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Einleitung

Haufig wird versucht, das Verhalten von Epidemien mit Hilfe mathematischer
Modelle zu beschreiben. Frithe Modelle waren grofitenteils deterministisch; sto-
chastische Modelle wurden erst ernsthaft untersucht, nachdem die Theorie sto-
chastischer Prozesse entsprechend entwickelt war. Einer der Hauptunterschiede
zwischen diesen beiden Arten von Modellen liegt in ihrem Zustandsraum, welcher
beim deterministischen Modell stetig, beim stochastischen diskret ist. Dement-
sprechend ist das stochastische Modell realistischer, wenn innerhalb einer Po-
pulation die Anzahl infizierter Individuen betrachtet werden soll. Nun ist jedes
deterministische Modell eine Approximation eines entsprechenden stochastischen
Modells, wenn die Populationsgrofie gegen oo geht. Allerdings gibt es problemati-
sche Bereiche, in denen die beiden Modelle jeweils ein ganzlich unterschiedliches
Verhalten der Infektion vorhersagen, so dass manche Fragen nur mit Hilfe des
stochastischen Modells geklart werden konnen.

In der vorliegenden Arbeit wird das sogenannte SIS-Modell untersucht, dessen
stochastische Version zum ersten Mal von Weiss und Dishon [20] im Jahre 1971
vorgestellt wurde. Es beschreibt die Ubertragung einer Infektion innerhalb ei-
ner konstanten Population mit N Individuen. Die Buchstaben ”SIS” stehen fiir
die aufeinanderfolgenden moglichen Zustande eines Individuums von empfanglich
("susceptible”) hin zu infiziert ("infected”) und wieder zuriick zu empfénglich
("susceptible”). Ein genesenes Individuum ist somit sofort wieder anfallig fiir die
Infektion.

Das SIS-Modell kann zur Darstellung von endemischen Infektionen verwendet
werden, die keine Immunitat verleihen; es kann aber auch in vollig anderen Zu-
sammenhéangen zur Anwendung kommen. Zum Beispiel benutzte Bartholomew
(1976) [3] es, um die Verbreitung von Geriichten zu untersuchen, Oppenheim et
al. (1977) [18] nahmen es als Modell fiir chemische Reaktionen.

Die Eigenschaften des Modells werden vollstandig durch zwei Parameter beschrie-
ben, namlich durch die Populationsgréfie N und durch den sogenannten ”trans-
mission factor” 7', auch ”basic reproduction ratio” genannt und mit Ry bezeich-
net.

In der deterministischen Version des Modells spielt nur der Parameter T eine
Rolle. Ist T kleiner als 1, wird die Ausléschung der Infektion vorhergesagt, ist T



groffer als 1, kann sich eine endemische Infektion etablieren, wenn zu Beginn eine
positive Anzahl von Individuen infiziert ist.

Im Gegensatz dazu stirbt die Infektion im stochastischen Modell unabhangig von
der Anfangsverteilung fiir alle Werte von T fast sicher aus. Dementsprechend hat
das Modell einen absorbierenden Zustand im Ursprung sowie eine degenerierte
stationare Verteilung, die ihre gesamte Masse auf den Ursprung legt. Die Zeit bis
zur Ausloschung variiert jedoch stark mit 7. Sie ist ziemlich kurz und beinahe
unabhangig von N, wenn 1" wesentlich kleiner als 1 ist, wachst aber exponentiell
in N, wenn T wesentlich grofler als 1 ist. Die Verteilung der Anzahl infizierter
Individuen verhalt sich innerhalb dieses langen Zeitraums annahernd stationér.
Sie kann durch Betrachtung eben dieser Verteilung, bedingt darunter, dass die
Infektion nicht ausstirbt, untersucht werden — betrachtet wird die sogenannte
quasi-stationare Verteilung.

Soll also das SIS-Modell untersucht werden, werden im Wesentlichen die quasi-
stationare Verteilung und die Zeit bis zur Ausloschung untersucht. Mit Hilfe letz-
terer kann bestimmt werden, wie grofl der Zeitraum ist, innerhalb dessen die
quasi-stationédre Verteilung eine gute Annaherung an die Verteilung der infizier-
ten Individuen ist. Da weder die quasi-stationare Verteilung noch die Verteilung
der Zeit bis zur Ausloschung (im Ganzen) explizit bestimmt werden kénnen, wer-
den Approximationen gesucht. Hierfiir werden zwei Prozesse betrachtet, denen
ein absorbierender Zustand fehlt und deren nicht-degenerierte stationéare Vertei-
lungen explizit angegeben werden konnen.

Das 1. Kapitel dieser Arbeit gibt eine kurze Ubersicht iiber die im Modell verwen-
deten Markov-Sprung-Prozesse, speziell iiber Geburts-und-Todes-Prozesse. Defi-
nitionen und Eigenschaften quasi-stationarer Verteilungen liefert das 2. Kapitel.
Im 3. Kapitel werden das SIS-Modell, seine quasi-stationare Verteilung sowie die
beiden Approximations-Prozesse vorgestellt, um dann im 4. Kapitel zu zeigen,
dass die stationaren Verteilungen dieser Prozesse je eine untere bzw. eine obe-
re Schranke fiir die quasi-stationare Verteilung sind. Das 5. Kapitel behandelt
schliefllich die erwartete Zeit bis zur Ausléschung.

Zu Beginn eines Kapitels bzw. Abschnitts werden die Quellen angegeben, nach
denen hauptséichlich vorgegangen wird. Werden innerhalb der Kapitel und Ab-
schnitte noch weitere Quellen verwendet, so werden sie an entsprechender Stelle
zusatzlich angefiihrt.
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Kapitel 1

Markov-Sprung-Prozesse

Da es sich bei den Modellen, mit denen sich diese Arbeit beschaftigt, um Geburts-
und-Todes-Prozesse, d.h. spezielle Markov-Sprung-Prozesse, handelt, liefert die-
ses Kapitel eine kurze Auflistung aller verwendeten Definitionen und allgemein
bekannten Sdtze (welche in den spéteren Kapiteln benutzt werden und bei Be-
darf hier nachgeschlagen werden kénnen), sowie eine Erlduterung der vorliegenden
speziellen Situation.

Als Quellen hierfiir wurden das Buch ”Continuous-Time Markov Chains” von
Anderson [2] und ein unveroffentlichtes Skript {iber Markov-Sprung-Prozesse von
Alsmeyer [1] verwendet.

1.1 Grundlagen: Markov-Sprung-Prozesse allge-
mein

Definition und grundlegende Eigenschaften der ﬁbergangsfunktion

Definition 1.1.1. Ein stochastischer Prozess (X (t)):>0, definiert auf einem Wahr-
scheinlichkeitsraum (2,2(, P), mit Werten in einer abzdhlbaren Menge &£ (ge-
nannt Zustandsraum) wird Markov-Sprung-Prozess genannt, wenn fiir jede end-
liche Menge 0 < t; < ty < ... < t, < t,11 von Zeitpunkten und jede Menge
11,19,y 1n_1,1, ] von Zustanden in £ mit

P(X(tn) = i,X(tn_l) = in—la Ce ,X(tl) = Zl) >0 gllt

P(X(tny1) = jIX(tn) =4, X (tn-1) = n-1,..., X(t1) = i1)

= P(X(tns1) = jIX(tn) = 1). (1.1.1)

Die Gleichung (1.1.1) wird Markov-FEigenschaft genannt.

Wenn fiir alle s, ¢ mit 0 < s <t und alle 7,57 € £ die bedingten Wahrscheinlich-
keiten P(X(t) = j|X(s) = ¢) nur von ¢t — s und nicht von dem speziellen s und

7



8 KAPITEL 1. MARKOV-SPRUNG-PROZESSE

t abhéngen, wird der Prozess (X(t))>o zeitlich homogen genannt; man sagt, er
habe stationdare Ubergangswahrscheinlichkeiten. In diesem Fall gilt

P(X(t) =jlX(s) =1) = P(X(t—s)=j|X(0) =1) (1.1.2)
und die Funktion
pij(t) == P(X(t) = j|X(0)=1), i,je& t>0, (1.1.3)

wird Ubergangsfunktz’on genannt.
(Anderson, [2, S. 1])

Definition 1.1.2. Sei £ eine abzdhlbare Menge, genannt Zustandsraum. Eine
Funktion p;;(t), 7,7 € €, t > 0, heifit Ubergangsfunktion auf £, wenn
L. p;;(t) >0 fiir alle ¢,j € £, t > 0; und

(0) = 6, = 1 falls i = j,
Pl =% =30 falls i # .

2. Zjegpij(t) S 1 fur alle ¢ € g, t Z 0.
pij(t) wird stochastisch genannt, wenn > o p;;(t) = 1fiirallei € £, ¢t > 0,
ansonsten substochastisch.

pii(s+1) =Y pu(s)pii(t), i,jEE, s,t>0 (1.1.4)
ke&

(Chapman-Kolmogorov-Gleichung genannt, oder Halbgruppen-Figenschaft).

4. p;;(t) wird ferner Standard- Ubergangsfunktion genannt, wenn lim, wpi(t) =1
fir alle i € 5 (wodurch sich rpit 0 < >upi(t) < 1 — pu(t) gerade
pij(t) Ty d;; fiir alle 4, j € & ergibt).

(Anderson, [2, S. 5])

Die so definierten py;(t), 4,7 € £, t > 0, bilden die Eintréige der sogenannten
Ubergangsmatrizfunktion P(t) := (p;;(t))ijes — einer quadratischen, méglicher-
weise unendlich-dimensionalen Matrix. Die oben genannten Eigenschaften lassen
sich mit dieser Matrix-Darstellung auch wie folgt formulieren:
P(t) > 0 fiir alle t > 0 (d.h. die Komponenten von P () sind nicht-negativ),
P(0) = I (die Einheitsmatrix).
2. P(t)1 < 1fiirallet > 0 (wobei 1 der Spaltenvektor ist, dessen Komponenten
alle gleich 1 sind).
(P(t)):>0 ist stochastisch, wenn P(¢)1 = 1 fur alle ¢ > 0.

3. P(s+1t)=P(s)P(t) fiir alle s,t > 0.
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4. limy )y P(t) = I komponentenweise.

Eine quadratische, moglicherweise unendlich-dimensionale Matrix mit nicht-nega-
tiven Komponenten wird substochastisch genannt, wenn alle Zeilensummen < 1
sind, und stochastisch, wenn sie = 1 sind.

Somit ist eine Ubergangsfunktion genau dann stochastisch, wenn P(t) fur alle
t > 0 stochastisch ist.
(Anderson, [2, S. 6 {.])

Der folgende Satz zeigt, dass aus jeder substochastischen Ubergangsfunktion
durch Hinzufiigen eines Zustandes zum Zustandsraum eine stochastische gemacht
werden kann.

Satz 1.1.3. Seip;;(t) eine substochastische Ubergangsfunktion auf £, A ein nicht
in € enthaltener Punkt, Ea := & U{A} und

pij(t) fallsi,5 € &,
1— i (t llsie&, j=A,
pi(e) = { L7 Zwes D) JUBTEE, T (115
0 fallsi=A, j€&,
1 fallsi=A =j.

Dann ist pﬁ(t) eine stochastische Ubergangsfunktion auf En.
(Anderson, [2, Prop. 1.1.1])

Satz 1.1.4. Sei p;;(t) eine (nicht notwendig Standard-) Ubergangsfunktion. Es
qgilt:
1. Die Funktion ), ¢ pi;(t) ist nicht-wachsend in t.

2. Wenn P(t) fiir eint > 0 stochastisch ist, so ist P(t) fir alle t > 0 stochas-
tisch.
(Anderson, [2, Prop. 1.1.2])

Satz 1.1.5. Sei p;;(t) eine Standard- Ubergangsfunktion. Dann gilt:
1. pu(t) >0 fir alleie &, t > 0.
2. Firi,j € € 1 # j, ist entweder p;;(t) = 0 fir alle t € (0,4+00) oder
pij(t) > 0 fiir alle t € (0,400) (Lévy’s Theorem genannt).
3. Wenn py(t) =1 fiir ein t > 0, dann ist p;(t) = 1 fir alle t > 0.
(Anderson, [2, Prop. 1.1.3 bzw. S. 8])

Satz 1.1.6. Sei p;j(t) eine Standard- Ubergangsfunktion. Fir alle t > 0 gilt
pij(t +€) —py (1) < 1 —pullel);

somit ist p;;(t) eine gleichmdfig stetige Funktion in t.
(Anderson, [2, Prop. 1.1.3])
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Differenzierbarkeit der ["Jbergangsfunktion und Bedeutung der Q-Matrix

Da sich die Ubergangsfunktionen eines Markov-Sprung-Prozesses — anders als
die Ubergangswahrscheinlichkeiten bei Markov-Ketten — meistens nicht ohne
weiteres berechnen lassen, wird stattdessen die sogenannte Q-Matrix betrach-
tet. Anhand dieser lassen sich Aussagen iiber das Verhalten des Prozesses ma-
chen.

Satz 1.1.7. Fir eine Standard- Ubergangsfunktion pij(t) gilt:
Die Funktion p;;(t), i,j € &, ist stetig differenzierbar firt > 0.
Ferner existiert die rechtsseitige Ableitung im Punkt 0, d.h.

pij(t) — pi; (0)

Y

10 t

0<gqj<oo firallei,je&, i+ j; —o0o<gq; <0 firalleie€&.
(Alsmeyer, [1, Satz 6.2 bzw. S. 11])

Definition 1.1.8. Definiere ¢; := —q;; fiir i € £.

Ein Zustand i € £ heift stabil, wenn ¢; < +o0 und augenblicklich, wenn q; = +00.
Die Ubergangsfunktion pij(t) heilt stabil, wenn alle Zusténde ¢ € £ stabil sind.
Der Zustand i € £ wird absorbierend genannt, wenn (limtwl_p—“(t) =)g; = 0,

t
oder, dquivalent, wenn p;;(t) = 1 fir alle ¢ > 0.
(Anderson, [2, S. 9])

Definition 1.1.9. Die Matrix Q) := (¢;j)i jec wird Q-Matriz der Ubergangsfunk-
tion p;;(t) genannt.

(Die Diagonal-Komponenten von ) sind nicht-positiv und méglicherweise unend-
lich, die anderen Komponenten sind nicht-negativ und endlich; die Zeilensummen
sind nicht-positiv.)

Wenn alle Diagonal-Komponenten endlich sind (d.h. |g;| < oo fiir alle i € &),
wird @) stabil genannt.

Wenn zusitzlich alle Zeilensummen gleich 0 sind (d.h. } ., ¢;; = 0 fiir alle i € &),
heifit Q) konservativ.

Ist umgekehrt @ eine Q-Matrix, so wird eine Ubergangsfunktion pij(t) Q-Funktion
genannt, wenn () die Q-Matrix von p;;(t) ist (d.h., wenn P’(0+) = Q).
(Anderson, [2, S. 13 bzw. S. 64])

Ist die Q-Matrix konservativ, so treten augenblickliche Zustédnde nicht auf.



1.1. GRUNDLAGEN: MARKOV-SPRUNG-PROZESSE ALLGEMEIN 11

Struktur von Markov-Sprung-Prozessen und minimale Konstruktion

Sei (X (t))¢>0 ein Markov-Sprung-Prozess mit Ubergangsfunktion pij(t) und kon-
servativer Q-Matrix (). Die Pfade des Prozesses werden als rechtsseitig-stetige
Treppenfunktionen vorausgesetzt.

Anders als bei Markov-Ketten besitzt bei Markov-Sprung-Prozessen jeder Zu-
stand eine zufallige Verweildauer, die wegen der Markov-Eigenschaft exponen-
tialverteilt sein muss; die jeweiligen Parameter lassen sich anhand der Q-Matrix
bestimmen.

Definition 1.1.10. Sei i € £ und X(0) = .

T {inf{t > 0|X(t) #4} falls die Menge nicht leer ist, (1.1.7)

+00 sonst,

definiert die Verweildauer im Zustand i.

(Anderson, [2, S. 16])

Wenn ¢; = 0, gilt p;(t) = 1 fiir alle t > 0, so dass ¢ absorbierend und 7; = +o0
ist.

Sei nun ¢; > 0.

Satz 1.1.11. FEs gilt:
1. P(T; > t|X(0) = i) = exp (—qit), t > 0.

2. PX(T) = jIX(0) = i) = a/ai j #i.
(Anderson, [2, Prop. 1.2.8])

Angenommen, dass X (0) = 1.
Wenn ¢;, = 0, oder aquivalent, wenn i, ein absorbierender Zustand ist, bleibt der
Prozess fur immer im Zustand ig.

Wenn nun ¢;, > 0, so bleibt der Prozess (vgl. Satz 1.1.11, Punkt 1) fiir eine
endliche, aber (da ¢;, < +o00) echt positive, Exp(g;,)-verteilte Zeitspanne Tj,
im Zustand ig. Am Ende der Verweildauer geht der Prozess in einen anderen
Zustand tiber. Die Wahrscheinlichkeit, dass es ein Ubergang in den Zustand i,
mit iy # ip wird, ist g, /qi, (vgl. Satz 1.1.11, Punkt 2). Wegen der rechtsseitigen
Stetigkeit der Pfade wird sich der Prozess zum Zeitpunkt 7;, im Zustand i,
befinden, d.h. X(7},) = ;. Auf Grund der Homogenitét des Prozesses und wegen
der Markov-Eigenschaft ist das zukiinftige Verhalten des Prozesses nach dem
Zeitpunkt T,
1. unabhéngig vom Verhalten des Prozesses vor dem Zeitpunkt 7;, und

2. so, als wiirde der Prozess statt in 7T}, in 0 starten und ¢; als Anfangszustand
haben.
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Wird nun in gleicher Weise fortgefahren, so bleibt der Prozess, sofern i; kein
absorbierender Zustand ist, eine Exp(g;, )-verteilte Zeitspanne T}, im Zustand iy,
wobei T;, unabhangig von T;, ist, und geht zum Zeitpunkt 7;, 4+ 7}, in einen
Zustand io = X (T}, + T;,) tber. Die Wahl des Zustandes iy ist unabhéngig von
allem, was zuvor passiert ist und wird mit Wahrscheinlichkeit ¢;,;,/¢;, getroffen
usw. ...

Definiere nun die Sprungzeiten

B {O falls n = 0,

. (1.1.8)
inf{t > J,1|X(t) # X(J—1)} fallsn>1,

und ferner

X, :=X(Jp), n=>0. (1.1.9)
Dann ist J,, der Zeitpunkt des n-ten Ubergangs, X, ist der Anfangszustand des
Prozesses und X,, (n > 1) ist der Zustand des Prozesses zum Zeitpunkt .J,,, d.h.
direkt nach dem n-ten Ubergang.
Im Beispiel-Fall gilt also
Jo =0, Xo = i;
J1 =T, X1 =11;
Jo =Ty +T;,, Xo=19;
Jy =Ty + Ty + Ty, -
Wenn lim,, ., J,, = 400 ist, kann der Prozess auf diese Weise komplett beschrie-
ben werden. Im Allgemeinen kann die Zufallsvariable

Joo := lim T J, (1.1.10)

n—~oo

aber durchaus auch endliche Werte annehmen; es gilt insbesondere, dass, wenn
P(J <t X(0) =idg) > 0 fiir ein t > 0, P(J < t|X(0) = ip) > 0 fiir alle ¢ > 0.
Ist J,, endlich, so wird von der Fxplosionszeit gesprochen. Anschaulich bedeutet
dies, dass der Pfad X (¢) in jedem Intervall (s, J) mit s < J, unendlich viele
Spriinge hat.

Definiere nun fiir 4,5 € £

51’]’ falls q; = O,
pij =140 falls ¢; > 0 und j = 1, (1.1.11)
¢ij/q; falls ¢; > 0 und j # 1.

Da @ konservativ ist, gilt Zjes pi; = 1 fiir alle j € €.

(Xn)nso Wie oben definiert ist eine Markov-Kette mit stationdren Ubergangs-
wahrscheinlichkeiten p;;; sie wird eingebettete Markov-Kette von (X(t))i>0 ge-
nannt.

Bis zum Zeitpunkt J,, — ob dies nun endliche oder unendliche Werte annnimmt
— wird der Markov-Sprung-Prozess vollstandig beschrieben durch
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1. die eingebettete Markov-Kette (X,,),>0, die die Folge aller Zusténde dar-
stellt, durch die (X (t))¢>o verlduft, und durch

2. die Verweildauern 7;, (i, € £, n > 0) in den aufeinanderfolgend von
(X (t))i>0 bzw. (X,)n>0 besuchten Zusténden.

(Anderson, [2, S. 17 f.])

Ist nun eine konservative Q-Matrix ) gegeben, kann ausgehend von einer dis-
kreten Markov-Kette (X,,),>0 mit Ubergangswahrscheinlichkeiten wie in (1.1.11)
und einer Folge von Verweildauern (7}, ),>¢ auf kanonische Weise ein Markov-
Sprung-Prozess (X(t)):>0 konstruiert werden. Problematisch wird es allerdings,
wenn die Explosionszeit J,, endliche Werte annimmt. In diesem Fall determiniert
das Konstruktionsverfahren den Prozess (X (t));>0 nur bis zur Explosionszeit und
seine Fortsetzung iiber J,, hinaus unter Gewahrleistung der Markov-Eigenschaft
ist durch @ nicht mehr eindeutig festgelegt, d.h. zu ) konnen mehrere Standard-
Ubergangsmatrixfunktionen mit P/(0+) = @ existieren. Dieses Problem kann
jedoch durch die Erweiterung von £ um den absorbierenden Zustand A und
Ubergang zu der durch Differentiation von (P2(t));so (festgelegt durch (1.1.5))
entstandenen Q-Matrix Q = (¢ij)ijeen gelost und so zu einer beliebigen konser-
vativen Q-Matrix @) ein Markov-Sprung-Prozess mit rechtsseitig stetigen Pfaden
konstruiert werden.

Zum Explosionszeitpunkt J,, konnen statt der Absorption in A auch noch andere
Fortsetzungen iiber J, hinaus unter Giiltigkeit der Markov-Eigenschaft gefunden
werden. Jedoch gilt fiir jede weitere zu () gehérende substochastische Standard-
Ubergangsmatrixfunktion P(t) = (pi;(t))ijee

bij (1) > pis(t), i€, t>0.

Auf Grund dieser Minimalitétseigenschaft wird (X ()):>o auch als die zu @) geho-
rende minimale Konstruktion bezeichnet.
(Alsmeyer, [1, S. 33 ff.])

Satz 1.1.12 (Reuters Explosionskriterium). Die minimale Konstruktion
(X (t))i>0 ist genau dann nicht-explodierend, wenn x = 0 die einzige nicht-negative
und beschrdankte Losung der Gleichung Qx = x bildet.

(Hierbei wird ein Vektor x = (1;)ice € RI! als nicht-negativ bzw. beschrinkt

bezeichnet, wenn x; > 0 fir alle i € € bzw. sup,ee |2;] < 00.)
(Alsmeyer, [1, Satz 7.3])

Vorwarts- und Riickwarts-Differentialgleichungen

In der Praxis besteht die Bedeutung der hier vorgestellten Differentialgleichungs-
systeme darin, dass sich — sobald die Eintrage der Q-Matrix bekannt sind — mit
ihrer Hilfe in manchen Fillen die Ubergangsfunktionen berechnen lassen.
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Satz 1.1.13. Sei (P(t));s0 eine Standard-Ubergangsmatrizfunktion mit konser-
vatwer Q-Matrix Q. Dann gelten die Kolmogorovschen Riickwéarts-Differential-
gleichungen
py(t) = aqupk(t), i jEE >0, (1.1.12)

ke
also

P'(t) = QP(t), t>0.
(Alsmeyer, [1, Satz 6.3])

Satz 1.1.14. Sei (P(t))»0 eine Standard-Ubergangsmatrizfunktion mit konser-
vativer Q-Matriz (). Dann gelten die Kolmogorovschen Vorwarts-Differential-
gleichungen
o) =Y pitqy, i.jE€E t>0, (1.1.13)
ke&

also
P'(t)=P1t)Q, t=>0,

wenn (P(t))so die eindeutig bestimmte Standard-Ubergangsmatrizfunktion mit
Q-Matriz QQ ist.
(Alsmeyer, [1, Satz 6.4])

Die minimale Konstruktion erfillt — auch wenn sie substochastisch ist — sowohl
die Vorwarts-, als auch die Riickwarts-Differentialgleichungen.

Existenz und Eindeutigkeit der Q-Funktion,
Gestalt der minimalen Q-Funktion

Wie schon erwéahnt, ist die Q-Funktion eines Markov-Sprung-Prozesses bzw. die
Losung der obigen Differentialgleichungen keineswegs eindeutig bestimmt; auch
ihre Existenz ist nur unter bestimmten Bedingungen gesichert.

Theorem 1.1.15. Sei Q) eine stabile aber nicht notwendig konservative Q-Matriz.
Dann existiert eine (moglicherweise substochastische) Ubergangsfunktion P (),

welche sowohl die Riuckwarts- als auch die Vorwarts-Differentialgleichungen erfillt,
und jeweils die minimale Losung dieser Gleichungen ist, in dem Sinne, dass, wenn

pij(t) irgendeine nicht-negative Lisung (nicht notwendig eine Ubergangsfunktion,)

der Rickwdrts- oder Vorwarts-Differentialgleichungen ist, fur allei,7 € £, t >0,

pi;(t) < pij(t) gilt.

Ferner ist pj;(t) die minimale Q-Funktion, d.h., wenn p;;(t) irgendeine ande-

re Q-Funktion ist (nicht notwendig eine Losung der Rickwdrts- oder Vorwdrts-

Differentialgleichungen), gilt p;;(t) < pi;(t) fir allei,j € €, t > 0.

(Anderson, [2, Thm. 2.2.2])
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Definition 1.1.16. Eine Q-Matrix ) heif3it gleichmafig beschrdankt, wenn

SUP;ce ¢ < +00.
(Anderson, [2, S. 83])

Satz 1.1.17. Sei Q eine nicht notwendig konservative, gleichmajfig beschrank-
te Q-Matriz. Dann ist die minimale Losung p;(t) die eindeutig bestimmte Q-
Funktion. Wenn Q zudem konservativ ist, so ist die minimale Losung pj;(t) au-

Berdem stochastisch.
(Anderson, [2, Prop. 2.2.9, Cor. 2.2.5])

Satz 1.1.18. Sei Q) eine gleichmdf$ig beschrankte, nicht notwendig konservative
Q-Matriz, ¢ eine Konstante mit

supg; < c.
€€

Definiere die substochastische Matrix
P= clQ+1,
d.h.
. 1 o
Dij = E%‘j +9;5, 1,5€€&.

Dann ist die minimale Lisung pj;(t) die eindeutig bestimmte Q-Funktion und
kann explizit durch

o0

py;(t) = exp ( Z

n=0

pz]? Z7j€g7t207

ausgedriickt werden (wobei ]51(-;”) die i,j-te Komponente von P ist).

pi;(t) dst genau dann stochastisch, wenn Q) konservativ ist.
(Anderson, [2, Prop. 2.2.10])
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Bemerkung 1.1.19. Ist £ ein endlicher Zustandsraum, so kann die Darstellung
von pj;(t) noch wie folgt vereinfacht werden:

(p;(t))ijes = P*(t) = exp (—ct) Z

n=0 k=0
= (et)F S (tQ)nF
:exp(—ct)z X Z(n—k)'
k=0 n=~k
-3 O =ew0)
m!
m=0
Somit ergibt sich
. W
i)=Y, ijeE 120, (1.1.14)
n=0

wobei qgl) die i,j-te Komponente von Q)™ bezeichnet.
(Anderson, [2, S. 85 f.])

Klassifikation von Zustanden

Sei nun p;;(t), 4,j € &, eine Standard-Ubergangsfunktion und sei (X(t))i>o ein
Markov-Sprung-Prozess mit Zustandsraum &, der p;;(t) als Ubergangsfunktion
hat.

Die folgende Klassfikation von Elementen des Zustandsraums soll — genau wie bei
diskreten Markov-Ketten — die moglichen Pfade des Prozesses aufzeigen.

Definition 1.1.20. Sind ¢, € &€ gegeben, so ist j von i aus erreichbar, in Zeichen
i — j, wenn p;;(t) > 0 fiir ein (und damit fir alle) ¢ > 0.

Die Zustande ¢ und j heiflen verbunden oder auch kommunizierend, in Zeichen
1< j,wenn i — j und j — 1.

(Anderson, [2, S. 155])

Definition 1.1.21. 77 ist eine Aquivalenzrelation, die den Zustandsraum & in
disjunkte Aquivalenzklassen, Kommunikationsklassen genannt, aufteilt.

Die Ubergangsfunktion pij(t) heiBt irreduzibel, wenn der gesamte Zustandsraum
& die einzige Kommunikationsklasse bildet, wenn also alle Zustande in £ mitein-
ander verbunden sind.
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Eine Kommunikationsklasse C heifit abgeschlossen, wenn p;;(t) = 0 fiir alle t > 0
und i € C, j ¢ C, d.h., wenn sie nicht mehr verlassen werden kann.
(Anderson, [2, S. 155])

Definition 1.1.22. Ein Zustand ¢ € &£ ist rekurrent, wenn

0

und andernfalls ¢ransient.
(Anderson, [2, S. 155])

Definition 1.1.23. Ein rekurrenter Zustand i € £ heifit positiv rekurrent, wenn
limy 1 o pii(t) > 0, und null-rekurrent, wenn lim, ., o, p;;(t) = 0.

(Anderson, [2, S. 158])

Wird die speziellere Situation eines reguldren Markov-Sprung-Prozesses (d.h. ei-
nes nicht-explodierenden Markov-Sprung-Prozesses in einem Standard-Modell
mit rechtsseitig stetigen, stiickweise konstanten Pfaden, einer Standard-Uber-
gangsmatrixfunktion und einer konservativen Q-Matrix) betrachtet, kann fiir sta-
bile Zustande auch folgende Definition der Rekurrenzeigenschaft angeben wer-
den.

Hierflir werden die sukzessiven Eintrittszeiten (E,(i))n>0 in einen Zustand i € £
eingefiithrt mit

Ey(i) =0, E,(i):=inf{Jy > E,_1(i) : X(Jp) = X =i} firn>1;
(1.1.15)
zusatzlich werden
= PG < olXO) =) = REG) <00k (o
,U;'kj = Ez(El(J))
definiert (wobei E; den Erwartungswert unter P; bezeichnet).
(Alsmeyer, [1, S. 39 f.])
Definition 1.1.24. Ein stabiler Zustand ¢ € S heifit
o rekurrent, wenn f;; = 1, und transient, wenn f;; < 1.
o positiv rekurrent (oder ergodisch), wenn f5 = 1 und p}; < oo, und null-

* x
rekurrent, wenn f7 =1 und p; = oo.

ty; heiit mittlere Rekurrenzzeit von i.
(Alsmeyer, [1, 8.3])
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Satz und Definition 1.1.25. Rekurrenz, Transienz, positive Rekurrenz und
Null-Rekurrenz sind Solidaritatseigenschaften, d.h. sie werden von kommunizie-

renden Zustanden geteilt.
(Alsmeyer, [1, Satz 8.8])

Stationare Mafle

Bei der Beschreibung des Langzeitverhaltens eines Markov-Sprung-Prozesses spie-
len die sogenannten stationdren Mafle eine zentrale Rolle.

Definition 1.1.26. Gegeben sei eine Ubergangsfunktion pij(t). Ein Vektor & :=
(&)ice mit & > 0 fiir alle ¢ € € und

ic€
bzw. in Matrix-Schreibweise
EP(t)=¢, t>0,

wird invariantes oder stationdres Maf§ fiir p;;(t) genannt.

Wenn zudem ), & = 1, wird & invariante oder stationdre Verteilung genannt.

(Anderson, [2, S. 159])

Theorem 1.1.27. Sei p;;(t) eine irreduzible Ubergangsfunktion.

1. Dann ezistieren die Grenzwerte & = limy_, 4o p;;(t) und sind unabhdingig
von i fiir alle j € €. Der Vektor (§;),ee ist ein invariantes Mafl und entwe-
der gilt
(a) & =0 fir alle j € € oder
(b) & >0 fiir alle j € € und Zjeé’gj =1.

2. Ist € = (éj)jeg ein. Wahrscheinlichkeitsmaf mit EP(t) = £ fir ein t > 0,
so gilt EP(t) = € fiir alle t > 0 (d.h. € ist eine invariante Verteilung) und
§~:§ mat & wie in Punkt 1.

(Anderson, [2, Thm. 5.1.6])

Satz 1.1.28. Seip;;(t) die Ubergangsfunktion eines irreduziblen Markov-Sprung-
Prozesses. Der Prozess ist genau dann positiv rekurrent, wenn eine invariante
Verteilung fiir p;;(t) existiert.

(Anderson, [2, Prop. 5.1.7])

Ein stationares Maf3 lasst sich auch iiber seine Beziehung mit der Q-Matrix @)
charakterisieren.
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Aus EP(t) = £ folgt £(P(t) — I) = 0 fiir alle t > 0 und somit

_ o S - 1)
£Q = hmf

=0,
t10

sofern der Limes auch bei linksseitiger Multiplikation mit Maflen mit dem Ope-
rator () iibereinstimmt.

Ist nun ein regularer Markov-Sprung-Prozess gegeben, gilt folgender Satz:

Satz 1.1.29. Sei (X(t))i>0 ein requldrer Markov-Sprung-Prozess mit Q-Matriz
Q. Ein o-endliches MafS & # 0 auf £ ist genau dann stationdr fir den Prozess,

wenn es der Gleichung £Q) = 0 gendigt.
(Alsmeyer, [1, S. 47 bzw. Satz 9.2])

(-subinvariante und (-invariante Mafle

Die im Folgenden behandelten (-invarianten Mafle werden sich im nachsten Kapi-
tel bei der Untersuchung der sogenannten quasi-stationaren Verteilung als niitz-
lich erweisen.

Definition 1.1.30. Sei p;;(t) eine Standard-Ubergangsfunktion, C eine Kommu-
nikationsklasse fiir p;;(t), ¢ > 0. Ein Vektor (m;);ec mit m; > 0 fiir alle i € C
und

Zmipij<t) <exp(—Ct)ym;, je€C, t>0, (1.1.17)
ieC
heifit (-subinvariantes Maj$ fiir p;;(t) auf C.
Wenn in (1.1.17) Gleichheit gilt, wird (m;);ec ¢-invariantes Mafs fiir p;;(t) auf C
genannt.

(Anderson, [2, S. 174 {.])

Theorem 1.1.31. SeiC eine Kommunikationsklasse fir die Standard-Ubergangs-
funktion p;;(t).
1. FEs existiert ein we > 0, genannt Zerfallsparameter von C, so dass fiir jedes
Paari,jeC

%logpij (t) = —we  fiirt — +oo.
2. FiralleieC, t >0, gilt
pii(t) < exp (—wet).
3. Fur jedes Paar i,j € C existiert eine Konstante M;; > 0, so dass

pij (t) S Mij exXp (—wct)
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4. we <infiee g;.
5. Wenn we > 0, so ist die Klasse C transient.
(Anderson, [2, Thm. 5.1.9])

Bemerkung 1.1.32. Falls ein (-subinvariantes Maf} existiert, so gilt

mp;i (1) <Y mipi(t) < exp (—(t)m;,  jEC, t>0,
icC
und damit | 0
t — C’ ] e Y )
also ¢ < we.
(Anderson, [2, S. 175])

Theorem 1.1.33. Sei C eine Kommunikationsklasse mit Zerfallsparameter
we > 0. Dann ezistiert ein we-subinvariantes Maf fir p;;(t) auf C.
(Anderson, [2, Thm. 5.2.7])

Definition 1.1.34. Ein Zustand ¢ € C heilit w¢-rekurrent, wenn

/ pii(t) exp (wet)dt = 400
0

und andernfalls we-transient.
(Anderson, [2, S. 177])

Satz 1.1.35. we-Rekurrenz und we-Transienz sind Solidaritatseigenschaften.

(Anderson, [2, S. 177])

Theorem 1.1.36. Die Kommunikationsklasse C habe Zerfallsparameter we und
sei we-rekurrent. Dann ist das we-subinvariante Mafi (m;)iec bis auf skalares

Vielfaches eindeutig bestimmt und sogar we-invariant.
(Anderson, [2, Thm. 5.2.8])

1.2 Endliche Geburts-und-Todes-Prozesse

Kapitel 3 bis 6 der vorliegenden Arbeit beschaftigen sich mit speziellen Markov-
Sprung-Prozessen, namlich mit endlichen Geburts-und-Todes-Prozessen, die hier
kurz eingefithrt werden.

Definition 1.2.1. Gegeben sei eine Menge S = {0, 1, ..., N}, sowie nicht-negative
Zahlen \; und p;, 1 € S.
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Ein endlicher Geburts-und-Todes-Prozess (X (t))i>o ist ein Markov-Sprung-Prozess
mit Zustandsraum S und Q-Matrix gegeben durch

Ai falls j=i+1, 0<i< N,
Lbi falls j=i—1, 0 <i <N,
dij = . . (1.2.1)
—(N\i+p;) fallsj=1i, 0<i<N,
0 sonst,
d.h.
—(/\0+M0) )\0 0 0
Ha — (A1 + 1) At 0
Q= 0 142 —(Ag 4 p2) - 0 ;o (1.2.2)
0 0 0 —()\N-i-,uN)

der Prozess kann also von jedem Zustand ¢ nur in die Nachbarzustande ¢+ 1 oder
1 — 1 springen.

Die \; werden als Geburtsraten, die u; als Sterberaten bezeichnet.

(Anderson, [2, S. 96] bzw. Alsmeyer, [1, S. 64 f.])

Alle in dieser Arbeit betrachteten endlichen Geburts-und-Todes-Prozesse sind
zeitlich homogen.

Die Q-Matrix (1.2.2) ist tridiagonal und stabil; konservativ ist sie genau dann,
wenn jg = 0 ist (vgl. Definition 1.1.9).

Satz 1.2.2. Ist eine Q-Matriz der Form (1.2.2) gegeben, so existiert eine ein-
deutig bestimmte Q)-Funktion, welche auch eindeutig bestimmte Léosung der Kol-
mogorovschen Vorwdarts- und Riuckwartsdifferentialgleichungen ist.

Beweis. Die Existenz der Q-Funktion folgt aus der Stabilitdt von Q (vgl. Theorem
1.1.15). Da Q zudem gleichméfig beschréankt ist, gilt die Eindeutigkeit mit Satz
1.1.17. [

Somit miissen hier auch keine weiteren Gedanken auf die minimale Konstruktion
des Prozesses verwendet werden und mit Reuters Explosionskriterium 1.1.12 folgt
direkt:

Korollar 1.2.3. FEin endlicher Geburts-und-Todes-Prozess ist nicht-explodierend.

Werden die moglichen Ubergénge innerhalb eines hinreichend kurzen Zeitraumes
(t,t + h| betrachtet, so ist es auch moglich, die Ubergangswahrscheinlichkeiten
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ohne Umstande direkt anzugeben; sie lauten

Aih + o(h) falls j=i+1, 0<i <N,
h+o(h falls j=71—1, 0 <i <N,
pi(tt+h) = py(h) =" (#) = .
1—=XNh—wph+o(h) fallsj=1i, 0<i<N,
o(h) sonst,
(1.2.3)

wobei o(+) das Landau-Symbol bezeichnet, d.h. o(h) ist eine Funktion in h, so
dass o(h)/h — 0 fiir h — 0.

Mit Hilfe dieser Ubergangswahrscheinlichkeiten kann die Gestalt der Vorwérts-
Differentialgleichungen P’(t) = P(¢)Q wie folgt anschaulich hergeleitet werden
(vgl. Feller [8], S. 371 f.).
Grundsétzlich gibt es folgende Ubergangsmoglichkeiten, die dafiir sorgen, dass
sich der Prozess zum Zeitpunkt ¢t 4+ h im Zustand ¢ befindet:
1. Zum Zeitpunkt ¢t befindet sich der Prozess im Zustand ¢ und zwischen ¢ und
t + h findet kein Ubergang statt.
2. Zum Zeitpunkt t befindet sich der Prozess im Zustand ¢ — 1 und zwischen
t und t + h findet ein Ubergang in den Zustand i statt.
3. Zum Zeitpunkt t befindet sich der Prozess im Zustand ¢ + 1 und zwischen
t und ¢t + h findet ein Ubergang in den Zustand i statt.
4. Zwischen den Zeitpunkten ¢ und ¢ + h finden zwei oder mehr Ubergiinge
statt.
Die Wahrscheinlichkeit fiir letzteres ist — da wir es mit einem Geburts-und-
Todes-Prozess zu tun haben — o(h); die anderen Moglichkeiten schliefen sich

jeweils gegenseitig aus, ihre Wahrscheinlichkeiten werden daher aufaddiert. Somit
ergibt sich fir allei=1,...,N —1

pl(t -+ h) = (1 — )\lh — ulh)pl(t) + )\i_lhpi_l(t) -+ Mi+1hpi+1(t) + O(h)

und Umformung fiihrt auf der linken Seite zu dem Differenzenquotienten von
pi(t), ndmlich

pi(t+ h]z —pi(t) _ AicaPi-1(t) — (N + p)pi(t) + pivapisa (t) + OTh)

Lasst man jetzt h gegen 0 gehen, so gilt

Pi(t) = Nicapi—1(t) — (N + pa)pi(t) + prigapia (t).

Fiir den Fall ¢+ = 0 existieren nur die Moglichkeiten 1., 3. und 4.; fiir + = N die
Moglichkeiten 1., 2. und 4. Analog zu dem Fall ¢ = 1,..., N ergeben sich die
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Gleichungen

po(t) = —(Xo + po)po(t) + papr(t)
Py () = An_1pv_1(t) — (An + pn)pn (),

also genau die oben genannten Differentialgleichungen.

Die Komponenten g;; der Q-Matrix haben durch ihre Definition ¢;; = pj;(0+)
auch eine anschauliche Bedeutung in Bezug auf den Prozess. Diese Definition ist
aquivalent zu der Gleichung

P(X(t+h) =j|X(t) =1) = pij(h) = ¢;jh + o(h).

Durch Vergleich mit (1.2.3) wird offensichtlich, dass die ¢;; gerade die in (1.2.1)
angegebene Form haben.
(Anderson, [2, S. 62 f.])

Insgesamt gesehen kann im Fall endlicher Geburts-und-Todes-Prozesse immer
davon ausgegangen werden, dass alle moglichen Fille gutartig sind.

Es kann ein Standard-Modell zugrunde gelegt werden, bei der Ubergangsfunktion
handelt es sich — wie in (1.2.3) zu sehen — um eine Standard-Ubergangsfunktion
und es kann angenommen werden, dass alle Pfade unter jeder Anfangsverteilung
fast sicher rechtsseitig stetig sind und linksseitige Limiten haben; solche Prozesse
werden cadlag genannt. Die Menge der Punkte, durch die sich der Prozess von
einem anderen gleichverteilten unterscheidet, wéare eine Nullmenge (z.B. konnte
es vorkommen, dass der eine Prozess sich im Moment des Sprungs noch im alten,
der andere aber schon im neuen Zustand befindet; in dieser Arbeit wird letzteres
angenomimen).



Kapitel 2

Quasi-stationare Verteilungen

Ausgangslage dieses Kapitels ist ein zeitlich homogener Markov-Sprung-Prozess
(X (t))t>0 mit endlichem Zustandsraum & = {0,1,..., N}, 0 als einzigem absor-
bierendem Zustand und C = {1,..., N} als transienter Kommunikationsklasse.
Die Q-Matrix @ = (¢;j)ijes ist konservativ und damit gleichméBig beschrankt.
Es existiert eine eindeutig bestimmte stochastische Standard-Ubergangsfunktion
pij(t). Damit die Wahrscheinlichkeit, 0 zu erreichen, gegeben, dass der Prozess in
C startet, positiv ist, wird davon ausgegangen, dass ¢,y > 0 fiir mindestens ein
1 € C. Tatséchlich wird der Prozess dann fast sicher in 0 absorbiert und hat eine
degenerierte stationdre Verteilung. Diese liefert jedoch keine Informationen iiber
das Verhalten des Prozesses wiahrend des Zeitraums bis zur Absorption.

Es bietet sich an, den Prozess bedingt unter Nicht-Absorption zu betrachten, und
zu schauen, ob sich dann eine Art stationdres Verhalten zeigt — man gelangt so
zu dem Begriff der Quasi-Stationaritét.

In diesem Kapitel werden zunachst die in diesem Zusammenhang géangigen Defini-
tionen vorgestellt — der Ubersichtlichkeit halber wird zwischen ” quasi-invarianter”
und ”quasi-stationarer Verteilung” unterschieden. Ziel ist der Beweis der Exis-
tenz einer quasi-invarianten Verteilung sowie der Aquivalenz der Begriffe ” quasi-
invariant” und ”quasi-stationar” — alles fiir die oben beschriebene spezielle Si-
tuation.

2.1 Definition der Quasi-Invarianz und Quasi-
Stationaritat

In der Literatur finden sich zwei verschiedene Definitionen des Begriffs ” quasi-

stationare Verteilung”. Die eine — hier mit der Bezeichnung ”quasi-invariante

Verteilung” — beschreibt die Invarianz der Verteilung des bedingten Prozesses;
sie ist eine Anfangsverteilung auf den nicht-absorbierenden Zustinden, so dass

24
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die Verteilung von X (), bedingt darunter, dass der Prozess zum Zeitpunkt ¢
noch nicht absorbiert ist, unabhéngig von ¢ (¢ > 0) ist. Die andere benennt den
Grenzwert fiir t — oo der Verteilung von X (¢) bedingt darunter, dass der Prozess
zum Zeitpunkt ¢ noch nicht absorbiert ist (sofern existent).

Definition 2.1.1. Sei @ = (7;);ec Anfangsverteilung des Prozesses (X(t)):>o
auf den nicht-absorbierenden Zustdnden (d.h. mp = 0). 7 heifit quasi-invariante
Verteilung, wenn

P.(X(t)=j|X(t)#0)=m;, jeC, t>0. (2.1.1)
Formal ausgedriickt heifit 7 also quasi-invariante Verteilung, wenn

p;(t)

ieC v

wobel

pi(t) = mpy(t), jES, t>0. (2.1.3)

i€C

Bemerkung 2.1.2. Fiir eine quasi-invariante Verteilung gilt immer 7; > 0,
j € C (vgl. Satz 1.1.5 und obige Gleichungen (2.1.2), (2.1.3)).

Definition 2.1.3. Gegeben irgendeine Anfangsverteilung, wird
P(X(t) =j|X(t) #0), j €C, fiir t — oo betrachtet. Wenn der Grenzwert
7; = lim P(X(t) = j|X(t) #0), je€C, (2.1.4)

t—o0

existiert, so heifit T = (7;),ec quasi-stationdre Verteilung.

2.2 Existenz der quasi-invarianten Verteilung

Nair und Pollett haben in ihrer Arbeit [14] die Existenz einer quasi-invarianten
Verteilung mit der Existenz einer (-invarianten Verteilung verkniipft. Im Folgen-
den wird ihr Ergebnis prasentiert. Als Vorbereitung fiir den Beweis der Exis-
tenz einer (-invarianten Verteilung werden (aufbauend auf der Perron-Frobenius-
Theorie) ML-Matrizen vorgestellt, und schlielich kann mit Hilfe dieser Ergebnis-
se und der Grundlagen des ersten Kapitels die Existenz einer eindeutig bestimm-
ten quasi-stationdren Verteilung gefolgert werden.

2.2.1 Charakterisierung quasi-invarianter Verteilungen

Satz 2.2.1. Eine Verteilung m = (7;)jec auf C ist genau dann quasi-invariant,
wenn sie fir ein ¢ > 0 ein (-invariantes Maf fir p;;(t) auf C ist.
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Beweis. Zunéchst sei 7 ein (-invariantes Ma8 fiir p;;(¢) auf C mit ¢ > 0, p;(t) wie
in (2.1.3) fiir alle ¢ > 0. Laut Definition der ¢-Invarianz gilt p,(t) = exp (—(t)7;,
und da 7 eine Verteilung ist, gilt auflerdem ;. p;(t) = exp (—Ct) > e 7
exp (—(t). Es ergibt sich

S 71O 710
7 exp (—¢t) Ziec pi(t)’

woraus mit (2.1.2) die Quasi-Invarianz von 7 folgt.

Umgekehrt sei nun 7 eine quasi-invariante Verteilung fiir p;;(¢) auf C. Mit (2.1.2)
ergibt sich
pi(t) =gt)m;, jeC, t>0, (2.2.1)

wobei g(t) := > ;. pj(t) eine stetige Funktion bildet.

Zu zeigen bleibt also, dass g(t) = exp (—(t) fiir ein ¢ > 0.

Hierfiir wird die Chapman-Kolmogorov-Gleichung p;;(s+1t) = >, .5 Pie(8)Dr; (1),
1,7 € S, s,t > 0, verwendet. Multiplikation mit 7;, Summation iber i € C,
sowie Verwendung der Gleichung (2.1.3) und der Tatsache, dass 0 absorbierend
ist, liefert

Z szzg s+ t Z Z szzk pk]

ieC ieC keS
& pilst+t) = pels)p(t
keS
& pi(s+t)= Zpk S)pr;(t jec, s,t>0.
keC

Durch Summation dieses Ausdrucks iiber j € C und Verwendung der Definition
von ¢(t) sowie der Gleichungen (2.2.1) und (2.1.3) ergibt sich nun, dass g folgender
Funktionalgleichung genitigt:

S pils 1) =D puls)pis(t

jec jeC keC
= g S + t Z Zg Wkpkj
jeC keC
& g(s+1t) Zp]
jec

& g(s+1t)=g(s)gt), s,t=>0.

Da p;(t) > m;p;;(t) > 0 (vgl. Satz 1.1.5) und (mit (2.1.3))

- Z Zﬂipij(t) = Zﬂi Zpij(t) <1, (2.2.2)

jec ieC 1€C jec
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gilt 0 < g(t) < 1. Es folgt g(t) = exp(—(t) fiir ein ¢ > 0, denn g ist stetig.

Schliefllich gilt aber noch fiir mindestens ein ¢ € C py(t) > 0 fiir alle t > 0, so

dass g(t) < 1 fur alle ¢ > 0 (vgl. (2.2.2)), womit der Fall ( = 0 ausgeschlossen ist.
[

Nach diesem Satz ist also die Existenz einer quasi-invarianten Verteilung aqui-
valent zur Existenz einer (-invarianten Verteilung. Um diese zu zeigen, bedarf es
jedoch zunachst noch einiger Vorbereitung.

2.2.2 Vorbereitung: ML-Matrizen

Seneta betrachtet in seinem Buch [19] quadratische, nicht-negative Matrizen, mit
deren Hilfe er dann die sogenannten ML-Matrizen darstellt (siehe Kapitel 2, Ab-
schnitt 3 des Buches). Diese sind ebenfalls quadratisch, jedoch kénnen die Ein-
trage auf der Diagonalen negativ sein — die Q-Matrix des in diesem Kapitel
betrachteten Prozesses ist also auch eine ML-Matrix.

Grundlagen: Perron-Frobenius-Theorie fiir primitive Matrizen

Sei T' = (tij)ijequ,.. N} eine quadratische nicht-negative Matrix, d.h. ¢;; > 0 fiir
alled,j € {1,..., N}, was symbolisch durch 7' > 0 ausgedriickt wird. Analoges gilt
fiir 7> 0 und T" > B, wobei T und B quadratische Matrizen gleicher Dimension
sind.

Seien ' = (¥i)icq1,...Ny und y = (¥;)icqu,...n} Bezeichnungen fiir einen Zeilen-

bzw. einen Spaltenvektor, T% = (tgf))i,j€{17,,,’N} fur die k-te Potenz von T.
Definition 2.2.2. Eine quadratische nicht-negative Matrix T' heiflt irreduzibel,
wenn fiir jedes Paar i, j € {1, ..., N} eine positive ganze Zahl m = m(i, j) existiert,
so dass t%ﬂ) > 0.

(Seneta, [19, Def. 1.6])

Definition 2.2.3. Eine quadratische nicht-negative Matrix T heifit primitiv,
wenn eine positive ganze Zahl k existiert, so dass T* > 0.
(Seneta, [19, Def. 1.1])

Theorem 2.2.4 (Perron-Frobenius-Theorem fiir primitive Matrizen).
T sei eine nicht-negative primitive N X N-Matrixz. Dann existiert ein Eigenwert
rr (Perron-Frobenius-Eigenwert genannt), so dass

1. rp reell, rq9 > 0;
2. echt positive linke und rechte Eigenvektoren zum Figenwert rr existieren;
3. rp > |b| fir jeden Figenwert b # rr;
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4. die Figenvektoren zum Figenwert rr bis auf skalares Vielfaches eindeutig
bestimmt sind;

5. falls 0 < B < T und d ein Eigenwert von B ist, |d| < rr gilt;
ferner impliziert |d| = ry, dass B =T
6. r7 eine einfache Nullstelle des charakteristischen Polynoms von T ist.
(Seneta, [19, Thm. 1.1])

Die verschiedenen Eigenwerte einer primitiven Matrix 7" werden nun mit b, =
T, ba, ...y by, m < N, bezeichnet, wobei rp > |bo| > |bg| > ... > |b,|. Sei m;, i €
{1,...,n}, die Vielfachheit der Nullstelle b; im charakteristischen Polynom.

Theorem 2.2.5. Sei T eine primitive Matrix.
1. Falls by # 0, so gilt fir k — oo

T = rkwv’ + O(k™2 71 by |F)
komponentenweise.
2. Falls by = 0, so gilt firk > N — 1
T = rkwv’.

In beiden Fallen sind w, v' positive rechte und linke Eigenvektoren zum Eigenwert

rr, normiert, so dass v'w = 1.
(Seneta, [19, Thm. 1.2])

ML-Matrizen: Erweiterung der Perron-Frobenius-Struktur

Definition 2.2.6. Eine quadratische Matrix B = (b;;); je1,..., v} mit reellwertigen
Eintragen und b;; > 0 fiir ¢ # j heiit ML-Matriz.

(Manchmal wird hier auf die Namen von Metzler und Leontief Bezug genommen.)

Seneta verwendet nun die oben vorgestellte Perron-Frobenius-Theorie, um Aus-
sagen iiber diese Klasse von Matrizen herzuleiten.

Eine ML-Matrix B kann immer durch die Beziehung
T=pI+B

mit einer nicht-negativen Matrix 7' = T'(3) verkniipft werden, wobei 5 > 0 und
hinreichend grof}, so dass T nicht-negativ ist.

Definition 2.2.7. Eine ML-Matrix B heifit irreduzibel, wenn T irreduzibel ist.

Wird in obiger Darstellung 3 hinreichend grofl gewahlt, so kann die irreduzible
Matrix 7" auch primitiv gemacht werden; z.B. mit 8 > max; |b;|.
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Theorem 2.2.8. Sei B eine (N x N ) irreduzible ML-Matriz. Dann ezistiert ein
Figenwert rp (" maximaler” Eigenwert genannt), so dass

1. rg reell ist;

2. echt positive linke und rechte Figenvektoren zum Eigenwert rg existieren,
welche bis auf skalares Vielfaches eindeutig bestimmt sind;

3. rg > Rb fiir jeden Eigenwert b, b # rg, von B (d.h. rg ist grifler als der
Realteil jedes Eigenwertes b von B, b # rg);

4. rp einfache Nullstelle des charakteristischen Polynoms von B ist;

5. rg < 0 genau dann, wenn ein y > 0, # 0, existiert, so dass By < 0; in
diesem Fall gilt y > 0.

Ferner gilt rg < 0 genau dann, wenn mindestens eine Komponente von By
echt negativ st.

Beweis. Sei B =T — I mit 3 hinreichend grof3, so dass T' primitiv ist. Genau
dann ist b; Eigenwert von B, wenn b; Nullstelle des charakteristischen Polynoms
von B ist, d.h. wenn

0 = det (B — b;I) = det (T — B — b;I) = det (T — (b; + B)I) (2.2.3)

gilt — also genau dann, wenn b; + # Eigenwert von T ist. Wird nun rg =
rr — 3 gewahlt, so folgen die Punkte 1 bis 4 aus dem Perron-Frobenius-Theorem
2.2.4:

Punkt 1 ist klar mit Theorem 2.2.4, Punkt 1.

Punkt 2 folgt aus Theorem 2.2.4, Punkt 2 und 4. Ist v’ ein positiver, bis auf
skalares Vielfaches eindeutig bestimmter linker Eigenvektor von 7" zum Eigenwert
rr, so gilt

VT =1’ = (rg + BV,

was aquivalent ist zu
v'B = (T — BI) =rpgv.

Also ist v' auch ein positiver, bis auf skalares Vielfaches eindeutig bestimmter
linker Eigenvektor von B zum Eigenwert rp. Analog folgt der Rest von Punkt
2.

Punkt 3 gilt mit Theorem 2.2.4, Punkt 3, da aus
rp=rp+ 03> [b] > RNb

fiir jeden Eigenwert b # rp von T' = (I + B, folgt, dass
rg >Rb—F=R0D-[F)

fiir jeden Eigenwert b — 3 # rp — 3 =rgvon B=T — 1.
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Punkt 4 ergibt sich aus Theorem 2.2.4, Punkt 6, und obiger Gleichung (2.2.3).

Um nun die Richtung =" von Punkt 5 zu zeigen, wird rp < 0 vorausgesetzt.
Dies ist aquivalent zu rp — 3 < 0, also rp < . Somit existiert ein y > 0, # 0, so
dass

Ty =rry < By
& By=(T-phy<0.

Fiir die Riickrichtung wie auch fiir die Anmerkung wird die Bedingung By < 0
wie folgt geschrieben
Ty < By, pB>0. (2.2.4)

Mit Hilfe dieser Darstellung kann im Folgenden sowohl y > 0, als auch 8 > rr,
d.h. rg =rp — 3 < 0 gezeigt werden.

Zunachst wird angenommen, dass mindestens eine Komponente — etwa die i-te
— von y Null ist. Mit T*y < g*y folgt, dass

N
k
Z tgj)yj < ﬁkyi-
j=1

(k)

Da T irreduzibel ist, existiert fiir dieses 7 und jedes j ein k, so dass ¢;;” > 0; und

weil laut Voraussetzung y; > 0 fiir mindestens ein j, folgt, dass
Yi > 07

was ein Widerspruch ist. Also gilt y > 0.
Wird nun (2.2.4) mit ¢, einem positiven linken Eigenvektor von 7" zum Eigenwert
rr, multipliziert, ergibt sich

Bu'y > 0" Ty = rpv'y, (2.2.5)

d.h. 8 > rp, also rg = r — 3 < 0. Ist mindestens eine Komponente von By echt
negativ, so gilt in (2.2.4) fiir mindestens eine Komponente echte Ungleichheit,
und mit (2.2.5) folgt 5 > rp, d.h. rg =rpr — 3 < 0. O

ML-Matrizen B tauchen in Anwendungen héufig in Verbindung mit der Matrix-
Exponentialfunktion exp (tB) auf — so auch in unserer speziellen Situation.
Da der Zustandsraum endlich ist, hat die Ubergangsmatrixfunktion die Gestalt
P(t) = exp (tQ) (vgl. Bemerkung 1.1.19). In folgendem Theorem geht es um die
weitere Darstellung dieses Ausdrucks.

Theorem 2.2.9. Fine ML-Matriz B ist genau dann irreduzibel, wenn exp (tB) >
0 fir alle t > 0. In diesem Fall gilt

exp (tB) = exp (rpt)wv’ + O(exp (rt))
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komponentenweise fiir t — oo, wobei w, v’ die positiven rechten und linken Ei-
genvektoren von B zum maximalen Eigenwert rg sind, normiert, so dass v'w =1,
und r <rg.

Beweis. Sei B = T — 31 fiir hinreichend grofles § > 0, so dass T nicht-negativ
ist. Dann gilt (mit den Rechenregeln fiir die Matrix-Exponentialfunktion)

exp (tB) = exp (—ftI) exp (tT) = exp (—ft) exp (tT),

und wegen

exp (tT) Z k:'
k=0

folgt, dass exp (¢tB) > 0 fiir alle t > 0 genau dann, wenn 7' irreduzibel ist.

Sei nun B irreduzibel. Durch geeignete Wahl von # kann T = BI + B als pri-
mitiv vorausgesetzt werden, mit Perron-Frobenius-Eigenwert rr = rg + 3. Laut
Theorem 2.2.5 gilt nun fiir by # 0

Tk = r’:,iwv’ + O(km271’b2’k), |b2‘ <7,

fiir £ — oo, wobei w, v die im Theorem verlangten Eigenschaften haben, da die
Perron-Frobenius-Eigenvektoren von T den Eigenvektoren von B zum Eigenwert
rp entsprechen. Fiir by = 0 gilt T* = rkwv’. Fiir ein § mit 0 < § < ry lisst sich

nun
TF — rhawv’ = Y (k)o"

schreiben, wobei (die Komponenten von) Y (k) — 0 fiir kK — oco. Daher gilt

o0

T — —wv = Z Y

d.h.
|exp (tT) — exp (rrt)wv'| < exp (t0)Y

komponentenweise, wobei Y eine positive Matrix ist, derart, dass (die Kompo-
nenten von) Y (k) vom Betrage her durch (die Komponenten von) Y gleichméBig
beschrankt ist (sind). Multiplikation mit exp (—/3t) liefert nun

|exp (tB) — exp (rpt)wv’| < exp [t(6 — B)]Y,

wobei 6 — 3 < rpr — 3 = rg. Wird r so gewéhlt, dass § — § < r < rp, folgt die
Behauptung. ]
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2.2.3 Ergebnis: Existenz und Eindeutigkeit

Nach all diesen Voriiberlegungen miissen nun nur noch die Fakten zusammenge-
tragen werden, um zum gewtinschten Schluss zu gelangen.

Satz 2.2.10. Gegeben sei ein Markov-Sprung-Prozess der zu Beginn des Kapi-
tels beschriebenen Form. Dann existiert eine eindeutig bestimmte quasi-invariante
Verteilung m = (7;) jec-

Beweis. Da der Zustandsraum S endlich ist, kann die Ubergangsmatrixfunktion
P(t) nach Bemerkung 1.1.19 wie folgt dargestellt werden

P(t) = exp (1Q).
Weil @ eine ML.-Matrix ist, ergibt sich mit Theorem 2.2.9 weiter
P(t) = exp (rqt)wv’ + O(exp (1)) (2.2.6)

komponentenweise fiir ¢ — oo, wobei 7o der maximale Eigenwert von () und
w, v' die zugehorigen positiven rechten und linken Eigenvektoren sind, normiert,
so dass v'w = 1; r < rg. Fiir die Eintrége der Matrix P(¢) gilt damit

pij(t) = exp (rot)(wv');; + O(exp (rt)), i,j €S, (2.2.7)

wobel (wv');; > 0, ((wv');;)ijes = wv'. Wird der Zustandsraum auf die transiente
Kommunikationsklasse C eingeschrankt, so zeigt die Grenzwertbetrachtung

1 1 1
tlim p log pi;(t) = tlim (2 log (exp (rot)) + i log (wv’)i]) =rg,
dass es sich bei —rg gerade um den in Theorem 1.1.31 beschriebenen Zerfalls-
parameter we von C handelt, weshalb die Theorie aus Kapitel 1 anwendbar ist.
Theorem 1.1.33 sichert die Existenz eines we-subinvarianten Mafles fiir p;;(t) auf

C. Zudem ist C we-rekurrent, da mit (2.2.6) bzw. (2.2.7)
/ pii(t) exp (wet)dt = / lexp (—wet)(wv');; + O(exp (1t))] exp (wet)dt
0 0

B /OOO [(wvl)ij‘ + exp (wct)O(eXp (Tt))] dt

gilt. Laut Theorem 1.1.36 ist somit das we-subinvariante Mafl bis auf skalares
Vielfaches eindeutig bestimmt und tatsachlich we-invariant. Durch Normierung
ergibt sich daraus die Existenz eines eindeutig bestimmten we-invarianten Mafles
mit Masse 1 — was nach Theorem 2.2.1 aquivalent ist zur Existenz einer eindeutig
bestimmten quasi-invarianten Verteilung. ]
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2.3 Aquivalenz von Quasi-Invarianz und Quasi-
Stationaritat

Satz 2.3.1. Gegeben sei ein Markov-Sprung-Prozess der zu Beginn des Kapitels
beschriebenen Form. Eine Verteilung m = (7;) ec ist genau dann quasi-invariant,
wenn sie quasi-stationar ist.

Beweis. Zunéchst sei 7 eine quasi-invariante Verteilung. Dann gilt mit (2.1.1)
P.(X(t)=j|X(t)#0)=n;, — m; fiirt— o0, jeC.

Falls also 7 die Anfangsverteilung ist, so existiert die quasi-stationédre Verteilung
und ist gleich 7.

Fir den Umkehrschluss sei @ = (7),ec eine quasi-stationédre Verteilung; w =
(w;)jec sel irgendeine Anfangsverteilung. Mit der Darstellung (2.2.7) der Uber-
gangsverteilung gilt

Po(X(t) #0) = Po(X(t) €C)
=) Po(X(t) =)
jec
=D winy(t)
jec ieC

= !/
(2.2.7) Z Z @; [exp (rot)(w')i; + O(ret)], =0,
jec ieC

und damit

Po(X(t+s) #0)
P (X(t) #0)

> jec 2ice @i lexp (rot)(wv')i; + O(rqt)]
jec > icc @i lexp (rq(t — 8))(wv')i; + O(rq(t — 5))]

~

= exp (rgs) 5

[\

—1
t—oo

— exp (rgs), s>0.

t—o0
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Wird nun die quasi-stationare Verteilung 7 betrachtet, so ergibt sich
;= lim PL(X(t+s)=j|X(t+s)#0)
o PeX(t4s) =)
T P, ( (t+s)#0)

e Pe(X() = py(s)
e 2 Po(X (4 5) £ 0)

i 3 Po(X(1) = X (1) £0)- ome DEO )

t—00 py (X(t + 3) 7é 0)
:Zﬁi-exp(—rQs)-pij(s), jec, s>0,
ieC

was aquivalent ist zu

Zﬁipij(s) =exp (rgs)wj, je€C, s>0.
ieC

Also ist 7 ein —rg-invariantes Maf fiir p;;(¢) auf C (vgl. Definition 1.1.30) und
damit nach Satz 2.2.1 schon quasi-invariant. ]

Als Ergebnis diese Kapitels kann festgehalten werden, dass fiir einen Markov-
Sprung-Prozess der vorliegenden Form unabhéangig von der Anfangsverteilung
immer eine eindeutig bestimmte quasi-stationédre Verteilung existiert (welche der
eindeutig bestimmten quasi-invarianten Verteilung entspricht).



Kapitel 3

Das SIS-Modell und seine
Approximationen

3.1 SIS-Modell und quasi-stationare Verteilung

Das von Nasell [15] (siehe auch [16], [17]) untersuchte ”closed endemic SIS mo-
del”, auch ”stochastic SIS model”, ”stochastic logistic epidemic” oder ”SIS lo-
gistic epidemic” genannt, beschreibt die Ubertragung einer Infektion innerhalb
einer konstanten endlichen Population von Individuen. Ein Individuum ist immer
entweder empfanglich fiir die Infektion oder infiziert. Ist ein Individuum genesen,
so ist es sofort wieder empfanglich fiir die Infektion.

Als Modell fiir die Anzahl infizierter Individuen I(¢) in einer konstanten Popula-
tion mit N Individuen dient ein endlicher Geburts-und-Todes-Prozess. I(¢) nimmt
Werte aus dem Zustandsraum S = {0,1,..., N} an. Ubergénge von einem Zu-
stand ¢ € S sind nur in die benachbarten Zustande ¢ + 1 und ¢ — 1 wéhrend eines
hinreichend kurzen Zeitraumes moglich; falls ¢ = 0 oder ¢« = N, reduziert sich die
Anzahl der Nachbarn auf 1. Die Geburtsraten \; sollen proportional zum Produkt
der Anzahl infizierter und der Anzahl genesener Individuen, die Sterberaten p;
zur Anzahl infizierter Individuen sein:

i
Nio=id[1——1), A>0;
Z( N) (3.1.1)

pi =y, p>0.

Die Festlegung Ay = 1o = 0 verhindert Ubergéinge aus dem Zustandsraum her-
aus. Dem Modell angepasst, werden die \; hier Infektionsraten und die p; Gene-
sungsraten genannt. Da der hier betrachtete Prozess zeitlich homogen ist, kann
die Ubergangsfunktion

pij(t) == P(I(t) =j|1(0) =1), i,j€S8,t>0,

35
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betrachtet werden.

Die Eigenschaften des Modells werden durch zwei Parameter vollstandig beschrie-
ben: durch die Populationsgréfie N und durch den ” transmission factor” T, auch
" basic reproduction ratio” Ry genannt, definiert durch

A

T =Ry="2; (3.1.2)
7

letzterer ist immer positiv.

Der ”transmission factor” T spielt eine wichtige Rolle in der deterministischen
Version des Modells, welche T = 1 als Schwellenwert hat. Fir 7' < 1 sagt dieses
Modell die Ausloschung der Infektion voraus, wahrend fiir 7 > 1 die Etablierung
einer endemischen Infektion mdglich ist.

Fiir die Formulierung der Kolmogorovschen Vorwarts-Differentialgleichungen wird
die Wahrscheinlichkeit betrachtet, zum Zeitpunkt ¢ im Zustand j zu sein und fol-
gende Definition getroffen:

p;(t) := ZP(I(O) =1)pi(t), je8, und p(t):=(pj(t))jes. (3.1.3)

€S
Die Gleichungen lassen sich dann in der Form

p'(t) =p(t)A

schreiben, wobei A eine quadratische Matrix der Ordnung N + 1 ist und die Ge-
stalt der in (1.2.2) angegebenen Matrix @ hat, hier mit den in (3.1.1) definierten
Infektions- und Genesungsraten. Also bezeichnet A := (a;;)o<i j<n gerade die Q-
Matrix des Markov-Sprung-Prozesses (I(t)):>0. Komponentenweise ausgedriickt
gilt

pi(t) = Njmapj-1(t) — (A + py)ps () + pjapin(t), JES, =0, (3.1.4)

mit den Konventionen A_; = 0 = p_4(¢) fiir den Fall j = 0 und pny =0 =
pn+1(t) fir den Fall j = N.

Der Zustandsraum S des Prozesses lasst sich disjunkt in die transiente Kommu-
nikationsklasse C = {1,..., N} und den absorbierenden Zustand 0 zerlegen, der
fast sicher in endlicher Zeit erreicht wird. Befindet sich der Prozess also in C,
so kann er von dort aus jeden Zustand erreichen — auch 0. In 0 angekommen,
kann er jedoch nicht zuriick zu C. Dies entspricht auch der Anschauung, dass
die Infektion — einmal vollsténdig ausgeloscht (d.h. es existiert kein infiziertes
Individuum mehr, welches andere anstecken kann) — nicht erneut ausbrechen
kann.

Als Konsequenz ergibt sich, dass das SIS-Modell eine degenerierte stationére Ver-
teilung hat, die ihre gesamte Masse auf den Ursprung legt. Dies geht direkt dar-
aus hervor, dass pA = 0 fir p := (1,0,...,0) und die Q-Matrix A ist (vgl. Satz
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1.1.29). Da eine degenerierte stationédre Verteilung jedoch keine Informationen
iiber das Verhalten des Prozesses iiber einen langeren Zeitraum hinweg hergibt,
wird der Prozess (I(t)):>0 bedingt darunter, dass die Infektion nicht ausstirbt, be-
trachtet, und man gelangt so zu der in Kapitel 2 beschriebenen quasi-stationdren
Verteilung. Da die Situation aus Kapitel 2 hier vorliegt, ist die Existenz einer
eindeutig bestimmten quasi-stationéren Verteilung 7 = (7;)jec mit m; > 0 und
m; = limy_o P(I(t) = j|I(t) #0), j € C, unabhéngig von der Anfangsverteilung
gesichert.

Eine wichtige Rolle spielt dann die erwartete Zeit bis zur Ausloschung der Infek-
tion im unbedingten Prozess (siehe Kapitel 5), da die quasi-stationére Verteilung
nur innerhalb dieser Zeit Informationen zum urspriinglichen Prozess liefert.

Satz 3.1.1. Die Verteilung 7 ist genau dann quasi-stationdr, wenn sie dem Glei-
chungssystem

Aj-1mior = (N + pg)m5 + piami = —mmm,  j €C, (3.1.5)
mit den Konventionen \g = 0 = mg fiir den Fall j =1, py11 = 0= mwny fiir den
Fall j = N geniigt, und m; >0, 3. omj =1 gilt.

Beweis. Zunachst sei m eine quasi-stationare Verteilung. Laut Satz 2.3.1 ist 7
dann auch quasi-invariant, und 7; > 0, ) jec ™ = 1 gelten per Definition (vel.
auch Bemerkung 2.1.2). 7 ldsst sich wie folgt schreiben
_opit) i)
DicePi(t) 1 —po(t)’

unabhéngig von der Anfangsverteilung. Mit der Definition

pe(t) == (pj(t))jec

m; = P(I(t) = j|I(t) #0) jeC, t>0,

ergibt sich daraus
__pe(t)
1 —po(?)
(wobei die Gleichungen jeweils komponentenweise zu verstehen sind). Differen-
zieren dieser Gleichung liefert nun (zusammen mit 3.1.4)

o P = po(t) + pe(t)po(?)
(1 —po(t))?
po(t)  pe(t)
t)  1—po(t) 1—po(t)

_ ~_pe(t) (3.1.6)
ph()=pp1(t) 1 — po(t) 1 —po(t)
1

=——pc(t)A
1 _p0<t)Pc( JAc + pamm
= 7mAc + mmm,

pelt

+ pm



38 KAPITEL 3. DAS SIS-MODELL UND SEINE APPROXIMATIONEN

wobel
—(\1 + ) A 0 0
15 —(A2 + p2) A2 e 0
Ac = 0 13 —(As+ps) - 0 (3.1.7)
0 0 0 o —(An + )

die N x N-Matrix ist, die aus A durch Streichen der ersten Zeile und Spalte
entsteht. Also gilt das folgende Gleichungssystem

7T;» = /\j—lﬂ-j—l — ()\j + ,uj)ﬂ'j + Hi+1T 541 + 1T T, ] € C, (318)

mit den Konventionen \g = 0 = 7 fiir den Fall j = 1 und puyi1 = 0 = 7y
fiir den Fall j = N. Da 7; ein konstanter Wert ist, folgt 7r;- = 0, und daher ist 7
die stationdre Losung des Systems von Differentialgleichungen (3.1.8) und genitigt
somit der Relation

TAec = —pmm (3.1.9)

oder komponentenweise ausgedriickt
A1 — (N + )T + it = —mm,  j €C,

mit den Konventionen \g = 0 = 7y fiir den Fall j =1 und puy,1 =0 = 7wy flr
den Fall j = N .

Die Umkehrung wurde von van Doorn in seiner Arbeit [7] bewiesen.

Sei 7 Losung von (3.1.5) mit 7; > 0 und 3. m; = 1. Nun wird po(t) so definiert,
dass

po(0) =0,

pé(t) = /L17T1(1 —po(t))7 t >0, (3.1.10)

und
pj(t) :wj(l—po(t)), jec, t>0. (3.1.11)

Dann erfiillt p;(¢) die Vorwérts-Differentialgleichungen (3.1.4), da mit (3.1.5) und
(3.1.11)

p;(t) pj+1(t)

pi-1(t)
D A T S o A G TS o i £ L .
( J ])1_p0(t) +/‘LJ+11_p0(t) H1TL T

TN po(t)
& Noapj-1(t) — (A 4 pwy)ps () + pjpapjra(t) = —pamim; (1 — po(t)),

was wegen pi(t) = —m;py(t) = —mjmmi (1 —po(t)) (vel. (3.1.11), (3.1.10)) dquiva-
lent zu (3.1.4) ist. Da mit (3.1.11) 3. p;(t) = 1 —po(t) gilt, ist p;(t) gerade die
Wahrscheinlichkeit, dass sich der Prozess (I(t)):>o zum Zeitpunkt ¢ im Zustand
J befindet. Anfangsverteilung ist P(1(0) = j) = p,;(0) = m;, j € C, (vgl. (3.1.11))
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und P(1(0) = 0) = po(0) = 0 (vgl. (3.1.10)). Da (pj(t))jec zudem noch dem
Gleichungssystem

(T
p;(t) =
1 —po(?)
geniigt (vgl. wiederum (3.1.11)), ist 7 quasi-invariant und damit quasi-stationér.

]

Satz 3.1.2. Die quasi-stationare Verteilung des SIS-Modells ist implizit durch
den Ausdruck

T =v()a() T 'm, jeC, (3.1.12)
gegeben, wober
N R
== —== 3.1.13
1) =3 ; O (3.1.13)
N!
= 1.14
und
1 N
_ : .f N ()T
m=g mit S = jzly(j)oz(j)Tj . (3.1.15)

Die Ausdriicke (3.1.12) bis (3.1.15) geben die quasi-stationére Verteilung nicht
in expliziter Form an, da v(j) in (3.1.13) immer noch von den Werten der
abhéngt. Sie konnen jedoch benutzt werden, um die quasi-stationare Verteilung
numerisch per Iteration zu bestimmen (in der erweiterten Fassung der Arbeit [17]
von Nasell werden auf S.12 zwei Verfahren vorgestellt).

Insbesondere zeigt die Darstellung (3.1.9), dass die quasi-stationdre Verteilung 7
ein linker Eigenvektor der Matrix A¢ zum Eigenwert —puq7y ist.

Beweis. Werden in (3.1.5) die Definitionen (3.1.1) bzw. (3.1.2) von A;, p; und T
eingesetzt, ergibt sich folgende Rekurrenzrelation:

Nilq A+ 1 Hj+1
i — DAN —j+1 AN =3) | J +1
(] ) ( J )ijl_ (j(—]) M) 7Tj+u7'l'j+1 = —MT;

+
pN pN 7

; ’ ‘ : -1
=4 (] + 1)7Tj+1 — ] |:T (1 — %) + ].:| T + (] — l)T (1 — jT) Tj—1 = —T17Ty,

jeC, m=0=mn41.
(3.1.16)
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Dieses Gleichungssystem kann mit Hilfe der Variablen h; definiert durch

— 1
hy = jm;— (j— DT (1 - ‘7T> T, j=1,...,N+1 (3.1.17)
ausgedriickt werden; damit gilt
hl = T,
hj+1 — hj = —mTy, j S C, (3118)
hN+1 =0

(zur Uberpriifung: Einsetzen von (3.1.17) in (3.1.18) ergibt (3.1.16)). Wird (3.1.18)
so gelost, dass h; durch 7; ausgedriickt wird, ergibt sich

j—1
hj:m(l—zm), j=1,...,N+1 (3.1.19)
=1

(iterativ mit (3.1.18), hy = m, hj41 = h; — mm;, Einsetzen von hy in hy in hs
usw.). Wird dieser Ausdruck nun in (3.1.17) eingesetzt und die Gleichung nach
m; aufgelost, so gilt

m (1 —§w> =jm;—(j— 1T (1 — %) i1
o m=tln(1-Fn) ru-or (-5 ma]

Iteration liefert
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und schliellich ist zu sehen, dass die quasi-stationdre Verteilung der Relation
(3.1.12) geniigt:

1 Dlim1 ™ N! j—1
23 (S ) e

n=1 (N—n)IN"

Die Verteilungsfunktion der quasi-stationaren Verteilung 7 wird mit

)= _m, keC (3.1.20)

bezeichnet und lasst sich folgendermafien ausdriicken:

F(k) = % wobei S —Z’y ()T~ (3.1.21)

7j=1

3.2 Zwei Approximationen an das SIS-Modell

Im vorliegenden Abschnitt werden zwei Approximationen an das SIS-Modell vor-
gestellt, die schon von Kryscio und Lefevre (1989) [13] diskutiert und von Nasell
[15], [16], [17] wieder aufgegriffen wurden.

Es handelt sich um zwei Geburts-und-Todes-Prozesse (1Y) (t));0 und (I©)(t)),0,

deren Zustandsraum gerade C, die Menge transienter Zustidnde des urspriingli-

chen Prozesses, ist, und denen ein absorbierender Zustand fehlt. Ferner haben

beide nicht-degenerierte stationéire Verteilungen, bezeichnet mit p™® bzw. p©,

die explizit angegeben Werden konnen Kryscio und Lefevre nehmen an und ha—

ben teilweise bewiesen, dass p(® fiir T > 1 die bessere Anniherung an ¢ liefert,
) hingegen fiir 7' < 1.

3.2.1 Das SIS-Modell mit einem dauerhaft infizierten In-
dividuum

Die erste Approximation wird mit den Worten ” SIS-Modell mit einem dauerhaft
infizierten Individuum” beschrieben. Die Ubergangsraten lauten hier

AW ;=¢A(1—i) =N, i€C A>0,
N (3.2.1)

utV = (- Vp =1, i€C, p>0,
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d.h. die Infektionsraten bleiben unverandert, wiahrend durch die neuen Gene-
sungsraten sichergestellt wird, dass unter allen infizierten Individuen immer eines
existiert, das nicht gesund werden kann. Die stationiire Verteilung von (1M (#))>o
(1)

wird mit p) = (p}

") jec bezeichnet und es gilt:

Satz 3.2.1. Die stationdre Verteilung des SIS-Modells mit einem dauerhaft in-
fizierten Indiwviduum ist explizit gegeben durch

Y =a() VY, jec, (3.2.2)
wobei o(j) in (3.1.14) definiert wird und

N
1 .
V= s mit Z )77 (3.2.3)

gegeben ist.

Beweis. Laut Satz 1.1.29 ist p* genau dann stationare Verteilung des Prozesses,
wenn p(V AW = 0 gilt (wobei AW die Q-Matrix des vorliegenden Prozesses be-
zeichnet und die gleiche Gestalt wie A¢ hat (siehe (3.1.7)), abgesehen von den
leicht verdnderten Genesungsraten) und zudem > jec pg-l) = 1. Also gilt das Glei-
chungssystem

1 1 1 1 1 .
A = (A ) o 4 i =0, jec,

mit den Konventionen )\(() =0= po) fir den Fall j = 1 und ,u $ +1 =0= pg\l,zrl

fiir den Fall j = N. Rekursiv ergibt sich daraus

1 .
:u’g )pj _)\j— pj )17 jec

Iteration fiuhrt nun zu

wobei pgl) so bestimmt wird, dass ijl pj =1 gilt, d.h.

N “1
) = (Z mﬁ”)
n=1
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mit O W
Al
1 n—
np =1, n,(f) = ﬁ, n=2..N.
Mg " eee s in

Werden die Definitionen (3.2.1) der )\2(1) und ,uZ(l) eingesetzt, wird daraus

p§l>:A(1—%)....-(j—m(l—(jj_vl))'%""'(y—;lu
1+i>\(1%>-...-(n1))‘(1(n—]:fl)>.,tlt.m.ﬁ]1
S (M) (D)

e (S (St

N -1
e, NV N Ly T (N-1! N
(N—j)INi—T N 2 (N —n)IN"1 N
-1
N! s N
=T [Z —T”‘1] :
(N — j)INJ —~ (N —n)IN
was genau der Gleichung (3.2.2) entspricht. O

Die Verteilungsfunktion von p™" wird bezeichnet mit

k
FO(k) = Zpg.”, kec, (3.2.4)
j=1
und lasst sich folgendermaflen ausdriicken:
g . |
FO (k) = ﬁ wobei SV = ;a(j)TJ_l. (3.2.5)
]:

3.2.2 Das SIS-Modell mit versperrtem Ursprung

Bei der zweiten Approximation handelt es sich um das sogenannte 7 SIS-Modell
mat versperrtem Ursprung”. Hier sind die Ubergangsraten unverandert, abgese-
hen davon, dass p; durch 0 ersetzt wird, d.h.:

AL ::i)\(l—%) =X\, i€C A>0,
W0 (3.2.6)

w =i =g, i€ C\ {1}, u>0.
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Die Ubertragung der Infektion verhilt sich hier also wie im urspriinglichen Mo-
dell, bedingt darunter, dass mindestens zwei Individuen infiziert sind. Ist nur
eines infiziert, kann dieses nicht genesen.

Dieser Prozess wird oft auch als ”refiektierender Prozess” bezeichnet, da der

absorbierende Zustand 0 durch einen reflektierenden Zustand 1 ersetzt wird.

(0)

Die stationére Verteilung wird hier mit p(® = (p; ) jec bezeichnet und es gilt:

Satz 3.2.2. Die stationdre Verteilung des SIS-Modells mit versperrtem Ursprung
1st explizit gegeben durch

1 .
P = ;a(j)Tf—lpS“, jec, (3.2.7)

wobei () in (3.1.14) definiert wird und

N
o__1 s S™ Loy
P = g mit  SY = Zl ja(j)T] . (3.2.8)
J:
Beweis. Analog zum Beweis von Satz 3.2.1. [

Die Verteilungsfunktion von p(® wird bezeichnet mit

Zp(o) kec, (3.2.9)

und lasst sich schreiben mit

k

1

F(O)(k:):m, wobei 5\ 25(1 )T (3.2.10)
7j=1



Kapitel 4

Annaherung an die
quasi-stationare Verteilung

Im vorliegenden Kapitel soll gezeigt werden, dass die beiden Geburts-und-Todes-
Prozesse des vorangegangenen Abschnitts eine obere bzw. eine untere Schranke
der quasi-stationdren Verteilung liefern.

Cavender [5] hat 1978 gezeigt, dass die stationére Verteilung des SIS-Modells mit
versperrtem Ursprung stochastisch kleiner ist als die quasi-stationare Verteilung
des SIS-Modells. Im Jahre 2003 wurde dies noch einmal von Clancy und Pollett
[6] gefolgert; sie konnten zudem zeigen, dass die stationdre Verteilung des SIS-
Modells mit einem dauerhaft infizierten Individuum stochastisch gréfler ist als
die quasi-stationare Verteilung.

4.1 Eine untere Schranke

Das Ziel dieses Abschnitts besteht darin zu zeigen, dass die stationare Verteilung
des SIS-Modells mit versperrtem Ursprung stochastisch kleiner ist als die quasi-
stationire Verteilung des urspriinglichen SIS-Modells, in Zeichen p(® <g¢p 7, d.h.,
dass gilt

k k
FOUR)=>"p" >N ", =F(k), kecC. (4.1.1)
j=1 j=1

Wie schon in (3.1.5) gesehen, geniigt die quasi-stationére Verteilung folgendem
Gleichungssystem

)\jflﬂ'jfl — (/\J + ,uj)ﬂ'j + Hi41T 541 + M = 0, j S C, (412)

mit den Konventionen \g = 0 = 7 fiir den Fall 7 = 1 und puy1 = 0 = 7y
fiir den Fall j = N. Eine aquivalente Charakterisierung gibt das folgende Lem-
ma.

45
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Lemma 4.1.1. Definiere eine Folge von Polynomen (fi(z),..., fn(x)) in der
Unbestimmten x durch

fi(x) =,
Nofia(@) + e (1= SI2, f()] (4.1.3)
fj(‘r):: 4 ) j:27"'7N7
Hj
und setze

gi(w) = filx).

FEine Folge m = (m;)jec mit mindestens einem m; # 0 geniigt genau dann dem
Gleichungssystem (4.1.2), wenn sowohl gy(m) =1 als auch 7; = f;(m), j € C,
erfullt sind.

Beweis. Zunichst sei m eine Folge mit 7; = f;(m) fiir alle j € C, d.h.

Aj-1Tj—1 + [1 - Wn]
7Tj = 1 s
J

oder aquivalent dazu

j—1
T — /\j—lﬂ—j—l = 17 (]_ — Zﬂ'n> . (414)
n=1

Hieraus folgt direkt

Ajamjor = (A ) w5+ gy = (e — ) = (g = Ajamj)
J 7j—1
= p1m (1 — Zﬂ—n) — T (1 - Z%)
n=1 n=1
= —H1T1TTy,

d.h. (4.1.2).

Fiir den umgekehrten Schluss geniige nun 7 dem Gleichungssystem (4.1.2). Per
Induktion kann (4.1.4) gezeigt werden, woraus sofort (4.1.3) folgt. Den Induk-
tionsanfang macht m; = fi(m), und aus

—(\ - _ 2
(A1 + p)mr + pomy T2 17Ty

folgt

HoTry — A\ = [T — Mlﬁf = M17T1(1 - 7T1)

1
= {1 (1 - Z%) :
n=1
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Also gelte fiir festes aber beliebiges 7 € C

j—1
T — /\j—lﬂ—j—l = U171 (]_ — Zﬂ'n) .

n=1
Den Induktionsschluss liefert

i1 = ATy = T = A — 7+ A amjon + (45 — Ajamjo1)

j—1
- . 1— .
L.V.,(4.12) AT o ( ;W )
J
= 1T (1 — Zﬂ-n) :
n=1

Somit bleibt zu zeigen, dass gy(m1) = 1, falls 7 quasi-stationére Verteilung ist.
m # 0 folgt aus der Definition (vgl. Bemerkung 2.1.2). Es gilt (4.1.2), Summation

liefert
N

Z()\jfl’ﬂ'jfl — (/\J + Hj)ﬂ-j + M1 Tg1 + /L17T17Tj) =0,
j=1

was sich vereinfachen lasst zu
N
— 17T + H17T1 E T = 0.
j=1

Durch Aquivalenzumformung erhélt man damit wie gewiinscht
N

gn(m) = Zﬂ'j =1

j=1

]

Mit Hilfe des Lemmas ldsst sich nun (4.1.1) beweisen; tatséchlich gilt sogar fol-
gende scharfere Variante.

Satz 4.1.2. Fir eine quasi-stationdare Verteilung m = (Wj)jec gilt
k k
om <Y P kec.
j=1 j=1

Beweis. Aus dem Gleichungssystem
X+ P8 —0
0) (0 0 0 .0 0) (0 .
A2, — (Aﬁ "+ )>p§- P+ =0, j=2,...,N-1

0 0 0 0 0
ML (0 50 Y =0
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(vgl. Satz 1.1.29) ergibt sich rekursiv, dass die p§0) die Gleichung

0 0 0) (0
pitinih = Al

mit den zugehorigen Konventionen erfiillen. Diese ist aquivalent zu
(0) (0) (0)

_p({)) _ _“J'(g)l o _p(ﬂo) _ “i‘fl, (4.1.5)
Piv1 A (8:26)  piny J

Fiir eine quasi-stationare Verteilung 7 gilt nun

J
ANjT0j = [jp1 g1 — H1T (1 — Z?Tn)

n=1

(siche (4.1.3)), was sich umformen lésst zu

[ T <1 — Zizl 7Tn>

Tj
Tj+1 Aj AjTj41
0 mm (- Tiam)
(4.1.5) pg?gl >\j7rj+1
(0)
< pj—, j=1...,N—1,
(0)
Pjt1
falls £:1 T, < 1 und alle pg.o), m; positiv — was ja hier der Fall ist. Falls
nun
k
dom=d plY (4.1.6)
j=1 j=1

und somit m; > pgo) fiir ein ¢ < k, folgt (da w41 /m; > pﬁ)l / p§°))
Tit1 > p@('gr)l-
Wiederholung des Arguments liefert m; o > pg(jr)Q, und schliefllich
m>p, i<j<AN.
Daher gilt

N N
dom> 3w

j=k+1 j=k+1

Addition dieser Ungleichung zu (4.1.6) ergibt

N N
Z%‘ > ZPﬁm
j=1 j=1

— ein Widerspruch, da Zjvzl pgo) = 1. Also gilt die Behauptung. ]
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4.2 Eine obere Schranke

Um nun zu zeigen, dass die stationédre Verteilung des SIS-Modells mit einem
dauerhaft infizierten Individuum stochastisch grofler ist als die quasi-stationére
Verteilung des urspriinglichen SIS-Modells — 7 <gr p¥ — d.h., dass

k k
Flh)y =Y "m > pV=FO%), kec, (4.2.1)

gilt, betrachten Clancy und Pollett [6] eine von Ferrari et al. [9] wie folgt definierte
Abbildung .

Ist eine Verteilung v = (14, ..., vy) gegeben, so wird angenommen, dass der Pro-
zess — sobald er im Zustand 0 ankommt — mit Wahrscheinlichkeit v; im Zustand
j €{1,..., N} neu startet. Der auf diese Weise neu gestartete Prozess hat einen
endlichen irreduziblen Zustandsraum und daher eine eindeutig bestimmte stati-
onére Verteilung p = (p1,...,pn). Die Abbildung wird dann durch ®(v) := p
definiert. Da die quasi-stationdre Verteilung 7 niemals im Zustand 0 ankommt,
gelangt sie in jeden Zustand j € C mit Wahrscheinlichkeit v; = m; = p;. Es gilt
also ®(7) = m; m ist der einzige Fixpunkt der Abbildung.

Ferrari et al. [9] bezeichnen den neu gestarteten Prozess als ” Auferstehungs-
Prozess” . Er lasst sich konstruieren, indem zu einem gegebenen Prozess (X (t)):>0
auf S mit Anfangsverteilung « eine Folge { Xy (¢) : k = 1,2, ...} unabhéngiger Ko-
pien von X (¢) mit Anfangsverteilung o und Absorptionszeiten

t =inf{t : Xy (t) = 0} betrachtet werden. Der ” Auferstehungs-Prozess” wird de-
finiert durch

k
So:=0, sp:= Zti fir k > 1,
i=1
Ya(t) = ZXk(t - Sk_l)]‘[sk—l»sk)(t);

k=1

also wird jeweils eine Kopie des urspriinglichen Prozesses laufen gelassen, und
jedes Mal, wenn solch eine Kopie absorbiert wird, wird sie sofort durch die nachste
Kopie ersetzt.

Im vorliegenden Fall eines endlichen Geburts-und-Todes-Prozesses kann die Ab-
bildung & explizit angegeben werden. Ist eine Verteilung v gegeben, geniigt
p = ®(v) dem Gleichungssystem

Aj—1Pi—1 — (N + 15)pj + Hj+1pj41 = —pap1vj, j=1...,N, (422)

mit py = pys1 = 0. Ahnlich wie Nasell [15], [16], [17] (vgl. 3.1.17) benutzen
Clancy und Pollett [6] Variablen

hj = iP5 — )\j—lpj—la ] = 2, ey N. (423)



50 KAPITEL 4. ANNAHERUNG AN DIE QUASI-STATIONARE VERTEILUNG

Das Gleichungssystem (4.2.2) lasst sich dann durch

FLQ = Mlﬂl(l - V1)>

) | (4.2.4)
h’j-‘rlzh’j_,ulplyja ]:27"'7N_17

ausdriicken (Uberpriifung: Einsetzen von (4.2.3) in (4.2.4) ergibt (4.2.2)), und es
ergibt sich (iterativ mit (4.2.4), Einsetzen von hy in hg in hy in ...)

hj = Hip1ay, ] = 27 ceey N, (425)

wobei a; := Zf\ij v;. Einsetzen von (4.2.5) in (4.2.3) und Auflésen nach p; lie-
fert
pp1a; = pjpj — Aj—1pj—1

1
< P = ,LT (rapraj + Nji—1pj—1) -
j

Iteration fithrt zu

1 1
P = — (,Ulplaj + A —— (Mlplaj—l + Aj-2 - Pj—z))
H j—1
1 1 1
= — { mpra; + Aj1 - fpraj1 +Aja - (mpraj—2+Xj-3- pj-s)
j Hj—1 j—2
und schliefilich zu
= A
pi=m— > [[+a j=1,...,N, (4.2.6)
P = ki P

wobei p; so gewahlt sei, dass p eine Verteilung ergibt. Die Komponenten von
p = ®(v) sind somit durch (4.2.6) explizit gegeben.

Um nun zwei Verteilungen miteinander vergleichen zu konnen, verwenden Clancy
und Pollett [6] die sogenannte ”likelihood ratio”-Ordnung <, welche auch schon
von Kijima und Seneta [12] definiert wurde.

Definition 4.2.1. Gegeben zwei Verteilungen v und v auf {1,... N}, wird
die ”likelihood ratio”-Ordnung <pg definiert durch
v <k 1/(2), wenn 1/1.(1)1/](-2) > V](-l)l/i(z) fir1<:<j3<N.

Unter Verwendung von (4.2.6) kann gezeigt werden, dass die Abbildung ¢ die
"likelihood ratio”-Ordnung zwischen zwei Verteilungen unverandert erhalt.
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Theorem 4.2.2. Fiir zwei Verteilungen vV und v auf {1,...,N} gilt:

l/(l) <LR V(Q) = (I)(l/(l)) <LR CI)(V(Q))

Beuweis. Definiere p(V) := ®(vW), p@ = ¢(v@) und fir 1 < k < i < N setze
bir = E;i A/ Aus (4.2.6) wird damit

(1) (I)M Zb alC und pg (2),u Zb al ,

Hi =
Wobela Zk_J uk , 7 =1,2. Daher ergibt sich fir 1 <i < j < N
1) (2) 1 (2

J i
Pi Pj = — P Pi
) (1) (; - /~L 1L; (Z blkakz Zbﬂal@) ijk&;(gl)Zbilal@))
o =1

P1 P1
= 4 ( (1) 4 (2))
- bz b a a a .
bikbji=bjrby g LA Z Z kYjl k a; k

k=1 l=i+1
Fir £ <[ gilt nun
N N N
TS WD S WD
s=l r=l s=k
-1 N
Y A o)
r=k s=l
>0,
woraus, wie gewiinscht, ,05 )p( ) > ,0 5 folgt. O

Bezeichne e; die Verteilung, die ihre gesamte Masse auf den Zustand j legt.
Die quasi-stationéare Verteilung 7 lasst sich nun wie folgt mit zwei degenerierten
Verteilungen vergleichen.

Korollar 4.2.3. Fur die quasi-stationare Verteilung m gilt:

<I>(el) <LR T <LR @(6]\/).

Beweis. Es gilt e; <pr ™ <pr en, da

em; > ey;m fir 1 <4 < j < N mit den moglichen Fallen
€111 = €117 (l =1= j)7
ey = 0=eym (i #1#)),
enm; >epm =0 (i=1, j#1),
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und

men; > mien;  fur 1 <4 < j < N mit den moglichen Fallen
mvenny = Tnenny (1= N =j),
men; =0 =men; (i # N #j),
menn > myen; = 0 (Z#N,j:N)

Mit Theorem 4.2.2 folgt
@(61) <LR CD(TF) <LR @(61\7),

und da 7 Fixpunkt der Abbildung ¢ ist, gilt die Behauptung. ]

Kijima und Seneta haben schon in ihrer Arbeit von 1991 [12] gezeigt, dass die
"likelihood ratio”-Ordnung die stochastische Ordnung impliziert.

Satz 4.2.4. Fiir zwei Verteilungen vV und v auf {1,..., N} gilt:
V(l) <LR V(2) = V(l) <87 V(Z).

) wird angenommen, d.h.

Beweis. v\ < p v
I/i(l)V](?) > Vj(l)VZ-(Q), 1<i<j3<N.

Summation der Ungleichungen von 1 bis ¢ liefert

Zu <2>Zy ) 1<i<j<N,

Gleiches von @ + 1 bis 5 fiihrt zu

ZV (v ) 2 ZV (4 +u), 1<i<jN

Durch Addition von 22:1 e anzl 2 auf beiden Seiten ergibt sich daraus

7 i

Zylil/z VS)ZVS), 1<i<y <N
n=1 m=1

m=1 n=1

Wird nun j = N gesetzt, so folgt

Zu“)z ) 1<i<N,
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und da v und v Vertellungen sind, gilt dies auch noch fiir i = N; d.h. v® ist
stochastisch grofer als (. ]

Mit Korollar 4.2.3 ergibt sich damit direkt die Aussage eines Theorems, das schon
von Keilson und Ramaswamy [11] bewiesen wurde.

Korollar 4.2.5. Fur die quasi-stationare Verteilung m gilt:
@(61) <g17 T <81 (I)(GN).

Bemerkung 4.2.6. 1. Im SIS-Modell wird aus der Gleichung (4.2.6)

2. Die Verteilung ®(e;) = ((®(e1))1,- .., (P(e1))n) hat eine sehr einfache Form,
da in diesem Fall der einzige nicht-triviale Term in der Summe auf der rech-
ten Seite der Gleichung (4.2.6) der (¢ = 1)—Term ist:

= 1)\k ,ulj_l)\k
((I) _plﬂ_znuk Zeu =pP1— — j=1...,N.

J =1 k=i =i ’u]kl’uk

Wird nun der Prozess (I(°)(t));>o mit Reflektion im Zustand 0 betrachtet, so
ist dies aquivalent dazu, dass der Prozess im Zustand 1 neu startet, sobald
er im Zustand 0 angekommen ist. Somit ist die stationare Verteilung dieses
Approximations-Prozesses gerade (p(® =)®(e;). Laut Korollar 4.2.3 bzw.
4.2.5 gilt ®(ey) <pr ™ bzw. ®(e1) <gr 7, womit ein weiterer Beweis dafiir
erbracht wére, dass die stationare Verteilung des SIS-Modells mit versperr-

tem Ursprung stochastisch kleiner ist als die quasi-stationare Verteilung des
SIS-Modells.

3. Als obere Schranke fiir 7 konnte die Verteilung
Sley) = ((Plen))1,---, ((P(en))n) verwendet werden. Diese hat jedoch
nicht die besonders einfache Form von ®(e;), da hier alle Terme der Summe
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auf der rechten Seite der Gleichung (4.2.6) nicht trivial sind; es gilt

J J—- 1)% j oi— 1
(Q)( —p1M—ZH (Zem)—pl—z ,LLk jZl,...,N.
J ¥

zlkzpjk =1 k=1

Stattdessen betrachten Clancy und Pollett [6] wie auch schon Kryscio und
Lefevre [13] sowie Nasell [15], [16], [17], das SIS-Modell mit einem dauerhaft
infizierten Individuum mit der stationdren Verteilung p(!), deren spezielle

Gestalt mit
N-—1)/T\ ! ,

angegeben werden kann (vgl. (3.2.2)). Wie schon erwéhnt, nahmen Kryscio
und Lefevre [13] aufgrund empirischer Beobachtungen an, dass 7 <g7 p™*
gilt, haben dies aber nicht konkret bewiesen. Mit Theorem 4.2.2 ist dies
nun wie folgt moglich.

Satz 4.2.7. Es gilt
T <sT P

d.h. (4.2.1).

Beweis. (IM ()0 ist kein Prozess, der neu gestartet wird, sobald er im Zustand
0 ankommt. Jedoch kann die Abbildung ® gegeben durch (4.2.6) invertiert wer-
den; gegeben irgendeine Verteilung p sind die Werte vy,...,vy mit ®(v) = p
direkt durch (4.2.2) gegeben. Wird also die Gleichung ®(v) = p™") geldst, so kann
moglicherweise eine Anfangsverteilung v bestimmt werden, flir welche der neu
gestartete Prozess die stationire Verteilung p® hat. Wird in (4.2.2) p; = pgl)
gesetzt, so gilt

1 1
Aji— 1]9; = (A + ug)pﬁ- ) + Mj+1p§-£1 = —Mlpg )VJ7

und unter Verwendung der urspriinglichen Ubergangsraten (3.1.1) sowie der Glei-
chung (4.2.7) wird daraus

;= (= _]\‘? +1) (A(,N — 1) I (%) o

- (i) S

1

J
, (N=1! /TY
+(J+1)Mm (N) .
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Diese Gleichung lasst sich aquivalent umformen zu

(N=1)! (T\7'T,. (N —j+1) 1 N
s (v) [ T

- (T ) 6+ ey =g | ()

_ % (%)1 [—(j ~) T (Y —j)ﬂ ,

und schliefflich ergibt sich

v, = % <%>H (1 ~T (1 - %)) , jec. (4.2.8)

Um v; > 0, d.h. (1 -T (1 — %)) > 0, fir alle 5 € C sicherzustellen, wird
T <1+1/(N —1) vorausgesetzt (Zjvzl v; = 1 wird durch (4.2.2) garantiert). So-
mit kann auf jeden Fall im subkritischen (d.h. nichtendemischen) Fall 7' < 1 die
Verteilung p) als stationire Verteilung eines neu gestarteten Prozesses gewonnen

werden.
Fiir 1 <i < j < N, mit v gegeben durch (4.2.8) und p™") gegeben durch (4.2.7),

BB RE (04
S B G (-r )

_ (N((_NZ{( ]1V>!fj)! | @) e [(1 7y %;-) - (1 g %)]

_ -\
‘(N—z')!(N—j)!'(N> pUy
>0,

d.h. p) = ®(v) <1 g v. Wiederholte Anwendung von Theorem 4.2.2 liefert
CDn(l/) <LR (I)n_l(V) ~<LR --- =<LR p(l) <LR V.

Fiir n — oo ergibt sich — wie von Ferrari et al. [9] bewiesen (siche Abschnitt 5
der Arbeit) — ®"(v) — m; dies gilt fiir jede endliche absorbierende Markov-Kette.
Also gilt 7 <.z p™) und mit Satz 4.2.4 7 <gp p.

Falls nun 7" > 1+ 1/(N — 1), so hat v gegeben durch (4.2.8) mindestens eine
echt negative Komponente. Die Aussage pgl)l/j — pg-l)ui > 0 fiir 5 > 1 bleibt aber
dennoch wahr, was hinreichend fiir die Giiltigkeit des Beweises von Theorem 4.2.4
ist, und man kann auch hier 7 <,z p™" folgern. ]



Kapitel 5

Zeit bis zur Ausloschung

Wie schon erwéahnt, spielt die Untersuchung der Zeit bis zur Ausloschung der
Infektion 7 eine wichtige Rolle, wenn man wissen will, fiir wie lange die quasi-
stationare Verteilung eine gute Annaherung an die Verteilung des urspriinglichen
Prozesses (I(t)):>o darstellt. Die Verteilung von 7 héngt wesentlich von der An-
fangsverteilung ab.

Nasell betrachtet in seinen Arbeiten [15], [16], [17] zwei gesonderte Fille: den
Fall, dass die Anfangsverteilung der quasi-stationiren Verteilung entspricht (siche
hier auch die erweiterte Fassung von [17]) und den Fall, dass es sich um eine
degenerierte Verteilung handelt. Entsprechend wird die Zufallsvariable ”Zeit bis
zur Ausloschung” mit 7, bzw. mit 7; (j € C) bezeichnet.

5.1 1. Fall: Quasi-stationare Anfangsverteilung

Dieser Fall ist von besonderem Interesse, falls zu einem bestimmten Zeitpunkt
bekannt ist, dass eine Infektion in einer Gruppe von Individuen existiert und
dass sie schon fiir lange Zeit existiert hat. Es kann gefolgert werden, dass die
Verteilung der Anzahl infizierter Individuen gut durch die quasi-stationire Ver-
teilung beschrieben wird und dementsprechend kann die Zeit bis zur Ausléschung
ausgehend von der quasi-stationdren Verteilung untersucht werden. Das Ergebnis
lasst sich in folgendem Satz zusammenfassen (Bezeichungen vgl. (3.1.1), (3.1.12),
(3.1.15)):

Satz 5.1.1. Die Zeit bis zur Ausloschung 7. ausgehend von der quasi-stationdren
Verteilung ist exponentialverteilt mit Parameter pymy und Erwartungswert

1
Er, = = §;
i M

sie 1st somit vollstandig durch m bestimmd.

o6
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Beweis. Um zu diesem Resultat zu gelangen, wird mit
0

noch einmal das Differentialgleichungssystem (3.1.6) betrachtet, welches sich dqui-
valent umformen lédsst zu

pe(t) = (1 —po(t))m" — pamipe(t)
= —pmpe(t),

pe(t)
+ ,U17T11 0@

(5.1.1)

einem Differentialgleichungssystem mit Anfangswert pe(0) = 7 und der Losung
(vgl. z.B. Burg/Haf/Wille [4, S. 37])

pe(t) = mexp (/Ot (—Mlﬁl)dw) (5.1.2)

= mexp (—puymt).

Als Konsequenz hiervon kann auch py(t) wie folgt bestimmt werden. Bekannt
ist (vgl. (3.1.4)), dass pi(t) = pip1(t). Zusammen mit (5.1.2) ergibt sich so das
Differentialgleichungssystem

Po(t) = pam exp (—pymt)

mit Anfangswert po(0) = 0, da der Prozess ja laut Voraussetzung zu Beginn nicht
im Zustand 0 absorbiert ist. Als Losung ergibt sich

t
po(t) = / p1my exp (—pyma)de + const
0
= —exp (—mmt) — (—1) + const,
wobei const = 0 wegen des Anfangswertes, also:

po(t) =1 —exp (—pumt) (5.1.3)

(5.1.1), (5.1.2) und (5.1.3) liefern fiir diesen Fall die Losung der Kolmogorovschen
Vorwérts-Differentialgleichungen; der Ausdruck ist kurz und biindig, jedoch ab-
héngig von m; und somit nicht explitzit.

Wird nun angenommen, dass Absorption zum Zeitpunkt ¢ eingetreten ist, gilt fiir
die Zeit bis zur Ausloschung 7, < ¢, und die Anzahl infizierter Individuen () ist
gleich 0. Somit sind die Ereignisse {7, < t} und {/(¢) = 0} identisch. Thre Wahr-
scheinlichkeiten kénnen mit Hilfe von (5.1.3) wie folgt bestimmt werden:

P(rr <t) = P(I(t) = 0) = po(2)
=1—exp(—pumt)

Es handelt sich hier offensichtlich um die Verteilungsfunktion der Exponential-
verteilung mit Parameter pq7m, womit die Behauptung gezeigt ware. O
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5.2 2. Fall: Degenerierte Anfangsverteilung

Der Fall einer anderen Anfangsverteilung als der quasi-stationdren ist deutlich
komplizierter. Nasell betrachtet in seinen Arbeiten [15], [16], [17] die erwartete
Zeit bis zur Ausloschung ausgehend von einem festen Zustand j € C. Sie wird
durch einen expliziten Ausdruck bestimmt, dessen Komponenten mit Termen der
stationaren Verteilungen der beiden Annaherungsprozesse beschrieben werden
konnen. Die Herleitung wurde z.B. von Karlin und Taylor [10, S. 148 ff.] im
Detail beschrieben. Zusammenfassend gesagt:

Satz 5.2.1. Fir die erwartete Zeit bis zur Ausloschung 7; ausgehend von einem
festen Zustand j € C gilt:

oV e

Dieser Ausdruck gibt E7; gerade mit Hilfe einer Summe an, deren Komponenten
denen von ~(j) (siehe (3.1.13)) ahneln.

Beweis. Angenommen, der Prozess startet von einem Zustand j € C aus, so
sind j + 1 und j — 1 die moglichen Zustdnde nach dem ersten Ubergang; die
Wahrscheinlichkeiten fiir den Ubergang in diese Zusténde sind

Pij+1 = Ggi/ — G5 = N/ (N + ) baw. pjjn = g1/ — a5 = /(A5 + py)
(vgl. (1.1.11) und (1.2.1) ). Die erwartete Verweildauer im Zustand j ist — da
exponentialverteilt mit Parameter (A;+pu;) (vgl. Satz 1.1.11 und (1.2.1)) — gleich
(Aj+p;) . Somit ergibt sich fiir die erwartete Zeit bis zur Ausloschung ausgehend
vom Zustand j die Rekurrenz-Relation

1 A
= -
Aj g Ayt

i .
ETj+1+ )\'—i-],u-ETj_b jec, (521)

J J

ETj

mit der Konvention Erg = 0 = E7y . Diese Gleichung ist aquivalent zu
)\jETj + ,LLjETj =1 + )\jETj+1 + ,LLjETj,h
was sich umstellen ldsst zu

1 .
ET]’ - ETj+1 = )\— + %(ETj,l - ETJ)
J J

Mit Zj = ETj - ET]’+1 gllt

L :
= — + —zj_1, eC.
Z] )\] + )\J Z] 1 J
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Iteration liefert

und schliefllich

3T (T

lm 41

wobei _jy1 Hm /Am = 1. Ausgedriickt durch E7; ergibt sich

J J J
1 m m .
ETj—ETj+1:Zy H /;——Eﬁ /;—7 A&
i=1 "' m=it1 "™ m=1"""
und mit
I 1 " J " J
> H se=115 20
i=1 m=i+1 m=1 =1
wobei
1 AL - Ai
Oy = —, =2 L (1<i<N)
1251 M - Mg

wird daraus
ETj _ETj+1 = H [;—mZ’ﬁz —ETl H ,l)f_m

Aquivalente Umformung fithrt dann zu

J A, J
(H > (BErj —Erj) = ) 0 — Er.
i=1

Hm

Wird die Gleichung fiir j = N betrachtet, folgt

ETl 219 - (H ;\m>(ETN—ETN+1) 2191

=0, da Ay=0

99

(5.2.2)

(5.2.3)
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60

Somit ergibt sich aus Gleichung (5.2.3)

CANaINGT
/l\\l/\l/
SR
jHﬂHHW.JHW

E e~
~ "
R =

/N 7 N

N m_ g m_ S
umr_\Am 1wr\A1 U\Al
E N———— i
SR
I I
T
=
=

\ﬂ/

D
<[
N~
VR

g| g

3 <
=1
g
N——
|__| .
=

Werden hier nun die fiir das vorliegende SIS-Modell spezifischen Definitionen

eingesetzt, so ergibt sich weiter

IS
— | X
I/
—
=
S
_
—
~_
\A
—_
— _
[
P
N .
|z
| /N
/_M\ 1_N
~ _
~ —
~—

[
k=1
N
. Z A
=r+1

m
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N )
1 1 ~ N -1 N—(i—1
:_+§ _Tl—l(—)<#)
(3.1.2) 4 — i N

P N
J;i[ﬂ e ]

3 e (S (M)

= i . Tiil . M . E
2 i (N )N N
+j‘1 1 (N—(r+1))N" N
2T (N —1)! N
i L pma _ (N=DU N
o M (N —m)INm-1 N
1 Al — 1 Mo
— - _ . Tifl - . Tmfl
3.1.14) (0 + 1)70 ; ma(z) * ; a(r+1)Tr m;1 mua(m)
1¢ 1 1
—— . Tm—l
i 27T 2
1 1 LY
P
(3.27) p“—~ ar)Tr1 mz:r ¥

jec.
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