
Westfälische Wilhelms-Universität Münster
Fachbereich Mathematik und Informatik

Institut für Mathematische Statistik

Stochastische Fixpunktgleichungen
und

Implizite Erneuerungstheorie

Diplomarbeit

Thema gestellt von

Prof. Dr. G. Alsmeyer

vorgelegt von

Julia Schmitz

Münster, 9. Oktober 2005









Inhaltsverzeichnis

Inhaltsverzeichnis 3

Einleitung 5

1 Theoretische Grundlagen 9
1.1 Erneuerungstheorie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Erneuerungsgleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Implizite Erneuerungstheorie 15
2.1 Vorbereitungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Das Implizite Erneuerungstheorem . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Der Beweis des Impliziten Erneuerungstheorems . . . . . . . . . . . . . . . 20

2.3.1 M ≥ 0 f.s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 P (M < 0) > 0 und P (M > 0) > 0 . . . . . . . . . . . . . . . . . . . 23
2.3.3 M ≤ 0 f.s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Die Konvergenzrate der Flanken 33
3.1 Eine Zerlegung nach Stone . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Die Konvergenzrate im Fall M ≥ 0 f.s. . . . . . . . . . . . . . . . . . . . . 42
3.3 Die Konvergenzrate im Fall P (M < 0) > 0 . . . . . . . . . . . . . . . . . . 47
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Einleitung

Die erste Bekanntschaft mit Fixpunktgleichungen schließen wir in der Regel im Mathema-
tikunterricht unserer Schulzeit, wenn wir die Schnittpunkte einer Funktion f : R → R mit
der ”Ursprungsgeraden” g : R → R, g(x) = x, bestimmen sollen, denn die Menge dieser
Schnittpunkte ist genau die Lösungsmenge der Fixpunktgleichung f(x) = x und damit
die Menge der Fixpunkte der Funktion f. Ohne daß wir uns dessen bewußt sind, haben
wir jedoch eine etwas andere Art von Fixpunktgleichungen bereits viel früher in unse-
rem Leben kennengelernt, wenn auch nicht unbedingt unter angenehmeren Umständen.
Jedesmal, wenn wir an der Kasse im Supermarkt, im Sommer am Eisstand oder Sonntag
morgens beim Bäcker in der Schlange stehen, sind wir Teil einer speziellen Fixpunktglei-
chung. Allgemein gefaßt sind dies gerade die Situationen, in denen wir in der Regel nicht
sofort bedient werden können, sondern erst eine Weile darauf warten müssen. Reihen wir
uns als n-ter Kunde (n = 1, 2, . . .) in eine beliebige solche Warteschlange ein, so setzt
sich unsere Wartezeit Rn zusammen aus der Wartezeit Rn−1 des Kunden vor uns in der
Schlange und der Differenz Xn aus dessen Bedienungszeit und der Zeit, die zwischen sei-
ner und unserer Ankunft am Ende der Schlange verstrichen ist. Die vorliegende Situation
führt uns somit zu der Gleichung

Rn = max(Rn−1 +Xn, 0) = (Rn−1 +Xn)+, n ∈ N,

die in der Literatur unter dem Namen Lindley-Gleichung bekannt ist. (Rn)n∈N0 und
(Xn)n∈N bilden Folgen von Zufallsgrößen auf einem Wahrscheinlichkeitsraum (Ω,A, P ),
wobei die Xn unabhängig und identisch verteilt sind und wir für dieses einführende Bei-
spiel R0 = 0 voraussetzen. In Kapitel 4 werden wir zeigen, daß (Rn)n∈N0 unter diesen
Voraussetzungen eine stationäre Verteilung besitzt. Wählen wir irgendeine Zufallsgröße
R mit dieser Verteilung und eine von R unabhängige Kopie X von X1, so folgt aufgrund
der Unabhängigkeit von Rn−1 und Xn

R
d
= (R +X)+,

wobei
d
= Gleichheit der Verteilungen bedeutet. Unserem Warteschlangenmodell liegt somit

eine sogenannte stochastische Fixpunktgleichung

R
d
= Ψ(R)

mit Ψ(R) = (R+X)+ zugrunde. Für beliebige B×A-meßbare Funktionen Ψ : R×Ω → R
und eine Zufallsgröße R auf einem Wahrscheinlichkeitsraum (Ω,A, P ) ist die obige Glei-
chung die allgemeine Form für stochastische Fixpunktgleichungen in der Wahrscheinlich-
keitstheorie. Es erweist sich aber selbst für spezielle Funktionen Ψ i.a. als sehr schwierig,
zulässige Verteilungen für R als Lösungen solcher Gleichungen zu finden.
In der Literatur finden wir mehrere Arbeiten, deren Autoren sich dieser Aufgabe widmen
und dabei die rekursiv geschriebene Form, die auch die Lindley-Gleichung besitzt, als
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Ausgangsgleichung benutzen. Grincevičius, Kesten, Paulson und Uppuluri sowie Vervaat
(vgl. [Gr1]-[Gr6], [K73], [PaU], [Ve2]) beispielsweise beschäftigen sich mit der Gleichung

Rn = Qn +MnRn−1, n ∈ N0,

wobei (Rn)n∈N0 und (Mn, Qn)n∈N unabhängige Folgen unabhängig identisch verteilter Zu-
fallsgrößen bzw. Zufallsvektoren sind. In einer auf Lassner (vgl. [La1], [La2]) zurückgehen-
den Anwendung stellt Rn z.B. den Betrag eines Sparkontos zum Zeitpunkt n dar, Qn den
eingezahlten bzw. abgebuchten Betrag dirket vor diesem Zeitpunkt und Mn den Zinsfak-
tor, der aufgrund von Schwankungen im Laufe der Zeit ebenfalls als stochastische Größe
angesehen werden kann. In Arbeiten von Grincevičius, Kesten, Paulson und Uppuluri und
Vervaat finden sich Voraussetzungen, unter denen eine eindeutige Lösung dieser Gleichung
existiert, sowie Ergebnisse über die Grenzverteilung der Rn. Beispiele stochastischer Fix-
punktgleichungen, für die die Verteilungen aller betroffenen Zufallsgrößen bereits bekannt
sind, finden wir bei Chamayou und Letac (vgl. [ChL]). Weitere Autoren benutzen stocha-
stische Fixpunktgleichungen, um Vorgänge aus der Wirtschaft, Physik, Biologie oder auch
Soziologie besser darstellen zu können (vgl. [Baw], [Cav], [CsF], [Cha], [ChM], [Gad], [Hel],
[HeN], [Mak], [PeH], [Tak]). In allen Arbeiten stehen dabei eine oder mehrere spezielle sto-
chastische Fixpunktgleichungen im Vordergrund. Auf der Grundlage eines Aufsatzes von
Kesten (vgl. [K73]) findet Goldie (vgl. [Gol]) dagegen einen allgemeineren Weg, Lösungen
stochastischer Fixpunktgleichungen näher zu bestimmen. Ausgehend von der Gleichung

R
d
= Ψ(R)

zeigt er für eine spezielle Klasse stochastischer Fixpunktgleichungen, daß sich die Flan-
ken der Verteilung von R asymptotisch immer wie eine Potenzfunktion mit negativem
Exponenten verhalten, bevor er Beispiele in Form konkreter Gleichungen folgen läßt.
In der vorliegenden Arbeit befassen wir uns mit Goldies Ergebnissen, indem wir diese
einerseits detailliert wiedergeben und andererseits zeigen, in welcher Weise sie für be-
reits bekannte Modelle an Bedeutung gewinnen. Im ersten Kapitel geben wir eine kurze
Einführung in die Grundlagen der Erneuerungstheorie, da diese das wichtigste von Goldie
verwendete Hilfsmittel darstellt, um seine Aussagen zu beweisen. Goldies Haupttheorem
mit der Kernaussage

P (R > t) ∼ C+t
−κ und P (R < −t) ∼ C−t

−κ

für t→∞ und Konstanten C+, C− sowie ein κ > 0 nennen wir aus diesen Gründen auch
Implizites Erneuerungstheorem und stellen es mit seinem Beweis im zweiten Kapitel vor.
Obige Asymptotik der Flanken können wir mit Goldies Hilfe noch genauer angeben und
widmen uns daher im dritten Kapitel der Konvergenzrate der Flanken der Verteilung von
R. Im vierten Kapitel veranschaulichen wir am Beispiel von vier stochastischen Fixpunkt-
gleichungen die Theorie der beiden vorigen Kapitel. Wir ziehen außerdem die Verbindung
zu bereits bekannten Modellen wie z.B. der Warteschlangentheorie und betrachten ein
auf Chamayou und Letac (vgl. [ChL]) zurückgehendes Beispiel einer stochastischen Fix-
punktgleichung für Beta-verteilte Zufallsgrößen. Im letzten Abschnitt des vierten Kapitels
zeigen wir abschließend eine Anwendung von Goldies Resultaten in der Extremwerttheo-
rie.

Für die Beratung und Unterstützung während der Entstehung der vorliegenden Arbeit
möchte ich Prof. Dr. Gerold Alsmeyer meinen Dank aussprechen. Ich danke außerdem
allen, die auf ihre Art und Weise zum Gelingen dieser Arbeit beigetragen haben.







1 Theoretische Grundlagen

1.1 Erneuerungstheorie

In diesem Abschnitt stellen wir Grundlagen und Ergebnisse ohne Beweise aus der Erneue-
rungstheorie zusammen, die uns später helfen werden, einen asymptotischen Wert für die
Flanken der Verteilung von Lösungen stochastischer Fixpunktgleichungen zu bestimmen.
Wir legen dazu die Definition des Random Walks (RW) als Partialsummenfolge (Sn)n≥0

unabhängig identisch gemäß Q verteilter Zufallsgrößen X1, X2, . . . mit einem von diesen
Zufallsgrößen unabhängigen, zufallsabhängigen Anfangspunkt S0 sowie die Definition ei-
nes Standardmodells zu Q zugrunde. Es gilt somit

Sn = S0 +
n∑

i=1

Xi, n ∈ N.

Ein Random Walk heißt ferner Standard-Random-Walk (SRW), falls S0 = 0 fast sicher
gilt, andernfalls verschobener Random Walk (VRW).

Definition 1.1.1. ([ASP], Definition 21.5)
Sei Q ∈ W(R)1. Dann heißt jedes Modell

(Ω,A, (Sn)n≥0, (Pλ)λ∈W(R)),

so daß Sn : (Ω,A) → (R,B), n ∈ N0, unter Pλ einen RW mit Zuwachsverteilung Q und

Anfangsverteilung λ bildet, Standardmodell zu Q. Es gilt demnach Pλ(S0 ∈ · ) = λ und
Pλ(X1 ∈ · ) = Q.

Pλ ist dabei die Abkürzung für Pδλ
. Da (Sn)n≥0 ein additiver Prozeß ist und G0 := R

eine additive Gruppe mit den abgeschlossenen Untergruppen G∞ := {0} und Gd := dZ
für d > 0, ist es sinnvoll, die kleinste Untergruppe von R zu bestimmen, auf die (Sn)n≥0

konzentriert ist. Diese Untergruppe muß nicht abgeschlossen sein, im folgenden spielt
jedoch nur deren Abschluß und damit die kleinste abgeschlossene Untergruppe von R, die
sie enthält, eine Rolle. Mit Hilfe dieser Festlegungen ermöglichen uns die beiden folgenden
Definitionen eine Einteilung von RWs in zwei Klassen.

Definition 1.1.2. (vgl. [ASP], Definition 21.2)
Für ein Wahrscheinlichkeitsmaß Q auf R sei

d(Q) := sup{d ∈ [0,∞] : Q(Gd) = 1},

genannt Spanne von Q. Dann heißt Q

1Menge der Wahrscheinlichkeitsmaße (Verteilungen) auf (R, B)
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10 Theoretische Grundlagen

-nichtarithmetisch, falls d(Q) = 0;
-d-arithmetisch, falls d(Q) = d > 0.

Entsprechend heißt eine Zufallsgröße X auf einem Wahrscheinlichkeitsraum (Ω,A, P )
nichtarithmetisch bzw. d-arithmetisch, falls PX nichtarithmetisch bzw. d-arithmetisch ist.

Definition 1.1.3. (vgl. [ASP], Definition 21.4)
Gegeben ein Standardmodell zu Q gemäß Definition 1.1.1, heißt ein RW (Sn)n≥0 nicht-
arithmetisch, falls X1 nichtarithmetisch ist, und d-arithmetisch, falls X1 d-arithmetisch
ist und Pλ(S0 ∈ Gd) = 1 gilt.

Die zusätzliche Forderung an S0 im d-arithmetischen Fall ist notwendig, da (Sn)n≥0 nur
auf das zugehörige Gitter konzentriert ist, wenn auch S0 fast sicher auf diesem liegt. Um
asymptotische Aussagen zu erleichtern, setzen wir außerdem für eine Funktion f : R → R
und t ∈ R, n ∈ N0 sowie für beliebiges d ≥ 0

d-limt→∞f(t) :=

{
limt→∞ f(t), falls d = 0
limn→∞ f(nd), falls d > 0

.

Mit Hilfe eines RWs (Sn)n≥0 und des zugeordneten Punktprozesses
∑

n≥0 δSn definieren
wir das zufällige Zählmaß

N :=
∑
n≥0

δSn

auf (R,B) für alle ω ∈ Ω und B ∈ B durch

N(ω,B) =
∑
n≥0

δSn(ω)(B).

Wir versehen die Menge M aller Zählmaße auf (R,B) mit der kleinsten σ-Algebra M, so
daß sämtliche Projektionen

πB : M→ N0, µ 7→ µ(B),

meßbar sind, d.h. M := σ(πB, B ∈ B).Dann definiertN : (Ω,A) → (M,M), ω 7→ N(ω, ·),
in der ersten Komponente eine meßbare Abbildung und als Abbildung bei festgehaltener
zweiter Komponente N(B) : (Ω,A) → (R,B), ω 7→ N(B)(ω) := N(ω,B), für jedes
B ∈ B eine Zufallsgröße, die die Anzahl der Punkte Sn in B angibt. Das sogenannte
Intensitätsmaß von N unter Pλ erhalten wir für jedes B ∈ B durch

B 7→ EλN(B) =: Uλ(B),

d.h. Uλ(B) ist die erwartete Anzahl von Punkten in B. Dies führt uns zur Definition des

Erneuerungsmaßes.

Definition 1.1.4. (vgl. [ASP], Definition 21.6)
Gegeben einen RW (Sn)n≥0, heißt das Intensitätsmaß Uλ des zugeordneten Punktprozesses∑

n≥0 δSn das Erneuerungsmaß von (Sn)n≥0 unter Pλ und dessen zugehörige ”Verteilungs-
funktion”

Uλ(t) := Uλ(−∞, t], t ∈ R,

Erneuerungsfunktion.



1.1. Erneuerungstheorie 11

Da die Zuwächse von (Sn)n≥0 die Verteilung Q besitzen, folgt

Uλ =
∑
n≥0

P Sn
λ = λ ∗

∑
n≥0

Q∗(n) = λ ∗ U0,

wobei Q∗(0) := δ0 gilt. Mit Hilfe der folgenden Einführung direkt Riemann-integrierbarer
Funktionen sowie den bis hierhin getroffenen Vereinbarungen können wir nun das 2. Er-
neuerungstheorem mit seiner Verschärfung angeben, das ein zentrales Ergebnis der Er-
neuerungstheorie darstellt. Wir setzen dazu

λλd :=

{
Lebesgue-Maß auf (R,B), falls d = 0
d-mal das Zählmaß auf dZ, falls d > 0

.

Definition 1.1.5. ([ASP], Definition 26.1)
Sei g : R → R eine Funktion sowie für δ > 0 und n ∈ Z

Iδ
n = (δn, δ(n+ 1)],

mδ
n = inf{g(t) : t ∈ Iδ

n}, M δ
n = sup{g(t) : t ∈ Iδ

n},

σ(δ) = δ
∑

n∈Zm
δ
n und σ(δ) = δ

∑
n∈ZM

δ
n.

Dann heißt g direkt Riemann-integrierbar (d.R.i.), falls σ(δ) und σ(δ) beide für alle δ > 0
absolut konvergieren und

lim
δ↓0

(σ(δ)− σ(δ)) = 0.

Die direkte Riemann-Integrierbarkeit einer Funktion entspricht damit der gewöhnlichen
Riemann-Integrierbarkeit, sofern man den Definitionsbereich R der Funktion durch ein
kompaktes Intervall ersetzt.

Satz 1.1.6. (vgl. [ASP], Satz 26.2)
Jede d.R.i. Funktion g erfüllt

(a) g ist beschränkt und λλ0-f.ü. stetig.
(b) g ist λλd-integrierbar für d ∈ {0, 1}, d.h.

∫
R |g(x)|λλd(dx) <∞.

Umgekehrt ist jede der folgenden Bedingungen hinreichend dafür, daß eine reellwertige
Funktion g auf R d.R.i. ist:

(c) σ(δ), σ(δ) konvergieren absolut für ein δ > 0, und g ist λλ0-f.ü. stetig.

(d) g hat kompakten Träger {x : g(x) 6= 0} und ist λλ0-f.ü. stetig.

Satz 1.1.7. ([ASP], Satz 26.3. Das 2. Erneuerungstheorem)
(Sn)n≥0 sei ein RW mit Drift µ = EX1 ∈ (0,∞] und Spanne d = d(X1) ∈ {0, 1}. Dann
gilt für alle λ ∈ Wd(R)2 und jede d.R.i. Funktion g

d-limt→∞g ∗ Uλ(t) = µ−1

∫
R
g(x)λλd(dx)

und
lim

t→−∞
g ∗ Uλ(t) = 0.

2Menge aller Verteilungen λ auf (R, B) mit λ(Gd) = 1 für d ≥ 0



12 Theoretische Grundlagen

Satz 1.1.8. ([ASP], Satz 28.4)
Seien Q, Q0 Wahrscheinlichkeitsmaße auf R mit µ = µ(Q) > 0, U0 =

∑
n≥0Q

∗(n) und
U = Q0 ∗U0. Sei Q0 ferner λλ0-stetig mit Dichte f0. Dann gilt für die zugehörige Erneue-
rungsdichte u = f0 ∗ U0

lim
t→∞

u(t) = µ−1 und lim
t→−∞

u(t) = 0,

sofern f0 d.R.i. ist oder Q quasi λλ0-stetig und f0 ∈ L1
3 ∩ L∞

4 mit lim|t|→∞ f0(t) = 0.

Dabei heißt ein Wahrscheinlichkeitsmaß Q auf R quasi λλ0-stetig, wenn Q∗(n) für ein n ∈ N
eine λλ0-stetige Komponente besitzt, d.h. wenn ein λλ0-stetiges MaßQ1 6= 0 und ein weiteres
Maß Q2 existieren, so daß Q∗(n) = Q1 +Q2 gilt.
Das 2. Erneuerungstheorem trägt im Englischen den Namen Key Renewal Theorem, da
es u.a. bei der Untersuchung des asymptotischen Verhaltens oben angegebener Faltun-
gen eine Schlüsselstellung einnimmt. Seine erste Aussage werden wir für den Fall d = 0
verwenden, der wegen g ∗ Uλ(t) = Eλ

∑
n≥0 g(t− Sn) insbesondere

Eλ

∑
n≥0

g(t− Sn) → 1

EX1

∫ ∞

−∞
g(u)du, t→∞,

besagt.

1.2 Erneuerungsgleichungen

Ein weiterer wichtiger Bestandteil der Erneuerungstheorie sind Gleichungen der Form

(1.2.1) Z(r) = z(r) +

∫
R
Z(r − x)Q(dx), r ∈ R,

bzw.

(1.2.2) Z = z + Z ∗Q,

wobei z, Z : R → R Funktionen und Q ein Maß auf R seien. Sie tragen den Namen
Erneuerungsgleichungen und speziell Standard-Erneuerungsgleichungen, falls Q auf [0,∞)
konzentriert ist und z und Z auf (−∞, 0) verschwinden. (1.2.1) besitzt in diesem Fall die
Gestalt

Z(r) = z(r) +

∫
[0,r]

Z(r − x)Q(dx), r ≥ 0.

Eine Iteration von (1.2.2) liefert nach n Schritten

Z = z ∗
n∑

k=0

Q∗(k) + Z ∗Q∗(n+1)

und führt zu der Vermutung, daß

Z = z ∗ U = z ∗
∑
k≥0

Q∗(k)

3Vektorraum der reellen, 1-fach ν-integrierbaren Funktionen auf einem Maßraum (Ω,A, ν)
4Vektorraum der reellen, ν-fast überall beschränkten Funktionen
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eine Lösung bei gegebenem z und Q ist. Das auftretende Erneuerungsmaß schafft dabei
die Verbindung zur Erneuerungstheorie. Eine ausführliche Begründung der Vermutung
würde an dieser Stelle zu weit führen. Wir erwähnen daher nur kurz, daß eine Standard-
Erneuerungsgleichung für lokal beschränkte5 meßbare Funktionen z und reguläre6 Maße
Q die eindeutig bestimmte Lösung Z = z ∗ U besitzt (im allgemeinen Fall benötigt man
beschränkte meßbare Funktionen z und Maße Q mit Q(R) < 1, da der Integrationsbereich
nicht mehr kompakt ist) und verweisen für weitere Details wie z.B. die Bestimmung des
Grenzwertes existierender Lösungen und deren Konvergenzgeschwindigkeit gegen diesen
Limes auf [ASP], Kapitel 27.
Mit Impliziter Erneuerungstheorie ist eine Variante von Erneuerungsgleichungen gemeint,
in der neben Z auch z unbekannt ist und sogar ein von Z abhängiges Integral darstellt. In
Anlehnung an diese Erneuerungsgleichungen sind stochastische Fixpunktgleichungen der

Form R
d
= Ψ◦Rmit einer Funktion Ψ und einer Zufallsgrößen R zu sehen, deren Verteilung

unbekannt ist. Ihre Untersuchung beginnen wir im nächsten Kapitel, indem wir festlegen,
welche Voraussetzungen zum Aufstellen dieser Gleichung benötigt werden und welche
Bedingungen Ψ erfüllen muß. Der Einfluß der Erneuerungstheorie kommt in Satz 2.2.1
als Haupttheorem des Kapitels zum Ausdruck. Mit Hilfe des 2. Erneuerungstheorems
ermöglicht dieser Satz Aussagen über die Flanken der Verteilung von R und wird daher
Implizites Erneuerungstheorem genannt.

5Eine reellwertige Funktion f heißt lokal beschränkt, falls sie auf jeder kompakten Teilmenge ihres
Definitionsbereiches beschränkt ist.

6Ein Maß Q auf [0,∞) heißt regulär, falls es positiven Erwartungswert besitzt, Q(0) < 1 gilt und der
Definitionsbereich der zugehörigen momenterzeugenden Funktion nicht leer ist.





2 Implizite Erneuerungstheorie

2.1 Vorbereitungen

Gleichungen der Form

(2.1.1) R
d
= Ψ ◦R

mit einer ZufallsgrößenR und einer Funktion Ψ heißen stochastische Fixpunktgleichungen.

Um Aussagen über sie treffen zu können, muß Ψ so definiert sein, daß die Verknüpfung
Ψ ◦ R selber eine Zufallsgröße ist. Sei daher Ψ : R × Ω → R eine B × A-meßbare Funk-
tion und (Ω,A, P ) ein Wahrscheinlichkeitsraum. Für ein festes ω ∈ Ω ist Ψ dann ein
Zufallselement von M(R,R), der Menge der Borel-meßbaren Funktionen von R nach R;
für ein festes t ∈ R dagegen ist Ψ(t) := Ψ(t, ·) eine Zufallsgröße. Ist R eine auf demselben
Wahrscheinlichkeitsraum definierte von Ψ unabhängige Zufallsgröße, interpretieren wir
die Verknüpfung von Ψ und R als Abbildung

Ψ ◦R : Ω → R, ω → Ψ(R(ω), ω).

Obgleich wir die Verteilung von R nicht kennen, können wir dennoch unter gewissen
Voraussetzungen ihre Existenz und Eindeutigkeit nachweisen sowie Aussagen über ihre
Flanken treffen. Der Fall, in dem letzteres möglich ist und der von uns untersucht werden
soll, ist der, daß sich die Zufallsgröße Ψ(t) für betraglich große Argumente annähernd
so verhält wie die Multiplikation von t mit einer ebenfalls auf (Ω,A, P ) definierten Zu-
fallsgrößen M, die die Voraussetzungen des unten aufgeführten Lemma 2.1.2 erfüllt. Im
Haupttheorem dieses Kapitels, Satz 2.2.1, zeigen wir, daß dann die Flanken der Verteilung
von R asymptotisch einer Potenzfunktion gleichen, sofern sie gewissen die Zufallsgröße M
betreffende Integrationsbedingungen genügen.
Zur Klärung der Existenz und Eindeutigkeit der Verteilung von R genügt uns ein Satz, der
sich auf ein Ergebnis von Letac stützt. Unter der Annahme, daß auf dem passend erweiter-
ten Wahrscheinlichkeitsraum (Ω,A, P ) unabhängige Kopien Ψ1,Ψ2, . . . von Ψ existieren,
erhalten wir mit Hilfe der Definitionen

(2.1.2) Zn(t) := Ψ1 ◦Ψ2 ◦ . . . ◦Ψn(t), n ∈ N,

(2.1.3) Wn(t) := Ψn ◦Ψn−1 ◦ . . . ◦Ψ1(t)), n ∈ N,

die eindeutige Verteilung von R und damit von Ψ ◦ R durch Grenzwertbetrachtung von
Zn, Wn für n→∞.

Satz 2.1.1.([Let], Prinzip von Letac)
Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum, Ψ : R × Ω → R eine B × A-meßbare Funk-
tion und R eine Zufallsgröße auf Ω, die (2.1.1) erfüllt. Hat Ψ stetige Pfade, d.h. ist

15
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die Abbildung t 7→ Ψ(t, ω), t ∈ R, für jedes ω ∈ Ω stetig, und existiert der Grenzwert
limn→∞ Zn(t) =: Z fast sicher und ist unabhängig vom Argument t, so ist die Verteilung
von Z die eindeutige Lösung der Fixpunktgleichung (2.1.1) und damit die eindeutige Ver-
teilung von R. Ebenso gilt limn→∞Wn(t) = Z, sofern Z existiert (beachte Wn(t) ∼ Zn(t)).

Anstelle der stochastischen Fixpunktgleichung R
d
= Ψ◦R finden wir bei Letac ursprünglich

die Gleichung

(2.1.4) R
d
= f(R, Y ), Y unabhängig von R,

wobei Y eine X -wertige Zufallsvariable, (X ,F) ein meßbarer Raum und f : R× X → R
eine feste produktmeßbare Funktion ist. Indem wir X = M(R,R) setzen und für alle
g ∈ X und t ∈ R f(t, g) := g(t) definieren, können wir das Theorem auf unseren Fall

anwenden, denn (2.1.4) erhält die Form R
d
= Ψ ◦R, wenn wir Ψ mit Y identifizieren.

Zuletzt geben wir im folgenden Lemma die Bedingungen an, die von der Zufallsgröße M
erfüllt werden müssen.

Lemma 2.1.2. Sei M eine Zufallsgröße auf einem Wahrscheinlichkeitsraum (Ω,A, P ),
für die ein κ > 0 existiere, so daß

(2.1.5) E |M |κ = 1,

(2.1.6) E |M |κ log+ |M | <∞

gelten. Sofern außerdem P (|M | = 1) < 1 ist, folgen

(2.1.7) E log |M | ∈ [−∞, 0),

(2.1.8) m := E |M |κ log |M | ∈ (0,∞).

Beweis. Sei Y := log |M | und ψ(λ) = EeλY = E |M |λ die zugehörige momenterzeu-
gende Funktion (vgl. [AWT], Definition 40.3). Nach Voraussetzung ist ψ(κ) = ψ(0) = 1.
Wir wissen ferner, daß D(ψ) = {λ : ψ(λ) <∞} ein Intervall ist (vgl. [AWT], Lemma 40.2)
und ψ auf dessen Inneren eine konvexe, unendlich oft differenzierbare Funktion bildet mit
ψ′(λ) = EY eλY . Da wir |M | = 1 f.s. ausgeschlossen haben, ist aufgrund der Konvexität
von ψ in Verbindung mit ψ(λ) → ∞ für λ → ∞ limλ↓0 ψ

′(λ) < 0 und limλ↑κ ψ
′(λ) > 0

(allgemein folgt zunächst nur limλ↓0 ψ
′(λ) ≤ 0). Wegen

EY +eλY ↓ EY + <∞ und EY −eλY ↑ EY − ∈ [0,∞], λ ↓ 0,

gilt nun aber
E log |M | = EY = lim

λ↓0
EY eλY = lim

λ↓0
ψ′(λ) < 0.

Aus

ψ(κ) =

∫
Y >0

eκY +

dP +

∫
Y≤0

e−κY −
dP,

der Konvexität von ψ und (2.1.6) folgt

0 < lim
λ↑κ

ψ′(λ) = lim
λ↑κ

(EY +eλY − EY −eλY ) ≤ lim
λ↑κ

EY +eλY = EY +eκY <∞

und damit (2.1.8) wegen limλ↑κ ψ
′(λ) = EY eκY = m. 2
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2.2 Das Implizite Erneuerungstheorem

Satz 2.2.1. (Implizites Erneuerungstheorem)
Sei M eine Zufallsgröße auf einem Wahrscheinlichkeitsraum (Ω,A, P ), die den Bedin-
gungen von Lemma 2.1.2 genügt, und R eine von M unabhängige Zufallsgröße. Sei ferner
P log|M ||M 6=0 nichtarithmetisch.

(a) Falls M ≥ 0 fast sicher ist und

(2.2.1)

∫ ∞

0

|P (R > t)− P (MR > t)| tκ−1dt <∞

bzw.

(2.2.2)

∫ ∞

0

|P (R < −t)− P (MR < −t)| tκ−1dt <∞

gelten, so folgt für die Flanken der Verteilung von R

(2.2.3) P (R > t) ∼ C+t
−κ, t→∞,

bzw.

(2.2.4) P (R < −t) ∼ C−t
−κ, t→∞,

wobei C+ und C− durch die Gleichungen

(2.2.5) C+ =
1

m

∫ ∞

0

(P (R > t)− P (MR > t))tκ−1dt,

(2.2.6) C− =
1

m

∫ ∞

0

(P (R < −t)− P (MR < −t))tκ−1dt

gegeben sind.

(b) Falls P (M < 0) > 0 ist und sowohl (2.2.1) als auch (2.2.2) gelten, so folgen (2.2.3)
und (2.2.4), wobei in diesem Fall

(2.2.7) C+ = C− =
1

2m

∫ ∞

0

(P (|R| > t)− P (|MR| > t))tκ−1dt

gilt.

Die Summe von C+ und C− in (b) und auch in (a), sofern dort beide Voraussetzungen
erfüllt sind, definieren wir durch

(2.2.8) C := C+ + C− =
1

m

∫ ∞

0

(P (|R| > t)− P (|MR| > t))tκ−1dt.

Sollen die Aussagen des Satzes einen relevanten Inhalt bekommen, so dürfen wir nur die
Werte von κ betrachten, für die außerdem E |R|κ = ∞ gilt. Andernfalls folgt wegen der
Unabhängigkeit von M und R

C =
1

m

∫ ∞

0

(P (|R| > t)− P (|MR| > t))tκ−1dt

=
1

κm
(E |R|κ − E |MR|κ)

=
1

κm
E |R|κ (1− E |M |κ)

= 0
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und daher im Hinblick auf (2.2.3) und (2.2.4)

tκP (|R| > t) = tκP (R > t) + tκP (R < −t) ∼ C+ + C− = 0

für t→∞ und somit P (|R| > t) = o(t−κ). Aufgrund der Annahme E |R|κ <∞ erhalten

wir dieses Ergebnis jedoch direkt und ohne das Implizite Erneuerungstheorem.
Die Voraussetzungen und Aussagen des Satzes ändern ihre Gestalt, falls R zusätzlich zu
den dort geforderten Bedingungen eine stochastische Fixpunktgleichung gemäß (2.1.1)
erfüllt. Wir fassen daher die Ergebnisse im folgenden Korollar erneut zusammen und
führen dessen Beweis direkt im Anschluß. Der Beweis des Impliziten Erneuerungstheorems
folgt im nächsten Abschnitt.

Korollar 2.2.2. Sei (Ω,A, P ) ein Wahrscheinlichkeitsraum, Ψ : R×Ω → R eine B×A-
meßbare Funktion und R eine auf Ω definierte Zufallsgröße, die die Fixpunktgleichung

R
d
= Ψ ◦R

erfüllt. Sei weiter M eine Zufallsgröße auf (Ω,A, P ), die den Bedingungen von Lem-
ma 2.1.2 genügt und außerdem so gewählt sei, daß R unabhängig von (Ψ,M) ist. Dann
lassen sich die Bedingungen (2.2.1) und (2.2.2) im Impliziten Erneuerungstheorem durch

(2.2.9) E
∣∣(Ψ(R)+)κ − ((MR)+)κ

∣∣ <∞

bzw.

(2.2.10) E
∣∣(Ψ(R)−)κ − ((MR)−)κ

∣∣ <∞

ersetzen und die Formeln (2.2.5), (2.2.6) und (2.2.7) zu

(2.2.11) C+ =
1

κm
E((Ψ(R)+)κ − ((MR)+)κ),

(2.2.12) C− =
1

κm
E((Ψ(R)−)κ − ((MR)−)κ),

(2.2.13) C+ = C− =
1

2κm
E(|Ψ(R)|κ − |MR|κ)

umschreiben.

Obwohl nach Voraussetzung R
d
= Ψ(R) gegeben ist, können wir in keinem dieser fünf

Ausdrücke Ψ(R) durch R ersetzen, denn die in den Begründungen dieser Formeln benutzte
Verteilung von (Ψ(R),MR) ist nicht notwendigerweise auch die des Paares (R,MR).
Zum Beweis von Korollar 2.2.2 verwenden wir die Aussage des folgenden Lemmas.

Lemma 2.2.3. Seien X, Y Zufallsvariablen auf einem gemeinsamen Wahrscheinlich-
keitsraum (Ω,A, P ). Dann gilt

(2.2.14)

∫ ∞

0

|P (X > t)− P (Y > t)| tκ−1dt =
1

κ
E
∣∣(X+)κ − (Y +)κ

∣∣ ,
wobei das Integral auch den Wert ∞ annehmen kann. Ist es endlich, können die Betrags-
striche in (2.2.14) weggelassen werden, d.h. es gilt

(2.2.15)

∫ ∞

0

(P (X > t)− P (Y > t))tκ−1dt =
1

κ
E((X+)κ − (Y +)κ).



2.2. Das Implizite Erneuerungstheorem 19

Beweis. Da aufgrund der Integrationsgrenzen nur Werte von t > 0 betrachtet werden
und die Wahrscheinlichkeiten P (X > t) und P (X+ > t) für t > 0 gleich sind, genügt
es, (2.2.14) und (2.2.15) für nichtnegative Zufallsvariablen X, Y nachzuweisen. Seien also
X, Y ≥ 0. Lösen wir den Betrag auf, können wir das Integral in (2.2.14) als Summe zweier
Integrale schreiben:∫ ∞

0

|P (X > t)− P (Y > t)| tκ−1dt =

∫ ∞

0

(P (Y > t, Y > X)− P (X > t, Y > X))tκ−1dt

+

∫ ∞

0

(P (X > t, Y < X)− P (Y > t, Y < X))tκ−1dt

=

∫ ∞

0

P (X ≤ t < Y )tκ−1dt

+

∫ ∞

0

P (Y ≤ t < X)tκ−1dt.

Mit dem Satz von Fubini erhalten wir∫
(0,∞)

tκ−1P (X ≤ t < Y )λλ(dt) =

∫
(0,∞)

tκ−1

∫
(0,∞)×(0,∞)

1(0,y)(x)1[x,y)(t)P
(X,Y )(dx, dy) λλ(dt)

=

∫
(0,∞)×(0,∞)

1(0,y)(x)

∫
[x,y)

tκ−1λλ(dt) P (X,Y )(dx, dy)

= E1{X<Y }

∫
[X,Y )

tκ−1λλ(dt)

und somit ∫ ∞

0

P (X ≤ t < Y )tκ−1dt =
1

κ
E1{X<Y }(Y

κ −Xκ)

sowie analog ∫ ∞

0

P (Y ≤ t < X)tκ−1dt =
1

κ
E1{Y <X}(X

κ − Y κ).

Insgesamt folgt daher für das Ausgangsintegral∫ ∞

0

|P (X > t)− P (Y > t)| tκ−1dt =
1

κ
E(1{X<Y }(Y

κ −Xκ) + 1{Y <X}(X
κ − Y κ))

=
1

κ
E |Xκ − Y κ| .

(2.2.15) erhalten wir direkt, denn für jede nichtnegative Zufallsgröße X gilt

EXκ =

∫ ∞

0

κtκ−1P (X > t)dt, κ > 0.

2

Beweis von Korollar 2.2.2. Da nach Voraussetzung R
d
= Ψ(R) gilt und wir Ψ(R)

als Zufallsgröße auf dem Wahrscheinlichkeitsraum von R ansehen können, folgt für das
Integral in (2.2.1) durch Addieren und Subtrahieren des Terms P (Ψ(R) > t) innerhalb
der Betragsstriche sowie mit Hilfe von Lemma 2.2.3∫ ∞

0

|P (R > t)− P (MR > t)| tκ−1dt =

∫ ∞

0

|P (Ψ(R) > t)− P (MR > t)| tκ−1dt

=
1

κ
E
∣∣(Ψ(R)+)κ − ((MR)+)κ

∣∣ .
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Wegen (2.2.9) ist das Integral außerdem endlich. Analog erhalten wir die Endlichkeit
des Integrals in (2.2.2) und können daher das Implizite Erneuerungstheorem anwenden.
Mit (2.2.15) aus Lemma 2.2.3 folgt

C+ =
1

m

∫ ∞

0

(P (Ψ(R) > t)− P (MR > t))tκ−1dt

=
1

κm
E((Ψ(R)+)κ − ((MR)+)κ)

und somit (2.2.11). (2.2.12) und (2.2.13) erhalten wir auf gleichem Weg. 2

2.3 Der Beweis des Impliziten Erneuerungstheorems

Für den Beweis des Impliziten Erneuerungstheorems genügt es, (2.2.3) sowie die jeweilige
Formel für C+ nachzuweisen, da man die restlichen Ergebnisse erhält, indem man −R
statt R betrachtet. Im Beweis des Theorems betrachten wir die drei Fälle

M ≥ 0 f.s., M ≤ 0 f.s. und P (M < 0) > 0, P (M > 0) > 0

getrennt und verwenden als Schlüssel zum Erfolg die Aussage von Lemma 2.3.1, das
wir daher zur Vorbereitung voranstellen. Im Beweis verwenden wir außerdem Summen
und Produkte sowie stetige Verarbeitungen von unabhängigen Zufallsgrößen, die alle die
Verteilung der Zufallsgröße M besitzen. Um spätere Rechnungen zu erleichtern, setzen
wir daher

(2.3.1) Yn := log |Mn| , Sn := log |Πn| =
n∑

i=1

Yi, n ∈ N,

(2.3.2) r(t) := eκtP (R > et), δn(t) := eκtP (ΠnR > et), t ∈ R,

(2.3.3) g1(t) := eκt(P (R > et)− P (MR > et)), t ∈ R,

(2.3.4) g−1(t) := eκt(P (R < −et)− P (MR < −et)), t ∈ R,

wobei S0 := 0, Π0 := 1, Πn :=
∏n

i=1Mi und R,M,M1,M2, . . . unabhängige Zufalls-
größen auf einem gemeinsamen Wahrscheinlichkeitsraum (Ω,A, P ) seien und die Mn für
alle n ∈ N die Verteilung von M besitzen. M ′ sei eine weitere Zufallsgröße, auf die diese
Bedingungen ebenfalls zutreffen, d.h. insbesondere gilt M ′ ∼ M. Man beachte, daß die
Funktionen g1 und g−1 aufgrund der Voraussetzungen (2.2.1) bzw. (2.2.2) und der Substi-
tution t = log s betraglich uneigentlich Riemann- und daher auf R Lebesgue-integrierbar
sind. Für eine Funktion f : R → R sei außerdem

(2.3.5) f̄(t) :=

∫ t

−∞
e−(t−u)f(u)du, t ∈ R.
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Lemma 2.3.1. Falls
∫ t

0
uκP (R > u)du ∼ C+t für t→∞ gilt, folgt

P (R > t) ∼ C+t
−κ, t→∞.

Beweis. Wir wählen ein festes b > 1. Dann ist P (R > bt) < P (R > t) wegen bt > t,
und für t→∞ gilt

C+(b− 1)t ∼
∫ bt

0

uκP (R > u)du−
∫ t

0

uκP (R > u)du

=

∫ bt

t

uκP (R > u)du

≤ P (R > t)

∫ bt

t

uκdu

=
bκ+1 − 1

κ+ 1
tκ+1P (R > t)

und somit

lim inf
t→∞

tκP (R > t) ≥ C+(κ+ 1)
b− 1

bκ+1 − 1
.

Da mit dem Satz von de L’Hospital

lim
b↓1

b− 1

bκ+1 − 1
= lim

b↓1

1

(κ+ 1)bκ
=

1

κ+ 1

folgt, erhalten wir durch Grenzübergang b ↓ 1 schließlich lim inft→∞ tκP (R > t) ≥ C+.
Analog zeigt man

lim sup
t→∞

tκP (R > t) ≤ C+,

indem man
∫ t

bt
uκP (R > u)du für 0 < b < 1 nach unten durch 1−bκ+1

κ+1
tκ+1P (R > t)

abschätzt und dann b ↑ 1 laufen läßt. Insgesamt folgt somit die Behauptung. 2

2.3.1 M ≥ 0 f.s.

Es sei also M ≥ 0 fast sicher. Nach Lemma 2.3.1 genügt es für (2.2.3), für t → ∞∫ t

0
uκP (R > u)du ∼ C+t zu zeigen. Führen wir im Integral die Substitution u = es durch

und benutzen die Definition des ¯-Operators gemäß (2.3.5), erhalten wir mit Hilfe der
Definition von r(t)∫ t

0

uκP (R > u)du =

∫ log t

−∞
e(κ+1)sP (R > es)ds = tr̄(log t).

Folglich müssen wir

r̄(log t) → C+

für t → ∞ zeigen. Da für t → ∞ auch log t → ∞ läuft, untersuchen wir zunächst das
Verhalten von r̄(t) für große Werte von t. Dazu schreiben wir P (R > et) für beliebiges
t ∈ R und n ∈ N als Teleskopsumme und benutzen die Tatsache, daß die Betragsstriche
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in der Definition von Sn in (2.3.1) wegen Mn ≥ 0 für alle n ∈ N vernachlässigt werden
können sowie daß Mn ∼M für alle n ∈ N gilt:

P (R > et) =
n∑

k=1

(P (Πk−1R > et)− P (ΠkR > et)) + P (ΠnR > et)

=
n∑

k=1

(P (eSk−1R > et)− P (eSk−1MR > et)) + P (eSnR > et)

=
n−1∑
k=0

(P (R > et−Sk)− P (MR > et−Sk)) + P (eSnR > et)

=
n−1∑
k=0

∫
R
(P (R > et−u)− P (MR > et−u))P (Sk ∈ du) + P (eSnR > et).

(2.3.6)

Integriert wird hierbei nur über R, obwohl P (Sn = −∞) > 0 möglich ist, da nach Vor-
aussetzung Mn ≥ 0 für alle n ∈ N gilt. Setzen wir

Vn(dt) := eκt

n∑
k=0

P (Sk ∈ dt), n ∈ N,

erhalten wir aus (2.3.6) mit Hilfe der Definitionen von g1, r und δn

r(t) = g1 ∗ Vn−1(t) + δn(t), t ∈ R, n ∈ N.

Eine Anwendung des ¯-Operators gemäß (2.3.5) liefert mit Lemma 5.3.3 im Anhang

(2.3.7) r̄(t) = g1 ∗ Vn−1(t) + δ̄n(t) = ḡ1 ∗ Vn−1(t) + δ̄n(t), t ∈ R, n ∈ N.

Da wir r̄(t) für t → ∞ untersuchen wollen, möchten wir auch auf der rechten Seite
von (2.3.7) eine von n unabhängige Darstellung erzielen und betrachten beide Summanden
für ein beliebiges, festes t ∈ R. Die Yi sind unabhängige identisch verteilte Zufallsgrößen
mit EY1 = E log |M | ∈ [−∞, 0). Daher gilt limn→∞ Sn = −∞ fast sicher und

lim
n→∞

P (ΠnR > eu) = lim
n→∞

P (R > eu−Sn) = 0,

d.h. limn→∞ δn(t) = 0. Aufgrund majorisierter Konvergenz folgt dasselbe für δ̄n(t).
Für den Term ḡ1 ∗ Vn−1(t) erhalten wir

lim
n→∞

ḡ1 ∗ Vn−1(t) = lim
n→∞

∫
R
ḡ1(t− s)Vn−1(ds) = lim

n→∞

∫
R
ḡ1(t− s)eκs

n−1∑
k=0

P (Sk ∈ ds).

Es ist nicht klar, ob wir Grenzwertbildung und Integral vertauschen dürfen. Wir definieren
daher zunächst ein Maß η durch

η(du) := eκuP (Y1 ∈ du).

Dieses Maß gibt −∞ keine Masse (beachte EeκY1 = E |M |κ = 1) und ist aufgrund der
Voraussetzungen eine nichtarithmetische Wahrscheinlichkeitsverteilung auf R mit Erwar-
tungswert m ∈ (0,∞). Mit Hilfe von Lemma 5.3.4 im Anhang und S0 ∼ δ0 erkennen wir
eκtP (Sn ∈ dt) als Dichte der Verteilung η∗(n), die aufgrund der Unabhängigkeit und der
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identischen Verteilung der Mn und wegen (2.1.5) eine Wahrscheinlichkeitsverteilung auf
R ist, denn es gilt∫

R
η∗(n)(du) =

∫
Ω

eκSndP = Eeκ
∑n

i=1 Yi = E

n∏
i=1

eκ log|Mi| = (E|M1|κ)n
= 1.

Wir können daher durch die Summe über die Dichte von η∗(n) das Erneuerungsmaß

V (dt) :=
∑
n≥0

η∗(n)(dt) =
∑
n≥0

eκtP (Sn ∈ dt)

definieren. Wegen m 6= 0 ist f ∗ V (t) < ∞ für alle t ∈ R und d.R.i. Funktionen f .
Insbesondere gilt ḡ1 ∗ V (t) < ∞ für alle t ∈ R, da g1 ∈ L1 := L1(R,B, λλ)1 und damit ḡ1

nach Lemma 5.3.2 im Anhang d.R.i. ist. Mit dem Satz von der majorisierten Konvergenz
folgt

lim
n→∞

ḡ1 ∗ Vn−1(t) =

∫
R
ḡ1(t− s)eκs

∑
k≥0

P (Sk ∈ ds) =

∫
R
ḡ1(t− s)V (ds) = ḡ1 ∗ V (t),

und wir erhalten in (2.3.7) für n→∞ und ein beliebiges, festes t ∈ R insgesamt

(2.3.8) r̄(t) = ḡ1 ∗ V (t).

Auf diesen Ausdruck können wir das 2. Erneuerungstheorem anwenden, da
(Sn)n≥0 = (

∑n
i=1 Yi)n≥0 ein nichtarithmetischer SRW mit∫

R
ueκuP Y1(du) =

∫
R
uη(du) = m ∈ (0,∞)

und ḡ1 : R → R nach obigen Überlegungen d.R.i. ist, d.h. es gilt

lim
t→∞

r̄(t) =
1

m

∫ ∞

−∞
ḡ1(u)du.

Da außerdem mit Hilfe des Satzes von Fubini
∫∞
−∞ ḡ1(u)du =

∫∞
−∞ g1(u)du ist, folgt (2.2.3)

für t→∞ mittels

r̄(log t) → 1

m

∫ ∞

−∞
ḡ1(log u)d log u =

1

m

∫ ∞

−∞
g1(log u)d log u

=
1

m

∫ ∞

0

(P (R > u)− P (MR > u))uκ−1du

= C+.

2

2.3.2 P (M < 0) > 0 und P (M > 0) > 0

Sei P (M < 0) > 0 und P (M > 0) > 0. Wir setzen Xn := sgnΠn ∈ {−1, 1} für alle n ∈ N.
Analog zu Fall (a) möchten wir zum Beweis von (2.2.3) r̄(log t) → C+ für t → ∞ zeigen

1Banachraum der C-wertigen λλ-integrierbaren Funktionen bei λλ-f.ü. übereinstimmender Versionen
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und betrachten daher wieder P (R > et). Aus (2.3.6) erhalten wir wegen eSn = |Πn| unter
der Berücksichtigung des Vorzeichens von Πn

P (R > et) =
n−1∑
k=0

(P (Xk = 1, R > et−Sk)− P (Xk = 1,MR > et−Sk))

+
n−1∑
k=0

(P (Xk = −1, R < −et−Sk)− P (Xk = −1,MR < −et−Sk))

+P (ΠnR > et)

und daraus ähnlich zu (2.3.6)

r(t) = eκtP (R > et)

=
n−1∑
k=0

∫
R

eκueκ(t−u)(P (Xk = 1, R > et−u)− P (Xk = 1,MR > et−u))P Sk(du)

+
n−1∑
k=0

∫
R

eκueκ(t−u)(P (Xk = −1, R < −et−u)− P (Xk = −1,MR < −et−u))P Sk(du)

+δn(t)

=
n−1∑
k=0

∫
R

eκugXk
(t− u)P Sk(du) + δn(t)

=
n−1∑
k=0

EeκSkgXk
(t− Sk) + δn(t)

für alle t ∈ R und n ∈ N, d.h.

(2.3.9) r(t) =
n−1∑
k=0

EeκSkgXk
(t− Sk) + δn(t), t ∈ R, n ∈ N.

Für die ZufallsgrößenMn führen wir eine neue Verteilung ein, unter derM,M1,M2, . . . wei-
ter unabhängig identisch verteilt und die Definitionen von Πn, Yn, Sn und Xn unverändert
bleiben. Diese Verteilung ist für alle y ∈ R durch

Pκ(M ∈ dy) := |y|κP (M ∈ dy)
definiert und bildet wegen (2.1.5) eine Wahrscheinlichkeitsverteilung auf R. Bezeichnen
wir deren Erwartungswert mit Eκ, erhält (2.3.9) mit Hilfe von Korollar 5.3.5 im Anhang
die Gestalt

(2.3.10) r(t) =
n−1∑
k=0

Eκ gXk
(t− Sk) + δn(t), t ∈ R, n ∈ N.

Wir setzen

Vn,x(dt) :=
n∑

k=0

Pκ(Xk = x, Sk ∈ dt), x ∈ {−1, 1},

und erhalten
n−1∑
k=0

Eκ gXk
(t− Sk) =

∫
R
gXk

(t− u)
n−1∑
k=0

P Sk
κ (du)

=

∫
R
g1(t− u)Vn−1,1(du) +

∫
R
g−1(t− u)Vn−1,−1(du)

= g1 ∗ Vn−1,1(t) + g−1 ∗ Vn−1,−1(t).
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Somit folgt aus (2.3.10) analog zu (2.3.7)

r̄(t) = ḡ1 ∗ Vn−1,1(t) + ḡ−1 ∗ Vn−1,−1(t) + δ̄n(t)

=
n−1∑
k=0

Eκ ḡXk
(t− Sk) + δ̄n(t)

(2.3.11)

für alle t ∈ R und n ∈ N, und wir untersuchen den letzten Ausdruck für n→∞ und ein
beliebiges, festes t ∈ R.
Das Grenzwertverhalten von δ̄n(t) ist bestimmt durch das von δn(t). Diesen Term können
wir mittels

δn(t) = eκtP (ΠnR > et)

≤ eκtP (Xn = 1, R > et−Sn) + eκtP (Xn = −1, R < −et−Sn)

≤ eκtP (|R| > et−Sn)

nach oben abschätzen, und P (|R| > et−Sn) läuft mit der gleichen Begründung wie in Fall
(a) für n→∞ gegen Null, d.h. es gilt limn→∞ δ̄n(t) = 0 für ein beliebiges, festes t ∈ R.
Die Grenzwertbetrachtung des Summenterms gestaltet sich etwas aufwendiger als im Fall
(a), da der Erwartungswert der ḡXk

abhängig ist vom Produkt über die Mn, dessen Vor-
zeichen sich mit wachsendem n aufgrund der Voraussetzungen dieses Falls beliebig ändern
kann. Daher werden wir den Summenterm in zwei Terme aufteilen, die nur über die In-
dizes summieren, für die Xn = 1 bzw. Xn = −1 gilt. Um dies zu erreichen, benutzen wir,
daß X := (Xn)n≥0 mit X0 = 1 eine endliche Markov-Kette mit Zustandsraum {-1,1} und

Übergangsmatrix

(
p q
q p

)
bildet. p und q sind dabei definiert durch

p := Pκ(M > 0) =

∫
1(0,∞)(y)P

M
κ (dy) =

∫
1(0,∞)(y) |y|κ PM(dy) = E1{M>0} |M |κ

und analog
q := Pκ(M < 0) = E1{M<0} |M |κ ,

d.h. es gilt p, q > 0 und p + q = 1. η+ und η− seien weiter die unter Pκ bedingten
Verteilungen von log |M | gegeben M > 0 bzw. M < 0, d.h.

(2.3.12) η+(dy) := Pκ(log |M | ∈ dy|M > 0) = Pκ(M > 0, log |M | ∈ dy)/p,

(2.3.13) η−(dy) := Pκ(log |M | ∈ dy|M < 0) = Pκ(M < 0, log |M | ∈ dy)/q.

Mit Hilfe dieser bedingten Verteilungen können wir die bedingte Verteilung der
Yn = log |Mn| gegeben X angeben, unter der die Yn für alle n ∈ N unabhängige identisch
verteilte Zufallsgrößen sind. Wir betrachten dazu den Übergang von

Xn−1 = sgnΠn−1 = sgn
n−1∏
i=1

Mi

zu

Xn = sgn
n∏

i=1

Mi = sgn((
n−1∏
i=1

Mi) ·Mn).

Gegeben Mn > 0, ändert sich das Vorzeichen Xn−1 von
∏n−1

i=1 Mi nicht durch die Multipli-
kation mit Mn, d.h. es gilt Xn = Xn−1. Gegeben Mn < 0 und Xn−1 = −1, folgt dagegen



26 Implizite Erneuerungstheorie

Xn = 1 und analog Xn = −1 für Xn−1 = 1. Im Fall Mn < 0 gilt daher Xn 6= Xn−1, und
insgesamt folgt für die unter X bedingte Verteilung der Yn bzgl. Pκ

(2.3.14) Pκ(Yn ∈ · |X) = 1{Xn=Xn−1}η+(·) + 1{Xn 6=Xn−1}η−(·).

Seien nun 0 = N
(+)
0 < N

(+)
1 < N

(+)
2 < . . . die Indizes mit X

N
(+)
i

= 1 und

N
(−)
0 < N

(−)
1 < N

(−)
2 < . . . diejenigen mit X

N
(−)
i

= −1 für i ∈ N0. Setzen wir

I(+)
n := max{i ≥ 0 : N

(+)
i ≤ n− 1},

I(−)
n := max{i ≥ 0 : N

(−)
i ≤ n− 1}

und W
(±)
n := S

N
(±)
n
, erhalten wir in (2.3.11) die gewünschte Aufteilung

(2.3.15) r̄(t) = Eκ

I
(+)
n∑

k=0

ḡ1(t−W
(+)
k ) + Eκ

I
(−)
n∑

k=0

ḡ−1(t−W
(−)
k ) + δ̄n(t), t ∈ R, n ∈ N.

Das Grenzwertverhalten der beiden Erwartungswerte werden wir nun mit Hilfe der in (2.3.12)
und (2.3.13) definierten bedingten Verteilungen η+ und η− bestimmen.

Wir betrachten zunächst den ersten Summanden und dazu (W
(+)
n )n≥0 = (

∑N
(+)
n

i=1 Yi)n≥0

genauer. Wie in Fall (a) möchten wir für ein beliebig gewähltes festes t ∈ R für n → ∞
und damit fast sicher für I

(+)
n →∞

(2.3.16) Eκ

I
(+)
n∑

k=0

ḡ1(t−W
(+)
k ) → Eκ

∑
k≥0

ḡ1(t−W
(+)
k )

zeigen und auf den Grenzwertausdruck das 2. Erneuerungstheorem anwenden.
Die N

(+)
n sind für alle n ≥ 0 genau die Indizes, für die die Markov-Kette zum (n+ 1)-ten

Mal den Wert Eins annimmt (das Produkt
∏N

(+)
n

i=1 Mi ist zum n-ten Mal positiv). Wir

können nun W
(+)
n für alle n ∈ N in mehrere Summenterme aufteilen, deren Startindizes

die Zeitpunkte markieren, an denen die Kette einen Einszustand verläßt, und die bis zu
den Zeitpunkten aufsummieren, an denen die Kette danach zum ersten Mal wieder Eins
wird:

W (+)
n =

N
(+)
1∑

i=1

Yi +

N
(+)
2∑

i=N
(+)
1 +1

Yi + . . .+

N
(+)
n∑

i=N
(+)
k−1+1

Yi.

Setzen wir η als Verteilung von
∑N

(+)
1

i=1 Yi unter Pκ und definieren

Z
(+)
j :=

N
(+)
j∑

i=N
(+)
j−1+1

Yi, j ≥ 1,

gilt Z
(+)
j ∼ η, und die Z

(+)
j sind voneinander unabhängig. Wegen W

(+)
0 = V

N
(+)
0

= S0 = 0

ist (W
(+)
n )n≥0 = (

∑n
j=1 Z

(+)
j )

n≥0
somit ein SRW mit Zuwachsverteilung η.

Als Verteilung der Summe
∑N

(+)
1

i=1 Yi hängt die genaue Gestalt von η von der Verteilung

der einzelnen Summanden ab, die wiederum durch den Wert von N
(+)
1 , d.h. die Gestalt
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der Kette X und damit durch das Vorzeichen der zu multiplizierenden Zufallsgrößen Mn,
bestimmt ist. Gilt N

(+)
1 = n für ein beliebiges n ≥ 2, wird die in 1 startende Kette zum

Zeitpunkt n zum ersten Mal wieder 1 und nimmt folglich an den Stellen 1 bis n − 1 nur
die Werte -1 an. Für die in (2.3.14) bestimmte Verteilung der Yn gegeben X unter Pκ

bedeutet dies Y1 ∼ η−, Yn ∼ η− und Yi ∼ η+ für alle 2 ≤ i ≤ n − 1. Bezogen auf das
Produkt der Mn heißt das aber gerade M1 < 0, Mn < 0 und Mi > 0 für alle 2 ≤ i ≤ n−1,
und mit Hilfe der Definition von p und q und der Unabhängigkeit der Mn unter Pκ für
alle n ∈ N folgt

Pκ(N
(+)
1 = n) = Pκ(M1 < 0,M2 > 0, . . . ,Mn−1 > 0,Mn < 0)

= q2pn−2.

Für den Fall N
(+)
1 = 1 ergibt sich Y1 ∼ η+ und Pκ(N

(+)
1 = 1) = p.

Insgesamt folgt somit aufgrund der Unabhängigkeit der Yn für die Gestalt von η

η(·) = Pκ(

N
(+)
1∑

i=1

Yi ∈ · )

=
∑
n≥1

Pκ(N
(+)
1 = n,

n∑
i=1

Yi ∈ · )

=
∑
n≥1

Pκ(
n∑

i=1

Yi ∈ · |N (+)
1 = n)Pκ(N

(+)
1 = n)

= Pκ(Y1 ∈ · |N (+)
1 = 1)Pκ(N

(+)
1 = 1)

+
∑
n≥2

Pκ(
n∑

i=1

Yi ∈ · |N (+)
1 = n)Pκ(N

(+)
1 = n)

= p η+(·) +
∑
n≥2

q2pn−2(Pκ(Y1 ∈ · |N (+)
1 = n) ∗ . . . ∗ Pκ(Yn ∈ · |N (+)

1 = n))

= p η+(·) +
∑
n≥2

q2pn−2η
∗(2)
− (·) ∗ η∗(n−2)

+ (·),

d.h.

(2.3.17) η = p η+ +
∑
n≥2

q2pn−2η
∗(2)
− ∗ η∗(n−2)

+ .

In Lemma 2.3.2 begründen wir, daß η nichtarithmetisch ist und den Erwartungswert
2m besitzt. Wir können daher das Erneuerungsmaß V :=

∑
n≥0 η

∗(n) bilden und erhal-
ten wie in Fall (a) mit dem Satz von der majorisierten Konvergenz die Konvergenz der

Erwartungswerte in (2.3.16). Da Z
(+)
j ∼ η für alle j ≥ 1 und damit wegen (2.3.19) in

Lemma 2.3.2

EκZ
(+)
1 = 2m ∈ (0,∞)

gilt, erhalten wir mit Hilfe des 2. Erneuerungstheorems

Eκ

∑
k≥0

ḡ1(t−W
(+)
k ) → 1

2m

∫ ∞

−∞
g1(u)du

für t→∞.
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Mit dem zweiten Summenterm aus (2.3.15) verfahren wir in ähnlicher Weise. Setzen wir

Z
(−)
j :=


∑N

(−)
j

i=N
(−)
j−1+1

Yi , j ≥ 1

∑N
(−)
0

i=1 Yi , j = 0

,

so gilt (W
(−)
n )n≥0 = (

∑n
j=0 Z

(−)
j )n≥0. Die Z

(−)
j besitzen dabei für alle j ≥ 1 die Verteilung

η (beachte Y
N

(−)
j−1+1

∼ η−, YN
(−)
j

∼ η− für den Fall N
(−)
j−1 + 1 6= N

(−)
j und j ≥ 1), und für

j = 0 gilt N
(−)
0 > 0, d.h. (W

(−)
n )n≥0 ist ein VRW. N

(−)
0 ist der erste Index, für den die

in Eins startende Kette X den Wert -1 annimmt und somit der, der die erste negative
Zufallsgröße Mn kennzeichnet. Für die Verteilung der Yn bedeutet dies gemäß (2.3.14)

Y
N

(−)
0

∼ η− und Yi ∼ η+ für alle 1 ≤ i ≤ N
(−)
0 − 1. Infolgedessen gilt

Pκ(N
(−)
0 = n) = Pκ(M1 > 0, . . . ,Mn−1 > 0,Mn < 0)

= qpn−1,

und analog zur Berechnung von η im Fall des ersten Summenterms erhalten wir mit

η0 := P
Z

(−)
0

κ

η0(·) = Pκ(

N
(−)
0∑

i=1

Yi ∈ · )

=
∑
n≥1

Pκ(
n∑

i=1

Yi ∈ · |N (−)
0 = n)Pκ(N

(−)
0 = n)

=
∑
n≥1

qpn−1(Pκ(Y1 ∈ · |N (−)
0 = n) ∗ . . . ∗ Pκ(Yn ∈ · |N (−)

0 = n))

=
∑
n≥1

qpn−1η− ∗ η∗(n−1)
+ .

(2.3.18)

Es gilt demnach W
(−)
n ∼ η0 ∗ η∗(n) für alle n ∈ N0, und mit Hilfe des Erneuerungsmaßes

η0 ∗
∑

n≥0 η
∗(n) folgt analog zu (2.3.16) für beliebiges, festes t ∈ R

Eκ

I
(−)
n∑

k=0

ḡ−1(t−W
(−)
k ) → Eκ

∑
k≥0

ḡ−1(t−W
(−)
k )

für n → ∞, da g−1 ∈ L1 und damit ḡ−1 wie ḡ1 nach Lemma 5.3.2 im Anhang d.R.i. ist.
Aufgrund von (2.3.19) in Lemma 2.3.2 erhalten wir außerdem

EκZ
(−)
1 = 2m ∈ (0,∞)

und daher mit Hilfe des 2. Erneuerungstheorems

Eκ

∑
k≥0

ḡ−1(t−W
(−)
k ) → 1

2m

∫ ∞

−∞
g−1(u)du, t→∞.
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(2.2.7) folgt nun mittels

r̄(log t) → 1

2m

∫ ∞

−∞
g1(log u) + g−1(log u)d log u

=
1

2m

∫ ∞

0

(P (R > u)− P (MR > u) + P (R < −u)− P (MR < −u))uκ−1du

=
1

2m

∫ ∞

0

(P (|R| > u)− P (|MR| > u))uκ−1du

= C+

für t→∞. 2

Lemma 2.3.2 Mit den Bezeichnungen aus dem ersten Teil des Beweises von Fall (b) des
Impliziten Erneuerungstheorems gelten unter den dort angenommenen Voraussetzungen

(2.3.19)

∫
R
yη(dy) = 2m,

(2.3.20) η ist nichtarithmetisch.

Beweis. Seien m+, m− die Erwartungswerte von η+, η−, dann folgt mit Hilfe der
geometrischen Reihe∫

R
yη(dy) = p

∫
R
yη+(dy) +

∑
n≥2

q2pn−2

∫
R
yη

∗(2)
− ∗ η∗(n−2)

+ (dy)

= pm+ +
∑
n≥2

q2pn−2(2m− + (n− 2)m+)

= pm+ + 2qm−
∑
n≥2

qpn−2 + pm+ q2
∑
n≥2

(n− 2) pn−3

= pm+ + 2qm− + pm+ q2 d

dp
(
∑
n≥0

pn)

= 2(pm+ + qm−).

Wegen

E1{M>0} |M |κ log |M | /p =
1

p

∫
R
1(0,∞)(y) log |y|PM

κ (dy)

=
1

p

∫
R
y Pκ(M > 0, log |M | ∈ dy)

=

∫
R
y η+(dy)

= m+

und analog
E1{M<0} |M |κ log |M | /q = m−

gilt 2(pm+ + q m−) = 2m und daher (2.3.19).
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Zum Nachweis von (2.3.20) betrachten wir den Träger von η, d.h. von Z
(+)
1 =

∑N
(+)
1

i=1 Yi

und somit von log |M | . log |M | ist unter Pκ nichtarithmetisch. Es existiert daher eine
Teilmenge B des Trägers dieser Verteilung, so daß die von B erzeugte additive Gruppe
dicht in R ist. Seien B+, B− die Schnitte von B mit den Trägern der Verteilung von
1{M>0} log |M | und 1{M<0} log |M | . Setzen wir

B∗ := {ω : ω ∈ B+} ∪ {2ω : ω ∈ B−},

so erzeugt B∗ ebenfalls eine additive in R dichte Gruppe. Gilt b ∈ B+, erhalten wir für
alle b ∈ B∗ und ε > 0

Pκ(|Z(+)
1 − b| < ε) = PZ

(+)
1

κ ((b− ε, b+ ε))

= η((b− ε, b+ ε))

≥ p η+((b− ε, b+ ε))

= p
1

p
Pκ(M > 0, log |M | ∈ (b− ε, b+ ε))

> 0.

Für 1
2
b ∈ B− folgt in ähnlicher Weise

Pκ(|Z(+)
1 − b| < ε) ≥ q2η

∗(2)
− ((b− ε, b+ ε))

= q2

∫
R

∫
R
1(b−ε,b+ε)(x+ y)η−(dx)η−(dy)

≥ q2

∫
R

∫
R
1( 1

2
(b−ε), 1

2
(b+ε))(x)1( 1

2
(b−ε), 1

2
(b+ε))(y)η−(dx)η−(dy)

= q2(η−(
1

2
(b− ε),

1

2
(b+ ε)))2

= q2 1

q2

(
Pκ(M < 0, log |M | ∈ (

1

2
(b− ε),

1

2
(b+ ε)))

)2
> 0.

b liegt daher im Träger von Z
(+)
1 und somit im Träger von η. Da B∗ dicht in R ist, kann

η nicht gitterverteilt sein. 2

2.3.3 M ≤ 0 f.s.

Ist M ≤ 0 fast sicher, gilt auch M ′ ≤ 0 und folglich MM ′ ≥ 0 fast sicher. Für MM ′

können wir daher die in Fall (a) bereits gewonnenen Ergebnisse nutzen, sofern wir die
entsprechende Voraussetzung

(2.3.21)

∫ ∞

0

|P (R > t)− P (MM ′R > t)| tκ−1dt <∞

zeigen. Mit Hilfe der Dreiecksungleichung erhalten wir∫ ∞

0

|P (R > t)− P (MM ′R > t)| tκ−1dt ≤
∫ ∞

0

|P (R > t)− P (MR > t)| tκ−1dt

+

∫ ∞

0

|P (MR > t)− P (MM ′R > t)| tκ−1dt.
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Wegen (2.2.1) ist das erste Integral der rechten Seite endlich ist. Da M ≤ 0 f.s. gilt,
erhalten wir für das zweite Integral mit Hilfe des Satzes von Fubini und der Substitution
t = −uv ∫

(0,∞)

|P (MR > t)− P (MM ′R > t)| tκ−1λλ(dt)

=

∫
(0,∞)

∫
(−∞,0)

|P (uR > t)− P (uM ′R > t)|PM(du)tκ−1λλ(dt)

=

∫
(−∞,0)

∫
(0,∞)

|P (uR > t)− P (uM ′R > t)| tκ−1λλ(dt)PM(du)

=

∫
(−∞,0)

(−u)κ

∫
(0,∞)

|P (R < −v)− P (M ′R < −v)| vκ−1λλ(dv)PM(du)

=

∫
Ω

|M |κ dP
∫

(0,∞)

|P (R < −v)− P (M ′R < −v)| vκ−1λλ(dv)

= E |M |κ
∫

(0,∞)

|P (R < −v)− P (M ′R < −v)| vκ−1λλ(dv)

=

∫
(0,∞)

|P (R < −v)− P (M ′R < −v)| vκ−1λλ(dv).

Wegen (2.2.2) ist |P (R < −v)− P (M ′R < −v)| vκ−1 uneigentlich Riemann-integriebar
auf (0,∞) und daher insgesamt (2.3.21) erfüllt. Aus Fall (a) folgt dann mit
m2 := E |MM ′|κ log |MM ′|

P (R > t) ∼ C+t
−κ

für t → ∞, wobei wir wegen M ∼ M ′ die Formel für C+ mit m2 anstelle von 2m

erhalten, indem wir die Integralumformung zum Nachweis von (2.3.21) noch einmal ohne
Betragsstriche durchführen. Damit C+ vollständig mit (2.2.7) übereinstimmt, müssen wir
noch m2 = 2m zeigen. Dies folgt aufgrund der Unabhängigkeit von M und M ′ und mit
Hilfe des Satzes von Fubini mittels

m2 = E |MM ′|κ log |MM ′|

=

∫
(−∞,0)×(−∞,0)

|xy|κ log |xy|P (M,M ′)(dx, dy)

=

∫
(−∞,0)×(−∞,0)

|xy|κ (log |x|+ log |y|)d(PM ⊗ PM ′
)

=

∫
|y|κ

∫
|x|κ log |x|PM(dx)PM ′

(dy)

+

∫
|x|κ

∫
|y|κ log |y|PM ′

(dy)PM(dx)

= E |M ′|κE |M |κ log |M |+ E |M |κE |M ′|κ log |M ′|
= 2m.

Insgesamt gilt somit

C+ =
1

2m

∫ ∞

0

(P (|R| > t)− P (|MR| > t))tκ−1dt

und folglich (2.2.7). 2
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In Kapitel 2 haben wir für die Flanken der unbekannten Verteilung der Zufallsgröße R

tκP (R > t) ∼ C+

für t→∞ gezeigt. In diesem Kapitel wollen wir die Annäherung von tκP (R > t) an C+

genauer beschreiben. Mit Hilfe von Satz 3.2.1 und 3.3.1 werden wir zeigen, daß tκP (R > t)
unter bestimmten Voraussetzungen für ein bestimmtes γ > 0 und große Werte von t nur
um O(t−γ) von C+ abweicht (analoges gilt für tκP (R < −t)).
Um dies zu erreichen, benötigen wir eine spezielle Zerlegung eines Erneuerungsmaßes
nach Stone, die wir im folgenden Abschnitt vorstellen werden. Für ein Maß µ ∈ M(R)1

vereinbaren wir dazu

Φµ(θ) :=

∫
R

eiθtµ(dt), θ ∈ C.

Der Definitionsbereich von Φµ lautet damit

D(Φµ) = {θ ∈ C :

∫
R
|eiθt|µ(dt) <∞} = {θ ∈ C :

∫
R

e−Im(θ)tµ(dt) <∞}.

Setzen wir

µθ(dt) := e−Im(θ)tµ(dt), θ ∈ D(Φµ),

so ist µθ ∈ M(R) und

Φµ(θ) =

∫
R

eiRe(θ)tµθ(dt), θ ∈ D(Φµ),

die 1-dimensionale Fouriertransformierte φµθ
von µθ an der Stelle Re(θ). Wir benutzen

im folgenden außerdem die für alle θ ∈ R definierte momenterzeugende Funktion

ψµ(θ) :=

∫
R

eθtµ(dt)

(vgl. [AWT], Definition 40.3).

1Menge der endlichen Maße auf (R, B)

33
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3.1 Eine Zerlegung nach Stone

Satz 3.1.1. Sei η ein Wahrscheinlichkeitsmaß auf R, das m :=
∫

R uη(du) > 0 sowie∫
R u

2η(du) < ∞ erfülle, und es gebe ein α > 0 mit ψη(α) < ∞. Sei η außerdem quasi
λλ-stetig, d.h. es existieren ein n0 ∈ N, eine Konstante δ ∈ [0, 1) sowie Wahrscheinlich-
keitsmaße ξ0, ξ1 mit

(3.1.1) η∗(n0) = (1− δ)ξ0 + δξ1,

wobei ξ0 λλ-stetig ist und ξ0 = fλλ gelte. Dann folgt:

(a) Es existiert ein β ∈ (0, α] mit den Eigenschaften

(i) ψξ1(β) < 1
δ
,

(ii) Φη(θ) 6= 1 für alle θ ∈ C mit Im(θ) = −β.

(b) Für das Erneuerungsmaß V :=
∑

n≥0 η
∗(n) gilt

V = V0 + V1,

wobei V1 ∈ M(R) mit ψV1(β) < ∞ ist und V0 λλ-stetig mit einer stetigen beschränkten
Dichte v0, die

(3.1.2) v0(x) =
1

m
− 1

2π

∫
C
e−iθx dθ

1− Φη(θ)
+ o(e−βx), x→∞,

erfüllt.
( C ist hier eine einfach geschlossene Kurve in D := {θ ∈ C : Im(θ) ∈ (−β, 0)} ⊆ D(Φη),
die alle Nullstellen von 1− Φη in D umläuft.)

Die Inklusion D ⊆ D(Φη) gilt für alle θ ∈ D aufgrund der Abschätzung∫
R

e−Im(θ)tη(dt) <

∫
R

eβtη(dt) = ψη(β) ≤ ψη(α).

Als analytische Transformierte ist Φη holomorph in D und stetig in D.
Aufgrund des Beweises von Satz 3.1.1 wissen wir, daß höchstens endlich viele Nullstellen
von 1− Φη in D liegen und wir daher einen geeigneten Weg C finden, der diese umläuft.
Wir zeigen im folgenden Lemma, daß (3.1.2) dann aufgrund des Residuensatzes neben der
Integral- auch eine Summendarstellung besitzt. Existieren keine Nullstellen von 1 − Φη

in D, ist der Integrand in (3.1.2) holomorph und das Integral nach dem Cauchyschen
Integralsatz gleich Null.

Lemma 3.1.2. Unter den Voraussetzungen von Satz 3.1.1 besitzt 1−Φη höchstens endlich
viele Nullstellen in D. Seien θ1, . . . , θn1 diese Nullstellen mit Vielfachheiten k1, . . . , kn1 ,
n1 ∈ N und ki ∈ N für 1 ≤ i ≤ n1, sowie

al,j := resθl

(θ − θl)
j−1

1− Φη(θ)
, j = 1, . . . , kl, l = 1, . . . , n1.

Dann gilt neben (3.1.2) außerdem

v0(t) =
1

m
+

n1∑
l=1

kl∑
j=1

tj−1

(j − 1)!
Re
(
e−iθlt(−i)jal,j

)
+ o(e−βt), t→∞.
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Beweis. Aus Teil (a) des Beweises von Satz 3.1.1 folgt, daß 1− Φη höchstens endlich
viele Nullstellen in D besitzt. Wir erhalten dies auch noch auf einem anderem Weg. Wir
wissen (ebenfalls aufgrund des gerade genannten Beweises), daß Φη(θ) den Wert 1 nur in
einer beschränkten Teilmenge von D annimmt. Für reelles θ gilt Φη(θ) = 1 nur für θ = 0,
und dies ist wegen

Φη(θ) = 1 + imθ + o(θ), θ → 0,

eine isolierte Nullstelle von 1 − Φη(θ). Da außerdem nach Voraussetzung Φη(θ) 6= 1 für

alle θ ∈ C mit Im(θ) = −β gilt, folgt so noch einmal die erste Behauptung.

Sind θ1, . . . , θn1 die Nullstellen von 1−Φη in D mit Vielfachheiten k1, . . . , kn1 , so ist nach
Voraussetzung

1

1− Φη(θ)
=

kl∑
v=1

al,v

(θ − θl)
v + hl(θ), θ ∈ C,

die Laurent-Entwicklung der Funktion 1
1−Φη(θ)

um θl mit einer in θl holomorphen Funktion

hl für l = 1, . . . , n1. Wir setzen

ft(θ) :=
e−iθt

1− Φη(θ)
, t ∈ R, θ ∈ C,

und für l = 1, . . . , n1, t ∈ R und θ ∈ C

gl,t(θ) := (θ − θl)
klft(θ)

= e−iθt

kl∑
v=1

al,v(θ − θl)
kl−v + e−iθt(θ − θl)

klhl(θ)

=

kl−1∑
v=0

al,kl−v e−iθt(θ − θl)
v + hkl,t(θ),

wobei hkl,t(θ) := e−iθt(θ − θl)
klhl(θ) sei. Da ft in θl einen Pol der Ordnung kl hat, folgt

für das Integral in (3.1.2) mit Hilfe des Residuensatzes sowie der Formel zur Berechnung
von Residuen für Pole höherer Ordnung (vgl. [FiLi], S.147)

− 1

2π

∫
C
ft(θ)dθ = −i

n1∑
l=1

resθl
ft = −i

n1∑
l=1

1

(kl − 1)!
gl,t

(kl−1)(θl).

Mit Hilfe einer Induktion nach n ∈ N0, die wir im Anschluß an den Beweis durchführen,
erhalten wir für beliebiges 0 ≤ n ≤ kl − 1 als allgemeine n-te Ableitung von gl,t

g
(n)
l,t (θ) =

kl−1∑
v=0

al,kl−v

n∑
j=0

(
n

j

)
(−it)je−iθt v!

(v − (n− j))!
(θ − θl)

v−(n−j)

+h
(n)
kl,t

(θ)

=
n∑

j=0

kl−1∑
v=0

al,kl−v

(
n

j

)
(−it)je−iθt v!

(v − (n− j))!
(θ − θl)

v−(n−j)

+h
(n)
kl,t

(θ),
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wobei h
(n)
kl,t

insbesondere h
(n)
kl,t

(θl) = 0 erfüllt. Für θ = θl und n = kl − 1 erhalten wir

g
(kl−1)
l,t (θl) =

kl−1∑
j=0

al,kl−(kl−1−j)

(
kl − 1

j

)
(−it)je−iθlt(kl − 1− j)!

=

kl∑
j=1

al,j
(kl − 1)!

(j − 1)!
(−it)j−1e−iθlt

und somit

(−i)resθl
ft =

kl∑
j=1

tj−1

(j − 1)!
e−iθlt(−i)jal,j.

Da v0 reellwertig ist, folgt die Behauptung, indem wir resθl
ft auf den Realteil einschränken.

Es fehlt der Nachweis für die Formel der n-ten Ableitung von gl,t. Der Fall n = 0 liefert
wieder gl,t(θ). Gilt die Gleichung für ein beliebiges festes n ∈ N0, folgt mit Hilfe der
Induktionsvoraussetzung

g
(n+1)
l,t (θ)− h

(n+1)
kl,t

(θ)

=
d

dθ
(g

(n)
l,t (θ))− h

(n+1)
kl,t

(θ)

=
d

dθ

(
kl−1∑
v=0

al,kl−v

n∑
j=0

(
n

j

)
(−it)je−iθt v!

(v − (n− j))!
(θ − θl)

v−(n−j)

)
.

Leiten wir die innere der beiden Summen nach θ ab, so folgt

d

dθ

n∑
j=0

(
n

j

)
(−it)je−iθt v!

(v − (n− j))!
(θ − θl)

v−(n−j)

=
n∑

j=0

(
n

j

)
(−it)j+1e−iθt v!

(v − (n− j))!
(θ − θl)

v−(n−j)

+
n∑

j=0

(
n

j

)
(−it)je−iθt v!

(v − (n− j))!
(v − (n− j))(θ − θl)

v−(n−j)−1

=
n+1∑
j=1

(
n

j − 1

)
(−it)je−iθt v!

(v − (n− j + 1))!
(θ − θl)

v−(n−j+1)

+
n∑

j=0

(
n

j

)
(−it)je−iθt v!

(v − (n− j + 1))!
(θ − θl)

v−(n−j+1)

=
n+1∑
j=0

(
n+ 1

j

)
(−it)je−iθt v!

(v − ((n+ 1)− j))!
(θ − θl)

v−((n+1)−j)

und damit die Behauptung. 2

Für den Beweis von Satz 3.1.1 benötigen wir ein Lemma über die Umkehrformel von
Dichten geeigneter Erneuerungsmaße, dessen Beweis wir in den Anhang gestellt haben.
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Lemma 3.1.3. Seien χ und µ Wahrscheinlichkeitsmaße auf R, χ λλ-stetig mit einer zwei-
mal stetig differenzierbaren Dichte q. Sei m :=

∫
R xµ(dx) > 0,

∫
R x

2µ(dx) <∞, und exi-

stiere eine λλ-stetige Komponente von µ. Dann ist das Maß
∑

n≥0 χ ∗ µ∗(n) λλ-stetig mit
einer stetigen Dichte p, welche für alle x ∈ R die Gleichung

p(x)− 1

m
χ(−∞, x] =

1

2π

∫ ∞

−∞
e−ixθΦχ(θ)

(
1

1− Φµ(θ)
− 1

−imθ

)
dθ

erfüllt.

Beweis von Satz 3.1.1. (a) Für eine Funktion f ∈ L1 sei

fθ(t) := e−Im(θ) tf(t), θ ∈ C.

Ist fθ ∈ L1, so ist die durch

(3.1.3) f̃(θ) :=

∫
R

eiθtf(t)λλ(dt) =

∫
R

eiRe(θ) tfθ(t)λλ(dt), θ ∈ C,

definierte Funktion die Fouriertransformierte f̂θ von fθ an der Stelle Re(θ) (vgl. [AWT],

S.219). Sei Dα := {θ ∈ C : Im(θ) ∈ (−α, 0)} und n0 außerdem so gewählt, daß (3.1.1)
erfüllt ist. Aufgrund des Multiplikationssatzes für analytische Transformierte (vgl. [AWT],
Satz 40.7) gilt ψη∗(n0) = (ψη)

n0 und damit wegen ψη(α) <∞ und (1− δ)ψξ0(α) > 0,
δψξ1(α) > 0

ψη∗(n0)(α) = (1− δ)ψξ0(α) + δψξ1(α) <∞,

d.h. ψξ0(α) < ∞, ψξ1(α) < ∞ und Dα ⊆ D(Φξ0), Dα ⊆ D(Φξ1). Wir erhalten daraus

insbesondere limβ→0 ψξ1(β) = limβ→0

∫
R eβtξ1(dt) = 0 und somit die Existenz eines

β1 ∈ (0, α) mit ψξ1(β) < 1
δ

für alle β ≤ β1. Wegen ξ0 = fλλ erhalten wir weiterhin

Φξ0(θ) = f̃(θ) für alle θ ∈ Dβ1 := {θ ∈ C : Im(θ) ∈ (−β1, 0)} mit f̃ gemäß (3.1.3), und
nach dem Lemma von Riemann-Lebesgue konvergiert Φξ0(θ) für |Re θ| → ∞ gleichmäßig
im Streifen Im(θ) ∈ [−β1, 0] gegen Null. Da außerdem

|δΦξ1(θ)| ≤ δ

∫
R
|eiθt|ξ1(dt) = δ

∫
R

e−Im(θ)tξ1(dt) < δψξ1(β1) < 1

für alle θ ∈ Dβ1 gilt, nimmt Φη∗(n0)(θ) und damit Φη(θ) den Wert 1 nur in einer be-

schränkten Teilmenge von Dβ1 = {θ ∈ C : Im(θ) ∈ [−β1, 0]} an. Als holomorphe Funk-
tion hat 1 − Φη(θ) in diesem beschränkten Gebiet höchstens endlich viele Nullstellen
(andernfalls würden sich dort die Nullstellen häufen, und nach dem Identitätssatz für Po-
tenzreihen würde 1−Φη(θ) ≡ 0 gelten). Daher läßt sich ein β2 ∈ (0, β1] finden, so daß auf
der Geraden {θ ∈ C : Im(θ) = −β2} keine 1-Stellen von Φη liegen.

(b) In diesem Teil des Beweises werden wir das Erneuerungsmaß V in die Summe der
Maße V0 und V1 zerlegen und diese dabei so wählen, daß V1 ∈ M(R) sowie v0 λλ-stetig
ist mit einer Dichte in der Gestalt von (3.1.2). Dies geschieht mit Hilfe der in (3.1.1)
vorgegebenen Zerlegung von η∗(n0), die aufgefaßt werden kann als Summe eines λλ-stetigen
Maßes (1−δ)ξ0 mit Dichte fδ und eines Maßes δξ1 mit δψξ1(β) < 1. Man beachte, daß aus

δnξ
∗(n)
1 (R) = δn für alle n ∈ N0 die Ungleichung

∑
n≥0 δ

nξ
∗(n)
1 (R) < ∞ für alle δ ∈ [0, 1)

folgt und damit aufgrund von monotoner Konvergenz

µ ∗
∑
n≥0

δnξ
∗(n)
1 =

∑
n≥0

δn(µ ∗ ξ∗(n)
1 )
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für alle µ ∈ M(R) gilt. Wir können außerdem ohne Einschränkung annehmen, daß die

stetige Dichte f von ξ0 beschränkt ist und einen kompakten Träger hat (vgl. [ASP], S.230,
Beweis von Satz 26.6) und damit nach Satz 1.1.6 d.R.i. ist. Für die angestrebte Zerlegung
von V definieren wir V2 :=

∑
n≥0 η

∗(nn0) und erhalten

V2 = δ0 +
∑
n≥1

η∗(nn0) = δ0 + η∗(n0) ∗

(∑
n≥0

η∗(nn0)

)
= δ0 + η∗(n0) ∗ V2.

Ersetzen wir η∗(n0) durch die rechte Seite von (3.1.1) und beachten V2 = δ0 ∗ V2, so folgt

δ0 ∗ V2 = δ0 + (1− δ)ξ0 ∗ V2 + δξ1 ∗ V2

⇔ (δ0 − δξ1) ∗ V2 = δ0 + (1− δ)ξ0 ∗ V2

und daher wegen

(
∑
n≥0

δnξ
∗(n)
1 ) ∗ (δ0 − δξ1) =

∑
n≥0

δnξ
∗(n)
1 −

∑
n≥1

δnξ
∗(n)
1 = δ0

V2 = (
∑
n≥0

δnξ
∗(n)
1 ) ∗ (δ0 + (1− δ)ξ0 ∗ V2).

Wir setzen

V1 := (

n0−1∑
k=0

η∗(k)) ∗ (
∑
n≥0

δnξ
∗(n)
1 ),

V0 := (1− δ)ξ0 ∗ V1 ∗ V2

und erhalten die gewünschte Zerlegung von V mit Hilfe der oben gewonnenen Gleichung
für V2 mittels

V = (

n0−1∑
k=0

η∗(k)) ∗ (
∑
n≥0

η∗(nn0))

= (

n0−1∑
k=0

η∗(k)) ∗ V2

= V1 ∗ (δ0 + (1− δ)ξ0 ∗ V2)

= V1 + (1− δ)ξ0 ∗ V1 ∗ V2

= V1 + V0.

Für die Maße V0 und V1 weisen wir nun geforderten Bedingungen nach.

Wegen
∑n0−1

k=0 η∗(k) ∈ M(R) und daher

(

n0−1∑
k=0

η∗(k)) ∗ (
∑
n≥0

δnξ
∗(n)
1 ) =

∑
n≥0

δn

n0−1∑
k=0

η∗(k) ∗ ξ∗(n)
1
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folgt

∫
R
dV1 =

∫
R

∑
n≥0

δnd(

n0−1∑
k=0

η∗(k) ∗ ξ∗(n)
1 )

=
∑
n≥0

δn

n0−1∑
k=0

∫
R
d(η∗(k) ∗ ξ∗(n)

1 )

= n0

∑
n≥0

δn

=
n0

1− δ
,

d.h. es gilt V1 ∈ M(R). Mit dem Multiplikationssatz für analytische Transformierte
(vgl. [AWT], Satz 40.7) erhalten wir außerdem

ψV1(β) =

n0−1∑
k=0

(ψη(β))k
∑
n≥0

δn(ψξ1(β))n <∞

wegen |δψξ1(β)| < 1 und ψη(β) <∞, und V1 erfüllt somit die Bedingungen des Satzes.

V0 ist aufgrund der λλ-Stetigkeit von ξ0 selber λλ-stetig, und wir setzen V0 = v0λλ für eine
stetige Dichte v0. Ohne Einschränkung konnten wir das Maß ξ0 so wählen, daß dessen
Dichte f und damit auch fδ d.R.i. ist. Indem wir den Satz von der majorisierten Konver-
genz auf

v0(x) =

∫
R
fδ ∗ V2(x− u)V1(du)

anwenden und V1 ∈ M(R) beachten, erhalten wir mit Satz 1.1.8 fδ ∗ V2(x) → 0 für

x→ −∞ und daher v0(x) → 0 für x→ −∞.

(3.1.2) und somit das Verhalten von v0(x) für x → ∞ zeigen wir mit Hilfe von Lem-
ma 3.1.3. Da ξ0 nach Voraussetzung ein λλ-stetiges Wahrscheinlichkeitsmaß auf R mit
beschränkter Dichte ist, gilt dasselbe für

χ :=
(1− δ)

n0

ξ0 ∗ V1,

denn V1 besitzt Masse n0

1−δ
. Nach Wahl von η ist η∗(n0) ebenfalls ein Wahrscheinlichkeitsmaß

mit
∫

R xdη
∗(n0) = n0m > 0 und

∫
R x

2dη∗(n0) <∞, und
∑

n≥0 χ ∗ η∗(nn0) besitzt wegen

∑
n≥0

χ ∗ η∗(nn0) = χ ∗
∑
n≥0

η∗(nn0) = χ ∗ V2 =
V0

n0

die stetige Dichte v0

n0
. Mit Lemma 3.1.3 folgt somit

1

n0

v0(x)−
χ(−∞, x]

n0m
=

1

2π

∫ ∞

−∞
e−ixθΦχ(θ)

(
1

1− (Φη(θ))n0
− 1

−in0mθ

)
dθ.
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Wegen χ(−∞, x] = 1− χ(x,∞) erhalten wir außerdem mit dem Satz von der majorisier-
tern Konvergenz

χ(x,∞) = ξ0 ∗
1− δ

n0

V1(x,∞)

=

∫
R

∫
R
1(x,∞)(u+ s) ξ0(du)

1− δ

n0

V1(ds)

=

∫
R
ξ0(x− s,∞)

1− δ

n0

V1(ds)

= o(e−βx)

für x → ∞, da die Dichte von ξ0 einen kompakten Träger besitzt. Für x → ∞ erfüllt v0

somit

(3.1.4) v0(x)−
1

m
=
n0

2π

∫ ∞

−∞
e−ixθΦχ(θ)

(
1

1− (Φη(θ))n0
− 1

−in0mθ

)
dθ + o(e−βx).

Wir nehmen weiter an, daß 1 − Φη(θ) nur eine Nullstelle in D besitzt. Sei θ0 ∈ D diese
Nullstelle und k ihre Ordnung (der allgemeine Fall folgt, indem analoge Terme für die an-
deren Nullstellen hinzugefügt werden). Die Funktion 1

1−Φη(θ)
ist um θ0 in eine Laurentreihe

entwickelbar, die die Form

1

1− Φη(θ)
=

k∑
v=1

av

(θ − θ0)
v + h(θ), θ ∈ C,

mit einer in θ0 holomorphen Funktion h und Residuum a1 in θ0 besitzt. Setzen wir
h̃(θ) := n0∑n0−1

i=0 (Φη(θ))ih(θ), so folgt dies ebenfalls für n0

1−(Φη(θ))n0
wegen

n0

1− (Φη(θ))n0
=

n0∑n0−1
i=0 (Φη(θ))i

(
1

1− Φη(θ)

)

und
∑n0−1

i=0 (Φη(θ0))
i = n0.Multiplizieren wir den geklammerten Ausdruck im Integranden

von (3.1.4) mit n0, ist dieser folglich ebenfalls in eine Laurentreihe mit den Koeffizienten
a1, . . . , ak im Hauptteil entwickelbar. Subtrahieren wir von der Laurentreihe den Haupt-
teil, erhalten wir die in D holomorphe und in D beschränkte und stetige Funktion

w(θ) :=
n0

1− (Φη(θ))n0
− 1

−imθ
−

k∑
v=1

av

(θ − θ0)
v , θ ∈ C.

Wir setzen R := {θ ∈ C : Im(θ) = −β} und fβ(θ) := Φχ(θ − iβ)w(θ − iβ) für alle θ ∈ C
und bemerken, daß fβ ∈ L1 wegen ψχ(β) = 1−δ

n0
ψξ0(β)ψv1(β) <∞ und der Beschränktheit

von w in D gilt. Nach dem Cauchyschen Integralsatz ist das Integral holomorpher Funk-
tionen über den Rand von D gleich Null. Wegen limn→∞

∫ −n

−n−iβ
e−ixθΦχ(θ)w(θ)dθ < ∞

und limn→∞
∫ n−iβ

n
e−ixθΦχ(θ)w(θ)dθ < ∞ können wir daher e−ixθΦχ(θ)w(θ) über R und

R integrieren und erhalten∫ ∞

−∞
e−ixθΦχ(θ)w(θ)dθ =

∫ ∞

−∞
e−ix(θ−iβ)Φχ(θ − iβ)w(θ − iβ)dθ

= e−βxf̂β(−x)
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(vgl. (3.1.3)). Nach dem Lemma von Riemann-Lebesgue gilt limx→∞ f̂β(−x) = 0, so daß
wir anstelle von (3.1.4)

(3.1.5) v0(x)−
1

m
=

1

2π

∫ ∞

−∞
e−ixθΦχ(θ)

k∑
v=1

av

(θ − θ0)
v dθ + o(e−βx)

für x → ∞ erhalten. Wir entfernen nun Φχ(θ) mit einer analogen Überlegung aus dem
Integral in (3.1.5). Wegen |δΦξ1(θ)| < 1 gilt

Φχ(θ) =
(1− δ)

n0

Φξ0(θ)

n0−1∑
k=0

(Φη(θ))
k
∑
n≥0

δn(Φξ1(θ))
n

=
(1− δ)

n0

Φξ0(θ)

n0−1∑
k=0

(Φη(θ))
k 1

1− δΦξ1(θ)

=

∑n0−1
k=0 (Φη(θ))

k

n0

(
1− 1− (1− δ)Φξ0(θ)− δΦξ1(θ)

1− δΦξ1(θ)

)
=

∑n0−1
k=0 (Φη(θ))

k

n0

(
1− 1− (Φη(θ))

n0

1− δΦξ1(θ)

)
.

Es folgt Φχ(θ0) = 1, und Φχ(θ) − 1 hat in θ0 eine Nullstelle der Ordnung k, da dies für
1− (Φη(θ))

n0 zutrifft. Die durch

u(θ) := (Φχ(θ)− 1)
k∑

v=1

av

(θ − θ0)
v

für alle θ ∈ C definierte Funktion ist somit holomorph in D sowie beschränkt und stetig
in D. Mit Hilfe der Definition von gβ(θ) := u(θ − iβ) für alle θ ∈ C erhalten wir

lim
x→∞

∫ ∞

−∞
e−ixθu(θ)dθ = lim

x→∞
e−βxĝβ(−x) = 0,

d.h. wir können Φχ(θ) im Integranden von (3.1.5) vernachlässigen.

Wegen
∑k

v=1
av

(θ−iβ−θ0)v ∈ L1 gilt weiter

lim
x→∞

1

2π

∫ ∞

−∞
e−ixθ

k∑
v=1

av

(θ − iβ − θ0)
v dθ = 0

und daher

1

2π

∫ ∞

−∞
e−ix(θ−iβ)

k∑
v=1

av

(θ − iβ − θ0)
v dθ = o(e−βx)

für x→∞. Insgesamt erhalten wir somit für x→∞

v0(x)−
1

m

= − 1

2π

(∫ ∞

−∞
e−ix(θ−iβ)

k∑
v=1

av

(θ − iβ − θ0)
v dθ −

∫ ∞

−∞
e−ixθ

k∑
v=1

av

(θ − θ0)
v dθ

)
+ o(e−βx)
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anstelle von (3.1.5). Die in den Integranden auftauchenden Summenterme sind in D nicht
holomorph. Mit Hilfe des Cauchyschen Integralsatzes folgt nach Wahl von C und wegen∫
C e−ixθh(θ)dθ = 0

v0(x) =
1

m
− 1

2π

∫
C
e−ixθ

k∑
v=1

av

(θ − θ0)
v dθ + o(e−βx)

=
1

m
− 1

2π

∫
C
e−ixθ

(
k∑

v=1

av

(θ − θ0)
v + h(θ)

)
dθ + o(e−βx)

=
1

m
− 1

2π

∫
C
e−ixθ dθ

1− Φη(θ)
+ o(e−βx)

für x→∞ und somit (3.1.2). 2

3.2 Die Konvergenzrate im Fall M ≥ 0 f.s.

Mit Hilfe von Satz 3.1.1 treffen wir nun eine genauere Aussage über die Konvergenzrate
der Flanken der Verteilung von R. In diesem Abschnitt betrachten wir den Fall M ≥ 0
f.s.. Um die Ergebnisse später weiter benutzen zu können, setzen wir dennoch in den
Voraussetzungen Betragsstriche und erinnern außerdem an die Definitionen der Funktio-
nen r, g1 und g−1 gemäß (2.3.2), (2.3.3) und (2.3.4), die wir im Beweis des Impliziten
Erneuerungstheorems verwendet haben.

Satz 3.2.1. Seien M,R Zufallsgrößen auf einem Wahrscheinlichkeitsraum (Ω,A, P ), wo-
bei M ≥ 0 f.s. und unabhängig von R sei sowie (2.1.5) erfülle. Ferner gelte

(3.2.1) E|M |κ+β <∞

für ein beliebiges β > 0, und

(3.2.2) P log|M ||M 6=0 sei quasi λλ-stetig.

Dann ist das durch
η(dx) := eκxP (logM ∈ dx)

definierte Wahrscheinlichkeitsmaß ebenfalls quasi λλ-stetig und erfüllt die Bedingungen von

Satz 3.1.1 Ist außerdem C wie in Satz 3.1.1 gewählt, so gilt mit g̃1 und g̃−1 gemäß (3.1.3):

(a) Falls

(3.2.3)

∫ ∞

0

|P (R > t)− P (MR > t)| tκ+β−1dt <∞,

folgt

(3.2.4) tκP (R > t) = C+ −
1

2π
Re

(∫
C
t−iθ g̃1(θ)

1− Φη(θ)
dθ

)
+O(t−

β
2 ), t→∞.

(b) Falls

(3.2.5)

∫ ∞

0

|P (R < −t)− P (MR < −t)| tκ+β−1dt <∞,
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folgt

(3.2.6) tκP (R < −t) = C− −
1

2π
Re

(∫
C
t−iθ g̃−1(θ)

1− Φη(θ)
dθ

)
+O(t−

β
2 ), t→∞.

(c) Erfüllt R eine stochastische Fixpunktgleichung R
d
= Ψ ◦ R gemäß (2.1.1) und ist

unabhängig von (Ψ,M), lassen sich (3.2.3) und (3.2.5) ersetzen durch

(3.2.7) E|(Ψ(R)+)
κ+β − ((MR)+)

κ+β| <∞,

(3.2.8) E|(Ψ(R)−)
κ+β − ((MR)−)

κ+β| <∞.

Nach Voraussetzung umläuft C alle Nullstellen von 1−Φη in D. Es genügt jedoch, wenn C
in D liegt und alle Nullstellen in {θ ∈ C : Im(θ) ∈ [−β

2
, 0)} umläuft, da die Verteilungen

der übrigen Nullstellen durch den Restterm O(t−
β
2 ) abgedeckt werden.

Bemerkung 3.2.2. (a) Erfüllt |M | die an M gestellten Bedingungen des Satzes, setzen
wir

g(t) := eκt(P (|R| > et)− P (|MR| > et)), t ∈ R,
und gilt

(3.2.9)

∫ ∞

0

|P (|R| > t)− P (|MR| > t)| tκ+β−1dt <∞

anstelle der Bedingungen (3.2.3) und (3.2.5), so folgt

(3.2.10) tκP (|R| > t) = C+ + C− −
1

2π
Re

(∫
C
t−iθ g̃(θ)

1− Φη(θ)
dθ

)
+O(t−

β
2 )

für t→∞ durch eine Anwendung des Satzes auf |M | und |R| (g̃ gemäß (3.1.3)). Genügt

|R| außerdem einer stochastischen Fixpunktgleichung |R| d
= Ψ ◦ |R| gemäß (2.1.1) und ist

unabhängig von (Ψ, |M |), ersetzt

E||Ψ(R)|κ+β − |MR|κ+β| <∞

die Voraussetzung (3.2.9).

(b) Für (3.2.4) (sowie analog für (3.2.6) und (3.2.10)) gilt nach Lemma 3.1.2 ebenfalls
die Darstellung

(3.2.11) tκP (R > t) = C+ +

n1∑
l=1

kl∑
j=1

(log t)j−1

(j − 1)!
Re
(
t−iθl(−i)jrl,j

)
+O(t−

β
2 )

für t→∞. θ1, . . . , θn1 , n1 ∈ N, sind hier die Nullstellen von 1− Φη(θ) in
{θ ∈ C : Im(θ) ∈ [−β

2
, 0)} mit Vielfachheiten k1, . . . , kn1 , ki ∈ N für alle 1 ≤ ki ≤ n1, und

rl,j ist durch

rl,j := resθl

(θ − θl)
j−1g̃1(θ)

1− Φη(θ)
, j = 1, . . . , kl, l = 1, . . . , n1

definiert. Die Residuen rl,j sind zwar durch die Funktion g1 abhängig von der unbekannten
Verteilung von R, die Form der rechten Seite von (3.2.11) allerdings nicht mehr.
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Es folgt der Beweis von Satz 3.2.1. Indem wir (3.2.4) umstellen und t durch et ersetzen,
erhalten wir

(3.2.4′) eκtP (R > et)− C+ + 1
2π
Re
(∫

C e−iθt g̃1(θ)
1−Φη(θ)

dθ
)

= O(e−
βt
2 ), t→∞.

Ohne Hilfsmittel können wir nur zeigen, daß die linke Seite von (3.2.4′) nach Glättung mit
einer bestimmten Funktion k für t→∞ in O(e−βt) liegt. Für (3.2.4′) benötigen wir daher
das folgende Taubersche Restglied-Theorem von Beurling-Ganelius und werden dann zu-
letzt die Resubstitution von t durch log t durchführen, um wieder die ursprüngliche Form

zu erhalten. Der Term O(t−
β
2 ) ist dabei möglicherweise nicht scharf und sollte O(t−β) lau-

ten. Dies ist jedoch wegen der verwendeten Tauberschen Restglied-Theorie nicht möglich,
da bereits der Faktor 1

2
des im Beweis verwendeten Tauberschen Restglied-Theorems

scharf ist (vgl. [Lyt]).

Satz 3.2.3. (Das Taubersche Restglied-Theorem, vgl. [Gan], S.6, Theorem 1)
Sei k ∈ L1 so gewählt, daß k̃(θ) 6= 0 für alle θ ∈ R mit k̃ gemäß (3.1.3) gilt. Seien
p > 1

2
, a > 0 und C Konstanten sowie h eine im Streifen Im(ζ) ∈ (−a, 0) holomorphe

Funktion, die
|h′(ζ)| < C(1 + |ζ|)p−1, −a < Im(ζ) < 0,

und
lim
η↓0

h(ξ − iη) = 1/k̃(ξ), ξ ∈ R,

erfüllt. Sei β eine weitere Konstante mit 0 < β < a und f : R → R eine beschränkte
Funktion, die der Tauberschen Bedingung

(3.2.12) f(x)− f(x+ y) ≤ Ae−βx/(p+1), 0 ≤ y ≤ e−βx/(p+1), x > x0,

für Konstanten A und x0 genügt. Gilt dann

(3.2.13) k ∗ f(x) = O(e−βx), x→∞,

so folgt
f(x) = O(e−βx/(p+1))

für x→∞.

Beweis zu Satz 3.2.1. Ausführlich führen wir nur den Beweis zu Fall (a), da sich (b)
mit gleicher Rechnung und −R statt R ergibt. (c) folgt wegen∫ ∞

0

|P (R > t)− P (MR > t)| tκ+β−1dt =

∫ ∞

0

|P (Ψ(R) > t)− P (MR > t)| tκ+β−1dt

=
1

κ+ β
E|(Ψ(R)+)

κ+β − ((MR)+)
κ+β|

(analog für (3.2.5)) mit Hilfe von Lemma 2.2.3.
Gelte also (3.2.3). Wegen E |M |κ log+ |M | <∞ und∫ ∞

0

|P (R > t)− P (MR > t)| tκ−1dt <

∫ ∞

0

|P (R > t)− P (MR > t)| tκ+β−1dt <∞
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erhalten wir mit Fall (a) des Impliziten Erneuerungstheorems

P (R > t) ∼ C+t
−κ

für t→∞. Für die spätere asymptotische Analyse benötigen wir, daß limt→∞ eβtg1(t) = 0

gilt. Da wir jedoch nur eβtg1(t) ∈ L1 aufgrund von∫ ∞

−∞
|eβtg1(t)|dt =

∫ ∞

0

sκ+β−1 |P (R > s)− P (MR > s)| ds

gegeben haben, benutzen wir im folgenden eine Glättung von g1, welche die obige Limes-
bedingung erfüllt. Für beliebiges b > β setzen wir dazu

k(t) := be−bt1(0,∞)(t), t ∈ R.

Da k̃(θ) = b/b − iθ 6= 0 für alle θ ∈ R und k ∈ L1 wegen
∫∞
−∞ |k(t)|dt = 1 ist, erfüllt

k für p = 1 und a = ∞ die Bedingungen des Tauberschen Restglied-Theorems. Nach
Lemma 3.2.4 ist eβtk ∗ g1(t) außerdem d.R.i., und es gilt wie gewünscht

eβtk ∗ g1(t) ∈ o(1).

Wir werden nun im folgenden zeigen, daß die linke Seite von (3.2.4′) die Bedingun-

gen (3.2.12) und (3.2.13) des Tauberschen Restglied-Theorems erfüllt.
Mit den im Impliziten Erneuerungstheorem gewählten Bezeichnungen gilt analog zu

(2.3.8) r̄ = ḡ1 ∗ V

der allgemeine Fall
k ∗ r = k ∗ g1 ∗ V

((2.3.8) ist der Fall b = 1), wobei V :=
∑

n≥0 η
∗(n) das Erneuerungsmaß von η ist, wel-

ches unter den gegebenen Voraussetzungen den Bedingungen von Satz 3.1.1 genügt. Mit
Satz 3.1.1 und dessen Bezeichnungen folgt

k ∗ r = (k ∗ g1) ∗ V = k ∗ g1 ∗ (V1 + V0) = k ∗ g1 ∗ V1 + k ∗ g1 ∗ v0

und wegen

k ∗ g1 ∗
1

m
= k ∗

(
1

m

∫
R
g1λλ

)
= k ∗ C+

daraus

k ∗ (r(·)− C+) = k ∗ g1 ∗ V1 + k ∗ g1 ∗
(
v0(·)−

1

m

)
.

Wir setzen

c(t) :=
1

2π

∫
C
e−iθt dθ

1− Φη(θ)
, t ∈ R,

v0,c,m(t) := v0(t)−
1

m
+ c(t), t ∈ R,

und betrachten anstelle der obigen Gleichung

(3.2.14) k ∗ (r(·)− C+ + g1 ∗ c(·)) = k ∗ g1 ∗ V1 + k ∗ g1 ∗ v0,c,m.
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Ist ε > 0 konstant und so gewählt, daß alle Nullstellen von 1− Φη(θ) aus D im Streifen
Im(θ) ∈ (−β + ε,−ε) liegen, gilt

c(t) =

{
O(e−εt), t→∞
O(e−(β−ε)t), t→ −∞ .

g1 ∗ c ist wegen limt→−∞ g1(t) = 0 und eβtg1(t) ∈ L1 wohldefiniert und besitzt aufgrund
von

g1 ∗ c(t) =

∫
R
c(t− u)g1(u)λλ(du)

=
1

2π

∫
R

∫
C
e−iθ(t−u) dθ

1− Φη(θ)
g1(u)λλ(du)

=
1

2π

∫
C
e−iθt 1

1− Φη(θ)

∫
R

eiθug1(u)λλ(du) dθ

=
1

2π

∫
C
e−iθt g̃1(θ)

1− Φη(θ)
dθ

dasselbe asymptotische Wachstumsverhalten wie c. Für v0,c,m folgt

eβtv0,c,m(t) =

{
o(1), t→∞
O(eεt), t→ −∞ ,

da wegen (3.1.2) v0,c,m(t) = o(e−βt) für t → ∞ und limt→−∞ v0(t) = 0 gilt (vgl. den

Beweis zu Satz 3.1.1). Wir kennen somit das asymptotische Verhalten der linken Seite
von (3.2.14), denn mit limt→∞ eβtk ∗ g1(t) = 0 und ψV1(β) <∞ bzw. eβtk ∗ g1(t) ∈ L1 und
eβtv0,c,m(t) = o(1) für t→∞ erhalten wir

lim
t→∞

eβt(k ∗ g1 ∗ V1(t) + k ∗ g1 ∗ v0,c,m(t))

= lim
t→∞

∫
R

eβ(t−u)k ∗ g1(t− u)eβuV1(du) + lim
t→∞

∫
R

eβ(t−u)v0,c,m(t− u)eβuk ∗ g1(u)λλ(du)

= 0.

Es folgt

k ∗ (C+ − r − g1 ∗ c)(t) = o(e−βt)

für t → ∞. Der Ausdruck C+ − r − g1 ∗ c ist für eine Anwendung des Tauberschen

Restglied-Theorems noch nicht geeignet, da g1 ∗ c(t) komplexwertig sowie für t < 0 nicht
beschränkt ist. r1(t) := C+ − r(t) − g1 ∗ c(t)1(0,∞)(t) dagegen ist auf R beschränkt und
bleibt nach einer Faltung mit k in der Klasse o(e−βt) für t→∞ enthalten, da für positive
Werte von t

k ∗ (g1 ∗ c(·)1(0,∞)(·))(t) =

∫
(−∞,t)

be−b(t−u)g1 ∗ c(u)1{u>0}λλ(du)

=

∫
(0,t)

be−b(t−u)g1 ∗ c(u)λλ(du)

= k ∗ g1 ∗ c(t)− be−bt

∫
(−∞,0)

ebug1 ∗ c(u)λλ(du)
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und
∫

(−∞,0)
ebug1∗c(u)λλ(du) <∞ gilt. be−bt

∫
(−∞,0)

ebug1∗c(u)λλ(du) liegt daher für t→∞
in O(e−bt) und dies wegen b > β für t→∞ in o(e−βt). Insgesamt gilt nach Einschränkung
auf den Realteil

(3.2.15) k ∗Re(r1(t)) = o(e−βt), t→∞.

Um das Taubersche Restglied-Theorem anwenden zu können, fehlt somit nur noch der

Nachweis von (3.2.12) für Re(r1). Wegen

r(x)− r(x+ y) = eκ(x+y)P (R > ex+y)− eκxP (R > ex)

≤ (eκy − 1)eκxP (R > ex)

≤ 3κy · 2C+

für alle x ≥ x1 (x1 fest) und y ≤ 1
κ

log 4 erfüllt −r (3.2.12) mit p = 1, und analog folgt dies
ebenfalls für die für alle θl ∈ D und j ∈ N definierte Funktion f(t) := Re (cl,jt

j−1e−iθlt).
Wegen Lemma 3.1.2 gilt die Abschätzung daher für

−g1 ∗ c(t) =

n1∑
l=1

kl∑
j=1

tj−1

(j − 1)!
Re
(
e−iθlt(−i)jcl,j

)
, θl ∈ D, j ∈ N,

und somit für Re(r1). Mit Hilfe des Tauberschen Restglied-Theorem erhalten wir

Re(r1(t)) = O(e−βt/2)

für t→∞ und daraus (3.2.4) nach Resubstitution von t durch log t. 2

Lemma 3.2.4. Mit den Bezeichnungen aus dem Beweis von Satz 3.2.1 ist eβtk ∗ g1(t)
d.R.i. (und damit insbesondere λλ-integrierbar).

Beweis. Mit Hilfe der Beweismethode aus Lemma 5.3.2 im Anhang erhalten wir

eβ(t+δ)k ∗ g1(t+ δ) = eβ(t+δ)

∫
(−∞,t+δ]

be−b(t+δ−u)g1(u)λλdu

≥ e(β−b)δeβt

∫
(−∞,t]

be−b(t−u)g1(u)λλ(du)

= e(β−b)δeβtk ∗ g1(t).

Wegen limδ↓0 e(β−b)δ = 1 folgt mit Lemma 5.3.1 im Anhang die Behauptung. 2

3.3 Die Konvergenzrate im Fall P (M < 0) > 0

In diesem Abschnitt betrachten wir die Flanken der Verteilung von R für den Fall, daß
P (M < 0) > 0 ist. Für unabhängige Zufallsgrößen M1, M2, . . . mit Mn ∼ M für alle

n ∈ N und N
(+)
1 := inf{n ≥ 1 : Πn > 0} definieren wir dazu ein Wahrscheinlichkeitsmaß

η durch

(3.3.1) η(B) := E

|Π
N

(+)
1
|κ1{∑N

(+)
1

j=1 log |Mj |∈B

}
 , B ∈ B,

wobei wir den Integranden als Null interpretieren, falls Πn ≤ 0 für alle n ∈ N ist.



48 Die Konvergenzrate der Flanken

Satz 3.3.1. Seien M,R auf einem Wahrscheinlichkeitsraum (Ω,A, P ) definierte Zufalls-
größen, und es gelte P (M < 0) > 0. Ist M unabhängig von R, genügt (2.1.5), (3.2.1)
und (3.2.2) und erfüllt für ein hinreichend kleines β > 0

(3.3.2) EMκ+β1{M>0} < 1,

so ist das in (3.3.1) definierte Wahrscheinlichkeitsmaß η quasi λλ-stetig und erfüllt die

Bedingungen von Satz 3.1.1. Ist C so wie in Satz 3.1.1 gewählt, g1, g−1 wie in (2.3.3)
und (2.3.4) definiert und zwei Maße µ+, µ− auf R für alle B ∈ B durch

µ+(B) := EMκ1{M>0}1{log M∈B},

µ−(B) := E|M |κ1{M<0}1{log |M |∈B}

gegeben, so gilt:

(a) Sind (3.2.3) und (3.2.5) erfüllt, folgt

tκP (R > t) = C+ −
1

2π
Re
( ∫

C
t−iθ
( g̃1(θ) + g̃−1(θ)

2(1− Φµ+(θ) − Φµ−(θ))

+
g̃1(θ)− g̃−1(θ)

2(1− Φµ+(θ) + Φµ−(θ))

)
dθ
)

+O(t−
β
2 ), t→∞,

(3.3.3)

mit g̃1 und g̃−1 gemäß (3.1.3), und dieselbe Formel gilt für tκP (R < −t).
(b) Genügt R einer stochastischen Fixpunktgleichung R

d
= Ψ◦R gemäß (2.1.1) und ist

unabhängig von (Ψ,M), können (3.2.3) und (3.2.5) ersetzt werden durch (3.2.7) und (3.2.8).

Beweis. (a) Sei zunächst P (M > 0) > 0 und P (M < 0) > 0. Mit der gleichen
Begründung wie im Beweis zu Satz 3.2.1 ist aufgrund der gegebenen Voraussetzungen das
Implizite Erneuerungstheorem anwendbar, und es gelten (2.2.3) und (2.2.4). Wir verfahren
nun mit den Summanden der rechten Seite von

(3.3.4) k ∗ r = k ∗ g1 ∗ V + k ∗ g−1 ∗ η0 ∗ V

genauso wie im zuletzt geführten Beweis, wobei wir die Notationen aus dem ersten Teil
des Beweises von Fall (b) des Impliziten Erneuerungstheorems und die Notationen aus
dem Beweis von Satz 3.2.1 zu Hilfe nehmen. V sei dabei das Erneuerungsmaß von η, das

aufgrund seiner Definition in (3.3.1) die Verteilung von
∑N

(+)
1

i=i Yi unter Pκ ist und somit
insbesondere den Erwartungswert 2m besitzt.
Wir betrachten zunächst E1{M>0}M

u für κ ≤ u ≤ κ+β.Wegen (3.3.2) und P (M < 0) > 0
folgt E1{M>0}M

u < 1 für u = κ und u = κ+β und dies daher auch im gesamten Intervall
[κ, κ+ β], da E1{M>0}M

u konvex ist. Aufgrund von

µ+((−∞, t]) =

∫
(−∞,t]

eκy1{y>−∞}P
log M(dy)

für alle t ∈ R und somit

ψµ+(u) =

∫
R

e(u+κ)y1{y>−∞}P
log M(dy) = E1{M>0}M

u+κ



3.3. Die Konvergenzrate im Fall P (M < 0) > 0 49

bedeutet dies ψµ+(u) < 1 für 0 ≤ u ≤ β und damit Φµ+(θ) 6= 1 für alle θ ∈ D. Wegen
P log M

κ (dy) = eκyP log M(dy) (vgl. den Beweis von Korollar 5.3.5) folgt außerdem µ+ = pη+

(analog µ− = qη−) und mit Hilfe der in (2.3.17) und (2.3.18) gewonnenen Gleichungen
für η und η0 insgesamt

Φη = pΦη+ +
∑
n≥2

q2 Φ2
η− · p

n−2Φn−2
η+

= Φµ+ +
Φ2

µ−

1− Φµ+

,

Φη0 =
∑
n≥1

qΦη− · pn−1Φn−1
η+

=
Φµ−

1− Φµ+

.

Φη,Φη0 sind daher holomorph in D und stetig in D. Analog zum Nachweis von (2.3.15)
erhalten wir (3.3.4) und wegen V = V1 + V0 und 1

2m

∫
R g1 + g−1 ∗ η0 = C+ weiter

k ∗ r = k ∗ (g1 + g−1 ∗ η0) ∗ V1 + k ∗ (g1 + g−1 ∗ η0) ∗ v0

⇔ k ∗ (r(·)− C+) = k ∗ (g1 + g−1 ∗ η0) ∗ V1 + k ∗ (g1 + g−1 ∗ η0) ∗ (v0(·)− 1
2m

).

Nach Definition von η0 in Verbindung mit (3.2.1) und (3.2.5) gilt eβtg−1 ∗ η0(t) ∈ L1 und
daher ∫ ∞

−∞
|eβtg−1 ∗ η0(t)|dt ≤

∫ ∞

−∞
eβt

∫
R
|g−1(t− u)|η0(du) dt

=

∫
R

eβuη0(du)

∫ ∞

−∞
eβs|g−1(s)|ds

< ∞.

g−1 ∗ η0 ∗ c ist wegen limt→−∞ g−1 ∗ η0(t) = 0 außerdem wohldefiniert und besitzt für alle
t ∈ R die Gestalt

g−1 ∗ η0 ∗ c(t) =
1

2π

∫
C
e−iθt g̃−1(θ)Φη0(θ)

1− Φη(θ)
dθ.

Mit v0,c,m(t) := v0(t) − 1
2m

+ c(t) für alle t ∈ R erhalten wir somit anstelle der zweiten

Gleichung in obiger Äquivalenz

k ∗ (r(·)− C+ + (g1 + g−1 ∗ η0) ∗ c(·))
= k ∗ (g1 + g−1 ∗ η0) ∗ V1 + k ∗ (g1 + g−1 ∗ η0) ∗ v0,c,m

und analog zum Beweis von Satz 3.2.1

k ∗ (C+ − r − (g1 + g−1 ∗ η0) ∗ c)(t) = o(e−βt)

für t→∞, da limt→∞ eβtk∗g−1∗η0(t) = 0 und eβtk∗g−1∗η0(t) ∈ L1 gilt (nach Lemma 3.2.4
ist eβtk ∗ g−1 ∗ η0 d.R.i.). Definieren wir

r1(t) := C+ − r(t)− (g1 + g−1 ∗ η0) ∗ c(t)1(0,∞)(t),

so folgt wiederum (3.2.15) und daher mit Hilfe des Tauberschen Restglied-Theorems

Re(r1(t)) = O(e−βt/2)
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für t→∞. Wir erhalten dann (3.3.3), indem wir Φη und Φη0 durch ihre oben gewonnenen
von Φµ+ und Φµ− abhängigen Ausdrücke ersetzen und log t statt t wählen. Dasselbe Er-
gebnis folgt für P (R < −t), indem wir −R statt R betrachten und aufgrund von (2.2.7)
C+ = C− beachten.

Ist nun M ≤ 0 fast sicher, folgt N
(+)
1 = 2 und N

(−)
0 = 1 fast sicher, d.h. mit µ+ als

Nullmaß und q = 1 ist η = η
∗(2)
− = µ

∗(2)
− und η0 = η− = µ−. Der Beweis für den ersten

Fall kann daher analog übernommen werden.
(b) folgt wie in Satz 3.2.1 mit Lemma 2.2.3. 2

Wir schließen diesen Abschnitt mit einer Zusammenfassung der Hauptergebnisse im fol-
genden Korollar.

Korollar 3.3.2. Sei M eine von R unabhängige Zufallsgröße auf einem Wahrscheinlich-
keitsraum (Ω,A, P ), für die P (M < 0) > 0 gilt und die (2.1.5), (3.2.2) sowie für ein
β > 0 (3.2.1) genügt. Sind (3.2.3) und (3.2.5) erfüllt, so gilt für ein nicht näher bestimm-
tes γ > 0

tκP (R > t) = C+ +O(t−γ)

und
tκP (R < −t) = C− +O(t−γ)

für t→∞.







4 Ausgewählte Fixpunktgleichungen

In diesem Kapitel betrachten wir Beispiele von stochastischen Fixpunktgleichungen, die
in vielen verschiedenen Bereichen der Wirtschaft und Wissenschaft auftauchen und auf
die wir das Implizite Erneuerungstheorem anwenden wollen. Wir werden allerdings ledig-
lich in einem Fall konkrete Formeln für C+ und C− angeben können, die nicht von der
unbekannten Verteilung der Zufallsgröße R abhängen. Mit Hilfe des Impliziten Erneue-
rungstheorems ist es uns jedoch möglich, in den meisten der dargestellten Fälle Schranken
für C+ und C− zu berechnen (vgl. Korollar 4.1.7).

4.1 R
d
= Q +MR

Unsere erste Gleichung

(4.1.1) R
d
= Q+MR, R unabhängig von (M,Q),

mit Zufallsgrößen auf einem Wahrscheinlichkeitsraum (Ω,A, P ) ist aufgrund ihrer Struk-
tur das vielleicht vielseitigste Beispiel einer stochastischen Fixpunktgleichung, für das un-
sere Methode Anwendung findet. Bezeichnen Rn, Mn und Qn für alle n ∈ N unabhängige
Kopien von R, M und Q auf dem passend erweiterten Wahrscheinlichkeitsraum (Ω,A, P )
und schreiben wir anstelle von (4.1.1)

(4.1.2) Rn = Qn +MnRn−1, n ∈ N,

so können wir Rn allgemein immer als einen Vorrat bestimmter Objekte zum Zeitpunkt n,
Qn als die Menge direkt vor diesem Zeitpunkt hinzugefügter bzw. entfernter Objekte und
den Faktor Mn als den Zerfall bzw. das Wachstum des Vorrats Rn−1 im Zeitintervall von
n− 1 bis n ansehen. (4.1.2) taucht daher in vielen unterschiedlichen Lebensbereichen auf
wie beispielsweise in der Wirtschaft, Physik, Atomtechnologie, Biologie, Kontrolltheorie
oder Soziologie.
In einer auf Lassner (vgl. [La1], [La2]) zurückgehenden Anwendung stellt Rn z.B. den
Betrag eines Sparkontos zum Zeitpunkt n dar, Qn den eingezahlten bzw. abgebuchten
Betrag direkt vor diesem Zeitpunkt und Mn den Zinsfaktor, der aufgrund von Schwan-
kungen im Laufe der Zeit ebenfalls als stochastische Größe angesehen werden kann. Da Qn

und Mn voneinander abhängen können, deckt dieses Modell insbesondere den Fall positi-
ver Einzahlungen ab, die gerade dann um so wahrscheinlicher sind, wenn der Zinsfaktor
groß ist. Für Uppuluri, Feder und Shenton (vgl. [Ufs]) repräsentiert Rn den Bestand eines
radioaktiven Materials zum Zeitpunkt n, Qn die Menge hinzugefügten (bzw. entfernten)
Materials direkt bevor n sowie Mn den natürlichen Zerfall durch die Radioaktivität. Die
Autoren betrachten in diesem Artikel allerdings nur die Spezialfälle konstanter Materi-
alzufuhr bzw. konstanten Zerfalls (es gilt entweder Qn = 1 f.s. oder Mn = % f.s. für
ein % > 0). Sie erhalten damit unter bestimmten Voraussetzungen, insbesondere im Fall
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Bernoulli-verteilter Zufallsgrößen Mn und Qn, die Konvergenz in Verteilung der Rn ge-
gen eine Zufallsgröße R sowie die Konvergenz der Erwartungswerte ERn und ERj

n gegen
ER bzw. ERj für 1 ≤ j ≤ m (m ∈ N fest und aus den Voraussetzungen; vgl. [Ufs],
S.157, Theorem 1, für den Fall Qn = 1 f.s. bzw. S.165-171, falls Mn = % f.s. ist mit einer
Fallunterscheidung nach %).
Weitere Beispiele liefern Chandrasekhar und Münch (vgl. [ChM]), indem sie die Helligkeit
der Milchstraße untersuchen, oder Bawa (vgl. [Baw]) mittels Modellen, die ein möglichst
optimales Verfahren darstellen sollen, um die Verschmutzung der Umwelt sowohl im Alltag
als auch in Krisenzeiten in einem gleichzeitig vernünftigen Verhältnis mit den dabei ent-
stehenden sozialen Kosten zu kontrollieren. Rn ist z.B. der Grad der Luftverschmutzung in
einer Stadt, der im Sommer mit der Temperatur steigt, Mn der Anteil der Verschmutzung
aus dem Zeitintervall von n − 2 bis n − 1, der am Ende des darauf folgenden Intervalls
noch vorhanden ist, und Qn der Grad der Emission im Zeitintervall von n− 1 bis n, der
außerdem noch von einer Steuerrate auf die Emission abhängen kann.
Perrakis und Henin (vgl. [PeH]) stellen anhand von (4.1.2) Berechnungsmethoden auf, um
die Verteilung des NPV (net present value) eines Investments zu bewerten, während Cha-
mayou (vgl. [Cha]) (4.1.2) zur Untersuchung atomarer Kaskaden benutzt - ein schnelles
energiegeladenes Neutron stößt mit einem in ein Gitter von Atomen eingebundenes Atom
zusammen und überträgt auf dieses seine Energie. Ist diese Energie groß genug, so löst das
Neutron dadurch eine Kettenreaktion unter den Atomen des Gitters aus, die in diesem
Fall ausgehend vom Kollisionsatom beginnen, sich sukzessive im Gitter zu ersetzen.
Solomon (vgl. [Sol]) beschreibt anhand von (4.1.2) Irrfahrten in zufälliger Umgebung und
Cavalli-Sforza und Feldman (vgl. [CsF]) sowie Cavalli-Sforza (vgl. [Cav]) den Vorgang
kultureller und genetischer Vererbung. Die beiden zuletzt genannten Artikel beschäftigen
sich dabei mit der allgemeineren Situation Rn, Qn ∈ Rd, Mn ∈ Rd × Rd für d ≥ 1.
Neben den gerade genannten Autoren, die (4.1.2) vor allem aufgrund ihrer Anwendungsbe-
zogenheit untersucht haben, haben sich schließlich Takács (vgl. [Tak], mit Partikelzählma-
schinen wie dem Geiger-Müller-Zählrohr oder dem Elektronenvervielfältiger als physika-
lische Anwendung in § 5), Paulsen und Uppuluri (vgl. [PaU], insbesondere Theorem 3
auf S.331 - die Grenzverteilung der Rn kann nicht die Poissonverteilung sein), Maksimov
(vgl. [Mak]), Vervaat (vgl. [Ve1], Abschnitt 5), Grincevičius (vgl. [Gr1]-[Gr4]), Lassner
(vgl. [La1], [La2]), Chamayou und Schorr (vgl. [ChS]) und Kesten (vgl. [K73]) ebenfalls
für (4.1.2) und ihre Spezialfälle und dabei insbesondere für das Verhalten der Verteilungs-
funktion der Rn für n → ∞ interessiert, motiviert durch die mathematische Struktur
dieser Gleichung. Ähnlich wie Cavalli-Sforza und Feldman bzw. Cavalli-Sforza hat sich
Kesten dabei insbesondere auf die Situation d > 1 konzentriert.
Wenden wir uns wieder unserer Ausgangsgleichung (4.1.1) zu, so entspricht unser Satz 4.1.1
gerade Kestens Theorem 5 für den Fall d = 1.

Satz 4.1.1.(vgl. [K73], S. 246, Theorem 5)
Seien M, Q Zufallsgrößen auf einem Wahrscheinlichkeitsraum (Ω,A, P ), genüge M den
Bedingungen von Lemma 2.1.2 und sei P log|M ||M 6=0 nichtarithmetisch. Ist

(4.1.3) E|Q|κ <∞,

so existiert eine Verteilung, die die eindeutige Lösung der Fixpunktgleichung (4.1.1) ist.
Für diese Verteilung gilt sowohl (2.2.3) als auch (2.2.4). Ist M ≥ 0 fast sicher, folgt

C+ =
E
(
((Q+MR)+)

κ − ((MR)+)
κ)

κm
,

C− =
E
(
((Q+MR)−)

κ − ((MR)−)
κ)

κm
,

(4.1.4)
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und im Fall P (M < 0) > 0

(4.1.5) C+ = C− =
1

2κm
E (|Q+MR|κ − |MR|κ) .

Es gilt außerdem

(4.1.6) C+ + C− > 0 ⇔ P (Q = (1−M)c) < 1

für jedes feste c ∈ R.

Im Beweis des Satzes benutzen wir die in der folgenden Definition zusammengestellten
Linearkombinationen von Zufallsgrößen. Wir benötigen außerdem zwei Ergebnisse von
Gut und Vervaat sowie Grincevičius’ Erweiterung von Lévys symmetrischer Ungleichung
für den Nachweis von (4.1.6), in der med den Median einer Zufallsgröße bezeichnet.

Definition 4.1.2. Für unabhängige identisch verteilte Zufallsvektoren (M,R), (Mn, Qn),
n ∈ N, auf einem Wahrscheinlichkeitsraum (Ω×Ω,A⊗A, P ⊗P ) sowie einer von diesen
Zufallsvektoren unabhängigen Zufallsgröße R auf (Ω,A, P ) mit unabhängigen Kopien Rn

für alle n ∈ N sei Π0 := 1, m0 := medR, T0 := m0 sowie

Πj :=

j∏
k=1

Mk, Πj, n :=
n∏

k=j+1

Mk, j, n ∈ N,

Rn :=
n∑

k=1

Πk−1Qk, Rj, n :=
n∑

k=j+1

Πj, k−1Qk, j, n ∈ N,

Tn := Rn + Πnm0, n ∈ N,

Un := Πn−1(Qn −m0(1−Mn)), n ∈ N.

Satz 4.1.3.(vgl. [Ve2], Theorem 5.1)
Ist in der Situation von Satz 4.1.1 E |M |p < 1 und E|Q|p <∞ für ein beliebiges
p ∈ [1,∞), so ist R die eindeutige Lösung von (4.1.1) mit E|R|p <∞, und die Reihe∑

k≥1

Πk−1Qk

konvergiert in der || · ||p-Norm. Die Momente ERj für j = 1, 2, . . . , bpc sind eindeutig
bestimmt durch die Gleichung

(4.1.7) ERj =

j∑
k=0

(
j

k

)
E(MkQj−k)ERk, j = 1, 2, . . . , bpc.

Satz 4.1.4.(vgl. [Gut], Theorem 2.1)
Seien Y1, Y2, . . . unabhängige identisch verteilte Zufallsgrößen auf einem Wahrscheinlich-
keitsraum (Ω,A, P ) mit EY1 ∈ (0,∞). Bezeichnet Sn deren n-te Partialsumme, definiert
man τ = τ(c) := inf{n ≥ 1 : Sn > c} für ein beliebiges c ≥ 0 und ist r ≥ 1, so gilt
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(a) E|Y −
1 |

r
<∞ ⇔ Eτ r <∞,

(b) E|Y +
1 |

r
<∞ ⇔ ESr

τ <∞.

Proposition 4.1.5. (vgl. [Gr5], Lemma 1)
Mit den Definitionen von Πj, Πj,n, Rn und Rj,n für alle j, n ∈ N in Definition 4.1.2 folgt
für alle x, y ∈ R

(4.1.8) P

(
max
1≤j≤n

(Rj + Πj med(Rj, n + Πj, n y)) > x

)
≤ 2P (Rn + Πn y > x).

Die resultierende Ungleichung ist für uns im Fall y = 0 von Interesse. Nach Definition gilt
für jedes feste j ∈ N

Rj + Πj Rj, n =

j∑
k=1

Πk−1Qk + Πj

n∑
k=j+1

Πj, k−1Qk

=

j∑
k=1

Πk−1Qk +
n∑

k=j+1

Πk−1Qk

= Rn.

Unter den Voraussetzungen von Satz 4.1.1 existieren nach dem Prinzip von Letac sowohl
limn→∞Rn als auch limn→∞Rj, n fast sicher für jedes feste j ∈ N und besitzen beide die
Verteilung von R. Wählen wir y = 0, können wir daher in (4.1.8) n → ∞ laufen lassen
und erhalten

P

(
sup
j∈N

(Rj + Πj medR) > x

)
≤ 2P (R > x), x ≥ 0.

Für −R, −Rj anstelle von R, Rj folgt die Ungleichung analog, und insgesamt gilt

(4.1.9) P

(
sup
j∈N

|Rj + Πj medR| > x

)
≤ 2P (|R| > x), x ≥ 0.

Für den Nachweis von (4.1.4) und (4.1.5) und damit als letztes Hilfsmittel für den Be-
weis von Satz 4.1.1 benötigen wir außerdem die beiden elementaren Ungleichungen des
folgenden Lemmas. Der Beweis des Lemmas befindet sich im Anhang.

Lemma 4.1.6. Seien x, y ∈ R, r > 0 sowie cr = 2r−1 ∨ 1, dann gelten

(4.1.10) |x+ y|r ≤ cr(|x|r + |y|r),

(4.1.11) ||x|r − |y|r| ≤

{
|x− y|r, 0 < r ≤ 1

r|x− y|(|x| ∨ |y|)r−1, 1 < r <∞
.

Beweis von Satz 4.1.1. Bevor wir das Implizite Erneuerungstheorem auf (4.1.1)
anwenden können, müssen wir sicherstellen, daß diese Gleichung eine eindeutige Lösung
besitzt. Setzen wir

Ψ(t) := Q+Mt, t ∈ R,
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Ψn(t) := Qn +Mnt, t ∈ R,

für alle n ∈ N, so sind die Ψn unabhängige Kopien von Ψ, und mit Zn(t) gemäß (2.1.2)
erhalten wir

Zn(t) = Ψ1 ◦ . . . ◦Ψn(t) =
n∑

k=1

QkΠk−1 + Πnt, t ∈ R.

Mit einer zum Beweis von Proposition 4.2.1 analogen Rechnung ist unter den Vorausset-
zungen des Satzes für große n ∈ N und ein geeignetes c > 0

|Qn||Πn−1| ≤ ec(1−n
2
) sowie lim

n→∞
|Πn| = 0 f.s.

Es gilt also

lim
n→∞

Zn(t) =
∑
k≥1

QkΠk−1 <∞ f.s.

und somit nach dem Prinzip von Letac

R ∼
∑
k≥1

QkΠk−1,

d.h. es existiert eine eindeutige Verteilung als Lösung von (4.1.1) (vgl. auch [Ve2], S.752-
758, Theorem 1.6). (4.1.4) und (4.1.5) erhalten wir mit Hilfe von Korollar 2.2.2, indem
wir (2.2.9) und (2.2.10) mit Ψ(R) = Q+MR zeigen. Wir beschränken uns dabei auf den
Nachweis von

E
∣∣((Q+MR)+)κ − ((MR)+)κ

∣∣ <∞,

da (2.2.10) durch eine analoge Rechnung sowie aufgrund der Tatsache folgt, daß−R (4.1.1)
mit (M,−Q) anstelle von (M,Q) erfüllt.
Zunächst lösen wir den Betrag durch eine Fallunterscheidung nach Q und MR auf. Für
MR > 0, Q > 0 ist (Q+MR)+ = Q+MR und (MR)+ = MR, und für MR < 0, Q < 0
folgt (Q + MR)+ = (MR)+ = 0. Im Fall −Q < MR ≤ 0 gilt (Q + MR)+ = Q + MR
und (MR)+ = 0, für 0 < MR ≤ −Q erhalten wir (Q + MR)+ = 0 und (MR)+ = MR.
Ist schließlich 0 < −Q < MR, folgt (Q +MR)+ = Q +MR < MR und (MR)+ = MR
bzw. (Q+MR)+ = (MR)+ = 0 für MR ≤ −Q ≤ 0 und damit

E
∣∣((Q+MR)+)κ − ((MR)+)κ

∣∣ = κ
4∑

i=1

Ii,

wobei wir

I1 := 1
κ
E1{−Q<MR≤0}(Q+MR)κ,

I2 := 1
κ
E1{0<MR≤−Q}(MR)κ,

I3 := 1
κ
E1{Q>0,MR>0}((Q+MR)κ − (MR)κ),

I4 := 1
κ
E1{0<−Q<MR}((MR)κ − (Q+MR)κ)

setzen. Für −Q < MR ≤ 0 gilt 0 < Q+MR ≤ Q+ und daher

I1 ≤
1

κ
E(Q+MR)κ ≤ 1

κ
E(Q+)κ <∞,
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für 0 < MR ≤ −Q ist

I2 ≤
1

κ
E1{Q<0}(−Q)κ =

1

κ
E(Q−)κ <∞.

Die Endlichkeit von I3 und I4 erhalten wir mit Hilfe von Lemma 4.1.6. Ist κ ≤ 1, gilt
mit (4.1.3) und (4.1.11)

I3 ≤
1

κ
E1{Q>0,MR>0}|Q|κ ≤

1

κ
E|Q|κ <∞,

für κ > 1 folgt mit (4.1.11)

I3 ≤ E1{Q>0,MR>0}Q(Q+MR)κ−1

≤ cκ−1E1{Q>0,MR>0}Q(Qκ−1 + (MR)κ−1)

≤ cκ−1E(Q+)κ + cκ−1EQ
+|MR|κ−1

= cκ−1E(Q+)κ + cκ−1E(Q+|M |κ−1)E|R|κ−1,

wobei wir im zweiten Schritt (4.1.10) angewandt und im letzten die Unabhängigkeit von
R und (M,Q) ausgenutzt haben. Die Hölder-Ungleichung (vgl. [AWT], Satz 17.4) für Q+

und |M |κ−1 mit p = κ und q = κ
κ−1

liefert EQ+ |M |κ−1 <∞. Mit p := κ− 1 ∈ [1,∞) für
κ ∈ N, κ ≥ 2, bzw. p := bκc ∈ [1,∞) für κ /∈ N, κ > 1, ist E|R|κ−1 ≤ E|R|p < ∞ gemäß
Satz 4.1.3 und damit I3 <∞ in Verbindung mit E(Q+)κ <∞. Analog folgt für κ ≤ 1

I4 ≤
1

κ
E1{0<−Q<MR}| −Q|κ ≤ 1

κ
E|Q|κ <∞

sowie für κ > 1

I4 ≤ E1{0<−Q<MR}| −Q||MR|κ−1 ≤ E|Q| |M |κ−1E|R|κ−1 <∞

und damit insgesamt (2.2.9). In (4.1.6) gelte zunächst

C+ + C− > 0 ⇔ E|Q+MR|κ − E|MR|κ > 0.

Es folgt E|Q + MR|κ > E|MR|κ = E|R|κ und damit P (Q + MR = R) < 1, also die
Behauptung. Sei nun P (Q = (1−M)c) < 1 für jedes feste c ∈ R. Wegen

C+ + C− ∼ |t|κP (|R| > t), t→∞,

müssen wir
tκP (|R| > t) > 0

für t→∞ zeigen. Mit Hilfe von Definition 4.1.2 erhalten wir zunächst

Tn−1 + Un =
n−1∑
k=1

Πk−1Qk + Πn−1(Qn +Mnm0) = Tn

für alle n ∈ N. Ist t > |m0| und existiert ein n ∈ N mit |Un| > 2t, so existiert auch ein
n ∈ N mit |Tn| > t, denn entweder gilt bereits |Tn−1| > t für ein n ∈ N (und damit
|Tn| > t für ein n ∈ N, da |T0| = |m0| < t ist), oder es gilt |Tn−1| ≤ t und damit
|Tn| ≥ |Un| − |Tn−1| > 2t− t = t für ein n ∈ N, d.h.

P (∃n ∈ N : |Tn| > t) ≥ P (∃n ∈ N : |Un| > 2t).
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Mit Hilfe von (4.1.9) folgt dann

P (|R| > t) ≥ 1

2
P (sup

j∈N
|Tj| > t)

=
1

2
P (∃n ∈ N : |Tn| > t)

≥ P (∃n ∈ N : |Un| > 2t)

≥ 1

2
P (|Q−m0(1−M)| > ε)P (∃n ∈ N : |Πn| >

2t

ε
),

wobei wir nach Voraussetzung ε so wählen können, daß P (|Q−m0(1−M)| > ε) > 0 ist.
Wegen

P (∃n ∈ N : |Πn| > et) = P (sup
n∈N

Sn > t)

genügt es, für ein δ > 0

(4.1.12) P (sup
n∈N

Sn > t) ≥ δe−κt, t→∞,

zu zeigen. (Sn)n≥0 = (
∑n

i=1 Yi)n≥0
ist nach Voraussetzung ein SRW mit EY1 < 0. Sei

( κSn)n≥0 = (
∑n

i=1 κYi)n≥0
der zu (Sn)n≥0 assoziierte SRW mit Zuwachsverteilung

P ( κY1 ∈ dy) = eκyP (Y1 ∈ dy), y ∈ R.

Gemäß [ASP], Definition 22.4, ist

σ> = inf{n ≥ 1 : Sn > 0} <∞

(beachte P (Y1 > 0) > 0) der erste streng aufsteigende Leiterindex von (Sn)n≥0 sowie

S>
1 = Sσ>1{σ><∞} = Sσ>

dessen erste streng aufsteigende Leiterhöhe. Setzen wir

β :=

∫ ∞

0

teκtP S>
1 (dt) = E κS

>
1 = E κSσ> ,

so folgt mit (5.13) in [Fel], Kapitel XII,

P (sup
n∈N

Sn > t) ∼ P S>
1 (R+)

βκ
e−κt, t→∞,

sofern β < ∞ ist. Wegen E κY1 = 1 ∈ (0,∞) können wir jedoch Satz 4.1.4 (b) mit
c = 0, r = 1 anwenden und erhalten aufgrund von

E κSσ> <∞ ⇔ E κY
+
1 <∞

und E κY
+
1 = EY +

1 eκY1 < ∞ nach (2.1.6) die Endlichkeit von β. (4.1.12) folgt nun in

Verbindung mit P S>
1 (R+) > 0 (da P (Y1 > 0) > 0 gilt) sowie δ := P S>

1 (R+)
βκ

und damit

insgesamt die Behauptung durch Substitution von t durch log 2
ε
t in (4.1.12). 2

Als erste Folgerung aus Satz 4.1.1 können wir endliche Schranken für C+ + C− im Fall
M ≥ 0 f.s. bzw. C+, C− im Fall P (M < 0) > 0 angeben, die nicht von der unbekannten
Verteilung der Zufallsgröße R abhängen. Ist κ ∈ N oder κ ∈ 2N, existieren sogar genaue
Werte für C+ und C−. Wir setzen dazu im folgenden für eine Zufallsgröße X

(4.1.13) ‖X‖p :=

{
E|X|p, falls p ∈ (0, 1)

(E|X|p)
1
p , falls p ≥ 1

.
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Korollar 4.1.7. Unter den Voraussetzungen von Satz 4.1.1 sei M ≥ 0 f.s. Dann gilt für
0 < κ ≤ 1

C+ + C− ≤
1

κm
E|Q|κ,

und für κ > 1 folgt

C+ + C− ≤ 2κ−1

m
(E|Q|κ + E|Q||M |κ−1E|R|κ−1)

≤ 2κ−1

m

(
E|Q|κ +

E|Q| |M |κ−1E|Q|κ−1

(1− ‖M‖κ−1)κ−1

)
,

wobei nach Voraussetzung beide Ausdrücke endlich sind. Im Fall P (M < 0) > 0 ergeben
sich die Schranken für C+, C− wegen C+ = C− aus der Hälfte der oben angegebenen
Werte.

Beweis. Mit (4.1.11) gilt für 0 < κ ≤ 1

C+ + C− =
1

κm
E(|Q+MR|κ − |MR|κ) ≤ 1

κm
E|Q|κ

und für κ > 1 wegen 1 ≤ cκ−1 = 2κ−2 ∨ 1 < 2κ−1

C+ + C− ≤ 1

m
E|Q|(|Q+MR| ∨ |MR|)κ−1

=
1

m
E1{|Q+MR|≥|MR|}|Q||Q+MR|κ−1 +

1

m
E1{|Q+MR|<|MR|}|Q||MR|κ−1

≤ cκ−1

m
E1{|Q+MR|≥|MR|}|Q|(|Q|κ−1 + |MR|κ−1)

+
1

m
E1{|Q+MR|<|MR|}(|Q|κ + |Q||MR|κ−1)

≤ cκ−1

m
(E|Q|κ + E|Q| |M |κ−1E|R|κ−1)

<
2κ−1

m
(E|Q|κ + E|Q| |M |κ−1E|R|κ−1),

wobei wir im dritten Schritt (4.1.10) angewandt haben. Aufgrund von (4.1.1) und der
Dreiecksungleichung gilt weiter

‖R‖κ−1 = ‖Q+MR‖κ−1 ≤ ‖Q‖κ−1 + ‖M‖κ−1‖R‖κ−1

⇔ ‖R‖κ−1 ≤ ‖Q‖κ−1

1−‖M‖κ−1
.

Der letzte Ausdruck ist wegen ‖M‖κ−1 < 1 und ‖Q‖κ−1 ≤ E|Q|κ endlich. Es folgt

E|R|κ−1 ≤ E|Q|κ−1

(1− ‖M‖κ−1)κ−1
, κ > 1,

(beachte (1− ‖M‖κ−1)
κ−1 ≤ 1− ‖M‖κ−1 für den Fall κ ∈ (1, 2)) und mittels

E|Q|κ + E|Q||M |κ−1E|R|κ−1 ≤ E|Q|κ +
E|Q| |M |κ−1E|Q|κ−1

(1− ‖M‖κ−1)κ−1

die Behauptung. 2
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Korollar 4.1.8. Unter den Voraussetzungen von Satz 4.1.1 seien M ≥ 0, Q ≥ 0 f.s.
sowie κ ∈ N. Dann ist C− = 0 und

(4.1.14) C+ =
1

κm

κ−1∑
j=0

(
κ

j

)
EM jQκ−jERj

mit ERj, j = 1, . . . , κ− 1, aus (4.1.7). Insbesondere gilt für κ = 1

C+ =
EQ

EM logM

und für κ = 2

(4.1.15) C+ =
1

m

(
1

2
EQ2 +

EQEQM

1− EM

)
.

Korollar 4.1.9. Gelten die Voraussetzungen von Satz 4.1.1, und sei κ ∈ 2N. Ist M ≥ 0
f.s., so erfüllt C+ + C− (4.1.14) anstelle von C+, und im Fall P (M < 0) > 0 ist

C+ = C− =
1

2κm

κ−1∑
j=0

(
κ

j

)
EM jQκ−jERj

mit ERj, j = 1, . . . , κ−1, aus (4.1.7). Für κ = 2 folgt insbesondere (4.1.15) für C+ +C−
anstelle von C+.

Beweis von Korollar 4.1.8 und 4.1.9. Wegen M ≥ 0 f.s., Q ≥ 0 f.s. und
R ∼

∑
k≥1 Πk−1Qk istR ≥ 0 f.s. und daher C− = 0. Für C+ folgt mit Hilfe des binomischen

Lehrsatzes wegen MQ ≥ 0 f.s., R ≥ 0 f.s. und der Unabhängigkeit von R und (M,Q)

C+ =
1

κm
E((Q+MR)κ − (MR)κ)

=
1

κm

κ−1∑
j=0

(
κ

j

)
E((MR)jQκ−j)

=
1

κm

κ−1∑
j=0

(
κ

j

)
EM jQκ−jERj.

Für κ = 1 ist EMκ = EM = 1 und C+ = 1
m
EQ = EQ

EM log M
. Wählen wir κ = 2, gilt

EMκ = EM2 = 1 und

ER = EQ+ EM ER ⇔ ER =
EQ

1− EM

mit Hilfe von (4.1.7). Es folgt

C+ =
1

2m
(EQ2 + 2EQM ER) =

1

m

(
1

2
EQ2 +

EQEQM

1− EM

)
und damit insgesamt Korollar 4.1.8. Sei nun κ ∈ 2N. Nach Satz 4.1.1 ist E|R|κ−1 < ∞
sowie E |M |κ−1 |Q| <∞ und E|Q|κ <∞, also existieren ERj und EM jQκ−j für
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j = 0, . . . , κ− 1. Analog folgt für M ≥ 0 f.s.

C+ + C− =
1

κm

κ−1∑
j=0

(
κ

j

)
EM jQκ−jERj,

im Fall P (M < 0) > 0

C+ = C− =
1

2κm

κ−1∑
j=0

(
κ

j

)
EM jQκ−jERj

und somit (4.1.15) für C+ + C−. 2

Eine konkrete Anwendung für das Implizite Erneuerungstheorem finden wir im Fall Beta-
verteilter Zufallsgrößen. Eine Zufallsgröße X ist Beta-verteilt mit den Parametern a, b > 0
- X ∼ β(a, b) -, wenn X die λλ-Dichte

fX(x) =
1

B(a, b)
xa−1(1− x)b−11(0,1)(x)

besitzt, wobei

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx =
Γ(a)Γ(b)

Γ(a+ b)

das sogenannte vollständige Beta-Integral bezeichnet. Um besser mit dieser Verteilung
umgehen zu können, benutzen wir im folgenden die Schreibweise

fX(x) =
1

B(a, b)
xa−1(1 + x)−a−b1(0,∞)(x),

die mit Hilfe einer Substitution von x durch z
1−z

wegen∫ ∞

0

xa−1(1 + x)−a−bdx =

∫ 1

0

za−1(1− z)b−1dz = B(a, b)

gleichwertig zur erstgenannten ist.

Proposition 4.1.10. Sei n ∈ N fest und a1, . . . , an, b > 0, an+1 := a1. Sind R, Y1, . . . , Yn

unabhängige Zufallsgrößen auf einem Wahrscheinlichkeitsraum (Ω,A, P ), R ∼ β(a1, b),
Yi ∼ β(ai+1, ai + b) für i = 1, . . . , n, und

M :=
n−1∏
i=0

Yn−i, Q :=
n−1∑
k=0

k∏
i=0

Yn−i,

so gilt R
d
= Q+MR. Wegen

tbP (R > t) ∼ 1

bB(a1, b)

für t→∞ folgt dann mit (4.1.4) und κ = b

(4.1.16)
1

bB(a1, b)
=

1

bm
E((Q+MR)b − (MR)b).
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SindR, Y1, Y2, . . . unabhängige Zufallsgrößen auf einem Wahrscheinlichkeitsraum (Ω,A, P )
mit R ∼ β(a, b) und Yn ∼ β(a, a+ b) für alle n ∈ N (der Fall n = 1 in Proposition 4.1.10
mit a = a1,M =

∏n−1
i=0 Y1 und Q =

∑n−1
k=0

∏k
i=0 Y1), so geht dieses Ergebnis auf Chamayou

und Letac zurück (vgl. [ChL], S.21f, Example 9). Für den allgemeinen Fall benötigen wir

Lemma 4.1.11. Seien X, Y unabhängige Zufallsgrößen auf einem Wahrscheinlichkeits-
raum (Ω,A, P ) mit X ∼ β(a, b) und Y ∼ β(c, a+ b) für a, b, c > 0, so gilt

Y (1 +X) ∼ β(c, b).

Beweis. Sei s ∈ (−c, b), dann folgt mit Hilfe des Beta-Integrals

EY s =
Γ(a+ b+ c)

Γ(c)Γ(a+ b)

∫ ∞

0

y(c+s)−1(1 + y)−((c+s)+(a+b−s))dy

=
Γ(c+ s)Γ(a+ b− s)

Γ(c)Γ(a+ b)

sowie

E(1 +X)s =
Γ(a+ b)

Γ(a)Γ(b)

∫ ∞

0

xa−1(1 + x)−(a+b−s)dy

=
Γ(a+ b)Γ(b− s)

Γ(b)Γ(a+ b− s)

und daher aufgrund der Unabhängigkeit von Y und 1 +X

E(Y (1 +X))s = EY sE(1 +X)s =
Γ(c+ s)Γ(b− s)

Γ(c)Γ(b)
.

Da dies die Mellin-Transformierte der β(c, b)-Verteilung ist und die Mellin-Transformierte
einer Zufallsgrößen deren Verteilung eindeutig festlegt, folgt die Behauptung. 2

Beweis von Proposition 4.1.10. Wir setzen R1 := R und Rk+1 := Yk(1 + Rk) für
k = 1, . . . , n− 1 und zeigen

(4.1.17) Rk ∼ β(ak, b), k = 1, . . . , n,

mit Hilfe einer Induktion nach k. Für k = 1 gilt (4.1.17) nach Voraussetzung, gelte also
die Behauptung für ein beliebiges, festes k ∈ {1, . . . , n − 1}. Wegen Rk+1 = Yk(1 + Rk),
Yk ∼ β(ak+1, ak + b) und Rk ∼ β(ak, b) nach Induktionsvoraussetzung folgt dann
Rk+1 ∼ β(ak+1, b) für k = 1, . . . , n − 1 mit Hilfe von Lemma 4.1.11. Durch iteriertes
Anwenden der Gleichung Rk+1 = Yk(1 +Rk) für k = 1, . . . , n− 1 erhalten wir außerdem

Yn(1 +Rn) = Yn + YnRn = Q+MR

und Yn(1+Rn) ∼ β(an+1, b) = β(a1, b) mit (4.1.17) und Lemma 4.1.11 und somit schließ-

lich R
d
= Q + MR. Wir weisen weiter nach, daß M und Q die Bedingungen von Theo-

rem 4.1.1 erfüllen. Wegen

EY b
i =

1

B(ai+1, ai + b)

∫ ∞

0

x(ai+1+b)−1(1 + x)−(ai+1+b)−ai dx

=
B(ai+1 + b, ai)

B(ai+1, ai + b)

=
Γ(ai)Γ(ai+1 + b)

Γ(ai+1)Γ(ai + b)

=
B(ai, b)

B(ai+1, b)
, i = 1, . . . , n,
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folgt

EM b =
n∏

i=1

EY b
i =

n∏
i=1

B(ai, b)

B(ai+1, b)
=

B(a1, b)

B(an+1, b)
= 1,

und aus

EY b
i log+ Yi ≤ EY b+1

i

=
1

B(ai+1, ai + b)

∫ 1

0

x(ai+1+b+1)−1(1− x)(ai+b)−1 dx

=
B(ai+1 + b+ 1, ai + b)

B(ai+1, ai + b)

erhalten wir aufgrund der Unabhängigkeit der Yi, i = 1, . . . , n,

EM b log+M = E
n∏

j=1

Y b
j

n∑
i=1

log+ Yi

=
n∑

i=1

E (
n∏

j=1

j 6=i

Y b
j )Y b

i log+ Yi

=
n∑

i=1

(
n∏

j=1

j 6=i

EY b
j )EY b

i log+ Yi

< ∞.

Da P log Yi für i = 1, . . . , n nichtarithmetisch ist, gilt dasselbe für P log M |M 6=0 = P log Y1∗...∗ log Yn .
Sei

Ωm := {w ∈ Ω :
m∏

i=0

Yn−i = max
0≤k≤n−1

k∏
i=0

Yn−i}, m ∈ {0, . . . , n− 1}.

Falls w ∈ Ω, rw ∈ {1, . . . , n} undm1, . . . ,mrw ∈ {0, . . . , n−1}, m1 < . . . < mrw , existieren
mit

m1∏
i=0

Yn−i(w) = . . . =

mrw∏
i=0

Yn−i(w) = max
0≤k≤n−1

k∏
i=0

Yn−i(w),

setzen wir
m1∏
i=0

Yn−i(w) = max
0≤k≤n−1

k∏
i=0

Yn−i(w).

Damit ist Ωi ∩ Ωj = ∅ für alle i, j ∈ {0, . . . , n− 1}, i 6= j, und wir erhalten

EQb =

∫
⋃n−1

m=0 Ωm

Qb dP ≤
n−1∑
m=0

∫
Ωm

nb(
m∏

i=0

Yn−i)
b dP ≤ nb

n−1∑
m=0

m∏
i=0

EY b
n−i <∞

in Verbindung mit
∏m

i=0EY
b
n−i = B(an−m,b)

B(an,b)
. Mit (4.1.4) und κ = b folgt daraus insgesamt

tbP (R > t) ∼ 1

bm
E((Q+MR)b − (MR)b), t→∞.

Da wir in unserem Fall die Verteilung von R kennen, betrachten wir außerdem

P (R > t) =
1

B(a1, b)

∫ ∞

t

xa1−1(1 + x)−a1−bdx

=
1

B(a1, b)

∫ ∞

t

(
x

1 + x

)a1−1(
1

1 + x

)b+1

dx
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für t→∞. Wählen wir t genügend groß, folgt wegen(
x

1 + x

)a1−1

↓x→∞ 1, a1 ∈ (0, 1), und

(
x

1 + x

)a1−1

↑x→∞ 1, a1 ≥ 1,

und

lim
t→∞

∫ t+1

t

(
1

x

)b+1

dx = lim
t→∞

1

btb
− lim

t→∞

1

b(t+ 1)b
= 0

∫ ∞

t

(
x

1 + x

)a1−1(
1

1 + x

)b+1

dx ∼
∫ ∞

t

(
1

1 + x

)b+1

dx ∼
∫ ∞

t

(
1

x

)b+1

dx =
1

btb

für t→∞ und somit insgesamt (4.1.16). 2

Mit Hilfe der Ergebnisse aus dem vorigen Kapitel folgt die Konvergenzrate der Flanken
der Verteilung von R.

Satz 4.1.12. Sei R eine Zufallsgröße auf einem Wahrscheinlichkeitsraum (Ω,A, P ), die
(4.1.1) löst, wobei M für ein κ > 0 (2.1.5), für ein β ∈ (0, 1) (3.2.1) sowie (3.2.2) und
Q E|Q|κ+β <∞ erfüllt. Ist M ≥ 0 f.s., sei ein Wahrscheinlichkeitsmaß η auf R definiert
durch

η(dx) := eκxP (logM ∈ dx).
Dann folgen sowohl (3.2.4) als auch (3.2.6). Für P (M < 0) > 0 sei η durch (3.3.1)
definiert und erfülle außerdem (3.3.2). In diesem Fall gilt (3.3.3), und tκP (R < −t)
erfüllt dieselbe Formel.

Beweis. Wir erhalten (3.2.4) und (3.2.6) bzw. (3.3.3) mit Hilfe von (3.2.7) und (3.2.8),
wobei hier wiederum der Nachweis von

E|((Q+MR)+)κ+β − ((MR)+)κ+β| <∞

genügt, da wir (3.2.8) mit (3.2.7) und (−R,M,−Q) anstelle von (R,M,Q) erhalten. (3.2.7)
können wir mit derselben Methode zeigen, die wir im Beweis von Satz 4.1.1 zum Nach-
weis von (2.2.9) verwendet haben, sofern E|Q| |M |κ+β−1 und E|R|κ+β−1 endlich sind. Für
E|Q| |M |κ+β−1 folgt dies, indem wir die Hölder-Ungleichung gemäß [AWT], Satz 17.4, auf
Q und |M |κ+β−1 mit p = κ+β und q = κ+β

κ+β−1
anwenden. Für E|R|κ+β−1 erhalten wir die

Abschätzung

‖R‖κ+β−1 ≤
‖Q‖κ+β−1

1− ‖M‖κ+β−1

(vgl. den Beweis von Korollar 4.1.7). Dieser Ausdruck ist endlich, da ‖M‖κ+β−1 < 1 wegen
κ+ β − 1 < κ und E |M |κ = 1 gilt, und es folgt die Behauptung. 2

Zum Abschluß dieses Abschnittes möchten wir noch auf

(4.1.1′) R
d
= [Q+MR], R unabhängig von (M,Q),

als eine Variante von (4.1.1) hinweisen, wobei [·] dem ganzzahligen Anteil des geklam-
merten Ausdruckes entspricht. Legen wir die Voraussetzungen von Satz 4.1.1 zugrunde,
erhalten wir mit Hilfe des folgenden Korollares bis auf (4.1.6) alle Aussagen dieses Satzes
mit [Q+MR] anstelle von Q+MR.
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Korollar 4.1.13. Unter den Voraussetzungen von Satz 4.1.1 existiert eine Verteilung,
die die eindeutige Lösung der Fixpunktgleichung (4.1.1′) ist. Für diese Verteilung gel-
ten (2.2.3) und (2.2.4). Ist M ≥ 0 f.s., folgt (4.1.4), andernfalls gilt (4.1.5).

Beweis. Wir setzen

Ψ̂(t) := [Q+Mt], t ∈ Z,

und

Ψ̂n(t) := [Qn +Mnt], t ∈ Z,

mit unabhängigen identisch verteilten Zufallsgrößen M,Mn bzw. Q,Qn für alle n ∈ N.
Unter den gegebenen Voraussetzungen erhalten wir die Existenz und Eindeutigkeit einer
Lösung von (4.1.1′) mit Hilfe des Prinzips von Letac wegen

0 ≤ | lim
n→∞

Ψ̂1 ◦ · · · ◦ Ψ̂n(t)| ≤ | lim
n→∞

Ψ1 ◦ · · · ◦Ψn(t)| <∞ f.s.

Für den Nachweis von

E|([Q+MR]+)κ − ((MR)+)κ| <∞

schreiben wir mit Hilfe einer Fallunterscheidung nach Q und MR

E|([Q+MR]+)κ − ((MR)+)κ| = κ
4∑

i=1

Ii

mit

I1 := 1
κ
E1{−Q<MR≤0}[Q+MR]κ,

I2 := 1
κ
E1{0<MR≤−Q}(MR)κ,

I3 := 1
κ
E1{Q>0,MR>0}|[Q+MR]κ − (MR)κ|,

I4 := 1
κ
E1{0<−Q<MR}((MR)κ − [Q+MR]κ)

und schätzen I1 und I2 gegen 1
κ
E(Q+)κ bzw. 1

κ
E(Q−)κ ab. I3 zerlegen wir in die Summe

von

I31 :=
1

κ
E1{Q≥dMRe−MR>0,MR>0}([Q+MR]κ − (MR)κ)

und

I32 :=
1

κ
E1{0<Q<dMRe−MR,MR>0}((MR)κ − [Q+MR]κ).

Wegen MR ≤ [Q +MR] ≤ Q +MR erhalten wir analog zum Nachweis der Endlichkeit
von I3 in Satz 4.1.1

I31 ≤
1

κ
E1{Q≥dMRe−MR>0,MR>0}((Q+MR)κ − (MR)κ) <∞.

Für 0 < κ ≤ 1 folgt weiter wegen [Q+MR] = [MR] ≤MR und MR− [MR] ≤ 1

I32 ≤
1

κ
E1{0<Q<dMRe−MR,MR>0}(MR− [MR])κ ≤ 1

κ
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mit Hilfe von (4.1.11), für κ > 1 gilt

I32 ≤ E1{0<Q<dMRe−MR,MR>0}(MR− [MR])(MR)κ−1

≤ E1{MR>0}(MR)κ−1

≤ E |M |κ−1E|R|κ−1

< ∞,

ebenfalls mit (4.1.11) sowie der Hölder-Ungleichung. I4 setzt sich aus den Summanden

I41 :=
1

κ
E1{0<−Q<MR−[MR]<MR}((MR)κ − [Q+MR]κ)

und

I42 :=
1

κ
E1{0≤MR−[MR]<−Q<MR}((MR)κ − [Q+MR]κ)

zusammen, wobei I41 wegen [Q + MR] = [MR] ≤ MR endlich ist (vgl. I32) und aus
[Q+MR] ∈ [0, [MR])

I42 ≤ 1

κ
E1{0≤MR−[MR]<−Q<MR}(−1)−κ(−MR)κ

≤ 1

κ
(−1)−κE1{Q≤0}Q

κ

< ∞

folgt. Wir erhalten daher insgesamt (2.2.9) und analog (2.2.10) mit (−R,M,−Q) anstelle
von (R,M,Q). 2

Bereits in Satz 4.1.1 ist es uns nicht gelungen, eine notwendige und hinreichende Bedin-
gung dafür zu finden, daß C+ > 0 und C− > 0 sind, sondern allein dafür, daß C+ + C−
echt positiv ist. Auch hier können wir lediglich feststellen, daß im Fall M ≥ 0 f.s. und
Q ≥ 1 f.s. und somit R ≥ 1 f.s. C− = 0 und

C+ =
1

κm
E([Q+MR]κ − (MR)κ)

folgt und damit wegen [Q+MR] > MR

C+ + C− = C+ > 0

ist. Mit einem in den Grundzügen unveränderten Beweis gilt die in Satz 4.1.12 für die
Lösung von (4.1.1) gewonnene Konvergenzrate der Flanken ebenfalls für (4.1.1′).

4.2 R
d
= max(Q,MR)

In diesem Abschnitt gilt unser Interesse der stochastischen Fixpunktgleichung

(4.2.1) R
d
= max(Q,MR), R unabhängig von (M,Q),

mit Zufallsgrößen auf einem Wahrscheinlichkeitsraum (Ω,A, P ). Wir setzen außerdem
M ≥ 0 f.s. voraus. Die Gleichung besitzt insofern einen besonderen Stellenwert, da sie
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unter bestimmten Voraussetzungen auf das G/G/11-Bedienungssystem der Warteschlan-
gentheorie übertragen werden kann.
Im G/G/1-Bedienungssystem gehen wir davon aus, daß es nur einen Bedienungsschalter
gibt und daß die Kunden der Reihe nach von diesem bedient werden. Treffen die Kunden
ausgehend von einem Beobachtungsstartpunkt T0 = 0 zu Ankunftszeiten (Tn)n∈N im Sy-
stem ein, so interessiert man sich für die Wartezeit Wn des n-ten Kunden, n ∈ N, die sich
zusammensetzt aus der Wartezeit des n−1-ten Kunden, dessen Bedienungszeit Bn−1 sowie
der Zeitspanne An = Tn − Tn−1, die zwischen dem Eintreten des n− 1-ten und des n-ten
Kunden verstrichen ist. (An)n≥1 und (Bn)n≥1 seien dabei unabhängige Folgen unabhängig
identisch verteilter Zufallsgrößen und besitzen daher Verteilungen, die nicht von n ∈ N
abhängen. Da T0 nicht notwendig mit dem Zeitpunkt der Öffnung des Bedienungssystems
zusammenfallen muß, sei M0 die Anzahl der wartenden einschließlich des gerade bedien-
ten Kunden zum Zeitpunkt T0 sowie B−M0+1, . . . , B0 deren Bedienungszeiten. Setzen wir
Xn := Bn−1 − An für alle n ∈ N, gilt demnach

(4.2.2) Wn = (Wn−1 +Xn)+, n ∈ N,

mit voneinander unabhängigen Zufallsgrößen Xn. Bezeichnet Fn die σ-Algebra der bis
zum Zeitpunkt n verfügbaren Informationen, so bildet (Wn)n≥0 eine DMK bzgl. dieser
Filtration. Setzen wir Sn =

∑n
i=1Xi, S0 = 0 und W0 = 0, so folgt

Wn ∼ max{S0, . . . , Sn}

wegen Wn = max{Sn − Sj : 0 ≤ j ≤ n}. Falls EX1 < 0 und daher limn→∞ Sn = −∞ f.s.
ist, gilt

max{S0, . . . , Sn} ↑ max
k≥0

Sk <∞ P-f.s.

und
Wn

d→ max
k≥0

Sk

(vgl. [AET], §11, S.230-233 und [ASP], Abschnitt 14.5). Die Kette (Wn)n≥0 besitzt somit
die stationäre Verteilung Pmaxk≥0 Sk , und wählen wir irgendeine Zufallsgröße W mit dieser
Verteilung sowie eine vonX1 unabhängige KopieX, erhalten wir aus (4.2.2) die sogenannte
Lindley-Gleichung

W
d
= (W +X)+.

Unsere Ausgangsgleichung erhält diese Gestalt, falls Q = 1 f.s. gilt und wir im Fall R ≥ 0
und M ≥ 0 f.s. W = logR, X = logM sowie Xk = logMk für k ∈ N setzen, da durch
Logarithmieren von (4.2.1)

W
d
= max(0,W +X) = (W +X)+

folgt. Definieren wir

Ψn(t) := max(0, Xn + t), t ∈ R, n ∈ N,

erhalten wir mit Zn gemäß (2.1.2) und daher wegen Zn(t) = max(max0≤k≤n−1 Sk, Sn + t)
und P (Xn = −∞) > 0

lim
n→∞

Zn(t) = max
k≥0

Sk

1Bei dieser auf Kendall zurückgehenden Notation ist die erste Komponente für den Verteilungstyp der
Zwischenankunftszeiten, die zweite für den der Bedienungszeiten und die dritte für die Anzahl der Server
reserviert. ”G” steht dabei für ”general”.



4.2. R
d
= max(Q,MR) 69

und somit nach dem Prinzip von Letac ebenfalls

W ∼ max
k≥0

Sk.

Im Modell des G/G/1-Bedienungssystems können wir uns neben der reinen Wartezeit des
n-ten Kunden in der Schlange außerdem für die gesamte Zeit interessieren, die der Kunde
im System verbringt, d.h. für

(4.2.3) Gn = Bn +Wn = Bn + (Wn−1 +Bn−1 − An)+ = Bn + (Gn−1 − An)+.

Bezeichnen A,B unabhängige Kopien von A1, B1, so folgt aufgrund der Unabhängigkeit
von Wn und Bn mittels Satz 36.11 in [AWT]

Gn = Wn +Bn
d→ max

k≥0
Sk +B

und somit die Stationarität von (Gn)n≥0. Wählen wir eine Zufallsgröße G mit
G ∼ maxk≥0 Sk +B, erhalten wir anstelle von (4.2.3)

G
d
= B + (G− A)+.

Mit (4.2.1) erreichen wir diese Form der Gleichung sowie die Verteilung von G, indem
wir M = eB−A, Q = eB sowie im Fall R ≥ 0 f.s. G = logR setzen, (4.2.1) logarithmie-
ren und das Prinzip von Letac anwenden. Wir können daher unsere folgenden Ergebnisse
über die Flanken der Verteilung von R durch entsprechendes Umformen von (4.2.1) auf
die stationäre Verteilung der Wartezeit und die der gesamten Aufenthaltszeit im G/G/1-
Bedienungssystem übertragen. In Satz 4.2.2 bestätigen wir außerdem den in [Fel], Ab-
schnitt XII.5, nachgewiesenen exponentiellen Abfall der rechten Flanke der Verteilung
von W und G. Zunächst müssen wir allerdings sicherstellen, daß (4.2.1) eine eindeutige
Lösung besitzt. Wir erinnern dazu an die Definition von Πn =

∏n
i=1Mi für unabhängige

identisch verteilte Zufallsgrößen M1,M2, . . . und alle n ∈ N (Π0 = 1) aus Kapitel 2 bzw.
Definition 4.1.2.

Proposition 4.2.1. Seien (M,Q), (Mn, Qn), n ∈ N, unabhängige identisch verteilte Zu-
fallsvektoren auf einem Wahrscheinlichkeitsraum (Ω× Ω,A⊗A, P ⊗ P ) mit M ≥ 0 f.s.,

E logM ∈ [−∞, 0) und E log(1 ∨Q) <∞.

Dann folgt
max
k≥1

QkΠk−1 <∞ f.s.,

und (4.2.1) besitzt (maxk≥1QkΠk−1)
+ als eindeutige Lösung.

Beweis. Wir setzen

Ψn(t) := max(Qn,Mnt), t ∈ R,

für alle n ∈ N und erhalten mit Zn gemäß (2.1.2)

Zn(t) = Zn−1(t) ◦Ψn(t)

= max(Ψn(t)Πn−1, max
1≤k≤n−1

QkΠk−1)

= max(max(Qn,Mnt)Πn−1, max
1≤k≤n−1

QkΠk−1)

= max(tΠn, max
1≤k≤n

QkΠk−1).
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Nach Voraussetzung an Q ist∑
n≥1

P (log(1 ∨Qn) >
cn

2
) ≤

∫ ∞

0

P (log(1 ∨Qn) > t)dt = E log(1 ∨Qn) <∞

und daher mit dem Lemma von Borel-Cantelli

P (lim sup
n→∞

{log(1 ∨Qn) >
cn

2
}) = 0,

d.h. es gilt Qn ≤ ecn/2 f.s. für genügend große n ∈ N. Sei weiter c > 0 so gewählt, daß

E logM < −c ⇔ EM < e−c.

Da die Zufallsgrößen (Mn)n≥0 unabhängig und fast sicher positiv sind, folgt in ähnlicher
Weise wegen

P (Πn > e−cn) ≤
∑
k≥0

P (Πn > e−ck) ≤ EΠn < e−cn

für alle n ∈ N ∑
n≥1

P (Πn > e−cn) <
∑
n≥0

e−cn =
1

1− e−c
<∞

und daher
Πn ≤ e−cn f.s.,

falls n genügend groß ist. Sei ε > 0 beliebig und seien N0, N1, N2 ∈ N so gewählt, daß
ec( 1−k

2
) < ε für k ≥ N0 sowie

Qk ≤ eck/2, k ≥ N1, und Πk ≤ e−ck, k ≥ N2,

mit Wahrscheinlichkeit 1 gilt. Definieren wir N := max{N0, N1, N2}, so folgt für alle
k ≥ N + 1

QkΠk−1 ≤ ec(1− k
2
) ≤ ec(1−N+1

2
) < ε f.s.

und daher
max
k≥1

QkΠk−1 = max
1≤k≤N

QkΠk−1 ∨ max
k≥N+1

QkΠk−1 <∞ f.s.

In Verbindung mit
0 ≤ lim

n→∞
Πn ≤ lim

n→∞
e−cn = 0 f.s.

folgt daraus wegen

lim
n→∞

Zn(t) = lim
n→∞

max(tΠn, max
1≤k≤n

QkΠk−1)

= max( lim
n→∞

tΠn, lim
n→∞

max
1≤k≤n

QkΠk−1)

= (max
k≥1

QkΠk−1)
+

die Behauptung mit dem Prinzip von Letac. 2

Satz 4.2.2. Seien M,Q Zufallsgrößen auf einem Wahrscheinlichkeitsraum (Ω,A, P ) mit
M ≥ 0 f.s. M erfülle die Bedingungen von Lemma 2.1.2, P log M |M 6=0 sei nichtarithmetisch,
und es gelte E(Q+)κ < ∞. Dann existiert eine eindeutige Lösung R von (4.2.1), und es
gilt

P (R > t) ∼ C+t
−κ, t→∞,
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mit

C+ =
1

κm
E(((Q ∨ (MR))+)κ − ((MR)+)κ)

sowie außerdem
C+ > 0 ⇔ P (Q > 0) > 0.

Beweis. Existenz und Eindeutigkeit der Lösung von (4.2.1) folgen mit Propositi-
on 4.2.1. Wegen

E|((Q ∨MR)+)κ − ((MR)+)κ| = E1{MR<Q,Q>0}(Q
κ − ((MR)+)κ) ≤ E1{Q>0}Q

κ <∞

liefert Korollar 2.2.2 (2.2.3) und die Formel für C+. Zum Nachweis der Äquivalenz nehmen
wir zunächst C+ > 0 an. Ist Q ≤ 0 f.s., folgt mit

κmC+ = E((Q+ ∨ (MR)+)κ − ((MR)+)κ) = E(((MR)+)κ − ((MR)+)κ) = 0

ein Widerspruch zur Voraussetzung. Gilt P (Q > 0) > 0, wählen wir ein c > 0 so, daß
P (Q > c) > 0 ist. Wir setzen außerdem

Nt := min{k ∈ N : Πk−1 >
t

c
}, t ∈ R,

und zeigen zunächst

(4.2.4)
∑
n≥1

P (Nt = n,Qn > c) ≤ P (max
k∈N

QkΠk−1 > t)

und

(4.2.5)
∑
n≥1

P (Nt = n) = P (max
k∈N

Πk−1 >
t

c
).

Für (4.2.4) betrachten wir∑
n≥1

P (Nt = n,Qn > c) =
∑
n≥1

P (Π0 ≤
t

c
, . . . ,Πn−2 ≤

t

c
,Πn−1 >

t

c
,Qn > c)

≤
∑
n≥1

P (Π0 ≤
t

c
, . . . ,Πn−2 ≤

t

c
, QnΠn−1 > t)

und nehmen für den nichttrivialen Fall
∑

n≥1 P (Nt = n,Qn > c) > 0 an. Dann existiert
ein n0 ∈ N, so daß

{Π0 ≤
t

c
, . . . ,Πn0−2 ≤

t

c
,Πn0−1 >

t

c
,Qn0 > c}

positive Wahrscheinlichkeit besitzt, und kein n ∈ N mit n > n0 erfüllt diese Beziehung,
da sie bereits für n0 gilt, sowie kein n ∈ {1, . . . , n0 − 1}, da sie sonst nicht für n0 gelten
könnte. Wegen

Qn0Πn0−1 ≤ max
k≥n0

QkΠk−1 = max
k≥1

QkΠk−1

und daher
{Qn0Πn0−1 > t} ⊂ {max

k≥1
QkΠk−1 > t}
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folgt daraus (4.2.4) mittels∑
n≥1

P (Nt = n,Qn > c) = P (Π0 ≤
t

c
, . . . ,Πn0−2 ≤

t

c
,Πn0−1 >

t

c
,Qn0 > c)

≤ P (Qn0Πn0−1 > t)

≤ P (max
k∈N

QkΠk−1 > t).

Gilt in (4.2.5)
∑

n≥1 P (Nt = n) = 0 oder P (maxk∈N Πk−1 >
t
c
) = 0, folgt die Behauptung

direkt, seien daher
∑

n≥1 P (Nt = n) > 0 und P (maxk∈N Πk−1 >
t
c
) > 0. Dann existiert

ein l ∈ N mit P (Πl−1 >
t
c
) > 0, und wegen

∑
n≥1 P (Nt = n) > 0 existiert ein n0 ≤ l, so

daß

{Π0 ≤
t

c
, . . . ,Πn0−2 ≤

t

c
,Πn0−1 >

t

c
}

positive Wahrscheinlichkeit besitzt. Unter den gegebenen Voraussetzungen ist dann

{max
k∈N

Πk−1 >
t

c
} ⊂ {∃n0 ≤ l : Π0 ≤

t

c
, . . . ,Πn0−2 ≤

t

c
,Πn0−1 >

t

c
}

und daher

P (max
k∈N

Πk−1 >
t

c
) ≤ P (Π0 ≤

t

c
, . . . ,Πn0−2 ≤

t

c
,Πn0−1 >

t

c
) =

∑
n≥1

P (Nt = n).

Die umgekehrte Beziehung erhalten wir durch eine zum Nachweis von (4.2.4) analoge
Rechnung und damit insgesamt (4.2.5). Aufgrund der Unabhängigkeit von (Mn, Qn) und
(Mk, Qk), 1 ≤ k ≤ n− 1, folgt dann

P (R > t) = P (max
k∈N

QkΠk−1 > t)

≥
∑
n≥1

P (Nt = n,Qn > c)

=
∑
n≥1

P (Π0 ≤
t

c
, . . . ,Πn−2 ≤

t

c
,Πn−1 >

t

c
,Qn > c)

= P (Qn > c)
∑
n≥1

P (Nt = n)

= P (Q > c)P (max
k∈N

Πk−1 >
t

c
).

Da P (Q > 0) > 0 ist, genügt es, für ein δ > 0

(4.2.6) P (max
k∈N0

Πk > et) ≥ δe−κt

für t→∞ zu zeigen. Wegen eSn = Πn und daher

P (max
k∈N0

Πk > et) = P (max
k∈N0

Sk > t)

folgt dies jedoch analog zum letzten Teil des Beweises von Satz 4.1.1. Mit einer Substitu-
tion von t durch log t

c
in (4.2.6) gilt daher wegen

tκP (R > t) ≥ δcκP (Q > c) > 0, t→∞,

die Behauptung. 2

Mit Hilfe von Kapitel 3 erhalten wir die Konvergenzrate der Flanken der Verteilung von
R.
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Satz 4.2.3. Seien R,M,Q Zufallsgrößen auf einem Wahrscheinlichkeitsraum (Ω,A, P )
mit M ≥ 0 f.s. M erfülle (2.1.5), (3.2.1) sowie (3.2.2), R löse (4.2.1), und es gelte
E(Q+)κ+β <∞. Ist ein Wahrscheinlichkeitsmaß η auf R definiert durch

η(dx) := eκxP (logM ∈ dx),

so gelten (3.2.4) und (3.2.6).

Im G/G/1-Bedienungssystem bedeutet dies für die stationäre Verteilung der Wartezeit
des Kunden in der Schlange

eκtP (W > t) = C+ − I(et) +O(e−
β
2
t), t→∞,

mit

I(t) =
1

2π
Re

(∫
C
t−iθ g̃1(θ)

1− Φη(θ)
dθ

)
, t ∈ R,

aus (3.2.4). Wir verfeinern somit die in [Bor], Abschnitt 22.3, für ein nicht näher bestimm-
tes γ ∈ R bereits bekannte Asymptotik

eκtP (W > t) = C+ +O(e−γt), t→∞,

der Flanken der Verteilung von W.

Beweis von Satz 4.2.3. Analog zum Beweis von Satz 4.2.2 ist (3.2.7) wegen

E|((Q ∨MR)+)κ+β − ((MR)+)κ+β| ≤ E1{Q>0}Q
κ+β

erfüllt. (3.2.8) erhalten wir mit (−R,M,−Q) anstelle von (R,M,Q) und (3.2.7). Mit
Satz 3.2.1 (c) folgt dann die Behauptung. 2

Wir schließen diesen Abschnitt mit der Bemerkung, daß wir unser zugrundeliegendes
Modell erweitern können, indem wir uns nicht allein für die Verteilung des Maximums
von Q und MR interessieren, sondern bezüglich des betraglichen Maximums von Q und
MR unterscheiden. Definieren wir für a, b ∈ R

ag b :=

{
a, falls |a| > |b|
b, sonst

,

so lautet unsere Gleichung nun

(4.2.1′) R
d
= QgMR, R unabhängig von (M,Q).

Proposition 4.2.4. Seien M,Q Zufallsgrößen auf einem Wahrscheinlichkeitsraum
(Ω,A, P ). Genügt M den Bedingungen von Lemma 2.1.2, ist P log|M ||M 6=0 nichtarithmetisch
und E|Q|κ < ∞, so existiert eine eindeutige Lösung R von (4.2.1′), deren Verteilung
sowohl (2.2.3) als auch (2.2.4) erfüllt. Ist M ≥ 0 f.s., gilt

C+ =
1

κm
E(((QgMR)+)κ − ((MR)+)κ),

C− =
1

κm
E(((QgMR)−)κ − ((MR)−)κ),

und im Fall P (M < 0) > 0

C+ = C− =
1

2κm
E((|Q|κ − |MR|κ)+).

Weiter gilt
C+ + C− > 0 ⇔ P (Q 6= 0) > 0.
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Beweis. Seien (Mn, Qn) für alle n ∈ N unabhängige Kopien von (M,Q),
Ψn(t) := Qn gMnt und Zn gemäß (2.1.2). Aufgrund der Voraussetzungen ist
E log |M | ∈ [−∞, 0) und E log+ |Q| < ∞. Indem wir daher den Beweis von Propositi-
on 4.2.1 mit |M | , |Πn| und |Q| anstelle von M,Πn und Q wiederholen, erhalten wir

gk≥1QkΠk−1 <∞

sowie
lim

n→∞
Zn(t) = lim

n→∞
(tΠn g g1≤k≤nQkΠk−1) = gk≥1QkΠk−1

in Verbindung mit
0 ≤ lim

n→∞
|Πn| ≤ lim

n→∞
e−cn = 0.

gk≥1QkΠk−1 ist folglich die eindeutige Lösung von (4.2.1′). Wir zeigen nun (2.2.9) und (2.2.10)
mit Ψ(R) = Q g MR. Im Fall Q > |MR| ist (Q g MR)+ = Q, und für Q < −|MR|
erhalten wir (QgMR)+ = Q+ = 0 sowie (MR)+ ≤ (−Q)+. Es folgt

E|((QgMR)+)κ − ((MR)+)κ| = E1{Q>|MR|}(Q
κ − ((MR)+)κ) + E1{Q<−|MR|}((MR)+)κ

≤ E(Q+)κ + E1{−Q≥0}(−Q)κ

= E|Q|κ.

Ebenfalls gilt

E|((QgMR)−)κ − ((MR)−)κ| = E1{Q>|MR|}((MR)−)κ + E1{Q<−|MR|}((Q
−)κ − ((MR)−)κ)

≤ E1{Q>0}Q
κ + E1{−Q>0}(Q

−)κ

= E|Q|κ

wegen (Q g MR)− = Q− = 0 für Q > |MR| und (Q g MR)− = Q− für Q < −|MR|
(beachte E|((QgMR)+)κ − ((MR)+)κ| = E|((QgMR)−)κ − ((MR)−)κ| = 0 für
|Q| < |MR|). Korollar 2.2.2 liefert die Formeln für C+ und C−, wobei wir im Fall
P (M < 0) > 0

C+ = C− =
1

2κm
E(|QgMR|κ − |MR|κ)

=
1

2κm
E((|Q|κ − |MR|κ)+)

erhalten. Nehmen wir für den Nachweis der Äquivalenz zunächst C+ +C− > 0 an, so folgt
aus P (Q 6= 0) = 0 mittels

κm(C+ + C−) = E((|Q|κ − |MR|κ)+) = 0

ein Widerspruch zur Voraussetzung. Für die umgekehrte Richtung wählen wie ein c > 0
so, daß P (|Q| > c) > 0 ist, und erhalten analog zum Ende des Beweises von Satz 4.1.1
für ein hier nicht näher bestimmtes δ > 0

P (|R| > t) = P (∃k ∈ N : |QkΠk−1| > t)

≥ P (|Q| > c)P (∃k ∈ N : |Πk−1| >
t

c
)

∼ P (|Q| > c)δt−κ

für t→∞ und somit insgesamt die Behauptung. 2
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Proposition 4.2.5. Seien R,M,Q Zufallsgrößen auf einem Wahrscheinlichkeitsraum
(Ω,A, P ). M erfülle (2.1.5) für ein κ > 0, (3.2.1) für ein β > 0 sowie (3.2.2), für Q gelte
E|Q|κ+β <∞, und R löse (4.2.1′). Ist M ≥ 0 f.s., sei ein Wahrscheinlichkeitsmaß η auf
R definiert durch

η(dx) := eκxP (logM ∈ dx).
Dann folgen sowohl (3.2.4) als auch (3.2.6). Für P (M < 0) > 0 sei η durch (3.3.1)
definiert und erfülle außerdem (3.3.2). In diesem Fall gilt (3.3.3), und tκP (R < −t)
erfüllt dieselbe Formel.

Der Beweis verläuft analog zu den Beweisen von Satz 4.1.12 und Satz 4.2.3 und wird
daher von uns hier nicht geführt.

4.3 R
d
= Q +M max(L,R)

Im Gegensatz zu den ersten beiden Gleichungen, die jeweils nur von zwei Zufallsgrößen
abhängen, beschäftigen wir uns in diesem Abschnitt mit

(4.3.1) R
d
= Q+M max(L,R), R unabhängig von (M,Q,L),

wobeiM ≥ 0 f.s. gelte. Diese stochastische Fixpunktgleichung finden wir bereits im Modell
E von [Let], allerdings ohne die Einschränkung auf eine fast sicher positive Zufallsgröße
M. Wir benötigen diese Einschränkung jedoch, damit (4.3.4) gültig bleibt.
Bevor wir klären, unter welchen Voraussetzungen eine eindeutige Verteilung als Lösung
von (4.3.1) existiert, um dann in diesem Fall das asymptotische Verhalten sowie die Kon-
vergenzrate ihrer Flanken anzugeben, möchten wir auf zwei Spezialfälle aufmerksam ma-
chen. Ist in (4.3.1) Q = 0 f.s., erhalten wir eine Verbindung zur Gleichung (4.2.1) aus dem
letzten Abschnitt, denn wählen wir dort Q = ML, folgt

R
d
= max(ML,MR) = M max(L,R).

Gilt außerdem L > 0 f.s. und setzen wir im Fall R ≥ 0 f.s. S = logR, B = logM und
A = logL, gelangen wir durch Logarithmieren von (4.3.1) zur Gleichung

(4.3.2) S
d
= B + max(A, S).

Sind An, Bn, Sn (S0 gegeben und unabhängig von (Sn)n≥1) für alle n ∈ N unabhängige
Kopien von A,B, S und setzen wir

Ψn(t) := Bn + max(An, t), t ∈ R, n ∈ N,

so gilt mit Zn gemäß (2.1.2) wegen

Zn(t) = Zn−1 ◦Ψn(t)

= max( max
1≤k≤n−1

k∑
i=1

Bi + Ak,

n−1∑
i=1

Bi + Ψn(t))

= max( max
1≤k≤n−1

k∑
i=1

Bi + Ak,

n−1∑
i=1

Bi +Bn + max(An, t))

= max( max
1≤k≤n

k∑
i=1

Bi + Ak,

n∑
i=1

Bi + t)
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und P (B = −∞) > 0

lim
n→∞

Zn(t) = lim
n→∞

max
1≤k≤n

(
k∑

i=1

Bi + Ak) = sup
k∈N

(
k∑

i=1

Bi + Ak).

Die Zufallsgröße S besitzt demnach die Verteilung von supk∈N(
∑k

i=1Bi + Ak).
Helland und Nilsen (vgl. [HeN]) haben eine zu (4.3.2) äquivalente Gleichung untersucht,
die bereits von Helland (vgl. [Hel]) und Gade (vgl. [Gad]) dazu verwendet wurde, um den
Wasseraustausch zwischen Küste und Fjorden zu beschreiben. Ihre Gleichung

Sn = max(Sn−1 −Dn, Un), n ∈ N,

mit unabhängigen Folgen (Un)n∈N, (Dn)n∈N unabhängig identisch verteilter Zufallsgrößen
erhalten wir aus unserem Modell wegen

max(Sn−1 −Dn, Un) = max(Sn−1, Un +Dn)−Dn

mit An := Un + Dn und Bn := −Dn für alle n ∈ N. In der Gleichung beschreibt Un die
Dichte des Küstenwassers und Sn die des Fjordwassers im Jahr n. Das frische Wasser,
das in der Zeitspanne von Jahr n − 1 zu Jahr n aus dem Meer in den Fjord geströmt
ist, verringert die Dichte des ruhenden Wassers um die Größe Dn. Ist das Fjordwasser
immer noch schwerer als das Küstenwasser, geschieht nichts, andernfalls wird das gesamte
ruhende Wasser durch Wasser mit der Dichte Un ausgetauscht.
Die Autoren sind sich dessen bewußt, daß ihr Modell einen idealisierten Vorgang in der
Natur beschreibt, da sich beispielsweise der Wasseraustausch innerhalb von unterschied-
lich langen Zeiträumen - manchmal in nur wenigen Wochen - und dann auch nicht immer
nahezu vollständig vollziehen kann. Gade und Helland betrachten außerdem nur den Fall,
daß D1 f.s. konstant ist. Dennoch ist ihr allgemeines Modell immer dann von Interes-
se, wenn ehemals maximale Werte mit neuen Werten verglichen werden müssen. Ein
Standardbeispiel hierfür ist der Nutzen industrieller Produkte, die sich gerade auf dem
Markt befinden, gemessen an ihrem Preis und ihrer Haltbarkeit. Bezeichnet Sn−1 den
Nutzen eines Produktes zum Zeitpunkt n− 1 und Un den eines neuen Produktes, das den
Markt zum Zeitpunkt n betritt, so findet immer dann ein Produktaustausch statt, wenn
Un > Sn−1 −Dn ist, wobei Dn die Abnutzung von Sn−1 im Zeitintervall von n − 1 bis n
beschreibt.
Bereits an diesen Beispielen wird deutlich, wie eng unsere Ausgangsgleichung (4.3.1) mit
vielen bereits eingehender untersuchten Modellen verbunden ist. Die dem Nachweis der
Existenz und Eindeutigkeit einer Lösung von (4.3.1) folgenden Ergebnisse über die Flan-
ken der Verteilung vonR können wir daher durch Umformen von (4.3.1) auf alle passenden
Gleichungen übertragen und innerhalb dieser Modelle verwenden.

Proposition 4.3.1. Seien M,Q,L Zufallsgrößen auf einem Wahrscheinlichkeitsraum
(Ω,A, P ). Ist M ≥ 0 f.s. und

E logM ∈ [−∞, 0), E log(1 ∨Q) <∞, E log(1 ∨ L) <∞,

so ist

sup(
∑
k≥1

QkΠk−1, sup
m∈N

(
m∑

k=1

QkΠk−1 + LmΠm)) <∞ f.s.

und die eindeutige Lösung von (4.3.1).
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Beweis. Wir setzen

(4.3.3) Ψ(t) := Q+M max(L, t), t ∈ R,

und Ψn(t) := Qn + Mn max(Ln, t) für alle t ∈ R und n ∈ N, wobei (M,Q,L) und
(Mn, Qn, Ln) für alle n ∈ N unabhängig identisch verteilt seien. Mit Hilfe einer Induktion
nach n ∈ N erhalten wir mit Zn gemäß (2.1.2)

(4.3.4) Zn(t) = max(
n∑

k=1

QkΠk−1 + tΠn, max
1≤m≤n

m∑
k=1

QkΠk−1 + LmΠm),

denn für n = 1 gilt wegen Π0 = 1

max(Q1 + tΠ1, Q1 + L1Π1) = Q1 +M1 max(L1, t) = Ψ1(t)

und daher für ein beliebiges n ≥ 2

Zn(t) = Zn−1 ◦Ψn(t)

= max(
n−1∑
k=1

QkΠk−1 + Ψn(t)Πn−1, max
1≤m≤n−1

m∑
k=1

QkΠk−1 + LmΠm)

= max(
n∑

k=1

QkΠk−1 + max(LnΠn, tΠn), max
1≤m≤n−1

m∑
k=1

QkΠk−1 + LmΠm)

= max(
n∑

k=1

QkΠk−1 + tΠn, max
1≤m≤n

m∑
k=1

QkΠk−1 + LmΠm).

Wir wählen ein c > 0 so, daß E logM < −c gilt, und erhalten mit derselben Rechnung
wie in Proposition 4.2.1

Mn ≤ e−cn f.s., Qn ≤ ecn/2 f.s., Ln ≤ ecn/2 f.s.

für genügend große n ∈ N. Sei ε > 0 beliebig und seien N0, N1, N2, N3 ∈ N so gewählt,
daß e−

1
2
cn < ε für n ≥ N0 und

Qn ≤ ecn/2, n ≥ N1, Ln ≤ ecn/2, n ≥ N2, Πn ≤ e−cn, n ≥ N3,

mit Wahrscheinlichkeit 1 gilt. Setzen wir N := max(N0, N1, N2, N3) und
ε′ = ec supm≥N+1

∑m
k=N+1(e

−c/2)k + ε, so folgt

∑
k≥1

QkΠk−1 =
N∑

k=1

QkΠk−1 +
∑

k≥N+1

QkΠk−1

≤
N∑

k=1

QkΠk−1 + ec
∑

k≥N+1

(e−
c
2 )k

<

N∑
k=1

QkΠk−1 +
ec

1− e−c/2
f.s.

und

sup
m∈N

(
m∑

k=1

QkΠk−1 + LmΠm) = sup( max
1≤m≤N

m∑
k=1

QkΠk−1 + LmΠm, sup
m≥N+1

(
m∑

k=1

QkΠk−1 + LmΠm))

< sup( max
1≤m≤N

m∑
k=1

QkΠk−1 + LmΠm,
N∑

k=1

QkΠk−1 + ε′) f.s.
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In Verbindung mit P (limn→∞ Πn = 0) = 1 erhalten wir

lim
n→∞

Zn(t) = lim
n→∞

sup(
n∑

k=1

QkΠk−1 + tΠn, max
1≤m≤n

(
m∑

k=1

QkΠk−1 + LmΠm))

= sup(
∑
k≥1

QkΠk−1, sup
m∈N

(
m∑

k=1

QkΠk−1 + LmΠm)) <∞ f.s.

und daher die Behauptung. 2

Satz 4.3.2. Seien M,Q,L Zufallsgrößen auf einem Wahrscheinlichkeitsraum (Ω,A, P )
mit M ≥ 0 f.s. M genüge den Bedingungen von Lemma 2.1.2, und P log M |M 6=0 sei nicht-
arithmetisch. Sind

(4.3.5) E(L+)κ <∞, E|Q|κ <∞, E(ML+)κ <∞,

so besitzt (4.3.1) eine eindeutige Lösung R, und es gilt

P (R > t) ∼ C+t
−κ, t→∞,

mit

C+ =
1

κm
E(((Q+M max(L,R))+)κ − ((MR)+)κ).

Existiert außerdem eine Konstante c ∈ R mit

P (Q− c(1−M) ≥ 0) = 1

und
P (Q− c(1−M) > 0) + P (M(L− c) > 0) > 0,

so ist C+ > 0.

Beweis. Existenz und Eindeutigkeit der Lösung von (4.3.1) folgen mit Propositi-
on 4.3.1. (2.2.3) und die Formel für C+ erhalten wir mit Korollar 2.2.2, indem wir mit
derselben Methode wie im Beweis von Satz 4.1.1

E|((Q+M max(L,R))+)κ − ((MR)+)κ| <∞

zeigen. Wir betrachten dazu zunächst E(R+)p für ein beliebiges p ∈ (0, κ). Aufgrund der
Subadditivität des +-Operators folgt mit Hilfe der ‖ · ‖p-Norm gemäß (4.1.13)

‖R+‖p = ‖(Q+M max(L,R))+‖p

≤ ‖Q+‖p + ‖ML+‖p + ‖M‖p‖R+‖p

⇔ ‖R+‖p ≤ ‖Q+‖p+‖ML+‖p

1−‖M‖p
.

Nach Voraussetzung und Wahl von p ist dieser letzte Ausdruck endlich, und wir erhalten
für alle 0 < p < κ

(4.3.6) E(R+)p <∞.
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Um den Betrag der linken Seite von (2.2.9) mit Ψ(R) = Q + M max(L,R) aufzulösen,
führen wir wieder eine Fallunterscheidung nach Q und M(R ∨ L) durch.
Für −Q < M(R ∨ L) ≤ 0 gilt (Q +M(R ∨ L))+ = Q +M(R ∨ L) und (MR)+ = 0, für
0 < M(R ∨ L) ≤ −Q erhalten wir (Q + M(R ∨ L))+ = 0 und (MR)+ = (MR)+. Aus
Q > 0 und M(R ∨ L) > 0 folgt (Q+M(R ∨ L))+ = Q+M(R ∨ L) sowie
(MR)+ = (MR)+ ≤ Q+M(R ∨ L), während im Fall Q < 0 und M(R ∨ L) < 0
(Q + M(R ∨ L))+ = (MR)+ = 0 gilt. Für 0 < −Q < M(R ∨ L) erhalten wir sowohl
(MR)+ = (MR)+ als auch (Q+M(R ∨L))+ = Q+M(R ∨L), für M(R ∨L) < −Q ≤ 0
dagegen (Q+M(R ∨ L))+ = (MR)+ = 0 und damit insgesamt

E|((Q+M max(L,R))+)κ − ((MR)+)κ| = κ
4∑

i=1

Ii,

wobei wir

I1 := 1
κ
E1{−Q<M(R∨L)≤0}(Q+M(R ∨ L))κ,

I2 := 1
κ
E1{0<M(R∨L)≤−Q}((MR)+)κ,

I3 := 1
κ
E1{Q>0,M(R∨L)>0}((Q+M(R ∨ L))κ − ((MR)+)κ),

I4 := 1
κ
E1{0<−Q<M(R∨L)}|(Q+M(R ∨ L))κ − ((MR)+)κ|

setzen. I1 und I2 sind beide nach Voraussetzung an Q endlich, denn wir erhalten
I1 ≤ 1

κ
E(Q+)κ für 0 < Q+M(R ∨ L) ≤ Q+, und wegen (MR)+ ≤ M(R ∨ L) ≤ −Q gilt

I2 ≤ 1
κ
E1{0<−Q}(−Q)κ = 1

κ
E(Q−)κ. Um die Endlichkeit von I3 und I4 nachzuweisen, sind

weitere Fallunterscheidungen nach R ∨ L und κ notwendig. Für R > L und R > 0 gilt

(MR)+ = MR ≤ Q+MR = Q+M(R ∨ L),

für L > R und L > 0

(MR)+ ≤ Q+ML = Q+M(R ∨ L),

und wir schreiben I3 als Summe von

I31 :=
1

κ
E1{Q>0,R>0,R>L}((Q+MR)κ − (MR)κ)

und

I32 :=
1

κ
E1{Q>0,L>0,R≤L}((Q+ML)κ − ((MR)+)κ).

I31 behandeln wir analog zu I3 im Beweis von Satz 4.1.1. Für 0 < κ ≤ 1 folgt mit (4.1.11)

I31 ≤
1

κ
E1{Q>0,R>0,R>L}Q

κ ≤ 1

κ
E(Q+)κ <∞,

und für κ > 1 erhalten wir mit (4.1.10), (4.1.11), (4.3.6) und der Hölder-Ungleichung

I31 ≤ E1{Q>0,R>0,R>L}Q(Q+MR)κ−1

≤ cκ−1E1{Q>0,R>0,R>L}Q(Qκ−1 + (MR)κ−1)

≤ cκ−1E(Q+)κ + cκ−1E(Q+Mκ−1)E(R+)κ−1

< ∞.
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Wegen 0 ≤ (MR)+ ≤ Q+ML gilt außerdem in Verbindung mit (4.1.10)

I32 ≤
1

κ
E1{Q>0,L>0}(Q+ML)κ ≤ 1

κ
cκ(E(Q+)κ + E(ML+)κ) <∞

und damit I3 < ∞. Etwas aufwendiger ist die Abschätzung von I4. Ist 0 < −Q < MR
und R ≥ L, gilt

Q+M(R ∨ L) = Q+MR ≤MR = (MR)+.

Für 0 < −Q < ML und R ≤ 0 folgt

0 = (MR)+ < Q+ML = Q+M(R ∨ L),

für 0 < −Q < ML, 0 < R < L und MR < Q+ML dagegen

(MR)+ = MR < Q+ML = Q+M(R ∨ L)

und schließlich für 0 < −Q < ML, 0 < R < L und MR > Q+ML

Q+M(R ∨ L) = Q+ML < MR = (MR)+.

Setzen wir

I41 := 1
κ
E1{0<−Q<MR,R≥L}((MR)κ − (Q+MR)κ),

I42 := 1
κ
E1{0<−Q<ML,R≤0}(Q+ML)κ,

I43 := 1
κ
E1{0<−Q<ML,0<R<L,MR<Q+ML}((Q+ML)κ − (MR)κ),

I44 := 1
κ
E1{0<−Q<ML,0<R<L,MR>Q+ML}((MR)κ − (Q+ML)κ),

gilt somit I4 =
∑4

i=1 I4i. Wir erhalten mit derselben Methode, mit der wir in Satz 4.1.1
I4 <∞ gezeigt haben, die Endlichkeit von I41, denn für 0 < κ ≤ 1 folgt mit (4.1.11)

I41 ≤ E1{0<−Q<MR,R≥L}| −Q|κ ≤ E|Q|κ,

für κ > 1 mit (4.1.11) und (4.3.6)

I41 ≤ E1{0<−Q<MR,R≥L}(−Q)(MR)κ−1 ≤ E(Q−Mκ−1)E(R+)κ−1.

Wegen Q+ML < ML gilt

I42 ≤
1

κ
E1{L>0}(ML)κ =

1

κ
E(ML+)κ

und somit ebenfalls

I43 ≤
1

κ
E(ML+)κ sowie I44 ≤

1

κ
E(ML+)κ

wegen 0 ≤ MR < Q+ML < ML und 0 < Q+ML < MR < ML. Nach Voraussetzung
folgt daraus I4 < ∞, und wir erhalten insgesamt (2.2.9). Korollar 2.2.2 liefert (2.2.3)
sowie die Formel für C+. Wir nehmen weiter an, daß eine Konstante c ∈ R existiert, die
die geforderten Bedingungen erfüllt, und setzen Q(c) := Q− c(1−M). Wegen

Q(c) +M max(R− c, L− c) = Q+M max(R,L)− c
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folgt

R− c
d
= Q(c) +M max(R− c, L− c)

und daraus mit Proposition 4.3.1

R− c ∼ sup

(
R∗(c), sup

m∈N
(

m∑
k=1

Qk(c)Πk−1 + (Lm − c)Πm)

)
,

wobei wir R∗(c) :=
∑

k≥1Qk(c)Πk−1 setzen. Ist P (Q(c) > 0) > 0, so gilt wegen Πk−1 ≥ 0
f.s. für alle k ∈ N auch P (R∗(c) > 0) > 0 (beachte Π0 = 1). Mit Hilfe von Satz 4.1.1
erhalten wir

R∗(c)
d
= Q(c) +MR∗(c), R∗(c) unabhängig von (M,Q(c)),

und

P (R∗(c) > t) ∼ C+(c)t−κ

für t→∞ mit

C+(c) =
1

κm
E((Q(c) +MR∗(c))κ − (MR∗(c))κ) > 0.

Wegen

R∗(c) + c =
∑
k≥1

Qk(c)Πk−1 + c

=
∑
k≥1

(Qk − c(1−Mk))Πk−1 + c

=
∑
k≥1

QkΠk−1 − c
∑
k≥1

Πk−1 + c
∑
k≥1

Πk + c

=
∑
k≥1

QkΠk−1

und

R ∼ sup(
∑
k≥1

QkΠk−1, sup
m∈N

(
m∑

k=1

QkΠk−1 + LmΠm))

folgt {R∗(c) > t− c} ⊂ {R > t} und damit C+ > 0 wegen

P (R > t) ≥ P (R∗(c) > t− c)

∼ C+(c)(t− c)−κ

≥ C+(c)(1 + o(1))t−κ, t→∞.

Ist Q(c) = 0 f.s., so ist P (M(L− c) > 0) > 0 sowie R∗(c) = 0 f.s. und daher

R− c ∼ sup
m∈N

(Lm − c)Πm = sup
m∈N

((Lm − c)Mm)Πm−1.

Mit Q = M(L − c) sind wir somit in der Situation des letzten Abschnittes und erhalten
mit Hilfe von Satz 4.2.2 C+ > 0. 2
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Satz 4.3.3. Seien M,Q,L Zufallsgrößen auf einem Wahrscheinlichkeitsraum
(Ω,A, P ), wobei M ≥ 0 f.s. gelte und M für ein κ > 0 (2.1.5), für ein β ∈ (0, 1) (3.2.1)
sowie (3.2.2) genüge und E|Q|κ+β, E|ML+|κ+β endlich seien. Ist R eine von M,Q,L
unabhängige Zufallsgröße, die (4.3.1) löst, und definiert

η(dx) := eκxP (logM ∈ dx)

ein Wahrscheinlichkeitsmaß auf R, so folgen sowohl (3.2.4) als auch (3.2.6).

Beweis. Aufgrund von (4.3.6) und κ+β−1 < κ ist E(R+)κ+β−1 <∞. Indem wir den
mittleren Teil des Beweises von Satz 4.3.2 mit κ+ β anstelle von κ wiederholen, erhalten
wir (3.2.7) sowie (3.2.8) mit einer analogen Rechnung und (−R,M,−Q) statt (R,M,Q).
Satz 3.2.1 (c) liefert die Behauptung. 2

4.4 R
d
=
√
MR2 +NR +Q

Unser letztes Beispiel einer stochastischen Fixpunktgleichung, auf die sich unsere Ergeb-
nisse übertragen lassen, demonstriert die Bandbreite unserer Methode und behandelt die
polynomiale Gleichung

(4.4.1) R
d
=
√
MR2 +NR +Q, R unabhängig von (M,N,Q),

mit f.s. nichtnegativen Zufallsgrößen M,N,Q und R auf einem Wahrscheinlichkeitsraum
(Ω,A, P ). Wir setzen S = R2 und betrachten im folgenden

(4.4.1′) S
d
= MS +N

√
S +Q, S unabhängig von (M,N,Q),

als äquivalente Form von (4.4.1) und erhalten die Existenz und Eindeutigkeit einer Lösung
von (4.4.1′) unter Anwendung des Prinzips von Letac auf

Ξ(t) := Mt+N
√
t+Q, t ≥ 0,

bzw.
Ξn(t) := Mnt+Nn

√
t+Qn, t ≥ 0,

für alle n ∈ N mit Hilfe von

Proposition 4.4.1. Seien M,N,Q,M ′, N ′, Q′ sowie Mn, Nn, Qn, n ∈ N, Zufallsgrößen
auf einem Wahrscheinlichkeitsraum (Ω,A, P ), für die M ≥ 0 f.s., N ≥ 0 f.s. und Q > 0
f.s. gelte. (M,N,Q), (M ′, N ′, Q′) und (Mn, Nn, Qn), n ∈ N, seien unabhängig und identisch
verteilt. Ist

(4.4.2) E log+N <∞, E log(1 ∨Q) <∞

und

(4.4.3) E log

(
M +

N

2
√
Q′

)
∈ [−∞, 0),

so existiert Z := limn→∞ Ξ1 ◦ · · · ◦Ξn(t) f.s. und ist unabhängig von t, und die Verteilung
von Z ist die eindeutige Lösung von (4.4.1′) auf (0,∞).
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Beweis. Aufgrund von (4.4.3) gilt E logM ∈ [−∞, 0), und wegen (4.4.2) finden wir

daher ein genügend großes c > 0, so daß E log
(
M + N√

c

)
< 0 ist. Wir definieren

Ψ(t) := Q+

(
M +

N√
c

)
max(t, c), t ∈ R,

und

Ψn(t) := Qn +

(
Mn +

Nn√
c

)
max(t, c), t ∈ R,

für alle n ∈ N und erhalten somit einen Spezialfall von (4.3.3), der die Bedingungen von
Proposition 4.3.1 erfüllt. Mit Zn gemäß (2.1.2) folgt wegen

Ξ(t) = Mc
t

c
+N

√
c

√
t

c
+Q

≤ (Mc+N
√
c) max(t, c) +Q

= Ψ(t)

und
0 ≤ lim

n→∞
Zn(t) ≤ lim

n→∞
Ψ1 ◦ · · · ◦Ψn(t) <∞ f.s.

die fast sichere Beschränktheit von Zn(t). Ist t = 0, erhalten wir Z1(0) = Ξ1(0) = Q1 und
für beliebiges n ≥ 2

Zn(0) = Ξ1 ◦ · · · ◦ Ξn−1(Qn) = Zn−1(Qn)

sowie
Zn+1(0) = Zn−1 ◦ Ξn(Qn+1) = Zn−1(MnQn+1 +Nn

√
Qn+1 +Qn).

Da Zn−1(t) eine Verknüpfung von in t wachsenden Funktionen ist, ist Zn−1(t) ebenfalls
wachsend in t. Es gilt daher Zn(0) ≤ Zn+1(0) für alle n ∈ N, d.h. (Zn(0))n∈N ist eine
wachsende Folge. Zusammen mit 0 ≤ limn→∞ Zn(0) < ∞ liefert dies die fast sichere
Konvergenz von Zn(0) gegen eine endliche Zufallsgröße Z (vgl.[Loy], S. 500, Beweis von
Lemma 1). Wir möchten dasselbe für Zn(t) zeigen und setzen für alle t ∈ R

Ξnn(t) := t sowie Ξmn(t) := Ξm+1 ◦ · · · ◦ Ξn(t), m ∈ N,m < n.

Wegen

Ξ(t′)− Ξ(t) = Mt′ +N
√
t′ +Q−Mt−N

√
t−Q

= M(t′ − t) +N(
√
t′ −

√
t)

=

(
M +

N√
t′ +

√
t

)
(t′ − t)

erhalten wir

Zn(t′)− Zn(t) = (t′ − t)
n∏

m=1

(
Mm +

Nm√
Ξmn(t′) +

√
Ξmn(t)

)
mit Hilfe einer Induktion nach n, denn für n = 1 ist

Z1(t
′)− Z1(t) = Ξ1(t

′)− Ξ1(t)

=

(
M1 +

N1√
t′ +

√
t

)
(t′ − t)

= (t′ − t)
1∏

m=1

(
Mm +

Nm√
Ξm1(t′) +

√
Ξm1(t)

)
,
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und für beliebiges n ≥ 2 folgt

Zn(t′)− Zn(t) = Zn−1(Ξn(t′))− Zn−1(Ξn(t))

= (Ξn(t′)− Ξn(t))
n−1∏
m=1

(
Mm +

Nm√
Ξm(n−1)(Ξn(t′)) +

√
Ξm(n−1)(Ξn(t))

)

= (t′ − t)

(
Mn +

Nn√
t′ +

√
t

) n−1∏
m=1

(
Mm +

Nm√
Ξmn(t′) +

√
Ξmn(t)

)

= (t′ − t)
n∏

m=1

(
Mm +

Nm√
Ξmn(t′) +

√
Ξmn(t)

)
.

Da √
Ξmn(t) +

√
Ξmn(0) ≥ 2

√
Ξm+1 ◦ · · · ◦ Ξn(0)

= 2
√

Ξm+1(Ξm+2 ◦ · · · ◦ Ξn(0))

≥ 2
√

Ξm+1(0)

= 2
√
Qm+1

und Zn(0) ≤ Zn(t) für t ≥ 0 ist, gilt wegen

Zn(t)− Zn(0) = t

(
Mn +

Nn√
t

) n−1∏
m=1

(
Mm +

Nm√
Ξmn(t) +

√
Ξmn(0)

)

(4.4.4) 0 ≤ Zn(t)− Zn(0) ≤ t

(
Mn +

Nn√
t

) n−1∏
m=1

(
Mm +

Nm

2
√
Qm+1

)
.

Wir teilen das Produkt in dieser Formel in die Produkte

k1∏
m=1

(
M2m +

N2m

2
√
Q2m+1

)
und

k2∏
m=1

(
M2m−1 +

N2m−1

2
√
Q2m

)
auf. Beide Produkte besitzen voneinander unabhängigen Faktoren, und es gilt
k1 = k2 = n−1

2
, falls n − 1 gerade, und k2 = k1 + 1 = n

2
, falls n − 1 ungerade ist.

Wegen (4.4.3) finden wir ein c′ > 0 so, daß E log
(
M + N

2
√

Q′

)
< −c′ < 0 ist, und erhalten

wie im Beweis von Proposition 4.2.1

0 ≤ lim
k1→∞

k1∏
m=1

(
M2m +

N2m

2
√
Q2m+1

)
≤ lim

k1→∞
e−c′k1 = 0 f.s.

und

0 ≤ lim
k2→∞

k2∏
m=1

(
M2m−1 +

N2m−1

2
√
Q2m

)
≤ lim

k2→∞
e−c′k2 = 0 f.s.

Desweiteren ist für festes t ∈ R und beliebige ε, δ > 0∑
n≥1

P ((Mn +
Nn√
t
)e−εn > δ) ≤

∑
n≥1

1

δ
E((Mn +

Nn√
t
)e−εn) <

1

δ
e−c′

∑
n≥1

e−εn <∞.
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Mit dem Lemma von Borell-Cantelli folgt

P (lim sup
n→∞

((Mn +
Nn√
t
)e−εn < δ)) = 1

und somit limn→∞

(
Mn + Nn√

t

)
e−εn = 0 f.s. Insgesamt erhalten wir in (4.4.4) für festes

t ∈ R
lim

n→∞
Zn(t) = lim

n→∞
Zn(0) = Z f.s.

und daher mit dem Prinzip von Letac die Behauptung. 2

Unter geeigneten Voraussetzungen verhalten sich dann die Flanken der Verteilung von S
wie C+t

−κ und besitzen außerdem die uns bereits bekannte Konvergenzrate.

Satz 4.4.2. Seien M,N,Q Zufallsgrößen auf einem Wahrscheinlichkeitsraum
(Ω,A, P ), wobei M den Bedingungen von Lemma 2.1.2 genüge. Sei P log|M ||M 6=0 nicht-
arithmetisch, EQκ <∞ und gelten die Bedingungen von Proposition 4.4.1 mit ENκ <∞
anstelle von (4.4.2), so folgt

P (S > t) ∼ C+t
−κ, t→∞,

mit

(4.4.5) C+ =
1

κm
E((MS +N

√
S +Q)κ − (MS)κ).

Weiter gilt
C+ > 0 ⇔ P (Q > 0) + P (N > 0) > 0.

Beweis. Da (MS +N
√
S +Q)κ ≥ (MS)κ ist, müssen wir für (2.2.9) die Endlichkeit

des Erwartungswertes in (4.4.5) und dazu zunächst ‖S‖p <∞ für alle p ∈ (0, κ) mit ‖ · ‖p

gemäß (4.1.13) zeigen. Wegen EMκ < ∞ finden wir ein genügend großes c > 0, so daß

E
(
M + N√

c

)κ

< ∞ gilt und damit c0 := ‖M + N√
c
‖p beliebig nahe bei ‖M‖p ist, d.h. es

gilt c0 < 1. Mit Ψ(t) = Q + (M + N√
c
) max(t, c) aus dem Beweis von Proposition 4.4.1

folgt

‖S‖p = ‖Ξ(S)‖p

≤ ‖Ψ(S)‖p

≤ c0‖S ∨ c‖p + ‖Q‖p

≤ c0‖S‖p + c0‖c‖p + ‖Q‖p

⇔ ‖S‖p ≤ (c0‖c‖p + ‖Q‖p)/(1− c0),

und dieser Ausdruck ist für alle p ∈ (0, κ) endlich. Für den Erwartungswert in (4.4.5)
erhalten wir dann für 0 < κ ≤ 1 mit Hilfe von (4.1.10) und (4.1.11)

E((MS +N
√
S +Q)κ − (MS)κ) ≤ E(N

√
S +Q)κ

≤ E(N
√
S)κ + EQκ

= ENκES
κ
2 + EQκ

< ∞.
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Für κ > 1 folgt

E((MS +N
√
S +Q)κ − (MS)κ) ≤ κE(N

√
S +Q)(MS +N

√
S +Q)κ−1

≤ κcκ−1E(N
√
S +Q)((MS)κ−1 + (N

√
S +Q)κ−1)

= κcκ−1E(N
√
S +Q)(MS)κ−1 + κcκ−1E(N

√
S +Q)κ

≤ κcκ−1(ENM
κ−1ES(κ−1)/2 + EQMκ−1ESκ−1)

+κcκ−1(cκEN
κESκ/2 + cκEQ

κ)

< ∞,

ebenfalls mit Hilfe der genannten Formeln, der Hölder-Ungleichung und wegen ‖S‖p <∞
für alle p ∈ (0, κ). (2.2.9) ist damit erfüllt und liefert die Asymptotik der Flanken von S
und die Formel für C+. Gilt weiter P (Q > 0)+P (N > 0) = 0, so ist sowohl P (Q > 0) = 0
als auch P (N > 0) = 0 und folglich

C+ =
1

κm
E((MS +N

√
S +Q)κ − (MS)κ) = 0.

2

Satz 4.4.3. Seien M,N,Q Zufallsgrößen auf einem Wahrscheinlichkeitsraum
(Ω,A, P ), für die M ≥ 0 f.s., N ≥ 0 f.s. und Q > 0 f.s. sowie (4.4.3) gelte. Genüge
M (2.1.5) für ein κ > 0, (3.2.1) für ein β > 0 mit β < min(1, κ) sowie (3.2.2) und seien
ENκ+β und EQκ+β endlich. Ist durch

η(dx) := eκxP (logM ∈ dx)

ein Wahrscheinlichkeitsmaß auf R definiert, so folgt (3.2.4) mit S anstelle von R in (2.3.3)
und (3.2.4).

Beweis. Wegen κ+β−1 < κ und (κ+β)/2 < κ sind ESκ+β−1 und ES(κ+β)/2 endlich.
Wie im Beweis von Satz 4.4.2 folgt dann für κ+ β ≤ 1

E|(MS +N
√
S +Q)κ+β − (MS)κ+β| ≤ E|N |κ+βE|S|(κ+β)/2 + E|Q|κ+β,

für κ+ β > 1

E|(MS +N
√
S +Q)κ+β − (MS)κ+β|

≤ (κ+ β)cκ+β−1(E|N ||M |κ+β−1E|S|(κ+β−1)/2 + E|Q||M |κ+β−1E|S|κ+β−1)

+(κ+ β)cκ+β−1cκ+β(E|N |κ+βE|S|(κ+β)/2 + E|Q|κ+β)

und somit die Behauptung mit Hilfe von Satz 3.2.1. 2

4.5 Eine Anwendung in der Extremwerttheorie

Seien (Xn)n∈N unabhängige identisch verteilte Zufallsgrößen auf einem Wahrscheinlich-
keitsraum (Ω,A, P ) mit gemeinsamer Verteilungsfunktion F. Die klassische Extremwert-
theorie interessiert sich für die Grenzverteilung der Maxima max1≤i≤nXi, genauer also
für

lim
n→∞

P (max
1≤i≤n

Xi ≤ x) = lim
n→∞

F n(x), x ∈ R.

Die Grundlage hierfür bildet das folgende Fisher-Tippett Theorem. Wir bemerken dazu,
daß zwei Verteilungsfunktionen F und G vom selben Typ sind, falls ein a > 0 und ein
b ∈ R existieren, so daß G(x) = F (ax+ b) für alle x ∈ R gilt.
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Satz 4.5.1.(Fisher-Tippett Theorem, vgl. [BGT], Theorem 8.13.1)
Seien (Xn)n∈N unabhängige identisch verteilte Zufallsgrößen auf einem Wahrscheinlich-
keitsraum (Ω,A, P ) mit gemeinsamer Verteilungsfunktion F. Existieren Folgen (an)n∈N,
(bn)n∈N mit an > 0, bn ∈ R für alle n ∈ N sowie eine nicht degenerierte Verteilungsfunk-
tion G, so daß

(4.5.1) lim
n→∞

P

(
max1≤i≤nXi − bn

an

≤ x

)
= lim

n→∞
F n(anx+ bn) = G(x)

für alle x ∈ C(G)2 gilt, dann ist G vom Typ einer der drei folgenden sogenannten Extrem-
wertverteilungen:
(a) Fréchet-Verteilung mit der Verteilungsfunktion

Φα(x) = e−x−α

1[0,∞)(x), α > 0,

(b) Weibull-Verteilung W (α, β) für β = 1 mit der Verteilungsfunktion

Ψα(x) = e−(−x)α

1(−∞,0)(x) + 1[0,∞)(x), α > 0,

(c) Gumbel-Verteilung mit der Verteilungsfunktion

Λ(x) = e−e−x

, x ∈ R.

Man sagt auch, daß F unter diesen Voraussetzungen im Anziehungsbereich einer Extrem-
wertverteilung liegt. Die VerteilungsfunktionenG, die als Grenzverteilung von max1≤i≤nXi

im Sinn von (4.5.1) in Frage kommen, sind außerdem genau diejenigen, die zur Klasse der
maximal stabilen Verteilungen gehören (vgl. [LLR], S.10, Theorem 1.4.1). Dabei heißt ei-
ne nicht degenerierte Verteilungsfunktion G maximal stabil genau dann, wenn eine Folge
(Fn)n∈N von Verteilungsfunktionen und Konstanten an > 0, bn ∈ R, n ∈ N, existieren, so
daß für jedes k ∈ N

lim
n→∞

Fn((ank)
−1x+ bnk) = G

1
k (x)

für alle x ∈ C(G) gilt (vgl. [LLR], S.8, Theorem 1.3.1).
Im Fisher-Tippett Theorem wird der Grenzwert von

P

(
max1≤i≤nXi − bn

an

≤ x

)
= P

(
max
1≤i≤n

Xi ≤ a−1
n x+ bn

)
für n → ∞ und jedes x ∈ R betrachtet. Eine allgemeinere Form erhalten wir, indem
wie anstelle von (a−1

n x+ bn)n∈N Folgen (un)n∈N verwenden, die nicht mehr notwendig von
x abhängen müssen bzw. von komplexerer als linearer Art sein können. Eine nützliche
Aussage erhalten wir dann mit folgendem Satz, mit dessen Hilfe wir ein Beispiel für den
Fall (a) des Fisher-Tippett Theorems angeben.

Satz 4.5.2.(vgl. [LLR], Theorem 1.5.1)
Seien (Xn)n∈N unabhängige identisch verteilte Zufallsgrößen auf einem Wahrscheinlich-
keitsraum (Ω,A, P ) mit gemeinsamer Verteilungsfunktion F. Sei (un)n∈N eine Folge reeller
Zahlen und existiere ein 0 ≤ τ ≤ ∞, so daß

(4.5.2) lim
n→∞

n(1− F (un)) = τ

gilt. Dann folgt

(4.5.3) lim
n→∞

P (max
1≤i≤n

Xi ≤ un) = e−τ .

Ist umgekehrt (4.5.3) für ein τ ∈ [0,∞] und eine reelle Folge (un)n∈N erfüllt, so folgt (4.5.2).
2Menge der Stetigkeitspunkte der Funktion G : R → R
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Beispiel 4.5.3.(vgl. [LLR], Example 1.7.6)
Seien (Xn)n∈N unabhängige identisch Pareto-verteilte Zufallsgrößen auf einem Wahrschein-
lichkeitsraum (Ω,A, P ) mit gemeinsamer Verteilungsfunktion

F (x) = (1− λx−α)1[λ1/α,∞)(x), α > 0, λ > 0.

Setzen wir un := (λn
τ

)1/α für alle n ∈ N und ein beliebiges, festes τ ∈ [0,∞], erhalten wir
1− F (un) = τ

n
und daher mit Satz 4.5.2

lim
n→∞

P (max
1≤i≤n

Xi ≤ ((λn)/τ)1/α) = e−τ .

Mit τ := x−α für ein beliebiges x ≥ 0 folgt daraus

lim
n→∞

P ((λn)−1/α max
1≤i≤n

Xi ≤ x) = e−x−α

, x ≥ 0,

und damit der Fall (a) des Fisher-Tippett Theorems mit an = (λn)−1/α und bn = 0 für
alle n ∈ N.

Eine Reihe weiterer Beispiele für die drei Extremwertverteilungen als Grenzverteilungen
im Fisher-Tippett Theorem findet sich bei Leadbetter, Lindgren und Rootzén, S.19-24.
Die Autoren zeigen außerdem, daß für Poisson- sowie geometrisch verteilte Zufallsgrößen
(Xn)n∈N keine nicht degenerierte Verteilungsfunktion G im Sinn von (4.5.1) existiert,
da unter diesen Verteilungsannahmen insbesondere (4.5.2) verletzt ist (vgl. [LLR], S.26f,
Example 1.7.14 und 1.7.15).
Die Verbindung zu unseren Ergebnissen schaffen nun Bingham, Goldie und Teugels sowie
Leadbetter, Lindgren und Rootzén, indem sie zeigen, daß das Fisher-Tippett Theorem
u.a. für die Verteilung einer Zufallsgröße gilt, deren rechte Flanke asymptotisch einer
Potenzfunktion mit negativem Exponenten gleicht.

Satz 4.5.4.(vgl. [BGT], Theorem 8.13.2 oder [LLR], Theorem 1.6.2)
Für eine Verteilungsfunktion F auf R sei

xF := sup{x ∈ R : F (x) < 1}.

Unter den Voraussetzungen des Fisher-Tippett Theorems liegt die Verteilungsfunktion F
von max1≤i≤nXi genau dann im Anziehungsbereich einer Fréchetverteilung, wenn xF = ∞
ist und ein α > 0 existiert, so daß

lim
t→∞

1− F (tx)

1− F (t)
= x−α

für alle x > 0 gilt. In diesem Fall sind an = inf{x ∈ R : 1 − F (x) ≤ 1
n
} und bn = 0 für

alle n ∈ N wählbar.

Ähnliche Aussagen für die anderen beiden Extremwertverteilungen finden sich bei [BGT],
Theoreme 8.13.3 und 8.13.4 bzw. [LLR], Theorem 1.6.2.
Da aufgrund des Impliziten Erneuerungstheorems

P (R > tx)

P (R > t)
∼ C+(tx)−κ

C+t−κ
= x−κ

für t → ∞ und alle x > 0 gilt, trifft die Aussage dieses Satzes gerade für die Verteilung

unserer Zufallsgröße R als Lösung einer stochastischen Fixpunktgleichung R
d
= Ψ(R)
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gemäß (2.1.1) zu. Die Verteilung von R ist nach dem Prinzip von Letac die Grenzvertei-
lung für die Verteilung der Folge (Wn(t))n∈N = (Ψn ◦ . . . ◦ Ψ1(t))n∈N (vgl. (2.1.3)). Wir
können daher weiterhin schließen, daß (Wn(t))n∈N (geeignet normiert) ebenfalls in Vertei-
lung gegen eine maximal stabile Fisher-Tippett Grenzverteilung konvergiert. Ein Beispiel
hierfür bildet unsere stochastische Fixpunktgleichung

(4.1.1) R
d
= Q+MR, R unabhängig von (M,Q),

aus Abschnitt 4.1. Anstelle von Wn(t) schreiben wir

(4.5.4) Rn = Qn +MnRn−1, n ∈ N,

wobei R0 eine beliebige Verteilung unabhängig von der des Paares (Mn, Qn)n∈N besitze
und (Mn, Qn)n∈N unabhängig identisch verteilt seien. Für nichtnegative Zufallsgrößen M1

und Q1 zeigen de Haan, Resnick, Rootzén und de Vries (vgl. [HRV], S.216, Theorem 2.1),
daß dann unter den Bedingungen von Satz 4.1.1

lim
n→∞

P (n−1/κ max
1≤i≤n

Ri ≤ x) = e−C+θx−κ

für alle x > 0 mit

θ :=

∫ ∞

1

P (sup
n≥1

n∏
i=1

Mi ≤ y−1)κy−κ−1dy

gilt. Unsere Korollare 4.1.7, 4.1.8 und 4.1.9 liefern hier Schranken bzw. für κ ∈ N spezielle
Werte für C+. Die zuletzt genannten Autoren wenden ihre Ergebnisse auf die ARCH3-
Folge von Engle (vgl. [Eng]) an, die durch die Gleichung

ξn = Zn

√
α+ λξ2

n−1, n ∈ N,

erzeugt wird, wobei Zn für alle n ∈ N unabhängige standardnormalverteilte Zufallsgrößen
bilden, ξ0 ≥ 0 ist und α > 0, λ ∈ (0, 1) Konstanten sind.

Setzen wir (Mn, Qn) := (λZ2
n, αZ

2
n) für alle n ∈ N, so genügt ξ2

n wegen

ξ2
n = αZ2

n + λZ2
nξ

2
n−1, n ∈ N,

(4.5.4). Es folgt

lim
n→∞

P (n−1/(2κ) max
1≤i≤n

ξi ≤ x) = e−C+θx−2κ

, x > 0,

wobei C+ durch 1
κm
E((Q + MR)κ − (MR)κ) gegeben ist und R die stochastische Fix-

punktgleichung R
d
= Q + MR mit (M,Q) := (λZ2, αZ2) und Z ∼ N(0, 1) erfüllt. Wir

können κ und m hierbei noch genauer angeben. Gemäß Lemma 2.1.2 ist κ die eindeutige
Lösung von EMκ = 1 in (0,∞). Da nach Voraussetzung Z ∼ N(0, 1) gilt, ist Z2 ∼ χ2

1

und besitzt daher die λλ−Dichte

f(x) =
x−1/2

√
2π

e−
x
2 1(0,∞)(x).

3ARCH=autoregressive conditional heteroscedastic
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Mit Hilfe der Substitution von y durch x
2

erhalten wir daher wegen

2κ

√
π

Γ(κ+
1

2
) =

2κ

√
π

∫ ∞

0

yκ− 1
2 e−ydy

=
2κ

√
π

∫ ∞

0

(
1

2

)κ+ 1
2

xκ− 1
2 e−

x
2 dx

= E(Z2)κ

EMκ = λκE(Z2)κ =
(2λ)κ

√
π

Γ(κ+
1

2
).

Für jedes feste λ ∈ (0, 1) ist EM = λ sowie außerdem limκ→∞EMκ = ∞. Es existiert
daher ein κ ∈ (1,∞), so daß EMκ = 1 gilt, und das von uns gesuchte κ ist damit die
eindeutige Lösung der Gleichung

(4.5.5) Γ(κ+
1

2
) =

√
π

(2λ)κ
, κ > 1.

Für m erhalten wir

m = E
(
(λZ2)κ log(λZ2)

)
= log λ+ λκE

(
(Z2)κ logZ2

)
.

Zur Berechnung von E ((Z2)κ logZ2) benutzen wir für n ∈ N0 die allgemeine n−te Ablei-

tung

Γ(n)(z) =

∫ ∞

0

xz−1(log x)ne−xdx, z ∈ C, Re(z) > 0,

der Gamma-Funktion (vgl. [FrB], S.191, Satz 1.1). Mit Υ := Γ(1)

Γ
sowie der Substitution

von x durch 2y erhalten wir

E
(
(Z2)κ logZ2

)
=

∫ ∞

0

xκ− 1
2 log x

e−
x
2

√
2π

dx

=
2κ+ 1

2

√
2π

∫ ∞

0

yκ+ 1
2
−1 log(2y)e−y dy

=
2κ

√
π

(
Γ(1)(κ+

1

2
) + log 2 Γ(κ+

1

2
)

)
=

2κ

√
π

Γ(κ+
1

2
)

(
log 2 + Υ(κ+

1

2
)

)
und daher mit Hilfe von (4.5.5)

m = log(2λ) + Υ(κ+
1

2
).

Die Formel für C+ lautet schließlich

C+ =
1

κm
E ((α+ λR)κ − (λR)κ)E(Z2)κ,

wobei E(Z2)κ = 2κ
√

π
Γ(κ + 1

2
) gilt. Für jedes feste λ ∈ (0, 1) sind alle Werte von κ

gemäß (4.5.5) wegen Γ(κ + 1
2
) >

√
π

2
erreichbar. Ist κ ∈ N und κ > 1, folgt aus der

Funktionalgleichung der Gammafunktion

Γ(κ+
1

2
) =

√
π

2κ
(1 · 3 · 5 · · · (2κ− 1))
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und daher

λ =
1

(1 · 3 · 5 · · · (2κ− 1))
1
κ

.

Die ersten Wertepaare für (κ, λ) berechnen sich dann wie folgt:

κ 2 3 4 5 6 7 8 9 10
λ 0.577 0.406 0.312 0.254 0.214 0.185 0.163 0.145 0.105

Wir bemerken abschließend, daß unser Beispiel allen Bedingungen von Satz 4.1.12 für den
Fall M ≥ 0 f.s. genügt und wir daher das Ergebnis (3.2.4) von der Konvergenzrate der
Flanken auf die der Verteilung von ξ2

n übertragen können.





5 Anhang

5.1 Beweis von Lemma 3.1.3

Lemma 3.1.3. Seien χ und µ Wahrscheinlichkeitsmaße auf R, χ λλ-stetig mit einer
zweimal stetig differenzierbaren Dichte q. Sei m :=

∫
R xµ(dx) > 0,

∫
R x

2µ(dx) < ∞, und

existiere eine λλ-stetige Komponente von µ. Dann ist das Maß
∑

n≥0 χ ∗µ∗(n) λλ-stetig mit
einer stetigen Dichte p, welche für alle x ∈ R die Gleichung

p(x)− 1

m
χ(−∞, x] =

1

2π

∫ ∞

−∞
e−ixθΦχ(θ)

(
1

1− Φµ(θ)
− 1

−imθ

)
dθ

erfüllt.

Beweis. Wegen ∫
R
|Φχ(θ)|λλ(dθ) ≤

∫
R

∫
R
χ(dt)λλ(dθ) = 1

ist Φχ ∈ L1, und daher gilt mit der Umkehrformel für Fouriertransformierte von P. Lévy
(vgl. [AWT], Satz 41.7) in Verbindung mit χ = qλλ

q(x) =
1

2π

∫ ∞

−∞
e−ixθΦχ(θ)dθ, x ∈ R.

Die Gleichung für p ist demnach äquivalent zu

(5.1.1)

p(x)− 1

m
χ(−∞, x]− q(x) =

1

2π

∫ ∞

−∞
e−ixθΦχ(θ)

(
1

1− Φµ(θ)
− 1− imθ

−imθ

)
dθ, x ∈ R.

Wir betrachten zunächst das Integral

(5.1.2)

∫ ∞

−∞
e−ixθΦχ(θ)

(
1

1− rΦµ(θ)
− 1− imθ

1− r − imθ

)
dθ, x ∈ R,

und weisen nach, daß der Betrag des geklammerten Ausdruckes endlich ist, da dieses
Integral dann für r ↑ 1 gegen das Integral in (5.1.1) konvergiert. Wir werden dann die
Behauptung aufgrund der Eindeutigkeit des Limes erhalten, indem wir für eine noch
genauer zu bestimmende stetige Funktion pr

(5.1.3)

∫ ∞

−∞
e−ixθΦχ(θ)

(
1

1− rΦµ(θ)
− 1− imθ

1− r − imθ

)
dθ = 2πpr(x), x ∈ R,

und

93
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(5.1.4) lim
r↑1

pr(x) = p(x)− 1

m
χ(−∞, x]− q(x)

für alle x ∈ R zeigen.

Für reelle Argumente ist Φµ die Fouriertransformierte von µ und besitzt daher wegen∫
R xµ(dx) = m und

∫
R x

2µ(dx) <∞ die abbrechende Reihenentwicklung

Φµ(θ) = 1 + imθ − A(θ)θ2, θ ∈ R,

wobei limθ→∞A(θ) = 0 und limθ→0A(θ) = O(1) gilt. Wir wählen θ0 so klein, daß

|θIm(A(θ))| ≤ 1
2
m im Streifen −θ0 ≤ θ ≤ θ0 ist, und erhalten dort für 1

2
≤ r ≤ 1∣∣∣∣ 1

1− rΦµ(θ)
− 1− imθ

1− r − imθ

∣∣∣∣ =
rθ2 |m2 − (1− imθ)A(θ)|

|1− r − rimθ + rA(θ)θ2| |1− r − imθ|

≤ θ2 |m2 − (1− imθ)A(θ)|
|−i(rmθ − rθ2Im(A(θ)))| |mθ|

≤ θ2 |m2 − (1− imθ)A(θ)|
(|rmθ| − |rθ| |θIm(A(θ))|) |mθ|

≤ 4 |m2 − (1− imθ)A(θ)|
m2

.

Durch die Vorgaben an θ ist dieser Ausdruck beschränkt. Für |θ| > θ0 und wie zuvor
1
2
≤ r ≤ 1 ist∣∣∣∣ 1

1− rΦµ(θ)
− 1− imθ

1− r − imθ

∣∣∣∣ =

∣∣∣∣ 1

1− rΦµ(θ)
− 1− r

1− r − imθ

∣∣∣∣
≤ 1

|1− rΦµ(θ)|
+ 1 +

1

|1− r − imθ|

≤ 1

1− sup|θ|≥θ0
|Φµ(θ)|

+ 1 +
1

mθ0

.

Dieser Ausdruck ist endlich, da µ nach Voraussetzung eine λλ-stetige Komponente besitzt,
denn dann existiert eine Zerlegung

µ = λµ1 + (1− λ)µ2

mit λ ∈ (0, 1), einem λλ-stetigen Wahrscheinlichkeitsmaß µ1 6= 0 und einem Wahrschein-
lichkeitsmaß µ2, und wegen

|Φµ(θ)| ≤ λ|Φµ1(θ)|+ (1− λ)|Φµ2(θ)|

für alle θ ∈ R erhalten wir

sup
|θ|≥θ0

|Φµ(θ)| ≤ λ sup
|θ|≥θ0

|Φµ1(θ)|+ (1− λ) sup
|θ|≥θ0

|Φµ2(θ)|

< λ+ (1− λ) = 1.

Dabei gilt sup|θ|≥θ0
|Φµ2(θ)| ≤ 1 aufgrund der Eigenschaft von Fouriertransformierten.

sup|θ|≥θ0
|Φµ1(θ)| < 1 folgt aus der λλ-Stetigkeit von µ1, denn wegen |Φµ1(θ)| < 1 für

alle θ 6= 0 (andernfalls wäre µ1 d-arithmetisch, vgl. [AWT], Satz 41.15 und Korollar
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41.16) und lim|θ|→∞ Φµ1(θ) = 0 (vgl. [AWT], Lemma 41.18) existiert ein θ1 > θ0 mit
sup|θ|≥θ1

|Φµ1(θ)| < 1. Auf [θ0, θ1] ist Φµ1 gleichmäßig stetig und daher beschränkt; mit
|Φµ1(θ)| < 1 für alle θ ∈ [θ0, θ1] folgt supθ∈[θ0,θ1] |Φµ1(θ)| < 1, analog
supθ∈[−θ1,−θ0] |Φµ1(θ)| < 1 und damit die Behauptung. Insgesamt erhalten wir daraus mit
dem Satz von der majorisierten Konvergenz für r ↑ 1 in Verbindung mit Φχ ∈ L1 die
Konvergenz von (5.1.2) gegen das Integral in (5.1.1).
Zum Nachweis von (5.1.3) definieren wir ein weiteres Wahrscheinlichkeitsmaß auf R durch

Em(dy) := 1(0,∞)(y)
1

m
e−

y
mλλ(dy).

Für 0 < r < 1 sind dann

µr :=
∑
n≥0

rnµ∗(n) und Em,r :=
∑
n≥0

rnE∗(n)
m

endliche Maße auf R, und

pr(x) := q ∗ µr(x)− q ∗ Em,r(x)

=

∫
R
q(x− y)

∑
n≥0

rn(µ∗(n)(dy)− E∗(n)
m (dy)), x ∈ R,

ist aufgrund der Stetigkeit von q ebenfalls stetig sowie eine λλ-Dichte. Wegen |rΦµ(θ)| < 1
und |rΦEm(θ)| < 1 für 0 < r < 1 und alle θ ∈ R erhalten wir mit Hilfe des Satzes von
Fubini und der Translationsinvarianz des λλ-Maßes∫

R
eiθxq ∗ µr(x)λλ(dx) =

∫
R

eiθy

∫
R

eiθ(x−y)q(x− y)λλ(dx)µr(dy)

= Φχ(θ)Φµr(θ)

= Φχ(θ)
∑
n≥0

rnΦn
µ(θ)

=
Φχ(θ)

1− rΦµ(θ)

und analog ∫
R

eiθxq ∗ Em,r(x) =
Φχ(θ)

1− rΦEm(θ)
= Φχ(θ)

1− iθm

1− r − iθm

in Verbindung mit

rΦEm(θ) = r

∫
R

eiθyEm(dy) =
r

m

∫ ∞

0

e(iθ− 1
m

)ydy =
r

iθm− 1
.

Es folgt

(5.1.5)

∫
R

eiθxpr(x)λλ(dx) = Φχ(θ)

(
1

1− rΦµ(θ)
− 1− imθ

1− r − imθ

)
für alle θ ∈ R und daraus (5.1.3) in Verbindung mit der Umkehrformel für Fouriertrans-

formierte von P. Lévy, denn mit vpr := prλλ und wegen Φχ(θ)
(

1
1−rΦµ(θ)

− 1−imθ
1−r−imθ

)
∈ L1

gilt
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∫ ∞

−∞
e−ixθΦχ(θ)

(
1

1− rΦµ(θ)
− 1− imθ

1− r − imθ

)
dθ =

∫ ∞

−∞
e−ixθΦvpr

(θ)dθ = 2πpr(x)

für alle x ∈ R. Wegen µr, Em,r ∈ M(R) gilt weiter

lim
r↑1

q ∗ µr = lim
r↑1

∑
n≥0

rn(q ∗ µ∗(n)) =
∑
n≥0

q ∗ µ∗(n) = p

und
lim
r↑1

q ∗ Em,r =
∑
n≥0

q ∗ E∗(n)
m .

Mit Hilfe der Faltungsformel für Dichten erhalten wir

E∗(n)
m (dy) = 1(0,∞)(y)

1

mn(n− 1)!
e−

y
myn−1λλ(dy)

und somit∑
n≥1

E∗(n)
m (dy) = 1(0,∞)(y)

1

m
e−

y
m

∑
n≥1

( y
m

)n−1

(n− 1)!
λλ(dy) = 1(0,∞)(y)

1

m
λλ(dy).

Für den Grenzwert von q ∗ Em,r folgt daraus∑
n≥0

∫
R
q(x− y)E∗(n)

m (dy) =

∫
R
q(x− y)δ0(dy) +

∑
n≥1

∫
R
q(x− y)E∗(n)

m (dy)

= q(x) +
1

m

∫ ∞

0

q(x− y)λλ(dy)

= q(x) +
1

m

(
−
∫ −∞

x

q(z)λλ(dz)

)
= q(x) +

1

m
χ(−∞, x],

und wir erhalten (5.1.4) und damit insgesamt (5.1.1). 2

5.2 Beweis von Lemma 4.1.6

Lemma 4.1.6. Seien x, y ∈ R, r > 0 sowie cr = 2r−1 ∨ 1, dann gelten

(4.1.10) |x+ y|r ≤ cr(|x|r + |y|r),

(4.1.11) ||x|r − |y|r| ≤

{
|x− y|r, 0 < r ≤ 1

r|x− y|(|x| ∨ |y|)r−1, 1 < r <∞
.

Beweis. Wir beginnen mit der ersten Behauptung und zeigen wegen

cr =

{
1, 0 < r < 1

2r−1, 1 ≤ r <∞
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|x+ y|r ≤

{
|x|r + |y|r, 0 < r < 1

2r−1(|x|r + |y|r), 1 ≤ r <∞
.

Da für x = 0 die Behauptung klar ist, setzen wir x 6= 0 voraus, und wegen |y| ≥ 0 existiert
ein a ≥ 0 mit |y| = a|x|. Für r ∈ (0, 1) gilt |x+ y|r ≤ (|x|+ |y|)r und damit

|x|r + |y|r

(|x|+ |y|)r =
1 + ar

(1 + a)r ≥ 1 ⇔ 1 + ar ≥ (1 + a)r.

Zum Nachweis der äquivalenten Ungleichung setzen wir fr(a) := 1 + ar − (1 + a)r für alle
a ≥ 0 und erhalten fr(0) = 0 und f ′r(a) = r(ar−1 − (1 + a)r−1) > 0, da r − 1 ∈ (−1, 0)
und a < a+ 1 ist. fr ist daher für alle a > 0 streng monoton wachsend, und (4.1.10) folgt
für alle r ∈ (0, 1). Für r ≥ 1 gilt

(2|x|)r + (2|y|)r

(|x|+ |y|)r =
2r(1 + ar)

(1 + a)r ≥ 2 ⇔ 2r(1 + ar) ≥ 2(1 + a)r,

und wir definieren in diesem Fall fr(a) := 2r(1+ar)−2(1 + a)r für alle a ≥ 0. Da fr(1) = 0
ist und fr wegen f ′r(a) = 2r((2a)r−1 − (1 + a)r−1) und r − 1 ≥ 0 ein globales Minimum
in (1, 0) besitzt, erhalten wir obige äquivalente Ungleichung für alle r ≥ 1 und somit
insgesamt (4.1.10).
Zum Nachweis von (4.1.11) setzen wir ebenfalls x 6= 0 voraus, und es existiert ein a ≥ 0
mit |y| = a|x|. Es gilt somit y = ax oder y = −ax für x > 0, y ≥ 0 oder x, y < 0. Für
r ∈ (0, 1] und y = ax zeigen wir

(5.2.1) |1− ar| ≤ |1− a|r, a ≥ 0, 0 < r ≤ 1,

mit Hilfe einer Fallunterscheidung nach a. Ist a ∈ [0, 1], gilt dasselbe auch für ar, und wir
betrachten fr(a) := (1− a)r+ar−1 für alle a ∈ [0, 1]. Es gilt fr(0) = fr(1) = 0, und fr hat
wegen f ′r(a) = r(ar−1−(1− a)r−1) und r−1 ∈ (−1, 0] ein globales Maximum in 2

2r −1 ≥ 0,
d.h. (5.2.1) folgt für alle a ∈ [0, 1]. Für a > 1 setzen wir fr(a) := (a− 1)r − ar + 1. Wegen
r − 1 ∈ (−1, 0] und a − 1 < a ist f ′r(a) = r((a− 1)r−1 − ar−1) > 0 für alle a > 1 und fr

daher streng monoton wachsend. In Verbindung mit lima→1 fr(a) = 0 folgt somit (5.2.1)
für alle a ≥ 0.
Ist y = −ax, zeigen wir

(5.2.2) |1− ar| ≤ (1 + a)r, a ≥ 0, 0 < r ≤ 1,

mit derselben Fallunterscheidung nach a. Für beliebiges a ∈ [0, 1] folgt die Ungleichung
sofort aus (5.2.1); für beliebiges a > 1 setzen wir fr(a) := (1 + a)r − ar + 1 und
gr(a) := fr(a) − 1. Wegen r ∈ (0, 1] ist gr ≥ 0, und es folgt (5.2.2) für alle a ≥ 0 und
damit (4.1.11) für alle r ∈ (0, 1].
Sei nun r > 1 und a ∈ [0, 1] beliebig, d.h. es gilt |x| ∨ |y| = |x|. Wir betrachten zuerst den
Fall y = ax und zeigen

(5.2.3) 1− ar ≤ r(1− a) 0 ≤ a ≤ 1, r > 1.

Ist fr(a) := r(1 − a) + ar − 1 für alle a ∈ [0, 1], so gilt fr(0) = r − 1 > 0, fr(1) = 0
und f ′r(a) = r(ar−1 − 1) < 0 für alle a ∈ [0, 1). fr ist demnach streng monoton fallend auf
[0, 1), und es folgt (5.2.3). Für y = −ax ist (4.1.11) äquivalent zu

1− ar ≤ r(1 + a), 0 ≤ a ≤ 1, r > 1,
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und diese Ungleichung folgt sofort aus (5.2.3).
Gilt a > 1 und damit |x| ∨ |y| = |y|, betrachten wir wieder zunächst den Fall y = ax.
(4.1.11) ist dann äquivalent zu

(5.2.4) ar − 1 ≤ r(a− 1)ar−1, a > 1, r > 1,

und wir setzen fr(a) := r(a− 1)ar−1 − ar + 1 für alle a > 1. Wegen r > 1 ist
f ′r(a) = rar−1((r − 1)− r−1

a
) > 0 und fr daher streng monoton wachsend. In Verbindung

mit lima→1 fr(a) = 0 liefert dies (5.2.4). Für y = −ax folgt schließlich

ar − 1 ≤ r(1 + a)ar−1, a > 1, r > 1,

direkt aus (5.2.4), und wir erhalten insgesamt (4.1.11). 2

5.3 Allgemeingültige Aussagen

Lemma 5.3.1. Für eine Funktion f : R → R gelte f ≥ 0, f ∈ L1 und f(t+ε) ≥ θ(ε)f(t)
für alle ε > 0 und t ∈ R, wobei limε↓0 θ(ε) = 1 sei. Dann ist f d.R.i.

Beweis. Ohne Einschränkung gelte θ(ε) ↑ 1 für ε ↓ 0. Mit Hilfe der gegebenen Un-
gleichung und der strengen Monotonie von θ können wir für das Integral über f folgende
Abschätzungen nach oben und unten vornehmen:

ε
∑
n∈Z

inf
[nε,(n+1)ε]

f = ε
∑
n∈Z

inf
0≤x≤ε

f(nε+ x)

≥ ε
∑
n∈Z

inf
0≤x≤ε

θ(x)f(nε)

= ε
∑
n∈Z

θ(ε)f(nε)

= εθ(ε)2
∑
n∈Z

sup
0≤x≤ε

1

θ(x)
f(nε)

≥ εθ(ε)2
∑
n∈Z

sup
0≤x≤ε

f(nε− x)

= εθ(ε)2
∑
n∈Z

sup
[(n−1)ε,nε]

f

≥ θ(ε)2
∑
n∈Z

∫ nε

(n−1)ε

f

= θ(ε)2

∫
f

und analog

ε
∑
n∈Z

sup
[nε,(n+1)ε]

f ≤ 1

θ(ε)2

∫
f.
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Insgesamt gilt somit

εθ(ε)2
∑
n∈Z

sup
[nε,(n+1)ε]

f ≤
∫
f ≤ ε

1

θ(ε)2

∑
n∈Z

inf
[nε,(n+1)ε]

f,

und für ε ↓ 0 konvergieren obere und untere Summe gegen
∫
f. 2

Lemma 5.3.2. Ist eine Funktion f ∈ L1, so ist f̄ d.R.i.

Beweis. Da Positiv-und Negativteil von f getrennt betrachtet werden können, nehmen
wir ohne Einschränkung f ≥ 0 an. Für beliebiges ε > 0 gilt dann

f̄(t+ ε) =

∫ t+ε

−∞
e−(t+ε−u)f(u)du

≥ e−ε

∫ t

−∞
e−(t−u)f(u)du

= e−εf̄(t).

Wegen limε↓0 e
−ε = 1 folgt mit Lemma 5.3.1 die Behauptung. 2

Lemma 5.3.3. Sei v ein endliches Maß und f : R → R eine d.R.i. Funktion. Dann gilt
mit Hilfe der Definition des Glättungsoperators gemäß (2.3.5)

f̄ ∗ v(t) = f ∗ v(t).

Beweis. Die Behauptung folgt, indem wir im inneren Integral von f̄ ∗ v(t) die Substi-
tution x = u− s durchführen und den Satz von Fubini anwenden:

f̄ ∗ v(t) =

∫
R
f̄(t− s)v(ds)

=

∫
R

∫ t−s

−∞
e−(t−s−x)f(x)dx v(ds)

=

∫
R

∫ t

−∞
e−(t−u)f(u− s)du v(ds)

=

∫ t

−∞
e−(t−u)f ∗ v(u)du

= f ∗ v(t).

2

Lemma 5.3.4. Seien Y1, . . . , Yn unabhängige identisch verteilte Zufallsvariablen auf ei-
nem Wahrscheinlichkeitsraum (Ω,A, P ) und Vn :=

∑n
i=1 Yi für alle n ∈ N. Ist ein Maß η

durch

η(dx) := eκxP (Y1 ∈ dx), κ > 0,

definiert, so gilt
η∗(n)(dx) = eκxP (Vn ∈ dx).



100 Anhang

Beweis. Sei Sn : Rn → R, Sn(x1, . . . , xn) = x1 + . . .+xn für alle n ∈ N. Es genügt, die
Behauptung für halboffene Intervalle als Erzeuger von B nachzurechnen. Für beliebiges
t ∈ R folgt dann mittels

η∗(n)((−∞, t]) =

∫
R
. . .

∫
R
1(−∞,t](x1 + . . .+ xn)η(dx1) . . . η(dxn)

=

∫
R
. . .

∫
R
1(−∞,t](x1 + . . .+ xn)eκ(x1+...+xn)P Y1(dx1) . . . P

Yn(dxn)

=

∫
R
1(−∞,t](x)e

κx(P Y1 ⊗ . . .⊗ P Yn)
Sn

(dx)

=

∫
R
1(−∞,t](x)e

κxP Y1 ∗ . . . ∗ P Yn(dx)

=

∫
R
1(−∞,t](x)e

κxP (Vn ∈ dx)

die Behauptung. 2

Korollar 5.3.5. Seien X, X1, . . . , Xn unabhängige identisch verteilte sowie echt positive
Zufallsgrößen auf einem Wahrscheinlichkeitsraum (Ω,A, P ) und Vn :=

∑n
i=1 logXi für

alle n ∈ N. Ist
Pκ(X ∈ dx) := |x|κP (X ∈ dx)

für alle κ > 0, so folgt
P Vn

κ (dx) = eκxP Vn(dx).

Beweis. Wegen P Vn
κ = (P log X

κ )
∗(n)

und

Pκ(logX ≤ t) = Pκ(X ≤ et)

=

∫
(0,et]

|x|κP (X ∈ dx)

= E1{0<X≤et}X
κ

= E1{−∞<log X≤t}e
κ log X

=

∫
(−∞,t]

eκxP (logX ∈ dx)

gilt P log X
κ (dx) = eκxP log X(dx). Mit Lemma 5.3.4 folgt somit die Behauptung. 2







Literaturverzeichnis

[AET] Alsmeyer, G. (1991). Erneuerungstheorie. B.G. Teubner, Stuttgart.

[ASP] Alsmeyer, G. (2000). Stochastische Prozesse Teil 1. Skripten zur Mathematischen
Statistik 33.

[AWT] Alsmeyer, G. (2000). Wahrscheinlichkeitstheorie. Skripten zur Mathematischen
Statistik 30, 2. Auflage.

[Baw] Bawa, V.S. (1975). On optimal pollution control policies. Management Science,
Application Series 21, 1397-1404.

[BGT] Bingham, N.H., Goldie, C.M., Teugels, J.L. (1987). Regular Variation. Encyclo-
pedia of Mathematics 27, Camebridge University Press.

[Bor] Borokov, A.A. (1976). Stochastic Processes in Queueing Theory. Springer, New
York.

[Cav] Cavalli-Sforza, L. (1975). Cultural and biological evolution: a theoretical inquiry.
In Proceedings of the Conference on Directions for Mathematical Statistics, ed.
S.G. Ghurye. Advances in Applied Probability - Special Supplement 7, 90-99.

[CsF] Cavalli-Sforza, L., Feldman, M.W. (1973). Models for cultural inheritance I.
Group mean and within group variation. Theoretical Population Biology 4, 42-55.

[Cha] Chamayou, J.-F. (1973). Volterra’s functional integral equations of the statistical
theory of damage. Journal of Computational Physics 13, 70-93.

[ChL] Chamayou, J.-F., Letac, G. (1991). Explicit stationary distributions for compo-
sitions of random functions and products of random matrices. Journal of Theo-
retical Probability 4, 3-36.

[ChS] Chamayou, J.-F., Schorr, B. (1975). On a class of random variables arising in
atomic cascade models. Report, European Organization for Nuclear Research,
Geneva.

[ChM] Chandrasekhar, S., Münch, G. (1950). The theory of the fluctuations in brightness
of the Milky Way, I. and II. Astrophysical Journal 112, 380-398.

[HRV] de Haan, L., Resnick, S.I., Rootzén, H. und de Vries, C.G. (1989). Extremal
behaviour of solutions to a stochastic difference equation, with applications to
ARCH processes. Stochastic Processes and their Applications 32, 213-224.

[Eng] Engle, R.F. (1982). Autoregressive conditional heteroscedastic models with esti-
mates of the variance of United Kingdom inflation. Econometrica 50, 987-1007.

103



104 Literaturverzeichnis

[Fel] Feller, W. (1971). An Introduction to Probability Theory and its Applications 2.
2nd ed. Wiley, New York.

[FiLi] Fischer, W., Lieb, I. (1994). Funktionentheorie. Vieweg Braunschweig, 7. Auflage.

[FrB] Freitag, E., Busam, R. (2000). Funktionentheorie 1. Springer, 3. Auflage.

[Gad] Gade, H.G. (1973). Deep water exchanges in a sill fjord: a stochastic process.
Journal of Physical Oceanography 3, 213-219.

[Gan] Ganelius, T. H. (1962). The Remainder in Wiener’s Tauberian theorem. Acta
Universitatis Gothoburgensis. Mathematica Gothoburgensia 1.

[Gol] Goldie, C.M. (1991). Implicit Renewal Theory and Tails of Solutions of Random
Equations. The Annals of Applied Probability 1, 126-166.
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[Gr5] Grincevičius, A.K. (1980). Products of random affine transformations. Lithuanian
Mathematical Journal 20, 279-282.
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