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Einleitung

Die erste Bekanntschaft mit Fixpunktgleichungen schlieflen wir in der Regel im Mathema-
tikunterricht unserer Schulzeit, wenn wir die Schnittpunkte einer Funktion f : R — R mit
der ”Ursprungsgeraden” g : R — R, g(z) = z, bestimmen sollen, denn die Menge dieser
Schnittpunkte ist genau die Losungsmenge der Fixpunktgleichung f(z) = = und damit
die Menge der Fixpunkte der Funktion f. Ohne dal wir uns dessen bewuf}t sind, haben
wir jedoch eine etwas andere Art von Fixpunktgleichungen bereits viel frither in unse-
rem Leben kennengelernt, wenn auch nicht unbedingt unter angenehmeren Umsténden.
Jedesmal, wenn wir an der Kasse im Supermarkt, im Sommer am Eisstand oder Sonntag
morgens beim Bécker in der Schlange stehen, sind wir Teil einer speziellen Fixpunktglei-
chung. Allgemein gefafit sind dies gerade die Situationen, in denen wir in der Regel nicht
sofort bedient werden konnen, sondern erst eine Weile darauf warten miissen. Reihen wir
uns als n-ter Kunde (n = 1,2,...) in eine beliebige solche Warteschlange ein, so setzt
sich unsere Wartezeit R,, zusammen aus der Wartezeit R,,_; des Kunden vor uns in der
Schlange und der Differenz X, aus dessen Bedienungszeit und der Zeit, die zwischen sei-
ner und unserer Ankunft am Ende der Schlange verstrichen ist. Die vorliegende Situation
fithrt uns somit zu der Gleichung

R, =max(R, 1 + X,,0) = (R,_1 + X,,)T, neN,

die in der Literatur unter dem Namen Lindley-Gleichung bekannt ist. (R,)nen, und
(Xn)nen bilden Folgen von ZufallsgroBen auf einem Wahrscheinlichkeitsraum (€2, A, P),
wobei die X,, unabhéngig und identisch verteilt sind und wir fiir dieses einfithrende Bei-
spiel Ry = 0 voraussetzen. In Kapitel 4 werden wir zeigen, dafl (R, )nen, unter diesen
Voraussetzungen eine stationédre Verteilung besitzt. Wahlen wir irgendeine Zufallsgrofie
R mit dieser Verteilung und eine von R unabhéngige Kopie X von X, so folgt aufgrund
der Unabhéngigkeit von R, ; und X,

RZ(R+X)",

wobei £ Gleichheit der Verteilungen bedeutet. Unserem Warteschlangenmodell liegt somit
eine sogenannte stochastische Fixpunktgleichung

RLU(R)

mit ¥(R) = (R+ X)* zugrunde. Fiir beliebige B x A-mefibare Funktionen ¥ : Rx Q — R
und eine Zufallsgrofe R auf einem Wahrscheinlichkeitsraum (£2, .4, P) ist die obige Glei-
chung die allgemeine Form fiir stochastische Fixpunktgleichungen in der Wahrscheinlich-
keitstheorie. Es erweist sich aber selbst fiir spezielle Funktionen V¥ i.a. als sehr schwierig,
zuldssige Verteilungen fiir R als Losungen solcher Gleichungen zu finden.

In der Literatur finden wir mehrere Arbeiten, deren Autoren sich dieser Aufgabe widmen
und dabei die rekursiv geschriebene Form, die auch die Lindley-Gleichung besitzt, als
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Ausgangsgleichung benutzen. Grincevicius, Kesten, Paulson und Uppuluri sowie Vervaat
(vgl. [Grl]-[Gr6], [K73], [PaU], [Ve2]) beispielsweise beschéftigen sich mit der Gleichung

Rn = Qn + Man—h nc N07

wobei (R, )nen, und (M, @, )nen unabhingige Folgen unabhéngig identisch verteilter Zu-
fallsgroBBen bzw. Zufallsvektoren sind. In einer auf Lassner (vgl. [Lal], [La2]) zuriickgehen-
den Anwendung stellt R, z.B. den Betrag eines Sparkontos zum Zeitpunkt n dar, ),, den
eingezahlten bzw. abgebuchten Betrag dirket vor diesem Zeitpunkt und M,, den Zinsfak-
tor, der aufgrund von Schwankungen im Laufe der Zeit ebenfalls als stochastische Grofie
angesehen werden kann. In Arbeiten von Grincevicius, Kesten, Paulson und Uppuluri und
Vervaat finden sich Voraussetzungen, unter denen eine eindeutige Losung dieser Gleichung
existiert, sowie FErgebnisse iiber die Grenzverteilung der R,,. Beispiele stochastischer Fix-
punktgleichungen, fiir die die Verteilungen aller betroffenen Zufallsgréfien bereits bekannt
sind, finden wir bei Chamayou und Letac (vgl. [ChL]). Weitere Autoren benutzen stocha-
stische Fixpunktgleichungen, um Vorgéange aus der Wirtschaft, Physik, Biologie oder auch
Soziologie besser darstellen zu kénnen (vgl. [Baw], [Cav], [CsF], [Chal, [ChM], [Gad], [Hel],
[HeN], [Mak], [PeH], [Tak]). In allen Arbeiten stehen dabei eine oder mehrere spezielle sto-
chastische Fixpunktgleichungen im Vordergrund. Auf der Grundlage eines Aufsatzes von
Kesten (vgl. [K73]) findet Goldie (vgl. [Gol]) dagegen einen allgemeineren Weg, Losungen
stochastischer Fixpunktgleichungen ndher zu bestimmen. Ausgehend von der Gleichung

R < U(R)

zeigt er fiir eine spezielle Klasse stochastischer Fixpunktgleichungen, dafl sich die Flan-
ken der Verteilung von R asymptotisch immer wie eine Potenzfunktion mit negativem
Exponenten verhalten, bevor er Beispiele in Form konkreter Gleichungen folgen 14£t.

In der vorliegenden Arbeit befassen wir uns mit Goldies Ergebnissen, indem wir diese
einerseits detailliert wiedergeben und andererseits zeigen, in welcher Weise sie fiir be-
reits bekannte Modelle an Bedeutung gewinnen. Im ersten Kapitel geben wir eine kurze
Einfiihrung in die Grundlagen der Erneuerungstheorie, da diese das wichtigste von Goldie
verwendete Hilfsmittel darstellt, um seine Aussagen zu beweisen. Goldies Haupttheorem
mit der Kernaussage

P(R>t)~Cyt™™" und P(R<—t)~C_t™"

fiir ¢ — oo und Konstanten Cy, C_ sowie ein £ > 0 nennen wir aus diesen Griinden auch
Implizites Erneuerungstheorem und stellen es mit seinem Beweis im zweiten Kapitel vor.
Obige Asymptotik der Flanken kénnen wir mit Goldies Hilfe noch genauer angeben und
widmen uns daher im dritten Kapitel der Konvergenzrate der Flanken der Verteilung von
R. Im vierten Kapitel veranschaulichen wir am Beispiel von vier stochastischen Fixpunkt-
gleichungen die Theorie der beiden vorigen Kapitel. Wir ziehen aulerdem die Verbindung
zu bereits bekannten Modellen wie z.B. der Warteschlangentheorie und betrachten ein
auf Chamayou und Letac (vgl. [ChL]) zuriickgehendes Beispiel einer stochastischen Fix-
punktgleichung fiir Beta-verteilte Zufallsgréfen. Im letzten Abschnitt des vierten Kapitels
zeigen wir abschlieBend eine Anwendung von Goldies Resultaten in der Extremwerttheo-
rie.

Fiir die Beratung und Unterstiitzung wiahrend der Entstehung der vorliegenden Arbeit
mochte ich Prof. Dr. Gerold Alsmeyer meinen Dank aussprechen. Ich danke auBerdem
allen, die auf ihre Art und Weise zum Gelingen dieser Arbeit beigetragen haben.









1 Theoretische Grundlagen

1.1 Erneuerungstheorie

In diesem Abschnitt stellen wir Grundlagen und Ergebnisse ohne Beweise aus der Erneue-
rungstheorie zusammen, die uns spéter helfen werden, einen asymptotischen Wert fiir die
Flanken der Verteilung von Losungen stochastischer Fixpunktgleichungen zu bestimmen.
Wir legen dazu die Definition des Random Walks (RW) als Partialsummenfolge (S,),
unabhingig identisch gemif @ verteilter Zufallsgrofen X, Xo, ... mit einem von diesen
Zufallsgroflen unabhéngigen, zufallsabhéngigen Anfangspunkt Sy sowie die Definition ei-
nes Standardmodells zu () zugrunde. Es gilt somit

Sn:SO‘f’zn:Xi, n € N.

=1

Ein Random Walk heifit ferner Standard-Random-Walk (SRW), falls Sy = 0 fast sicher
gilt, andernfalls verschobener Random Walk (VRW).

Definition 1.1.1. ([ASP], Definition 21.5)
Sei @ € W(R)'. Dann heiBt jedes Modell

(Qu A, (Sn)nzm (P)\))\EQB(]R))u

sodaB S, : (2,4) — (R,B),n € Ny, unter P, einen RW mit Zuwachsverteilung ¢ und

Anfangsverteilung A bildet, Standardmodell zu Q. Es gilt demnach Py(Sy € -) = A und
P/\(Xl c - ) - Q

P, ist dabei die Abkiirzung fiir Ps,. Da (S,),s, €in additiver Prozef§ ist und G, := R
eine additive Gruppe mit den abgeschlossenen Untergruppen G, := {0} und G, := dZ
fiir d > 0, ist es sinnvoll, die kleinste Untergruppe von R zu bestimmen, auf die (S,),,,
konzentriert ist. Diese Untergruppe muf nicht abgeschlossen sein, im folgenden spielt
jedoch nur deren Abschlufl und damit die kleinste abgeschlossene Untergruppe von R, die
sie enthélt, eine Rolle. Mit Hilfe dieser Festlegungen ermdoglichen uns die beiden folgenden
Definitionen eine Einteilung von RWs in zwei Klassen.

Definition 1.1.2. (vgl. [ASP], Definition 21.2)
Fiir ein Wahrscheinlichkeitsmafl @) auf R sei

d(Q) = sup{d € [0,00] : Q(G) = 1},

genannt Spanne von (). Dann heifit ()

Menge der Wahrscheinlichkeitsmafe (Verteilungen) auf (R, B)

9



10 Theoretische Grundlagen

-nichtarithmetisch, falls d(Q) = 0;
-d-arithmetisch, falls d(Q) = d > 0.

Entsprechend heifit eine ZufallsgroBe X auf einem Wahrscheinlichkeitsraum (€2, .4, P)
nichtarithmetisch bzw. d-arithmetisch, falls P* nichtarithmetisch bzw. d-arithmetisch ist.

Definition 1.1.3. (vgl. [ASP], Definition 21.4)

Gegeben ein Standardmodell zu @) geméf Definition 1.1.1, heifit ein RW (S,,),,+, nicht-
arithmetisch, falls X; nichtarithmetisch ist, und d-arithmetisch, falls X; d-arithmetisch
ist und P,\(SO S Gd) =1 gllt

Die zusétzliche Forderung an Sy im d-arithmetischen Fall ist notwendig, da (5,),~, nur
auf das zugehorige Gitter konzentriert ist, wenn auch Sy fast sicher auf diesem liegt. Um
asymptotische Aussagen zu erleichtern, setzen wir aufferdem fiir eine Funktion f : R — R
und t € R, n € Ny sowie fiir beliebiges d > 0

. [l f(t),  fallsd=0
dHlimy oo f(t) 1= { limp oo f(nd), fallsd >0 °

Mit Hilfe eines RWs (S,,),s, und des zugeordneten Punktprozesses ) ., dg, definieren
wir das zufillige ZéhlmaB -
N := Z ds,

n>0

auf (R,B) fiir alle w € Q und B € B durch

N(w,B) = 85, (B).

n>0

Wir versehen die Menge M aller ZahlmaBle auf (R, B) mit der kleinsten o-Algebra 91, so
dafl siémtliche Projektionen

75 M= Ny, i p(B),

meBbar sind, d.h. M := o(7p, B € B). Dann definiert N : (Q, A) — (M, M), w — N(w,-),
in der ersten Komponente eine mefibare Abbildung und als Abbildung bei festgehaltener
zweiter Komponente N(B) : (2, 4) — (R,B), w — N(B)(w) := N(w,B), fiir jedes
B € B eine Zufallsgrofle, die die Anzahl der Punkte S, in B angibt. Das sogenannte
Intensititsmafl von N unter Py erhalten wir fiir jedes B € B durch

B~ E)\N(B> = U)\(B),

d.h. U,(B) ist die erwartete Anzahl von Punkten in B. Dies fiihrt uns zur Definition des

Erneuerungsmafes.

Definition 1.1.4. (vgl. [ASP], Definition 21.6)
Gegeben einen RW (S,),~,, heifit das Intensitétsmafl Uy des zugeordneten Punktprozesses
Y ns00s, das Erneuerungsmaf von (S,),s, unter Py und dessen zugehorige ” Verteilungs-
funktion”

Ux(t) := Ux(—00, ], teR,

Erneuerungsfunktion.



1.1. Erneuerungstheorie 11

Da die Zuwichse von (S,),,5, die Verteilung @) besitzen, folgt

U= P =Xx) Q™ =xxlp,

n>0 n>0

wobei Q*(©) := ¢, gilt. Mit Hilfe der folgenden Einfiihrung direkt Riemann-integrierbarer
Funktionen sowie den bis hierhin getroffenen Vereinbarungen kénnen wir nun das 2. Er-
neuerungstheorem mit seiner Verscharfung angeben, das ein zentrales Ergebnis der Er-
neuerungstheorie darstellt. Wir setzen dazu

N Lebesgue-Mafl auf (R,B), fallsd=0
47\ d-mal das ZahlmaB auf dZ, fallsd >0 °

Definition 1.1.5. ([ASP], Definition 26.1)
Sei g : R — R eine Funktion sowie fiir 6 > 0 und n € Z

I8 = (6n,8(n + 1)],
md =inf{g(t) : t € I’}, M? = sup{g(t) : t € I°},
a(8)=86Y,c,m) und  T(6) =8, M.

Dann heifit g direkt Riemann-integrierbar (d.R.i.), falls ¢(§) und 7(0) beide fiir alle § > 0
absolut konvergieren und

lim(z(0) — (d)) = 0.

Die direkte Riemann-Integrierbarkeit einer Funktion entspricht damit der gewdhnlichen
Riemann-Integrierbarkeit, sofern man den Definitionsbereich R der Funktion durch ein
kompaktes Intervall ersetzt.

Satz 1.1.6. (vgl. [ASP], Satz 26.2)
Jede d.R.i. Funktion g erfillt

(a) g ist beschrinkt und No-f.1i. stetig.
(b) g ist Ng-integrierbar fir d € {0,1}, d.h. [ |g(z)|Na(dx) < 0.

Umgekehrt ist jede der folgenden Bedingungen hinreichend dafiir, daf$ eine reellwertige
Funktion g auf R d.R.i. ist:

(¢) a(0), T(0) konvergieren absolut fiir ein 6 > 0, und g ist No-f.u. stetig.
(d) g hat kompakten Trager {z : g(x) # 0} und ist No-f.1i. stetig.

Satz 1.1.7. ([ASP], Satz 26.5. Das 2. Erneuerungstheorem,)
(Sn)pso sei ein RW mit Drift p = EX; € (0,00] und Spanne d = d(X;) € {0,1}. Dann
gilt fiir alle X € W4(R)? und jede d.R.i. Funktion g

d-limy;_,oog * Up(t) = p~* / g(x)Ng(dx)
R

und
lim g=x Uy(t) = 0.

t——o0

2Menge aller Verteilungen A auf (R, B) mit A\(G4) =1 fiir d > 0



12 Theoretische Grundlagen

Satz 1.1.8. ([ASP/, Satz 28.4)
Seien Q, Qo Wahrscheinlichkeitsmafe auf R mit p = pu(Q) >0, Uy =, o, Q*™ und
U = Qo Uy. Sei Qo ferner No-stetig mit Dichte fy. Dann gilt fiir die zugehorige Erneue-
rungsdichte u = fo * Uy

lim u(t) = p~ ' und lim u(t) =0,

t—o00 t——o00

sofern fo d.R.i. ist oder Q quasi No-stetig und fo € £13 N Lo* mit limp) oo fo(t) = 0.

Dabei heifit ein Wahrscheinlichkeitsma$ @ auf R quasi Ao-stetig, wenn Q*( fiir ein n € N
eine A\g-stetige Komponente besitzt, d.h. wenn ein A\g-stetiges Mafl ()1 # 0 und ein weiteres
MaB Qs existieren, so da Q"™ = Q, + Q- gilt.

Das 2. Erneuerungstheorem tréagt im Englischen den Namen Key Renewal Theorem, da
es u.a. bei der Untersuchung des asymptotischen Verhaltens oben angegebener Faltun-
gen eine Schliisselstellung einnimmt. Seine erste Aussage werden wir fiir den Fall d = 0
verwenden, der wegen g * Ux(t) = Ex ), <, 9(t — S,) insbesondere

1 [e.9]
E,\ Zg(t —-S,) — BX, / g(u)du, t — o0,

n>0 -0

besagt.

1.2 Erneuerungsgleichungen

Ein weiterer wichtiger Bestandteil der Erneuerungstheorie sind Gleichungen der Form

(1.2.1) Z(r)=z(r)+ /RZ(T —2)Q(dz), r e R,
bzw.
(1.2.2) Z=z2+2%Q,

wobei z, Z : R — R Funktionen und @) ein Mafl auf R seien. Sie tragen den Namen
Erneuerungsgleichungen und speziell Standard- Erneuerungsgleichungen, falls @ auf [0, 0o)
konzentriert ist und z und Z auf (—o0,0) verschwinden. (1.2.1) besitzt in diesem Fall die
Gestalt

Z(r) = z(r) —|—/ Z(r —z)Q(dx), r > 0.
[0,7]
Eine Iteration von (1.2.2) liefert nach n Schritten
7 — » % ZQ*(k) + 7% Q*(nJrl)
k=0

und fiihrt zu der Vermutung, dafl

Z=zxU=2zx)» Q®

k>0

3Vektorraum der reellen, 1-fach v-integrierbaren Funktionen auf einem Mafiraum (2, A, v/)
4Vektorraum der reellen, v-fast iiberall beschrinkten Funktionen
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eine Losung bei gegebenem z und () ist. Das auftretende Erneuerungsmafl schafft dabei
die Verbindung zur Erneuerungstheorie. Eine ausfiihrliche Begriindung der Vermutung
wiirde an dieser Stelle zu weit fithren. Wir erwahnen daher nur kurz, dafl eine Standard-
Erneuerungsgleichung fiir lokal beschrinkte® meibare Funktionen z und regulire® Mafle
Q) die eindeutig bestimmte Losung Z = z % U besitzt (im allgemeinen Fall benotigt man
beschrankte mefibare Funktionen z und Mafle @ mit Q(R) < 1, da der Integrationsbereich
nicht mehr kompakt ist) und verweisen fiir weitere Details wie z.B. die Bestimmung des
Grenzwertes existierender Losungen und deren Konvergenzgeschwindigkeit gegen diesen
Limes auf [ASP], Kapitel 27.

Mit Impliziter Erneuerungstheorie ist eine Variante von Erneuerungsgleichungen gemeint,
in der neben Z auch z unbekannt ist und sogar ein von Z abhéngiges Integral darstellt. In
Anlehnung an diese Erneuerungsgleichungen sind stochastische Fixpunktgleichungen der

Form R 2 Wo R mit einer Funktion ¥ und einer ZufallsgroBen R zu sehen, deren Verteilung
unbekannt ist. Thre Untersuchung beginnen wir im néchsten Kapitel, indem wir festlegen,
welche Voraussetzungen zum Aufstellen dieser Gleichung benétigt werden und welche
Bedingungen ¥ erfiillen mufl. Der Einflufl der Erneuerungstheorie kommt in Satz 2.2.1
als Haupttheorem des Kapitels zum Ausdruck. Mit Hilfe des 2. Erneuerungstheorems
ermoglicht dieser Satz Aussagen iiber die Flanken der Verteilung von R und wird daher
Implizites Erneuerungstheorem genannt.

SEine reellwertige Funktion f heifit lokal beschrinkt, falls sie auf jeder kompakten Teilmenge ihres
Definitionsbereiches beschrénkt ist.

SEin MaB @ auf [0, c0) heiBt regulr, falls es positiven Erwartungswert besitzt, Q(0) < 1 gilt und der
Definitionsbereich der zugehoérigen momenterzeugenden Funktion nicht leer ist.






2 Implizite Erneuerungstheorie

2.1 Vorbereitungen
Gleichungen der Form
(2.1.1) RLToR

mit einer Zufallsgrofien R und einer Funktion W heiflen stochastische Fixpunktgleichungen.

Um Aussagen iiber sie treffen zu konnen, mufl ¥ so definiert sein, dafl die Verkniipfung
U o R selber eine Zufallsgrofie ist. Sei daher W : R x €2 — R eine B x A-mefbare Funk-
tion und (€2, A, P) ein Wahrscheinlichkeitsraum. Fiir ein festes w € Q ist U dann ein
Zufallselement von M(R,R), der Menge der Borel-mebaren Funktionen von R nach R;
fiir ein festes t € R dagegen ist W¥(t) := (¢, -) eine ZufallsgroBe. Ist R eine auf demselben
Wahrscheinlichkeitsraum definierte von W unabhéngige Zufallsgrofe, interpretieren wir
die Verkniipfung von ¥ und R als Abbildung

VoR:Q—-R, w— VY (Rw),w).

Obgleich wir die Verteilung von R nicht kennen, konnen wir dennoch unter gewissen
Voraussetzungen ihre Existenz und Eindeutigkeit nachweisen sowie Aussagen iiber ihre
Flanken treffen. Der Fall, in dem letzteres moglich ist und der von uns untersucht werden
soll, ist der, dafl sich die Zufallsgrofe W(¢) fiir betraglich grofle Argumente anndhernd
so verhédlt wie die Multiplikation von ¢ mit einer ebenfalls auf (2,.4, P) definierten Zu-
fallsgréBen M, die die Voraussetzungen des unten aufgefithrten Lemma 2.1.2 erfiillt. Im
Haupttheorem dieses Kapitels, Satz 2.2.1, zeigen wir, dal dann die Flanken der Verteilung
von R asymptotisch einer Potenzfunktion gleichen, sofern sie gewissen die Zufallsgroflie M
betreffende Integrationsbedingungen geniigen.

Zur Kldrung der Existenz und Eindeutigkeit der Verteilung von R geniigt uns ein Satz, der
sich auf ein Ergebnis von Letac stiitzt. Unter der Annahme, dafl auf dem passend erweiter-
ten Wahrscheinlichkeitsraum (€2, A, P) unabhéngige Kopien Wy, U,, ... von W existieren,
erhalten wir mit Hilfe der Definitionen

(2.1.2) Zp(t) :=TU10Ws0...0W,(1), n e N,

(2.1.3) Wy(t) :=V¥,0W,_j0...0W(t)), n €N,

die eindeutige Verteilung von R und damit von ¥ o R durch Grenzwertbetrachtung von
Ly, W, fiir n — oo.

Satz 2.1.1.(/Let], Prinzip von Letac)
Sei (2, A, P) ein Wahrscheinlichkeitsraum, ¥ : R x Q@ — R eine B x A-mefbare Funk-
tion und R eine Zufallsgrofie auf Q, die (2.1.1) erfillt. Hat U stetige Pfade, d.h. ist

15



16 Implizite Erneuerungstheorie

die Abbildung t — Y (t,w), t € R, fir jedes w € Q stetig, und existiert der Grenzwert
lim,, .o Z,(t) =: Z fast sicher und ist unabhdingig vom Argument t, so ist die Verteilung
von Z die eindeutige Losung der Fixpunktgleichung (2.1.1) und damit die eindeutige Ver-
teilung von R. Ebenso gilt lim, ... W,,(t) = Z, sofern Z existiert (beachte W, (t) ~ Z,(t)).

Anstelle der stochastischen Fixpunktgleichung R 2 WoR finden wir bei Letac urspriinglich
die Gleichung

(2.1.4) R< f(RY), Y unabhingig von R,

wobel Y eine X-wertige Zufallsvariable, (X', F) ein mebarer Raum und f : R x X — R

eine feste produktmefbare Funktion ist. Indem wir X = M(R,R) setzen und fiir alle
g€ Xund t € R f(t,g9) := g(t) definieren, kénnen wir das Theorem auf unseren Fall

anwenden, denn (2.1.4) erhélt die Form R £ ¥ o R, wenn wir ¥ mit Y identifizieren.
Zuletzt geben wir im folgenden Lemma die Bedingungen an, die von der Zufallsgrofie M
erfiillt werden miissen.

Lemma 2.1.2. Sei M eine Zufallsgrofie auf einem Wahrscheinlichkeitsraum (€2, A, P),
fiir die ein k > 0 existiere, so daf

(2.1.5) E|M" =1,

(2.1.6) E|M|"log™ |M| < oo
gelten. Sofern auflerdem P(|M| = 1) < 1 ist, folgen
(2.1.7) Elog |M| € [—0,0),

(2.1.8) m = E|M|"log|M| € (0,0).

Beweis. Sei Y := log|M| und ¢(\) = Ee’ = E|M|* die zugehdrige momenterzeu-
gende Funktion (vgl. [AWT], Definition 40.3). Nach Voraussetzung ist ¢ (k) = ¥(0) = 1.
Wir wissen ferner, da D(¢)) = {\ : ¢(\) < oo} ein Intervall ist (vgl. [AWT], Lemma 40.2)
und v auf dessen Inneren eine konvexe, unendlich oft differenzierbare Funktion bildet mit
Y'(\) = EYeNY. Da wir [M| = 1 f:s. ausgeschlossen haben, ist aufgrund der Konvexitiit
von ¢ in Verbindung mit ¢(\) — oo fiir A — oo limy o4’ (A) < 0 und limy;, ¢’ (A) > 0
(allgemein folgt zunéchst nur limy o ¢'(A) < 0). Wegen

EYTe™ | EYt <00 und EY e T EY™ €[0,00], A0,
gilt nun aber

_ I T AY 9 /
E10g|M|—EY—1/\1%1EYe _liﬁ)l¢(/\)<0'

(k) :/ e”Y+dP+/ e " dP,
Y>0 Y<0

der Konvexitéat von ¢ und (2.1.6) folgt

Aus

0< 1A11Tm Y\ = W(EW&Y — By eM) < 1A11Tm EYteN = By Te® < o

und damit (2.1.8) wegen limyy, ¢'(\) = EYe™ =m. O
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2.2 Das Implizite Erneuerungstheorem

Satz 2.2.1. (Implizites Erneuerungstheorem)
Sei M eine Zufallsgrofie auf einem Wahrscheinlichkeitsraum (2, A, P), die den Bedin-
gungen von Lemma 2.1.2 geniigt, und R eine von M unabhdngige Zufallsgrofie. Sei ferner
PleglMIIMZO pichtarithmetisch.

(a) Falls M >0 fast sicher ist und

(2.2.1) / IP(R>1t) — P(MR > t)|t" 'dt < 0o
0
bzw.
(2.2.2) / |P(R < —t) — P(MR < —t)|t"'dt < o0
0
gelten, so folgt fiir die Flanken der Verteilung von R
(2.2.3) P(R>1)~Cyt™,  t— o0,
bzw.
(2.2.4) P(R< —t)~C_t™", t — o0,

wobei C'y und C_ durch die Gleichungen

(2.2.5) / P(R>t)— P(MR > t))t" dt,

(2.2.6) m/ P(R< —t) — P(MR < —t))t" dt
gegeben sind.

(b) Falls P(M < 0) > 0 ist und sowohl (2.2.1) als auch (2.2.2) gelten, so folgen (2.2.3)
und (2.2.4), wobei in diesem Fall

(2.2.7) C,=C_= —/ P(|R| > t) — P(|MR| > t))t* 'dt
gilt.

Die Summe von C; und C_ in (b) und auch in (a), sofern dort beide Voraussetzungen
erfiillt sind, definieren wir durch

(2.2.8) Ci=C+C = —/ P(R| > t) — P(IMR| > t))t*dt.

Sollen die Aussagen des Satzes einen relevanten Inhalt bekommen, so diirfen wir nur die
Werte von k betrachten, fiir die auBerdem E |R|" = oo gilt. Andernfalls folgt wegen der
Unabhéngigkeit von M und R

C = m/ P(|R| > t) — P(|MR| > t))t" *dt

= EF|R"—F|MR
—(E|RI" - B|MR[")

1 K K
= —EI[R"(1-E|M[")

Km
=0
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und daher im Hinblick auf (2.2.3) und (2.2.4)
t"P(|R| >t) =t"P(R>t)+t"P(R< —t)~Cy +C_=0

fiir t — oo und somit P(|R| > t) = o(¢t™"). Aufgrund der Annahme E|R|" < co erhalten
wir dieses Ergebnis jedoch direkt und ohne das Implizite Erneuerungstheorem.

Die Voraussetzungen und Aussagen des Satzes dndern ihre Gestalt, falls R zusétzlich zu
den dort geforderten Bedingungen eine stochastische Fixpunktgleichung gemafl (2.1.1)
erfiillt. Wir fassen daher die Ergebnisse im folgenden Korollar erneut zusammen und
fithren dessen Beweis direkt im Anschluf3. Der Beweis des Impliziten Erneuerungstheorems
folgt im néchsten Abschnitt.

Korollar 2.2.2. Sei (2, A, P) ein Wahrscheinlichkeitsraum, W : R x Q — R eine B x A-
mefbare Funktion und R eine auf ) definierte Zufallsgrifle, die die Fixpunktgleichung
RLZUoR

erfillt. Sei weiter M eine Zufallsgrife auf (2, A, P), die den Bedingungen von Lem-
ma 2.1.2 geniigt und auflerdem so gewdihlt sei, dafi R unabhdngig von (U, M) ist. Dann
lassen sich die Bedingungen (2.2.1) und (2.2.2) im Impliziten Erneuerungstheorem durch

(2.2.9) E|(¥(R)")* = (MR)*)"| < o0
bzw.
(2.2.10) E|(Y(R)7)"— (MR)")"| < o

ersetzen und die Formeln (2.2.5), (2.2.6) und (2.2.7) zu

(2.2.11) C+—?%E«@UDU“—«MRVV%
2212 C- = —E((W(R) )"~ (MR) ),
(2.2.13) CLZC'ZZ%fMW@W“%MM@

umschreiben.

Obwohl nach Voraussetzung R 4 U(R) gegeben ist, konnen wir in keinem dieser fiinf
Ausdriicke W(R) durch R ersetzen, denn die in den Begriindungen dieser Formeln benutzte
Verteilung von (¥(R), M R) ist nicht notwendigerweise auch die des Paares (R, M R).
Zum Beweis von Korollar 2.2.2 verwenden wir die Aussage des folgenden Lemmas.

Lemma 2.2.3. Seien X, Y Zufallsvariablen auf einem gemeinsamen Wahrscheinlich-
keitsraum (2, A, P). Dann gilt

(2.2.14) /mU%X>®—J%Y>ﬂH*%ﬁ:%EKXU“—O”VL

wobei das Integral auch den Wert oo annehmen kann. Ist es endlich, kénnen die Betrags-
striche in (2.2.14) weggelassen werden, d.h. es gilt

(2.2.15) /wng>w—4%Y>wﬁ*%u:1E«Xﬂﬂ—oﬁyy

K
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Beweis. Da aufgrund der Integrationsgrenzen nur Werte von ¢t > 0 betrachtet werden
und die Wahrscheinlichkeiten P(X > t) und P(X* > ¢) fiir ¢ > 0 gleich sind, geniigt
es, (2.2.14) und (2.2.15) fiir nichtnegative Zufallsvariablen XY nachzuweisen. Seien also
X,Y > 0. Losen wir den Betrag auf, konnen wir das Integral in (2.2.14) als Summe zweier
Integrale schreiben:

/Ooo |IP(X >t)— P(Y >t)|t" 'dt = /OOO(P(Y >HY > X)—P(X >tY > X))t" dt
+/OO(P(X >tY <X)—-PY >t Y < X))t" adt
0
= /OOO P(X <t<Y)t" ldt
+/Oo P(Y <t < X)t" ldt.
0

Mit dem Satz von Fubini erhalten wir

/ tTIP(X <t < Y)N(dt) = / U / 1(0.4)(2) 1y (1) P (d, dy) A(dt)
(0,00) (0,00) (0,00) % (0,00)
= / 110, () / t"IN(dt) PYY) (dx, dy)
(0,00) % (0,00) [v.)

= El{xoyy / tIA(dR)
[X)Y)
und somit - .
/ P(X<t< Y)t"‘_ldt = —El{X<y}(Y"i - X")
0 K

sowie analog
o 1
/ P(Y <t< X)tﬁ_ldt = —E’]_{Y<X}(AXV"i — YH)
0 K

Insgesamt folgt daher fiir das Ausgangsintegral

o 1
/ [P(X > 1) = P(Y > )]t 1dt = —B(Lixary(V" = X") + Lyax) (X" = Y*)
0
1
= ZE|X"-Y"|.
K

(2.2.15) erhalten wir direkt, denn fiir jede nichtnegative Zufallsgrofe X gilt

EX" = / Kt"TP(X > t)dt, x> 0.
0

O

Beweis von Korollar 2.2.2. Da nach Voraussetzung R < U(R) gilt und wir V(R)
als Zufallsgrofie auf dem Wahrscheinlichkeitsraum von R ansehen konnen, folgt fiir das
Integral in (2.2.1) durch Addieren und Subtrahieren des Terms P(W(R) > t) innerhalb
der Betragsstriche sowie mit Hilfe von Lemma 2.2.3

/OO IP(R>1t) — P(MR > t)|t*"'dt = /Oo IP(U(R) > t) — P(MR > t)| " \dt

= B[R~ (MR)T)].
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Wegen (2.2.9) ist das Integral auBerdem endlich. Analog erhalten wir die Endlichkeit
des Integrals in (2.2.2) und koénnen daher das Implizite Erneuerungstheorem anwenden.
Mit (2.2.15) aus Lemma 2.2.3 folgt

c, - %/mw@ua>w—mMR>ww4ﬁ
L g

— B((W(R)")* — (MR))")

und somit (2.2.11). (2.2.12) und (2.2.13) erhalten wir auf gleichem Weg. O

2.3 Der Beweis des Impliziten Erneuerungstheorems

Fiir den Beweis des Impliziten Erneuerungstheorems geniigt es, (2.2.3) sowie die jeweilige
Formel fiir 'y nachzuweisen, da man die restlichen Ergebnisse erhélt, indem man —R
statt R betrachtet. Im Beweis des Theorems betrachten wir die drei Fille

M>0fs, M <0fs. und P(M <0)>0, P(M>0)>0

getrennt und verwenden als Schliissel zum Erfolg die Aussage von Lemma 2.3.1, das
wir daher zur Vorbereitung voranstellen. Im Beweis verwenden wir auflerdem Summen
und Produkte sowie stetige Verarbeitungen von unabhéngigen Zufallsgrofien, die alle die
Verteilung der Zufallsgrofle M besitzen. Um spétere Rechnungen zu erleichtern, setzen
wir daher

(2.3.1) Y, :=log|M,]|, Sy = log|IL,,| = zn:Y;, n €N,
=1

(2.3.2) r(t) == e"P(R > ¢'), Su(t) := ™ P(II,R > ¢'), t € R,

(2.3.3) g1(t) =" (P(R>¢e") — P(MR > ¢")), t eR,

(2.3.4) g_1(t) = e"(P(R < —e") — P(MR < —¢)), t € R,

wobei Sy := 0, Iy := 1, II, := [[_, M; und R, M, M;, Ms,... unabhingige Zufalls-
grofien auf einem gemeinsamen Wahrscheinlichkeitsraum (€2, A, P) seien und die M, fiir
alle n € N die Verteilung von M besitzen. M’ sei eine weitere Zufallsgrofe, auf die diese
Bedingungen ebenfalls zutreffen, d.h. insbesondere gilt M’ ~ M. Man beachte, dafi die
Funktionen ¢; und g_; aufgrund der Voraussetzungen (2.2.1) bzw. (2.2.2) und der Substi-
tution t = log s betraglich uneigentlich Riemann- und daher auf R Lebesgue-integrierbar
sind. Fiir eine Funktion f : R — R sei aulerdem

(2.3.5) ﬂw:/’e@wﬂmm, teR
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Lemma 2.3.1. Falls fot u®P(R > w)du ~ Ct fiirt — oo gilt, folgt

P(R>t)~Cit™,  t— oo

Beweis. Wir wéhlen ein festes b > 1. Dann ist P(R > bt) < P(R > t) wegen bt > t,
und fiir ¢t — oo gilt

bt t
Ci(b—1)t ~ / u*P(R > u)du — / u*P(R > u)du
o 0
= / u*P(R > u)du
t

bt
< P(R>t)/ u"du
¢

_ e 1t“+1P(R > t)
k41
und somit
e ok b—1
Da mit dem Satz von de L’Hospital
b—1 ) 1 1

lim — =1 =
LD — 1 bl (k+1)br  k+1

folgt, erhalten wir durch Grenziibergang b | 1 schlielich liminf, . t*"P(R > t) > C,.
Analog zeigt man

limsupt"P(R > t) < C4,
t—o0
indem man [, u"P(R > u)du fir 0 < b < 1 nach unten durch %t”“P(R > t)
abschéitzt und dann b T 1 laufen 148t. Insgesamt folgt somit die Behauptung. a

231 M >0 f.s.

Es sei also M > 0 fast sicher. Nach Lemma 2.3.1 geniigt es fiir (2.2.3), fiir ¢ — o0
f(f u"P(R > u)du ~ Ct zu zeigen. Fithren wir im Integral die Substitution u = e® durch
und benutzen die Definition des ~-Operators gemaf (2.3.5), erhalten wir mit Hilfe der
Definition von r(t)

t logt
/ u*P(R > u)du = / DS P(R > e%)ds = ti(log t).
0 —o0
Folglich miissen wir

r(log t) — Cy

fiir t — oo zeigen. Da fiir t — oo auch logt — oo lauft, untersuchen wir zunéchst das
Verhalten von 7(¢) fiir groBe Werte von ¢. Dazu schreiben wir P(R > e') fiir beliebiges
t € Rund n € N als Teleskopsumme und benutzen die Tatsache, dafi die Betragsstriche



22 Implizite Erneuerungstheorie

in der Definition von S, in (2.3.1) wegen M, > 0 fiir alle n € N vernachléssigt werden
kénnen sowie dafl M,, ~ M fiir alle n € N gilt:

n

P(R>¢') =) (P(It1R > ¢') — P(IltR > ¢)) + P(Il,R > ¢)

k=1
= (P(e¥ 'R >e') — P ' MR > ¢')) + P(e*" R > ¢')
k=1

(2.3.6) -
=Y (P(R>¢"%) — P(MR > ¢'"5)) + P(e*"R > ¢')

k=0

= nz:/(P(R > ™) — P(MR > e"™))P(S) € du) + P(e°"R > ¢).

Integriert wird hierbei nur iiber R, obwohl P(S, = —oo) > 0 moglich ist, da nach Vor-
aussetzung M, > 0 fiir alle n € N gilt. Setzen wir

Vo (dt) := e i P(Sy € dt), neN,
k=0
erhalten wir aus (2.3.6) mit Hilfe der Definitionen von ¢y, » und 9,
r(t) = g1 % V_1(t) + 0,(¢), teR, neN.
Eine Anwendung des ~-Operators gemé8 (2.3.5) liefert mit Lemma 5.3.3 im Anhang
(2.3.7) F(t) = g1 % Va1 (t) +0,(t) = g1 % Vi1 (t) +6,(t), tER, neEN.

Da wir 7(t) fur ¢ — oo untersuchen wollen, mochten wir auch auf der rechten Seite
von (2.3.7) eine von n unabhéngige Darstellung erzielen und betrachten beide Summanden
fiir ein beliebiges, festes ¢ € R. Die Y; sind unabhéngige identisch verteilte Zufallsgrofien
mit £Y) = Elog|M| € [—00,0). Daher gilt lim,,_,, S, = —o0 fast sicher und

lim P(I,R > e") = lim P(R > e“ ) =0,

n—od n—oo

d.h. lim,, ., 8,(t) = 0. Aufgrund majorisierter Konvergenz folgt dasselbe fiir &, (t).
Fiir den Term g; * V,,_1(t) erhalten wir

n—1
lim gy * Voo (t) = lim [ gi(t — s)Vooi(ds) = lim [ gi(t —s)e™ > P(S € ds).
n—oo n—oo R n—oo R k:(]

Es ist nicht klar, ob wir Grenzwertbildung und Integral vertauschen diirfen. Wir definieren
daher zunéchst ein Mafl  durch

n(du) := "™ P(Y; € du).

Dieses Maf gibt —oco keine Masse (beachte Ee¥' = E|M|" = 1) und ist aufgrund der
Voraussetzungen eine nichtarithmetische Wahrscheinlichkeitsverteilung auf R mit Erwar-
tungswert m € (0, 00). Mit Hilfe von Lemma 5.3.4 im Anhang und Sy ~ dy erkennen wir
e P(S, € dt) als Dichte der Verteilung n*™, die aufgrund der Unabhingigkeit und der
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identischen Verteilung der M,, und wegen (2.1.5) eine Wahrscheinlichkeitsverteilung auf
R ist, denn es gilt

/ *(n) (du) /eﬁsndp — EenZ?zlYi — EHeﬁlog|Mi\ _ (E|M1|K)n —1
. “ =1

Wir kénnen daher durch die Summe iiber die Dichte von n*™ das Erneuerungsmaf

)= g "(dt) =) " e"P(S, € dt)

n>0 n>0

definieren. Wegen m # 0 ist f * V(t) < oo fur alle ¢ € R und d.R.i. Funktionen f.
Insbesondere gilt g, * V(t) < oo fiir alle t € R, da g; € Ly := L1(R,B, A\)! und damit g,
nach Lemma 5.3.2 im Anhang d.R.i. ist. Mit dem Satz von der majorisierten Konvergenz
folgt

nh_{gogl * Voo1(t) = /gl(t— s)e ’“ZP (Sk € ds) = /gl(t—s)V(ds) =g1 % V(t),

k>0 R
und wir erhalten in (2.3.7) fiir n — oo und ein beliebiges, festes ¢t € R insgesamt
(2.3.8) 7(t) = g1 * V(t).

Auf diesen Ausdruck konnen wir das 2. Erneuerungstheorem anwenden, da
(Sn)ps0 = (2 i1 Yi)n>o ein nichtarithmetischer SRW mit

/ue“uPyl(du) = /un(du) =m € (0,00)
R R
und §; : R — R nach obigen Uberlegungen d.R.i. ist, d.h. es gilt

lim 7(t) = %/OO g1(u)du.

—
t—o0 S

Da aufierdem mit Hilfe des Satzes von Fubini [7°_gi(u)du = [ g1(u)du ist, folgt (2.2.3)
fiir t — oo mittels

1 [~ 1 [
r(logt)ﬁg/ gi(logu)dlogu = —/ g1(logu)dlogu

—00

= / P(R>u) — P(MR > u))u" du
m

2.3.2 P(M<0)>0und P(M>0)>0

Sei P(M < 0) > 0und P(M > 0) > 0. Wir setzen X,, := sgnll,, € {—1, 1} fiir allen € N.
Analog zu Fall (a) mochten wir zum Beweis von (2.2.3) 7(logt) — C. fiir t — oo zeigen

!Banachraum der C-wertigen A-integrierbaren Funktionen bei A-f.ii. iibereinstimmender Versionen



24 Implizite Erneuerungstheorie

und betrachten daher wieder P(R > e'). Aus (2.3.6) erhalten wir wegen e = |IL,,| unter
der Beriicksichtigung des Vorzeichens von II,,
n—1
P(R>¢") = Y (P(Xp=1,R>e"%)— P(Xy =1, MR > %))

k=0
+Z(P<Xk = _1,R < —et_sk) — P(Xk = _1’MR < _et—Sk))

+P(IL, R > )
und daraus dhnlich zu (2.3.6)

r(t) = e"P(R>¢")

_ Z/ K= (P(X, = 1, R > o) — P(Xx = 1, MR > o)) P (du)

+Z/ mugh(t=u)(P(X; = —1, R < —'™) — P(Xy = —1, MR < —¢'%)) PS*(du)

+0n(t)
n—1
S / e gy (£ — u) P9 (du) + 6,(1)
k=0 VR
n—1
= Z Ee™Sk gy, (t — Si) + 6, (t)
k=0
fir alle t € R und n € N, d.h.
n—1
(2.3.9) r(t) = Z Ee™St gy (t — Si) + 6a(t), teR, neN.
k=0

Fiir die Zufallsgroflen M, fithren wir eine neue Verteilung ein, unter der M, My, M, . . . wei-
ter unabhéngig identisch verteilt und die Definitionen von II,,,Y,,, .S, und X,, unverdndert
bleiben. Diese Verteilung ist fiir alle y € R durch

P.(M € dy) := |y|"P(M € dy)

definiert und bildet wegen (2.1.5) eine Wahrscheinlichkeitsverteilung auf R. Bezeichnen
wir deren Erwartungswert mit E,, erhélt (2.3.9) mit Hilfe von Korollar 5.3.5 im Anhang
die Gestalt

n—1

(2.3.10) r(t) =Y Engx,(t—S) +6a(t), teR neN

Wir setzen

k=0
und erhalten
n—1 n—1
> Beox(t=S0) = [ onlt-u) Y P
k=0 R k=0

= /Rgl(t—u)vn_m(du)+/Rg—1(t_u)vn—1,—l(du)

= g1 % Voo11(t) + 91 % Vo 1 (2).
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Somit folgt aus (2.3.10) analog zu (2.3.7)
r(t)

1 V11 (t) + g1 * Vi 1 (t) + 0,(2)
1
=Y E.gx,(t — Sp) + 6a(t)

k=0

Il
3 Wl

(2.3.11)

fiir alle t € R und n € N, und wir untersuchen den letzten Ausdruck fiir n — oo und ein
beliebiges, festes t € R.

Das Grenzwertverhalten von §,(t) ist bestimmt durch das von 6, (¢). Diesen Term kénnen
wir mittels

5u(t) = MP(ILR > e)
P(X,=1,R>e™) +e"P(X, = —1,R < — ™)

<
< e™P(|R| > 75

nach oben abschitzen, und P(|R| > e!~°") lduft mit der gleichen Begriindung wie in Fall
(a) fiir n — oo gegen Null, d.h. es gilt lim,, .., d,(t) = 0 fiir ein beliebiges, festes t € R.

Die Grenzwertbetrachtung des Summenterms gestaltet sich etwas aufwendiger als im Fall
(a), da der Erwartungswert der gy, abhéngig ist vom Produkt iiber die M,,, dessen Vor-
zeichen sich mit wachsendem n aufgrund der Voraussetzungen dieses Falls beliebig &ndern
kann. Daher werden wir den Summenterm in zwei Terme aufteilen, die nur iiber die In-
dizes summieren, fiir die X,, = 1 bzw. X,, = —1 gilt. Um dies zu erreichen, benutzen wir,
daB X := (X,,)n>0 mit Xy = 1 eine endliche Markov-Kette mit Zustandsraum {-1,1} und
Ubergangsmatrix 2 ]q) ) bildet. p und ¢ sind dabei definiert durch

p:=P,(M >0) = /1(0700)(y)P,£\4(dy) = /1(0,00)(11) ly|™ PM(dy) = Elgysoy |M|"

und analog
q = P(M <0) = Elp<oy [M]",

d.h. es gilt p,g > 0 und p+ ¢ = 1. ny und 7n_ seien weiter die unter P, bedingten
Verteilungen von log | M| gegeben M > 0 bzw. M < 0, d.h.

(2.3.12) N4(dy) == Pr(log |M| € dy|M > 0) = P.(M > 0,log [M| € dy)/p,

(2.3.13) n-(dy) = P.(log|M| € dy|M < 0) = P,(M < 0,log |M]| € dy)/q.

Mit Hilfe dieser bedingten Verteilungen kénnen wir die bedingte Verteilung der
Y, = log |M,| gegeben X angeben, unter der die Y, fiir alle n € N unabhéngige identisch
verteilte Zufallsgrofien sind. Wir betrachten dazu den Ubergang von

n—1

Xy—1=sgnll, 1 = sgn H M;

i=1

zu
n—1

X, = sgnHM,» = sgn((H M;) - M,,).

i=1
Gegeben M,, > 0, dndert sich das Vorzeichen X,,_; von H?:_ll M; nicht durch die Multipli-
kation mit M, d.h. es gilt X,, = X,,_1. Gegeben M,, < 0 und X,,_; = —1, folgt dagegen
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X, = 1 und analog X,, = —1 fiir X,, 1 = 1. Im Fall M,, < 0 gilt daher X,, # X,,_;, und
insgesamt folgt fiir die unter X bedingte Verteilung der Y,, bzgl. P,

(2.3.14) Pi(Yn € -|X) = Lix,=x, 111+ () + Lix,x, 30— ()

Seien nun 0 = Néﬂ < N1(+) < N2(+) < ... die Indizes mit X ) =1 und
Néf) < Nl(f) < N2(7) < ... diejenigen mit X () = —1 fiir ¢ € Np. Setzen wir

I = max{i >0 : NZ-(JF) <n-—1},

I = maz{i >0: Ni(f) <n-—1}

und Wi = § (&, erhalten wir in (2.3.11) die gewiinschte Aufteilung

1) 1)
(23.15) 7(t) = E. Y gt = W)+ B gt =W ) +6.(t),  teRmneN.
k=0 k=0

Das Grenzwertverhalten der beiden Erwartungswerte werden wir nun mit Hilfe der in (2.3.12)
und (2.3.13) definierten bedingten Verteilungen n, und 7_ bestimmen.

(+)
Wir betrachten zunéchst den ersten Summanden und dazu (Wr(L+))n>0 = (vaznl Yi)nz0

genauer. Wie in Fall (a) mdchten wir fiir ein beliebig gewéhltes festes ¢ € R fiir n — oo
+) _,

und damit fast sicher fir I, — oo
17(L+)

(2.3.16) B qit-w) = B gt - wi
k=0 k>0

zelgen und auf den Grenzwertausdruck das 2. Erneuerungstheorem anwenden.
Die N\ sind fiir alle n > 0 genau die Indizes, fur dle die Markov-Kette zum (n + 1)-ten

Mal den Wert Eins annimmt (das Produkt Hi:l M; ist zum n-ten Mal positiv). Wir

kénnen nun W" fiir alle n € N in mehrere Summenterme aufteilen, deren Startindizes
die Zeitpunkte markieren, an denen die Kette einen Einszustand verldaft, und die bis zu
den Zeitpunkten aufsummieren, an denen die Kette danach zum ersten Mal wieder Eins
wird:

N(+) N(+) N{H
W = Z it > Yi+...+ > Y.
=N 41 =N 41

+
Setzen wir 7 als Verteilung von Zfill Y; unter P, und definieren

)
N;

Y. Y. =1,

i=N{T)+1

gilt Z](-Jr) ~ 7, und die Z;H sind voneinander unabhéingig. Wegen WOH) = Vi =5 =0
0

ist (W7§+))n>0 =0 Z (+)) 2o’ somit ein SRW mit Zuwachsverteilung 7.

Als Verteilung der Summe Z Y héngt die genaue Gestalt von 77 Von der Verteilung
der einzelnen Summanden ab, dle wiederum durch den Wert von N , d.h. die Gestalt
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der Kette X und damit durch das Vorzeichen der zu multiplizierenden Zufallsgrofien M,
bestimmt ist. Gilt N; () — n fiir ein beliebiges n > 2, wird die in 1 startende Kette zum
Zeitpunkt n zum ersten Mal wieder 1 und nimmt folglich an den Stellen 1 bis n — 1 nur
die Werte -1 an. Fiir die in (2.3.14) bestimmte Verteilung der Y,, gegeben X unter P,
bedeutet dies Y; ~ n_,Y, ~ n_ und Y; ~ ny fir alle 2 < i < n — 1. Bezogen auf das
Produkt der M, heifit das aber gerade M; < 0, M,, < 0und M; > 0 fir alle 2 <i <n-—1,
und mit Hilfe der Definition von p und ¢ und der Unabhéngigkeit der M, unter P, fiir
alle n € N folgt

PN =n) = P(M, <0,My>0,...,M, 1 >0,M, <0)

q2pn 2

Fiir den Fall N1(+) = 1 ergibt sich Y; ~ n; und P,{(NI(H =1)=np.
Insgesamt folgt somit aufgrund der Unabhéngigkeit der Y,, fiir die Gestalt von 7

N(+

() = ZYE
= ZP +)—nZY€

n>1
SN R TRIEERITEES
n>1 =1
— PV -|N<+> — )P(NT =1)
+> P, ZY € [N =n)By(NTY = n)
n>2 i=1
= () + D@ APV € INT =n) sk PV, € INTTY =)
n>2
= pi()+ Y@ w0,
n>2
d.h.
(2.3.17) n= p7i++2(12 n— 2 *(n—2)'

n>2

In Lemma 2.3.2 begriinden wir, daf§ n nichtarithmetisch ist und den Erwartungswert
2m besitzt. Wir konnen daher das Erneuerungsmafl V := > _ n*™ bilden und erhal-
ten wie in Fall (a) mit dem Satz von der majorisierten Konvergenz die Konvergenz der
Erwartungswerte in (2.3.16). Da ZJ(-H ~ n fiir alle 7 > 1 und damit wegen (2.3.19) in
Lemma 2.3.2

E.Z™ =2m € (0, 00)

gilt, erhalten wir mit Hilfe des 2. Erneuerungstheorems
1 oo
E, g, (t — W —>—/ w)du
kzzogl( k ) om | 91 ()

fiir t — oo.
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Mit dem zweiten Summenterm aus (2.3.15) verfahren wir in &hnlicher Weise. Setzen wir

N ,
o i:jNﬁ‘}H iJz21
_ f
Z; = ,
(=)
Zf\iol Yi ;=0

50 gilt (W )pso = (=0 Z Npso. Die Z ) besitzen dabei fiir alle j > 1 die Verteilung

n (beachte Y, N T YN]_, ~ n_ fiir den Fall Nj(f1 +1+# N} ) und j > 1), und fiir

j =0 gilt Né > 0, d.h. (WT(L_))nZO ist ein VRW. N(g_) ist der erste Index, fiir den die
in Eins startende Kette X den Wert -1 annimmt und somit der, der die erste negative
ZufallsgroBe M, kennzeichnet. Fiir die Verteilung der Y,, bedeutet dies geméf (2.3.14)
YNéf) ~n_und Y; ~n, fliralle1 <i < Né_) — 1. Infolgedessen gilt

PN =n) = P(M;>0,...,M,_; >0,M, <0)

n—1

ap- -,

und analog zur Berechnung von 7 im Fall des ersten Summenterms erhalten wir mit

) PZH
0 1=

N

= PH(Z Y, €- )
_ (=
(2.3.18) ,;P ZYG NG = BN =)
=D " (P € NS =n) x5 Pu(Y, €+ [Ny =)

n>1

n>1

Es gilt demnach Wi ~ no * n*™ fiir alle n € Ny, und mit Hilfe des ErneuerungsmaBes
M0 % D n>0 n*(™) folgt analog zu (2.3.16) fiir beliebiges, festes t € R

fir n — oo, da g1 € L; und damit g_; wie g; nach Lemma 5.3.2 im Anhang d.R.i. ist.
Aufgrund von (2.3.19) in Lemma 2.3.2 erhalten wir auerdem

E.Z"7) =2m € (0, )

und daher mit Hilfe des 2. Erneuerungstheorems

_ - [
EKZg,l(t — W,g )) — %/_ g—1(u)du, t — oo.

k>0
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(2.2.7) folgt nun mittels

r(logt)

fiir t — oo.

i ),
o,

1 o0
%/ g1(logu) + g_1(logu)dlogu

P(R>u)— P(MR>u)+ P(R< —u) — P(MR < —u))u" 'du

P(IR| > u) — P(|MR| > u))u"'du

Lemma 2.3.2 Mit den Bezeichnungen aus dem ersten Teil des Beweises von Fall (b) des
Impliziten Erneuerungstheorems gelten unter den dort angenommenen Voraussetzungen

(2.3.19)

(2.3.20)

Beweis. Seien m.,

geometrischen Reihe

Wegen

und analog

/R yn(dy)

/R yn(dy) = 2m,

n 1st nichtarithmetisch.

p / yns(dy) + > ¢ / yn=® w72 (dy)

n>2

pm+—|—Zq2 "22me + (n —2)my)
n>2

pmy +2gm_Y qp" +pmy ¢* Y (n—2)p"?

n>2 n>2

d V23
pmy 4 2gm_ +pmy q2d—p(zp )
n>0

2(pmy +gm_).

e 1
Blrs [M["log M| /p = / Lo () 1og ly| P (dy)
R

1
= —/yPH(M>0,10g|M\ € dy)
P Jr

= /R yn+(dy)

= 7)”L+

Elguseo) M| log| M| /q = m_

gilt 2(pmy +gm_) = 2m und daher (2.3.19).

m_ die Erwartungswerte von 7y, n_, dann folgt mit Hilfe der
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Zum Nachweis von (2.3.20) betrachten wir den Tréger von 7, d.h. von Z£+) = vazl(:) Y;
und somit von log |M|. log |M| ist unter P, nichtarithmetisch. Es existiert daher eine
Teilmenge B des Tréagers dieser Verteilung, so dafl die von B erzeugte additive Gruppe
dicht in R ist. Seien B,, B_ die Schnitte von B mit den Trégern der Verteilung von
1iar>0ylog [M| und 1ps<oy log | M| . Setzen wir

B ={w: we B, }U{2w: we B_},

so erzeugt B* ebenfalls eine additive in R dichte Gruppe. Gilt b € B, erhalten wir fiir
allebe B*und € > 0

PA”(b—e,b+¢))

n((b—e,b+e¢))

pni((b—e,b+e))

» % Po(M > 0,log | M| € (b—e,b+2))

P12 — b < ¢)

v

> 0.

Fiir %b € B_ folgt in dhnlicher Weise

P20 —b| <e) > ((b—e,b+e))
= //]—(b e,b+e) x+y) (dl’) (dy)

= / / L -3 0+2) (1)L (G 0-0) 3 ey (W) (d2)n-(dy)

= PG <) 5+ )
— (R < 0log|M| € (G0 —2). 50 +2))’

> 0.

b liegt daher im Tréger von Zﬁ) und somit im Tréger von n. Da B* dicht in R ist, kann
7 nicht gitterverteilt sein. a

233 M<O0fs.

Ist M < 0 fast sicher, gilt auch M’ < 0 und folglich MM’ > 0 fast sicher. Fiir MM’
konnen wir daher die in Fall (a) bereits gewonnenen Ergebnisse nutzen, sofern wir die
entsprechende Voraussetzung

(2.3.21) / |P(R>t) — P(MM'R > t)|t" 'dt < 0o
0
zeigen. Mit Hilfe der Dreiecksungleichung erhalten wir
/ IP(R>t)— P(MMR > )| #"\dt < / IP(R > t) — P(MR > )] 5 dt
0 0

+ / |P(MR >t) — P(IMM'R > t)|t"dt.
0
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Wegen (2.2.1) ist das erste Integral der rechten Seite endlich ist. Da M < 0 f.s. gilt,
erhalten wir fiir das zweite Integral mit Hilfe des Satzes von Fubini und der Substitution
t = —uv

/ |P(MR >t) — P(MM'R > t)| " " \(dt)
_ / / [P(uR > £) — PuM'R > t)| PM (du)t* A(dt)
_ / / P(uR > t) — P(uM'R > )| " "A(dt) P (du)

_ / (—u)* / P(R < —v) — P(M'R < —v)] v"A(dv) P (du)
(—00,0) (0,00)

_ / |M|“dP/ IP(R < —v) — P(M'R < —v)| "' A(dv)
Q (0,00)

= E|M" |P(R < —v) — P(M'R < —v)|v" " A(dv)

(0,00)

= / |P(R < —v) — P(M'R < —v)|v" ' A(dv).
(0,00)

Wegen (2.2.2) ist |P(R < —v) — P(M'R < —v)|v"~! uneigentlich Riemann-integriebar
auf (0,00) und daher insgesamt (2.3.21) erfiillt. Aus Fall (a) folgt dann mit
meo := E |MM'|" log |MM’|

P(R>t)~Cyt™"

fir t — oo, wobei wir wegen M ~ M’ die Formel fiir C'; mit my anstelle von 2m

erhalten, indem wir die Integralumformung zum Nachweis von (2.3.21) noch einmal ohne
Betragsstriche durchfithren. Damit C'; vollstéandig mit (2.2.7) iibereinstimmt, miissen wir
noch my = 2m zeigen. Dies folgt aufgrund der Unabhéngigkeit von M und M’ und mit
Hilfe des Satzes von Fubini mittels

my = E|MM'|*log|MM|

- / [y log |zy| POYM) (de, dy)
(—00,0) X (—00,0)

— / l2y|" (log 2] + log |y )d(P™ & P™)
(—00,0) X (—00,0)

= [l [ lal" 1o ol P ()P )

T / " / 1yl og y] P (dy) PM (dx)
= E|M|"E|M|"log|M|+ E|M|[" E|M'|"log |M’|

= 2m.

Insgesamt gilt somit
(|IR| >t)— P(|MR| >t t"Ldt

und folglich (2.2.7). O






3 Die Konvergenzrate der Flanken

In Kapitel 2 haben wir fiir die Flanken der unbekannten Verteilung der Zufallsgréfie R
tHP(R > t) ~ C+

fiir t — oo gezeigt. In diesem Kapitel wollen wir die Annéherung von t*P(R > t) an C

genauer beschreiben. Mit Hilfe von Satz 3.2.1 und 3.3.1 werden wir zeigen, dafl t* P(R > t)
unter bestimmten Voraussetzungen fiir ein bestimmtes v > 0 und grofle Werte von ¢ nur
um O(t~7) von C; abweicht (analoges gilt fur t*P(R < —t)).

Um dies zu erreichen, benotigen wir eine spezielle Zerlegung eines Erneuerungsmafes
nach Stone, die wir im folgenden Abschnitt vorstellen werden. Fiir ein Ma8l p € 9(R)!
vereinbaren wir dazu

B,,(0) = / M),  0eC.
R
Der Definitionsbereich von ®, lautet damit

D(®,) ={0eC: / || u(dt) < oo} = {0 € C: /e_lm(g)tu(dt) < o0}

Setzen wir

po(dt) == e~ TmOt(at), 6 € D(D,),
so ist g € M(R) und

®,(0) = /R e ReOt 1y (dt), 0 € D(®,),

die 1-dimensionale Fouriertransformierte ¢,, von g an der Stelle Re(f). Wir benutzen

im folgenden auflerdem die fiir alle # € R definierte momenterzeugende Funktion

00 = [ e

(vgl. [AWT], Definition 40.3).

'Menge der endlichen MaBe auf (R, B)

33
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3.1 Eine Zerlegung nach Stone

Satz 3.1.1. Sei n ein Wahrscheinlichkeitsmaf$ auf R, das m := fR un(du) > 0 sowie
Jp uPn(du) < oo erfiille, und es gebe ein a > 0 mit Y,(«) < oo. Sei n auferdem quasi
A-stetig, d.h. es existieren ein ng € N, eine Konstante 6 € [0,1) sowie Wahrscheinlich-
keitsmafe &y, & mit

(3.1.1) 710 = (1= 6)& + 8¢,

wobei & A-stetig ist und &g = fA gelte. Dann folgt:

(a) Es existiert ein 3 € (0, «] mit den Eigenschaften

(i) Ve, (B) < 5,
(ii) ©,(0) # 1 fiir alle € C mit Im(0) = —f.

(b) Fir das Erneuerungsmafi V := 3 - ™) gilt
V=W+W,

wobei Vi € M(R) mit Yy, (5) < oo ist und Vi N-stetig mit einer stetigen beschrinkten
Dichte vg, die
1 1 do

3.1.2 = — [ — —Bz
( ) UO<:C> m 27T c € 1 o @77(8) + 0(6 )7 T — OO,

erfillt.
(C ist hier eine einfach geschlossene Kurve in D := {6 € C: Im(0) € (—f,0)} C D(P,),
die alle Nullstellen von 1 — @, in D umlduft.)

Die Inklusion D C D(®,)) gilt fiir alle # € D aufgrund der Abschétzung

/R e~y () < / Fi(dt) = v (B) < v (a).

R

Als analytische Transformierte ist ®, holomorph in D und stetig in D.

Aufgrund des Beweises von Satz 3.1.1 wissen wir, dafl hochstens endlich viele Nullstellen
von 1 — ®, in D liegen und wir daher einen geeigneten Weg C finden, der diese umlauft.
Wir zeigen im folgenden Lemma, dafl (3.1.2) dann aufgrund des Residuensatzes neben der
Integral- auch eine Summendarstellung besitzt. Existieren keine Nullstellen von 1 — &,
in D, ist der Integrand in (3.1.2) holomorph und das Integral nach dem Cauchyschen
Integralsatz gleich Null.

Lemma 3.1.2. Unter den Voraussetzungen von Satz 5.1.1 besitzt 1—®, hochstens endlich

viele Nullstellen in D. Seien 6.,...,0,, diese Nullstellen mit Vielfachheiten ky, ... k.,

ny € Nund k; € N firl <i < nq, sowie
(9 — Ql)jfl

Q5 = TSy, 1_

_ j:lj,,,’kbl:l,...fn/l.
@, (0)

Dann gilt neben (3.1.2) auflerdem
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Beweis. Aus Teil (a) des Beweises von Satz 3.1.1 folgt, dal 1 — &, hichstens endlich
viele Nullstellen in D besitzt. Wir erhalten dies auch noch auf einem anderem Weg. Wir
wissen (ebenfalls aufgrund des gerade genannten Beweises), dafl ®,(f) den Wert 1 nur in
einer beschrinkten Teilmenge von D annimmt. Fiir reelles 6 gilt P, (0) = 1 nur fiir =0,
und dies ist wegen

¢, () =14 1mb + o(0), 60— 0,

eine isolierte Nullstelle von 1 — @, (). Da auBerdem nach Voraussetzung ®,(0) # 1 fiir

alle @ € C mit I'm(6) = —/ gilt, folgt so noch einmal die erste Behauptung.
Sind 04, ..., 0,, die Nullstellen von 1 — &, in D mit Vielfachheiten k1, ..., k,,, so ist nach

Voraussetzung
ky

1 07
o, 2@y T 0EC

die Laurent-Entwicklung der Funktion ﬁn(e) um 6; mit einer in #; holomorphen Funktion
hy fir Il =1,...,n;. Wir setzen
a—ift
0) = ———, teR, 6eC,
ft( ) 1 - q)nw)

und firl=1,....n,t€Rund € C
ge(0) == (6—06)"f(0)

Ky
= e a0 —0)" " + e (0 — )" hi(6)
v=1

ki—1
= Z Q1 ke —v e_iet(e - 0;)” + hkl,t(0)7

v=0

wobei hy, +(0) = e (0 — Ql)klhl(é) sei. Da f; in 6, einen Pol der Ordnung k; hat, folgt
fiir das Integral in (3.1.2) mit Hilfe des Residuensatzes sowie der Formel zur Berechnung
von Residuen fiir Pole hoherer Ordnung (vgl. [FiLi], S.147)

ni

: 1 _
/ft 2 7“6391ft = —ZZ mgl,t(kl D(6)).

=1

Mit Hilfe einer Induktion nach n € Ny, die wir im Anschlufl an den Beweis durchfiihren,
erhalten wir fiir beliebiges 0 < n < k; — 1 als allgemeine n-te Ableitung von g;;

gl(?)(e) = Zalkl Z( ) ] ﬂetm<9 9)

+hkl ,t (0)

= 38 (o

v=0

+hk’l,t(0)7
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wobei hl(;;)t insbesondere h,(:ll’)t(ﬁl) = 0 erfiillt. Fiir # = 0, und n = k; — 1 erhalten wir

k-1

k—1 N .
glt (91) = Zalkl (ki—1 ])(lj )(—zt)]e 9”(/{;—1—])!

z : 1 —
= a/lj N t)] (§ Zelt

und somit
-t

(—i)resq, fr = Z me_iolt(—i)jal,f

J=1

Da vy reellwertig ist, folgt die Behauptung, indem wir resy, f; auf den Realteil einschrénken.
Es fehlt der Nachweis fiir die Formel der n-ten Ableitung von g;;. Der Fall n = 0 liefert
wieder g;.(f). Gilt die Gleichung fiir ein beliebiges festes n € Ny, folgt mit Hilfe der
Induktionsvoraussetzung

g (e) — n (o)

d n n
= (017 (0) — 1V (6)

- de(klzl “w“z<) Jwtm(e " )

Leiten wir die innere der beiden Summen nach 6 ab, so folgt

d@Z( )i W” o

o (" —1 je_wtv—! v — (1 — i pyu—(n—j)—1
+_O<j)( ICRES oy e ICR GRPAICEL)

n+1 n U' )
— - —it je—iﬂt : : 0—0 (n—j+1
jl(y—l)( A ) O
" /n _ vl .
+ ) (=it e — 0 — 6)° "It
()it 9
n+1
n+ 1) it v! v—((n+1)—4)
= | (—=it)e™ — (0 — 6)) J
jo( J (v=((n+1)=7))
und damit die Behauptung. O

Fiir den Beweis von Satz 3.1.1 bendtigen wir ein Lemma iiber die Umkehrformel von
Dichten geeigneter Erneuerungsmafle, dessen Beweis wir in den Anhang gestellt haben.
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Lemma 3.1.3. Seien x und p Wahrscheinlichkeitsmafle auf R, x A-stetig mit einer zwei-
mal stetig differenzierbaren Dichte q. Sei m = [, xp(dx) > 0, [, 2°p(de) < oo, und exi-
stiere eine N-stetige Komponente von p. Dann ist das Maff > <X * w ™ \-stetig mit
einer stetigen Dichte p, welche fir alle x € R die Gleichung -

ple) = %X(_"O’x] - % /OO ¢ 0) (1 - éu(e) - —z'1m€> W

— 00

erfillt.

Beweis von Satz 3.1.1. (a) Fiir eine Funktion f € L sei
fot) :=e MOt f@R),  feC.

Ist fo € L1, so ist die durch
(3.1.3) f(0) = / PN (dL) = / RO (N (dt), 6 eC,
R R

definierte Funktion die Fouriertransformierte fy von fy an der Stelle Re(0) (vgl. [AWT],
S.219). Sei D, := {6 € C: Im(0) € (—«,0)} und ng auBerdem so gewéhlt, daf (3.1.1)
erfiillt ist. Aufgrund des Multiplikationssatzes fiir analytische Transformierte (vgl. [AWT],
Satz 40.7) gilt ¥, «mg) = (¥)"™ und damit wegen 1, (o) < oo und (1 — §)1bg, () > 0,
5¢@1(a>:> 0

¢n*("0)(a) = (1 - 5)¢Eo (a) + 5¢§1 (Oé) < 00,
d.h. ¢ (o) < 00, Yg () < oo und D, C D(P¢,), Dy C D(Pg,). Wir erhalten daraus
insbesondere limg_q ¢, () = limg_o [, €7& (dt) = 0 und somit die Existenz eines
B € (0,a) mit ¢, (8) < % fir alle 6 < ;. Wegen & = fA erhalten wir weiterhin
De,(0) = f(0) fiir alle § € Dy, == {0 € C: Im(h) € (—3,0)} mit f gemiB (3.1.3), und
nach dem Lemma von Riemann-Lebesgue konvergiert @, () fiir |Re 6] — oo gleichméBig
im Streifen I'm(6) € [—1,0] gegen Null. Da aulerdem

63, (6)] < 6 / ey (de) = / e IO, (d) < S, (Br) < 1

fiir alle @ € Dg, gilt, nimmt ®, . (#) und damit @, (0) den Wert 1 nur in einer be-
schriinkten Teilmenge von Dg, = {6 € C : Im() € [~(31,0]} an. Als holomorphe Funk-
tion hat 1 — @,(¢) in diesem beschrinkten Gebiet hochstens endlich viele Nullstellen
(andernfalls wiirden sich dort die Nullstellen hdufen, und nach dem Identitétssatz fiir Po-
tenzreihen wiirde 1 — @, (¢) = 0 gelten). Daher 148t sich ein 5 € (0, 3;] finden, so dafl auf
der Geraden {§ € C: Im(0) = —fF,} keine 1-Stellen von @, liegen.

(b) In diesem Teil des Beweises werden wir das Erneuerungsmafl V' in die Summe der
MaBe V5 und V; zerlegen und diese dabei so wihlen, dafl V; € 9M(R) sowie vy A-stetig
ist mit einer Dichte in der Gestalt von (3.1.2). Dies geschieht mit Hilfe der in (3.1.1)
vorgegebenen Zerlegung von n*("0) | die aufgefait werden kann als Summe eines A-stetigen
MaBes (1 —9)&, mit Dichte f5 und eines Mafles 0§; mit d¢¢, (5) < 1. Man beachte, dafl aus
5™ (R) = 6™ fiir alle n € Ny die Ungleichung Ym0 s ™(R) < oo fiir alle § € [0,1)
folgt und damit aufgrund von monotoner Konvergenz

oy §G =3 (™)

n>0 n>0
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fir alle p € M(R) gilt. Wir konnen auBerdem ohne Einschriankung annehmen, dafi die

stetige Dichte f von &y beschriankt ist und einen kompakten Tréager hat (vgl. [ASP], S.230,
Beweis von Satz 26.6) und damit nach Satz 1.1.6 d.R.i. ist. Fiir die angestrebte Zerlegung
von V' definieren wir V3 := " - 7*("™) und erhalten

Vi = 6o + Zn*(nno) =0y + n*(no) * (Z 77*(”"0)> =8y + n*(no) * Vs

n>1 n>0
Ersetzen wir 1*() durch die rechte Seite von (3.1.1) und beachten V, = &g * V4, so folgt

0o x Vo =0 + (1 = 6)&o x Vo + 0& * Vs
& (0g — 0&) * Vo =080+ (1 — )& x Vo

und daher wegen

(D0 G™) (60 —0&) =Y oG =y 5™ =6

n>0 n>0 n>1

Vo= (37 076™) # (30 + (1 — 6)& + V).

n>0
Wir setzen
no—1
Vi Qo n @)« Q_ome™),
k=0 n>0

Vo :i=(1—=08)& x Vi = V;

und erhalten die gewiinschte Zerlegung von V' mit Hilfe der oben gewonnenen Gleichung
fir V5, mittels

no—1

Vo= O gy (O gt
k=0 n>0
no—1

= O _n")«1,
k=0

Vi* (00 + (1 —6)& * Va)
Vi+(1—=08)& +Vi*V,
= N+

Fiir die Mafle V und V; weisen wir nun geforderten Bedingungen nach.

Wegen 220:_01 n*®) € M(R) und daher

nog—1 no—1

(Z n*(k)) * (Z 5n§;<(n)) _ Z 5" Z ﬁ*(k) . fr(n)

k=0 n>0 n>0 k=0
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folgt

no—1
/ vy = / Yoamd(y o W =g
R R

n>0 k=0

no—1
= S [ eg®)
n>0 k=0 /R
= n0§£:5"

n>0

o

1—9¢

d.h. es gilt V7 € 9MM(R). Mit dem Multiplikationssatz fiir analytische Transformierte
(vel. [AWT], Satz 40.7) erhalten wir aulerdem

b (8) = 3 (WalB)F 387 (e, (8))" < oo

wegen |09¢, ()] < 1 und ¢, (8) < oo, und V; erfiillt somit die Bedingungen des Satzes.
Vh ist aufgrund der A-Stetigkeit von & selber A-stetig, und wir setzen Vi = vgA fiir eine
stetige Dichte vy. Ohne Einschriankung konnten wir das Mafl & so wéhlen, dafl dessen
Dichte f und damit auch fs d.R.i. ist. Indem wir den Satz von der majorisierten Konver-
genz auf

vo(z) = / f3 # Vol — u)Vi(du)

anwenden und V; € 9M(R) beachten, erhalten wir mit Satz 1.1.8 f5 * Vo(x) — 0 fiir

x — —oo und daher vo(z) — 0 fiir z — —o0.

(3.1.2) und somit das Verhalten von vg(x) fiir x — oo zeigen wir mit Hilfe von Lem-
ma 3.1.3. Da & nach Voraussetzung ein A-stetiges Wahrscheinlichkeitsmafi auf R mit
beschrankter Dichte ist, gilt dasselbe fiir

N

denn V; besitzt Masse *%. Nach Wahl von 7 ist n*("0) ebenfalls ein Wahrscheinlichkeitsmafl
mit [, 2dn*") = ngm > 0 und [, 2%dn*") < oo, und Y7, o x * 7*"™) besitzt wegen

*x(nn *(nn ‘/
ZX*TI( O)ZX*ZH( O)ZX*VQ:—O

n>0 n>0

die stetige Dichte ;2. Mit Lemma 3.1.3 folgt somit

1 X(—oo,z] 1 /°° —izB 1 1
Zp(z) - X2 2 iz g - .
i () nom or J_.© () 1—(®,(0) —ingmb b

[e.e]
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Wegen x(—o0,z] =1 — x(x,00) erhalten wir aulerdem mit dem Satz von der majorisier-
tern Konvergenz

-4

\(@,00) = - —Vi(w,00)

_ // (r.00) (1 + 5) (du) 6‘/1(658)

= /&) T —8,00) 6‘/1(ds)

fiir x — oo, da die Dichte von &, einen kompakten Trager besitzt. Fiir x — oo erfiillt v
somit

(3.1.4)  wolx) — % -2 _oo e () (1 - @177 T _mlom Q) 46+ ofe ).

Wir nehmen weiter an, da§ 1 — ®,(#) nur eine Nullstelle in D besitzt. Sei 6, € D diese
Nullstelle und & ihre Ordnung (der allgemeine Fall folgt indem analoge Terme fiir die an-
deren Nullstellen hinzugefiigt werden). Die Funktion —— ) ist um 6 in eine Laurentreihe
entwickelbar, die die Form

1q>(9

1 Ay

5.0 ;—(9_ ™ +h(0), HeC,

mit einer in #y holomorphen Funktion A und Residuum a1 in 0, besitzt. Setzen wir

h(f) := mh(ﬁ) so folgt dies ebenfalls fiir W wegen

Un) . Un < 1 )
L—(Q,(0))0 S (@,(0))" \1 = Dy(0)

und 370" (®,,(60))" = no. Multiplizieren wir den geklammerten Ausdruck im Integranden
von (3.1.4) mit ng, ist dieser folglich ebenfalls in eine Laurentreihe mit den Koeffizienten
ai,...,a im Hauptteil entwickelbar. Subtrahieren wir von der Laurentreihe den Haupt-
teil, erhalten wir die in D holomorphe und in D beschrinkte und stetige Funktion

k
= "0 BRSNS
w(t) := 1—(®,(0)) —imb ; (0 —6p)"" bet

Wir setzen R := {0 € C: Im(f) = —3} und f3(0) := @,(0 — iB)w(f — iB) fiir alle § € C
und bemerken, da8 f3 € Ly wegen 9, (3) = 1n;0‘5w§0 (B)1, () < 0o und der Beschrénktheit
von w in D gilt. Nach dem Cauchyschen Integralsatz ist das Integral holomorpher Funk-
tionen {iber den Rand von D gleich Null. Wegen lim, o [, e”*®, (0)w(#)df < oo

und limy, o0 [ o109 (0)w(h)df < oo konnen wir daher e~ *?®. (8)w(f) iiber R und
R integrieren und erhalten

[ oo = [ e - igu - i

= o7 fy(~x)
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(vgl. (3.1.3)). Nach dem Lemma von Riemann-Lebesgue gilt lim, o f3(—z) = 0, so daB
wir anstelle von (3.1.4)

0 k
1 1 : a

1. - = —1z0 g _ v —Ba

(3.1.5) vo(x) | € +(6) g—l @ eo)vde—i—o(e )

fir x — oo erhalten. Wir entfernen nun @, (#) mit einer analogen Uberlegung aus dem
Integral in (3.1.5). Wegen [6®¢, (0)| < 1 gilt

0,0 = LTV a0) 3 (@,0)" T 5@, (9))

U]

k=0 n>0
- 00 Y 00 55
k=0 !
@) ([ 1 (- 00 (6) — 09, (6)
B no <1_ 1—§@51(9) 5 )
@) ([ 1 (@)
- = (- R )

Es folgt @, (6y) = 1, und ®,(f) — 1 hat in 6, eine Nullstelle der Ordnung k, da dies fiir
1 — (®,(0))" zutrifft. Die durch

u(f) == Z = 90

v=1

fiir alle § € C definierte Funktion ist somit holomorph in D sowie beschrénkt und stetig
in D. Mit Hilfe der Definition von gg(6) := w(f — i) fiir alle # € C erhalten wir

o0

lim e 0u(0)d = lim e " gz(—x) = 0,

d.h. wir kénnen ®, () im Integranden von (3.1.5) vernachlissigen.

Wegen Zﬁzl T € L gilt weiter

und daher

fiir x — oo. Insgesamt erhalten wir somit fiir z — oo

1

vo(z) — .

k
1 * a
- —zx 0—1i3) _ —ixf v do —pz
27 (/ Z —zﬁ 6o)" /Ooe ;(9—90)1) >+O(e )
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anstelle von (3.1.5). Die in den Integranden auftauchenden Summenterme sind in D nicht
holomorph. Mit Hilfe des Cauchyschen Integralsatzes folgt nach Wahl von C und wegen
Je e *0h(0)df = 0

k
1 1 —2330 Bz
vo(z) = . ; ; 7 00 ——————df + o(e™"7)
11 i
- = —zx@ 9 do —Bx
o [ (S 0 ) o
v=1
— l_i e—iw9L+0(e—ﬂx)

m 2T c 1-— ®n<0)

fiir  — oo und somit (3.1.2). O

3.2 Die Konvergenzrate im Fall M > 0 f.s.

Mit Hilfe von Satz 3.1.1 treffen wir nun eine genauere Aussage iiber die Konvergenzrate
der Flanken der Verteilung von R. In diesem Abschnitt betrachten wir den Fall M > 0
f.s.. Um die Ergebnisse spéter weiter benutzen zu koénnen, setzen wir dennoch in den
Voraussetzungen Betragsstriche und erinnern aulerdem an die Definitionen der Funktio-
nen r, g; und gy geméf (2.3.2), (2.3.3) und (2.3.4), die wir im Beweis des Impliziten
Erneuerungstheorems verwendet haben.

Satz 3.2.1. Seien M, R Zufallsgrifien auf einem Wahrscheinlichkeitsraum (2, A, P), wo-
bei M > 0 f.s. und unabhingig von R sei sowie (2.1.5) erfille. Ferner gelte

(3.2.1) E|M|" < o0
fiir ein beliebiges B > 0, und
(3.2.2) PleMIMZ0 o quasi A-stetig.

Dann ist das durch
n(dz) = e P(log M € dx)

definierte Wahrscheinlichkeitsmafl ebenfalls quasi A-stetig und erfillt die Bedingungen von
Satz 3.1.1 Ist aufferdem C wie in Satz 3.1.1 gewdhlt, so gilt mit g, und g, gemdaf (3.1.3):

(a) Falls
(3.2.3) /OOO |P(R>t) — P(MR > t)|t"°71dt < oo,
folgt
(3.2.4) tW%R>ty—O+—%fk<At”Tég%ﬁw)+06g% £ = 0o,

(b) Falls

(3.2.5) / IP(R < —) — P(MR < —)| "7\t < oo,
0
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folgt

(326) HP(R<—t)=C — %Re ( /C tﬁ%d@) e

(c) Erfillt R eine stochastische Fizpunktgleichung R L UoR gemdfS (2.1.1) und ist
unabhingig von (¥, M), lassen sich (3.2.3) und (3.2.5) ersetzen durch

Kk+08 K+ ‘

(3.2.7) E|(P(R)")"" = (MR)")"] < oo,

(3.2.8) El(T(R)) — (MR))™| < .

Nach Voraussetzung umléuft C alle Nullstellen von 1 —®,, in D. Es geniigt jedoch, wenn C

in D liegt und alle Nullstellen in {f € C : Im() € [-2,0)} umliuft, da die Verteilungen

der iibrigen Nullstellen durch den Restterm O(t_g) abgedeckt werden.
Bemerkung 3.2.2. (a) Erfiillt |[M| die an M gestellten Bedingungen des Satzes, setzen
wir
g(t) ;== " (P(|R| > e) — P(IMR| > ¢')), teR,
und gilt

(3.2.9) / \P(IR| > 1) — P(IMR| > 1) #5-1dt < oo
0

anstelle der Bedingungen (3.2.3) und (3.2.5), so folgt
1 o 9(0) -8
2.1 t"P t) = - — 0 —df t
(3.2.10) (IR|>1t) = C, +C 2WR€</C = >+0( 2
fiir t — oo durch eine Anwendung des Satzes auf |M| und |R[ (g geméf (3.1.3)). Geniigt

|R| auBlerdem einer stochastischen Fixpunktgleichung |R| Lo |R| gemaB (2.1.1) und ist
unabhéngig von (W, |M]), ersetzt

E[[¥(R)]"" — [MR|""| < 00

die Voraussetzung (3.2.9).

(b) Fiir (3.2.4) (sowie analog fiir (3.2.6) und (3.2.10)) gilt nach Lemma 3.1.2 ebenfalls
die Darstellung

ni

(3.2.11) t"P(R>t) = C,y + ZZ (log )’ (t‘iel( iy’ m) Lo

=1 j=1 (7 =1

fir t — o0. 01,...,60,,, n1 € N, sind hier die Nullstellen von 1 — &, (f) in
{6 € C: Im(9) € [-£,0)} mit Vielfachheiten ki, ..., kn,, k; € N fiir alle 1 < k; < ny, und
115 ist durch

(0 —61)"'g:1(0)
1 - %(9) ’

Ty 1= resy, 7=1... k,1l=1,....n

definiert. Die Residuen 7 ; sind zwar durch die Funktion g; abhéngig von der unbekannten
Verteilung von R, die Form der rechten Seite von (3.2.11) allerdings nicht mehr.
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Es folgt der Beweis von Satz 3.2.1. Indem wir (3.2.4) umstellen und ¢ durch e’ ersetzen,
erhalten wir

1-®,

(324')  e*P(R>e)—Cy + LRe (fc —i0t_(0) d@) O %), t— o

Ohne Hilfsmittel konnen wir nur zeigen, daf die linke Seite von (3.2.4") nach Glattung mit
einer bestimmten Funktion k fiir t — oo in O(e™7!) liegt. Fiir (3.2.4) benétigen wir daher
das folgende Taubersche Restglied-Theorem von Beurling-Ganelius und werden dann zu-
letzt die Resubstitution von ¢ durch logt durchfithren, um wieder die urspriingliche Form
zu erhalten. Der Term O(t‘g) ist dabei moglicherweise nicht scharf und sollte O(t=?) lau-
ten. Dies ist jedoch wegen der verwendeten Tauberschen Restglied-Theorie nicht méglich,
da bereits der Faktor % des im Beweis verwendeten Tauberschen Restglied-Theorems
scharf ist (vgl. [Lyt]).

Satz 3.2.3. (Das Taubersche Restglied-Theorem, vgl. [Gan], S.6, Theorem 1)
Sei k; € Ly so gewdhlt, daf k(0) # 0 fir alle § € R mit k gemif (3.1.3) gilt. Seien
p > 2, a > 0 und C Konstanten sowie h eine im Streifen Im(() € (—a,0) holomorphe
Funktion, die

(Ol <CO+[c)™,  —a<Im() <0,

und

lim A (€ — in) = 1/k(€), £ER,
nl0

erfillt. Sei B eine weitere Konstante mit 0 < [ < a und f : R — R eine beschrankte
Funktion, die der Tauberschen Bedingung

(3.2.12) f(@) = flz+y) < Ae P/ 0<y < e/ o> g,
fiir Konstanten A und xy gentigt. Gilt dann

(3.2.13) Ex f(z) = O(e™P), T — 00,

so folgt

flz) = O(e—ﬁx/(zﬂrl))

fiir x — oo.

Beweis zu Satz 3.2.1. Ausfiihrlich fithren wir nur den Beweis zu Fall (a), da sich (b)
mit gleicher Rechnung und — R statt R ergibt. (c) folgt wegen

[P0 - PR 01t = [P > 0) - POCR > )]
0 0

. 1 + n-i—ﬁ_ k8
= ﬁ+ﬁE|(‘I’(R) ) (MR)")" |

(analog fiir (3.2.5)) mit Hilfe von Lemma 2.2.3.
Gelte also (3.2.3). Wegen E |M|"log™ | M| < oo und

/ |P(R>t)— P(MR > t)|t" dt < / |P(R>1t) — P(MR > t)|t"™"dt < 0o
0 0
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erhalten wir mit Fall (a) des Impliziten Erneuerungstheorems
P(R>t)~Cit™"

fiir t — oo. Fiir die spiitere asymptotische Analyse bendtigen wir, dafl lim;_,, % g;(¢) = 0

gilt. Da wir jedoch nur e’g,(¢) € L; aufgrund von

/ W%@Wt:t/SHBHHR>Q—HMR>$MS

[e's) 0

gegeben haben, benutzen wir im folgenden eine Glattung von gy, welche die obige Limes-
bedingung erfiillt. Fiir beliebiges b > [ setzen wir dazu

k‘(t) = be_btl(gyoo) (t), teR.

Da k(0) = b/b— i # 0 fiir alle # € R und k € Ly wegen JZ k@)|dE = 1 ist, erfiillt
k fir p = 1 und a = oo die Bedingungen des Tauberschen Restglied-Theorems. Nach
Lemma 3.2.4 ist 'k  g;(t) auflerdem d.R.i., und es gilt wie gewiinscht

Pk x gi(t) € o(1).

Wir werden nun im folgenden zeigen, dafi die linke Seite von (3.2.4’) die Bedingun-

gen (3.2.12) und (3.2.13) des Tauberschen Restglied-Theorems erfiillt.
Mit den im Impliziten Erneuerungstheorem gewéhlten Bezeichnungen gilt analog zu

(2.3.8) T=g*V
der allgemeine Fall
Exr=FEkxg *xV
((2.3.8) ist der Fall b = 1), wobei V := 37 7™ das Erneuerungsmaf von 7 ist, wel-

ches unter den gegebenen Voraussetzungen den Bedingungen von Satz 3.1.1 geniigt. Mit
Satz 3.1.1 und dessen Bezeichnungen folgt

kxr=(k*xg)*V=kxgq*x(Vi+Vo) =kxgxVi+kxgxvg

und wegen
1 1
k*gl*—:k* <—/gl)\) :kj*c+
m m Jr
daraus
1
ko (r() = Cu) = ks g Vi + ki gy ¢ <UO(.>_E)_
Wir setzen
1 df
t) = — —i0t tER
et) zw/ce —a,0) o
1
V0,e,m(t) = vo(t) — —+ c(t), t R,

und betrachten anstelle der obigen Gleichung

(3.2.14) ks (r(-)—Cy4+gi*xc(:)) =k*xgrxVi+k*gy*vcm.
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Ist € > 0 konstant und so gew&hlt, daf8 alle Nullstellen von 1 — ®,(6) aus D im Streifen
Im(0) € (—f + ¢, —¢) liegen, gilt

g1 * c ist wegen lim,_,_, g1(t) = 0 und e*g,(t) € L; wohldefiniert und besitzt aufgrund
von

grelt) = / ot — u)gn () A(du)
-5 / e-w@—w%i@gl(u)»(du)
1 1

i —i0t i0u A(d do
o /. © 1—<I>77(«9)/Re g (w)A(du)

I Y ()
- %le =,

dasselbe asymptotische Wachstumsverhalten wie c. Fiir vg ., folgt

o(1), t — 00
G%MMﬂ_{&;)tﬁ—w’

da wegen (3.1.2) vpem(t) = o(e™P) fiir t — oo und lim;, o vo(t) = 0 gilt (vgl. den

Beweis zu Satz 3.1.1). Wir kennen somit das asymptotische Verhalten der linken Seite
von (3.2.14), denn mit lim; o, €'k x g1 () = 0 und by, (3) < oo bzw. e’k * g,(t) € L; und
P g.e.m(t) = o(1) fiir t — oo erhalten wir

lim eﬂt(/{i x g1 Vi(t) + kg x UO,c,m(t))

t—o00
= tlim PV 5 gy (t — u)eP Vi (du) + tlim P00 e (t — w)e™ E % g1 (u) N(du)
—oo Jp —JR
= 0.
Es folgt

Ex(Cp—1—g1xc)(t) =o(e™)
fiir t — oo. Der Ausdruck C, — r — gy * ¢ ist fiir eine Anwendung des Tauberschen

Restglied-Theorems noch nicht geeignet, da gy * ¢(t) komplexwertig sowie fiir ¢ < 0 nicht
beschrénkt ist. r1(t) := Cy — r(t) — g1 * c(t)L0,00)(t) dagegen ist auf R beschriankt und
bleibt nach einer Faltung mit k in der Klasse o(e=?!) fiir t — oo enthalten, da fiir positive
Werte von ¢

k(g% c(-)loe0)(-)(t) = / be P gk c(u) 1m0y Mdu)
(7007t)
= / be P gy c(u) N(du)
(0,¢)

= kxgxc(t) — be_bt/ gy % c(u) N(du)

(_0070)
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und [ e “gyxc(u)N(du) < oo gilt. be™ Jine e “gykc(u)N(du) liegt daher fiir t — oo
in O(e” ) und dies wegen b > (3 fiir t — oo in 0( A1), Insgesamt gilt nach Einschrinkung
auf den Realteil

(3.2.15) kx Re(ri(t)) = o(e™),  t— oo.

Um das Taubersche Restglied-Theorem anwenden zu kénnen, fehlt somit nur noch der
Nachweis von (3.2.12) fiir Re(r;). Wegen
r(z) —r(z4+y) = e@HWP(R > ™) — e P(R > e7)
< (" —=1)e"P(R > ¢€")
< 3ry- 204
fiir alle 2 > @1 (21 fest) und y < +log4 erfiillt —r (3.2.12) mit p = 1, und analog folgt dies

ebenfalls fiir die fiir alle ; € D und j € N definierte Funktion f(t) := Re (¢; jt/~te™").
Wegen Lemma 3.1.2 gilt die Abschédtzung daher fiir

n1 Kk i1
t’ « i .
—g1 xc(t) = Z Z WRB (e"elt(—z)Jcm) , 0, D, jeN,
I=1 j=1 ’

und somit fir Re(rq). Mit Hilfe des Tauberschen Restglied-Theorem erhalten wir
Re(r1(t)) = O(e™7?)

fiir t — oo und daraus (3.2.4) nach Resubstitution von ¢ durch logt. O

Lemma 3.2.4. Mit den Bezeichnungen aus dem Beweis von Satz 3.2.1 ist 'k x g,(t)
d.R.i. (und damit insbesondere N-integrierbar).

Beweis. Mit Hilfe der Beweismethode aus Lemma 5.3.2 im Anhang erhalten wir

eﬁ(t+5)k*gl(t+5) — eﬁ(t+5)/ be —b(t+6—u) ( ))\du
(—00,t+46]

> e(ﬂ_b)éeﬁt/ be (=W gy (u) N (du)
(—o0,t]

= BB gy (2).

Wegen limg g e#~?? = 1 folgt mit Lemma 5.3.1 im Anhang die Behauptung. a

3.3 Die Konvergenzrate im Fall P(M < 0) >0

In diesem Abschnitt betrachten wir die Flanken der Verteilung von R fiir den Fall, daf}
P(M < 0) > 0 ist. Fiir unabhéngige Zufallsgrofen My, Mo, ... mit M, ~ M fir alle

n € N und N, (). = inf{n > 1:1I,, > 0} definieren wir dazu ein Wahrscheinlichkeitsmaf}
1 durch

(3.3.1) 77(3) =F |HN(+) |H1{ N , B e B,
1

S, log |Mj|eB}

wobei wir den Integranden als Null interpretieren, falls II,, < 0 fiir alle n € N ist.
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Satz 3.3.1. Seien M, R auf einem Wahrscheinlichkeitsraum (Q, A, P) definierte Zufalls-
grofien, und es gelte P(M < 0) > 0. Ist M wunabhingig von R, geniigt (2.1.5), (3.2.1)
und (3.2.2) und erfillt fir ein hinreichend kleines 3 > 0

(3.3.2) EM™P 10y < 1,

so ist das in (3.5.1) definierte Wahrscheinlichkeitsmafl 1 quasi A-stetig und erfillt die

Bedingungen von Satz 3.1.1. Ist C so wie in Satz 3.1.1 gewdhlt, g1, g_1 wie in (2.5.3)
und (2.3.4) definiert und zwei Mafe py, p— auf R fir alle B € B durch

Pt (B) := EM" 11150y 1{10g MeB}

p—(B) = E|M|" 1(pr<0) 1 rog ey
gegeben, so gilt:
(a) Sind (3.2.3) und (3.2.5) erfiillt, folgt

) B B 1 _io f]l(@) —|—§~]71(9)
t"P(R>1t)=C4 QWRe(/Ct (2(1 —Du00— Pu_0)

3.3.3 G1(0) — g-1(0)
33 " 21—y, 0 + %7(9>)>d6)

+O(t9), t — o0,

mit g1 und g_1 gemdfs (3.1.3), und dieselbe Formel gilt fir t"P(R < —t).

(b) Geniigt R einer stochastischen Fizpunktgleichung R L YoR gemdf (2.1.1) und ist
unabhdngig von (¥, M), kinnen (3.2.3) und (3.2.5) ersetzt werden durch (3.2.7) und (3.2.8).

Beweis. (a) Sei zunéachst P(M > 0) > 0 und P(M < 0) > 0. Mit der gleichen
Begriindung wie im Beweis zu Satz 3.2.1 ist aufgrund der gegebenen Voraussetzungen das
Implizite Erneuerungstheorem anwendbar, und es gelten (2.2.3) und (2.2.4). Wir verfahren
nun mit den Summanden der rechten Seite von

(3.3.4) kxr=kxg+xV+ksxg_1xn*xV

genauso wie im zuletzt gefithrten Beweis, wobei wir die Notationen aus dem ersten Teil
des Beweises von Fall (b) des Impliziten Erneuerungstheorems und die Notationen aus

dem Beweis von Satz 3.2.1 zu Hilfe nehmen. V' sei dabei das Erneuerungsmafl von 7, das
+

aufgrund seiner Definition in (3.3.1) die Verteilung von vazll
insbesondere den Erwartungswert 2m besitzt.

Wir betrachten zunéchst E1yysop M fiir & < u < k+/3. Wegen (3.3.2) und P(M < 0) >0
folgt E1{p~0yM" < 1 fiir u = x und v = k+ 3 und dies daher auch im gesamten Intervall
[k, ks + B], da E1qps0pM*™ konvex ist. Aufgrund von

)
Y; unter P, ist und somit

(00, 1)) = / e 1y oy POEM ()

(7oort]

fiir alle ¢t € R und somit

Uy (u) = / e(u+n)y1{y>—oo}PlogM(dy) = ElgsopM"*"
R
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bedeutet dies ¥, (u) < 1 fir 0 < u < 2 und damit ®,, () # 1 fiir alle § € D. Wegen
PlsM(dy) = e P M (dy) (vgl. den Beweis von Korollar 5.3.5) folgt auBerdem juy = pn,
(analog p— = ¢gn-) und mit Hilfe der in (2.3.17) und (2.3.18) gewonnenen Gleichungen
fiir n und 7 insgesamt

2

i)
— 2 52 n—2gFn—=2 __ M
b, =pP,, + > ¢ O POy =Qu t 5

n>2 M+

n—1gn— D,
Lig :qu)’?— P = 1—2)

n>1 H+

®,, @, sind daher holomorph in D und stetig in D. Analog zum Nachweis von (2.3.15)
erhalten wir (3.3.4) und wegen V = V; + Vy und 5~ [o g1 + g—1 % o = C weiter

kExr=kx(g1+9g_1%xm0)*Vi+kx*(g1+9g_1%m0)* v
& kx (r(1) = Cy) = kx (g1 +g-1%m0) * Vi + k(g1 + g-1%m0) * (vo(-) — g7)-

2m

Nach Definition von 7y in Verbindung mit (3.2.1) und (3.2.5) gilt e®tg_; * no(t) € L; und
daher

/ ety xmo(D)ldt < / & / 91 (t — w)loldu) dt
— 50 —00 R
- /eﬂ“no(du)/ eﬁs|g_1(s)|ds
R —00
< 0.

g_1 % 1o * ¢ ist wegen lim; , ., g_1 * no(t) = 0 auBerdem wohldefiniert und besitzt fiir alle

t € R die Gestalt )3, (6)
1 7'9t§—1 0 q)no 0
_ t) = — w2 B2 4.
g 1*770*0( ) 27_‘_\/(;6 1_®n(9)

Mit v em(t) == vo(t) — 5 + c(t) fiir alle ¢ € R erhalten wir somit anstelle der zweiten
Gleichung in obiger Aquivalenz

ks (r()—Cy+ (g1 +9-1%m0) *c(-))
= kx(g1+g-1%m0)*Vi+FEkx(g1+g-1%m0) * Vocm

und analog zum Beweis von Satz 3.2.1
ks (Cp—r— (g1 +g-1%m0) * ¢)(t) = o(e™™)

fiir t — oo, da limy_.o e’ k*xg_1*n0(t) = 0 und e’ kxg_1*n,(t) € L, gilt (nach Lemma 3.2.4
ist e’k * g_1 * ny d.R.i.). Definieren wir

ri(t) == Ch = r(t) — (g1 + g-1 % 1m0) * c(t)L(0,00) (1),
so folgt wiederum (3.2.15) und daher mit Hilfe des Tauberschen Restglied-Theorems

Re(ri(t)) = O(e™P/?)



50 Die Konvergenzrate der Flanken

fiir t — oo. Wir erhalten dann (3.3.3), indem wir @, und ®,,, durch ihre oben gewonnenen
von ®, und ®, abhéingigen Ausdriicke ersetzen und logt statt ¢ wihlen. Dasselbe Er-
gebnis folgt fiir P(R < —t), indem wir —R statt R betrachten und aufgrund von (2.2.7)
C, = C_ beachten.

Ist nun M < 0 fast sicher, folgt N1(+) = 2 und Né_) = 1 fast sicher, d.h. mit u, als
Nullmal und ¢ = 1 ist n = ni@) = u*_(Q) und 79 = n_ = pu_. Der Beweis fiir den ersten
Fall kann daher analog iibernommen werden.

(b) folgt wie in Satz 3.2.1 mit Lemma 2.2.3. O

Wir schliefen diesen Abschnitt mit einer Zusammenfassung der Hauptergebnisse im fol-
genden Korollar.

Korollar 3.3.2. Sei M eine von R unabhdingige Zufallsgrofie auf einem Wahrscheinlich-
keitsraum (Q, A, P), fir die P(M < 0) > 0 gilt und die (2.1.5), (3.2.2) sowie fir ein
B >0 (3.2.1) geniigt. Sind (3.2.3) und (3.2.5) erfiillt, so gilt fiir ein nicht ndher bestimm-
tes v >0

t"P(R>t)=Cy+O(t)

und

t"P(R < —t) = C_ + O(t™)

fiir t — oc.









4 Ausgewihlte Fixpunktgleichungen

In diesem Kapitel betrachten wir Beispiele von stochastischen Fixpunktgleichungen, die
in vielen verschiedenen Bereichen der Wirtschaft und Wissenschaft auftauchen und auf
die wir das Implizite Erneuerungstheorem anwenden wollen. Wir werden allerdings ledig-
lich in einem Fall konkrete Formeln fiir C'y und C'_ angeben koénnen, die nicht von der
unbekannten Verteilung der Zufallsgrofle R abhéngen. Mit Hilfe des Impliziten Erneue-
rungstheorems ist es uns jedoch méglich, in den meisten der dargestellten Félle Schranken
fiir ', und C_ zu berechnen (vgl. Korollar 4.1.7).

41 RZQ+ MR

Unsere erste Gleichung
(4.1.1) RL Q+ MR, R unabhéngig von (M, Q),

mit Zufallsgrofien auf einem Wahrscheinlichkeitsraum (€2, A, P) ist aufgrund ihrer Struk-
tur das vielleicht vielseitigste Beispiel einer stochastischen Fixpunktgleichung, fiir das un-
sere Methode Anwendung findet. Bezeichnen R,,, M, und @, fiir alle n € N unabhéngige
Kopien von R, M und @ auf dem passend erweiterten Wahrscheinlichkeitsraum (€2, .4, P)
und schreiben wir anstelle von (4.1.1)

(4.1.2) Rn=Qn+M,R,1, neN,

so konnen wir R, allgemein immer als einen Vorrat bestimmter Objekte zum Zeitpunkt n,
@, als die Menge direkt vor diesem Zeitpunkt hinzugefiigter bzw. entfernter Objekte und
den Faktor M,, als den Zerfall bzw. das Wachstum des Vorrats R,,_; im Zeitintervall von
n — 1 bis n ansehen. (4.1.2) taucht daher in vielen unterschiedlichen Lebensbereichen auf
wie beispielsweise in der Wirtschaft, Physik, Atomtechnologie, Biologie, Kontrolltheorie
oder Soziologie.

In einer auf Lassner (vgl. [Lal], [La2]) zuriickgehenden Anwendung stellt R, z.B. den
Betrag eines Sparkontos zum Zeitpunkt n dar, ), den eingezahlten bzw. abgebuchten
Betrag direkt vor diesem Zeitpunkt und M,, den Zinsfaktor, der aufgrund von Schwan-
kungen im Laufe der Zeit ebenfalls als stochastische Grofle angesehen werden kann. Da @),
und M,, voneinander abhéngen koénnen, deckt dieses Modell insbesondere den Fall positi-
ver Einzahlungen ab, die gerade dann um so wahrscheinlicher sind, wenn der Zinsfaktor
groB ist. Fiir Uppuluri, Feder und Shenton (vgl. [Ufs]) représentiert R,, den Bestand eines
radioaktiven Materials zum Zeitpunkt n, @),, die Menge hinzugefiigten (bzw. entfernten)
Materials direkt bevor n sowie M,, den natiirlichen Zerfall durch die Radioaktivitdt. Die
Autoren betrachten in diesem Artikel allerdings nur die Spezialfélle konstanter Materi-
alzufuhr bzw. konstanten Zerfalls (es gilt entweder @), = 1 f.s. oder M, = p f.s. fiir
ein o > 0). Sie erhalten damit unter bestimmten Voraussetzungen, insbesondere im Fall

93
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Bernoulli-verteilter ZufallsgréfSen M,, und @,,, die Konvergenz in Verteilung der R,, ge-
gen eine ZufallsgroBe R sowie die Konvergenz der Erwartungswerte F'R,, und ER? gegen
ER bzw. ER’ fir 1 < j < m (m € N fest und aus den Voraussetzungen; vgl. [Ufs],
S.157, Theorem 1, fiir den Fall @), = 1 f.s. bzw. S.165-171, falls M,, = p f.s. ist mit einer
Fallunterscheidung nach p).

Weitere Beispiele liefern Chandrasekhar und Miinch (vgl. [ChM]), indem sie die Helligkeit
der Milchstrafle untersuchen, oder Bawa (vgl. [Baw|) mittels Modellen, die ein moglichst
optimales Verfahren darstellen sollen, um die Verschmutzung der Umwelt sowohl im Alltag
als auch in Krisenzeiten in einem gleichzeitig verniinftigen Verhéltnis mit den dabei ent-
stehenden sozialen Kosten zu kontrollieren. R,, ist z.B. der Grad der Luftverschmutzung in
einer Stadt, der im Sommer mit der Temperatur steigt, M,, der Anteil der Verschmutzung
aus dem Zeitintervall von n — 2 bis n — 1, der am Ende des darauf folgenden Intervalls
noch vorhanden ist, und @,, der Grad der Emission im Zeitintervall von n — 1 bis n, der
auBerdem noch von einer Steuerrate auf die Emission abhédngen kann.

Perrakis und Henin (vgl. [PeH]) stellen anhand von (4.1.2) Berechnungsmethoden auf, um
die Verteilung des NPV (net present value) eines Investments zu bewerten, wéhrend Cha-
mayou (vgl. [Chal) (4.1.2) zur Untersuchung atomarer Kaskaden benutzt - ein schnelles
energiegeladenes Neutron stofft mit einem in ein Gitter von Atomen eingebundenes Atom
zusammen und iibertragt auf dieses seine Energie. Ist diese Energie grofl genug, so 16st das
Neutron dadurch eine Kettenreaktion unter den Atomen des Gitters aus, die in diesem
Fall ausgehend vom Kollisionsatom beginnen, sich sukzessive im Gitter zu ersetzen.
Solomon (vgl. [Sol]) beschreibt anhand von (4.1.2) Irrfahrten in zufélliger Umgebung und
Cavalli-Sforza und Feldman (vgl. [CsF]) sowie Cavalli-Sforza (vgl. [Cav]) den Vorgang
kultureller und genetischer Vererbung. Die beiden zuletzt genannten Artikel beschéftigen
sich dabei mit der allgemeineren Situation R,,Q, € R?, M,, € R% x R? fiir d > 1.

Neben den gerade genannten Autoren, die (4.1.2) vor allem aufgrund ihrer Anwendungsbe-
zogenheit untersucht haben, haben sich schliellich Takécs (vgl. [Tak], mit Partikelzdhlma-
schinen wie dem Geiger-Miiller-Zahlrohr oder dem Elektronenvervielféltiger als physika-
lische Anwendung in §5), Paulsen und Uppuluri (vgl. [PaU], insbesondere Theorem 3
auf S.331 - die Grenzverteilung der R,, kann nicht die Poissonverteilung sein), Maksimov
(vgl. [Mak]), Vervaat (vgl. [Vel], Abschnitt 5), Grincevicius (vgl. [Grl]-[Gr4]), Lassner
(vgl. [Lal], [La2]), Chamayou und Schorr (vgl. [ChS]) und Kesten (vgl. [K73]) ebenfalls
fir (4.1.2) und ihre Spezialfille und dabei insbesondere fiir das Verhalten der Verteilungs-
funktion der R, fiir n — oo interessiert, motiviert durch die mathematische Struktur
dieser Gleichung. Ahnlich wie Cavalli-Sforza und Feldman bzw. Cavalli-Sforza hat sich
Kesten dabei insbesondere auf die Situation d > 1 konzentriert.

Wenden wir uns wieder unserer Ausgangsgleichung (4.1.1) zu, so entspricht unser Satz 4.1.1
gerade Kestens Theorem 5 fiir den Fall d = 1.

Satz 4.1.1.(vgl. [K73], S. 246, Theorem 5)
Seien M, Q Zufallsgrofien auf einem Wahrscheinlichkeitsraum (§2, A, P), geniige M den
Bedingungen von Lemma 2.1.2 und sei PsIMIIM#0 pichtarithmetisch. Ist

(4.1.3) E|QIF < o,

so existiert eine Verteilung, die die eindeutige Lisung der Fizpunktgleichung (4.1.1) ist.
Fiir diese Verteilung gilt sowohl (2.2.3) als auch (2.2.4). Ist M > 0 fast sicher, folgt

o, = EUQ+ MR)T)" — (MB))')
414 L _EQ+ MR ) — (MR )

R
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und im Fall P(M < 0) >0

1
4.1.5 C,=C_=—F MR|® — |MR]|").
(115) \ B (1@ + MRJ" ~ MR
Es gilt auflerdem
(4.1.6) C,+C_>0 < PQRQ=(1-M))<1

fiir jedes feste c € R.

Im Beweis des Satzes benutzen wir die in der folgenden Definition zusammengestellten
Linearkombinationen von Zufallsgroflen. Wir benctigen auflerdem zwei Ergebnisse von
Gut und Vervaat sowie Grincevic¢ius’ Erweiterung von Lévys symmetrischer Ungleichung
fiir den Nachweis von (4.1.6), in der med den Median einer Zufallsgrofie bezeichnet.

Definition 4.1.2. Fiir unabhdngige identisch verteilte Zufallsvektoren (M, R), (M,, Qy),
n € N, auf einem Wahrscheinlichkeitsraum (Q x Q, A® A, P® P) sowie einer von diesen
Zufallsvektoren unabhingigen Zufallsgrofie R auf (2, A, P) mit unabhdngigen Kopien R,
fur allen € N sei Iy := 1, mg := med R, Ty := mq sowie

0= Mo, 1= ﬁ My,  j,mé€EN,
k

=j+1

Rn = Zﬂk_le, Rj,n = Z Hj,k—lea j> n e N7
k

=j+1

T, := R, + II,, mg, n € N,

Un = Hn—l(Qn - m()(l - Mn))7 n € N.

Satz 4.1.3.(vgl. [Ve2], Theorem 5.1)
Ist in der Situation von Satz 4.1.1 E|M" <1 und E|Q|" < oo fiir ein beliebiges
p € [1,00), so ist R die eindeutige Lisung von (4.1.1) mit E|R|” < oo, und die Reihe

> Qs

k>1

konvergiert in der || - || -Norm. Die Momente ER’ fir j = 1,2,...,|p] sind eindeutig
bestimmt durch die Gleichung

k
k=0

(4.1.7) ER = ZJ: (j)E(Mijk)ERk, i=12...,|pl

Satz 4.1.4.(vgl. [Gut], Theorem 2.1)

Seien Y1,Ys, ... unabhdingige identisch verteilte Zufallsgrofien auf einem Wahrscheinlich-
keitsraum (2, A, P) mit EY; € (0,00). Bezeichnet S,, deren n-te Partialsumme, definiert
man T = 7(c) :=1inf{n > 1: S, > ¢} fir ein beliebiges ¢ > 0 und ist r > 1, so gilt
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(a) E|Y] | <00 & ET"< o0,
(b) ElY]"|" <0 & EST < oo.

Proposition 4.1.5. (vgl. [Gr5], Lemma 1)
Mit den Definitionen von I1;, I1; ,, R, und R;,, fiir alle j,n € N in Definition 4.1.2 folgt
fiir alle x, y € R

(4.1.8) P (max (Rj +1I; med(R; , + 11, y)) > x) <2P(R,+ 1L,y > z).

1<j<n

Die resultierende Ungleichung ist fiir uns im Fall y = 0 von Interesse. Nach Definition gilt
fiir jedes feste j € N

J n
R; +1I; Rj ., = Z 1 Qk + 11 Z I k-1 Q@
k=1

k=j+1
J n
= Zﬂk—1Qk+ Z I 1Qx
k=1 k=j+1

= R,.

Unter den Voraussetzungen von Satz 4.1.1 existieren nach dem Prinzip von Letac sowohl
lim, . R, als auch lim,_ ., R; , fast sicher fiir jedes feste j € N und besitzen beide die
Verteilung von R. Wihlen wir y = 0, konnen wir daher in (4.1.8) n — oo laufen lassen
und erhalten

P(sup(Rj+HjmedR)>x> <2P(R > x), x> 0.

jEN

Fir —R, —R; anstelle von R, R; folgt die Ungleichung analog, und insgesamt gilt
(4.1.9) P (sup |R; + 1I; med R| > x) <2P(|R| > x), x> 0.

jeN o

Fiir den Nachweis von (4.1.4) und (4.1.5) und damit als letztes Hilfsmittel fiir den Be-
weis von Satz 4.1.1 benotigen wir aulerdem die beiden elementaren Ungleichungen des
folgenden Lemmas. Der Beweis des Lemmas befindet sich im Anhang.

Lemma 4.1.6. Seien z, y € R, r > 0 sowie ¢, = 2"~ V 1, dann gelten

(4.1.10) z+y|" < e(|a]" + [y]),

|x_y|7’7 O0<r<i1
rle—yl(Jz| V)™, T<r<oo

(4.1.11) =" — [yl S{

Beweis von Satz 4.1.1. Bevor wir das Implizite Erneuerungstheorem auf (4.1.1)
anwenden konnen, miissen wir sicherstellen, daf§ diese Gleichung eine eindeutige Losung
besitzt. Setzen wir

U(t):=Q+Mt, tekR,
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U, (t) == Qn + Myt, t € R,

fir alle n € N, so sind die ¥,, unabhéngige Kopien von ¥, und mit Z,(t) gemas (2.1.2)
erhalten wir

Zy(t)=T10.. 00, (t) =Y QI +10,t, teR
k=1

Mit einer zum Beweis von Proposition 4.2.1 analogen Rechnung ist unter den Vorausset-
zungen des Satzes fiir grole n € N und ein geeignetes ¢ > 0

Q| TL,—1| < e“73)  sowie nlggo I, =0 fs.

Es gilt also
lim Z,(t) = ZQka—l < 00 f.s.

n—00
k>1

und somit nach dem Prinzip von Letac

R~ Z Qkafla

k>1

d.h. es existiert eine eindeutige Verteilung als Losung von (4.1.1) (vgl. auch [Ve2], S.752-
758, Theorem 1.6). (4.1.4) und (4.1.5) erhalten wir mit Hilfe von Korollar 2.2.2, indem
wir (2.2.9) und (2.2.10) mit ¥(R) = @ + M R zeigen. Wir beschrénken uns dabei auf den
Nachweis von

E[(Q+ MR)")" — (MR)")"| < o0,

da (2.2.10) durch eine analoge Rechnung sowie aufgrund der Tatsache folgt, dafl —R (4.1.1)
mit (M, —Q) anstelle von (M, Q) erfillt.

Zunichst 16sen wir den Betrag durch eine Fallunterscheidung nach @ und MR auf. Fiir
MR>0,Q>0ist (Q+ MR)"=Q+ MRund (MR)* = MR, und fir MR <0, Q <0
folgt (Q + MR)" = (MR)" = 0. Im Fall —-Q < MR <0 gilt (Q+ MR)* =Q + MR
und (MR)* =0, fir 0 < MR < —Q@Q erhalten wir (Q + MR)* = 0 und (MR)* = MR.
Ist schlieflich 0 < —Q < MR, folgt (Q + MR)" =Q+ MR < MR und (MR)* = MR
bzw. (Q + MR)T = (MR)" =0 fir MR < —Q < 0 und damit

E|(Q+MR)")" = (MR))*| =x ) I,

=1
wobei wir
I == E1{_gcmr<oy(Q + MR)",
I := LEl{gcmr<—0} (M R)",
Iy = +El(gsomr>0)((Q + MR)" — (MR)"),

Iy == Bl _gemry((MR)" — (Q + MR)")

setzen. Fir —Q < MR <0gilt 0 < Q + MR < Q" und daher
1

1
I<-EQ+ MR) < —-E(Q")" < o,
K K
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fir 0 < MR < —(Q ist

1 1 ik
I, < EEl{Q<0}(_Q>K = EE(Q )" < o0,

Die Endlichkeit von I3 und I, erhalten wir mit Hilfe von Lemma 4.1.6. Ist k < 1, gilt
mit (4.1.3) und (4.1.11)

1

1
I3 < EEl{Q>0,MR>0}|Q|K < EE|Q|H < 00,

fir k > 1 folgt mit (4.1.11)

I3 El{gsomr>03Q(Q + MR)*
ci1E1{050 mrs0yQ(Q" " + (MR)*1)
CﬁflE(QJr)n + CﬁflEQ+|MR’H71

o1 E(QY)" + cxrt E(QT M| 1) EIRI",

INIAIA

wobei wir im zweiten Schritt (4.1.10) angewandt und im letzten die Unabhéngigkeit von
R und (M, Q) ausgenutzt haben. Die Holder-Ungleichung (vgl. [AWT], Satz 17.4) fur Q*
und |M|*" mit p = k und ¢ = == liefert EQ* [M|*™" < oo. Mit p:= k — 1 € [1, 00) fiir

k—1
k €Nk >2 bzw. p:= |k] € [1,00) fiir K ¢ Nk > 1, ist E|R|*! < E|R]P < oo gemiB
Satz 4.1.3 und damit I3 < oo in Verbindung mit E(Q")" < co. Analog folgt fiir x < 1

1

1
Iy < EE1{0<—Q<MR}‘ —Q|" < EE|Q|H <0

sowie flir Kk > 1
I, < Elje_genry| — QIIMR|"™ < E|Q||M|* E|R|"™" < o0
und damit insgesamt (2.2.9). In (4.1.6) gelte zunéchst
Ci+C_>0 & E|Q+ MR|"—E|MR|" > 0.

Es folgt E|Q + MR|" > E|MR|* = E|R|" und damit P(Q + MR = R) < 1, also die
Behauptung. Sei nun P(Q = (1 — M)c) < 1 fiir jedes feste ¢ € R. Wegen

Cp +C_ ~[tIFP(IR| > 1),  t— oo,

miissen wir
t"P(|R| >t) >0
fiir t — oo zeigen. Mit Hilfe von Definition 4.1.2 erhalten wir zunéchst

n—1

Tnfl + Un = Z Hk*le + anl(Qn + Mnm(]) = Tn
k=1

fir alle n € N. Ist ¢t > |mg| und existiert ein n € N mit |U,| > 2t, so existiert auch ein
n € N mit |T,| > ¢, denn entweder gilt bereits |T,,_1| > ¢t fiir ein n € N (und damit
|T,| > t fiir ein n € N, da |To| = |mo| < t ist), oder es gilt |T,,_1] < ¢t und damit
|Tn| > |Up| — |Th=1]| > 2t —t =t fir ein n € N, d.h.

P(3neN: |T,|>t) > P(3n e N: |U,| > 2t).
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Mit Hilfe von (4.1.9) folgt dann

1
P(|R[ >1t) > ZP(sup|Tj| >1)
2 jeN

1
SPEneN: [T > 1)

> P(EneN: |U,| > 2t)
1 2t
> 5P(|Q—m0(1—M)| >¢e)P(3n e N: |1, >?),

wobei wir nach Voraussetzung e so wihlen konnen, dafl P(|Q —mo(1 — M)| > &) > 0 ist.
Wegen
P(3n eN: |II,| > ¢') = P(sup S, > 1)

neN
geniigt es, fiir ein 6 > 0

(4.1.12) P(sup S,, > t) > e ", t — oo,
neN

zu zeigen. (Sn),so = (D= Yi),5, ist nach Voraussetzung ein SRW mit EY; < 0. Sei
(wSn)ns0 = (Oimy wYi),s der zu (Sy),,5, assoziierte SRW mit Zuwachsverteilung
P( Y1 €dy) =e"P(Y1 €dy), yeR
Gemif [ASP], Definition 22.4, ist
o =inf{n>1:8, >0} < oo
(beachte P(Y1 > 0) > 0) der erste streng aufsteigende Leiterindex von (S,),,5, sowie
ST = 805155 <o} = So>

dessen erste streng aufsteigende Leiterhohe. Setzen wir
8= / te™PST (dt) = E ST = E .S,>,
0

so folgt mit (5.13) in [Fel], Kapitel XII,

PST(RT
P(sup S, > t) ~ #e’“t, t — oo,
neN ﬁ’i
sofern f < oo ist. Wegen E,Y; = 1 € (0,00) konnen wir jedoch Satz 4.1.4 (b) mit

¢ =0, r =1 anwenden und erhalten aufgrund von
E.S,> <00 & E.Y"<oo
und E,.Y;" = EYTe"™ < oo nach (2.1.6) die Endlichkeit von 3. (4.1.12) folgt nun in

>
Verbindung mit P57 (R*) > 0 (da P(Y; > 0) > 0 gilt) sowie § := % und damit

insgesamt die Behauptung durch Substitution von ¢ durch log gt in (4.1.12). O

Als erste Folgerung aus Satz 4.1.1 kénnen wir endliche Schranken fiir C'y + C'_ im Fall
M >0 fs. bzw. Cy, C_ im Fall P(M < 0) > 0 angeben, die nicht von der unbekannten
Verteilung der Zufallsgrofle R abhéngen. Ist k € N oder k € 2N, existieren sogar genaue
Werte fiir C'; und C_. Wir setzen dazu im folgenden fiir eine Zufallsgrofie X

E|X P, falls p € (0,1)
1, = {

4.1.13
( ) (E|X|1”)%7 falls p > 1
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Korollar 4.1.7. Unter den Voraussetzungen von Satz 4.1.1 sei M > 0 f.s. Dann gilt fiir
0<kr<l1

1
(j+ +‘ij S;'___EEKQ|H7
Km
und fiir k > 1 folgt

2/4—1 B o
Cp+C. < —(EIQI" + E|QIIM" E[RI"™)
2%—1
<

Kk—1 K—
_<E|Q|H+E\@HM| z[0| )
m

(1= [[M—1)="

wobei nach Voraussetzung beide Ausdriicke endlich sind. Im Fall P(M < 0) > 0 ergeben
sich die Schranken fir C, C_ wegen C. = C_ aus der Hilfte der oben angegebenen
Werte.

Beweis. Mit (4.1.11) gilt fir 0 <k < 1

1 1
C.+C- = —E(Q + MR|* — [MR[") < —E|QI*
R KM

und fiir K > 1 wegen 1 < ¢, ; =22V 1 <26t
1
Cy+C. < —E|QIQ+MR|V|ME|)"™

1 o1 1 .
= —Elorumrzm)|QlQ + MRI™ + — Elqoium<ur) QMR

Cr—1 K— K—
< ——Eljgrunzmry|QUIQI + [MR[™)
1 K k—1
+— Elqjg+mr<iurp(1Q1" + QMR
Cr— K K— K—
< S (B|QI + EIQI M E|RI)
2n71 o L
e — (EIQI" + E|Q[ |M|*"" E|R[*),

wobei wir im dritten Schritt (4.1.10) angewandt haben. Aufgrund von (4.1.1) und der
Dreiecksungleichung gilt weiter

[Rlli—1 = [|Q + MR|n-1 < |Qln-1 + | M1 | Rl -1
Qs
< 1Bllemr < =i

Der letzte Ausdruck ist wegen || M||,—1 < 1 und ||Q]|x—1 < E|Q|" endlich. Es folgt

E1QI"!
(1 = [|M]fg—r)™"

(beachte (1 — || M|,—1)* ' <1 — || M| fiir den Fall x € (1,2)) und mittels

E”}HKAJ S

k>1,

E\Q| M| B|Q!

E|Q* + E|Q|IM|"'E|R|"' < EIQ|" +
(1 — || M| =)=t

die Behauptung. a
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Korollar 4.1.8. Unter den Voraussetzungen von Satz 4.1.1 seien M > 0, > 0 f.s.
sowie k € N. Dann ist C_ =0 und

(4.1.14) C, =

mit ERY, j=1,...,k—1, aus (4.1.7). Insbesondere gilt fiir k =1

C, = EQ
* " EMlog M
und fiir k = 2
1 (1, EQEQM
(4.1.15) O+—m(2EQ + T E )

Korollar 4.1.9. Gelten die Voraussetzungen von Satz 4.1.1, und sei k € 2N. Ist M > 0
[.s., so erfillt Cy + C_ (4.1.14) anstelle von Cy, und im Fall P(M < 0) > 0 ist

1 k—1

C,=C = (“) EMQ* I ERI
j

2km 4
Jj=0

mit ERI, j =1,....,k—1, aus (4.1.7). Fiir k = 2 folgt insbesondere (4.1.15) fiir C + C_
anstelle von C.

Beweis von Korollar 4.1.8 und 4.1.9. Wegen M >0 f.s., @ > 0 f.s. und

R~ Zk21 1, 1Qy ist R > 0 f.s. und daher C_ = 0. Fiir C, folgt mit Hilfe des binomischen
Lehrsatzes wegen M@ > 0 f.s., R > 0 f.s. und der Unabhéngigkeit von R und (M, Q)

1
Cr = —E(Q+MR)"— (MR)")
1 k—1
- 8 (e
KM
7=0
1 k—1 K A » '
= — JEMQER’.
KM 4 J
7=0
Fir k = 1 ist EM"®" = EM =1 und C, = 1EQ W Wahlen wir k = 2, gilt
EM*® = EM? =1 und
EQ

mit Hilfe von (4.1.7). Es folgt

o, 1 (1., EQEQM
Oy = 5—(EQ* +2EQM ER) = — (QEQ -
und damit insgesamt Korollar 4.1.8. Sei nun x € 2N. Nach Satz 4.1.1 ist E|R|"*™! < oo

sowie E|M|""|Q| < oo und E|Q|* < oo, also existieren ER/ und EM/Q" fiir
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j=0,...,k—1. Analog folgt fiir M > 0 f.s.

k—1
1 -
CrtCo=—Y (“) EMIQ"IER,
Km j

=0
im Fall P(M <0) >0

k—1
C—C - (”) EMIQFIERS

2km J

und somit (4.1.15) fur Cy + C_. 0

Eine konkrete Anwendung fiir das Implizite Erneuerungstheorem finden wir im Fall Beta-
verteilter ZufallsgroBen. Eine ZufallsgroBle X ist Beta-verteilt mit den Parametern a,b > 0
- X ~ fB(a,b) -, wenn X die A-Dichte

fx(z) = 21— 2)" gy (2)

besitzt, wobei
' [(a)T'(b)
Ba,b) = [ 2" (1 —2)"de =
@) = [ e = G

das sogenannte wollstindige Beta-Integral bezeichnet. Um besser mit dieser Verteilung
umgehen zu kénnen, benutzen wir im folgenden die Schreibweise

fx(z) =

a—1 —a—>b
By’ T e

z
1—

die mit Hilfe einer Substitution von z durch % wegen

oo 1
/ 21+ 2) " bde = / 2711 - 2)*"'dz = B(a,b)
0 0

gleichwertig zur erstgenannten ist.

Proposition 4.1.10. Sei n € N fest und ay,...,a,,b >0, a1 :=ay. Sind R,Y1,...,Y,
unabhingige Zufallsgrofien auf einem Wahrscheinlichkeitsraum (2, A, P), R ~ [(aq,b),
Y ~ Blait1,a; +b) firi=1,....n, und

n—1
M = HYn_i, Q =
=0

so gilt R 4 Q-+ MR. Wegen

1
b ~N —_—
t"P(R > t) bB(ay. D)
fiir t — oo folgt dann mit (4.1.4) und k =b
(4.1.16) _t LE((Q + MR)" — (MR)").

bB(ay,b) bm
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Sind R, Y7, Ys, ... unabhéngige Zufallsgrofen auf einem Wahrscheinlichkeitsraum (€2, A, P)
mit R ~ B(a,b) und Y,, ~ ((a,a + b) fir alle n € N (der Fall n = 1 in Proposition 4.1.10
mit a = a;, M =[]y Y und Q = 37—, Hf:o Y1), so geht dieses Ergebnis auf Chamayou
und Letac zuriick (vgl. [ChL], S.21f, Example 9). Fiir den allgemeinen Fall benétigen wir

Lemma 4.1.11. Seien X,Y wunabhdingige Zufallsgrifien auf einem Wahrscheinlichkeits-
raum (2, A, P) mit X ~ ((a,b) undY ~ ((c,a+b) fir a,b,c >0, so gilt

Y (1 + X) ~ B(c,b).

Beweis. Sei s € (—c¢,b), dann folgt mit Hilfe des Beta-Integrals

EY® — % /OOO y(c+s)—1(1 i y)f((c+s)+(a+b75))dy
~ Tle+s)(a+b—s)
B ['(c)T'(a+b)
E(l+X)® = II;((Z) 0 )) /00 2471 4 )@= gy
L(a+b)'(b—s)

IF')r(a+b—s)
und daher aufgrund der Unabhéngigkeit von ¥ und 1 + X

E(Y(1+ X)) = EY*E(1 + X)* = C(c+ s)T'(b—s)

I'(c)I'(b)
Da dies die Mellin-Transformierte der (¢, b)-Verteilung ist und die Mellin-Transformierte
einer Zufallsgroflen deren Verteilung eindeutig festlegt, folgt die Behauptung. a

Beweis von Proposition 4.1.10. Wir setzen Ry := R und Rj.1 := Yi(1 + Ry) fiir
k=1,...,n—1 und zeigen
(4117) RkNﬁ(ak,b), k:zl,...,n
mit Hilfe einer Induktion nach k. Fiir £ = 1 gilt (4.1.17) nach Voraussetzung, gelte also
die Behauptung fiir ein beliebiges, festes k € {1,...,n — 1}. Wegen Ry.1 = Yi(1 + Ry),
Yy ~ B(ags1,ar + b) und Ry ~ ((ag, b) nach Induktionsvoraussetzung folgt dann

Riv1 ~ B(agyr,b) fir £ = 1,...,n — 1 mit Hilfe von Lemma 4.1.11. Durch iteriertes
Anwenden der Gleichung Ry 1 = Y (1 + Ry) fiir £ =1,...,n — 1 erhalten wir auBerdem
Y,(14+R,) =Y, +Y,R,=Q+ MR
und Y, (14 R,,) ~ B(an+1,b) = (a1, b) mit (4.1.17) und Lemma 4.1.11 und somit schlief-
lich R £ @ + MR. Wir weisen weiter nach, dafi M und ¢ die Bedingungen von Theo-

rem 4.1.1 erfiillen. Wegen

1 o
EYb — (aj+1+b)—1 1 —(ait1+b)—a; d
' B(az‘+1,@i+b)/ ! (1+a) !

(a’i—i-l + b7 (li)

(@ig1,a; +b)

['(a;)I(ait1 +b)

(ai+1)T(a; +0)

(ai; b)

= b i=1,...,n,

B(aH—l’ )

sejiisy

—
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folgt
- " Blai,b) _ Blay,b)
EM" = [[ EY! = = =1,
11:11 ' Zl;[ B(ai-‘rh b) B(an_l,_l, b)

und aus

E}/ib 10g+ )/7, < E}/;b—‘rl
1 1
_ (ai41+b+1)—1 (a;+b)—1
= z 11—z dx
B(aiy1,a; +b) /o ( )
B(ai+1 + b+ 1, a; + b)
B(a;+1,a; + b)

erhalten wir aufgrund der Unabhéngigkeit der Y;, i =1,...,n,

EM’logt M = EJ[Y}) log'Y,
j=1 i=1

— zn: E (ﬁ Y)Y logty;
i=1 j=1

J#i
n n
= D (IEY)EY log" Y,
=1 j=1
J#i
< 0oQ.
Da PsYi fiir i = 1,..., n nichtarithmetisch ist, gilt dasselbe fiir Plos MIM#0 — plog¥ix..xlog¥n
Sei
m k
Qm = {U} € QO HOYnl = (]Srl?gaiil HOYnZ}, m € {O, oo — 1}
1= 1=
Fallsw € Q,r, € {1,...,n}und my,...,m,, € {0,...,n—1}, m; < ... < m,,, existieren
mit
mi Moy k
HYn,i(w) =...= H Y, _i(w) = o Jnax | Y,_i(w),
=0 =0 =0
setzen wir
m1 k
[[¥o-iw) = goae T [ Yosw)
i=0 i=0

Damit ist £, N Q; = 0 fur alle 4,5 € {0,...,n — 1}, # j, und wir erhalten

n—1 m n—1 m
EQb = / Q"dP <) / n’([[Yooi)?dP <n® > T BV < o0
o m m=0"%m =0 m=0 i=0

in Verbindung mit [[", EY,}_; = W. Mit (4.1.4) und x = b folgt daraus insgesamt

t’P(R > t) ~ %E((Q + MR)" — (MR)"), t— oo.

Da wir in unserem Fall die Verteilung von R kennen, betrachten wir auflerdem
1

o > a;—1 —a1—b
P(R>1) — B(ahb)/t 21 4 )b

1 00 T a;—1 1 b+1
= d
ol (75) (7)) »
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fiir t — co. Wahlen wir ¢ geniigend grof3, folgt wegen

a1—1 a1—1
(x ) lomoo I, a1 €(0,1), und ( v ) T 1 ay > 1,

1+ 1+
und t+1 b+1
: 1 A B 1
Ry (—) do = lim o5 = I gy = ©

1 1 1 1

/ ’ dzx ~ / dzx ~ / - de = —

: 1+ 1+ ; 1+ ; x bt?
fiir t — oo und somit insgesamt (4.1.16). O

Mit Hilfe der Ergebnisse aus dem vorigen Kapitel folgt die Konvergenzrate der Flanken
der Verteilung von R.

Satz 4.1.12. Sei R eine Zufallsgrifie auf einem Wahrscheinlichkeitsraum (2, A, P), die
(4.1.1) lost, wobei M fir ein k > 0 (2.1.5), fir ein § € (0,1) (3.2.1) sowie (3.2.2) und
Q E|Q|"*P < oo erfiillt. Ist M > 0 f.s., sei ein Wahrscheinlichkeitsmaf n auf R definiert
durch

n(dz) = e**P(log M € dx).

Dann folgen sowohl (3.2.4) als auch (3.2.6). Fir P(M < 0) > 0 sei n durch (3.3.1)
definiert und erfille auflerdem (3.3.2). In diesem Fall gilt (3.3.3), und t"P(R < —t)
erfillt dieselbe Formel.

Beweis. Wir erhalten (3.2.4) und (3.2.6) bzw. (3.3.3) mit Hilfe von (3.2.7) und (3.2.8),

wobei hier wiederum der Nachweis von
E|((@+ MR)*)™ — (MR)*)*™’| < o0

geniigt, da wir (3.2.8) mit (3.2.7) und (—R, M, —@Q) anstelle von (R, M, Q) erhalten. (3.2.7)
kénnen wir mit derselben Methode zeigen, die wir im Beweis von Satz 4.1.1 zum Nach-
weis von (2.2.9) verwendet haben, sofern E|Q|[M|*""~" und E|R|**#~1 endlich sind. Fiir
E|Q||M|*""~" folgt dies, indem wir die Hélder-Ungleichung gemiB [AWT], Satz 17.4, auf
Q und |M[" " mit p=r+F und ¢ = ng[jl anwenden. Fiir E|R|**#~1 erhalten wir die
Abschétzung o
Q k+B—-1
T 7]

(vgl. den Beweis von Korollar 4.1.7). Dieser Ausdruck ist endlich, da ||M]|x+5-1 < 1 wegen
k+0—1<rkund E|M|" =1 gilt, und es folgt die Behauptung. O

Zum Abschlufl dieses Abschnittes mochten wir noch auf
(4.1.1") RL Q + MR], R unabhingig von (M, @),

als eine Variante von (4.1.1) hinweisen, wobei [-] dem ganzzahligen Anteil des geklam-
merten Ausdruckes entspricht. Legen wir die Voraussetzungen von Satz 4.1.1 zugrunde,

erhalten wir mit Hilfe des folgenden Korollares bis auf (4.1.6) alle Aussagen dieses Satzes
mit [Q) + M R] anstelle von Q) + M R.
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Korollar 4.1.13. Unter den Voraussetzungen von Satz 4.1.1 ezistiert eine Verteilung,
die die eindeutige Losung der Fixpunktgleichung (4.1.1') ist. Fiir diese Verteilung gel-
ten (2.2.8) und (2.2.4). Ist M >0 f.s., folgt (4.1.4), andernfalls gilt (4.1.5).

Beweis. Wir setzen
U(t) = [Q + Mt], t e,

und )
U, (t) == [Qn + M,t], teZ,

mit unabhéngigen identisch verteilten ZufallsgroSen M, M,, bzw. @Q, @, fiir alle n € N.
Unter den gegebenen Voraussetzungen erhalten wir die Existenz und Eindeutigkeit einer
Losung von (4.1.1") mit Hilfe des Prinzips von Letac wegen

0<|limW0---0W,(t)] <| lim ¥yo0---0F,(t) <oco  fs.

Fir den Nachweis von
E[([Q+ MR]")" — (MR)*)"| < o0

schreiben wir mit Hilfe einer Fallunterscheidung nach @) und MR

E([Q + MRI")" = (MR)Y)"|=r ) I

=1
mit
I = L El{_qempreoy(@ + MR]",
I == Eljo<ur<-qy(MR)",
I3 := L Elggsomr-03|[Q + MR]* — (MR)"|,

Iy = +Elgo<_qemry((MR)" — [Q + MR]")

und schiitzen [, und I, gegen ~E(Q")" bzw. tE(Q™)" ab. I3 zerlegen wir in die Summe

von
1
I3, = EEl{Qz[Mm—MR>0,MR>0}([Q + MR]" — (MR)")

und
1
I3y = EE1{0<Q<[MR]—MR,MR>O}((MR>H —[@ + MR]").

Wegen MR < [Q + MR] < @+ MR erhalten wir analog zum Nachweis der Endlichkeit
von I3 in Satz 4.1.1

1
I3 < EEl{QZ(MR1—MR>0,MR>o}((Q + MR)" — (MR)") < oco.

Fir 0 < k <1 folgt weiter wegen [ + M R] = [MR] < MR und MR — [MR] <1

1
I3y < EE1{0<Q<[MR}—MR,MR>0}(MR — [MR])" <

S
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mit Hilfe von (4.1.11), fiir £ > 1 gilt

I3y El{ocq<rmrl-mrmr>0y (MR — [MR]) (MR)"!
E]_{MR>0}(MR)K71
E|M|* ' E|R|""

oo,

AN VANRN VAR VAN

ebenfalls mit (4.1.11) sowie der Holder-Ungleichung. I, setzt sich aus den Summanden

1
Iy = EE1{0<—Q<MR—[MR]<MR}((MR)H — [@Q@+ MR]%)

und .
Iy = EE]-{OgMR—[MR}<—Q<MR}((MR)H — [Q@ + MRJ]")

zusammen, wobel Iy; wegen [QQ + MR| = [MR] < MR endlich ist (vgl. I33) und aus
(@ + MR] € [0, [MR])

1 —k K
Iy < EE]-{OSMR—[MR}<—Q<MR}(_1) (—MR)
1 —K K
< —(=1)"Eligzn@
< o0

folgt. Wir erhalten daher insgesamt (2.2.9) und analog (2.2.10) mit (—R, M, —@Q) anstelle
von (R, M, Q). O

Bereits in Satz 4.1.1 ist es uns nicht gelungen, eine notwendige und hinreichende Bedin-
gung dafiir zu finden, daf§i ¢’y > 0 und C_ > 0 sind, sondern allein dafiir, dal C'\ + C_
echt positiv ist. Auch hier kénnen wir lediglich feststellen, dal im Fall M > 0 f.s. und
@ >1fs. und somit R >1fs. C_ =0 und

O\ = —B(Q+ MR)" — (MR)Y

folgt und damit wegen [@Q + MR] > MR
C+ + C_ — C+ > O

ist. Mit einem in den Grundziigen unverédnderten Beweis gilt die in Satz 4.1.12 fiir die
Losung von (4.1.1) gewonnene Konvergenzrate der Flanken ebenfalls fiir (4.1.1).

d
4.2 R =max(Q,MR)
In diesem Abschnitt gilt unser Interesse der stochastischen Fixpunktgleichung
(4.2.1) RZ max(Q, M R), R unabhéngig von (M, Q),

mit Zufallsgrofen auf einem Wahrscheinlichkeitsraum (€2, .4, P). Wir setzen auflerdem
M > 0 f.s. voraus. Die Gleichung besitzt insofern einen besonderen Stellenwert, da sie
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unter bestimmten Voraussetzungen auf das G/G/1!-Bedienungssystem der Warteschlan-
gentheorie iibertragen werden kann.

Im G/G/1-Bedienungssystem gehen wir davon aus, dafl es nur einen Bedienungsschalter
gibt und dafl die Kunden der Reihe nach von diesem bedient werden. Treffen die Kunden
ausgehend von einem Beobachtungsstartpunkt 7y = 0 zu Ankunftszeiten (7),)nen im Sy-
stem ein, so interessiert man sich fiir die Wartezeit W,, des n-ten Kunden, n € N, die sich
zusammensetzt aus der Wartezeit des n—1-ten Kunden, dessen Bedienungszeit B,,_; sowie
der Zeitspanne A, =T, — T,_1, die zwischen dem Eintreten des n — 1-ten und des n-ten
Kunden verstrichen ist. (A4;),>1 und (B,),>1 seien dabei unabhéngige Folgen unabhéngig
identisch verteilter Zufallsgrofen und besitzen daher Verteilungen, die nicht von n € N
abhingen. Da Ty nicht notwendig mit dem Zeitpunkt der Offnung des Bedienungssystems
zusammenfallen muf}, sei M, die Anzahl der wartenden einschliellich des gerade bedien-
ten Kunden zum Zeitpunkt 7j sowie B_p, 41, . .., By deren Bedienungszeiten. Setzen wir
X, = B,_1 — A, fir alle n € N, gilt demnach

(4.2.2) W,=W,_1+X,)", n €N,

mit voneinander unabhéingigen Zufallsgrofien X,,. Bezeichnet F,, die o-Algebra der bis
zum Zeitpunkt n verfiigbaren Informationen, so bildet (W,,),>o eine DMK bzgl. dieser
Filtration. Setzen wir S,, = Y | X;, So = 0 und Wy = 0, so folgt

W, ~ max{So,...,S,}

wegen W, = max{S,, —S; : 0 < j <n}. Falls EX; < 0 und daher lim,_.,, S, = —oo f.s.
ist, gilt
max{Sp,..., S} T r}gg(Sk < 00 P-f.s.

und

d
W,, — max .S
k>0

(vgl. [AET], §11, S.230-233 und [ASP], Abschnitt 14.5). Die Kette (W,,),>0 besitzt somit
die stationire Verteilung P™*%>05 und wihlen wir irgendeine Zufallsgroe W mit dieser
Verteilung sowie eine von X; unabhéngige Kopie X, erhalten wir aus (4.2.2) die sogenannte
Lindley-Gleichung

WL (W + X)*t

Unsere Ausgangsgleichung erhélt diese Gestalt, falls @ = 1 f.s. gilt und wir im Fall R > 0
und M > 0 fs. W =log R, X = log M sowie X} = log M}, fiir k € N setzen, da durch
Logarithmieren von (4.2.1)

W L max(0, W + X) = (W + X)*
folgt. Definieren wir
U, (t) := max(0, X,, + 1), teR, neN,
erhalten wir mit Z,, geméaf (2.1.2) und daher wegen Z,(t) = max(maxo<g<n—1 Sk, Sn + t)

und P(X,, = —00) >0
lim Z,(t) = max Sk

n—00 k>0

1Bei dieser auf Kendall zuriickgehenden Notation ist die erste Komponente fiir den Verteilungstyp der
Zwischenankunftszeiten, die zweite fiir den der Bedienungszeiten und die dritte fiir die Anzahl der Server
reserviert. ”G” steht dabei fiir ”general”.
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und somit nach dem Prinzip von Letac ebenfalls

W ~ max S.

k>0

Im Modell des G/G/1-Bedienungssystems kénnen wir uns neben der reinen Wartezeit des
n-ten Kunden in der Schlange auflerdem fiir die gesamte Zeit interessieren, die der Kunde
im System verbringt, d.h. fiir

(4.2.3) Gn=B,+W,=B,+W,_1+B,.1—A,)" =B, + (Gn_1 — An)".

Bezeichnen A, B unabhéngige Kopien von A;, By, so folgt aufgrund der Unabhéingigkeit
von W,, und B,, mittels Satz 36.11 in [AWT]

Gn:Wn—l—BnimaxSk—l—B
k>0

und somit die Stationaritét von (G,,)n>o. Wéhlen wir eine Zufallsgrofie G mit
G ~ maxg>o Sk + B, erhalten wir anstelle von (4.2.3)

GLB+ (G- A"

Mit (4.2.1) erreichen wir diese Form der Gleichung sowie die Verteilung von G, indem
wir M = eP=4, Q = e sowie im Fall R > 0 f.s. G = log R setzen, (4.2.1) logarithmie-
ren und das Prinzip von Letac anwenden. Wir kénnen daher unsere folgenden Ergebnisse
tiber die Flanken der Verteilung von R durch entsprechendes Umformen von (4.2.1) auf
die stationére Verteilung der Wartezeit und die der gesamten Aufenthaltszeit im G/G/1-
Bedienungssystem iibertragen. In Satz 4.2.2 bestétigen wir auBerdem den in [Fel], Ab-
schnitt XIL.5, nachgewiesenen exponentiellen Abfall der rechten Flanke der Verteilung
von W und G. Zunéchst miissen wir allerdings sicherstellen, dafl (4.2.1) eine eindeutige
Losung besitzt. Wir erinnern dazu an die Definition von II,, = [[}"_, M; fiir unabhéngige
identisch verteilte Zufallsgrofen My, Mo, ... und alle n € N (Il = 1) aus Kapitel 2 bzw.
Definition 4.1.2.

Proposition 4.2.1. Seien (M, Q), (M,,Q,), n € N, unabhdngige identisch verteilte Zu-
fallsvektoren auf einem Wahrscheinlichkeitsraum (2 x Q, A® A, P ® P) mit M >0 f.s.,

ElogM € [-00,0) und FElog(lVQ) < 0.
Dann folgt

ma 11, _ 00 .S.
k>f(Qk -1 < fs.,

und (4.2.1) besitzt (maxy>1Qxllx_1)" als eindeutige Lisung.

Beweis. Wir setzen
U,,(t) :== max(Qn, Mut), t e R,
fir alle n € N und erhalten mit Z,, geméf} (2.1.2)

Zn(t) = Zp-1(t) o Un(?)
= max(¥,(t),_1, | Jnax Qrlli—1)

- maX(maX(Qnu Mnt)Hn—la 15?25{—1 Qka—l)

= max(¢II,, 121%}% Qrlly_1).
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Nach Voraussetzung an () ist
> Pllog(1V Q,) > %) < / P(log(1V Q,) > t)dt = Elog(1V Q,) < co
n>1 0

und daher mit dem Lemma von Borel-Cantelli

P(limsup{log(1V Q,) > 1) =0,

n— o0 2
d.h. es gilt Q, < e™/? fs. fiir geniigend grofie n € N. Sei weiter ¢ > 0 so gewihlt, daf
ElogM < —c & EM <e “

Da die Zufallsgrofien (M,,),>0 unabhéngig und fast sicher positiv sind, folgt in dhnlicher
Weise wegen
P(Il, > e ") <Y P(II, > e=*) < EII, < e~
k>0

Z P(II, >e ™) < Ze‘m ! < 00

1—ec
n>1 n>0

fiir alle n € N

und daher
I, <e ™ fs.,

falls n geniigend grof} ist. Sei ¢ > 0 beliebig und seien Ny, N1, No € N so gewéhlt, dafl
3% < ¢ fiir k > Ny sowie

Qp<e*? k>N, und I <e k>N,

mit Wahrscheinlichkeit 1 gilt. Definieren wir N := max{Ny, N1, Na}, so folgt fiir alle
k>N+1

_N41
1 2

Qrll_1 < ec(1-3) < et ) <& fs.

und daher

max Qpll,_1 = max II,_; V max II,_; <o fs.
s Q11 1§k§NQk k k2N+1Qk k

In Verbindung mit
0< lim I, < lime =0 f.s.

folgt daraus wegen
T}Lrgo Zn(t) = nll_{go max (t11,, 1rgka§xn Qrlly_1)

= max( lim I, im max Qxll;_;)
n—oo n—oo 1<k<n

_ +
= (filzaf( ankfl)

die Behauptung mit dem Prinzip von Letac. 4

Satz 4.2.2. Seien M, Q Zufallsgrifien auf einem Wahrscheinlichkeitsraum (2, A, P) mit
M >0 f.s. M erfiille die Bedingungen von Lemma 2.1.2, PeMIM#0 soi nichtarithmetisch,
und es gelte E(Q)" < oco. Dann existiert eine eindeutige Losung R von (4.2.1), und es
gilt

P(R>t)~Cyt ™", t — o0,
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mat
Cy = ﬁE«(Q V(MR)*)" = ((MR)")")

sowie auflerdem
C,>0 < P(Q>0)>0.
Beweis. Existenz und Eindeutigkeit der Losung von (4.2.1) folgen mit Propositi-
on 4.2.1. Wegen
E((QVMR)")" = (MR)")"| = El{mr<qo>01(Q" — (MR)")") < El{g-0)Q" < 00

liefert Korollar 2.2.2 (2.2.3) und die Formel fiir C;. Zum Nachweis der Aquivalenz nehmen
wir zundchst C'y > 0 an. Ist Q <0 f.s., folgt mit

rmCy = E(Q" vV (MR)")" = (MR)")") = E(MR)")" = (MR)")") = 0

ein Widerspruch zur Voraussetzung. Gilt P(Q > 0) > 0, wiahlen wir ein ¢ > 0 so, dafl
P(Q > ¢) > 0 ist. Wir setzen auBerdem

t
Ny :=min{k e N: II;_; > -}, t € R,
c

und zeigen zunéchst

(4.2.4) ;P(Nt =n,Qn > ¢) < P(max Qplli—y > t)
und

t
(4.2.5) ;P(Nt =n) = P(maxTl; > -).

Fiir (4.2.4) betrachten wir

t t t
E P(Nt:n,Qn>c) = E P(HogE,.‘.,Hn_QSE,Hn_1>E,Qn>6)
n>1 n>1
t t
< P(HO < —,...,Hn_g < —,Qan_l >t)
& &
n>1

und nehmen fiir den nichttrivialen Fall -, P(N; = n,Q, > ¢) > 0 an. Dann existiert
ein ng € N, so daf

t

I, < —-,.
{O_Cy

t t
.. ;Hno—Q S _7Hn0—1 > _7Qn0 > C}

c c
positive Wahrscheinlichkeit besitzt, und kein n € N mit n > ng erfiillt diese Beziehung,
da sie bereits fiir ng gilt, sowie kein n € {1,...,n9 — 1}, da sie sonst nicht fiir ng gelten
konnte. Wegen

Qnollng—1 < max QIl;_; = max Qpllx_;
k>n0 k>1

und daher
{@ngTlng 1 > 1} C {max Qplly 1 > ¢}
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folgt daraus (4.2.4) mittels

t

Y P(Ny=n,Qn>c) = Py<-,... T, <t ~ M1 > =, Qg > )

n>1

QI@F

< P(Qnonnofl > t)
< P(maX Qka—l > t)

keN
Gilt in (4.2.5) >, P(Ny = n) = 0 oder P(maxyeyIl,—; > &) =0, folgt die Behauptung
direkt, seien daher Zn>1 P(Ny = n) > 0 und P(maxyeyI;—1 > %) > 0. Dann existiert
ein I € Nmit P(Il;_; > £) > 0, und wegen Y, ., P(N;, = n) > 0 existiert ein ng < [, so

dafl ; ; ;
{HO < E;' .- 7Hn0—2 < E?Hno—l > E}

positive Wahrscheinlichkeit besitzt. Unter den gegebenen Voraussetzungen ist dann

t t t t
II, - dng <l: Iy < -, ..., 1I,,,—2 < - 1L, _ -
{I]?eaNX k1>C}C{n0_l O_Ca ) n02_ca n01>c}

und daher
t t
P(rggécnk_pz)gp(nogz,... Hn02< I, 1> ZPNt—n

Die umgekehrte Beziehung erhalten wir durch eine zum Nachweis von (4.2.4) analoge
Rechnung und damit insgesamt (4.2.5). Aufgrund der Unabhéngigkeit von (M, @,) und
(Mg, Qr),1 <k <n-—1, folgt dann

P(R>t) = P(maXQka,1>t)
> ZPNt—nQn>c)

n>1

t t
— ZP(Hog-,...Hn2< My > 2, Qn > ¢)
C

Da P(Q > 0) > 0 ist, geniigt es, fiir ein 6 > 0

2 t > —Kt
(4.2.6) P(l;cré%}ocﬂk>e) > de

fiir t — oo zu zeigen. Wegen e°» = II,, und daher

(A
P(gé%ifnk >e') = P(%é%%sk > t)

folgt dies jedoch analog zum letzten Teil des Beweises von Satz 4.1.1. Mit einer Substitu-
tion von ¢ durch log ¢ in (4.2.6) gilt daher wegen

t"P(R>1t) > dc"P(Q >c) >0, t — 00,

die Behauptung. O

Mit Hilfe von Kapitel 3 erhalten wir die Konvergenzrate der Flanken der Verteilung von
R.
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Satz 4.2.3. Seien R, M,Q Zufallsgrifien auf einem Wahrscheinlichkeitsraum (€, A, P)
mit M > 0 f.s. M erfille (2.1.5), (3.2.1) sowie (3.2.2), R lise (4.2.1), und es gelte
E(QT)"# < oo. Ist ein Wahrscheinlichkeitsmaf$ n auf R definiert durch

n(dz) := ¢ P(log M € dx),
so gelten (3.2.4) und (3.2.6).

Im G/G/1-Bedienungssystem bedeutet dies fiir die stationdre Verteilung der Wartezeit
des Kunden in der Schlange

tPW >1t)=Cp —I(e") + O(e_gt), t — o0,

I(t) = %Re (/C t‘”%d&) , t € R,

aus (3.2.4). Wir verfeinern somit die in [Bor], Abschnitt 22.3, fiir ein nicht ndher bestimm-
tes 7 € R bereits bekannte Asymptotik
P(W >t)=C, +0(e™), t — o0,

der Flanken der Verteilung von W.

Beweis von Satz 4.2.3. Analog zum Beweis von Satz 4.2.2 ist (3.2.7) wegen
E|((QV MR)* )™ — (MR)*")™"] < F1{q>0) Q"""

erfiilllt. (3.2.8) erhalten wir mit (—R, M, —@Q) anstelle von (R, M,Q) und (3.2.7). Mit
Satz 3.2.1 (c) folgt dann die Behauptung. O

Wir schliefen diesen Abschnitt mit der Bemerkung, dafl wir unser zugrundeliegendes
Modell erweitern kénnen, indem wir uns nicht allein fiir die Verteilung des Maximums
von (Q und M R interessieren, sondern beziiglich des betraglichen Maximums von ) und
M R unterscheiden. Definieren wir fiir a,b € R

{ a, falls |a| > |b]
aYb:=
b, sonst

Y

so lautet unsere Gleichung nun

(4.2.1) RLQY MR, R unabhéngig von (M, Q).

Proposition 4.2.4. Seien M, Q) Zufallsgrifien auf einem Wahrscheinlichkeitsraum

(Q, A, P). Geniigt M den Bedingungen von Lemma 2.1.2, ist PlelMIMAED pichtarithmetisch
und E|Q|" < oo, so existiert eine eindeutige Lisung R von (4.2.1'), deren Verteilung
sowohl (2.2.3) als auch (2.2.4) erfillt. Ist M >0 f.s., gilt

O\ = —B((Q ¥ MR)")" ~ (MR)")"),
O = B((Q ¥ MR) )" ~ (MR) )",
und im Fall P(M <0) >0
Cy = C = T BI(IQI ~ [MRI)).

Weiter gilt
Cy+C_>0 < PQ#0)>0.
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Beweis. Seien (M, Q),) fir alle n € N unabhéngige Kopien von (M, Q),
U, (t) := Q, Y Myt und Z,, geméaf (2.1.2). Aufgrund der Voraussetzungen ist
Elog|M| € [~o0,0) und Elog|Q| < oo. Indem wir daher den Beweis von Propositi-
on 4.2.1 mit |M|, |II,,| und |@Q] anstelle von M, II,, und @) wiederholen, erhalten wir

Ykzl Qrlli—1 < 00

sowie
lim Z,(t) = lim (11, ¥ Vick<n Qellp_1) = Vis1 Qrlli_y

n—o0o n—oo

in Verbindung mit

0 < lim [II,| < lim e™“"* = 0.
Yi>1 Qrlly_q ist folglich die eindeutige Losung von (4.2.1"). Wir zeigen nun (2.2.9) und (2.2.10)
mit U(R) = Q Y MR. Im Fall Q@ > |[MR]| ist (Q Y MR)" = @, und fir Q < —|MR)|
erhalten wir (Q Y MR)T = Q" = 0 sowie (MR)" < (—Q)". Es folgt

El(QY MR)")" = (MR)")"| = Eligsmry(Q" — (MR)")") + Elgg<—mry((MR)")"
< B(QN)"+ Elg g0 (—Q)"
= EQ|".

Ebenfalls gilt

E[((QY MR)™)" = (MR)™)"|

EYiquimrpy(MR)™)" + Elige— )y ((@7)" = (MER)7)")
E]-{Q>0}QH + El{_Q>O} (Qi)ﬂ

= ElQ["
wegen (Q Y MR)” =Q~ =0 fir @ > |[MR|und (Q Y MR)™ = Q" fir Q < —|MR)|
(beachte E|((Q Y MR)")" — (MR)*)*| = E|((Q Y MR)™)" — (MR)™)"| = 0 fiir
|Q| < |MR)|). Korollar 2.2.2 liefert die Formeln fiir C; und C_, wobei wir im Fall
P(M <0)>0

IA

c,=0C_ = LE(|QYMR\"‘—|]\/[R\"‘)
2km
1
= —F ® _ IMR|®)T
—B((QI" ~ [MR[")")

erhalten. Nehmen wir fiir den Nachweis der Aquivalenz zunichst C', +C_ > 0 an, so folgt
aus P(Q # 0) = 0 mittels

km(Cs +CL) = E((QI" — |MRI")*) = 0

ein Widerspruch zur Voraussetzung. Fiir die umgekehrte Richtung wéhlen wie ein ¢ > 0
so, daB P(|Q| > ¢) > 0 ist, und erhalten analog zum Ende des Beweises von Satz 4.1.1
fiir ein hier nicht nidher bestimmtes § > 0

P(|R| >t> = P(E”{?GN |Qka_1| >t)
> POl > Pk €N: || > f‘)
~ P(|Q| > c)dt™"

fiir ¢ — oo und somit insgesamt die Behauptung. a
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Proposition 4.2.5. Seien R, M,Q Zufallsgrofien auf einem Wahrscheinlichkeitsraum
(Q, A, P). M erfille (2.1.5) fir ein k > 0, (3.2.1) fiir ein > 0 sowie (3.2.2), fir Q gelte
E|Q|"*? < oo, und R lose (4.2.1). Ist M > 0 f.s., sei ein Wahrscheinlichkeitsmafl n auf
R definiert durch

n(dz) = e**P(log M € dx).

Dann folgen sowohl (3.2.4) als auch (3.2.6). Fir P(M < 0) > 0 sei n durch (3.3.1)
definiert und erfille auflerdem (3.53.2). In diesem Fall gilt (3.3.3), und t"P(R < —t)
erfillt dieselbe Formel.

Der Beweis verlduft analog zu den Beweisen von Satz 4.1.12 und Satz 4.2.3 und wird
daher von uns hier nicht gefiihrt.

43 RLQ+ M max(L, R)

Im Gegensatz zu den ersten beiden Gleichungen, die jeweils nur von zwei Zufallsgrofien
abhéngen, beschéftigen wir uns in diesem Abschnitt mit

(4.3.1) R Q + M max(L, R), R unabhéngig von (M,Q, L),

wobei M > 0 f.s. gelte. Diese stochastische Fixpunktgleichung finden wir bereits im Modell
E von [Let], allerdings ohne die Einschrinkung auf eine fast sicher positive Zufallsgrofie
M. Wir benotigen diese Einschrankung jedoch, damit (4.3.4) giiltig bleibt.

Bevor wir klidren, unter welchen Voraussetzungen eine eindeutige Verteilung als Losung
von (4.3.1) existiert, um dann in diesem Fall das asymptotische Verhalten sowie die Kon-
vergenzrate ihrer Flanken anzugeben, mochten wir auf zwei Spezialfille aufmerksam ma-
chen. Ist in (4.3.1) @Q = 0 f.s., erhalten wir eine Verbindung zur Gleichung (4.2.1) aus dem
letzten Abschnitt, denn wéhlen wir dort () = M L, folgt

R < max(ML, MR) = Mmax(L, R).

Gilt auflerdem L > 0 f.s. und setzen wir im Fall R > 0 fs. S = log R, B = log M und
A =log L, gelangen wir durch Logarithmieren von (4.3.1) zur Gleichung

(4.3.2) S < B+ max(A,S).

Sind A,,, By, S, (So gegeben und unabhéngig von (S,,),>1) fiir alle n € N unabhéngige
Kopien von A, B, S und setzen wir

U, (t) := B,, + max(A,, 1), teR, neN,
so gilt mit Z,, geméf (2.1.2) wegen

Zn(t) = Z,_10V,(t)
= max 1<r]r€1<a;z<IZB —|—Ak,ZB + W, (

n—1

= max( max ZB —i—Ak,ZB + B, + max(A,,t))

1<k<n-—1
=1

= max( max ZB +Ak,ZB + 1)

1<k<n
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und P(B = —o0) >0

k k
lim Z,(t) = lim max (Z B+ Ay) = Sup(z B; + Ay).
=1 1

n—00 n—oo 1<k<n 4 keN <
1=

Die Zufallsgrofie S besitzt demnach die Verteilung von sup,cy(S>5, Bi + Ay).
Helland und Nilsen (vgl. [HeN]) haben eine zu (4.3.2) dquivalente Gleichung untersucht,
die bereits von Helland (vgl. [Hel]) und Gade (vgl. [Gad]) dazu verwendet wurde, um den
Wasseraustausch zwischen Kiiste und Fjorden zu beschreiben. Ihre Gleichung

S, = max(S,_1 — Dy, U,), n €N,

mit unabhéngigen Folgen (U, ).en, (D) )nen unabhingig identisch verteilter Zufallsgrofen
erhalten wir aus unserem Modell wegen

max(S,_1 — Dy, U,) = max(S,_1,U, + D,) — D,

mit A, := U, + D,, und B,, := —D,, fiir alle n € N. In der Gleichung beschreibt U, die
Dichte des Kiistenwassers und S,, die des Fjordwassers im Jahr n. Das frische Wasser,
das in der Zeitspanne von Jahr n — 1 zu Jahr n aus dem Meer in den Fjord gestromt
ist, verringert die Dichte des ruhenden Wassers um die Grole D,,. Ist das Fjordwasser
immer noch schwerer als das Kiistenwasser, geschieht nichts, andernfalls wird das gesamte
ruhende Wasser durch Wasser mit der Dichte U,, ausgetauscht.

Die Autoren sind sich dessen bewuft, daf§ ihr Modell einen idealisierten Vorgang in der
Natur beschreibt, da sich beispielsweise der Wasseraustausch innerhalb von unterschied-
lich langen Zeitraumen - manchmal in nur wenigen Wochen - und dann auch nicht immer
nahezu vollstdndig vollziehen kann. Gade und Helland betrachten aulerdem nur den Fall,
daB D; f.s. konstant ist. Dennoch ist ihr allgemeines Modell immer dann von Interes-
se, wenn ehemals maximale Werte mit neuen Werten verglichen werden miissen. Ein
Standardbeispiel hierfiir ist der Nutzen industrieller Produkte, die sich gerade auf dem
Markt befinden, gemessen an ihrem Preis und ihrer Haltbarkeit. Bezeichnet S,,_; den
Nutzen eines Produktes zum Zeitpunkt n — 1 und U,, den eines neuen Produktes, das den
Markt zum Zeitpunkt n betritt, so findet immer dann ein Produktaustausch statt, wenn
U, > S,_1— D, ist, wobei D,, die Abnutzung von S, _; im Zeitintervall von n — 1 bis n
beschreibt.

Bereits an diesen Beispielen wird deutlich, wie eng unsere Ausgangsgleichung (4.3.1) mit
vielen bereits eingehender untersuchten Modellen verbunden ist. Die dem Nachweis der
Existenz und Eindeutigkeit einer Losung von (4.3.1) folgenden Ergebnisse iiber die Flan-
ken der Verteilung von R kénnen wir daher durch Umformen von (4.3.1) auf alle passenden
Gleichungen iibertragen und innerhalb dieser Modelle verwenden.

Proposition 4.3.1. Seien M, Q), L Zufallsgrofien auf einem Wahrscheinlichkeitsraum
(Q,A,P). Ist M >0 f.s. und

ElogM € [-00,0), Flog(lvQ)<oo, FElog(lVL)< oo,

so 1ist

sup(D_ QuIli—1,sup (Y Qullioy + Lipll,)) < 00 fis.
k=1

k>1 meN

und die eindeutige Losung von (4.3.1).
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Beweis. Wir setzen
(4.3.3) U(t) .= Q+ M max(L,t), teR,

und VU, (t) == Q, + M, max(L,,t) fir alle t € R und n € N, wobei (M,Q,L) und
(M, Qn, L) fiir alle n € N unabhéngig identisch verteilt seien. Mit Hilfe einer Induktion
nach n € N erhalten wir mit Z,, gema8 (2.1.2)

(4.3.4) Zy(t) = max(D  Qpllj_y + HI,, max. > Qi + LyILy),
T k=1

denn fiir n = 1 gilt wegen Iy = 1
max(Qq + tIy, Q1 + L111;) = Q1 + My max(Ly,t) = Uy(t)
und daher fiir ein beliebiges n > 2
Zn(t) = Z,_10V,(t)

n—1
= max()_ Qullsoy + Wa ()L, _max. 1Z@knk L+ LiILy)
k=1

= maxZQka 1 + max(L,IL,, t1,), max ZQka 1+ Ly

lmnl
k=1

= max ZQka 1+tHn, max ZQka 1+ LnILy,).

k=1

Wir wéhlen ein ¢ > 0 so, daf§ E'log M < —c gilt, und erhalten mit derselben Rechnung
wie in Proposition 4.2.1

M, <e™ ™ fs., @Q,< /2 fs., L, < 2 fs.

fiir geniigend grofle n € N. Sei € > 0 beliebig und seien Ny, N1, No, N3 € N so gewahlt,
dal e72" < ¢ fiir n > Ny und

Qn S eCTL/Q’ n 2 Nl; Ln S eCTL/Q’ n 2 N27 Hn S e*CTL’ n Z N37

mit Wahrscheinlichkeit 1 gilt. Setzen wir N := max(Ny, N1, Ny, N3) und
€' = e“SUP,s N1 Dopensr (€772)F + £, so folgt

ZQkafl ZQka 1+ Z Qrll—y

k>1 k>N+1

< ZQka—1+ec Z (e72)"

k>N+1

C

< ZQka 1+ — Ep— fs.

1
und
su 1 + Ly,IT = sup( max Iy + L,,I1,,, su Mgy + LyIL,
me% ;Qk k—1 m) p( 1o NZQk k—1 m>Np+1(;Qk k—1 )

< sup( | nax ZQka 1+ Ly, Hm7ZQka 1+¢&) s
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In Verbindung mit P(lim, . I, = 0) = 1 erhalten wir

lim Z,(t) = lim sup(d  Qllx_y + tII,, max O QT + LinILy))
T k=1

n—00 n—00
k=1

= sup(z Qilly_q, Sup(z Qrlly_1 + Ly11,)) < oo fs.
k=1

E>1 meN

und daher die Behauptung. a

Satz 4.3.2. Seien M, Q, L Zufallsgrofien auf einem Wahrscheinlichkeitsraum (€2, A, P)
mit M > 0 f.s. M geniige den Bedingungen von Lemma 2.1.2, und P¢MIM#0 sei nicht-
arithmetisch. Sind

(4.3.5) E(LT)" < oo, E|Q|" < o, E(ML")" < oo,
so besitzt (4.3.1) eine eindeutige Losung R, und es gilt
P(R>1)~Cit™  t— o0,

mat
Oy = —B((Q + Mmax(L, R))*)* ~ (MB)")").

FEuxistiert auflerdem eine Konstante ¢ € R mit
PQ—-c¢(l1-M)>0)=1

und

P(Q—c(1-M)>0)+PM(L—-c)>0)>0,

so ist C'y > 0.

Beweis. Existenz und Eindeutigkeit der Losung von (4.3.1) folgen mit Propositi-
on 4.3.1. (2.2.3) und die Formel fiir C; erhalten wir mit Korollar 2.2.2, indem wir mit
derselben Methode wie im Beweis von Satz 4.1.1

E|((Q + Mmax(L, R))")" = (MR)")"| < o0

zeigen. Wir betrachten dazu zunichst E(R1)P fiir ein beliebiges p € (0, ). Aufgrund der
Subadditivitét des *T-Operators folgt mit Hilfe der || - ||,-Norm gemé&$ (4.1.13)

IRT|, = I(Q+ Mmax(L,R))",
< QT + IMLF |, + |M][,||[RTl,
+ p ML+ P
= HRJFHp < e y—wwup Il '

Nach Voraussetzung und Wahl von p ist dieser letzte Ausdruck endlich, und wir erhalten
firalle 0 <p <k

(4.3.6) E(RY) < o.
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Um den Betrag der linken Seite von (2.2.9) mit ¥(R) = @ + M max(L, R) aufzulosen,
fithren wir wieder eine Fallunterscheidung nach @ und M (R V L) durch.

Fir —-Q < M(RVL)<O0gilt (Q+M(RVL)"=Q+ M(RVL)und (MR)" =0, fur
0 < M(RV L) < —Q erhalten wir (Q + M(RV L))" =0 und (MR)"™ = (MR)*. Aus
Q >0und M(RV L) >0 folgt (Q+ M(RV L)t =0Q+ M(RV L) sowie

(MR)" = (MR)* <@+ M(RV L), wihrend im Fall @ < 0und M(RV L) <0

(Q@+ M(RV L))" = (MR)* =0 gilt. Fiir 0 < —Q < M(RV L) erhalten wir sowohl
(MR)" = (MR)* als auch (Q+ M(RVL)*=Q+M(RV L), fir M(RVL)<-Q <0
dagegen (Q + M(RV L))t = (MR)* = 0 und damit insgesamt

E|((Q + Mmax(L, R) )" = (MR)")*| = s ) _ I,

i=1
wobel wir

I = %El{_Q<M(RVL)§0}<Q +M(RV L))",
Iy = %E1{0<M(RVL)§—Q}((MR)+)K’
Iy == Eligeom(rvry=03((Q + M(RV L))" — ((MR)*)"),

Iy = 2 Eloc—gemrvin|(Q + M(RV L))" — (MR)")"|

setzen. I1 und I sind beide nach Voraussetzung an () endlich, denn wir erhalten
L <iE@QY) fir 0<Q+ M(RV L) <QF, und wegen (MR)" < M(RV L) < —Q gilt
I, < tE1{<_g3(—Q)" = £ E(Q)". Um die Endlichkeit von I3 und I; nachzuweisen, sind

Tk

weitere Fallunterscheidungen nach RV L und x notwendig. Fiir R > L und R > 0 gilt
(MR)* =MR<Q+MR=Q+ M(RV L),
fir L>Rund L >0
(MR)"<Q+ML=Q+ M(RVL),

und wir schreiben /3 als Summe von

1
I3, = EEl{Q>O,R>O,R>L}((Q + MR)" — (MR)")

und
1
I35 := EE]-{Q>O,L>O,R§L}((Q + ML)" — ((MR)")").

I3; behandeln wir analog zu I3 im Beweis von Satz 4.1.1. Fiir 0 < x < 1 folgt mit (4.1.11)

1 1
I3 < EEl{Q>O,R>O,R>L}QH < EE(QJF)K < 00,

und fiir £ > 1 erhalten wir mit (4.1.10), (4.1.11), (4.3.6) und der Holder-Ungleichung

I3 E1(0>0,r>0,r>1}Q(Q + MR)"!
co-1E1050,r50r>01Q(Q" 4+ (MR)*)
i1 E(QT)" + o E(QT M Y E(RT) !

Q.

AN VAN VAN VAN
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Wegen 0 < (MR)" < @+ ML gilt aulerdem in Verbindung mit (4.1.10)

1 1
I55 < EEl{Q>0,L>0}(Q +ML)" < ECN(E(Q+)K + E(ML")") < o0

und damit I3 < oo. Etwas aufwendiger ist die Abschéitzung von I4. Ist 0 < —Q < MR
und R > L, gilt
Q+MRVL)=Q+MR<MR=(MR)".

Fir 0 < —Q < ML und R < 0 folgt
0=(MR)"<Q+ML=Q+ M(RV L),

fir0< —Q < ML,0<R< Lund MR < @Q + ML dagegen
(MR)"=MR<Q+ML=Q+M(RVL)

und schlieflich fir 0 < —Q < ML,0 < R< Lund MR>Q+ ML
Q+MRVL)=Q+ML<MR=(MR)".

Setzen wir

Iy = LBl _qgemr o1y (MR)" — (Q + MR)"),
Iy == LElqoc_gemrr<o}(Q + ML)",
Iy == LBl _gemrocr<rmr<gimry((Q + ML) — (MR)"),

Iy = LBl _gemro<r<rmrsqimry((MR)" — (Q + ML)"),

gilt somit I, = Zle I,;. Wir erhalten mit derselben Methode, mit der wir in Satz 4.1.1
I, < oo gezeigt haben, die Endlichkeit von 1,1, denn fiir 0 < x < 1 folgt mit (4.1.11)

Iy1 < Elqoc_gemrr>ny| — Q" < E|Q|",
fir £ > 1 mit (4.1.11) und (4.3.6)
In < Elgc_gempreny(—Q)(MR)" ' < E(Q"M* " )E(R")" ..

Wegen Q + ML < ML gilt
1 | s
Iz < —Blizo0)(ML)" = —E(ML)
und somit ebenfalls
1 1
143 S —Z?(A]\Il;—i_>N sowie I44 S —E’(A]\4L+)"i
K K

wegen 0 < MR< Q@+ ML < ML und 0 <@+ ML < MR < ML. Nach Voraussetzung
folgt daraus I, < oo, und wir erhalten insgesamt (2.2.9). Korollar 2.2.2 liefert (2.2.3)
sowie die Formel fiir C';. Wir nehmen weiter an, dafl eine Konstante ¢ € R existiert, die
die geforderten Bedingungen erfiillt, und setzen Q(c) := @ — ¢(1 — M). Wegen

Q(c) + Mmax(R—c¢,L—c¢)=Q + Mmax(R,L) — ¢
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folgt
R—cZQ(c)+ Mmax(R—c, L —c)

und daraus mit Proposition 4.3.1

R —c~sup (R*(c), sup(z Qr(c) g1 + (L, — C)Hm)> ,

meN 1

wobei wir R*(c) 1= >, o, Qk(c)ll}—y setzen. Ist P(Q(c) > 0) > 0, so gilt wegen II;,_; >0
f.s. fir alle k € N auch P(R*(c) > 0) > 0 (beachte I, = 1). Mit Hilfe von Satz 4.1.1
erhalten wir

R*(c) < Q(c) + MR*(e), R*(c¢) unabhingig von (M, Q(c)),

und

P(R*(¢) > t) ~ Cy ()t

fiir t — oo mit

1
Cile) = — B((Qc) + MR (c))" — (MR(c))") > 0
Wegen
R*(C> +c = ZQk(C>Hk—1 +c
E>1
= ) (Qx— (1 = M) Ty +c
k>1
= ZQka—l — CZHk—l +CZHk +c
k>1 k>1 k>1
= ZQkafl
k>1
und

R~ sup(Y - Qulli-r, sup(Y Qullion + LinTl))

k>1 meN 15

folgt {R*(¢) >t — ¢} C {R >t} und damit C; > 0 wegen

P(R>t) > P(R*(c)>t—c)
~ Cild)(t—o)"
> Cy(e)(1+o(1))t7", t — oo.

Ist Q(c) =0 f.s., so ist P(M(L —¢) > 0) > 0 sowie R*(c) = 0 f.s. und daher

R—c~ Sup(Lm - C)Hm = SUP((Lm - C)Mm)Hm—l-

meN meN

Mit @ = M (L — ¢) sind wir somit in der Situation des letzten Abschnittes und erhalten
mit Hilfe von Satz 4.2.2 C, > 0. a
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Satz 4.3.3. Seien M, Q, L Zufallsgrifien auf einem Wahrscheinlichkeitsraum

(Q, A, P), wobei M >0 f.s. gelte und M fir ein k>0 (2.1.5), fir ein 5 € (0,1) (3.2.1)
sowie (3.2.2) geniige und E|Q|"*?, E|ML*|**? endlich seien. Ist R eine von M,Q,L
unabhingige Zufallsgrifie, die (4.3.1) lost, und definiert

n(dz) = e P(log M € dx)

ein Wahrscheinlichkeitsmaf$ auf R, so folgen sowohl (3.2.4) als auch (3.2.6).

Beweis. Aufgrund von (4.3.6) und k+3—1 < k ist E(RT)*¥~! < co. Indem wir den
mittleren Teil des Beweises von Satz 4.3.2 mit x + 3 anstelle von x wiederholen, erhalten
wir (3.2.7) sowie (3.2.8) mit einer analogen Rechnung und (—R, M, —Q) statt (R, M, Q).
Satz 3.2.1 (c) liefert die Behauptung. O

44 RL\/MR*TNR+Q

Unser letztes Beispiel einer stochastischen Fixpunktgleichung, auf die sich unsere Ergeb-
nisse iibertragen lassen, demonstriert die Bandbreite unserer Methode und behandelt die
polynomiale Gleichung

(4.4.1) RL MR+ NR+Q, R unabhingig von (M,N,Q),

mit f.s. nichtnegativen Zufallsgrofien M, N, Q) und R auf einem Wahrscheinlichkeitsraum
(92, A, P). Wir setzen S = R? und betrachten im folgenden

(4.4.1) SZLMS+ NVS+Q, S unabhéngig von (M, N, Q),

als dquivalente Form von (4.4.1) und erhalten die Existenz und Eindeutigkeit einer Losung
von (4.4.1") unter Anwendung des Prinzips von Letac auf

Z(t) ;= Mt+ NVt+Q, t>0,

bzw.

[1]

fiir alle n € N mit Hilfe von

Proposition 4.4.1. Seien M, N,Q,M',N', Q" sowie M,,N,,Q,,n € N, Zufallsgrofien
auf einem Wahrscheinlichkeitsraum (2, A, P), fir die M >0 f.s., N >0 f.s. und Q > 0
f.s. gelte. (M, N,Q),(M', N', Q") und (M, N,,, Qn),n € N, seien unabhdngig und identisch
verteilt. Ist

(4.4.2) Flog™ N < oo, Elog(1V Q) < oo
und

N
(4.4.3) Elog (M + 2—\/@> S [—O0,0),

so existiert Z :=1im,, ., =1 0---0Z,(t) f.5. und ist unabhdngig von t, und die Verteilung
von Z ist die eindeutige Losung von (4.4.1') auf (0, 00).
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Beweis. Aufgrund von (4.4.3) gilt E'log M € [—00,0), und wegen (4.4.2) finden wir
daher ein gentigend grofles ¢ > 0, so dafl F'log <M + %) < 0 ist. Wir definieren

U(t) = Q + (M + %) max(t,c), teR,

und

U, (t) == Qn + <Mn + %) max(t, c), t eR,

fir alle n € N und erhalten somit einen Spezialfall von (4.3.3), der die Bedingungen von
Proposition 4.3.1 erfiillt. Mit Z,, geméB (2.1.2) folgt wegen

[1]

(t) = McéJrN\/E\/éJrQ

(Mc+ Nv/c)max(t,c) + Q
w(t)

IN

und
0< lim Z,(t) < lim V0.0V, (1) < o0 fs.

n—oo

die fast sichere Beschranktheit von Z,(t). Ist ¢ = 0, erhalten wir Z;(0) = Z1(0) = ¢; und
fiir beliebiges n > 2

Zu(0) =100 2, 1(Qn) = Zn1(Qn)
sowie

Zn+1 (O) = anl o En(Qn+1) = anl(MnQnJrl + Nn V Qn+1 + Qn)

Da Z,,_(t) eine Verkniipfung von in ¢ wachsenden Funktionen ist, ist Z,_1(¢) ebenfalls
wachsend in ¢. Es gilt daher Z,(0) < Z,41(0) fiir alle n € N, d.h. (Z,(0))nen ist eine
wachsende Folge. Zusammen mit 0 < lim, .., Z,(0) < oo liefert dies die fast sichere
Konvergenz von Z,(0) gegen eine endliche Zufallsgréfie Z (vgl.[Loy], S. 500, Beweis von
Lemma 1). Wir mochten dasselbe fiir Z,(t) zeigen und setzen fiir alle ¢t € R

Ean(t) =t sowie Emn(t) == E1 00 Z,(8), meN,m<n.
Wegen
2 —Z2(t) = Mt +NVI+Q—Mt—NVi—Q
= M(t' = 1)+ N(VI' = V1)

erhalten wir

= N,
Zn(t') = Zp(t) = (' —t) (Mm + — o >
'rg Emn(t) + \/:mn<t)
mit Hilfe einer Induktion nach n, denn fiir n = 1 ist

Zy(t') — Zy () (1) — Z4(1)

N,

— (- t>£[1 <Mm + ) f ¢Em1<t>> ’
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und fiir beliebiges n > 2 folgt

Zn(t/)_Zn(t) = Zn—l(En(t,))_ n—l(En(t>)

() + VEmn(0) > 2¢/Zpy10---0Z,(0
2/ Zms1(Bmaz © - - 0 En(0))
2v/Em+1(0)

Qum+1

v

und Z,(0) < Z,(t) fir t > 0 ist, gilt wegen

N\ T Nom
Zn(t) = 2n(0) =t (Mn * ﬁ) nHl (Mm T om® + \/Emn(0)>

(4.4.4) 0< Zo(t) — Z,(0) <t (Mn + %) I:[ll (Mm + 2\/%) .

Wir teilen das Produkt in dieser Formel in die Produkte

k1 ko

Ngm N2m—1
H <M2m * 2\/ Q2m+1> wnd H (M2m—1 - 2\/ Q2m>

m=1 m=1
auf. Beide Produkte besitzen voneinander unabhéngigen Faktoren, und es gilt
ki = ko = "—_1 falls n — 1 gerade, und ky = ki + 1 = %, falls n — 1 ungerade ist.
Wegen (4.4.3) ﬁnden wir ein ¢ > 0 so, dafl E'log (M +

wie im Beweis von Proposition 4.2.1

JE— / ]
2\/@> < —c’ < 0 ist, und erhalten

k1
N, ,
0< I Moy + ——2— ) < lim e =0 fs.
_klgnoom:< 2 +2m>_kll—r>nooe
und
ko
0< Ii Mop,—1 + < lim e 2 =0  fs.
e 1( 2m—1 2@) koo S

Desweiteren ist fiir festes ¢ € R und beliebige €, 6 > 0

ZP (M, +— e <Z(5 (M, +N7) _5")<%e_0/2e_5"<oo.

n>1 n>1 n>1
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Mit dem Lemma von Borell-Cantelli folgt

P(timsup((M, + %)e—m <o) =1

und somit lim,,_, <Mn + N—’;) e " = 0 f.s. Insgesamt erhalten wir in (4.4.4) fiir festes

v
teR
lim Z,(t) = lim Z,(0) =2 fs.

n—oo n—oo

und daher mit dem Prinzip von Letac die Behauptung. O

Unter geeigneten Voraussetzungen verhalten sich dann die Flanken der Verteilung von S
wie C1t7" und besitzen auflerdem die uns bereits bekannte Konvergenzrate.

Satz 4.4.2. Seien M, N,Q Zufallsgrifien auf einem Wahrscheinlichkeitsraum

(Q, A, P), wobei M den Bedingungen von Lemma 2.1.2 gendige. Sei P9sIMIMZ0 picht
arithmetisch, EQ" < oo und gelten die Bedingungen von Proposition 4.4.1 mit EN" < oo
anstelle von (4.4.2), so folgt

P(S >t)~Cyt™", t — o0,
mat

(4.4.5) C, = %E((MS 1 NVS + Q) — (MS)F).

Weiter gilt
Ci.>0 & P(Q>0)+P(N>0)>0.

Beweis. Da (MS + Nv/S + Q)" > (MS)" ist, miissen wir fiir (2.2.9) die Endlichkeit
des Erwartungswertes in (4.4.5) und dazu zunéchst ||S||, < oo fiir alle p € (0, ) mit || - ||,
gemif (4.1.13) zeigen. Wegen EM* < oo finden wir ein geniigend groBes ¢ > 0, so dafl

E (M + %) < oo gilt und damit ¢ := ||M + %Hp beliebig nahe bei ||M]|, ist, d.h. es

gilt ¢ < 1. Mit ¥(t) = Q + (M + %) max(t,c) aus dem Beweis von Proposition 4.4.1
folgt

151 = 1=
< [,
< collSVellp + 1@l
< collSlly + collell, + 1Rl
& ISl < (allell, +1Ql)/(1 = co),

und dieser Ausdruck ist fiir alle p € (0,x) endlich. Fiir den Erwartungswert in (4.4.5)
erhalten wir dann fiir 0 < £ < 1 mit Hilfe von (4.1.10) und (4.1.11)

E((MS+NVS+Q)—(MS)) < E(NVS+Q)"
< E(NVS)"+ EQ"
= EN"ES: + EQ"
< 0.
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Fiir k > 1 folgt

E((MS + NVS + Q)" — (MS)") KE(NVS + Q)(MS + NV + Q)"
ke 1 E(NVS + Q)((MS)*™! + (NVS + Q)™
ke 1 E(NVS 4+ Q)(MS)™ + ke 1 E(NVS + Q)"
Kep 1 (ENMFYESED2 L pQMr1ES™ 1)

+ ko1 (c EN"ES®? 4 ¢, EQ")

< oo,

VAN VAN

IN

ebenfalls mit Hilfe der genannten Formeln, der Hélder-Ungleichung und wegen || S|, < oo
fir alle p € (0, k). (2.2.9) ist damit erfiillt und liefert die Asymptotik der Flanken von S
und die Formel fiir C';. Gilt weiter P(Q) > 0)+ P(N > 0) = 0, so ist sowohl P(Q > 0) =0
als auch P(N > 0) = 0 und folglich

C, = #E((MS + NVS +Q)F — (MS)") = 0.

Satz 4.4.3. Seien M, N, Q) Zufallsgrifien auf einem Wahrscheinlichkeitsraum

(Q, A, P), fir die M >0 fs., N >0 fs. und Q > 0 f.s. sowie (4.4.3) gelte. Geniige
M (2.1.5) fir ein k > 0, (3.2.1) fir ein § >0 mit f < min(1, k) sowie (3.2.2) und seien
EN®P yund EQ"8 endlich. Ist durch

n(dzx) := " P(log M € dx)

ein Wahrscheinlichkeitsmaf$ auf R definiert, so folgt (3.2.4) mit S anstelle von R in (2.5.3)
und (3.2.4).

Beweis. Wegen k+3—1 < x und (k+3)/2 < x sind ES*8~1 und ES*"+A/2 endlich.
Wie im Beweis von Satz 4.4.2 folgt dann fiir k + 5 < 1

E|(MS + NVS + Q)" — (MS)"*?| < EIN|** B|S|®"+D/2 4 B|Q|*+7,
fire+p3>1

E|(MS + NVS + Q)"0 — (MS)"+7|
< (H‘|‘ﬁ)C,{+g_1(E|N||M|H+5—1E|S|(fi+ﬁ—1)/2_|_ E|Q||M|H+B_1E|S|”+5_1)
+(:‘§J+6)CH+/3_1CH+B(E|N|H+BE|S|(H+ﬁ)/2 + E|Q[9)

und somit die Behauptung mit Hilfe von Satz 3.2.1. O

4.5 Eine Anwendung in der Extremwerttheorie

Seien (X, )neny unabhéngige identisch verteilte ZufallsgroBen auf einem Wahrscheinlich-
keitsraum (€2, .4, P) mit gemeinsamer Verteilungsfunktion F. Die klassische Extremwert-
theorie interessiert sich fiir die Grenzverteilung der Maxima max;<;<, X;, genauer also
fiir

lim P(max X; <z) = lim F"(x), z € R.

n—oo 1<i<n n—oo

Die Grundlage hierfiir bildet das folgende Fisher-Tippett Theorem. Wir bemerken dazu,
dafl zwei Verteilungsfunktionen F' und G vom selben Typ sind, falls ein @ > 0 und ein
b € R existieren, so dafl G(z) = F(az + b) fur alle z € R gilt.
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Satz 4.5.1.(Fisher-Tippett Theorem, vgl. [BGT], Theorem 8.15.1)
Seien (X, )nen unabhingige identisch verteilte Zufallsgrifien auf einem Wahrscheinlich-
keitsraum (2, A, P) mit gemeinsamer Verteilungsfunktion F. Existieren Folgen (ay)nen,

(bn)nen mit a, >0, b, € R fiir alle n € N sowie eine nicht degenerierte Verteilungsfunk-
tion G, so daf

i<n Xz - bn .

(4.5.1) lim P (maXK = < x) = lim F™(a,z + by) = G(z)
n—0o0 an n—oo

fiir alle x € C(G)? gilt, dann ist G vom Typ einer der drei folgenden sogenannten Extrem-

wertvertetlungen:

(a) Fréchet-Verteilung mit der Verteilungsfunktion

D,(z) = € " 1900 (), a >0,
(b) Weibull-Verteilung W («, 8) fir =1 mit der Verteilungsfunktion
Uo(2) = e D1 0)() + Ljp00)(2), a>0,
(c) Gumbel-Verteilung mit der Verteilungsfunktion

T

Az)=e¢", z €R.

Man sagt auch, daf§ F' unter diesen Voraussetzungen im Anziehungsbereich einer Extrem-
wertverteilung liegt. Die Verteilungsfunktionen G, die als Grenzverteilung von maxi<;<,, X;
im Sinn von (4.5.1) in Frage kommen, sind auerdem genau diejenigen, die zur Klasse der
mazimal stabilen Verteilungen gehoren (vgl. [LLR], S.10, Theorem 1.4.1). Dabei heifit ei-
ne nicht degenerierte Verteilungsfunktion G maximal stabil genau dann, wenn eine Folge
(Fy)nen von Verteilungsfunktionen und Konstanten a,, > 0, b, € R, n € N, existieren, so
daB fiir jedes k € N
lim P (@) ™2 + o) = G (z)

fir alle z € C(G) gilt (vgl. [LLR], S.8, Theorem 1.3.1).
Im Fisher-Tippett Theorem wird der Grenzwert von

i nXZ_bn -
P (ma‘X1S < S x) = P (maX Xz S an1$+bn>

an 1<i<n

fiir n — oo und jedes x € R betrachtet. Eine allgemeinere Form erhalten wir, indem
wie anstelle von (a, 'z + by),,cn Folgen (u,)nen verwenden, die nicht mehr notwendig von
x abhingen miissen bzw. von komplexerer als linearer Art sein konnen. Eine niitzliche
Aussage erhalten wir dann mit folgendem Satz, mit dessen Hilfe wir ein Beispiel fiir den
Fall (a) des Fisher-Tippett Theorems angeben.

Satz 4.5.2.(vgl. [LLR], Theorem 1.5.1)

Seien (X, )nen unabhingige identisch verteilte Zufallsgrifien auf einem Wahrscheinlich-
keitsraum (2, A, P) mit gemeinsamer Verteilungsfunktion F. Sei (uy,)nen eine Folge reeller
Zahlen und existiere ein 0 < 7 < 00, so dafs

(4.52) lim n(1— F(u,)) =7

n—oo

gilt. Dann folgt
(4.5.3) lim P(max X; < wu,)=e¢ .

n— 00 1<i<n

Ist umgekehrt (4.5.3) fir ein T € [0, 00] und eine reelle Folge (uy,)nen erfillt, so folgt (4.5.2).
2Menge der Stetigkeitspunkte der Funktion G : R — R
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Beispiel 4.5.3.(vgl. [LLR], Example 1.7.6)
Seien (X, )nen unabhéngige identisch Pareto-verteilte ZufallsgroBen auf einem Wahrschein-
lichkeitsraum (£2, A, P) mit gemeinsamer Verteilungsfunktion

F(r) = (1= ") 1pwe (@),  a>0,1>0.

Setzen wir u, := (22)'/* fiir alle n € N und ein beliebiges, festes 7 € [0, oc], erhalten wir

1 — F(u,) = I und daher mit Satz 4.5.2

T n

lim P(ma<x X; < ((Mn)/T)YV*)y=e.

n—oo 1<i<n
Mit 7 := 2~ fiir ein beliebiges = > 0 folgt daraus

lim P((An) Y% max X; <z) =e™® x>0,

n—00 1<i<n
und damit der Fall (a) des Fisher-Tippett Theorems mit a, = (An)~*/* und b, = 0 fiir
alle n € N.

Eine Reihe weiterer Beispiele fiir die drei Extremwertverteilungen als Grenzverteilungen
im Fisher-Tippett Theorem findet sich bei Leadbetter, Lindgren und Rootzén, S.19-24.
Die Autoren zeigen auflerdem, daf} fiir Poisson- sowie geometrisch verteilte Zufallsgrofien
(Xn)nen keine nicht degenerierte Verteilungsfunktion G im Sinn von (4.5.1) existiert,
da unter diesen Verteilungsannahmen insbesondere (4.5.2) verletzt ist (vgl. [LLR], S.26f,
Example 1.7.14 und 1.7.15).

Die Verbindung zu unseren Ergebnissen schaffen nun Bingham, Goldie und Teugels sowie
Leadbetter, Lindgren und Rootzén, indem sie zeigen, dafl das Fisher-Tippett Theorem
u.a. fiir die Verteilung einer ZufallsgroBe gilt, deren rechte Flanke asymptotisch einer
Potenzfunktion mit negativem Exponenten gleicht.

Satz 4.5.4.(vgl. [BGT], Theorem 8.13.2 oder [LLR], Theorem 1.6.2)
Fiir eine Verteilungsfunktion F auf R se:

zp:=sup{z € R: F(z) < 1}.

Unter den Voraussetzungen des Fisher-Tippett Theorems liegt die Verteilungsfunktion F'
von maxi<i<n, X; genau dann im Anziehungsbereich einer Fréchetverteilung, wenn xp = 0o
st und ein o > 0 existiert, so daf

1 — F(tx)

lim =)
e 1R

—

fiir alle x > 0 gilt. In diesem Fall sind a,, = inf{zx € R:1— F(z) < 1} und b, = 0 fiir
alle n € N wdhlbar.

Ahnliche Aussagen fiir die anderen beiden Extremwertverteilungen finden sich bei [BGT],
Theoreme 8.13.3 und 8.13.4 bzw. [LLR], Theorem 1.6.2.
Da aufgrund des Impliziten Erneuerungstheorems

P(R>tx) Cy(tx)™
P(R >t) Cyt—r

—K

fiir t — oo und alle x > 0 gilt, trifft die Aussage dieses Satzes gerade fiir die Verteilung
unserer Zufallsgrole R als Losung einer stochastischen Fixpunktgleichung R < U(R)
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geméB (2.1.1) zu. Die Verteilung von R ist nach dem Prinzip von Letac die Grenzvertei-
lung fiir die Verteilung der Folge (W,,())nen = (¥, 0 ... 0 Uy(t))nen (vgl. (2.1.3)). Wir
konnen daher weiterhin schlieflen, da§ (W,,(%))nen (geeignet normiert) ebenfalls in Vertei-
lung gegen eine maximal stabile Fisher-Tippett Grenzverteilung konvergiert. Ein Beispiel
hierfiir bildet unsere stochastische Fixpunktgleichung

(4.1.1) RL Q+ MR, R unabhéngig von (M, Q),
aus Abschnitt 4.1. Anstelle von W, (¢) schreiben wir
(4.5.4) R,=Q,+M,R, 1, neN,

wobei Ry eine beliebige Verteilung unabhéngig von der des Paares (M, @, )nen besitze
und (M, Q,,)nen unabhingig identisch verteilt seien. Fiir nichtnegative Zufallsgrofien M,
und @), zeigen de Haan, Resnick, Rootzén und de Vries (vgl. [HRV], S.216, Theorem 2.1),
daf} dann unter den Bedingungen von Satz 4.1.1

lim P(n "% max R; < x) = e +%"
n— o0 1<i<n

fiir alle z > 0 mit

92:/ P(sup [[ Mi <y~ ")ry ™" 'dy
1

nzl iy

gilt. Unsere Korollare 4.1.7, 4.1.8 und 4.1.9 liefern hier Schranken bzw. fiir k € N spezielle
Werte fiir C,. Die zuletzt genannten Autoren wenden ihre Ergebnisse auf die ARCH3-
Folge von Engle (vgl. [Eng]) an, die durch die Gleichung

En = ZnrJa+ N, n €N,

erzeugt wird, wobei Z, fiir alle n € N unabhéngige standardnormalverteilte Zufallsgrofien
bilden, & > 0 ist und a > 0, € (0, 1) Konstanten sind.
Setzen wir (M, Q,) := (AZ2,aZ?) fiir alle n € N, so geniigt £2 wegen

G =0Zy+ A28, neEN,
(4.5.4). Es folgt
lim P(n—l/(2n) llgaéx fz < I) — e—CJreZL'_QN, > 07

wobei € durch -=FE((Q + MR)" — (MR)~) gegeben ist und R die stochastische Fix-

punktgleichung R < @ + MR mit (M,Q) :== (\Z% aZ?) und Z ~ N(0,1) erfiillt. Wir
kénnen x und m hierbei noch genauer angeben. Geméafl Lemma 2.1.2 ist s die eindeutige
Losung von EM* = 1 in (0,00). Da nach Voraussetzung Z ~ N(0,1) gilt, ist Z% ~ x3
und besitzt daher die A—Dichte

3 ARCH=autoregressive conditional heteroscedastic
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Mit Hilfe der Substitution von y durch § erhalten wir daher wegen

o 1 R [
r 2y o= "~2e7Yd
NG (k+3) ﬁ/o Y re Vdy
9n [ /1N®TE L,
= — " 2e 2dx
=1 G)
= E(Z?)"
2N)" 1
EM" = \N°E(Z?)" = (23) [(k+ ).

NZS 2
Fiir jedes feste A € (0,1) ist EM = X sowie auBerdem lim,_,., EM" = oco. Es existiert

daher ein k € (1,00), so daB EM* = 1 gilt, und das von uns gesuchte x ist damit die
eindeutige Losung der Gleichung

(4.5.5) I'(k + %) = (2\@&, k> 1.

Fiir m erhalten wir
m = E ((AZ%)"log(A\Z?)) =log A + X"E ((Z%)"log Z?) .

Zur Berechnung von F ((Z?%)*log Z?) benutzen wir fiir n € Ny die allgemeine n—te Ablei-
tung

r™(z) = / " (log z)"e "dz, z € C, Re(z) > 0,
0
der Gamma-Funktion (vgl. [FrB], S.191, Satz 1.1). Mit T := ¥ sowie der Substitution
von x durch 2y erhalten wir
e_g
V2
or+s

= Y™+ log(2y)e ™ dy

\/271’ 0

dx

E((Z*)flogZ2?) = / 2" 2 logx
0

28 1 1
= — (W “)+log2 N(k + =
ﬁ( (/@—|—2)+ og (/1+2)>

2I{

_ ﬁr(n + %) <10g2 +T(k+ %>>

und daher mit Hilfe von (4.5.5)
1
m = log(2)\) + Y (k + 5)
Die Formel fiir C'; lautet schliefSlich

C. = B ((a + AR — (AR)") B(Z2)",

KM

wobei E(Z?%)" = \2/—; (k 4+ %) gilt. Fiir jedes feste A € (0,1) sind alle Werte von &

gemiB (4.5.5) wegen I'(k + 3) > ‘/77? erreichbar. Ist k € N und x > 1, folgt aus der

Funktionalgleichung der Gammafunktion

F(H%):gu-a.au(%_n)
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und daher {

(1-3-5---(26— 1))~

Die ersten Wertepaare fiir (k, A) berechnen sich dann wie folgt:

K 2 3 4 3 6 7 8 9 10
A 0577 0406 0.312 0.254 0.214 0.185 0.163 0.145 0.105

Wir bemerken abschliefend, dafl unser Beispiel allen Bedingungen von Satz 4.1.12 fiir den
Fall M > 0 f.s. geniigt und wir daher das Ergebnis (3.2.4) von der Konvergenzrate der
Flanken auf die der Verteilung von &2 iibertragen kénnen.






5 Anhang

5.1 Beweis von Lemma 3.1.3

Lemma 3.1.3. Seien x und p Wahrscheinlichkeitsmafie auf R, x A-stetig mit einer
zweimal stetig differenzierbaren Dichte q. Sei m = [, xpu(dx) > 0, [, 2*p(de) < oo, und
ezistiere eine A-stetige Komponente von p. Dann ist das Mafl Y~ -, X s =M N\-stetig mit
einer stetigen Dichte p, welche fiir alle x € R die Gleichung -

—0o0

erfillt.

Beweis. Wegen

[1e@in@) < [ [ o =1

ist ®, € Ly, und daher gilt mit der Umkehrformel fiir Fouriertransformierte von P. Lévy
(vgl. [AWT], Satz 41.7) in Verbindung mit y = ¢gA

1 [~ _
q(x) / e 0o (0)do, r € R.

" or

— 00

Die Gleichung fiir p ist demnach dquivalent zu

(5.1.1) |
plo) — aox(=seal —ale) = o= [~ e 00) (g~ ) e 7R

=5 -

Wir betrachten zunéchst das Integral

< 1 1 —1imb
1.2 —iw0 g — R
(5.12) /_ ¢ () (1—7@#(9) 1—r—im9) @, reR

[e.e]

und weisen nach, dafl der Betrag des geklammerten Ausdruckes endlich ist, da dieses
Integral dann fiir 7 T 1 gegen das Integral in (5.1.1) konvergiert. Wir werden dann die
Behauptung aufgrund der Eindeutigkeit des Limes erhalten, indem wir fiir eine noch
genauer zu bestimmende stetige Funktion p,

R 1 1 —1mb
1. —iri g - =2 R
(5.1.3) /_ooe (@) (1_7@#(9) 1—r—2’m6) df = 27p,.(z), x € R,

und
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(5.1.4) lim i () = p(a) — ~x(~00,4] — g(x)

rTl
fiir alle z € R zeigen.

Fiir reelle Argumente ist ®, die Fouriertransformierte von p und besitzt daher wegen
Jg xp(dz) = mund [, 2*p(dr) < oo die abbrechende Reihenentwicklung

®,(0) =1+ imb — A(9)6°, 0 eR,

wobei limy_ A(f) = 0 und limy_oA(f) = O(1) gilt. Wir wihlen 6, so klein, da8
0Im(A(6))| < im im Streifen —6 < 6 < 6§, ist, und erhalten dort fiir § <r <1

1 1 — im0 B r0% |m? — (1 — im0)A(0)|
1—7r®,0) 1—r—imf|  |L—r—rimb+rA0)62]1 —r —imb)
62 |m? — (1 —im0)A(0)|
|—i(rm@ — r02Im(A(60)))| |mb|
62 |m* — (1 — imb)A(0)]
(rmf] — 1701 [0Tm(A(@))]) [m)
4|m? — (1 —im0)A(0)]

m2

Durch die Vorgaben an 6 ist dieser Ausdruck beschriankt. Fiir |#] > 6, und wie zuvor
% <r<1ist

1 1 —imd ‘ B ' 1 4 r
1—r®,(0) 1—r—imb 1—rd,(0) 1—7r—imb
AR S B
11 —7d,(0)] |1 —r —imb|
! I
1 — supjg>g, |Pu(0)] mby

Dieser Ausdruck ist endlich, da p nach Voraussetzung eine A-stetige Komponente besitzt,
denn dann existiert eine Zerlegung

o= A1+ (1= Apo

mit A € (0, 1), einem A-stetigen Wahrscheinlichkeitsmafl 11; # 0 und einem Wahrschein-
lichkeitsmaf} o, und wegen

[, (0)] < AP, (O)] + (1 = A)[D,(0)]
fiir alle 6 € R erhalten wir

sup [®,(0)] < A sup [®,,(0)] + (1 —A) sup [@,,(0)]
|8]>060 10]>60 |61>060

< A+(1-X)=1

Dabei gilt supgq, [P, (0)] < 1 aufgrund der Eigenschaft von Fouriertransformierten.
SUD|g>g, | Py (0)] < 1 folgt aus der A-Stetigkeit von 4y, denn wegen |®,,(0)| < 1 fiir
alle  # 0 (andernfalls wire p; d-arithmetisch, vgl. [AWT], Satz 41.15 und Korollar
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41.16) und limpg|—oc @4, (0) = 0 (vgl. [AWT], Lemma 41.18) existiert ein ¢; > 6, mit
SUp|g>g, | Py (0)] < 1. Auf [0, 0,] ist @, gleichméfBlig stetig und daher beschréankt; mit
|®,,(0)] <1 fiir alle 6 € [0, 01] folgt supyeig, .1 |Pu (0)] < 1, analog

SUDge|—g,,—0o] | Py (0)] < 1 und damit die Behauptung. Insgesamt erhalten wir daraus mit
dem Satz von der majorisierten Konvergenz fiir » T 1 in Verbindung mit ®, € L, die
Konvergenz von (5.1.2) gegen das Integral in (5.1.1).

Zum Nachweis von (5.1.3) definieren wir ein weiteres Wahrscheinlichkeitsmafl auf R durch

1

Fir 0 < r < 1 sind dann

endliche Mafle auf R, und

pr(x) = q*pe(x) = g% B ()
- /]RQ(x —y) ) "W dy) - Ex(dy), R,

ist aufgrund der Stetigkeit von ¢ ebenfalls stetig sowie eine A-Dichte. Wegen |r®,,(0)| < 1
und |[r®g, (#)] < 1 fir 0 < r < 1 und alle # € R erhalten wir mit Hilfe des Satzes von
Fubini und der Translationsinvarianz des A-Mafes

/Rewxq*ur(x))\(dw) - /Rewy/Reio(a:y)q(x—y))\(d:c),ur(dy)
D, (0)®y, (9)
= CIDX(Q) Z T"‘I’Z(Q)

5,(0)
1—rd,(0)

und analog

i0x Emr — = o (0 -
/Re 0% En () 1—rdg, (0) ol )1—r—i9m

in Verbindung mit

D () = WY g (d _ (0—=5)Y Jqy = r
R R R R
Es folgt

. 1 1— 1m0
5.1.5 0y (2)N(dz) = D, (0 —
515 [ n@a) =00 (g - o)

fir alle # € R und daraus (5.1.3) in Verbindung mit der Umkehrformel fiir Fouriertrans-

formierte von P. Lévy, denn mit v, := p,A und wegen ®,(6) (177“;)#(0) — 1:@&) e Ly
gilt
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. 1 1 — 1m0 .
0% (0 - dh = / ~20% (9)dl = 27p,
,/we X()(y—m%w) 1—r—mw> ey, (6) mpr(2)

—00

fur alle z € R. Wegen p,., Ep,» € M(R) gilt weiter
hmq*,ur—hmz q*ﬂ*(n)>:ZQ*M*(n):P
n>0 n>0

und
limqg* By, = Zq*Ejn(”)

rTl
T n>0

Mit Hilfe der Faltungsformel fiir Dichten erhalten wir

EX™(dy) = 100
' (dy) = 1, )(y)m

und somit

3" ) = Loy ) 3018 A (dy) = Ly ()~

n>1 n>1

Fiir den Grenzwert von ¢ x E,, , folgt daraus

n>0 n>1

= q(r)+ % /OOO q(z — y)A(dy)

= a0+ (- [ aeaa)

= o)+ x(—00,1],

und wir erhalten (5.1.4) und damit insgesamt (5.1.1).

5.2 Beweis von Lemma 4.1.6

Lemma 4.1.6. Seien z, y € R, r > 0 sowie ¢, = 2"~ V 1, dann gelten

(4.1.10) |z +y|" < eollz]” + [y]"),

, . |z —yl|", 0<r<1
(4.1.11) |z[" = lyl'| < -1 :
rle —yl(lzl VIyl)" ™, 1<r<oo

Beweis. Wir beginnen mit der ersten Behauptung und zeigen wegen

1, O<r<l1
Cr =
-1 1<r<oo

Z/ YV EXM (dy) = / q(x — y)do(dy) +Z/ z —y)EX™ (dy)
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. lz|" + |y|", 0<r<l
[yl <9 o :
27 (| + Jyl), 1<r <o
Da fiir z = 0 die Behauptung klar ist, setzen wir 2 # 0 voraus, und wegen |y| > 0 existiert
ein a > 0 mit |y| = a|z|. Fir r € (0,1) gilt |2+ y|" < (|z| + |y|)" und damit

r r 1 r
|x|+|y]r: —i—ar21 & 1+d >(1+a).
(e[ +1y)" (1 +a)

Zum Nachweis der dquivalenten Ungleichung setzen wir f,(a) :==1+a" — (1 +a)" fiir alle
a > 0 und erhalten £,(0) = 0 und f/(a) = r7(a" ' — (1+a) ") > 0,dar —1 € (-1,0)
und a < a+ 1 ist. f,. ist daher fiir alle a > 0 streng monoton wachsend, und (4.1.10) folgt
fir alle r € (0,1). Fir r > 1 gilt

(2a])” + (2y])" _ 2(1+a7) e .
W)~ tao 22 © FO+xa)z2l+a),

und wir definieren in diesem Fall f,.(a) := 2"(14a")—2(1 + a)" fiir allea > 0. Da f,.(1) =0
ist und f, wegen f/(a) = 2r((2a)""" — (14+a)"") und r — 1 > 0 ein globales Minimum
in (1,0) besitzt, erhalten wir obige dquivalente Ungleichung fiir alle » > 1 und somit
insgesamt (4.1.10).

Zum Nachweis von (4.1.11) setzen wir ebenfalls x # 0 voraus, und es existiert ein a > 0
mit |y| = alz|. Es gilt somit y = ax oder y = —ax fiir z > 0, y > 0 oder z,y < 0. Fiir
r € (0,1] und y = ax zeigen wir

(5.2.1) 1—ad"| <|1—dl, a>0,0<r<1,

mit Hilfe einer Fallunterscheidung nach a. Ist a € [0, 1], gilt dasselbe auch fiir a”, und wir
betrachten f,(a) := (1 —a)"+a"—1 fiir alle a € [0,1]. Es gilt f,(0) = f,.(1) = 0, und f, hat
wegen fi(a) = r(a" ' = (1 —a)" ") und r—1 € (—1,0] ein globales Maximum in 2 —1 > 0,
d.h. (5.2.1) folgt fiir alle a € [0,1]. Fiir a > 1 setzen wir f,(a) := (a —1)" —a” + 1. Wegen
r—1e(=1,00unda—1<aist fi(a) =r((a—1)"""—a") > 0 fiir alle a > 1 und f,
daher streng monoton wachsend. In Verbindung mit lim,_,; f,(a) = 0 folgt somit (5.2.1)
fir alle ¢ > 0.

Ist y = —ax, zeigen wir

(5.2.2) 1-a|<(1+a), a>0,0<r<1,

mit derselben Fallunterscheidung nach a. Fiir beliebiges a € [0, 1] folgt die Ungleichung
sofort aus (5.2.1); fiir beliebiges a > 1 setzen wir f,(a) := (1+a)" —a” 4+ 1 und

gr(a) := fr(a) — 1. Wegen r € (0,1] ist g, > 0, und es folgt (5.2.2) fur alle a > 0 und
damit (4.1.11) fiir alle » € (0, 1].

Sei nun r > 1 und a € [0, 1] beliebig, d.h. es gilt |z| V |y| = |x|. Wir betrachten zuerst den
Fall y = ax und zeigen

(5.2.3) l—ad" <r(l1-a) 0<a<l,r>1.

Ist f.(a) := r(1l —a)+a" — 1 fiir alle a € [0,1], so gilt f,(0) =r—1 >0, f.(1) =0
und f/(a) = r(a"' — 1) < 0 fiir alle @ € [0,1). f, ist demnach streng monoton fallend auf
[0,1), und es folgt (5.2.3). Fiir y = —ax ist (4.1.11) dquivalent zu

1—a" <r(l1+a), 0<a<l,r>1,
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und diese Ungleichung folgt sofort aus (5.2.3).
Gilt @ > 1 und damit |z| V |y| = |y|, betrachten wir wieder zunéchst den Fall y = ax.
(4.1.11) ist dann dquivalent zu

(5.2.4) a"—1<r(a—1)a"", a>1,r>1,

und wir setzen f,(a) :=r(a—1)a"! —a" + 1 fiir alle a > 1. Wegen r > 1 ist
fl(a) =ra*((r —1) — =) > 0 und f, daher streng monoton wachsend. In Verbindung

r

mit lim,,; f,(a) = 0 liefert dies (5.2.4). Fiir y = —ax folgt schliefilich
a"—1<r(l+a)a"?, a>1,1r>1,

direkt aus (5.2.4), und wir erhalten insgesamt (4.1.11). O

5.3 Allgemeingiiltige Aussagen

Lemma 5.3.1. Fiir eine Funktion f : R — R gelte f >0, f € Ly und f(t+e) > 0(e)f(¢)
fir alle e > 0 und t € R, wobei lim. o 0(¢) = 1 sei. Dann ist f d.R.i.

Beweis. Ohne Einschrinkung gelte 0(¢) 1 1 fiir € | 0. Mit Hilfe der gegebenen Un-
gleichung und der strengen Monotonie von 6 kénnen wir fiir das Integral iiber f folgende
Abschétzungen nach oben und unten vornehmen:

£ iyl = e 2L Sk o)
> S%O;I;QE@(ﬂf)f(ne)
= 626’(5)]‘(715)
ne”L
_ 2 1
= ¢gf(e) ZOSJ;EE ) (ne)
2 <)), sup flne =)

= 50(5)22 sup f

nel [(n—1)e,ne]

o)y /()f

ne”Z

— 0o [ 1

v

und analog

1
SRR P
;Z [ne,(n+1)e] 0(c)’



5.3. Allgemeingiiltige Aussagen 99

Insgesamt gilt somit

59(5)2 sup f < /f < inf f,
ne’ [ne,(n+1)e] [ne (n+1)e]
und fiir € | 0 konvergieren obere und untere Summe gegen [ f. O

Lemma 5.3.2. Ist eine Funktion f € Ly, so ist f d.R.i.

Beweis. Da Positiv-und Negativteil von f getrennt betrachtet werden kénnen, nehmen
wir ohne Einschrankung f > 0 an. Fiir beliebiges ¢ > 0 gilt dann

flt+e) = /tJrE e~ = f () du

“F().

Wegen lim, g e™® = 1 folgt mit Lemma 5.3.1 die Behauptung. a

> eE/t e f(u)du
(

Lemma 5.3.3. Sei v ein endliches Maf§ und f : R — R eine d.R.i. Funktion. Dann gilt
mit Hilfe der Definition des Glittungsoperators gemafs (2.5.5)

Beweis. Die Behauptung folgt, indem wir im inneren Integral von f xv(t) die Substi-
tution © = u — s durchfiihren und den Satz von Fubini anwenden:

Frolt) = / F(t — s)u(ds)

_ // ~(=5-9) £ () v(ds)
= // f(u— s)du v(ds)

:/_OO =) f s v (u)du
= fxo(t).

Lemma 5.3.4. Seien Yi,...,Y, unabhingige identisch verteilte Zufallsvariablen auf ei-
nem Wahrscheinlichkeitsraum (2, A, P) und V,, := """ | 'Y; fiir alle n € N. Ist ein MafS n
durch

n(dx) := e P(Y) € dx), k>0,

definiert, so gilt
0" (dz) = ¢ P(V, € dx).
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Beweis. Sei S, : R" = R, S, (x1,...,2,) = 21+... 4z, fir alle n € N. Es geniigt, die
Behauptung fiir halboffene Intervalle als Erzeuger von B nachzurechnen. Fiir beliebiges
t € R folgt dann mittels

n*(”)((—oo,t}) = /]R . /Rl(_oo’t] (1 4+ ...+ zp)n(dzy) ... n(dxy,)
= / e / 1(_00715] (:L’1 + ...+ In)efi(w1+...+zn)PY1(dl,l) . pYn (d:L‘n)
R R
ooy (@)™ (P @ ... @ PY)™ (da)
L(coo(2)e™ P % . x PY(dx)

1 oo g(x)e™ P(V, € dx)

I
——

die Behauptung. O

Korollar 5.3.5. Seien X, X1, ..., X, unabhdingige identisch verteilte sowie echt positive
Zufallsgrifen auf einem Wahrscheinlichkeitsraum (Q, A, P) und V,, = > "  log X; fir
alle n € N. Ist

P.(X € dx) := |z|"P(X € dz)

fiir alle k > 0, so folgt
PY(dz) = ¢““P""(dx).

Beweis. Wegen PV» = (PlsX)"™ ynd
P.(logX <t) = P,(X <¢e)
= / |z|"P(X € dx)
(0,€]

E1{0<X§et} X"

K lo
= E]-{foo<10gX§t}e 8

= / ™ P(log X € dx)
(—OO,t]

X

gilt PlosX (dx) = e PleX(dz). Mit Lemma 5.3.4 folgt somit die Behauptung. O
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