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Einleitung

Häufig wird versucht, das Verhalten von Epidemien mit Hilfe mathematischer
Modelle zu beschreiben. Frühe Modelle waren größtenteils deterministisch; sto-
chastische Modelle wurden erst ernsthaft untersucht, nachdem die Theorie sto-
chastischer Prozesse entsprechend entwickelt war. Einer der Hauptunterschiede
zwischen diesen beiden Arten von Modellen liegt in ihrem Zustandsraum, welcher
beim deterministischen Modell stetig, beim stochastischen diskret ist. Dement-
sprechend ist das stochastische Modell realistischer, wenn innerhalb einer Po-
pulation die Anzahl infizierter Individuen betrachtet werden soll. Nun ist jedes
deterministische Modell eine Approximation eines entsprechenden stochastischen
Modells, wenn die Populationsgröße gegen ∞ geht. Allerdings gibt es problemati-
sche Bereiche, in denen die beiden Modelle jeweils ein gänzlich unterschiedliches
Verhalten der Infektion vorhersagen, so dass manche Fragen nur mit Hilfe des
stochastischen Modells geklärt werden können.

In der vorliegenden Arbeit wird das sogenannte SIS-Modell untersucht, dessen
stochastische Version zum ersten Mal von Weiss und Dishon [20] im Jahre 1971
vorgestellt wurde. Es beschreibt die Übertragung einer Infektion innerhalb ei-
ner konstanten Population mit N Individuen. Die Buchstaben ”SIS” stehen für
die aufeinanderfolgenden möglichen Zustände eines Individuums von empfänglich
(”susceptible”) hin zu infiziert (”infected”) und wieder zurück zu empfänglich
(”susceptible”). Ein genesenes Individuum ist somit sofort wieder anfällig für die
Infektion.

Das SIS-Modell kann zur Darstellung von endemischen Infektionen verwendet
werden, die keine Immunität verleihen; es kann aber auch in völlig anderen Zu-
sammenhängen zur Anwendung kommen. Zum Beispiel benutzte Bartholomew
(1976) [3] es, um die Verbreitung von Gerüchten zu untersuchen, Oppenheim et
al. (1977) [18] nahmen es als Modell für chemische Reaktionen.

Die Eigenschaften des Modells werden vollständig durch zwei Parameter beschrie-
ben, nämlich durch die Populationsgröße N und durch den sogenannten ”trans-
mission factor” T , auch ”basic reproduction ratio” genannt und mit R0 bezeich-
net.

In der deterministischen Version des Modells spielt nur der Parameter T eine
Rolle. Ist T kleiner als 1, wird die Auslöschung der Infektion vorhergesagt, ist T
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größer als 1, kann sich eine endemische Infektion etablieren, wenn zu Beginn eine
positive Anzahl von Individuen infiziert ist.

Im Gegensatz dazu stirbt die Infektion im stochastischen Modell unabhängig von
der Anfangsverteilung für alle Werte von T fast sicher aus. Dementsprechend hat
das Modell einen absorbierenden Zustand im Ursprung sowie eine degenerierte
stationäre Verteilung, die ihre gesamte Masse auf den Ursprung legt. Die Zeit bis
zur Auslöschung variiert jedoch stark mit T . Sie ist ziemlich kurz und beinahe
unabhängig von N , wenn T wesentlich kleiner als 1 ist, wächst aber exponentiell
in N , wenn T wesentlich größer als 1 ist. Die Verteilung der Anzahl infizierter
Individuen verhält sich innerhalb dieses langen Zeitraums annähernd stationär.
Sie kann durch Betrachtung eben dieser Verteilung, bedingt darunter, dass die
Infektion nicht ausstirbt, untersucht werden — betrachtet wird die sogenannte
quasi-stationäre Verteilung.

Soll also das SIS-Modell untersucht werden, werden im Wesentlichen die quasi-
stationäre Verteilung und die Zeit bis zur Auslöschung untersucht. Mit Hilfe letz-
terer kann bestimmt werden, wie groß der Zeitraum ist, innerhalb dessen die
quasi-stationäre Verteilung eine gute Annäherung an die Verteilung der infizier-
ten Individuen ist. Da weder die quasi-stationäre Verteilung noch die Verteilung
der Zeit bis zur Auslöschung (im Ganzen) explizit bestimmt werden können, wer-
den Approximationen gesucht. Hierfür werden zwei Prozesse betrachtet, denen
ein absorbierender Zustand fehlt und deren nicht-degenerierte stationäre Vertei-
lungen explizit angegeben werden können.

Das 1. Kapitel dieser Arbeit gibt eine kurze Übersicht über die im Modell verwen-
deten Markov-Sprung-Prozesse, speziell über Geburts-und-Todes-Prozesse. Defi-
nitionen und Eigenschaften quasi-stationärer Verteilungen liefert das 2. Kapitel.
Im 3. Kapitel werden das SIS-Modell, seine quasi-stationäre Verteilung sowie die
beiden Approximations-Prozesse vorgestellt, um dann im 4. Kapitel zu zeigen,
dass die stationären Verteilungen dieser Prozesse je eine untere bzw. eine obe-
re Schranke für die quasi-stationäre Verteilung sind. Das 5. Kapitel behandelt
schließlich die erwartete Zeit bis zur Auslöschung.

Zu Beginn eines Kapitels bzw. Abschnitts werden die Quellen angegeben, nach
denen hauptsächlich vorgegangen wird. Werden innerhalb der Kapitel und Ab-
schnitte noch weitere Quellen verwendet, so werden sie an entsprechender Stelle
zusätzlich angeführt.
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Kapitel 1

Markov-Sprung-Prozesse

Da es sich bei den Modellen, mit denen sich diese Arbeit beschäftigt, um Geburts-
und-Todes-Prozesse, d.h. spezielle Markov-Sprung-Prozesse, handelt, liefert die-
ses Kapitel eine kurze Auflistung aller verwendeten Definitionen und allgemein
bekannten Sätze (welche in den späteren Kapiteln benutzt werden und bei Be-
darf hier nachgeschlagen werden können), sowie eine Erläuterung der vorliegenden
speziellen Situation.

Als Quellen hierfür wurden das Buch ”Continuous-Time Markov Chains” von
Anderson [2] und ein unveröffentlichtes Skript über Markov-Sprung-Prozesse von
Alsmeyer [1] verwendet.

1.1 Grundlagen: Markov-Sprung-Prozesse allge-

mein

Definition und grundlegende Eigenschaften der Übergangsfunktion

Definition 1.1.1. Ein stochastischer Prozess (X(t))t≥0, definiert auf einem Wahr-
scheinlichkeitsraum (Ω, A, P ), mit Werten in einer abzählbaren Menge E (ge-
nannt Zustandsraum) wird Markov-Sprung-Prozess genannt, wenn für jede end-
liche Menge 0 ≤ t1 < t2 < . . . < tn < tn+1 von Zeitpunkten und jede Menge
i1, i2, . . . , in−1, i, j von Zuständen in E mit
P (X(tn) = i, X(tn−1) = in−1, . . . , X(t1) = i1) > 0 gilt:

P (X(tn+1) = j|X(tn) = i, X(tn−1) = in−1, . . . , X(t1) = i1)

= P (X(tn+1) = j|X(tn) = i).
(1.1.1)

Die Gleichung (1.1.1) wird Markov-Eigenschaft genannt.

Wenn für alle s, t mit 0 ≤ s ≤ t und alle i, j ∈ E die bedingten Wahrscheinlich-
keiten P (X(t) = j|X(s) = i) nur von t − s und nicht von dem speziellen s und
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8 KAPITEL 1. MARKOV-SPRUNG-PROZESSE

t abhängen, wird der Prozess (X(t))t≥0 zeitlich homogen genannt; man sagt, er
habe stationäre Übergangswahrscheinlichkeiten. In diesem Fall gilt

P (X(t) = j|X(s) = i) = P (X(t− s) = j|X(0) = i) (1.1.2)

und die Funktion

pij(t) := P (X(t) = j|X(0) = i), i, j ∈ E , t ≥ 0, (1.1.3)

wird Übergangsfunktion genannt.
(Anderson, [2, S. 1])

Definition 1.1.2. Sei E eine abzählbare Menge, genannt Zustandsraum. Eine
Funktion pij(t), i, j ∈ E , t ≥ 0, heißt Übergangsfunktion auf E , wenn

1. pij(t) ≥ 0 für alle i, j ∈ E , t ≥ 0; und

pij(0) = δij :=

{
1 falls i = j,

0 falls i 6= j.

2.
∑

j∈E pij(t) ≤ 1 für alle i ∈ E , t ≥ 0.

pij(t) wird stochastisch genannt, wenn
∑

j∈E pij(t) = 1 für alle i ∈ E , t ≥ 0,
ansonsten substochastisch.

3.
pij(s + t) =

∑
k∈E

pik(s)pkj(t), i, j ∈ E , s, t ≥ 0 (1.1.4)

(Chapman-Kolmogorov-Gleichung genannt, oder Halbgruppen-Eigenschaft).

4. pij(t) wird ferner Standard-Übergangsfunktion genannt, wenn limt↓0 pii(t) = 1
für alle i ∈ E (wodurch sich mit 0 ≤

∑
j 6=i pij(t) ≤ 1 − pii(t) gerade

pij(t) −→
t↓0

δij für alle i, j ∈ E ergibt).

(Anderson, [2, S. 5])

Die so definierten pij(t), i, j ∈ E , t ≥ 0, bilden die Einträge der sogenannten
Übergangsmatrixfunktion P(t) := (pij(t))i,j∈E — einer quadratischen, möglicher-
weise unendlich-dimensionalen Matrix. Die oben genannten Eigenschaften lassen
sich mit dieser Matrix-Darstellung auch wie folgt formulieren:

1. P(t) ≥ 0 für alle t ≥ 0 (d.h. die Komponenten von P(t) sind nicht-negativ),
P(0) = I (die Einheitsmatrix).

2. P(t)1 ≤ 1 für alle t ≥ 0 (wobei 1 der Spaltenvektor ist, dessen Komponenten
alle gleich 1 sind).

(P(t))t≥0 ist stochastisch, wenn P(t)1 = 1 für alle t ≥ 0.

3. P(s + t) = P(s)P(t) für alle s, t ≥ 0.
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4. limt↓0 P(t) = I komponentenweise.

Eine quadratische, möglicherweise unendlich-dimensionale Matrix mit nicht-nega-
tiven Komponenten wird substochastisch genannt, wenn alle Zeilensummen ≤ 1
sind, und stochastisch, wenn sie = 1 sind.

Somit ist eine Übergangsfunktion genau dann stochastisch, wenn P(t) für alle
t ≥ 0 stochastisch ist.
(Anderson, [2, S. 6 f.])

Der folgende Satz zeigt, dass aus jeder substochastischen Übergangsfunktion
durch Hinzufügen eines Zustandes zum Zustandsraum eine stochastische gemacht
werden kann.

Satz 1.1.3. Sei pij(t) eine substochastische Übergangsfunktion auf E, ∆ ein nicht
in E enthaltener Punkt, E∆ := E ∪ {∆} und

p∆
ij(t) :=


pij(t) falls i, j ∈ E ,

1−
∑

k∈E pik(t) falls i ∈ E , j = ∆,

0 falls i = ∆, j ∈ E ,

1 falls i = ∆ = j.

(1.1.5)

Dann ist p∆
ij(t) eine stochastische Übergangsfunktion auf E∆.

(Anderson, [2, Prop. 1.1.1])

Satz 1.1.4. Sei pij(t) eine (nicht notwendig Standard-) Übergangsfunktion. Es
gilt:

1. Die Funktion
∑

j∈E pij(t) ist nicht-wachsend in t.

2. Wenn P(t) für ein t > 0 stochastisch ist, so ist P(t) für alle t > 0 stochas-
tisch.

(Anderson, [2, Prop. 1.1.2])

Satz 1.1.5. Sei pij(t) eine Standard-Übergangsfunktion. Dann gilt:

1. pii(t) > 0 für alle i ∈ E, t ≥ 0.

2. Für i, j ∈ E , i 6= j, ist entweder pij(t) = 0 für alle t ∈ (0, +∞) oder
pij(t) > 0 für alle t ∈ (0, +∞) (Lévy’s Theorem genannt).

3. Wenn pii(t) = 1 für ein t > 0, dann ist pii(t) = 1 für alle t ≥ 0.
(Anderson, [2, Prop. 1.1.3 bzw. S. 8])

Satz 1.1.6. Sei pij(t) eine Standard-Übergangsfunktion. Für alle t ≥ 0 gilt

|pij(t + ε)− pij(t)| ≤ 1− pii(|ε|);

somit ist pij(t) eine gleichmäßig stetige Funktion in t.
(Anderson, [2, Prop. 1.1.3])
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Differenzierbarkeit der Übergangsfunktion und Bedeutung der Q-Matrix

Da sich die Übergangsfunktionen eines Markov-Sprung-Prozesses — anders als
die Übergangswahrscheinlichkeiten bei Markov-Ketten — meistens nicht ohne
weiteres berechnen lassen, wird stattdessen die sogenannte Q-Matrix betrach-
tet. Anhand dieser lassen sich Aussagen über das Verhalten des Prozesses ma-
chen.

Satz 1.1.7. Für eine Standard-Übergangsfunktion pij(t) gilt:

Die Funktion pij(t), i, j ∈ E, ist stetig differenzierbar für t > 0.

Ferner existiert die rechtsseitige Ableitung im Punkt 0, d.h.

qij := lim
t↓0

pij(t)− pij(0)

t
; (1.1.6)

0 ≤ qij < ∞ für alle i, j ∈ E, i 6= j; −∞ ≤ qii ≤ 0 für alle i ∈ E.
(Alsmeyer, [1, Satz 6.2 bzw. S. 11])

Definition 1.1.8. Definiere qi := −qii für i ∈ E .

Ein Zustand i ∈ E heißt stabil, wenn qi < +∞ und augenblicklich, wenn qi = +∞.

Die Übergangsfunktion pij(t) heißt stabil, wenn alle Zustände i ∈ E stabil sind.

Der Zustand i ∈ E wird absorbierend genannt, wenn (limt↓0
1−pii(t)

t
=)qi = 0,

oder, äquivalent, wenn pii(t) = 1 für alle t ≥ 0.
(Anderson, [2, S. 9])

Definition 1.1.9. Die Matrix Q := (qij)i,j∈E wird Q-Matrix der Übergangsfunk-
tion pij(t) genannt.

(Die Diagonal-Komponenten von Q sind nicht-positiv und möglicherweise unend-
lich, die anderen Komponenten sind nicht-negativ und endlich; die Zeilensummen
sind nicht-positiv.)

Wenn alle Diagonal-Komponenten endlich sind (d.h. |qii| < ∞ für alle i ∈ E),
wird Q stabil genannt.

Wenn zusätzlich alle Zeilensummen gleich 0 sind (d.h.
∑

j∈E qij = 0 für alle i ∈ E),
heißt Q konservativ.

Ist umgekehrt Q eine Q-Matrix, so wird eine Übergangsfunktion pij(t) Q-Funktion
genannt, wenn Q die Q-Matrix von pij(t) ist (d.h., wenn P′(0+) = Q).
(Anderson, [2, S. 13 bzw. S. 64])

Ist die Q-Matrix konservativ, so treten augenblickliche Zustände nicht auf.
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Struktur von Markov-Sprung-Prozessen und minimale Konstruktion

Sei (X(t))t≥0 ein Markov-Sprung-Prozess mit Übergangsfunktion pij(t) und kon-
servativer Q-Matrix Q. Die Pfade des Prozesses werden als rechtsseitig-stetige
Treppenfunktionen vorausgesetzt.

Anders als bei Markov-Ketten besitzt bei Markov-Sprung-Prozessen jeder Zu-
stand eine zufällige Verweildauer, die wegen der Markov-Eigenschaft exponen-
tialverteilt sein muss; die jeweiligen Parameter lassen sich anhand der Q-Matrix
bestimmen.

Definition 1.1.10. Sei i ∈ E und X(0) = i.

Ti :=

{
inf {t ≥ 0|X(t) 6= i} falls die Menge nicht leer ist,

+∞ sonst,
(1.1.7)

definiert die Verweildauer im Zustand i.
(Anderson, [2, S. 16])

Wenn qi = 0, gilt pii(t) = 1 für alle t ≥ 0, so dass i absorbierend und Ti = +∞
ist.

Sei nun qi > 0.

Satz 1.1.11. Es gilt:

1. P (Ti > t|X(0) = i) = exp (−qit), t ≥ 0.

2. P (X(Ti) = j|X(0) = i) = qij/qi, j 6= i.
(Anderson, [2, Prop. 1.2.8])

Angenommen, dass X(0) = i0.

Wenn qi0 = 0, oder äquivalent, wenn i0 ein absorbierender Zustand ist, bleibt der
Prozess für immer im Zustand i0.

Wenn nun qi0 > 0, so bleibt der Prozess (vgl. Satz 1.1.11, Punkt 1) für eine
endliche, aber (da qi0 < +∞) echt positive, Exp(qi0)-verteilte Zeitspanne Ti0

im Zustand i0. Am Ende der Verweildauer geht der Prozess in einen anderen
Zustand über. Die Wahrscheinlichkeit, dass es ein Übergang in den Zustand i1
mit i1 6= i0 wird, ist qi0i1/qi0 (vgl. Satz 1.1.11, Punkt 2). Wegen der rechtsseitigen
Stetigkeit der Pfade wird sich der Prozess zum Zeitpunkt Ti0 im Zustand i1
befinden, d.h. X(Ti0) = i1. Auf Grund der Homogenität des Prozesses und wegen
der Markov-Eigenschaft ist das zukünftige Verhalten des Prozesses nach dem
Zeitpunkt Ti0

1. unabhängig vom Verhalten des Prozesses vor dem Zeitpunkt Ti0 und

2. so, als würde der Prozess statt in Ti0 in 0 starten und i1 als Anfangszustand
haben.
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Wird nun in gleicher Weise fortgefahren, so bleibt der Prozess, sofern i1 kein
absorbierender Zustand ist, eine Exp(qi1)-verteilte Zeitspanne Ti1 im Zustand i1,
wobei Ti1 unabhängig von Ti0 ist, und geht zum Zeitpunkt Ti0 + Ti1 in einen
Zustand i2 = X(Ti0 + Ti1) über. Die Wahl des Zustandes i2 ist unabhängig von
allem, was zuvor passiert ist und wird mit Wahrscheinlichkeit qi1i2/qi1 getroffen
usw. ...

Definiere nun die Sprungzeiten

Jn :=

{
0 falls n = 0,

inf {t > Jn−1|X(t) 6= X(Jn−1)} falls n ≥ 1,
(1.1.8)

und ferner
Xn := X(Jn), n ≥ 0. (1.1.9)

Dann ist Jn der Zeitpunkt des n-ten Übergangs, X0 ist der Anfangszustand des
Prozesses und Xn (n ≥ 1) ist der Zustand des Prozesses zum Zeitpunkt Jn, d.h.
direkt nach dem n-ten Übergang.

Im Beispiel-Fall gilt also
J0 = 0, X0 = i0;
J1 = Ti0 , X1 = i1;
J2 = Ti0 + Ti1 , X2 = i2;
J3 = Ti0 + Ti1 + Ti2 , ...

Wenn limn→∞ Jn = +∞ ist, kann der Prozess auf diese Weise komplett beschrie-
ben werden. Im Allgemeinen kann die Zufallsvariable

J∞ := lim
n→∞

↑ Jn (1.1.10)

aber durchaus auch endliche Werte annehmen; es gilt insbesondere, dass, wenn
P (J∞ ≤ t|X(0) = i0) > 0 für ein t > 0, P (J∞ ≤ t|X(0) = i0) > 0 für alle t > 0.
Ist J∞ endlich, so wird von der Explosionszeit gesprochen. Anschaulich bedeutet
dies, dass der Pfad X(t) in jedem Intervall (s, J∞) mit s < J∞ unendlich viele
Sprünge hat.

Definiere nun für i, j ∈ E

pij :=


δij falls qi = 0,

0 falls qi > 0 und j = i,

qij/qi falls qi > 0 und j 6= i.

(1.1.11)

Da Q konservativ ist, gilt
∑

j∈E pij = 1 für alle j ∈ E .

(Xn)n≥0 wie oben definiert ist eine Markov-Kette mit stationären Übergangs-
wahrscheinlichkeiten pij; sie wird eingebettete Markov-Kette von (X(t))t≥0 ge-
nannt.

Bis zum Zeitpunkt J∞ — ob dies nun endliche oder unendliche Werte annnimmt
— wird der Markov-Sprung-Prozess vollständig beschrieben durch
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1. die eingebettete Markov-Kette (Xn)n≥0, die die Folge aller Zustände dar-
stellt, durch die (X(t))t≥0 verläuft, und durch

2. die Verweildauern Tin (in ∈ E , n ≥ 0) in den aufeinanderfolgend von
(X(t))t≥0 bzw. (Xn)n≥0 besuchten Zuständen.

(Anderson, [2, S. 17 f.])

Ist nun eine konservative Q-Matrix Q gegeben, kann ausgehend von einer dis-
kreten Markov-Kette (Xn)n≥0 mit Übergangswahrscheinlichkeiten wie in (1.1.11)
und einer Folge von Verweildauern (Tin)n≥0 auf kanonische Weise ein Markov-
Sprung-Prozess (X(t))t≥0 konstruiert werden. Problematisch wird es allerdings,
wenn die Explosionszeit J∞ endliche Werte annimmt. In diesem Fall determiniert
das Konstruktionsverfahren den Prozess (X(t))t≥0 nur bis zur Explosionszeit und
seine Fortsetzung über J∞ hinaus unter Gewährleistung der Markov-Eigenschaft
ist durch Q nicht mehr eindeutig festgelegt, d.h. zu Q können mehrere Standard-
Übergangsmatrixfunktionen mit P′(0+) = Q existieren. Dieses Problem kann
jedoch durch die Erweiterung von E um den absorbierenden Zustand ∆ und
Übergang zu der durch Differentiation von (P∆(t))t≥0 (festgelegt durch (1.1.5))
entstandenen Q-Matrix Q∆ = (qij)i,j∈E∆

gelöst und so zu einer beliebigen konser-
vativen Q-Matrix Q ein Markov-Sprung-Prozess mit rechtsseitig stetigen Pfaden
konstruiert werden.

Zum Explosionszeitpunkt J∞ können statt der Absorption in ∆ auch noch andere
Fortsetzungen über J∞ hinaus unter Gültigkeit der Markov-Eigenschaft gefunden
werden. Jedoch gilt für jede weitere zu Q gehörende substochastische Standard-
Übergangsmatrixfunktion P̃(t) = (p̃ij(t))i,j∈E

p̃ij(t) ≥ pij(t), i, j ∈ E , t ≥ 0.

Auf Grund dieser Minimalitätseigenschaft wird (X(t))t≥0 auch als die zu Q gehö-
rende minimale Konstruktion bezeichnet.
(Alsmeyer, [1, S. 33 ff.])

Satz 1.1.12 (Reuters Explosionskriterium). Die minimale Konstruktion
(X(t))t≥0 ist genau dann nicht-explodierend, wenn x = 0 die einzige nicht-negative
und beschränkte Lösung der Gleichung Qx = x bildet.

(Hierbei wird ein Vektor x = (xi)i∈E ∈ R|E| als nicht-negativ bzw. beschränkt
bezeichnet, wenn xi ≥ 0 für alle i ∈ E bzw. supi∈E |xi| < ∞.)
(Alsmeyer, [1, Satz 7.3])

Vorwärts- und Rückwärts-Differentialgleichungen

In der Praxis besteht die Bedeutung der hier vorgestellten Differentialgleichungs-
systeme darin, dass sich — sobald die Einträge der Q-Matrix bekannt sind — mit
ihrer Hilfe in manchen Fällen die Übergangsfunktionen berechnen lassen.
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Satz 1.1.13. Sei (P(t))t≥0 eine Standard-Übergangsmatrixfunktion mit konser-
vativer Q-Matrix Q. Dann gelten die Kolmogorovschen Rückwärts-Differential-
gleichungen

p′ij(t) =
∑
k∈E

qikpkj(t), i, j ∈ E , t ≥ 0, (1.1.12)

also

P′(t) = QP(t), t ≥ 0.
(Alsmeyer, [1, Satz 6.3])

Satz 1.1.14. Sei (P(t))t≥0 eine Standard-Übergangsmatrixfunktion mit konser-
vativer Q-Matrix Q. Dann gelten die Kolmogorovschen Vorwärts-Differential-
gleichungen

p′ij(t) =
∑
k∈E

pik(t)qkj, i, j ∈ E , t ≥ 0, (1.1.13)

also

P′(t) = P(t)Q, t ≥ 0,

wenn (P(t))t≥0 die eindeutig bestimmte Standard-Übergangsmatrixfunktion mit
Q-Matrix Q ist.
(Alsmeyer, [1, Satz 6.4])

Die minimale Konstruktion erfüllt — auch wenn sie substochastisch ist — sowohl
die Vorwärts-, als auch die Rückwärts-Differentialgleichungen.

Existenz und Eindeutigkeit der Q-Funktion,
Gestalt der minimalen Q-Funktion

Wie schon erwähnt, ist die Q-Funktion eines Markov-Sprung-Prozesses bzw. die
Lösung der obigen Differentialgleichungen keineswegs eindeutig bestimmt; auch
ihre Existenz ist nur unter bestimmten Bedingungen gesichert.

Theorem 1.1.15. Sei Q eine stabile aber nicht notwendig konservative Q-Matrix.
Dann existiert eine (möglicherweise substochastische) Übergangsfunktion p∗ij(t),
welche sowohl die Rückwärts- als auch die Vorwärts-Differentialgleichungen erfüllt,
und jeweils die minimale Lösung dieser Gleichungen ist, in dem Sinne, dass, wenn
pij(t) irgendeine nicht-negative Lösung (nicht notwendig eine Übergangsfunktion)
der Rückwärts- oder Vorwärts-Differentialgleichungen ist, für alle i, j ∈ E, t ≥ 0,
p∗ij(t) ≤ pij(t) gilt.

Ferner ist p∗ij(t) die minimale Q-Funktion, d.h., wenn pij(t) irgendeine ande-
re Q-Funktion ist (nicht notwendig eine Lösung der Rückwärts- oder Vorwärts-
Differentialgleichungen), gilt p∗ij(t) ≤ pij(t) für alle i, j ∈ E , t ≥ 0.
(Anderson, [2, Thm. 2.2.2])
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Definition 1.1.16. Eine Q-Matrix Q heißt gleichmäßig beschränkt, wenn

supi∈E qi < +∞.
(Anderson, [2, S. 83])

Satz 1.1.17. Sei Q eine nicht notwendig konservative, gleichmäßig beschränk-
te Q-Matrix. Dann ist die minimale Lösung p∗ij(t) die eindeutig bestimmte Q-
Funktion. Wenn Q zudem konservativ ist, so ist die minimale Lösung p∗ij(t) au-
ßerdem stochastisch.
(Anderson, [2, Prop. 2.2.9, Cor. 2.2.5])

Satz 1.1.18. Sei Q eine gleichmäßig beschränkte, nicht notwendig konservative
Q-Matrix, c eine Konstante mit

sup
i∈E

qi ≤ c.

Definiere die substochastische Matrix

P̂ = c−1Q + I,

d.h.

p̂ij =
1

c
qij + δij, i, j ∈ E .

Dann ist die minimale Lösung p∗ij(t) die eindeutig bestimmte Q-Funktion und
kann explizit durch

p∗ij(t) = exp (−ct)
∞∑

n=0

(ct)n

n!
p̂

(n)
ij , i, j ∈ E , t ≥ 0,

ausgedrückt werden (wobei p̂
(n)
ij die i,j-te Komponente von P̂n ist).

p∗ij(t) ist genau dann stochastisch, wenn Q konservativ ist.
(Anderson, [2, Prop. 2.2.10])
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Bemerkung 1.1.19. Ist E ein endlicher Zustandsraum, so kann die Darstellung
von p∗ij(t) noch wie folgt vereinfacht werden:

(p∗ij(t))i,j∈E := P∗(t) = exp (−ct)
∞∑

n=0

(ct)n

n!
P̂n

= exp (−ct)
∞∑

n=0

tn

n!
(Q + cI)n

= exp (−ct)
∞∑

n=0

tn

n!

n∑
k=0

(
n

k

)
ckQn−k

= exp (−ct)
∞∑

k=0

(ct)k

k!

∞∑
n=k

(tQ)n−k

(n− k)!

=
∞∑

m=0

(tQ)m

m!
:= exp (tQ).

Somit ergibt sich

p∗ij(t) =
∞∑

n=0

tn

n!
q
(n)
ij , i, j ∈ E , t ≥ 0, (1.1.14)

wobei q
(n)
ij die i,j-te Komponente von Qn bezeichnet.

(Anderson, [2, S. 85 f.])

Klassifikation von Zuständen

Sei nun pij(t), i, j ∈ E , eine Standard-Übergangsfunktion und sei (X(t))t≥0 ein
Markov-Sprung-Prozess mit Zustandsraum E , der pij(t) als Übergangsfunktion
hat.

Die folgende Klassfikation von Elementen des Zustandsraums soll — genau wie bei
diskreten Markov-Ketten — die möglichen Pfade des Prozesses aufzeigen.

Definition 1.1.20. Sind i, j ∈ E gegeben, so ist j von i aus erreichbar, in Zeichen
i ↪→ j, wenn pij(t) > 0 für ein (und damit für alle) t > 0.

Die Zustände i und j heißen verbunden oder auch kommunizierend, in Zeichen
i ↔ j, wenn i ↪→ j und j ↪→ i.
(Anderson, [2, S. 155])

Definition 1.1.21. ”↔” ist eine Äquivalenzrelation, die den Zustandsraum E in
disjunkte Äquivalenzklassen, Kommunikationsklassen genannt, aufteilt.

Die Übergangsfunktion pij(t) heißt irreduzibel, wenn der gesamte Zustandsraum
E die einzige Kommunikationsklasse bildet, wenn also alle Zustände in E mitein-
ander verbunden sind.
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Eine Kommunikationsklasse C heißt abgeschlossen, wenn pij(t) = 0 für alle t ≥ 0
und i ∈ C, j /∈ C, d.h., wenn sie nicht mehr verlassen werden kann.
(Anderson, [2, S. 155])

Definition 1.1.22. Ein Zustand i ∈ E ist rekurrent, wenn∫ ∞

0

pii(t)dt = +∞,

und andernfalls transient.
(Anderson, [2, S. 155])

Definition 1.1.23. Ein rekurrenter Zustand i ∈ E heißt positiv rekurrent, wenn
limt→+∞ pii(t) > 0, und null-rekurrent, wenn limt→+∞ pii(t) = 0.
(Anderson, [2, S. 158])

Wird die speziellere Situation eines regulären Markov-Sprung-Prozesses (d.h. ei-
nes nicht-explodierenden Markov-Sprung-Prozesses in einem Standard-Modell
mit rechtsseitig stetigen, stückweise konstanten Pfaden, einer Standard-Über-
gangsmatrixfunktion und einer konservativen Q-Matrix) betrachtet, kann für sta-
bile Zustände auch folgende Definition der Rekurrenzeigenschaft angeben wer-
den.

Hierfür werden die sukzessiven Eintrittszeiten (En(i))n≥0 in einen Zustand i ∈ E
eingeführt mit

E0(i) ≡ 0, En(i) := inf {Jk > En−1(i) : X(Jk) = Xk = i} für n ≥ 1;
(1.1.15)

zusätzlich werden

f ∗ij := P (E1(j) < ∞|X(0) = i) =: Pi(E1(j) < ∞);

µ∗ij := Ei(E1(j))
(1.1.16)

definiert (wobei Ei den Erwartungswert unter Pi bezeichnet).
(Alsmeyer, [1, S. 39 f.])

Definition 1.1.24. Ein stabiler Zustand i ∈ S heißt

• rekurrent, wenn f ∗ii = 1, und transient, wenn f ∗ii < 1.

• positiv rekurrent (oder ergodisch), wenn f ∗ii = 1 und µ∗ii < ∞, und null-
rekurrent, wenn f ∗ii = 1 und µ∗ii = ∞.

µ∗ii heißt mittlere Rekurrenzzeit von i.
(Alsmeyer, [1, 8.3])
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Satz und Definition 1.1.25. Rekurrenz, Transienz, positive Rekurrenz und
Null-Rekurrenz sind Solidaritätseigenschaften, d.h. sie werden von kommunizie-
renden Zuständen geteilt.
(Alsmeyer, [1, Satz 8.8])

Stationäre Maße

Bei der Beschreibung des Langzeitverhaltens eines Markov-Sprung-Prozesses spie-
len die sogenannten stationären Maße eine zentrale Rolle.

Definition 1.1.26. Gegeben sei eine Übergangsfunktion pij(t). Ein Vektor ξ :=
(ξi)i∈E mit ξi ≥ 0 für alle i ∈ E und∑

i∈E

ξipij(t) = ξj, j ∈ E , t ≥ 0,

bzw. in Matrix-Schreibweise

ξP(t) = ξ, t ≥ 0,

wird invariantes oder stationäres Maß für pij(t) genannt.

Wenn zudem
∑

i∈E ξi = 1, wird ξ invariante oder stationäre Verteilung genannt.
(Anderson, [2, S. 159])

Theorem 1.1.27. Sei pij(t) eine irreduzible Übergangsfunktion.

1. Dann existieren die Grenzwerte ξj = limt→+∞ pij(t) und sind unabhängig
von i für alle j ∈ E. Der Vektor (ξj)j∈E ist ein invariantes Maß und entwe-
der gilt

(a) ξj = 0 für alle j ∈ E oder

(b) ξj > 0 für alle j ∈ E und
∑

j∈E ξj = 1.

2. Ist ξ̃ = (ξ̃j)j∈E ein Wahrscheinlichkeitsmaß mit ξ̃P(t) = ξ̃ für ein t > 0,
so gilt ξ̃P(t) = ξ̃ für alle t ≥ 0 (d.h. ξ̃ ist eine invariante Verteilung) und
ξ̃ = ξ mit ξ wie in Punkt 1.

(Anderson, [2, Thm. 5.1.6])

Satz 1.1.28. Sei pij(t) die Übergangsfunktion eines irreduziblen Markov-Sprung-
Prozesses. Der Prozess ist genau dann positiv rekurrent, wenn eine invariante
Verteilung für pij(t) existiert.
(Anderson, [2, Prop. 5.1.7])

Ein stationäres Maß lässt sich auch über seine Beziehung mit der Q-Matrix Q
charakterisieren.
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Aus ξP(t) = ξ folgt ξ(P(t)− I) = 0 für alle t ≥ 0 und somit

ξQ = lim
t↓0

ξ(P(t)− I)

t
= 0,

sofern der Limes auch bei linksseitiger Multiplikation mit Maßen mit dem Ope-
rator Q übereinstimmt.

Ist nun ein regulärer Markov-Sprung-Prozess gegeben, gilt folgender Satz:

Satz 1.1.29. Sei (X(t))t≥0 ein regulärer Markov-Sprung-Prozess mit Q-Matrix
Q. Ein σ-endliches Maß ξ 6= 0 auf E ist genau dann stationär für den Prozess,
wenn es der Gleichung ξQ = 0 genügt.
(Alsmeyer, [1, S. 47 bzw. Satz 9.2])

ζ-subinvariante und ζ-invariante Maße

Die im Folgenden behandelten ζ-invarianten Maße werden sich im nächsten Kapi-
tel bei der Untersuchung der sogenannten quasi-stationären Verteilung als nütz-
lich erweisen.

Definition 1.1.30. Sei pij(t) eine Standard-Übergangsfunktion, C eine Kommu-
nikationsklasse für pij(t), ζ ≥ 0. Ein Vektor (mi)i∈C mit mi > 0 für alle i ∈ C
und ∑

i∈C

mipij(t) ≤ exp (−ζt)mj, j ∈ C, t ≥ 0, (1.1.17)

heißt ζ-subinvariantes Maß für pij(t) auf C.

Wenn in (1.1.17) Gleichheit gilt, wird (mi)i∈C ζ-invariantes Maß für pij(t) auf C
genannt.
(Anderson, [2, S. 174 f.])

Theorem 1.1.31. Sei C eine Kommunikationsklasse für die Standard-Übergangs-
funktion pij(t).

1. Es existiert ein ωC ≥ 0, genannt Zerfallsparameter von C, so dass für jedes
Paar i, j ∈ C

1

t
log pij(t) → −ωC für t → +∞.

2. Für alle i ∈ C, t > 0, gilt

pii(t) ≤ exp (−ωCt).

3. Für jedes Paar i, j ∈ C existiert eine Konstante Mij > 0, so dass

pij(t) ≤ Mij exp (−ωCt).
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4. ωC ≤ infi∈C qi.

5. Wenn ωC > 0, so ist die Klasse C transient.
(Anderson, [2, Thm. 5.1.9])

Bemerkung 1.1.32. Falls ein ζ-subinvariantes Maß existiert, so gilt

mjpjj(t) ≤
∑
i∈C

mipij(t) ≤ exp (−ζt)mj, j ∈ C, t > 0,

und damit

− log pjj(t)

t
≥ ζ, j ∈ C, t > 0,

also ζ ≤ ωC.
(Anderson, [2, S. 175])

Theorem 1.1.33. Sei C eine Kommunikationsklasse mit Zerfallsparameter
ωC ≥ 0. Dann existiert ein ωC-subinvariantes Maß für pij(t) auf C.
(Anderson, [2, Thm. 5.2.7])

Definition 1.1.34. Ein Zustand i ∈ C heißt ωC-rekurrent, wenn∫ ∞

0

pii(t) exp (ωCt)dt = +∞

und andernfalls ωC-transient.
(Anderson, [2, S. 177])

Satz 1.1.35. ωC-Rekurrenz und ωC-Transienz sind Solidaritätseigenschaften.
(Anderson, [2, S. 177])

Theorem 1.1.36. Die Kommunikationsklasse C habe Zerfallsparameter ωC und
sei ωC-rekurrent. Dann ist das ωC-subinvariante Maß (mi)i∈C bis auf skalares
Vielfaches eindeutig bestimmt und sogar ωC-invariant.
(Anderson, [2, Thm. 5.2.8])

1.2 Endliche Geburts-und-Todes-Prozesse

Kapitel 3 bis 6 der vorliegenden Arbeit beschäftigen sich mit speziellen Markov-
Sprung-Prozessen, nämlich mit endlichen Geburts-und-Todes-Prozessen, die hier
kurz eingeführt werden.

Definition 1.2.1. Gegeben sei eine Menge S = {0, 1, ..., N}, sowie nicht-negative
Zahlen λi und µi, i ∈ S.
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Ein endlicher Geburts-und-Todes-Prozess (X(t))t≥0 ist ein Markov-Sprung-Prozess
mit Zustandsraum S und Q-Matrix gegeben durch

qij =


λi falls j = i + 1, 0 ≤ i < N,

µi falls j = i− 1, 0 < i ≤ N,

−(λi + µi) falls j = i, 0 ≤ i ≤ N,

0 sonst,

(1.2.1)

d.h.

Q =


−(λ0 + µ0) λ0 0 · · · 0

µ1 −(λ1 + µ1) λ1 · · · 0
0 µ2 −(λ2 + µ2) · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · −(λN + µN)

 ; (1.2.2)

der Prozess kann also von jedem Zustand i nur in die Nachbarzustände i+1 oder
i− 1 springen.

Die λi werden als Geburtsraten, die µi als Sterberaten bezeichnet.
(Anderson, [2, S. 96] bzw. Alsmeyer, [1, S. 64 f.])

Alle in dieser Arbeit betrachteten endlichen Geburts-und-Todes-Prozesse sind
zeitlich homogen.

Die Q-Matrix (1.2.2) ist tridiagonal und stabil; konservativ ist sie genau dann,
wenn µ0 = 0 ist (vgl. Definition 1.1.9).

Satz 1.2.2. Ist eine Q-Matrix der Form (1.2.2) gegeben, so existiert eine ein-
deutig bestimmte Q-Funktion, welche auch eindeutig bestimmte Lösung der Kol-
mogorovschen Vorwärts- und Rückwärtsdifferentialgleichungen ist.

Beweis. Die Existenz der Q-Funktion folgt aus der Stabilität von Q (vgl. Theorem
1.1.15). Da Q zudem gleichmäßig beschränkt ist, gilt die Eindeutigkeit mit Satz
1.1.17.

Somit müssen hier auch keine weiteren Gedanken auf die minimale Konstruktion
des Prozesses verwendet werden und mit Reuters Explosionskriterium 1.1.12 folgt
direkt:

Korollar 1.2.3. Ein endlicher Geburts-und-Todes-Prozess ist nicht-explodierend.

Werden die möglichen Übergänge innerhalb eines hinreichend kurzen Zeitraumes
(t, t + h] betrachtet, so ist es auch möglich, die Übergangswahrscheinlichkeiten
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ohne Umstände direkt anzugeben; sie lauten

pij(t, t + h) = pij(h) =


λih + o(h) falls j = i + 1, 0 ≤ i < N,

µih + o(h) falls j = i− 1, 0 < i ≤ N,

1− λih− µih + o(h) falls j = i, 0 ≤ i ≤ N,

o(h) sonst,

(1.2.3)
wobei o(·) das Landau-Symbol bezeichnet, d.h. o(h) ist eine Funktion in h, so
dass o(h)/h −→ 0 für h → 0.

Mit Hilfe dieser Übergangswahrscheinlichkeiten kann die Gestalt der Vorwärts-
Differentialgleichungen P′(t) = P(t)Q wie folgt anschaulich hergeleitet werden
(vgl. Feller [8], S. 371 f.).

Grundsätzlich gibt es folgende Übergangsmöglichkeiten, die dafür sorgen, dass
sich der Prozess zum Zeitpunkt t + h im Zustand i befindet:

1. Zum Zeitpunkt t befindet sich der Prozess im Zustand i und zwischen t und
t + h findet kein Übergang statt.

2. Zum Zeitpunkt t befindet sich der Prozess im Zustand i− 1 und zwischen
t und t + h findet ein Übergang in den Zustand i statt.

3. Zum Zeitpunkt t befindet sich der Prozess im Zustand i + 1 und zwischen
t und t + h findet ein Übergang in den Zustand i statt.

4. Zwischen den Zeitpunkten t und t + h finden zwei oder mehr Übergänge
statt.

Die Wahrscheinlichkeit für letzteres ist — da wir es mit einem Geburts-und-
Todes-Prozess zu tun haben — o(h); die anderen Möglichkeiten schließen sich
jeweils gegenseitig aus, ihre Wahrscheinlichkeiten werden daher aufaddiert. Somit
ergibt sich für alle i = 1, . . . , N − 1

pi(t + h) = (1− λih− µih)pi(t) + λi−1hpi−1(t) + µi+1hpi+1(t) + o(h)

und Umformung führt auf der linken Seite zu dem Differenzenquotienten von
pi(t), nämlich

pi(t + h)− pi(t)

h
= λi−1pi−1(t)− (λi + µi)pi(t) + µi+1pi+1(t) +

o(h)

h
.

Lässt man jetzt h gegen 0 gehen, so gilt

p′i(t) = λi−1pi−1(t)− (λi + µi)pi(t) + µi+1pi+1(t).

Für den Fall i = 0 existieren nur die Möglichkeiten 1., 3. und 4.; für i = N die
Möglichkeiten 1., 2. und 4. Analog zu dem Fall i = 1, . . . , N ergeben sich die
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Gleichungen

p′0(t) = −(λ0 + µ0)p0(t) + µ1p1(t)

p′N(t) = λN−1pN−1(t)− (λN + µN)pN(t),

also genau die oben genannten Differentialgleichungen.

Die Komponenten qij der Q-Matrix haben durch ihre Definition qij = p′ij(0+)
auch eine anschauliche Bedeutung in Bezug auf den Prozess. Diese Definition ist
äquivalent zu der Gleichung

P (X(t + h) = j|X(t) = i) = pij(h) = qijh + o(h).

Durch Vergleich mit (1.2.3) wird offensichtlich, dass die qij gerade die in (1.2.1)
angegebene Form haben.
(Anderson, [2, S. 62 f.])

Insgesamt gesehen kann im Fall endlicher Geburts-und-Todes-Prozesse immer
davon ausgegangen werden, dass alle möglichen Fälle gutartig sind.

Es kann ein Standard-Modell zugrunde gelegt werden, bei der Übergangsfunktion
handelt es sich — wie in (1.2.3) zu sehen — um eine Standard-Übergangsfunktion
und es kann angenommen werden, dass alle Pfade unter jeder Anfangsverteilung
fast sicher rechtsseitig stetig sind und linksseitige Limiten haben; solche Prozesse
werden càdlàg genannt. Die Menge der Punkte, durch die sich der Prozess von
einem anderen gleichverteilten unterscheidet, wäre eine Nullmenge (z.B. könnte
es vorkommen, dass der eine Prozess sich im Moment des Sprungs noch im alten,
der andere aber schon im neuen Zustand befindet; in dieser Arbeit wird letzteres
angenommen).



Kapitel 2

Quasi-stationäre Verteilungen

Ausgangslage dieses Kapitels ist ein zeitlich homogener Markov-Sprung-Prozess
(X(t))t≥0 mit endlichem Zustandsraum S = {0, 1, . . . , N}, 0 als einzigem absor-
bierendem Zustand und C = {1, . . . , N} als transienter Kommunikationsklasse.
Die Q-Matrix Q = (qij)i,j∈S ist konservativ und damit gleichmäßig beschränkt.
Es existiert eine eindeutig bestimmte stochastische Standard-Übergangsfunktion
pij(t). Damit die Wahrscheinlichkeit, 0 zu erreichen, gegeben, dass der Prozess in
C startet, positiv ist, wird davon ausgegangen, dass qi0 > 0 für mindestens ein
i ∈ C. Tatsächlich wird der Prozess dann fast sicher in 0 absorbiert und hat eine
degenerierte stationäre Verteilung. Diese liefert jedoch keine Informationen über
das Verhalten des Prozesses während des Zeitraums bis zur Absorption.

Es bietet sich an, den Prozess bedingt unter Nicht-Absorption zu betrachten, und
zu schauen, ob sich dann eine Art stationäres Verhalten zeigt — man gelangt so
zu dem Begriff der Quasi-Stationarität.

In diesem Kapitel werden zunächst die in diesem Zusammenhang gängigen Defini-
tionen vorgestellt — der Übersichtlichkeit halber wird zwischen ”quasi-invarianter”
und ”quasi-stationärer Verteilung” unterschieden. Ziel ist der Beweis der Exis-
tenz einer quasi-invarianten Verteilung sowie der Äquivalenz der Begriffe ”quasi-
invariant” und ”quasi-stationär” — alles für die oben beschriebene spezielle Si-
tuation.

2.1 Definition der Quasi-Invarianz und Quasi-

Stationarität

In der Literatur finden sich zwei verschiedene Definitionen des Begriffs ”quasi-
stationäre Verteilung”. Die eine — hier mit der Bezeichnung ”quasi-invariante
Verteilung” — beschreibt die Invarianz der Verteilung des bedingten Prozesses;
sie ist eine Anfangsverteilung auf den nicht-absorbierenden Zuständen, so dass

24
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die Verteilung von X(t), bedingt darunter, dass der Prozess zum Zeitpunkt t
noch nicht absorbiert ist, unabhängig von t (t ≥ 0) ist. Die andere benennt den
Grenzwert für t →∞ der Verteilung von X(t) bedingt darunter, dass der Prozess
zum Zeitpunkt t noch nicht absorbiert ist (sofern existent).

Definition 2.1.1. Sei π = (πj)j∈C Anfangsverteilung des Prozesses (X(t))t≥0

auf den nicht-absorbierenden Zuständen (d.h. π0 = 0). π heißt quasi-invariante
Verteilung, wenn

Pπ(X(t) = j|X(t) 6= 0) = πj, j ∈ C, t ≥ 0. (2.1.1)

Formal ausgedrückt heißt π also quasi-invariante Verteilung, wenn

pj(t)∑
i∈C pi(t)

= πj, j ∈ C, t ≥ 0, (2.1.2)

wobei
pj(t) :=

∑
i∈C

πipij(t), j ∈ S, t ≥ 0. (2.1.3)

Bemerkung 2.1.2. Für eine quasi-invariante Verteilung gilt immer πj > 0,
j ∈ C (vgl. Satz 1.1.5 und obige Gleichungen (2.1.2), (2.1.3)).

Definition 2.1.3. Gegeben irgendeine Anfangsverteilung, wird
P (X(t) = j|X(t) 6= 0), j ∈ C, für t →∞ betrachtet. Wenn der Grenzwert

π̃j = lim
t→∞

P (X(t) = j|X(t) 6= 0), j ∈ C, (2.1.4)

existiert, so heißt π̃ = (π̃j)j∈C quasi-stationäre Verteilung.

2.2 Existenz der quasi-invarianten Verteilung

Nair und Pollett haben in ihrer Arbeit [14] die Existenz einer quasi-invarianten
Verteilung mit der Existenz einer ζ-invarianten Verteilung verknüpft. Im Folgen-
den wird ihr Ergebnis präsentiert. Als Vorbereitung für den Beweis der Exis-
tenz einer ζ-invarianten Verteilung werden (aufbauend auf der Perron-Frobenius-
Theorie) ML-Matrizen vorgestellt, und schließlich kann mit Hilfe dieser Ergebnis-
se und der Grundlagen des ersten Kapitels die Existenz einer eindeutig bestimm-
ten quasi-stationären Verteilung gefolgert werden.

2.2.1 Charakterisierung quasi-invarianter Verteilungen

Satz 2.2.1. Eine Verteilung π = (πj)j∈C auf C ist genau dann quasi-invariant,
wenn sie für ein ζ > 0 ein ζ-invariantes Maß für pij(t) auf C ist.
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Beweis. Zunächst sei π ein ζ-invariantes Maß für pij(t) auf C mit ζ > 0, pj(t) wie
in (2.1.3) für alle t ≥ 0. Laut Definition der ζ-Invarianz gilt pj(t) = exp (−ζt)πj,
und da π eine Verteilung ist, gilt außerdem

∑
j∈C pj(t) = exp (−ζt)

∑
j∈C πj =

exp (−ζt). Es ergibt sich

πj =
pj(t)

exp (−ζt)
=

pj(t)∑
i∈C pi(t)

,

woraus mit (2.1.2) die Quasi-Invarianz von π folgt.

Umgekehrt sei nun π eine quasi-invariante Verteilung für pij(t) auf C. Mit (2.1.2)
ergibt sich

pj(t) = g(t)πj, j ∈ C, t > 0, (2.2.1)

wobei g(t) :=
∑

j∈C pj(t) eine stetige Funktion bildet.
Zu zeigen bleibt also, dass g(t) = exp (−ζt) für ein ζ > 0.
Hierfür wird die Chapman-Kolmogorov-Gleichung pij(s+ t) =

∑
k∈S pik(s)pkj(t),

i, j ∈ S, s, t ≥ 0, verwendet. Multiplikation mit πi, Summation über i ∈ C,
sowie Verwendung der Gleichung (2.1.3) und der Tatsache, dass 0 absorbierend
ist, liefert ∑

i∈C

πipij(s + t) =
∑
i∈C

∑
k∈S

πipik(s)pkj(t)

⇔ pj(s + t) =
∑
k∈S

pk(s)pkj(t)

⇔ pj(s + t) =
∑
k∈C

pk(s)pkj(t), j ∈ C, s, t ≥ 0.

Durch Summation dieses Ausdrucks über j ∈ C und Verwendung der Definition
von g(t) sowie der Gleichungen (2.2.1) und (2.1.3) ergibt sich nun, dass g folgender
Funktionalgleichung genügt:∑

j∈C

pj(s + t) =
∑
j∈C

∑
k∈C

pk(s)pkj(t)

⇔ g(s + t) =
∑
j∈C

∑
k∈C

g(s)πkpkj(t)

⇔ g(s + t) = g(s)
∑
j∈C

pj(t)

⇔ g(s + t) = g(s)g(t), s, t ≥ 0.

Da pj(t) ≥ πjpjj(t) > 0 (vgl. Satz 1.1.5) und (mit (2.1.3))

g(t) =
∑
j∈C

∑
i∈C

πipij(t) =
∑
i∈C

πi

∑
j∈C

pij(t) ≤ 1, (2.2.2)
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gilt 0 < g(t) ≤ 1. Es folgt g(t) = exp (−ζt) für ein ζ ≥ 0, denn g ist stetig.
Schließlich gilt aber noch für mindestens ein i ∈ C pi0(t) > 0 für alle t > 0, so
dass g(t) < 1 für alle t > 0 (vgl. (2.2.2)), womit der Fall ζ = 0 ausgeschlossen ist.

Nach diesem Satz ist also die Existenz einer quasi-invarianten Verteilung äqui-
valent zur Existenz einer ζ-invarianten Verteilung. Um diese zu zeigen, bedarf es
jedoch zunächst noch einiger Vorbereitung.

2.2.2 Vorbereitung: ML-Matrizen

Seneta betrachtet in seinem Buch [19] quadratische, nicht-negative Matrizen, mit
deren Hilfe er dann die sogenannten ML-Matrizen darstellt (siehe Kapitel 2, Ab-
schnitt 3 des Buches). Diese sind ebenfalls quadratisch, jedoch können die Ein-
träge auf der Diagonalen negativ sein — die Q-Matrix des in diesem Kapitel
betrachteten Prozesses ist also auch eine ML-Matrix.

Grundlagen: Perron-Frobenius-Theorie für primitive Matrizen

Sei T = (tij)i,j∈{1,...,N} eine quadratische nicht-negative Matrix, d.h. tij ≥ 0 für
alle i, j ∈ {1, ..., N}, was symbolisch durch T ≥ 0 ausgedrückt wird. Analoges gilt
für T > 0 und T ≥ B, wobei T und B quadratische Matrizen gleicher Dimension
sind.

Seien x′ = (xi)i∈{1,...,N} und y = (yi)i∈{1,...,N} Bezeichnungen für einen Zeilen-

bzw. einen Spaltenvektor, T k = (t
(k)
ij )i,j∈{1,...,N} für die k-te Potenz von T .

Definition 2.2.2. Eine quadratische nicht-negative Matrix T heißt irreduzibel,
wenn für jedes Paar i, j ∈ {1, ..., N} eine positive ganze Zahl m ≡ m(i, j) existiert,

so dass t
(m)
ij > 0.

(Seneta, [19, Def. 1.6])

Definition 2.2.3. Eine quadratische nicht-negative Matrix T heißt primitiv,
wenn eine positive ganze Zahl k existiert, so dass T k > 0.
(Seneta, [19, Def. 1.1])

Theorem 2.2.4 (Perron-Frobenius-Theorem für primitive Matrizen).
T sei eine nicht-negative primitive N ×N-Matrix. Dann existiert ein Eigenwert
rT (Perron-Frobenius-Eigenwert genannt), so dass

1. rT reell, rT > 0;

2. echt positive linke und rechte Eigenvektoren zum Eigenwert rT existieren;

3. rT > |b| für jeden Eigenwert b 6= rT ;
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4. die Eigenvektoren zum Eigenwert rT bis auf skalares Vielfaches eindeutig
bestimmt sind;

5. falls 0 ≤ B ≤ T und d ein Eigenwert von B ist, |d| ≤ rT gilt;

ferner impliziert |d| = rT , dass B = T ;

6. rT eine einfache Nullstelle des charakteristischen Polynoms von T ist.
(Seneta, [19, Thm. 1.1])

Die verschiedenen Eigenwerte einer primitiven Matrix T werden nun mit b1 =
rT , b2, ..., bn, n ≤ N, bezeichnet, wobei rT > |b2| ≥ |b3| ≥ ... ≥ |bn|. Sei mi, i ∈
{1, ..., n}, die Vielfachheit der Nullstelle bi im charakteristischen Polynom.

Theorem 2.2.5. Sei T eine primitive Matrix.

1. Falls b2 6= 0, so gilt für k →∞

T k = rk
T wv′ + O(km2−1|b2|k)

komponentenweise.

2. Falls b2 = 0, so gilt für k ≥ N − 1

T k = rk
T wv′.

In beiden Fällen sind w, v′ positive rechte und linke Eigenvektoren zum Eigenwert
rT , normiert, so dass v′w = 1.
(Seneta, [19, Thm. 1.2])

ML-Matrizen: Erweiterung der Perron-Frobenius-Struktur

Definition 2.2.6. Eine quadratische Matrix B = (bij)i,j∈{1,...,N} mit reellwertigen
Einträgen und bij ≥ 0 für i 6= j heißt ML-Matrix.

(Manchmal wird hier auf die Namen von Metzler und Leontief Bezug genommen.)

Seneta verwendet nun die oben vorgestellte Perron-Frobenius-Theorie, um Aus-
sagen über diese Klasse von Matrizen herzuleiten.

Eine ML-Matrix B kann immer durch die Beziehung

T = βI + B

mit einer nicht-negativen Matrix T ≡ T (β) verknüpft werden, wobei β ≥ 0 und
hinreichend groß, so dass T nicht-negativ ist.

Definition 2.2.7. Eine ML-Matrix B heißt irreduzibel, wenn T irreduzibel ist.

Wird in obiger Darstellung β hinreichend groß gewählt, so kann die irreduzible
Matrix T auch primitiv gemacht werden; z.B. mit β > maxi |bii|.
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Theorem 2.2.8. Sei B eine (N ×N) irreduzible ML-Matrix. Dann existiert ein
Eigenwert rB ( ”maximaler” Eigenwert genannt), so dass

1. rB reell ist;

2. echt positive linke und rechte Eigenvektoren zum Eigenwert rB existieren,
welche bis auf skalares Vielfaches eindeutig bestimmt sind;

3. rB > <b für jeden Eigenwert b, b 6= rB, von B (d.h. rB ist größer als der
Realteil jedes Eigenwertes b von B, b 6= rB);

4. rB einfache Nullstelle des charakteristischen Polynoms von B ist;

5. rB ≤ 0 genau dann, wenn ein y ≥ 0, 6= 0, existiert, so dass By ≤ 0; in
diesem Fall gilt y > 0.

Ferner gilt rB < 0 genau dann, wenn mindestens eine Komponente von By
echt negativ ist.

Beweis. Sei B = T − βI mit β hinreichend groß, so dass T primitiv ist. Genau
dann ist bi Eigenwert von B, wenn bi Nullstelle des charakteristischen Polynoms
von B ist, d.h. wenn

0 = det (B − biI) = det (T − βI − biI) = det (T − (bi + β)I) (2.2.3)

gilt — also genau dann, wenn bi + β Eigenwert von T ist. Wird nun rB =
rT − β gewählt, so folgen die Punkte 1 bis 4 aus dem Perron-Frobenius-Theorem
2.2.4:

Punkt 1 ist klar mit Theorem 2.2.4, Punkt 1.

Punkt 2 folgt aus Theorem 2.2.4, Punkt 2 und 4. Ist v′ ein positiver, bis auf
skalares Vielfaches eindeutig bestimmter linker Eigenvektor von T zum Eigenwert
rT , so gilt

v′T = rT v′ = (rB + β)v′,

was äquivalent ist zu
v′B = v′(T − βI) = rBv′.

Also ist v′ auch ein positiver, bis auf skalares Vielfaches eindeutig bestimmter
linker Eigenvektor von B zum Eigenwert rB. Analog folgt der Rest von Punkt
2.

Punkt 3 gilt mit Theorem 2.2.4, Punkt 3, da aus

rT = rB + β > |b| ≥ <b

für jeden Eigenwert b 6= rT von T = βI + B, folgt, dass

rB > <b− β = <(b− β)

für jeden Eigenwert b− β 6= rT − β = rB von B = T − βI.
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Punkt 4 ergibt sich aus Theorem 2.2.4, Punkt 6, und obiger Gleichung (2.2.3).

Um nun die Richtung ”⇒” von Punkt 5 zu zeigen, wird rB ≤ 0 vorausgesetzt.
Dies ist äquivalent zu rT − β ≤ 0, also rT ≤ β. Somit existiert ein y ≥ 0, 6= 0, so
dass

Ty = rT y ≤ βy

⇔ By = (T − βI)y ≤ 0.

Für die Rückrichtung wie auch für die Anmerkung wird die Bedingung By ≤ 0
wie folgt geschrieben

Ty ≤ βy, β > 0. (2.2.4)

Mit Hilfe dieser Darstellung kann im Folgenden sowohl y > 0, als auch β ≥ rT ,
d.h. rB = rT − β ≤ 0 gezeigt werden.
Zunächst wird angenommen, dass mindestens eine Komponente — etwa die i-te
— von y Null ist. Mit T ky ≤ βky folgt, dass

N∑
j=1

t
(k)
ij yj ≤ βkyi.

Da T irreduzibel ist, existiert für dieses i und jedes j ein k, so dass t
(k)
ij > 0; und

weil laut Voraussetzung yj > 0 für mindestens ein j, folgt, dass

yi > 0,

was ein Widerspruch ist. Also gilt y > 0.
Wird nun (2.2.4) mit v′, einem positiven linken Eigenvektor von T zum Eigenwert
rT , multipliziert, ergibt sich

βv′y ≥ v′Ty = rT v′y, (2.2.5)

d.h. β ≥ rT , also rB = rT − β ≤ 0. Ist mindestens eine Komponente von By echt
negativ, so gilt in (2.2.4) für mindestens eine Komponente echte Ungleichheit,
und mit (2.2.5) folgt β > rT , d.h. rB = rT − β < 0.

ML-Matrizen B tauchen in Anwendungen häufig in Verbindung mit der Matrix-
Exponentialfunktion exp (tB) auf — so auch in unserer speziellen Situation.
Da der Zustandsraum endlich ist, hat die Übergangsmatrixfunktion die Gestalt
P(t) = exp (tQ) (vgl. Bemerkung 1.1.19). In folgendem Theorem geht es um die
weitere Darstellung dieses Ausdrucks.

Theorem 2.2.9. Eine ML-Matrix B ist genau dann irreduzibel, wenn exp (tB) >
0 für alle t > 0. In diesem Fall gilt

exp (tB) = exp (rBt)wv′ + O(exp (rt))
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komponentenweise für t → ∞, wobei w, v′ die positiven rechten und linken Ei-
genvektoren von B zum maximalen Eigenwert rB sind, normiert, so dass v′w = 1,
und r < rB.

Beweis. Sei B = T − βI für hinreichend großes β > 0, so dass T nicht-negativ
ist. Dann gilt (mit den Rechenregeln für die Matrix-Exponentialfunktion)

exp (tB) = exp (−βtI) exp (tT ) = exp (−βt) exp (tT ),

und wegen

exp (tT ) =
∞∑

k=0

(tT )k

k!

folgt, dass exp (tB) > 0 für alle t > 0 genau dann, wenn T irreduzibel ist.

Sei nun B irreduzibel. Durch geeignete Wahl von β kann T = βI + B als pri-
mitiv vorausgesetzt werden, mit Perron-Frobenius-Eigenwert rT = rB + β. Laut
Theorem 2.2.5 gilt nun für b2 6= 0

T k = rk
T wv′ + O(km2−1|b2|k), |b2| < rT ,

für k →∞, wobei w, v′ die im Theorem verlangten Eigenschaften haben, da die
Perron-Frobenius-Eigenvektoren von T den Eigenvektoren von B zum Eigenwert
rB entsprechen. Für b2 = 0 gilt T k = rk

T wv′. Für ein δ mit 0 < δ < rT lässt sich
nun

T k − rk
T wv′ = Y (k)δk

schreiben, wobei (die Komponenten von) Y (k) → 0 für k →∞. Daher gilt

∞∑
k=0

tkT k

k!
−

∞∑
k=0

tkrk
T

k!
wv′ =

∞∑
k=0

Y (k)
(tδ)k

k!
,

d.h.

| exp (tT )− exp (rT t)wv′| ≤ exp (tδ)Y

komponentenweise, wobei Y eine positive Matrix ist, derart, dass (die Kompo-
nenten von) Y (k) vom Betrage her durch (die Komponenten von) Y gleichmäßig
beschränkt ist (sind). Multiplikation mit exp (−βt) liefert nun

| exp (tB)− exp (rBt)wv′| ≤ exp [t(δ − β)]Y,

wobei δ − β < rT − β = rB. Wird r so gewählt, dass δ − β < r < rB, folgt die
Behauptung.
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2.2.3 Ergebnis: Existenz und Eindeutigkeit

Nach all diesen Vorüberlegungen müssen nun nur noch die Fakten zusammenge-
tragen werden, um zum gewünschten Schluss zu gelangen.

Satz 2.2.10. Gegeben sei ein Markov-Sprung-Prozess der zu Beginn des Kapi-
tels beschriebenen Form. Dann existiert eine eindeutig bestimmte quasi-invariante
Verteilung π = (πj)j∈C.

Beweis. Da der Zustandsraum S endlich ist, kann die Übergangsmatrixfunktion
P(t) nach Bemerkung 1.1.19 wie folgt dargestellt werden

P(t) = exp (tQ).

Weil Q eine ML-Matrix ist, ergibt sich mit Theorem 2.2.9 weiter

P(t) = exp (rQt)wv′ + O(exp (rt)) (2.2.6)

komponentenweise für t → ∞, wobei rQ der maximale Eigenwert von Q und
w, v′ die zugehörigen positiven rechten und linken Eigenvektoren sind, normiert,
so dass v′w = 1; r < rQ. Für die Einträge der Matrix P(t) gilt damit

pij(t) = exp (rQt)(wv′)ij + O(exp (rt)), i, j ∈ S, (2.2.7)

wobei (wv′)ij > 0, ((wv′)ij)i,j∈S = wv′. Wird der Zustandsraum auf die transiente
Kommunikationsklasse C eingeschränkt, so zeigt die Grenzwertbetrachtung

lim
t→∞

1

t
log pij(t) = lim

t→∞

(
1

t
log (exp (rQt)) +

1

t
log (wv′)ij

)
= rQ,

dass es sich bei −rQ gerade um den in Theorem 1.1.31 beschriebenen Zerfalls-
parameter ωC von C handelt, weshalb die Theorie aus Kapitel 1 anwendbar ist.
Theorem 1.1.33 sichert die Existenz eines ωC-subinvarianten Maßes für pij(t) auf
C. Zudem ist C ωC-rekurrent, da mit (2.2.6) bzw. (2.2.7)∫ ∞

0

pii(t) exp (ωCt)dt =

∫ ∞

0

[exp (−ωCt)(wv′)ij + O(exp (rt))] exp (ωCt)dt

=

∫ ∞

0

[(wv′)ij + exp (ωCt)O(exp (rt))] dt

= ∞

gilt. Laut Theorem 1.1.36 ist somit das ωC-subinvariante Maß bis auf skalares
Vielfaches eindeutig bestimmt und tatsächlich ωC-invariant. Durch Normierung
ergibt sich daraus die Existenz eines eindeutig bestimmten ωC-invarianten Maßes
mit Masse 1 — was nach Theorem 2.2.1 äquivalent ist zur Existenz einer eindeutig
bestimmten quasi-invarianten Verteilung.
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2.3 Äquivalenz von Quasi-Invarianz und Quasi-

Stationarität

Satz 2.3.1. Gegeben sei ein Markov-Sprung-Prozess der zu Beginn des Kapitels
beschriebenen Form. Eine Verteilung π = (πj)j∈C ist genau dann quasi-invariant,
wenn sie quasi-stationär ist.

Beweis. Zunächst sei π eine quasi-invariante Verteilung. Dann gilt mit (2.1.1)

Pπ(X(t) = j|X(t) 6= 0) = πj −→ πj für t →∞, j ∈ C.

Falls also π die Anfangsverteilung ist, so existiert die quasi-stationäre Verteilung
und ist gleich π.

Für den Umkehrschluss sei π̃ = (π̃)j∈C eine quasi-stationäre Verteilung; $ =
($j)j∈C sei irgendeine Anfangsverteilung. Mit der Darstellung (2.2.7) der Über-
gangsverteilung gilt

P$(X(t) 6= 0) = P$(X(t) ∈ C)

=
∑
j∈C

P$(X(t) = j)

=
∑
j∈C

∑
i∈C

$ipij(t)

=
(2.2.7)

∑
j∈C

∑
i∈C

$i [exp (rQt)(wv′)ij + O(rQt)] , t ≥ 0,

und damit

P$(X(t + s) 6= 0)

P$(X(t) 6= 0)

= exp (rQs)

∑
j∈C
∑

i∈C $i [exp (rQt)(wv′)ij + O(rQt)]∑
j∈C
∑

i∈C $i [exp (rQ(t− s))(wv′)ij + O(rQ(t− s))]︸ ︷︷ ︸
−→
t→∞

1

−→
t→∞

exp (rQs), s ≥ 0.
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Wird nun die quasi-stationäre Verteilung π̃ betrachtet, so ergibt sich

π̃j = lim
t→∞

P$(X(t + s) = j|X(t + s) 6= 0)

= lim
t→∞

P$(X(t + s) = j)

P$(X(t + s) 6= 0)

= lim
t→∞

∑
i∈C

P$(X(t) = i)pij(s)

P$(X(t + s) 6= 0)

= lim
t→∞

∑
i∈C

P$(X(t) = i|X(t) 6= 0) · P$(X(t) 6= 0)

P$(X(t + s) 6= 0)
· pij(s)

=
∑
i∈C

π̃i · exp (−rQs) · pij(s), j ∈ C, s ≥ 0,

was äquivalent ist zu∑
i∈C

π̃ipij(s) = exp (rQs)π̃j, j ∈ C, s ≥ 0.

Also ist π̃ ein −rQ–invariantes Maß für pij(t) auf C (vgl. Definition 1.1.30) und
damit nach Satz 2.2.1 schon quasi-invariant.

Als Ergebnis diese Kapitels kann festgehalten werden, dass für einen Markov-
Sprung-Prozess der vorliegenden Form unabhängig von der Anfangsverteilung
immer eine eindeutig bestimmte quasi-stationäre Verteilung existiert (welche der
eindeutig bestimmten quasi-invarianten Verteilung entspricht).



Kapitel 3

Das SIS-Modell und seine
Approximationen

3.1 SIS-Modell und quasi-stationäre Verteilung

Das von N̊asell [15] (siehe auch [16], [17]) untersuchte ”closed endemic SIS mo-
del”, auch ”stochastic SIS model”, ”stochastic logistic epidemic” oder ”SIS lo-
gistic epidemic” genannt, beschreibt die Übertragung einer Infektion innerhalb
einer konstanten endlichen Population von Individuen. Ein Individuum ist immer
entweder empfänglich für die Infektion oder infiziert. Ist ein Individuum genesen,
so ist es sofort wieder empfänglich für die Infektion.

Als Modell für die Anzahl infizierter Individuen I(t) in einer konstanten Popula-
tion mit N Individuen dient ein endlicher Geburts-und-Todes-Prozess. I(t) nimmt
Werte aus dem Zustandsraum S = {0, 1, . . . , N} an. Übergänge von einem Zu-
stand i ∈ S sind nur in die benachbarten Zustände i + 1 und i− 1 während eines
hinreichend kurzen Zeitraumes möglich; falls i = 0 oder i = N , reduziert sich die
Anzahl der Nachbarn auf 1. Die Geburtsraten λi sollen proportional zum Produkt
der Anzahl infizierter und der Anzahl genesener Individuen, die Sterberaten µi

zur Anzahl infizierter Individuen sein:

λi := iλ

(
1− i

N

)
, λ > 0;

µi := iµ, µ > 0.

(3.1.1)

Die Festlegung λN = µ0 = 0 verhindert Übergänge aus dem Zustandsraum her-
aus. Dem Modell angepasst, werden die λi hier Infektionsraten und die µi Gene-
sungsraten genannt. Da der hier betrachtete Prozess zeitlich homogen ist, kann
die Übergangsfunktion

pij(t) := P (I(t) = j|I(0) = i), i, j ∈ S, t ≥ 0,

35
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betrachtet werden.

Die Eigenschaften des Modells werden durch zwei Parameter vollständig beschrie-
ben: durch die Populationsgröße N und durch den ”transmission factor” T , auch
”basic reproduction ratio” R0 genannt, definiert durch

T = R0 =
λ

µ
; (3.1.2)

letzterer ist immer positiv.

Der ”transmission factor” T spielt eine wichtige Rolle in der deterministischen
Version des Modells, welche T = 1 als Schwellenwert hat. Für T < 1 sagt dieses
Modell die Auslöschung der Infektion voraus, während für T > 1 die Etablierung
einer endemischen Infektion möglich ist.

Für die Formulierung der Kolmogorovschen Vorwärts-Differentialgleichungen wird
die Wahrscheinlichkeit betrachtet, zum Zeitpunkt t im Zustand j zu sein und fol-
gende Definition getroffen:

pj(t) :=
∑
i∈S

P (I(0) = i)pij(t), j ∈ S, und p(t) := (pj(t))j∈S . (3.1.3)

Die Gleichungen lassen sich dann in der Form

p′(t) = p(t)A

schreiben, wobei A eine quadratische Matrix der Ordnung N + 1 ist und die Ge-
stalt der in (1.2.2) angegebenen Matrix Q hat, hier mit den in (3.1.1) definierten
Infektions- und Genesungsraten. Also bezeichnet A := (aij)0≤i,j≤N gerade die Q-
Matrix des Markov-Sprung-Prozesses (I(t))t≥0. Komponentenweise ausgedrückt
gilt

p′j(t) = λj−1pj−1(t)− (λj + µj)pj(t) + µj+1pj+1(t), j ∈ S, t ≥ 0, (3.1.4)

mit den Konventionen λ−1 = 0 = p−1(t) für den Fall j = 0 und µN+1 = 0 =
pN+1(t) für den Fall j = N .

Der Zustandsraum S des Prozesses lässt sich disjunkt in die transiente Kommu-
nikationsklasse C = {1, . . . , N} und den absorbierenden Zustand 0 zerlegen, der
fast sicher in endlicher Zeit erreicht wird. Befindet sich der Prozess also in C,
so kann er von dort aus jeden Zustand erreichen — auch 0. In 0 angekommen,
kann er jedoch nicht zurück zu C. Dies entspricht auch der Anschauung, dass
die Infektion — einmal vollständig ausgelöscht (d.h. es existiert kein infiziertes
Individuum mehr, welches andere anstecken kann) — nicht erneut ausbrechen
kann.

Als Konsequenz ergibt sich, dass das SIS-Modell eine degenerierte stationäre Ver-
teilung hat, die ihre gesamte Masse auf den Ursprung legt. Dies geht direkt dar-
aus hervor, dass pA = 0 für p := (1, 0, . . . , 0) und die Q-Matrix A ist (vgl. Satz
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1.1.29). Da eine degenerierte stationäre Verteilung jedoch keine Informationen
über das Verhalten des Prozesses über einen längeren Zeitraum hinweg hergibt,
wird der Prozess (I(t))t≥0 bedingt darunter, dass die Infektion nicht ausstirbt, be-
trachtet, und man gelangt so zu der in Kapitel 2 beschriebenen quasi-stationären
Verteilung. Da die Situation aus Kapitel 2 hier vorliegt, ist die Existenz einer
eindeutig bestimmten quasi-stationären Verteilung π = (πj)j∈C mit πj > 0 und
πj = limt→∞ P (I(t) = j|I(t) 6= 0), j ∈ C, unabhängig von der Anfangsverteilung
gesichert.

Eine wichtige Rolle spielt dann die erwartete Zeit bis zur Auslöschung der Infek-
tion im unbedingten Prozess (siehe Kapitel 5), da die quasi-stationäre Verteilung
nur innerhalb dieser Zeit Informationen zum ursprünglichen Prozess liefert.

Satz 3.1.1. Die Verteilung π ist genau dann quasi-stationär, wenn sie dem Glei-
chungssystem

λj−1πj−1 − (λj + µj)πj + µj+1πj+1 = −µ1π1πj, j ∈ C, (3.1.5)

mit den Konventionen λ0 = 0 = π0 für den Fall j = 1, µN+1 = 0 = πN+1 für den
Fall j = N genügt, und πj > 0,

∑
j∈C πj = 1 gilt.

Beweis. Zunächst sei π eine quasi-stationäre Verteilung. Laut Satz 2.3.1 ist π
dann auch quasi-invariant, und πj > 0,

∑
j∈C πj = 1 gelten per Definition (vgl.

auch Bemerkung 2.1.2). π lässt sich wie folgt schreiben

πj = P (I(t) = j|I(t) 6= 0) =
pj(t)∑
i∈C pi(t)

=
pj(t)

1− p0(t)
, j ∈ C, t ≥ 0,

unabhängig von der Anfangsverteilung. Mit der Definition

pC(t) := (pj(t))j∈C

ergibt sich daraus

π =
pC(t)

1− p0(t)

(wobei die Gleichungen jeweils komponentenweise zu verstehen sind). Differen-
zieren dieser Gleichung liefert nun (zusammen mit 3.1.4)

π′ =
p′C(t)(1− p0(t)) + pC(t)p

′
0(t)

(1− p0(t))2

=
p′C(t)

1− p0(t)
+

p′0(t)

1− p0(t)
· pC(t)

1− p0(t)

=
p′0(t)=µ1p1(t)

p′C(t)

1− p0(t)
+ µ1π1 ·

pC(t)

1− p0(t)

=
1

1− p0(t)
pC(t)AC + µ1π1π

= πAC + µ1π1π,

(3.1.6)
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wobei

AC =


−(λ1 + µ1) λ1 0 · · · 0

µ2 −(λ2 + µ2) λ2 · · · 0
0 µ3 −(λ3 + µ3) · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · −(λN + µN)

 (3.1.7)

die N × N -Matrix ist, die aus A durch Streichen der ersten Zeile und Spalte
entsteht. Also gilt das folgende Gleichungssystem

π′j = λj−1πj−1 − (λj + µj)πj + µj+1πj+1 + µ1π1πj, j ∈ C, (3.1.8)

mit den Konventionen λ0 = 0 = π0 für den Fall j = 1 und µN+1 = 0 = πN+1

für den Fall j = N . Da πj ein konstanter Wert ist, folgt π′j = 0, und daher ist π
die stationäre Lösung des Systems von Differentialgleichungen (3.1.8) und genügt
somit der Relation

πAC = −µ1π1π (3.1.9)

oder komponentenweise ausgedrückt

λj−1πj−1 − (λj + µj)πj + µj+1πj+1 = −µ1π1πj, j ∈ C,

mit den Konventionen λ0 = 0 = π0 für den Fall j = 1 und µN+1 = 0 = πN+1 für
den Fall j = N .

Die Umkehrung wurde von van Doorn in seiner Arbeit [7] bewiesen.
Sei π Lösung von (3.1.5) mit πj > 0 und

∑
j∈C πj = 1. Nun wird p0(t) so definiert,

dass

p0(0) = 0,

p′0(t) = µ1π1(1− p0(t)), t ≥ 0,
(3.1.10)

und
pj(t) = πj(1− p0(t)), j ∈ C, t ≥ 0. (3.1.11)

Dann erfüllt pj(t) die Vorwärts-Differentialgleichungen (3.1.4), da mit (3.1.5) und
(3.1.11)

λj−1
pj−1(t)

1− p0(t)
− (λj + µj)

pj(t)

1− p0(t)
+ µj+1

pj+1(t)

1− p0(t)
= −µ1π1πj

⇔ λj−1pj−1(t)− (λj + µj)pj(t) + µj+1pj+1(t) = −µ1π1πj(1− p0(t)),

was wegen p′j(t) = −πjp
′
0(t) = −πjµ1π1(1−p0(t)) (vgl. (3.1.11), (3.1.10)) äquiva-

lent zu (3.1.4) ist. Da mit (3.1.11)
∑

j∈C pj(t) = 1− p0(t) gilt, ist pj(t) gerade die
Wahrscheinlichkeit, dass sich der Prozess (I(t))t≥0 zum Zeitpunkt t im Zustand
j befindet. Anfangsverteilung ist P (I(0) = j) = pj(0) = πj, j ∈ C, (vgl. (3.1.11))
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und P (I(0) = 0) = p0(0) = 0 (vgl. (3.1.10)). Da (pj(t))j∈C zudem noch dem
Gleichungssystem

pj(t)

1− p0(t)
= πj

genügt (vgl. wiederum (3.1.11)), ist π quasi-invariant und damit quasi-stationär.

Satz 3.1.2. Die quasi-stationäre Verteilung des SIS-Modells ist implizit durch
den Ausdruck

πj = γ(j)α(j)T j−1π1, j ∈ C, (3.1.12)

gegeben, wobei

γ(j) :=
1

j

j∑
n=1

1−
∑n−1

l=1 πl

α(n)T n−1
, (3.1.13)

α(j) :=
N !

(N − j)!N j
, (3.1.14)

und

π1 =
1

S
mit S :=

N∑
j=1

γ(j)α(j)T j−1. (3.1.15)

Die Ausdrücke (3.1.12) bis (3.1.15) geben die quasi-stationäre Verteilung nicht
in expliziter Form an, da γ(j) in (3.1.13) immer noch von den Werten der πl

abhängt. Sie können jedoch benutzt werden, um die quasi-stationäre Verteilung
numerisch per Iteration zu bestimmen (in der erweiterten Fassung der Arbeit [17]
von N̊asell werden auf S.12 zwei Verfahren vorgestellt).

Insbesondere zeigt die Darstellung (3.1.9), dass die quasi-stationäre Verteilung π
ein linker Eigenvektor der Matrix AC zum Eigenwert −µ1π1 ist.

Beweis. Werden in (3.1.5) die Definitionen (3.1.1) bzw. (3.1.2) von λi, µi und T
eingesetzt, ergibt sich folgende Rekurrenzrelation:

λj−1

µ1

πj−1 −
(

λj + µj

µ1

)
πj +

µj+1

µ1

πj+1 = −π1πj

⇔ (j − 1)λ(N − j + 1)

µN
πj−1 −

(
jλ(N − j)

µN
+

jµ

µ

)
πj +

(j + 1)µ

µ
πj+1 = −π1πj

⇔ (j + 1)πj+1 − j

[
T

(
1− j

N

)
+ 1

]
πj + (j − 1)T

(
1− j − 1

N

)
πj−1 = −π1πj,

j ∈ C, π0 = 0 = πN+1.

(3.1.16)
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Dieses Gleichungssystem kann mit Hilfe der Variablen hj definiert durch

hj := jπj − (j − 1)T

(
1− j − 1

N

)
πj−1, j = 1, . . . , N + 1 (3.1.17)

ausgedrückt werden; damit gilt

h1 = π1,

hj+1 − hj = −π1πj, j ∈ C,
hN+1 = 0

(3.1.18)

(zur Überprüfung: Einsetzen von (3.1.17) in (3.1.18) ergibt (3.1.16)). Wird (3.1.18)
so gelöst, dass hj durch πj ausgedrückt wird, ergibt sich

hj = π1

(
1−

j−1∑
i=1

πi

)
, j = 1, . . . , N + 1 (3.1.19)

(iterativ mit (3.1.18), h1 = π1, hj+1 = hj − π1πj, Einsetzen von h1 in h2 in h3

usw.). Wird dieser Ausdruck nun in (3.1.17) eingesetzt und die Gleichung nach
πj aufgelöst, so gilt

π1

(
1−

j−1∑
i=1

πi

)
= jπj − (j − 1)T

(
1− j − 1

N

)
πj−1

⇔ πj =
1

j

[
π1

(
1−

j−1∑
i=1

πi

)
+ (j − 1)T

(
1− j − 1

N

)
πj−1

]
.

Iteration liefert

πj =
1

j

[
π1

(
1−

j−1∑
i=1

πi

)
+ (j − 1)T

(
1− j − 1

N

)

· 1

j − 1

[
π1

(
1−

j−2∑
i=1

πi

)
+ (j − 2)T

(
1− j − 2

N

)
· πj−2

]]

=
1

j

[
π1

(
1−

j−1∑
i=1

πi

)
+ (j − 1)T

(
1− j − 1

N

)

· 1

j − 1

[
π1

(
1−

j−2∑
i=1

πi

)
+ (j − 2)T

(
1− j − 2

N

)

· 1

j − 2

[
π1

(
1−

j−3∑
i=1

πi

)
+ (j − 3)T

(
1− j − 3

N

)
· πj−3

]]]
= ... ,



3.2. ZWEI APPROXIMATIONEN AN DAS SIS-MODELL 41

und schließlich ist zu sehen, dass die quasi-stationäre Verteilung der Relation
(3.1.12) genügt:

πj =
1

j

(
j∑

n=1

1−
∑n−1

l=1 πl

N !
(N−n)!Nn T n−1

)
· N !

(N − j)!N j
· T j−1 · π1

Die Verteilungsfunktion der quasi-stationären Verteilung π wird mit

F (k) :=
k∑

j=1

πj, k ∈ C, (3.1.20)

bezeichnet und lässt sich folgendermaßen ausdrücken:

F (k) =
Sk

S
, wobei Sk :=

k∑
j=1

γ(j)α(j)T j−1. (3.1.21)

3.2 Zwei Approximationen an das SIS-Modell

Im vorliegenden Abschnitt werden zwei Approximationen an das SIS-Modell vor-
gestellt, die schon von Kryscio und Lefèvre (1989) [13] diskutiert und von N̊asell
[15], [16], [17] wieder aufgegriffen wurden.

Es handelt sich um zwei Geburts-und-Todes-Prozesse (I(1)(t))t≥0 und (I(0)(t))t≥0,
deren Zustandsraum gerade C, die Menge transienter Zustände des ursprüngli-
chen Prozesses, ist, und denen ein absorbierender Zustand fehlt. Ferner haben
beide nicht-degenerierte stationäre Verteilungen, bezeichnet mit p(1) bzw. p(0),
die explizit angegeben werden können. Kryscio und Lefèvre nehmen an und ha-
ben teilweise bewiesen, dass p(0) für T > 1 die bessere Annäherung an q liefert,
p(1) hingegen für T < 1.

3.2.1 Das SIS-Modell mit einem dauerhaft infizierten In-
dividuum

Die erste Approximation wird mit den Worten ”SIS-Modell mit einem dauerhaft
infizierten Individuum” beschrieben. Die Übergangsraten lauten hier

λ
(1)
i := iλ

(
1− i

N

)
= λi, i ∈ C, λ > 0,

µ
(1)
i := (i− 1)µ = µi−1, i ∈ C, µ > 0,

(3.2.1)
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d.h. die Infektionsraten bleiben unverändert, während durch die neuen Gene-
sungsraten sichergestellt wird, dass unter allen infizierten Individuen immer eines
existiert, das nicht gesund werden kann. Die stationäre Verteilung von (I(1)(t))t≥0

wird mit p(1) = (p
(1)
j )j∈C bezeichnet und es gilt:

Satz 3.2.1. Die stationäre Verteilung des SIS-Modells mit einem dauerhaft in-
fizierten Individuum ist explizit gegeben durch

p
(1)
j = α(j)T j−1p

(1)
1 , j ∈ C, (3.2.2)

wobei α(j) in (3.1.14) definiert wird und

p
(1)
1 =

1

S(1)
mit S(1) :=

N∑
j=1

α(j)T j−1 (3.2.3)

gegeben ist.

Beweis. Laut Satz 1.1.29 ist p(1) genau dann stationäre Verteilung des Prozesses,
wenn p(1)A(1) = 0 gilt (wobei A(1) die Q-Matrix des vorliegenden Prozesses be-
zeichnet und die gleiche Gestalt wie AC hat (siehe (3.1.7)), abgesehen von den

leicht veränderten Genesungsraten) und zudem
∑

j∈C p
(1)
j = 1. Also gilt das Glei-

chungssystem

λ
(1)
j−1p

(1)
j−1 −

(
λ

(1)
j + µ

(1)
j

)
p

(1)
j + µ

(1)
j+1p

(1)
j+1 = 0, j ∈ C,

mit den Konventionen λ
(1)
0 = 0 = p

(1)
0 für den Fall j = 1 und µ

(1)
N+1 = 0 = p

(1)
N+1

für den Fall j = N . Rekursiv ergibt sich daraus

µ
(1)
j p

(1)
j = λ

(1)
j−1p

(1)
j−1, j ∈ C.

Iteration führt nun zu

p
(1)
j =

λ
(1)
j−1

µ
(1)
j

p
(1)
j−1

=
λ

(1)
j−2λ

(1)
j−1

µ
(1)
j−1µ

(1)
j

p
(1)
j−2

= ...

=
λ

(1)
1 · ... · λ(1)

j−1

µ
(1)
2 · ... · µ(1)

j

p
(1)
1 , j ∈ C,

wobei p
(1)
1 so bestimmt wird, dass

∑N
j=1 p

(1)
j = 1 gilt, d.h.

p
(1)
1 =

(
N∑

n=1

η(1)
n

)−1
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mit

η
(1)
1 := 1, η(1)

n :=
λ

(1)
1 · ... · λ(1)

n−1

µ
(1)
2 · ... · µ(1)

n

, n = 2, ..., N.

Werden die Definitionen (3.2.1) der λ
(1)
i und µ

(1)
i eingesetzt, wird daraus

p
(1)
j = λ

(
1− 1

N

)
· ... · (j − 1)λ

(
1− (j − 1)

N

)
· 1

µ
· ... · 1

(j − 1)µ

·

[
1 +

N∑
n=2

λ

(
1− 1

N

)
· ... · (n− 1)λ

(
1− (n− 1)

N

)
· 1

µ
· ... · 1

(n− 1)µ

]−1

= T j−1 ·
(

N − 1

N

)
· ... ·

(
N − (j − 1)

N

)
·

[
1 +

N∑
n=2

T n−1 ·
(

N − 1

N

)
· ... ·

(
N − (n− 1)

N

)]−1

= T j−1 · (N − 1)!

(N − j)!N j−1
· N

N
·

[
1 +

N∑
n=2

T n−1 · (N − 1)!

(N − n)!Nn−1
· N

N

]−1

=
N !

(N − j)!N j
T j−1

[
N∑

n=1

N !

(N − n)!Nn
T n−1

]−1

,

was genau der Gleichung (3.2.2) entspricht.

Die Verteilungsfunktion von p(1) wird bezeichnet mit

F (1)(k) :=
k∑

j=1

p
(1)
j , k ∈ C, (3.2.4)

und lässt sich folgendermaßen ausdrücken:

F (1)(k) =
S

(1)
k

S(1)
, wobei S

(1)
k :=

k∑
j=1

α(j)T j−1. (3.2.5)

3.2.2 Das SIS-Modell mit versperrtem Ursprung

Bei der zweiten Approximation handelt es sich um das sogenannte ”SIS-Modell
mit versperrtem Ursprung”. Hier sind die Übergangsraten unverändert, abgese-
hen davon, dass µ1 durch 0 ersetzt wird, d.h.:

λ
(0)
i := iλ

(
1− i

N

)
= λi, i ∈ C, λ > 0,

µ
(0)
1 := 0,

µ
(0)
i := iµ = µi, i ∈ C \ {1} , µ > 0.

(3.2.6)
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Die Übertragung der Infektion verhält sich hier also wie im ursprünglichen Mo-
dell, bedingt darunter, dass mindestens zwei Individuen infiziert sind. Ist nur
eines infiziert, kann dieses nicht genesen.

Dieser Prozess wird oft auch als ”reflektierender Prozess” bezeichnet, da der
absorbierende Zustand 0 durch einen reflektierenden Zustand 1 ersetzt wird.

Die stationäre Verteilung wird hier mit p(0) = (p
(0)
j )j∈C bezeichnet und es gilt:

Satz 3.2.2. Die stationäre Verteilung des SIS-Modells mit versperrtem Ursprung
ist explizit gegeben durch

p
(0)
j =

1

j
α(j)T j−1p

(0)
1 , j ∈ C, (3.2.7)

wobei α(j) in (3.1.14) definiert wird und

p
(0)
1 =

1

S(0)
mit S(0) :=

N∑
j=1

1

j
α(j)T j−1. (3.2.8)

Beweis. Analog zum Beweis von Satz 3.2.1.

Die Verteilungsfunktion von p(0) wird bezeichnet mit

F (0)(k) =
k∑

j=1

p
(0)
j , k ∈ C, (3.2.9)

und lässt sich schreiben mit

F (0)(k) =
S

(0)
k

S(0)
, wobei S

(0)
k :=

k∑
j=1

1

j
α(j)T j−1. (3.2.10)



Kapitel 4

Annäherung an die
quasi-stationäre Verteilung

Im vorliegenden Kapitel soll gezeigt werden, dass die beiden Geburts-und-Todes-
Prozesse des vorangegangenen Abschnitts eine obere bzw. eine untere Schranke
der quasi-stationären Verteilung liefern.

Cavender [5] hat 1978 gezeigt, dass die stationäre Verteilung des SIS-Modells mit
versperrtem Ursprung stochastisch kleiner ist als die quasi-stationäre Verteilung
des SIS-Modells. Im Jahre 2003 wurde dies noch einmal von Clancy und Pollett
[6] gefolgert; sie konnten zudem zeigen, dass die stationäre Verteilung des SIS-
Modells mit einem dauerhaft infizierten Individuum stochastisch größer ist als
die quasi-stationäre Verteilung.

4.1 Eine untere Schranke

Das Ziel dieses Abschnitts besteht darin zu zeigen, dass die stationäre Verteilung
des SIS-Modells mit versperrtem Ursprung stochastisch kleiner ist als die quasi-
stationäre Verteilung des ursprünglichen SIS-Modells, in Zeichen p(0) ≺ST π, d.h.,
dass gilt

F (0)(k) =
k∑

j=1

p
(0)
j ≥

k∑
j=1

πj = F (k), k ∈ C. (4.1.1)

Wie schon in (3.1.5) gesehen, genügt die quasi-stationäre Verteilung folgendem
Gleichungssystem

λj−1πj−1 − (λj + µj)πj + µj+1πj+1 + µ1π1πj = 0, j ∈ C, (4.1.2)

mit den Konventionen λ0 = 0 = π0 für den Fall j = 1 und µN+1 = 0 = πN+1

für den Fall j = N . Eine äquivalente Charakterisierung gibt das folgende Lem-
ma.

45
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Lemma 4.1.1. Definiere eine Folge von Polynomen (f1(x), . . . , fN(x)) in der
Unbestimmten x durch

f1(x) := x,

fj(x) :=
λj−1fj−1(x) + µ1x

[
1−

∑j−1
n=1 fn(x)

]
µj

, j = 2, . . . , N,
(4.1.3)

und setze

gj(x) :=

j∑
l=1

fl(x).

Eine Folge π = (πj)j∈C mit mindestens einem πj 6= 0 genügt genau dann dem
Gleichungssystem (4.1.2), wenn sowohl gN(π1) = 1 als auch πj = fj(π1), j ∈ C,
erfüllt sind.

Beweis. Zunächst sei π eine Folge mit πj = fj(π1) für alle j ∈ C, d.h.

πj =
λj−1πj−1 + µ1π1

[
1−

∑j−1
n=1 πn

]
µj

,

oder äquivalent dazu

µjπj − λj−1πj−1 = µ1π1

(
1−

j−1∑
n=1

πn

)
. (4.1.4)

Hieraus folgt direkt

λj−1πj−1 − (λj + µj)πj + µj+1πj+1 = (µj+1πj+1 − λjπj)− (µjπj − λj−1πj−1)

= µ1π1

(
1−

j∑
n=1

πn

)
− µ1π1

(
1−

j−1∑
n=1

πn

)
= −µ1π1πj,

d.h. (4.1.2).

Für den umgekehrten Schluss genüge nun π dem Gleichungssystem (4.1.2). Per
Induktion kann (4.1.4) gezeigt werden, woraus sofort (4.1.3) folgt. Den Induk-
tionsanfang macht π1 = f1(π1), und aus

−(λ1 + µ1)π1 + µ2π2 =
(4.1.2)

−µ1π
2
1

folgt

µ2π2 − λ1π1 = µ1π1 − µ1π
2
1 = µ1π1(1− π1)

= µ1π1

(
1−

1∑
n=1

πn

)
.
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Also gelte für festes aber beliebiges j ∈ C

µjπj − λj−1πj−1 = µ1π1

(
1−

j−1∑
n=1

πn

)
.

Den Induktionsschluss liefert

µj+1πj+1 − λjπj = µj+1πj+1 − λjπj − µjπj + λj−1πj−1 + (µjπj − λj−1πj−1)

=
I.V.,(4.1.2)

−µ1π1πj + µ1π1

(
1−

j−1∑
n=1

πn

)

= µ1π1

(
1−

j∑
n=1

πn

)
.

Somit bleibt zu zeigen, dass gN(π1) = 1, falls π quasi-stationäre Verteilung ist.
π1 6= 0 folgt aus der Definition (vgl. Bemerkung 2.1.2). Es gilt (4.1.2), Summation
liefert

N∑
j=1

(λj−1πj−1 − (λj + µj)πj + µj+1πj+1 + µ1π1πj) = 0,

was sich vereinfachen lässt zu

−µ1π1 + µ1π1

N∑
j=1

πj = 0.

Durch Äquivalenzumformung erhält man damit wie gewünscht

gN(π1) =
N∑

j=1

πj = 1.

Mit Hilfe des Lemmas lässt sich nun (4.1.1) beweisen; tatsächlich gilt sogar fol-
gende schärfere Variante.

Satz 4.1.2. Für eine quasi-stationäre Verteilung π = (πj)j∈C gilt

k∑
j=1

πj <

k∑
j=1

p
(0)
j , k ∈ C.

Beweis. Aus dem Gleichungssystem

− λ
(0)
1 p

(0)
1 + µ

(0)
2 p

(0)
2 = 0

λ
(0)
j−1p

(0)
j−1 −

(
λ

(0)
j + µ

(0)
j

)
p

(0)
j + µ

(0)
j+1p

(0)
j+1 = 0, j = 2, . . . , N − 1

λ
(0)
N−1p

(0)
N−1 −

(
λ

(0)
N + µ

(0)
N

)
p

(0)
N = 0
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(vgl. Satz 1.1.29) ergibt sich rekursiv, dass die p
(0)
j die Gleichung

µ
(0)
j+1p

(0)
j+1 = λ

(0)
j p

(0)
j

mit den zugehörigen Konventionen erfüllen. Diese ist äquivalent zu

p
(0)
j

p
(0)
j+1

=
µ

(0)
j+1

λ
(0)
j

⇔
(3.2.6)

p
(0)
j

p
(0)
j+1

=
µj+1

λj

. (4.1.5)

Für eine quasi-stationäre Verteilung π gilt nun

λjπj = µj+1πj+1 − µ1π1

(
1−

j∑
n=1

πn

)
(siehe (4.1.3)), was sich umformen lässt zu

πj

πj+1

=
µj+1

λj

−
µ1π1

(
1−

∑j
n=1 πn

)
λjπj+1

=
(4.1.5)

p
(0)
j

p
(0)
j+1

−
µ1π1

(
1−

∑j
n=1 πn

)
λjπj+1

<
p

(0)
j

p
(0)
j+1

, j = 1, . . . , N − 1,

falls
∑j

n=1 πn < 1 und alle p
(0)
j , πj positiv — was ja hier der Fall ist. Falls

nun
k∑

j=1

πj ≥
k∑

j=1

p
(0)
j (4.1.6)

und somit πi ≥ p
(0)
i für ein i ≤ k, folgt (da πi+1/πi > p

(0)
i+1/p

(0)
i )

πi+1 > p
(0)
i+1.

Wiederholung des Arguments liefert πi+2 > p
(0)
i+2, und schließlich

πj > p
(0)
j , i < j ≤ N.

Daher gilt
N∑

j=k+1

πj >

N∑
j=k+1

p
(0)
j ;

Addition dieser Ungleichung zu (4.1.6) ergibt

N∑
j=1

πj >
N∑

j=1

p
(0)
j

— ein Widerspruch, da
∑N

j=1 p
(0)
j = 1. Also gilt die Behauptung.
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4.2 Eine obere Schranke

Um nun zu zeigen, dass die stationäre Verteilung des SIS-Modells mit einem
dauerhaft infizierten Individuum stochastisch größer ist als die quasi-stationäre
Verteilung des ursprünglichen SIS-Modells — π ≺ST p(1) — d.h., dass

F (k) =
k∑

j=1

πj ≥
k∑

j=1

p
(1)
j = F (1)(k), k ∈ C, (4.2.1)

gilt, betrachten Clancy und Pollett [6] eine von Ferrari et al. [9] wie folgt definierte
Abbildung Φ.

Ist eine Verteilung ν = (ν1, . . . , νN) gegeben, so wird angenommen, dass der Pro-
zess — sobald er im Zustand 0 ankommt — mit Wahrscheinlichkeit νj im Zustand
j ∈ {1, . . . , N} neu startet. Der auf diese Weise neu gestartete Prozess hat einen
endlichen irreduziblen Zustandsraum und daher eine eindeutig bestimmte stati-
onäre Verteilung ρ = (ρ1, . . . , ρN). Die Abbildung wird dann durch Φ(ν) := ρ
definiert. Da die quasi-stationäre Verteilung π niemals im Zustand 0 ankommt,
gelangt sie in jeden Zustand j ∈ C mit Wahrscheinlichkeit νj = πj = ρj. Es gilt
also Φ(π) = π; π ist der einzige Fixpunkt der Abbildung.

Ferrari et al. [9] bezeichnen den neu gestarteten Prozess als ”Auferstehungs-
Prozess”. Er lässt sich konstruieren, indem zu einem gegebenen Prozess (X(t))t≥0

auf S mit Anfangsverteilung α eine Folge {Xk(t) : k = 1, 2, ...} unabhängiger Ko-
pien von X(t) mit Anfangsverteilung α und Absorptionszeiten
tk :=inf{t : Xk(t) = 0} betrachtet werden. Der ”Auferstehungs-Prozess” wird de-
finiert durch

s0 := 0, sk :=
k∑

i=1

ti für k ≥ 1,

Y α(t) :=
∞∑

k=1

Xk(t− sk−1)1[sk−1,sk)(t);

also wird jeweils eine Kopie des ursprünglichen Prozesses laufen gelassen, und
jedes Mal, wenn solch eine Kopie absorbiert wird, wird sie sofort durch die nächste
Kopie ersetzt.

Im vorliegenden Fall eines endlichen Geburts-und-Todes-Prozesses kann die Ab-
bildung Φ explizit angegeben werden. Ist eine Verteilung ν gegeben, genügt
ρ = Φ(ν) dem Gleichungssystem

λj−1ρj−1 − (λj + µj)ρj + µj+1ρj+1 = −µ1ρ1νj, j = 1, . . . , N, (4.2.2)

mit ρ0 = ρN+1 = 0. Ähnlich wie N̊asell [15], [16], [17] (vgl. 3.1.17) benutzen
Clancy und Pollett [6] Variablen

h̃j := µjρj − λj−1ρj−1, j = 2, . . . , N. (4.2.3)
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Das Gleichungssystem (4.2.2) lässt sich dann durch

h̃2 = µ1ρ1(1− ν1),

h̃j+1 = h̃j − µ1ρ1νj, j = 2, . . . , N − 1,
(4.2.4)

ausdrücken (Überprüfung: Einsetzen von (4.2.3) in (4.2.4) ergibt (4.2.2)), und es
ergibt sich (iterativ mit (4.2.4), Einsetzen von h̃2 in h̃3 in h̃4 in ...)

h̃j = µ1ρ1aj, j = 2, . . . , N, (4.2.5)

wobei aj :=
∑N

i=j νi. Einsetzen von (4.2.5) in (4.2.3) und Auflösen nach ρj lie-
fert

µ1ρ1aj = µjρj − λj−1ρj−1

⇔ ρj =
1

µj

(µ1ρ1aj + λj−1ρj−1) .

Iteration führt zu

ρj =
1

µj

(
µ1ρ1aj + λj−1 ·

1

µj−1

(µ1ρ1aj−1 + λj−2 · ρj−2)

)
=

1

µj

(
µ1ρ1aj + λj−1 ·

1

µj−1

(
µ1ρ1aj−1 + λj−2 ·

1

µj−2

(µ1ρ1aj−2 + λj−3 · ρj−3)

))
= ...

und schließlich zu

ρj = ρ1
µ1

µj

j∑
i=1

j−1∏
k=i

λk

µk

ai, j = 1, . . . , N, (4.2.6)

wobei ρ1 so gewählt sei, dass ρ eine Verteilung ergibt. Die Komponenten von
ρ = Φ(ν) sind somit durch (4.2.6) explizit gegeben.

Um nun zwei Verteilungen miteinander vergleichen zu können, verwenden Clancy
und Pollett [6] die sogenannte ”likelihood ratio”-Ordnung ≺LR, welche auch schon
von Kijima und Seneta [12] definiert wurde.

Definition 4.2.1. Gegeben zwei Verteilungen ν(1) und ν(2) auf {1, . . . , N}, wird
die ”likelihood ratio”-Ordnung ≺LR definiert durch

ν(1) ≺LR ν(2), wenn ν
(1)
i ν

(2)
j ≥ ν

(1)
j ν

(2)
i für 1 ≤ i ≤ j ≤ N.

Unter Verwendung von (4.2.6) kann gezeigt werden, dass die Abbildung Φ die
”likelihood ratio”-Ordnung zwischen zwei Verteilungen unverändert erhält.
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Theorem 4.2.2. Für zwei Verteilungen ν(1) und ν(2) auf {1, . . . , N} gilt:

ν(1) ≺LR ν(2) ⇒ Φ(ν(1)) ≺LR Φ(ν(2)).

Beweis. Definiere ρ(1) := Φ(ν(1)), ρ(2) := Φ(ν(2)) und für 1 ≤ k ≤ i ≤ N setze
bik :=

∏i−1
l=k λl/µl. Aus (4.2.6) wird damit

ρ
(1)
i = ρ

(1)
1

µ1

µi

i∑
k=1

bika
(1)
k und ρ

(2)
j = ρ

(2)
1

µ1

µj

j∑
l=1

bjla
(2)
l ,

wobei a
(r)
j :=

∑N
k=j ν

(r)
k , r = 1, 2. Daher ergibt sich für 1 ≤ i ≤ j ≤ N

ρ
(1)
i ρ

(2)
j − ρ

(1)
j ρ

(2)
i

ρ
(1)
1 ρ

(2)
1

=
µ2

1

µjµi

(
i∑

k=1

bika
(1)
k

j∑
l=1

bjla
(2)
l −

j∑
k=1

bjka
(1)
k

i∑
l=1

bila
(2)
l

)

=
bikbjl=bjkbil

µ2
1

µjµi

i∑
k=1

j∑
l=i+1

bikbjl

(
a

(1)
k a

(2)
l − a

(1)
l a

(2)
k

)
.

Für k < l gilt nun

a
(1)
k a

(2)
l − a

(1)
l a

(2)
k =

N∑
r=k

ν(1)
r

N∑
s=l

ν(2)
s −

N∑
r=l

ν(1)
r

N∑
s=k

ν(2)
s

=
l−1∑
r=k

N∑
s=l

(
ν(1)

r ν(2)
s − ν(1)

s ν(2)
r

)
≥ 0,

woraus, wie gewünscht, ρ
(1)
i ρ

(2)
j ≥ ρ

(1)
j ρ

(2)
i folgt.

Bezeichne ej die Verteilung, die ihre gesamte Masse auf den Zustand j legt.
Die quasi-stationäre Verteilung π lässt sich nun wie folgt mit zwei degenerierten
Verteilungen vergleichen.

Korollar 4.2.3. Für die quasi-stationäre Verteilung π gilt:

Φ(e1) ≺LR π ≺LR Φ(eN).

Beweis. Es gilt e1 ≺LR π ≺LR eN , da

e1iπj ≥ e1jπi für 1 ≤ i ≤ j ≤ N mit den möglichen Fällen

e11π1 = e11π1 (i = 1 = j),

e1iπj = 0 = e1jπi (i 6= 1 6= j),

e11πj > e1jπ1 = 0 (i = 1, j 6= 1),
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und

πieNj ≥ πjeNi für 1 ≤ i ≤ j ≤ N mit den möglichen Fällen

πNeNN = πNeNN (i = N = j),

πieNj = 0 = πjeNi (i 6= N 6= j),

πieNN > πNeNi = 0 (i 6= N, j = N).

Mit Theorem 4.2.2 folgt

Φ(e1) ≺LR Φ(π) ≺LR Φ(eN),

und da π Fixpunkt der Abbildung Φ ist, gilt die Behauptung.

Kijima und Seneta haben schon in ihrer Arbeit von 1991 [12] gezeigt, dass die
”likelihood ratio”-Ordnung die stochastische Ordnung impliziert.

Satz 4.2.4. Für zwei Verteilungen ν(1) und ν(2) auf {1, . . . , N} gilt:

ν(1) ≺LR ν(2) ⇒ ν(1) ≺ST ν(2).

Beweis. ν(1) ≺LR ν(2) wird angenommen, d.h.

ν
(1)
i ν

(2)
j ≥ ν

(1)
j ν

(2)
i , 1 ≤ i ≤ j ≤ N.

Summation der Ungleichungen von 1 bis i liefert

i∑
n=1

ν(1)
n ν

(2)
j ≥

i∑
m=1

ν(2)
m ν

(1)
j , 1 ≤ i ≤ j ≤ N,

Gleiches von i + 1 bis j führt zu

i∑
n=1

ν(1)
n

(
ν

(2)
i+1 + ... + ν

(2)
j

)
≥

i∑
m=1

ν(2)
m

(
ν

(1)
i+1 + ... + ν

(1)
j

)
, 1 ≤ i < j ≤ N.

Durch Addition von
∑i

n=1 ν
(1)
n

∑i
m=1 ν

(2)
n auf beiden Seiten ergibt sich daraus

i∑
n=1

ν(1)
n

j∑
m=1

ν(2)
m ≥

i∑
m=1

ν(2)
m

j∑
n=1

ν(1)
n , 1 ≤ i < j ≤ N.

Wird nun j = N gesetzt, so folgt

i∑
n=1

ν(1)
n ≥

i∑
m=1

ν(2)
m , 1 ≤ i < N,
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und da ν(1) und ν(2) Verteilungen sind, gilt dies auch noch für i = N ; d.h. ν(2) ist
stochastisch größer als ν(1).

Mit Korollar 4.2.3 ergibt sich damit direkt die Aussage eines Theorems, das schon
von Keilson und Ramaswamy [11] bewiesen wurde.

Korollar 4.2.5. Für die quasi-stationäre Verteilung π gilt:

Φ(e1) ≺ST π ≺ST Φ(eN).

Bemerkung 4.2.6. 1. Im SIS-Modell wird aus der Gleichung (4.2.6)

ρj = ρ1
µ

jµ

j∑
i=1

j−1∏
k=i

kλ
(N − k)

N
· 1

kµ
· ai

=
T= λ

µ

ρ1

j

j∑
i=1

j−1∏
k=i

T

N
(N − k)ai

=
ρ1

j

j∑
i=1

(
T

N

)j−i
(N − i)!

(N − j)!
ai

=
1

j(N − j)!

j∑
i=1

[(
T

N

)j−i

(N − i)!ai

]
ρ1.

2. Die Verteilung Φ(e1) = ((Φ(e1))1, . . . , (Φ(e1))N) hat eine sehr einfache Form,
da in diesem Fall der einzige nicht-triviale Term in der Summe auf der rech-
ten Seite der Gleichung (4.2.6) der (i = 1)−Term ist:

(Φ(e1))j = ρ1
µ1

µj

j∑
i=1

j−1∏
k=i

λk

µk

(
N∑
l=i

e1l

)
= ρ1

µ1

µj

j−1∏
k=1

λk

µk

, j = 1, . . . , N.

Wird nun der Prozess (I(0)(t))t≥0 mit Reflektion im Zustand 0 betrachtet, so
ist dies äquivalent dazu, dass der Prozess im Zustand 1 neu startet, sobald
er im Zustand 0 angekommen ist. Somit ist die stationäre Verteilung dieses
Approximations-Prozesses gerade (p(0) =)Φ(e1). Laut Korollar 4.2.3 bzw.
4.2.5 gilt Φ(e1) ≺LR π bzw. Φ(e1) ≺ST π, womit ein weiterer Beweis dafür
erbracht wäre, dass die stationäre Verteilung des SIS-Modells mit versperr-
tem Ursprung stochastisch kleiner ist als die quasi-stationäre Verteilung des
SIS-Modells.

3. Als obere Schranke für π könnte die Verteilung
Φ(eN) = ((Φ(eN))1, . . . , ((Φ(eN))N) verwendet werden. Diese hat jedoch
nicht die besonders einfache Form von Φ(e1), da hier alle Terme der Summe
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auf der rechten Seite der Gleichung (4.2.6) nicht trivial sind; es gilt

(Φ(eN))j = ρ1
µ1

µj

j∑
i=1

j−1∏
k=i

λk

µk

(
N∑
l=i

eNl

)
= ρ1

µ1

µj

j∑
i=1

j−1∏
k=i

λk

µk

, j = 1, . . . , N.

Stattdessen betrachten Clancy und Pollett [6] wie auch schon Kryscio und
Lefèvre [13] sowie N̊asell [15], [16], [17], das SIS-Modell mit einem dauerhaft
infizierten Individuum mit der stationären Verteilung p(1), deren spezielle
Gestalt mit

p
(1)
j =

(N − 1)!

(N − j)!

(
T

N

)j−1

p
(1)
1 , j ∈ C, (4.2.7)

angegeben werden kann (vgl. (3.2.2)). Wie schon erwähnt, nahmen Kryscio
und Lefèvre [13] aufgrund empirischer Beobachtungen an, dass π ≺ST p(1)

gilt, haben dies aber nicht konkret bewiesen. Mit Theorem 4.2.2 ist dies
nun wie folgt möglich.

Satz 4.2.7. Es gilt

π ≺ST p(1),

d.h. (4.2.1).

Beweis. (I(1)(t))t≥0 ist kein Prozess, der neu gestartet wird, sobald er im Zustand
0 ankommt. Jedoch kann die Abbildung Φ gegeben durch (4.2.6) invertiert wer-
den; gegeben irgendeine Verteilung ρ sind die Werte ν1, . . . , νN mit Φ(ν) = ρ
direkt durch (4.2.2) gegeben. Wird also die Gleichung Φ(ν) = p(1) gelöst, so kann
möglicherweise eine Anfangsverteilung ν bestimmt werden, für welche der neu
gestartete Prozess die stationäre Verteilung p(1) hat. Wird in (4.2.2) ρj = p

(1)
j

gesetzt, so gilt

λj−1p
(1)
j−1 − (λj + µj)p

(1)
j + µj+1p

(1)
j+1 = −µ1p

(1)
1 νj,

und unter Verwendung der ursprünglichen Übergangsraten (3.1.1) sowie der Glei-
chung (4.2.7) wird daraus

−µp
(1)
1 νj = (j − 1)λ

(N − j + 1)

N

(N − 1)!

(N − j + 1)!

(
T

N

)j−2

p
(1)
1

−
(

jλ
(N − j)

N
+ jµ

)
(N − 1)!

(N − j)!

(
T

N

)j−1

p
(1)
1

+ (j + 1)µ
(N − 1)!

(N − j − 1)!

(
T

N

)j

p
(1)
1 .
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Diese Gleichung lässt sich äquivalent umformen zu

νj =
(N − 1)!

(N − j)!

(
T

N

)j−1 [
(j − 1)λ

(N − j + 1)

N

1

(N − j + 1)

N

T

−
(

jλ
(N − j)

N
+ jµ

)
+(j + 1)µ(N − j)

T

N

](
− 1

µ

)
=

(N − 1)!

(N − j)!

(
T

N

)j−1 [
−(j − 1) + jT

N − j

N
+ j − (j + 1)(N − j)

T

N

]
,

und schließlich ergibt sich

νj =
(N − 1)!

(N − j)!

(
T

N

)j−1(
1− T

(
1− j

N

))
, j ∈ C. (4.2.8)

Um νj ≥ 0, d.h.
(
1− T

(
1− j

N

))
≥ 0, für alle j ∈ C sicherzustellen, wird

T ≤ 1+1/(N −1) vorausgesetzt (
∑N

j=1 νj = 1 wird durch (4.2.2) garantiert). So-
mit kann auf jeden Fall im subkritischen (d.h. nichtendemischen) Fall T < 1 die
Verteilung p(1) als stationäre Verteilung eines neu gestarteten Prozesses gewonnen
werden.

Für 1 ≤ i ≤ j ≤ N , mit ν gegeben durch (4.2.8) und p(1) gegeben durch (4.2.7),
gilt

p
(1)
i νj − p

(1)
j νi

=
(N − 1)!

(N − i)!

(
T

N

)i−1

p
(1)
1 · (N − 1)!

(N − j)!

(
T

N

)j−1(
1− T

(
1− j

N

))
− (N − 1)!

(N − j)!

(
T

N

)j−1

p
(1)
1 · (N − 1)!

(N − i)!

(
T

N

)i−1(
1− T

(
1− i

N

))
=

((N − 1)!)2

(N − i)!(N − j)!
·
(

T

N

)i+j−2

· p(1)
1 ·

[(
1− T +

T

N
j

)
−
(

1− T +
T

N
i

)]
=

((N − 1)!)2

(N − i)!(N − j)!
·
(

T

N

)i+j−1

· p(1)
1 · (j − i)

≥ 0,

d.h. p(1) = Φ(ν) ≺LR ν. Wiederholte Anwendung von Theorem 4.2.2 liefert

Φn(ν) ≺LR Φn−1(ν) ≺LR ... ≺LR p(1) ≺LR ν.

Für n → ∞ ergibt sich — wie von Ferrari et al. [9] bewiesen (siehe Abschnitt 5
der Arbeit) — Φn(ν) → π; dies gilt für jede endliche absorbierende Markov-Kette.
Also gilt π ≺LR p(1) und mit Satz 4.2.4 π ≺ST p(1).

Falls nun T > 1 + 1/(N − 1), so hat ν gegeben durch (4.2.8) mindestens eine

echt negative Komponente. Die Aussage p
(1)
i νj − p

(1)
j νi ≥ 0 für j ≥ 1 bleibt aber

dennoch wahr, was hinreichend für die Gültigkeit des Beweises von Theorem 4.2.4
ist, und man kann auch hier π ≺LR p(1) folgern.



Kapitel 5

Zeit bis zur Auslöschung

Wie schon erwähnt, spielt die Untersuchung der Zeit bis zur Auslöschung der
Infektion τ eine wichtige Rolle, wenn man wissen will, für wie lange die quasi-
stationäre Verteilung eine gute Annäherung an die Verteilung des ursprünglichen
Prozesses (I(t))t≥0 darstellt. Die Verteilung von τ hängt wesentlich von der An-
fangsverteilung ab.

N̊asell betrachtet in seinen Arbeiten [15], [16], [17] zwei gesonderte Fälle: den
Fall, dass die Anfangsverteilung der quasi-stationären Verteilung entspricht (siehe
hier auch die erweiterte Fassung von [17]) und den Fall, dass es sich um eine
degenerierte Verteilung handelt. Entsprechend wird die Zufallsvariable ”Zeit bis
zur Auslöschung” mit τπ bzw. mit τj (j ∈ C) bezeichnet.

5.1 1. Fall: Quasi-stationäre Anfangsverteilung

Dieser Fall ist von besonderem Interesse, falls zu einem bestimmten Zeitpunkt
bekannt ist, dass eine Infektion in einer Gruppe von Individuen existiert und
dass sie schon für lange Zeit existiert hat. Es kann gefolgert werden, dass die
Verteilung der Anzahl infizierter Individuen gut durch die quasi-stationäre Ver-
teilung beschrieben wird und dementsprechend kann die Zeit bis zur Auslöschung
ausgehend von der quasi-stationären Verteilung untersucht werden. Das Ergebnis
lässt sich in folgendem Satz zusammenfassen (Bezeichungen vgl. (3.1.1), (3.1.12),
(3.1.15)):

Satz 5.1.1. Die Zeit bis zur Auslöschung τπ ausgehend von der quasi-stationären
Verteilung ist exponentialverteilt mit Parameter µ1π1 und Erwartungswert

Eτπ =
1

µ1π1

=
S

µ
;

sie ist somit vollständig durch π1 bestimmt.
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Beweis. Um zu diesem Resultat zu gelangen, wird mit

π′ =
p′C(t)

1− p0(t)
+ µ1π1

pC(t)

1− p0(t)

noch einmal das Differentialgleichungssystem (3.1.6) betrachtet, welches sich äqui-
valent umformen lässt zu

p′C(t) = (1− p0(t))π
′ − µ1π1pC(t)

= −µ1π1pC(t),
(5.1.1)

einem Differentialgleichungssystem mit Anfangswert pC(0) = π und der Lösung
(vgl. z.B. Burg/Haf/Wille [4, S. 37])

pC(t) = π exp

(∫ t

0

(−µ1π1)dx

)
= π exp (−µ1π1t).

(5.1.2)

Als Konsequenz hiervon kann auch p0(t) wie folgt bestimmt werden. Bekannt
ist (vgl. (3.1.4)), dass p′0(t) = µ1p1(t). Zusammen mit (5.1.2) ergibt sich so das
Differentialgleichungssystem

p′0(t) = µ1π1 exp (−µ1π1t)

mit Anfangswert p0(0) = 0, da der Prozess ja laut Voraussetzung zu Beginn nicht
im Zustand 0 absorbiert ist. Als Lösung ergibt sich

p0(t) =

∫ t

0

µ1π1 exp (−µ1π1x)dx + const

= − exp (−µ1π1t)− (−1) + const,

wobei const = 0 wegen des Anfangswertes, also:

p0(t) = 1− exp (−µ1π1t) (5.1.3)

(5.1.1), (5.1.2) und (5.1.3) liefern für diesen Fall die Lösung der Kolmogorovschen
Vorwärts-Differentialgleichungen; der Ausdruck ist kurz und bündig, jedoch ab-
hängig von π1 und somit nicht explitzit.
Wird nun angenommen, dass Absorption zum Zeitpunkt t eingetreten ist, gilt für
die Zeit bis zur Auslöschung τπ ≤ t, und die Anzahl infizierter Individuen I(t) ist
gleich 0. Somit sind die Ereignisse {τπ ≤ t} und {I(t) = 0} identisch. Ihre Wahr-
scheinlichkeiten können mit Hilfe von (5.1.3) wie folgt bestimmt werden:

P (τπ ≤ t) = P (I(t) = 0) = p0(t)

= 1− exp (−µ1π1t)

Es handelt sich hier offensichtlich um die Verteilungsfunktion der Exponential-
verteilung mit Parameter µ1π1, womit die Behauptung gezeigt wäre.



58 KAPITEL 5. ZEIT BIS ZUR AUSLÖSCHUNG

5.2 2. Fall: Degenerierte Anfangsverteilung

Der Fall einer anderen Anfangsverteilung als der quasi-stationären ist deutlich
komplizierter. N̊asell betrachtet in seinen Arbeiten [15], [16], [17] die erwartete
Zeit bis zur Auslöschung ausgehend von einem festen Zustand j ∈ C. Sie wird
durch einen expliziten Ausdruck bestimmt, dessen Komponenten mit Termen der
stationären Verteilungen der beiden Annäherungsprozesse beschrieben werden
können. Die Herleitung wurde z.B. von Karlin und Taylor [10, S. 148 ff.] im
Detail beschrieben. Zusammenfassend gesagt:

Satz 5.2.1. Für die erwartete Zeit bis zur Auslöschung τj ausgehend von einem
festen Zustand j ∈ C gilt:

Eτj =
1

µp
(0)
1

j∑
r=1

1−
∑r−1

m=1 p
(0)
m

α(r)T r−1

Dieser Ausdruck gibt Eτj gerade mit Hilfe einer Summe an, deren Komponenten
denen von γ(j) (siehe (3.1.13)) ähneln.

Beweis. Angenommen, der Prozess startet von einem Zustand j ∈ C aus, so
sind j + 1 und j − 1 die möglichen Zustände nach dem ersten Übergang; die
Wahrscheinlichkeiten für den Übergang in diese Zustände sind
pj,j+1 = qj,j+1/ − qjj = λj/(λj + µj) bzw. pj,j−1 = qj,j−1/ − qjj = µj/(λj + µj)
(vgl. (1.1.11) und (1.2.1) ). Die erwartete Verweildauer im Zustand j ist — da
exponentialverteilt mit Parameter (λj+µj) (vgl. Satz 1.1.11 und (1.2.1)) — gleich
(λj+µj)

−1. Somit ergibt sich für die erwartete Zeit bis zur Auslöschung ausgehend
vom Zustand j die Rekurrenz-Relation

Eτj =
1

λj + µj

+
λj

λj + µj

Eτj+1 +
µj

λj + µj

Eτj−1, j ∈ C, (5.2.1)

mit der Konvention Eτ0 = 0 = EτN+1. Diese Gleichung ist äquivalent zu

λjEτj + µjEτj = 1 + λjEτj+1 + µjEτj−1,

was sich umstellen lässt zu

Eτj − Eτj+1 =
1

λj

+
µj

λj

(Eτj−1 − Eτj).

Mit zj := Eτj − Eτj+1 gilt

zj =
1

λj

+
µj

λj

zj−1, j ∈ C.



5.2. 2. FALL: DEGENERIERTE ANFANGSVERTEILUNG 59

Iteration liefert

zj =
1

λj

+
µj

λj

(
1

λj−1

+
µj−1

λj−1

zj−2

)
=

1

λj

+
µj

λjλj−1

+
µjµj−1

λjλj−1

zj−2

und schließlich

zj =

j∑
i=1

1

λi

j∏
m=i+1

µm

λm

+

(
j∏

m=1

µm

λm

)
z0,

wobei
∏j

m=j+1 µm/λm := 1. Ausgedrückt durch Eτj ergibt sich

Eτj − Eτj+1 =

j∑
i=1

1

λi

j∏
m=i+1

µm

λm

− Eτ1

j∏
m=1

µm

λm

, j ∈ C; (5.2.2)

und mit
j∑

i=1

1

λi

j∏
m=i+1

µm

λm

=

j∏
m=1

µm

λm

j∑
i=1

ϑi,

wobei

ϑ1 :=
1

µ1

, ϑi :=
λ1 · ... · λi−1

µ1 · ... · µi

(1 < i ≤ N),

wird daraus

Eτj − Eτj+1 =

j∏
m=1

µm

λm

j∑
i=1

ϑi − Eτ1

j∏
m=1

µm

λm

.

Äquivalente Umformung führt dann zu(
j∏

m=1

λm

µm

)
(Eτj − Eτj+1) =

j∑
i=1

ϑi − Eτ1. (5.2.3)

Wird die Gleichung für j = N betrachtet, folgt

Eτ1 =
N∑

i=1

ϑi −

(
N∏

m=1

λm

µm

)
︸ ︷︷ ︸
=0, da λN=0

(EτN − EτN+1) =
N∑

i=1

ϑi.
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Somit ergibt sich aus Gleichung (5.2.3)

Eτj+1 = Eτj −

(
j∏

m=1

µm

λm

)(
j∑

i=1

ϑi

)
+

(
j∏

m=1

µm

λm

)(
N∑

i=1

ϑi

)

= Eτj−1 −

(
j−1∏
m=1

µm

λm

)(
j−1∑
i=1

ϑi

)
+

(
j−1∏
m=1

µm

λm

)(
N∑

i=1

ϑi

)

−

(
j∏

m=1

µm

λm

)(
j∑

i=1

ϑi

)
+

(
j∏

m=1

µm

λm

)(
N∑

i=1

ϑi

)
= ...

= Eτ1 −

(
1∏

m=1

µm

λm

)(
1∑

i=1

ϑi

)
+

(
1∏

m=1

µm

λm

)(
N∑

i=1

ϑi

)
− ...

−

(
j∏

m=1

µm

λm

)(
j∑

i=1

ϑi

)
+

(
j∏

m=1

µm

λm

)(
N∑

i=1

ϑi

)

=
N∑

i=1

ϑi +

(
1∏

m=1

µm

λm

)(
N∑

i=2

ϑi

)
+ ...

+

(
j∏

m=1

µm

λm

)(
N∑

i=j+1

ϑi

)

=
N∑

i=1

ϑi +

j∑
r=1

(
r∏

k=1

µk

λk

)(
N∑

m=r+1

ϑm

)
.

Werden hier nun die für das vorliegende SIS-Modell spezifischen Definitionen
eingesetzt, so ergibt sich weiter

Eτj =
(3.1.1)

1

µ
+

N∑
i=2

λ

(
1− 1

N

)
· ... · (i− 1)λ

(
1− (i− 1)

N

)
· 1

µ
· ... · 1

iµ

+

j−1∑
r=1

[
r∏

k=1

kµ ·
(

kλ

(
1− k

N

))−1
]

·
N∑

m=r+1

λ

(
1− 1

N

)
· ... · (m− 1)λ

(
1− (m− 1)

N

)
· 1

µ
· ... · 1

mµ
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=
(3.1.2)

1

µ
+

N∑
i=2

1

iµ
· T i−1 ·

(
N − 1

N

)
· ... ·

(
N − (i− 1)

N

)

+

j−1∑
r=1

[
µ · N

λ(N − 1)
· ... · rµ · N

rλ(N − r)

]

·
N∑

m=r+1

1

mµ
· Tm−1 ·

(
N − 1

N

)
· ... ·

(
N − (m− 1)

N

)

=
N∑

i=1

1

iµ
· T i−1 · (N − 1)!

(N − i)!N i−1
· N

N

+

j−1∑
r=1

1

T r
· (N − (r + 1))!N r

(N − 1)!
· N

N

·
N∑

m=r+1

1

mµ
· Tm−1 · (N − 1)!

(N −m)!Nm−1
· N

N

=
(3.1.14)

1

α(0 + 1)T 0

N∑
i=1

1

iµ
α(i)T i−1 +

j−1∑
r=1

1

α(r + 1)T r

N∑
m=r+1

1

mµ
α(m)Tm−1

=
1

µ

j∑
r=1

1

α(r)T r−1

N∑
m=r

1

m
α(m)Tm−1

=
(3.2.7)

1

µ

j∑
r=1

1

α(r)T r−1

N∑
m=r

p
(0)
j

p
(0)
1

=
1

µp
(0)
1

j∑
r=1

1−
∑r−1

m=1 p
(0)
j

α(r)T r−1
, j ∈ C.



Literaturverzeichnis

[1] Alsmeyer, Gerold Stochastische Prozesse, Teil 2, unveröffentlichtes
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