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Einleitung

Der Riffle1 Shuffle2 oder Dovetail3 Shuffle ist eine weit verbreitete Methode, einen

Kartenstapel zu mischen. Dabei werden die Karten nach einer Spielrunde in zwei

ungefähr gleich große Päckchen geteilt. Von diesen wird jeweils eines in die linke

und eines in die rechte Hand genommen. Dann werden eine oder mehrere Kar-

ten abwechselnd aus beiden Händen fallengelassen und die Karten so sukzessive

ineinandergeblättert. Durch wiederholtes Mischen soll die Reihenfolge der Kar-

ten so verändert werden, dass keine der am Spiel beteiligten Personen diese vor-

hersagen kann. Wie oft der Kartenstapel gemischt werden muss, um eine ausrei-

chende Zufälligkeit der Kartenreihenfolge zu erreichen, ist die zentrale Frage. Am

09.01.1990 war in der New York Times [13] die Antwort in Form der folgenden

Schlagzeile zu lesen:

”
In card shuffling, 7 is winning number“.

Präziser formuliert, sind für einen Kartenstapel mit 52 Karten sieben Misch-

vorgänge nötig, um den Kartenstapel hinreichend zu mischen. Kartenspiele mit

52 Karten sind beispielsweise Blackjack, Bridge und Schafkopf. Dem Zeitungsarti-

kel lagen die Forschungsergebnisse von David Bayer und Persi Diaconis zu Grunde.

In ihrem im Jahre 1992 veröffentlichen Artikel
”
Trailing the Dovetail Shuffle to its

lair“ (siehe [6]) stellten sie verschiedene wahrscheinlichkeitstheoretische Modelle

für den Riffle Shuffle vor. Sie wiesen nach, dass für einen Kartenstapel mit n Karten

b3
2
log2 nc − 2 Mischvorgänge in einem gewissen Sinne ausreichen. Darüber hinaus

1riffle (engl.): durchblättern
2shuffle (engl.): Mischen, Mischvorgang
3dovetail (engl.): Schwalbenschwanz



vi Einleitung

erlaubten ihre Ergebnisse eine weitere erstaunliche Aussage: Einerseits sind weni-

ger als b3
2
log2 nc − 2 Mischvorgänge nicht ausreichend und andererseits mehr als

b3
2
log2 nc−2 Mischvorgänge nicht notwendig, um einen Kartenstapel mit n Karten

ausreichend zu mischen. Dieses Phänomen wird als Cut-Off-Effekt bezeichnet.

Das Ziel dieser Arbeit ist die wahrscheinlichkeitstheoretische Erfassung und

Präzisierung des Riffle Shuffles und Cut-Off-Effekts. Wir orientieren uns dabei

maßgeblich an den Ergebnissen von Bayer und Diaconis [6].

Das sukzessive Mischen von Karten wird als stochastischer Prozess X =

(Xm)m≥0 auf einem Wahrscheinlichkeitsraum (Ω,A, P ) interpretiert. Dabei gibt

die Zufallsgröße Xm für m ≥ 0 die Kartenreihenfolge nach m sukzessiven Misch-

vorgängen in geeigneter Weise an. Wir werden zeigen, dass der konstruierte Prozess

X ein Random Walk und zugleich eine zeitlich homogene, irreduzible und aperiodi-

sche Markov-Kette ist. Der Zustandsraum des ProzessesX, der aus allen möglichen

Kartenreihenfolgen von n Karten besteht, ist dabei die Gruppe der Permutatio-

nen Sn. Die eindeutig bestimmte stationäre Verteilung ist die Gleichverteilung USn

auf Sn. Ein m-mal gemischter Kartenstapel wird als hinreichend gemischt angese-

hen, wenn alle Kartenreihenfolgen annähernd gleichwahrscheinlich sind, das heißt

die Totalvariation ‖PXm − USn‖ von PXm und der Gleichverteilung USn auf Sn

hinreichend klein ist. Der Ergodensatz rechtfertigt dieses Vorgehen. Für n = 52

und m = 1, . . . , 20 führt eine Berechnung der Totalvariation zu der Darstellung in

Abbildung 1, die den Cut-Off-Effekt veranschaulicht.

Mit Blick auf Abbildung 1 ist der Cut-Off-Effekt ein
”
Phasen-Übergang“: Vom

ersten bis zum fünften Mischvorgang befindet sich die Totalvariation nah bei ihrem

maximalen Wert von 1. Während der nächsten vier Mischvorgänge fällt sie jedoch

rapide auf einen Wert nahe 0.

Der Nachweis des Cut-Off-Effekts erweist sich im Allgemeinen als äußert

schwierig. Bislang sind zwar zahlreiche Beispiele für Markov-Ketten mit Cut-Off-

Effekt bekannt (siehe hierzu [2], [10], [20], [21] und [24]), jedoch ist keine allgemeine

Theorie verfügbar.

In Kapitel 1 werden wir zunächst vom Zustandsraum Sn abstrahieren und

Random Walks auf beliebigen endlichen Gruppen vorstellen, die zugleich Markov-
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Abbildung 1: m 7−→ ‖PXm − USn‖ für n = 52 und m = 1, . . . , 20.

Ketten bilden. Ferner stellen wir ein wahrscheinlichkeitstheoretisches Modell für

das sukzessive Kartenmischen vor, das von verschiedenen Autoren zur Modellie-

rung von Mischvorgängen verwendet wird (siehe hierzu [1], [2], [6], [9], [14], [20]

und [21]).

Kapitel 2 widmet sich ausschließlich dem Riffle Shuffle und dem Nachweis des

Cut-Off-Effekts für den Riffle Shuffle in Form des folgenden Theorems (siehe Theo-

rem 2.6.9 in Abschnitt 2.6).

Theorem. Wird ein Stapel mit n Karten mn = (b3
2
log2 nc + j)-mal, j ∈ Z,

j ≥ −b3
2
log2 nc, nach dem Riffle Shuffle gemischt, so gilt

‖PXmn − USn‖ −→
n→∞

1− 2Φ

(
− 2−j

4
√

3

)
,

wobei Φ die Verteilungsfunktion der Standardnormalverteilung sei.

In Kapitel 2 werden wir zunächst den Riffle Shuffle auf drei verschiedene

Arten wahrscheinlichkeitstheoretisch modellieren. Diese Modelle führen schließ-

lich zur selben Abbildung durch eine Markov-Kette bzw. einen Random Walk

X = (Xm)m≥0. Sie ermöglichen nicht nur die explizite Angabe der Verteilungen

PXm , m ≥ 0, sondern auch die der m-Schritt-Übergangswahrscheinlichkeiten der
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Markov-Kette X für m ≥ 1. Hierbei und im weiteren Vorgehen erweisen sich die

Eulerschen Zahlen und ihre Verbindungen zur Kombinatorik und Wahrscheinlich-

keitstheorie als zentrale Hilfsmittel (siehe hierzu [7], [8], [23] und [26]). Abschlie-

ßend werden wir den Cut-Off-Effekt mathematisch präzisieren und die asymptoti-

sche Aussage des obigen Theorems herleiten.

Ich bedanke mich bei Herrn Professor Dr. G. Alsmeyer für die Vergabe dieser

Diplomarbeit und die umfassende Betreuung. Er hat mein Interesse für das Thema

geweckt und mir mit wertvollen Hinweisen über manche Hürde hinweggeholfen.



Kapitel 1

Random Walks auf Gruppen

Dieses Kapitel dient der Einführung in die Theorie der Random Walks auf Grup-

pen, die für die wahrscheinlichkeitstheoretische Modellierung von Mischvorgängen

notwendig ist. Es werden ausschließlich endliche Gruppen betrachtet. Die Ergeb-

nisse entstammen in weiten Teilen, sofern nicht anders angegeben, [1], [9], [20]

und [21]. Begriffe aus der Gruppentheorie entnehmen wir [15]. Für die Theorie der

Markov-Ketten wird auf [4] verwiesen.

1.1 Random Walks auf endlichen Gruppen

Sei G eine endliche Gruppe mit Verknüpfung
”
◦“ und neutralem Element id.

Die Ordnung von G ist die Anzahl |G| der Elemente von G. Sei T ⊂ G und

T− def
= {x−1 | x ∈ T}. T heißt Erzeuger von G, falls

G =
⋃

n∈N0

{x1 ◦ . . . ◦ xn | xi ∈ T ∪ T−, i = 1, . . . , n} def
= 〈T 〉.

Für n ∈ N definieren wir T ◦(n) def
= {x1 ◦ . . . ◦ xn | xi ∈ T , i = 1, . . . , n}. Für eine

endliche Gruppe G ist G = 〈T 〉 wegen x ◦ . . . ◦ x︸ ︷︷ ︸
|G|-mal

= id für alle x ∈ G äquivalent zu

G =
⋃
n∈N

T ◦(n).
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Gegeben eine Teilmenge T ⊂ G ist 〈T 〉 eine Untergruppe von G und zwar die

kleinste Untergruppe die T umfasst.

Für x, y ∈ G schreiben wir auch kurz xy in der multiplikativen Schreibweise

anstatt x ◦ y. Das neutrale Element id ∈ G nennen wir auch Einselement. Eine

Untergruppe N ⊂ G heißt Normalteiler von G, wenn xN = Nx für alle x ∈ G gilt.

Die Mengen xN und Nx heißen Links- bzw. Rechtsnebenklassen von N bezüglich

x. Sei H eine weitere Gruppe. Eine Abbildung ϕ : G −→ H heißt Gruppenhomo-

morphismus, falls ϕ(xy) = ϕ(x)ϕ(y) für alle x, y ∈ G gilt.

Ist ein Wahrscheinlichkeitsmaß Q auf (G,P(G)) gegeben, so definieren wir den

Träger von Q als

supp(Q)
def
= {x ∈ G |Q({x}) > 0}

und einen stochastischen Kern KQ : G×P(G) −→ [0, 1] durch

KQ(x, {y}) def
= Q({x−1y}) für x, y ∈ G.

Für x ∈ G sei δx die Dirac-Verteilung in x auf (G,P(G)).

1.1.1 Definition. Seien λ und Q Wahrscheinlichkeitsmaße auf (G,P(G)) und

(Ym)m≥0 eine Folge G-wertiger, stochastisch unabhängiger Zufallsvariablen auf ei-

nem geeigneten Wahrscheinlichkeitsraum (Ω,A, P ) mit P Y0 = λ und P Ym = Q

für alle m ≥ 1. Die Folge (Xm)m≥0 mit Xm
def
= Y0 ◦ . . . ◦ Ym für m ≥ 0 heißt

(Q, λ)-Random Walk auf G oder, falls λ = δid, kurz Q-Random Walk auf G.

Dann ist X = (Xm)m≥0 eine zeitlich homogene endliche Markov-Kette mit

Zustandsraum G, Anfangsverteilung λ und Übergangskern KQ. Sind zwei Wahr-

scheinlichkeitsmaßeQ1 undQ2 auf (G,P(G)) gegeben, so definieren wir die Faltung

Q1 ∗Q2 von Q1 und Q2 durch

Q1 ∗Q2({x})
def
=
∑
y∈G

Q1({y})Q2({y−1x}), x ∈ G. (1.1.1)

1.1.2 Bemerkung. Sei X = (Xm)m≥0 ein (Q, λ)-Random Walk auf G. Dann gilt

für alle m ≥ 1

PXm = λ ∗Q ∗ . . . ∗Q︸ ︷︷ ︸
m-mal

= λ ∗Q∗(m), (1.1.2)
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wobei Q∗(1) def
= Q und Q∗(k) def

= Q ∗Q∗(k−1) für k ≥ 2.

Im Fall λ = δid gilt für alle m ≥ 1

PXm = Q∗(m). (1.1.3)

Beweis. Sei x ∈ G beliebig. Dann gilt wegen der stochastischen Unabhängigkeit

der Yi, i ≥ 0,

P (X1 = x) = P (Y0Y1 = x)

= P
( ⋃

y∈G

{Y0 = y, Y1 = y−1x}
)

=
∑
y∈G

P (Y0 = y)P (Y1 = y−1x)

=
∑
y∈G

λ({y})Q({y−1x}) = λ ∗Q({x}).

(1.1.2) und (1.1.3) folgen dann per Induktion aus obiger Gleichung unter Beachtung

von δid ∗Q = Q.

Aus der Definition des Übergangskerns KQ und (1.1.2) erhalten wir für alle

m ≥ 1

PXm = λ(KQ ◦ . . . ◦KQ︸ ︷︷ ︸
m-mal

)
def
= λK(m)

Q ,

wobei λKQ(·) def
=
∫

G
KQ(x, ·)λ(dx) und

”
◦“ hier die übliche Hintereinanderschal-

tung von Kernen bezeichne. Ferner gilt für alle k,m ≥ 0

PXm+k|Xm=· = K(k)
Q PXm-f.s.,

wobei K(0)
Q (x, ·) def

= δx(·). Die k-Schritt-Übergangswahrscheinlichkeiten seien für

k ∈ N definiert durch

p(k)
x,y

def
= K(k)

Q (x, {y}), x, y ∈ G.

Dann gilt für alle k ∈ N und x, y ∈ G

p(k)
x,y = K(k)

Q (x, {y})

= Q∗(k)({x−1y})
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= Q∗(k)({id x−1y})

= K(k)
Q (id, {x−1y})

= p
(k)

id,x−1y

def
= p

(k)

x−1y. (1.1.4)

Der nächste Satz stammt von Woess [25] und charakterisiert Irreduzibilität und

Aperiodizität (siehe Definition 7.6. und 7.9. in [4]) der Markov-Kette (Xm)m≥0.

1.1.3 Satz. Sei G eine endliche Gruppe, Q ein Wahrscheinlichkeitsmaß auf

(G,P(G)) und X = (Xm)m≥0 ein (Q, λ)-Random Walk. Dann gilt

(a) X ist irreduzibel genau dann, wenn supp(Q) ein Erzeuger von G ist.

(b) Sei X irreduzibel. Genau dann ist X aperiodisch, wenn supp(Q) keine Teil-

menge einer Nebenklasse eines beliebigen nicht-trivialen Normalteilers von G

ist.

Beweis. zu (a):
”
⇒“ Sei X irreduzibel und x ∈ G. Dann existiert ein k ∈ N, so

dass p
(k)
x > 0. Wegen

p(k)
x = Q∗(k)({x})

=
∑
z1∈G

Q({z1})Q∗(k−1)({z−1
1 x})

=
∑

z1,...,zk−1∈G

Q({z1}) · . . . ·Q({zk−1})Q({z−1
k−1 · . . . · z

−1
1 x}) > 0

existieren z1, . . . , zk−1 ∈ G mit z1, . . . , zk−1, z
−1
k−1 · . . . ·z

−1
1 x ∈ supp(Q). Daraus folgt

x ∈ 〈supp(Q)〉 und somit G ⊂ 〈supp(Q)〉.

”
⇐“ Nach (1.1.4) reicht es zu zeigen, dass für jedes x ∈ G ein k ∈ N existiert

mit p
(k)
x > 0. Sei x ∈ G und y ∈ supp(Q) beliebig. Wegen 〈supp(Q)〉 = G exi-

stiert ein k ∈ N und y1, . . . , yk−1 ∈ supp(Q) mit y1 · . . . · yk−1 = xy−1. Dann gilt

y = y−1
k−1 · . . . · y

−1
1 x und

p(k)
x =

∑
z1,...,zk−1∈G

Q({z1}) · . . . ·Q({zk−1})Q({z−1
k−1 · . . . · z

−1
1 x})

≥ Q({y1}) · . . . ·Q({yk−1})Q({y−1
k−1 · . . . · y

−1
1 x})

= Q({y})
k−1∏
i=1

Q({yi}) > 0.
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zu (b): Für den Beweis verweisen wir auf [25].

Das nächste Lemma zeigt den Zusammenhang zwischen dem Träger der m-

fachen Faltung von Q und der vom Träger von Q erzeugten Untergruppe.

1.1.4 Lemma. Sei G eine endliche Gruppe und Q ein Wahrscheinlichkeitsmaß

auf (G,P(G)). Dann gilt für alle m ≥ 0

supp
(
Q∗(m)

)
= (supp(Q))◦(m) (1.1.5)

und somit

〈supp(Q)〉 =
⋃
m≥0

(supp(Q))◦(m) =
⋃
m≥0

supp
(
Q∗(m)

)
. (1.1.6)

Beweis. (1.1.6) folgt direkt aus (1.1.5), wir zeigen daher (1.1.5). Da für m = 0, 1

nichts zu zeigen ist, sei m ≥ 2.

”
⊂“ Sei x ∈ supp

(
Q∗(m)

)
beliebig. Wegen

Q∗(m)({x}) =
∑

z1,...,zm−1∈G

Q({z1}) · . . . ·Q({zm−1})Q({z−1
m−1 · . . . · z−1

1 x}) > 0

existieren z1, . . . , zm−1 ∈ G mit z1, . . . , zm−1, z
−1
m−1 · . . . · z−1

1 x ∈ supp(Q). Vermöge

(supp(Q))◦(m) = {y1 · . . . · ym | y1, . . . , ym ∈ supp(Q)} und

z1 · . . . · zm−1(z
−1
m−1 · . . . · z−1

1 x) = x

erhalten wir x ∈ (supp(Q))◦(m).

”
⊃“ Sei x ∈ (supp(Q))◦(m) beliebig und y1, . . . , ym ∈ supp(Q) mit

x = y1 · . . . · ym. Dann gilt y−1
m−1 · . . . · y−1

1 x = ym und somit

Q∗(m)({x}) =
∑

z1,...,zm−1∈G

Q({z1}) · . . . ·Q({zm−1})Q({z−1
m−1 · . . . · z−1

1 x})

≥ Q({y1}) · . . . ·Q({ym−1})Q({y−1
m−1 · . . . · y−1

1 x})

=
m∏

i=1

Q({yi}) > 0.

Dies zeigt x ∈ supp(Q∗(m)).
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Eine stationäre Verteilung der Markov-Kette X ist die Gleichverteilung

UG
def
= 1

|G|
∑

x∈G δx auf (G,P(G)), denn für alle x ∈ G gilt

UG ∗Q({x}) =
∑
y∈G

UG({y})Q({y−1x}) =
1

|G|
.

Zusammen mit der Endlichkeit von G und Korollar 10.7. in [4] erhalten wir un-

mittelbar den folgenden Satz.

1.1.5 Satz. Sei G eine endliche Gruppe, Q ein Wahrscheinlichkeitsmaß auf

(G,P(G)), dessen Träger supp(Q) die Gruppe G erzeugt, und X = (Xm)m≥0 eine

Markov-Kette mit Übergangskern KQ und beliebiger Anfangsverteilung. Dann ist

X positiv rekurrent und besitzt die eindeutig bestimmte stationäre Verteilung UG.

Die Totalvariation oder der Variationsabstand zweier Maße Q1 und Q2 auf

(G,P(G)) ist definiert als

‖Q1 −Q2‖
def
= sup

A⊂G
|Q1(A)−Q2(A)| = 1

2

∑
x∈G

∣∣Q1({x})−Q2({x})
∣∣.

Ist ein (Q, λ)-Random Walk X auf G irreduzibel und aperiodisch, so konver-

giert X nach Satz 1.1.5 und dem Ergodensatz (siehe Satz 11.1. in [4]) für jede

Anfangsverteilung λ in Totalvariation gegen die Gleichverteilung UG auf G, das

heißt

lim
m→∞

‖PXm − UG‖ = lim
m→∞

‖λ ∗Q∗(m) − UG‖ = 0.

1.2 Die Gruppe Sn der Permutationen

In diesem Abschnitt sei n ∈ N und Sn die Gruppe der Permutationen von

{1, . . . , n}, das heißt

Sn = {π : {1, . . . , n} → {1, . . . , n} | π bijektiv}.

Eine Permutation π ∈ Sn wird gewöhnlich in der Form

π =

(
1 2 · · · n

π(1) π(2) · · · π(n)

)
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dargestellt. Wir kürzen dies ab, indem wir nur die untere Zeile übernehmen und

diese in eckige Klammern setzen: π = [π(1), . . . , π(n)]. Wir entnehmen die folgen-

den Definitionen und Aussagen über die Struktur von Sn aus [15].

1.2.1 Definition. Eine Permutation π heißt r-Zyklus, wenn es paarweise verschie-

dene Zahlen i1, . . . , ir ∈ N≤n
def
= {1, . . . , n} gibt, r ≥ 2, mit

(i) π(ij) = ij+1, j = 1, . . . , r − 1, π(ir) = i1 und

(ii) π(i) = i für i 6= i1, . . . , ir.

In dieser Situation verwenden wir für π die Schreibweise π = [i1, . . . , ir]Z .

1.2.2 Definition. Ein 2-Zyklus π = [i, j]Z ∈ Sn heißt Transposition.

Eine Transposition π = [i, j]Z vertauscht also gerade die Zahlen i und j mitein-

ander und lässt alle übrigen Zahlen unverändert. Wir bezeichnen die Menge aller

Transpositionen in Sn mit Tn, das heißt

Tn
def
=
{
[i, j]Z | i, j ∈ N≤n, i 6= j

}
.

Die Menge der Transpositionen erzeugt Sn. Es gilt also

〈Tn〉 =
⋃
m≥0

T ◦(m)
n = Sn. (1.2.1)

Nach (1.2.1) ist jede Permutation das endliche Produkt von Transpositionen. Wir

nennen eine Permutation gerade bzw. ungerade, falls sie sich als das Produkt einer

geraden bzw. ungeraden Anzahl von Transpositionen darstellen lässt. Eine Permu-

tation kann nicht gerade und ungerade zugleich sein. Wir bezeichnen die Menge

aller geraden Permutationen mit An.

Die Signumsfunktion sgn : Sn −→ {−1, 1}, definiert durch

sgn(π) = (−1)s,

falls π = σ1 · . . . ·σs für σ1, . . . , σs ∈ Tn, ist ein Gruppenhomomorphismus. Für die

Menge An aller geraden Permutationen gilt

An = {π ∈ Sn | sgn(π) = 1}.
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Wir erinnern noch einmal an die Definition des Normalteilers: Eine Untergruppe

N ⊂ Sn heißt Normalteiler von Sn, wenn xN = Nx für alle x ∈ Sn gilt. Per

Definition sind also {id} und Sn selbst stets Normalteiler von Sn. {id} und Sn

werden als triviale Normalteiler von Sn bezeichnet. Die folgenden Ausführungen

geben Auskunft über die weitere Normalteilerstruktur von Sn für n ∈ N.

1.2.3 Satz. Für n ≥ 5 ist An der einzige nicht-triviale Normalteiler von Sn.

Die Kleinsche Vierergruppe V4 ist die Menge aller Doppeltranspositionen in S4,

das heißt

V4 = {id, [1, 2]Z [3, 4]Z , [1, 3]Z [2, 4]Z , [1, 4]Z [2, 3]Z}.

Die Kleinsche Vierergruppe ist ein nicht-trivialer Normalteiler von S4. Die Nor-

malteiler von Sn sind für n ∈ N in der folgenden Übersicht aufgeführt:

n = 1 : {id} = S1,

n = 2 : {id} ( A2 = S2,

n = 3 : {id} ( A3 ( S3,

n = 4 : {id} ( V4 ( A4 ( S4,

n ≥ 5 : {id} ( An ( Sn.

1.3 Beschreibung eines Mischvorgangs

In diesem Abschnitt führen wir den Begriff der Mischmethode und ein wahrschein-

lichkeitstheoretisches Modell für das sukzessive Mischen von Karten ein.

Wir beginnen unsere Betrachtungen mit einem Stapel von n Karten, n ∈ N.

Die Karten seien von 1 bis n nummeriert und nach aufsteigenden Werten von links

nach rechts vor uns ausgelegt.

Wir identifizieren im Folgenden die Reihenfolge der Karten mit einem n-Tupel

x = (x1, . . . , xn) ∈ Nn
≤n,6=, wobei

Nn
≤n,6=

def
= {(y1, . . . , yn) ∈ {1, . . . , n}n | yi 6= yj für i 6= j}.
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Dabei bedeutet xi = j, dass sich Karte j an i-ter Stelle befindet. Ein ungemischter

Stapel wird also durch das Tupel (1, . . . , n) beschrieben. Führen wir nun einen

Mischvorgang durch, das heißt, ändern wir die Reihenfolge der Karten, so können

wir dies durch eine Permutation

π ∈ Sn = {σ : {1, . . . , n} → {1, . . . , n} | σ bijektiv}

beschreiben. Dabei bedeute π(i) = j, dass die Karte, die sich nach dem Mischvor-

gang an Position i befindet, vor dem Mischvorgang an Position j lag.

Führen wir m ∈ N Mischvorgänge nacheinander durch, gegeben durch die

Permutationen π1, . . . , πm, so ist dies äquivalent zu einem einzelnen Mischvorgang

gegeben durch die Permutation π1◦ . . .◦πm. Beginnen wir mit einem ungemischten

Stapel, so gilt für die Reihenfolge x(k) der Karten nach dem k-ten Mischvorgang:

x(k) =
(
π1 ◦ . . . ◦ πk(1), . . . , π1 ◦ . . . ◦ πk(n)

)
, k = 1, . . . ,m.

Das folgende Beispiel 1.3.1 verdeutlicht, dass die Unterscheidung zwischen den

zu den einzelnen Mischvorgängen gehörigen Kartenreihenfolgen und Permutatio-

nen notwendig ist. Soll ein Kartenstapel m-mal sukzessive gemäß den Permuta-

tionen π1, . . . , πm gemischt werden, so führt, wie oben beschrieben, einmaliges Mi-

schen gemäß der Permutation π1 ◦ . . . ◦ πm zu derselben Reihenfolge. Entgegen

der Intuition ist also π1 ◦ . . . ◦ πm die
”
richtige“ Permutation und nicht etwa

πm ◦ . . . ◦ π1. Dies liegt an der von uns gewählten Art, einen Mischvorgang durch

eine Permutation zu beschreiben: Eine einzelne Permutation beschreibt nicht die

Reihenfolge, in der die Karten nach dem Mischen vor uns liegen, sondern nur deren

Reihenfolgeänderung und zwar unabhängig von den speziellen Kartenwerten. Die

Permutation π1 ◦ . . . ◦ πm beschreibt daher die sukzessiven Reihenfolgeänderun-

gen beginnend beim letzten Mischvorgang: Für i = 1, . . . , n gibt zunächst πm(i)

die Postion an, an der die Karte an Position i vor dem Mischen gemäß πm lag.

Soll nun die gesamte Reihenfolgeänderung nach m-maligem Mischen angegeben

werden, so müssen nacheinander πm−1 auf πm, πm−2 auf πm−1 ◦ πm usw. bis hin

zu π1 auf π2 ◦ . . . ◦ πm angewendet werden. Die Reihenfolgeänderungen müssen

also beginnend beim letzten Mischvorgang bis zum ersten Mischvorgang zurück-

verfolgt werden. Daraus resultiert dann die Permutation π1 ◦ . . . ◦πm. Auch diesen

Sachverhalt verdeutlicht das folgende Beispiel.
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1.3.1 Beispiel. Wir beginnen mit einem ungemischten Stapel. Ändert sich die Rei-

henfolge der Karten durch einen ersten Mischvorgang von (1, . . . , n) in

(n, 1, 2, . . . , n − 1), so ist π1 = [n, 1, 2, . . . , n − 1] = [1, n, n − 1, . . . , 3, 2]Z die

zugehörige Permutation. In einem zweiten Mischvorgang werde die Reihenfolge

gemäß der Permutation π2 = [3, 2, 1, 4, . . . , n] = [1, 3]Z geändert. Die Reihenfolge

der Karten nach dem zweiten Mischvorgang lautet

x(2) =
(
π1 ◦ π2(1), . . . , π1 ◦ π2(n)

)
= (2, 1, n, 3, . . . , n− 1).

Für die Reihenfolge der Karten nach dem zweiten Mischvorgang gilt also

x(2) 6= (π2(1), . . . , π2(n)) und

x(2) 6= (π2 ◦ π1(1), . . . , π2 ◦ π1(n)).

Die Wahl der Permutation, nach der wir einen Kartenstapel bei einem einzelnen

Mischvorgang mischen, ist zufallsabhängig:

1.3.2 Definition. Eine Mischmethode Q ist eine Wahrscheinlichkeitsverteilung Q

auf (Sn,P(Sn)).

Ein wahrscheinlichkeitstheoretisches Modell für das sukzessive Mischen eines

Kartenstapels nach einer festgelegten Mischmethode Q ist der Q-Random Walk

auf Sn (siehe Definition 1.1.1): Wollen wir einen Stapel von n Karten m-mal nach

der Mischmethode Qmischen, so wählen wir zunächst eine Realisation (π1, . . . , πm)

der Zufallsvariable (Y1, . . . , Ym). Als Ergebnis des Mischvorgangs erhalten wir die

Realisation π1 ◦ . . . ◦ πm der Zufallsvariable Xm. Wir können dabei sowohl bei

Vorliegen eines ungemischten, als auch bei Vorliegen eines gemischten Stapels vor

Beginn des Mischvorgangs, etwa gemäß der Permutation π ∈ Sn, das Dirac-Maß

in der Identität δid als Anfangsverteilung wählen, denn für alle m ∈ N gilt

‖δπ ∗Q∗(m) − USn‖ =
1

2

∑
σ∈Sn

∣∣∣δπ ∗Q∗(m)({σ})− 1

n!

∣∣∣
=

1

2

∑
σ∈Sn

∣∣∣ ∑
τ∈Sn

δπ({τ})Q∗(m)({τ−1σ})− 1

n!

∣∣∣
=

1

2

∑
σ∈Sn

∣∣∣Q∗(m)({π−1σ})− 1

n!

∣∣∣
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=
1

2

∑
σ∈Sn

∣∣∣Q∗(m)({σ})− 1

n!

∣∣∣
= ‖Q∗(m) − USn‖

= ‖δid ∗Q∗(m) − USn‖.

Ferner führt eine etwaige mit der Wahl von δid als Anfangsverteilung verbundene

Umnummerierung der Karten nicht zu einem Informationsverlust, da die zu einem

Mischvorgang gehörige Permutation nicht die tatsächliche Reihenfolge der Karten,

sondern nur deren Reihenfolgeänderung beschreibt.





Kapitel 2

Der Riffle Shuffle

In diesem Kapitel stellen wir den Riffle Shuffle und wahrscheinlichkeitstheoretische

Modellierungen für die vom Riffle Shuffle auf Sn induzierte Mischmethode vor. Mit

Hilfe dieser Modelle wird es möglich sein, den Cut-Off-Effekt für den Riffle Shuffle

nachzuweisen. Die Resultate in diesem Kapitel orientieren sich, sofern nicht anders

angegeben, an [6].

2.1 Modelle für den Riffle Shuffle

Der Riffle Shuffle ist eine der meist verwendeten Methoden, einen Kartenstapel

zu mischen. Dabei wird ein ungemischter Stapel von n Karten ungefähr halbiert,

die beiden Hälften werden dann sukzessive ineinandergeblättert1. Ein mathemati-

sches Modell für den Riffle Shuffle wurde 1955 von Gilbert und Shannon [12] und

unabhängig 1981 von Reeds [17] vorgestellt: Ein Kartenstapel von n Karten wird

in zwei Päckchen A1 und A2 geteilt. Dabei sei die Wahrscheinlichkeit, dass A1 die

ersten k Karten enthält, durch B(n, 1/2)({k}) =
(

n
k

)
/2n, k = 0, . . . , n, gegeben.

Die beiden Päckchen werden dann so ineinandergeblättert, dass die Wahrschein-

lichkeit, dass eine Karte vom ersten bzw. zweiten Päckchen fällt, proportional zur

Anzahl der verbliebenen Karten in den Päckchen ist. Das heißt, falls im ersten und

1

”ineinanderblättern“ bedeutet, die beiden Hälften so ineinanderzumischen, dass die Reihen-
folge der Karten in den einzelnen Hälften erhalten bleibt.
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zweiten Päckchen j1 bzw. j2 Karten verbleiben, so ist die Wahrscheinlichkeit, dass

die nächste Karte von Päckchen i fällt ji/(j1 +j2), i = 1, 2. Nach Gilbert, Shannon

und Reeds wird der Riffle Shuffle auch GSR-Shuffle genannt.

Der Riffle Shuffle lässt sich für a ∈ N≥2
def
= {n ∈ N | n ≥ 2} analog zu einem

a-Riffle Shuffle erweitern, indem der Kartenstapel in a Päckchen A1, . . . , Aa geteilt

wird. Die Anzahl der Karten in den Päckchen sei dabei multinomialverteilt. Dies

bedeutet, dass die Wahrscheinlichkeit, dass Päckchen A1 die ersten k1 Karten,

Päckchen A2 die nächsten k2 Karten usw. enthält, für

(k1, . . . , ka) ∈
∑a

n

def
=
{

(j1, . . . , ja) ∈ {0, . . . , n}a
∣∣∣ a∑

k=1

jk = n
}

durch

M(n, 1/a)({(k1, . . . , ka)}) =

(
n

k1, . . . , ka

)
1

an
.

gegeben sei. Die a Päckchen werden dann wie folgt ineinandergeblättert: Sind in

den einzelnen Päckchen j1, . . . , ja Karten verblieben, so fällt die nächste Karte

von Päckchen i mit der Wahrscheinlichkeit ji/(j1 + . . . + ja), i = 1, . . . , a. Wir

bezeichnen einen a-Riffle Shuffle von n Karten auch als GSR-(a, n)-Shuffle. Im

Folgenden stellen wir zwei Modelle vor, die, wie wir in Satz 2.1.7 sehen werden, die

gleiche Mischmethode auf Sn induzieren wie der GSR-(a, n)-Shuffle. Die verbalen

Beschreibungen der Modelle sind bei verschiedenen Autoren zu finden, etwa in [1],

[2], [6], [9], [14] und [16]. Sei im Folgenden a ∈ N≥2.

1. Maximum-Entropie-Modell: In diesem Modell gehen wir davon aus, dass

alle möglichen Arten, einen Stapel in a Päckchen aufeinanderfolgender Karten zu

teilen und diese dann ineinanderzublättern, gleich wahrscheinlich sind. Leere Päck-

chen sind zugelassen. Jedes nichtleere Päckchen muss aus den Karten k, . . . , k+l für

geeignetes k ∈ N≤n und l ∈ N0,n−1
def
= {0, . . . , n− 1} bestehen. Dieses Modell gibt

also jeder beliebigen Kombination aus Päckcheneinteilung und dem anschließen-

den Ineinanderblättern dieselbe Wahrscheinlichkeit und maximiert so die Entropie

unter allen möglichen Wahrscheinlichkeitsverteilungen auf der Menge aller solchen

Kombinationen.
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Dieser Sachverhalt lässt sich folgendermaßen modellieren: Wir wählen zunächst

ein Tupel (x1, . . . , xn) ∈ {0, . . . , a− 1}n = Nn
0,a−1 nach der Laplace-Verteilung auf

Nn
0,a−1. Dann zählen wir alle Nullen, Einsen, Zweien usw. in (x1, . . . , xn). Falls

wir j1 Nullen, j2 Einsen usw. erhalten haben, bilden wir a Päckchen A1, . . . , Aa

mit den Karten 1 bis j1 bzw. j1 + 1 bis j1 + j2 usw. Schließlich verteilen wir die

Karten aus Päckchen Ai unter Beibehaltung ihrer Reihenfolge auf die Positionen

in (x1, . . . , xn) mit xk = i− 1.

Wir verwenden hier und im folgenden Modell n-Tupel x ∈ {0, . . . , a− 1}n und

nicht etwa x ∈ {1, . . . , a}n, da dies für die Darstellung unserer folgenden Ergebnisse

in Lemma 2.1.8, Lemma 2.1.9, Lemma 2.1.10 und Satz 2.1.11 hilfreich ist.

Sei UNn
0,a−1

die Laplace-Verteilung auf Nn
0,a−1 und x = (x1, . . . , xn) ∈ Nn

0,a−1.

Für k = 1, . . . , a definieren wir jx,k
def
= |{l | xl = k − 1}| und

Ax,k
def
=

{( k−1∑
i=1

jx,i

)
+ 1, . . . ,

k∑
i=1

jx,i

}
.

Ferner definieren wir zu x eine Permutation πx ∈ Sn induktiv durch πx(1) =

minAx,x1+1 und

πx(i) = min
{
Ax,xi+1\{πx(1), . . . , πx(i− 1)}

}
(2.1.1)

für i = 2, . . . , n. Sei XM
a,n : (Nn

0,a−1,P(Nn
0,a−1)) −→ (Sn,P(Sn)) die für x ∈ Nn

0,a−1

durch XM
a,n(x)

def
= πx definierte Funktion. Die Definition der Permutation πx findet

sich für den Fall a = 2 in äquivalenter Form in Beispiel 4.17 in [1].

Wir können nun die Maximum-Entropie-Mischmethode QM
a,n einführen, indem

wir für B ∈ P(Sn) setzen

QM
a,n(B)

def
= UNn

0,a−1
(XM

a,n ∈ B).

Dann gilt für alle π ∈ Sn

QM
a,n({π}) =

|{x ∈ {0, . . . , a− 1}n | πx = π}|
an

. (2.1.2)

2.1.1 Beispiel. Ein Mischvorgang im Maximum-Entropie-Modell mit a = 2 und

n = 10 zu x = (0, 1, 1, 0, 1, 0, 1, 0, 0, 1) ∈ N10
0,1 = {0, 1}10 (siehe Abbildung 2.1).
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Abbildung 2.1: Mischvorgang im Maximum-Entropie-Modell.

a.: Wir beginnen mit einem geordneten Kartenstapel und identifizieren
”
Ass“

mit dem Wert 1.

b.: Der Stapel wird in zwei Päckchen geteilt, das erste Päckchen A1 besteht

aus den Karten 1 bis jx,1 = 5, das zweite Päckchen A2 aus den Karten jx,1 +1 = 6

bis jx,1 + jx,2 = 10.

c.,d.: Die beiden Päckchen werden ineinandergeblättert: Alle Karten aus Päck-

chen A1 werden auf die Positionen in x mit xi = 0 verteilt, i = 1, . . . , 10, und alle

Karten aus Päckchen A2 auf die Positionen in x mit xi = 1, i = 1 . . . , 10. Der

Stapel wurde also nach der Permutation πx = [1, 6, 7, 2, 8, 3, 9, 4, 5, 10] gemischt.

2. Inverses Modell: Das folgende Modell beschreibt einen inversen Riffle

Shuffle. Wir wählen wieder ein Tupel (x1, . . . , xn) ∈ Nn
0,a−1 nach der Laplace-

Verteilung auf Nn
0,a−1. Dann ordnen wir der Karte i den Wert xi zu und legen alle

Karten mit dem Wert 0 unter Beibehaltung ihrer Reihenfolge an den Anfang des

Stapels, dahinter platzieren wir alle Karten mit dem Wert 1 usw., bis hin zu allen

Karten mit dem Wert a− 1. Päckchen Al besteht beim inversen Riffle Shuffle aus

allen Karten, denen der Wert l − 1 zugeordnet wird, l = 1, . . . , n. Auch in diesem
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Modell können leere Päckchen entstehen, sofern nicht alle Werte 0, . . . , a− 1 in x

vertreten sind.

Sei x = (x1, . . . , xn) ∈ Nn
0,a−1. Wir definieren eine Permutation πx− ∈ Sn

induktiv durch πx−(1) = min
{
k | xk = min{x1, . . . , xn}

}
und

πx−(i) = min
{
{k | xk = l}\{πx−(1), . . . , πx−(i− 1)}

}
(2.1.3)

für jx,1 + . . .+ jx,l < i ≤ jx,1 + . . .+ jx,l+1, l = 0, . . . , a−1. Falls jx,1 positiv ist, das

heißt ein k ∈ {1, . . . , n} existiert mit xk = 0, so gilt πx−(1) = min
{
k | xk = 0

}
.

Sei XI
a,n : (Nn

0,a−1,P(Nn
0,a−1)) −→ (Sn,P(Sn)) die für x ∈ Nn

0,a−1 durch

XI
a,n(x)

def
= πx−

definierte Funktion. Wir definieren die Mischmethode QI
a,n für B ∈ P(Sn) durch

QI
a,n(B)

def
= UNn

0,a−1
(XI

a,n = π−1, π ∈ B). (2.1.4)

Dann gilt für alle π ∈ Sn

QI
a,n({π}) =

|{x ∈ {0, . . . , a− 1}n | πx− = π−1}|
an

. (2.1.5)

2.1.2 Beispiel. Ein Mischvorgang im inversen Modell: Wie in Beispiel 2.1.1 seien

a = 2, n = 10 und x = (0, 1, 1, 0, 1, 0, 1, 0, 0, 1) ∈ N10
0,1 = {0, 1}10 (siehe Abbildung

2.2).

a.: Wir beginnen mit einem geordneten Kartenstapel und identifizieren
”
Ass“

mit dem Wert 1.

b.: Karte i wird der Wert xi zugeordnet, i = 1, . . . , 10.

c.,d.: Das erste Päckchen A1 besteht aus den Karten 1, 4, 6, 8, 9, das zweite

Päckchen aus den Karten 2, 3, 5, 7, 10. Alle Karten aus Päckchen A1 werden an

den Anfang des Stapels gelegt, dahinter alle Karten aus Päckchen A2. Der Stapel

wurde gemäß der Permutation πx− = [1, 4, 6, 8, 9, 2, 3, 5, 7, 10] gemischt.

Um nun den Mischvorgang gemäß (2.1.4) zu erhalten, werden die Schritte a. bis

d. in umgekehrter Reihenfolge durchgeführt, das heißt der geordnete Kartenstapel

wird gemäß π−1
x− gemischt. Der inverse Riffle Shuffle gemäß πx− invertiert also



18 Kapitel 2 Der Riffle Shuffle

a.

�
�

�
�

A
♠

�
�

�
�

2
♠

�
�

�
�

3
♠

�
�

�
�

4
♠

�
�

�
�

5
♠

�
�

�
�

6
♠

�
�

�
�

7
♠

�
�

�
�

8
♠

�
�

�
�

9
♠

�
�

�
�

10
♠

0 1 1 0 1 0 1 0 0 1

b.

�
�

�
�

A
♠

�
�

�
�

2
♠

�
�

�
�

3
♠

�
�

�
�

4
♠

�
�

�
�

5
♠

�
�

�
�

6
♠

�
�

�
�

7
♠

�
�

�
�

8
♠

�
�

�
�

9
♠

�
�

�
�

10
♠

c.

�
�

�
�

A
♠

�
�

�
�

4
♠

�
�

�
�

6
♠

�
�

�
�

8
♠

�
�

�
�

9
♠

�
�

�
�

2
♠

�
�

�
�

3
♠

�
�

�
�

5
♠

�
�

�
�

7
♠

�
�

�
�

10
♠

d.

�
�

�
�

A
♠

�
�

�
�

4
♠

�
�

�
�

6
♠

�
�

�
�

8
♠

�
�

�
�

9
♠

�
�

�
�

2
♠

�
�

�
�

3
♠

�
�

�
�

5
♠

�
�

�
�

7
♠

�
�

�
�

10
♠

Abbildung 2.2: Mischvorgang im inversen Modell.

gerade den Mischvorgang im Maximum-Entropie-Modell gemäß πx aus Beispiel

2.1.1. Er ordnet also den gemischten Kartenstapel zurück in die Ausgangslage.

Das Mischen kann somit als
”
inverses Sortieren“ bezeichnet werden. Wir werden

diese Beobachtung in Lemma 2.1.6 belegen.

Bayer und Diaconis [6], [9] nennen mit dem geometrischen Modell eine weitere

Möglichkeit zur Modellierung des GSR-(a, n)-Shuffle. Es lässt sich auch hier zei-

gen, dass das geometrische Modell äquivalent zu den beiden vorangegangenen ist,

in dem Sinne, dass es dieselbe Mischmethode auf Sn induziert. Wir werden aller-

dings auf den technischen Beweis verzichten, da uns das geometrische Modell im

weiteren Vorgehen keine Vorzüge gegenüber dem Maximum-Entropie-Modell bzw.

dem inversen Modell bietet. Wir geben jedoch im Anschluss an die Modellierung

eine kurze Beweisskizze an.

3. Geometrisches Modell: Wir wählen n Punkte x1, . . . , xn im Einheitsinter-

vall voneinander unabhängig und gleichverteilt. Diese ordnen wir der Größe nach,
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so dass x1 ≤ . . . ≤ xn. Die Abbildung

fa : (x1, . . . , xn) 7−→ (f (1)
a (x1), . . . , f

(n)
a (xn)) = (ax1 (mod 1), . . . , axn (mod 1))

bildet das Intervall [0, 1]n auf sich selbst ab. fa sortiert die Punkte x1, . . . , xn um

und induziert so ein Wahrscheinlichkeitsmaß auf Sn (siehe Abbildung 2.3).

6

-

0 1
a

2
a

3
a

a−1
a 1

1 ◦ ◦ ◦ ◦

. . .

. . .

Abbildung 2.3: Die Funktion f
(1)
a : [0, 1] −→ [0, 1) mit f

(1)
a (x) = ax (mod 1).

Seien X1, . . . , Xn stochastisch unabhängig und identisch R(0, 1)-verteilte Zu-

fallsgrößen auf einem Wahrscheinlichkeitsraum (ΩG,AG, QG) und

T : [0, 1]n −→ [0, 1]n die Ordnungsstatistik mit

T (x1, . . . , xn) = (x(1), . . . , x(n)) für (x1, . . . , xn) ∈ [0, 1]n .

Die Funktion fa : [0, 1]n −→ [0, 1)n mit fa = (f
(1)
a , . . . , f

(n)
a ) sei definiert durch

f (i)
a (xi)

def
= axi (mod 1) = axi − baxic (2.1.6)

für xi ∈ [0, 1] und i = 1, . . . , n, wobei bxc die untere Gauss-Klammer von x ∈
R sei. Ferner sei R = (R1, . . . ,Rn) : [0, 1]n −→ Nn

≤n die Rangstatistik mit

Rj : [0, 1]n −→ N≤n,

Rj(x1, . . . , xn) = |{i | xi ≤ xj}|

für (x1, . . . , xn) ∈ [0, 1]n und j = 1, . . . , n.
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2.1.3 Bemerkung. Für die in (2.1.6) definierte Funktion gilt

(a) fa ist Bn
[0,1]-B

n
[0,1)-messbar.

(b) f
(1)
a (X1), . . . , f

(n)
a (Xn) sind stochastisch unabhängig und identisch R(0, 1)-

verteilt.

Beweis. zu (a): Für i ≤ n und s, t ∈ [0, 1) mit s < t gilt

f (i)
a

−1(
(s, t]

)
=

a−1⋃
k=0

(
s+ k

a
,
t+ k

a

]
∈ B[0,1]. (2.1.7)

zu (b): Die stochastische Unabhängigkeit folgt aus (a) und der stochastischen

Unabhängigkeit von X1, . . . , Xn. Sei i ≤ n und t ∈ (0, 1]. Dann gilt

QG(f (i)
a (Xi) ≤ t) = QXi

G

(
f (i)

a ∈ [0, t]
)

= QXi
G

( a−1⋃
k=0

[
k

a
,
t+ k

a

])
(2.1.8)

=
a−1∑
k=0

t

a
= t.

Für t ≤ 0 erhalten wir unmittelbar QG(f
(i)
a (Xi) ≤ t) = 0 und für t > 1 analog zu

(2.1.8)

QG(f (i)
a (Xi) ≤ t) = QXi

G

(
f (i)

a ∈ [0, t]
)

= QXi
G

(
f (i)

a ∈ [0, 1]
)

= 1.

Somit gilt Q
f
(i)
a (Xi)

G = R(0, 1) für i = 1, . . . , n.

Wir definieren die Abbildung XG
a

def
= R ◦ fa ◦ T ◦ X, X = (X1, . . . , Xn), und

das Maß QG
a,n : P(Sn) −→ [0, 1] für B ∈ P(Sn) durch

QG
a,n(B)

def
= QG

(
XG

a ∈ B
)
. (2.1.9)

Damit durch diese Definition ein Wahrscheinlichkeitsmaß auf (Sn,P(Sn)) definiert

wird, muss XG
a f.s. Sn-wertig sein. Wie die folgende Bemerkung zeigt, ist dies

tatsächlich der Fall.
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2.1.4 Bemerkung. QG
a,n ist ein Wahrscheinlichkeitsmaß auf (Sn,P(Sn)).

Beweis. Es ist zu zeigen, dass XG
a QG - f. s. Sn-wertig ist, also

QG
a,n(Sn) = QG(R ◦ fa ◦ T ◦X ∈ Nn

≤n,6=) = 1. (2.1.10)

Dies ist genau dann der Fall, wenn QG(fa ◦ T ◦ X ∈ [0, 1)n
6=) = 1 gilt. Sei

(x1, . . . , xn) ∈ [0, 1]n, dann gilt

fa(x1, . . . , xn) ∈ [0, 1)n
6= ⇐⇒ fa(x(1), . . . , x(n)) ∈ [0, 1)n

6=

und somit

QG(fa ◦ T ◦X ∈ [0, 1)n
6=) = QG(fa ◦X ∈ [0, 1)n

6=).

Da f
(1)
a (X1), . . . , f

(n)
a (Xn) nach Bemerkung 2.1.3 stochastisch unabhängig und ste-

tig verteilt sind, ergibt sich QG(fa ◦X ∈ [0, 1)n
6=) = 1 und daraus (2.1.10).

2.1.5 Lemma. Sei a ∈ N und x, y ∈
[

i−1
a
, i

a

)
für ein i ∈ N, dann gilt

x < y ⇐⇒ ax (mod 1) < ay (mod 1).

Beweis. Seien x0, y0 ∈ [i− 1, i) für ein i ∈ N. Dann gilt wegen bx0c = by0c

x0 < y0 ⇐⇒ x0 − y0 < bx0c − by0c

⇐⇒ x0 − bx0c < y0 − by0c

⇐⇒ x0 (mod 1) < y0 (mod 1).

Die Behauptung folgt, indem wir x0 = ax und y0 = ay setzen.

Wir führen nun die Funktion Ja = (J1, . . . , Ja) : [0, 1]n −→
∑a

n ein, indem wir

für (x1, . . . , xn) ∈ [0, 1]n und i = 1, . . . , n definieren

Ji((x1, . . . , xn))
def
= |{j | xj ∈

[
i−1
a
, i

a

)
}|.

Mit Lemma 2.1.5 erhalten wir die folgende Interpretation eines durch eine Reali-

sation x = (x1, . . . , xn) der Zufallsvariablen X = (X1, . . . , Xn) gegebenen Misch-

vorgangs (R ◦ fa ◦ T ) ((x1, . . . , xn)) (siehe auch Abbildung 2.3):
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Zunächst können wir die Punkte x1, . . . , xn und f
(1)
a (x(1)), . . . , f

(n)
a (x(n)) jeweils

als paarweise verschieden voraussetzen, da zum einen X1, . . . , Xn stetig verteilt

sind und zum anderen fa◦T ◦X fast sicher [0, 1)n
6=-wertig ist. Zusätzlich nehmen wir

noch x1, . . . , xn < 1 an. Nach Anwendung der Ordnungsstatistik T auf (x1 . . . , xn)

sortiert die Funktion fa das Tupel (x(1), . . . , x(n)) um. Nach Lemma 2.1.5 bleibt

dabei die Rangfolge aller Punkte, die im selben Intervall
[

i−1
a
, i

a

)
für ein i ≤ a

liegen, unverändert. Gegeben i, j ≤ a mit i 6= j und Punkte

x(i1), . . . , x(ir1 ) ∈
[

i−1
a
, i

a

)
und x(j1), . . . , x(jr2 ) ∈

[
j−1
a
, j

a

)
mit der Eigenschaft

x(i1) < . . . < x(ir1 ) und x(j1) < . . . < x(jr2 ),

kann durch Anwendung der Funktion fa ihre Rangfolge geändert werden. Da jedoch

die Rangfolge der Punkte innerhalb des Intervalls
[

i−1
a
, i

a

)
bzw.

[
j−1
a
, j

a

)
jeweils

durch fa nach Lemma 2.1.5 nicht geändert wird,
”
verzahnen“ sich die beiden

Ketten

f (i1)
a (x(i1)), . . . , f

(ir1 )
a (x(ir1 )) und f (j1)

a (x(j1)), . . . , f
(jr2 )
a (x(jr2 )).

Daraus folgt, dass wir die Anzahl der Karten in den Päckchen A1, . . . , Aa bei

dem durch (R◦ fa ◦ T ) ((x1, . . . , xn)) gegebenen Mischvorgang mit der Anzahl der

Punkte x1, . . . , xn in den einzelnen Intervallen
[
0, 1

a

)
,
[

1
a
, 2

a

)
, . . . ,

[
a−1

a
, 1
)

identifi-

zieren können. Die Anzahl der Karten in den Päckchen A1, . . . , Aa ist also gerade

durch J1(x), . . . , Ja(x) gegeben. Genauer ist Päckchen Ak dann für k = 1, . . . , a

gegeben durch

Ak =

{ k−1∑
i=1

Ji(x) + 1, . . . ,
k∑

i=1

Ji(x)

}
.

Es lässt sich zeigen, dass das geometrische Modell die gleiche Mischmethode auf

Sn erzeugt, wie das Maximum-Entropie-Modell. Hierzu betrachte man für a ∈ N≥2

und x ∈ [0, 1] die a-adische Entwicklung von x. Eine solche ist gegeben durch eine

Folge (zk)k≥1 ∈ {0, . . . , a− 1}N mit

x =
∑
k≥1

zka
−k.
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Diese Darstellung ist im Allgemeinen nicht eindeutig bestimmt, es existieren je-

doch für jedes x ∈ [0, 1] höchstens zwei verschiedene a-adische Entwicklungen. Sei

Y = (Yj,k)j≤n,k≥1 eine Zufallsvariable mit stochastisch unabhängigen und auf

{0, . . . , a− 1} Laplace-verteilten Komponenten. Dann gilt für j = 1, . . . , n

P
∑

k≥1 Yj,ka−k

= R(0, 1).

Somit kann das geometrische Modell wie folgt beschrieben werden: Wir wählen

zunächst eine Realisation

(y1, . . . , yn) =
(
(y1,k)k≥1, . . . , (yn,k)k≥1

)
der Zufallsvariablen Y . Im geometrischen Modell entspricht dies der Wahl von n

Punkten

x1 =
∑
k≥1

y1,ka
−k, . . . , xn =

∑
k≥1

yn,ka
−k.

Die Ordnung x(1), . . . , x(n) der Punkte x1, . . . , xn der Größe nach, entspricht der

lexikographischen Ordnung y(1), . . . , y(n) der Folgen y1, . . . , yn. Die Anwendung von

fa auf (x(1), . . . , x(n)) findet ihr Analogon in der Anwendung der Shift-Operation

σ auf y(1), . . . , y(n), die für (zk)k≥1 ∈ {0, . . . , a− 1}N definiert ist durch

σ ((zk)k≥1) = (zk)k≥2.

Ermitteln wir nun die Ränge der Punkte f
(1)
a (x(1)), . . . , f

(n)
a (x(n)), so zeigt sich, dass

die Ränge im Wesentlichen von den ersten Komponenten von σ(y(1)), . . . , σ(y(n))

abhängen. Da diese aber vereinfacht gesprochen wiederum modulo Ordnung und

Anwendung der Shift-Operation aus einer Realisation von n stochastisch

unabhängigen und über {0, . . . , a− 1} Laplace-verteilten Zufallsgrößen stammen,

zeigt sich dann die Äquivalenz von geometrischem Modell und Maximum-Entropie-

Modell.

Wir wenden uns nun wieder dem Maximum-Entropie-Modell und dem inversen

Modell zu. Das folgende Lemma bestätigt die Beobachtung aus Beispiel 2.1.2, dass

der zu x ∈ Nn
0,a−1 gehörige Mischvorgang gemäß πx aus dem Maximum-Entropie-

Modell das Inverse des Mischvorgangs πx− aus dem inversen Modell ist.
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2.1.6 Lemma. Sei x ∈ Nn
0,a−1. Dann gilt π−1

x = πx−.

Beweis. Sei x = (x1, . . . , xn) ∈ Nn
0,a−1 beliebig. Wir nehmen o.B.d.A. jx,i 6= 0

für i = 1, . . . , a an. Sonst setzen wir b
def
= |{x1, . . . , xn} ∩ N0,a−1| und definieren

x′ = (x′1, . . . , x
′
n) ∈ Nn

0,b−1 durch

x′i
def
= xi −

∣∣{k ∈ {0, . . . , n} | k < xi, k 6= x1, . . . , xn

}∣∣ , i = 1, . . . , n.

Dann gilt jx′,i 6= 0 für i = 1, . . . , b. Ferner erhalten wir Ax′,k = Ax,lk 6= ∅ für

k = 1, . . . , b, wobei lk induktiv definiert ist durch l1
def
= min{i | Ax,i 6= ∅} und

lk
def
= min{i > lk−1 | Ax,i 6= ∅}

für k = 2, . . . , b. Dann gilt πx = πx′ wegen der Definition (2.1.1) von πx.

Sei also jx,i 6= 0 für i = 1, . . . , a. Es existieren k0, . . . , ka ∈ N mit

0 = k0 < k1 < . . . < ka−1 < ka = n und

Ax,l+1 = {kl + 1, . . . , kl+1}

für l = 0, . . . , a− 1. Wir definieren i1, . . . , in ∈ N≤n durch

ikl+1
def
= min{i |xi = l}, l = 0, . . . , a− 1 und

ij
def
= min

{
{i | xi = l}\{ikl+1, . . . , ij−1}

}
für kl + 1 < j ≤ kl+1 und l = 0, . . . , a− 1.

Wir zeigen nun mit einer Induktion πx(ij) = j für j = 1, . . . , n. Aus

i1 = min{i | xi = 0} folgt xi1 = 0 und somit

πx(i1) = min
{
Ax,xi1

+1\{πx(1), . . . , πx(i1 − 1)}
}

= min
{
Ax,1\{πx(1), . . . , πx(i1 − 1)}

}
= minAx,1 = 1.

(2.1.11)

Sei m ≤ n beliebig und πx(ij) = j für j < m. Wir zeigen πx(im) = m. Sei

l ∈ {0, . . . , a− 1}, so dass kl + 1 ≤ m ≤ kl+1. Falls m = kl + 1, so folgt wegen

im = min{i | xi = l}
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analog zu (2.1.11) πx(im) = m. Gilt andererseits kl + 1 < m ≤ kl+1, so folgt aus

im = min
{
{i | xi = l}\{ikl+1, . . . , im−1}

}
die Beziehung

im > ikl+1, . . . , im−1.

Ferner gilt πx(j) /∈ Ax,l+1 für alle j < im mit j 6= ikl+1, . . . , im−1. Dann folgt

zusammen mit xim = l und der Induktionsvoraussetzung

πx(im) = min
{
Ax,xim+1\{πx(1), . . . , πx(im − 1)}

}
= min

{
Ax,l+1\{πx(1), . . . , πx(im − 1)}

}
= min

{
Ax,l+1\{πx(ikl+1), . . . , πx(im−1)}

}
= min

{
Ax,l+1\{kl + 1, . . . ,m− 1}

}
= min

{
{kl + 1, . . . , kl+1}\{kl + 1, . . . ,m− 1}

}
= m.

Also gilt πx(ij) = j für j = 1, . . . , n. Aus der Definition der ij folgt unmittelbar

ij = min
{
{i | xi = l}\{i1, . . . , ij−1}

}
für kl + 1 ≤ j ≤ kl+1 und l = 0, . . . , a − 1. Wegen π−1

x (j) = ij für j = 1, . . . , n

erhalten wir zusammen mit (2.1.3)

π−1
x (1) = i1 = min{k | xk = 0} = πx−(1).

Daraus folgt wiederum mit (2.1.3) induktiv für kl+1 ≤ j ≤ kl+1 und l = 0, . . . , a−1

π−1
x (j) = ij

= min
{
{k | xk = l}\{i1, . . . , ij−1}

}
= min

{
{k | xk = l}\{π−1

x (1), . . . , π−1
x (j − 1)}

}
= min

{
{k | xk = l}\{πx−(1), . . . , πx−(j − 1)}

}
= πx−(j)

und somit π−1
x = πx− .

Wir kommen nun zu dem bereits angekündigten Resultat, dass das Maximum-

Entropie-Modell und das inverse Modell die gleiche Mischmethode wie der GSR-

(a, n)-Shuffle erzeugen (siehe Lemma 1, Abschnitt 3 in [6] und Abschnitt 3 in [16]).
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2.1.7 Satz. Das Maximum-Entropie-Modell und das inverse Modell erzeugen die

gleiche Mischmethode, das heißt für alle n ∈ N gilt

QM
a,n = QI

a,n.

Ferner beschreiben beide Modelle den GSR-(a, n)-Shuffle.

Beweis. Sei n ∈ N. QM
a,n = QI

a,n folgt unter Benutzung von (2.1.2) und (2.1.5) di-

rekt aus π−1
x = πx− für alle x ∈ Nn

0,a−1. Es reicht also zu zeigen, dass das Maximum-

Entropie-Modell den GSR-(a, n)-Shuffle beschreibt.

Wir teilen den GSR-(a, n)-Shuffle in zwei Schritte auf: Im ersten Schritt wer-

den die Päckchengrößen nach einer M(n, 1/a)-Verteilung gewählt, das heißt die

Wahrscheinlichkeit, dass die Päckchen A1, . . . , Aa j1, . . . , ja Karten enthalten, ist

für (j1, . . . , ja) ∈
∑a

n gegeben durch

M(n, 1/a)({(j1, . . . , ja)}) =

(
n

j1, . . . , ja

)
1

an
.

Im zweiten Schritt blättern wir die Päckchen in der zu Beginn dieses Kapitels auf

Seite 14 beschriebenen Weise ineinander.

Gegeben die Päckchengrößen (j1, . . . , ja) ∈
∑a

n sind dann alle möglichen Misch-

vorgänge gleichwahrscheinlich: Die Wahrscheinlichkeit, dass die Karten in einer

beliebigen Reihenfolge sukzessive von den Päckchen A1, . . . , Aa fallen, ist wegen

j1 + . . .+ ja = n gegeben durch

j1(j1 − 1) · . . . · 1 · . . . · ja(ja − 1) · . . . · 1
(j1 + . . .+ ja)(j1 + . . .+ ja − 1) · . . . · 1

=
j1! · . . . · ja!

n!
=

(
n

j1, . . . , ja

)−1

.

Die Wahrscheinlichkeit für einen beliebigen GSR-(a, n)-Shuffle mit Päckchengrößen

j1, . . . , ja im ersten Schritt ist dann gegeben durch(
n

j1, . . . , ja

)
1

an

(
n

j1, . . . , ja

)−1

=
1

an
.

Das heißt alle möglichen GSR-(a, n)-Shuffle sind gleichwahrscheinlich mit Wahr-

scheinlichkeit 1/an. Im Maximum-Entropie-Modell entsprechen der erste und zwei-

te Schritt gerade der Wahl eines x ∈ Nn
0,a−1, denn jx,1, . . . , jx,a ∈

∑a
n legen die
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Päckchengrößen fest und x selbst die Reihenfolge, in der die Karten ineinander-

geblättert werden. Die Wahrscheinlichkeit, dass ein GSR-(a, n)-Shuffle in der Per-

mutation π ∈ Sn resultiert, ist dann gegeben durch die Anzahl aller x ∈ Nn
0,a−1 mit

πx = π, dividiert durch die Anzahl an aller möglichen Mischvorgänge. Die gesuchte

Wahrscheinlichkeit entspricht also gerade

|{x ∈ Nn
0,a−1 | πx = π}|
an

= QM
a,n({π}),

was wir beweisen mussten.

Die folgenden Resultate dieses Abschnitts orientieren sich an den Ausführungen

in Abschnitt 7.2 in [16]. Sie sind allerdings in der hier formulierten Weise in der

verwendeten Literatur nicht zu finden, dies gilt insbesondere für den Beweis von

Satz 2.1.11.

Wir bezeichnen nun für ein x ∈ Nn
0,a−1 einen Mischvorgang, der durch die

Permutation πx beschrieben wird, als GSR-(a, n)-Shuffle und einen Mischvorgang,

der durch πx− beschrieben wird, als inversen GSR-(a, n)-Shuffle. Ferner setzen wir

Qa,n
def
= QM

a,n = QI
a,n.

Seien a, b ∈ N≥2. Für das weitere Vorgehen definieren wir eine totale Ord-

nung auf N0,a−1 × N0,b−1, genannt
”
lexikographische Ordnung nach der zweiten

Komponente“: Für (xi, yi) ∈ N0,a−1 × N0,b−1, i = 1, 2, setzen wir

(x1, y1) ≤ (x2, y2) :⇐⇒ (x1 ≤ x2, y1 = y2) oder y1 < y2. (2.1.12)

2.1.8 Lemma. Seien a, b ∈ N≥2 und (xi, yi) ∈ N0,a−1× N0,b−1, i = 1, 2. Dann gilt

(x1, y1) ≤ (x2, y2) ⇐⇒ ay1 + x1 ≤ ay2 + x2. (2.1.13)

Beweis.
”
⇒“ Falls gilt x1 ≤ x2 und y1 = y2, so folgt direkt

ay1 + x1 ≤ ay2 + x2.

Gilt andererseits y1 < y2, so folgt x1 − x2 ≤ a wegen x1, x2 ∈ {0, . . . , a − 1} und

somit

y1 < y2 ⇒ ay1 < ay2

⇒ a ≤ ay2 − ay1
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⇒ x1 − x2 ≤ ay2 − ay1

⇒ ay1 + x1 ≤ ay2 + x2.

”
⇐“ Im Fall ay1 + x1 = ay2 + x2 folgt wegen der Eindeutigkeit der Division

mit Rest x1 = x2 und y1 = y2. Es gilt also (x1, y1) = (x2, y2). Falls andererseits

ay1 + x1 < ay2 + x2 ist, so gilt entweder x1 < x2 und y1 = y2 oder y1 < y2, also in

beiden Fällen per Definition (x1, y1) ≤ (x2, y2).

Für x ∈ Nn
0,a−1, y ∈ Nn

0,b−1 definieren wir

x ◦ y def
= ayπx + x = (ayπx(1) + x1, . . . , ayπx(n) + xn). (2.1.14)

Dann gilt entsprechend

y ◦ x = bxπy + y = (bxπy(1) + y1, . . . , bxπy(n) + yn).

Den Nutzen dieser Definition, die in ähnlicher Weise in Abschnitt 7.2 in [16] zu

finden ist, zeigt das folgende Lemma.

2.1.9 Lemma. Seien a, b ∈ N≥2, x ∈ Nn
0,a−1 und y ∈ Nn

0,b−1. Dann gilt

πx− ◦ πy− = π(x,yπx )− = π(x◦y)− , (2.1.15)

wobei π(x,yπx )− entsprechend (2.1.3) gemäß der in (2.1.12) definierten Ordnung

bestimmt ist.

Beweis. πx− ◦ πy− beschreibt einen inversen GSR-(a, n)-Shuffle gemäß πx− gefolgt

von einem inversen GSR-(b, n)-Shuffle gemäß πy− : Das heißt zunächst wird Karte

i der Wert xi zugeordnet, i = 1, . . . , n. Dann werden alle Karten in die Reihenfolge(
πx−(1), . . . , πx−(n)

)
sortiert, das heißt alle Karten mit dem Wert 0 werden unter

Beibehaltung ihrer Reihenfolge an den Anfang des Stapels gelegt, gefolgt von allen

Karten mit dem Wert 1, bis hin zu allen Karten mit dem Wert a−1. Anschließend

wird der Karte an Position πx−(i) der Wert yi zugeordnet, i = 1, . . . , n, und die

Karten in der bekannten Weise nach aufsteigenden Werten von 0 bis b − 1 in

(y1, . . . , yn) sortiert. Wir notieren dabei die Werte x1, . . . , xn und y1, . . . , yn auf den

einzelnen Karten (siehe (2.1.16)), indem wir zunächst auf die Karte an Position j
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den Wert xj schreiben und anschließend gemäß πx− mischen. Dann schreiben wir

auf die Karte an Position j den Wert yj rechts von dem Wert xπx−(j)
, der nach dem

Mischen gemäß πx− bereits auf dieser Karte steht. Anschließend mischen wir die

Karten gemäß πy− . Die Karte an Position j trägt also jeweils die folgenden Werte:

xj

πx−−→ xπx− (j)
yj−→ (xπx− (j), yj)

πy−−→ (xπx−◦πy− (j), yπy− (j)). (2.1.16)

Wegen xπx− (1) ≤ . . . ≤ xπx− (n) gilt

yπy− (j) ≤ yπy− (j+1) =⇒ xπx−◦πy− (j) ≤ xπx−◦πy− (j+1).

Daraus folgt, dass die Werte (xπx−◦πy− (1), yπy− (1)), . . . , (xπx−◦πy− (n), yπy− (n)) der

Karten nach dem Mischen gemäß πx− ◦πy− lexikographisch nach der zweiten Kom-

ponente sortiert sind. Es gilt also

(xπx−◦πy− (1), yπy− (1)) ≤ . . . ≤ (xπx−◦πy− (n), yπy− (n)).

Notieren wir nun vor dem Mischen gemäß πx− ◦ πy− den Wert (xj, y(πx− )−1(j)) auf

Karte j, so trägt die Karte, die sich nach dem Mischen gemäß πx− ◦πy− an Position

j befindet, den Wert

(xπx−◦πy− (j), y(πx− )−1◦πx−◦πy− (j)) = (xπx−◦πy− (j), yπy− (j)).

Wir können also in einem einzelnen Mischvorgang alle Karten nach aufsteigenden

Werten (x1, y(πx− )−1(1)), . . . , (xn, y(πx− )−1(n)) sortieren und erhalten dieselbe Permu-

tation wie beim sukzessiven Mischen nach πx− und πy− , das heißt es gilt

πx− ◦ πy− = π(x,y(π
x− )−1 ) = π(x,yπx ),

wobei die letzte Gleichheit aus (πx−)−1 = πx folgt. Da die Rangfolge der Tupel

(x1, yπx(1)), . . . , (xn, yπx(n)) und der Werte ayπx(1) +x1, . . . , ayπx(n) +xn jedoch nach

Lemma 2.1.8 identisch ist, gilt

π(x,yπx ) = π(x◦y)−

und somit insgesamt (2.1.15).
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Für den Beweis des nächsten Satzes benötigen wir noch ein weiteres technisches

Lemma, das zwei wichtige Aussagen über die in (2.1.14) definierten Verknüpfungen

x ◦ y und y ◦ x, x ∈ Nn
0,a−1, y ∈ Nn

0,b−1, beinhaltet.

2.1.10 Lemma. Seien a, b ∈ N≥2, x, x
′ ∈ Nn

0,a−1 und y, y′ ∈ Nn
0,b−1. Dann gelten

die folgenden Aussagen:

(i) x ◦ y = x′ ◦ y′ ⇐⇒ x = x′, y = y′ ⇐⇒ y ◦ x = y′ ◦ x′,

(ii) Nn
0,ab−1 = {y ◦ x | (x, y) ∈ Nn

0,a−1 × Nn
0,b−1}.

Beweis. zu (i): Wir führen den Beweis der zweiten Äquivalenz, da wir diese im Be-

weis von Satz 2.1.11 benutzen werden. Die erste Äquivalenz wird analog bewiesen.

Aus y ◦ x = y′ ◦ x′ folgt zunächst für i = 1, . . . , n

bxπy(i) + yi = bx′πy′ (i)
+ y′i.

Wegen xi ∈ {0, . . . , a − 1} und yi ∈ {0, . . . , b − 1} für i = 1, . . . , n und a, b ≥ 2

folgt dann aus der Eindeutigkeit der Division mit Rest

bxπy(i) = bx′πy′ (i)
und yi = y′i (2.1.17)

für i = 1, . . . , n. Damit ergibt sich y = y′ und daraus unmittelbar πy = πy′ . Nach

(2.1.17) erhalten wir dann bx = bx′. Insgesamt gilt also x = x′ und y = y′. Die

umgekehrte Richtung ist wegen πy = πy′ trivial.

zu (ii):
”
⊂“ Sei z = (z1, . . . , zn) ∈ Nn

0,ab−1 = {0, . . . , ab − 1}n beliebig. Wir

definieren y = (y1, . . . , yn) durch

yi
def
= zi (mod b), i = 1, . . . , n,

und x = (x1, . . . , xn) durch

xπy(i)
def
=
zi − yi

b
, i = 1, . . . , n.

Dann gilt x ∈ Nn
0,a−1, y ∈ Nn

0,b−1 und

y ◦ x = bxπy + y

= (bxπy(1) + y1, . . . , bxπy(n) + yn)
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=
(
b · z1 − y1

b
+ y1, . . . , b ·

zn − yn

b
+ yn

)
= (z1, . . . , zn) = z.

Daraus folgt Nn
0,ab−1 ⊂ {y ◦ x | (x, y) ∈ Nn

0,a−1 × Nn
0,b−1}.

”
⊃“ Für die umgekehrte Inklusion notieren wir

0 ≤ bxπy(i) ≤ b(a− 1) und 0 ≤ yi ≤ b− 1

für alle (x, y) ∈ Nn
0,a−1 × Nn

0,b−1 und i = 1, . . . , n. Dann folgt für alle (x, y) ∈
Nn

0,a−1 × Nn
0,b−1 und i = 1, . . . , n

0 ≤ bxπy(i) + yi ≤ b(a− 1) + b− 1 = ab− 1.

Es gilt also y ◦ x ∈ Nn
0,ab−1 für alle (x, y) ∈ Nn

0,a−1 × Nn
0,b−1.

Der folgende Satz zeigt, dass das sukzessive Mischen nach den Mischmethoden

Qa,n und Qb,n als einmaliges Mischen nach der Mischmethode Qab,n interpretiert

werden kann. Diese einfache Beziehung erlaubt eine erhebliche Vereinfachung des

Riffle Shuffles, denn sie ermöglicht es, dass eine beliebige Anzahl sukzessiver Misch-

vorgänge mit beliebigen Päckchenanzahlen als einmaliger Mischvorgang aufgefasst

werden kann. Wir präzisieren diese Aussage im anschließenden Korollar.

2.1.11 Satz. Seien a, b ∈ N≥2 und n ∈ N. Ein GSR-(a, n)-Shuffle gefolgt von

einem GSR-(b, n)-Shuffle ist äquivalent zu einem GSR-(ab, n)-Shuffle, das heißt

Qa,n ∗Qb,n = Qab,n.

Beweis. Seien a, b ∈ N≥2 und n ∈ N beliebig. Nach Bemerkung 1.1.2 und den

vorangehenden Erläuterungen ist zu zeigen Qa,n∗Qb,n = Qab,n. Sei π ∈ Sn beliebig.

Dann gilt wegen Lemma 2.1.9 und Lemma 2.1.10 unter Verwendung des inversen

Modells

Qab,n({π}) =
∣∣{z ∈ Nn

0,ab−1 | πz− = π−1}
∣∣/(ab)n

=
∣∣{(x, y) ∈ Nn

0,a−1 × Nn
0,b−1 | π(y◦x)− = π−1}

∣∣/(ab)n

=
∣∣{x ∈ Nn

0,a−1, y ∈ Nn
0,b−1 | πy− ◦ πx− = π−1}

∣∣/(ab)n
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=
∣∣ ⋃

σ∈Sn

{x ∈ Nn
0,a−1, y ∈ Nn

0,b−1 | πx− = σ−1, πy− = π−1σ}
∣∣/(ab)n

=
∑
σ∈Sn

∣∣{x ∈ Nn
0,a−1 | πx− = σ−1}

∣∣
an

·
∣∣{y ∈ Nn

0,b−1 | πy− = π−1σ}
∣∣

bn

=
∑
σ∈Sn

Qa,n({σ})Qb,n({(π−1σ)−1}) =
∑
σ∈Sn

Qa,n({σ})Qb,n({σ−1π})

= Qa,n ∗Qb,n({π}).

Hierbei gehen in der zweiten Zeile entscheidend (i) und (ii) aus Lemma 2.1.10 ein.

Es gilt also Qab,n = Qa,n ∗Qb,n.

Aus Satz 2.1.11 ergibt sich direkt das folgende Korollar.

2.1.12 Korollar. Seien m,n ∈ N, a1, . . . , am ∈ N≥2, π ∈ Sn und a
def
=
∏m

i=1 ai.

Dann gilt

Qa1,n ∗ . . . ∗Qam,n = Qaπ(1),n ∗ . . . ∗Qaπ(m),n = Qa,n.

2.2 Aufsteigende Sequenzen

In diesem Abschnitt geben wir die Wahrscheinlichkeit, dass ein GSR-(a, n)-Shuffle

in der Permutation π ∈ Sn resultiert, explizit an. Dafür ist es notwendig, den Be-

griff der aufsteigenden Sequenz einzuführen. Unter Benutzung von Korollar 2.1.12

ist es dadurch sogar möglich, die Verteilung Q
∗(m)
a,n für alle m ≥ 1 zu bestimmen.

Mit Blick auf (1.1.4) sind damit schon die m-Schritt Übergangswahrscheinlichkei-

ten des Qa,n-Random Walks auf Sn gegeben.

2.2.1 Definition. Sei π ∈ Sn. Eine aufsteigende Sequenz oder kurz Sequenz von

π ist eine Kette
(
(i1, π(i1)), . . . , (ik, π(ik))

)
, so dass gilt

(i) i1, . . . , ik ∈ N≤n, i1 < . . . < ik,

(ii) π(ij) + 1 = π(ij+1) für j = 1, . . . , k − 1,

(iii) π(l) 6= π(i1)−1 für l = 1, . . . , i1−1 und π(l) 6= π(ik)+1 für l = ik +1, . . . , n.
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Eine aufsteigende Sequenz von π ∈ Sn kann somit auch als maximal aufstei-

gende Teilkette von π bezeichet werden. Jede Permutation π zerfällt vollständig in

aufsteigende Sequenzen und ist durch Angabe aller ihrer aufsteigenden Sequenzen

eindeutig festgelegt. Wir sagen, die Sequenz
(
(ik+1, π(ik+1)), . . . , (il, π(il))

)
folgt

auf die Sequenz
(
(i1, π(i1)), . . . , (ik, π(ik))

)
, falls π(ik)+1 = π(ik+1) gilt. Aufgrund

von Definition 2.2.1 gilt dann notwendigerweise ik+1 > ik, das heißt die beiden

Sequenzen lassen sich nicht zu einer einzelnen Sequenz vereinen.

Aufsteigende Sequenzen sind eng mit den Sprungstellen einer Permutation ver-

bunden.

2.2.2 Definition. Sei π ∈ Sn und i ∈ {1, . . . , n− 1}. Die Permutation π hat eine

Sprungstelle oder einen Descent in i, falls π(i) > π(i+ 1).

Sei Rn,k
def
= {π ∈ Sn | π hat k aufsteigende Sequenzen}, k = 1, . . . , n, und

Dn,k
def
= {π ∈ Sn|π hat k Descente }, k = 1, . . . , n−1. Wir definieren die Funktionen

Rn, Dn : Sn −→ N≤n für π ∈ Sn durch

Rn(π) = r ⇐⇒ π ∈ Rn,r und

Dn(π) = r ⇐⇒ π ∈ Dn,r.

Wir setzen von nun an R = Rn und D = Dn. Aufgrund von Definition 2.2.1

und 2.2.2 gilt R(Sn) = {1, . . . , n}, D(Sn) = {1, . . . , n − 1} und für π ∈ Sn

D(π) = |{i ≤ n− 1 | π(i) > π(i+ 1)}|.

2.2.3 Beispiel. Für die Permutation π = [4, 1, 2, 5, 7, 3, 6, 8] ∈ S8 gilt R(π) = 3,

denn π hat die drei aufeinanderfolgenden aufsteigenden Sequenzen

(
(2, 1), (3, 2), (6, 3)

)
,
(
(1, 4), (4, 5)), (7, 6)

)
und

(
(5, 7), (8, 8)

)
.

Für die Inverse π−1 = [2, 3, 6, 1, 4, 7, 5, 8] gilt D(π) = 2. Sie hat Descente in 3 und

6.

Aufschluss über den Zusammenhang zwischen aufsteigenden Sequenzen und

Descenten gibt das folgende Lemma.
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2.2.4 Lemma. Sei π ∈ Sn und r ∈ N≤n. π besitzt genau dann r aufsteigende

Sequenzen, wenn π−1 r − 1 Descente hat, das heißt

R(π) = r ⇐⇒ D(π−1) = r − 1.

Beweis. Für r = 1 folgt die Behauptung direkt aus

R(π) = 1 ⇐⇒ π = id ⇐⇒ D(π) = 0.

Sei also r ≥ 2.

”
⇒“ Wir wählen k0, . . . , kr ∈ N mit

0 = k0 < k1 < . . . < kr−1 < kr = n

und paarweise verschiedene i1, . . . , in ∈ N≤n, so dass die r aufsteigenden Sequenzen

von π gegeben sind durch

(
(i1, 1)), . . . , (ik1 , k1)

)
,
(
(ik1+1, k1 + 1)), . . . , (ik2 , k2)

)
, . . . ,(

(ikr−1+1, kr−1 + 1)), . . . , (in, n)
)
.

Dann gilt π(ij) = j und π−1(j) = ij für j = 1, . . . , n. Die Anzahl der Descente von

π−1 ist gegeben durch

D(π−1) = |{j ≤ n− 1 | π−1(j) > π−1(j + 1)}|

= |{j ≤ n− 1 | ij > ij+1}|.

Aufgrund der Definition der aufsteigenden Sequenz gilt ij < ij+1 für j = kl +

1, . . . , kl+1, l = 0, . . . , r − 1 und

ij > ij+1 für j = kl und l = 1, . . . , r − 1.

Daraus folgt unmittelbar D(π−1) = r − 1.

”
⇐“ Seien k1, . . . , kr−1 ∈ N mit

0
def
= k0 < k1 < . . . < kr−1 < kr

def
= n
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die Sprungstellen von π−1 und i1, . . . , in ∈ N≤n, so dass π−1(j) = ij für j =

1, . . . , n. Dann gilt

π−1(kl) > π−1(kl + 1) für l = 1, . . . , r − 1 und

π−1(kl + 1) < . . . < π−1(kl+1) für l = 0, . . . , r − 1.

Daraus folgt wegen π−1(j) = ij, j = 1, . . . , n,

ik1 > ik1+1, ik2 > ik2+1 . . . , ikr−1 > ikr−1+1 und

i1 < . . . < ik1 , ik1+1 < . . . < ik2 , . . . ,ikr−1+1 < . . . < in.

Wegen π(ij) = j für j = 1, . . . , n sind die aufsteigenden Sequenzen von π dann

gegeben durch(
(i1, 1)), . . . , (ik1 , k1)

)
,
(
(ik1+1, k1 + 1)), . . . , (ik2 , k2)

)
, . . . ,(

(ikr−1+1, kr−1 + 1)), . . . , (in, n)
)
.

Also ist R(π) = r.

Bei einem GSR-(a, n)-Shuffle eines ungemischten Kartenstapels helfen uns die

aufsteigenden Sequenzen, die ursprünglichen Päckchen wiederzuentdecken: Sie sind

nach dem Ineinanderblättern als aufsteigende Sequenzen zu erkennen (siehe Bei-

spiel 2.1.1). Dies wird im Beweis des folgenden Theorems (siehe Theorem 3, Ab-

schnitt 3 in [6]) deutlich. Wie eingangs dieses Abschnitts beschrieben, erweist es

sich als Schlüssel zur Bestimmung der Verteilung Q
∗(m)
a,n und somit zur Berechnung

der Totalvariation ‖Q∗(m)
a,n − USn‖ für m ≥ 1.

2.2.5 Theorem. Sei n ∈ N, a ∈ N≥2 und π ∈ Sn. Die Wahrscheinlichkeit, dass

ein GSR-(a, n)-Shuffle in der Permutation π resultiert, ist gegeben durch

Qa,n({π}) =

(
n+a−R(π)

n

)
an

, (2.2.1)

wobei
(

m
n

) def
= 0 für m < n.

Beweis. Seien n ∈ N, π ∈ Sn beliebig und R(π) = r. Ausgehend vom Maximum-

Entropie- bzw. inversen Modell ist die gesuchte Wahrscheinlichkeit bestimmt durch
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die Anzahl aller möglichen Arten, einen ungemischten Stapel in a Päckchen

A1,. . . ,Aa zu unterteilen, so dass π ein möglicher Mischvorgang ist. Dies gilt, da

die Reihenfolge, in der die Karten ineinandergeblättert werden, bereits eindeutig

durch π festgelegt ist. Wir wählen k0, . . . , kr ∈ N mit

0 = k0 < k1 < . . . < kr−1 < kr = n,

so dass die r aufsteigenden Sequenzen von π gegeben sind durch(
(i1, 1)), . . . , (ik1 , k1)

)
,
(
(ik1+1, k1 + 1)), . . . , (ik2 , k2)

)
, . . . ,(

(ikr−1+1, kr−1 + 1)), . . . , (in, n)
)
.

Sei nun A1, . . . , Aa eine Päckchenfolge, so dass π ein möglicher Mischvorgang ist.

Da sich die Karten in den einzelnen Päckchen vor und nach dem Ineinanderblättern

in derselben Reihenfolge befinden, besteht jede Sequenz in π aus aufeinanderfolgen-

den Päckchen Ak, . . . , Ak+l mit geeignetem k ∈ N≤a und l ∈ {0, . . . , a−1}. Die Ver-

einigung Ak ∪ . . .∪Ak+l von aufeinanderfolgenden Päckchen Ak, . . . , Ak+l bezeich-

nen wir als Paket. Zwei aufeinanderfolgende Sequenzen
(
(ikj−1

, kj−1)
)
, . . . , (ikj

, kj)
)

und
(
(ikj+1, kj + 1)), . . . , (ikj+1

, kj+1)
)

müssen in verschiedenen Paketen aufeinan-

derfolgender Päckchen liegen, da es sonst nicht möglich ist, die Karte kj + 1 vor

der Karte kj einzusortieren. Hieraus folgt unmittelbar Qa,n({π}) = 0 für r > a∧n.

Sei also im Folgenden r ≤ a ∧ n. Dann existieren j1, . . . , jr ∈ {1, . . . , a}, mit

1 ≤ j1 < . . . < jr−1 < jr = a und

A1 ∪ . . . ∪ Aj1 = {1, . . . , k1}, Aj1+1 ∪ . . . ∪ Aj2 = {k1+1, . . . , k2}, . . . ,

Ajr−1+1 ∪ . . . ∪ Aa = {kr−1 + 1, . . . , n}. (2.2.2)

Wir zählen nun alle Möglichkeiten ab, einen ungemischten Stapel in a Päckchen

A′
1, . . . , A

′
a zu unterteilen, so dass π ein möglicher Mischvorgang ist. Wir zeigen

unsere Behauptung auf zwei verschiedene Arten, indem wir zwei unterschiedliche

kombinatorische Abzählargumente verwenden.

1. Abzählargument (Kombination ohne Wiederholung): Wir codieren zunächst

jede Päckchenfolge A′
1, . . . , A

′
a eineindeutig durch ein (n + a − 1)-Tupel beste-

hend aus n Sternchen
”
∗“ und a − 1 Trennstrichen

”
|“. Enthalten die Päckchen
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A′
1, . . . , A

′
a l1, . . . , la Karten, (l1, . . . , la) ∈

∑a
n, so besetzen wir den l1, . . . , la ent-

sprechend viele Positionen mit Sternchen und trennen die so entstandenen a Blöcke

durch a− 1 Trennstriche:

A′
1, . . . , A

′
a ↔ (∗, . . . , ∗︸ ︷︷ ︸

l1-mal

| ∗, . . . , ∗︸ ︷︷ ︸
l2-mal

| . . . | ∗, . . . , ∗︸ ︷︷ ︸
la-mal

). (2.2.3)

Um nun alle Möglichkeiten abzuzählen, einen ungemischten Stapel so in a Päckchen

A′
1, . . . , A

′
a zu unterteilen, dass π ein möglicher Mischvorgang ist, genügt es schon,

alle Möglichkeiten zu bestimmen, die a−1 Trennstriche auf n+a−1 Positionen zu

verteilen, so dass die gemäß (2.2.3) bestimmte Päckchenfolge zum Mischvorgang

π gehört. Die n Sternchen nehmen dann gerade die verbleibenden Positionen ein.

Die Reihenfolge, in der die einzelnen Karten ineinandergeblättert werden, ist durch

π eindeutig festgelegt ist. Daher führt eine Päckchenfolge A′
1, . . . , A

′
a genau dann

zum Mischvorgang π, wenn sie von der Form (2.2.2) ist. Dann sind aber r − 1

Pakete bereits durch π festgelegt, das heißt die Positionen der r − 1 Trennstriche

zwischen diesen Paketen sind vorgegeben: Vor dem ersten Trennstrich müssen sich

k1 Sternchen befinden, vor dem zweiten Trennstrich k2 Sternchen usw. Es bleiben

also noch (a − 1) − (r − 1) = a − r Trennstriche, die beliebig auf die n + a − 1

Positionen verteilt werden können. Hierbei ist zu beachten, dass tatsächlich jede

der n+ a− 1 Positionen von den a− r Trennstrichen eingenommen werden kann,

da die Positionen der übrigen r−1 Trennstriche zwar festgelegt sind, aber von den

vorher schon vergebenen Positionen abhängen: Werden zunächst a−r Trennstriche

verteilt, so erhalten wir ein (n+ a− 1)-Tupel, bestehend aus a− r Trennstrichen

und (n+ a− 1)− (a− r) = n+ r − 1 Leerstellen
”
t“, der Form

(t, . . . ,t︸ ︷︷ ︸
m1-mal

| t, . . . ,t︸ ︷︷ ︸
m2-mal

| . . . | t, . . . ,t︸ ︷︷ ︸
ma-mal

),

mit geeigneten m1, . . . ,ma ∈
∑a

n. Die n Sternchen und die übrigen r − 1 Trenn-

striche müssen dann so auf die Leerstellen-Positionen verteilt werden, dass sich vor

dem ersten der r− 1 Trennstriche k1 Sternchen befinden, vor dem zweiten Trenn-

strich k2 Sternchen usw. Wir kennzeichnen die r − 1 festgelegten Trennstriche
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durch
”
↓“:

(∗, . . . , ∗| . . . |∗, . . . , ∗︸ ︷︷ ︸
k1-mal

”
∗“

↓ ∗, . . . , ∗| . . . , |∗, . . . , ∗

︸ ︷︷ ︸
k2-mal

”
∗“

...

↓ . . .

︸ ︷︷ ︸
kr-mal

”
∗“

↓ ∗, . . . , ∗| . . . |∗, . . . , ∗).

Es gibt
(

n+a−r
a−r

)
=
(

n+a−r
n

)
Möglichkeiten die a − r Trennstriche auf n + a − r

Positionen zu verteilen und somit
(

n+a−r
n

)
Möglichkeiten den Kartenstapel so in a

Päckchen zu teilen, dass π ein möglicher Mischvorgang ist. Somit gilt also

Qa,n({π}) =

(
n+a−r

n

)
an

,

da es insgesamt an mögliche GSR-(a, n)-Shuffle gibt.

2. Abzählargument (Kombination mit Wiederholung): Die n Karten seien nach

aufsteigenden Werten von links nach rechts vor uns ausgelegt. Zwischen zwei Kar-

ten, sowie vor der ersten und nach der letzten Karte sei jeweils ein Fach aufgestellt

(siehe Abbildung 2.4). Insgesamt benötigen wir hierzu n+ 1 Fächer.
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1
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�
�

�
�

2
♣

�
�

�
�
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. . .
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�

�
�

n
♣

Abbildung 2.4: Fächerverteilung: n+ 1 Fächer zwischen n Karten.

Wir können nun jede Päckchenfolge A′
1, . . . , A

′
a eineindeutig durch a− 1 unun-

terscheidbare Kugeln, die wir auf die n+1 Fächer verteilen, identifizieren: Beginnt

bei Karte j ein Päckchen, so legen wir eine Kugel in das Fach links von Karte

j. Bleibt ein Päckchen leer, so legen wir eine Kugel in das Fach links von der

Karte, bei der das nächste nichtleere Päckchen beginnt. Ist das letzte Päckchen

oder sind mehrere der letzten Päckchen leer, so legen wir eine oder der Anzahl

der leeren letzten Päckchen entsprechend viele Kugeln in das letzte Fach. Dabei

benötigen wir nur a − 1 und nicht etwa a Kugeln, da bei Karte 1 immer min-

destens ein Päckchen beginnt. Enthalten die Päckchen also A′
1, . . . , A

′
a l1, . . . , la
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Karten, (l1, . . . , la) ∈
∑a

n, das heißt

A′
1 = {1, . . . , l1}, A′

2 = {l1 + 1, . . . , l1 + l2}, . . . , A′
a = {l1 + . . .+ la−1 + 1, . . . , n},

so verteilen wir die Kugeln den Werten l1, . . . , la entsprechend auf die Fächer: Die

erste Kugel legen wir in das Fach links von Karte l1 + 1, die zweite Kugel in

das Fach links von Karte l1 + l2 + 1 usw., bis hin zur (a − 1).-Kugel, die wir in

das Fach links von Karte l1 + . . . + la−1 + 1 legen, bzw in das letzte Fach, falls

l1 + . . .+ la−1 +1 = n+1. Hierbei ist zu beachten, dass für den Fall l1 = 0 das erste

Päckchen leer bleibt, das heißt A′
1 = ∅, und die erste der a− 1 Kugeln in das Fach

links von Karte 1 gelegt wird. Ebenso können für den Fall, dass nicht sämtlich

l1, . . . , la von Null verschieden sind, mehrere Kugeln in einem Fach liegen (siehe

Abbildung 2.5: Das erste und dritte Päckchen A1 und A3 sind leer, das zweite

Päckchen A2 besteht aus den Karten 1, 2, 3).
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Abbildung 2.5: Beispiel für eine Kugelverteilung.

Eine Päckchenfolge A′
1, . . . , A

′
a führt genau dann zum Mischvorgang π, wenn

sie von der Form (2.2.2) ist, das heißt

A′
1 ∪ . . . ∪ A′

j1
= {1, . . . , k1}, A′

j1+1 ∪ . . . ∪ A′
j2

= {k1+1, . . . , k2}, . . . ,

A′
jr−1+1 ∪ . . . ∪ A′

a = {kr−1 + 1, . . . , n},

wobei 0 < k1 < . . . < kr−1 < n und 1 ≤ j1 < . . . < jr−1 < jr = a. Dann sind r − 1

Pakete bereits durch π festgelegt, das heißt die Fachbelegung von r−1 Kugeln, die

den Beginn der einzelnen Pakete festlegen, sind vorgegeben: Die erste Kugel liegt

in dem Fach links von Karte k1 + 1, die zweite Kugel liegt in dem Fach links von

Karte k2 +1 usw. und die letzte Kugel im Fach links von Karte kr−1 +1. Es bleiben

also noch (a−1)− (r−1) = a−r Kugeln, die beliebig auf die n+1 Fächer verteilt

werden können, dabei können mehrere Kugeln in dasselbe Fach gelegt werden, da

auch leere Päckchen zugelassen sind. Es gibt insgesamt
(
(n+1)+a−r−1

(n+1)−1

)
=
(

n+a−r
n

)
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Möglichkeiten die a− r ununterscheidbaren Kugeln auf n+ 1 Fächer zu verteilen

und somit
(

n+a−r
n

)
Möglichkeiten den Kartenstapel so in a Päckchen zu teilen, dass

π ein möglicher Mischvorgang ist. Insgesamt zeigt dies wiederum

Qa,n({π}) =

(
n+a−r

n

)
an

,

da es insgesamt an mögliche GSR-(a, n)-Shuffle gibt.

Für a ∈ N≥2 ist der Träger von Qa,n nach Theorem 2.2.5 gegeben durch

supp(Qa,n) =
{
π ∈ Sn |R(π) ∈ {1, . . . , a ∧ n}

}
. (2.2.4)

Ferner ergibt sich zusammen mit Korollar 2.1.12 die folgende Verallgemeinerung

von Theorem 2.2.5, in der die Verteilung Q
∗(m)
a,n explizit angegeben ist.

2.2.6 Korollar. (i) Seien m,n ∈ N, a1, . . . , am ∈ N≥2, a
def
=
∏m

i=1 ai und π ∈
Sn. Dann gilt

Qa1,n ∗ . . . ∗Qam,n({π}) =

(
n+a−R(π)

n

)
an

. (2.2.5)

(ii) Seien m,n ∈ N, a ∈ N≥2 und π ∈ Sn. Dann gilt

Q∗(m)
a,n ({π}) =

(
n+am−R(π)

n

)
amn

. (2.2.6)

Aus Korollar 2.2.6 (2.2.6) und Lemma 1.1.4 erhalten als weitere triviale Folge-

rung das folgende Korollar.

2.2.7 Korollar. Seien m,n ∈ N und a ∈ N≥2. Eine Permutation π ist ein mögli-

ches Ergebnis von m sukzessiven GSR-(a, n)-Mischvorgängen genau dann, wenn

R(π) ∈ {1, . . . , am ∧ n}, das heißt

supp(Q∗(m)
a,n ) =

{
π ∈ Sn |R(π) ∈ {1, . . . , am ∧ n}

}
= (supp(Qa,n))◦(m).

Für a ∈ N≥2 ist die Funktion r 7→
(

n+a−r
n

)
/an auf {1, . . . , a∧n} streng monoton

fallend. Wegen R(id) = 1 ist daher Qa,n({id}) > Qa,n({π}) für alle π ∈ Sn\{id}.
Gegeben einen Qa,n-Random Walk X = (Xm)m≥0 auf Sn, ist demnach in jedem

Mischvorgang das Mischen gemäß der Identität id wahrscheinlicher als das Mischen

nach jeder anderen Permutation. Allerdings führt wiederholtes Mischen nach dem

GSR-(a, n)-Shuffle tatsächlich dazu, dass ein Kartenstapel
”
gut durchgemischt“

wird:



2.2 Aufsteigende Sequenzen 41

2.2.8 Satz. Seien n ∈ N und a ∈ N≥2 fest und (Xm)m≥0 ein Qa,n-Random Walk

auf Sn. Dann konvergieren die Verteilungen von Xm in Totalvariation gegen die

Gleichverteilung USn auf Sn, das heißt

lim
m→∞

‖PXm − USn‖ = lim
m→∞

‖Q∗(m)
a,n − USn‖ = 0.

Beweis. X = (Xm)m≥0 ist eine endliche Markov-Kette. Nach dem Ergodensatz

reicht es daher zu zeigen, dass X (a) irreduzibel und (b) aperiodisch ist. Da für

n = 1 nichts zu zeigen ist, sei n ≥ 2 und a ≥ 2.

zu (a): Jede Transposition [i, i+1]Z ∈ Sn mit i ≤ n−1 zerfällt in zwei Sequenzen(
(1, 1), . . . , (i− 1, i− 1), (i+ 1, i)

)
und

(
(i, i+ 1), (i+ 2, i+ 2), . . . , (n, n)

)
,

was [i, i+ 1]Z ∈ supp(Qa,n) vermöge Korollar 2.2.7 impliziert.

Sei [i, j]Z eine Transposition mit |i− j| > 1. Wegen [i, j]Z = [j, i]Z können wir

i < j annehmen. Dann hat [i, j]Z die drei aufeinanderfolgenden Sequenzen(
(1, 1), . . . , (i− 1, i− 1), (j, i)

)
,
(
(i+ 1, i+ 1), . . . , (j − 1, j − 1)

)
und(

(i, j), (j + 1, j + 1), . . . , (n, n)
)
.

Definieren wir nun zwei Permutationen π1, π2 ∈ Sn durch

π2
def
=

(
1 · · · i− 1 i i+ 1 · · · j − 1 j j + 1 · · · n

1 · · · i− 1 i i+ 2 · · · j i+ 1 j + 1 · · · n

)
und

π1
def
=

(
1 · · · i− 1 i i+ 1 · · · j − 1 j j + 1 · · · n

1 · · · i− 1 j i · · · j − 2 j − 1 j + 1 · · · n

)
,

so gilt

π1 ◦ π2 =

(
1 · · · i− 1 i i+ 1 · · · j − 1 j j + 1 · · · n

1 · · · i− 1 j i+ 1 · · · j − 1 i j + 1 · · · n

)
= [i, j]Z

und R(π1) = R(π2) = 2. Also folgt wiederum mit Korollar 2.2.7

[i, j]Z ∈ (supp(Qa,n))◦(2) = {π ◦ σ | π, σ ∈ supp(Qa,n)}.

Insgesamt gilt dann Tn ⊂ (supp(Qa,n))◦(2) und somit wegen (1.2.1)

〈supp(Qa,n)〉 = Sn. Also ist X nach Satz 1.1.3 (a) irreduzibel.
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zu (b): Wegen R(id) = 1 folgt aus Korollar 2.2.7 id ∈ supp(Qa,n) und daher

p(m)
π,π = p

(m)

π−1π = p
(m)
id = Q∗(m)

a,n ({id}) > 0

für alle π ∈ Sn und für alle m ∈ N. Damit ist X aperiodisch.

Wir können die Aperiodizität von X auch auf andere Weise mit Hilfe von Satz

1.1.3 (b) und der Ergebnisse aus Abschnitt 1.2 zeigen: Wir zeigen supp(Qa,n)⊂/ πN
für alle π ∈ Sn und alle nicht-trivialen Normalteiler von Sn. Mit Blick auf die Liste

der Normalteiler von Sn in Abschnitt 1.2 ist für n = 2 nichts zu zeigen. Für n = 3

und n ≥ 5 ist An der einzige nicht-triviale Normalteiler von Sn. Es existieren

σ1, σ2 ∈ supp(Qa,n) mit sgn(σ1) = 1 und sgn(σ2) = −1, etwa σ1 = id und σ2 =

[1, 2]Z . Wegen sgn(ρ) = 1 für alle ρ ∈ An und da sgn ein Gruppenhomomorphismus

ist, gilt jedoch für jedes π ∈ Sn entweder sgn(σ) = 1 für alle σ ∈ πAn, falls

sgn(π) = 1, oder sgn(σ) = −1 für alle σ ∈ πAn, falls sgn(π) = −1. Daraus folgt

supp(Qa,n)⊂/ πAn für n = 3 und n ≥ 5. Für n = 4 gilt ebenfalls sgn(σ) = 1 für

alle σ ∈ V4 bzw. A4. Insgesamt gilt also supp(Qa,n)⊂/ πN für alle π ∈ Sn und

alle nicht-trivialen Normalteiler von Sn. Da X nach (a) irreduzibel ist, folgt die

Aperiodizität von X also aus Satz 1.1.3 (b).

2.3 Eulersche Zahlen und aufsteigende Sequen-

zen

Im vorherigen Abschnitt haben wir gezeigt, dass die aufsteigenden Sequenzen der

Schlüssel zur Angabe der Wahrscheinlichkeiten Q
∗(m)
a,n ({π}) für π ∈ Sn und m ≥ 1

sind. Aufsteigende Sequenzen sind eng mit den Eulerschen Zahlen verbunden. Die-

se Verbindung werden wir im Folgenden aufzeigen und für verschiedene Resultate

nutzen.

Sei n ∈ N. Für r = 1, . . . , n bezeichnen wir die Anzahl aller Permutationen in Sn

mit r aufsteigenden Sequenzen mitAn,r, alsoAn,r = |Rn,r|. Wir setzenAn,x = 0 für

x 6= 1, . . . , n. Gegeben sei im Folgenden ein Qa,n-Random Walk X = (Xm)m≥0. Die

stochastische Folge R(X) = (R(Xm))m≥0 gibt dann die Anzahlen der Sequenzen

der Markov-Kette X an. Mit Korollar 2.2.6 erhalten wir die Verteilung von R(Xm),
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m ≥ 0. Für m ≥ 0 und r = 1, . . . , n gilt

P (R(Xm) = r) = PXm({π ∈ Sn |R(π) = r})

= Q∗(m)
a,n (Rn,r) (2.3.1)

=
An,r

amn

(
n+ am − r

n

)
.

Summieren wir (2.3.1) über r = 1, . . . , n, so erhalten wir mit m = 1 für alle

n, a ∈ N

an =
n∑

r=1

An,r

(
a+ n− r

n

)
. (2.3.2)

Gleichung (2.3.2) ist die sogenannte Worpitzky-Identität. Nach [26] entsprechen die

An,r dann gerade den Eulerschen Zahlen. Verschiedene Eigenschaften der Euler-

schen Zahlen und Aussagen über ihre Verbindungen zur Wahrscheinlichkeitstheorie

und Kombinatorik finden sich ferner in [7], [8], [19], [22] und [23]. Für r = 1, . . . , n

erhalten wir aus der Definition der Eulerschen Zahlen die Rekursion

An,r = rAn−1,r + (n+ 1− r)An−1,r−1,

wobei A0,0
def
= 1, An,0

def
= 0 und An−1,n

def
= 0.

Wegen Rn,1 = {id}, Rn,n = {[n, n− 1, . . . , 1]} und |Sn| = n! folgt unmittelbar

An,1 = An,n = 1 und
n∑

r=1

An,r = n!.

Aus [26] erhalten wir ferner für r = 1, . . . , n die Symmetrie-Eigenschaft

An,r = An,n−r+1,

sowie die geschlossene Form der Eulerschen Zahlen

An,r =
r−1∑
i=0

(−1)i

(
n+ 1

i

)
(r − i)n. (2.3.3)

In Tabelle 2.1 sind die Werte der Eulerschen Zahlen für 1 ≤ r ≤ n ≤ 8 aufgelistet.

Die Eulerschen Zahlen besitzen neben der Verbindung zur Kombinatorik eine

weitere wichtige wahrscheinlichkeitstheoretische Interpretation:
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r=1 2 3 4 5 6 7 8

n=1 1

2 1 1

3 1 4 1

4 1 11 11 1

5 1 26 66 26 1

6 1 57 302 302 57 1

7 1 120 1191 2416 1191 120 1

8 1 247 4293 15619 15619 4293 247 1

Tabelle 2.1: Eulersche Zahlen An,r für 1 ≤ r ≤ n ≤ 8.

2.3.1 Satz. Gegeben seien stochastisch unabhängige und identisch R(0, 1)-verteilte

Zufallsgrößen X1, . . . , Xn. Dann entspricht 1
n!
An,k für k = 1, . . . , n der Wahr-

scheinlichkeit, dass die Summe von X1, . . . , Xn im Intervall (k − 1, k] liegt, das

heißt

P (Sn ∈ (k − 1, k]) =
1

n!
An,k, (2.3.4)

wobei Sn
def
=
∑n

i=1Xi.

Beweis. Den folgenden kurzen Beweis entnehmen wir [23]. Sei Fn die Verteilungs-

funktion von Sn. Dann gilt nach Theorem 1 in Abschnitt I.9 aus [11] für alle x ≥ 0

Fn(x) =
1

n!

bxc∧n∑
i=0

(−1)i

(
n

i

)
(x− i)n,

wobei bxc die untere Gauss-Klammer von x sei. Sei nun 1 ≤ k ≤ n. Dann folgt

aus obiger Gleichung unter Beachtung von
(

n+1
i

)
=
(

n
i

)
+
(

n
i−1

)
für i = 1, . . . , n und(

n
−1

)
= 0 zusammen mit (2.3.3)

Fn(k)− Fn(k − 1) =
1

n!

k∑
i=0

(−1)i

(
n

i

)
(k − i)n − 1

n!

k−1∑
i=0

(−1)i

(
n

i

)
((k − 1)− i)n

=
1

n!

k∑
i=0

(−1)i

(
n

i

)
(k − i)n − 1

n!

k∑
i=1

(−1)i−1

(
n

i− 1

)
(k − i)n
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=
1

n!

k∑
i=0

(−1)i

(
n

i

)
(k − i)n +

1

n!

k∑
i=0

(−1)i

(
n

i− 1

)
(k − i)n

=
1

n!

k∑
i=0

(−1)i

(
n+ 1

i

)
(k − i)n

=
1

n!

k−1∑
i=0

(−1)i

(
n+ 1

i

)
(k − i)n (2.3.5)

=
1

n!
An,k.

Ist M eine Markov-Kette und ϕ eine auf dem Zustandsraum von M definierte

Funktion, so überträgt sich die Markov-Eigenschaft von M im Allgemeinen nicht

auf ϕ(M). In Satz 2.3.3 zeigen wir, dass die stochastische Folge (R(Xm))m≥0, also

die Folge der Sequenzanzahlen der Markov-Kette (Xm)m≥0, jedoch wiederum eine

Markov-Kette bildet. Wir benötigen hierzu zunächst ein hinreichendes Kriterium

aus [18], das Voraussetzungen nennt, unter denen eine Funktion angewandt auf

einen Markov-Prozess (in stetiger Zeit) wiederum einen Markov-Prozess bildet.

Seien S und S ′ endliche Mengen und (Pt)t∈[0,∞) eine Familie von Wahrschein-

lichkeitsmaßen auf (S,P(S)), ϕ : (S,P(S)) −→ (S ′,P(S ′)) und B(S ′) die Menge

aller reellen Funktionen auf S ′. ϕ heißt vollständig für die Familie (Pt)t∈[0,∞), falls

für f ∈ B(S ′) gilt∫
S′

f(s′)Pϕ
t (ds′) = 0 für alle t ∈ [0,∞) =⇒ f = 0.

2.3.2 Lemma. Seien S, S ′ wie oben, ϕ : (S,P(S)) −→ (S ′,P(S ′)) und (Mt)t∈[0,∞)

ein Markov-Prozess in stetiger Zeit mit Zustandsraum S und Anfangsverteilung λ

auf einem Wahrscheinlichkeitsraum (Ω,A, P ). Es gelte ferner:

(i) Für alle t ∈ [0,∞) und y ∈ S ′ ist die regulär bedingte Verteilung von Mt

gegeben ϕ(Mt) = y unabhängig von t.

(ii) ϕ ist vollständig für (PMt)t∈[0,∞).

Dann ist (ϕ(Mt))t∈[0,∞) ein Markov-Prozess mit Anfangsverteilung Pϕ(M0).
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Um Lemma 2.3.2 auf unsere Situation eines Qa,n-Random Walks X mit Folge

der SequenzanzahlenR(X) anwenden zu können, betten wir die stochastische Folge

R(X) = (R(Xm))m≥0 in einen stochastischen Prozess (R(Mt))t∈[0,∞) in stetiger Zeit

ein. Dazu sei (Nt)t∈[0,∞) ein von (Xm)m≥0 stochastisch unabhängiger und zeitlich

homogener Poisson-Prozess. Für t > 0 ist Nt dann eine mit dem Parameter t

Poisson-verteilte Zufallsgröße, das heißt für m ∈ N0 gilt

P (Nt = m) = Poi(t)({m}) = e−t t
m

m!
. (2.3.6)

Für t = 0 ist N0 = δ0. Wir definieren den stochastischen Prozess M = (Mt)t∈[0,∞)

durch

Mt
def
= XNt , t ∈ [0,∞).

Nach Abschnitt 1.3 in [21] ist M dann ein zeitlich homogener Markov-Prozess in

stetiger Zeit. Die zeitliche Homogenität vonM folgt dabei aus der zeitlichen Homo-

genität von X. Zu einem Zeitparameter t ∈ [0,∞) befindet sich der Prozess in dem

Zustand, den die Markov-Kette X zum Zeitpunkt Nt annimmt. Wir betrachten

nun die zu M gehörige Folge der Sequenzanzahlen R(M) = (R(Mt))t∈[0,∞). Wegen

R(Sn) = N≤n ist der stochastische Prozess R(M) N≤n-wertig. Für t ∈ [0,∞) und

r = 1, . . . , n gilt wegen der stochastischen Unabhängigkeit von (R(Xm))m≥0 und

(Nt)t∈[0,∞) und (2.3.1)

P (R(Mt) = r) = P (R(XNt) = r)

= P
( ⋃

m≥0

{Nt = m, R(Xm) = r}
)

=
∑
m≥0

P (Nt = m)P (R(Xm) = r)

=
∑
m≥0

e−t t
m

m!
P (R(Xm) = r)

= An,r

∑
m≥0

e−t t
m

m!
· 1

amn

(
n+ am − r

n

)
. (2.3.7)

Für t = 0 erhalten wir wegen N0 = δ0, X0 = id P -f.s. und R(id) = 1 speziell

P (R(M0) = r) = P (R(X0) = r) = δ1({r}). (2.3.8)



2.3 Eulersche Zahlen und aufsteigende Sequenzen 47

Wir berechnen nun für t ∈ [0,∞) und r = 1, . . . , n die regulär bedingte Vertei-

lung von Mt gegeben R(Mt) = r. Sei π ∈ Sn beliebig. Dann erhalten wir analog

zur Rechnung in (2.3.7)

P (Mt = π, R(Mt) = r) =
∑
m≥0

e−t t
m

m!
P (Xm = π, R(Xm) = r)

=
∑
m≥0

e−t t
m

m!
P (Xm = π)P (R(π) = r)

= δr({R(π)})
∑
m≥0

e−t t
m

m!
· 1

amn

(
n+ am − r

n

)
.

Wegen δr({R(π)}) = δRn,r({π}) gilt dann

P (Mt = π, R(Mt) = r) = δRn,r({π})
∑
m≥0

e−t t
m

m!
· 1

amn

(
n+ am − r

n

)
. (2.3.9)

Unter Benutzung von (2.3.7) und (2.3.9) ergibt sich

P (Mt = π |R(Mt) = r) =
1

An,r

δRn,r({π}), (2.3.10)

das heißt die regulär bedingte Verteilung von Mt gegeben R(Mt) = r ist un-

abhängig von t. Wir kommen nun zu dem bereits angekündigten Resultat.

2.3.3 Satz. Sei n ∈ N, a ∈ N≥2 und X = (Xm)m≥0 ein Qa,n-Random Walk. Dann

ist R(X) = (R(Xm)m≥0) eine zeitlich homogene Markov-Kette mit Zustandsraum

N≤n und Anfangsverteilung PR(X0) = δ1.

Beweis. Sei n ∈ N und a ∈ N≥2 undM der oben zuX konstruierte Markov-Prozess

in stetiger Zeit. Mit Lemma 2.3.2 zeigen wir, dass R(M) eine Markov-Kette mit

Anfangsverteilung PR(M0) ist. Nach (2.3.10) ist für t ∈ [0,∞) und r = 1, . . . , n die

regulär bedingte Verteilung von Mt gegeben R(Mt) = r unabhängig von t.

Wir zeigen nun die Vollständigkeit von R für (PMt)t∈[0,∞). Sei f ∈ B(N≤n) mit∫
fdPR(Mt) = 0 für alle t ∈ [0,∞). Nach (2.3.7) gilt wegen der Beschränktheit

von f ∫
fdPR(Mt) =

n∑
r=1

∑
m≥0

e−t t
m

m!
· An,r

amn

(
n+ am − r

n

)
f(r)

= e−t
∑
m≥0

tm

m!

(
n∑

r=1

An,r

amn

(
n+ am − r

n

)
f(r)

)
= 0
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für alle t ∈ [0,∞). Aus dem Identitätssatz für Potenzreihen folgt dann für alle

m ≥ 0

n∑
r=1

An,r

amn

(
n+ am − r

n

)
f(r) = 0

und somit

n∑
r=1

An,r

(
n+ am − r

n

)
f(r) = 0. (2.3.11)

Wir definieren die Funktion g : R −→ R für x ∈ R durch

g(x)
def
=

n∑
r=1

An,r

(
n+ x− r

n

)
n!f(r)

=
n∑

r=1

An,r ((x− r + 1) · . . . · (x− r + n)) f(r)

= An,1 x(x+ 1) · . . . · (x− 1 + n)f(1) (2.3.12)

+An,2 (x− 1)x · . . . · (x− 2 + n)f(2)

...

+An,n (x− n+ 1) · . . . · (x− 1)xf(n),

wobei die oben autretenden Binomialkoeffizienten an dieser Stelle für alle x ∈ R
definiert seien durch (

x

n

)
def
=
x(x− 1) · . . . · (x− n+ 1)

1 · 2 · . . . · n
.

Dann ist g ein relles Polynom vom Grad ≤ n. Nach (2.3.11) gilt g(am) = 0 für alle

m ≥ 0. Wegen a ≥ 2 hat g also unendlich viele Nullstellen und es folgt g = 0. Mit

x = 1, . . . , n erhalten wir dann aus (2.3.12)

f(1) = f(2) = . . . = f(n) = 0.

Dies zeigt die Vollständigkeit von R für (PMt)t∈[0,∞). Nach Lemma 2.3.2 ist R(M)

also ein Markov-Prozess mit Anfangsverteilung PR(M0), wobei nach (2.3.8)

PR(M0) = δ1 gilt. Da X zeitlich homogen ist, gilt dasselbe für M und somit für
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R(M). Nach Kapitel 8 in [5] ist dann auch die in den Markov-Prozess R(M)

”
eingebettete“ stochastische Folge R(X) = (R(Xm))m≥0 eine zeitlich homoge-

ne Markov-Kette. R(X) hat so wie R(M) den Zustandsraum N≤n und wegen

PR(X0) = PR(M0) = δ1 die Anfangsverteilung δ1.

2.4 Konvergenz gegen die Gleichverteilung: Der

Cut-Off-Effekt

Nach Satz 2.2.8 konvergiert ein Qa,n-Random Walk auf Sn in Totalvariation gegen

die Gleichverteilung USn . Wir untersuchen im Folgenden den GSR-(2, n)-Shuffle

und leiten Aussagen über die Konvergenzrate her. In diesem Abschnitt sei a = 2,

Qn
def
= Q2,n und X = (Xm)m≥0 ein Qn-Random Walk.

Die computergestützte Berechnung des Variationabstands ‖Q∗(m)
n − USn‖, also

der
”
Entfernung“ eines m-mal nach dem GSR-(2, n)-Shuffle gemischten Karten-

stapels von der Gleichverteilung, mit Hilfe der Formel

‖Q∗(m)
n − USn‖ =

1

2

∑
π∈Sn

∣∣∣Q∗(m)
n ({π})− 1

n!

∣∣∣
ist schon bei üblichen Kartenstapelgrößen auf Grund der Anzahl von n! zu berech-

nenden Termen nicht möglich. So sind beispielsweise für einen Skat-Kartenstapel

32! Terme zu berechnen, für einen Blackjack-, Bridge- oder Schafkopf-Kartenstapel

52! und Rommé-Spieler sehen sich der Anzahl von 104! Termen ausgeliefert.

Mit Hilfe der aufsteigenden Sequenzen lässt sich der Rechenaufwand jedoch

drastisch auf die Berechnung von n Termen reduzieren, denn für m ≥ 0 erhalten

wir mit Korollar 2.2.6 (ii)

‖Q∗(m)
n − USn‖ =

1

2

∑
π∈Sn

∣∣∣Q∗(m)
n ({π})− 1

n!

∣∣∣
=

1

2

∑
π∈Sn

∣∣∣(n+ 2m −R(π)

n

)
1

2mn
− 1

n!

∣∣∣
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=
1

2

n∑
r=1

∑
π∈Rn,r

∣∣∣(n+ 2m − r

n

)
1

2mn
− 1

n!

∣∣∣
=

1

2

n∑
r=1

An,r

∣∣∣(n+ 2m − r

n

)
1

2mn
− 1

n!

∣∣∣. (2.4.1)

Dabei bezeichnen An,1, . . . ,An,n die Eulerschen Zahlen, die durch

An,r =
r−1∑
i=0

(−1)i

(
n+ 1

i

)
(r − i)n

für r = 1, . . . , n gegeben sind.

In Tabelle 2.2 ist der Variationsabstand von Q
∗(m)
n und der Gleichverteilung

USn für die gebräuchlichen Kartenstapelgrößen n = 24, 32, 48, 52, 104 und m =

1, . . . , 10 Mischvorgänge aufgelistet. Der Variationsabstand wurde mit Hilfe von

(2.4.1) berechnet.

m=1 2 3 4 5 6 7 8 9 10

n=24 1.000 0.999 0.998 0.723 0.418 0.211 0.109 0.055 0.028 0.014
32 1.000 1.000 0.999 0.929 0.597 0.322 0.164 0.084 0.042 0.021
48 1.000 1.000 1.000 0.999 0.888 0.546 0.297 0.149 0.076 0.038
52 1.000 1.000 1.000 0.999 0.924 0.614 0.334 0.167 0.085 0.043
104 1.000 1.000 1.000 1.000 1.000 0.988 0.772 0.454 0.237 0.119

Tabelle 2.2: ‖Q∗(m)
n − USn‖ für n = 24, 32, 48, 52, 104 und m = 1, . . . , 10.

Für n = 52 ist der Variationsabstand von Q
∗(m)
n und USn für m = 1, . . . , 20

Mischvorgänge in Abbildung 2.6 in einem Graphen abgetragen. Es wird deut-

lich, dass der Variationsabstand bis zu einer Anzahl von m = 5 Mischvorgängen

nahe bei seinem maximalen Wert von 1 liegt. Innerhalb der nächsten vier Misch-

vorgänge nähert er sich jedoch abrupt seinem Minimum von 0 an. Diese abrupte

Annäherung innerhalb eines relativ kurzen Zeitraums wird als Cut-Off-Effekt oder

Cut-Off-Phänomen bezeichnet. Ein Blick auf den aktuellen Stand der Forschung of-

fenbart, dass es sich beim Cut-Off-Effekt tatsächlich um ein Phänomen handelt: Es

ist bislang nicht gelungen, anhand der Struktur des Zustandsraums und des Über-

gangskerns einer ergodischen Markov-Kette Bedingungen abzuleiten, unter denen
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Abbildung 2.6: m 7−→ ‖Q∗(m)
n − USn‖ für n = 52 und m = 1, . . . , 20.

bei der Konvergenz gegen die stationäre Verteilung ein Cut-Off-Effekt auftritt.

Vielmehr ist in jedem einzelnen Fall eine explizite Berechnung oder Approximati-

on des Variationsabstands nötig. Diaconis [10] äußert jedoch die Vermutung, dass

das Cut-Off-Phänomen vor allem bei reversiblen Markov-Ketten auftritt, bei denen

der zweitgrößte Eigenwert der zugehörigen Übergangsmatrix eine hohe Vielfach-

heit aufweist. Wilson [24] konnte im Jahre 2004 den Cut-Off-Effekt für zahlreiche

Markov-Ketten nachweisen, deren Zustandsraum als Lozenge interpretiert werden

kann. Eine Lozenge ist ein Rhombus mit 60◦ und 120◦ Winkeln und Kanten der

Länge 1. Er verwendete die Fourier-Theorie und Kopplungsargumente, um obere

und untere Schranken für die Totalvariation herzuleiten. Für einige Kartenmisch-

modelle und Markov-Ketten konnte so der Cut-Off-Effekt nachgewiesen werden.

Wir geben nun eine präzisere Definition des Cut-Off-Effekts (siehe Abschnitt

2.4.2 in [21]). Ist G eine endliche Gruppe, so sei UG wie im Vorangegangenen

die Gleichverteilung auf G. Für n ≥ 1 sei Gn eine endliche Gruppe. Wir be-

zeichnen eine Familie von Wahrscheinlichkeitsmaßen (Pn)n≥1 als ergodische Fami-

lie auf ((Gn,P(Gn)))n≥1, falls für alle n ≥ 1 Pn ein Wahrscheinlichkeitsmaß auf

(Gn,P(Gn)) ist und der Pn-Random Walk auf Gn ergodisch, das heißt irreduzibel

und aperiodisch mit stationärer Verteilung UGn ist.

2.4.1 Definition. Sei (Gn)n≥1 eine Familie endlicher Gruppen und (Pn)n≥1 eine
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ergodische Familie von Wahrscheinlichkeitsmaßen auf ((Gn,P(Gn)))n≥1. Die Fa-

milie (Pn)n≥1 besitzt einen Cut-Off-Effekt (in Totalvariation) mit Cut-Off-Zeiten

(tn)n≥1, falls folgende Bedingungen erfüllt sind:

(i) Es gilt tn ≥ 0 für alle n ≥ 1 und limn→∞ tn = ∞.

(ii) Für alle ε ∈ (0, 1) und mn = b(1 + ε)tnc gilt limn→∞ ‖P ∗(mn)
n − UGn‖ = 0.

(iii) Für alle ε ∈ (0, 1) und mn = b(1− ε)tnc gilt limn→∞ ‖P ∗(mn)
n − UGn‖ = 1.

Besitzt eine Familie (Pn)n≥1 einen Cut-Off-Effekt mit Cut-Off-Zeiten (tn)n≥1, so

bedeutet dies, dass die Funktion m 7→ ‖P ∗(m)
n −UGn‖ bis zu einem Zeitpunkt

”
vor“

btnc nah bei ihrem maximalen Wert von 1 bleibt. Nach dem Zeitpunkt btnc fällt

sie rasch auf einen Wert nahe 0. Dieser
”
Phasen-Übergang“ vollzieht sich dabei

innerhalb eines im Vergleich zu btnc relativ kurzen Zeitraums der Größenordnung

o(tn).

Aus Abschnitt 2.4.2 in [21] bzw. Abschnitt 1 in [10] erhalten wir eine weitere

und zugleich striktere Definition des Cut-Off-Effekts.

2.4.2 Definition. Sei (Gn)n≥1 eine Familie endlicher Gruppen und (Pn)n≥1 ei-

ne ergodische Familie von Wahrscheinlichkeitsmaßen auf ((Gn,P(Gn)))n≥1. Die

Familie (Pn)n≥1 besitzt einen starken Cut-Off-Effekt (in Totalvariation) mit Cut-

Off-Zeiten ((tn, bn))n≥1, falls folgende Bedingungen erfüllt sind:

(i) Es gilt tn ≥ 0, bn > 0 für alle n ≥ 1, limn→∞ tn = ∞ und limn→∞ bn/tn = 0.

(ii) Für alle c ∈ R und mn
def
= btn + cbnc gilt limn→∞ ‖P ∗(mn)

n − UGn‖ = f(c) für

eine reelle Funktion f mit limc→∞ f(c) = 0 und limc→−∞ f(c) = 1.

In der obigen Definition kann c ∈ R auch durch j ∈ Z ersetzt werden. Aus

der Definition von starkem Cut-Off-Effekt und Cut-Off-Effekt folgt unmittelbar,

da ‖P ∗(m)
n − UGn‖ monoton fallend in m ist (siehe Lemma 3.5 in [1]), dass ein

starker Cut-Off-Effekt mit Cut-Off-Zeiten ((tn, bn))n≥1 einen Cut-Off-Effekt mit

Cut-Off-Zeiten (tn)n≥1 impliziert:
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2.4.3 Bemerkung. Sei (Gn)n≥1 eine Familie endlicher Gruppen und (Pn)n≥1 ei-

ne ergodische Familie von Wahrscheinlichkeitsmaßen auf ((Gn,P(Gn)))n≥1. Falls

(Pn)n≥1 einen starken Cut-Off-Effekt mit Cut-Off-Zeiten ((tn, bn))n≥1 besitzt, so

besitzt (Pn)n≥1 einen Cut-Off-Effekt mit Cut-Off-Zeiten (tn)n≥1.

Beweis. Sei ((tn, bn))n≥1 wie in Definition 2.4.2 und ε ∈ (0, 1). Wir zeigen

lim
n→∞

‖P ∗(b(1+ε)tnc)
n − UG‖ = 0.

Sei c > 0 beliebig. Wegen limn→∞ bn/tn = 0 und limn→∞ tn = ∞ existiert ein

N = Nε,c ∈ N mit εtn > cbn für alle n ≥ N . Da ‖P ∗(m)
n −UGn‖ monoton fallend in

m ist (siehe Lemma 3.5 in [1]), gilt für alle n ≥ N wegen b(1+ε)tnc = btn +εtnc ≥
btn + cbnc

‖P ∗(b(1+ε)tnc)
n − UGn‖ ≤ ‖P ∗(btn+cbnc)

n − UGn‖

und somit

lim sup
n→∞

‖P ∗(b(1+ε)tnc)
n − UGn‖ ≤ lim

n→∞
‖P ∗(btn+cbnc)

n − UGn‖ = f(c).

Da c > 0 beliebig gewählt war, erhalten wir vermöge limc→∞ f(c) = 0 und

0 ≤ f ≤ 1

lim sup
n→∞

‖P ∗(b(1+ε)tnc)
n − UGn‖ ≤ inf

c∈R
lim

n→∞
‖P ∗(btn+cbnc)

n − UGn‖ = inf
c∈R

f(c) = 0.

Mit ‖P ∗(b(1+ε)tnc)
n − UGn‖ ≥ 0 folgt insgesamt

lim
n→∞

‖P ∗(b(1+ε)tnc)
n − UGn‖ = 0.

Analog erhalten wir

lim
n→∞

‖P ∗(b(1−ε)tnc)
n − UGn‖ = 1.

2.5 Obere und untere Schranke für die Totalva-

riation

Wir werden im nächsten Abschnitt zeigen, dass die Familie (Qn)n≥1 der GSR-

(2, n)-Mischmethoden, n ≥ 1, einen starken Cut-Off-Effekt mit Cut-Off-Zeiten
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((tn, bn)) = ((3
2
log2 n, 1))n≥1 besitzt, wobei log2 den Logarithmus zur Basis 2 be-

zeichne. Mit Blick auf Definition 2.4.2 bedeutet dies, dass für große Kartenstapel-

größen n eine Anzahl von b3
2
log2 nc Mischvorgängen hinreichend und notwendig

ist, um den Kartenstapel
”
gut durchzumischen“.

Die folgenden oberen und unteren Schranken für die Totalvariation

‖Q∗(m)
n − USn‖ nach m-maligem Mischen nach dem GSR-(2, n)-Shuffle gehen auf

Reeds [17] zurück und finden sich, abgesehen von der Asymptotik für die untere

Schranke, auch in [2], [9] und [16]. Sie gehören zu den zeitlich frühesten Ergebnis-

sen zum Riffle Shuffle und sind deswegen an dieser Stelle aufgeführt. Im Vergleich

zu den Resultaten von Bayer und Diaconis [6] besitzen sie jedoch nur geringe

Aussagekraft.

2.5.1 Satz (Untere Schranke). Seien m,n ∈ N. Dann gilt

‖Q∗(m)
n − USn‖ ≥ 1− 1

n!

2m∧n∑
r=1

An,r ∼
n→∞

1− Φ

(
(2m ∧ n)− n

2√
n
12

)
,

wobei Φ die Verteilungsfunktion der Standardnormalverteilung sei.

Beweis. Seien m,n ∈ N. Für alle A ⊂ Sn gilt

‖Q∗(m)
n − USn‖ ≥ |Q∗(m)

n (A)− USn(A)|.

Wählen wir A = supp(Q
∗(m)
n ), so folgt mit Korollar 2.2.7

‖Q∗(m)
n − USn‖ ≥ 1− | supp(Q

∗(m)
n )|

n!

= 1− |{π ∈ Sn |R(π) ≤ 2m ∧m}|
n!

= 1−
2m∧n∑
r=1

|{π ∈ Sn |R(π) = r}|
n!

= 1− 1

n!

2m∧n∑
r=1

An,r.

Den Nachweis für die asymptotische Aussage 1− 1
n!

∑2m∧n
r=1 An,r ∼ 1−Φ

(
(2m∧n)−n

2√
n
12

)
für n → ∞ erbringen wir an späterer Stelle und zwar im Beweis von Lemma
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2.6.6. Ersetzen wir dort in (2.6.20) h∗ durch (2m ∧ n) − n/2, so erhalten wir die

Behauptung.

Für den Beweis der oberen Schranke wird eine stark stationäre Stoppzeit für

den Qn-Random Walk konstruiert. Für die allgemeine Definition der Stoppzeit und

der stark stationären Stoppzeit verweisen wir auf die Abschnitte 3 und 18 in[4]. In

der Situation des Qn-Random Walks auf Sn reicht die folgende Definition aus.

2.5.2 Definition. Sei X = (Xm)m≥0 ein Qn-Random Walk auf einem messba-

ren Raum (Ω,A, P ) (mit eindeutig bestimmter stationärer Verteilung USn). Eine

messbare Abbildung T : Ω −→ N0 ∪ {∞} mit {T = m} ∈ σ(X0, . . . , Xm) für

m ≥ 0 heißt stark stationäre Stoppzeit, wenn sie die folgenden zwei Bedingungen

erfüllt:

(i) P (T <∞) = 1,

(ii) P (Xm = π | T = m) = USn({π}) für alle m ≥ 0 und π ∈ Sn.

2.5.3 Bemerkung. Sei T eine stark stationäre Stoppzeit für den Qn-Random

Walk X. Dann gilt für alle m ≥ 0

‖Q∗(m)
n − USn‖ ≤ P (T > m).

Beweis. Sei m ≥ 0 und A ⊂ Sn beliebig. Dann gilt nach Definition 2.5.2 (ii)

P (Xm ∈ A) = P (Xm ∈ A, T ≤ m) + P (Xm ∈ A, T > m)

= P (Xm ∈ A | T ≤ m)P (T ≤ m) + P (Xm ∈ A | T > m)P (T > m)

= USn(A)(1− P (T > m)) + P (Xm ∈ A | T > m)P (T > m)

= USn(A) + (P (Xm ∈ A | T > m)− USn(A))P (T > m).

Daraus folgt unmittelbar

‖Q∗(m)
n − USn‖ = ‖PXm − USn‖

= sup
A⊂Sn

‖PXm(A)− USn(A)‖

= sup
A⊂Sn

P (T > m)|P (Xm ∈ A | T > m)− USn(A)|

≤ P (T > m).
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Die folgende obere Schranke für die Totalvariation ‖Q∗(m)
n − USn‖ ist aus dem

”
Geburtstagsproblem“ bekannt. Aufgrund des geringen Nutzens der oberen

Schranke im Vergleich zu unseren späteren Ergebnissen, verzichten wir auf einen

detaillierten Beweis.

2.5.4 Satz (Obere Schranke). Seien m,n ∈ N. Dann gilt

‖Q∗(m)
n − USn‖ ≤ 1−

n∏
i=1

(
1− i

2m

)
.

Beweis. Wir werden für den Beweis das inverse Modell benutzten, jedoch mit einer

leichten Modifikation: Im inversen Modell (siehe (2.1.4)) haben wir die Mischme-

thode QI
a,n für B ⊂ Sn durch

QI
a,n(B) = UNn

0,a−1
(XI

a,n = π−1, π ∈ B)

definiert. Wir definieren wir nun die Mischmethode Q
I

a,n für B ⊂ Sn durch

Q
I

a,n(B)
def
= UNn

0,a−1
(XI

a,n = π, π ∈ B).

und Qn
def
= Q

I

2,n. Dann gilt mit I : Sn −→ Sn definiert durch I(π) = π−1, π ∈ Sn,

wegen (Q
I

n)I = QI
n unter Beachtung von (1.1.1) aus Symmetriegründen

‖Q∗(m)
n − USn‖ = ‖(QI

2,n)∗(m) − USn‖

= ‖(QI

2,n)∗(m) − USn‖

= ‖Q∗(m)

n − USn‖

für allem ≥ 0. Wir können also für die Abschätzung der Totalvariation auch das in-

verse Modell in obiger Form heranziehen. Wir konstruieren nun die stark stationäre

Stoppzeit T und erinnern daran, dass sich die Karten vor dem Mischen in der Rei-

henfolge (1, . . . , n) befinden. Im inversen Modell in obiger Form können wir nun die

sukzessiven Mischvorgänge wie folgt abbilden. Für denm-ten Mischvorgang wählen

wir ein n-Tupel x(m) = (x
(m)
1 , . . . , x

(m)
n ) als Realisation einer auf {0, 1}n Laplace-

verteilten Zufallsgröße X(m), markieren Karte i mit dem Wert x
(m)
i und mischen

die Karten gemäß der in (2.1.3) definierten Permutation π
x(m)− . Wir markieren

dabei die Werte in den einzelnen Mischvorgängen von links nach rechts auf jeder
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einzelnen Karte. Die Zufallsgrößen X(1), X(2), . . . seien stochastisch unabhängig.

Die Werte auf Karte i nach dem m-ten Mischvorgang sind dann gegeben durch das

m-Tupel y
(m)
i = (x

(1)
i , . . . , x

(m)
i ). Solange die Werte y

(k)
i und y

(k)
j für k ≤ m auf zwei

verschiedenen Karten i und j identisch sich, befinden sich die Karten in derselben

relativen Reihenfolge wie zu Beginn des ersten Mischvorgangs, da sie bei jedem

einzelnen Mischvorgang im selben Päckchen liegen. Wir wählen T als den ersten

Zeitpunkt m, zu dem die Tupel y
(m)
1 , . . . , y

(m)
n ∈ {0, 1}m bzw. die stochastisch un-

abhängigen und auf {0, 1}m Laplace-verteilten Zufallsgrößen Y
(m)
1 , . . . , Y

(m)
n paar-

weise verschieden sind. Dann ist T f.s. endlich und eine streng stationäre Stoppzeit:

Gegeben T = m sind alle Reihenfolgen Xm = (π(1), . . . , π(n)), π ∈ Sn des Kar-

tenstapels nach m Mischvorgängen gleich wahrscheinlich, da für zwei beliebige

Karten i, j aus Symmetriegründen π(i) > π(j) und π(i) < π(j) gleich wahrschein-

lich sind. Die Wahrscheinlichkeit P (T > m), dass die Zufallsgrößen Y
(m)
1 , . . . , Y

(m)
n

nicht paarweise verschieden sind, kann dann analog zum
”
Geburtagsproblem“ be-

rechnet werden: Es gibt 2m mögliche {0, 1}m-wertige m-Tupel (Geburtstage), von

diesen müssen bei n zufällig ausgewählten Tupeln (Personen) mindestens zwei

übereinstimmen. Für die gesuchte Wahrscheinlichkeit gilt dann

P (T > m) = 1−
n−1∏
i=1

(
1− i

2m

)
.

Aldous und Diaconis zeigen in [2], dass mit kn
def
= b2 log2 nc

‖Q∗(kn)
n − USn‖ ≤ P (T > kn) −→

n→∞
1− e−1/2 ≈ 0, 3935

gilt. Sei dxe die obere Gauss-Klammer von x ∈ R. Für die untere Schranke der

Totalvariation aus Satz 2.5.1 gilt bereits mit mn
def
= dlog2 ne wegen 2mn ≥ n und∑n

r=1An,r = n!

‖Q∗(mn)
n − USn‖ ≥ 1− 1

n!

2m∧n∑
r=1

An,r = 0.

Es zeigt sich, dass die obere und untere Schranke für die Feststellung des Cut-Off-

Effekts ungeeignet sind. In Tabelle 2.3 sind die Werte der Totalvariation

‖Q∗(m)
n −USn‖ und der oberen und unteren Schranke für n = 52 und m = 1, . . . , 10

aufgelistet.
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m 1 2 3 4 5 6 7 8 9 10

obere 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.931 0.732

52 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.085 0.043

untere 1.000 1.000 1.000 0.999 0.002 0.000 0.000 0.000 0.000 0.000

Tabelle 2.3: Obere und untere Schranke für ‖Q∗(m)
52 − US52‖ und m = 1, . . . , 10.

2.6 Nachweis des Cut-Off-Effekts für den Riffle

Shuffle

Wir zeigen in diesem Abschnitt den starken Cut-Off-Effekt mit Cut-Off-Zeiten

((3
2
log2 n, 1))n≥1 für die Familie (Qn)n≥1 der GSR-(2, n)-Mischmethoden, wobei

log2 den Logarithmus zur Basis 2 bezeichne. Bevor wir den Cut-Off-Effekt am Ende

dieses Abschnitts nachweisen können, benötigen wir einige Hilfmittel. Zunächst

geben wir eine Approximation für die in (2.2.6) bestimmte Wahrscheinlichkeit an,

dass m sukzessive GSR-(2, n)-Shuffle in der Permutation π resultieren.

Ist m eine beliebige Anzahl von Mischvorgängen eines Kartenstapels mit n

Karten, so können wir m darstellen als

m = blog2(n
3/2)c+ j

mit einer ganzen Zahl j ≥ −blog2(n
3/2)c. j beschreibt also die Anzahl der Misch-

vorgänge vor bzw. nach blog2(n
3/2)c. Wählen wir nun θn ∈ [0, 1) mit

blog2(n
3/2)c+ θn = log2(n

3/2)

und c
def
= 2j, so erhalten wir

m = blog2(n
3/2)c+ j

= log2(n
3/2)− θn + j

= log2(n
3/22j)− θn

= log2(n
3/2c)− θn.

Wir können nun eine Umparametrisierung der Anzahl der Mischvorgänge vorneh-

men, indem wir sie beschreiben durch die Menge

Z
def
= {c = 2j | j ∈ Z}.



2.6 Nachweis des Cut-Off-Effekts für den Riffle Shuffle 59

Für m = log2(n
3/2c)− θn < 0 setzen wir Q

∗(m)
n = Q

∗(0)
n = δid.

2.6.1 Satz. Sei n ≥ 1, c ∈ Z, m = mn,c = blog2(n
3/2c)c, π ∈ Sn mit R(π) = r ≤

2m ∧ n und hn,r ∈ R gegeben durch r = n
2

+ hn,r. Dann gilt

Q∗(m)
n ({π}) =

1

n!
exp

(
1

c
√
n

(
−hn,r +

1

2
+fn

)
− 1

24c2
− 1

2

(
hn,r

cn

)2

+gn

)
, (2.6.1)

wobei fn ∈ Oc

(
hn,r

n

)
und gn ∈ Oc

(
1
n

)
.

Beweis. Seien zunächst n ∈ N und c ∈ Z fest und r ≤ 2m ∧ n. Wir wählen

θn ∈ [0, 1) wie oben mit m = log2(n
3/2c)−θn. Nach (2.2.6) erhalten wir zusammen

mit r = n
2

+ hn,r und 2m = cn3/22−θn

Q∗(m)
n ({π}) =

(
n+ 2m −R(π)

n

)
1

2mn

=
1

n!

(
2m + n− r

2m
· · · 2

m + 1− r

2m

)
=

1

n!
exp

( n∑
i=1

log

(
1 +

i− r

2m

))

=
1

n!
exp

( n−1∑
i=0

log

(
1 +

n− i− r

2m

))

=
1

n!
exp

( n−1∑
i=0

log

(
1 +

(n/2)− hn,r − i

cn3/22−θn

))
. (2.6.2)

Mittels einer Taylor-Entwicklung erhalten wir für alle x ∈ (−1
2
, 1)

x− x2

2
+
x3

3
− x4 ≤ log(1 + x) ≤ x− x2

2
+
x3

3
. (2.6.3)

Um die obige Abschätzung auf (2.6.2) anwenden zu können, müssen wir nun c ∈ Z

so groß wählen, dass

−1

2
<

(n/2)− hn,r − i

cn3/22−θn
< 1 (2.6.4)

für r = 1, . . . , n und i = 0, . . . , n− 1 gilt. Wegen θn ∈ [0, 1) gilt∣∣∣∣(n/2)− hn,r − i

cn3/22−θn

∣∣∣∣ =

∣∣∣∣ r − i

cn3/22−θn

∣∣∣∣ ≤ 2θn

cn1/2
<

2

cn1/2
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für r = 1, . . . , n und i = 0, . . . , n − 1. Wählen wir nun c ≥ 4n−1/2, so erhalten

wir (2.6.4). Wir können also (2.6.3) auf (2.6.2) anwenden und erhalten wegen

| (n/2)−hn,r−i

cn3/22−θn
| > | (n/2)−hn,r−i

cn3/2 | für alle c ≥ 4n−1/2

Q∗(m)
n ({π}) ≤ 1

n!
exp

(
1

cn3/2

n−1∑
i=0

(n
2
− hn,r − i

)
− 1

2c2n3

n−1∑
i=0

(n
2
− hn,r − i

)2

+
1

3c3n9/2

n−1∑
i=0

(n
2
− hn,r − i

)3
)
,

(2.6.5)

Q∗(m)
n ({π}) ≥ 1

n!
exp

(
1

cn3/2

n−1∑
i=0

(n
2
− hn,r − i

)
− 1

2c2n3

n−1∑
i=0

(n
2
− hn,r − i

)2

+
1

3c3n9/2

n−1∑
i=0

(n
2
− hn,r − i

)3

− 1

c4n6

n−1∑
i=0

(n
2
− hn,r − i

)4
)
.

(2.6.6)

Zusammen mit
∑n−1

i=1 i = n(n−1)
2

,
∑n−1

i=1 i
2 = n(n−1)(2n−1)

6
,
∑n−1

i=1 i
3 = n2(n−1)2

4
und∑n−1

i=1 i
4 = n(n−1)(2n−1)(3n(n−1)−1)

30
ergibt sich

1

cn3/2

n−1∑
i=0

(n
2
− hn,r − i

)
=
−hn,r + 1

2

c
√
n

,

1

2c2n3

n−1∑
i=0

(n
2
− hn,r − i

)2

=
1

24c2
+

1

2

(
hn,r

cn

)2

+
1− 6hn,r

12c2n2
,

1

3c3n9/2

n−1∑
i=0

(n
2
− hn,r − i

)3

=
−1

4
n3hn,r − nh3

n,r + 1
8
n3 + 3

2
nh2

n,r − 1
2
nhn,r

3c3n9/2

=
1− 2hn,r

24c3n3/2
−

2h3
n,r − 3h2

n,r + hn,r

6c3n7/2
, (2.6.7)

1

c4n6

n−1∑
i=0

(n
2
− hn,r − i

)4

=
3n4 + 20n2(6h2

n,r − 6hn,r + 1)− 8

240c4n5

+
h4

n,r − 2h3
n,r + h2

n,r

c4n5
.
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Definieren wir

g1,n
def
=

1− 6hn,r

12c2n2
,

f 1,n
def
=

1

3c3n9/2

n−1∑
i=0

(n
2
− hn,r − i

)3

,

g2,n
def
=

1

c4n6

n−1∑
i=0

(n
2
− hn,r − i

)4

und

g3,n
def
= g1,n + g2,n,

so gilt f 1,n ∈ Oc

(
hn,r

n3/2

)
und g1,n, g2,n, g3,n ∈ Oc

(
1
n

)
. Unter Benutzung der obigen

Gleichungen folgt aus (2.6.5) und (2.6.6) mit fn
def
= c

√
nf 1,n ∈ Oc

(
hn,r

n

)
für alle

c ≥ 4n−1/2

Q∗(m)
n ({π}) ≤ 1

n!
exp

(−hn,r + 1
2

c
√
n

− 1

24c2
− 1

2

(
hn,r

cn

)2

− g1,n + f 1,n

)
=

1

n!
exp

(
1

c
√
n

(
− hn,r +

1

2
+ fn

)
− 1

24c2
− 1

2

(
hn,r

cn

)2

− g1,n

)
,

Q∗(m)
n ({π}) ≥ 1

n!
exp

(−hn,r + 1
2

c
√
n

− 1

24c2
− 1

2

(
hn,r

cn

)2

− g3,n + f 1,n

)
=

1

n!
exp

(
1

c
√
n

(
− hn,r +

1

2
+ fn

)
− 1

24c2
− 1

2

(
hn,r

cn

)2

− g3,n

)
.

Insgesamt ergibt sich schließlich wegen g1,n, g3,n ∈ O
(

1
n

)
Q∗(m)

n ({π}) =
1

n!
exp

(
1

c
√
n

(
− hn,r +

1

2
+ fn

)
− 1

24c2
− 1

2

(
hn,r

cn

)2

+ gn

)
mit fn ∈ Oc

(
hn,r

n

)
und gn ∈ Oc

(
1
n

)
.

Sei m ∈ N. Für den Variationsabstand von Q
∗(m)
n und USn gilt

‖Q∗(m)
n − USn‖ =

1

2

∑
π∈Sn

∣∣∣Q∗(m)
n ({π})− 1

n!

∣∣∣
= sup

A⊂Sn

|Q∗(m)
n (A)− USn(A)|.
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Dabei wird das Supremum für die Menge

An,m
def
=

{
π ∈ Sn

∣∣∣Q∗(m)
n ({π}) ≥ 1

n!

}
angenommen. Da Q

∗(m)
n ({π}) nach (2.2.6) jedoch nur über R(π) von π abhängt

und monoton fallend in R(π) ist, gilt

An,m = {π ∈ Sn |R(π) ≤ r∗} ,

wobei r∗ definiert sei durch

Q∗(m)
n ({π}) ≥ 1

n!
⇐⇒ R(π) ≤ r∗.

Sei hn,R(π) wie in Satz 2.6.1 gegeben durch R(π) = n
2

+ hn,R(π) und h∗
def
= hn,r∗ =

r∗ − n
2
. Dann erhalten wir

Q∗(m)
n ({π}) ≥ 1

n!
⇐⇒ hn,R(π) ≤ h∗ und (2.6.8)

An,m =
{
π ∈ Sn | hn,R(π) ≤ h∗

}
.

Der Variationsabstand von Q
∗(m)
n und USn kann somit, unter Beachtung von −n

2
+

1 ≤ hn,r ≤ n
2

für r = 1, . . . , n, wie folgt berechnet werden

‖Q∗(m)
n − USn‖ = Q∗(m)

n (An,m)− USn(An,m)

=
∑

π∈An,m

(
Q∗(m)

n ({π})− USn({π})
)

=
∑

1≤r≤r∗

∑
π∈Rn,r

(
Q∗(m)

n ({π})− 1

n!

)
=
∑

1≤r≤r∗

An,r

(
q∗(m)
n (r)− 1

n!

)
=

∑
−n

2
+1≤h≤h∗

An,h+n
2

(
q∗(m)
n

(
h+

n

2

)
− 1

n!

)
, (2.6.9)

wobei An,h+n
2

die Eulerschen Zahlen sind mit An,h+n
2

= 0 für alle −n
2

+ 1 ≤ h ≤ n
2

mit h+ n
2
/∈ {1, . . . , n} und q

∗(m)
n (r) für r = 1, . . . , n definiert sei durch

q∗(m)
n (r)

def
=

(
n+ 2m − r

n

)
1

2mn
.

Der nächste Satz gibt Auskunft über die Gestalt von h∗. Zuvor notieren wir aller-

dings noch das folgende Lemma.
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2.6.2 Lemma. Gegeben sei die Situation von Satz 2.6.1. Dann gilt

fn =
1

12c2
+ G1,n + G2,n, (2.6.10)

wobei G1,n ∈ Oc

(
1
n

)
und G2,n ∈ Oc(1).

Beweis. In der Situation von Satz 2.6.1 gilt nach (2.6.7) wegen fn = c
√
nf 1,n mit

h = hn,r

fn =
1− 2h

24c2n
− 2h3 − 3h2 + h

6c2n3
.

Wegen h = r − n
2

erhalten wir daraus

fn =
1− 2(r − n

2
)

24c2n
−

2(r − n
2
)3 − 3(r − n

2
)2 + (r − n

2
)

6c2n3

=
1

24c2
+

1− 2r

24c2n
−

(r − n
2
)3

3c2n3
+

3(r − n
2
)2 − (r − n

2
)

6c2n3
. (2.6.11)

Wir betrachten nun die einzelnen Terme in (2.6.11). Zunächst setzen wir

G1,n
def
=

3(r − n
2
)2 − (r − n

2
)

6c2n3
und

G3,n
def
=

1− 2r

24c2n
.

Wegen 1 ≤ r ≤ n erhalten wir G1,n ∈ Oc

(
1
n

)
und G3,n ∈ Oc(1). Ferner gilt

−
(r − n

2
)3

3c2n3
= − 1

3c2

(
r

n
− 1

2

)3

= − 1

3c2

(
r3

n3
− 3r2

2n2
+

3r

4n
− 1

8

)
=

1

24c2
− 1

3c2

(
r3

n3
− 3r2

2n2
+

3r

4n

)
=

1

24c2
+ G4,n,

wobei G4,n
def
= − 1

3c2

(
r3

n3 − 3r2

2n2 + 3r
4n

)
∈ Oc (1). Setzen wir nun noch

G2,n
def
= G3,n + G4,n,

so folgt insgesamt

fn =
1

12c2
+ G1,n + G2,n

mit G1,n ∈ Oc

(
1
n

)
und G2,n ∈ Oc(1).
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Wir kommen nun zu dem bereits angekündigten Resultat über h∗. Es besagt,

dass h∗ von der Form h∗ = −
√

n
24c

+Oc(1) ist.

2.6.3 Satz. Sei n ≥ 1, c ∈ Z, m = mn,c = log2(n
3/2c)−θn, π ∈ Sn und h∗ definiert

durch (2.6.8), das heißt

Q∗(m)
n ({π}) ≥ 1

n!
⇐⇒ R(π)− n

2
≤ h∗.

Dann gilt

h∗ = −
√
n

24c
+

1

12c2
+

1

2
+ F n + Gn, (2.6.12)

wobei F n ∈ Oc

(
1√
n

)
und Gn ∈ Oc (1).

Beweis. Sei c ∈ Z fest und π ∈ Sn mit R(π) = r ≤ 2m ∧ n. In der Situation

von Satz 2.6.1 setzen wir wieder h = hn,r. Dann ist Q
∗(m)
n ({π}) ≥ 1

n!
nach (2.6.1)

äquivalent zu

1

c
√
n

(
− h+

1

2
+ fn

)
− 1

24c2
− 1

2

(
h

cn

)2

+ gn ≥ 0,

wobei fn ∈ Oc

(
hn,r

n

)
und gn ∈ Oc

(
1
n

)
. Setzen wir den Exponenten in (2.6.1)

gleich 0 so erhalten wir

0 =
1

c
√
n

(
− h+

1

2
+ fn

)
− 1

24c2
− 1

2

(
h

cn

)2

+ gn

⇐⇒ h = −
√
n

24c
+

1

2
+ fn −

h2

2cn3/2
+ c

√
ngn. (2.6.13)

Wir können nun h iterativ in zwei Schritten ermitteln, indem wir h bzw. den Term

− h2

2cn3/2 in (2.6.13) wiederholt nach oben und unten abschätzen. Als obere Schranke

von − h2

2cn3/2 werden wir dabei 0 wählen.

Wegen −n
2

+ 1 ≤ h ≤ n
2

gilt −h2 ≥ −n2

4
und somit nach (2.6.13) unter Beach-

tung von c > 0

h ≥ −
√
n

24c
+

1

2
+ fn −

n2

8cn3/2
+ c

√
ngn

= −
√
n

24c
+

1

2
+ fn −

√
n

8c
+ c

√
ngn

= −
√
n

6c
+

1

2
+ fn + c

√
ngn.
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Zusammen mit h ≤ −
√

n
24c2

+ 1
2
+ fn + c

√
ngn erhalten wir dann den ersten Iterati-

onsschritt

−
√
n

6c
+

1

2
+ fn + c

√
ngn ≤ h ≤ −

√
n

24c
+

1

2
+ fn + c

√
ngn. (2.6.14)

Wir setzen F 1,n
def
= 1

2
+fn + c

√
ngn. Dann ist F 1,n ∈ Oc

(
h
n

)
und nach (2.6.14) gilt

h2 ≤ max

{(
F 1,n −

√
n

24c

)2

,

(
F 1,n −

√
n

6c

)2
}

def
= F n,max,

wobei F n,max ∈ Oc (n). Daraus folgt

0 ≥ − h2

2cn3/2

≥ − 1

2cn3/2
F n,max

def
= − F 2,n

mit F 2,n ∈ Oc

(
1√
n

)
. Dann erhalten wir wiederum zusammen mit (2.6.13) den

zweiten Iterationsschritt

−
√
n

24c
+

1

2
+ fn − F 2,n + c

√
ngn ≤ h ≤ −

√
n

24c
+

1

2
+ fn + c

√
ngn. (2.6.15)

Vermöge Lemma 2.6.2 gilt fn = 1
12c2

+ Gn mit Gn ∈ Oc (1) und somit

−
√
n

24c
+

1

2
+

1

12c2
+ Gn − F 2,n + c

√
ngn ≤ h ≤ −

√
n

24c
+

1

2
+

1

12c2
+ Gn + c

√
ngn.

Insgesamt gilt somit wegen c
√
ngn ∈ Oc

(
1√
n

)
h = −

√
n

24c
+

1

2
+

1

12c2
+ Gn + F n

für ein F n ∈ Oc

(
1√
n

)
und Gn ∈ Oc (1). Dies bedeutet, dass h∗ von der gewünsch-

ten Gestalt in (2.6.12) ist.

Wir werden nun Approximationen für die in der Totalvariation

‖Q∗(m)
n − USn‖ =

∑
−n

2
+1≤h≤h∗

An,h+n
2

(
q∗(m)
n

(
h+

n

2

)
− 1

n!

)



66 Kapitel 2 Der Riffle Shuffle

auftretenden Terme 1
n!
An,h+n

2
für −n

2
+ 1 ≤ h ≤ n

2
und

∑
−n

2
+1≤h≤h∗

1
n!
An,h+n

2
für

n→∞ angeben.

Wir beginnen mit dem Term 1
n!
An,h+n

2
. Das folgende Lemma entstammt [23]

(Proposition 2, Teil (ii) und (iii)). Der zweite Teil ergibt sich allerdings aus einer

Modifikation des dortigen Beweises von Proposition 2 (iii). Zur Vollständigkeit

geben wir die Beweise für beide Teile an.

2.6.4 Lemma. Sei n ∈ N.

(i) Für x > 0 und xn
def
= x

√
n
12

+ n
2

gilt

lim
n→∞

√
n

12

1

n!
An,bxnc = φ(x)

def
=

1√
2π

e−x2/2.

(ii) Für −n
2

+ 1 ≤ h ≤ n
2

mit h+ n
2
∈ N gilt

1

n!
An,h+n

2
=

√
6

πn
exp

−1

2

(
h√

n
12

)2
+ Rn,

wobei Rn ∈ o
(

1
n

)
.

Beweis. Seien X1, . . . , Xn stochastisch unabhängige und identisch R(0, 1)-verteilte

Zufallsgrößen, Sn
def
=
∑n

i=1Xi und Fn die Verteilungsfunktion von Sn. Es gilt

ESn = n/2 und V arSn = n/12. Wir definieren die Standardisierung von Sn durch

Tn
def
=
Sn − n

2√
n
12

.

Dann gilt für die Verteilungsfunktion Gn von Tn und alle x ∈ R nach dem zentralen

Grenzwertsatz

Gn(x) = Fn

(
x

√
n

12
+
n

2

)
−→
n→∞

Φ(x)
def
=

∫ x

−∞

1√
2π

e−t2/2dt.

zu (i): Sei x > 0 beliebig, xn
def
= x

√
n
12

+ n
2
, an = an(x)

def
= xn − bxnc und

n ≥ x2/3. Dann gilt xn ≤ n. Nach Satz 2.3.1 folgt vermöge

Fn(x) = Gn

(
x− n

2√
n
12

)
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für alle x ∈ R und dem Mittelwertsatz der Differentialrechnung

1

n!
An,bxnc = Fn(bxnc)− Fn(bxnc − 1)

= Fn(xn − an)− Fn(xn − (1 + an))

= Gn

(
x− an

√
12

n

)
−Gn

(
x− (1 + an)

√
12

n

)

=

√
12

n
G′

n(yn)

mit x − (1 + an)
√

12
n
< yn < x − an

√
12
n

. Sei gn die Dichte der standardisierten

Zufallsgröße Tn. Dann giltG′
n(x) = gn(x) für alle x ∈ R. Mit Hilfe einer Edgeworth-

Entwicklung (Theorem 1, Abschnitt XVI.2 in [11]) erhalten wir für n→∞

gn(x)− φ(x) = o

(
1√
n

)
(2.6.16)

gleichmäßig in x. Hierbei beachten wir ET 3
1 = 0 und die quadratische Integrier-

barkeit der charakteristischen Funktion von T1. Daraus erhalten wir

lim
n→∞

√
n

12

1

n!
An,bxnc = lim

n→∞
G′

n(yn)

= lim
n→∞

gn(yn)

=
1√
2π

e−x2/2.

zu (ii): Nach Theorem 1, Abschnitt I.9 in [11] besitzt Sn+1 die Lebesque-Dichte

(λλ-Dichte) fn+1 mit

fn+1(x) =
1

n!

bxc∑
i=0

(−1)i

(
n+ 1

i

)
(x− i)n1(0,n+1)(x) (2.6.17)

für x ∈ R. Sei −n
2

+ 1 ≤ h ≤ n
2

mit h+ n
2
∈ N. Dann gilt xn

def
= h+ n

2
≤ n und mit

(2.3.5) und (2.6.17) folgt

1

n!
An,xn = Fn(xn)− Fn(xn − 1)

=
1

n!

xn∑
i=0

(−1)i

(
n+ 1

i

)
(xn − i)n

= fn+1(xn). (2.6.18)
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Für die Dichten fn+1 von Sn+1 und gn+1 von Tn+1 =
(
Sn+1 − n+1

2

)
/
√

n+1
12

gilt

nach dem Transformationssatz die Beziehung

fn+1(x) =

√
12

n+ 1
gn+1

xn − n+1
2√

n+1
12

 ,

woraus mit (2.6.18)

1

n!
An,xn =

√
12

n+ 1
gn+1

xn − n+1
2√

n+1
12


folgt. Mit Hilfe von (2.6.16) erhalten wir für n→∞

gn+1(x)− φ(x) = o

(
1√
n+ 1

)
= o

(
1√
n

)
(2.6.19)

gleichmäßig in x. Aus (2.6.19) erhalten wir dann unter Beachtung von√
12

n+1
o
(

1√
n

)
= o

(
1
n

)
und

√
12

n+ 1
φ

xn − n+1
2√

n+1
12

 =

√
12

n+ 1
φ

 h− 1
2√

n+1
12


=

√
12

n
φ

(
h√

n
12

)
+ o

(
1

n

)
insgesamt

1

n!
An,bxnc =

√
12

n+ 1
φ

xn − n+1
2√

n+1
12

+

√
12

n+ 1
o

(
1√
n

)

=

√
12

n
φ

(
h√

n
12

)
+ o

(
1

n

)

=

√
12

n

1√
2π

exp

−1

2

(
h√

n
12

)2
+ o

(
1

n

)

=

√
6

πn
exp

−1

2

(
h√

n
12

)2
+ o

(
1

n

)
.
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Bayer und Diaconis behaupten in [6], dass sich die Asymptotik in Lemma 2.6.4

(ii) unter Benutzung derselben Quellen noch verschärfen lässt:

2.6.5 Lemma. Sei n ∈ N. Für −n
2

+ 1 ≤ h ≤ n
2

mit h+ n
2
∈ N gilt

1

n!
An,h+n

2
=

√
6

πn
exp

−1

2

(
h√

n
12

)2
 (1 + Rn),

wobei Rn ∈ o
(

1√
n

)
.

Mit Hilfe des obigen Lemmas zeigen Bayer und Diaconis [6] Theorem 2.6.8.

Wir werden jedoch einen anderen Weg einschlagen (vergleiche den Beweis von

Theorem 4, Abschnitt 4 in [6] und den Beweis von Gleichung (2.6.22) im Beweis

von Theorem 2.6.8). Zunächst benötigen wir das folgende Lemma, das Auskunft

über das Verhalten der Summe
∑

−n
2
+1≤h≤h∗

1
n!
An,h+n

2
für n→∞ gibt, wobei nach

Satz 2.6.3 h∗ = −
√

n
24c

+Oc(1) gilt.

2.6.6 Lemma. Sei n ∈ N und Φ die Verteilungsfunktion der Standardnormalver-

teilung. Dann gilt ∑
−n

2
+1≤h≤h∗

1

n!
An,h+n

2
= Φ

(
− 1

4c
√

3

)
+ Sn,

wobei Sn ∈ Oc

(
1√
n

)
.

Beweis. Wie im Beweis von Lemma 2.6.4 sei wiederum Sn die Summe von n sto-

chastisch unabhängigen und identisch R(0, 1)-verteilten Zufallsgrößen, Fn die Ver-

teilungsfunktion von Sn,

Tn =
Sn − n

2√
n
12

die Standardisierung von Sn und Gn die Verteilungsfunktion von Tn. Durch In-

tegration der Edgeworth-Entwicklung (2.6.19) der Dichte gn von Tn (siehe auch

(4.1), Abschnitt XVI.4 in [11]) erhalten wir für n→∞

Gn(x)− Φ(x) = o

(
1√
n

)
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gleichmäßig in x. Dann gilt vermöge Fn(x) = Gn

((
x− n

2

)
/
√

n
12

)
für alle x ∈ R

und (2.3.4) für n→∞∑
−n

2
+1≤h≤h∗

1

n!
An,h+n

2
=

∑
−n

2
+1≤h≤h∗

(
Fn

(
h+

n

2

)
− Fn

(
h+

n

2
− 1
))

= Fn

(
h∗ +

n

2

)
− Fn(0)

= Gn

(
h∗√

n
12

)

= Φ

(
h∗√

n
12

)
+ o

(
1√
n

)
. (2.6.20)

Wegen h∗ = −
√

n
24c

+Oc(1) gilt

h∗√
n
12

= − 1

2c
√

12
+Oc

(
1√
n

)
= − 1

4c
√

3
+Oc

(
1√
n

)
und somit für n→∞∑

−n
2
+1≤h≤h∗

1

n!
An,h+n

2
= Φ

(
− 1

4c
√

3
+Oc

(
1√
n

))
+ o

(
1√
n

)

= Φ

(
− 1

4c
√

3

)
+Oc

(
1√
n

)
+ o

(
1√
n

)
= Φ

(
− 1

4c
√

3

)
+Oc

(
1√
n

)
,

dabei geht in der zweiten Zeile der Mittelwertsatz der Differentialrechnung ein.

Das nächste Lemma ist wiederum technischer Natur.

2.6.7 Lemma. Für n ∈ N sei Sn die Summe von n stochastisch unabhängigen

und identisch R(0, 1)-verteilten Zufallsgrößen X1, . . . , Xn und

Tn =
Sn − n

2√
n
12

die Standardisierung von Sn. Dann gelten die folgenden Aussagen:

(a) Die Familie (exp(aTn))n∈N ist für jedes a ∈ R gleichgradig integrierbar.



2.6 Nachweis des Cut-Off-Effekts für den Riffle Shuffle 71

(b) Sei Gn die Verteilungsfunktion von Tn und (xn)n≥1 eine reelle Folge mit

limn→∞ xn/
√
n = 0, das heißt xn ∈ o(

√
n). Dann gilt

lim
n→∞

1−Gn(xn)

1− Φ(xn)
= lim

n→∞

Gn(−xn)

Φ(−xn)
= 1,

wobei Φ die Verteilungsfunktion der Standardnormalverteilung sei.

Beweis. zu (a): Für a = 0 ist nichts zu zeigen. Sei daher a 6= 0 beliebig. Nach

Korollar 50.3. (e) in [3] ist (exp(aTn))n∈N gleichgradig integrierbar, falls ein p > 1

existiert mit

sup
n∈N

E| exp(aTn)|p <∞.

Wegen | exp(aTn)|p = exp(paTn) für alle p ∈ R reicht es daher zu zeigen

sup
n∈N

E exp(aTn) <∞.

Sei ψ die momenterzeugende Funktion von X1, das heißt ψ(t) = E exp(tX1), t ∈ R.

Es gilt ψ(0) = 1 und für t 6= 0

ψ(t) =

∫ 1

0

etxdx =
et − 1

t
.

Dann erhalten wir für n ≥ 1, da X1, . . . , Xn stochastisch unabhängig und identisch

verteilt sind, mit b
def
= a

√
12 für n ≥ 1

E exp(aTn) = E exp

(
a

(
Sn − n

2√
n
12

))

= E exp

(
n∑

k=1

(
a
√

12√
n

Xk −
a
√

12

2
√
n

))

=

(
exp

(
− b

2
√
n

)
E exp

(
b√
n
X1

))n

=

(
exp

(
− b

2
√
n

)
ψ

(
b√
n

))n

=

exp

(
− b

2
√
n

) exp
(

b√
n

)
− 1

b√
n

n
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=

exp
(

b
2
√

n

)
− exp

(
− b

2
√

n

)
b√
n

n

.

Mittels der Taylor-Entwicklungen

exp

(
b

2
√
n

)
= 1 +

b

2
√
n

+
b2

8n
+

b3

48n3/2
+ o

(
1

n3/2

)
,

exp

(
− b

2
√
n

)
= 1− b

2
√
n

+
b2

8n
− b3

48n3/2
+ o

(
1

n3/2

)
ergibt sich daraus

lim
n→∞

E exp(aTn) = lim
n→∞

(
b√
n

+ b3

24n3/2 + o
(

1
n3/2

)
b√
n

)n

= lim
n→∞

(
1 +

1

n

(
b2

24
+ o (1)

))n

= exp

(
b2

24

)
= exp

(
a2

2

)
<∞.

Dann folgt supn∈NE exp(aTn) <∞, was wir beweisen mussten.

zu (b): Die Aussage ist ein Spezialfall von Theorem 2, Gleichung (7.28), Ab-

schnitt XVI.7 in [11]. In unserer Situation gilt dort λ1 = 0 wegen µ3 = ET 3
1 = 0.

Die Behauptung folgt dann aus der Gültigkeit von 1 − Gn(x) = Gn(−x) und

1− Φ(x) = Φ(−x) für alle x ∈ R und n ≥ 1.

Wir kommen nun zur Hauptaussage dieses Abschnitts, mit Hilfe derer wir nach-

weisen, dass die Familie (Qn)n≥1 der GSR-(2, n)-Mischmethoden einen starken

Cut-Off-Effekt mit Cut-Off-Zeiten ((3
2
log2 n, 1))n≥1 besitzt. Wir erinnern daran,

dass Q
∗(m)
n = Q

∗(0)
n = δid für m < 0 gesetzt war.

2.6.8 Theorem. Sei c ∈ Z = {2j | j ∈ Z} und mn = mn,c = blog2(n
3/2c)c für

n ∈ N. Dann gilt

lim
n→∞

‖Q∗(mn)
n − USn‖ = 1− 2Φ

(
− 1

4c
√

3

)
,

wobei Φ die Verteilungsfunktion der Standardnormalverteilung sei.
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Beweis. Sei n ≥ 1, c ∈ Z, mn = blog2(n
3/2c)c. Nach (2.6.9) gilt

‖Q∗(mn)
n − USn‖ =

∑
−n

2
+1≤h≤h∗

An,h+n
2

(
q∗(mn)
n

(
h+

n

2

)
− 1

n!

)
=

∑
−n

2
+1≤h≤h∗

An,h+n
2
q∗(mn)
n

(
h+

n

2

)
−

∑
−n

2
+1≤h≤h∗

1

n!
An,h+n

2
,

(2.6.21)

wobei q
∗(mn)
n

(
h+ n

2

)
gegeben ist durch

q∗(mn)
n

(
h+

n

2

)
=

(
n+ 2mn −

(
h+ n

2

)
n

)
1

2mnn
.

Aufgrund von unserer Definition An,r = 0 für r 6= 1, . . . , n, sei im Folgenden h+ n
2

stets ganzzahlig. Nach Lemma 2.6.6 gilt für den zweiten Summanden in (2.6.21)

lim
n→∞

∑
−n

2
+1≤h≤h∗

1

n!
An,h+n

2
= Φ

(
− 1

4c
√

3

)
. (2.6.22)

Wir betrachten nun den ersten Summanden in (2.6.21). Zunächst setzen wir

I1
n

def
=

{
h
∣∣∣ − 10n3/4

√
c

≤ h ≤ h∗
}

und

I2
n

def
=

{
h
∣∣∣ − n

2
+ 1 ≤ h < −10n3/4

√
c

}
,

dabei sei n so groß, dass I1
n, I

2
n 6= ∅.

Wir betrachten zunächst∑
h∈I1

n

An,h+n
2
q∗(mn)
n

(
h+

n

2

)
.

Sei Sn die Summe von n stochastisch unabhängigen und identisch R(0, 1)-

verteilten Zufallsgrößen und

Tn =
Sn − n

2√
n
12

die Standardisierung von Sn. Nach Satz 2.3.1 gilt für alle h

1

n!
An,h+n

2
= P

(
h+

n

2
− 1 < Sn ≤ h+

n

2

)
. (2.6.23)
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Für h ∈ I1
n, also −10n3/4

√
c

≤ h ≤ h∗ = −
√

n
24c

+Oc(1), gilt ferner

− 10

n1/4c3/2
≤ h

cn
≤ − 1

24c2
√
n

+Oc

(
1

n

)
und damit für alle h ∈ I1

n

1

2c
√
n

+Oc

(
1√
n

)
− 1

2

(
h

cn

)2

+Oc

(
1

n

)
= Oc

(
1√
n

)
.

Insgesamt erhalten wir daraus weiter unter Benutzung von Satz 2.6.1 und (2.6.23)

∑
h∈I1

n

An,h+n
2
q∗(mn)
n

(
h+

n

2

)
=
∑
h∈I1

n

1

n!
An,h+n

2
n! q∗(mn)

n

(
h+

n

2

)
=
∑
h∈I1

n

1

n!
An,h+n

2
exp

(
1

c
√
n

(
−h+

1

2
+Oc

(
h
n

))
− 1

24c2
− 1

2

(
h

cn

)2

+Oc

(
1
n

))

= exp

(
−1

24c2

)∑
h∈I1

n

An,h+n
2

n!
exp

(
− h

c
√
n

+ 1
2c
√

n
+Oc

(
1√
n

)
− 1

2

(
h
cn

)2
+Oc

(
1
n

))

= exp

(
−1

24c2

)∑
h∈I1

n

1

n!
An,h+n

2
exp

(
− h

c
√
n

+Oc

(
1√
n

))

= exp

(
−1

24c2

)∑
h∈I1

n

P
(
h+

n

2
− 1 < Sn ≤ h+

n

2

)
exp

(
− h

c
√
n

+Oc

(
1√
n

))

= exp

(
−1

24c2

)∑
h∈I1

n

P

(
h− 1√

n
12

< Tn ≤
h√

n
12

)
exp

(
− h

c
√
n

+Oc

(
1√
n

))

= exp

(
−1

24c2

)
E

∑
h∈I1

n

1{
h−1√
n/12

<Tn≤ h√
n/12

} exp

(
− h

c
√
n

) e
Oc

(
1√
n

)

= exp

(
−1

24c2

)
E

∑
h∈I1

n

1{
h−1√
n/12

<Tn≤ h√
n/12

} exp

(
− 1

c
√

12

h√
n
12

) e
Oc

(
1√
n

)
.

(2.6.24)

Für h ∈ I1
n gilt auf der Menge{

h− 1√
n
12

< Tn ≤
h√

n
12

}
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wegen c > 0

− 1

c
√

12

(
Tn +

1√
n
12

)
< − 1

c
√

12

h√
n
12

≤ − 1

c
√

12
Tn.

Sei nun n so groß, dass h∗ = −
√

n
24c

+Oc(1) < 0 und hn
def
= min{h ∈ I1

n}. Dann gilt

wegen h+ n
2
∈ N für alle h ∈ I1

n und I1
n =

{
h
∣∣∣ − 10n3/4

√
c

≤ h ≤ h∗
}

hn = −10n3/4

√
c

+ an

für ein an ∈ [0, 1). Wir können den Erwartungswert in (2.6.24) somit unter Benut-

zung von

hn − 1√
n
12

= −10
√

12n1/4

√
c

+
an − 1√

n
12

nach oben abschätzen durch

E

∑
h∈I1

n

1{
h−1√
n/12

<Tn≤ h√
n/12

} exp

(
− 1

c
√

12
Tn

)

=

− 1
4c
√

3
+Oc

(
1√
n

)∫
− 10

√
12n1/4
√

c
+ an−1√

n
12

exp

(
− 1

c
√

12
x

)
dP Tn

und nach unten abschätzen durch

E

∑
h∈I1

n

1{
h−1√
n/12

<Tn≤ h√
n/12

} exp

(
− 1

c
√

12

(
Tn +

1√
n
12

))

=

− 1
4c
√

3
+Oc

(
1√
n

)∫
− 10

√
12n1/4
√

c
+ an−1√

n
12

exp

(
− 1

c
√

12

(
x+

1√
n
12

))
dP Tn .

Nach Lemma 2.6.7 ist die Familie (exp(−1/(c
√

12) Tn))n≥1 gleichgradig integrier-

bar. Für die obere Schranke gilt dann wegen der gleichgradigen Integrierbarkeit
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von (exp(−1/(c
√

12) Tn))n≥1 und dem zentralen Grenzwertsatz

lim
n→∞

− 1
4c
√

3
+Oc

(
1√
n

)∫
− 10

√
12n1/4
√

c
+ an−1√

n
12

exp
(
− 1

c
√

12
x
)
dP Tn =

− 1
4c
√

3∫
−∞

1√
2π

exp
(
−x2

2
− x

c
√

12

)
dx.

Dasselbe Ergebnis erhalten wir analog für die untere Schranke. Insgesamt gilt somit

zusammen mit (2.6.24)

lim
n→∞

∑
h∈I1

n

An,h+n
2
q∗(mn)
n

(
h+

n

2

)
= exp

(
− 1

24c2

) − 1
4c
√

3∫
−∞

1√
2π

exp
(
−x2

2
− x

c
√

12

)
dx

=

− 1
4c
√

3∫
−∞

1√
2π

exp

(
−1

2

(
x+ 1

2c
√

3

)2
)
dx

= Φ

(
1

4c
√

3

)
. (2.6.25)

Wir betrachten nun ∑
h∈I2

n

An,h+n
2
q∗(mn)
n

(
h+

n

2

)
.

Da die Funktion

r 7→ q∗(mn)
n (r) =

(
n+ 2mn − r

n

)
1

2mnn

monoton fallend in r ist, gilt für alle −n
2

+ 1 ≤ h ≤ n
2

mit h+ n
2
∈ N

q∗(mn)
n

(
h+

n

2

)
≤ q∗(mn)

n (1).

Für n→∞ folgt daraus mit Hilfe von Satz 2.6.1, wenn dort hn,r = −n
2
+1 gewählt

wird,

q∗(mn)
n

(
h+

n

2

)
≤ q∗(mn)

n (1)

=
1

n!
exp

(
1

c
√
n

(n
2
− 1

2
+Oc (1)

)
− 1

24c2
− 1

2

(−n
2

+ 1

cn

)2

+Oc

(
1

n

))
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=
1

n!
exp

(√
n

2c

)
exp

(
Oc

(
1√
n

)
− 1

24c2
− 1

2

(
1

4c2
− 1

c2n
+

1

c2n2

))
=

1

n!
exp

(√
n

2c

)
exp

(
Oc

(
1√
n

))
exp

(
− 1

6c2

)
≤ 1

n!
exp

(√
n

2c

)
exp

(
Oc

(
1√
n

))
(2.6.26)

∼
1

n!
exp

(√
n

2c

)
.

Sei hn
def
= max{h ∈ I2

n}. Dann gilt wegen h + n
2
∈ N für alle h ∈ I2

n und

I2
n =

{
h
∣∣∣ − n

2
+ 1 ≤ h < −10n3/4

√
c

}
hn = −10n3/4

√
c

− bn

für ein bn ∈ [0, 1). Damit erhalten wir nach Satz 2.3.1 mit Sn > 0 P -f.s∑
h∈I2

n

1

n!
An,h+n

2
=
∑
h∈I2

n

P
(
h+

n

2
− 1 < Sn ≤ h+

n

2

)
= P

(
0 < Sn ≤ hn +

n

2

)
= Fn

(
hn +

n

2

)
= Gn

(
hn√

n
12

)

= Gn

((
−10n3/4

√
c

− bn

)√
12

n

)

∼ Gn

(
−10

√
12n1/4

√
c

)
. (2.6.27)

Bayer und Diaconis [6] behaupten, dass nach Abschnitt XVI.7 in [11] die folgende

Beziehung gilt

∑
h∈I2

n

1

n!
An,h+n

2
∼

1

10n1/4
√

2π
exp

−1

2

(
10
√

12n1/4

√
c

)2
 .

Mittels (2.6.27) gelangen wir zu einer anderen Beziehung (vergleiche (2.6.28)).

Nach Lemma 2.6.7 folgt mit xn
def
= 10

√
12n1/4/

√
c und Φ(−x) ∼ 1/(x

√
2π)e−x2/2,
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x→∞, für n→∞

∑
h∈I2

n

1

n!
An,h+n

2
= Gn

(
−10

√
12n1/4

√
c

)

∼ Φ

(
−10

√
12n1/4

√
c

)

∼
√
c

10n1/4
√

24π
exp

−1

2

(
10
√

12n1/4

√
c

)2
 (2.6.28)

und somit zusammen mit (2.6.26) für n→∞

∑
h∈I2

n

An,h+n
2
q∗(mn)
n

(
h+

n

2

)
≤ Gn

(
−10

√
12n1/4

√
c

)
exp

(√
n

2c

)
exp

(
Oc

(
1√
n

))

∼ Φ

(
−10

√
12n1/4

√
c

)
exp

(√
n

2c

)

∼
√
c

10n1/4
√

24π
exp

−1

2

(
10
√

12n1/4

√
c

)2

+

√
n

2c


=

√
c

10n1/4
√

24π
exp

(
−
(
(10

√
12)2 − 1

)√
n

2c

)

= Oc

(
1

n1/4

)
. (2.6.29)

Fassen wir nun die Ergebnisse aus (2.6.22), (2.6.25) und (2.6.29) zusammen, so

erhalten wir abschließend unter Benutzung von Φ(x) = 1− Φ(−x) für alle x ∈ R

lim
n→∞

‖Q∗(mn)
n − USn‖ = lim

n→∞

∑
−n

2
+1≤h≤h∗

An,h+n
2

(
q∗(mn)
n

(
h+

n

2

)
− 1

n!

)

= Φ

(
1

4c
√

3

)
− Φ

(
− 1

4c
√

3

)
= 1− 2Φ

(
− 1

4c
√

3

)
und somit die Behauptung.
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Ersetzen wir in Theorem 2.6.8 den Parameter c wiederum durch 2j, j ∈ Z,

so entspricht j der Anzahl der Mischvorgänge vor bzw. nach b3
2
log2 nc und wir

erhalten vermöge

lim
c→∞

[
1− 2Φ

(
− 1

4c
√

3

)]
= lim

j→∞

[
1− 2Φ

(
− 2−j

4
√

3

)]
= 0 und

lim
c→0

[
1− 2Φ

(
− 1

4c
√

3

)]
= lim

j→−∞

[
1− 2Φ

(
− 2−j

4
√

3

)]
= 1

unter Hinweis auf Definition 2.4.2 unmittelbar das folgende Theorem.

2.6.9 Theorem. Wird ein Stapel mit n Karten mn = (b3
2
log2 nc+ j)-mal, j ∈ Z,

j ≥ −b3
2
log2 nc, nach der GSR-(2, n)-Mischmethode Q2,n gemischt, so gilt

lim
n→∞

‖Q∗(mn)
2,n − USn‖ = 1− 2Φ

(
− 2−j

4
√

3

)
,

wobei Φ die Verteilungsfunktion der Standardnormalverteilung sei.

Ferner besitzt die Familie (Q2,n)n≥1 einen starken Cut-Off-Effekt mit Cut-Off-

Zeiten ((b3
2
log2 nc, 1))n≥1.

Für große n sind somit b3
2
log2 nc Riffle Shuffle hinreichend und notwendig, um

einen Kartenstapel mit n Karten hinreichend zu mischen. Mit mn = b3
2
log2 nc gilt

für den Variationsabstand ‖Q∗(mn)
2,n − USn‖ für große n

‖Q∗(mn)
2,n − USn‖ ≈ 1− 2Φ

(
− 1

4
√

3

)
≈ 0.115.

In Tabelle 2.4 und Abbildung 2.7 sind die Werte der Funktion j 7→ 1−2Φ
(
− 2−j

4
√

3

)
abgetragen.

j -6 -5 -4 -3 -2 -1 0 1 2 3 4

f(j) 1.000 0.999 0.979 0.752 0.436 0.227 0.115 0.058 0.029 0.014 0.007

Tabelle 2.4: f(j) = 1− 2Φ
(
− 2−j

4
√

3

)
für j = −6, . . . , 4.

Welcher Wert von der Totalvariation tatsächlich unterschritten werden muss,

um den Kartenstapel als hinreichend gemischt anzusehen, liegt in der Beurtei-

lung des jeweiligen Betrachters. So findet sich beispielsweise in [20] die Schranke
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6

-

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

1
2e

0.5

1• • • • • • •

•

•

•
• • • • • • • • • • •

Abbildung 2.7: j 7−→ 1− 2Φ
(
− 2−j

4
√

3

)
für j = −10, . . . , 10.

1/(2e) ≈ 0.184, während von Bayer und Diaconis [6] der Kartenstapel schon bei

einem Wert von 1/2 als hinreichend gemischt angesehen wird. Für große n sind

nach Theorem 2.6.9 b3
2
log2 nc − 2 Mischvorgänge nötig um den Wert 1/2 in To-

talvariation zu unterschreiten. Die Schranke 1/2 wird von Mann [16] durch die

folgende Überlegung motiviert:

Wir nehmen an, ein Kartenstapel mit n Karten sei so gemischt, dass jede Rei-

henfolge der Karten gleich wahrscheinlich ist, das heißt jede Reihenfolge π ∈ Sn

habe die Wahrscheinlichkeit USn = 1/n!. n sei als gerade vorausgesetzt. Nach dem

Mischen fällt die oberste Karte vom Stapel, so dass wir deren Wert i erkennen.

Legen wir diese Karte nun wieder mit der Rückseite oben auf den Kartenstapel,

so ist die zufällige Reihenfolge der Karten zerstört, da wir wissen, welchen Wert

die oberste Karte trägt. Legen wir die Karte wieder an eine zufällige Position in-

nerhalb des Stapels, so ist die zufällige Reihenfolge der Karten wieder gegeben.

Wir platzieren die Karte allerdings an einer zufälligen Position innerhalb der obe-

ren Hälfte des Stapels und zwar so, dass wir nicht wissen, welche Position dies

ist. Die möglichen Permutationen nach denen der Kartenstapel dann gemischt ist,

entsprechen exakt der Menge der Permutationen in Sn, die Karte i in die obe-

re Hälfte des Stapels mischen. Dies ist genau die Hälfte aller Permutationen in

Sn. Die Wahrscheinlichkeit für eine solche Permutation π ist dann gegeben durch
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Q({π}) = 2/n!, alle übrigen Permutationen treten mit Wahrscheinlichkeit 0 auf.

Wir berechnen nun den Verlust, gemessen in Totalvariation, den wir durch die-

ses Vorgehen im Vergleich zur vollständigen Zufälligkeit der Kartenreihenfolgen

erleiden:

‖Q− USn‖ =
1

2

∑
π∈Sn

∣∣∣∣Q({π})− 1

n!

∣∣∣∣
=

1

2

(
n!

2

∣∣∣∣ 2

n!
− 1

n!

∣∣∣∣+ n!

2

∣∣∣∣0− 1

n!

∣∣∣∣)
=

1

2
.

Die Totalvariation liefert den Wert 1/2. Nach Mann ist dieser Wert innerhalb der

Spanne von 0 bis 1 vergleichsweise groß, obwohl sich Karte i an einer zufälligen

Position in der oberen Hälfte des Kartenstapels befindet und der Kartenstapel

wegen der zufälligen Reihenfolge aller übrigen Karten von ihm als hinreichend

gemischt angesehen werden kann.

Wir geben allerdings zu bedenken, dass die Beschränkung auf nur die Hälfte

aller Permutationen in Sn eine hinreichende Mischung der Karten verhindert. Das

folgende Beispiel soll diesen Einwand motivieren: Ein fairer Würfel werde einmal

geworfen, das Ergebnis des Wurfes sei gerade, aber über diese Information hinaus

unbekannt. Jede der Zahlen 2, 4, 6 ist dann gleich wahrscheinlich mit Wahrschein-

lichkeit 1/3. Die richtige Augenzahl kann also mit Wahrscheinlichkeit 1/3 geraten

werden. Sei U die Gleichverteilung auf {1, . . . , 6} und U die Gleichverteilung auf

{2, 4, 6}. Dann gilt für die Totalvariation wie im obigen Beispiel

‖U − U‖ =
1

2

(
3

∣∣∣∣13 − 1

6

∣∣∣∣+ 3

∣∣∣∣0− 1

6

∣∣∣∣)
=

1

2
.

Die Werte 3
2
log2 n, b3

2
log2 nc und b3

2
log2 nc − 2 für gebräuchliche Kartensta-

pelgrößen sind in Tabelle 2.5 angegeben.

Die tatsächlichen Anzahlen an Mischvorgängen, die notwendig sind, um die

Werte 1/2 und 1/(2e) in Totalvariation zu unterschreiten, weichen von den in

Tabelle 2.5 angegebenen Werten ab. Die Abweichungen resultieren daraus, dass
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n 24 32 48 52 104
3
2
log2 n 6.88 7.50 8.38 8.55 10.05

b3
2
log2 nc 6 7 8 8 10

b3
2
log2 nc − 2 4 5 6 6 8

Tabelle 2.5: 3
2
log2 n, b3

2
log2 nc und b3

2
log2 nc − 2 für n = 24, 32, 48, 52, 104.

Theorem 2.6.9 eine asymptotische Aussage ist, die nur für große n von Bedeutung

ist. Die tatsächlichen Werte ergeben sich aus einer exakten Berechnung der Total-

variation (siehe Tabelle 2.2 auf Seite 50) und sind in Tabelle 2.6 angegeben. An

dieser Stelle soll nun auch die Aussage
”
In card shuffling, 7 is winning number“

aus der Einleitung präzisiert werden. Für einen Kartenstapel mit 52 Karten sind

7 Riffle Shuffle notwendig, um die Entfernung 1/2 zur Gleichverteilung auf S52 in

Totalvariation gerade zu unterschreiten.

n 24 32 48 52 104

1/(2e) 7 7 8 8 10

1/2 5 6 7 7 8

Tabelle 2.6: Minimale Anzahl an Mischvorgängen m mit ‖Q∗(m)
n − USn‖ < S,

S = 1/(2e), 1/2 für n = 24, 32, 48, 52, 104.



Symbolverzeichnis

N = {1, 2, 3, . . . }
N0 = N ∪ {0}
N≥n = {k ∈ N | k ≥ n}, n ∈ N
N≤n = {1, . . . , n}, n ∈ N
N0,n−1 = {0, . . . , n− 1}, n ∈ N
Bn
6= = {(x1, . . . , xn) ∈ Bn | xi 6= xj ∀ i 6= j}, B ⊂ R, n ∈ N

|G| Mächtigkeit der endlichen Menge G

P(G) Potenzmenge der Menge G∑a
n = {(j1, . . . , ja) ∈ Na

0,n |
∑a

k=1 jk = n}, a, n ∈ N
Z = {2j | j ∈ Z}

Bn Borelsche σ-Algebra über Rn

Bn
C Spur-σ-Algebra von Bn unter C ∈ Bn

δx Dirac-Maß in x

M(n, 1/a) Multinomialverteilung mit Parametern n und a-mal 1/a

Φ Verteilungsfunktion der Standardnormalverteilung

φ Dichte der Standardnormalverteilung

Poi(t) Poisson-Verteilung mit Parameter t

Q∗(m) m-fache Faltung der Verteilung Q

Qa,n GSR-(a, n)-Mischmethode, n ∈ N, a ≥ 2

Qn GSR-(2, n)-Mischmethode, n ∈ N
R(0, 1) Gleichverteilung auf [0, 1]

σ(X0, . . . , Xm) von den Zufallsvariablen X0, . . . , Xm erzeugte σ-Algebra

supp(Q) = {x ∈ Ω |Q(x) > 0}, Q diskretes Wahrscheinlichkeitsmaß
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auf (Ω,P(Ω))

UG = 1
|G|
∑

x∈G δx, G endliche Menge

Sn =
{
π : {1, . . . , n} −→ {1, . . . , n} | π bijektiv

}
,

π = [i1, . . . , ir]Z π(ij) = ij+1, j = 1, . . . , r − 1, π(ir) = i1 und π(i) = i für

i 6= i1, . . . , ir

An =
{
π ∈ Sn | sgn(π) = 1

}
Dn,k = {π ∈ Sn | π hat k Sprungstellen}, k = 1, . . . , n− 1

Rn,k = {π ∈ Sn | π hat k aufsteigende Sequenzen}, k = 1, . . . , n

Tn =
{
[i, j]Z ∈ Sn | i, j ∈ {1, . . . , n}, i 6= j

}
,

V4 = {id, [1, 2]Z [3, 4]Z , [1, 3]Z [2, 4]Z , [1, 4]Z [2, 3]Z},
An,k = |Rn,k| falls k = 1, . . . , n und = 0 sonst

T− {x−1 | x ∈ T}, T ⊂ G, G Gruppe

〈T 〉
⋃

n∈N0
{x1 ◦ . . . ◦ xn | xi ∈ T ∪ T−, i = 1, . . . , n}, T ⊂ G,

G Gruppe

fn ∼ gn limn→∞ fn/gn = 1

fn ∈ o(gn) limn→∞ fn/gn = 0

fn ∈ O(gn) ∃ n0 ∈ N, K ∈ [0,∞): |fn/gn| ≤ K ∀ n ≥ n0

fn ∈ Oc(gn) ∀ c ∈ R: fn = fn,c, gn = gn,c und ∃ n0(c) ∈ N,

Kc ∈ [0,∞): |fn,c/gn,c| ≤ Kc ∀ n ≥ n0(c)

log2 Logarithmus zur Basis 2

x ∨ y = max{x, y}
x ∧ y = min{x, y}
bxc = max{k ∈ Z | k ≤ x}, untere Gauss-Klammer

dxe = min{k ∈ Z | k ≥ x}, obere Gauss-Klammer
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[15] Lorenz, F. (1996): Einführung in die Algebra. 3. Auflage, Spektrum Verlag,

Heidelberg/Berlin.

[16] Mann, B. (1995): How many times should you shuffle a deck of cards? Topics

in Contemporary Probability and Its Applications, Ed. J. Laurie Snell, CRC

Press Boca Raton, 261-289.

[17] Reeds, J. (1981): Theory of Riffle Shuffling. Unveröffentlichtes Manuskript.
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