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Einleitung

Der Rifflet Shuffle? oder Dovetail’ Shuffle ist eine weit verbreitete Methode, einen
Kartenstapel zu mischen. Dabei werden die Karten nach einer Spielrunde in zwei
ungefiahr gleich grofie Piackchen geteilt. Von diesen wird jeweils eines in die linke
und eines in die rechte Hand genommen. Dann werden eine oder mehrere Kar-
ten abwechselnd aus beiden Hénden fallengelassen und die Karten so sukzessive
ineinandergeblattert. Durch wiederholtes Mischen soll die Reihenfolge der Kar-
ten so verdndert werden, dass keine der am Spiel beteiligten Personen diese vor-
hersagen kann. Wie oft der Kartenstapel gemischt werden muss, um eine ausrei-
chende Zufalligkeit der Kartenreihenfolge zu erreichen, ist die zentrale Frage. Am
09.01.1990 war in der New York Times [13] die Antwort in Form der folgenden

Schlagzeile zu lesen:
»In card shuffling, 7 is winning number®.

Préaziser formuliert, sind fiir einen Kartenstapel mit 52 Karten sieben Misch-
vorgéinge notig, um den Kartenstapel hinreichend zu mischen. Kartenspiele mit
52 Karten sind beispielsweise Blackjack, Bridge und Schafkopf. Dem Zeitungsarti-
kel lagen die Forschungsergebnisse von David Bayer und Persi Diaconis zu Grunde.
In ihrem im Jahre 1992 veroffentlichen Artikel ,, Trailing the Dovetail Shuffle to its
lair (siehe [0]) stellten sie verschiedene wahrscheinlichkeitstheoretische Modelle
fiir den Riffle Shuffle vor. Sie wiesen nach, dass fiir einen Kartenstapel mit n Karten

L% log, n] — 2 Mischvorgénge in einem gewissen Sinne ausreichen. Dariiber hinaus

riffle (engl.): durchblittern
2shuffle (engl.): Mischen, Mischvorgang
3dovetail (engl.): Schwalbenschwanz
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erlaubten ihre Ergebnisse eine weitere erstaunliche Aussage: Einerseits sind weni-
ger als L% log, n| — 2 Mischvorgénge nicht ausreichend und andererseits mehr als
L% log, n] —2 Mischvorgénge nicht notwendig, um einen Kartenstapel mit n Karten

ausreichend zu mischen. Dieses Phéanomen wird als Cut-Off-Effekt bezeichnet.

Das Ziel dieser Arbeit ist die wahrscheinlichkeitstheoretische Erfassung und
Prézisierung des Riffle Shuffles und Cut-Off-Effekts. Wir orientieren uns dabei

mafgeblich an den Ergebnissen von Bayer und Diaconis [6].

Das sukzessive Mischen von Karten wird als stochastischer Prozess X =
(X )m>o auf einem Wahrscheinlichkeitsraum (2,2, P) interpretiert. Dabei gibt
die Zufallsgrofle X, fiir m > 0 die Kartenreihenfolge nach m sukzessiven Misch-
vorgingen in geeigneter Weise an. Wir werden zeigen, dass der konstruierte Prozess
X ein Random Walk und zugleich eine zeitlich homogene, irreduzible und aperiodi-
sche Markov-Kette ist. Der Zustandsraum des Prozesses X, der aus allen méglichen
Kartenreihenfolgen von n Karten besteht, ist dabei die Gruppe der Permutatio-
nen S,. Die eindeutig bestimmte stationdre Verteilung ist die Gleichverteilung Ug,
auf §,,. Ein m-mal gemischter Kartenstapel wird als hinreichend gemischt angese-
hen, wenn alle Kartenreihenfolgen annéhernd gleichwahrscheinlich sind, das heift
die Totalvariation ||[PX™ — Us, || von P*™ und der Gleichverteilung Us, auf S,
hinreichend klein ist. Der Ergodensatz rechtfertigt dieses Vorgehen. Fiir n = 52
und m =1, ..., 20 fiihrt eine Berechnung der Totalvariation zu der Darstellung in
Abbildung [1} die den Cut-Off-Effekt veranschaulicht.

Mit Blick auf Abbildung [1]ist der Cut-Off-Effekt ein ,, Phasen-Ubergang®: Vom
ersten bis zum fiinften Mischvorgang befindet sich die Totalvariation nah bei ihrem
maximalen Wert von 1. Wahrend der néchsten vier Mischvorgénge fillt sie jedoch

rapide auf einen Wert nahe 0.

Der Nachweis des Cut-Off-Effekts erweist sich im Allgemeinen als &uflert
schwierig. Bislang sind zwar zahlreiche Beispiele fiir Markov-Ketten mit Cut-Off-
Effekt bekannt (siehe hierzu [2], [T0], [20], [21] und [24]), jedoch ist keine allgemeine

Theorie verfiigbar.

In Kapitel 1 werden wir zunéchst vom Zustandsraum S,, abstrahieren und

Random Walks auf beliebigen endlichen Gruppen vorstellen, die zugleich Markov-
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1)
0.751

0.5
0.25+

012 345 6 7 8 9 1011121314 1516 17 18 19 2
Abbildung 1: m — ||P*m — Ug, || fir n =52 und m = 1,..., 20.

Ketten bilden. Ferner stellen wir ein wahrscheinlichkeitstheoretisches Modell fiir
das sukzessive Kartenmischen vor, das von verschiedenen Autoren zur Modellie-
rung von Mischvorgéngen verwendet wird (siehe hierzu [1], [2], [6], [9], [14], [20]
und [21]).

Kapitel 2 widmet sich ausschliellich dem Riffle Shuffle und dem Nachweis des
Cut-Off-Effekts fur den Riffle Shuffle in Form des folgenden Theorems (siehe Theo-

rem in Abschnitt .

Theorem. Wird ein Stapel mit n Karten m,, = (|2logyn] + j)-mal, j € Z,
j > —|2log,n], nach dem Riffle Shuffle gemischt, so gilt

2-J
PXmn _Us || — 1 -2 | — ,
H SnH 00 ( 4\/3)

wobetr © die Verteilungsfunktion der Standardnormalverteilung sei.

In Kapitel 2 werden wir zunéchst den Riffle Shuffle auf drei verschiedene
Arten wahrscheinlichkeitstheoretisch modellieren. Diese Modelle fithren schlief3-
lich zur selben Abbildung durch eine Markov-Kette bzw. einen Random Walk
X = (Xin)m>o0. Sie ermoglichen nicht nur die explizite Angabe der Verteilungen

PXm_m >0, sondern auch die der m-Schritt-Ubergangswahrscheinlichkeiten der
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Markov-Kette X fiir m > 1. Hierbei und im weiteren Vorgehen erweisen sich die
FEulerschen Zahlen und ihre Verbindungen zur Kombinatorik und Wahrscheinlich-
keitstheorie als zentrale Hilfsmittel (siehe hierzu [7], [§], [23] und [26]). Abschlie-
Bend werden wir den Cut-Off-Effekt mathematisch prézisieren und die asymptoti-

sche Aussage des obigen Theorems herleiten.

Ich bedanke mich bei Herrn Professor Dr. G. Alsmeyer fiir die Vergabe dieser
Diplomarbeit und die umfassende Betreuung. Er hat mein Interesse fiir das Thema

geweckt und mir mit wertvollen Hinweisen iiber manche Hiirde hinweggeholfen.



Kapitel 1
Random Walks auft Gruppen

Dieses Kapitel dient der Einfiihrung in die Theorie der Random Walks auf Grup-
pen, die fiir die wahrscheinlichkeitstheoretische Modellierung von Mischvorgéingen
notwendig ist. Es werden ausschliellich endliche Gruppen betrachtet. Die Ergeb-
nisse entstammen in weiten Teilen, sofern nicht anders angegeben, [1], [9], [20]
und [21]. Begriffe aus der Gruppentheorie entnehmen wir [I5]. Fiir die Theorie der

Markov-Ketten wird auf [4] verwiesen.

1.1 Random Walks auf endlichen Gruppen

13

Sei G eine endliche Gruppe mit Verkniipfung ,,0“ und neutralem Element id.
Die Ordnung von G ist die Anzahl |G| der Elemente von G. Sei T C G und

7- {z7' |z € T}. T heit Erzeuger von G, falls

G = LJ {xlo...o:ml|xi€ YWL“Ti,i:: 1w"7n} ¥f<7»'

n€ENg

Fiir n € N definieren wir 7°M &' {ri0...02, |x; €T,i=1,...,n}. Fir eine
endliche Gruppe G ist G = (T') wegen g o...ox = id fiir alle x € G dquivalent zu
|G|-mal

G=JT1°M.

neN
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Gegeben eine Teilmenge T C G ist (T') eine Untergruppe von G und zwar die
kleinste Untergruppe die T" umfasst.

Fiir z,y € G schreiben wir auch kurz zy in der multiplikativen Schreibweise
anstatt x o y. Das neutrale Element id € G nennen wir auch FEinselement. Eine
Untergruppe N C G heifit Normalteiler von G, wenn N = Nz fiir alle x € G gilt.
Die Mengen N und Nz heiflen Links- bzw. Rechtsnebenklassen von N beziiglich
x. Sei H eine weitere Gruppe. Eine Abbildung ¢ : G — H heifit Gruppenhomo-
morphismus, falls p(xy) = o(x)p(y) fir alle z,y € G gilt.

Ist ein Wahrscheinlichkeitsmaf Q auf (G, B(G)) gegeben, so definieren wir den

Triger von @ als
supp(Q) € {z € G| Q({x}) > 0}
und einen stochastischen Kern K¢ : G x P(G) — [0, 1] durch

Ko(z, {y}) = Q{z~"y}) fir 2,y € G.

Fir x € G sei ¢, die Dirac-Verteilung in x auf (G, B(G)).

1.1.1 Definition. Seien A und @ WahrscheinlichkeitsmaBle auf (G,J(G)) und
(Y)m>o eine Folge G-wertiger, stochastisch unabhéngiger Zufallsvariablen auf ei-
nem geeigneten Wahrscheinlichkeitsraum (Q, %, P) mit P¥ = X\ und P¥» = @
fir alle m > 1. Die Folge (X,,)m>0 mit X,, def Yoo...0Y,, fir m > 0 heifit
(Q, \)-Random Walk auf G oder, falls A = 84, kurz Q-Random Walk auf G.

Dann ist X = (X,,)m>0 eine zeitlich homogene endliche Markov-Kette mit
Zustandsraum G, Anfangsverteilung A und Ubergangskern Kg. Sind zwei Wahr-
scheinlichkeitsmafie @1 und @ auf (G, B(G)) gegeben, so definieren wir die Faltung

Q1 * Q2 von Q1 und Q2 durch

Qi+ Q({z}) € Y Qi({y)@({y™"2}), v € G. (1.1.1)

yeG

1.1.2 Bemerkung. Sei X = (X,,)n>0 ein (@, A)-Random Walk auf G. Dann gilt
fir alle m > 1
PXm = X% Qx...%Q = \xQ*™), (1.1.2)
—_——

m-mal
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wobei Q*M % 0 und Q*® ¥ 9« Q D) fiir k > 2.

Im Fall A = diq gilt fir alle m > 1

pXm = m), (1.1.3)

Beweis. Sei x € G beliebig. Dann gilt wegen der stochastischen Unabhéngigkeit
der Y;, i > 0,

P(X; =12)=P(YyY1 =x)
=P(|JM=yYi=y"a})

— ZP(YO =y)P(Yy =y 'z)
= S AUy ) = A+ Q({a}).
yeG

(1.1.2) und (|1.1.3) folgen dann per Induktion aus obiger Gleichung unter Beachtung
von diq *x Q = Q. ]

Aus der Definition des Ubergangskerns Ko und ([.1.2) erhalten wir fiir alle
m>1
X def (m)
pim :)\<KQO...OKQ) = )\KQ ,
—_———
m-mal
def

wobei MKq(-) = [, Kq(z,-)A(dz) und ,0 hier die iibliche Hintereinanderschal-

tung von Kernen bezeichne. Ferner gilt fiir alle k,m > 0
pXmerl¥n= = K p¥mn_fs,

wobei Kg))(a:,') & 6.(-). Die k-Schritt-Ubergangswahrscheinlichkeiten seien fiir
k € N definiert durch
def
) LK (e {w)). 2y € 6.

Dann gilt fiir alle k € Nund z,y € G
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= Q"M ({id 27'y})
=K (id, {z7'y})

k def (K

Der néchste Satz stammt von Woess [25] und charakterisiert Irreduzibilitét und
Aperiodizitdt (siehe Definition 7.6. und 7.9. in [4]) der Markov-Kette (X,,)m>o0-
1.1.3 Satz. Ser G eine endliche Gruppe, (Q ein Wahrscheinlichkeitsmafs auf
(G, B(G)) und X = (Xpn)m>o ein (Q, \)-Random Walk. Dann gilt

(a) X ist irreduzibel genau dann, wenn supp(Q) ein Erzeuger von G ist.

(b) Sei X irreduzibel. Genau dann ist X aperiodisch, wenn supp(Q) keine Teil-
menge einer Nebenklasse eines beliebigen nicht-trivialen Normalteilers von G

15t.
Beweis. zu @: ,=“ Sei X irreduzibel und x € G. Dann existiert ein k € N, so
dass pgk) > (0. Wegen
W= @ ((a})
=Y QU= V({z "))

z1€G
= > Q{zp - QUzaDR{zY -z w) >0
Z1yeny zr_1€G
existieren z1,..., 2,1 € Gmit zy,..., 25 1,2, .. 2] '@ € supp(Q). Daraus folgt

x € (supp(Q)) und somit G C (supp(Q)).

»,<*“ Nach (1.1.4)) reicht es zu zeigen, dass fiir jedes x € G ein k € N existiert

mit pg;k) > 0. Sei z € G und y € supp(Q) beliebig. Wegen (supp(Q)) = G exi-

stiert ein k € N und yy,...,y_1 € supp(Q) mit y; - ... - yp_1 = xy~'. Dann gilt
y=y.' ... y; 'z und
= > Q{zb QU HR{Uz e)
Z1500,2k—1E€G
> QUy}) - QU DOy -y '2})
k—1

=Q{yh [[edw}h) >o.

i=1
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zu (b): Fiir den Beweis verweisen wir auf [25]. O

Das néchste Lemma zeigt den Zusammenhang zwischen dem Tréager der m-

fachen Faltung von () und der vom Trager von () erzeugten Untergruppe.

1.1.4 Lemma. Sei G eine endliche Gruppe und ) ein Wahrscheinlichkeitsmafs
auf (G,B(G)). Dann gilt fir alle m > 0

supp (Q*™) = (supp(Q))""™ (1.1.5)
und somsit
(supp(Q)) = U (supp(Q))°™ = U supp (Q*™) . (1.1.6)

Beweis. ((1.1.6) folgt direkt aus (1.1.5)), wir zeigen daher (1.1.5). Da fiir m = 0,1

nichts zu zeigen ist, sei m > 2.

,C“ Seil x € supp (Q*(m)) beliebig. Wegen

Mz = > QUal) - QUz DRz -z 2)) > 0

existieren 21, ..., 2zm_1 € G mit 21,..., 2m 1,2, ... 2] ‘@ € supp(Q). Vermoge
(supp(@))°™ = {y1 ... Ym | Y1, -, Ym € supp(Q)} und
2 et (B ) =2

erhalten wir € (supp(Q))°™.

LD Sei o € (supp(Q))°™ beliebig und wi,...,Y%n € supp(Q) mit

T=Y ... Yn Danngilt y- ', ... -y; 2 = 1, und somit
M= Y Qa}) - QU HQUzL 2 )
>QUy}) o QUym 1 HRUymly -y 'a})
- Tt >0

Dies zeigt = € supp(Q*™). ]
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Eine stationdre Verteilung der Markov-Kette X ist die Gleichverteilung
def 1

Ue = Y e 0z auf (G, PB(G)), denn fiir alle z € G gilt

U+ QUa}) = - UallyhaUu ') = o

yeG

Zusammen mit der Endlichkeit von G und Korollar 10.7. in [4] erhalten wir un-

mittelbar den folgenden Satz.

1.1.5 Satz. Sei G eine endliche Gruppe, @) ein Wahrscheinlichkeitsmaf§ auf
(G,B(G)), dessen Trager supp(Q) die Gruppe G erzeugt, und X = (X, )m>o eine
Markov-Kette mit Ubergangskern Ko und beliebiger Anfangsverteilung. Dann ist

X positiv rekurrent und besitzt die eindeutig bestimmte stationdre Verteilung Ug.

Die Totalvariation oder der Variationsabstand zweier Mafle ()1 und )o auf
(G,PB(Q)) ist definiert als

Q1 — Qof| & sup [Q1(4) — Z\Ql {z}) — Qs({a})].

acEG

Ist ein (@, A\)-Random Walk X auf G irreduzibel und aperiodisch, so konver-
giert X nach Satz und dem Ergodensatz (sieche Satz 11.1. in [4]) fiir jede
Anfangsverteilung A\ in Totalvariation gegen die Gleichverteilung Ugs auf G, das
heift

lim |[PF = Ugl = Tim[[A Q"™ — Ug| = 0.

1.2 Die Gruppe S, der Permutationen

In diesem Abschnitt sei n € N und S, die Gruppe der Permutationen von
{1,...,n}, das heifit

Sp={r:{1,....,n} — {1,...,n} |7 bijektiv}.

Eine Permutation m € §,, wird gewohnlich in der Form



1.2 Die Gruppe S,, der Permutationen 7

dargestellt. Wir kiirzen dies ab, indem wir nur die untere Zeile iibernehmen und
diese in eckige Klammern setzen: 7 = [7(1),...,7(n)]. Wir entnehmen die folgen-

den Definitionen und Aussagen iiber die Struktur von S, aus [15].

1.2.1 Definition. Eine Permutation 7 heif3t r-Zyklus, wenn es paarweise verschie-
dene Zahlen iy,...,i, € Ng, dof {1,...,n} gibt, r > 2, mit

(1) W(ij) = ’ij+1, j = 1,. e, T = 1, 7T(’ir) =1 und
(ii) (i) =d fir ¢ # iy, ..., 0.
In dieser Situation verwenden wir fiir 7 die Schreibweise m = [iy, ..., %,]z.

1.2.2 Definition. Ein 2-Zyklus 7 = [i, j]z € S,, heifit Transposition.

Eine Transposition m = [i, j|z vertauscht also gerade die Zahlen ¢ und j mitein-
ander und lasst alle iibrigen Zahlen unverédndert. Wir bezeichnen die Menge aller

Transpositionen in S,, mit .7,, das heifit

def

T S {[i,]7 14,5 € Ney, i # 5}

Die Menge der Transpositionen erzeugt S,,. Es gilt also

(7= Z2m = 8. (1.2.1)

m>0

Nach ist jede Permutation das endliche Produkt von Transpositionen. Wir
nennen eine Permutation gerade bzw. ungerade, falls sie sich als das Produkt einer
geraden bzw. ungeraden Anzahl von Transpositionen darstellen léasst. Eine Permu-
tation kann nicht gerade und ungerade zugleich sein. Wir bezeichnen die Menge

aller geraden Permutationen mit .<7,.

Die Signumsfunktion sgn : S,, — {—1, 1}, definiert durch

sgn(m) = (=1)°,

falls m =0y -... 0, fir o1,...,0, € F,, ist ein Gruppenhomomorphismus. Fiir die

Menge 7, aller geraden Permutationen gilt

gy ={m €S8, | sgn(m) = 1}.
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Wir erinnern noch einmal an die Definition des Normalteilers: Eine Untergruppe
N C S, heifit Normalteiler von S,,, wenn N = Nz fiir alle x € §,, gilt. Per
Definition sind also {id} und S, selbst stets Normalteiler von S,,. {id} und S,
werden als triviale Normalteiler von S, bezeichnet. Die folgenden Ausfithrungen

geben Auskunft iiber die weitere Normalteilerstruktur von S, fiir n € N.

1.2.3 Satz. Firn > 5 ist o, der einzige nicht-triviale Normalteiler von S,,.

Die Kleinsche Vierergruppe ¥, ist die Menge aller Doppeltranspositionen in Sy,
das heifit

¥y = {id, [1, 2] 2[3, 4] 7, [1, 3122, 42, [1, 4] 2[2, 3], ).

Die Kleinsche Vierergruppe ist ein nicht-trivialer Normalteiler von S;. Die Nor-

malteiler von S, sind fiir n € N in der folgenden Ubersicht aufgefiihrt:

n=1: {id} =S8,

n=2: {id} C.ah =3,
n=3: {id} ¢ CS;,
n=4: {id} % S C S,
n>5: {id} C @, CS,.

1.3 Beschreibung eines Mischvorgangs

In diesem Abschnitt fithren wir den Begriff der Mischmethode und ein wahrschein-

lichkeitstheoretisches Modell fiir das sukzessive Mischen von Karten ein.

Wir beginnen unsere Betrachtungen mit einem Stapel von n Karten, n € N.
Die Karten seien von 1 bis n nummeriert und nach aufsteigenden Werten von links

nach rechts vor uns ausgelegt.

Wir identifizieren im Folgenden die Reihenfolge der Karten mit einem n-Tupel

r=(v1,...,2,) € NZ, , wobei

n ef n . .
N2 S (g yn) € {1, o) [y # gy fiir i # 5}
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Dabei bedeutet x; = j, dass sich Karte j an ¢-ter Stelle befindet. Ein ungemischter
Stapel wird also durch das Tupel (1,...,n) beschrieben. Fiithren wir nun einen
Mischvorgang durch, das heifit, &ndern wir die Reihenfolge der Karten, so konnen

wir dies durch eine Permutation
eSS, ={0:{1,...,n} — {1,...,n}]| o bijektiv}

beschreiben. Dabei bedeute 7 (i) = j, dass die Karte, die sich nach dem Mischvor-

gang an Position ¢ befindet, vor dem Mischvorgang an Position j lag.

Fithren wir m € N Mischvorgédnge nacheinander durch, gegeben durch die
Permutationen 7y, ..., 7y, so ist dies dquivalent zu einem einzelnen Mischvorgang
gegeben durch die Permutation m 0. ..om,,. Beginnen wir mit einem ungemischten

Stapel, so gilt fiir die Reihenfolge ) der Karten nach dem k-ten Mischvorgang:

) = (7r1o...o7rk(1),...,7rlo...owk(n)),k’:l,...,m.

Das folgende Beispiel verdeutlicht, dass die Unterscheidung zwischen den
zu den einzelnen Mischvorgédngen gehorigen Kartenreihenfolgen und Permutatio-
nen notwendig ist. Soll ein Kartenstapel m-mal sukzessive gemafl den Permuta-
tionen 7y, ..., T, gemischt werden, so fithrt, wie oben beschrieben, einmaliges Mi-
schen gemifl der Permutation m o ... o7, zu derselben Reihenfolge. Entgegen
der Intuition ist also 7 o ... o, die ,richtige® Permutation und nicht etwa
Tm © ... om. Dies liegt an der von uns gewéhlten Art, einen Mischvorgang durch
eine Permutation zu beschreiben: Eine einzelne Permutation beschreibt nicht die
Reihenfolge, in der die Karten nach dem Mischen vor uns liegen, sondern nur deren
Reihenfolgednderung und zwar unabhéngig von den speziellen Kartenwerten. Die
Permutation 7 o ... o m,, beschreibt daher die sukzessiven Reihenfolgednderun-
gen beginnend beim letzten Mischvorgang: Fiir i = 1,...,n gibt zunéchst m,,(7)
die Postion an, an der die Karte an Position ¢ vor dem Mischen gemafl w,, lag.
Soll nun die gesamte Reihenfolgeinderung nach m-maligem Mischen angegeben
werden, so miissen nacheinander «,,_; auf w,,, m,_s auf m,,_1 o m, usw. bis hin
zu 7 auf m o ... o m, angewendet werden. Die Reihenfolgednderungen miissen
also beginnend beim letzten Mischvorgang bis zum ersten Mischvorgang zuriick-
verfolgt werden. Daraus resultiert dann die Permutation 7 o...om,. Auch diesen

Sachverhalt verdeutlicht das folgende Beispiel.
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1.3.1 Beispiel. Wir beginnen mit einem ungemischten Stapel. Andert sich die Rei-
henfolge der Karten durch einen ersten Mischvorgang von (1,...,n) in
(n,1,2,...,n — 1), s0ist m = [n,1,2,....,n —1] = [I,n,n — 1,...,3,2]7 die
zugehorige Permutation. In einem zweiten Mischvorgang werde die Reihenfolge
geméf der Permutation m = [3,2,1,4,...,n| = [1, 3]z gedndert. Die Reihenfolge

der Karten nach dem zweiten Mischvorgang lautet
z® = (7T1 omy(l),...,m 0 Wg(n)) =(2,1,n,3,...,n—1).
Fiir die Reihenfolge der Karten nach dem zweiten Mischvorgang gilt also

2?2 (my(1),...,m(n)) und
@ £ (mgom(l),...,mom(n)).

Die Wahl der Permutation, nach der wir einen Kartenstapel bei einem einzelnen

Mischvorgang mischen, ist zufallsabhéngig:

1.3.2 Definition. Eine Mischmethode () ist eine Wahrscheinlichkeitsverteilung ¢
an (STH g’B(Sn)>

Ein wahrscheinlichkeitstheoretisches Modell fiir das sukzessive Mischen eines
Kartenstapels nach einer festgelegten Mischmethode @ ist der ()-Random Walk
auf S, (siehe Definition [I.1.1)): Wollen wir einen Stapel von n Karten m-mal nach
der Mischmethode () mischen, so wihlen wir zundchst eine Realisation (7, . .., m,,)
der Zufallsvariable (Y1,...,Y},). Als Ergebnis des Mischvorgangs erhalten wir die
Realisation m; o ... o m, der Zufallsvariable X,,. Wir konnen dabei sowohl bei
Vorliegen eines ungemischten, als auch bei Vorliegen eines gemischten Stapels vor
Beginn des Mischvorgangs, etwa gemifl der Permutation 7 € §,,, das Dirac-Mafl

in der Identitdt d;q als Anfangsverteilung wéhlen, denn fiir alle m € N gilt

162 Q™ = Usull = 5 2 |6 x @7 (0) il
. 1
=3 2| S i -
1 1
== Q*(m)({ﬂ‘_lff}) - E‘
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= S Qo) -

oeSy

= Q"™ — Us, ||
= ||6ia * Q"™ — Us, |I.

Ferner fiihrt eine etwaige mit der Wahl von ;4 als Anfangsverteilung verbundene
Umnummerierung der Karten nicht zu einem Informationsverlust, da die zu einem
Mischvorgang gehorige Permutation nicht die tatsdchliche Reihenfolge der Karten,

sondern nur deren Reihenfolgeinderung beschreibt.






Kapitel 2

Der Riffle Shuftle

In diesem Kapitel stellen wir den Riffle Shuffle und wahrscheinlichkeitstheoretische
Modellierungen fiir die vom Riffle Shuffle auf S,, induzierte Mischmethode vor. Mit
Hilfe dieser Modelle wird es moglich sein, den Cut-Off-Effekt fiir den Riffle Shuffle
nachzuweisen. Die Resultate in diesem Kapitel orientieren sich, sofern nicht anders

angegeben, an [6].

2.1 Modelle fiir den Riffle Shuffle

Der Riffle Shuffie ist eine der meist verwendeten Methoden, einen Kartenstapel
zu mischen. Dabei wird ein ungemischter Stapel von n Karten ungefdhr halbiert,
die beiden Hélften werden dann sukzessive ineinandergeblittert!. Ein mathemati-
sches Modell fiir den Riffle Shuffle wurde 1955 von Gilbert und Shannon [12] und
unabhéngig 1981 von Reeds [I7] vorgestellt: Ein Kartenstapel von n Karten wird
in zwei Packchen A; und A, geteilt. Dabei sei die Wahrscheinlichkeit, dass A; die
ersten k Karten enthlt, durch B(n,1/2)({k}) = (})/2", k = 0,...,n, gegeben.
Die beiden Pé#ckchen werden dann so ineinandergebléittert, dass die Wahrschein-
lichkeit, dass eine Karte vom ersten bzw. zweiten Péckchen fallt, proportional zur

Anzahl der verbliebenen Karten in den Péckchen ist. Das heift, falls im ersten und

I ineinanderblittern® bedeutet, die beiden Hilften so ineinanderzumischen, dass die Reihen-

folge der Karten in den einzelnen Hélften erhalten bleibt.
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zweiten Péckchen j; bzw. jo, Karten verbleiben, so ist die Wahrscheinlichkeit, dass
die néchste Karte von Péckchen i féllt j;/(j1 + j2), ¢ = 1,2. Nach Gilbert, Shannon
und Reeds wird der Riffle Shuffle auch GSR-~Shuffle genannt.

Der Riffle Shuffle ldsst sich fiir a € Nso o {n € N|n > 2} analog zu einem

a-Riffle Shuffle erweitern, indem der Kartenstapel in a Packchen Ay, ..., A, geteilt
wird. Die Anzahl der Karten in den P#ckchen sei dabei multinomialverteilt. Dies
bedeutet, dass die Wahrscheinlichkeit, dass Packchen A; die ersten k; Karten,

Péackchen A, die néchsten ky Karten usw. enthalt, fiir

(kl,...,ka)EZ: d:ef{(jh...,ja)E{O,...,n}“‘ ijk:n}
k=1

durch
M(n,1/a)({(k1,...,ka)})=( i )1

k’l,...,k'a (ln‘

gegeben sei. Die a Péackchen werden dann wie folgt ineinandergeblédttert: Sind in
den einzelnen Péckchen ji,...,Jj, Karten verblieben, so féllt die néchste Karte
von Péackchen i mit der Wahrscheinlichkeit j7;/(j1 + ... + ja), ¢ = 1,...,a. Wir
bezeichnen einen a-Riffle Shuffle von n Karten auch als GSR-(a,n)-Shuffle. Im
Folgenden stellen wir zwei Modelle vor, die, wie wir in Satz sehen werden, die
gleiche Mischmethode auf S,, induzieren wie der GSR-(a, n)-Shuffle. Die verbalen
Beschreibungen der Modelle sind bei verschiedenen Autoren zu finden, etwa in [I],
[2], [6], [9], [14] und [16]. Sei im Folgenden a € Ns,.

1. Maximum-Entropie-Modell: In diesem Modell gehen wir davon aus, dass
alle moglichen Arten, einen Stapel in a Péckchen aufeinanderfolgender Karten zu
teilen und diese dann ineinanderzubléttern, gleich wahrscheinlich sind. Leere Péck-
chen sind zugelassen. Jedes nichtleere Péickchen muss aus den Karten k, . . . | k+[ fiir
geeignetes k € No,, und [ € Ny ,,_4 &t {0,...,n — 1} bestehen. Dieses Modell gibt
also jeder beliebigen Kombination aus Péackcheneinteilung und dem anschlieflen-
den Ineinanderblédttern dieselbe Wahrscheinlichkeit und maximiert so die Entropie
unter allen moglichen Wahrscheinlichkeitsverteilungen auf der Menge aller solchen

Kombinationen.
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Dieser Sachverhalt lasst sich folgendermafien modellieren: Wir wéhlen zunéchst
ein Tupel (21,...,2,) € {0,...,a — 1} = Nj | nach der Laplace-Verteilung auf
NG, Dann zdhlen wir alle Nullen, Einsen, Zweien usw. in (z1,...,,). Falls
wir j; Nullen, j, Einsen usw. erhalten haben, bilden wir a Péckchen A;,..., A,
mit den Karten 1 bis j; bzw. j; + 1 bis j; + jo usw. SchlieBlich verteilen wir die
Karten aus Packchen A; unter Beibehaltung ihrer Reihenfolge auf die Positionen

in (z1,...,2,) mit 2 =7 — 1.

Wir verwenden hier und im folgenden Modell n-Tupel z € {0,...,a —1}" und

nicht etwa z € {1,...,a}", dadies fiir die Darstellung unserer folgenden Ergebnisse
in Lemma [2.1.8] Lemma [2.1.9, Lemma [2.1.10] und Satz [2.1.11] hilfreich ist.
Sei Uyp, , die Laplace-Verteilung auf Nj, ;, und z = (z1,...,7,) € Ng, ;.

Fir k =1,...,a definieren wir j, oo {l|z; =k — 1} und

A d—ef{ § .
.k — ( ]r,z)+17"'72]x,z .
=1 =1

Ferner definieren wir zu x eine Permutation 7, € S, induktiv durch m,(1) =

min A, ,,+1 und

7o(1) = min { A, 1 \{ma (1), ..., 7 (i — 1)} } (2.1.1)

fiir i = 2,...,n. Sei X2, : (NG, 1, BNG,_1)) — (Sn, B(Sn)) die fiir v € N,

durch X1 () & . definierte Funktion. Die Definition der Permutation , findet
sich fiir den Fall @ = 2 in dquivalenter Form in Beispiel 4.17 in [1].

Wir kénnen nun die Maximum-Entropie-Mischmethode Qfl‘{n einfithren, indem
wir fiir B € PB(S,,) setzen

M(BYY Uy (XM eB

a,n 0,a—1 ( a,n )

Dann gilt fiir alle 7 € S,

_ ]{xE{O,...,a—l}"hrw:W}\.

M) - (2.1.2)

2.1.1 Beispiel. Ein Mischvorgang im Maximum-Entropie-Modell mit a = 2 und
n=10zux = (0,1,1,0,1,0,1,0,0,1) € N§% = {0,1}'° (siche Abbildung [2.1)).
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0 1 1 0 1 0 1 0 0 1

. Alle)(7 (2 (s)(3)(9])(4])(5])(10)
' *\*J\*J&i,&\*,* Jo\&)

Abbildung 2.1: Mischvorgang im Maximum-Entropie-Modell.

a.: Wir beginnen mit einem geordneten Kartenstapel und identifizieren ,, Ass®
mit dem Wert 1.

b.: Der Stapel wird in zwei Péackchen geteilt, das erste Péckchen A; besteht
aus den Karten 1 bis j, ; = 5, das zweite Packchen A, aus den Karten j, 1 +1 =16

bis jx,l +jm,2 = 10.

c.,d.: Die beiden Péckchen werden ineinandergebléttert: Alle Karten aus Péck-
chen A; werden auf die Positionen in x mit x; = 0 verteilt, s = 1,...,10, und alle
Karten aus Péackchen Ay auf die Positionen in z mit z; = 1,4 = 1...,10. Der

Stapel wurde also nach der Permutation 7, = [1,6,7,2,8,3,9,4,5, 10] gemischt.

2. Inverses Modell: Das folgende Modell beschreibt einen inversen Riffie
Shuffle. Wir wihlen wieder ein Tupel (z1,...,2,) € Nj, ; nach der Laplace-
Verteilung auf Nj, ;. Dann ordnen wir der Karte ¢ den Wert z; zu und legen alle
Karten mit dem Wert 0 unter Beibehaltung ihrer Reihenfolge an den Anfang des
Stapels, dahinter platzieren wir alle Karten mit dem Wert 1 usw., bis hin zu allen
Karten mit dem Wert a — 1. Packchen A; besteht beim inversen Riffle Shuffle aus

allen Karten, denen der Wert [ — 1 zugeordnet wird, [ = 1,...,n. Auch in diesem
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Modell kénnen leere Packchen entstehen, sofern nicht alle Werte 0,...,a — 1 in z

vertreten sind.

Sei x = (r1,...,2,) € Nj, ;. Wir definieren eine Permutation 7,- € S,

induktiv durch 7,- (1) = min {k’ | 7 = min{zy,. .. 7-75n}} und

7o (1) = min {{k |z, = P\ {m,- (1), ..., 7= (i — 1)}} (2.1.3)

fir o1 +.. 4 Joy <t <Jg1+...+Jzi41, L =0,...,a—1. Falls j,, positiv ist, das
heiBt ein k € {1,...,n} existiert mit z, = 0, so gilt 7, (1) = min {k | z;, = 0}.

Sei X/, (NG, 1, B(NG, 1) — (Sn, B(Sy)) die fiir z € Nj,_, durch

def
Xz{,n(x) :e Ty~

definierte Funktion. Wir definieren die Mischmethode Q}, fiir B € P(S,,) durch

ef
T a(B) = Uy,

a,n

(X.,=n"7€B). (2.1.4)

1
Dann gilt fiir alle 7 € S,

{m({ﬂ}) _ {x € {(),...,a—ai}”|7rm :77*1}|.

2.1.2 Beispiel. Ein Mischvorgang im inversen Modell: Wie in Beispiel seien
a=2,n=10und z = (0,1,1,0,1,0,1,0,0,1) € Ng% = {0,1}'? (siche Abbildung
23).

a.: Wir beginnen mit einem geordneten Kartenstapel und identifizieren ,, Ass®
mit dem Wert 1.

(2.1.5)

b.: Karte ¢ wird der Wert x; zugeordnet, i = 1,...,10.

c.,d.: Das erste Pdckchen A; besteht aus den Karten 1,4,6,8,9, das zweite
Packchen aus den Karten 2,3,5,7,10. Alle Karten aus Packchen A; werden an
den Anfang des Stapels gelegt, dahinter alle Karten aus Packchen A,. Der Stapel
wurde geméf der Permutation m,- = [1,4,6,8,9,2,3,5,7, 10] gemischt.

Um nun den Mischvorgang gemé$ (2.1.4)) zu erhalten, werden die Schritte a. bis
d. in umgekehrter Reihenfolge durchgefiihrt, das heifit der geordnete Kartenstapel

wird gemif 7T;_1 gemischt. Der inverse Riffle Shuffle geméfl m,- invertiert also
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Abbildung 2.2: Mischvorgang im inversen Modell.

gerade den Mischvorgang im Maximum-Entropie-Modell geméafl 7, aus Beispiel
2.1.1] Er ordnet also den gemischten Kartenstapel zuriick in die Ausgangslage.
Das Mischen kann somit als ,,inverses Sortieren“ bezeichnet werden. Wir werden
diese Beobachtung in Lemma belegen.

Bayer und Diaconis [0], [9] nennen mit dem geometrischen Modell eine weitere
Méglichkeit zur Modellierung des GSR-(a, n)-Shuffle. Es ldsst sich auch hier zei-
gen, dass das geometrische Modell dquivalent zu den beiden vorangegangenen ist,
in dem Sinne, dass es dieselbe Mischmethode auf S, induziert. Wir werden aller-
dings auf den technischen Beweis verzichten, da uns das geometrische Modell im
weiteren Vorgehen keine Vorziige gegeniiber dem Maximum-Entropie-Modell bzw.
dem inversen Modell bietet. Wir geben jedoch im Anschluss an die Modellierung

eine kurze Beweisskizze an.

3. Geometrisches Modell: Wir wéihlen n Punkte xy,...,z, im Einheitsinter-

vall voneinander unabhéngig und gleichverteilt. Diese ordnen wir der Gréfie nach,
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so dass x1 < ... < x,. Die Abbildung

foi(xe, . xn) — (fD(xy),..., f"(x,)) = (az; (mod 1),...,az, (mod 1))

bildet das Intervall [0, 1]" auf sich selbst ab. f, sortiert die Punkte z1,...,z, um
und induziert so ein Wahrscheinlichkeitsmaf§ auf S, (siehe Abbildung [2.3).

Y

0 ! é
Abbildung 2.3: Die Funktion fi" : [0,1] — [0,1) mit fél)(x) = az (mod 1).

Seien X7, ..., X, stochastisch unabhéngig und identisch R(0, 1)-verteilte Zu-
fallsgrofen  auf  einem  Wahrscheinlichkeitsraum — (Qg, %5, Q¢)  und
T :[0,1]" — [0,1]" die Ordnungsstatistik mit

T(x1,...,2,) = (), .- Ty) fir (z1,...,2,) € [0,1]".

Die Funktion f, : [0,1]" — [0,1)" mit f, = (£{”, ..., £{™) sei definiert durch
£9(z) g (mod 1) = ax; — |ax;] (2.1.6)
fir x; € [0,1) und ¢ = 1,...,n, wobei |z] die untere Gauss-Klammer von z €

R sei. Ferner sei R = (Ry,...,Ry) : [0,1]" — NI, die Rangstatistik mit
Rj : [Oa 1]71 - Ngn,
R]'(xlv < 73771) = ’{7’ ‘ T < I']}‘

fir (z1,...,2,) €[0,1]"und j=1,... n.
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2.1.3 Bemerkung. Fiir die in (2.1.6) definierte Funktion gilt

(a) fa ist Bff ;=B ;)-messbar.

(b) él)(Xl),...,fan)(Xn) sind stochastisch unabhéngig und identisch R(0,1)-

verteilt.

Beweis. zu (a): Fir ¢ <n und s,t € [0,1) mit s < ¢ gilt

a—1
0 (s.4) = (S tk ”k} € B, (2.1.7)

k=0

u (b): Die stochastische Unabhéngigkeit folgt aus (a) und der stochastischen
Unabhéngigkeit von X7,..., X,,. Sei i < n und ¢ € (0, 1]. Dann gilt

Qa(f(X; = Q5 (fI7 € 0,1))
a—1
= Q' [z e k]) (2.1.8)
a—1 ¢ =
=Y =
k=0 a

Fiir ¢ < 0 erhalten wir unmittelbar QG(fCE’) (X;) <t) =0 und fir ¢ > 1 analog zu
213)

Qa(fV(X:) <) = Qg (f € [0,1]) = Qz* (£ € [0,1]) = 1.
Somit gilt Qf“ (X2) =R(0,1) firi=1,...,n. H

Wir definieren die Abbildung XG "R o faoToX, X =(Xq,...,X,), und
das MaB QY : B(S,) — [0,1] fiir B € P(S,,) durch

¢ (B) = Q¢ (XS e B). (2.1.9)

a,n

Damit durch diese Definition ein Wahrscheinlichkeitsma$ auf (S, PB(S,)) definiert
wird, muss X¢ f.s. S,-wertig sein. Wie die folgende Bemerkung zeigt, ist dies
tatsédchlich der Fall.
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2.1.4 Bemerkung. QY ist cin Wahrscheinlichkeitsmaf auf (S, B(S,)).

Beweis. Es ist zu zeigen, dass X& Q¢ - f. s. S,-wertig ist, also

¢(S)=Qc(Rof,oToX eNL, )=1. (2.1.10)

a,n

Dies ist genau dann der Fall, wenn Q¢(fo o T o X € [0,1)7) = 1 gilt. Sei
(x1,...,2,) € ]0,1]", dann gilt

falz1,...,2,) €0, 1)7;é = falz@), ... Tw)) €0, 1)?é

und somit

Qc(faoTo X €[0,1)}) = Qa(fao X €[0,1)7).
Da fiV (X1)y---, fén)(Xn) nach Bemerkung stochastisch unabhéngig und ste-
tig verteilt sind, ergibt sich Q¢(fs o X €[0,1),) = 1 und daraus (2.1.10). O

2.1.5 Lemma. Seta € N und x,y € [%, E) fiir ein 1 € N, dann gilt
r <y<=ar (mod 1) < ay (mod 1).
Beweis. Seien xg,yo € [i — 1,4) fiir ein ¢ € N. Dann gilt wegen |zo| = |vo]

Ty < Yo <= To — Yo < |[Zo] — 0]
= o — [z0o] < Yo — |¥o]

<= zo (mod 1) < yo (mod 1).

Die Behauptung folgt, indem wir xy = ax und yy = ay setzen. O

Wir fithren nun die Funktion J, = (J1,...,J,) : [0,1]" — >_" ein, indem wir

fir (z1,...,2,) € [0,1]" und i = 1,..., n definieren

Ti((@n,- . vz) € G 25 € [ZL 1)},

Mit Lemma [2.1.5| erhalten wir die folgende Interpretation eines durch eine Reali-
sation x = (x1,...,x,) der Zufallsvariablen X = (Xi,...,X,) gegebenen Misch-
vorgangs (R o f,oT)((z1,...,,)) (siche auch Abbildung [2.3):
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Zunéchst konnen wir die Punkte x4, ..., z, und fél)(x(l)), i (7(n)) jeweils
als paarweise verschieden voraussetzen, da zum einen Xi,...,X,, stetig verteilt
sind und zum anderen f,07T o X fast sicher [0, 1)’;-wertig ist. Zusétzlich nehmen wir
noch z1,...,x, < 1 an. Nach Anwendung der Ordnungsstatistik 7" auf (zy ..., z,)
sortiert die Funktion f, das Tupel (x(),..., %)) um. Nach Lemma bleibt
dabei die Rangfolge aller Punkte, die im selben Intervall [%, é) fiir ein ¢ < a

liegen, unverdndert. Gegeben i, j < a mit ¢ # j und Punkte

T(iy)s - -+ (i) € (=1, %) und T(jy)s - T(jpy) € [7%1,%)

mit der Eigenschaft
Ty < ... < Z(ipy) und Ty < ... < Z ()

kann durch Anwendung der Funktion f, ihre Rangfolge gedndert werden. Da jedoch

die Rangfolge der Punkte innerhalb des Intervalls [%, ﬁ) bzw. []%1, %) jeweils
durch f, nach Lemma [2.1.5| nicht gedndert wird, , verzahnen“ sich die beiden

Ketten
; (iry) ; (irs)
£ @), fa ™ (2g,,)) and f99(2g), . fa " (2g,,))-

Daraus folgt, dass wir die Anzahl der Karten in den Péckchen A4, ..., A, bei
dem durch (Ro f,oT) ((z1,...,x,)) gegebenen Mischvorgang mit der Anzahl der

Punkte zy,...,x, in den einzelnen Intervallen [O, %) , E, %) ey [%1, 1) identifi-
zieren konnen. Die Anzahl der Karten in den Packchen Ay, ..., A, ist also gerade

durch Jy(z),...,Jo(z) gegeben. Genauer ist Péckchen Ay dann fir k = 1,...,a
gegeben durch

k—1 k

Ap = {ZJi(x) + 1,...,2@-(9;)}.
i=1 i=1
Es lésst sich zeigen, dass das geometrische Modell die gleiche Mischmethode auf

S, erzeugt, wie das Maximum-Entropie-Modell. Hierzu betrachte man fiir a € N>,
und z € [0, 1] die a-adische Entwicklung von z. Eine solche ist gegeben durch eine
Folge (z1)k>1 € {0,...,a — 1} mit

T = E zka_k.

k>1
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Diese Darstellung ist im Allgemeinen nicht eindeutig bestimmt, es existieren je-
doch fiir jedes = € [0, 1] hochstens zwei verschiedene a-adische Entwicklungen. Sei
Y = (Yjk)j<ni>1 eine Zufallsvariable mit stochastisch unabhéngigen und auf

{0,...,a — 1} Laplace-verteilten Komponenten. Dann gilt fir j =1,...,n
PErz1 Y™ = R(0,1).

Somit kann das geometrische Modell wie folgt beschrieben werden: Wir wihlen

zunéchst eine Realisation

Y1, Un) = ((yl,k)kzu ces (yn,k>k21)

der Zufallsvariablen Y. Im geometrischen Modell entspricht dies der Wahl von n

Punkten
T, = Zylyka_k, ey Iy = Z yn,ka_k.

k>1 k>1

Die Ordnung (1), ..., %) der Punkte zy,...,z, der Gréfie nach, entspricht der
lexikographischen Ordnung y(1), . ..,y der Folgen yy, . . ., y,. Die Anwendung von
fa auf (zq),...,2()) findet ihr Analogon in der Anwendung der Shift-Operation
o auf yay, ..., Ym), die fiir (zx)p>1 € {0,...,a — 1} definiert ist durch

o ((zr)r=1) = (2k)r>2-

Ermitteln wir nun die Rénge der Punkte fél)(x(l)), o (2(n)), so zeigt sich, dass
die Rénge im Wesentlichen von den ersten Komponenten von o(y)), ..., 0(ywm))
abhédngen. Da diese aber vereinfacht gesprochen wiederum modulo Ordnung und
Anwendung der Shift-Operation aus einer Realisation von n stochastisch
unabhéngigen und iiber {0, ...,a — 1} Laplace-verteilten Zufallsgrofien stammen,

zeigt sich dann die Aquivalenz von geometrischem Modell und Maximum-Entropie-
Modell.

Wir wenden uns nun wieder dem Maximum-Entropie-Modell und dem inversen
Modell zu. Das folgende Lemma bestétigt die Beobachtung aus Beispiel dass
der zu r € Nj,_; gehdrige Mischvorgang gemifl 7, aus dem Maximum-Entropie-

Modell das Inverse des Mischvorgangs m,- aus dem inversen Modell ist.
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2.1.6 Lemma. Sei z € Nj, . Dann gilt 7' = 7,

Beweis. Sei v = (z1,...,7,) € Ni, ; beliebig. Wir nehmen o0.B.d.A. j.; # 0
fiir - = 1,...,a an. Sonst setzen wir b dof H{z1,...,2,} N Nyge_1| und definieren

! __ / /
a' = (zy,...,2,) € Nj, ; durch

/ def

z :xi—}{kE{O,...,n}|k<xi,k%xl,...,xn}},izl,...,n.

Dann gilt j,.; # 0 fiir ¢ = 1,...,b. Ferner erhalten wir A, p = A, # 0 fir
k=1,...,b, wobei [ induktiv definiert ist durch I, o min{i | A,; # 0} und

b min{i > Uy | Ags # 0}

fir K =2,...,b. Dann gilt 7, = 7,y wegen der Definition (2.1.1f) von .

Sei also j,; # 0 fiir i = 1,...,a. Es existieren ko, ..., k, € N mit

O=ky<ki <...<ky1<ks,=n und
Agivr =1k + 1, ki }

fir { =0,...,a — 1. Wir definieren iy, ..., € Ng, durch
k1 o min{i |z; =1},1=0,...,a—1 und
i; = min {{¢ | z; = B\ {igg1, - 51}

fiir by + 1 <jJ Slirl undle,...,a—l.
Wir zeigen nun mit einer Induktion m,(i;) = j fir j = 1,...,n. Aus

iy = min{i | x; = 0} folgt x;, = 0 und somit

7x(11) = min {Amilﬂ\{m(l), ooy (i — 1)}}

=min {A, \{m,(1),...,m(i1 — 1)}} =min A4, ; = 1. (2.1.11)

Sei m < n beliebig und 7,(i;) = j fur j < m. Wir zeigen m,(i,,) = m. Sei
1€{0,...,a—1},s0dass ky + 1 <m < kj;;. Falls m = k; + 1, so folgt wegen

im = min{i | z; = [}
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analog zu (2.1.11)) 7, (i,,) = m. Gilt andererseits k; + 1 < m < k41, so folgt aus
i = min {{i | z; = \{ir41,- .., im—1}} die Bezichung

Ty > ikl+17 e b

Ferner gilt m,(j) ¢ A, fir alle j < 4, mit j # ig41,...,0m—1. Dann folgt

zusammen mit x; = [ und der Induktionsvoraussetzung

To(im) = min { A, 5. 1\{m(1),..., me(inm, — 1)} }
=min { A, 101 \{m:(1), ..., 7 (i, — 1)} }
= min {A,,:,Hl\{m(iklﬂ), . ,ﬁz(im,l)}}
= min {A%Hl\{kl +1,...,m— 1}}
=min {{k;+1,..., ke }\{k+1,...,m—1}}

=m.
Also gilt 7, (i;) = j fiir j = 1,...,n. Aus der Definition der ¢, folgt unmittelbar

iy =min {{i | z; = }\{i1, ..., 351} }

fir ky+1<j<kyyundl=0,...,a—1 Wegen 7;'(j) =i; fir j =1,...,n
erhalten wir zusammen mit (2.1.3))

7,1 (1) = iy = min{k | 7, = 0} = 7, (1).

x

Daraus folgt wiederum mit ({2.1.3)) induktiv fir ky+1 < j <k yund =0,...,a—1

T, (j) = i

=min {{k [ zx = P\ {i1,..., 31} }
= min {{k|zp = P\ {7 ' (1),..., 7. (5 - 1)}}
= min {{k | xp = \{me- (1), ..., (J — 1)}}
= - (j)
und somit ;! = m,-. O
Wir kommen nun zu dem bereits angekiindigten Resultat, dass das Maximum-

Entropie-Modell und das inverse Modell die gleiche Mischmethode wie der GSR-
(a,n)-Shuffle erzeugen (siche Lemma 1, Abschnitt 3 in [6] und Abschnitt 3 in [16]).
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2.1.7 Satz. Das Mazimum-Entropie-Modell und das inverse Modell erzeugen die
gleiche Mischmethode, das heif§t fiir alle n € N gilt

M I

an ~ wan®

Ferner beschreiben beide Modelle den GSR-(a,n)-Shuffle.

Beweis. Sein € N. Qfl‘{n = @, folgt unter Benutzung von ) und - ) di-

1

rekt aus 7, * = 7, fiirallex € NO o—1- Es reicht also zu zeigen, dass das Maximum-

Entropie-Modell den GSR~(a, n)-Shuffle beschreibt.

Wir teilen den GSR-(a,n)-Shuffle in zwei Schritte auf: Im ersten Schritt wer-
den die Pickchengrofien nach einer M(n, 1/a)-Verteilung gewéhlt, das heifit die
Wahrscheinlichkeit, dass die Péckchen Ay, ..., A, j1,..., 7. Karten enthalten, ist
fir (ji,...,7q) € Y gegeben durch

M1/ ah = (; ")

Im zweiten Schritt blattern wir die Péackchen in der zu Beginn dieses Kapitels auf

Seite [[4] beschriebenen Weise ineinander.

Gegeben die Péckchengrofien (ji, ..., jq) € Y. sind dann alle méglichen Misch-
vorgange gleichwahrscheinlich: Die Wahrscheinlichkeit, dass die Karten in einer
beliebigen Reihenfolge sukzessive von den Péckchen Aq,..., A, fallen, ist wegen

J1+ ...+ Jo = n gegeben durch

j1(j1—1)'-~-'1'---'ja(ja—1)'---'1:jll'-'-'ja!:< n )—1
i+ A+ dja—1)-... -1 n! Juenda)

Die Wahrscheinlichkeit fiir einen beliebigen GSR-(a, n)-Shuffle mit Packchengrofien

Jis- -+, Jq im ersten Schritt ist dann gegeben durch

Gl a)w () -
j17"'7ja an jl?"”ja an'

Das heifit alle moglichen GSR-(a, n)-Shuffle sind gleichwahrscheinlich mit Wahr-
scheinlichkeit 1/a". Im Maximum-Entropie-Modell entsprechen der erste und zwei-

te Schritt gerade der Wahl eines € Nj, ;, denn jy1,...,Jza € Y% legen die
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Péackchengrofien fest und x selbst die Reihenfolge, in der die Karten ineinander-
geblattert werden. Die Wahrscheinlichkeit, dass ein GSR-(a, n)-Shuffle in der Per-
mutation m € S, resultiert, ist dann gegeben durch die Anzahl aller x € Ny, ; mit
m, = 7, dividiert durch die Anzahl @™ aller moglichen Mischvorgénge. Die gesuchte
Wahrscheinlichkeit entspricht also gerade

o €Ny, | m = )

an

= Q). ({=}),

was wir beweisen mussten. L]

Die folgenden Resultate dieses Abschnitts orientieren sich an den Ausfithrungen
in Abschnitt 7.2 in [I6]. Sie sind allerdings in der hier formulierten Weise in der

verwendeten Literatur nicht zu finden, dies gilt insbesondere fiir den Beweis von

Satz 21111

Wir bezeichnen nun fiir ein z € Nj, ; einen Mischvorgang, der durch die
Permutation 7, beschrieben wird, als GSR-(a, n)-Shuffle und einen Mischvorgang,

der durch m,- beschrieben wird, als inversen GSR-(a,n)-Shuffle. Ferner setzen wir
Q def ~v I
an — -

a,n a,n:’
Seien a,b € Nso. Fiir das weitere Vorgehen definieren wir eine totale Ord-
nung auf Nyg_; X Nyj_1, genannt lexikographische Ordnung nach der zweiten

Komponente“: Fir (z;,y;) € Noa—1 X Nop_1, i = 1,2, setzen wir
(x1,11) < (22,y2) <= (x1 < X2, y1 = y2) oder y; < Yo. (2.1.12)

2.1.8 Lemma. Seien a,b € Nso und (x;,v;) € Nooa—1 X Nop_1, ¢ = 1,2. Dann gilt

(z1,91) < (22,92) <= ayr + 11 < ays + 7. (2.1.13)

Beweis. ,=“ Falls gilt 1 < x5 und y; = y», so folgt direkt
ayr +x1 < ays + 2.

Gilt andererseits y; < s, so folgt x; — xs < a wegen x1, 25 € {0,...,a — 1} und

somit

Y1 < Yo = ay1 < ays

= a < ays — ayr
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= T — T2 < ayp — ayy

= ay; +x1 < ays + To.

,<=" Im Fall ay; + x; = ays + x5 folgt wegen der Eindeutigkeit der Division
mit Rest z7 = 9 und y; = yo. Es gilt also (z1,y1) = (22,y2). Falls andererseits
ay, + x1 < ays + w9 ist, so gilt entweder 1 < x5 und y; = yo oder y; < yo, also in

beiden Fillen per Definition (z1,y1) < (z2,¥2). ]

Fir z € N§, 4, y € Nj,_, definieren wir
Toy def WWr, + T = (AYr, (1) + 15 -, Wy (n) + Tn)- (2.1.14)
Dann gilt entsprechend

yor =>bry +y= (b, + Y1, 0Tn,n) + Yn)-

Den Nutzen dieser Definition, die in dhnlicher Weise in Abschnitt 7.2 in [16] zu

finden ist, zeigt das folgende Lemma.

2.1.9 Lemma. Seien a,b € N>o, v € N§, | und y € Ny, ;. Dann gilt
Tge= O Ty= = T(x,yn, )~ — T(xoy)=> (2.1.15)

wobei ., y- entsprechend (2.1.3) gemdf der in (2.1.12) definierten Ordnung

bestimmdt ist.

Beweis. m,- om,~ beschreibt einen inversen GSR-(a, n)-Shuffle geméafl 7,- gefolgt
von einem inversen GSR-(b, n)-Shuffle geméf 7,-: Das heifit zunéchst wird Karte
1 der Wert z; zugeordnet, ¢ = 1,...,n. Dann werden alle Karten in die Reihenfolge
(mo-(1),...,ms-(n)) sortiert, das heift alle Karten mit dem Wert 0 werden unter
Beibehaltung ihrer Reihenfolge an den Anfang des Stapels gelegt, gefolgt von allen
Karten mit dem Wert 1, bis hin zu allen Karten mit dem Wert a — 1. Anschlieffend
wird der Karte an Position 7, (i) der Wert y; zugeordnet, i = 1,...,n, und die
Karten in der bekannten Weise nach aufsteigenden Werten von 0 bis b — 1 in
(Y1, - - -, yn) sortiert. Wir notieren dabei die Werte z1, ..., z, und 4, ..., y, auf den

einzelnen Karten (siehe (2.1.16))), indem wir zunéchst auf die Karte an Position j
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den Wert z; schreiben und anschlieBend geméfl 7~ mischen. Dann schreiben wir
auf die Karte an Position j den Wert y; rechts von dem Wert Tr der nach dem
Mischen geméafl 7, bereits auf dieser Karte steht. Anschliefend mischen wir die

Karten geméf3 7,~. Die Karte an Position j trigt also jeweils die folgenden Werte:

T — . (-

. y
Qij — wa,(j) =, (‘Tﬂzi(j)’yj) LN (ajﬁzioﬂyi(j),yﬂyi(]‘)). (2116)
Wegen Tr (1) <. S Tp () gilt
Yr,— () S Yr,(i+1) = Tr_om, () < Tr,_om,_ (j+1)-

Daraus folgt, dass die Werte (xﬂfoﬂyf(l), yﬂyf(l)), e (xﬂfoﬂyf(n), yﬂyf(n)) der
Karten nach dem Mischen gemé8 7, om,- lexikographisch nach der zweiten Kom-

ponente sortiert sind. Es gilt also

(wa, om,— (1) ywyf(l)) <...< (a"‘wz,ony,(n)a ywy,(n))'

Notieren wir nun vor dem Mischen geméfy m,- o m,~ den Wert (2, y(x _)-1(;)) auf
Karte j, so triagt die Karte, die sich nach dem Mischen gemé8 m,- om,- an Position
j befindet, den Wert

(wﬂm_ om,—(§)s y(wI,)*lowz,OWyf(j)) = ('Tﬂ'm_oﬂy_ ) yﬂ'y_(j))'

Wir konnen also in einem einzelnen Mischvorgang alle Karten nach aufsteigenden
Werten (21,y, y-1(1));- - -+ (Tn, Y y-1(n)) sortieren und erhalten dieselbe Permu-

tation wie beim sukzessiven Mischen nach 7,- und m,-, das heifit es gilt

7r$7 © 7Ty7 = ﬂ_(x7y(ﬂ'27)_l) = 7T(x7yﬂ'z)7

wobei die letzte Gleichheit aus (m,-)~' = 7, folgt. Da die Rangfolge der Tupel
(21, Ymo(1))s - - - » (T, Ymp(ny) und der Werte ayr, 1) + 21, - . ., AYr, (n) + 2 jedoch nach
Lemma identisch ist, gilt

T(@,yny) = T(woy)~

und somit insgesamt (2.1.15]). [
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Fiir den Beweis des néchsten Satzes benotigen wir noch ein weiteres technisches
Lemma, das zwei wichtige Aussagen iiber die in (2.1.14]) definierten Verkniipfungen
royundyox,z € Ny, 1,y € N, ;, beinhaltet.

2.1.10 Lemma. Seien a,b € N>y, x,2" € Ny, | und y,y" € N, ;. Dann gelten

die folgenden Aussagen:
(i) roy=a'oy <= zv=0,y=y < yox =y od,
(ii) NO ap—1 = {yox|(v,y) € N§ a1 X Ng,b—l}'

Beweis. zu : Wir fithren den Beweis der zweiten Aquivalenz, da wir diese im Be-
weis von Satz [2.1.11| benutzen werden. Die erste Aquivalenz wird analog bewiesen.

Aus yox =y o2’ folgt zunidchst firi=1,....,n
btr, i) + 4i = b2 iy + Y-

Wegen x; € {0,...,a— 1} und y; € {0,...,b—1} firi =1,...,n und a,b > 2
folgt dann aus der Eindeutigkeit der Division mit Rest

bar, i) = bl i) und y; = y; (2.1.17)

(3

fir i = 1,...,n. Damit ergibt sich y = ¢’ und daraus unmittelbar w7, = m,. Nach
(2.1.17)) erhalten wir dann bx = bz’. Insgesamt gilt also z = 2/ und y = 3. Die
umgekehrte Richtung ist wegen m, = m, trivial.

wu ({): ,C“ Sei z = (z1,...,21) € Nj_y = {0,...,ab — 1}" beliebig. Wir
definieren y = (y1,...,y,) durch

Ui d:efzi (mod b),i=1,...,n,
und = = (z1,...,z,) durch

def Zi — Yi 1
xﬂy(i)— b 1= 1,...,N.

Dann gilt z € Ni,_4, y € Nj,_; und

you =big +y
= (bxﬂy(l) +y,-, bxwy(n) + yn)
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21— W Zn — Yn
=(b- ..., b-
< b +y1a ) b

= (21,...,20) = 2.

+ y)

Daraus folgt Nj ,, ; C{yox|(z,y) € Nj, ; x Ny, ,}.

,0¢ Fiir die umgekehrte Inklusion notieren wir
0<bxr@ <bla—1)und 0 <y; <b-—1

fiir alle (z,y) € Nj, ; x N, ; und i = 1,...,n. Dann folgt fiir alle (z,y) €

Noao1 X Ngp qundi=1,...,n
0<bxr@+yi <bla—1)+b—-1=ab-1
Es gilt also y oz € Ny, fiir alle (7,y) € N, ; x Nj,_;. O

Der folgende Satz zeigt, dass das sukzessive Mischen nach den Mischmethoden
Qan und Qyp,, als einmaliges Mischen nach der Mischmethode @, interpretiert
werden kann. Diese einfache Beziehung erlaubt eine erhebliche Vereinfachung des
Riffle Shuffles, denn sie ermoglicht es, dass eine beliebige Anzahl sukzessiver Misch-
vorgénge mit beliebigen Péckchenanzahlen als einmaliger Mischvorgang aufgefasst

werden kann. Wir prézisieren diese Aussage im anschlieBenden Korollar.

2.1.11 Satz. Seien a,b € N>y und n € N. Ein GSR-(a,n)-Shuffle gefolgt von
einem GSR-(b,n)-Shuffle ist dquivalent zu einem GSR-(ab,n)-Shuffle, das heifst

Qa,n * Qb,n = Qab,n-

Beweis. Seien a,b € N>y und n € N beliebig. Nach Bemerkung und den
vorangehenden Erléduterungen ist zu zeigen Qg * Qpn = Qapn- Sei ™ € S, beliebig.
Dann gilt wegen Lemma [2.1.9 und Lemma [2.1.10| unter Verwendung des inversen
Modells

Quvn({7}) = {2 €N gy | mm = 771}]/(ab)"
= |{(z,9) € Ng o1 X NGy | Tyoay- = 7 }|/(ab)"
= |{x €ENG, 1, YENG, [Ty~ 0T = W_l}}/(ab)n
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= J{eeNjar yeNG M- =07, mp- =77 "0}|/(ab)"

oES,
o€ Njar I =0~} [{y € Mgy I 7y =710}

- Z a™ bn

oceSy

=Y QunlloNQun{m ) D = Y Qual{oNQunl{o'7})
0ESK 0ESH

= Qan * Qon({m})-

Hierbei gehen in der zweiten Zeile entscheidend ([if) und aus Lemma [2.1.10] ein.
Es gilt also Qapn = Qan * Qb n- O

Aus Satz 2.1.11] ergibt sich direkt das folgende Korollar.

2.1.12 Korollar. Seien m,n € N, ay,...,a,, € Nso, 1 € S, und a ) IT2, a;.
Dann gilt

Qal,n KoLk Qam,n = Qaﬂl),n koK Qaw(m>,n = Qa,n~

2.2 Aufsteigende Sequenzen

In diesem Abschnitt geben wir die Wahrscheinlichkeit, dass ein GSR-(a, n)-Shuffle
in der Permutation 7 € §,, resultiert, explizit an. Dafiir ist es notwendig, den Be-
griff der aufsteigenden Sequenz einzufithren. Unter Benutzung von Korollar [2.1.12
ist es dadurch sogar méglich, die Verteilung Q;%" fiir alle . > 1 zu bestimmen.
Mit Blick auf sind damit schon die m-Schritt Ubergangswahrscheinlichkei-
ten des (), n-Random Walks auf S,, gegeben.

2.2.1 Definition. Sei 7 € §,,. Eine aufsteigende Sequenz oder kurz Sequenz von

7 ist eine Kette ((i1,7(i1)), ..., (ix, 7(ix))), so dass gilt
(1) (ST ¥ ENSH, 1 <...<1g,
(i) 7(i;) + 1= mlijpr) fiir j=1,....k—1,

(iii) 7(l) #w(iy)—1firl=1,...;4p—1lund w(l) # w(ix)+ 1 fir l =i +1,...,n.
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Eine aufsteigende Sequenz von 7 € §,, kann somit auch als maximal aufstei-
gende Teilkette von 7 bezeichet werden. Jede Permutation 7 zerfallt vollstandig in
aufsteigende Sequenzen und ist durch Angabe aller ihrer aufsteigenden Sequenzen
eindeutig festgelegt. Wir sagen, die Sequenz ((i41, m(ix+1)), - .., (i, 7(31))) folgt
auf die Sequenz ((i1,7(i1)), ..., (ir, 7(ix))), falls w(iy) +1 = m(ips1) gilt. Aufgrund
von Definition m gilt dann notwendigerweise 7,11 > ik, das heifit die beiden

Sequenzen lassen sich nicht zu einer einzelnen Sequenz vereinen.

Aufsteigende Sequenzen sind eng mit den Sprungstellen einer Permutation ver-

bunden.

2.2.2 Definition. Sei 7 € S,, und ¢ € {1,...,n — 1}. Die Permutation 7 hat eine

Sprungstelle oder einen Descent in i, falls 7(i) > (i + 1).

Sei Pk = {m € S, | m hat k aufsteigende Sequenzen}, k = 1,...,n, und

Dk o {m € S, |7 hat k Descente }, k = 1,...,n—1. Wir definieren die Funktionen

R,, D, : S, — N, fir 7 € §,, durch

R,(m)=r <= 7m € X,, und

D,(m)=r<=71€ D,

Wir setzen von nun an R = R, und D = D,,. Aufgrund von Definition [2.2.1
und gilt R(S,) = {1,...,n}, D(S,) = {1,...,n — 1} und fir 7 € S,
D(m)={i<n—1]|n@)>n(i+1)}

2.2.3 Beispiel. Fiir die Permutation 7 = [4,1,2,5,7,3,6,8] € Ss gilt R(7) = 3,

denn 7 hat die drei aufeinanderfolgenden aufsteigenden Sequenzen

((2,1),(3,2),(6,3)), ((1,4),(4,5)),(7,6)) und ((5,7),(8,8)).

Fiir die Inverse 7! = [2,3,6,1,4,7,5, 8] gilt D(7) = 2. Sie hat Descente in 3 und
6.

Aufschluss iiber den Zusammenhang zwischen aufsteigenden Sequenzen und

Descenten gibt das folgende Lemma.
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2.2.4 Lemma. Sei m € S, und r € Ng,,. 7 besitzt genau dann r aufsteigende

Sequenzen, wenn 7~ 1 — 1 Descente hat, das heifst

R(mr)=r<= D(r ') =r—1

Beweis. Fiir r = 1 folgt die Behauptung direkt aus
R(r)=1<=rm=id < D(m) =0.
Sei also r > 2.
.= Wir wahlen kg, ..., k. € N mit
O=ky<ki<...<k_1<k.=n

und paarweise verschiedene 71, . .., %, € N<,, so dass die r aufsteigenden Sequenzen

von 7 gegeben sind durch

((i1,1)), - s (ikys k1)), (Grgrs Kt 4+ 1))5 oo, (kg ko)) -
((ky_ys1 k1 + 1)), o, (i, ).

Dann gilt 7(i;) = j und 7—!(j) = i; fiir j = 1,...,n. Die Anzahl der Descente von

7! ist gegeben durch
Dir)y=l{j<n—1[7'()>7"(G+ 1}
=Hi<n—=11i> i}
Aufgrund der Definition der aufsteigenden Sequenz gilt ¢; < 4,41 fir j = ki +
..., k1, 0=0,...,7—1und
ij >t fir j=kundl=1,...,r =1
Daraus folgt unmittelbar D(7~!) =r — 1.
,,<:“ Seien ]{71, c. 7kr—1 € N mit

def def
0 ko<hki<...<k 1<k Sn
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1

die Sprungstellen von 7! und iy,...,4, € Ng,, so dass 77 1(j) = ¢; fir j =

1,...,n. Dann gilt

7 k) >7 Yk +1) firl=1,...,7 — 1 und
7k +1) <. <7 (k) fir l=0,...,7r— 1.

Daraus folgt wegen 7 '(j) =4;, j=1,...,n,

ikl > ’ik1+1, ik2 > ik2+1 - 7ikT71 > Z.kT,H-l und

1 <o < gy Uyl <o < gy eyl < e <l

Wegen 7(i;) = j fir j = 1,...,n sind die aufsteigenden Sequenzen von 7 dann

gegeben durch

((i1,1)), -, (inys k1)), (G, k1 4+ 1))s o (ks K2)) -
(i1, ko1 + 1)), .o, (in, ).

Also ist R(m) = 1. O

Bei einem GSR-(a, n)-Shuffle eines ungemischten Kartenstapels helfen uns die
aufsteigenden Sequenzen, die urspriinglichen Péckchen wiederzuentdecken: Sie sind
nach dem Ineinanderbldttern als aufsteigende Sequenzen zu erkennen (siche Bei-
spiel [2.1.1)). Dies wird im Beweis des folgenden Theorems (siche Theorem 3, Ab-
schnitt 3 in [6]) deutlich. Wie eingangs dieses Abschnitts beschrieben, erweist es
sich als Schliissel zur Bestimmung der Verteilung QZ(? ) und somit zur Berechnung

der Totalvariation ||Qsn" — Us, || fiir m > 1.

2.2.5 Theorem. Sein € N, a € Nx>y und 7 € S,,. Die Wahrscheinlichkeit, dass

ein GSR-(a,n)-Shuffle in der Permutation m resultiert, ist gegeben durch

n+a—R(7T))

Qa,n({ﬂ'}) = (+

an

: (2.2.1)
wobei (’:) 0 fiirm <n.

Beweis. Seien n € N, m € S, beliebig und R(7) = r. Ausgehend vom Maximum-

Entropie- bzw. inversen Modell ist die gesuchte Wahrscheinlichkeit bestimmt durch
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die Anzahl aller moglichen Arten, einen ungemischten Stapel in a Péckchen
Aq,...,A, zu unterteilen, so dass m ein moglicher Mischvorgang ist. Dies gilt, da
die Reihenfolge, in der die Karten ineinandergeblittert werden, bereits eindeutig

durch 7 festgelegt ist. Wir wahlen kg, ..., k. € N mit
O=ky<k <...<k_1<k.=n,
so dass die r aufsteigenden Sequenzen von 7 gegeben sind durch

((i1,1)), - (inys k1)) (g, k1 4+ 1)), (s ko))
((ikr_1+1, kr—l + 1)), ey (Zn, n))

Sei nun Ay, ..., A, eine Pickchenfolge, so dass 7 ein moglicher Mischvorgang ist.
Da sich die Karten in den einzelnen Péckchen vor und nach dem Ineinanderbléttern
in derselben Reihenfolge befinden, besteht jede Sequenz in 7 aus aufeinanderfolgen-
den Péckchen Ay, ..., Axy; mit geeignetem k € N, und [ € {0,...,a—1}. Die Ver-
einigung Ay U. ..U A, von aufeinanderfolgenden Péckchen Ay, ..., Ay, bezeich-
nen wir als Paket. Zwei aufeinanderfolgende Sequenzen ((iy,_,, kj—1)), ..., (ir,, k;))
und ((ig;11,kj + 1)), ..., (i, kj+1)) miissen in verschiedenen Paketen aufeinan-
derfolgender Piackchen liegen, da es sonst nicht moglich ist, die Karte k; + 1 vor
der Karte k; einzusortieren. Hieraus folgt unmittelbar Q,,,({7}) = 0 fiir > a An.
Sei also im Folgenden r < a A n. Dann existieren ji,...,7, € {1,...,a}, mit

1< <...<7j-1<J-=aund

AU UA ={1,... ki}, AU UA, ={ki, o ke
Ajr,l—&—lu---UAa == {kr_1+1,...7n}. (222)

Wir zdhlen nun alle Moglichkeiten ab, einen ungemischten Stapel in a Péckchen
AL, ..., AL zu unterteilen, so dass 7 ein moglicher Mischvorgang ist. Wir zeigen
unsere Behauptung auf zwei verschiedene Arten, indem wir zwei unterschiedliche

kombinatorische Abzéhlargumente verwenden.

1. Abzihlargument (Kombination ohne Wiederholung): Wir codieren zunéchst
jede Pickchenfolge Af,..., A/ eineindeutig durch ein (n + a — 1)-Tupel beste-

hend aus n Sternchen ,*“ und a — 1 Trennstrichen ,|“. Enthalten die Péckchen
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Al AL L Karten, (..., 1) € >, so besetzen wir den Uy, ..., [, ent-
sprechend viele Positionen mit Sternchen und trennen die so entstandenen a Blocke

durch a — 1 Trennstriche:

Al AL o (o x x s %, %), (2.2.3)

[1-mal l2-mal lq-mal

Um nun alle Moglichkeiten abzuzihlen, einen ungemischten Stapel so in @ Packchen
AL, ... Al zu unterteilen, dass 7 ein moglicher Mischvorgang ist, geniigt es schon,
alle Moglichkeiten zu bestimmen, die a — 1 Trennstriche auf n+a — 1 Positionen zu
verteilen, so dass die geméf bestimmte Péckchenfolge zum Mischvorgang
7 gehort. Die n Sternchen nehmen dann gerade die verbleibenden Positionen ein.
Die Reihenfolge, in der die einzelnen Karten ineinandergebléttert werden, ist durch
7 eindeutig festgelegt ist. Daher fithrt eine Péckchenfolge A, ..., Al genau dann
zum Mischvorgang 7, wenn sie von der Form (2.2.2)) ist. Dann sind aber r — 1
Pakete bereits durch m festgelegt, das heifit die Positionen der r — 1 Trennstriche
zwischen diesen Paketen sind vorgegeben: Vor dem ersten Trennstrich miissen sich
k1 Sternchen befinden, vor dem zweiten Trennstrich ks Sternchen usw. Es bleiben
also noch (a — 1) — (r — 1) = a — r Trennstriche, die beliebig auf die n + a — 1
Positionen verteilt werden konnen. Hierbei ist zu beachten, dass tatsdchlich jede
der n + a — 1 Positionen von den a — r Trennstrichen eingenommen werden kann,
da die Positionen der iibrigen r — 1 Trennstriche zwar festgelegt sind, aber von den
vorher schon vergebenen Positionen abhédngen: Werden zunéchst a —r Trennstriche
verteilt, so erhalten wir ein (n 4+ a — 1)-Tupel, bestehend aus a — r Trennstrichen
und (n4+a—1) — (a —r) =n+r — 1 Leerstellen ,,LI“, der Form

(e I S I I A ) B
S—_—— — S——
m1-mal me-mal Me-mal
mit geeigneten my,...,m, € y .. Die n Sternchen und die iibrigen r — 1 Trenn-

striche miissen dann so auf die Leerstellen-Positionen verteilt werden, dass sich vor
dem ersten der r — 1 Trennstriche k; Sternchen befinden, vor dem zweiten Trenn-

strich ko Sternchen usw. Wir kennzeichnen die » — 1 festgelegten Trennstriche
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durch ,, | “:
(ik,. B P T O N S AT A S D .
TV
ki-mal , x*
A J/
Vv
ko-mal , %
~~ J/
kr-mal , %

Es gibt ("7*7") = (""*7") Moglichkeiten die a — r Trennstriche auf n + a — r

a—r
n+a—r)
n

Positionen zu verteilen und somit ( Moglichkeiten den Kartenstapel so in a

Piéckchen zu teilen, dass m ein moglicher Mischvorgang ist. Somit gilt also

Qo) = L),

a

da es insgesamt a”" mogliche GSR-(a, n)-Shuffle gibt.

2. Abzdihlargument (Kombination mit Wiederholung): Die n Karten seien nach
aufsteigenden Werten von links nach rechts vor uns ausgelegt. Zwischen zwei Kar-
ten, sowie vor der ersten und nach der letzten Karte sei jeweils ein Fach aufgestellt
(siehe Abbildung . Insgesamt benotigen wir hierzu n + 1 Fécher.

00.J)0E/0L0 - 0L0

Abbildung 2.4: Fécherverteilung: n 4+ 1 Facher zwischen n Karten.

Wir kénnen nun jede Péckchenfolge A, ..., A/ eineindeutig durch @ — 1 unun-
terscheidbare Kugeln, die wir auf die n+ 1 Fécher verteilen, identifizieren: Beginnt
bei Karte j ein Péckchen, so legen wir eine Kugel in das Fach links von Karte
j. Bleibt ein Péckchen leer, so legen wir eine Kugel in das Fach links von der
Karte, bei der das néchste nichtleere Packchen beginnt. Ist das letzte Packchen
oder sind mehrere der letzten Péackchen leer, so legen wir eine oder der Anzahl
der leeren letzten Piackchen entsprechend viele Kugeln in das letzte Fach. Dabei
bendtigen wir nur ¢ — 1 und nicht etwa a Kugeln, da bei Karte 1 immer min-

destens ein Péackchen beginnt. Enthalten die Péckchen also A%, ..., AL li,..., 1,
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Karten, (I1,...,l,) € >, das heift
All:{1,...,[1},14/2:{ll+1,...,l1+12},...,A;:{ll—i—...—f—la,l—i—l,...,n},

so verteilen wir die Kugeln den Werten [y, ..., [, entsprechend auf die Fécher: Die
erste Kugel legen wir in das Fach links von Karte [; + 1, die zweite Kugel in
das Fach links von Karte I} + I3 + 1 usw., bis hin zur (a — 1).-Kugel, die wir in
das Fach links von Karte I; + ...+ [,_1 + 1 legen, bzw in das letzte Fach, falls
li+...41l,.14+1=mn+1. Hierbei ist zu beachten, dass fiir den Fall [; = 0 das erste
Péckchen leer bleibt, das heiit A] = (), und die erste der a — 1 Kugeln in das Fach
links von Karte 1 gelegt wird. Ebenso konnen fiir den Fall, dass nicht samtlich
l1,...,l, von Null verschieden sind, mehrere Kugeln in einem Fach liegen (siehe
Abbildung 2.5 Das erste und dritte Pdckchen A; und Aj sind leer, das zweite
Péackchen A, besteht aus den Karten 1,2, 3).

[0/ 06/0EBE0 - 0k0

Abbildung 2.5: Beispiel fiir eine Kugelverteilung.

Eine Pickchenfolge A, ..., A/ fithrt genau dann zum Mischvorgang 7, wenn
sie von der Form ([2.2.2)) ist, das heift

A&U...UA;I:{1,...,l€1},Al-1+1U...UA;2:{lirl,...,kQ},...,

J
Al U UA ={k o+ 1, 0],

wobei 0 < k1 <...<k._1<nund 1<y <...<j—1 <7J=a. Dann sind r — 1
Pakete bereits durch 7 festgelegt, das heifit die Fachbelegung von r —1 Kugeln, die
den Beginn der einzelnen Pakete festlegen, sind vorgegeben: Die erste Kugel liegt
in dem Fach links von Karte ky + 1, die zweite Kugel liegt in dem Fach links von
Karte k341 usw. und die letzte Kugel im Fach links von Karte k,_;+1. Es bleiben
also noch (a —1) — (r —1) = a—r Kugeln, die beliebig auf die n+ 1 Fécher verteilt

werden konnen, dabei kénnen mehrere Kugeln in dasselbe Fach gelegt werden, da

(n+1)+afr71) _ (n+a7r)

auch leere Péckchen zugelassen sind. Es gibt insgesamt ( (e 1)1 .
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Moéglichkeiten die a — r ununterscheidbaren Kugeln auf n + 1 Féacher zu verteilen
und somit ("+2_T) Moglichkeiten den Kartenstapel so in a Péickchen zu teilen, dass

7 ein moglicher Mischvorgang ist. Insgesamt zeigt dies wiederum

Quattr = 2
a,n an 5
da es insgesamt a™ mogliche GSR-(a, n)-Shuffle gibt. O

Fiir a € N3, ist der Tréiger von @, nach Theorem [2.2.5] gegeben durch

supp(Qan) = {T € Sy | R(m) € {1,...,a An}}. (2.2.4)

Ferner ergibt sich zusammen mit Korollar [2.1.12| die folgende Verallgemeinerung

von Theorem m, in der die Verteilung QZ(TT ) explizit angegeben ist.

2.2.6 Korollar. (i) Seien m,n € N, a1,...,a,, € N>o, a ) I[%, a; und 7 €
S,.. Dann gilt
(n+a7R(7r))

n

Qarn * - % Qo n({T}) =

(i1) Seien m,n € N, a € N>y und w € S,,. Dann gilt

p (2.2.5)

(n+am—R(7r))
Qi ({r}) = == (2.2.6)

Aus Korollar (2.2.6) und Lemma erhalten als weitere triviale Folge-

rung das folgende Korollar.

2.2.7 Korollar. Seien m,n € N und a € N>y. Fine Permutation 7 ist ein mdgli-
ches Ergebnis von m sukzessiven GSR-(a,n)-Mischvorgingen genau dann, wenn

R(m) € {1,...,a™ An}, das heifit

supp(Q;)) = {7 € S, | R(m) € {1,....a™ An}} = (supp(Qun)) ™.

Fiir a € Nx, ist die Funktion r — ("7*7") /a™ auf {1, ..., aAn} streng monoton
fallend. Wegen R(id) = 1 ist daher Q,,({id}) > Q.n({7}) fiir alle 7 € S,\{id}.
Gegeben einen @, ,-Random Walk X = (X,,)m>0 auf S, ist demnach in jedem
Mischvorgang das Mischen geméfl der Identitéat id wahrscheinlicher als das Mischen
nach jeder anderen Permutation. Allerdings fiihrt wiederholtes Mischen nach dem
GSR-(a,n)-Shuffle tatsidchlich dazu, dass ein Kartenstapel ,gut durchgemischt

wird:
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2.2.8 Satz. Seien n € N und a € N>y fest und (X,,)m>0 €in Qq-Random Walk
auf S,. Dann konvergieren die Verteilungen von X,, in Totalvariation gegen die
Gleichverteilung Us, auf S, das heifst

Jim ([P~ U, | = T [1Q:6 — Us, | = 0.

a,n

Beweis. X = (X,;)m>0 ist eine endliche Markov-Kette. Nach dem Ergodensatz
reicht es daher zu zeigen, dass X (a) irreduzibel und (b) aperiodisch ist. Da fiir

n = 1 nichts zu zeigen ist, sei n > 2 und a > 2.
zu (a): Jede Transposition [i,i+1]; € S, mit i < n—1 zerfillt in zwei Sequenzen
((1,1),...,(i=1,0—1),(i+1,4)) und ((z,i+ 1), (i +2,i+2),...,(n,n)),

was [i,1+ 1]z € supp(Qq,,) vermoge Korollar impliziert.
Sei [i, j]z eine Transposition mit |i — j| > 1. Wegen [i, j]z = [, ]z konnen wir

i < 7 annehmen. Dann hat [i, j]z die drei aufeinanderfolgenden Sequenzen

((171)7""(i_17i_1)7(]'72.)) ,((i+1,i+1),...,(j—1,j—1)) und
((.4),(G+1,5+1),....(n,n)).

Definieren wir nun zwei Permutationen 7, my € S,, durch

det (1 v+ 2—14¢ 241 -+ 57—-1 35 341 -+ n
T2 = : o S , und
1 - 2=1 ¢ ¢4+2 - t+1 j4+1 --- n
o def 1 - 4=-1 94 94+1 - 5=1 35 J+1 -+ n
' 1 oo =1 § i e =2 -1 j+1 n)’
so gilt
1 - i=1 94 i+1 -+ j—1 4 j+1 --- n o
1 © Ty = ) ) ) ] ] ] :[Zyj]Z
1 - e-175 441 - 5=-1 7 741 --- n

und R(m ) = R(ms) = 2. Also folgt wiederum mit Korollar

[i, 7]z € (5upp(Qan))*® = {7 oo | 7,0 € supp(Qun)}-

Insgesamt gilt dann %, C  (supp(Q.n))°® und somit wegen (1.2.1)
(supp(Qan)) = Sn. Also ist X nach Satz (&) irreduzibel.
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zu (b): Wegen R(id) = 1 folgt aus Korollar id € supp(Q,,») und daher
P =p = pi” = Qi ({id}) > 0

fiir alle 7 € §,, und fiir alle m € N. Damit ist X aperiodisch.

Wir kénnen die Aperiodizitdt von X auch auf andere Weise mit Hilfe von Satz
(o)) und der Ergebnisse aus Abschnitt[1.2]zeigen: Wir zeigen supp(Qq,)¢ 7N
fur alle 7 € S,, und alle nicht-trivialen Normalteiler von S,,. Mit Blick auf die Liste
der Normalteiler von &,, in Abschnitt ist fiir n = 2 nichts zu zeigen. Fiir n = 3
und n > 5 ist &7, der einzige nicht-triviale Normalteiler von S,. Es existieren
01,09 € supp(Qqa,) mit sgn(oy) = 1 und sgn(oy) = —1, etwa 01 = id und oy =
[1,2]7. Wegen sgn(p) = 1 fiir alle p € 47, und da sgn ein Gruppenhomomorphismus
ist, gilt jedoch fiir jedes m € S, entweder sgn(o) = 1 fiir alle 0 € 7.4, falls
sgn(m) = 1, oder sgn(o) = —1 fiir alle 0 € 7.4, falls sgn(r) = —1. Daraus folgt
supp(Qan)Z ma, fiir n = 3 und n > 5. Fiir n = 4 gilt ebenfalls sgn(o) = 1 fiir
alle 0 € ¥, bzw. 7. Insgesamt gilt also supp(Q,.,)Z 7N fur alle 7 € S,, und
alle nicht-trivialen Normalteiler von S,,. Da X nach (a) irreduzibel ist, folgt die

Aperiodizitdt von X also aus Satz (). O

2.3 Eulersche Zahlen und aufsteigende Sequen-

zen

Im vorherigen Abschnitt haben wir gezeigt, dass die aufsteigenden Sequenzen der
Schliissel zur Angabe der Wahrscheinlichkeiten Q0" ({r}) fiir 7 € S, und m > 1
sind. Aufsteigende Sequenzen sind eng mit den Fulerschen Zahlen verbunden. Die-
se Verbindung werden wir im Folgenden aufzeigen und fiir verschiedene Resultate

nutzen.

Sein € N. Fiirr = 1, ..., n bezeichnen wir die Anzahl aller Permutationen in S,,
mit r aufsteigenden Sequenzen mit A, ,, also A, , = |%,,|. Wir setzen A,, , = 0 fiir
x # 1,...,n. Gegeben sei im Folgenden ein @, ,-Random Walk X = (X,,),,>0. Die
stochastische Folge R(X) = (R(X,.))m>0 gibt dann die Anzahlen der Sequenzen
der Markov-Kette X an. Mit Korollar erhalten wir die Verteilung von R(X,,),
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m>0.Firm>0und r=1,...,n gilt

P(R(X,) = 1) = PX"({m € S, | R(m) =r})
= Q50 (Rns) (2.3.1)

a,n

A (n+am—r
g n '

Summieren wir (2.3.1)) iiber r = 1,...,n, so erhalten wir mit m = 1 fiir alle
n,a € N

a" =" A, <G+Z_T). (2.3.2)
r=1

Gleichung ist die sogenannte Worpitzky-Identitit. Nach [26] entsprechen die
A, dann gerade den Fulerschen Zahlen. Verschiedene Eigenschaften der Euler-
schen Zahlen und Aussagen iiber ihre Verbindungen zur Wahrscheinlichkeitstheorie
und Kombinatorik finden sich ferner in [7], [§], [19], [22] und [23]. Firr =1,...,n

erhalten wir aus der Definition der Eulerschen Zahlen die Rekursion

An’r = TAn—l,T + (TL + 1-— T)An—l,r—h
wobei Ajg o def 1, Ao 0 und An1n .

Wegen %, 1 = {id}, Znn = {[n.n—1,...,1]} und |S,| = n! folgt unmittelbar

A1 =A,, =1und

n
Z A, =nl
r=1

Aus [20] erhalten wir ferner fir » = 1,...,n die Symmetrie-Eigenschaft
An,r - An,nfr+17

sowie die geschlossene Form der Eulerschen Zahlen

5" (" i 1) (r — i) (2.3.3)

z:O

In Tabelle sind die Werte der Eulerschen Zahlen fiir 1 < r < n < 8 aufgelistet.

Die Eulerschen Zahlen besitzen neben der Verbindung zur Kombinatorik eine

weitere wichtige wahrscheinlichkeitstheoretische Interpretation:
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r=1 2 3 4 ) 6 7 8
n=1 1
2 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 o7 1
7 1 120 1191 2416 1191 120 1
8 1 247 4293 15619 15619 4293 247 1

Tabelle 2.1: Eulersche Zahlen A,,, fir 1 <r <n <8.

2.3.1 Satz. Gegeben seien stochastisch unabhingige und identisch R(0, 1)-verteilte
Zufallsgrofien Xy, ..., X,. Dann entspricht %Amk fir k = 1,...,n der Wahr-
scheinlichkeit, dass die Summe von Xi,..., X, im Intervall (k — 1,k] liegt, das
heifst

P(Sy € (k—1,k]) = %AM, (2.3.4)

wobei Sy, i Yo X

Beweis. Den folgenden kurzen Beweis entnehmen wir [23]. Sei F;, die Verteilungs-
funktion von S,,. Dann gilt nach Theorem 1 in Abschnitt 1.9 aus [I1] fiir alle z > 0

wobei |z] die untere Gauss-Klammer von x sei. Sei nun 1 < k£ < n. Dann folgt

aus obiger Gleichung unter Beachtung von ("+1) = (”) + ( " ) firi=1,...,nund

( i i—1
(_nl) = 0 zusammen mit
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(e e
nlz (n+1>(k—i)”
1 Z <”+ 1) (h— i) (2.3.5)

= — A O
n

Ist M eine Markov-Kette und ¢ eine auf dem Zustandsraum von M definierte
Funktion, so iibertragt sich die Markov-Eigenschaft von M im Allgemeinen nicht
auf ¢(M). In Satz zeigen wir, dass die stochastische Folge (R(X,,))m>0, also
die Folge der Sequenzanzahlen der Markov-Kette (X, )m>0, jedoch wiederum eine
Markov-Kette bildet. Wir benétigen hierzu zunéchst ein hinreichendes Kriterium
aus [18], das Voraussetzungen nennt, unter denen eine Funktion angewandt auf

einen Markov-Prozess (in stetiger Zeit) wiederum einen Markov-Prozess bildet.

Seien S und S’ endliche Mengen und (P;);c[0,0c) eine Familie von Wahrschein-
lichkeitsmaflen auf (S, 9B(S5)), ¢ : (S,PB(S)) — (5, PB(S’)) und B(S’") die Menge
aller reellen Funktionen auf S’. ¢ heifit vollstindig fiir die Familie (P;)¢co,00), falls
fir f € B(Y') gilt

/f(s')Pf(ds’) =0 fiir alle t € [0,00) = f = 0.

2.3.2 Lemma. Seien S, S" wie oben, ¢ : (S,PB(S)) — (5, P(5")) und (M)ie(0,00)
ein Markov-Prozess in stetiger Zeit mit Zustandsraum S und Anfangsverteilung A

auf einem Wahrscheinlichkeitsraum (2,2, P). Es gelte ferner:

(1) Fir alle t € [0,00) und y € S ist die reguldr bedingte Verteilung von M,
gegeben o(My) = y unabhingig von t.

(1) ¢ ist vollstindig fir (PM)ie0,00)-

Dann ist (p(My))tefo,00) €in Markov-Prozess mit Anfangsverteilung P#Mo).
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Um Lemma auf unsere Situation eines ), ,-Random Walks X mit Folge
der Sequenzanzahlen R(X') anwenden zu kénnen, betten wir die stochastische Folge
R(X) = (R(X/n))m>0 in einen stochastischen Prozess (R(M;)):c[0,00) in stetiger Zeit
ein. Dazu sei (IV¢)ic[o,00) €in von (Xy,)m>o stochastisch unabhéngiger und zeitlich
homogener Poisson-Prozess. Fiir ¢ > 0 ist N; dann eine mit dem Parameter ¢

Poisson-verteilte Zufallsgrofle, das heif3t fiir m € Ny gilt

"

P(N; =m) = Poi(t)({m}) = e o

(2.3.6)

Fiir ¢ = 0 ist Ny = do. Wir definieren den stochastischen Prozess M = (M;);c(0,)

durch

M, & Xy, t €0,00).

Nach Abschnitt 1.3 in [21] ist M dann ein zeitlich homogener Markov-Prozess in
stetiger Zeit. Die zeitliche Homogenitéit von M folgt dabei aus der zeitlichen Homo-
genitidt von X. Zu einem Zeitparameter ¢ € [0, 00) befindet sich der Prozess in dem
Zustand, den die Markov-Kette X zum Zeitpunkt N; annimmt. Wir betrachten
nun die zu M gehérige Folge der Sequenzanzahlen R(M) = (R(M;))tejo,00)- Wegen
R(S,) = Ng, ist der stochastische Prozess R(M) Nc,-wertig. Fiir ¢ € [0, c0) und
r=1,...,n gilt wegen der stochastischen Unabhéngigkeit von (R(X,,))m>0 und

(Nt)iefo,00) und
P(R(M,) = 1) = P(R(Xx,) = 1)
=P(U{M=WuMXm:rD

m>0
=Y P(N,=m)P(R(X,,) =)
m>0
-1 pR(X,) =
—E: @-((M—ﬂ
m>0
tm 1 m o __
= Ans et—--———<”_*a T). (2.3.7)
= m! am™n n

Fiir ¢t = 0 erhalten wir wegen Ny = &y, Xo = id P-f.s. und R(id) = 1 speziell

P(R(My) = r) = P(R(Xo) =r) = 6.({r}). (2.3.8)
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Wir berechnen nun fiir ¢t € [0,00) und r = 1,...,n die regulér bedingte Vertei-

lung von M; gegeben R(M;) = r. Sei m € S,, beliebig. Dann erhalten wir analog
zur Rechnung in (2.3.7))

P(M;=m R(M,) =r) =) _ e‘t%m!P(Xm =7, R(Xp) =7)
-y e—t%P(Xm — )P(R(x) = r)
= 0,({R(m Ze _'%<n+crl:_r>-

m>0

Wegen §,({R(7)}) = 6, ({7}) gilt dann

P(M, =7, R(M,) = 1) = 0s,, ({n}) Y e A <” Far= 7"). (2.3.9)

m!  qmn n
m>0

Unter Benutzung von (2.3.7) und (2.3.9) ergibt sich
1
P(My=m|R(M) =7) = ——0,,({7}), (2.3.10)

",

das heifit die reguldr bedingte Verteilung von M, gegeben R(M;) = r ist un-

abhéngig von ¢. Wir kommen nun zu dem bereits angekiindigten Resultat.

2.3.3 Satz. Sein € N, a € N3y und X = (X,,,)m>0 €in Qun-Random Walk. Dann
ist R(X) = (R(Xm)m>0) eine zeitlich homogene Markov-Kette mit Zustandsraum
N, und Anfangsverteilung PFX0) = §,.

Beweis. Sein € Nund a € N>y und M der oben zu X konstruierte Markov-Prozess
in stetiger Zeit. Mit Lemma zeigen wir, dass R(M) eine Markov-Kette mit
Anfangsverteilung PFMo) ist. Nach ist fir t € [0,00) und r = 1,...,n die
reguldr bedingte Verteilung von M; gegeben R(M,) = r unabhéngig von t.

Wir zeigen nun die Vollsténdigkeit von R fiir (PM*),c(0.00)- Sei f € B(N<,,) mit
[ fdPEM) = 0 fiir alle t € [0,00). Nach (2.3.7) gilt wegen der Beschriinktheit

von f

/ Faprn — 33 il gamn (““: _T)f(r)

r=1 m>0

—ety (Z s (”“jj”)f(r)) =0

m>0 r=1
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fiir alle t € [0,00). Aus dem Identitdtssatz fiir Potenzreihen folgt dann fiir alle
m >0

i.:l;g(n—l—a:—r)f(r)zo

r=1

und somit
3 A, (n * an N T) F(r) =0. (2.3.11)
r=1

Wir definieren die Funktion g : R — R fiir 2 € R durch

o) S A, (" s

:ZAnjr((x—r—kl)-...-(:U—T—I-TL))f(T)

=A 1 z(z+1)-...-(z—1+n)f(1) (2.3.12)
+Apo(x—1Dz-...-(x—=24+n)f(2)

+ A (x—n+1)-...-(z—1)xf(n),

wobel die oben autretenden Binomialkoeffizienten an dieser Stelle fiir alle z € R

definiert seien durch

(:c) d:efa:(x—l)-...-(x—n+1)

n 1-2-...-n

Dann ist g ein relles Polynom vom Grad < n. Nach (2.3.11)) gilt g(a™) = 0 fiir alle
m > 0. Wegen a > 2 hat g also unendlich viele Nullstellen und es folgt g = 0. Mit

x =1,...,n erhalten wir dann aus ([2.3.12))

Dies zeigt die Vollstindigkeit von R fiir (P**)c(0,00). Nach Lemma ist R(M)
also ein Markov-Prozess mit Anfangsverteilung P70 wobei nach (2.3.8)
PEMo) — §, gilt. Da X zeitlich homogen ist, gilt dasselbe fiir A und somit fiir
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R(M). Nach Kapitel 8 in [5] ist dann auch die in den Markov-Prozess R(M)
seingebettete stochastische Folge R(X) = (R(X.,))m>o0 eine zeitlich homoge-
ne Markov-Kette. R(X) hat so wie R(M) den Zustandsraum N, und wegen
PEXo) — pE(Mo) — §, die Anfangsverteilung 6. O

2.4 Konvergenz gegen die Gleichverteilung: Der
Cut-Off-Effekt

Nach Satz konvergiert ein ), ,-Random Walk auf S,, in Totalvariation gegen
die Gleichverteilung Us,. Wir untersuchen im Folgenden den GSR-(2,n)-Shuffle

und leiten Aussagen iiber die Konvergenzrate her. In diesem Abschnitt sei a = 2,

Q, Q2 und X = (X)) m>o0 €in @,-Random Walk.

Die computergestiitzte Berechnung des Variationabstands ||Q;§(m) —Us, ||, also
der ,,Entfernung“ eines m-mal nach dem GSR-(2,n)-Shuffle gemischten Karten-

stapels von der Gleichverteilung, mit Hilfe der Formel

1 1
I = Us,ll = 5 - |@i™dmh) -

7T€Sn

ist schon bei iiblichen Kartenstapelgroflen auf Grund der Anzahl von n! zu berech-
nenden Termen nicht moéglich. So sind beispielsweise fiir einen Skat-Kartenstapel
32! Terme zu berechnen, fiir einen Blackjack-, Bridge- oder Schafkopf-Kartenstapel

52! und Rommé-Spieler sehen sich der Anzahl von 104! Termen ausgeliefert.

Mit Hilfe der aufsteigenden Sequenzen lésst sich der Rechenaufwand jedoch

drastisch auf die Berechnung von n Termen reduzieren, denn fiir m > 0 erhalten

wir mit Korollar

Q™ Us.ll = 5 3 |@i ) —

7T€Sn

1 n+2" —R(m)\ 1 1
_EZK n )2%_5

71'€Sn
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X | e
N 2mn.
r=1 w€Xn,
om_p\ 1 1
ne e . (2.4.1)
n 2mn

1
= 5;-’471,7"

Dabei bezeichnen A,, 1, ..., A, , die Eulerschen Zahlen, die durch

Zj (n—l—l)(r_i)n

fiir r =1,...,n gegeben sind.

In Tabelle [2.2] ist der Variationsabstand von Q5™ und der Gleichverteilung
Us, fiir die gebrduchlichen Kartenstapelgrofien n = 24,32,48,52,104 und m =

1,...,10 Mischvorgénge aufgelistet. Der Variationsabstand wurde mit Hilfe von
(2.4.1)) berechnet.
m=1 2 3 4 5 6 7 8 9 10

n=24 | 1.000 0.999 0.998 0.723 0418 0.211 0.109 0.055 0.028 0.014
32 1.000 1.000 0.999 0.929 0.597 0.322 0.164 0.084 0.042 0.021
48 1.000 1.000 1.000 0.999 0.888 0.546 0.297 0.149 0.076 0.038
52 1.000 1.000 1.000 0.999 0.924 0.614 0.334 0.167 0.085 0.043
104 | 1.000 1.000 1.000 1.000 1.000 0.988 0.772 0.454 0.237 0.119

Tabelle 2.2: ||Q*(m Us,|| fiir n = 24,32,48 52,104 und m =1, ..., 10.

Fiir n = 52 ist der Variationsabstand von Q3™ und Us, fiir m = 1,...,20
Mischvorgéinge in Abbildung in einem Graphen abgetragen. Es wird deut-
lich, dass der Variationsabstand bis zu einer Anzahl von m = 5 Mischvorgédngen
nahe bei seinem maximalen Wert von 1 liegt. Innerhalb der néchsten vier Misch-
vorgidnge néhert er sich jedoch abrupt seinem Minimum von 0 an. Diese abrupte
Annédherung innerhalb eines relativ kurzen Zeitraums wird als Cut- Off-Effekt oder
Cut-Off-Phédnomen bezeichnet. Ein Blick auf den aktuellen Stand der Forschung of-
fenbart, dass es sich beim Cut-Off-Effekt tatséchlich um ein Phénomen handelt: Es
ist bislang nicht gelungen, anhand der Struktur des Zustandsraums und des Uber-

gangskerns einer ergodischen Markov-Kette Bedingungen abzuleiten, unter denen
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Abbildung 2.6: m +— HQZ(m) —Us,|| firn =52und m =1,...,20.

bei der Konvergenz gegen die stationére Verteilung ein Cut-Off-Effekt auftritt.
Vielmehr ist in jedem einzelnen Fall eine explizite Berechnung oder Approximati-
on des Variationsabstands notig. Diaconis [10] duBert jedoch die Vermutung, dass
das Cut-Off-Phénomen vor allem bei reversiblen Markov-Ketten auftritt, bei denen
der zweitgrofte Eigenwert der zugehorigen Ubergangsmatrix eine hohe Vielfach-
heit aufweist. Wilson [24] konnte im Jahre 2004 den Cut-Off-Effekt fiir zahlreiche
Markov-Ketten nachweisen, deren Zustandsraum als Lozenge interpretiert werden
kann. Eine Lozenge ist ein Rhombus mit 60° und 120° Winkeln und Kanten der
Lange 1. Er verwendete die Fourier-Theorie und Kopplungsargumente, um obere
und untere Schranken fiir die Totalvariation herzuleiten. Fiir einige Kartenmisch-

modelle und Markov-Ketten konnte so der Cut-Off-Effekt nachgewiesen werden.

Wir geben nun eine prézisere Definition des Cut-Off-Effekts (siehe Abschnitt
2.4.2 in [2I]). Ist G eine endliche Gruppe, so sei Ug wie im Vorangegangenen
die Gleichverteilung auf G. Fir n > 1 sei G, eine endliche Gruppe. Wir be-
zeichnen eine Familie von Wahrscheinlichkeitsmaflen (P, ),>1 als ergodische Fami-
lie auf ((Gn, B(G,)))n>1, falls fur alle n > 1 P, ein Wahrscheinlichkeitsmafl auf
(Gn, B(G,)) ist und der P,-Random Walk auf G,, ergodisch, das heifit irreduzibel

und aperiodisch mit stationdrer Verteilung Ug,, ist.

2.4.1 Definition. Sei (G,),>1 eine Familie endlicher Gruppen und (P,),>; eine
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ergodische Familie von Wahrscheinlichkeitsmaflen auf ((G,B(G,)))n>1. Die Fa-
milie (P,),>1 besitzt einen Cut-Off-Effekt (in Totalvariation) mit Cut-Off-Zeiten
(tn)n>1, falls folgende Bedingungen erfiillt sind:

(i) Es gilt ¢, > 0 fiir alle n > 1 und lim,, ., t, = c0.

(i) Fiir alle ¢ € (0,1) und m,, = [ (1 + )t,] gilt lim,.og | Pa"™) = Ug, || = 0.

(iii) Fiir alle e € (0,1) und m,, = |(1 — &)tn] gilt lim,_o || Pr™ — Ug. || = 1.

Besitzt eine Familie (P, ),>1 einen Cut-Off-Effekt mit Cut-Off-Zeiten (t,,),>1, so
bedeutet dies, dass die Funktion m — || P;™ — Ug, || bis zu einem Zeitpunkt ,vor*
|tn] nah bei ihrem maximalen Wert von 1 bleibt. Nach dem Zeitpunkt [, ] fallt
sie rasch auf einen Wert nahe 0. Dieser ,,Phasen-Ubergang® vollzieht sich dabei

innerhalb eines im Vergleich zu [, | relativ kurzen Zeitraums der Groenordnung
o(ty).

Aus Abschnitt 2.4.2 in [21] bzw. Abschnitt 1 in [I0] erhalten wir eine weitere
und zugleich striktere Definition des Cut-Off-Effekts.

2.4.2 Definition. Sei (G,),>; eine Familie endlicher Gruppen und (P,),>1 ei-
ne ergodische Familie von Wahrscheinlichkeitsmafien auf ((G,,B(G)))n>1. Die
Familie (P,),>1 besitzt einen starken Cut-Off-Effekt (in Totalvariation) mit Cut-
Off-Zeiten ((t,,, by))n>1, falls folgende Bedingungen erfiillt sind:

(i) Es gilt ¢, >0, b, > 0 fir alle n > 1, lim,,_. t,, = co und lim,,_., b, /t,, = 0.

(ii) Fir alle ¢ € R und m,, oo |tn + cby] gilt limy, o HP;f(m”) —Ug, || = f(c) fiir

eine reelle Funktion f mit lim, .o f(c¢) =0 und lim.,_ f(c) = 1.

In der obigen Definition kann ¢ € R auch durch j € Z ersetzt werden. Aus
der Definition von starkem Cut-Off-Effekt und Cut-Off-Effekt folgt unmittelbar,
da ||P;"™ — Ug,|| monoton fallend in m ist (siche Lemma 3.5 in [1]), dass ein
starker Cut-Off-Effekt mit Cut-Off-Zeiten ((¢,,b,))n>1 einen Cut-Off-Effekt mit
Cut-Off-Zeiten (t,,)n>1 impliziert:
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2.4.3 Bemerkung. Sei (G,,),>1 eine Familie endlicher Gruppen und (P,),>1 e€i-
ne ergodische Familie von Wahrscheinlichkeitsmafien auf (G, B(G)))n>1. Falls
(Py)n>1 einen starken Cut-Off-Effekt mit Cut-Off-Zeiten ((¢,,b,))n>1 besitzt, so
besitzt (P,),>1 einen Cut-Off-Effekt mit Cut-Off-Zeiten (t,,)n>1.

Beweis. Sei ((t,,b,))n>1 wie in Definition und ¢ € (0,1). Wir zeigen

lim || P+ _ .|| = 0.

Sei ¢ > 0 beliebig. Wegen lim,, .o b,/t, = 0 und lim, .., ¢, = oo existiert ein
N = N.. € Nmit et,, > cb, fiir alle n > N. Da ||P73:(m) — Ug,, || monoton fallend in
m ist (siehe Lemma 3.5 in [I]), gilt fur alle n > N wegen |(14¢)t,,| = [t, +et,]| >
|ty + cby ]

| Pty — g || < || Pylintetal) — U |

und somit
limsup || Py 0D — U || < lim [Py reD) — Ug || = f(c).

Da ¢ > 0 beliebig gewéhlt war, erhalten wir vermége lim. .o, f(¢) = 0 und
0<f<1

limsup || P30 _ g || < inf lim || P b)) g, || = inﬂgf(c) =
ce

N—00 ceER n—oo

Mit HP:{ L+eln]) _ g, || > 0 folgt insgesamt

lim ||P:A+etD) _ 7 || = 0.

n—o0

Analog erhalten wir
lim || P02 D g, || = 1. O

n—oo

2.5 Obere und untere Schranke fiir die Totalva-

riation

Wir werden im néchsten Abschnitt zeigen, dass die Familie (Q,),>1 der GSR-
(2,n)-Mischmethoden, n > 1, einen starken Cut-Off-Effekt mit Cut-Off-Zeiten
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((tn,bn)) = ((21logyn, 1)),>1 besitzt, wobei log, den Logarithmus zur Basis 2 be-
zeichne. Mit Blick auf Definition bedeutet dies, dass fiir grofle Kartenstapel-
groflen n eine Anzahl von [% log, n| Mischvorgédngen hinreichend und notwendig

ist, um den Kartenstapel ,,gut durchzumischen®.

Die folgenden oberen und unteren Schranken fiir die Totalvariation
Q™ — Us, || nach m-maligem Mischen nach dem GSR-(2,n)-Shuffle gehen auf
Reeds [17] zuriick und finden sich, abgesehen von der Asymptotik fiir die untere
Schranke, auch in [2], [9] und [16]. Sie gehoren zu den zeitlich frithesten Ergebnis-
sen zum Riffle Shuffle und sind deswegen an dieser Stelle aufgefiihrt. Im Vergleich
zu den Resultaten von Bayer und Diaconis [6] besitzen sie jedoch nur geringe

Aussagekraft.

2.5.1 Satz (Untere Schranke). Seien m,n € N. Dann gilt

12

2™ AN

1 2M An)—2

||Q2(m)—U$n||21—m E Apyr ~ 1—(1’(—( n) 2>v
T or=1 oo

wobei @ die Verteilungsfunktion der Standardnormalverteilung sei.

Beweis. Seien m,n € N. Fiir alle A C S, gilt
1Q;™ = Us, Il > 1Q;"™ (4) — Us, (A)].
Wihlen wir A = supp(QZ(m)), so folgt mit Korollar

*(m)
1 — U, | > 1 — PP )]

n!
9 {m e S, | R(m) < 2™ Am}|
T n!
{7 €S, | R(m) =1}
=1- ; n!

Den Nachweis fiir die asymptotische Aussage 1—% Zf:f "Ap~1-9 (%)
13

fiir n — oo erbringen wir an spéterer Stelle und zwar im Beweis von Lemma
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2.6.6] Ersetzen wir dort in (2.6.20) h* durch (2™ A n) — n/2, so erhalten wir die
Behauptung. O]

Fiir den Beweis der oberen Schranke wird eine stark stationdre Stoppzeit fiir
den @),-Random Walk konstruiert. Fiir die allgemeine Definition der Stoppzeit und
der stark stationéren Stoppzeit verweisen wir auf die Abschnitte 3 und 18 inf4]. In
der Situation des (),-Random Walks auf §,, reicht die folgende Definition aus.

2.5.2 Definition. Sei X = (X,,)m>0 ein Q,-Random Walk auf einem messba-
ren Raum (Q,2(, P) (mit eindeutig bestimmter stationédrer Verteilung Usg, ). Eine
messbare Abbildung 7" : Q@ — Ny U {oco} mit {T" = m} € o(Xo,...,X,,) fur
m > 0 heilt stark stationdre Stoppzeit, wenn sie die folgenden zwei Bedingungen
erfiillt:

(i) P(T < >0) =1,

(ii) P(X,, =n|T =m)=Us,({r}) fir alle m > 0 und 7 € S,.
2.5.3 Bemerkung. Sei T eine stark stationére Stoppzeit fiir den @),,-Random
Walk X. Dann gilt fiir alle m >0

Q™ — Us, || < P(T > m).

Beweis. Sei m > 0 und A C S,, beliebig. Dann gilt nach Definition

P(X,€A) =PX,,€¢ AT <m)+P(X,, € AT >m)
= P(X,, € A|T <m)P(T <m)+ P(X,, € A| T >m)P(T > m)
=Us,(A)(1 = P(T >m))+ P(Xm € A|T >m)P(T >m)
=Us,(A) + (P(X,, € A|T >m) —Us, (A)P(T > m).

Daraus folgt unmittelbar

Q™ = Us, |l = | PX — Us, |

= sup [|P*(A4) — Us, (A)]
ACS,

= sup P(T > m)|P(X,, € A| T > m) — Us, (A)|
ACSn

< P(T > m). 0
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Die folgende obere Schranke fiir die Totalvariation [|Q5™ — Us, || ist aus dem
,Geburtstagsproblem® bekannt. Aufgrund des geringen Nutzens der oberen
Schranke im Vergleich zu unseren spéteren Ergebnissen, verzichten wir auf einen

detaillierten Beweis.

2.5.4 Satz (Obere Schranke). Seien m,n € N. Dann gilt

“(m) _ 1T b
Qi - vs < 1= TT (1= s )

i=1
Beweis. Wir werden fiir den Beweis das inverse Modell benutzten, jedoch mit einer
leichten Modifikation: Im inversen Modell (siehe (2.1.4))) haben wir die Mischme-
thode Q , fir B C S, durch

an(B) = Uny

a,n 0,a—1

(X!, =7""7€B)

definiert. Wir definieren wir nun die Mischmethode @in fir B C S, durch

—I def

Qa,n(B) - UNS,(},—I(XC{JL =7, TE B)

und Q,, df @én Dann gilt mit Z : S,, — &, definiert durch Z(7) = 7!, 7 € S,,,

wegen (@i)z = Q! unter Beachtung von ([1.1.1]) aus Symmetriegriinden

Q3™ = Us, |l = 11(Q3,,)""™ — Us, |l
-1 *(m
= (@y,,)""™ = Us, |
H*(m)
=@, —Us,|l

fiir alle m > 0. Wir kénnen also fiir die Abschétzung der Totalvariation auch das in-
verse Modell in obiger Form heranziehen. Wir konstruieren nun die stark stationére
Stoppzeit T' und erinnern daran, dass sich die Karten vor dem Mischen in der Rei-
henfolge (1,...,n) befinden. Im inversen Modell in obiger Form kénnen wir nun die
sukzessiven Mischvorgénge wie folgt abbilden. Fiir den m-ten Mischvorgang wéahlen

wir ein n-Tupel 2(™ = (:Egm), o ,a;&{”)) als Realisation einer auf {0, 1}" Laplace-

verteilten ZufallsgroBe X ™) markieren Karte ¢ mit dem Wert xl(-m) und mischen
die Karten geméf der in (2.1.3)) definierten Permutation 7_,,,-. Wir markieren

dabei die Werte in den einzelnen Mischvorgéngen von links nach rechts auf jeder
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einzelnen Karte. Die Zufallsgrofen X, X®) . seien stochastisch unabhingig.
Die Werte auf Karte ¢ nach dem m-ten Mischvorgang sind dann gegeben durch das

Z(m) = (xgl), . ,azgm)). Solange die Werte ygk) und y](-k) fiir £ < m auf zwei

m-Tupel y
verschiedenen Karten ¢ und j identisch sich, befinden sich die Karten in derselben
relativen Reihenfolge wie zu Beginn des ersten Mischvorgangs, da sie bei jedem
einzelnen Mischvorgang im selben Péckchen liegen. Wir wihlen T' als den ersten
Zeitpunkt m, zu dem die Tupel y§m), oyt e {0,1}™ bzw. die stochastisch un-
abhingigen und auf {0, 1} Laplace-verteilten Zufallsgrofen Yl(m), Y™ paar-
weise verschieden sind. Dann ist T f.s. endlich und eine streng stationére Stoppzeit:
Gegeben T' = m sind alle Reihenfolgen X, = (7(1),...,7(n)), 7 € S, des Kar-
tenstapels nach m Mischvorgéngen gleich wahrscheinlich, da fiir zwei beliebige
Karten i, 7 aus Symmetriegriinden 7(i) > 7(j) und 7(i) < 7(j) gleich wahrschein-
lich sind. Die Wahrscheinlichkeit P(7" > m), dass die Zufallsgrofien Yl(m) Ly
nicht paarweise verschieden sind, kann dann analog zum ,,Geburtagsproblem® be-
rechnet werden: Es gibt 2™ mogliche {0, 1}™-wertige m-Tupel (Geburtstage), von
diesen miissen bei n zufillig ausgewdhlten Tupeln (Personen) mindestens zwei

iibereinstimmen. Fiir die gesuchte Wahrscheinlichkeit gilt dann

P(T>m):1—ﬁ<1—2im). 0

i=1
Aldous und Diaconis zeigen in [2], dass mit k, oo [21og, n|
Q%) — Us, | < P(T > ky) — 1= ¢7/2~0,3935

gilt. Sei [z] die obere Gauss-Klammer von z € R. Fiir die untere Schranke der

Totalvariation aus Satz [2.5.1] gilt bereits mit m,, oof [log, n] wegen 2™ > n und

> e Any =1l

2M AN

*(m 1
r=1

Es zeigt sich, dass die obere und untere Schranke fiir die Feststellung des Cut-Off-
Effekts ungeeignet sind. In Tabelle sind die Werte der Totalvariation
HQZ(m) —Us, || und der oberen und unteren Schranke fiir n =52 und m =1,...,10

aufgelistet.
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m 1 2 3 4 ) 6 7 8 9 10
obere | 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.931 0.732

52 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.085 0.043
untere | 1.000 1.000 1.000 0.999 0.002 0.000 0.000 0.000 0.000 0.000

Tabelle 2.3: Obere und untere Schranke fiir |Qi\™ — Us,,|| und m =1, .., 10.

2.6 Nachweis des Cut-Off-Effekts fiir den Riffle
Shuffle

Wir zeigen in diesem Abschnitt den starken Cut-Off-Effekt mit Cut-Off-Zeiten
((3logyn,1))n>; fiir die Familie (Q,),>1 der GSR~(2, n)-Mischmethoden, wobei
log, den Logarithmus zur Basis 2 bezeichne. Bevor wir den Cut-Off-Effekt am Ende
dieses Abschnitts nachweisen konnen, bendtigen wir einige Hilfmittel. Zunéchst
geben wir eine Approximation fiir die in bestimmte Wahrscheinlichkeit an,

dass m sukzessive GSR-(2, n)-Shuffle in der Permutation 7 resultieren.

Ist m eine beliebige Anzahl von Mischvorgédngen eines Kartenstapels mit n

Karten, so konnen wir m darstellen als
m = [logy(n*?)| + j

mit einer ganzen Zahl j > —|log,(n*?)]. j beschreibt also die Anzahl der Misch-

vorginge vor bzw. nach |log,(n*?)|. Wihlen wir nun 6,, € [0,1) mit
[logy(n®?) ]| + 0, = log,(n*?)
und ¢ 229, 50 erhalten wir
m = |logy(n®?)] + j
= logy(n*?) = 6, + j
~ logy(n297) — 0,
= log,(n*?%c) — 6,.

Wir konnen nun eine Umparametrisierung der Anzahl der Mischvorgéange vorneh-

men, indem wir sie beschreiben durch die Menge

3 c=21jez}
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Fiir m = log,(n%2c) — 6,, < 0 setzen wir Qi = Qi = .

2.6.1 Satz. Sein > 1, c € 3, m =my,,. = |logy(n*?c)|, 7 €S, mit R(r) =1 <
2™ An und hyp, € R gegeben durch v = 5 + hy . Dann gilt

1 1 1 1\
*(m ({W})_—GXP (m<—hn,r+§+fn>—@—§(m;) —i—gn>, (2.6.1)

wobei f, € O, <h2”) und g,, € O, (1).

Beweis. Seien zunédchst n € N und ¢ € 3 fest und » < 2™ A n. Wir wéahlen
0,, € [0,1) wie oben mit m = log,(n/%c) —6,. Nach (2.2.6) erhalten wir zusammen

mit r = 2 + h,,, und 2™ = cn?/2270

n+ 2" — R(ﬂ) 1

2mn

= ("
:%(szg—rngmgi—r)
:%vmp(éibg( Z;f))
:%vmp(gfbg(1+ﬁ;§;ﬁ>>
:—exp(Zlog <1+ (”/2)3/22 L )) (2.6.2)

Mittels einer Taylor-Entwicklung erhalten wir fiir alle z € (—%, 1)

5(72 3 2 3

ST gl _rLr 6.
x 2+3 ' <log(l+z) <z 5 T3 (2.6.3)

Um die obige Abschitzung auf (2.6.2]) anwenden zu kénnen, miissen wir nun ¢ € 3
so grofl wihlen, dass
1 (n/2) —hy, —1
_5 < 3250, <1 (264)

firr=1,...,nundi=0,...,n—1 gilt. Wegen 6,, € [0,1) gilt

(n/2) — hpyp — i

cn3/22=0n

20n 2
= onl/2 < cnl/2

r—1
cn3/22=0n




60 Kapitel 2 Der Riffle Shuffle

firr =1,...,nund ¢ = 0,...,n — 1. Wahlen wir nun ¢ > 4n~/2, so erhalten

wir ([2.6.4). Wir kénnen also (2.6.3) auf (2.6.2) anwenden und erhalten wegen

n/2)—hn,r—i (n/2) —hn,r—1 .. —1/2
|( 022/227971 | > | /2) n3/2 ’ fur alle ¢ 2 4n /

1 n—1

@) < o (G 2 (5~ =0) =g 2 (5 e 1)

1 n—1 n 3
T 3@ Z <§ = e = Z) )’
=0

i=

(2.6.5)

1 1 1 2 /n 2
@ ({m}) = n! eXP (cn3/2 iz_; (2 finr Z) 2c2n3 P (2 fonr Z)
n—1 n—1

1 n A% 1 n A
* 3c3nd/? ZZ; (5 e = Z) Anb - (E e = Z) )

" (2.6.6)

_ n(n-1) n—1. _ n(n—1)(2n-1) n—1 .3 _ n%(n—1)>2
Zusammen mit > ' = T, Y 1= T, Y10 = —— und

n—1 n(n—1)(2n—1)(3n(n—1)—1
2214 (n=1)( 3)0(())

ergibt sich

n—1

1 n . _hn,r +%
cn3/? Z <§ = Z) - ceyn

1=

1 = (n h .)2 1 + 1 hn,r ? + 1- 6hn,T
= —Npyr —1 = "a o S )
2¢2n3 — 2 ’ 24c2 2\ cn 12¢2n?

1 "Zl (@ oy Z.)3 _ — 1P hay —nhd 4 20 4 3nhl | — snhy,,
3c3n9/2 — 2 wr 36309/2
I— 2hn,7’ 2h?z,r - 3h72’b,7" + hnﬂ”
T 243z 6c3n7/2 ’ (2.6.7)
1 (n . ,)4 30+ 20n2(6h2, — Gl + 1) — 8
c*nS — 2 T n 240c¢*nb

hir _thr—i_h’ir
+ ) M )

cAnb
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Definieren wir

g 1 — 6h,,

9in = 753 9
il 12¢2n2 7
n—1

def 1 n N
fl,n = —303n9/2 Z; <§ — hnﬂ‘ - Z) )

n—1
def 1 n A
92 G 2 (5 o 1)

def
g _gln+g2n7

so gilt f,, € O, <3—/2> und gy ., o> 93, € Oc (). Unter Benutzung der obigen
Gleichungen folgt aus ) und - mit f, = eynfi, € O (h’”> fiir alle

¢ > 4n~Y2
1 —hp, + 1 1 1
+(m) <1 nr 3 !
@) = Jpe ( c\/_ 242 2

1 1
= - hnr 5 n

1 —hpy + 1 1 1
*(m) > 2 _Z
Q") = nl P ( cv/n 24¢? 2

Insgesamt ergibt sich schliefllich wegen g, ,,,93,, € O (%)

1 1 1 1\’
() = e ( (e + 34 £2) ~ s - 3 (22) )
mit f, € O, (h’;”“) und g,, € O, (%) O

Sei m € N. Fiir den Variationsabstand von Qz(m) und Ug, gilt

Qs — Us,l =5 3 |@s () -

7r€S
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Dabei wird das Supremum fiir die Menge

€ *(m 1
Ao ™ {m e s, @M 2 )

angenommen. Da Q5™ ({m}) nach (2.2.6) jedoch nur iiber R(w) von 7w abhéngt
und monoton fallend in R() ist, gilt

Apm={mr €S, | R(r) <r*},
wobel r* definiert sei durch

Q™ ({n}) > % s R(x) < 1",

def

g + h, R(r) und A* = hnr* =

Sei hy, p(x) Wie in Satz [2.6.1| gegeben durch R(7) =

*

r* — % Dann erhalten wir
1
Q;™M({r}) = — < hnrx < h" und (2.6.8)
n!
Apm = {7T €S| b, () < h*}.

Der Variationsabstand von Qz(m) und Us, kann somit, unter Beachtung von —% +

1< hy, <5 fiirr=1,...,n, wie folgt berechnet werden

HQ;:m —Us, || = Q:z(m)(An,m) —Us, (An,m)
= > (@™} - Us,({7}))

7"'eAn,*m.

- ¥ Z(W}——)

1<r<r* n€%n,r

= 3 A (a0 - )

1<r<r*
_ (™Y L
= 3 Auns (qn (h+3) n!) , (2.6.9)
—Dfl<h<h
wobel An,h+g die Eulerschen Zahlen sind mit An,h+g =0fiiralle -5 +1<h <3
mit h+ % ¢ {1,...,n} und ¢ (r) fiir r = 1,..., n definiert sei durch

*(m) dZQf n + 2m - T 1
dpn (T) ( n omn

Der néchste Satz gibt Auskunft {iber die Gestalt von h*. Zuvor notieren wir aller-

dings noch das folgende Lemma.
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2.6.2 Lemma. Gegeben sei die Situation von Satz|2.6.1. Dann gilt
1

fn = @ + Gl,n + GQ,n; (2610)

wobei G, € O, (%) und Ga,, € O (1).

Beweis. In der Situation von Satz gilt nach (2.6.7) wegen f, = c¢y/nf,, mit

h = hy,

1—2h 2h3—3h%+h
Fu= 24¢2n 6¢%n3

Wegen h = r — 4 erhalten wir daraus

_1-20-%) 200-8P° 30 -5+ (r—%)

Fa 24c2n B 6¢2n3
B Sk A Gl VANl il Gt 1) (2.6.11)
24c2  24¢%n 3c2n3 6¢2n3

Wir betrachten nun die einzelnen Terme in (2.6.11)). Zunéchst setzen wir

def 3(r—5)7—(r—1%)
6¢2n3
1—2r
Gon & .
3 24¢2n

Wegen 1 < r <n erhalten wir Gy, € O, (%) und G3,, € O.(1). Ferner gilt

(r—g)?’_ 1 /r 1\°
3¢2n3 32 \n 2

G, und

3c2\n3 2n?2  4n 8
B 1 1 r3 3r2 3r
C24¢2 3¢2\n3 22 4n

1
= < 5 G n)

942 T4

. def : .
wobei G4, = — % (ﬁ _ ¥y 3—;) € O.(1). Setzen wir nun noch

so folgt insgesamt

m12¢2
mit G, € O, (%) und G, € O.(1). O
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Wir kommen nun zu dem bereits angekiindigten Resultat iiber h*. Es besagt,
dass h* von der Form h* = —% + O,(1) ist.

2.6.3 Satz. Sein >1,c € 3, m=m,,. = logy(n*?c)—0,, T €S, und h* definiert
durch (2.6.8)), das heifst

*(m 1 n "
Qi) 2 & R - T

Dann gilt

vn 1 1
h = —>— F, 2.6.12
24¢ t a2 12¢2 3 2 + + G, (26.12)

wobei F,, € O, (\%) und G, € O.(1).

Beweis. Sei ¢ € 3 fest und 7 € S, mit R(m) = r < 2™ A n. In der Situation
von Satz [2.6.1] setzen wir wieder h = h,,,. Dann ist Qi ({7T} & nach (2.6.1)

dquivalent zu

1 1 1 1/ h\°
T R N SIS ¥ (3 W
c\/ﬁ< 3T I 24¢? 2 (cn) T =

wobei f, € O, <h2’*> und g, € O, (%) Setzen wir den Exponenten in ([2.6.1])

gleich 0 so erhalten wir

c/n 24c¢2 2\ cn
Vvn o1 h?
h=—"-+4+—= _ . 2.6.13
= pie T3t fn 5o Vg, ( )

Wir kénnen nun h iterativ in zwei Schritten ermitteln, indem wir h bzw. den Term
—QCZ—z/Q in (2.6.13)) wiederholt nach oben und unten abschétzen. Als obere Schranke

2 . . .
von — = werden wir dabei 0 wihlen.
2¢en3/

Wegen —5 +1 < h < 3 gilt —h? > —"72 und somit nach (2.6.13]) unter Beach-

tung von ¢ > 0

NI 2
h> v -
- 24c+2+f" 8cn3/2+c\/ﬁgn
Vo1 NZD
= ope Tyt 5o Hevia.
n 1
:—£+—+fn+c\/ﬁgn-
6c 2
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Zusammen mit h < —% + % + f,, + ¢v/ng,, erhalten wir dann den ersten Iterati-

onsschritt

1 1
—g—l—é—l-fn—i-cx/ﬁgn <h< —£+§+fn+cﬁgn~ (2.6.14)

Wir setzen F1, def 1+ f.+cy/ng,. Dannist Fy, € O, (2) und nach (2.6.14) gilt

2 2
h2§max Fln—ﬂ 5 Fln_\/_ﬁ d:eanmaxy
’ 24c ’ 6¢ ’

wobei F'j, ax € O, (n). Daraus folgt

h?
= 2en3/2

1 def

- Fomm = —F
- 2CTL3/2 n,max 2,n

mit Fy, € O, (\%) Dann erhalten wir wiederum zusammen mit (2.6.13)) den

zweiten Iterationsschritt

Jio1 N
vz _F <p< VI
sic Tt Fantevng, <h < —op

Vermoge Lemma gilt f, = o5 + G, mit G, € O, (1) und somit

N Jio1loo1
VL LG, - F,, <h<-Y'L 4 " Liaq, .
e 2 T2t 20t CVng, Sh< =gt 5+ 55+ Gt Vg,

1
5+ fn+cvng,.  (2.6.15)

Insgesamt gilt somit wegen c\/ng,, € O. (\%)

N 1
h=——+-4+—+G,+ F,
24c + 2 + 12¢2 + +

fur ein F',, € O, (\%) und G,, € O, (1). Dies bedeutet, dass h* von der gewiinsch-

ten Gestalt in ([2.6.12]) ist. O

Wir werden nun Approximationen fiir die in der Totalvariation

*(m *(m n 1
017 ~Tsl= Y Auney (a4 2) - )

—g-i-lghgh*
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1 . n n 1 .
auftretenden Terme mAn,hJF% fir -5 +1<h <% und Z—gﬂghgh* H.Amﬁ% fiir

n — oo angeben.

Wir beginnen mit dem Term %Ammg. Das folgende Lemma entstammt [23]
(Proposition 2, Teil (ii) und (iii)). Der zweite Teil ergibt sich allerdings aus einer
Modifikation des dortigen Beweises von Proposition 2 (iii). Zur Vollstandigkeit

geben wir die Beweise fiir beide Teile an.

2.6.4 Lemma. Sein € N.

(1) Firxz >0 und z, d:ef:v\/l—”z + 5 gilt

. n 1 def 1 _$2
lim o = A e = 0a) 2 =

1) Fir—2+1<h<Z2mith+2eN gilt
2 2 2

wobei R, € 0 (L).

Beweis. Seien X7, ..., X, stochastisch unabhéngige und identisch R(0, 1)-verteilte
Zufallsgroflen, S, &f Y, X; und F, die Verteilungsfunktion von S,. Es gilt
ES, =n/2und VarsS, = n/12. Wir definieren die Standardisierung von .S,, durch

n
def S — 9
fef On 3

12

1,

Dann gilt fiir die Verteilungsfunktion G,, von T}, und alle x € R nach dem zentralen

Grenzwertsatz

n n

— L af [T 1 _pp
Gn(x)—Fn(:v 12+2>7H—o>o¢(:v)—/oome dt.

zu (i): Sei x > 0 beliebig, z, def /15 + 5, ap = an() def Tn, — |xn] und
n > x?/3. Dann gilt z,, < n. Nach Satz folgt vermoge

F.(x) =G, <x _ﬂg)
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fiir alle x € R und dem Mittelwertsatz der Differentialrechnung

A = Full2]) = Fall7a] = 1)
= F,(z, — a,) — Fy(z, — (1 +ay,))

:Gn<x—an %)—Gn<x—(1+an) %)
—\/T%G;z(yn)

mit z — (1 + an),/ln—2 < Yp < T — am/ln—Q. Sei g,, die Dichte der standardisierten
ZufallsgroBe T;,. Dann gilt G (v) = g, () fiir alle x € R. Mit Hilfe einer Edgeworth-
Entwicklung (Theorem 1, Abschnitt XVI.2 in [I1]) erhalten wir fiir n — oo
1
(o) - o(a) = o (72 (26,16
gleichméBig in z. Hierbei beachten wir ET? = 0 und die quadratische Integrier-

barkeit der charakteristischen Funktion von 7;. Daraus erhalten wir

: n 1 : ,
0 1 Al = fim, Cnlon)
= lim g, (yn)
1
= e~ "/2,

V2
u (ii): Nach Theorem 1, Abschnitt 1.9 in [11] besitzt S, 41 die Lebesque-Dichte
(A-Dichte) f,+1 mit

o)
fori(@) = — Z (” * 1> (@ — )" L) (@) (2.6.17)

fir x € R. Sei —2 +1<h <% mit h+2 € N. Dann gilt 2, = A+ 2 < n und mit
(2.3.5) und (2.6.17) folgt

— An an = Fu(zy) — Fo(z, — 1)

=H§&w0jﬁm—w

= fut1(@n). (2.6.18)
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Fiir die Dichten f,,; von S,;; und g,41 von T, 1 = (Sn+1 - ”T“)/ ntl

nach dem Transformationssatz die Beziechung

[ 12 T, — 22
n X)) = — 1 Yn - — |
f+1() n+1g+1 \/E
12

woraus mit ([2.6.18|)

1 12 T, — 2L

A = — g [
0 n+1 G+ n+1
\ 12

folgt. Mit Hilfe von (|2.6.16) erhalten wir fiir n — oo

s (2) — (&) = 0 (ﬁ) —0 (%) (2.6.19)

gleichméfig in z. Aus (2.6.19) erhalten wir dann unter Beachtung von

\/nzflo <\/iﬁ> = 0(%) und

12¢ 5 _ 4

12

insgesamt
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Bayer und Diaconis behaupten in [6], dass sich die Asymptotik in Lemma

(ii) unter Benutzung derselben Quellen noch verschérfen lisst:

2.6.5 Lemma. Sein € N. Fir —5+1<h<% mith+ 4 €N gilt

2
1 /6 h
_' An’th% = — exXp (_n> (1 + Rn),
n: ™ 12

wobei R, € o (%)

Mit Hilfe des obigen Lemmas zeigen Bayer und Diaconis [6] Theorem [2.6.8]
Wir werden jedoch einen anderen Weg einschlagen (vergleiche den Beweis von
Theorem 4, Abschnitt 4 in [6] und den Beweis von Gleichung ([2.6.22]) im Beweis
von Theorem [2.6.8]). Zunédchst benotigen wir das folgende Lemma, das Auskunft
iiber das Verhalten der Summe ngﬂéhih* %An,th% fiir n — oo gibt, wobei nach
Satz 2.6.3 h* = =¥ + O.(1) gilt.

|
N | —

2.6.6 Lemma. Sein € N und ¢ die Verteilungsfunktion der Standardnormalver-

teilung. Dann gilt

1 1
- An n==0(— + Sn:
Z nl T ( 4cx/§>

—4i<h<h®
wobei S,, € O, (\/Lﬁ)

Beweis. Wie im Beweis von Lemma sei wiederum S,, die Summe von n sto-
chastisch unabhéngigen und identisch R(0, 1)-verteilten Zufallsgrofen, F), die Ver-

teilungsfunktion von S,,,

die Standardisierung von 5, und G, die Verteilungsfunktion von 7,,. Durch In-
tegration der Edgeworth-Entwicklung (2.6.19)) der Dichte g, von T, (siche auch
(4.1), Abschnitt XVI.4 in [I1]) erhalten wir fir n — oo

Go(2) — B(z) = 0 (%)
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gleichm#Big in . Dann gilt vermége F,(z) = G, ((z — 2) //%) fiir alle z € R

undfiirn—>oo
E e X <h+2> e 5 )
(

—5+1<h<h* 1<h<h

w\:

: )

( ) 2:620)
Wegen h* = —;/Tz + O.(1) gilt

e 1 —I—O(l)— 1+O<1>
%_ 2c3/12 C\/ﬁ_4c\/§ ¢ n

und somit fiir n — oo
1 1 1
Lty =s( o (L
gJ;th* nl T 4eV/3 Vv
1 1 1
——— | +0. | — | + —
(2e) o (77) ()
1 1
o(-——=]+o.(—~).
(30) +o(57)

dabei geht in der zweiten Zeile der Mittelwertsatz der Differentialrechnung ein. [

Il
o

Das nachste Lemma ist wiederum technischer Natur.

2.6.7 Lemma. Firn € N sei S, die Summe von n stochastisch unabhdngigen
und identisch R(0,1)-verteilten Zufallsgroffen Xy, ..., X, und

die Standardisierung von S,. Dann gelten die folgenden Aussagen:

(a) Die Familie (exp(aTy,))nen ist fir jedes a € R gleichgradig integrierbar.
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(b) Sei G, die Verteilungsfunktion von T, und (x,),>1 eine reelle Folge mit
lim,, o0 2,,/y/n = 0, das heifit z,, € o(y/n). Dann gilt

lim L= Gulan) = lim Gn(=n)

S —= =1
n—oo 1 — ®(z,) n—oo O(—z,) ’

wober © die Verteilungsfunktion der Standardnormalverteilung ses.

Beweis. zu (a): Fiir a = 0 ist nichts zu zeigen. Sei daher a # 0 beliebig. Nach
Korollar 50.3. (e) in [3] ist (exp(aT,))nen gleichgradig integrierbar, falls ein p > 1
existiert mit

sup E|exp(aT,)P < oo.
neN

Wegen | exp(aT,,)|P = exp(paT,) fiir alle p € R reicht es daher zu zeigen

sup E exp(aT,) < oo.
neN

Sei ¢ die momenterzeugende Funktion von X7, das heifit ¢(t) = Fexp(tX;),t € R.
Es gilt ¥(0) = 1 und fiir t # 0

1 t
1
W(t) = / etdy = & :
0 t

Dann erhalten wir fiir n > 1, da Xy, ..., X,, stochastisch unabhéngig und identisch
verteilt sind, mit b def av12 firn >1

Sp—2
FEexp(aT,) = Eexp <a — 2))
12
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o (3) (-

b
vn

Mittels der Taylor-Entwicklungen
b " b N b N b n 1
e — | = —t—+—— 40| —
P 2\/n 2y/n  8n  48n?/? n3/2 )’
b ] b n b b3 N 1
e e = —_—— _—— _—
P\ Tovm o/n  8n a8n32 O\ ndn
ergibt sich daraus

lim Eexp(aT,) = lim

n—oo n—oo

b

vn

1 (b "
=1 1+—(— 1
i (14 (5 +om))
b2 a®
= exp <ﬁ) = exp (5) < Q.

Dann folgt sup,,cy £ exp(aT;,) < 0o, was wir beweisen mussten.

<%+Jz—im+0(n3—%)>"

zu (b): Die Aussage ist ein Spezialfall von Theorem 2, Gleichung (7.28), Ab-
schnitt XVI.7 in [I1]. In unserer Situation gilt dort A; = 0 wegen uz = ET} = 0.
Die Behauptung folgt dann aus der Giiltigkeit von 1 — G, (z) = G,(—x) und
1 —®(x) = ®(—x) fur alle x € Rund n > 1. O

Wir kommen nun zur Hauptaussage dieses Abschnitts, mit Hilfe derer wir nach-
weisen, dass die Familie (Q,),>1 der GSR-(2,n)-Mischmethoden einen starken
Cut-Off-Effekt mit Cut-Off-Zeiten ((2logyn, 1))n>1 besitzt. Wir erinnern daran,
dass Q™ = QY = 45,4 fiir m < 0 gesetzt war.

2.6.8 Theorem. Seic € 3 = {2/ |j € Z} und m, = m, . = |logy(n®?c)] fiir
n € N. Dann gilt

Jim Q™) — Us, || =1 — 2@ (—m) ;

wobeir ® die Verteilungsfunktion der Standardnormalverteilung sex.
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Beweis. Sein > 1, ¢ € 3, m, = |log,(n*?c)|. Nach (2.6.9) gilt

K(ma) _ _ e (Y L
Qi ~Usll = 3 Auneg (a0 (0 +3) - )

— 24 1<h<h*
_ wtma) (2 VY _ R
- Z An,h—i—% qn (h + 2) Z nl An,h+57
—2+1<h<h* —5+1<h<h*
(2.6.21)
wobei qz(m”) (h + g) gegeben ist durch
2mn — (h+2)\ 1
i 3 n g
Aufgrund von unserer Definition A,,, = 0 fiir 7 # 1,...,n, sei im Folgenden h +

stets ganzzahlig. Nach Lemma gilt fiir den zweiten Summanden in ([2.6.21])

1 1
lim g — A pyn =0 | — ) 2.6.22
n—0o0 nl T ( 40\/3) ( )

f%+1gh§h*

Wir betrachten nun den ersten Summanden in (2.6.21)). Zunéchst setzen wir

3/4
[ {h‘ —10\”[ ghgh*} und
C

2 {h‘ —g+1§h<—

10n3/4
all
dabei sei n so grof}, dass I, I2 # (.

nr n

Wir betrachten zunachst

n
> Anngzgm™ (h + 5).

hel}

Sei S,, die Summe von n stochastisch unabhéngigen und identisch R(0,1)-

verteilten Zufallsgroffen und

12

die Standardisierung von S,,. Nach Satz gilt fiir alle A

1 n n
—Ansyy =P (h +5-1<Si<h+ 5) . (2.6.23)
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Fiir h € I, also —10\’}%/4 <

= —% + O(1), gilt ferner

10 < h < 1 10 1
nl/4c3/2 = en T 24¢2\/n “A\n

und damit fiir alle h € I}

o (3)-H8) 0 ()0 ()

Insgesamt erhalten wir daraus weiter unter Benutzung von Satz[2.6.1{und (2.6.23)

> Aunis qn(m")(th ) Z _Anh+nn'qn (h+2>

hell

Rl 1 1 N 1 1/ h) .
-2 o (o (‘“f@(ﬁ))‘w‘é(%) ~0-(3))
_ —1 An g h 1 1 1 (h)\2 1
= 2402); nfexp(—erm*Oc(Ta)—é(a) +0c(;)>

2) A o (= gm0 (7))
ZP( +——1<S <h+2) exp(—%—i—()c(in))

hell

——
>

— |
ol —

A

S

VAN
— >
sl
——
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wegen ¢ > ()

1 T 4 1 - 1 h < 1
ev1i2 \ " 15 C\/E\/l%_ /12

T,.

Sei nun n so groB, dass h* = —% + O.(1) < 0 und h, o min{h € I'}. Dann gilt

wegen h+ 5 € N fiir allehEI}l und ]711: {h) _ 10n3/4 < hgh*}

Ve

10n3/4

ho —
L5279 \/E
fiir ein a,, € [0,1). Wir kénnen den Erwartungswert in (2.6.24)) somit unter Benut-

zung von

+ ay,

h,—1 10v12n'*  a, —1

= -
1 Ve 1

nach oben abschitzen durch

und nach unten abschitzen durch

1 1
E Zl{ 1 ;o n }eXp <_c B (T”+ %))

4ci/§+08 (%)

1 1
= exp | — T+ — dP,
/ ( (AV 12 ( \/ ﬁ))
_10\/ﬁn1/4+an—1
NG

n
V 12

Nach Lemma ist die Familie (exp(—1/(cV/12) T,,))n>1 gleichgradig integrier-

bar. Fiir die obere Schranke gilt dann wegen der gleichgradigen Integrierbarkeit
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von (exp(—1/(cv12) T,,))n>1 und dem zentralen Grenzwertsatz

1 BN __1
46\/§+OC<\/E) 4cV/3 1
i 1 To _ 2
nh_):a;o / exp < iD) x) dP' " = / NGr: exp ( T o 12) dzx.
710\/ﬁn1/4+an—1 -
Ve o

12

Dasselbe Ergebnis erhalten wir analog fiir die untere Schranke. Insgesamt gilt somit

zusammen mit ([2.6.24))

4cV/3
lim Ay q;';(m”) (h + ﬁ) = exp (—ﬁ) / L exp (—%2 — - L > dx
n—m% 2 2 . V2 12
1
4cV3
= / L exp <—l <x+ 1 >2> dx
\/ﬂ 2 2cvV/3

Wir betrachten nun

*(m n
> Appen gimm) (h + 5).

hel?

Da die Funktion

monoton fallend in 7 ist, gilt fiir alle —g+1<h<gmith+3eN

n—|—2m”—r> 1

n 2mnn

(M, n *(mp
g <h+§) < gm(1).

Fiir n — oo folgt daraus mit Hilfe von Satz[2.6.1, wenn dort h,, = —% +1 gewihlt

wird,

n
i (1t 3)

< g;"(1)

1 1 /1 1 1/-2+1)° 1
—ae’q’(c n<§—5+06<1>)—@—5( on ) *Oc<a))
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o (D)o (0(H) - (e L)
o (L5 oo (0 () oo ()

2

|
3en(2)r(o.(5)
) |

Sei T, & max{h € I?}. Dann gilt wegen h + 2 € N fiir alle h € I? und
n n3/4
2={n|-3+1<n<-102"}

/e
_ 1 3/4
L L
Ve
fiir ein b, € [0,1). Damit erhalten wir nach Satz mit S, > 0 P-f.s
1 n n

ZaAn,h—&—%: ZP<h+§—1<Sn§h+§>
hel? hel?

:P(0<Sngﬁn+g)

-r(5+3)

P
_¢, )
12

10n3/4 12
=6 (-5 ) ?>

10\/12711/4)

(2.6.27)

Ve

Bayer und Diaconis [6] behaupten, dass nach Abschnitt XVI.7 in [I1] die folgende
Beziehung gilt

2
Z 1 1 1 1 [ 10y/12nt/4
— Apptnr ~¥ ————€X —= |

nl T E T Jopiay/ag O\ T2 NG

herl?

Mittels (2.6.27) gelangen wir zu einer anderen Beziehung (vergleiche (2.6.28))).
Nach Lemma [2.6.7| folgt mit x,, 0y 12n'/*/\/c und ®(—z) ~ 1/(x Qﬁ)e—:ﬁ/?,
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xr — oo, fiir n — oo

10y/12n'/4
Z .Anh—i-* _G ( \/E )

hel?
o ( 10\/12711/4)

Ve
2
1 {10v/12n1/4
NLeXp _Z M (2.6.28)
10nY/4y/247 2 Ve

und somit zusammen mit (2.6.26)) fiir n — oo

e 3) 20 B () o ()

hel?
o 10y/12n'/4 vn
~ ——F—— | exp | —
Ve 2¢

2

Ve 1 {10v/12n1/* N NG

~N —m—— eX _—— _— JER—
10nY/4y/ 247 L Ve

2c
Ve . (_ ((10V12)* 1) ﬁ)

= — _ ex
10n/4/ 247 2c
1
—0, (W) . (2.6.29)

Fassen wir nun die Ergebnisse aus (2.6.22)), (2.6.25) und ([2.6.29) zusammen, so

erhalten wir abschlieBend unter Benutzung von ®(z) =1 — ®(—x) fiir alle z € R

Jim Qi = Us, | = lim >, Auney (qn Me+3) - m>

—5+1l<h<h*

SERIE.
-1 <_4C\/§)

und somit die Behauptung. O]
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Ersetzen wir in Theorem 8 den Parameter ¢ wiederum durch 27/, j € Z,
so entspricht j der Anzahl der Mlschvorgange vor bzw. nach b log, n| und wir

erhalten vermoge

i [ ()] i [ (22)] 0w

fs ()] [ (5]

unter Hinweis auf Definition unmittelbar das folgende Theorem.

2.6.9 Theorem. Wird ein Stapel mit n Karten m, = (|2 logyn] + j)-mal, j € Z,
j = —|2log,n], nach der GSR-(2,n)-Mischmethode Qs,, gemischt, so gilt
2-J
lim [|Qs0™) — Us, | = 1— 28 (__) )

wobetr © die Verteilungsfunktion der Standardnormalverteilung sei.

Ferner besitzt die Familie (Qa.n)n>1 €inen starken Cut-Off-Effekt mit Cut-Off-
Zeiten (([2logyn,1))n>1.

Fiir groBe n sind somit | 2 log, n] Riffle Shuffle hinreichend und notwendig, um
einen Kartenstapel mit n Karten hinreichend zu mischen. Mit m,, = L% log, n| gilt

fiir den Variationsabstand HQ*(m") Us,| fiir groBe n

i 1
HQ2 ) Us,||~1—20 (—m) ~ 0.115.

In Tabelle 2.4/ und Abbildung [2.7sind die Werte der Funktion j — 1—2® (—%)
abgetragen.
j 6 5 4 -3 2 1 0 1 2 3 4

f(4) | 1.000 0.999 0.979 0.752 0.436 0.227 0.115 0.058 0.029 0.014 0.007

Tabelle 2.4: f(j) = 2<I>( 4\[> fir j = —6,...,4.

Welcher Wert von der Totalvariation tatsidchlich unterschritten werden muss,
um den Kartenstapel als hinreichend gemischt anzusehen, liegt in der Beurtei-

lung des jeweiligen Betrachters. So findet sich beispielsweise in [20] die Schranke
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2e

T T T T T T ' ' ' »

-10-9 8 -7-6-5-4-3-2-10123 456 78910

Abbildung 2.7: j —— 1 — 2 (—j\—f) fiir j = —10, ..., 10.

w

1/(2e) =~ 0.184, wihrend von Bayer und Diaconis [0] der Kartenstapel schon bei
einem Wert von 1/2 als hinreichend gemischt angesehen wird. Fiir grofie n sind
nach Theorem m L% log, n] — 2 Mischvorgénge notig um den Wert 1/2 in To-
talvariation zu unterschreiten. Die Schranke 1/2 wird von Mann [I6] durch die

folgende Uberlegung motiviert:

Wir nehmen an, ein Kartenstapel mit n Karten sei so gemischt, dass jede Rei-
henfolge der Karten gleich wahrscheinlich ist, das heif3t jede Reihenfolge 7 € S,
habe die Wahrscheinlichkeit Us, = 1/n!. n sei als gerade vorausgesetzt. Nach dem
Mischen féllt die oberste Karte vom Stapel, so dass wir deren Wert ¢ erkennen.
Legen wir diese Karte nun wieder mit der Riickseite oben auf den Kartenstapel,
so ist die zufillige Reihenfolge der Karten zerstort, da wir wissen, welchen Wert
die oberste Karte tragt. Legen wir die Karte wieder an eine zuféllige Position in-
nerhalb des Stapels, so ist die zufillige Reihenfolge der Karten wieder gegeben.
Wir platzieren die Karte allerdings an einer zufélligen Position innerhalb der obe-
ren Halfte des Stapels und zwar so, dass wir nicht wissen, welche Position dies
ist. Die moglichen Permutationen nach denen der Kartenstapel dann gemischt ist,
entsprechen exakt der Menge der Permutationen in &, die Karte ¢ in die obe-
re Hilfte des Stapels mischen. Dies ist genau die Hélfte aller Permutationen in

S,. Die Wahrscheinlichkeit fiir eine solche Permutation 7 ist dann gegeben durch
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Q({7}) = 2/n!, alle iibrigen Permutationen treten mit Wahrscheinlichkeit 0 auf.
Wir berechnen nun den Verlust, gemessen in Totalvariation, den wir durch die-

ses Vorgehen im Vergleich zur vollstdndigen Zufilligkeit der Kartenreihenfolgen

erleiden:
1 1
|Q = Us,|| = 3 Z Q{r}) — ]
TESR ’
B 1 /n!|2 1 i n! 0 1
2\ 2 (n n! 2 n!
1
=5

Die Totalvariation liefert den Wert 1/2. Nach Mann ist dieser Wert innerhalb der
Spanne von 0 bis 1 vergleichsweise grof3, obwohl sich Karte ¢ an einer zufélligen
Position in der oberen Hélfte des Kartenstapels befindet und der Kartenstapel
wegen der zufélligen Reihenfolge aller iibrigen Karten von ihm als hinreichend

gemischt angesehen werden kann.

Wir geben allerdings zu bedenken, dass die Beschriankung auf nur die Hélfte
aller Permutationen in §,, eine hinreichende Mischung der Karten verhindert. Das
folgende Beispiel soll diesen Einwand motivieren: Ein fairer Wiirfel werde einmal
geworfen, das Ergebnis des Wurfes sei gerade, aber iiber diese Information hinaus
unbekannt. Jede der Zahlen 2,4, 6 ist dann gleich wahrscheinlich mit Wahrschein-
lichkeit 1/3. Die richtige Augenzahl kann also mit Wahrscheinlichkeit 1/3 geraten
werden. Sei U die Gleichverteilung auf {1,...,6} und U die Gleichverteilung auf
{2,4,6}. Dann gilt fiir die Totalvariation wie im obigen Beispiel

_ 1/ |1 1 1
U-U|==(3]--=|+3|0—=
7=vi=3 (afs =3[ +2)o-5])

N | —

Die Werte %log2 n, L% log, | und L% log, n] — 2 fiir gebrauchliche Kartensta-
pelgroflen sind in Tabelle [2.5] angegeben.

Die tatséchlichen Anzahlen an Mischvorgédngen, die notwendig sind, um die
Werte 1/2 und 1/(2¢) in Totalvariation zu unterschreiten, weichen von den in

Tabelle 2.5 angegebenen Werten ab. Die Abweichungen resultieren daraus, dass
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n 24 32 48 52
% logy n 6.88 7.50 8.38 8.55 10.05
|3 1log, n] 6 7 8 8

L% logyn| —2

4 ) 6 6

Tabelle 2.5: %log2 n, [% log, n] und L% log, n] — 2 fiir n = 24,32, 48, 52, 104.

Theorem [2.6.9] eine asymptotische Aussage ist, die nur fiir grofie n von Bedeutung

ist. Die tatséchlichen Werte ergeben sich aus einer exakten Berechnung der Total-
variation (siche Tabelle auf Seite und sind in Tabelle angegeben. An

dieser Stelle soll nun auch die Aussage , In card shuffling, 7 is winning number*

aus der Einleitung prézisiert werden. Fiir einen Kartenstapel mit 52 Karten sind

7 Riffle Shuffle notwendig, um die Entfernung 1/2 zur Gleichverteilung auf Sso in

Totalvariation gerade zu unterschreiten.

Tabelle 2.6: Minimale Anzahl an Mischvorgidngen m mit [|Q

no |24 32 48 52 104
1/2) |7 7 8 8 10
12 |5 6 7 7 8

S =1/(2e),1/2 fiir n = 24, 32, 48,52, 104.

W _Us | < S,
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N>,
N,
Non-1
B
|G|
B(G)

={1,2,3,...}

=Nu{0}

={keN|k>n},neN

={1,...,n},neN

={0,...,n—1},neN

={(z1,...,2,) €B" |x; #x;Vi#j}, BCR,neN
Maéchtigkeit der endlichen Menge G

Potenzmenge der Menge G

={(j1,---,Ja) ENG, | Doy =7}, a,n €N
={¥|jez}

Borelsche o-Algebra iiber R™

Spur-o-Algebra von B" unter C' € B"

Dirac-Maf} in x

Multinomialverteilung mit Parametern n und a-mal 1/a
Verteilungsfunktion der Standardnormalverteilung
Dichte der Standardnormalverteilung
Poisson-Verteilung mit Parameter ¢

m-fache Faltung der Verteilung @)
GSR-(a,n)-Mischmethode, n € N, a > 2
GSR-(2,n)-Mischmethode, n € N

Gleichverteilung auf [0, 1]

von den Zufallsvariablen Xy, ..., X,, erzeugte o-Algebra
={z € Q| Q(z) > 0}, @ diskretes Wahrscheinlichkeitsmaf}
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auf (2, B(€2))

Ug = ‘—g;' > sec 0z, G endliche Menge

Sn ={r:{1,....,n} — {1,...,n} | 7 bijektiv},

T=1i1,..., 0]z (i) =4j41, j=1,...,7 =1, 7(i;) = 4y und 7w(¢) = ¢ fir
iy,

Iy ={res,|sgn(r)=1}

Dk = {m € S, | 7 hat k Sprungstellen}, k =1,...,n—1

R,k = {m € S, | 7 hat k aufsteigende Sequenzen}, k =1,...,n

T, ={[i,jlz € Suli,je{l,...,n}, i #j},

Y = {id> [17 2]2[374]27 [17 3]2[274]27 [174]2[27 3]2}7

Ak = |Zni| falls k=1,...,n und = 0 sonst

T~ {z7' |2z €T}, T C G, G Gruppe

(T) Uneno{z10. 0, |z € TUTi=1,...,n}, T CG,
G Gruppe

Fnr~gn limp, oo f,,/9, =1

fn €o0(g,) limy, o0 fn/gn =0

f. €0(g,) dng € NJK € [0,00): |f,/9,] < KVn>ng

fn€0.g,) VeeR: f, = fn09,=9,.und Ing(c) €N,

KC S [07 OO)Z |fn,c/gn,c| < KC\V/’NI > no(C)

log, Logarithmus zur Basis 2

zVy = max{z,y}

Ay = min{z,y}

|x] = max{k € Z| k < z}, untere Gauss-Klammer

[x] = min{k € Z | k > x}, obere Gauss-Klammer



Literaturverzeichnis

1]

Aldous, D. (1981/82): Random Walks on finite groups and rapidly mizing
Markov Chains. Séminaire de Probabilités XVII. Lecture Notes in Mathema-
tics 986, 243-297.

Aldous, D.; Diaconis P. (1986): Shuffling cards and Stopping Times. American
Mathematical Monthly, Volume 93, No. 5, 333-348.

Alsmeyer, G. (2003): Wahrscheinlichkeitstheorie. Skripten zur Mathemati-
schen Statistik Nr. 30, 3. Auflage, Universitat Miinster.

Alsmeyer, G. (2002): Stochastische Prozesse Teil 1. Skripten zur Mathemati-
schen Statistik Nr. 33, 2. Auflage, Universitat Miinster.

Brémaud, P. (1999): Markov Chains, Gibbs Fields, Monte Carlo Simulation
and Queues. Springer, New York.

Bayer, D.; Diaconis, P. (1992): Trailing the Dovetail Shuffle to its lair. Annals
of Applied Probability, Volume 2, No. 2, 294-313.

Carlitz, L. (1959): Eulerian Numbers and Polynomials. Mathematics Magazi-
ne, Volume 32, No. 5, 247-260.

Carlitz, L.; Kurtz, D. C.; Scoville, R.; Stackelberg, O. P. (1972): Asymptotic
properties of Eulerian Numbers. Zeitschrift fiir Wahrscheinlichkeitstheorie und
verwandte Gebiete 23, 47-54.



86

Literaturverzeichnis

[9]

[10]

[11]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Diaconis, P. (1988): Group Representations in probability and statistics. Lec-
ture Notes-Monograph Series 11, Institute of Mathematical Statistics, Hay-

ward, California.

Diaconis, P. (1996): The Cutoff Phenomenon in finite Markov Chains. Pro-
ceedings of the National Academy of Science, Volume 93, 1659-1664.

Feller, W. (1971): An introduction to Probability Theory and its applications.
Volume II, 2. Auflage, John Wiley and Sons, Inc.

Gilbert, E. (1955): Theory of Shuffling. Technical Memorandum, Bell Labo-

ratories.

Kolata, G. (1990): In shuffing cards, 7 is winning number. New York Times,
Spatausgabe vom 09.01.1990.

Lalley, S. P. (1999): Riffle Shuffles and their associated Dynamical Systems.
Journal of Theoretical Probability, Volume 12, No. 4, 903-932.

Lorenz, F. (1996): Einfihrung in die Algebra. 3. Auflage, Spektrum Verlag,
Heidelberg/Berlin.

Mann, B. (1995): How many times should you shuffle a deck of cards? Topics
in Contemporary Probability and Its Applications, Ed. J. Laurie Snell, CRC
Press Boca Raton, 261-289.

Reeds, J. (1981): Theory of Riffle Shuffling. Unveroffentlichtes Manuskript.

Rogers, L. C. G.; Pitman, J. W. (1981): Markov Functions. Annals of Proba-
bility, Volume 9, No. 4, 573-582.

Salama, I. A.; Kupper L. L. (1986): A geometric interpretation for the Eule-
rian Numbers. American Mathematical Monthly, Volume 93, No. 1, 51-52.

Saloff-Coste, L. (2004): Random Walks on finite groups. Probability on dis-
crete structures, Encyclopaedia of Mathematical Science, Volume 110 (Harry
Kesten, Editor), Springer, Berlin, 263-346.



Literaturverzeichnis 87

[21] Saloff-Coste, L. (1997): Lectures on finite Markov Chains. Lecture Notes in
Mathematics 1665, Lectures on Probability Theory and Statistics, Ecole d’Eté
de Probabilités de Saint-Flour XXVI-1996, E. Giné et al., 301-413.

[22] Stanley, R. P. (1997): Enumerative combinatorics. Cambridge studies in ad-

vanced mathematics, Volume 49, Cambridge University Press, Cambridge.

23] Tanny, S. (1973): A probabilistic interpretation of the Eulerian Numbers. Duke
Mathematical Journal, Volume 40, 717-722. Corrigenda (1974), Volume 41,
689.

[24] Wilson, D. B. (2004): Mizing times of Lozenge Tiling and card shuffling Mar-
kov Chains. Annals of Applied Probability, Volume 14, No. 1, 274-325.

[25] Woess, W. (1980): Aperiodische WahrscheinlichkeitsmafSe auf topologischen
Gruppen. Monatshefte Mathematik 90, 339-345.

[26] Worpitzky, J. (1883): Studien tiber die Bernoullischen Zahlen und Eulerschen
Zahlen, Journal fiir die reine und angewandte Mathematik 94, 203-232.






Ich versichere, dass ich die Diplomarbeit selbsténdig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe. Alle Stellen der Arbeit,
die anderen Werken dem Wortlaut oder Sinn nach entnommen wurden, habe ich

in jedem Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht.

Miinster, 15. Mé&rz 2005

(Walter Peter Sendfeld)






	Einleitung
	Random Walks auf Gruppen
	Random Walks auf endlichen Gruppen
	Die Gruppe Sn der Permutationen
	Beschreibung eines Mischvorgangs

	Der Riffle Shuffle
	Modelle für den Riffle Shuffle
	Aufsteigende Sequenzen
	Eulersche Zahlen und aufsteigende Sequenzen
	Konvergenz gegen die Gleichverteilung: Der Cut-Off-Effekt
	Obere und untere Schranke für die Totalvariation
	Nachweis des Cut-Off-Effekts für den Riffle Shuffle

	Symbolverzeichnis
	Literaturverzeichnis

