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Einleitung

Die vorliegende Arbeit behandelt gewisse stochastische Maximin-Fixpunkt-
gleichungen. Das sind Gleichungen des Typs

(x) X2 (X1, Xa,...)

mit unabhéngigen, identisch verteilten Zufallsgroflen X7, Xo,..., die alle-
samt dieselbe Verteilung wie die Zufallsgroie X haben, und einer Funktion
f: RN — R, die ein aus Maxima und Minima zusammengesetzter Aus-
druck ist. Dabei benutzen wir fiir Zufallsgréfien X und Y die Schreibweise

X2y = X~Y = PX=pY

wobei hier und {iiberall dort in dieser Arbeit, wo Zufallsgrofien auftreten,
unterstellt wird, dass diese auf einem geeigneten, nicht néher spezifizierten
Wahrscheinlichkeitsraum (2,2, P) definiert sind. Allgemeinere Varianten
der Gleichung (%) erhélt man, indem man z.B. einen Parameter 6 aus einer
geeigneten Paramtermenge © einfiihrt oder eine von der Folge (X;);>1 un-
abhéngige Folge (11, T3, . ..) von Zufallsgrofen mit vorgegebenem Abhéngig-
keitsverhéltnis in die Gleichung einbaut. Auf eine Verallgemeinerung der
letzteren Art wird in dieser Arbeit nur kurz in Abschnitt 2.2.2 eingegangen.
Ein Beispiel fiir eine stochastische Fixpunktgleichung ist also:

(xx) X < max min Xi
1<i<n1<j<m;
mit Zahlen n,mq,...,m, € IN. In weiten Teilen dieser Arbeit werden wir
eine dhnliche Gleichung betrachten, die aus (%) hervorgeht, indem man sie
mit einem Parameter ¢ € |1, 00| skaliert:

d .
X=¢- Xi ;.
(ex %) R I, A
Gleichungen der Typen (xx) oder (k x *) treten z.B. im Kontext von
Spielbdumen auf, die zur Analyse von Spielen auf der Basis vollstindiger
Informationen benutzt werden. In einem solchen Spiel — wie z.B. Schach —
spielen zwei Spieler — nennen wir sie Weif§ und Schwarz — gegeneinander.



Sie starten in einer Grundstellung und ziehen abwechselnd (beginnend mit
Spieler Weif}), wobei jeder Spieler in jeder Runde b > 2 Spielziige zur Aus-
wahl hat. Nach 2k Ziigen (k > 0) wird eine von b** Endstellungen erreicht,
die allesamt eine Bewertung in Form einer reellen Zahl tragen. Spieler Weif3
mochte nach 2k Ziigen eine Stellung mit moglichst hoher Bewertung er-
reichen, Spieler Schwarz eine Stellung mit moglichst niedriger Bewertung.
Dabei ist das Spiel nach 2k Ziigen nicht notwendigerweise beendet; es wird
dann lediglich eine Bewertung der Spielstellung vorgenommen.

Die moglichen Ziige und die sich ergebenden Spielstellungen kénnen
durch einen b-adischen Baum der Hohe 2k dargestellt werden. Jedes Blatt
des Baums wird mit dem Wert der durch das Blatt reprasentierten Endstel-
lung markiert. An allen inneren Knoten gerader Hohe (insbesondere an der
Wurzel, die die Hohe 0 hat) befindet sich die Markierung V, an allen Knoten
ungerader Hohe die Markierung A. Der Wert des Baums an einem inneren
Knoten wird durch das Maximum der Werte der ihm nachfolgenden Knoten
gegeben, falls der Knoten mit V markiert ist, und durch das Minimum der
Werte der ihm nachfolgenden Knoten, falls der Knoten mit A markiert ist.
Der Wert an der Wurzel heiffit auch Wert des Spiels. Die Markierung mit
V und A entspricht dem Willen der Spieler, den Zug auszufiihren, der den
Wert des Spiels maximiert bzw. minimiert.

Als Beispiel soll ein Schachrechner angefiihrt werden, der eine vorliegen-
de Stellung — nicht notwendigerweise die Ausgangsstellung im Schachspiel —
analysiert. Der Rechner kann bis in eine Tiefe von 2k, k > 0, alle moglichen
Ziige beider Kontrahenten durchspielen und bewertet die dann entstehen-
den Stellungen. Eine mogliche (wenn auch sehr einfache Bewertung) ist die
folgende:

FEine Endstellung wird mit

e 1 bewertet, falls es sich um eine Stellung handelt, in der Schwarz
schachmatt gesetzt ist,

e ( bewertet, falls weder Spieler Weifl noch Spieler Schwarz schachmatt
gesetzt ist,

e —1 bewertet, falls Spieler Weifl schachmatt gesetzt ist.

Feinere Bewertungen ergeben sich, wenn man in dem Falle, dass noch keiner
der beiden Spieler matt gesetzt ist, eine Bewertung mit einer Zahl € [—1, 1]
vornimmt, die grofler ist, je besser die Stellung fiir Spieler Weif} ist.

Wir betrachten in dieser Arbeit Baume mit zuféilliger Bewertung der
Blétter, d.h. Bdume, deren Blatter mit u.i.v. Zufallsgréflen Vi, ..., Vj2r mar-
kiert sind. Dann ist der Wert des Maximinbaums ebenfalls eine Zufallsgrofe,
die wir mit W}, fiir einen Baum der Hohe 2k bezeichnen. Fiir k — oo konver-
giert W in Verteilung. Die Grenzverteilung erfiillt dann notwendigerweise
eine Fixpunkgleichung vom Typ (xx). Fiir den Fall, dass die Zufallsgréfien



Vi,..., Viar eine Verteilungsfunktion F' haben, die auf {0 < F' < 1} ste-
tig und streng monoton wachsend ist, haben Ali Khan, Devroye und Nei-
ninger gezeigt, dass die Folge (Wj)rew nach geeigneter Transformation in
Verteilung gegen eine Zufallsgréfie W* mit stetiger Verteilungsfunktion kon-
vergiert. W* erfiillt dann eine Fixpunktgleichung vom Typ (% % %) (siehe
[AKN]).

Diese Ergebnisse werden in Kapitel 1 zusammengetragen. Dabei steht
das Konvergenzergebnis von Ali Khan, Devroye und Neininger im Fokus
dieser Arbeit. An dieses Ergebnis anschlieflend stellen sich mehrere Fragen:

1. Wie sieht die Losungsmenge der im Satz auftretenden Fixpunktglei-
chung (einem Spezialfall der Gleichung (x * %)) aus?

2. Kann man die Verteilung von W* bestimmen?

3. Ist die Verteilung von W* A-stetig? Wenn ja, gibt es eine C°°-Version
der A-Dichte 7

4. Welche Momente von W* existieren?

Ziel dieser Arbeit ist es nun einerseits, diese Fragen zu beantworten. Dies
soll {iber einen Ansatz erfolgen, der stochastische Fixpunktgleichungen in
den Vordergrund stellt. Andererseits sollen einige allgemeine Feststellungen
iiber stochastische Maximin-Fixpunktgleichungen gemacht werden.

Kapitel 2 beschéftigt sich mit dieser allgemeinen Untersuchung stochasti-
scher Maximin-Fixpunktgleichungen (und geeigneter Verallgemeinerungen).
Mit Satz 2.1.2 liefert es die Antwort auf die erste Frage. Allgemeine Unter-
suchungen iiber die Existenz von Momenten von Losungen der betrachteten
Fixpunktgleichungen liefern den Satz 2.1.6, der insbesondere zeigt, dass alle
Momente von W* endlich sind. Schliellich zeigt Satz 2.2.6, dass die analy-
tische Transformierte von W* auf ganz C endlich ist.

Kapitel 3 widmet sich in erster Linie der Beantwortung der zweiten und
dritten Frage. Die Sétze 3.1.4 und 3.2.1 16sen diese beiden Fragen. Dabei
nimmt die stochastische Fixpunktgleichung fiir W* eine Schliisselrolle bei
der Bestimmung der Verteilung von W* ein.

In Kapitel 4 schliellich wird eine weitere Klasse stochastischer Fixpunkt-
gleichungen betrachtet. Teile der Betrachtungen sind einer noch nicht er-
schienenen Arbeit von Alsmeyer und Rosler (siehe [AR]) entnommen. Die
dort betrachteten Fixpunktgleichungen werden mit Gleichungen des Typs
(* % %) in Verbindung gebracht.

Fiir die Auswahl des Diplomarbeitsthemas und die Betreuung wihrend der
Entstehungsphase mochte ich Herrn Prof. Dr. G. Alsmeyer danken. Des Wei-
teren mochte ich allen danken, die mir bei der Fertigstellung dieser Arbeit
auf die eine oder andere Weise behilflich waren.



Kapitel 1

Maximinbaume

In diesem Kapitel fithren wir zunéichst b-adisch verzweigte Maximinbdume
ein (Abschnitt 1.1) und untersuchen dann das asymptotische Verhalten des
Wertes eines zufillig bewerteten b-adisch verzweigten Maximinbaumes. Dies
geschieht in erster Linie in Satz 1.3.3. Um diesen Satz beweisen zu koénnen,
bendtigen wir einige analytische Hilfsmittel, die im zweiten Abschnitt des
Kapitels bereitgestellt werden.

1.1 Maximinbidume

1.1.1 Definition. Gegeben sei ein vollstédndig b-adisch verzweigter Baum
der Hohe 2k, k € INy. Jeder Knoten mit gerader Hohe < 2k, insbesondere
also die Wurzel des Baums, sei mit V markiert, jeder Knoten mit ungerader
Hohe sei mit A markiert. Jedes der b** Blitter des Baums sei mit einer Zahl
markiert. Einen solchen Baum nennen wir (b-adisch verzweigten) Mazimin-

baum (der Héhe 2k).

Der Wert des Maximinbaums an einem Blatt wird durch die Zahl gege-
ben, die das Blatt markiert. Der Wert des Maximinbaums an einem Knoten
k der Hohe < 2k sei das Maximum der Werte des Maximinbaums an den
Nachfolgerknoten von &, falls x die Marke V tréagt, und das Minimum der
entsprechenden Werte, falls k die Marke A tragt. Mit dem Wert des Mawi-
minbaums bezeichnen wir den Wert des Maximinbaums an der Wurzel.

Ist nun (W;);<;<p2x eine Familie u.i.v. Zufallsgrofien und wird jedes Blatt
des oben beschriebenen Baums von einem der W; markiert — und zwar ver-
schiedene Blatter von verschiedenen W; —, so nennen wir den entstehenden
Baum einen zufillig bewerteten (b-adisch verzweigten) Maziminbaum (der
Hoéhe 2k ). Die Verteilung von Wy heifit Startverteilung des Maziminbaums.
Bezeichnet F' die Verteilungsfunktion von Wj und ist F' auf {0 < F' < 1} ste-
tig und streng monoton wachsend, so sprechen wir von einem Maziminbaum
im Pearlschen Modell.
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Die obige Abbildung zeigt einen bindren Maximinbaum der Hohe 2. Unter
jedem inneren Knoten ist jeweils der Wert des Baums an diesem Knoten
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Diese Abbildung zeigt einen zufillig bewerteten Maximinbaum der Hohe
und des Verzweigungsgrades 2.

Den Rest des Kapitels beschéftigen wir uns mit der Verteilung des Wertes
eines zufillig bewerteten Maximinbaums, insbesondere in Abschnitt 1.3 mit
dem asymptotischen Verhalten dieser Verteilung beim Grenziibergang k —
o0o. Bevor wir eine grundsétzliche Feststellung hinsichtlich der Verteilung
des Wertes eines zufillig bewerteten Maximinbaums machen, fithren wir
eine Notation ein:

1.1.2 Notation. Sei X # () eine Menge und g : X — X eine Funktion.

Dann setzen wir

go(o) = idy

und
g"" Y = go g™ (k € o).

Ist g eine Bijektion auf X, so bezeichnen wir mit ¢°—) die Umkehrfunktion
von g auf X und setzen weiter

go(fk) _ (90(71))0(@

fiir kK € IN.

1.1.3 Bemerkung. Sei b > 2 fest und g: R — R, z +— (1 — (1 — x)b)b.
Fiir jedes k € Ny sei W), der Wert eines zufillig bewerteten Maximinbaums
der Hohe 2k mit Verzweigungsgrad b. Alle Wy haben die Startverteilung
L(Wp). Weiter sei Fj die zu Wy, gehorige Verteilungsfunktion (k € WNy).
Dann gilt fiir jedes k& > 0:

Fk:gO(k)oF()’

was man durch Induktion nach & beweisen kann.
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1.2 Analytische Hilfsresultate

In diesem Abschnitt wollen wir zunéchst ein allgemeines Lemma iiber das
Fixpunktverhalten reeller Funktionen beweisen. Das Lemma ist zwar sehr
einfach, wird allerdings im Verlaufe der Arbeit so hiufig bendtigt, dass es
zumindest einmal herausgestellt werden soll. Anschlielend wird die Aussage
des Lemmas in einem weiteren Lemma unter der Zusatzvoraussetzung der
stetigen Differenzierbarkeit der betrachteten Funktionen verschirft. Danach
wenden wir uns den speziellen Funktionen zu, die in Bemerkung 1.1.3 auf-
treten, und diskutieren ihr Verhalten im Einheitsintervall. Das Wissen iiber
dieses Verhalten erweist sich insbesondere in Abschnitt 1.3 als niitzlich.

1.2.1 Allgemeine Resultate zum Fixpunktverhalten reeller
Funktionen

1.2.1 Lemma. Seien I C R ein Intervall und g : I — R eine stetige, mo-
noton wachsende Funktion. Weiter seien cy < ¢1 zwei aufeinander folgende
Fizpunkte von g, d.h. es gelte g(¢;) = ¢; fir i = 0,1 und g(x) # x fir alle
x € |co, c1[. Dann gelten die folgenden Aussagen:

(a) Es gilt entweder g(x) < x fiir alle x € |cg,c1[ oder g(x) > x fiir alle
x € ]cp, 1.

(b) g bildet [co,c1] surjektiv auf sich selbst ab; ist g zusdtzlich streng mo-
noton wachsend, so bildet g [co,c1] bijektiv auf sich selbst ab.

(c) Ist g < id auf |co,c1[, so gilt: ¢°™(z) | co fiir n — oo gleichmdpig in
x auf jedem kompakten Intervall [cq,c] C [co,c1].

(d) Ist g > id auf|co, c1|, so gilt: ¢°) (z) 1 ¢1 fiir n — oo gleichmifig in
x auf jedem kompakten Intervall [c,c1] Cleg, c1].

Beweis. (a) folgt aus dem Zwischenwertsatz. Die Surjektivitdt unter (b)
folgt ebenfalls aus dem Zwischenwertsatz; ist ¢ zusétzlich streng monoton
wachsend, so ist g auch injektiv auf [cy, ¢1], also insgesamt bijektiv. Fiir den
Nachweis von (c¢) nehmen wir nun g < id auf |cg, ¢1[ an. Dann gilt fiir jedes
n € N:

3" (e) = g°" ) (e) = g7V (co) = co,

d.h. die Folge (¢°(¢))pen ist monoton fallend und nach unten gegen cg
beschrinkt, also konvergent. Fiir ¢ := lim,,_,oc ¢ (c) gilt dann:

gla) = g (lim_¢°"(e)) = lim g°"FV(c) = g,
n—oo n—oo

also ist ¢ ein Fixpunkt von g. Es kommt nur ¢ in Frage. Weiter gilt fiir jedes

x € [co,c] und n € IN:

co < g°™(z) <g®™(e) | e

n—0o0
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d.h. wir erhalten (c). Der Nachweis von (d) kann analog zum Beweis von (c)
gefiithrt werden. O

Ein weiteres Lemma, das sich auch im Hinblick auf spitere Uberlegun-
gen als niitzlich erweist und deshalb als eigenstdndiges Ergebnis formuliert
ist, beleuchtet die Konvergenzgeschwindigkeit von (g° (¢))nen gegen den
entsprechenden Fixpunkt.

1.2.2 Lemma. Seien I C R ein Intervall und g : I — R stetig differen-
zierbar und monoton wachsend auf I. Weiter seien qo, q1 zwei aufeinander
folgende Fixpunkte von g in I, d.h. g(qo) = q0 < ¢1 = g(q1) und g(x) # x
fiir alle © € ]qo, q1[. Sei ¢ € |qo, q1[. Nach Lemma 1.2.1 ist g > id auf ]qo, q1[
oder g < id auf]qo,q1]. Es gelten iberdies die folgenden Aussagen:

(a) Im Falle g > id auf]qo, 1] existiert fiir jedes v > ¢'(q1) eine Konstante
M, >0, so dass
‘m—fwuﬂﬁMwW
fiir alle x € [¢,q1] und alle n € N gilt.

Ist ¢'(q1) > 0, so emistiert fiir jedes 0 < 3 < ¢'(q1) eine Konstante
mg > 0, so dass

‘fh - go(n)(ﬂf)‘ > mg- ("
fir alle x € [qo,c] und alle n € N ist.
(b) Im Falle g < id auf]qo, q1| existiert fiir jedes v > ¢'(qo) eine Konstante
M, >0, so dass
‘%—fW@ﬂﬁMwW
fiir alle x € [qo, ] und alle n € N gilt.

Ist ¢'(q0) > 0, so existiert fiir jedes 0 < 8 < ¢'(qo) eine Konstante
mg >0, so dass

‘QO — g (90)‘ > mg - "
fir alle x € [¢,q1] und n € N ist.

Beweis. Es sei die Situation von (a) gegeben und v > ¢'(¢q1) vorgelegt. Wir
wihlen § > 0 so klein, dass ¢'(x) < ~ fiir alle 2 € [¢1 — 0, 1] gilt. Dies
ist moglich, da ¢ stetig differenzierbar ist. Nach Lemma 1.2.1 konvergiert
¢°™(z) fiir n — oo gleichmiBig auf [c,q1] gegen qi, d.h. es existiert ein
ng € IN, so dass ¢° (z) € [q1 — 6, q1] fiir alle n > ng und alle z € [c, ¢1] gilt.
Unter Benutzung der Identitat

n—1

(gom))’ ~[[ o5

j=0
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erhélt man nun fiir alle n > ng und = € [¢, q1]:
no—1

(go(n)) < Ao H g ( o(] > lg’ H[qo q1] .3

e

Insgesamt erhiilt man die Abschitzung

0 () @) <2

fiir alle x € [¢,q1] und n € Ny, wobei

s (19" g0, V1) 7m0, falls v < 1 ist,
K (19"l gorq) ¥ )™ falls v > 1 ist.

Setzt man M, := (q1 — ¢)M, so erhilt man fiir alle » € [c,q1] und alle
n € INg unter Benutzung des Mittelwertsatzes der Differentialrechnung:

a1 = 7 @)] = (@ —2) (5°7) (€) < My

wobei ¢ in diesem Kontext eine von z abhéngige Zwischenstelle € |z, ¢1[C
[c, ¢1] bezeichnet.

Sei nun ¢'(¢1) > 0 und 0 < B < ¢'(¢1) (im Falle 3 = 0 ist nichts zu
zeigen). Dann withlen wir 6 > 0 so klein, dass 8 < ¢/(x) fiir alle x € [g1—9, ¢1]
gilt. Wihlt man ein n; € IN, so dass ¢°")(¢) € [q1 — 6, q1] ist, erhilt man
dhnlich wie oben

a - @) = |- ? @) = |a— g (g ()
/!
= (a-¢™0) (") ©
> (0-g@) 5 =
fiir alle € [go,c] und n > ny, wobei cg := (g1 — ¢°™)(c)) - B7™ > 0
sei und ¢ eine Zwischenstelle €]g°(")(c), ¢1[ ist. Geht man von cg zu einem
hinreichend kleinen mg > 0 iiber, so kann man erreichen, dass die behauptete

Ungleichung fiir alle n € N gilt.
Der Nachweis von (b) verlduft analog zum Nachweis von (a). O

1.2.2 Kurvendiskussion der Funktionen z — (1 — (1 — x)”)b

1.2.3 Lemma. Sei b € Z, b > 2. Weiter sei g : [0,1] — [0,1], g(x) :=
(1—(1—-2)"" (x€[0,1]). Dann hat g genau einen Fizpunkt o in 0, 1[.
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Beweis. g hat nach dem Zwischenwertsatz mindestens einen Fixpunkt in
10,1], da g(0) =0, g(1) = 1 ist und g eine verschwindende Ableitung sowohl
in 0 als auch in 1 besitzt.

Wir miissen also nur noch zeigen, dass g hochstens einen Fixpunkt in
10, 1] besitzt. Dazu betrachten wir die zweite Ableitung von g. Es gilt fiir
alle z € [0, 1]:

(1.2) ¢"(x) = b3(b— 1)(1 — 2)0~2 (1 —(1- x)b) " ((b +1)(1—2)b — 1) .
Hier ist fiir  €]0, 1] genau dann ¢”(x) = 0, wenn

1
b+1

[ 1
:1—6—:: .
X b+1 i)

Dabei ist, wie man der Darstellung von ¢” in (1.2) ansieht, ¢” > 0 auf
10, zo[, ¢ < 0 auf Jzg, 1[. Also kann g hochstens einen Fixpunkt « in ]0, 1]
besitzen. O

(1) =

gilt, d.h. nur fiir

1.2.4 Bemerkung. In der Situation von Lemma 1.2.3 gilt fiir b > 2 und
dazugehoriges a:
(1-a)l=aq,

d.h. a ist der eindeutige Fixpunkt der Funktion z +— (1 — )" in ]0, 1[.

Begriindung. Fiir die Funktion § : R — R, z — (1 — z)?, gilt offenbar
g(0) = 1 und g(1) = 0. Dariiber hinaus ist g auf [0, 1] streng monoton
fallend, hat also genau einen Fixpunkt ¢ in |0, 1[. Wegen g = go g ist ¢ auch
ein Fixpunkt von g in ]0,1[. Daher impliziert die Eindeutigkeitsaussage in
Lemma 1.2.3 o = (. O

Die Funktion § steht im Zusammenhang zum Ubergang P(W € -) —
P(—minj<j<, W; € -) fiir stochastisch unabhéngige, identisch wie W ver-
teilte Zufallsgréflen W;. Es gilt némlich fiir die Verteilungsfunktion F' von
W und alle t € R:

P <— min W; < t) = P(W > —t)’ =g (F((-t)-)).

1<<b
Diese Beobachtung wird in Kapitel 4 wieder aufgegriffen.

1.2.5 Lemma. Seien b€ N — {1} und g: R — R, g(z) := (1 — (1 — z)?)°
(x € R). Des Weiteren sei o die eindeutige Zahl in |0, 1] mit g(a) = a und
xo wie in Lemma 1.2.3 die Nullstelle der zweiten Ableitung von g in ]0,1].
Dann ist o < zg und g in einer Umgebung von o (ndmlich |0, z[) konves.
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Abbildung 1.1: Die Abbildung 2 — (1 — (1 — 2)?)” mit Ableitung

Beweis. Wir zeigen, dass zo € |a, 1] ist. Dazu geniigt es zu zeigen, dass
g(xo) > xg ist. (Dies zeigt die Behauptung, denn es gilt g > id auf Ja, 1] und
g < id auf ]0, a] nach den Lemmata 1.2.1 und 1.2.3.) Es gilt nun:

gleo) = (1-(1 —xo)b)b - (1 - ﬁ)b

Es ist also zu zeigen, dass fiir alle b > 2

1 ! b>1 \/ !
b+1 b+1

gilt. Fiir b = 4 gilt 1 — {/1/(b+1) = 1— ¢Y1/5 < el < () = (1 -
b%)b. Wegen (1 — ﬁll)b letund 1 - Y1/(b+1) | 0 fiir b — oo folgt
die Behauptung fiir alle b > 4. Fiir b = 2,3 kann man die Behauptung
nachrechnen. O

Der Funktionsverlauf der Abbildung z +—— (1 — (1 — )?)? im Einheits-
intervall ist in Abbildung 1.1 dargestellt. Abbildung 1.2 auf Seite 11 zeigt
die Graphen der Funktionen z — (1 — (1 — 2)%)® fiir b = 2, 3,5,8,13. Wie
man dort sieht, &hneln sich die Funktionsverldufe qualitativ. Die Funktionen
konnen durch den mit wachsendem b fallenden Fixpunkt € ]0, 1[ unterschie-
den werden.
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0,84

0,6

0,21

Abbildung 1.2: Die Abbildungen x +—— (1 - (1- x)b)b fiir b = 2,3,5,8,13
(im Vergleich mit der Abbildung = — z)

Der Beweis von Lemma 1.2.5 zeigt, dass man fiir jede Funktion x —
(1 — (1 — 2)®)® den zugehérigen Fixpunkt o € ]0,1[ nach oben durch 1 —
v/1/(b+ 1) abschitzen kann. Wir interessieren uns nun auch fiir eine nicht-
triviale untere Schranke von « in |0, 1]:

b
1.2.6 Lemma. In der Situation von Lemma 1.2.5 gilt b~ =1 < . Insgesamt
hat man damit die Abschdtzungen

b 1
1.3 b o1 1— ¢/ ——.
(1.3) D (|

Beweis. Die zu beweisende Ungleichung kann man wie im Beweis von Lem-
ma 1.2.5 unter Zuhilfenahme der Aquivalenz

r<a<eg(r) <z (firx €]0,1])

priifen. Die rechte Seite der Aquivalenz erhilt man (mit = = b_b—Ll) fiir
b= 2,...,5 durch explizite Berechnung. Fiir alle b > 6 greift die folgende
Abschitzung (dabei beachte man, dass g streng monoton wachsend, (1 —
(1 —1/b)")p>o fallend und (( *Vb)~)p>9 wachsend ist):

—1

Jo (7)< o (5) =1- - <5 < (V)

Erheben wir diese Ungleichung in die b-te Potenz, so erhalten wir die be-
hauptete Ungleichung also auch fiir alle b > 6. U
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Nachdem wir a eingeschachtelt haben, wollen wir nun noch eine obere
Schranke fiir ¢’(«) finden, die sich im Hinblick auf Satz 2.2.6 als wichtig
erweist.

1.2.7 Folgerung. In der Situation von Lemma 1.2.5 gelten die folgenden
Aussagen:

b—1
(@) lg'loy <b(1-5) Vo,

(b) g'(@) <b.

Beweis. Es gilt ¢'(z) = b* (1 - (1 - x)b)bfl (1 — x)>~! fiir alle 2 € [0,1].
Nach Lemma 1.2.3 nimmt die Funktion ¢’ ihr Maximum in 1— (1/(b+1))'/®
an, d.h. es gilt

1\ 1 b-1 1A\,

Des Weiteren gilt stets g'(a) < ||g'[jo,1], Was wegen (a) und (1 — ﬁll)b_l% !

e ! (b — o0o) fiir b > 3 die Aussage (b) liefert. Fiir b = 2 gilt ¢'(a) = 4a =
2-(3—+/5) <2. O

1.3 Konvergenzergebnisse fiir den Wert eines Ma-
ximinbaums

1.3.1 Bemerkung. Seien W} der Wert eines zufillig bewerteten b-adisch
verzweigten Maximinbaums der Héhe 2k und Fj, die zugehorige Verteilungs-
funktion, £ > 0, wobei alle betrachteten Maximinbdume dieselbe Startver-
teilung £(Wp) haben. Dann gilt fiir ¢ € R mit der entsprechenden Funktion
g aus Abschnitt 1.1 und dem dazugehérigen Fixpunkt a €10, 1[:

0, falls Fy(t) < «,
Fi(t) = " (Fo(t)) — {a, falls Fo(t) = o,
1, falls Fy(t) > «,

man vergleiche dazu auch Lemma 1.2.1. Setzt man also ¢ := inf{t € R :
Fy(t) > a}, b:=sup{t € R: Fy(t) < a} und

0, furt<a,
G(t) == a, fiirte a,b],
1, firt >0,

)

wobei im Falle a = b das Intervall [a,b[ definitionsgemé&f als leere Menge
aufzufassen ist, so konvergiert Wy, fiir £ — oo in Verteilung gegen die zu G
korrespondierende Wahrscheinlichkeitverteilung ad, + (1 — «)d.
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Im Modell von Pearl (vgl. [P]) werden die Werte an den Knoten gemés
einer Verteilung () generiert, deren Verteilungsfunktion Fp im Bereich 0 <
Fg < 1 stetig und streng monoton wachsend ist. In diesem Fall gilt stets
a = b und es liegt die stochastische Konvergenz der Folge (W})ir>0 gegen a
vor. Dabei ist a die eindeutige reelle Zahl mit Fy(a) = .

1.3.2 Beispiel. Zur Illustration soll ein ebenfalls von Pearl in der bereits
zitierten Arbeit gegebenes Beispiel angefiithrt werden. Wir betrachten einen
Stromkreis mit zwei in Reihe geschalteten Verbrauchern (etwa Gliithbirnen).
Mit T7 und T5 bezeichnen wir die Lebensdauer dieser beiden Komponen-
ten. Der Stromkreis wird unterbrochen, falls einer der beiden Verbraucher
ausfallt, d.h. zum Zeitpunkt 77 A T5. Schaltet man nun zwei solcher Rei-
henschaltungen parallel, so hat man vier Verbraucher mit Lebensdauern
Tl, “ee ,T4:

T Ty
N N,
— +——
N3 Ny
T3 T4

Abbildung 1.3: Netzwerkelement N

Dieser Stromkreis fillt zum Zeitpunkt (77 A T) V (T3 A Ty) aus, wenn wir
unterstellen, dass die Lebensdauer der Verbraucher unabhéngig von der an-
gelegten Stromstérke ist. Nun kann man in Abbildung 1.3 Ny, No, N3 und
N, durch Netzwerkelemente wie N selbst ersetzen und diesen Einsetzungs-
prozess iterieren.

Allgemeiner betrachten wir eine elektrische Schaltung N, die aus b > 2
parallel geschalteten Netzwerken Ni,..., N, besteht, die wiederum jeweils
aus b in Reihe geschaltenen Netzwerken N(;1),..., Ny (I < i < b) be-
stehen. Jede Schaltung Ng; ;) (1 < i,j < b) sei wieder von der gleichen
Gestalt wie N mit Verbrauchern N; ;) (I, m € {1,...,b}). Wir nehmen
diese Einsetzung insgesamt (k — 1)-mal vor (kK > 1). N besteht dann aus
b** Netzwerken N, v € {1,... ,b}%. Die Lebensdauer des Netzwerkes NN,
sei mit T, bezeichnet. Wir nehmen an, dass die 7,, u.i.v. Zufallsgréfien mit
Verteilung Exp(9) (¥ > 0) sind, und dass die Lebensdauer eines Netzwerkes
nicht von der Stérke des durchflieBenden Stroms abhéngt. Diese Situation
kann man mit einem zufillig bewerteten b-adischen Maximinbaum der Hohe
2k modellieren. W}, bezeichne den Wert dieses Baums, dessen Blétter mit
den T, markiert sind. Dann ist die Lebensdauer von N gleich W}, und nach
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Bemerkung 1.3.1 gilt:

wobei 1 — a die eindeutige Losung der Gleichung z° + 2 = 1 im offenen
FEinheitsintervall sei.

Wir interessieren uns in dieser Arbeit allerdings nicht in erster Linie fiir
die Konvergenz gegen (Ein- bzw. Zweipunkt-)Verteilungen, die von Pearl
in der Arbeit [P] bemerkt wurde, sondern fiir die Frage, ob man durch
geeignete Transformation der Folge (Wj)renw, Verteilungskonvergenz gegen
eine Zufallsgrofle mit \-stetiger Verteilung erreichen kann. In einem Spezial-
fall, wenn namlich die Zufallsgrofien, die die Blitter des Baums markieren,
rechteckverteilt sind, zeigt der folgende Satz von Ali Khan, Devroye und
Neininger, der der Arbeit [AKN] entnommen ist, dass man durch Skalie-
ren mit einem geeigneten Parameter die gewiinschte Verteilungskonvergenz
erreichen kann:

1.3.3 Satz. Fir k > 0 bezeichne Wy den Wert eines zufillig bewerteten b-
adisch verzweigten Maziminbaums der Héohe 2k mit Startverteilung L(Wy) =
R(—a,1 — ), wobei o der eindeutige Fizpunkt der Funktion g : R — R,

0, fiur z <0,
g(x) = (1—(1—x)b)b, firo <z <1,
1, fiur x> 1,

in ]0,1] (vgl. dazu Lemma 1.2.3) sei. Des Weiteren seien Fy, die Verteilungs-
funktion von Wy, (k> 0) und £ := ¢'(a). Dann gilt

& Wy L W fiir k — oo

fir eine Zufallsgrofie W* mit N-stetiger Verteilung, die die stochastische
Fizpunktgleichung

d .
1.4 W =¢. Wi -
( ) $ fg?ﬁxb 1r§nj12b "

mit einer Familie (W j)1<i j<p unabhdngiger Zufallsgrofen mit W 4 Wi j
fir 1 <i,5 <b erfillt.

Bevor wir nun in den Beweis einsteigen, wollen wir zunéchst auf das
Pearlsche Modell eingehen. Wie in Bemerkung 1.3.1 bereits ausgefiihrt ist,
werden die Werte an den Blédttern im Pearlschen Modell gemé$ einer Ver-
teilung generiert, deren Verteilungsfunktion F' im Bereich 0 < F' < 1 ste-
tig und streng monoton wachsend ist. Jede Zufallsgrole Wy mit einer sol-
chen Verteilungsfunktion kann man ordnungstreu so transformieren, dass sie
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R(—a,1—a)-verteilt ist. Bezeichnet man nimlich mit F~! die Umkehrfunk-
tion von F': {0 < F < 1} —]0,1], so gilt fir 0 < ¢ < 1:

P(F(Wy)<t)=P Wy < F'(t)) =F(F (1) =t,

d.h. F(Wp) £ R(0,1) und damit F(Wp) — a £ R(—a,1 — a). Folglich kann
auf das so transformierte Wy Satz 1.3.3 angewandt werden. Wir werden also
im Folgenden in erster Linie den Fall betrachten, in dem die Werte in den
Bldttern geméfl der Rechteckverteilung R(—a, 1 — «) generiert sind.

Unter Zuhilfenahme der Lemmata 1.2.3, 1.2.5 und 1.2.6 wollen wir nun
einen Beweis von Satz 1.3.3 liefern:

Beweis von Satz 1.3.53. Esist firt € R

PEr-wy <t) = P(Wi <t/¢")
= ( W0<t/fk>
= ( W0+a<a+t/§k))
= g( (a+t/€h).

Wir werden fiir den Nachweis der Verteilungskonvergenz zeigen, dass g :=
°®) (a4 -/€F) fiir k — oo gegen eine monoton wachsende, stetige Funktion
h* mit limy o A*(t) = 1 und limy—,_ o, h*(t) = 0 konvergiert. Dazu weisen
wir zunéchst die Konvergenz der g, nach.

Sei also t € R und ko € IN so groB, dass a + /& €10, zo[ fiir alle k > kg
gilt. Ein solches ky existiert, da a € ]0,z¢[ gilt (vgl. dazu Lemma 1.2.5).
Weil g konvex auf |0, zo ist, gilt dann fiir alle & > ko:

o t
geea(t) = g°*t (04 + W)

- o)

> o (gle) 440 g

o t
= o (v g)

= gr(t),

wobei in der dritten Zeile die Konvexitdt und Monotonie von g und in der
vierten Zeile die Gleichungen g(a) = « sowie ¢'(a) = & benutzt wurden.
Folglich ist fiir jedes t € R die Folge (gx(t))ren schlieflich wachsend (und
beschriankt gegen 1), also konvergent. Wir setzen h* := limy_, o gx. Es gilt
0<h*<1.
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Des Weiteren existiert fiir jedes beschriankte Intervall I C R ein kg € IN
mit {a+t/¢¥:t € I} CJ0,z0] fiir alle k > ko. Damit ist (gk|r)k>k, eine
monoton wachsende Folge monoton wachsender Funktionen, mithin A* auf I
monoton wachsend. Da I als beliebiges beschrianktes Intervall C R gew#hlt
war, ist A* damit auf ganz R monoton wachsend. Insbesondere existieren
(oo 1= limy| oo h*(t) und oo := limyjoe R*(t). Es gilt ¢_0, ¢oo € [0, 1].

Als néchstes zeigen wir, dass

(1.5) h*(t) = g(h*(t/€))
fiir alle t € R gilt. Sei dazu t € R beliebig. Dann ist

Rt = lim ¢°* (a4t D)

k—o0

= g ( lim g2 (a ¥ t/—f)) — g (1" (1/2)).

k—o0 gk

Wir zeigen weiter, dass ¢_o = 0 und ¢ = 1 gilt. Dazu nutzen wir die
Funktionalgleichung von h* und die Stetigkeit von g wie folgt aus:

oo = i () = i g (0°(¢/€)) = g (1 (/) ) = ot

tToo

und analog
I—o0 = 9(q-o0)-

doo und g_ sind also Fixpunkte von g, mithin gilt ¢oo,q¢-0c € {0, , 1}.
Fiir t > 0 ist ¢°®) (a + t/€F) > o fiir alle k € IN und damit auch (da die
Folge schlieBlich wéchst) h*(t) > «. Die Monotonie von h* liefert go, >
a, also ¢so = 1. Den Beweis von ¢_~ = 0 wollen wir genauso angehen;
allerdings féllt der Nachweis der Existenz eines ¢t < 0 mit h*(¢) < « deutlich
schwieriger als der Nachweis der Existenz eines ¢t > 0 mit A*(t) > « aus, da
uns die Tatsache, dass die Folgen (gx(t))ren schlieBlich wachsen, hier nicht
in die Karten spielt, sondern vielmehr zusétzliche Probleme bereitet. Wir
versuchen also zunichst, in einer geeigneten Umgebung [o — €, + €] von
« eine Majorante fiir g zu finden, deren Iterationen sich leicht berechnen
lassen. Dazu wéhlen wir

3
flx) =« (£> fiir x > 0.
a
Behauptung: () Es gibt ein € €]0, a, so dass fir alle x mit |z —a| < ¢ gilt:

g9(z) < f(x).

Begriindung: Zunéchst einmal kann man feststellen, dass sowohl f als auch
g auf |0, 1] zweimal stetig differenzierbar sind, und es gelten:
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(i) 9() = a = f(a),
(i) ¢'(e) = & = f'(a).

Eine Anwendung der Taylorschen Formel auf f und g liefert daher:

o(x) = a +E(@— o) + 54" (0)(x — a)? +1i(a)

sowie

f(z) = a+ & —a) + 5/"(0) & — a)* +ra(a)

fiir alle x in einer hinreichend kleinen Umgebung U von «, wobei rq, ro
Funktionen mit lim, 4, 120 (2 — @) 2r;(z) = 0 (i = 1,2) auf U sind. Um die
Behauptung nachzuweisen, geniigt es daher zu zeigen, dass ¢”(a) < f"(«)
ist. Dazu erinnern wir uns daran, dass fiir alle x €0, 1]

g(@) =020 -1 -2 (1- (1 —2)) (b4 ) -2 1)

ist, und notieren, dass

" _ (5_ 1)5 r\§2
' ==2=(3)
fiir alle z > 0 gilt. Wir miissen also zeigen, dass fiir jedes b > 2
(sx) b*(b—1)(1 — )" (1= (1 —a)")"? ((b +1)(1— ) - 1) <K ;1)5

gilt. Wir setzen
E=g(@)=1-1-a)") ' (1-a) " =b’al —a)?
in die Ungleichung (%) ein, und erhalten unter Benutzung der Gleichung
(1-a)l=a:
b—2
(k%) <= b2(b—1)(1 — a)>~2 (1 —(1- a)b) ((b +1)1-a) - 1)
< <b2a(1 —a)t? 1) (1 — )2

= b-1D)1-a)f2((b+1Da—-1)<bla(l—a)?-1

= 1l+1-a)t—b1l-a)?2<0

—=1-b1l-a)t<o0

= b <a

Die Giiltigkeit dieser Ungleichung folgt aber direkt aus (1.3). Insgesamt ha-
ben wir also die Zwischenbehauptung gezeigt.
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Wir kénnen nun den Beweis von lim; .o h*(t) = 0 fithren. Sei dazu
—& <t < 0. Dann ist (¢°®) (o + t/€¥))kew, nach dem bisher Gezeigten
wachsend, also gilt ¢°*) (a + t/£%) € [a — ¢, a] fiir alle k > 0. Folglich ist
auch ¢°U) (o +t/€F) € [a — ¢, a] fiir alle 0 < j < k < co. Damit kénnen wir
unsere Zwischenbehauptung wie folgt einsetzen:

a(t) = ¢°® (a + gt_k>

o t
= v (a " f_k)
= all+ —t :
ak
i
h o exp .

h*(t) < aexp (é)

fiir alle —e < ¢t < 0. Insbesondere existiert ein t < 0 mit h*(t) < «; daher
muss ¢—o, = 0 gelten.

Wir kénnen nun noch weiteren Nutzen aus der Abschétzung (x) ziehen.
Fiir alle t € [0,¢], die so klein sind, dass aexp(t/a) < a + ¢ gilt, gilt dann

wegen t/a < 1:
t\¢ /
al(l+— T aexp|l— ) <a+e,
O‘f k—o0 «

d.h. fo®) (a+t/€%) < a+e fiir alle k > 0. Durch Induktion nach k folgt dann
¢°®F)(a +t/€F) < o) (o + t/€F) fiir alle k > 0 und damit schlieBlich auch
h*(t) < aexp(t/a) in einer hinreichend kleinen rechtsseitigen Umgebung
von 0. Insbesondere ist h* rechtsseitig stetig in 0.

Um den Beweis zu vollenden, dass es sich bei h* um eine Verteilungsfunk-
tion handelt, fehlt nun nur noch der Nachweis der rechtsseitigen Stetigkeit
von h*. Dazu zeigen wir, dass h* absolut stetig auf ganz R ist und beginnen
mit dem Nachweis, dass h* auf [0, co[ absolut stetig ist.

Sei e > 0 so klein, dass a+e < 1—(b+1)_% und h*(e) < 1—(b+1)_% gilt;
es gibt ein solches € > 0, da h* rechtsseitig stetig in 0 ist. Fiir jedes k£ > 0 ist
dann g, = ¢°) (o + - /€F) stetig differenzierbar und monoton wachsend mit
monoton wachsender Ableitung auf [0,e]. Dabei beachte man hinsichtlich
der Monotonie von g; auf [0,¢], dass fir jedes ¢ € [0, ¢] gilt:

Also gilt

k—1
gi(t) = Si’“ L (9@ +1/6n) .
=0
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und hier ist g°) (o +- gk) <h*(e) <1—(b+ 1)_%, d.h. in einem Bereich, wo
¢’ wichst. Seien t € [0,¢] und k£ > 0. Dann ist
k

Gepa(t) = Sk—lﬂ VACER e B || AU CERTISa)
j=1

1 1) k
> ek H U ( +t/EM))
j=
= gi(t).

Daher ist die Folge (g;,(t))kew, monoton wachsend. Zum Nachweis der Kon-
vergenz der Folge geniigt also der Nachweis ihrer Beschrénktheit. Unter Be-
achtung von g;(s) < h*(s) fir alle 0 < s < e und h*(e) < 1 — (b+ 1)7%
kénnen wir nun wie folgt abschétzen:

w0 = oIl () (o)

i)

1
= Hg < <5k J))
k
B g (g°D (h*(1)))
B ]1;[1 g ()
T Y )
k—00 jHl g () '

Wir miissen also nur noch die Konvergenz des unendlichen Produkts nach-
weisen. Dazu verwenden wir ein bekanntes Ergebnis (siehe Kapitel VII, §2,
S.174 in [Fis]) aus der Theorie unendlicher Produkte, das uns die Implikation

S D) | eI
IR e S e

e}

(1.6) >

j=1

liefert. Die Konvergenz der unendlichen Reihe auf der linken Seite ldsst
sich mit dem Mittelwertsatz der Differentialrechnung und Lemma 1.2.2 zei-
gen. Fiir jedes j > 1 ist némlich fiir eine geeignete Zwischenstelle {; €

Ja, g9 (h* (1) und € = maxa<z<ne(r) 9" (2)

g D) g'() + (¢ (1) — a)g"(&)
g'(e) g'(e)

g" (B (t) — ol

C
g (a)
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Daher folgt die Konvergenz der unendlichen Reihe in (1.6) wie angekiindigt
aus Lemma 1.2.2 in Verbindung mit (¢°C-Y) (o) = ¢! < 1.

Wir erhalten also die Existenz von f} = lim_.« g;, auf [0,¢]. Als Grenz-
funktion monoton wachsender Funktionen ist auch f7 monoton wachsend.
Wihlt man nun K > 0 beliebig und dazu n € IN mit |K/£"| < ¢, so erhélt
man fiir alle 0 < a < b < K unter Benutzung von (1.5) und des Satzes von
der majorisierten Konvergenz (es ist némlich f}(t) < fi(e) < oo fiir alle
0 <t <eund (¢°™) beschriinkt auf kompakten Intervallen):

BEO) = ho(a) = g"") (B (b/€M) — g°) (*(a/€"))
— o) <klggogk(b/£")) —g° (kli_)rr;ogk(a/én)>
= lim (g% (g(b/€") = 5°") (g(a/€™)))

b

= Jim [ (¢ oqut/en) )

k—o0

_ / bgin (2 (he (t/€m) f1(t/€™) d

Wir erkennen also, dass h* auf [0, K| ein endliches Mafl mit N\-Dichte indu-
ziert, insbesondere absolut stetig auf [0, K] ist. Es folgt die abolute Stetigkeit
von h* auf [0, ocol.

Wir wenden uns schliellich der negativen Halbachse zu und zeigen, dass
die Folge (g;,(t)) x>k, (mit einem ko > 0 so grof}, dass die Folge wohldefiniert
ist) fiir jedes ¢ < 0 beschrénkt ist. Dazu fixieren wir ein ¢t < 0 und wéhlen
ko € N mit |t/£%| < o. Damit erhalten wir fiir alle k > ko:

~

k(

o
A
Q

)

::] |

1k
_k

( "0 (a +1/¢"))

Tr )

wh
»—Ao

IA
= )
H::]

d.h., es gilt

(x) g(t) <1 fiir alle ¢ < 0 und hinreichend grofien k > 0.
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Weiterhin gilt fiir alle & > kq:
1 - o(]+1 Oé T+t k+1
79 |a k+1 H 7° /Sk )
3 e i U) (o + t/€F))
1 t
= g ' @+t T chtT
1

— (exponentiell schnell).
k—o0

9/;+1 (t)
95,(t)

Wir konnen erneut die Ergebnisse aus Kapitel VII, §2 in [Fis|] anwenden und
erhalten die absolute Konvergenz des unendlichen Produkts

T (%)

Wegen der Beschrénkheit der Folge (g}.(t))k>k, folgt damit die Konvergenz
von )
t
H gk—f—l( ) V1
95, ()
k>ko k

und insgesamt die Existenz von limy_. g;.(t) €]0,1]. Wir setzen f*(t) :=
limy o0 g7, (1)

Wir zeigen nun, dass f* :] — 00,0} — R eine A-Dichte von W* auf der
negativen Halbachse definiert. Dazu wéihlen wir a < b < 0 beliebig. Es gilt
SUPg > 92;‘[a,b] < 1, und wir erhalten unter Benutzung des Satzes von der
majorisierten Konvergenz:

h*(b) = h*(a)

Jim gr(b) — gx(a)

= lim g dX

k=00 J]a,b]

_ / FAN
Ja,b]

Da a < b < 0 beliebig waren, folgt, dass f* eine A-Dichte von W* auf
] — 00, 0] definiert.

Es liegt also die Verteilungskonvergenz der Folge (£F- W) k>0 gegen eine
geeignete Zufallsgrofie W* (mit Verteilungsfunktion h*) vor. Die Giiltigkeit
von (1.4) folgt direkt aus der Giiltigkeit von (1.5). O

Der fiir die Verteilungskonvergenz der Folge (£F - W) k>0 gegebene Be-
weis ist relativ lang. Ist man an einem effizienteren Beweis interessiert, so
kann man auf den Nachweis der (Absolut-)Stetigkeit von h* verzichten und
stattdessen den Auswahlsatz von Helly-Bray ([Al], Satz 44.1 auf S. 228)
bemiihen, der in der gegebenen Situation die Verteilungskonvergenz gegen
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eine Verteilung mit nicht notwendig stetiger Verteilungsfunktion Fy sichert.
In Abschnitt 3.2 wird gezeigt, dass die Verteilungsfunktion A* von W* auf
ganz C holomorph fortsetzbar ist. Dieser Beweis kann dann leicht modifi-
ziert auch auf Fy angewandt werden (da Fy und h* in den Stetigkeitspunkten
von Fy iibereinstimmen) und man erhilt, dass Fy die Einschrinkung einer
ganzen Funktion auf R ist, insbesondere also wieder die N-Stetigkeit der
Grenzverteilung der Folge (¢F - W},) E>0-



Kapitel 2

Maximin-
Fixpunktgleichungen

Angestoflen von Satz 1.3.3 interessieren wir uns nun bei festgehaltenem £ > 1
fiir die stochastischen Fixpunktgleichungen
d .
2.1 = i (b>2
(2.1) W =¢- max min Wi; (b2 2),
wobei (W; j)1<i j<p eine Familie unabhéngiger Zufallsgrofien mit W 4 Wi ;
fiir 1 <4,7 < b sei, und deren Losungen.

Da es die Lage im Hinblick auf viele Uberlegungen nicht iiberméfig kom-
plizierter macht, betrachten wir im Verlaufe des Kapitels eine noch allgemei-
nere Fixpunktgleichung als in (2.1), ndmlich die Fixpunktgleichung

d .

(2.2) W=¢- [pax | min Wi s

wobei n,myq,...,m, € N — {1} seien und wie gehabt (W; ;); jev eine Folge
stochastisch unabhéngiger, identisch verteilter Zufallsgroflen mit Wy ~ W.
Ziel dieses Kapitels ist es, die Losungen der angegebenen Fixpunktgleichun-
gen (2.1) und (2.2) zu bestimmen, d.h. diejenigen Wahrscheinlichkeitsvertei-
lungen @ auf R, so dass die entsprechende Fixpunktgleichung wahr ist, wenn
L(W) = Q gilt. Dariiber hinaus sollen einige Eigenschaften dieser Losungen
zusammengetragen werden.

2.1 Die allgemeine Fixpunktgleichung und ihre L6-
sungen

Um nun solche Losungen der Fixpunktgleichungen zu finden, formulieren
wir (2.1) zunéchst in Termen von Verteilungsfunktionen. Mit F' := Fyy gilt
namlich:

(2.3) F)=(1-(1-F@/o)) (teR)

23
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Allgemeiner liest sich (2.2) in Termen der Verteilungsfunktion wie folgt:

n

(2.4) F(t) =] - @ - F@/e)™) (teR),

i=1

d.h. es ist
F=goF(/t)

fir g : [0,1] — [0,1], z — [ (1 — (1 — x)™).

Die Fragestellung soll im Folgenden weiter verallgemeinert werden, um
einen abstrakteren Zugang zu gewinnen. Dazu werde mit G die Menge der
Funktionen ¢ : [0,1] — [0, 1] bezeichnet, die stetig und streng monoton
wachsend sind, sowie 0,1 € F, := {z € [0,1] : g(x) = «} erfiillen. Fiir { > 1
und g € G werde dann die Gleichung

(2.5) F(t) = g(F(t/§)) (t€R)

fiir Verteilungsfunktionen F betrachtet. Die Menge der Verteilungen, deren
Verteilungsfunktionen diese Gleichung lésen, bezeichnen wir mit £, ¢, d.h.

Lye=1{Q € W(R)| Fg erfiillt (2.5)},

wobei hier und im Folgenden 20(R) stets die Menge aller Wahrscheinlich-
keitsmaBe auf (R,B) (wobei B die o-Algebra der Borelschen Teilmengen
von R sei) und fiir ein Q € W(R) Fy stets dessen Verteilungsfunktion be-
zeichne.

Fiir jedes g € G gilt dann wegen ¢(0) = 0 und g(1) = 1 stets §y €
Lge. Um Ly allerdings vollstédndig zu bestimmen, miissen zunéchst einige
Beobachtungen gemacht werden:

Man sieht sofort, dass fiir alle g € G, £ > 1 und Q € L, ¢ mit zugehdriger
Verteilungsfunktion F' wegen (2.5) F(0—) = g(F(0—)) und F(0) = g(F(0))
gelten muss, d.h. F(0—), F(0) € F,. Die Fixpunkte von g haben also eine
grofle Bedeutung in Bezug auf das stochastische Fixpunktproblem.

2.1.1 Bemerkung. Seien g € G, { > 1, Q € L, und F := Fy. Zunéchst
einmal stellen wir fest, dass aus der Stetigkeit von g die Abgeschlossenheit
der Fixpunktmenge F, von g folgt. Wir setzen nun

co = inf(Fy; — {0}) und ¢; := sup(F, — {1}).
Dann gelten die folgenden Aussagen:
(i) Fiir alle t < 0 ist F(t) € [0, co],

(i) fiir alle t > 0 ist F(t) € [c1, 1].
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Begrindung. Angenommen, es gébe ein ¢ < 0 mit F(¢) € ]cg,1]. Dann
gibe es einen Fixpunkt 0 < ¢ < F(t). Damit hdtte man limg| o F(s) =
lim,, oo F(t - €") = lim, oo ¢°™(F(t)) € [¢,1] (vgl. Lemma 1.2.1) im Wi-
derspruch zur Tatsache, dass F' eine Verteilungsfunktion ist. Also gilt (i).
Der Nachweis von (ii) kann analog gefiihrt werden. O

Zusammenfassend und weiter gehend kann man notieren:

1. Fir ¢t < 0 ist stets F(t) € [0, col; im Fall ¢g > 0 gilt F(t) € [0, o fiir
alle ¢ < 0.

2. Es gilt F(0—) € {0,¢0} und F(0) € {c1,1}.

3. Fiir jedes t > 0 ist F(t) € [¢1,1]; im Fall ¢; < 1 gilt F(¢) €]y, 1] fiir
alle t < 0.

4. Ist cg = 0 oder cg > 0 und g > id auf |0, ¢o[, so gilt F|_ o = 0.
5. Ist c; = 1 oder ¢; < 1 und g < id auf Jer, 1], so gilt Fjg o[ = 1.

Was die Punkte 4. und 5. angeht, so beachte man, dass in den Féllen ¢y =0
bzw. ¢; = 1 nach (i) bzw. (ii) jeweils nichts zu zeigen ist und in den anderen
Fallen Lemma 1.2.1 die Behauptung liefert.

Seien 0 < s <t < &s. Es stellt sich die Frage, ob man irgendetwas iiber
den Funktionswert F'(t) aussagen kann, wenn F'(s) bereits bekannt ist. Dies
ist sicherlich der Fall, denn da F' monoton wachsend ist und die Fixpunkt-
gleichung (2.5) 16st, muss F(s) < F(t) < F(£s) = g(F(s)) gelten. Doch kann
man noch mehr iiber F'(t) aussagen? Der folgende Satz zeigt, dass dies nicht
der Fall ist; er zeigt aber auch, dass man bei Kenntnis der Funktionswerte
von F' auf dem Intervall [s,£s[ den gesamten Funktionsverlauf von F' auf
[0, 00| rekonstruieren kann.

2.1.2 Satz. Gegeben seien & > 1 und g € G; wie in Bemerkung 2.1.1 seien
co = inf(F,; — {0}) und ¢; := sup(Fy; — {1}),

dabei gelte 0 < cg < ¢1 <1 und g < id auf 0,¢co, g > id auf Jc1, 1[. Weiter
seien so,to € R, sop < 0 < tg und f_ : [£s0,s0[— R, f+ : [to,&to[— R
Funktionen mit den folgenden Eigenschaften:

(1) 0 < f-(€s0) <co, 1 < f1(to) < 1.

(2) f—, f+ sind monoton wachsend und rechtsseitig stetig.

(3) 1-(5) < OO (€s0)) fiir alle s € [€so, 0] wnd [(t) < g(f+(10))
fir alle t € [to, ELol.
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Weiter sei die Funktion F': R — R definiert durch

g°M (f1(¢/€™))  falls t >0,

e falls t =0 und fi(to) <1,

1 falls t =0 und fi(to) =1,
g°M(f-(t/€")  sonst,

wobei im Falle t # 0 n € 7 so zu wdihlen ist, dass t/&" € [to, o[ im Falle

t >0 bzw. t/&" € [£s0, s0[ im Falle t <0 ist. Dann gilt Q € Ly ¢ fiir die zu
F' korrespondierende Wahrscheinlichkeitsverteilung Q.

(26)  F(t)=

Beweis. Zunéchst ist die Wohldefiniertheit von F' zu priifen. Diese ist gege-
ben, da wegen tx&" 1 oo (n — o0) und €™ | 0 (n — —o0) fiir jedes t > 0
genau ein n € Z existiert mit ¢y < ¢t/£" < tp€. Analoges lésst sich im Falle
t < 0 feststellen.

Weiterhin erfiillt ' die Gleichung (2.5), denn es gilt F'(0) € F, und fur
t > 0 ist (mit dem n € Z, fiir das to&" < t < to&" ! gilt)

F = (1 (&) = (700 (50 (45))) = stresons

analog kann man im Fall ¢ < 0 schlieflen.

Es bleibt zu zeigen, dass F' eine Verteilungsfunktion ist. Dazu zeigen wir
zuniichst die Isotonie von F auf ]0,00[. Ist fi(to) = 1, so ist Fg o[ = 1.
Wir nehmen also f4(typ) < 1 an. Es geniigt, die Aussage

(¥,) F ist monoton wachsend auf [to&", to&" [ und

fiir jedes n € Z zu beweisen. Nach Voraussetzung an f gilt (xg). Fiir n > 0
gelte (+,_1) und es seien s,t € [to€™, to€™ [ beliebig mit s < . Dann ist

F(s) = g(F(s/€)) < g(F(t/§)) = F(t),

wobei ausgenutzt wurde, dass F' die Fixpunktgleichung (2.5) erfiillt, (%,_1)
gilt und g monoton wachsend ist. Damit ist gezeigt, dass F' auch monoton
auf [to€", to&™ [ ist. Wegen F < 1 existiert damit auch lim,yens1 F(t) und
es gilt:

lim F(t)= lim g(F(t/&)) =g ( lim F(t)>

tTtoéntl ttoentt tTtoé™
< g(g(F (€™ 1)) = g(F(to&™)).

Damit konnten wir (%) auf (x,_1) zuriickfithren.

Wir miissen nun noch fiir n < 0 (%) auf (%,41) zuriickfithren, um die
Monotonie auf ganz |0, 00 zu erhalten. Dies ist mit einer analogen Argu-
mentation moglich, die statt der urspriinglichen Fixpunktgleichung (2.5) die
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dquivalente Gleichung F(t) = ¢°-V(F(t€)) benutzt und die Tatsache, dass
auch ¢°(=Y monoton wachsend und stetig ist. Aus der Definition F(0) = ¢;
erhiilt man dann leicht die Monotonie auf [0, co[. Ein entsprechendes Vorge-
hen liefert die Monotonie auf | — oo, 0].

Die rechtsseitige Stetigkeit von F'in t #£ 0 ist klar wegen der rechtssei-
tigen Stetigkeit der Funktionen f, f_ sowie der Stetigkeit von g. Weiter
ist klar, dass 0 < F' < 1 ist, und damit existieren rechts- und linksseitige
Limiten von F' in allen Punkten ¢t € R sowie ¢_o := lim;, o F'(t) und
Joo := limy o F(t).

Es bleibt zu zeigen, dass ¢_o = 0, qo := limy g F'(t) = F(0) und ¢oo =1
gilt. Dies folgt aus Lemma 1.2.1 mit

4o = Hm F(s08") = lim ¢°"(f-(s0)),
qo = lim F(tos™") = lim g°C" (£, (to)),
G = lim F(to€") = lim ¢°"™(f (o))
und (1). -

2.1.3 Bemerkung. Ist in der Situation von Satz 2.1.2 ¢y = 0 oder g > id
auf ]0,¢o[, so gilt die Aussage des Satzes weiterhin, wenn man f_(t) = 0
setzt fiir alle ¢ € [so, so[; in diesen Fillen gibt es ndmlich nach Bemerkung
2.1.1 nur Losungen der Fixpunkgleichung (2.5), die auf | — oo, 0[ trivial sind.

Ahnliches gilt in den Fillen ¢; = 1 bzw. g < id auf ey, 1[: Dann muss
man fy(t) = 1 setzen fiir alle ¢ € [tg, tp&[ und erhélt nur Losungen, die auf
10, oo] trivial sind.

Mit Satz 2.1.2 und der folgenden Bemerkung ist uns eine vollstdndige
Charakterisierung von L, gelungen, da man jede Verteilungsfunktion F'
einer Verteilung QQ € Ly¢ aus fy = F|j¢ und fo = F|_¢_q in der
angegebenen Weise wiedergewinnen kann.

Wir wollen im Anschluss an dieses Ergebnis noch darauf eingehen, wie
sich die Stetigkeit bzw. Differenzierbarkeit der Funktionen f, f_ bei Fort-
setzung wie in (2.6) unter geeigneten Voraussetzungen fortpflanzt.

2.1.4 Folgerung. Seien g € G, ¢ := inf(Fy — {0}), ¢1 := sup(F, — {1})
und f_ : [£s0,80] — R, fy : [to,Eto] — R stetige und monoton wachsende
Funktionen mit f_(Eso) = g(f-(s0)) bzw. f(Eto) = g(f+(to)). Weiter gelte

€ [0,¢o[, falls co > 0 und g < id auf ]0, co],
f-(s0)

=0, sonst,

und
€ler, 1],  falls ¢1 <1 und g > id auf |eq, 1],
f+(to)
=1, sonst.
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Definiert man nun F mit Hilfe von f_ und fi wie in Satz 2.1.2, so ist
F e Ly und es gilt weiterhin:

(a) F ist stetig auf ganz R — {0}. Gilt zusdtzlich eine der Aussagen

(i) g hat genau einen Fizpunkt in 0, 1] und f_(s¢) > 0, f(to) <1,
(it) g > id auf]0,1[ und f-(so) =0, f1(to) <1,
(i) g <id auf 101 und f_(s0) > 0, (o) =1,

so ist F' auf ganz R stetig.

(b) Sind f—, f+,qg in ihren jeweiligen Definitionsintervallen differenzierbar
(einseitig in den Randpunkten), wobei g’ > 0 auf]0,co[U]c1, 1] sei, und
gilt f1.(€s0) = £9'(f-(50))f (s0) sowie f'(Eto) = £4'(f+(t0)) (o),
so ist F' auf ganz R — {0} differenzierbar.

Beweis. Zu (a): Nach Voraussetzung ist F' auf [tg, {to| stetig. Mittels der
Gleichung (2.5) und der Tatsache, dass Verkettungen stetiger Funktionen
wieder stetig sind, folgt die Stetigkeit von F' auf |0, oo[; analog schliefit man
fiir | — 00, 0[. Fiir den Zusatz beachte man, dass nur noch die linksseitige
Stetigkeit von F' in 0 zu zeigen ist, die sich jeweils aus den Voraussetzungen
(i), (ii) und (iii) ergibt.

Zu (b): Wir schliefien die Trivialfélle f_(so) = 0 und f4(t9) = 1 aus und
nehmen direkt f_(sg) > 0 und fi(t9) < 1 an. Da Verkettungen differenzier-
barer Funktionen wieder differenzierbar sind, folgt dann, dass F' auf ganz
R—({£"so|ln € Z} U {&"toIn € Z} U {0}) differenzierbar ist (dabei beachte
man, dass g°(-Y) wegen ¢’ > 0 auf]0, co[U]c1, 1] dort ebenfalls differenzierbar
ist). Beim Nachweis der Differenzierbarkeit von F'in "ty und £"sq fiir n € Z
beschréinken wir uns auf die Punkte £"tq fiir n € Z und beginnen mit dem
Fall n = 1. Hier liefert die Voraussetzung f/ ({to) = £ 1g'(f4(to)) f (to) die
Ubereinstimmung von links- und rechtsseitiger Ableitung von F in &t und
damit die Differenzierbarkeit von F' in £ty. Wir schlieflen nun wie unter (a)
weiter, indem wir feststellen, dass F' = ¢g°("=1 o F(./€"~1) fiir jedes n € Z
in "ty als Verkettung differenzierbarer Funktionen differenzierbar ist. [

Uber die Differenzierbarkeit von F' in 0 kann ohne Weiteres keine Aussage
gemacht werden und diese ist eine wichtige Eigenschaft, wie sich bei der
Bestimmung von PV fiir die ZufallsgroBe W* aus Satz 1.3.3 in Kapitel 3
zeigt.

Wir fahren nun fort mit einer Folgerung iiber die Existenz einer stetigen
Losung des Fixpunktproblems.

2.1.5 Folgerung. Fir gegebenes &€ > 1 und g € G hat die zugehdrige Fix-
punktgleichung (2.5) genau dann eine stetige Losung (d.h. eine Lisung Q
mit Q({x}) =0 fiir alle x € R), wenn einer der beiden folgenden Fille gilt:
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(a) g besitzt keinen Fizpunkt in |0, 1].

(b) g hat genau einen Fizpunkt o €]0,1] und es gilt g < id auf |0, ],
g >id auf |a, 1.

Beweis. Sei zunichst @ eine stetige Losung der Fixpunktgleichung (2.5).
Dann gilt insbesondere Q({0}) = 0, d.h. fiir die zu @ korrespondierende
Verteilungsfunktion F gilt F(0—) = F'(0). Dann gilt in der Notation von
Bemerkung 2.1.1 ¢y = ¢; und daher (b) oder F(0—) = F(0) € {0,1}, wobei
F(0) =0 und F(0—) =1 jeweils (a) impliziert.

Die Umkehrung folgt direkt aus Folgerung 2.1.4. O

2.1.1 Bedingungen fiir die Existenz von Momenten

In diesem Abschnitt sollen die Losungen der Gleichung (2.5), die in Satz
2.1.2 bestimmt wurden, auf die Existenz von Momenten untersucht werden.

Die in Zusammenhang mit (2.2) auftretenden Funktionen (vgl. (2.7) auf
S. 32) mit n,my,...,m, > 2 besitzen (wie in Lemma 2.2.1 festgestellt wird)
eine in 0 und 1 verschwindende Ableitung. Damit erfiillen sie (mit ¢ = co)
die Voraussetzungen des folgenden Satzes, der eine hinreichende Bedingung
fiir die Existenz von Momenten einer Losung der Fixpunktgleichung (2.5)
gibt. Insbesondere existieren daher fiir jedes b > 2 alle Momente von W*,
der in Satz 1.3.3 auftretenden Zufallsgrofle.

2.1.6 Satz. Seien g € G stetig differenzierbar, £ > 1, max{g'(0),¢' (1)} =:
m <1,

log€ ?

log +
g = m o falls 0 <m < 1,
. 0, falls m =0,

und Q € Lg¢. Dann gilt: Fiir alle 0 < p < q ist Q € My, d.h.

/ |z|P Q(dz) < oo.
R
Insbesondere gilt () € M, fiir alle p > 0 tm Falle m = 0.

Beweis. Seien 0 < p < ¢ beliebig, W eine Zufallsgréfie mit Verteilung ) und
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F die zu @ korrespondierende Verteilungsfunktion. Dann gilt:
[ e = e
R
= EW"Y+EW™)
= / P((WH)? > t)dt +/ P(W™)P>t)dt
0 0

- / P(W>t§)dt+/ P(W < —tv)dt
0 0

< P(W>0)+ 2 ()t — ()" P(W > ")
+ POV <0)+ i () — (@)") POV < —€)
< e o) ig (1- g (F (1)
FE - f}osp"g°<"> (F(-1)).

Es geniigt also, die Konvergenz der beiden unendlichen Reihen auf der rech-
ten Seite nachzuweisen. Unter Benutzung von Lemma 1.2.2 erhélt man we-
gen ¢'(0),¢'(1) < 7P eine Konstante M > 0, so dass fiir alle n € Ny gilt:

1—g°™(F(1)) < M(r¢P)™ und
g° "M (F(=1)) < M(r&7)"

fiir ein geeignetes r < 1. Es folgt
S (1= g (FEQ)) + Y emg I (F (-1))
n=0 n=0

o0 o0
< Qng”M(rf_p)” < QMZT” < 00,
n=0 n=0

und damit die Behauptung. O

Man erkennt leicht, dass die Schranke ¢ aus dem Satz in dem Sinne ma-
ximal ist, dass (auBer in Trivialfillen) fiir eine Losung @ der Fixpunktglei-
chung (2.5) keine Momente mehr oberhalb dieser Schranke existieren, denn
das Vorgehen, das uns im Beweis von Satz 2.1.6 eine obere Schranke fiir
Jg [2[PQ(dzx) liefert, kann leicht modifiziert (vgl. Lemma 1.2.2) auch dafiir
genutzt werden, eine untere Schranke herzuleiten. Bevor wir dies machen,
betrachten wir im folgenden Lemma die angesprochenen Trivialfille.
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2.1.7 Lemma. Seien g € G stetig differenzierbar, & > 1, und 69 # Q €
Lg¢. Weiter sei F' die zu ) gehdrende Verteilungsfunktion. Dann gelten die
folgenden Aussagen:

(a) Ist Q(] — 0,0[) =0 und ¢'(1) < 1, so gilt die Aussage von Satz 2.1.6
mit m := ¢'(1).

(b) Ist Q(]0,00[) = 0 und ¢’(0) < 1, so gilt die Aussage von Satz 2.1.6 mit
m := ¢'(0).

(c) Ist ¢'(0) > 1, so ist Q(] — 00,0[) = 0.
(d) Ist ¢'(1) > 1, so ist Q(]0,00[) = 0.

Beweis. Zum Beweis von (a) beachte man, dass im Falle Q(] — 00,0[) = 0
fiir eine Zufallsgrofle W ~ @ wie im Beweis von Satz 2.1.6 automatisch
E(W™)P = 0 fiir alle p > 0 gilt und damit die entsprechende unendliche
Reihe in der Abschitzung im Beweis zu Satz 2.1.6 entfillt. Entsprechendes
gilt fiir E(W™T)P im Fall Q(]0,00[) = 0. Damit sind die Aussagen (a) und
(b) gezeigt.

Ist ¢'(0) > 1, so ist ¢ — id in einer Umgebung von 0 monoton wachsend
und F(0—) = 0 nach Bemerkung 2.1.1. Ahnliches gilt im Falle ¢/(1) > 1.
Insgesamt folgt die Behauptung. U

2.1.8 Satz. Seien g € G stetig differenzierbar, & > 1 und Q € Ly mit
zugehdoriger Verteilungsfunktion F. Wie in Lemma 2.1.7 gelte Q # dy. Wei-
terhin sei m > 0 wie folgt definiert:

g/(O), Jalls Q(]O’ OOD =0,
m:= 1< ¢ (1), falls Q(] — 00,0]) =0,
max{g'(0),¢'(1)}, sonst.

Dann ist m < 1. Setzt man

1
q__{logm fallsO <m <1,

0, falls m =0,

so gilt

| JeQuas) = .

(also Q ¢ M,,) fiir alle p > q.

Beweis. Es ist klar, dass m < 1 gilt (denn sonst wiirde eine Fallunterschei-
dung nach der Definition von m unter Benutzung von Lemma 2.1.7 (c) und
(d) @ = dp im Widerspruch zur Voraussetzung liefern). Im Falle m = 0 ist
nichts zu zeigen; sei also gleich m > 0.
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Sei p > g und W eine Zufallsgréfle mit der Verteilung ). Dann kann
man analog zum Beweis von Satz 2.1.6 folgende Ungleichung herleiten:

| lelQus) > - 1Y e (1- o))

n=0
oo

+HE-1) Y &g TI(F(-1)).

n=0

Wir miissen also nun die Divergenz einer der beiden unendlichen Reihen auf
der rechten Seite der Gleichung zeigen. Dazu wihlen wir im Falle m = ¢/(1)
die Reihe 322 /&P (1 — ¢°™*1)(F(1))) und im Falle m = ¢’(0) die Reihe
S0 P g°H ) (F(—1)). Wir nehmen im Folgenden 0.B.d.A. an, dass m =
g'(1) gilt.

Nach Lemma 1.2.2 existiert wegen ¢’(1) > {7 ein m, > 0, so dass fiir
alle n € INg

1= g (F)] = my - (€7

gilt. Nun kann man wie folgt abschétzen:

S (1 g (ry)
n=0

Y

> rmy(¢P)m
n=0

o0
= mpZE*p = 0.
n=0

2.2 Die L6sungen im Maximin-Fall

Dieser Abschnitt beschéftigt sich mit der Anwendung der Ergebnisse aus Ab-
schnitt 2.1 auf die zu Beginn dieses Kapitels formulierten Maximin-Fixpunkt-
gleichungen und einige weitere Verallgemeinerungen dieser Fixpunktglei-
chungen. Das heiflt, dass wir die im Zusammenhang mit den Maximin-
Fixpunktgleichungen auftretenden Funktionen g : [0,1] — [0,1] mit dem
Ziel untersuchen, die Voraussetzungen der Sdtze 2.1.2, 2.1.6 und 2.1.5 zu
priifen. Die Funktionen, die dabei im Zusammenhang mit den Maximin-
Fixpunktgleichungen auftreten, haben die Gestalt

n

(2.7) gl@) =[A-A=2)™) (= € [0,1])

i=1

mit n,my,...,my > 2.
Wir interessieren uns zunéchst fiir die Ableitungen dieser Funktionen in
0 und 1, um aus dem Wachstumsverhalten der Funktionen in Umgebungen
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von 0 bzw. 1 darauf schliefen zu konnen, in welchen Féllen Fixpunkte in
10, 1] existieren und wie sich diese Funkltionen bei 0 und bei 1 verhalten,
denn diesem Verhalten kann man nach Bemerkung 2.1.1 entnehmen, ob es
Losungen der Fixpunktgleichung (2.5) gibt, die Masse auf | — oo, 0] bzw.
10, oo] tragen.

2.2.1 Lemma. Seien n,my,...,m, € N und g € G von der Form (2.7).
Dann gelten:

fn ) ma, fallsn=1,
(@) 90 = {0, fallsn > 2,
(b) g(1)=t{j:m; =1}

Insbesondere gilt ¢'(0) = ¢'(1) = 0 im Falle n,mq,...,my > 2.

Beweis. Bs gilt ¢'(z) = Y5 mj(1 — )™ [[; (1 — (1 —2)™) fiir alle

x € [0,1]. Daraus folgt die Behauptung. O
2.2.2 Lemma. Seienn,my,...,m, > 2 und g : [0,1] — [0, 1] wie in (2.7).
Weiter seien 0 = ¢y < ... < ¢, = 1 genau die Fizpunkte von g in [0,1].

Dann gilt m > 2 (d.h. es gibt einen Fixpunkt # 0,1) und g < id auf |0, c1],
g >1id auf |epm-1, 1[.

Beweis. Nach Lemma 2.2.1 verschwindet die Ableitung von ¢ in 0 und in 1.
Also ist g —id fallend in einer Umgebung von 0 und in einer Umgebung von
1. Es folgt die Behauptung. O

Damit ist Satz 2.1.2 auf alle Funktionen g wie in (2.7) anwendbar und
liefert die Existenz von Losungen, die sowohl auf | — oo, 0[ als auch auf |0, co|
Masse tragen.

Es stellt sich weiterhin die Frage, wie viele Fixpunkte diese Funktionen
im Einheitsintervall haben, denn die Anzahl der Fixpunkte einer Funktion ¢
gibt nach Folgerung 2.1.5 Aufschluss dariiber, ob Losungen der zugehorigen
Fixpunktgleichung existieren, die eine stetige Verteilungsfunktion besitzen.

Die Anzahl der Fixpunkte der betrachteten Funktionen wurde in einem
Spezialfall bereits in Lemma 1.2.3 bestimmt. Dort wurde gezeigt, dass die
Funktionen x — (1 — (1 — )?)? fiir b > 2, die zu den Fixpunktgleichun-
gen der b-adischen Maximinbdume gehéren, genau einen Fixpunkt in ]0,1[
haben. Dieses Ergebnis soll nun ausgedehnt werden. Der folgende Beweis
benutzt dabei einen Umweg iiber verwandte Funktionen:

2.2.3 Lemma. Seig € G, g(x) = 1 —[[/_(1 —a™) fir x € [0,1], dabei
seien m,my,...,my, > 2. Dann hat g genau einen Fizpunkt in |0, 1[.
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Beweis. Wir konnen 0.B.d.A. davon ausgehen, dass m; < mg < ... < m,
gilt. Sei 0 < x < 1. Dann gilt:

n

g(x) =1 <= 1—$:H(1—$mj)

j=1
1—gm L 1
— 1—x H 1—2"
7j=2
mi—1
— hi(z):= Z ok = Z gii=2 ki —, ho(x).
k=0 k2,...kn>0

Dabei haben hy bzw. hy die folgenden Eigenschaften:
(i) h1(0) = ho(0) = 1 und lim, 3 hy(x) = my, lim,_ ho(z) = oo

(i) Fiir j = 1,...,m; — 1 ist A (2) = Stk (k= Dakd
insbesondere gilt h(j )( 0) = j! und h(j ) wiichst monoton auf [0, 1], wobei
weiter lim,_q h(] (x) = ZZ” Yeeoo(k—j41) < oo gilt;

(iii) A\ ist identisch 0 fiir j > my;

(iv) h(Qj )(O) =0firj=1,...,m —1und h(j ) st streng monoton wachsend
auf [0, 1] mit lim,_; h(2 )( ) = oo fiir alle j > 0.

Unter Zuhilfenahme der Punkte (i)—(iv) kann Folgendes festgestellt werden:
Wegen 1) (0) =1 und h%(0) = 0 wiichst hy zunéchst schneller als ho; wegen
(i) muss aber schliellich (fir  — 1) hy > hy gelten. Also existiert ein
Punkt ¢ > 0 mit hi(c) = ha(c). Sei ¢ = inf{c > 0 : hi(c) = ha(c)}.
Dann ist wegen der Stetigkeit von hy, hy auch hl(c(o)) = hQ(C(O)) und wegen
R} (0) # hh(0) muss ¢ > 0 gelten.

Wir zeigen nun mit Induktion nach j fiir 5 =0,...,m; — 1

(¥) Fiir 0 <14 < j existiert ¢ := inf{c¢ > 0: hgi) (c) = hg)(c)} und es gilt
0<cd <. <c® <.

Begriindung: Fiir j = 0 wurde die Aussage schon gezeigt. Sei also 0 < j <
my. Wir nehmen nach Induktionsvoraussetzung an, dass A0 Y wie
in (*) existieren. Wegen h(j )( 0)=4!>0= h(QJ )(O) und der Tatsache, dass

mi—1
() . _ o )
lim by () = ka (k—j+1) < o= limhy”(x)
=Jj

gilt, muss CU) := {¢ > 0 : hgj)(c) = h(Qj)(c)} # ) gelten. Daher exisitiert
c9) = inf CU). Wiederum wegen hgj)(O) =j1>0= h(QJ)(O) und wegen der
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Stetigkeit von hgj ) und hgj ) muss ¢@ > 0 gelten. Um den Nachweis von
(%) abzuschliefen, geniigt es nun zu zeigen, dass ) < =1 gilt. Dazu
nehmen wir an, dass ¢) > ¢U~D gilt. Dann gilt nach dem Hauptsatz der
Differential- und Integralrechnung:

R V@) = D 0) + / WD (tyat
0

> YD) + / W9 (#)dt = b~ (z)
0

fiir alle 2 €]0,cU~1)], insbesondere gilt also h(lj_l)(c(jfl)) > hgj_l)(c(jfl))

im Widerspruch zur Definition von ¢7=1) (man beachte, dass wegen der

Stetigkeit von hy und hg die Menge CU) abgeschlossen ist, d.h. es muss

hgjfl)(c(j_l)) = hgjfl)(c(j_l)) gelten). Also gilt () auch fiir j.

Wir zeigen nun mit umgekehrter Induktion, dass h(2] ) > h(lj ) auf 1) 1]
fiir jedes 7 = 0,...,m; — 1 gilt und beginnen mit dem Fall j = m; — 1 an.
Fiir € ]¢"™ =1, 1] kann man unter Benutzung von hgml) =0 und hgml) >0
auf e~ 1[ wie folgt abschiitzen:

MM V@) = T )

< hémlil) (C(ml—l)) +/ hgml)(t)dt = hgmlfl) (CC)

c(m1—1)

Fiir j < m; — 1 ist dann nach Induktionsvoraussetzung hgj AR hgj +1)

auf ]cUTD 1], also wegen cUt1) < ¢U) auch auf )¢9, 1, und wir kénnen fiir
z € 1cV) 1] wie zuvor abschiitzen:

(@) = rP () + / RO (1)t

c(9)

< BP()) + / B WY (t)dt = by (z).
clJ

Insbesondere gilt also hy(z) > hi(z) fiir alle z € ], 1], und ¢ ist demnach
das einzige = € ]0,1[ mit h;(z) = ha(x), also auch der einzige Fixpunkt von
g in |0, 1[. O

2.2.4 Satz. Seig € G, g(z) = [[[_1(1 — (1 —2)™) fir z € [0,1], dabei
seien m,my, ..., My, > 2. Dann hat g genau einen Fizpunkt in |0, 1[.

Beweis. Sei h(x) :=1—g(1 —z) fiir € [0,1]. Dann gilt:
gx)=r <= h(l—2)=1—=x.

Lemma 2.2.3 liefert nun die Behauptung. O
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2.2.5 Bemerkung. Die Transformation g — 1 — g(1 — ), die wir weiter
oben zugunsten einfacherer Rechnungen durchgefiihrt haben, korrespondiert
auf dem Niveau der Fixpunktgleichungen zu einem Vorzeichenwechsel bzw.
zum Ubergang von der Fixpunktgleichung (2.2) zur Fixpunktgleichung

d .
2. Le¢. o
28) W=ome ng e
wobei W und die W; ; wie im Kontext von (2.2) gewihlt seien. Alle Uber-
legungen in diesem Abschnitt, die Maximin-Fixpunktgleichungen betreffen,
konnen somit leicht auf Mimimax-Fixpunktgleichungen iibertragen werden,
insbesondere der noch folgende Satz 2.2.6.

2.2.1 Die Losungen der Maximin-Fixpunktgleichungen und
die analytische Transformierte

Da fiir jede Verteilung @ auf R, die Losung der Fixpunktgleichung (2.2)
ist, nach Lemma 2.2.1 im Falle n,mq,...,m, > 2 alle Momente existie-
ren, liegt die Frage nahe, ob die Moment erzeugende Funktion Wg von
@ auf einem nichtentarteten Intervall um die Null existiert. Dies ist je-
doch im Allgemeinen nicht der Fall. Betrachtet man néamlich die Gleichung
F(¢™) = ¢°™(F(1)) fiir die zu Q korrespondierende Verteilungsfunktion
F| so erkennt man, dass F'(t) fiir ¢ — oo umso langsamer wichst und fiir
t — —oo umso langsamer fillt, je grofler £ ist, d.h., dass @ bei groflem &
viel Masse auflerhalb kompakter Intervalle trégt. Der folgende Satz 2.2.6
zeigt, dass dies fiir hinreichend grofles ¢ dazu fiihrt, dass der kanonische
Definitionsbereich von Vg auf den Nullpunkt zusammenschrumpft.

Im Hinblick auf Kapitel 1 liefert Satz 2.2.6 allerdings die erfreuliche Aus-
sage, dass fiir jedes b > 2 die analytische Transformierte der Grenzverteilung
P"W" aus Satz 1.3.3 auf ganz R existiert.

2.2.6 Satz. Seien & > 1, n,my,...,m, > 2, m := min{mq,...,my,}, g €
G, g(x) =TI, 1 — (1 —x)™) fir z € [0,1]. Weiter seien Q € Lg¢ und
F := Fg die zugehorige Verteilungsfunktion. Dann gelten:

(a) Fir & < m existiert die Moment erzeugende Funktion Vg von @ in
jedem Punkt s > 0. Fiir { = m existiert ¥q in einer Umgebung von 0.

(b) Existiert ein to > 0 mit F(tg) < 1 und ist & > m, so ezistiert die
Moment erzeugende Funktion ¥g von Q in keinem Punkt s > 0.

c) Fir & < n existiert die Laplace-Transformierte pg von @Q in jedem
Q
Punkt s > 0. Fiir { = n existiert pg in einer einseitigen Umgebung
von 0.

(d) Ezistiert ein t; < 0 mit F(t;) > 0 und ist §£ > n, so exisiert die
Laplace- Transformierte oq von @ in keinem Punkt s > 0.
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Beweis. W sei eine Zufallsgroflie mit der Verteilung . Wir gehen zunéchst
genau wie im Beweis von Satz 2.1.6 vor. Fiir s > 0 gilt ndmlich:

\IJQ(S) = EeSW
= / PV > t)dt
0

0 log t
- / PW > 285y dt.
0 S

Hier konvergiert das uneigentliche Integral auf der rechten Seite genau dann,
wenn

o logt
I(s)::/ P(W>£)dt<oo

s S

gilt. I(s) kann man aber unter Beachtung von

logt
8L ekt = e (Be N, t > )
S

wie folgt abschétzen:

I(S) < i(esglwl . €S§k)P(W > fk)

k=0
00

= Y (@ — e - o B (F(1)))

k=0

und
I(S) > Z(esgk-kl o esék)P(W > €k+1)

k=0
00

= Y (@ — et (1 - B (F(1))).

k=0
Hier kann man weiterhin Folgendes feststellen:
e estt = st <(esgk)571 - 1) > esék%(esék)gfl = %esgkﬂ

fiir hinreichend grofles k € IN.
Damit haben wir folgende Kriterien hergeleitet:

(2.9) ST et (1 - W (F(1))) < 00 = Wg(s) existiert
k=0

und

(2.10) Wo(s) existiert = > e*¢" (1 — g°®(F(1))) < cc.

k=1
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Ebenso wie man (2.9) und (2.10) als hinreichende bzw. notwendige Be-
dingung fiir die Existenz der Moment erzeugenden Funktion in s herleiten
kann, kann man auch eine hinreichende und eine notwendige Bedingung fiir
die Existenz der Laplace-Transformierten ¢¢ in s herleiten:

(2.11) Zesgﬂlgo(k)(F(—l)) < 00 = @q(s) existiert
k=0

und

(2.12) pQ(s) existiert = Z et gotk) (F(—1)) < oc.

k=1

Wir miissen nun untersuchen, wie schnell (1 — ¢°*)(F(1)))ren, bzw.
(°®)(F(—1)))ren, gegen 0 konvergiert. Dazu betrachten wir ¢ in der Nihe
von 1 und in der Ndhe von 0 und beginnen mit der Betrachtung bei 1. Es
gilt fiir € [0,1]:

n

e B L e D D O

j=1 AT C{L,...,n}
=(-am > (DT - a)Rees
0#£TC{1,...,n}

= (1 —2)"hi(2)

mit einer stetigen Funktion hy mit k(1) = [{j : mj = m}| > 1. Es gibt also
ein € > 0 mit

(218) 3147 - ms = m}|(1— )™ < 1= g(a) < 2+ 1 2y = m}|(1 — )"

fiir alle x € [1 —¢, 1]. Mit a werde der (nach Satz 2.2.4) eindeutige Fixpunkt
von ¢ in ]0, 1[ bezeichnet.

Zu (a): Sei £ < m. Zu F(1) € Ja,1] (fir F(1) = 1 ist nichts zu zeigen)
withlen wir kg € INg mit g°(*0)(F (1)) > 1 — e. Dabei withlen wir kg gleich so
grof}, dass weiterhin

1—g*®(F(1) < (2-[{j :my =m}|)™!
gilt. Dann ist
Li=log (2 |7+ mj = m}| [1 = ™) (P(1)] ) <0
und wir kénnen fiir k > kg wie folgt abschétzen:
16" D (F(1)) = 1-g(g"=D (F(1))) < 20{j : m; = m}(1=g°®~D(F (1))

< <@ my = myEst (1 - gl (1))t

< (215 em=mil-(1- g°<k0><F<1>>>)m“° = exp (1)
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Wir kénnen damit die Summanden in (2.9) fiir £ > ko und beliebiges s > 0
abschétzen:

s (1 B go(k)(F(l))> < exp (8€k+1 4 mkfkol)
= exp (m* (se(e/m) +1/m*)),

und hier liegt schliefllich doppelt exponentiell schnelles Fallen gegen 0 vor,
falls £ < m ist. Die Reihe in (2.9) konvergiert dann. Im Falle £ = m liegt
Konvergenz sicher dann vor, wenn s < — &iko ist. Insgesamt folgt (a).
Zu (b): Analog zum Beweis von (d) (siehe unten).

Nun nehmen wir eine Untersuchung von g bei 0 vor, um die beiden

verbleibenden Aussagen zu beweisen.

11(1—(1—@’”7 - xﬁ%(”ﬂ Yhlgh-l

j=1k=1
=: 2"ho(z),

wobei hg eine stetige Funktion ist mit ho(0) = [[j_; m;. Es existiert also
ein € > 0, so dass

1
(2.14) 3 Hmj " < gx) <2 Hmj x"

fiir alle z € [0, €] gilt.
Zu (c): Sei & < n. Zu gegebenem F(—1) € [0,« wihlen wir kg € IN mit
g°#F0)(F(=1)) < min{e, (2 IT5-, m;)~1}. Dann ist

H O(l<30) 1)) <0

und es gilt fiir alle & > kq:

n

FO(F(-1)) = g(g°* D (F(-1)) < 2Hm (* D (-1))

k—kg—1_
Sk
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Wir kénnen nun die Summanden aus (2.11) fiir k£ > kg und beliebiges s > 0
wie folgt abschétzen:

e o B (P (1))

IN

exp (kaﬂ 4 nkfkol)
= exp (n* (sg(e/n)F +1/n*0)),

d.h. die Summanden konvergieren im Falle £ < n schliellich mit doppelt ex-
ponentieller Konvergenzgeschwindigkeit gegen 0 und die Reihe konvergiert.
Ist £ = n, so liegt Konvergenz der Reihe sicher dann vor, wenn s < — 3 nlko'
Es folgt die Aussage (c).

u (d): Seien £ > n und s > 0 beliebig. Es gilt F'(—1) € |0, «[. Wir bemiihen
diesmal (2.12) und (2.14). Zunéchst liefert uns nédmlich (2.14) vermdge Ite-
ration (wobei kg € IN so groB sei, dass g°%0) (F(—1)) < ¢ ist) fiir alle k > kg

(mit 1= log (g°®2)(F(~1)) {/$ T}, mj));

g W(F(-1)) = g(g°*V

1 — R nk—ko
> <2Hm) (5™ (F(-1))
) T
ko]

= exp

Wir kénnen uns nun an die Abschétzung der Summanden in (2.12) fiir & > ko
begeben:

e geW(F(-1)) > exp («ka + nk*koi)
= exp <§k(8 + i/nko : (n/f)k)>
o %

d.h. es kann keine Konvergenz der unendlichen Reihe in (2.12) vorliegen.
Die Laplace-Transformierte von () existiert also nicht in s, und da s > 0
beliebig war, existiert die Laplace-Transformierte also in keinem s > 0. [J

2.2.2 Fixpunktgleichungen mit zufilliger Anzahl von Maxi-
ma und Minima

Um ein Beispiel fiir eine Fixpunktgleichung der Gestalt (2.5) zu geben, wo
die auftretende Funktion g kein Polynom ist, kann man die Fragestellung
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zu Beginn dieses Kapitels verallgemeinern, indem man statt einer fixen An-
zahl von Maxima und Minima in (2.2) eine zuféllige Anzahl verwendet. Wir
wollen diesen Gedanken wie folgt préazisieren: Vorgelegt seien IN-wertige, sto-
chastisch unabhéngige Zufallsgrofien X,Y,Y7,Ys, ..., wobei Y; ~ Y fiir alle
1 > 1 gelte. Fiir ein £ > 1 betrachten wir dann die Fixpunktgleichung

(2.15) 1% gf max min W,
1<i<X 1<5<Y;

wobei (W ;)i jen eine von X und der Familie der Y; unabhéngige Familie
unabhéngiger ZufallsgroBen sei und wie im Kontext von (2.2) die W; ; Kopien
von W seien. Dariiber hinaus sei X unabhéngig von der von den Y; und W; ;
erzeugten o-Algebra.

Wir mochten als néichstes ein Analogon zu (2.4) fiir die Fixpunktglei-
chungen mit zufilliger Anzahl von Maxima und Minima herleiten. Dazu
bezeichnen wir mit F' := Fy die Verteilungsfunktion von W, mit fx, fy die
erzeugenden Funktionen von X bzw. Y; d.h. fiir x € [0, 1] gilt:

x):iP(X: 2% und fy (x ZP
k=1

Nun kann man fiir ¢t € R wie folgt rechnen:

= < <
F(t) PW <t)= (f max ér]u<ny Wi < t>

= 3or (o < )

0o k
= ZP(X = k) ( (12111 Wi < t/f))

o k

= k) (1 — Z P(Y =1, 113}21 Wi, > t/f))
- = k
= Y P(X = (1—21) W>t/£)>

k=1

- k
= ZP(X = k) (1 - ZP(Y = (1 - F(t/f))l>

= fX(l—fY (1- (t/§)))

d.h. man hat wieder eine Gleichung vom Typ (2.5) mit einem g : [0,1] —
[0,1] der Gestalt

I
i I
3

(2.16) g9(x) = fx(1 = fy (1 —x)) fir z € [0,1],
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wobei P(X = 0) = P(Y = 0) = 0 impliziert, dass fx(0) = fy(0) =0
und damit auch g(0) = 0 und ¢g(1) = 1 gilt. Da fx und fy auf [0, 1] nach
bekannten Sétzen aus der Analysis stetig und weiterhin streng monoton
wachsend sind, gilt das gleiche auch fiir g. Also ist ¢ € G und wir kénnen
die Ergebnisse aus Abschnitt 2.1 auf diese Problemstellung anwenden.

Es folgt ein Beispiel, in dem X und Y in unserem Sinne so giinstige
Verteilungen besitzen, dass fx (1 — fy (1 —-)) einfach zu berechnen ist.

2.2.7 Beispiel. Seien 0 < o, 3 < 1 und

0, fir k=0,
PET V(-0 1(©), fir ke

Weiter sei g, fiir k& € INg definiert wie p mit 3 anstelle von «. Dann definieren
(p)k>0 und (gx)k>0 Wahrscheinlichkeitsverteilungen auf INg (sogar auf IN).
Zum Nachweis dieser Aussage beschrinken wir uns aus Symmetriegriinden
auf die Folge (pg)r>0 und stellen zunéchst fest, dass fiir alle & > 1

_ _ -1 (a=k+1)
— ()R 2 L)k po(a
=0 (7)) = -0 .
_ all—a)-...-(k+1-a) _
k! -
gilt (po > 0 ist evident); d.h. (pg)r>0 definiert ein Maf auf IN.
Weiter gilt fiir alle £ > 1:

Pk+1_/‘€—06_1_1+04
Pk E+1 E+1’

d.h. Y772 o pr konvergiert nach dem Raabeschen Konvergenzkriterium (siehe
[Heu], Satz 33.10). Unter Benutzung des Abelschen Grenzwertsatzes erhélt
man:

(2.17)
o0 o0 o0 a
Zpk = 1;%121%3 =1- 1;%1 (k) (=s)"=1-— lsl%rll(l —s5)* =1,
k=0 k=1 k=0

d.h. (pg)k>0 definiert tatsichlich eine Wahrscheinlichkeitsverteilung auf Ny,
deren erzeugende Funktion f(s) =1— (1 —s)® (s € [0, 1]) ist.

Seien nun X, Y IN-wertige ZufallsgroBen mit Verteilung (pg)ir>0 bzw.
(qr) k>0 und W eine reellwertige ZufallsgroBe, die (2.15) mit dieser speziellen
Wahl von X, Y erfiillt (mit einem festen £ > 1). Die Verteilungsfunktion F
von W erfiillt dann (2.5) mit g(s) =1 — (1 — %)% (s € [0,1]). g ist in ]0, 1]
beliebig oft differenzierbar und es gilt limg|o ¢'(s) = limgyy ¢/(s) = co. Daher
ist g > id in einer Umgebung von 0 und ¢ < id in einer Umgebung von 1,
also muss nach den Ergebnissen von Abschnitt 2.1 W = 0 f.s. gelten.
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Die Tatsache, dass die Fixpunktgleichung im Falle des Beipiels 2.2.7
nur die triviale Losung hat, kann man also daran erkennen, dass die Ab-
leitung von g bei 0 und bei 1 sehr grof3 wird. Die Ursache fiir dieses Ver-
halten von ¢ ist die Tatsache, dass fiir die in diesem Beispiel benutzten
Verteilungen die Erwartungswerte nicht existieren und gleichzeitig P(X =
1), P(Y =1) > 0 gilt. Wir wollen den Exkurs tiber stochastische Maximin-
Fixpunktgleichungen mit zufilliger Anzahl von Maxima und Minima mit
einer allgemeinen Betrachtung des oben beschriebenen Phénomens beschlie-
Ben.

2.2.8 Lemma. Seien X,Y W-wertige Zufallsgrifien, fx, fy die zugehdrigen
erzeugenden Funktionen und wie oben g(x) := fx(1—fy(1—x)) firz € [0,1].
Dann gelten die folgenden Aussagen:

e Im Falle EY < oo gilt ¢'(0) = P(X =1)- EY.
e Im Fualle EX < o0 gilt ¢'(1) = EX - P(Y =1).

Beweis. Es gilt zunéchst fiir z € |0, 1[:

g(@) = fx(1—fr(1-2)fy(1-2)

Ist nun EY < oo, so existiert ¢’(0) und ¢’ ist stetig in 0. Man erhélt also
unter Benutzung von f%(0) = P(X = 1), fi,(1) = EY die erste Aussage.
Die zweite erhélt man analog. O

2.2.9 Bemerkung. Gegeben sei die Fixpunktgleichung (2.15) mit der zu-
gehorigen Funktion g. Im Falle des Beispiels 2.2.7 hat die zugehorige Fix-
punktgleichung nur die triviale Losung dp, da (mit dem entsprechenden g)
lim, 0 ¢ () = lim,_,1 ¢'(z) = oo gilt. Mit Lemma 2.2.8 kénnen wir den im
Beispiel auftretenden Effekt nun allgemein beschreiben. Wir beschrinken
uns im Folgenden auf die Frage nach der Existenz einer auf |0, co[ nichttri-
vialen Losung; der andere Fall kann entsprechend behandelt werden.

Notwendig fiir die Existenz einer Losung @ € £, ¢ mit Q(]0,00[) # 0 ist
¢'(1) < 1, hinreichend ist ¢’(1) < 1. Mit Blick auf Lemma 2.2.8 stehen uns
damit die folgenden Kriterien zur Verfiigung:

e Im Fall EX < coist P(Y =1) < (EX)~! notwendig und die gleiche
Ungleichung mit einem strikten <-Zeichen hinreichend fiir die Existenz
einer Verteilung @ € £, ¢ mit Q(]0,00[) > 0.

o Ist EX = oo, so folgt aus P(Y = 1) > 0, dass keine Verteilung @ €
Ly mit Q(]0,00[) > 0 existiert.

Offen bleiben damit die beiden folgenden Félle:

(i) EX =o0cound P(Y =1) =0;
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(i) EX -P(Y =1)=1.

Wir wollen dies aber im Folgenden nicht weiter vertiefen. Es sei lediglich ab-
schliefend angemerkt, dass man z.B. unter Benutzung hoherer (faktorieller)
Momente von X und Y weiterschliefen kann.

2.3 L, als Teilmenge von M,

Das Fixpunktproblem dieses Kapitels soll nun wie folgt iibersetzt werden.
Fiir ein g € G und £ > 1 definieren wir die mafiwertige Abbildung

Sy W(R) — WR), Qr— SQ(Q)7

wobei S;(Q) diejenige Verteilung auf R mit der Verteilungsfunktion Fs ) =
9(Fo(-/€)) (Q € W(R)) sei. Dabei ist fiir jedes g € G und Q € W(R) Sy(Q)
offenbar wieder ein Element von 20(R), da g(Fg(-/€)) wegen der Stetigkeit
und Monotonie von g wiederum rechtsseitig stetig und monoton wachsend
ist; wegen 0,1 € F gilt auch limy_, o g(Fo(t/€)) = 0, limy—,o g(F(t/E)) =
1. Wir unterschlagen in der Notation die Abhéngigkeit der Abbildung von
¢, die wir im Folgenden implizit unterstellen.

Die Frage nach den Losungen der stochastischen Fixpunktgleichung (2.5)
entspricht in diesem Kontext der Frage nach den Fixpunkten der Abbildung
S,y. Wir haben in Satz 2.1.2 gesehen, dass die Abbildungen &, im Allgemei-
nen sehr viele Fixpunkte haben. Wir wollen nun die Struktur der Losungs-
menge L, ¢ in einem geeigneten metrischen Raum C 20(R) untersuchen. Als
geeignet erweisen sich die Raume (M, d,,), wobei fiir p > 1

M, = {Q e W)« [ [oP Qlae) < x|

sei und d,, den minimalen £,-Abstand auf IM,, bezeichne (vgl. [A2]).

Wir verstirken zunichst die Voraussetzungen an die Funktion ¢ (al-
lerdings nur so moderat, dass die Funktionen in (2.7) weiterhin behandelt
werden), um die Abbildung S, besser in den Griff zu bekommen, und defi-
nieren G! := {g € G : g ist stetig differenzierbar}. Jedes g in G' ist damit
nach dem Mittelwertsatz der Differentialrechnung Lipschitz-stetig mit Lip-
schitzkonstante [|¢'[[j 1) = supejo,y ¢'(z)|, d.h. fiir alle z,y € [0,1] ist
l9(z) = 9W) < 119 lp,1) ~ [z — -

Mit dieser Beobachtung lésst sich leicht nachweisen, dass S, fiir jedes
p > 1 von M, nach IM,, abbildet:

2.3.1 Lemma. Seien g € G, € > 1, p > 1 und S, die zu g und & korre-
spondierende mafwertige Abbildung. Ist dann Q € My, so auch S4(Q).
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Beweis. Es geniigt zu zeigen, dass [ [z[? S4(Q)(dx) < oo gilt, falls Q € M,
ist. Dazu kann man wie folgt unter Ausnutzung von ¢(0) =0, g(1) = 1, Satz
19.13 in [A1l] und dem Mittelwertsatz der Differentialrechnung abschétzen:

[ el s@an) = [ o718, - oo~ ool

R 0
< [T R + 1 - P o)
= @ [T P ) 1 - P O) i

gsmdmﬂl Pt (F(—t) + 1 — F(t)) dt < oo,

wenn @ € M, ist, wobei man beachte, dass N({t > 0[ptP~'Q({—t}) > 0}) =
0 gilt. O

2.3.2 Bemerkung. Betrachtet man speziell die Fixpunktgleichungen mit
einem g wie in (2.7), so kann man fiir dieses g die Aussage von Lemma 2.3.1
einfacher beweisen, indem man unabhéngige Zufallsgrofien W; ; (1 <i <n,
1 <7 <'m;) mit Verteilung @ wihlt. Dann hat ndmlich

W:=¢- max min W;;
1<i<n1<j<m; 7

die Verteilung S,(Q) und es gilt:
WP <&y > (Wil
i=1 j=1

Die rechte Seite ist aber im Falle Q € M, als Summe integrierbarer Funk-
tionen integrierbar.

Das folgende Lemma zeigt, dass S; unter den Voraussetzungen des letz-
ten Lemmas eine stetige Abbildung auf (IM,,d,) ist.

2.3.3 Lemma. Seig € G, £ > 1, S, die zugehirige mafwertige Abbildung
und p > 1. Dann gilt fir alle Q, R € M,:

(218) 0y(S,(Q), S, (R)) < €llg' I (@, R),

insbesondere ist Sy Lipschitz-stetig auf (M, d, ).
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Beweis. Seien Q,R € M, F' := Fg und G := Fg die zugehdrigen Vertei-
lungsfunktionen. Dann gilt (mit den entsprechenden Pseudo-Inversen):

dp(S4(Q); Sy(R)) = /\(Q(F(-/E)))_l(y)—(Q(G(-/E)))_l(y)\p A(dy)
10,1

= /‘fSF‘l(g"(‘”(y))—fSG‘l(g"(‘”(y))(p A(dy)

10,1

= 5”/9’(?/) |F~'(y) = G (w)[" A(dy)
0,11
P19 l10,1195(Q, R).

IN

O

Zum Abschluss dieses Kapitels sollen unter geeigneten Voraussetzungen
einige Struktureigenschaften der Menge L, ¢ im metrischen Raum (IM,,, d,)
nachgewiesen werden.

2.3.4 Satz. Seien £ > 1, g € G' mit m := max {g'(0),¢'(1)} < 1 und

1
R T, falls0<m <1,
00, falls m = 0.

Dann ist Ly¢ eine unbeschrinkte und perfekte Teilmenge des metrischen
Raums (IM,,d,).

Beweis. Nach Satz 2.1.6 gilt £, C IM,. Wegen 6y € Lg¢ ist L, ¢ # 0. Es
bleibt fiir den Nachweis der Perfektheit zu zeigen, dass L, ¢ gleich der Menge
seiner Haufungspunkte ist.

Dazu zeigen wir zunéichst die Abgeschlossenheit von £, ¢ in IM,,: Sei also
(@Qn € Lg¢)nen eine in (IM,,dy,) gegen Q € M, konvergente Folge, d.h. es
gelte d,(Qr, Q) — 0 (n — 00). Wir bezeichnen mit F;, die Verteilungsfunk-
tion von @, (n € IN) und mit F die Verteilungsfunktion von ). Dann gilt
lim,, oo F(t) = F(t) fiir alle t € C(F'), wobei wir mit C(F') die Menge der
Stetigkeitspunkte von I’ bezeichnen.

Mit F ist auch F(-/€) die Verteilungsfunktion einer Verteilung auf R.
Da monotone Funktionen auf R bekanntlich héchstens abzahlbar viele Un-
stetigkeitsstellen haben, sind also C(F)“ und C(F(¢))¢ abzéhlbar. Daher ist
C(F)NC(F(-/¢)) Komplement einer abzihlbaren Menge und liegt dicht in
R. Wir konnen also jeden beliebig vorgelegten Punkt x € R durch Elemente
von C(F)NC(F(-/£)) approximieren und unter Ausnutzung der rechtsseitigen
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Stetigkeit von Verteilungsfunktionen wie folgt rechnen:

Flz) = F(t)

lim
tla: teC(F)NC(F(-/€))

lim lim F,(t)
tlx: teC(F)NC(F(-/€)) n—00

lim lim ¢(F,(t
tla: teC(F)NC(F(-/€)) Jim g(F(t/€))

)g(F(t/S))

lim
tla: teC(F)NC(F(-/€)

= g(F(z/S));

d.h. F erfiillt die Fixpunktgleichung (2.5) und daher gilt @ € L.

Es bleibt zu zeigen, dass jedes Q) € L, ¢ Haufungspunkt von L, ¢ ist. Sei
also Q € Ly ¢ vorgelegt und € > 0, 0.B.d.A. gelte ¢ < 1. Wir miissen eine
Fallunterscheidung vornehmen, ob @) = §g gilt oder nicht.

Sei zunéchst @ # dp und W eine Zufallsgrofie mit W 4 Q. Dann gilt
W[, > 0, und es ist auch @ # R € Ly¢, wobei R die Verteilung von
(1+ W)W sei. Nun kénnen wir wie folgt abschétzen:

p

g
QR < [[W-|1+4+—|W
’ H < ”W”p“> Hp

9
= w7 VI
Wi, +17

< e

Um den Beweis abzuschlieffen, miissen wir nur noch zeigen, dass auch dg
Héufungspunkt von L, ¢ ist. Dies ist aber unmittelbar klar, da £, ¢ beziiglich
Skalierung mit positiven Faktoren abgeschlossen ist und wegen m < 1 nach
Satz 2.1.2 ein 09 # R € L, ¢ existiert. Es folgt die Perfektheit von L, ¢. Die
Unbeschrénktheit von £, ¢ folgt ebenfalls aus der Abgeschlossenheit von £ ¢
beziiglich der Skalierung mit positiven Faktoren. U

Im Beweis von Satz 2.3.4 nutzen wir die Abgeschlossenheit von L ¢
gegeniiber Streckung aus. In speziellen Fillen, insbesondere im Fall der
Maximin-Fixpunktgleichungen (2.4), ist es aber nicht notwendig, eine Ver-
teilung @Q € L,¢ durch eine Streckung bzw. Stauchung von @ selbst zu
approximieren. Vielmehr ldsst sich jedes Q € L, ¢ auch durch andere Losun-
gen der Fixpunktgleichung approximieren. Die folgende Definition und das
folgende Lemma gehen naher darauf ein.

2.3.5 Definition. Seien g € G und & > 1. Wir definieren eine Aquivalenz-
relation ~ auf L, ¢ wie folgt: Fiir Q, R € L, ¢ sei

Q%R:<:>E|7>O:FR:FQ(§),
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d.h. es gilt Q ~ R genau dann, wenn ein v > 0 existiert, so dass fiir jede
Zufallsgrofle W mit der Verteilung @ die Zufallsgrole yW die Verteilung R
hat. Eine Aquivalenzklasse [(Q)] bzgl. ~ nennen wir einen Zweig von Lg¢.

2.3.6 Lemma. In der Situation von Satz 2.3.4 gelte nun verschdrfend
d(0),d' (1) < &L Dann kann jedes Q € Ly ¢ durch Elemente anderer Zwei-
ge, d.h. durch gewisse R & [Q)], beliebig genau approzimiert werden.

Beweis. Sei 09 # Q € Lg¢ (fiir Q@ = 6o ist nach Satz 2.3.4 nichts zu
zeigen). F sei die Verteilungsfunktion von . Wir nehmen zunichst an,
dass Q(]0,00[) > 0 ist und erkiesen eine Verteilung R € Lj¢ mit Ver-
teilungsfunktion G, fir die G(t) = F(t) fir alle ¢ < 0 gilt. Seien weiter
U~ R(0,1) und F~!, G~! die zu F, G gehorenden Pseudo-Inversen. Dann
gilt Fflhoycl[ = Gilho,cl[a wobei ¢; = F(0) der groBte Fixpunkt von ¢ in
]0,1[ sei (dieser existiert wegen ¢'(1) < £~! < 1). Wir erhalten daher:

d(Q, R) E|FY(U)-c )]

- /;”|F%m-—e%yﬂp»@@>
:/] |IF~ y) — G Hy)[” A(dy)

o(n+1)

= Z/ [F~'(y) — G (»)]” dy,

nez O(n)(F(l

und weiter unter Ausnutzung der Giiltigkeit von (2.5) fiir F, G und der
Ldentitit (g°) (F(-/€")) ! = €% - F~1 0 g7 ():

go(nJrl)(F(l)) )
dy(Q,R) = " F1g*CM (y)) — G~ 1(g°C™) d
»(@ ) g;;hmm»1 )~ 6 (6" )| dy
g(F(1)
= D¢ / Y () |[F y) - G y)|” dy.
nez

Nach Gleichung (1.1) im Beweis von Lemma 1.2.2 (a) existiert zu einem fest
vorgegebenen v € |¢/(1), £~ ![ eine Konstante C., > 0 mit (¢°™)/(y) < C, 4"
fir alle y € [F'(1),1] und n > 0 . Diese Konstante C,, héngt nur von g, vy
und F(1) ab, aber nicht von R.

Weil g(¢1) = ¢1 < 1ist und g > id auf ey, 1] gilt, kann man ¢'(¢;) wie
folgt abschétzen:

) = gler) _ o) —es

> 1.
tler t—cp tley t—c1 T

Also ist (¢°D)(¢1) < 1 < € und wir kénnen analog zur Argumentation
fiir g zu vorgegebenem 3 € |(¢°"V) (1), €[ die Existenz eines Cg > 0 mit
(g°C™) (y) < Cg - B™ fiir alle y € [c1, g(F(1))] und alle n > 0 folgern.
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Zur Vereinfachung setzen wir

(F(1)) p
R = (/g F ' (y) -G ()] dy) :

F(1)

und schétzen wie folgt ab:
©0 g(F (1))
P R _ n o(n)\/ Ffl . G*l p d
P(Q. R) ;)5 /F(l) (6°") (y) |F~(y) (v)[" dy
0 g(F (1))

-n o(—n)y\/ F—l - G—l p d
+nZl§ /F(I) @ () |[F~ (w) (v)[" dy
s(egeras(0)

n=0 n=1

C O
(iS5t iem)

IN

IN

und damit

Gy + Cs
1-¢y  1-¢716
Cp

+ 115 um eine Konstante in Abhéngigkeit von g,

dp(Q, R) < CR(/

Da es sich bei %
F und ¢ handelt (3,7 kénnen auch in Abhéngigkeit von g¢,& fest gewihlt
werden), geniigt es also zu zeigen, dass man Verteilungen R € Lg¢ mit
beliebig kleinem cg findet.

Sei also € > 0; wir nehmen 0.B.d.A. an, dass ¢ < £ — 1 ist, und wéhlen
einn € Nmite-n > ¢—1. Sei § := n~1(£ —1). Wir unterscheiden nun zwei
Félle:

Fall 1: F' ist stetig auf [1,&]. Wir setzen dann
G(t) :== F(1 + 0k)

fiir alle £ € [1 4 6k, 1+ 6(k+1)[, 0 < k < n.
Fall 2: F hat eine Unstetigkeitsstelle in [1,£], d.h. es gibt ein ¢y €]1,£] mit
F(to—) < F(tp). Wir setzen dann

G(t) := F(1+ k) + 6L (F(1 + 6(k + 1)) — F(1 + 0k))(t — (1 + k)

fir alle t € [1 4+ 0k, 14+ 0(k+1)[, 0 <k <n.

G kann in beiden Féllen wie in Satz 2.1.2 zu einer Verteilungsfunktion
auf R fortgesetzt werden, die (2.5) erfiillt, wobei wir G|j_of = F[j—cc,0|
setzen. In beiden Fillen gelten fiir jedes y € |F(1), g(F(1))] wegen § < ¢ die
Implikationen

F(t)>y=G(t+¢) >y



50 Kapitel 2. Maximin-Fixpunktgleichungen

und
Git)>y=F(t+¢) >y,

also
IF'(y) -G (y)| <e,

fiir alle y € ]F (1), g(F(1))[. Wir bezeichnen nun mit R die zu G korrespon-
dierende Wahrscheinlichkeitsverteilung auf R. Dann gilt

(F(1)) 1/p
CR = </g |F*1(y) - Gil(yﬂp dy) <eg- (g(F(l)) - F(l))l/p <e
F(1)

Weiterhin gilt in jedem Fall [Q] # [R], denn im ersten Fall ist F' nach
Folgerung 2.1.4 stetig auf |0, oo, wihrend G Unstetigkeitsstellen in ]0, oo|
besitzt, und im zweiten Fall hat F' eine Unstetigkeitsstelle in [1, ], wéhrend
G wiederum nach Folgerung 2.1.4 stetig auf |0, oo ist.

Ist @ # dp eine Verteilung mit Q(]0,00[) = 0, so liefert ein analoges
Vorgehen auf der negativen Halbachse eine geeignete Approximation von

Q. O

Die Funktionen o — (1—(1—x)?)? fiir b > 2, die in Kapitel 1 auftreten,
erfiillen allesamt die Voraussetzungen des Lemmas, d.h. fiir diese Funktionen
besitzt Lg¢ in (Mp,d,) die in Satz 2.3.4 und Lemma 2.3.6 beschriebene
Struktur.



Kapitel 3

Bestimmung der Verteilung
von W*

Dieses Kapitel widmet sich der Bestimmung der Verteilung von W*, die im
zweiten Abschnitt des Kapitels gelingt. Der erste Abschnitt des Kapitels
liefert mit Satz 3.1.4 einen entscheidenden Beitrag dazu.

3.1 Konvergenzbedingungen fiir (Sg(n)(Q))n im Ma-
ximin-Fall

In diesem Abschnitt wollen wir Untersuchungen hinsichtlich der Konver-
genz der Folge (SE(”)(Q)),LG]N in Verteilung vornehmen und uns dabei auf
die Funktionen g der Form x —— (1 — (1 — z)®)® (b > 2) beschriinken.
Wir halten also bis auf Weiteres ein solches b mit zugehoriger Funktion g
fest und bezeichnen mit « dabei stets den eindeutigen Fixpunkt von ¢ in
10, 1]. Einige Aussagen dieses Abschnitts sind nicht von der konkreten Wahl
von g abhéngig und konnen fiir jedes beliebige g € G in angepasster Form
bewiesen werden. Dies geht aus den entsprechenden Beweisen hervor und
wird nicht extra bemerkt. Wir sammeln im folgenden Lemma zunéchst of-
fensichtlich notwenige Bedingungen an die Verteilung @ fiir die Konvergenz

von Sg(")(Q).

3.1.1 Lemma. Seien Q € W(R) und F := Fg die zugehdorige Verteilungs-

funktion. Konvergiert dann (Sg(n)(Q))ne]No in Verteilung gegen Qu, so gel-
ten:

(a) F(0-) < e,

(b) F(0) > a.
Weiter folgt aus F(0—) < «, dass Qo(] —00,0[) = 0 gilt, und aus F(0) > a,
dass Qo(]0, 00[) =0 gilt.

51
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Beweis. Sei F(0—) > «. Dann gilt fiir jedes ¢ < 0 und alle hinreichend

groflen k£ € IN, dass
(o] t (0]
g “ <F (5_"“)) =9 (k)(a) =a

ist. Wegen S;™(Q)(] — 00,t]) = ¢°®) (F(t/¢*)) kann (S5 (Q))nen, damit
nicht in Verteilung konvergieren. Aussage (a) folgt nun mit Kontraposition.
Aussage (b) und die Zusétze lassen sich dhnlich beweisen. O

Es ist klar, dass fiir den Grenziibergang nicht das ganze Verhalten von F
wichtig ist, sondern nur das Verhalten nahe bei der Null. Dieses Verhalten ist
besonders bei Verteilungen mit in R diskretem Tréger leicht zu beschreiben.
Der folgende Satz befasst sich mit dem Fall einer solchen Startverteilung Q:

3.1.2 Satz. Seien & > 1 und Q € W(R) eine Verteilung, deren Triger
Qo diskret in R sei, d.h. Qg habe keinen Haufungspunkt in R. Sei Wy eine
reellwertige Zufallsgriffe mit Verteilung QQ und Verteilungsfunktion F'. Dann
gelten die folgenden Aussagen:

(a) Gilt F(t) # « fir alle t € R, so existiert eine Konstante v € R, so
dass Sg(n)(P(Wo +v€-)) 5.

(b) Emistiert ein t € R mit F(t) = «, so existieren keine Konstanten
B >0,v € R, so dass (Sg(n)(P(ﬁWO + v € )))nen in Verteilung
konvergiert.

Beweis. Wir beweisen zunéchst (a) und setzen v := —inf{t € R|F(t) > a}.

7 ist eine reelle Zahl. Fiir jedes t € R ist dann F,(t) := P(Wy +~v < t) =
P(Wy <t —r) = F(t —). Einerseits gilt damit F,(0) = F(—v) > « nach
Wahl von v; der Fall F'(—v) = « ist aber nach Voraussetzung ausgeschlossen,
d.h. es gilt F,(0) > « und damit

SSI(P(Wo + v € ))(] — 00,t]) = ¢°™ (F,(t/€") > ¢°™(F,(0)) — 1

n—oo

fiir alle t > 0. Andererseits folgt aus der Diskretheit von €y in R, dass
F,(0—) = F((—y)—) < « ist, und damit folgt

S5 (P(Wo -+ € ))(] = 00,1]) = O (B, (¢/6")) < g0 (P (0-)) — 0

n—oo

fiir alle t < 0, d.h. es gilt (a).

Zum Beweis von (b) nehmen wir die Existenz von § > 0 und 7 € R an,
fiir die (Sg(n) (P(BWo + v € *)))nen in Verteilung konvergiert, und setzen
Fg,(t) == P(BWo +~v <t) = F((t —v)/8). Notwendig fiir die Verteilungs-
konvergenz der Folge (Sg(n)(P(Wo + 7 € *))nen ist nach Lemma 3.1.1, dass
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F3,(0—) < a und F3,(0) > a gilt. Da der Wert o von Fj ., angenommen
wird, kann nicht in beiden Fillen das strenge Ungleichheitszeichen stehen.
Mit g ist aber auch der Trager von SWy + v diskret in R und es existiert
ein € > 0, so dass Fjg(t) = a fiir alle t € [—¢,0[ oder Fj3,(t) = « fiir alle
t € [0,¢[ gilt. Es folgt lim,, o g°™ (Fj~(t/€")) = a fiir alle ¢ < 0 im ers-
ten bzw. fiir alle ¢ > 0 im zweiten Fall im Widerpruch zur angenommenen
Verteilungskonvergenz der Folge (Sg(n) (PWo+7v € )))nen- O

In der Situation von (a) kann man dariiber hinaus keine reelle Zahl ~/
finden kann, so dass die Folge (Sg(n)(P(Wo +9" € -))nen schwach gegen eine
Verteilung @ # dp konvergiert.

Obwohl Satz 3.1.2 sehr einfach ist, stellt er doch immerhin fest, dass
man eine Zufallsgroe Wy mit Binomial- oder Poissonverteilung oder einer
von vielen anderen bekannten und héufig in Beispielen auftretenden dis-
kreten Verteilungen nicht in sinnvoller Weise so skalieren und verschieben
kann, dass man im Grenziibergang bei iterierter Anwendung von S, auf die
Verteilung von Wy Verteilungskonvergenz erhélt.

Allerdings muss auch dann keine Verteilungskonvergenz vorliegen, wenn
die Ausgangsverteilung @ jeder punktierten Umgebung U — {0} von 0 posi-
tive Wahrscheinlichkeit zuordnet, wie das folgende Beispiel zeigt:

3.1.3 Beispiel. Wir definieren eine Verteilung @ € 20(R) iiber ihre Vertei-
lungsfunktion F' := Fg. Da fiir den Grenziibergang, wie weiter oben festge-
stellt wurde, nur das Verhalten von F' in einer Umgebung von 0 wichtig ist,
miissen wir F' nur auf | — &, {] festlegen. Wir werden uns sogar nur auf das
Intervall [0, &[ beschrinken (man kann z.B. F|j_ of = 0 setzen); durch ein
analoges Vorgehen auf | — ¢, 0] kann man ein entsprechendes Ergebnis auf
der negativen Halbachse erzielen.

Wir geben uns nun eine Konstante o < ¢ < 1 vor und setzen F(t) := ¢
fiir alle ¢ € [1,¢[. Weiter wihlen wir eine monoton fallende Nullfolge (e, )new
reeller Zahlen > 0, wobei wir der Einfachheit halber annehmen, dass e; <
min {¢ — a, 1 — ¢} gilt, und setzen kg := 0 und fiir n € Ny fiir bereits defi-
nierte ko < ... < kop:

F(e7F) = go(2k=k2n)) (P (e Ren)) fiir alle Koy < k < kony1,
wobei kop 41 := min {k > ko, : o E=2ken)) (R (e=h2n)) < o + E9n+1}, und
F(7%) .= F(e7 k1) fiir alle oy < k < kopyo

mit ko, 19 := min {k: > kopy1 : go(k)(F(f_kQ"“)) >1— 52n+2}. Lemma 1.2.1
liefert induktiv die Existenz von k, fiir alle n > 0, d.h. F' ist wohldefiniert
in ¢F fiir alle k > 0. Fiir ¢ €]0, 1] setzen wir nun F(t) := F(¢7%) mit dem
k € Ny, fiir das €% <t < €751 gilt, sowie F(0) := a. Dann ist F' monoton
wachsend und rechtsseitig stetig in [0,&], kann also zu einer Verteilungs-
funktion fortgesetzt werden. Wir betrachten eine beliebige Fortsetzung von
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F zu einer Verteilungsfunktion auf R, die wir wiederum mit F' bezeichnen,
die korrespondierende Wahrscheinlichkeitsverteilung nennen wir ). Seien Fj,
die Verteilungsfunktion von S;(k)(Q) (k> 0) und € > 0. Wir wéhlen dann
zu vorgegebener Schranke K > 0 ein n € IN so grof}, dass €2,+1 < € und
kopt1 > K sind. Dann gilt fiir alle 1 <t < &:

Pl (1) = gl (pgtom)
— go(k2n+1) o go(*Q(an-&-l*an))(F(é'*k'Qn))
gO(—(k2n+1 —2kon)) (F(é'_k‘Qn ))

N

a+ Eop41

IN

o+ €
und

Flaa(t) = g7 (B(€ )
g ) (P )

1 —eopq2

v VvV

1—¢,

d.h. o, 1 sind Héufungspunkte der Folge (Fj(t))r>0. Fiir jedes ¢ > 0 gibt es
nun ein k; € Z mit 1 < €Mt < ¢, und es gilt dann fiir alle & > max {—k;, 0}

Fi(t) = ¢° (F (5

k¢
&) = g0 RO (RIS )) = ek (R (M),

fk-i-kt

und nach dem oben Gezeigten hat die Folge (Fji, (t{k’f))@max{_kho} die
Héufungspunkte o und 1, also hat auch die Folge (Fj(t))r>0 die Hiufungs-
punkte a und 1. Damit konvergiert (Fj(t))g>o fiir kein ¢ > 0, also auch

(S;(k)(Q))kZO nicht in Verteilung.

Mit Blick auf Satz 1.3.3 interessieren wir uns in erster Linie fiir den Fall,
dass (Sg(")(Q))ne]N gegen eine Verteilung )y, mit stetiger Verteilungsfunkti-
on h konvergiert mit h(z) ¢ {0, 1} fiir alle x € R. Nach Lemma 3.1.1 kénnen
wir uns bei der Suche nach einer hinreichenden Bedingung fiir die Vertei-
lungskonvergenz von (Sg(n)(Q))ne]N auf den Fall beschrénken, dass fiir die
Ausgangsverteilung () mit Verteilungsfunktion F := F

(3.1) F(0-) = F(0) = a

gilt. Der folgende Satz liefert in der obigen Situation im Falle £ = ¢'(«)
unter einer Zusatzvoraussetzung (an das Verhalten von F' in 0) ein Kriteri-
um, das sich auf viele bekannte Verteilungen anwenden lésst (z.B. auf alle
Verteilungen mit einer stiickweise stetigen \-Dichte).
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3.1.4 Satz. Sei £ = ¢'(«a). Weiter sei Q € W(R) mit Verteilungsfunkti-
on F und es gelte F(0) = a. Weiterhin sei F' in 0 linksseitig und rechts-
seitig differenzierbar mit linksseitiger Ableitung c— > 0 und rechtsseitiger
Ableitung ¢y > 0, wobei nicht notwendig c— = c4 gelte. Dann konvergiert
(Sg(n)(Q))ne]N genau dann in Verteilung, wenn c_,cy > 0 gilt, und in die-
sem Fall hat die Verteilungsfunktion Fy der Grenzverteilung Qo die Gestalt

Fy(t) = {h*(Cth), fallst >0,

(3.2)
h*(c_t), fallst <0,

wobei h* die in Satz 1.3.3 auftretende Verteilungsfunktion ist. Definiert man
dann (B = cll, v = ¢ und bezeichnet mit W* eine Zufallsgréfie mit
Verteilungsfunktion h*, so gilt

SeM(Q) L B (WA — g (W)

n—00

Beweis. Da Fy stetig ist, miissen wir

Sg"(@Q)(] = 0e.t]) — Fo(t)
n—oo

fiir alle t € R zeigen (wollten wir die uns bereits aus Satz 1.3.3 bekannte
Stetigkeit von A* nicht verwenden, so kénnten wir uns in diesem Beweis im
Wesentlichen auf die Stetigkeitspunkte von Fjy beschrinken). Dabei miissen
wir die Falle ¢ > 0 und ¢ < 0 unterscheiden. Da die Argumentationen in
den beiden Fallen praktisch identisch sind, beschréinken wir uns auf den Fall
t>0.

Sei also £ > 0. Aus der rechtsseitigen Differenzierbarkeit von F in 0 mit
Ableitung c4 > 0 schlieBen wir auf die Identitét

F(s) =a+cys+r(s)
fiir alle s > 0, wobei r : [0, 00[— R eine Funktion ist mit

(3.3) im ")
$10,5#£0 S

Sei ¢ > 0. Dann gibt es wegen (3.3) ein 6 > 0 mit r(s) < es fiir alle
s € [0,0]. Damit gilt fiir alle n > 0 mit ¢/£" < ¢:

S;M(@(—oot)) = gM(FE/EM)
< g (a+ (ep +)t/EM)
n?o)o h*((CJr + 5)t)a
d.h. es gilt
limsup S;™(Q)(] — o0, t]) < h*((cy +e)t).

n—0o0
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Da € > 0 beliebig gew#hlt war und h* stetig ist, gilt sogar

limsup S;™/(Q)(] — 00, t]) < h*(c4t).

n—oo

Im Falle ¢y = 0 folgt wegen h*(0) = «, dass (Sg(n)(Q))ne]NO nicht in Vertei-
lung konvergieren kann.

Sei also im Folgenden ¢y > 0 und 0 < € < c¢4. Wiederum wegen (3.3)
finden wir ein 6 > 0 mit r(s) > —es fiir alle s € [0,d]. Dann gilt fiir jedes
n >0 mit ¢t/ < 6

oM (P(t/e™)
> (a4 (cp —)t/EM)
W ((es e,

Sg™(Q)(] — o0, 1)

also
liminf §57(Q)(] — oe.1]) > h*((es <))
Der Grenziibergang ¢ | 0 liefert die Behauptung. O

Dieser Satz liefert eine Moglichkeit, die in Satz 1.3.3 auftretende Vertei-
lung fiir jedes b > 2 zu bestimmen, wie sich im folgenden Abschnitt zeigt.

3.2 Bestimmung der Verteilung von W*

In diesem Abschnitt wollen wir fiir alle b > 2 die Verteilung von W* bestim-
men, die als Grenzverteilung des passend normierten Wertes eines b-adisch
verzweigten, zufillig bewerteten Maximinbaums der Héhe 2k fiir £ — oo auf-
tritt (man beachte, dass W* von b abhéingt). In der zu Beginn von Abschnitt
2.3 eingefiihrten Sprache heifit das, dass wir limy_,o S;(k)(R(—a, 1 —a))
(beziiglich schwacher Konvergenz) fiir jede Funktion g : [0,1] — [0,1],
z — (1 — (1 — x)®)®, bestimmen wollen, wobei a jeweils der eindeutige
Fixpunkt von ¢ in |0, 1[ und & := ¢/(«) sei.

Dazu nehmen wir fiir ein festes solches g und zugehoriges £ zunéchst an,
dass ein () € L, ¢ mit Verteilungsfunktion F’ existiert, die in 0 differenzierbar
ist mit Ableitung 1. Nach Satz 3.1.4 gilt dann
(3.4) Q = lim S (Q) < w.

n—oo
Wir haben das Problem also gelést, wenn wir eine solche Lésung Q € £, ¢ an-
geben koénnen. Dazu wagen wir einen noch viel optimistischeren Ansatz. Wir
geben namlich eine Losung an, deren Verteilungsfunktion die Einschréinkung
einer ganzen Funktion auf R ist.
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3.2.1 Satz. Seibe Z,b>2,g:[0,1] — [0,1], z — (1—(1—x)")°. h* sei
die Verteilungsfunktion, die als Grenzwert in Satz 1.3.3 im b-adischen Fall
auftritt. Weiter seien a der eindeutige Fizpunkt von g in |0, 1[ und & = ¢'(«).
Dann ist h* die Einschrinkung einer ganzen Funktion auf R. Folglich ldsst
sich h* bei 0 in eine Potenzreihe entwickeln, die auf ganz C konvergiert. Die
Koeffizienten (an)n>0 der Potenzreihe lassen sich wie folgt bestimmen:

apg = «,

CL1:1,

(3.5) anzgnl_g-ch Z Gy (n>2),

wobei ¢y, ..., cpe die Koeffizienten des in o entwickelten Polynoms g seien.
Insbesondere existiert f* := %»\6), und es gilt f* € C*.

Beweis. Wir zeigen zuerst, dass der Konvergenzradius r der Potenzreihe
Yo ant™ positiv ist. Dafiir setzen wir h(z) := > 7 japz" fiir alle z € C
™ . €0

mit |z| < r. Fiir beliebiges v > 0 setzen wir weiter ay"” = a, a;” := 7,
und fiir n > 2 definieren wir ) wie in (3.5), allerdings unter Riickgriff auf
a?), e ,afj_)l statt auf aq,...,a,_1. Offenbar gilt dann fiir alle n € IWNy:
(3.6) ) = y"a,,.

Die a,g) sind dann die Koeffizienten der Taylorentwicklung der Funktion

h(y -) in 0. Es gilt nun fiir alle n > 2:

b2
(3.7) Jan| = gnl_gzck Z Qj, c ... A,

k=2  jit+..+jr=n

b2
1 n—1 N
< ¢ ) ;’Ck‘<k_1> - max{|ai,...,|an—1|}
1 2
= fn _5 ' p(n) : max{l, |CL1|, ) |anfl|} s

wobei fiir die Abschitzung verwendet wurde, dass es genau (Zj) ungeord-

nete k-Partitionen von n gibt, und p(n) := 222:2 |ck|(Zj) fiir n € IN sei. p
ist ein Polynom in n. Folglich gibt es ein ny € IN mit p(n) < " — £ fir alle
n > ng. Wir wahlen nun v > 0 so klein, dass

‘ agw) o

gee ey no—1

<
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gilt, was sich im Hinblick auf (3.6) leicht einrichten ldsst. Indem wir nun die
Abschétzung (3.7) fiir die ) anstelle der ay, durchfiihren, erkennen wir,
dass immerhin ]ag)\ < 1 fiir alle n > 0 gilt. Daher konvergiert die Reihe
Y on>0 alz" auf K1(0). Wegen (3.6) folgt » > v > 0.

Es gilt weiter fiir |z] < r unter Benutzung von (3.5) und ¢; = ¢'(«) = &:

o0
h(z) —a = Zanz”
n=1
[e%S) b2
= £y Y, ap a;, 2"
n=1 k=1 ji+..+jr=n
2 .
b [e.e] [e.e] <Z>J1 Py Ik
= YaY Y Y
k=1 ji=1  jp=1 ¢ ¢
b2
k
= ck(h(z/§) — a)
k=1

d.h. es gilt
(3.8) h(z) = g(h(z/€)) fiir alle |z| < 7.

Sei R > 0. Wir wihlen n € IN so grof}, dass R < ~¢&". Fiir z € Kg(0)
kénnen wir nun hr(z) := go(")(h(g%)) setzen und erhalten so eine Funktion
auf Kg(0), die als Verkettung holomorpher Funktionen wieder holomorph
ist. Auf Kr(0) N K,(0) stimmt hr wegen (3.8) mit unserer urspriinglichen
Funktion A iiberein. Da R > 0 beliebig war, ldsst sich h auf ganz C holo-
morph fortsetzen, ist also eine ganze Funktion. Es folgt aus der Analytizitéit
holomorpher Funktionen und dem Identitétssatz fiir Potenzreihen, dass die
Potenzreihe Y a,z" fiir alle z € C konvergiert, d.h. es gilt » = co. Die
Einschriankung von h auf R ist stetig, reellwertig — da die Potenzreihe nur
reelle Koeffizienten hat — und wegen h'(0) = 1 wachsend in einer Umgebung
von 0. Damit lassen sich sy < 0 < tp mit 0 < h(sp) < o < h(tp) < 1 finden,
so dass Satz 2.1.2 auf die Funktionen h_ := h|s¢ 5o und hy = hlj, 40¢ an-
wendbar ist. Der Satz liefert in Verbindung mit (3.8), dass die Einschrinkung
von h auf R eine Verteilungsfunktion ist. Bezeichnet man mit @) die zugehori-
ge Wahrscheinlichkeitsverteilung auf R, so gilt wegen (3.4) schon Q@ = P"",
also auch h = h*.

Da h* als ganze Funktion insbesondere stetig differenzierbar auf R ist,

definiert f* := (h*)’|r eine Version von % und ist als Einschrinkung
einer ganzen Funktion auf R eine C*-Funktion. U

Abbildung 3.1 auf Seite 59 zeigt den Funktionsverlauf von h* im Fall
b = 2. Als Naherung von h* ist ZZOZO apx® dargestellt, wobei g, . . ., dso Ap-
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Abbildung 3.1: Die Verteilungsfunktion ~2* und die Dichte f* fiir b = 2
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Abbildung 3.2: Die Funktion gg fiir b = 2

proximationen der ersten 51 Koeffizienten ay, ..., a5y der Taylorentwicklung
von h* um 0 sind, die unter Zuhilfenahme der Rekursionsgleichung (3.5)
angenéhert sind. f* wird durch Zigzo(k: + 1)ag412" angenihert.

Abbildung 3.2 zeigt den Graphen von gg ebenfalls fiir b = 2 im gleichen
Intervall (zur Erinnerung: gg(z) = ¢°® (a + 2/£%)). Die Funktionsverliufe
von gg und A* dhneln sich im betrachteten Intervall so sehr, dass mit dem
blolen Auge kaum ein Unterschied feststellbar ist.



Kapitel 4

Eine weitere Klasse
stochastischer
Fixpunktgleichungen

In der Arbeit [AR] von Alsmeyer und Résler werden die folgenden stochas-
tischen Fixpunktgleichungen betrachtet:

d .
(4.1) W = leelg thj
und
(4.2) W L sup ;W
jeJ

wobei {t; : j € J} (J € N) eine endliche oder abzéhlbare Menge reel-
ler Zahlen und W, W7, Ws, ... unabhéngige, identisch verteilte Zufallsgrofien
seien.

Uns interessiert in dieser Arbeit vor allem Gleichung (4.2) im Hinblick auf
bestehende Zusammenhinge mit der Fixpunktgleichung (2.1). Seien etwa W
eine Losung von (4.2) und (W) jew sowie (W; ;); jew Familien unabhéngiger,
identisch wie W verteilter Zufallsgrofien. Dann gilt

4

w sup tiWi
ieJ
d
= sup t; sup t;W; ;.
ied  jed
Gilt nun J = {1,...,b} fiir ein b > 2 und sind t; = ... = t;, = —/€ mit

einem £ > 1, so liest sich die obige Gleichung wie folgt:

60
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sup t; sup t;W; ;
ieJ  jed
= Ve Ve,
= & fg?gxb 12“}21) Wi,
d.h. W erfiillt Gleichung (2.1). Bezeichnen wir also fiir (t) = (¢;);cs mit
%E‘z)ax die Menge aller Wahrscheinlichkeitsverteilungen auf R, die (4.2) 16sen

(und entsprechend %?:)m die Menge aller Wahrscheinlichkeitsverteilungen auf
R, die (4.1) 18sen), so gilt fiir den Vektor (t) = (—/¢, ..., —/€) der Linge
b und die Funktion ¢ : z — (1 — (1 — 2)%)%:

(4.3) FHC Lo,

Aufgrund dieses Zusammenhangs mochten wir nun die Fixpunktglei-

chung (4.2) betrachten und ihre Losungsmenge Sﬁ)‘?‘x — insbesondere im Fall

(t) = (=6, ..., —/&) wie oben — charakterisieren. Wir hoffen dadurch er-
kennen zu konnen, welche Verteilungen @ € L, ¢ sogar in %E‘z)‘?‘x liegen. Wir
lehnen unser weiteres Vorgehen an die bereits zitierte Arbeit [AR] an.

4.1 Einfiithrende Uberlegungen

Wir begeben uns nun bis auf weiteres in die folgende allgemeine Situation:
Sei J C IN; der Einfachheit halber nehmen wir gleich an, dass J = {1,...,n}
fir ein n € IN gilt oder J = IN ist. Weiter sei (t) = (t;)jes ein(e) Vek-
tor/Folge reeller Zahlen. Zu J und (t) betrachten wir nun die stochastischen
Fixpunktgleichungen (4.1) und (4.2) und ihre Lésungsmengen %Ef)m C W(R)
bzw. Fi C 2W(R). Es gilt dann

PV e g —= PV e gum

Wir kénnen uns also auf eine der beiden Fixpunktgleichungen beschrénken.
Im Hinblick auf (4.3) beschrénken wir uns auf Gleichung (4.2).

Weiterhin kann man sich auf den Fall beschrénken, in dem t; # 0 fiir
alle j € J gilt. Behandelt man ndmlich diese eingeschrinkte Klasse von Fix-
punktgleichungen, so kann man zuriick auf die allgemeine schlieffen, indem
man von (4.2) zur Fixpunktgleichung

(4.4) W L0V sup ;W
JjeJ

iibergeht. Fiir jede Losung PV von (4.4) gilt offenbar P(W > 0) = 1.
Weiterhin 16st W auch die Fixpunktgleichung (4.2). Ist umgekehrt P" eine
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Losung von (4.2) mit P(W > 0) = 1, so 1ost PV auch die Fixpunktgleichung
(4.4).
Man kann sich also auf die folgenden Félle beschranken:

(F1) t; > 0 fiir alle j € J;
(F2) t; <0 fiir alle j € J;
(F3) es gibt 4,7 € J mit ¢; <0 < t;.

Dariiber hinaus ist der Fall J = {1} trivial, denn fiir t; = 0 liefert er
direkt F™ = {b0}, fiir t; > 0 liefert er die folgende Funktionalgleichung fiir
die Verteilungsfunktion F' einer Losung W € SI(?;‘X:

F(t) = F(t/ty) fur alle t € R,

die fiir t1 # 1 S = {60} impliziert und fir ¢t; = 1 S5 = W(R). Fiir
t; = —1 l6sen alle symmetrischen Verteilungen auf R die Fixpunktgleichung,
fiir £, <0, ¢1 # —1 muss wieder Fi™ = {60} gelten, denn fiir PV € o
gilt W ~ ;W ~ t3W, und hier ist 1 # t7 > 0. Wir nehmen daher im
Folgenden stets |J| > 2 an.

Wir wollen uns — wieder im Hinblick auf (4.3) — auf die Bearbeitung des
Falls (F2) beschrinken. Der Fall (F1) wird in der bereits zitierten Arbeit

[AR] von Alsmeyer und Résler ausfiihrlich diskutiert.

4.2 Eine Charakterisierung von 3?;)“

Wir wollen nun eine Charakterisierung von %E‘z)ax angeben, die wir leicht
modifiziert aus [AR] (Satz 5.1) tibernehmen. Fiir den Rest des Kapitels sei
stets J = {1,...,b} fiir ein b € N — {1} oder J = IN. Wir beginnen die

Charakterisierung von 3%&" mit einer Definition:

4.2.1 Definition. Sei J endlich und (t) = (¢;);es ein Vektor reeller Zahlen
mit ¢; < 0 fiir alle j € J. Dann definieren wir den Operator Uy : W(R) —
W(R) wie folgt: Fiir ein Q@ € W(R) sei U@ die Verteilung auf R mit
Verteilungsfunktion Fy o (t) = [[;c,(1 — Fo(t/t;—)).

In Termen von Zufallsgroflen entspricht die Anwendung des Operators
Uy dem Ubergang W —— sup;¢ ; t;W; fiir uw.iv. W, Wy, Wa, ... mit Vertei-
lung @, denn fiir alle t € R ist

Fyo(t) = [[(1 = Fo(t/t;-)) = [] PW > t/t;) = P (S}EIIJ) tjW; < t) :

jed jed

4.2.2 Satz. Sei (t) = (t;)jes ein(e) Vektor/Folge reeller Zahlen mit t; < 0
fir alle j € J.
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(a) Ist J = {1,...,b} fir ein b € N und (3 die eindeutige Lisung der
Gleichung x°+x = 1 im Einheitsintervall, so besteht Sﬁf‘x—{éo} genau
aus allen Verteilungen der Gestalt 5Q~ +ﬂbU(0Q>, wobei Q= € W(R)
eine beliebige Verteilung auf ]0, co[ mit

b b

45) 1-p5Q-(t.0o]) =[] 1—H6Q><]%tj,oo[> (t=0)

i=1
18t.
(b) Im Fall J =N gilt S = {60}

Beweis. Sei Q € %E‘z)ax — {00}, F die zu @ korrespondierende Verteilungs-
funktion und W, W;, j € J, Zufallsgroflen mit Verteilung @), wobei die W;
(j € J) unabhéngig seien. Dann gilt folgende Gleichung fiir F:

(4.6) F(t) = [J(1 = F(t/t;-))

JjeJ
fiir alle ¢ € R. Analog gilt:

(47) F(t—) = [[(1 - Fit/t)
jeJ
fiir alle ¢t € R.

Zu (a): Seien nun J = {1,...,b} fiir ein b > 2 und @, F' wie oben.
Weiter seien u := Q(] — 00,0[), v := Q({0}) und w := Q(]0, 00[). Dann
gilt u +v+ w = 1 und nach (4.7) u = w®. (4.6) liefert u +v = (w + v)°,
zusammen folgt w® + v = (w + v)’. In dieser Gleichung kénnen wir v als

v=1—u—w=1-—w’—w schreiben und erhalten die Gleichung

(4.8) 1—w=(1-uw’?’

fiir w. Nach Voraussetzung (Q # dp) ist 0 < w < 1, und im offenen Einheits-
intervall hat die Gleichung (4.8) nach Lemma 1.2.3 genau eine Losung, die
wir mit /3 bezeichnen. Nach Bemerkung 1.2.4 16st 8 die Gleichung f+3° = 1.
Damit ist w = Q(]0,00[) = 8, w+u=w +w’ =1 und v = 0.

Nun folgt fiir beliebiges ¢t < 0 unter Benutzung von (4.6):

POW <t{W <0) — w
_ f[l_Fff/tj_)

<
Il
—

P(W > t/t;|W > 0).

I
.:j@

<
Il
—
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Setzt man nun @~ = P(W € [W > 0), so gilt P(W € :[W < 0) = Uy Q>,
also

Q =BP(W € -[W > 0) + FP(W € |W < 0) = Q> + Uy Q>

Wir miissen nun noch zeigen, dass @~ die Gleichung (4.5) erfiillt. Sei dazu
t > 0. Dann erhélt man unter Verwendung von (4.6)

1-BQ(tisc) = 1—P(W >t)=F(t

(e ()

I (ﬁ+6b‘U<t>Q> ([f“m

i=1

b b
A1 (e (o o)

i=1 j=1 v

b b .
-ti(-rite ()

i=1 j=1 L)

b /

(5 (|

i=1 j=1 v

und dieses Ergebnis auch fiir ¢ = 0 durch Grenziibergang t | 0.

Umgekehrt ist nun zu zeigen, dass jedes ) der angegebenen Gestalt eine
Losung der Fixpunktgleichung (4.2) ist. Sei also Q = Q- + ﬂblU(t)Q> fiir
ein Wahrscheinlichkeitsmaf§ @)~ wie unter (a). F, F- seien die zugehorigen
Verteilungsfunktionen. Wir weisen nun die Giiltigkeit von (4.6) fiir F' nach.
Sei dazu zunéchst ¢ < 0 beliebig. Dann erhélt man unter Beachtung von
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Pyl = 0:

b
F(t) = BF.(t)+ 8 H(l — Fx(t/t;-))

j=1

b
= [[5-sF-(t/t;-)

j=1

b
= J[1- Br@/ti-)+ 8"

j—l
= Hl— (t/tj—).

Weiter gilt fiir ¢ > 0

b
F(t) = BR(t)+ 8" [ - Fait/t;—))

j=1
= 11—+ pFs(t)
= 1—5Q>(]t ool)

—

1=

_ ﬁl (1ﬁij1Q> @ fj’OOD)

7

b
= [J1-Fe/ti-

=1

11+~ 110 (|-

wobei man fiir die letzte Gleichheit beachte, dass fir i =1,...,b

F(t/ti=) = BQs(]— oo, t/ti) + B U@ (] — o0, t/t)
= BU»Q>( — oo, t/ti)

b
_ g t
=7 HQ> Gtz’fj’ooD

7j=1

gilt.

Zu (b): Nach (4.6) ist im Falle J = N insbesondere also F'(0—) = 0, denn
wire F'(0—) €]0, 1], so lieferte (4.6) F'(0) = 0 und damit einen Widerspruch
zur Isotonie von F. Es folgt dann wiederum aus (4.6) F'(0) = 1, also ist
@ = o und daher S < {d0}. Die umgekehrte Inklusion ist trivial. O
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Ebenso wie der Operator U eine Entsprechung auf dem Niveau der
Zufallsgrofien hat, hat auch die Gleichung (4.5) eine solche. Wéhlen wir
ndmlich in der Situation des Satzes fiir b := |J| < oo u.i.v. Zufallsgréfien
W, W;; (1 <4,5 <b) mit Verteilung (%5 + BQ~ (dabei sei @~ eine Vertei-
lung auf ]0, o), so gilt fiir alle ¢ > 0:

b
P (112?<Xb 121]12 bt jWij < t> B HP <1r§nji2btitjwi’j = t)
= Hl— (mmttW”>t>
b /
J=1

i=1

d.h. die Verteilungen @~ auf |0, c0[, die (4.5) erfiillen, sind genau die Ver-
teilungen Q- auf 0, col, fiir die 36y + Q- die Fixpunktgleichung

d
W = max min t;t;W; ;
1<i<b1<j<b

erfiillt, wobei wie iiblich W, W; ; u.i.v. mit Verteilung B260 + SQ~ seien.

4.3 Bestimmung von %?tl)ax im Fallet; =... =t <0
Die Bestimmung von §ii* im Falle £y = ... =1, <0 fiir 2 < b < oo ist nun

nicht mehr schwierig, denn die Sétze 2.1.2 und 4.2.2 liefern im schwierigeren
Fall ¢ < —1 fast unmittelbar den folgenden Satz:

4.3.1 Satz. Seien J = {1,...,b}, b > 2 undt; = ... = t, < 0, und g
bezeichne wie in Satz 4.2.2 die eindeutige Lisung der Gleichung x® +x =1
im offenen Einheitsintervall. Dann gelten die folgenden Aussagen:

(a) Ist |t;| <1, so gilt = ={do}
(a) Ist t1 = —1, so gilt Sy = {(1 = B)o_q + Bdg|a > 0}.

(c) Ist /€ := |t1] > 1, so definiert fiir jede Funktion fi : [1,¢[— R, die
rechtsseitig stetig und monoton wachsend mit limy_¢ f1(t) < g(f(1))
und 3° < fi(1) < 1 ist, die Verteilungsfunktion F, die durch

g°") <f+ ( )> falls t > 0,

49)  F(t) = GP, fallst =0 und f1(1) <1,
1, fallst =0 und fi(1) =1,

(1= F((~t/v€)-)), sonst,
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gegeben wird (wobei in der vierten Zeile der Definition auf die erste
Zeile der Definition zurickgegriffen wird und dort wie in Satz 2.1.2
n € 7 so zu wihlen ist, dass 1 < t/&" < £ ist), eine Verteilung
Qe gy
Umgekehrt hat jede Verteilung Q) € ?z)ax eine Verteilungsfunktion der
angegebenen Gestalt.
Beweis. Zu (a) und (b): Sei @ € (o Setzen wir § := t2 und g(z) =
(1—(1—2)° fir 0 <z <1,sogilt F(t) = g(F(t/¢)) fiir alle t € R (vgl.

(4.3)).
Im Falle ¢ < 1 gilt fiir jedes t > 0:

F(t) = g™ (F(t/¢") — 1.
n—oo
Die rechtsseitige Stetigkeit von F' liefert auch F'(0) = 1. Analog zum Fall
t > 0 sieht man auch F(¢) = 0 fiir alle t < 0 ein, also insgesamt F' = 1y o
und damit Q = dp.

Im Falle £ = 1 ist jeder Wert F'(¢) Fixpunkt von g, d.h. F'(¢) € {0,1-5,1}
fiir alle t € R. W sei eine Zufallsgrofie mit Verteilung Q. Ist W fast sicher
konstant, so muss W fast sicher = 0 sein. Ist W nicht fast sicher konstant,
so existieren immerhin reelle Zahlen ¢’ < a mit P(W € {d/,a}) = 1. Sind
Wi,...,Wy ~ W uiv., so gilt P(W € {—d’,—a}) = P(max;<j<p —W; €
{=d,—a}) =1, dh. {-d,—a} = {d,a}. Es folgt a’ = —a und W ~ (1 —
B)0—q+3d4. Umgekehrt kann man leicht nachrechnen, dass (1—3)0_q+3d, €
%E?)‘B‘X fiir alle a > 0 gilt.

Zu (c): Sei fy : [1,£]— R rechtsseitig stetig und monoton wachsend mit
lim ¢ f4(t) < g(f+(1)) und B° < f4+(1) < 1. Dann wird nach Satz 2.1.2
durch die Funktion

¢ (11 (&), fallst>o0,

(4.10) F(t) _ ae, falls t = 0 und f1(to) <1,
1, falls t = 0 und f4(t9) = 1,
0, sonst,

eine Verteilungsfunktion definiert, fiir deren korrespondierendes Wahrschein-
lichkeitsmaB Q gilt: Q € Ly ¢. Wir bezeichnen mit @)~ das Wahrscheinlich-
keitsmafl mit Verteilungsfunktion 5*1(13’ — 55’1[0700[). Dann ist Q = %5y +
BQ~. Also erfiilllt @~ die Gleichung (4.5). Nach Satz 4.2.2 ist dann Q- +
5bU(0Q> € g?;)ax 6Q~ —i—ﬁb]U(t)Q> hat aber gerade die in (4.9) angegebene
Verteilungsfunktion.

Umgekehrt ist nach Satz 4.2.2 jedes @ € I(IZ)""X darstellbar als SQ~ +
30Uy Q> mit einem Q- € 20(]0, oc]), fiir das 3°p + BQ> € Ly gilt. Dann
existiert eine Funktion fi mit den im Satz geforderten Eigenschaften, so
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dass die Verteilungsfunktion von %3y + SQ~ auf ]0,00[ von der in (4.9)
angegebenen Gestalt ist (vgl. dazu Abschnitt 2.1). Diese Verteilungsfunktion
stimmt aber auf [0, oo[ mit der Verteilungsfunktion von @ = Q=+ ﬁbU(t)Q>
tiberein, da Uy@x(] — 00,0[) = 1 gilt. Die Behauptung fiir F'|j_, o[ folgt
aus (4.6). Damit ist der Satz vollstéindig bewiesen. O

Teil (b) des Satzes sagt also aus, dass man die Verteilungsfunktionen
der Losungen der Fixpunktgleichung (4.2) mit t; = ... = t;, < —1 wie folgt
zusammensetzen kann: Man nimmt sich eine Funktion fi mit den im Satz
beschriebenen Eigenschaften und setzt diese wie im Satz 2.1.2 zur Vertei-
lungsfunktion einer Losung F' der Fixpunktgleichung (2.1) fort, allerdings
nur auf [0,00[. Im Gegensatz zur Fixpunktgleichung (2.1) kann man nun
nicht in der in Satz 2.1.2 angegebenen Weise unter Zuhilfenahme einer be-
liebigen Funktion f_ wie in letzterem Satz F|_. o konstruieren und F'
einfach aus F[j_ o und Fjg o[ zusammensetzen, sondern muss einen Zu-
sammenhang zwischen F ][0700[ und F h—oo,o[ respektieren, der die Wahl von
f— (bei gegebenem f; ) eindeutig macht.

Die letzte Frage, die wir uns in dieser Arbeit stellen, ist, ob die Losun-
gen P aus Satz 1.3.3 diesen Zusammenhang respektieren, also auch die
restriktivere Fixpunktgleichung (4.2) mit ¢, = ... = t;, = —+/ erfiillen.
Dieser Frage gehen wir im letzten Abschnitt dieser Arbeit nach.

4.4 Der Nachweis von P(W* € ) € {g'?s)ax

Fiir den Rest dieses Abschnitts seien b > 2 fest, § die eindeutige Losung der
Gleichung 2°4+2 = 1in]0,1[ und o := 1— 3. Dann hat die zugehorige Vertei-
lung P eine holomorphe Verteilungsfunktion ~*. Mit dem Verhalten der
Verteilungsfunktion A* auf der positiven Halbachse ist also auch schon das
Verhalten von A* auf der negativen Halbachse bestimmt. Die Holomorphie
der Verteilungsfunktion ldsst uns weiterhin annehmen, dass sie sich dort in
unserem Sinne gutartig verhélt, d.h. auch eine Losung der Gleichung (4.6)
ist.

Um zu beweisen, dass tatsichlich PV" e I(IZ)‘?‘X gilt, miissen wir nach
Satz 4.3.1

(4.11) B (t) = (1 e (-%))b

fiir alle ¢ < 0 zeigen.

Wie im Beweis von Satz 3.2.1 machen wir einen Potenzreihenansatz und
nehmen an, dass eine in einer kreisférmigen Umgebung U von 0 holomorphe
Losung h von (4.11) existiert, fiir die iiberdies h(0) = 1 — 8 = £° und
h'(0) =1 gilt. Wir schreiben h(z) = Y"7° (an2" (2 € U) und setzen §(z) :=
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(1—2)® (2 € €). Wir kénnen § in o entwickeln und erhalten die Darstellung
g9(z) = 22:0 cx(z — a)¥ (z € C). Eine Anwendung von (4.11) liefert:

ianz” = h(z) —«
n=1

k=1
b 00
— Ck(Z(_l)né- n/2a Zn)k
k=1 n=1
b

= Ck Z (—1)2?21 thé‘* Z?ZI TLj/Qan1 L ankzz?ZI n;

k=1 ni,...,n>1

b
= Z:(—l)"ffn/2 <Z Ck Z Apy " - -ank> 2"
n=1 k=1 ni+...4+ng=n

fiir z € U. Vermoge eines Koeffizientenvergleichs erhalten wir

b
an(l + (_1)n—1£—n/201) _ (_1)n£—n/2 (Z cr Z Ay * oo ank>
k=2

ni+...+ng=n

fiir alle n > 1. Beachtet man nun, dass § streng monoton fallend auf |0, 1]
ist, also §'(a) < 0, und §'(a)? = (§o §)'(a) = &, so erhilt man ¢; = —/C.
Damit liefert der Koeffizientenvergleich im Falle n = 1 die leere Bedingung
0 = 0 und im Falle n > 2 die Rekursionsformel

1)ng—n/2
i = - 2_1” (ch 3 )

ni+...+ng=n

An dieser Darstellung erkennt man ebenso wie im Beweis von Satz 3.2.1,
dass die Potenzreihe Y >  a, 2" auf ganz C konvergiert. h ist also eine ganze
Funktion; zweimalige Anwendung der Identitét (4.11) liefert, dass h auch die
Gleichung (2.3) erfiillt. Nun kann man weiterschliefen wie im Beweis von
Satz 3.2.1 und erhilt den folgenden Satz:

4.4.1 Satz. Seienb>2,g:[0,1] — [0,1], x +— (1— (1 —2)")°, £ := ¢'(a)
fiir den eindeutigen Fixpunkt a von g in 0, 1] und W* zu b wie im Satz 1.3.3
gewdhlt. Dann gilt PV Smax d.h. W* erfillt die Fizpunktgleichung

< max —/EW; = \/glrilligbm,

1<z<b

wobei W1, ..., Wy unabhdngige, wie W wverteilte Zufallsgrifsen seien.
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