Irrfahrt langsamer ist: Vergleichen wir eine Irrfahrt in zufällig variierenden Umge-

bungen mit einer Standard-Irrfahrt, die in jedem Punkt die Übergangswahrschein-

lichkeit EU1 besitzt, so konvergiert letztere schneller. Die allgemeine Theorie ab-

schließend bestimmen wir die erwartete Anzahl der Besuche einer Irrfahrt in Punk-

ten aus Z.

Im dritten Kapitel betrachten wir ein Beispiel einer Irrfahrt, für die limn→∞ Sn = ∞
und limn→∞

Sn

n
= 0 gilt, die also mit Geschwindigkeit 0 gegen ∞ konvergiert. Die-

sen ungewöhnlichen Fall gibt es unter bestimmten Voraussetzungen bei Irrfahrten in

zufällig variierenden Umgebungen. In unserem Beispiel wird die Umgebungsfolge der

Irrfahrt (Ui)i∈Z aus nicht f.s. konstanten Zufallsgrößen bestehen, die entweder mit

Wahrscheinlichkeit 1− p den Wert 1 annehmen, also rechtsreflektierende Barrieren

sind, oder einen anderen festen Wert echt zwischen 0 und 1
2

mit Wahrscheinlichkeit

p. Definieren wir Tn als die Ersteintrittszeit der Irrfahrt in den Punkt n, n ∈ N,

dann wird es unser Ziel sein, Funktionen f zu finden, für die Tn

f(n)
bzw. Sn

f(n)
in Wahr-

scheinlichkeit gegen zu bestimmende Grenzwerte konvergiert.

Herzlich bedanke ich mich bei Herrn Alsmeyer für die gute Betreuung und geduldige

Hilfe bei der Erstellung dieser Diplomarbeit.





2 Irrfahrten in zufällig variierenden

Umgebungen

2.1 Das Modell

Zur Modellierung einer Irrfahrt in zufälligen Umgebungen wählen wir die von den

Zylindermengen erzeugten σ-Algebren A1 und A2 über dem Raum der Umgebungen

[0, 1]Z bzw. der Menge der Pfade der Irrfahrt ZN. Durch Produktbildung erhalten

wir A := A1 ⊗ A2 als σ-Algebra über [0, 1]Z × ZN.

Wir definieren nun die Irrfahrt S durch S := (Sn)n∈N mit

Sn : [0, 1]Z × ZN → Z, (u, ω) 7→ ωn

und die zufällige Umgebung U durch U := (Ui)i∈Z mit

Ui : [0, 1]Z × ZN → [0, 1], (u, ω) 7→ ui.

Da die Ui als stochastisch unabhängig und identisch verteilt vorausgesetzt werden

sollen, wählen wir auf ([0, 1]Z,A1) das Produkt eines Wahrscheinlichkeitmaßes auf

[0, 1] als Verteilung von U und bezeichnen dieses mit Q.

Zu gegebenem u ∈ [0, 1]Z sei Mu die Verteilung der zeitlich homogenen diskreten

Markov-Kette, die eindeutig durch ihre Anfangsverteilung δ0 und ihre Übergangs-

matrix P = (pij)i,j∈Z mit

pij :=


ui, j = i+ 1

1− ui, j = i− 1

0, sonst
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bestimmt ist. Nun kann ein Maß P auf ([0, 1]Z × ZN,A) durch

P (A×B) :=

∫
A

Mu(B)Q(du)

definiert werden. (Zur Wohldefiniertheit und den zu erfüllenden Maßeigenschaften

vergleiche [Sol].) Nun können wir für die bedingten Verteilungen abkürzend definie-

ren

PU(·) := P (S ∈ · | U) und Pu(·) := P (S ∈ · | U = u) = Mu(·).

Um das Grenzverhalten von Irrfahrten in zufälligen Umgebungen herzuleiten, be-

dienen wir uns nachfolgender Argumentation: Eine Irrfahrt in zufällig variierenden

Umgebungen besitzt eine bestimmte Eigenschaft P -f.s., wenn die Irrfahrt bei gege-

bener Umgebungsfolge diese Eigenschaft für PU -f.a. Umgebungen u Pu-f.s. besitzt.

Lemma 2.1 Sei B ∈ A2 mit P S|U=u(B) = 1 für PU -f.a. u ∈ [0, 1]Z. Dann ist

P (S ∈ B) = 1.

Beweis: P (S ∈ B) = P (U,S)([0, 1]Z ×B) =
∫

[0,1]Z
P S|U=u(B)PU(du) = 1. 2

2.2 Das Grenzverhalten

Wir untersuchen nun also zunächst das Grenzverhalten von Irrfahrten bei gegebener

Umgebungsfolge, um dann mit Hilfe von Lemma 2.1 auf das Grenzverhalten von

Irrfahrten in zufälligen Umgebungen zu schließen.

Satz 2.2 Sei (un)n∈Z eine barrierefreie Umgebung, also eine Folge reeller Zahlen

mit 0 < un < 1 für alle n ∈ Z.

Wir definieren

vn := 1− un, hn :=
vn

un

und gn :=


h1 · . . . · hn, n > 0

1, n = 0

hn · . . . · h−1, n < 0

.
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Die Wahrscheinlichkeit, von i nach j in endlicher Zeit zu gelangen, definieren wir

durch f ∗ij :=
∑∞

n=1 f
(n)
ij , i, j ∈ Z mit

f
(n)
ij := Pu(Tj = n | S0 = i)

wobei

Tj := inf{k ≥ 1 : Sk = j}.

Sei außerdem µ01 :=
∑∞

n=1 nf
(n)
01 die erwartete Zeitdauer um zum ersten Mal von 0

nach 1 zu gelangen.

(a) Sei i > j.

Falls
∑∞

n=1 gn <∞, so ist f ∗ij =

∑∞
n=i hj · . . . · hn∑∞
n=j hj · . . . · hn

< 1.

Falls
∑∞

n=1 gn = ∞, so ist f ∗ij = 1.

(b) Sei i < j.

Falls
∑∞

n=1(g−n)−1 <∞, so ist f ∗ij =

∑i
n=−∞(hj · . . . · hn)−1∑j
n=−∞(hj · . . . · hn)−1

< 1.

Falls
∑∞

n=1(g−n)−1 = ∞, so ist f ∗ij = 1.

(c) Aus f ∗01 = 1 folgt µ01 =
∑1

j=−∞(1 + hj−1) · hj · . . . · h0.

Beweis: (a) Sei k ∈ Z mit j ≤ i ≤ k. Wir definieren die Tabuwahrscheinlichkeit

durch kf
∗
ij :=

∑∞
n=1kf

(n)
ij mit

kf
(n)
ij := Pu(Tj = n;Tk > n | S0 = i)

für i 6= j, k und n ≥ 1 sowie kf
∗
jj := 1 und kf

∗
kj := 0. (kf

∗
ij) ist die eindeutige Lösung

des Gleichungssystems

aj = 1

ai = uiai+1 + viai−1 , j < i < k

ak = 0

(2.1)

(siehe Anhang, Beh.1). Sei r ∈ Z mit j < r < k. Dann gilt

ar = (ur + vr)ar = urar+1 + vrar−1
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und somit

ar+1 − ar = hr(ar − ar−1).

Hieraus folgt induktiv

ar+1 − ar =

(
r∏

l=j+1

hl

)
(aj+1 − aj),

und Summation liefert für j ≤ i ≤ k

ai − aj =
i−1∑
r=j

(ar+1 − ar) =

(
i−1∑
r=j

r∏
l=j+1

hl

)
(aj+1 − aj). (2.2)

Damit erhalten wir

−1 = ak − aj =

(
k−1∑
r=j

r∏
l=j+1

hl

)
(aj+1 − 1)

und so

aj+1 =

(∑k−1
r=j hj+1 · . . . · hr

)
− 1∑k−1

r=j hj+1 · . . . · hr

=

∑k−1
r=j+1 hj+1 · . . . · hr∑k−1
r=j hj+1 · . . . · hr

.

Einsetzen dieses Wertes in (2.2) liefert für j ≤ i ≤ k

ai =

(
i−1∑
r=j

hj+1 · . . . · hr

)
(aj+1 − 1) + 1

=

(
i−1∑
r=j

hj+1 · . . . · hr

)(∑k−1
r=j+1 hj+1 · . . . · hr −

∑k−1
r=j hj+1 · . . . · hr∑k−1

r=j hj+1 · . . . · hr

)

+

∑k−1
r=j hj+1 · . . . · hr∑k−1
r=j hj+1 · . . . · hr

=

∑k−1
r=j hj+1 · . . . · hr −

∑i−1
r=j hj+1 · . . . · hr∑k−1

r=j hj+1 · . . . · hr
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=

∑k−1
r=i hj+1 · . . . · hr∑k−1
r=j hj+1 · . . . · hr

.

Da die kf
∗
ij die eindeutige Lösung von (2.1) sind, erhalten wir

kf
∗
ij =

∑k−1
r=i hj+1 · . . . · hr∑k−1
r=j hj+1 · . . . · hr

.

Nach [Chu1], S.66 gilt

lim
k→∞

kf
∗
ij = lim

k→∞

∑k−1
r=i hj+1 · . . . · hr∑k−1

r=i hj+1 · . . . · hr +
∑i−1

r=j hj+1 · . . . · hr

= f ∗ij

und damit f ∗ij = 1 genau dann, wenn
∑∞

r=i hj+1 · . . . · hr = ∞ ist.

Da Addition bzw. Subtraktion von endlich vielen Summanden am Konvergenzver-

halten der Reihe nichts verändert, folgt die Äquivalenz zu
∑∞

r=1 hj+1 · . . . · hr = ∞
und weiter zu

∑∞
r=1 gr = ∞.

(b) Wir führen diesen Fall auf (a) zurück und betrachten dazu die im Null-

punkt gespiegelte Irrfahrt (Ŝn)n≥0, definiert durch Ŝn := −Sn, n ≥ 0. Analog zur

Irrfahrt (Sn)n≥0 definieren wir für die gespiegelte Irrfahrt die Wahrscheinlichkeiten

ûn, v̂n, ĥn, ĝn und f̂ ∗ij. Wie man sich leicht überlegt, gelten dann ûn = v−n, v̂n = u−n,

ĥn = (h−n)−1, ĝn = (g−n)−1 und f̂ ∗ij = f ∗−i,−j. Ist j > i, dann gilt nach (a)

f ∗ij = f̂ ∗−i,−j =

∑∞
n=−i ĥ−j · . . . · ĥn∑∞
n=−j ĥ−j · . . . · ĥn

=

∑i
n=−∞(hj · . . . · hn)−1∑j
n=−∞(hj · . . . · hn)−1

und weiter f ∗ij = 1 genau dann, wenn
∑∞

n=1 ĝn =
∑∞

n=1(g−n)−1 = ∞.

c) Wir unterscheiden zwei Fälle. Zunächst nehmen wir an, dass T1 unter

Pu(· | S0 = 0) unendlichen Erwartungswert besitzt. Wir definieren T
(m)
1 := T1 ∧m

für alle m ∈ N und bezeichnen den Erwartungswert einer Zufallsgröße X unter

Pu(· | S0 = 0) mit Eu,oX. Dann ist

Eu,0T
(m)
1 = 1 + v0(Eϑ−1u,0T

(m−1)
1 + Eu,0T

(m−2)
1 ),

wobei ϑ die Shift-Operation, definiert durch ϑ(..., u−1, u0, u1, ...) := (..., u0, u1, u2, ...),

sei. Wir schätzen ab

Eu,0T
(m)
1 ≥ 1 + v0(Eϑ−1u,0T

(m−1)
1 + Eu,0T

(m)
1 )
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und erhalten, da Eu,0T
(m)
1 ≤ m < ∞ und nach Voraussetzung u0 6= 0 gelten, die

Ungleichung

Eu,0T
(m)
1 ≤ 1

u0

+
v0

u0

(Eϑ−1u,0T
(m−1)
1 )

und iterativ weiter für alle n ≤ m− 1

Eu,0T
(m)
1 =

1∑
j=−n+1

(1 + hj−1)h0 · . . . · hj + h0 · . . . · h−nEϑ−n−1u,0T
(m−n−1)
1 .

Für n = m− 1 folgt also

Eu,0T
(m)
1 =

1∑
j=−m+2

(1 + hj−1)h0 · . . . · hj ≤
1∑

j=−∞

(1 + hj−1)h0 · . . . · hj.

Lassen wir m gegen ∞ laufen, ergibt sich aufgrund der Satzes von der monotonen

Konvergenz

Eu,0T1 ≤
1∑

j=−∞

(1 + hj−1)h0 · . . . · hj.

Wir hatten Eu,0T1 = ∞ vorausgesetzt, erhalten folglich auch die Divergenz der Reihe∑1
j=−∞(1 + hj−1)h0 · . . . · hj und damit, dass Eu,0T1 =

∑1
j=−∞(1 + hj−1)h0 · . . . · hj

gilt.

Im zweiten Fall betrachten wir Eu,0T1 < ∞ und zeigen zunächst, dass dann auch∑1
j=−∞(1 + hj−1)h0 · . . . · hj <∞ gilt. Wir nehmen an, es gelte

1∑
j=−∞

(1 + hj−1)h0 · . . . · hj = ∞

und beachten, dass aus Eu,0T1 = 1
u0

+ h0Eϑ−1uT1 <∞ die Endlichkeit von Eϑ−1uT1

folgt. Nun iterieren wir und erhalten

Eu,0T1 =
1

u0

+ h0Eϑ−1uT1

=
1∑

j=−n+1

(1 + hj−1)h0 · . . . · hj + h0 · . . . · h−nEϑ−n−1u,0T1

≥
1∑

j=−n+1

(1 + hj−1)h0 · . . . · hj
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für alle n ∈ N. Da die rechte Seite der Ungleichung für n→∞ gegen ∞ konvergiert,

folgt der Widerspruch Eu,0T1 = ∞. Deshalb muß
∑1

j=−∞(1 + hj−1)h0 · . . . · hj <∞
gelten. So liefert uns weitere Iteration Eu,0T1 =

∑1
j=−∞(1 + hj−1)h0 · . . . · hj. 2

Nun kann auf das Konvergenzverhalten von Irrfahrten bei gegebenen barrierefreien

Umgebungen geschlossen werden.

Satz 2.3 Sei (un)n∈Z ein Folge reeller Zahlen mit 0 < un < 1 für alle n ∈ Z. Dann

gilt:

(a) Aus
∑∞

n=1(g−n)−1 = ∞ und
∑∞

n=1 gn <∞ folgt limn→∞ Sn = ∞ Pu-f.s.

(b) Aus
∑∞

n=1(g−n)−1 <∞ und
∑∞

n=1 gn = ∞ folgt limn→∞ Sn = −∞ Pu-f.s.

(c) Aus
∑∞

n=1(g−n)−1 = ∞ =
∑∞

n=1 gn folgt die Rekurrenz von (Sn)n∈N. Insbeson-

dere gilt −∞ = lim infn→∞ Sn < lim supn→∞ Sn = ∞ Pu-f.s.

Beweis: (a) Aus den Voraussetzungen folgt mit Satz 2.2, dass f ∗ij = 1 für i < j und

f ∗ij < 1 für i > j gilt. Wir setzen σ0 = 0 und definieren für alle n ∈ N die Stopzeit

σn bezüglich (Gn)n≥0, Gn := σ(X1, . . . , Xn), wobei (Xi)i≥1 die Folge der Zuwächse

der Irrfahrt sei, durch

σn := inf{k > σn−1 : Sk = 0, Sj = −1 für ein σn−1 < j < k}.

Demnach ist σ1 der erste Zeitpunkt, in dem die Irrfahrt wieder in 0 ist, nachdem sie

mindestens einmal in −1 war. Da f ∗−1,0 = 1 gilt, ist Pu(σ1 <∞) = f ∗0,−1. Wir zeigen

nun, dass

Pu(σn <∞) = f ∗0,−1

auf {σn−1 <∞} für alle n ∈ N gilt. Für beliebiges A ∈ P(Z)k ×Z∞, k ≥ 1, genügt

Pu((Xσn+1, . . . , Xσn+k) ∈ A|Gσn) = Pu((X1, . . . , Xk) ∈ A)

auf {σn <∞} zu zeigen, wobei Gσn = {B ∈ ZN : B∩{σn = k} ∈ Gk für alle k ∈ N}.
Dann ist nämlich

P
(Sσn+k)k≥0|Gσn
u = P

(Sk)k≥0
u
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auf {σn < ∞}. Da, gegeben eine Umgebung u, (Sn)n≥0 eine Markov-Kette bildet

und deshalb P Sn+1|Gn = P Sn+1|Sn für alle n ∈ N gilt, rechnen wir nach:

Pu((Xσn+1, . . . , Xσn+k) ∈ A|Gσn)

=
∑
j∈N

Pu(σn = j, Sj = 0, (Xj+1, . . . , Xj+k) ∈ A|Gσn)

=
∑
j∈N

Pu(σn = j|Gσn)Pu((X1, . . . , Xk) ∈ A)

= Pu((X1, . . . , Xk) ∈ A)

auf {σn <∞}. Wir erhalten

Pu(σ0 <∞, . . . , σn+1 = ∞) = (f ∗0,−1)
n(1− f ∗0,−1),

und damit
∞∑

n=0

Pu(σ0 <∞, . . . , σn+1 = ∞) = 1.

In endlicher Zeit besucht die Irrfahrt also letztmalig −1 und springt von dort nach

rechts weiter. Dieselbe Aussage läßt sich für jedes n ∈ Z zeigen, so dass limn→∞ Sn =

∞ gelten muß.

(b) Analog zu (a).

(c) Aus den Voraussetzungen folgt f ∗ij = 1 für sowohl i < j als auch i > j.

Damit ist f ∗ii = uif
∗
i+1,i + vif

∗
i−1,i = 1 für alle i ∈ Z, also ist die Irrfahrt rekurrent. 2

Um im Anschluss auch Aussagen über das Grenzverhalten von Irrfahrten in zufällig

variierenden Umgebungen machen zu können, wird nachfolgendes Lemma benötigt.

Lemma 2.4 Sei (Yn)n≥1 eine Folge unabhängig identisch verteilter, nicht f.s. kon-

stanter endlicher Zufallsgrößen und (Zn)n≥0 der zugehörige Standard-Random-Walk.

Dann gilt:

(a)
∑∞

n=1
1
n
P (Zn > 0) < ∞ genau dann, wenn limn→∞ Zn = −∞ f.s., und beide

Aussagen implizieren
∑∞

n=1 e
Zn <∞ f.s.

(b)
∑∞

n=1
1
n
P (Zn > 0) = ∞ =

∑∞
n=1

1
n
P (Zn < 0) genau dann, wenn −∞ =

lim infn→∞ Zn < lim supn→∞ Zn = ∞ f.s., und beide Aussagen implizieren∑∞
n=1 e

−Zn = ∞ =
∑∞

n=1 e
Zn f.s.
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Beweis: (a) Nach [Chu2], S.244, 265, gilt
∞∑

n=1

1

n
P (Zn > 0) <∞

genau dann, wenn

lim sup
n→∞

Zn <∞ f.s.

Die letzte Aussage ist nach [Als1], S.165, äquivalent zu

lim
n→∞

Zn = −∞.

Unter den Voraussetzungen des Satzes gilt nach [Sto], dass entweder lim supn→∞
Zn√

n
=

∞ f.s. oder limn→∞
Zn√

n
= −∞ f.s. ist. Hier kann nur limn→∞

Zn√
n

= −∞ f.s. gelten.

Es existiert also n′ ∈ N mit Zn < −
√
n für alle n > n′. Damit gilt

0 ≤
∞∑

n=n′

eZn <
∞∑

n=n′

e−
√

n <∞,

woraus die Behauptung folgt.

(b) Analog zu (a) gilt
∞∑

n=1

1

n
P (Zn > 0) = ∞ =

∞∑
n=1

1

n
P (−Zn > 0)

genau dann, wenn

lim sup
n→∞

Zn = ∞ und lim sup
n→∞

−Zn = − lim inf
n→∞

Zn = ∞ f.s.

Die letzte Behauptung ist klar, da sowohl gegen ∞ als auch gegen −∞ konvergie-

rende Teilfolgen von (Zn)n≥0 existieren. 2

Jetzt können wir beweisen, dass es für das Grenzverhalten einer Irrfahrt in zufällig

variierenden Umgebungen in Abhängigkeit von der Verteilung der Umgebung drei

Möglichkeiten gibt: die Irrfahrt läuft entweder gegen ∞ oder gegen −∞ oder sie ist

rekurrent.

Satz 2.5 Für die Folge (Un)n∈Z unabhängig identisch verteilter, nicht f.s. konstan-

ter Zufallsgrößen gelte 0 ≤ Un < 1 oder 0 < Un ≤ 1 für alle n ∈ Z. Wir definieren

Gn :=


H1 · . . . ·Hn, n > 0

1, n = 0

Hn · . . . ·H−1, n < 0

mit Hn :=
1− Un

Un

.
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(a)
∑∞

n=1
1
n
P (Gn > 1) <∞ impliziert limn→∞ Sn = ∞ f.s.

(b)
∑∞

n=1
1
n
P (Gn < 1) <∞ impliziert limn→∞ Sn = −∞ f.s.

(c)
∑∞

n=1
1
n
P (Gn > 1) = ∞ =

∑∞
n=1

1
n
P (Gn < 1) impliziert die Rekurrenz von

(Sn)n∈Z, insbesondere gilt −∞ = lim infn→∞ Sn < lim supn→∞ Sn = ∞ f.s.

Beweis: (a) Wir betrachten zunächst den Fall, dass keine Barrieren existieren, also

0 < Un < 1 für alle n ∈ Z gilt. Wir definieren Zn :=
∑n

i=1 logHi, n ∈ N. Unter der

Voraussetzung

∞∑
n=1

1

n
P (

n∑
i=1

logHi > 0) =
∞∑

n=1

1

n
P (e

∑n
i=1 log Hi > 1)

=
∞∑

n=1

1

n
P (

n∏
i=1

Hi > 1) <∞

folgt mit Lemma 2.4
∞∑

n=1

Gn =
∞∑

n=1

eZn <∞ f.s.

Folglich ist (Gn)n∈Z f.s. eine Nullfolge und, da die Ui, i ∈ Z, identisch verteilt sind,

gilt damit
∞∑

n=1

1

G−n

= ∞ f.s.

Satz 2.3 impliziert limn→∞ Sn = ∞ Pu-f.s für PU -f.a Umgebungen u. Mit Lemma

2.1 folgt die Behauptung.

Seien nun rechtsreflektierende Barrieren erlaubt, es gelte also P (Un = 1) > 0 und

Un > 0 für alle n ∈ Z. Dann ist∑
n≥1

P (Un = 1) = ∞.

Mit dem Lemma von Borel-Cantelli folgt

P (lim sup
n→∞

{Un = 1}) = 1.

Es gibt also f.s. unendlich viele nach rechts reflektierende Barrieren. Also gilt

lim
n→∞

Sn = ∞ f.s.
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Es bleibt
∞∑

n=1

1

n
P (Gn > 1) <∞

zu zeigen. Beachten wir, dass die Hi, i ∈ Z, positiv, stochastisch unabhängig und

identisch verteilt sind, erhalten wir nachfolgende Ungleichungen:

∞∑
n=1

1

n
P (Gn > 1) ≤

∞∑
n=1

1

n
P (Gn > 0)

=
∞∑

n=1

1

n
(P (H1 > 0))n

≤
∞∑

n=1

(P (U1 < 1))n <∞.

Die Aussagen (b) und (c) lassen sich weitestgehend analog zu (a) beweisen.

Nur zu (b) ist anzumerken, dass, vorausgesetzt Barrieren treten nicht mit positiver

Wahrscheinlichkeit auf, die Voraussetzung

∞∑
n=1

1

n
P (Zn < 0) =

∞∑
n=1

1

n
P (−Zn > 0) <∞

die fast sichere Konvergenz der Reihe

∞∑
n=1

e−Zn =
∞∑

n=1

e
∑n

i=1 log H−1
i =

∞∑
n=1

1

Gn

impliziert.

Und im anderen Fall, dass mit jeweils positiver Wahrscheinlichkeit nach links re-

flektierende Barrieren auftreten, kann man völlig analog zu (a) die Konvergenz der

Reihe
∑∞

n=1
1
n
P (Gn < 1) und die der Irrfahrt gegen −∞ beweisen. 2

Satz 2.6 Existiert, gegeben die Voraussetzungen von Satz 2.5, der Erwartungswert

E logH1, dann gilt

(a)
∑∞

n=1
1
n
P (Gn > 1) <∞⇔ E logH1 < 0.

(b)
∑∞

n=1
1
n
P (Gn < 1) <∞⇔ E logH1 > 0.

(c)
∑∞

n=1
1
n
P (Gn > 1) = ∞ =

∑∞
n=1

1
n
P (Gn < 1) ⇔ E logH1 = 0.
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Beweis: (a) Es existiere E logH1. Dieser ist nach [Als1], S.166, genau dann negativ,

wenn Zn f.s. gegen −∞ konvergiert. Nach Lemma 2.4 ist dies äquivalent zu

∞∑
n=1

1

n
P (Zn > 0) =

∞∑
n=1

1

n
P (Gn > 1) <∞.

Die Aussagen (b) und (c) können analog zu (a) bewiesen werden, bei (c) unter

Berücksichtigung, dass U1 nicht f.s. konstant ist und daher

P (logH1 = 0) = P (H1 = 1) = P (U1 =
1

2
) < 1

gilt. 2

Bemerkung 2.7 Der Fall, dass

∞∑
n=1

1

n
P (Gn > 1) <∞ und

∞∑
n=1

1

n
P (Gn < 1) <∞

gleichzeitig erfüllt sind, kann nicht eintreten, da nach [Chu2], S.261, die Reihe∑∞
n=1

1
n
P (Gn = 1) immer konvergiert. Es gibt also nur die drei oben betrachteten

Fälle.

2.3 Die Konvergenzgeschwindigkeit

Zur Untersuchung des Grenzverhaltens der Folge (Sn

n
)n≥1 können weder das starke

Gesetz der großen Zahlen noch der Birkhoffsche Ergodensatz angewandt werden, da

die Zuwächse Xn := Sn−Sn−1, n ∈ N, weder unabhängig und identisch verteilt noch

stationär sind, wie der anschließende Satz zeigt.

Satz 2.8 Die Irrfahrt (Sn)n∈N hat genau dann stationäre Zuwächse Xn, n ∈ N,

wenn die Umgebung U f.s. aus Konstanten besteht, wenn also EU2
0 = (EU0)

2 gilt.

Beweis: ”⇒”: Aus der Stationarität der Zuwächse folgt insbesondere

P (X1 = 1, X2 = 1) = P (X2 = 1, X3 = 1). (2.3)
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Wir definieren für alle n ∈ N0 die σ-Algebra Fn durch Fn := σ(U,X1, ..., Xn). Für

alle n ∈ N0 ist dann

P (Xn+1 = 1, Xn+2 = 1 | Fn) = E(1{Xn+1=1}P (Xn+2 = 1 | Fn+1) | Fn)

= E(1{Xn+1=1}USn+1 | Fn)

= E(1{Xn+1=1}USn+1 | Fn)

= P (Xn+1 = 1 | Fn)USn+1 [USn+1 Fn-messbar]

= USnUSn+1 f.s. (2.4)

Mit (2.4) gelten weiter, da die Ui unabhängig und identisch verteilt sind,

P (X1 = 1, X2 = 1) = E(P (X1 = 1, X2 = 1 | U))

= E(U0U1)

= (EU0)
2

und

P (X2 = 1, X3 = 1) =
∑

j∈{1,−1}

E(1{X1=j}P (X2 = 1, X3 = 1 | F1))

=
∑

j∈{1,−1}

E(1{X1=j}UjUj+1)

=
∑

j∈{1,−1}

E(P (X1 = j | U)UjUj+1)

= E((U0U1U2 + (1− U0)U−1U0))

= E(U0U1U2) + E((U0 − U2
0 )U−1)

= (EU0)
3 + EU0(EU0 − EU2

0 ).

Mit (2.3) erhalten wir die Gleichung

(EU0)
2 = (EU0)

3 + EU0(EU0 − EU2
0 )

und damit

0 = (EU0)
3 − EU0EU

2
0 = ((EU0)

2 − EU2
0 )EU0. (2.5)

(2.5) ist erfüllt, wenn U0 = 0 f.s. oder wenn (EU0)
2 = EU2

0 , also wenn U0 f.s. kon-

stant ist.
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”⇐”: Sind die Un f.s. konstant, hat (Sn)n≥0 unabhängig und identisch verteilte

Zuwächse. Damit ist die Folge der Zuwächse insbesondere stationär. 2

Auch wenn die Folge der Zuwächse (Xn)n≥1 selbst nicht stationär ist, so können

dennoch mit Hilfe des Birkhoffschen Ergodensatzes Aussagen über das Grenzverhal-

ten von (Sn

n
)n≥1 gemacht werden. Wir definieren dazu die Ersteintrittszeit in n für

n ≥ 1 durch

Tn = inf{k > 0 : Sk = n}, (inf ∅ := ∞)

und setzen T0 = 0. Wir definieren weiter die Dauer vom ersten Besuch in n− 1 bis

zum ersten Besuch in n durch

τn := Tn − Tn−1 für n ≥ 1.

T−n und τ−n definieren wir analog.

Zum anschließenden Beweis der Ergodizität der Folge (τn)n∈N benötigen wir das

folgende Lemma.

Lemma 2.9 Seien m, k, j ∈ N mit m > k, und ferner C1, . . . , Ck, D1, . . . , Dj ⊆ N
mit Ds ⊆ (0,m− k] für s = 1, . . . , j. Setzen wir (τn)n∈N als stationär voraus, gilt

P (τr ∈ Cr, 1 ≤ r ≤ k; τm+s ∈ Ds, 1 ≤ s ≤ j)

= P (τr ∈ Cr, 1 ≤ r ≤ k)P (τs ∈ Ds, 1 ≤ s ≤ j).
(2.6)

Beweis: Wir definieren A := A1 ∩ A2 mit

A1 := {τr ∈ Cr, 1 ≤ r ≤ k} und A2 := {τm+s ∈ Ds, 1 ≤ s ≤ j}.

A1 hängt nur von den Komponenten S0, ..., STk
der Irrfahrt ab und A2 von den

Komponeneten STm , ..., STm+j
. Da (Sn)n∈N unter allen Pu, u ∈ [0, 1]Z, eine Markov-

Kette ist und m > k gilt, sind A1 und A2 unter allen Pu stochastisch unabhängig,

also

Pu(A) = Pu(A1)Pu(A2).

Wir zeigen als nächstes, dass aufgrund der speziellen Bedingung an die Ds sogar

PU(A1) und PU(A2) stochastisch unabhängig sind. PU(A1) ist messbar bzgl. der von
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(Un)k−1
n=−∞ erzeugten σ-Algebra. Ist τm+s ∈ Ds, 1 ≤ s ≤ j, so ist τm+s ≤ m− k, und

da Sn+1 = Sn ± 1 gilt, die Irrfahrt also pro Zeiteinheit nur einen Schritt vor oder

zurück gehen kann, ist

Sn ≥ m− m− k

2
=
m+ k

2

auf dem Weg von m nach m+ j. Also fällt die Irrfahrt insbesondere nicht weiter als

auf k zurück. Darum ist PU(A2) messbar bzgl. σ((Un)∞n=k). Weil die Un stochastisch

unabhängig sind, sind die σ-Algebren σ((Un)k−1
n=−∞) und σ((Un)∞n=k) unabhängig und

deshalb auch PU(A1) und PU(A2). Daraus folgt nun unter Berücksichtigung der

Stationarität der Folge (τn)n≥1

P (τr ∈ Cr, 1 ≤ r ≤ k; τm+s ∈ Ds, 1 ≤ s ≤ j)

=

∫
Pu(τr ∈ Cr, 1 ≤ r ≤ k; τm+s ∈ Ds, 1 ≤ s ≤ j)PU(du)

=

∫
Pu(τr ∈ Cr, 1 ≤ r ≤ k)Pu(τm+s ∈ Ds, 1 ≤ s ≤ j)PU(du)

=

∫
Pu(τr ∈ Cr, 1 ≤ r ≤ k)PU(du)

∫
Pu(τm+s ∈ Ds, 1 ≤ s ≤ j)PU(du)

=

∫
Pu(τr ∈ Cr, 1 ≤ r ≤ k)PU(du)

∫
Pu(τs ∈ Ds, 1 ≤ s ≤ j)PU(du)

= P (τr ∈ Cr, 1 ≤ r ≤ k)P (τs ∈ Ds, 1 ≤ s ≤ j).

2

Satz 2.10 Sei lim supn→∞ Sn = ∞ f.s. Dann sind die τn f.s. endlich, und die Folge

(τn)n≥1 ist stationär und ergodisch.

Beweis: Ist lim supn→∞ Sn = ∞ f.s., dann ist klar, dass τn für alle n ∈ N f.s. endlich

ist. Zum Beweis der Stationärität von (τn)n≥1 überlegen wir, dass es eine Funktion

f gibt, so dass für alle k ≥ 1

(τn)n≥k = f((UTk−1+n)n∈Z, (STk−1+n − STk−1
)n≥0)

gilt, da die τn für n ≥ k nur von der Umgebungsfolge U und der Irrfahrt ab deren

Ersteintritt in k − 1 abhängen. Kann gezeigt werden, dass

((Un)n∈N, (Sn)n≥0)
d
= ((UTk+n)n∈Z, (STk+n − STk

)n≥0)
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für alle k ≥ 1 gilt, so folgt die Stationarität der Folge (τn)n≥1. Sei ϑ die Shift-

Operation, definiert durch ϑ(..., u−1, u0, u1, ...) := (..., u0, u1, u2, ...). Für alle j ≥ 1,

k ≥ 1 und B,C ∈ BN gilt dann, da die Irrfahrt, gegeben eine feste Umgebung u,

stochastisch unabhängige Zuwächse besitzt,

P (Tk = j, ϑTkU ∈ B, (STk+n − STk
)n≥0 ∈ C)

= P (Tk = j, ϑjU ∈ B, (Sj+n − Sj)n≥0 ∈ C)

=

∫
B

P (Tk = j, (Sj+n − Sj)n≥0 ∈ C | ϑjU = u)P ϑjU(du)

=

∫
B

P (Tk = j | ϑjU = u)P ((Sj+n − Sj)n≥0 ∈ C | ϑjU = u)P ϑjU(du)

=

∫
B

Pϑ−ju(Tk = j)Pu((Sn)n≥0 ∈ C)PU(du) [Ui, i ∈ Z, u.i.v.]

= E[P (Tk = j | ϑ−jU)1B(U)P ((Sn)n≥0 ∈ C | U)]

= E(E[1{Tk=j}1B(U)P ((Sn)n≥0 ∈ C | U) | ϑ−1U ]) [1B(U), P (S ∈ C | U) σ(U)-messb.]

= E[1{Tk=j}1B(U)P ((Sn)n≥0 ∈ C | U)]

= E[1{Tk=j}E(1B(U)1C((Sn)n≥0) | U)] [1B(U) σ(U)-messb.].

Summation über j liefert

P (ϑTkU ∈ B, (STk+n − STk
)n≥0 ∈ C)

= E(E[1B(U)1C((Sn)n≥0) | U ])

= P (U ∈ B, (Sn)n≥0 ∈ C).

Damit ist die Stationarität von (τn)n≥1 gezeigt.

Im Nachfolgenden wird die Ergodizität der Folge τ := (τn)n≥1 nicht direkt gezeigt,

sondern die stärkere Aussage, dass τ mischend ist, d.h. dass

lim
m→∞

P (τ ∈ A, τ ∈ ϑ−m(B)) = lim
m→∞

P (τ ∈ A, (τm+1, ..) ∈ B) = P (τ ∈ A)P (τ ∈ B)

für alle A,B ∈
⊗∞

n=1 P(N) gilt, wobei ϑ wieder die Shift-Operation bezeichnet. Nach

[Dur], S.310, genügt es, die obige Gleichung für die Mengen eines durchschnittsta-

bilen Erzeugers von
⊗∞

n=1 P(N) zu zeigen. Wir definieren also

E := {(C1 × . . .× Cl ×N× . . .) ∈
∞⊗

n=1

P(N) : l ∈ N}
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und betrachten (C1 × . . .× Ck ×N× . . .), (D1 × . . .×Dj ×N× . . .) ∈ E . Zu ε > 0

wählen wir N derart, dass P (∪1≤s≤j{τs ∈ Ds\(0, N)}) < ε gilt. Wir können unter

Berücksichtigung der Stationarität der Folge τ abschätzen:

P (τr ∈ Cr, 1 ≤ r ≤ k; τm+s ∈ Ds ∩ (0, N ], 1 ≤ s ≤ j)

≤ P (τr ∈ Cr, 1 ≤ r ≤ k; τm+s ∈ Ds, 1 ≤ s ≤ j)

≤ P (τr ∈ Cr, 1 ≤ r ≤ k; τm+s ∈ Ds ∩ (0, N ], 1 ≤ s ≤ j)

+P (τm+s ∈ Ds\(0, N), 1 ≤ s ≤ j)

≤ P (τr ∈ Cr, 1 ≤ r ≤ k; τm+s ∈ Ds ∩ (0, N ], 1 ≤ s ≤ j)

+P (τs ∈ Ds\(0, N), 1 ≤ s ≤ j)

≤ P (τr ∈ Cr, 1 ≤ r ≤ k; τm+s ∈ Ds ∩ (0, N ], 1 ≤ s ≤ j)

+P (∪1≤s≤j{τs ∈ Ds\(0, N)})

≤ P (τr ∈ Cr, 1 ≤ r ≤ k; τm+s ∈ Ds ∩ (0, N ], 1 ≤ s ≤ j) + ε.

Nun gilt weiter unter Verwendung obiger Abschätzung und (2.6)

P (τr ∈ Cr, 1 ≤ r ≤ k)P (τs ∈ Ds ∩ (0, N ], 1 ≤ s ≤ j)

= lim
m→∞

P (τr ∈ Cr, 1 ≤ r ≤ k; τm+s ∈ Ds ∩ (0, N ], 1 ≤ s ≤ j)

≤ lim
m→∞

P (τr ∈ Cr, 1 ≤ r ≤ k; τm+s ∈ Ds, 1 ≤ s ≤ j)

≤ lim
m→∞

P (τr ∈ Cr, 1 ≤ r ≤ k; τm+s ∈ Ds ∩ (0, N ], 1 ≤ s ≤ j) + ε

= lim
m→∞

P (τr ∈ Cr, 1 ≤ r ≤ k)P (τs ∈ Ds ∩ (0, N ], 1 ≤ s ≤ j) + ε

= P (τr ∈ Cr, 1 ≤ r ≤ k)P (τs ∈ Ds ∩ (0, N ], 1 ≤ s ≤ j) + ε.

Laufen nun N gegen ∞ und ε gegen 0, so folgt die Behauptung. 2

Wie eben gezeigt wurde, ist unter der Voraussetzung lim supn→∞ Sn = ∞ f.s. die

Folge (τn)n≥1 ergodisch und somit eine wichtige Voraussetzung des Birkhoffschen Er-

godensatzes erfüllt. Um den Ergodensatz anschließend anwenden zu können, müssen

wir noch untersuchen, wann τ1 integrierbar ist.

Lemma 2.11 Aus EH1 < 1 folgt limn→∞ Sn = ∞ f.s.

Beweis: Da Gn ≥ 0 P -f.s., können wir wie folgt abschätzen:

P (Gn > 1) ≤ EGn = EH1 · . . . ·Hn = EH1 · . . . · EHn = (EH0)
n
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für alle n ∈ N. Ist nun EH0 < 1, dann folgt

∞∑
n=1

1

n
P (Gn > 1) ≤

∞∑
n=1

1

n
(EH0)

n ≤
∞∑

n=1

(EH0)
n <∞.

Nach Satz 2.5 konvergiert Sn daher f.s. gegen ∞. 2

Lemma 2.12

Eτ1 =


1+EH0

1−EH0
, EH0 < 1

∞, EH0 ≥ 1
.

Beweis: Sei zunächst lim supn→∞ Sn <∞ f.s. Dann ist limn→∞ Sn = −∞ f.s., und

nach der Bemerkung 2.11 gilt damit EH0 ≥ 1. Außerdem folgt aus limn→∞ Sn = −∞
f.s., dass P (τ1 = ∞) > 0 ist. Daher ist Eτ1 = ∞.

Wir betrachten jetzt den Fall lim supn→∞ Sn = ∞ f.s. Dann ist f ∗01 = 1 f.s. Nach

Satz 2.2 ist daher E(τ1 | U) =
∑1

j=−∞(1 +Hj−1)Hj · . . . ·H0.

Integration liefert

Eτ1 = E(E(τ1 | U))

=
1∑

j=−∞

E((1 +Hj−1)Hj · . . . ·H0)

=
1∑

j=−∞

(1 + EH0)(EH0)
1−j

= (1 + EH0)
1∑

j=−∞

(EH0)
1−j

= (1 + EH0)
∞∑

j=0

(EH0)
j.

Aus EH0 < 1 folgt somit Eτ1 = 1+EH0

1−EH0
. Ist hingegen EH0 ≥ 1, gilt Eτ1 = ∞. 2

Satz 2.13 (a) Aus EH0 < 1 folgt

lim
n→∞

Tn

n
=

1 + EH0

1− EH0

f.s., lim
n→∞

Sn

n
=

1− EH0

1 + EH0

f.s.



2.3 Die Konvergenzgeschwindigkeit 23

(b) Aus E(H−1
0 ) < 1 folgt

lim
n→∞

T−n

n
=

1 + E(H−1
0 )

1− E(H−1
0 )

f.s., lim
n→∞

Sn

n
= −1− E(H−1

0 )

1 + E(H−1
0 )

f.s.

(c) Aus (EH0)
−1 ≤ 1 ≤ E(H−1

0 ) folgt

lim
n→∞

Tn

n
= ∞ = lim

n→∞

T−n

n
f.s., lim

n→∞

Sn

n
= 0 f.s.

Beweis: (a) Nach Lemma 2.11 gilt limn→∞ Sn = ∞ f.s. und nach Satz 2.10 ist daher

(τn)n≥1 stationär und ergodisch. Lemma 2.12 liefert Eτ1 = 1+EH0

1−EH0
. Da E|τ1| = Eτ1 <

∞, impliziert der Birkhoffsche Ergodensatz (vgl. [Brei], S.118)

Tn

n
=

∑n
i=1 τi
n

−→
n→∞

Eτ1 =
1 + EH0

1− EH0

f.s.

Zum Beweis der Behauptung, dass die Konvergenzgeschwindigkeit der Irrfahrt f.s.
1−EH0

1+EH0
beträgt, also Sn

n
f.s. gegen 1−EH0

1+EH0
konvergiert, bezeichnen wir für jedes n ∈ N

den größten Wert, der nach n Schritten erreicht wird, mit kn, also

kn := max{Sj : 0 ≤ j ≤ n}.

Nach der Definition von kn ist dann

Tkn ≤ n < Tkn+1. (2.7)

Aus limn→∞ Sn = ∞ f.s. folgt offenkundig limn→∞ kn = ∞ f.s. Ferner gilt

kn ≤ Sn + (n− Tkn) ≤ Sn + (Tkn+1 − Tkn). (2.8)

Hat die Irrfahrt nämlich möglicherweise zu einem früheren Zeitpunkt als n schon

zum ersten Mal kn erreicht, kann sie von da an maximal (n− Tkn) Positionen nach

links gesprungen sein. Wir erhalten mit (2.8)

kn

n
−
(
Tkn+1 − Tkn

n

)
≤ Sn

n
≤ kn

n
. (2.9)

Da sowohl
Tkn

kn
als auch

Tkn+1

kn
=

Tkn+1

kn+1
· kn+1

kn
f.s. gegen 1+EH0

1−EH0
konvergiert, erhalten

wir mit der Ungleichung (2.7)

lim
n→∞

kn

n
=

1− EH0

1 + EH0

f.s.,



24 Irrfahrten in zufällig variierenden Umgebungen

insbesondere folgt außerdem limn→∞(
Tkn+1−Tkn

n
) = 0 f.s. Aus (2.9) können wir

lim
n→∞

kn

n
− lim

n→∞

(
Tkn+1 − Tkn

n

)
≤ lim

n→∞

Sn

n
≤ lim

n→∞

kn

n
f.s.

schließen und erhalten die Behauptung.

(b) Analoga zu den unter (a) verwendeten Sätzen können gezeigt werden. Mit

ihnen folgen die hier zu beweisenden Aussagen auf gleiche Weise wie unter (a).

(c) Wir unterscheiden zwei Fälle. Falls lim supn→∞ Sn = ∞ f.s., so ist (τn)n≥0

stationär und ergodisch, und aus der Voraussetzung EH0 ≥ 1 folgt mit Lemma

2.12, dass τ1 unendlichen Erwartungswert besitzt. Tn

n
konvergiert dann f.s. gegen ∞

([Brei], S.116). Gilt andererseits lim supn→∞ Sn <∞ f.s., so existiert das Maximum

M := max{Sj : j ≥ 0}, es ist also Tn = ∞ für alle n > M und daher konvergiert
Tn

n
f.s. gegen ∞. Durch analoge Argumentation kann limn→∞

T−n

n
= ∞ f.s. gezeigt

werden.

Sei −ln definiert als der kleinste Wert, der nach n Schritten schon angenommen

wurde,

−ln := min{Sν : 0 ≤ ν ≤ n}.

Nach Definition gelten 0 ≤ Tkn ≤ n und 0 ≤ T−ln ≤ n. Damit erhalten wir

lim
n→∞

Tkn

kn

= lim
n→∞

n

kn

= ∞ bzw. lim
n→∞

T−ln

ln
= lim

n→∞

n

ln
= ∞ f.s.

und daraus

lim
n→∞

kn

n
= 0 = lim

n→∞

ln
n

f.s.

Nach Definition ist Sn < kn + 1 und −ln − 1 < Sn. Also gilt

lim
n→∞

− ln
n
− lim

n→∞

1

n
≤ lim

n→∞

Sn

n
≤ lim

n→∞

kn

n
+ lim

n→∞

1

n
f.s.

und damit limn→∞
Sn

n
= 0 f.s. 2

Bemerkung 2.14 Die drei Fälle des obigen Satzes sind die einzig möglichen und

schließen sich zudem gegenseitig aus. (Die beiden ersten Fälle schließen sich aus, weil

aus E(H−1
0 ) < 1 mit der Jensenschen Ungleichung 1

EH0
< 1, also EH0 > 1 folgt.)

Im nun folgendem Korollar werden den Irrfahrten in zufälligen Umgebungen Irr-

fahrten mit bekannten Übergangswahrscheinlichkeiten gegenübergestellt: Zu einer
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gegebenen Irrfahrt in zufällig variierenden Umgebungen wird gerade die Irrfahrt be-

trachtet, die in jedem Punkt die Übergangswahrscheinlichkeit EU0 besitzt, also die

Standard-Irrfahrt mit p = EU0.

Korollar 2.15 Sei (S ′n)n∈N die Standard-Irrfahrt mit p = EU0.

(a) Aus EH0 < 1 folgt limn→∞
Sn

n
≤ EU0 − EV0 = limn→∞

S′n
n

f.s.

(b) Aus EH−1
0 < 1 folgt limn→∞

Sn

n
≥ EU0 − EV0 = limn→∞

S′n
n

f.s.

(c) Aus (EH0)
−1 ≤ 1 ≤ E(H−1

0 ) und EU0 6= 1
2

folgt limn→∞
S′n
n
6= 0 = limn→∞

Sn

n

f.s.

Beweis: Die Irrfahrt (S ′n)n∈N hat im Gegensatz zur zugehörigen Irrfahrt in zufällig

variierenden Umgebungen unabhängig und identisch verteilte Zuwächse. Deshalb ist

das starke Gesetz der großen Zahlen anwendbar, und es folgt limn→∞
S′n
n

= EX ′
1 =

EU0 − EV0 f.s. Es gilt unter Anwendung der Jensenschen Ungleichung folgende

Ungleichung

1− EH0

1 + EH0

=
2− E( 1

U0
)

E( 1
U0

)

≤ (2− E(
1

U0

))EU0

≤ 2EU0 −
EU0

EU0

= EU0 − EV0.

Ist EH0 < 1, folgt mit Satz 2.13

lim
n→∞

Sn

n
=

1− EH0

1 + EH0

≤ EU0 − EV0 = lim
n→∞

S ′n
n
.

Völlig analog berechnen wir

−1− E(H−1
0 )

1 + E(H−1
0 )

= −
2− E( 1

V0
)

E( 1
V0

)

≥ −(2− E(
1

V0

))EV0
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≥ 1− 2EV0

= EU0 − EV0,

und EH−1
0 < 1 impliziert

lim
n→∞

Sn

n
= −1− EH−1

0

1 + EH−1
0

≥ EU0 − EV0 = lim
n→∞

S ′n
n
.

Betrachten wir den Fall (EH0)
−1 ≤ 1 ≤ E(H−1

0 ) und EU0 6= 1
2
. Dann gilt limn→∞

Sn

n
=

0 f.s. nach Satz 2.13, während limn→∞
S′n
n

= EU0 − EV0 = 2EU0 − 1 6= 0 f.s. ist. 2

2.4 Die erwartete Anzahl von Besuchen

Jetzt wollen wir berechnen, wie oft die Irrfahrt startend in 0 ein j ∈ Z im Mittel

besucht.

Satz 2.16 Sei L : P(Z) → [0,∞], B 7→ E
∑

n≥0 δSn(B) das Erneuerungsmaß von

(Sn)n≥0 und gelte lim supn→∞ Sn = ∞ f.s.

(a) Aus EH0 < 1 folgt L({j}) =


1+EH0

1−EH0
(EH0)

−j, j ≤ −1

1+EH0

1−EH0
j ≥ 0

.

(b) Aus EH0 ≥ 1 folgt L({j}) = ∞ für alle j ∈ Z.

Beweis: Wir betrachten zunächst den Fall

−∞ = lim inf
n→∞

Sn < lim sup
n→∞

Sn = ∞ f.s.

Mit Bemerkung 2.11 folgt dann EH0 ≥ 1 und es gilt L({j}) = ∞ für alle j ∈ Z.

Sei jetzt limn→∞ Sn = ∞ f.s. Wie schon in vorherigen Beweisen betrachten wir auch

hier zuerst die Irrfahrt bei gegebener Umgebungsfolge, um mit dem dabei erhal-

tenen Ergebnis die Aussage über die Irrfahrt in zufällig variierenden Umgebungen

zu beweisen. Wir definieren p∗ij :=
∑∞

n=0 p
(n)
ij mit der Wahrscheinlichkeit p

(n)
ij , bei

gegebener Umgebung u in n Schritten von i nach j zu gelangen. Es gilt

p∗ij = E(
∑
n≥0

δSn({j}) | S0 = i, U = u),



2.4 Die erwartete Anzahl von Besuchen 27

also ist p∗ij der Wert der Menge {j} unter dem Erneuerungsmaß von (Sn)n≥0 und der

Anfangsverteilung δi, gegeben eine feste Umgebung u. Zur Berechnung der p∗ij benöti-

gen wir die erzeugenden Funktionen, die definiert sind durch p̂ij(s) :=
∑∞

n=0 p
(n)
ij s

n

und f̂ij(s) :=
∑∞

n=1 f
(n)
ij sn mit s ∈ (−1, 1). Nach [Als2], S.45, gilt für alle i, j ∈ Z

und s ∈ (−1, 1)

p̂ij(s) = δij + f̂ij(s)p̂jj(s).

Es ist lims↑1
∑∞

n=0 ans
n =

∑∞
n=0 an, falls an ≥ 0 für alle n ∈ N (vgl. [Chu1], S.55),

und deshalb gilt

p∗ij = δij + f ∗ijp
∗
jj. (2.10)

Nun müssen wir also noch f ∗ij und p∗jj berechnen um p∗ij zu bestimmen. Aus der

Voraussetzung limn→∞ Sn = ∞ f.s. folgt mit Satz 2.3
∑∞

n=1 gn <∞ und
∑∞

n=1
1

g−n
=

∞. Satz 2.2 impliziert

f ∗ij =


1, i < j∑∞

n=i hj · . . . · hn∑∞
n=j hj · . . . · hn

< 1, i > j
.

Damit erhalten wir

f ∗jj = ujf
∗
j+1,j + vjf

∗
j−1,j

=
uj(
∑∞

n=j+1 hj · . . . · hn) + vj(
∑∞

n=j hj · . . . · hn)

(
∑∞

n=j hj · . . . · hn)

=
vjhj +

∑∞
n=j+1 hj · . . . · hn

(
∑∞

n=j hj · . . . · hn)
< 1.

Wir setzen dieses Ergebnis nun in (2.10) ein:

p∗jj =
1

1− f ∗jj
=

(
1−

(
vjhj +

∑∞
n=j+1 hj · . . . · hn∑∞

n=j hj · . . . · hn

))−1

=

∑∞
n=j hj · . . . · hn

hj − vjhj

=
1

vj

∞∑
n=j

hj · . . . · hn.
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Es kann geschlossen werden, dass

p∗ij = f ∗ijp
∗
jj =

1 ·
(

1
vj

∑∞
n=j hj · . . . · hn

)
i < j(∑∞

n=i hj ·...·hn∑∞
n=j hj ·...·hn

)(
1
vj

∑∞
n=j hj · . . . · hn

)
i > j

=


(

1
vj

∑∞
n=j hj · . . . · hn

)
i < j(

1
vj

∑∞
n=i hj · . . . · hn

)
i > j

.

Nun können wir mit Hilfe des Satzes von der monotonen Konvergenz und unter

Berücksichtigung, dass der Erwartungswert des bedingten Erwartungswertes einer

Zufallsgröße ihr Erwartungswert ist, L({j}) berechnen. Für j ≤ −1 gilt

L({j}) = E

(
1

Vj

∞∑
n=0

Hj · . . . ·Hn

)

= E

(
1− Uj + Uj

Uj

)
E

(
∞∑

n=0

Hj+1 · . . . ·Hn

)

= E (Hj + 1)E

(
∞∑

n=0

Hj+1 · . . . ·Hn

)

= (EH0 + 1)
∞∑

n=0

(EH0)
n−j

=


1+EH0

1−EH0
(EH0)

−j, EH0 < 1

∞, EH0 ≥ 1

und analog für j ≥ 0

L({j}) = E

(
1

Vj

∞∑
n=j

Hj · . . . ·Hn

)

= (EH0 + 1)
∞∑

n=j

(EH0)
n−j

=


1+EH0

1−EH0
, EH0 < 1

∞, EH0 ≥ 1
.

2
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Bemerkung 2.17 Wenn eine Umgebungsfolge die beiden Bedingungen E logH0 <

0 und EH0 ≥ 1 erfüllt, liegt eine ungewöhnliche Situation vor: Dann konvergiert

Sn f.s. gegen ∞ und Sn

n
f.s. gegen 0, d.h. die Irrfahrt läuft mit Geschwindigkeit 0

gegen ∞. (Aus E logH0 < 0 folgt EH−1
0 > 1. Unter Anwendung der Jensenschen

Ungleichung ist nämlich logEH0 ≤ E logH0 < 0, woraus EH0 < 1 folgt und damit

ist 1 < 1
EH0

≤ E 1
H0

.) Und außerdem ist L({−1}) = ∞, obwohl aus limn→∞ Sn = ∞
f.s. P (Sn = −1 u.o. | S0 = 0) = 0 folgt. Obwohl also die Wahrscheinlichkeit für

unendlich viele Besuche in −1 startend in 0 null beträgt, werden unendlich viele

Besuche erwartet.





3 Eine langsam konvergierende

Irrfahrt

3.1 Das Modell

Wir betrachten nun ein Beispiel für eine Irrfahrt in zufällig variierenden Umgebun-

gen, die mit Gewschwindigkeit 0 gegen ∞ konvergiert, d.h. für die Irrfahrt gelten

limn→∞ Sn = ∞ und limn→∞
Sn

n
= 0 f.s. Die Umgebungsfolge U = (Ui)i∈Z beste-

he dazu aus unabhängig und identisch verteilten Zufallsgrößen Ui, die mit Wahr-

scheinlichkeit 1 − p den Wert 1 und mit Wahrscheinlichkeit p den Wert 1
1+ϑ

an-

nehmen, wobei 0 < p < 1 und 0 < ϑ < ∞ gelte. Damit nehmen die Hi die Wer-

te 0 oder ϑ an, und zwar mit Wahrscheinlichkeit 1 − p bzw. p. So erhalten wir

E logH0 = (1 − p) log 0 + p log ϑ = −∞. Daraus folgt zum einen EH−1
0 > 1, vgl.

dazu Bemerkung 2.17, und zum anderen können wir

lim
n→∞

Sn = ∞ f.s.

aus den Sätzen 2.5 und 2.6 schließen. Setzen wir EH0 = pϑ ≥ 1 voraus, so dass

(EH0)
−1 ≤ 1 ≤ EH−1

0 gilt, dann liefert Satz 2.13

lim
n→∞

Sn

n
= 0 f.s.

Da wir hier nur den Fall EH0 = pϑ ≥ 1 betrachten wollen, können wir im Nachfol-

genden ϑ > 1 voraussetzen, womit 1
1+ϑ

, der eine mögliche Wert der Ui, zwischen 0

und 1
2

liegt. Wir definieren nun rekursiv die Position der n-ten Barriere rechts von
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0 dadurch, dass wir W0 = 0 setzen und Wn := min{k > Wn−1 : Uk = 1} definieren.

Wir bemerken, dass aus der Konvergenz der Irrfahrt gegen ∞ und daraus, dass die

Wn f.s. endlich sind, die fast sichere Endlichkeit der TWn folgt.

3.2 Vorbereitungen

Unser Ziel ist es Funktionen f zu finden, für die Tn

f(n)
bzw. Sn

f(n)
in Wahrscheinlichkeit

gegen zu berechnende Grenzwerte konvergiert. In diesem Abschnitt bestimmen wir

zunächst eine Funktion f derart, dass
TWn

f(n)
in Wahrscheinlichkeit gegen einen reellen

Wert konvergiert, um damit dann im nächsten die eigentlichen Aussagen zu bewei-

sen. Unser Vorgehen wird sein als erstes die Laplace-Transformierte von TWn+1−TWn

zu bestimmen, dann für diese einen einfacheren Ausdruck gleicher Größenordnung

zu finden und schließlich mit Hilfe des Stetigkeitsatzes für Laplace-Transformierte

und unter Berücksichtigung der stochastischen Unabhängigkeit und identischen Ver-

teilung der Folge (TWn − TWn−1)n≥2 den Grenzwert von
TWn

f(n)
für geeignetes f zu be-

stimmen. Zur Bestimmung der Laplace-Transformierten der TWn+1 −TWn zeigen wir

zunächst

Lemma 3.1 Sei U eine Umgebungsfolge mit lim supn→∞ Sn = ∞ f.s. Wir bezeich-

nen mit ϕ̂X die Laplace-Transformierte (L.T.) einer Zufallsgröße X, gegeben eine

feste Umgebungsfolge u ∈ [0, 1]Z, also ϕ̂X(t, u) := E(exp(−tX) | U = u), t ≥ 0.

Dann gilt für alle n ∈ N, t ≥ 0

1

ϕ̂Tn(t, u)
=

une
−t

ϕ̂Tn+1(t, u)
+

vne
−t

ϕ̂Tn−1(t, u)
.

Beweis: Gegeben eine feste Umgebung u, hat die Irrfahrt stochastisch unabhängi-

ge Zuwächse Xn := Sn − Sn−1, und damit sind auch die τi, i ≥ 1 stochastisch

unabhängig, die, da lim supn→∞ Sn = ∞ vorausgesetzt ist, f.s. endlich sind. Es ist

Pu(τi+1 = k) =

ui, k = 1

viPu(τi+1 + τi = k − 1), k > 1
.

Daher gilt für alle t ≥ 0

ϕ̂τi+1
(t, u) = E(exp(−tτi+1) | U = u)



3.2 Vorbereitungen 33

=
∑
m≥1

e−tmPu(τi+1 = m)

= uie
−t +

∑
m≥2

vie
−tmPu(τi+1 + τi = m− 1)

= uie
−t + vie

−t
∑
m≥1

e−tmPu(τi+1 + τi = m)

= uie
−t + vie

−tϕ̂τi+1+τi
(t, u)

= uie
−t + vie

−tϕ̂τi+1
(t, u)ϕ̂τi

(t, u).

Wegen der stochastischen Unabhängigkeit der τi ist

ϕ̂Tn(t, u) = ϕ̂∑n
i=1 Ti−Ti−1

(t, u) = ϕ̂∑n
i=1 τi

(t, u) = ϕ̂τ1(t, u) · . . . · ϕ̂τn(t, u).

Daher gilt

ϕ̂τn(t, u) =
ϕ̂Tn(t, u)

ϕ̂Tn−1(t, u)
.

Hieraus folgt
ϕ̂Tn+1(t, u)

ϕ̂Tn(t, u)
= une

−t + vne
−t ϕ̂Tn+1(t, u)

ϕ̂Tn−1(t, u)
,

also die Behauptung. 2

Im Nachfolgenden bezeichnen wir die L.T. einer Zufallsgröße X mit ϕX .

Lemma 3.2 Es gilt für alle n ∈ N, t ≥ 0

ϕTWn+1
−TWn

(t) =
1− p

p

∞∑
j=1

c(t)(pβ(t))j

a(t) + b(t)(ϑβ2(t))j
,

wobei

λ1(t) :=
et

2
(ϑ+ 1 + [(ϑ+ 1)2 − 4ϑe−2t]1/2),

λ2(t) :=
et

2
(ϑ+ 1− [(ϑ+ 1)2 − 4ϑe−2t]1/2),

a(t) := λ1(t)− et,

b(t) := et − λ2(t),

c(t) := λ1(t)− λ2(t),

β(t) := ϑ−1λ1(t).

Beweis: Gegeben eine Umgebung u, sei k ∈ N mit Wn(u, ω) = wn ≤ k ≤ wn+1 =
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Wn+1(u, ω), n ≥ 1. Da in unserem Beispiel lim supn→∞ Sn = ∞ gilt, folgt mit Lemma

3.1
1

ϕ̂Tk
(t, u)

ϕ̂TWn
(t, u) =

uke
−t

ϕ̂Tk+1
(t, u)

ϕ̂TWn
(t, u) +

vke
−t

ϕ̂Tk−1
(t, u)

ϕ̂TWn
(t, u).

Wegen

ϕ̂Tk−TWn
(t, u) = ϕ̂∑k

i=Wn+1 τi
(t, u) =

k∏
i=Wn+1

ϕ̂τi
(t, u) =

ϕ̂Tk
(t, u)

ϕ̂TWn
(t, u)

,

erhalten wir für wn < k < wn+1

1

ϕ̂Tk−TWn
(t, u)

=

(
1

1 + ϑ

)
e−t

ϕ̂Tk+1−TWn
(t, u)

+

(
ϑ

1 + ϑ

)
e−t

ϕ̂Tk−1−TWn
(t, u)

. (3.1)

Im Folgenden wollen wir beweisen, dass

ϕ̂Tk−TWn
(t, u) =

c(t)β(t)k−Wn

a(t) + b(t)(ϑβ2(t))k−Wn
=: χk(t, u) (3.2)

gilt. Zunächst überprüfen wir, dass χk(t, u) eine Lösung der Gleichung (3.1) ist. Bei

den Rechnungen hierzu lassen wir, außer bei der Exponentialfunktion, die Argumen-

te der Funktionen für eine bessere Übersichtlichkeit weg.

a+ b(ϑβ2)k−Wn

cβk−Wn
=

1

ϑ+ 1

e−t(a+ b(ϑβ2)k+1−Wn)

cβk+1−Wn
+

ϑ

ϑ+ 1

e−t(a+ b(ϑβ2)k−1−Wn)

cβk−1−Wn

ist äquivalent zu

(ϑ+ 1)(a+ b(ϑβ2)k−Wn) = e−tβ−1(a+ b(ϑβ2)k+1−Wn) + e−tϑβ(a+ b(ϑβ2)k−1−Wn).

Weiter formen wir zu

a(ϑ+ 1− e−tβ−1 − e−tϑβ) = −b(ϑβ2)k−Wn(ϑ+ 1− e−tβ−1 − e−tϑβ)

um und erhalten die Gleichwertigkeit zu

ϑ+ 1− e−tβ−1 − e−tϑβ = 0.

Durch Einsetzen erhalten wir die Gültigkeit der letzten Gleichung. Wir definieren

M := (ϑ+ 1 + [(ϑ+ 1)2 − 4ϑe−2t]1/2) und K := [(ϑ+ 1)2 − 4ϑe−2t]1/2. Es ist dann

(ϑ+ 1− e−tϑβ − e−tβ−1)
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= ϑ+ 1− e−tϑ
et

2
M

− e−t

(
et

2
(ϑ+ 1 + [(ϑ+ 1)2 − 4ϑe−2t]1/2)

)
=

1

M

(
(ϑ+ 1)(ϑ+ 1 +K)− 2ϑe−2t − 1

2
(ϑ+ 1 +K)2

)
=

1

M

(
(ϑ+ 1)2 + (ϑ+ 1)K − 2ϑe−2t − 1

2
(ϑ+ 1)2 − (ϑ+ 1)K − 1

2
[(ϑ+ 1)2 − 4ϑe−2t]

)
= 0.

Nun überlegen wir, dass offensichtlich ϕ̂TWn−TWn
(t, u) = 1 für alle t ≥ 0 gilt. Da

Wn eine nach rechts reflektierende Barriere ist, ist TWn+1 − TWn = 1 und damit

ϕ̂TWn+1−TWn
(t, u) = e−t für alle t ≥ 0. Wir rechnen nach: Zum einen ist

χWn(t, u) =
c(t)

a(t) + b(t)

=
λ1(t)− λ2(t)

λ1(t)− e−t + e−t − λ2(t)
= 1,

und da λ1(t) · λ2(t) = e2t

4
((ϑ+ 1)2 − (ϑ+ 1)2 + 4ϑe−2t) = ϑ gilt, erhalten wir zum

anderen

χWn+1(t, u) =
cβ

a+ b(ϑβ2)

=
(λ1 − λ2)

λ1

ϑ

(λ1 − et) + (et − λ2)(
λ2
1

ϑ
)

=
λ2

1 − λ1λ2

ϑλ1 − ϑet + λ2
1e

t − λ2
1λ2

=
λ2

1 − ϑ

et(λ2
1 − ϑ) + λ1(ϑ− λ1λ2)

= e−t.

Sei nun (ξWn(t, u), ..., ξwn+1(t, u)) eine weitere Lösung von (3.1), die ξWn(t, u) = 1

und ξWn+1(t, u) = e−t für alle t ≥ 0 erfüllt. Dann können wir wie folgt schließen:

1

χWn+1(t, u)
− 1

ξWn+1(t, u)

=
1

ϑ+ 1

(
e−t

χWn+2(t, u)
− e−t

ξWn+2(t, u)

)
+

ϑ

ϑ+ 1

(
e−t

χWn(t, u)
− e−t

ξWn(t, u)

)
,

also

0 =
1

ϑ+ 1

(
e−t

χWn+2(t, u)
− e−t

ξWn+2(t, u)

)
,
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und damit muss χWn+2(t, u) = ξWn+2(t, u) gelten. Iterativ erhalten wir die Eindeu-

tigkeit der Lösung.

Unter Berücksichtigung, dass die Ui unabhängig und identisch verteilt sind, gilt

ϕTWn+1
−TWn

(t)

= E(E(exp(−t(TWn+1 − TWn)) | Wn+1 −Wn))

=
∞∑

j=1

E(exp(−t(TWn+1 − TWn)) | Wn+1 −Wn = j)P (Wn+1 −Wn = j)

=
∞∑

j=1

E(exp(−t(TWn+j − TWn)) | Wn+1 −Wn = j)

j−1∏
i=1

P

(
Ui =

1

1 + ϑ

)
P (Uj = 1)

=
∞∑

j=1

E(exp(−t(TWn+j − TWn)) | Wn+1 −Wn = j)pj−1(1− p)

=
1− p

p

∞∑
j=1

pjE(exp(−t(TWn+j − TWn)) | Wn+1 −Wn = j).

Gegeben eine Umgebung u, hängt ϕ̂TWn+1
−TWn

von der Umgebungsfolge nur über

den Abstand zwischen den Barrieren ab, da die Irrfahrt, nachdem sie die Barriere

Wn erreicht hat, von da ab nicht mehr weiter als auf Wn zurückfallen kann und die

Umgebung außerdem in allen Punkten zwischen den Barrieren denselben Wert 1
1+ϑ

annimmt. Daher folgt mit (3.2)

ϕTWn+1
−TWn

(t) =
1− p

p

∞∑
j=1

c(t)(pβ(t))j

a(t) + b(t)(ϑβ2(t))j
.

2

Nun rechnen wir nach, dass ein einfacherer Ausdruck von der gleichen Größenord-

nung ist wie ϕTWn+1
−TWn

.

Lemma 3.3 Wir definieren

ψ(t) =
1− p

p

∞∑
j=1

pj

1 + νtϑj
,

t ≥ 0, mit ν = 2ϑ
(ϑ−1)2

. Dann gilt für alle n ≥ 1

ϕTWn+1
−TWn

(t)− ψ(t) = O(t), t↘ 0.
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Beweis: Zunächst machen wir Aussagen über das Grenzverhalten der Funktionen

a, b, c und β für t↘ 0.

a(t) =
et

2
(ϑ+ 1 + [(ϑ+ 1)2 − 4ϑe−2t]1/2)− et

=
et

2
(ϑ− 1 + [(ϑ+ 1)2 − 4ϑe−2t]1/2)

=
et

2
(ϑ− 1 + [(ϑ+ 1)2 − 4ϑ(1− 2t+O(t2))]1/2)

=
et

2
(ϑ− 1 + [(ϑ− 1)2 − 8ϑt+O(t2))]1/2)

=
et

2

ϑ− 1 +

[
(ϑ− 1)2

(
1− 4ϑt

(ϑ− 1)2

)2
]1/2


=

1 +O(t)

2

(
ϑ− 1 + (ϑ− 1)

(
1− 4ϑt

(ϑ− 1)2

))
= ϑ− 1 +O(t)

b(t) = et − et

2
(ϑ+ 1− [(ϑ+ 1)2 − 4ϑe−2t]1/2)

=
et

2
(1− ϑ+ [(ϑ+ 1)2 − 4ϑe−2t]1/2)

=
et

2

(
1− ϑ+ (ϑ− 1)

(
1− 4ϑt

(ϑ− 1)2

))
=

et

2
· 4ϑt

(ϑ− 1)
=

2ϑt

ϑ− 1
(1 +O(t)) =

2ϑt

ϑ− 1
+O(t2)

c(t) =
et

2
2([(ϑ+ 1)2 − 4ϑe−2t]1/2)

= (1 +O(t))(ϑ− 1)

(
1− 4ϑt

(ϑ− 1)2

)
= ϑ− 1 +O(t)

β(t) =
1 +O(t)

2ϑ

(
ϑ+ 1 + (ϑ− 1)

(
1− 4ϑt

(ϑ− 1)2

))
= 1 +O(t)

Wir definieren

A1(t) := ϕTWn+1
−TWn

(t)− 1− p

p

∞∑
j=1

(ϑ− 1)pj

a(t) + b(t)(ϑβ2)j
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A2(t) :=
1− p

p

∞∑
j=1

(ϑ− 1)pj

(
1

a(t) + b(t)(ϑβ2)j
− 1

a(t) + b(t)ϑj

)

A3(t) :=
1− p

p

∞∑
j=1

(ϑ− 1)pj

a(t) + b(t)ϑj
− ψ(t).

Also ist ϕTWn+1
−TWn

−ψ = A1+A2+A3. Daher genügt es zu zeigen, dass Aj(t) = O(t),

t↘ 0, für j = 1, 2, 3 gilt.

|A1(t)| =

∣∣∣∣∣1− p

p

∞∑
j=1

c(t)(pβ(t))j − (ϑ− 1)pj

a(t) + b(t)(ϑβ(t)2)j

∣∣∣∣∣
≤ 1− p

pa(t)

∞∑
j=1

pj(c(t)β(t)j − (ϑ− 1))

=
1− p

pa(t)

(
c(t)

∞∑
j=0

(pβ(t))j − c(t)− (ϑ− 1)
∞∑

j=0

pj + (ϑ− 1)

)

=
1− p

pa(t)

(
c(t)

1− pβ(t)
− c(t)− ϑ− 1

1− p
+ (ϑ− 1)

)
=

1− p

p(ϑ− 1 +O(t))

(
ϑ− 1 +O(t)

1− p(1 +O(t))
− ϑ− 1

1− p
+O(t)

)
= O(t)

|A2(t)| =

∣∣∣∣∣1− p

p

∞∑
j=1

(ϑ− 1)pj

(
1

a(t) + b(t)(ϑβ(t)2)j
− 1

a(t) + b(t)ϑj

) ∣∣∣∣∣
=

(1− p)(ϑ− 1)

p

∣∣∣∣∣
∞∑

j=1

pj

a(t) + b(t)(ϑβ(t)2)j
− (pβ(t)2)j

a(t)β(t)2j + b(t)(ϑβ(t)2)j

∣∣∣∣∣
≤ (1− p)(ϑ− 1)

p

∞∑
j=1

∣∣∣∣∣ pj − (pβ(t)2)j

a(t) + b(t)(ϑβ(t)2)j

∣∣∣∣∣
≤ (1− p)(ϑ− 1)

pa(t)

∞∑
j=1

((pβ(t)2)j − pj)

=
(1− p)(ϑ− 1)

pa(t)

(
∞∑

j=0

(pβ(t)2)j −
∞∑

j=0

pj

)

=
(1− p)(ϑ− 1)

pa(t)

(
1

1− pβ(t)2
− 1

1− p

)
=

(1− p)(ϑ− 1)

p(ϑ− 1 +O(t))

(
1

1− p(1 +O(t))2
− 1

1− p

)
= O(t)
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|A3(t)| =

∣∣∣∣∣1− p

p

(
∞∑

j=1

(ϑ− 1)pj

a(t) + b(t)ϑj
− pj

1 + νtϑj

)∣∣∣∣∣
=

1− p

p

∞∑
j=1

∣∣∣∣∣pj((ϑ− 1) + (ϑ− 1)νtϑj − a(t)− b(t)ϑj)

(a(t) + b(t)ϑj)(1 + νtϑj)

∣∣∣∣∣
≤ (a(t)− (ϑ− 1))

∣∣∣∣∣1− p

p

∞∑
j=1

pj

(a(t) + b(t)ϑj)(1 + νtϑj)

∣∣∣∣∣
+
|b(t)− ν(ϑ− 1)t|

t

∣∣∣∣∣(1− p)t

p

∞∑
j=1

(pϑ)j

(a(t) + b(t)ϑj)(1 + νtϑj)

∣∣∣∣∣
≤ (a(t)− (ϑ− 1))M +

|b(t)− ν(ϑ− 1)t|
t

M ′

= (ϑ− 1 +O(t)− ϑ+ 1)M +

∣∣∣ 2ϑ
ϑ−1

t+O(t2)− 2ϑ
(ϑ−1)2

(ϑ− 1)t
∣∣∣

t
M ′

= O(t)M +
O(t2)

t
M ′ = O(t),

da für t > 0, t klein, M und M ′ aus [0,∞) existieren mit∣∣∣∣∣1− p

p

∞∑
j=1

pj

(a(t) + b(t)ϑj)(1 + νtϑj)

∣∣∣∣∣ ≤ 1− p

p

∞∑
j=1

pj

(a(t) + b(t))(1 + νt)

≤ 1− p

p(a(t) + b(t))(1 + νt)

p

1− p

≤ M

und ∣∣∣∣∣(1− p)t

p

∞∑
j=1

(pϑ)j

(a(t) + b(t)ϑj)(1 + νtϑj)

∣∣∣∣∣ ≤ (1− p)t

p

∞∑
j=1

(pϑ)j

a(t)νtϑj

≤ 1− p

p(a(t)ν)

∞∑
j=1

pj

=
1− p

p(a(t)ν)
· p

1− p

≤ M ′.

2

Unter Anwendung von Lemma 3.3 beweisen wir
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Lemma 3.4 (a) Aus pϑ = 1 folgt für alle t > 0, n ≥ 2

lim
y→∞

y

(
1− ϕTWn+1

−TWn

(
t

y log y

))
=

2ϑt

(ϑ− 1) log ϑ
.

(b) Aus pϑ > 1 folgt für alle t > 0

lim
y→∞

(
y

(
1− ϕTWn+1

−TWn

(
t

y%

))
−Kt

∞∑
j=−∞

(pϑ)j+bλ(y)c−λ(y)

1 + νtϑj+bλ(y)c−λ(y)

)
= 0

mit ν := 2ϑ
(ϑ−1)2

, K := ν(1−p)
p

, λ(y) := log1/p y und % := log1/p ϑ > 1.

Beweis: Wir bemerken zunächst, dass limy→∞
t

y log y
= 0 und limy→∞

t
y% = 0 gelten,

so dass es deshalb genügt, die Aussagen mit ϕ durch ψ ersetzt zu zeigen. Sei σ :=

σ(x) := logϑ x für x ∈ R. Dann ist ϑσ = x und somit

1− ψ

(
t

x

)
=

1− p

p

(
p

1− p
−

∞∑
j=1

pj

1 + ν t
x
ϑj

)

=
1− p

p

(
∞∑

j=1

pj −
∞∑

j=1

pj

1 + ν t
x
ϑj

)

=
1− p

p

∞∑
j=1

pj + pjν t
x
ϑj − pj

1 + ν t
x
ϑj

= Kt

∞∑
j=1

ϑ−σ(pϑ)j

1 + νtϑj−σ

= Ktpσ

∞∑
j=1−bσc

(pϑ)j+bσc−σ

1 + νtϑj+bσc−σ
. (3.3)

(a) Setzen wir pϑ = 1 voraus, ist pσ = ( 1
ϑ
)logϑ x = 1

x
. Zunächst bemerken wir

außerdem

∞∑
j=1

1

1 + νtϑj+bσc−σ
≤

∞∑
j=0

1

1 + νtϑj
≤ 1

νt

∞∑
j=0

1

ϑj
=

1

νt

ϑ

ϑ− 1
<∞

und

0∑
j=1−bσc

νtϑj+bσc−σ

1 + νtϑj+bσc−σ
≤

bσc−1∑
j=0

νtϑ−j+bσc−σ ≤ νt

bσc−1∑
j=0

(
1

ϑ

)j

< νt
∞∑

j=0

(
1

ϑ

)j

<∞.
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So erhalten wir mit (3.3) für x→∞

1− ψ

(
t

x

)
= K

t

x

 0∑
j=1−bσc

1

1 + νtϑj+bσc−σ
+

∞∑
j=1

1

1 + νtϑj+bσc−σ


= K

t

x

 0∑
j=1−bσc

1

1 + νtϑj+bσc−σ
+O(1)


= K

t

x

bσc − 0∑
j=1−bσc

νtϑj+bσc−σ

1 + νtϑj+bσc−σ
+O(1)


= K

t

x
(bσc+O(1)) .

Nun lassen wir x gegen ∞ laufen und erhalten

lim
x→∞

x

log x

(
1− ψ

(
t

x

))
= lim

x→∞

Kt

log x
(blogϑ xc+O(1))

=
Kt

log ϑ

=
1− p

p
· 2ϑ

(ϑ− 1)2
· t

log ϑ

=
2ϑt

(ϑ− 1) log ϑ
.

Für x setzen wir y log y ein,

lim
y→∞

y log y

log y + log log y

(
1− ψ

(
t

y log y

))
=

2ϑt

(ϑ− 1) log ϑ
,

und es folgt die Behauptung, da limy→∞
log y

log y+log log y
= 1 gilt.

(b) Setzen wir pϑ > 1 voraus, dann ist pσ = exp(logϑ(x) · log p) = xlogϑ p =

x(− log1/p ϑ)−1

= x−1/%. Wir erhalten damit

x1/%

(
1− ψ

(
t

x

))
= x1/%Ktx−1/%

∞∑
j=1−bσc

(pϑ)j+bσc−σ

1 + νtϑj+bσc−σ

und deshalb für x ∈ R

lim
x→∞

(
x1/%

(
1− ψ

(
t

x

))
−Kt

∞∑
j=−∞

(pϑ)j+bσc−σ

1 + νtϑj+bσc−σ

)
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= lim
x→∞

−Kt
−bσc∑

j=−∞

(pϑ)j+bσc−σ

1 + νtϑj+bσc−σ
= 0,

da limx→∞bσ(x)c = limx→∞blogϑ xc = ∞. Für x setzen wir nun y% ein und es folgt

die Behauptung, weil

σ(x) = σ(y%) = logϑ(ylog1/p ϑ) = log1/p(ϑ) logϑ y = log1/p y = λ(y)

ist. 2

Mit dem soeben bewiesenen Lemma können wir Funktionen f so bestimmen, dass
TWn

f(n)
in Wahrscheinlichkeit gegen eine Konstante bzw.

TWnk

f(nk)
für spezielle Teilfolgen

(nk)k≥1 in Verteilung gegen eine Zufallsgröße konvergiert. Diese Resultate werden in

der anschließenden Argumentation von entscheidender Bedeutung sein.

Lemma 3.5 (a) Aus pϑ = 1 folgt
TWn

2n logϑ n

P→ ϑ
ϑ−1

.

(b) Ist pϑ > 1 und (nk)k≥1 eine Folge natürlicher Zahlen, die gegen ∞ konvergiert

mit limk→∞ log1/p nk − blog1/p nkc = ε , dann gilt
TWnk

n%
k

d→ Y , wobei Y eine

Zufallsgröße mit L.T.

ϕY (t) = exp

(
−Kt

∞∑
j=−∞

(pϑ)j−ε

1 + νtϑj−ε

)
, (3.4)

t ≥ 0, ist, mit ν := 2ϑ
(ϑ−1)2

, K := ν(1−p)
p

und % := log1/p ϑ > 1.

Beweis: Man überlegt sich leicht, dass (TWn−TWn−1)n≥2 eine Folge unabhängig und

identisch verteilter Zufallsgrößen ist, die stochastisch unabhängig von TW1 sind. Für

jede Funktion f : N→ (0,∞) mit limn→∞ f(n) = ∞ gilt

lim
n→∞

ϕTWn

(
t

f(n)

)
= lim

n→∞
E

(
exp

(
−t TWn

f(n)

))
= lim

n→∞
E

(
exp

(
−t
∑n

j=1 TWj
− TWj−1

f(n)

))

= lim
n→∞

(
E

(
exp

(
−tTW2 − TW1

f(n)

)))n−1

E

(
exp

(
−t TW1

f(n)

))
= lim

n→∞

(
E

(
exp

(
−tTW2 − TW1

f(n)

)))n−1

· lim
n→∞

E

(
exp

(
−t TW1

f(n)

))
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= lim
n→∞

(
ϕTW2

−TW1

(
t

f(n)

))n

.

(a) Aus Lemma 3.4 folgt für t ≥ 0

lim
n→∞

ϕTWn

(
t

n log n

)
= lim

n→∞

(
ϕTW2

−TW1

(
t

n log n

))n

= lim
n→∞

(
1−

n(1− ϕTW2
−TW1

( t
n log n

)

n

)n

= lim
n→∞

(
1− 1

n

(
2ϑt

(ϑ− 1) log ϑ
+ o(1)

))n

= exp

(
−2ϑt

(ϑ− 1) log ϑ

)
.

Der Stetigkeitssatz für L.T. ([Als1], S.233) impliziert

TWn

n log n

d→ 2ϑ

(ϑ− 1) log ϑ

und, da der Grenzwert konstant ist, sogar die Konvergenz in Wahrscheinlichkeit.

Daraus folgt
TWn

2n logϑ n
=
TWn log ϑ

2n log n

P→ ϑ

ϑ− 1
.

(b) Für alle t > 0 gilt nach Lemma 3.4

lim
k→∞

ϕTWnk

(
t

n%
k

)
= lim

k→∞

(
ϕTW2

−TW1

(
t

n%
k

))nk

= lim
k→∞

1−
nk

(
1− ϕTW2

−TW1

(
t

n%
k

))
nk

nk

= lim
k→∞

(
1− 1

nk

(
Kt

∞∑
j=−∞

(pϑ)j+bλ(nk)c−λ(nk)

1 + νtϑj+bλ(nk)c−λ(nk)
+ o(1)

))nk

= lim
k→∞

(
1− 1

nk

(
Kt

∞∑
j=−∞

(pϑ)j−ε

1 + νtϑj−ε
+ o(1)

))nk

= exp

(
−Kt

∞∑
j=−∞

(pϑ)j−ε

1 + νtϑj−ε

)
=: ϕ0(t)

mit λ(nk) := log1/p nk. Da

lim
k→∞

ϕWnk
/n%

k
(0) = 1 = lim

t↘0
ϕ0(t),



44 Eine langsam konvergierende Irrfahrt

konvergiert die Verteilung von
TWnk

n%
k

schwach gegen die Verteilung einer Zufallsgröße

Y , die die L.T. ϕY (t) = exp
(
−Kt

∑∞
j=−∞

(pϑ)j−ε

1+νtϑj−ε

)
besitzt. 2

Wir beenden unsere Vorbereitungen mit

Bemerkung 3.6 Sei (Yj)
∞
j=−∞ eine Folge unabhängiger Zufallsgrößen, die die Ver-

teilungen

P Yj = exp

(
−Kp

j−ε

ν

)
·
∞∑

n=0

(ν−1Kpj−ε)n

n!
P
∗(n)
j

besitzen, wobei Pj die Exponentialverteilung Exp(κj), κj := 1
νϑj−ε , und P

∗(n)
j als

n-fache Faltung von Pj die Erlang-Verteilung Γ(n, κj) bezeichne. Yj ist zusammen-

gesetzt Poisson-verteilt und hat nach [Fel], S.427, da die L.T. der Exp(κj)-Verteilung

durch ϕj(t) =
κj

t+κj
gegeben ist, die L.T.

ϕYj
(t) = exp

(
−Kp

j−ε

ν
+
Kpj−ε

ν
· κj

t+ κj

)
= exp

(
−K(pϑ)j−ε

(
1

νϑj−ε
− 1

νϑj−ε
· (νϑj−ε)−1

t+ (νϑj−ε)−1

))
= exp

(
−K(pϑ)j−ε

(
1

νϑj−ε
− 1

νϑj−ε
· 1

1 + νtϑj−ε

))
= exp

(
−K(pϑ)j−ε · t

1 + νtϑj−ε

)
.

Weiter gilt nach Feller

ϕYj
(t) = exp

(
−
∫ ∞

0

(1− e−tx)

(
Kpj−ε

ν

1

νϑj−ε
exp

(
− x

νϑj−ε

))
dx

)
,

also hat das Lévy-Maß von Yj die Wahrscheinlichkeitsdichte

f(x) =
K

ν2

(p
ϑ

)j−ε

exp
(
− x

νϑj−ε

)
.

Da die Yj stochastisch unabhängig sind, erhalten wir

ϕ∑∞
j=−∞ Yj

(t) = exp

(
−Kt

∞∑
j=−∞

(pϑ)j−ε

1 + νtϑj−ε

)
,

also (3.4) als L.T. von
∑∞

j=−∞ Yj. Der Satz von der monotonen Konvergenz impli-

ziert, dass das Lévy-Maß von
∑∞

j=−∞ Yj, bezeichnet mit P̂ , die Dichte

f(x) =
K

ν2

∞∑
j=−∞

(p
ϑ

)j−ε

exp
(
− x

νϑj−ε

)
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besitzt. Es ist nun für t > 0

P̂ ((t,∞)) =

∫
(t,∞)

f(x)λ(dx)

=

∫ ∞

t

K

ν2

∞∑
j=−∞

(p
ϑ

)j−ε

exp
(
− x

νϑj−ε

)
dx

= 0−
∞∑

j=−∞

−K
ν
pj−ε exp

(
− t

νϑj−ε

)

=
K

ν

∞∑
j=−∞

pj−ε exp

(
− t

νϑj−ε

)
.

Damit folgt P̂ ((0,∞)) = limt↘0 P̂ ((t,∞)) = ∞ und nach [Kes], S.11, hat daher

die Verteilung von
∑∞

j=−∞ Yj keine Atome. Da
∑∞

j=−∞ Yj f.s. nur positive Werte

annimmt, folgt, dass ihre Verteilung stetig ist und nur Werte in (0,∞) besitzt.

3.3 Die Konvergenzgeschwindigkeit

Zur Bestimmung von Funktionen f , so dass Tn

f(n)
in Wahrscheinlichkeit gegen eine

Konstante konvergiert, benötigen wir die nachfolgenden Abschätzungen, um mit

Hilfe von Lemma 3.5 argumentieren zu können.

Lemma 3.7 Seien (Wx)x∈[0,∞), (Tx)x∈[0,∞) nicht fallende Familien von positiven

Zufallsgrößen mit Wx

x

P→ 1
γ
, 0 < γ < ∞. Dann gilt für jedes 0 < δ < γ und jede

Folge reeller Zahlen (yk)k≥1 mit limk→∞ yk = ∞

lim inf
k→∞

L

(
TWyk(γ+δ)

f(yk)

)
≤ lim inf

k→∞
L

(
Tyk

f(yk)

)
(3.5)

≤ lim sup
k→∞

L

(
Tyk

f(yk)

)
≤ lim sup

k→∞
L

(
TWyk(γ−δ)

f(yk)

)
,(3.6)

wobei L (X) die L.T. von X bezeichne und f > 0 gelte.

Beweis: Wir definieren x := xk := (γ + δ)yk und damit I := Ix,δ :=
(

x
γ+δ

, x
γ−δ

)
.

Wir bemerken, dass aus Wx ∈ I, also wenn Wx >
x

γ+δ
gilt, TWx ≥ Tx/γ+δ = Tyk

folgt.

Damit zeigen wir unter Beachtung, dass L.T. durch 1 beschränkt sind,

L
(
f (yk)

−1 TWx

)
(t) = E

(
E

(
exp

(
−tf (yk)

−1 TWx

) ∣∣∣∣∣Wx

))
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=

∫
I

E

(
exp

(
−tf (yk)

−1 TWx

∣∣∣∣∣Wx = yk

))
PWx(dyk)

+

∫
Ic

E

(
exp

(
−tf (yk)

−1 TWx

∣∣∣∣∣Wx = yk

))
PWx(dyk)

≤
∫

I

E

(
exp

(
−tf (yk)

−1 Tyk

∣∣∣∣∣Wx = yk

))
PWx(dyk) + PWx(Ic)

≤
∫
E

(
exp

(
−tf (yk)

−1 Tyk

∣∣∣∣∣Wx = yk

))
PWx(dyk) + PWx(Ic)

= L
(
f (yk)

−1 Tyk

)
(t) + PWx(Ic).

Weil nach Voraussetzung Wx

x
in Wahrscheinlichkeit gegen 1

γ
konvergiert, ist

lim
x→∞

P (Wx ∈ Ic) = lim
x→∞

P

(
Wx ≤

x

γ + δ
∨Wx ≥

x

γ − δ

)
= lim

x→∞
P

(∣∣∣∣ xWx

− γ

∣∣∣∣ > δ

)
= 0,

womit die Richtigkeit von (3.5) folgt. Die Ungleichung (3.6) kann auf gleiche Weise

bewiesen werden. 2

Unter Anwendung des starken Gesetzes der großen Zahlen erhalten wir

Satz 3.8 (a) Aus pϑ = 1 folgt Tn

2n logϑ n

P→ 1.

(b) Ist pϑ > 1 und (nk)k≥1 eine Folge natürlicher Zahlen, die gegen ∞ konvergiert

und für die limk→∞ log1/p nk − blog1/p nkc = ε gilt, dann gilt
Tnk

n%
k

d→ Z, wobei

ϕZ(t) = exp(−Lt
∑∞

j=−∞
(pϑ)j−η

1+µtϑj−η ) mit µ := (1−p)%2ϑ
(ϑ−1)2

, L := µ(1−p)
p

, η := ε +

log1/p(1− p)− blog1/p(1− p)c und % := log1/p ϑ > 1.

Beweis: Sowohl bxc
Wbxc

als auch
∑bxc

j=1 1{Uj=1}

bxc geben den Anteil der Barrieren in der

Umgebungsfolge an. Das starke Gesetz der großen Zahlen impliziert

lim
x→∞

Wbxc

x
= lim

x→∞

Wbxc

bxc
= lim

x→∞

bxc∑bxc
j=1 1{Uj=1}

=
1

P (Uj = 1)
=

1

1− p
=:

1

γ
f.s.

(a) Für 0 < δ < γ und t ≥ 0 folgt mit Lemma 3.5 und dem Stetigkeitssatz für

L.T.

L

(
TWbn(γ±δ)c

2n logϑ n

)
(t) = L

(
TWbn(γ±δ)c

2n(γ ± δ) logϑ(n(γ ± δ))
· (γ ± δ) logϑ(n(γ ± δ))

logϑ n

)
(t)
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−−−→
n→∞

exp

(
−tϑ(γ ± δ)

ϑ− 1

)
,

da logϑ(n(γ±δ))
logϑ n

→ 1 für n gegen ∞. Damit können wir mit Hilfe von Lemma 3.7

abschätzen:

exp

(
−tϑ(γ + δ)

ϑ− 1

)
= lim inf

n→∞
E

(
exp

(
−t
TWbn(γ+δ)c

2n logϑ n

))
≤ lim inf

n→∞
E

(
exp

(
−t Tn

2n logϑ n

))
≤ lim sup

n→∞
E

(
exp

(
−t Tn

2n logϑ n

))
≤ lim sup

n→∞
E

(
exp

(
−t
TWbn(γ−δ)c

2n logϑ n

))
= exp

(
−tϑ(γ − δ)

ϑ− 1

)
.

Lassen wir δ gegen 0 laufen, erhalten wir

lim
n→∞

E

(
exp

(
−t Tn

2n logϑ n

))
= exp

(
− tϑγ

ϑ− 1

)
.

Wieder folgt mit dem Stetigkeitssatz für L.T.

Tn

2n logϑ n

d→ ϑγ

ϑ− 1
=

ϑ

ϑ− 1
(1− 1

ϑ
) = 1.

Da der Grenzwert konstant ist, folgt die Behauptung.

(b) Analog zu (a) folgt für 0 < δ < γ und t ≥ 0

L

(
TWbnk(γ±δ)c

n%
k

)
(t) = L

(
TWbnk(γ±δ)c

(nk(γ ± δ))%

)
(t(γ ± δ)%)

−−−→
n→∞

exp

(
−Kt(γ ± δ)%

∞∑
j=−∞

(pϑ)j−η̂

1 + νt(γ ± δ)%ϑj−η̂

)

mit η̂ := ε+ log1/p(γ ± δ)− blog1/p(γ ± δ)c, da

log1/pbnk(γ ± δ)c − blog1/pbnk(γ ± δ)cc

= log1/p

bnk(γ ± δ)c
nk(γ ± δ)

+ log1/p nk(γ ± δ)− blog1/pbnk(γ ± δ)cc

≡ log1/p nk − blog1/p nkc+ log1/p(γ ± δ)− blog1/p(γ ± δ)c
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+ log1/p

bnk(γ ± δ)c
nk(γ ± δ)

mod 1

→ ε+ log1/p(γ ± δ)− blog1/p(γ ± δ)c mod 1.

Ferner gilt analog zu (a)

exp

(
−Kt(γ + δ)%

∞∑
j=−∞

(pϑ)j−η̂

1 + νt(γ + δ)%ϑj−η̂

)

≤ lim inf
k→∞

L

(
Tnk

n%
k

)
(t)

≤ lim sup
k→∞

L

(
Tnk

n%
k

)
(t)

= exp

(
−Kt(γ − δ)%

∞∑
j=−∞

(pϑ)j−η̂

1 + νt(γ − δ)%ϑj−η̂

)
.

Damit folgt, dass
Tnk

n%
k

für δ ↘ 0 in Verteilung gegen die Zufallsgröße Z konvergiert,

da η̂ = ε + log1/p(γ ± δ) − blog1/p(γ ± δ)c für δ ↘ 0 gegen η = ε + log1/p(1 − p) −
blog1/p(1− p)c konvergiert. 2

Korollar 3.9 Ist pϑ > 1, dann konvergiert log Tn

log n
in Wahrscheinlichkeit gegen % =

log1/p ϑ > 1.

Beweis: Es reicht zu zeigen, dass zu jeder wachsenden Folge (nk)k≥1 natürlicher

Zahlen eine Teilfolge (mk)k≥1 existiert mit
log Tmk

log mk

P−→ log1/p ϑ. Definieren wir nämlich

an = P
(
| log Tn

log n
− %| > ε

)
zu gegebenem ε > 0 beliebig und existiert zu jeder Teilfolge

(ank
)k≥1 von (an)n≥1 eine Teilfolge (amk

)k≥1, die gegen 0 konvergiert, dann konver-

giert auch (an)n≥1 gegen 0 und damit log Tn

log n
in Wahrscheinlichkeit gegen log1/p ϑ. Wir

betrachten daher nun eine Teilfolge einer Teilfolge der natürlicher Zahlen, bezeichnet

mit (mk)k≥1, für die limk→∞mk = ∞ und limk→∞ log1/pmk − blog1/pmkc = ε gel-

ten. Satz 3.8 impliziert die Konvergenz in Verteilung von
Tmk

m%
k

gegen Z, wobei Z wie

oben die Zufallsgröße mit der L.T. ϕZ(t) = exp(−Lt(
∑∞

j=−∞
(pϑ)j−η

1+µtϑj−η )) bezeichne.

Mit Bemerkung 3.6 folgt PZ((0,∞)) = 1. Für δ > 0 gilt dann

1 = FZ(∞)− FZ(0)

= lim
k→∞

FTmk
/m%

k
(mδ

k)− FTmk
/m%

k

(
1

mδ
k

)
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= lim
k→∞

P

(
1

mδ
k

<
Tmk

m%
k

< mδ
k

)
= lim

k→∞
P ((%− δ) logmk < log Tmk

< (%+ δ) logmk)

= lim
k→∞

P

(∣∣∣ log Tmk

logmk

− %
∣∣∣ < δ

)
.

Daraus können wir folgern, dass limk→∞ P
(∣∣∣ log Tmk

log mk
− %
∣∣∣ ≥ δ

)
= 0 gilt, also dass

log Tmk

log mk
in Wahrscheinlichkeit gegen % = log1/p ϑ konvergiert. 2

Abermals maßgeblich unter Verwendung von Lemma 3.5 können wir nun beweisen:

Satz 3.10 (a) Aus pϑ = 1 folgt Sn

n/ logϑ n

P→ 1
2
.

(b) Ist pϑ > 1 und (nk)k≥1 eine Folge natürlicher Zahlen mit limk→∞ nk = ∞ und

limk→∞ logϑ nk − blogϑ nkc = ε, dann gilt für alle x > 0

lim
k→∞

P

(
Snk

n
1/%
k

< x

)
= 1− Fζ(x)(((1− p)x)−%),

wobei ζ(x) := ε + log1/p((1 − p)x) und Fζ(x) die Verteilungsfunktion der Zu-

fallsgröße Yζ(x) mit L.T. ϕYζ(x)
(t) = exp(−Kt

∑∞
j=−∞

(pϑ)j−ζ(x)

1+νtϑj−ζ(x) ).

Beweis: Sei N(n) die Anzahl der Barrieren, die nach n Zeiteinheiten überschritten

wurden, also das Niveau, auf dem sich die Irrfahrt nach n Zeiteinheiten befindet.

N(n) ist also die eindeutig bestimmte natürliche Zahl mit WN(n) ≤ Sn < WN(n)+1.

Aus der Definition folgt

P (N(n) ≥ y) = P (TWdye ≤ n). (3.7)

Wir bemerken außerdem, dass

1 ≤ Sn

WN(n)

<
WN(n)+1

WN(n)

−−−→
n→∞

1 P-f.s.

gilt, Sn

WN(n)
also P -f.s. gegen 1 konvergiert.

(a) Sei g(t) := t logϑ t, t ≥ 0, und s > 0. Dann folgt mit (3.7)

P

(
g−1(n)

s
≤ N(n)

)
= P

(
TWdg−1(n)/se

≤ n
)
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= P

(
TWdg−1(n)/se

α logϑ α
≤ n

α logϑ α

)
,

wobei α := g−1(n)
s

. Wir formen die rechte Seite um:

n
g−1(n)

s
logϑ

g−1(n)
s

=
s

g−1(n)
n

logϑ g
−1(n)− g−1(n)

n
logϑ s

=
s

1− g−1(n)
n

logϑ s
,

weil für mn mit g(mn) = mn logϑmn = n

g−1(n)

n
logϑ g

−1(n) =
mn

mn logϑmn

logϑmn = 1

gilt. Wir erhalten mit Lemma 3.5 und unter Berücksichtigung, dass g(n)−1

n
für n→∞

gegen 0 konvergiert

P

(
g−1(n)

N(n)
≤ s

)
= P

(
TWdαe

α logϑ α
≤ s

1− g−1(n)
n

logϑ s

)
−−−→
n→∞

P

(
2ϑ

ϑ− 1
≤ s

)
.

Da limn→∞
Wn

n
= 1

1−p
P -f.s., folgt mit dem Satz von Slutzky ([Als1], S.185)

g−1(n)

WN(n)

=
g−1(n)

N(n)
· N(n)

WN(n)

d−→ 2ϑ

ϑ− 1
(1− p) = 2

und daraus
Sn

g−1(n)
=

Sn

WN(n)

·
WN(n)

g−1(n)

d−→ 1

2
.

Unter Berücksichtigung, dass

g−1(n) = mn '
mn logϑmn

logϑ(mn logϑmn)
=

n

logϑ n

gilt und der Grenzwert konstant ist, folgt die Behauptung.

(b) Für x > 0 gilt mit Gleichung (3.7) und Lemma 3.5

P

(
N(nk)

n
1/%
k

≥ x

)
= P

(
TW

dn1/%
k

xe
≤ nk

)

= P

TW
dn1/%

k
xe

dn1/%
k xe%

≤ 1

x%

nkx
%

dn1/%
k xe%


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−−−→
k→∞

FYζ(x/1−p)
(x−%)

wegen

log1/p(xn
1/%
k )− blog1/p(xn

1/%
k )c

≡ log1/p x+ log1/p n
1/ log1/p ϑ

k − blog1/p n
1/ log1/p ϑ

k c mod 1

≡ log1/p x+
1

log1/p ϑ
log1/p nk − b

1

log1/p ϑ
log1/p nkc mod 1

≡ log1/p x+ logϑ nk − blogϑ nkc mod 1

−−−→
k→∞

log1/p x+ ε = ζ

(
x

1− p

)
mod 1.

Also folgt, da limn→∞
Wn

n
(1− p) = 1 P -f.s.,

P

(
WN(nk)

n
1/%
k

≥ x

)
= P

(
WN(nk)

N(nk)
(1− p)

N(nk)

n
1/%
k

≤ x(1− p)

)
−−−→
k→∞

Fζ(x)((x(1−p))−%)

und daraus die Behauptung

lim
k→∞

P

(
Snk

n
1/%
k

< x

)
= lim

k→∞
1−P

(
Snk

WN(nk)

·
WN(nk)

n
1/%
k

≥ x

)
= 1−Fζ(x)((x(1− p))−%).

2

Analog zu Korollar 3.9 gilt

Korollar 3.11 Aus pϑ > 1 folgt log Sn

log n

P→ logϑ
1
p
.

Beweis: Wie im Beweis von Korollar 3.9 betrachten wir eine Teilfolge einer Teil-

folge der natürlichen Zahlen, bezeichnet mit (mk)k≥1, die limk→∞mk = ∞ und

limk→∞ logϑmk − blogϑmkc = ε erfüllt. Dann gilt nach Satz 3.10 für alle x > 0

lim
k→∞

P

(
Smk

m
1/%
k

< x

)
= 1− Fζ(x)(((1− p)x)−%) =: G(x).

Es genügt zu zeigen, dass G die Verteilungsfunktion einer Zufallsgröße Zζ(x) ist, für

die PZζ(x)((0,∞)) = 1 gilt. Wir zeigen hier, dass G(x) ↘ 0 für x↘ 0 gilt. G(x) ↗ 1
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für x ↗ ∞ kann analog bewiesen werden. Zunächst bemerken wir, dass FYε =: Fε

in ε periodisch mit Periode 1 ist, da die L.T.

ϕYε(t) = exp

(
−Kt

∞∑
j=−∞

(pϑ)j−ε

1 + νtϑj−ε

)
,

t ≥ 0, in ε periodisch mit Periode 1 ist. Nach Bemerkung 3.6 gilt FYε(x) ↗ 1, x↗∞.

Deshalb existiert zu jedem δ > 0 ein x0, so dass Fε((x(1 − p))−%) > 1 − δ für alle

0 < x < x0 gilt. Nun wählen wir ein x1 mit 0 < x1 < x0 und ζ(x1) = ε+ log1/p((1−
p)x1) ≡ ε mod 1. Dann ist Fζ(x1)((x1(1−p))−%) = Fε((x1(1−p))−%) > 1−δ. Deshalb

ist G(x1) < δ, und da G als Limes von Verteilungsfunktionen monoton wächst, gilt

auch G(x) < δ für 0 < x < x1. Weiter schließen wir wie im Beweis von Korollar 3.9.

Für δ > 0 gilt

1 = lim
k→∞

P

(∣∣∣ logSmk

logmk

− 1

%

∣∣∣ < δ

)
,

so dass
log Smk

log mk
in Wahrscheinlichkeit gegen 1

%
= logϑ

1
p

konvergiert. 2



4 Anhang

Behauptung 1 (kf
∗
ij) ist die eindeutige Lösung des Gleichungssystems

aj = 1

ai = uiai+1 + viai−1 , j < i < k

ak = 0

Beweis: a) Existenz: Es gilt kf
∗
jj = 1 und kf

∗
kj = 0 nach Definition, und für i ∈ Z

mit j < i < k ist

kf
∗
ij =

∞∑
n=1

kf
(n)
ij

=
∞∑

n=2

ui kf
(n−1)
i+1,j + vi kf

(n−1)
i−1,j

= ui kf
∗
i+1,j + vi kf

∗
i−1,j.

b) Eindeutigkeit: Seien â = (âj, . . . , âk), ã = (ãj, . . . , ãk) zwei Lösungen des

Gleichungssystems. Wir definieren ∆r := âr − ãr, k ≤ j ≤ k. Dann ist ∆k = 0,

∆j = 0 und ∆i = ui∆i+1 + vi∆i−1. Sei nun r ∈ Z mit j < r < k. Dann gilt

∆r = (ur + vr)∆r = ur∆r+1 + vr∆r−1

und damit

∆r+1 −∆r = hr(∆r −∆r−1).

Hieraus folgt induktiv

∆r+1 −∆r =

(
j−1∏
l=r

hl

)
(∆j −∆j−1),
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und Summation liefert für j ≤ i ≤ k

∆i −∆j =
i−1∑
r=j

(∆r+1 −∆r) =

(
i−1∑
r=j

r∏
l=j+1

hl

)
(∆j+1 −∆j).

Damit erhalten wir

0 = ∆k −∆j =

(
k−1∑
r=j

r∏
l=j+1

hl

)
(∆j+1).

Da
(∑k−1

r=j

∏r
l=j+1 hl

)
> 0 ist, gilt ∆j+1 = 0 und deshalb ∆i = 0 für j < i < k. 2
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