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2.1.1 Bedingungen für die Existenz von Momenten . . . . . 29
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Einleitung

Die vorliegende Arbeit behandelt gewisse stochastische Maximin-Fixpunkt-
gleichungen. Das sind Gleichungen des Typs

(∗) X
d= f(X1,X2, . . .)

mit unabhängigen, identisch verteilten Zufallsgrößen X1,X2, . . ., die alle-
samt dieselbe Verteilung wie die Zufallsgröße X haben, und einer Funktion
f : �� −→ �, die ein aus Maxima und Minima zusammengesetzter Aus-
druck ist. Dabei benutzen wir für Zufallsgrößen X und Y die Schreibweise

X
d= Y :⇐⇒ X ∼ Y :⇐⇒ PX = P Y ,

wobei hier und überall dort in dieser Arbeit, wo Zufallsgrößen auftreten,
unterstellt wird, dass diese auf einem geeigneten, nicht näher spezifizierten
Wahrscheinlichkeitsraum (Ω,A, P ) definiert sind. Allgemeinere Varianten
der Gleichung (∗) erhält man, indem man z.B. einen Parameter θ aus einer
geeigneten Paramtermenge Θ einführt oder eine von der Folge (Xi)i≥1 un-
abhängige Folge (T1, T2, . . .) von Zufallsgrößen mit vorgegebenem Abhängig-
keitsverhältnis in die Gleichung einbaut. Auf eine Verallgemeinerung der
letzteren Art wird in dieser Arbeit nur kurz in Abschnitt 2.2.2 eingegangen.

Ein Beispiel für eine stochastische Fixpunktgleichung ist also:

(∗∗) X
d= max

1≤i≤n
min

1≤j≤mi

Xi,j

mit Zahlen n,m1, . . . ,mn ∈ �. In weiten Teilen dieser Arbeit werden wir
eine ähnliche Gleichung betrachten, die aus (∗∗) hervorgeht, indem man sie
mit einem Parameter ξ ∈ ]1,∞[ skaliert:

(∗ ∗ ∗) X
d= ξ · max

1≤i≤n
min

1≤j≤mi

Xi,j .

Gleichungen der Typen (∗∗) oder (∗ ∗ ∗) treten z.B. im Kontext von
Spielbäumen auf, die zur Analyse von Spielen auf der Basis vollständiger
Informationen benutzt werden. In einem solchen Spiel – wie z.B. Schach –
spielen zwei Spieler – nennen wir sie Weiß und Schwarz – gegeneinander.
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Sie starten in einer Grundstellung und ziehen abwechselnd (beginnend mit
Spieler Weiß), wobei jeder Spieler in jeder Runde b ≥ 2 Spielzüge zur Aus-
wahl hat. Nach 2k Zügen (k ≥ 0) wird eine von b2k Endstellungen erreicht,
die allesamt eine Bewertung in Form einer reellen Zahl tragen. Spieler Weiß
möchte nach 2k Zügen eine Stellung mit möglichst hoher Bewertung er-
reichen, Spieler Schwarz eine Stellung mit möglichst niedriger Bewertung.
Dabei ist das Spiel nach 2k Zügen nicht notwendigerweise beendet; es wird
dann lediglich eine Bewertung der Spielstellung vorgenommen.

Die möglichen Züge und die sich ergebenden Spielstellungen können
durch einen b-adischen Baum der Höhe 2k dargestellt werden. Jedes Blatt
des Baums wird mit dem Wert der durch das Blatt repräsentierten Endstel-
lung markiert. An allen inneren Knoten gerader Höhe (insbesondere an der
Wurzel, die die Höhe 0 hat) befindet sich die Markierung ∨, an allen Knoten
ungerader Höhe die Markierung ∧. Der Wert des Baums an einem inneren
Knoten wird durch das Maximum der Werte der ihm nachfolgenden Knoten
gegeben, falls der Knoten mit ∨ markiert ist, und durch das Minimum der
Werte der ihm nachfolgenden Knoten, falls der Knoten mit ∧ markiert ist.
Der Wert an der Wurzel heißt auch Wert des Spiels. Die Markierung mit
∨ und ∧ entspricht dem Willen der Spieler, den Zug auszuführen, der den
Wert des Spiels maximiert bzw. minimiert.

Als Beispiel soll ein Schachrechner angeführt werden, der eine vorliegen-
de Stellung – nicht notwendigerweise die Ausgangsstellung im Schachspiel –
analysiert. Der Rechner kann bis in eine Tiefe von 2k, k ≥ 0, alle möglichen
Züge beider Kontrahenten durchspielen und bewertet die dann entstehen-
den Stellungen. Eine mögliche (wenn auch sehr einfache Bewertung) ist die
folgende:
Eine Endstellung wird mit

• 1 bewertet, falls es sich um eine Stellung handelt, in der Schwarz
schachmatt gesetzt ist,

• 0 bewertet, falls weder Spieler Weiß noch Spieler Schwarz schachmatt
gesetzt ist,

• −1 bewertet, falls Spieler Weiß schachmatt gesetzt ist.

Feinere Bewertungen ergeben sich, wenn man in dem Falle, dass noch keiner
der beiden Spieler matt gesetzt ist, eine Bewertung mit einer Zahl ∈ [−1, 1]
vornimmt, die größer ist, je besser die Stellung für Spieler Weiß ist.

Wir betrachten in dieser Arbeit Bäume mit zufälliger Bewertung der
Blätter, d.h. Bäume, deren Blätter mit u.i.v. Zufallsgrößen V1, . . . , Vb2k mar-
kiert sind. Dann ist der Wert des Maximinbaums ebenfalls eine Zufallsgröße,
die wir mit Wk für einen Baum der Höhe 2k bezeichnen. Für k → ∞ konver-
giert Wk in Verteilung. Die Grenzverteilung erfüllt dann notwendigerweise
eine Fixpunkgleichung vom Typ (∗∗). Für den Fall, dass die Zufallsgrößen
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V1, . . . , Vb2k eine Verteilungsfunktion F haben, die auf {0 < F < 1} ste-
tig und streng monoton wachsend ist, haben Ali Khan, Devroye und Nei-
ninger gezeigt, dass die Folge (Wk)k∈� nach geeigneter Transformation in
Verteilung gegen eine Zufallsgröße W ∗ mit stetiger Verteilungsfunktion kon-
vergiert. W ∗ erfüllt dann eine Fixpunktgleichung vom Typ (∗ ∗ ∗) (siehe
[AKN]).

Diese Ergebnisse werden in Kapitel 1 zusammengetragen. Dabei steht
das Konvergenzergebnis von Ali Khan, Devroye und Neininger im Fokus
dieser Arbeit. An dieses Ergebnis anschließend stellen sich mehrere Fragen:

1. Wie sieht die Lösungsmenge der im Satz auftretenden Fixpunktglei-
chung (einem Spezialfall der Gleichung (∗ ∗ ∗)) aus?

2. Kann man die Verteilung von W ∗ bestimmen?

3. Ist die Verteilung von W ∗ λλ-stetig? Wenn ja, gibt es eine C∞-Version
der λλ-Dichte ?

4. Welche Momente von W ∗ existieren?

Ziel dieser Arbeit ist es nun einerseits, diese Fragen zu beantworten. Dies
soll über einen Ansatz erfolgen, der stochastische Fixpunktgleichungen in
den Vordergrund stellt. Andererseits sollen einige allgemeine Feststellungen
über stochastische Maximin-Fixpunktgleichungen gemacht werden.

Kapitel 2 beschäftigt sich mit dieser allgemeinen Untersuchung stochasti-
scher Maximin-Fixpunktgleichungen (und geeigneter Verallgemeinerungen).
Mit Satz 2.1.2 liefert es die Antwort auf die erste Frage. Allgemeine Unter-
suchungen über die Existenz von Momenten von Lösungen der betrachteten
Fixpunktgleichungen liefern den Satz 2.1.6, der insbesondere zeigt, dass alle
Momente von W ∗ endlich sind. Schließlich zeigt Satz 2.2.6, dass die analy-
tische Transformierte von W ∗ auf ganz � endlich ist.

Kapitel 3 widmet sich in erster Linie der Beantwortung der zweiten und
dritten Frage. Die Sätze 3.1.4 und 3.2.1 lösen diese beiden Fragen. Dabei
nimmt die stochastische Fixpunktgleichung für W ∗ eine Schlüsselrolle bei
der Bestimmung der Verteilung von W ∗ ein.

In Kapitel 4 schließlich wird eine weitere Klasse stochastischer Fixpunkt-
gleichungen betrachtet. Teile der Betrachtungen sind einer noch nicht er-
schienenen Arbeit von Alsmeyer und Rösler (siehe [AR]) entnommen. Die
dort betrachteten Fixpunktgleichungen werden mit Gleichungen des Typs
(∗ ∗ ∗) in Verbindung gebracht.

Für die Auswahl des Diplomarbeitsthemas und die Betreuung während der
Entstehungsphase möchte ich Herrn Prof. Dr. G. Alsmeyer danken. Des Wei-
teren möchte ich allen danken, die mir bei der Fertigstellung dieser Arbeit
auf die eine oder andere Weise behilflich waren.



Kapitel 1

Maximinbäume

In diesem Kapitel führen wir zunächst b-adisch verzweigte Maximinbäume
ein (Abschnitt 1.1) und untersuchen dann das asymptotische Verhalten des
Wertes eines zufällig bewerteten b-adisch verzweigten Maximinbaumes. Dies
geschieht in erster Linie in Satz 1.3.3. Um diesen Satz beweisen zu können,
benötigen wir einige analytische Hilfsmittel, die im zweiten Abschnitt des
Kapitels bereitgestellt werden.

1.1 Maximinbäume

1.1.1 Definition. Gegeben sei ein vollständig b-adisch verzweigter Baum
der Höhe 2k, k ∈ �0. Jeder Knoten mit gerader Höhe < 2k, insbesondere
also die Wurzel des Baums, sei mit ∨ markiert, jeder Knoten mit ungerader
Höhe sei mit ∧ markiert. Jedes der b2k Blätter des Baums sei mit einer Zahl
markiert. Einen solchen Baum nennen wir (b-adisch verzweigten) Maximin-
baum (der Höhe 2k).

Der Wert des Maximinbaums an einem Blatt wird durch die Zahl gege-
ben, die das Blatt markiert. Der Wert des Maximinbaums an einem Knoten
κ der Höhe < 2k sei das Maximum der Werte des Maximinbaums an den
Nachfolgerknoten von κ, falls κ die Marke ∨ trägt, und das Minimum der
entsprechenden Werte, falls κ die Marke ∧ trägt. Mit dem Wert des Maxi-
minbaums bezeichnen wir den Wert des Maximinbaums an der Wurzel.

Ist nun (Wi)1≤i≤b2k eine Familie u.i.v. Zufallsgrößen und wird jedes Blatt
des oben beschriebenen Baums von einem der Wi markiert – und zwar ver-
schiedene Blätter von verschiedenen Wi –, so nennen wir den entstehenden
Baum einen zufällig bewerteten (b-adisch verzweigten) Maximinbaum (der
Höhe 2k). Die Verteilung von W1 heißt Startverteilung des Maximinbaums.
Bezeichnet F die Verteilungsfunktion von W1 und ist F auf {0 < F < 1} ste-
tig und streng monoton wachsend, so sprechen wir von einem Maximinbaum
im Pearlschen Modell.
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Die obige Abbildung zeigt einen binären Maximinbaum der Höhe 2. Unter
jedem inneren Knoten ist jeweils der Wert des Baums an diesem Knoten
dargestellt.
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Diese Abbildung zeigt einen zufällig bewerteten Maximinbaum der Höhe
und des Verzweigungsgrades 2.

Den Rest des Kapitels beschäftigen wir uns mit der Verteilung des Wertes
eines zufällig bewerteten Maximinbaums, insbesondere in Abschnitt 1.3 mit
dem asymptotischen Verhalten dieser Verteilung beim Grenzübergang k →
∞. Bevor wir eine grundsätzliche Feststellung hinsichtlich der Verteilung
des Wertes eines zufällig bewerteten Maximinbaums machen, führen wir
eine Notation ein:

1.1.2 Notation. Sei X �= ∅ eine Menge und g : X −→ X eine Funktion.
Dann setzen wir

g◦(0) := idX

und
g◦(k+1) := g ◦ g◦(k) (k ∈ �0).

Ist g eine Bijektion auf X, so bezeichnen wir mit g◦(−1) die Umkehrfunktion
von g auf X und setzen weiter

g◦(−k) :=
(
g◦(−1)

)◦(k)

für k ∈ �.

1.1.3 Bemerkung. Sei b ≥ 2 fest und g : � −→ �, x �−→ (
1 − (1 − x)b

)b.
Für jedes k ∈ �0 sei Wk der Wert eines zufällig bewerteten Maximinbaums
der Höhe 2k mit Verzweigungsgrad b. Alle Wk haben die Startverteilung
L(W0). Weiter sei Fk die zu Wk gehörige Verteilungsfunktion (k ∈ �0).
Dann gilt für jedes k ≥ 0:

Fk = g◦(k) ◦ F0,

was man durch Induktion nach k beweisen kann.
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1.2 Analytische Hilfsresultate

In diesem Abschnitt wollen wir zunächst ein allgemeines Lemma über das
Fixpunktverhalten reeller Funktionen beweisen. Das Lemma ist zwar sehr
einfach, wird allerdings im Verlaufe der Arbeit so häufig benötigt, dass es
zumindest einmal herausgestellt werden soll. Anschließend wird die Aussage
des Lemmas in einem weiteren Lemma unter der Zusatzvoraussetzung der
stetigen Differenzierbarkeit der betrachteten Funktionen verschärft. Danach
wenden wir uns den speziellen Funktionen zu, die in Bemerkung 1.1.3 auf-
treten, und diskutieren ihr Verhalten im Einheitsintervall. Das Wissen über
dieses Verhalten erweist sich insbesondere in Abschnitt 1.3 als nützlich.

1.2.1 Allgemeine Resultate zum Fixpunktverhalten reeller
Funktionen

1.2.1 Lemma. Seien I ⊆ � ein Intervall und g : I −→ � eine stetige, mo-
noton wachsende Funktion. Weiter seien c0 < c1 zwei aufeinander folgende
Fixpunkte von g, d.h. es gelte g(ci) = ci für i = 0, 1 und g(x) �= x für alle
x ∈ ]c0, c1[. Dann gelten die folgenden Aussagen:

(a) Es gilt entweder g(x) < x für alle x ∈ ]c0, c1[ oder g(x) > x für alle
x ∈ ]c0, c1[.

(b) g bildet [c0, c1] surjektiv auf sich selbst ab; ist g zusätzlich streng mo-
noton wachsend, so bildet g [c0, c1] bijektiv auf sich selbst ab.

(c) Ist g < id auf ]c0, c1[, so gilt: g◦(n)(x) ↓ c0 für n → ∞ gleichmäßig in
x auf jedem kompakten Intervall [c0, c] ⊆ [c0, c1[.

(d) Ist g > id auf ]c0, c1[, so gilt: g◦(n)(x) ↑ c1 für n → ∞ gleichmäßig in
x auf jedem kompakten Intervall [c, c1] ⊆ ]c0, c1].

Beweis. (a) folgt aus dem Zwischenwertsatz. Die Surjektivität unter (b)
folgt ebenfalls aus dem Zwischenwertsatz; ist g zusätzlich streng monoton
wachsend, so ist g auch injektiv auf [c0, c1], also insgesamt bijektiv. Für den
Nachweis von (c) nehmen wir nun g < id auf ]c0, c1[ an. Dann gilt für jedes
n ∈ �:

g◦(n)(c) ≥ g◦(n+1)(c) ≥ g◦(n+1)(c0) = c0,

d.h. die Folge (g◦(n)(c))n∈� ist monoton fallend und nach unten gegen c0

beschränkt, also konvergent. Für q := limn→∞ g◦(n)(c) gilt dann:

g(q) = g
(

lim
n→∞ g◦(n)(c)

)
= lim

n→∞ g◦(n+1)(c) = q,

also ist q ein Fixpunkt von g. Es kommt nur c0 in Frage. Weiter gilt für jedes
x ∈ [c0, c] und n ∈ �:

c0 ≤ g◦(n)(x) ≤ g◦(n)(c) ↓
n→∞

c0,
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d.h. wir erhalten (c). Der Nachweis von (d) kann analog zum Beweis von (c)
geführt werden.

Ein weiteres Lemma, das sich auch im Hinblick auf spätere Überlegun-
gen als nützlich erweist und deshalb als eigenständiges Ergebnis formuliert
ist, beleuchtet die Konvergenzgeschwindigkeit von (g◦(n)(c))n∈� gegen den
entsprechenden Fixpunkt.

1.2.2 Lemma. Seien I ⊆ � ein Intervall und g : I −→ � stetig differen-
zierbar und monoton wachsend auf I. Weiter seien q0, q1 zwei aufeinander
folgende Fixpunkte von g in I, d.h. g(q0) = q0 < q1 = g(q1) und g(x) �= x
für alle x ∈ ]q0, q1[. Sei c ∈ ]q0, q1[. Nach Lemma 1.2.1 ist g > id auf ]q0, q1[
oder g < id auf ]q0, q1[. Es gelten überdies die folgenden Aussagen:

(a) Im Falle g > id auf ]q0, q1[ existiert für jedes γ > g′(q1) eine Konstante
Mγ > 0, so dass ∣∣∣q1 − g◦(n)(x)

∣∣∣ ≤ Mγ · γn

für alle x ∈ [c, q1] und alle n ∈ � gilt.

Ist g′(q1) > 0, so existiert für jedes 0 ≤ β < g′(q1) eine Konstante
mβ > 0, so dass ∣∣∣q1 − g◦(n)(x)

∣∣∣ ≥ mβ · βn

für alle x ∈ [q0, c] und alle n ∈ � ist.

(b) Im Falle g < id auf ]q0, q1[ existiert für jedes γ > g′(q0) eine Konstante
Mγ > 0, so dass ∣∣∣q0 − g◦(n)(x)

∣∣∣ ≤ Mγ · γn

für alle x ∈ [q0, c] und alle n ∈ � gilt.

Ist g′(q0) > 0, so existiert für jedes 0 ≤ β < g′(q0) eine Konstante
mβ > 0, so dass ∣∣∣q0 − g◦(n)(x)

∣∣∣ ≥ mβ · βn

für alle x ∈ [c, q1] und n ∈ � ist.

Beweis. Es sei die Situation von (a) gegeben und γ > g′(q1) vorgelegt. Wir
wählen δ > 0 so klein, dass g′(x) ≤ γ für alle x ∈ [q1 − δ, q1] gilt. Dies
ist möglich, da g stetig differenzierbar ist. Nach Lemma 1.2.1 konvergiert
g◦(n)(x) für n → ∞ gleichmäßig auf [c, q1] gegen q1, d.h. es existiert ein
n0 ∈ �, so dass g◦(n)(x) ∈ [q1 − δ, q1] für alle n ≥ n0 und alle x ∈ [c, q1] gilt.
Unter Benutzung der Identität

(
g◦(n)

)′
=

n−1∏
j=0

g′ ◦ g◦(j)
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erhält man nun für alle n ≥ n0 und x ∈ [c, q1]:

(
g◦(n)

)′
(x) ≤ γn−n0

n0−1∏
j=0

g′
(
g◦(j)(x)

)
≤

‖g′‖n0

[q0,q1]

γn0
· γn.

Insgesamt erhält man die Abschätzung

(1.1)
(
g◦(n)

)′
(x) ≤ M ′

γ · γn

für alle x ∈ [c, q1] und n ∈ �0, wobei

M ′
γ :=

{(‖g′‖[q0,q1] ∨ 1
)n0 γ−n0 , falls γ < 1 ist,(‖g′‖[q0,q1] ∨ 1
)n0 , falls γ ≥ 1 ist.

Setzt man Mγ := (q1 − c)M ′
γ , so erhält man für alle x ∈ [c, q1] und alle

n ∈ �0 unter Benutzung des Mittelwertsatzes der Differentialrechnung:

∣∣∣q1 − g◦(n)(x)
∣∣∣ = (q1 − x)

(
g◦(n)

)′
(ξ) ≤ Mγ · γn,

wobei ξ in diesem Kontext eine von x abhängige Zwischenstelle ∈ ]x, q1[⊆
[c, q1] bezeichnet.

Sei nun g′(q1) > 0 und 0 < β < g′(q1) (im Falle β = 0 ist nichts zu
zeigen). Dann wählen wir δ > 0 so klein, dass β ≤ g′(x) für alle x ∈ [q1−δ, q1]
gilt. Wählt man ein n1 ∈ �, so dass g◦(n1)(c) ∈ [q1 − δ, q1] ist, erhält man
ähnlich wie oben∣∣∣q1 − g◦(n)(x)

∣∣∣ ≥ ∣∣∣q1 − g◦(n)(c)
∣∣∣ =

∣∣∣q1 − g◦(n−n1)(g◦(n1)(c))
∣∣∣

=
(
q1 − g◦(n1)(c)

)
·
(
g◦(n−n1)

)′
(ξ)

≥
(
q1 − g◦(n1)(c)

)
· βn−n1 = cβ · βn

für alle x ∈ [q0, c] und n ≥ n1, wobei cβ := (q1 − g◦(n1)(c)) · β−n1 > 0
sei und ξ eine Zwischenstelle ∈ ]g◦(n1)(c), q1[ ist. Geht man von cβ zu einem
hinreichend kleinen mβ > 0 über, so kann man erreichen, dass die behauptete
Ungleichung für alle n ∈ �0 gilt.

Der Nachweis von (b) verläuft analog zum Nachweis von (a).

1.2.2 Kurvendiskussion der Funktionen x �−→ (
1 − (1 − x)b

)b

1.2.3 Lemma. Sei b ∈ �, b ≥ 2. Weiter sei g : [0, 1] −→ [0, 1], g(x) :=
(1 − (1 − x)b)b (x ∈ [0, 1]). Dann hat g genau einen Fixpunkt α in ]0, 1[.
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Beweis. g hat nach dem Zwischenwertsatz mindestens einen Fixpunkt in
]0, 1[, da g(0) = 0, g(1) = 1 ist und g eine verschwindende Ableitung sowohl
in 0 als auch in 1 besitzt.

Wir müssen also nur noch zeigen, dass g höchstens einen Fixpunkt in
]0, 1[ besitzt. Dazu betrachten wir die zweite Ableitung von g. Es gilt für
alle x ∈ [0, 1]:

(1.2) g′′(x) = b2(b − 1)(1 − x)b−2
(
1 − (1 − x)b

)b−2 (
(b + 1)(1 − x)b − 1

)
.

Hier ist für x ∈ ]0, 1[ genau dann g′′(x) = 0, wenn

(1 − x)b =
1

b + 1

gilt, d.h. nur für

x = 1 − b

√
1

b + 1
=: x0.

Dabei ist, wie man der Darstellung von g′′ in (1.2) ansieht, g′′ > 0 auf
]0, x0[, g′′ < 0 auf ]x0, 1[. Also kann g höchstens einen Fixpunkt α in ]0, 1[
besitzen.

1.2.4 Bemerkung. In der Situation von Lemma 1.2.3 gilt für b ≥ 2 und
dazugehöriges α:

(1 − α)b = α,

d.h. α ist der eindeutige Fixpunkt der Funktion x �−→ (1 − x)b in ]0, 1[.

Begründung. Für die Funktion g̃ : � −→ �, x �−→ (1 − x)b, gilt offenbar
g̃(0) = 1 und g̃(1) = 0. Darüber hinaus ist g̃ auf [0, 1] streng monoton
fallend, hat also genau einen Fixpunkt ζ in ]0, 1[. Wegen g = g̃ ◦ g̃ ist ζ auch
ein Fixpunkt von g in ]0, 1[. Daher impliziert die Eindeutigkeitsaussage in
Lemma 1.2.3 α = ζ.

Die Funktion g̃ steht im Zusammenhang zum Übergang P (W ∈ ·) �−→
P (−min1≤j≤b Wj ∈ ·) für stochastisch unabhängige, identisch wie W ver-
teilte Zufallsgrößen Wj . Es gilt nämlich für die Verteilungsfunktion F von
W und alle t ∈ �:

P

(
− min

1≤j≤b
Wj ≤ t

)
= P (W ≥ −t)b = g̃ (F ((−t)−)) .

Diese Beobachtung wird in Kapitel 4 wieder aufgegriffen.

1.2.5 Lemma. Seien b ∈ �− {1} und g : � −→ �, g(x) := (1 − (1 − x)b)b

(x ∈ �). Des Weiteren sei α die eindeutige Zahl in ]0, 1[ mit g(α) = α und
x0 wie in Lemma 1.2.3 die Nullstelle der zweiten Ableitung von g in ]0, 1[.
Dann ist α < x0 und g in einer Umgebung von α (nämlich ]0, x0[) konvex.
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0,6

1,2

0,4

0,8

0,4

0,2
0

0

x

10,8

Abbildung 1.1: Die Abbildung x �−→ (
1 − (1 − x)2

)2 mit Ableitung

Beweis. Wir zeigen, dass x0 ∈ ]α, 1[ ist. Dazu genügt es zu zeigen, dass
g(x0) > x0 ist. (Dies zeigt die Behauptung, denn es gilt g > id auf ]α, 1[ und
g < id auf ]0, α[ nach den Lemmata 1.2.1 und 1.2.3.) Es gilt nun:

g(x0) =
(
1 − (1 − x0)b

)b
=
(

1 − 1
b + 1

)b

.

Es ist also zu zeigen, dass für alle b ≥ 2

(
1 − 1

b + 1

)b

> 1 − b

√
1

b + 1

gilt. Für b = 4 gilt 1 − b
√

1/(b + 1) = 1 − 4
√

1/5 < e−1 < (4
5 )4 = (1 −

1
b+1)b. Wegen (1 − 1

b+1)b ↓ e−1 und 1 − b
√

1/(b + 1) ↓ 0 für b → ∞ folgt
die Behauptung für alle b ≥ 4. Für b = 2, 3 kann man die Behauptung
nachrechnen.

Der Funktionsverlauf der Abbildung x �−→ (1 − (1 − x)2)2 im Einheits-
intervall ist in Abbildung 1.1 dargestellt. Abbildung 1.2 auf Seite 11 zeigt
die Graphen der Funktionen x �−→ (1 − (1 − x)b)b für b = 2, 3, 5, 8, 13. Wie
man dort sieht, ähneln sich die Funktionsverläufe qualitativ. Die Funktionen
können durch den mit wachsendem b fallenden Fixpunkt ∈ ]0, 1[ unterschie-
den werden.



1.2. Analytische Hilfsresultate 11
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1

0,4
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0

Abbildung 1.2: Die Abbildungen x �−→ (
1 − (1 − x)b

)b für b = 2, 3, 5, 8, 13
(im Vergleich mit der Abbildung x �−→ x)

Der Beweis von Lemma 1.2.5 zeigt, dass man für jede Funktion x �→
(1 − (1 − x)b)b den zugehörigen Fixpunkt α ∈ ]0, 1[ nach oben durch 1 −
b
√

1/(b + 1) abschätzen kann. Wir interessieren uns nun auch für eine nicht-
triviale untere Schranke von α in ]0, 1[:

1.2.6 Lemma. In der Situation von Lemma 1.2.5 gilt b−
b

b−1 < α. Insgesamt
hat man damit die Abschätzungen

(1.3) b−
b

b−1 < α < 1 − b

√
1

b + 1
.

Beweis. Die zu beweisende Ungleichung kann man wie im Beweis von Lem-
ma 1.2.5 unter Zuhilfenahme der Äquivalenz

x < α ⇔ g(x) < x (für x ∈ ]0, 1[)

prüfen. Die rechte Seite der Äquivalenz erhält man (mit x = b−
b

b−1 ) für
b = 2, . . . , 5 durch explizite Berechnung. Für alle b ≥ 6 greift die folgende
Abschätzung (dabei beachte man, dass g streng monoton wachsend, (1 −
(1 − 1/b)b)b≥2 fallend und (( b−1

√
b)−1)b≥2 wachsend ist):

b

√
g
(
b−

b
b−1

)
< b

√
g

(
1
b

)
= 1 − (1 − 1/b)b <

2
3

<
(

b−1
√

b
)−1

.

Erheben wir diese Ungleichung in die b-te Potenz, so erhalten wir die be-
hauptete Ungleichung also auch für alle b ≥ 6.
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Nachdem wir α eingeschachtelt haben, wollen wir nun noch eine obere
Schranke für g′(α) finden, die sich im Hinblick auf Satz 2.2.6 als wichtig
erweist.

1.2.7 Folgerung. In der Situation von Lemma 1.2.5 gelten die folgenden
Aussagen:

(a) ‖g′‖[0,1] < b
(
1 − 1

b+1

)b−1
b
√

b,

(b) g′(α) < b.

Beweis. Es gilt g′(x) = b2
(
1 − (1 − x)b

)b−1 (1 − x)b−1 für alle x ∈ [0, 1].
Nach Lemma 1.2.3 nimmt die Funktion g′ ihr Maximum in 1− (1/(b+1))1/b

an, d.h. es gilt

‖g′‖[0,1] = b2

(
1 − 1

b + 1

)b−1
(

b

√
1

b + 1

)b−1

< b

(
1 − 1

b + 1

)b−1
b
√

b.

Des Weiteren gilt stets g′(α) < ‖g′‖[0,1], was wegen (a) und (1− 1
b+1 )b−1 b

√
b ↓

e−1 (b → ∞) für b ≥ 3 die Aussage (b) liefert. Für b = 2 gilt g′(α) = 4α =
2 · (3 −√

5) < 2.

1.3 Konvergenzergebnisse für den Wert eines Ma-
ximinbaums

1.3.1 Bemerkung. Seien Wk der Wert eines zufällig bewerteten b-adisch
verzweigten Maximinbaums der Höhe 2k und Fk die zugehörige Verteilungs-
funktion, k ≥ 0, wobei alle betrachteten Maximinbäume dieselbe Startver-
teilung L(W0) haben. Dann gilt für t ∈ � mit der entsprechenden Funktion
g aus Abschnitt 1.1 und dem dazugehörigen Fixpunkt α ∈ ]0, 1[:

Fk(t) = g◦(k)(F0(t)) −→
k→∞




0, falls F0(t) < α,

α, falls F0(t) = α,

1, falls F0(t) > α,

man vergleiche dazu auch Lemma 1.2.1. Setzt man also a := inf{t ∈ � :
F0(t) ≥ α}, b := sup{t ∈ � : F0(t) ≤ α} und

G(t) :=




0, für t < a,

α, für t ∈ [a, b[,
1, für t ≥ b,

wobei im Falle a = b das Intervall [a, b[ definitionsgemäß als leere Menge
aufzufassen ist, so konvergiert Wk für k → ∞ in Verteilung gegen die zu G
korrespondierende Wahrscheinlichkeitverteilung αδa + (1 − α)δb.
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Im Modell von Pearl (vgl. [P]) werden die Werte an den Knoten gemäß
einer Verteilung Q generiert, deren Verteilungsfunktion FQ im Bereich 0 <
FQ < 1 stetig und streng monoton wachsend ist. In diesem Fall gilt stets
a = b und es liegt die stochastische Konvergenz der Folge (Wk)k≥0 gegen a
vor. Dabei ist a die eindeutige reelle Zahl mit F0(a) = α.

1.3.2 Beispiel. Zur Illustration soll ein ebenfalls von Pearl in der bereits
zitierten Arbeit gegebenes Beispiel angeführt werden. Wir betrachten einen
Stromkreis mit zwei in Reihe geschalteten Verbrauchern (etwa Glühbirnen).
Mit T1 und T2 bezeichnen wir die Lebensdauer dieser beiden Komponen-
ten. Der Stromkreis wird unterbrochen, falls einer der beiden Verbraucher
ausfällt, d.h. zum Zeitpunkt T1 ∧ T2. Schaltet man nun zwei solcher Rei-
henschaltungen parallel, so hat man vier Verbraucher mit Lebensdauern
T1, . . . , T4:

�

N1 N2

N3 N4

T1

T3 T4

T2

�

Abbildung 1.3: Netzwerkelement N

Dieser Stromkreis fällt zum Zeitpunkt (T1 ∧ T2) ∨ (T3 ∧ T4) aus, wenn wir
unterstellen, dass die Lebensdauer der Verbraucher unabhängig von der an-
gelegten Stromstärke ist. Nun kann man in Abbildung 1.3 N1, N2, N3 und
N4 durch Netzwerkelemente wie N selbst ersetzen und diesen Einsetzungs-
prozess iterieren.

Allgemeiner betrachten wir eine elektrische Schaltung N , die aus b ≥ 2
parallel geschalteten Netzwerken N1, . . . , Nb besteht, die wiederum jeweils
aus b in Reihe geschaltenen Netzwerken N(i,1), . . . , N(i,b) (1 ≤ i ≤ b) be-
stehen. Jede Schaltung N(i,j) (1 ≤ i, j ≤ b) sei wieder von der gleichen
Gestalt wie N mit Verbrauchern N(i,j,l,m) (l,m ∈ {1, . . . , b}). Wir nehmen
diese Einsetzung insgesamt (k − 1)-mal vor (k ≥ 1). N besteht dann aus
b2k Netzwerken Nν , ν ∈ {1, . . . , b}2k. Die Lebensdauer des Netzwerkes Nν

sei mit Tν bezeichnet. Wir nehmen an, dass die Tν u.i.v. Zufallsgrößen mit
Verteilung Exp(ϑ) (ϑ > 0) sind, und dass die Lebensdauer eines Netzwerkes
nicht von der Stärke des durchfließenden Stroms abhängt. Diese Situation
kann man mit einem zufällig bewerteten b-adischen Maximinbaum der Höhe
2k modellieren. Wk bezeichne den Wert dieses Baums, dessen Blätter mit
den Tν markiert sind. Dann ist die Lebensdauer von N gleich Wk und nach
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Bemerkung 1.3.1 gilt:

Wk
P−→

k→∞
− log(1 − α)

ϑ
,

wobei 1 − α die eindeutige Lösung der Gleichung xb + x = 1 im offenen
Einheitsintervall sei.

Wir interessieren uns in dieser Arbeit allerdings nicht in erster Linie für
die Konvergenz gegen (Ein- bzw. Zweipunkt-)Verteilungen, die von Pearl
in der Arbeit [P] bemerkt wurde, sondern für die Frage, ob man durch
geeignete Transformation der Folge (Wk)k∈�0 Verteilungskonvergenz gegen
eine Zufallsgröße mit λλ-stetiger Verteilung erreichen kann. In einem Spezial-
fall, wenn nämlich die Zufallsgrößen, die die Blätter des Baums markieren,
rechteckverteilt sind, zeigt der folgende Satz von Ali Khan, Devroye und
Neininger, der der Arbeit [AKN] entnommen ist, dass man durch Skalie-
ren mit einem geeigneten Parameter die gewünschte Verteilungskonvergenz
erreichen kann:

1.3.3 Satz. Für k ≥ 0 bezeichne Wk den Wert eines zufällig bewerteten b-
adisch verzweigten Maximinbaums der Höhe 2k mit Startverteilung L(W0) =
R(−α, 1 − α), wobei α der eindeutige Fixpunkt der Funktion g : � −→ �,

g(x) :=




0, für x ≤ 0,(
1 − (1 − x)b

)b
, für 0 ≤ x ≤ 1,

1, für x ≥ 1,

in ]0, 1[ (vgl. dazu Lemma 1.2.3) sei. Des Weiteren seien Fk die Verteilungs-
funktion von Wk (k ≥ 0) und ξ := g′(α). Dann gilt

ξk · Wk
d−→ W ∗ für k → ∞

für eine Zufallsgröße W ∗ mit λλ-stetiger Verteilung, die die stochastische
Fixpunktgleichung

(1.4) W
d= ξ · max

1≤i≤b
min

1≤j≤b
Wi,j

mit einer Familie (Wi,j)1≤i,j≤b unabhängiger Zufallsgrößen mit W
d= Wi,j

für 1 ≤ i, j ≤ b erfüllt.

Bevor wir nun in den Beweis einsteigen, wollen wir zunächst auf das
Pearlsche Modell eingehen. Wie in Bemerkung 1.3.1 bereits ausgeführt ist,
werden die Werte an den Blättern im Pearlschen Modell gemäß einer Ver-
teilung generiert, deren Verteilungsfunktion F im Bereich 0 < F < 1 ste-
tig und streng monoton wachsend ist. Jede Zufallsgröße W0 mit einer sol-
chen Verteilungsfunktion kann man ordnungstreu so transformieren, dass sie
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R(−α, 1−α)-verteilt ist. Bezeichnet man nämlich mit F−1 die Umkehrfunk-
tion von F : {0 < F < 1} −→ ]0, 1[, so gilt für 0 < t < 1:

P (F (W0) ≤ t) = P
(
W0 ≤ F−1(t)

)
= F

(
F−1(t)

)
= t,

d.h. F (W0)
d= R(0, 1) und damit F (W0) − α

d= R(−α, 1 − α). Folglich kann
auf das so transformierte W0 Satz 1.3.3 angewandt werden. Wir werden also
im Folgenden in erster Linie den Fall betrachten, in dem die Werte in den
Blättern gemäß der Rechteckverteilung R(−α, 1 − α) generiert sind.

Unter Zuhilfenahme der Lemmata 1.2.3, 1.2.5 und 1.2.6 wollen wir nun
einen Beweis von Satz 1.3.3 liefern:

Beweis von Satz 1.3.3. Es ist für t ∈ �

P (ξk · Wk ≤ t) = P (Wk ≤ t/ξk)

= g◦(k)
(
P (W0 ≤ t/ξk)

)
= g◦(k)

(
P (W0 + α ≤ α + t/ξk)

)
= g◦(k)(α + t/ξk).

Wir werden für den Nachweis der Verteilungskonvergenz zeigen, dass gk :=
g◦(k)(α + ·/ξk) für k → ∞ gegen eine monoton wachsende, stetige Funktion
h∗ mit limt→∞ h∗(t) = 1 und limt→−∞ h∗(t) = 0 konvergiert. Dazu weisen
wir zunächst die Konvergenz der gk nach.

Sei also t ∈ � und k0 ∈ � so groß, dass α + t/ξk ∈ ]0, x0[ für alle k ≥ k0

gilt. Ein solches k0 existiert, da α ∈ ]0, x0[ gilt (vgl. dazu Lemma 1.2.5).
Weil g konvex auf ]0, x0[ ist, gilt dann für alle k ≥ k0:

gk+1(t) = g◦(k+1)

(
α +

t

ξk+1

)

= g◦(k)

(
g

(
α +

t

ξk+1

))

≥ g◦(k)

(
g(α) + g′(α) · t

ξk+1

)

= g◦(k)

(
α +

t

ξk

)
= gk(t),

wobei in der dritten Zeile die Konvexität und Monotonie von g und in der
vierten Zeile die Gleichungen g(α) = α sowie g′(α) = ξ benutzt wurden.
Folglich ist für jedes t ∈ � die Folge (gk(t))k∈� schließlich wachsend (und
beschränkt gegen 1), also konvergent. Wir setzen h∗ := limk→∞ gk. Es gilt
0 ≤ h∗ ≤ 1.
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Des Weiteren existiert für jedes beschränkte Intervall I ⊆ � ein k0 ∈ �
mit

{
α + t/ξk : t ∈ I

} ⊆]0, x0[ für alle k ≥ k0. Damit ist (gk|I)k≥k0 eine
monoton wachsende Folge monoton wachsender Funktionen, mithin h∗ auf I
monoton wachsend. Da I als beliebiges beschränktes Intervall ⊆ � gewählt
war, ist h∗ damit auf ganz � monoton wachsend. Insbesondere existieren
q−∞ := limt↓−∞ h∗(t) und q∞ := limt↑∞ h∗(t). Es gilt q−∞, q∞ ∈ [0, 1].

Als nächstes zeigen wir, dass

(1.5) h∗(t) = g(h∗(t/ξ))

für alle t ∈ � gilt. Sei dazu t ∈ � beliebig. Dann ist

h∗(t) = lim
k→∞

g◦(k+1)(α + t · ξ−(k+1))

= g

(
lim

k→∞
g◦(k)

(
α +

t/ξ

ξk

))
= g (h∗(t/ξ)) .

Wir zeigen weiter, dass q−∞ = 0 und q∞ = 1 gilt. Dazu nutzen wir die
Funktionalgleichung von h∗ und die Stetigkeit von g wie folgt aus:

q∞ = lim
t↑∞

h∗(t) = lim
t↑∞

g (h∗(t/ξ)) = g

(
lim
t↑∞

h∗(t/ξ)
)

= g(q∞)

und analog
q−∞ = g(q−∞).

q∞ und q−∞ sind also Fixpunkte von g, mithin gilt q∞, q−∞ ∈ {0, α, 1}.
Für t > 0 ist g◦(k)(α + t/ξk) > α für alle k ∈ � und damit auch (da die
Folge schließlich wächst) h∗(t) > α. Die Monotonie von h∗ liefert q∞ >
α, also q∞ = 1. Den Beweis von q−∞ = 0 wollen wir genauso angehen;
allerdings fällt der Nachweis der Existenz eines t < 0 mit h∗(t) < α deutlich
schwieriger als der Nachweis der Existenz eines t > 0 mit h∗(t) > α aus, da
uns die Tatsache, dass die Folgen (gk(t))k∈� schließlich wachsen, hier nicht
in die Karten spielt, sondern vielmehr zusätzliche Probleme bereitet. Wir
versuchen also zunächst, in einer geeigneten Umgebung [α − ε, α + ε] von
α eine Majorante für g zu finden, deren Iterationen sich leicht berechnen
lassen. Dazu wählen wir

f(x) := α
(x

α

)ξ
für x ≥ 0.

Behauptung: (∗) Es gibt ein ε ∈ ]0, α[, so dass für alle x mit |x−α| ≤ ε gilt:

g(x) ≤ f(x).

Begründung: Zunächst einmal kann man feststellen, dass sowohl f als auch
g auf ]0, 1[ zweimal stetig differenzierbar sind, und es gelten:
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(i) g(α) = α = f(α),

(ii) g′(α) = ξ = f ′(α).

Eine Anwendung der Taylorschen Formel auf f und g liefert daher:

g(x) = α + ξ(x − α) +
1
2
g′′(α)(x − α)2 + r1(x)

sowie
f(x) = α + ξ(x − α) +

1
2
f ′′(α)(x − α)2 + r2(x)

für alle x in einer hinreichend kleinen Umgebung U von α, wobei r1, r2

Funktionen mit limx→α, t�=α(x−α)−2ri(x) = 0 (i = 1, 2) auf U sind. Um die
Behauptung nachzuweisen, genügt es daher zu zeigen, dass g′′(α) < f ′′(α)
ist. Dazu erinnern wir uns daran, dass für alle x ∈ ]0, 1[

g′′(x) = b2(b − 1)(1 − x)b−2
(
1 − (1 − x)b

)b−2 (
(b + 1)(1 − x)b − 1

)
ist, und notieren, dass

f ′′(x) =
(ξ − 1)ξ

α

(x

α

)ξ−2

für alle x > 0 gilt. Wir müssen also zeigen, dass für jedes b ≥ 2

(∗∗) b2(b − 1)(1 − α)b−2(1 − (1 − α)b)b−2
(
(b + 1)(1 − α)b − 1

)
<

(ξ − 1)ξ
α

gilt. Wir setzen

ξ = g′(α) = b2(1 − (1 − α)b)b−1(1 − α)b−1 = b2α(1 − α)b−2

in die Ungleichung (∗∗) ein, und erhalten unter Benutzung der Gleichung
(1 − α)b = α:

(∗∗) ⇐⇒ b2(b − 1)(1 − α)b−2
(
1 − (1 − α)b

)b−2 (
(b + 1)(1 − α)b − 1

)
<
(
b2α(1 − α)b−2 − 1

)
b2(1 − α)b−2

⇐⇒ (b − 1)(1 − α)b−2 ((b + 1)α − 1) < b2α(1 − α)b−2 − 1
⇐⇒ 1 + (1 − α)b−1 − b(1 − α)b−2 < 0
⇐⇒ 1 − b(1 − α)b−1 < 0

⇐⇒ b−
b

b−1 < α.

Die Gültigkeit dieser Ungleichung folgt aber direkt aus (1.3). Insgesamt ha-
ben wir also die Zwischenbehauptung gezeigt.



18 Kapitel 1. Maximinbäume

Wir können nun den Beweis von limt→−∞ h∗(t) = 0 führen. Sei dazu
−ε ≤ t ≤ 0. Dann ist (g◦(k)(α + t/ξk))k∈�0 nach dem bisher Gezeigten
wachsend, also gilt g◦(k)(α + t/ξk) ∈ [α − ε, α] für alle k ≥ 0. Folglich ist
auch g◦(j)(α + t/ξk) ∈ [α − ε, α] für alle 0 ≤ j ≤ k < ∞. Damit können wir
unsere Zwischenbehauptung wie folgt einsetzen:

gk(t) = g◦(k)

(
α +

t

ξk

)

≤ f◦(k)

(
α +

t

ξk

)

= α

(
1 +

t

αξk

)ξk

−→
k→∞

α exp
(

t

α

)
.

Also gilt

h∗(t) ≤ α exp
(

t

α

)
für alle −ε ≤ t ≤ 0. Insbesondere existiert ein t < 0 mit h∗(t) < α; daher
muss q−∞ = 0 gelten.

Wir können nun noch weiteren Nutzen aus der Abschätzung (∗) ziehen.
Für alle t ∈ [0, ε], die so klein sind, dass α exp(t/α) ≤ α + ε gilt, gilt dann
wegen t/α < 1:

α

(
1 +

t

αξk

)ξk

↑
k→∞

α exp
(

t

α

)
≤ α + ε,

d.h. f◦(k)(α+t/ξk) ≤ α+ε für alle k ≥ 0. Durch Induktion nach k folgt dann
g◦(k)(α + t/ξk) ≤ f◦(k)(α + t/ξk) für alle k ≥ 0 und damit schließlich auch
h∗(t) ≤ α exp(t/α) in einer hinreichend kleinen rechtsseitigen Umgebung
von 0. Insbesondere ist h∗ rechtsseitig stetig in 0.

Um den Beweis zu vollenden, dass es sich bei h∗ um eine Verteilungsfunk-
tion handelt, fehlt nun nur noch der Nachweis der rechtsseitigen Stetigkeit
von h∗. Dazu zeigen wir, dass h∗ absolut stetig auf ganz � ist und beginnen
mit dem Nachweis, dass h∗ auf [0,∞[ absolut stetig ist.

Sei ε > 0 so klein, dass α+ε < 1−(b+1)−
1
b und h∗(ε) < 1−(b+1)−

1
b gilt;

es gibt ein solches ε > 0, da h∗ rechtsseitig stetig in 0 ist. Für jedes k ≥ 0 ist
dann gk = g◦(k)(α + ·/ξk) stetig differenzierbar und monoton wachsend mit
monoton wachsender Ableitung auf [0, ε]. Dabei beachte man hinsichtlich
der Monotonie von g′k auf [0, ε], dass für jedes t ∈ [0, ε] gilt:

g′k(t) =
1
ξk

·
k−1∏
j=0

g′
(
g◦(j)(α + t/ξk)

)
,
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und hier ist g◦(j)(α + t
ξk ) ≤ h∗(ε) < 1− (b+ 1)−

1
b , d.h. in einem Bereich, wo

g′ wächst. Seien t ∈ [0, ε] und k ≥ 0. Dann ist

g′k+1(t) =
1

ξk+1
· g′(α + t/ξk+1) ·

k∏
j=1

g′(g◦(j)(α + t/ξk+1))

≥ 1
ξk

·
k∏

j=1

g′(g◦(j−1)(α + t/ξk))

= g′k(t).

Daher ist die Folge (g′k(t))k∈�0 monoton wachsend. Zum Nachweis der Kon-
vergenz der Folge genügt also der Nachweis ihrer Beschränktheit. Unter Be-
achtung von gj(s) ≤ h∗(s) für alle 0 ≤ s ≤ ε und h∗(ε) < 1 − (b + 1)−

1
b

können wir nun wie folgt abschätzen:

g′k(t) =
1
ξk

·
k−1∏
j=0

g′
(

g◦(j)
(

α +
t

ξk

))

=
1
ξk

·
k−1∏
j=0

g′
(

g◦(j)
(

α +
t/ξk−j

ξj

))

≤ 1
ξk

·
k−1∏
j=0

g′
(

h∗
(

t

ξk−j

))

=
k∏

j=1

g′(g◦(−j)(h∗(t)))
g′(α)

−→
k→∞

∞∏
j=1

g′(g◦(−j)(h∗(t)))
g′(α)

.

Wir müssen also nur noch die Konvergenz des unendlichen Produkts nach-
weisen. Dazu verwenden wir ein bekanntes Ergebnis (siehe Kapitel VII, §2,
S.174 in [Fis]) aus der Theorie unendlicher Produkte, das uns die Implikation

∞∑
j=1

∣∣∣∣∣g
′(g◦(−j)(h∗(t)))

g′(α)
− 1

∣∣∣∣∣ < ∞ =⇒
∞∏

j=1

g′(g◦(−j)(h∗(t)))
g′(α)

< ∞(1.6)

liefert. Die Konvergenz der unendlichen Reihe auf der linken Seite lässt
sich mit dem Mittelwertsatz der Differentialrechnung und Lemma 1.2.2 zei-
gen. Für jedes j ≥ 1 ist nämlich für eine geeignete Zwischenstelle ξj ∈
]α, g◦(−j)(h∗(t))[ und C := maxα≤x≤h∗(t) g′′(x)∣∣∣∣∣g

′(g◦(−j)(h∗(t)))
g′(α)

− 1

∣∣∣∣∣ =

∣∣∣∣∣g
′(α) + (g◦(−j)(h∗(t)) − α)g′′(ξj)

g′(α)
− 1

∣∣∣∣∣
≤ C

g′(α)

∣∣∣g◦(−j)(h∗(t)) − α
∣∣∣ .
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Daher folgt die Konvergenz der unendlichen Reihe in (1.6) wie angekündigt
aus Lemma 1.2.2 in Verbindung mit (g◦(−1))′(α) = ξ−1 < 1.

Wir erhalten also die Existenz von f∗
+ = limk→∞ g′k auf [0, ε]. Als Grenz-

funktion monoton wachsender Funktionen ist auch f∗
+ monoton wachsend.

Wählt man nun K > 0 beliebig und dazu n ∈ � mit |K/ξn| ≤ ε, so erhält
man für alle 0 ≤ a < b ≤ K unter Benutzung von (1.5) und des Satzes von
der majorisierten Konvergenz (es ist nämlich f∗

+(t) ≤ f∗
+(ε) < ∞ für alle

0 ≤ t ≤ ε und (g◦(n))′ beschränkt auf kompakten Intervallen):

h∗(b) − h∗(a) = g◦(n) (h∗(b/ξn)) − g◦(n) (h∗(a/ξn))

= g◦(n)

(
lim

k→∞
gk(b/ξn)

)
− g◦(n)

(
lim

k→∞
gk(a/ξn)

)

= lim
k→∞

(
g◦(n) (gk(b/ξn)) − g◦(n) (gk(a/ξn))

)

= lim
k→∞

∫ b

a

(
g◦(n) ◦ gk(·/ξn)

)′
(t) dt

=
∫ b

a

1
ξn

(
g◦(n)

)′
(h∗(t/ξn)) f∗

+(t/ξn) dt.

Wir erkennen also, dass h∗ auf [0,K] ein endliches Maß mit λλ-Dichte indu-
ziert, insbesondere absolut stetig auf [0,K] ist. Es folgt die abolute Stetigkeit
von h∗ auf [0,∞[.

Wir wenden uns schließlich der negativen Halbachse zu und zeigen, dass
die Folge (g′k(t))k≥k0 (mit einem k0 ≥ 0 so groß, dass die Folge wohldefiniert
ist) für jedes t ≤ 0 beschränkt ist. Dazu fixieren wir ein t ≤ 0 und wählen
k0 ∈ � mit |t/ξk0 | < α. Damit erhalten wir für alle k ≥ k0:

0 < g′k(t)

=
1
ξk

k−1∏
j=0

g′
(
g◦(j)(α + t/ξk)

)

≤ 1
ξk

k−1∏
j=0

g′
(
g◦(j)(α)

)
= 1,

d.h., es gilt

(∗) g′k(t) ≤ 1 für alle t ≤ 0 und hinreichend großen k ≥ 0.
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Weiterhin gilt für alle k ≥ k0:

g′k+1(t)
g′k(t)

=
1
ξ
· g′

(
α +

t

ξk+1

) k−1∏
j=0

g′(g◦(j+1)(α + t/ξk+1))
g′(g◦(j)(α + t/ξk))

≥ 1
ξ
· g′

(
α +

t

ξk+1

)
−→
k→∞

1 (exponentiell schnell).

Wir können erneut die Ergebnisse aus Kapitel VII, §2 in [Fis] anwenden und
erhalten die absolute Konvergenz des unendlichen Produkts

∏
k≥k0

(
g′k+1(t)
g′k(t)

∧ 1
)

.

Wegen der Beschränkheit der Folge (g′k(t))k≥k0 folgt damit die Konvergenz
von ∏

k≥k0

(
g′k+1(t)
g′k(t)

∨ 1
)

und insgesamt die Existenz von limk→∞ g′k(t) ∈ ]0, 1]. Wir setzen f∗−(t) :=
limk→∞ g′k(t).

Wir zeigen nun, dass f∗− : ]−∞, 0] −→ � eine λλ-Dichte von W ∗ auf der
negativen Halbachse definiert. Dazu wählen wir a < b ≤ 0 beliebig. Es gilt
supk≥0 g′k|[a,b] ≤ 1, und wir erhalten unter Benutzung des Satzes von der
majorisierten Konvergenz:

h∗(b) − h∗(a) = lim
k→∞

gk(b) − gk(a)

= lim
k→∞

∫
]a,b]

g′k dλλ

=
∫

]a,b]
f∗
− dλλ .

Da a < b ≤ 0 beliebig waren, folgt, dass f∗− eine λλ-Dichte von W ∗ auf
] −∞, 0] definiert.

Es liegt also die Verteilungskonvergenz der Folge (ξk ·Wk)k≥0 gegen eine
geeignete Zufallsgröße W ∗ (mit Verteilungsfunktion h∗) vor. Die Gültigkeit
von (1.4) folgt direkt aus der Gültigkeit von (1.5).

Der für die Verteilungskonvergenz der Folge (ξk · Wk)k≥0 gegebene Be-
weis ist relativ lang. Ist man an einem effizienteren Beweis interessiert, so
kann man auf den Nachweis der (Absolut-)Stetigkeit von h∗ verzichten und
stattdessen den Auswahlsatz von Helly-Bray ([A1], Satz 44.1 auf S. 228)
bemühen, der in der gegebenen Situation die Verteilungskonvergenz gegen
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eine Verteilung mit nicht notwendig stetiger Verteilungsfunktion F0 sichert.
In Abschnitt 3.2 wird gezeigt, dass die Verteilungsfunktion h∗ von W ∗ auf
ganz � holomorph fortsetzbar ist. Dieser Beweis kann dann leicht modifi-
ziert auch auf F0 angewandt werden (da F0 und h∗ in den Stetigkeitspunkten
von F0 übereinstimmen) und man erhält, dass F0 die Einschränkung einer
ganzen Funktion auf � ist, insbesondere also wieder die λλ-Stetigkeit der
Grenzverteilung der Folge (ξk · Wk)k≥0.



Kapitel 2

Maximin-
Fixpunktgleichungen

Angestoßen von Satz 1.3.3 interessieren wir uns nun bei festgehaltenem ξ > 1
für die stochastischen Fixpunktgleichungen

(2.1) W
d= ξ · max

1≤i≤b
min

1≤j≤b
Wi,j (b ≥ 2),

wobei (Wi,j)1≤i,j≤b eine Familie unabhängiger Zufallsgrößen mit W
d= Wi,j

für 1 ≤ i, j ≤ b sei, und deren Lösungen.
Da es die Lage im Hinblick auf viele Überlegungen nicht übermäßig kom-

plizierter macht, betrachten wir im Verlaufe des Kapitels eine noch allgemei-
nere Fixpunktgleichung als in (2.1), nämlich die Fixpunktgleichung

(2.2) W
d= ξ · max

1≤i≤n
min

1≤j≤mi

Wi,j,

wobei n,m1, . . . ,mn ∈ �− {1} seien und wie gehabt (Wi,j)i,j∈� eine Folge
stochastisch unabhängiger, identisch verteilter Zufallsgrößen mit W1,1 ∼ W .
Ziel dieses Kapitels ist es, die Lösungen der angegebenen Fixpunktgleichun-
gen (2.1) und (2.2) zu bestimmen, d.h. diejenigen Wahrscheinlichkeitsvertei-
lungen Q auf �, so dass die entsprechende Fixpunktgleichung wahr ist, wenn
L(W ) = Q gilt. Darüber hinaus sollen einige Eigenschaften dieser Lösungen
zusammengetragen werden.

2.1 Die allgemeine Fixpunktgleichung und ihre Lö-

sungen

Um nun solche Lösungen der Fixpunktgleichungen zu finden, formulieren
wir (2.1) zunächst in Termen von Verteilungsfunktionen. Mit F := FW gilt
nämlich:

(2.3) F (t) =
(
1 − (1 − F (t/ξ))b

)b
(t ∈ �).

23
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Allgemeiner liest sich (2.2) in Termen der Verteilungsfunktion wie folgt:

(2.4) F (t) =
n∏

i=1

(1 − (1 − F (t/ξ))mi) (t ∈ �),

d.h. es ist
F = g ◦ F (·/ξ)

für g : [0, 1] −→ [0, 1], x �−→∏n
i=1(1 − (1 − x)mi).

Die Fragestellung soll im Folgenden weiter verallgemeinert werden, um
einen abstrakteren Zugang zu gewinnen. Dazu werde mit G die Menge der
Funktionen g : [0, 1] −→ [0, 1] bezeichnet, die stetig und streng monoton
wachsend sind, sowie 0, 1 ∈ Fg := {x ∈ [0, 1] : g(x) = x} erfüllen. Für ξ > 1
und g ∈ G werde dann die Gleichung

(2.5) F (t) = g(F (t/ξ)) (t ∈ �)

für Verteilungsfunktionen F betrachtet. Die Menge der Verteilungen, deren
Verteilungsfunktionen diese Gleichung lösen, bezeichnen wir mit Lg,ξ, d.h.

Lg,ξ = {Q ∈ W(�)| FQ erfüllt (2.5)},

wobei hier und im Folgenden W(�) stets die Menge aller Wahrscheinlich-
keitsmaße auf (�,B) (wobei B die σ-Algebra der Borelschen Teilmengen
von � sei) und für ein Q ∈ W(�) FQ stets dessen Verteilungsfunktion be-
zeichne.

Für jedes g ∈ G gilt dann wegen g(0) = 0 und g(1) = 1 stets δ0 ∈
Lg,ξ. Um Lg,ξ allerdings vollständig zu bestimmen, müssen zunächst einige
Beobachtungen gemacht werden:

Man sieht sofort, dass für alle g ∈ G, ξ > 1 und Q ∈ Lg,ξ mit zugehöriger
Verteilungsfunktion F wegen (2.5) F (0−) = g(F (0−)) und F (0) = g(F (0))
gelten muss, d.h. F (0−), F (0) ∈ Fg. Die Fixpunkte von g haben also eine
große Bedeutung in Bezug auf das stochastische Fixpunktproblem.

2.1.1 Bemerkung. Seien g ∈ G, ξ > 1, Q ∈ Lg,ξ und F := FQ. Zunächst
einmal stellen wir fest, dass aus der Stetigkeit von g die Abgeschlossenheit
der Fixpunktmenge Fg von g folgt. Wir setzen nun

c0 := inf(Fg − {0}) und c1 := sup(Fg − {1}).

Dann gelten die folgenden Aussagen:

(i) Für alle t < 0 ist F (t) ∈ [0, c0],

(ii) für alle t > 0 ist F (t) ∈ [c1, 1].
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Begründung. Angenommen, es gäbe ein t < 0 mit F (t) ∈ ]c0, 1]. Dann
gäbe es einen Fixpunkt 0 < q ≤ F (t). Damit hätte man lims↓−∞ F (s) =
limn→∞ F (t · ξn) = limn→∞ g◦(n)(F (t)) ∈ [q, 1] (vgl. Lemma 1.2.1) im Wi-
derspruch zur Tatsache, dass F eine Verteilungsfunktion ist. Also gilt (i).
Der Nachweis von (ii) kann analog geführt werden.

Zusammenfassend und weiter gehend kann man notieren:

1. Für t < 0 ist stets F (t) ∈ [0, c0]; im Fall c0 > 0 gilt F (t) ∈ [0, c0[ für
alle t < 0.

2. Es gilt F (0−) ∈ {0, c0} und F (0) ∈ {c1, 1}.

3. Für jedes t > 0 ist F (t) ∈ [c1, 1]; im Fall c1 < 1 gilt F (t) ∈ ]c1, 1] für
alle t < 0.

4. Ist c0 = 0 oder c0 > 0 und g > id auf ]0, c0[, so gilt F |]−∞,0[ = 0.

5. Ist c1 = 1 oder c1 < 1 und g < id auf ]c1, 1[, so gilt F |[0,∞[ = 1.

Was die Punkte 4. und 5. angeht, so beachte man, dass in den Fällen c0 = 0
bzw. c1 = 1 nach (i) bzw. (ii) jeweils nichts zu zeigen ist und in den anderen
Fällen Lemma 1.2.1 die Behauptung liefert.

Seien 0 < s ≤ t < ξs. Es stellt sich die Frage, ob man irgendetwas über
den Funktionswert F (t) aussagen kann, wenn F (s) bereits bekannt ist. Dies
ist sicherlich der Fall, denn da F monoton wachsend ist und die Fixpunkt-
gleichung (2.5) löst, muss F (s) ≤ F (t) ≤ F (ξs) = g(F (s)) gelten. Doch kann
man noch mehr über F (t) aussagen? Der folgende Satz zeigt, dass dies nicht
der Fall ist; er zeigt aber auch, dass man bei Kenntnis der Funktionswerte
von F auf dem Intervall [s, ξs[ den gesamten Funktionsverlauf von F auf
[0,∞[ rekonstruieren kann.

2.1.2 Satz. Gegeben seien ξ > 1 und g ∈ G; wie in Bemerkung 2.1.1 seien

c0 := inf(Fg − {0}) und c1 := sup(Fg − {1}),

dabei gelte 0 < c0 ≤ c1 < 1 und g < id auf ]0, c0[, g > id auf ]c1, 1[. Weiter
seien s0, t0 ∈ �, s0 < 0 < t0 und f− : [ξs0, s0[−→ �, f+ : [t0, ξt0[−→ �

Funktionen mit den folgenden Eigenschaften:

(1) 0 ≤ f−(ξs0) < c0, c1 < f+(t0) ≤ 1.

(2) f−, f+ sind monoton wachsend und rechtsseitig stetig.

(3) f−(s) ≤ g◦(−1)(f−(ξs0)) für alle s ∈ [ξs0, s0[ und f+(t) ≤ g(f+(t0))
für alle t ∈ [t0, ξt0[.
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Weiter sei die Funktion F : � −→ � definiert durch

(2.6) F (t) =




g◦(n)(f+(t/ξn)) falls t > 0,

c1 falls t = 0 und f+(t0) < 1,
1 falls t = 0 und f+(t0) = 1,
g◦(n)(f−(t/ξn)) sonst,

wobei im Falle t �= 0 n ∈ � so zu wählen ist, dass t/ξn ∈ [t0, ξt0[ im Falle
t > 0 bzw. t/ξn ∈ [ξs0, s0[ im Falle t < 0 ist. Dann gilt Q ∈ Lg,ξ für die zu
F korrespondierende Wahrscheinlichkeitsverteilung Q.

Beweis. Zunächst ist die Wohldefiniertheit von F zu prüfen. Diese ist gege-
ben, da wegen t0ξ

n ↑ ∞ (n → ∞) und t0ξ
n ↓ 0 (n → −∞) für jedes t > 0

genau ein n ∈ � existiert mit t0 ≤ t/ξn < t0ξ. Analoges lässt sich im Falle
t < 0 feststellen.

Weiterhin erfüllt F die Gleichung (2.5), denn es gilt F (0) ∈ Fg und für
t > 0 ist (mit dem n ∈ �, für das t0ξ

n ≤ t < t0ξ
n+1 gilt)

F (t) = g◦(n)

(
f+

(
t

ξn

))
= g

(
g◦(n−1)

(
f+

(
t/ξ

ξn−1

)))
= g(F (t/ξ));

analog kann man im Fall t < 0 schließen.
Es bleibt zu zeigen, dass F eine Verteilungsfunktion ist. Dazu zeigen wir

zunächst die Isotonie von F auf ]0,∞[. Ist f+(t0) = 1, so ist F |[0,∞[ = 1.
Wir nehmen also f+(t0) < 1 an. Es genügt, die Aussage

(∗n) F ist monoton wachsend auf [t0ξn, t0ξ
n+1[ und

limt↑t0ξn+1 F (t) ≤ g(F (t0ξn))

für jedes n ∈ � zu beweisen. Nach Voraussetzung an f+ gilt (∗0). Für n > 0
gelte (∗n−1) und es seien s, t ∈ [t0ξn, t0ξ

n+1[ beliebig mit s ≤ t. Dann ist

F (s) = g(F (s/ξ)) ≤ g(F (t/ξ)) = F (t),

wobei ausgenutzt wurde, dass F die Fixpunktgleichung (2.5) erfüllt, (∗n−1)
gilt und g monoton wachsend ist. Damit ist gezeigt, dass F auch monoton
auf [t0ξn, t0ξ

n+1[ ist. Wegen F ≤ 1 existiert damit auch limt↑t0ξn+1 F (t) und
es gilt:

lim
t↑t0ξn+1

F (t) = lim
t↑t0ξn+1

g(F (t/ξ)) = g

(
lim

t↑t0ξn
F (t)

)
≤ g(g(F (t0ξn−1))) = g(F (t0ξn)).

Damit konnten wir (∗n) auf (∗n−1) zurückführen.
Wir müssen nun noch für n < 0 (∗n) auf (∗n+1) zurückführen, um die

Monotonie auf ganz ]0,∞[ zu erhalten. Dies ist mit einer analogen Argu-
mentation möglich, die statt der ursprünglichen Fixpunktgleichung (2.5) die
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äquivalente Gleichung F (t) = g◦(−1)(F (tξ)) benutzt und die Tatsache, dass
auch g◦(−1) monoton wachsend und stetig ist. Aus der Definition F (0) = c1

erhält man dann leicht die Monotonie auf [0,∞[. Ein entsprechendes Vorge-
hen liefert die Monotonie auf ] −∞, 0[.

Die rechtsseitige Stetigkeit von F in t �= 0 ist klar wegen der rechtssei-
tigen Stetigkeit der Funktionen f+, f− sowie der Stetigkeit von g. Weiter
ist klar, dass 0 ≤ F ≤ 1 ist, und damit existieren rechts- und linksseitige
Limiten von F in allen Punkten t ∈ � sowie q−∞ := limt→−∞ F (t) und
q∞ := limt→∞ F (t).

Es bleibt zu zeigen, dass q−∞ = 0, q0 := limt↓0 F (t) = F (0) und q∞ = 1
gilt. Dies folgt aus Lemma 1.2.1 mit

q−∞ = lim
n→∞F (s0ξ

n) = lim
n→∞ g◦(n)(f−(s0)),

q0 = lim
n→∞F (t0ξ−n) = lim

n→∞ g◦(−n)(f+(t0)),

q∞ = lim
n→∞F (t0ξn) = lim

n→∞ g◦(n)(f+(t0))

und (1).

2.1.3 Bemerkung. Ist in der Situation von Satz 2.1.2 c0 = 0 oder g > id
auf ]0, c0[, so gilt die Aussage des Satzes weiterhin, wenn man f−(t) = 0
setzt für alle t ∈ [s0ξ, s0[; in diesen Fällen gibt es nämlich nach Bemerkung
2.1.1 nur Lösungen der Fixpunkgleichung (2.5), die auf ]−∞, 0[ trivial sind.

Ähnliches gilt in den Fällen c1 = 1 bzw. g < id auf ]c1, 1[: Dann muss
man f+(t) = 1 setzen für alle t ∈ [t0, t0ξ[ und erhält nur Lösungen, die auf
]0,∞[ trivial sind.

Mit Satz 2.1.2 und der folgenden Bemerkung ist uns eine vollständige
Charakterisierung von Lg,ξ gelungen, da man jede Verteilungsfunktion F
einer Verteilung Q ∈ Lg,ξ aus f+ := F |[1,ξ[ und f− := F |[−ξ,−1[ in der
angegebenen Weise wiedergewinnen kann.

Wir wollen im Anschluss an dieses Ergebnis noch darauf eingehen, wie
sich die Stetigkeit bzw. Differenzierbarkeit der Funktionen f+, f− bei Fort-
setzung wie in (2.6) unter geeigneten Voraussetzungen fortpflanzt.

2.1.4 Folgerung. Seien g ∈ G, c0 := inf(Fg − {0}), c1 := sup(Fg − {1})
und f− : [ξs0, s0] −→ �, f+ : [t0, ξt0] −→ � stetige und monoton wachsende
Funktionen mit f−(ξs0) = g(f−(s0)) bzw. f+(ξt0) = g(f+(t0)). Weiter gelte

f−(s0)

{
∈ [0, c0[, falls c0 > 0 und g < id auf ]0, c0[,
= 0, sonst,

und

f+(t0)

{
∈ ]c1, 1], falls c1 < 1 und g > id auf ]c1, 1[,
= 1, sonst.
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Definiert man nun F mit Hilfe von f− und f+ wie in Satz 2.1.2, so ist
F ∈ Lg,ξ und es gilt weiterhin:

(a) F ist stetig auf ganz �− {0}. Gilt zusätzlich eine der Aussagen

(i) g hat genau einen Fixpunkt in ]0, 1[ und f−(s0) > 0, f+(t0) < 1,

(ii) g > id auf ]0, 1[ und f−(s0) = 0, f+(t0) < 1,

(iii) g < id auf ]0, 1[ und f−(s0) > 0, f+(t0) = 1,

so ist F auf ganz � stetig.

(b) Sind f−, f+, g in ihren jeweiligen Definitionsintervallen differenzierbar
(einseitig in den Randpunkten), wobei g′ > 0 auf ]0, c0[∪ ]c1, 1[ sei, und
gilt f ′−(ξs0) = 1

ξg′(f−(s0))f ′−(s0) sowie f ′
+(ξt0) = 1

ξg′(f+(t0))f ′
+(t0),

so ist F auf ganz �− {0} differenzierbar.

Beweis. Zu (a): Nach Voraussetzung ist F auf [t0, ξt0] stetig. Mittels der
Gleichung (2.5) und der Tatsache, dass Verkettungen stetiger Funktionen
wieder stetig sind, folgt die Stetigkeit von F auf ]0,∞[; analog schließt man
für ] − ∞, 0[. Für den Zusatz beachte man, dass nur noch die linksseitige
Stetigkeit von F in 0 zu zeigen ist, die sich jeweils aus den Voraussetzungen
(i), (ii) und (iii) ergibt.

Zu (b): Wir schließen die Trivialfälle f−(s0) = 0 und f+(t0) = 1 aus und
nehmen direkt f−(s0) > 0 und f+(t0) < 1 an. Da Verkettungen differenzier-
barer Funktionen wieder differenzierbar sind, folgt dann, dass F auf ganz
�− ({ξns0|n ∈ �} ∪ {ξnt0|n ∈ �}∪ {0}) differenzierbar ist (dabei beachte
man, dass g◦(−1) wegen g′ > 0 auf ]0, c0[∪ ]c1, 1[ dort ebenfalls differenzierbar
ist). Beim Nachweis der Differenzierbarkeit von F in ξnt0 und ξns0 für n ∈ �
beschränken wir uns auf die Punkte ξnt0 für n ∈ � und beginnen mit dem
Fall n = 1. Hier liefert die Voraussetzung f ′

+(ξt0) = ξ−1g′(f+(t0))f ′
+(t0) die

Übereinstimmung von links- und rechtsseitiger Ableitung von F in ξt0 und
damit die Differenzierbarkeit von F in ξt0. Wir schließen nun wie unter (a)
weiter, indem wir feststellen, dass F = g◦(n−1) ◦ F (·/ξn−1) für jedes n ∈ �
in ξnt0 als Verkettung differenzierbarer Funktionen differenzierbar ist.

Über die Differenzierbarkeit von F in 0 kann ohne Weiteres keine Aussage
gemacht werden und diese ist eine wichtige Eigenschaft, wie sich bei der
Bestimmung von PW ∗

für die Zufallsgröße W ∗ aus Satz 1.3.3 in Kapitel 3
zeigt.

Wir fahren nun fort mit einer Folgerung über die Existenz einer stetigen
Lösung des Fixpunktproblems.

2.1.5 Folgerung. Für gegebenes ξ > 1 und g ∈ G hat die zugehörige Fix-
punktgleichung (2.5) genau dann eine stetige Lösung (d.h. eine Lösung Q
mit Q({x}) = 0 für alle x ∈ �), wenn einer der beiden folgenden Fälle gilt:
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(a) g besitzt keinen Fixpunkt in ]0, 1[.

(b) g hat genau einen Fixpunkt α ∈ ]0, 1[ und es gilt g < id auf ]0, α[,
g > id auf ]α, 1[.

Beweis. Sei zunächst Q eine stetige Lösung der Fixpunktgleichung (2.5).
Dann gilt insbesondere Q({0}) = 0, d.h. für die zu Q korrespondierende
Verteilungsfunktion F gilt F (0−) = F (0). Dann gilt in der Notation von
Bemerkung 2.1.1 c0 = c1 und daher (b) oder F (0−) = F (0) ∈ {0, 1}, wobei
F (0) = 0 und F (0−) = 1 jeweils (a) impliziert.

Die Umkehrung folgt direkt aus Folgerung 2.1.4.

2.1.1 Bedingungen für die Existenz von Momenten

In diesem Abschnitt sollen die Lösungen der Gleichung (2.5), die in Satz
2.1.2 bestimmt wurden, auf die Existenz von Momenten untersucht werden.

Die in Zusammenhang mit (2.2) auftretenden Funktionen (vgl. (2.7) auf
S. 32) mit n,m1, . . . ,mn ≥ 2 besitzen (wie in Lemma 2.2.1 festgestellt wird)
eine in 0 und 1 verschwindende Ableitung. Damit erfüllen sie (mit q = ∞)
die Voraussetzungen des folgenden Satzes, der eine hinreichende Bedingung
für die Existenz von Momenten einer Lösung der Fixpunktgleichung (2.5)
gibt. Insbesondere existieren daher für jedes b ≥ 2 alle Momente von W ∗,
der in Satz 1.3.3 auftretenden Zufallsgröße.

2.1.6 Satz. Seien g ∈ G stetig differenzierbar, ξ > 1, max{g′(0), g′(1)} =:
m < 1,

q :=

{
log 1

m
log ξ , falls 0 < m < 1,

∞, falls m = 0,

und Q ∈ Lg,ξ. Dann gilt: Für alle 0 < p < q ist Q ∈�p, d.h.

∫
�

|x|p Q(dx) < ∞.

Insbesondere gilt Q ∈�p für alle p > 0 im Falle m = 0.

Beweis. Seien 0 < p < q beliebig, W eine Zufallsgröße mit Verteilung Q und
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F die zu Q korrespondierende Verteilungsfunktion. Dann gilt:∫
�

|x|pQ(dx) = E|W |p

= E(W+)p + E(W−)p

=
∫ ∞

0
P ((W+)p > t) dt +

∫ ∞

0
P ((W−)p > t) dt

=
∫ ∞

0
P (W > t

1
p ) dt +

∫ ∞

0
P (W < −t

1
p ) dt

≤ P (W > 0) +
∞∑

n=0

(
(ξp)n+1 − (ξp)n

)
P (W > ξn)

+ P (W < 0) +
∞∑

n=0

(
(ξp)n+1 − (ξp)n

)
P (W < −ξn)

≤ 1 + (ξp − 1)
∞∑

n=0

ξpn
(
1 − g◦(n)(F (1))

)

+ (ξp − 1)
∞∑

n=0

ξpng◦(n)(F (−1)).

Es genügt also, die Konvergenz der beiden unendlichen Reihen auf der rech-
ten Seite nachzuweisen. Unter Benutzung von Lemma 1.2.2 erhält man we-
gen g′(0), g′(1) < ξ−p eine Konstante M > 0, so dass für alle n ∈ �0 gilt:

1 − g◦(n)(F (1)) ≤ M(rξ−p)n und

g◦(n)(F (−1)) ≤ M(rξ−p)n

für ein geeignetes r < 1. Es folgt

∞∑
n=0

ξpn
(
1 − g◦(n)(F (1))

)
+

∞∑
n=0

ξpng◦(n)(F (−1))

≤ 2
∞∑

n=0

ξpnM(rξ−p)n ≤ 2M
∞∑

n=0

rn < ∞,

und damit die Behauptung.

Man erkennt leicht, dass die Schranke q aus dem Satz in dem Sinne ma-
ximal ist, dass (außer in Trivialfällen) für eine Lösung Q der Fixpunktglei-
chung (2.5) keine Momente mehr oberhalb dieser Schranke existieren, denn
das Vorgehen, das uns im Beweis von Satz 2.1.6 eine obere Schranke für∫
�
|x|pQ(dx) liefert, kann leicht modifiziert (vgl. Lemma 1.2.2) auch dafür

genutzt werden, eine untere Schranke herzuleiten. Bevor wir dies machen,
betrachten wir im folgenden Lemma die angesprochenen Trivialfälle.
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2.1.7 Lemma. Seien g ∈ G stetig differenzierbar, ξ > 1, und δ0 �= Q ∈
Lg,ξ. Weiter sei F die zu Q gehörende Verteilungsfunktion. Dann gelten die
folgenden Aussagen:

(a) Ist Q(] −∞, 0[) = 0 und g′(1) < 1, so gilt die Aussage von Satz 2.1.6
mit m := g′(1).

(b) Ist Q(]0,∞[) = 0 und g′(0) < 1, so gilt die Aussage von Satz 2.1.6 mit
m := g′(0).

(c) Ist g′(0) > 1, so ist Q(] −∞, 0[) = 0.

(d) Ist g′(1) > 1, so ist Q(]0,∞[) = 0.

Beweis. Zum Beweis von (a) beachte man, dass im Falle Q(] − ∞, 0[) = 0
für eine Zufallsgröße W ∼ Q wie im Beweis von Satz 2.1.6 automatisch
E(W−)p = 0 für alle p > 0 gilt und damit die entsprechende unendliche
Reihe in der Abschätzung im Beweis zu Satz 2.1.6 entfällt. Entsprechendes
gilt für E(W+)p im Fall Q(]0,∞[) = 0. Damit sind die Aussagen (a) und
(b) gezeigt.

Ist g′(0) > 1, so ist g − id in einer Umgebung von 0 monoton wachsend
und F (0−) = 0 nach Bemerkung 2.1.1. Ähnliches gilt im Falle g′(1) > 1.
Insgesamt folgt die Behauptung.

2.1.8 Satz. Seien g ∈ G stetig differenzierbar, ξ > 1 und Q ∈ Lg,ξ mit
zugehöriger Verteilungsfunktion F . Wie in Lemma 2.1.7 gelte Q �= δ0. Wei-
terhin sei m ≥ 0 wie folgt definiert:

m :=




g′(0), falls Q(]0,∞[) = 0,

g′(1), falls Q(] −∞, 0[) = 0,

max{g′(0), g′(1)}, sonst.

Dann ist m ≤ 1. Setzt man

q :=

{
log 1

m
log ξ , falls 0 < m ≤ 1,

∞, falls m = 0,

so gilt ∫
�

|x|pQ(dx) = ∞,

(also Q �∈�p) für alle p > q.

Beweis. Es ist klar, dass m ≤ 1 gilt (denn sonst würde eine Fallunterschei-
dung nach der Definition von m unter Benutzung von Lemma 2.1.7 (c) und
(d) Q = δ0 im Widerspruch zur Voraussetzung liefern). Im Falle m = 0 ist
nichts zu zeigen; sei also gleich m > 0.
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Sei p > q und W eine Zufallsgröße mit der Verteilung Q. Dann kann
man analog zum Beweis von Satz 2.1.6 folgende Ungleichung herleiten:

∫
�

|x|pQ(dx) ≥ (ξ − 1)
∞∑

n=0

ξpn
(
1 − g◦(n+1)(F (1))

)

+(ξ − 1)
∞∑

n=0

ξpng◦(n+1)(F (−1)).

Wir müssen also nun die Divergenz einer der beiden unendlichen Reihen auf
der rechten Seite der Gleichung zeigen. Dazu wählen wir im Falle m = g′(1)
die Reihe

∑∞
n=0 ξpn

(
1 − g◦(n+1)(F (1))

)
und im Falle m = g′(0) die Reihe∑∞

n=0 ξpng◦(n+1)(F (−1)). Wir nehmen im Folgenden o.B.d.A. an, dass m =
g′(1) gilt.

Nach Lemma 1.2.2 existiert wegen g′(1) > ξ−p ein mp > 0, so dass für
alle n ∈ �0 ∣∣∣1 − g◦(n)(F (1))

∣∣∣ ≥ mp · (ξ−p)n

gilt. Nun kann man wie folgt abschätzen:

∞∑
n=0

ξpn
(
1 − g◦(n+1)(F (1))

)
≥

∞∑
n=0

ξpnmp(ξ−p)n+1

= mp

∞∑
n=0

ξ−p = ∞.

2.2 Die Lösungen im Maximin-Fall

Dieser Abschnitt beschäftigt sich mit der Anwendung der Ergebnisse aus Ab-
schnitt 2.1 auf die zu Beginn dieses Kapitels formulierten Maximin-Fixpunkt-
gleichungen und einige weitere Verallgemeinerungen dieser Fixpunktglei-
chungen. Das heißt, dass wir die im Zusammenhang mit den Maximin-
Fixpunktgleichungen auftretenden Funktionen g : [0, 1] −→ [0, 1] mit dem
Ziel untersuchen, die Voraussetzungen der Sätze 2.1.2, 2.1.6 und 2.1.5 zu
prüfen. Die Funktionen, die dabei im Zusammenhang mit den Maximin-
Fixpunktgleichungen auftreten, haben die Gestalt

(2.7) g(x) :=
n∏

i=1

(1 − (1 − x)mi) (x ∈ [0, 1])

mit n,m1, . . . ,mn ≥ 2.
Wir interessieren uns zunächst für die Ableitungen dieser Funktionen in

0 und 1, um aus dem Wachstumsverhalten der Funktionen in Umgebungen
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von 0 bzw. 1 darauf schließen zu können, in welchen Fällen Fixpunkte in
]0, 1[ existieren und wie sich diese Funkltionen bei 0 und bei 1 verhalten,
denn diesem Verhalten kann man nach Bemerkung 2.1.1 entnehmen, ob es
Lösungen der Fixpunktgleichung (2.5) gibt, die Masse auf ] − ∞, 0[ bzw.
]0,∞[ tragen.

2.2.1 Lemma. Seien n,m1, . . . ,mn ∈ � und g ∈ G von der Form (2.7).
Dann gelten:

g′(0) =

{
m1, falls n = 1,

0, falls n ≥ 2,
(a)

g′(1) = �{j : mj = 1}.(b)

Insbesondere gilt g′(0) = g′(1) = 0 im Falle n,m1, . . . ,mn ≥ 2.

Beweis. Es gilt g′(x) =
∑n

j=1 mj(1 − x)mj−1
∏

i�=j (1 − (1 − x)mi) für alle
x ∈ [0, 1]. Daraus folgt die Behauptung.

2.2.2 Lemma. Seien n,m1, . . . ,mn ≥ 2 und g : [0, 1] −→ [0, 1] wie in (2.7).
Weiter seien 0 = c0 < . . . < cm = 1 genau die Fixpunkte von g in [0, 1].
Dann gilt m ≥ 2 (d.h. es gibt einen Fixpunkt �= 0, 1) und g < id auf ]0, c1[,
g > id auf ]cm−1, 1[.

Beweis. Nach Lemma 2.2.1 verschwindet die Ableitung von g in 0 und in 1.
Also ist g− id fallend in einer Umgebung von 0 und in einer Umgebung von
1. Es folgt die Behauptung.

Damit ist Satz 2.1.2 auf alle Funktionen g wie in (2.7) anwendbar und
liefert die Existenz von Lösungen, die sowohl auf ]−∞, 0[ als auch auf ]0,∞[
Masse tragen.

Es stellt sich weiterhin die Frage, wie viele Fixpunkte diese Funktionen
im Einheitsintervall haben, denn die Anzahl der Fixpunkte einer Funktion g
gibt nach Folgerung 2.1.5 Aufschluss darüber, ob Lösungen der zugehörigen
Fixpunktgleichung existieren, die eine stetige Verteilungsfunktion besitzen.

Die Anzahl der Fixpunkte der betrachteten Funktionen wurde in einem
Spezialfall bereits in Lemma 1.2.3 bestimmt. Dort wurde gezeigt, dass die
Funktionen x �−→ (1 − (1 − x)b)b für b ≥ 2, die zu den Fixpunktgleichun-
gen der b-adischen Maximinbäume gehören, genau einen Fixpunkt in ]0, 1[
haben. Dieses Ergebnis soll nun ausgedehnt werden. Der folgende Beweis
benutzt dabei einen Umweg über verwandte Funktionen:

2.2.3 Lemma. Sei g ∈ G, g(x) = 1 −∏n
j=1(1 − xmj ) für x ∈ [0, 1], dabei

seien n,m1, . . . ,mn ≥ 2. Dann hat g genau einen Fixpunkt in ]0, 1[.
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Beweis. Wir können o.B.d.A. davon ausgehen, dass m1 ≤ m2 ≤ . . . ≤ mn

gilt. Sei 0 ≤ x < 1. Dann gilt:

g(x) = x ⇐⇒ 1 − x =
n∏

j=1

(1 − xmj )

⇐⇒ 1 − xm1

1 − x
=

n∏
j=2

1
1 − xmj

⇐⇒ h1(x) :=
m1−1∑
k=0

xk =
∑

k2,...,kn≥0

x
∑n

j=2 kjmj =: h2(x).

Dabei haben h1 bzw. h2 die folgenden Eigenschaften:

(i) h1(0) = h2(0) = 1 und limx→1 h1(x) = m1, limx→1 h2(x) = ∞;

(ii) Für j = 1, . . . ,m1 − 1 ist h
(j)
1 (x) =

∑m1−1
k=j k · . . . · (k − j + 1)xk−j ,

insbesondere gilt h
(j)
1 (0) = j! und h

(j)
1 wächst monoton auf [0, 1[, wobei

weiter limx→1 h
(j)
1 (x) =

∑m1−1
k=j k · . . . · (k − j + 1) < ∞ gilt;

(iii) h
(j)
1 ist identisch 0 für j ≥ m1;

(iv) h
(j)
2 (0) = 0 für j = 1, . . . ,m1−1 und h

(j)
2 ist streng monoton wachsend

auf [0, 1[ mit limx→1 h
(j)
2 (x) = ∞ für alle j ≥ 0.

Unter Zuhilfenahme der Punkte (i)–(iv) kann Folgendes festgestellt werden:
Wegen h′

1(0) = 1 und h′
2(0) = 0 wächst h1 zunächst schneller als h2; wegen

(i) muss aber schließlich (für x → 1) h2 > h1 gelten. Also existiert ein
Punkt c > 0 mit h1(c) = h2(c). Sei c(0) := inf{c > 0 : h1(c) = h2(c)}.
Dann ist wegen der Stetigkeit von h1, h2 auch h1(c(0)) = h2(c(0)) und wegen
h′

1(0) �= h′
2(0) muss c(0) > 0 gelten.

Wir zeigen nun mit Induktion nach j für j = 0, . . . ,m1 − 1:

(∗) Für 0 ≤ i ≤ j existiert c(i) := inf{c > 0 : h
(i)
1 (c) = h

(i)
2 (c)} und es gilt

0 < c(j) < . . . < c(0) < 1.

Begründung: Für j = 0 wurde die Aussage schon gezeigt. Sei also 0 < j <
m1. Wir nehmen nach Induktionsvoraussetzung an, dass c(0), . . . , c(j−1) wie
in (∗) existieren. Wegen h

(j)
1 (0) = j! > 0 = h

(j)
2 (0) und der Tatsache, dass

lim
x→1

h
(j)
1 (x) =

m1−1∑
k=j

k · . . . · (k − j + 1) < ∞ = lim
x→1

h
(j)
2 (x)

gilt, muss C(j) := {c > 0 : h
(j)
1 (c) = h

(j)
2 (c)} �= ∅ gelten. Daher exisitiert

c(j) := inf C(j). Wiederum wegen h
(j)
1 (0) = j! > 0 = h

(j)
2 (0) und wegen der
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Stetigkeit von h
(j)
1 und h

(j)
2 muss c(j) > 0 gelten. Um den Nachweis von

(∗) abzuschließen, genügt es nun zu zeigen, dass c(j) < c(j−1) gilt. Dazu
nehmen wir an, dass c(j) ≥ c(j−1) gilt. Dann gilt nach dem Hauptsatz der
Differential- und Integralrechnung:

h
(j−1)
1 (x) = h

(j−1)
1 (0) +

∫ x

0
h

(j)
1 (t)dt

> h
(j−1)
2 (0) +

∫ x

0
h

(j)
2 (t)dt = h

(j−1)
2 (x)

für alle x ∈ ]0, c(j−1)], insbesondere gilt also h
(j−1)
1 (c(j−1)) > h

(j−1)
2 (c(j−1))

im Widerspruch zur Definition von c(j−1) (man beachte, dass wegen der
Stetigkeit von h1 und h2 die Menge C(j) abgeschlossen ist, d.h. es muss
h

(j−1)
1 (c(j−1)) = h

(j−1)
2 (c(j−1)) gelten). Also gilt (∗) auch für j.

Wir zeigen nun mit umgekehrter Induktion, dass h
(j)
2 > h

(j)
1 auf ]c(j), 1[

für jedes j = 0, . . . ,m1 − 1 gilt und beginnen mit dem Fall j = m1 − 1 an.
Für x ∈ ]c(m1−1), 1[ kann man unter Benutzung von h

(m1)
1 = 0 und h

(m1)
2 > 0

auf ]c(m1−1), 1[ wie folgt abschätzen:

h
(m1−1)
1 (x) = h

(m1−1)
1 (c(m1−1))

< h
(m1−1)
2 (c(m1−1)) +

∫ x

c(m1−1)
h

(m1)
2 (t)dt = h

(m1−1)
2 (x).

Für j < m1 − 1 ist dann nach Induktionsvoraussetzung h
(j+1)
2 > h

(j+1)
1

auf ]c(j+1), 1[, also wegen c(j+1) < c(j) auch auf ]c(j), 1[, und wir können für
x ∈ ]c(j), 1[ wie zuvor abschätzen:

h
(j)
1 (x) = h

(j)
1 (c(j)) +

∫ x

c(j)
h

(j+1)
1 (t)dt

< h
(j)
2 (c(j)) +

∫ x

c(j)
h

(j+1)
2 (t)dt = h

(j)
2 (x).

Insbesondere gilt also h2(x) > h1(x) für alle x ∈ ]c(0), 1[, und c(0) ist demnach
das einzige x ∈ ]0, 1[ mit h1(x) = h2(x), also auch der einzige Fixpunkt von
g in ]0, 1[.

2.2.4 Satz. Sei g ∈ G, g(x) =
∏n

j=1(1 − (1 − x)mj ) für x ∈ [0, 1], dabei
seien n,m1, . . . ,mn ≥ 2. Dann hat g genau einen Fixpunkt in ]0, 1[.

Beweis. Sei h(x) := 1 − g(1 − x) für x ∈ [0, 1]. Dann gilt:

g(x) = x ⇐⇒ h(1 − x) = 1 − x.

Lemma 2.2.3 liefert nun die Behauptung.
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2.2.5 Bemerkung. Die Transformation g �−→ 1 − g(1 − ·), die wir weiter
oben zugunsten einfacherer Rechnungen durchgeführt haben, korrespondiert
auf dem Niveau der Fixpunktgleichungen zu einem Vorzeichenwechsel bzw.
zum Übergang von der Fixpunktgleichung (2.2) zur Fixpunktgleichung

(2.8) W
d= ξ · min

1≤i≤n
max

1≤j≤mi

Wi,j,

wobei W und die Wi,j wie im Kontext von (2.2) gewählt seien. Alle Über-
legungen in diesem Abschnitt, die Maximin-Fixpunktgleichungen betreffen,
können somit leicht auf Mimimax-Fixpunktgleichungen übertragen werden,
insbesondere der noch folgende Satz 2.2.6.

2.2.1 Die Lösungen der Maximin-Fixpunktgleichungen und
die analytische Transformierte

Da für jede Verteilung Q auf �, die Lösung der Fixpunktgleichung (2.2)
ist, nach Lemma 2.2.1 im Falle n,m1, . . . ,mn ≥ 2 alle Momente existie-
ren, liegt die Frage nahe, ob die Moment erzeugende Funktion ΨQ von
Q auf einem nichtentarteten Intervall um die Null existiert. Dies ist je-
doch im Allgemeinen nicht der Fall. Betrachtet man nämlich die Gleichung
F (ξn) = g◦(n)(F (1)) für die zu Q korrespondierende Verteilungsfunktion
F , so erkennt man, dass F (t) für t → ∞ umso langsamer wächst und für
t → −∞ umso langsamer fällt, je größer ξ ist, d.h., dass Q bei großem ξ
viel Masse außerhalb kompakter Intervalle trägt. Der folgende Satz 2.2.6
zeigt, dass dies für hinreichend großes ξ dazu führt, dass der kanonische
Definitionsbereich von ΨQ auf den Nullpunkt zusammenschrumpft.

Im Hinblick auf Kapitel 1 liefert Satz 2.2.6 allerdings die erfreuliche Aus-
sage, dass für jedes b ≥ 2 die analytische Transformierte der Grenzverteilung
PW ∗

aus Satz 1.3.3 auf ganz � existiert.

2.2.6 Satz. Seien ξ > 1, n,m1, . . . ,mn ≥ 2, m := min{m1, . . . ,mn}, g ∈
G, g(x) =

∏n
i=1 (1 − (1 − x)mi) für x ∈ [0, 1]. Weiter seien Q ∈ Lg,ξ und

F := FQ die zugehörige Verteilungsfunktion. Dann gelten:

(a) Für ξ < m existiert die Moment erzeugende Funktion ΨQ von Q in
jedem Punkt s > 0. Für ξ = m existiert ΨQ in einer Umgebung von 0.

(b) Existiert ein t0 > 0 mit F (t0) < 1 und ist ξ > m, so existiert die
Moment erzeugende Funktion ΨQ von Q in keinem Punkt s > 0.

(c) Für ξ < n existiert die Laplace-Transformierte ϕQ von Q in jedem
Punkt s > 0. Für ξ = n existiert ϕQ in einer einseitigen Umgebung
von 0.

(d) Existiert ein t1 < 0 mit F (t1) > 0 und ist ξ > n, so exisiert die
Laplace-Transformierte ϕQ von Q in keinem Punkt s > 0.
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Beweis. W sei eine Zufallsgröße mit der Verteilung Q. Wir gehen zunächst
genau wie im Beweis von Satz 2.1.6 vor. Für s > 0 gilt nämlich:

ΨQ(s) = EesW

=
∫ ∞

0
P (esW > t) dt

=
∫ ∞

0
P (W >

log t

s
) dt.

Hier konvergiert das uneigentliche Integral auf der rechten Seite genau dann,
wenn

I(s) :=
∫ ∞

es

P (W >
log t

s
) dt < ∞

gilt. I(s) kann man aber unter Beachtung von

log t

s
= ξk ⇐⇒ t = esξk

(k ∈ �0, t ≥ es)

wie folgt abschätzen:

I(s) ≤
∞∑

k=0

(esξk+1 − esξk
)P (W > ξk)

=
∞∑

k=0

(esξk+1 − esξk
)(1 − g◦(k)(F (1)))

und

I(s) ≥
∞∑

k=0

(esξk+1 − esξk
)P (W > ξk+1)

=
∞∑

k=0

(esξk+1 − esξk
)(1 − g◦(k+1)(F (1))).

Hier kann man weiterhin Folgendes feststellen:

esξk+1 − esξk
= esξk

(
(esξk

)ξ−1 − 1
)
≥ esξk 1

2
(esξk

)ξ−1 =
1
2
esξk+1

für hinreichend großes k ∈ �.
Damit haben wir folgende Kriterien hergeleitet:

(2.9)
∞∑

k=0

esξk+1
(1 − g◦(k)(F (1))) < ∞ =⇒ ΨQ(s) existiert

und

(2.10) ΨQ(s) existiert =⇒
∞∑

k=1

esξk
(1 − g◦(k)(F (1))) < ∞.
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Ebenso wie man (2.9) und (2.10) als hinreichende bzw. notwendige Be-
dingung für die Existenz der Moment erzeugenden Funktion in s herleiten
kann, kann man auch eine hinreichende und eine notwendige Bedingung für
die Existenz der Laplace-Transformierten ϕQ in s herleiten:

(2.11)
∞∑

k=0

esξk+1
g◦(k)(F (−1)) < ∞ =⇒ ϕQ(s) existiert

und

(2.12) ϕQ(s) existiert =⇒
∞∑

k=1

esξk
g◦(k)(F (−1)) < ∞.

Wir müssen nun untersuchen, wie schnell (1 − g◦(k)(F (1)))k∈�0 bzw.
(g◦(k)(F (−1)))k∈�0 gegen 0 konvergiert. Dazu betrachten wir g in der Nähe
von 1 und in der Nähe von 0 und beginnen mit der Betrachtung bei 1. Es
gilt für x ∈ [0, 1]:

1 −
n∏

j=1

(1 − (1 − x)mj ) =
∑

∅�=J⊆{1,...,n}
(−1)|J |−1(1 − x)

∑
j∈J mj

= (1 − x)m
∑

∅�=J⊆{1,...,n}
(−1)|J |−1(1 − x)

∑
j∈J mj−m

= (1 − x)mh1(x)

mit einer stetigen Funktion h1 mit h1(1) = |{j : mj = m}| ≥ 1. Es gibt also
ein ε > 0 mit

(2.13)
1
2
· |{j : mj = m}|(1 − x)m ≤ 1 − g(x) ≤ 2 · |{j : mj = m}|(1 − x)m

für alle x ∈ [1−ε, 1]. Mit α werde der (nach Satz 2.2.4) eindeutige Fixpunkt
von g in ]0, 1[ bezeichnet.
Zu (a): Sei ξ ≤ m. Zu F (1) ∈ ]α, 1[ (für F (1) = 1 ist nichts zu zeigen)
wählen wir k0 ∈ �0 mit g◦(k0)(F (1)) > 1− ε. Dabei wählen wir k0 gleich so
groß, dass weiterhin

1 − g◦(k0)(F (1)) < (2 · |{j : mj = m}|)−1

gilt. Dann ist

l := log
(
2 · |{j : mj = m}|

[
1 − g◦(k0)(F (1))

])
< 0

und wir können für k > k0 wie folgt abschätzen:

1−g◦(k)(F (1)) = 1−g(g◦(k−1)(F (1))) ≤ 2·|{j : mj = m}|(1−g◦(k−1)(F (1)))m

≤ . . . ≤ (2 · |{j : mj = m}|)
∑k−k0−1

j=0 mj

(1 − g◦(k0)(F (1)))m
k−k0

≤
(
2 · |{j : mj = m}| · (1 − g◦(k0)(F (1))

))mk−k0

= exp
(
mk−k0l

)
.
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Wir können damit die Summanden in (2.9) für k > k0 und beliebiges s > 0
abschätzen:

esξk+1
(
1 − g◦(k)(F (1))

)
≤ exp

(
sξk+1 + mk−k0l

)
= exp

(
mk

(
sξ(ξ/m)k + l/mk0

))
,

und hier liegt schließlich doppelt exponentiell schnelles Fallen gegen 0 vor,
falls ξ < m ist. Die Reihe in (2.9) konvergiert dann. Im Falle ξ = m liegt
Konvergenz sicher dann vor, wenn s < − l

ξmk0
ist. Insgesamt folgt (a).

Zu (b): Analog zum Beweis von (d) (siehe unten).
Nun nehmen wir eine Untersuchung von g bei 0 vor, um die beiden

verbleibenden Aussagen zu beweisen.

n∏
j=1

(1 − (1 − x)mj ) = xn
n∏

j=1

mj∑
k=1

(
mj

k

)
(−1)k−1xk−1

=: xnh0(x),

wobei h0 eine stetige Funktion ist mit h0(0) =
∏n

j=1 mj. Es existiert also
ein ε > 0, so dass

(2.14)
1
2


 n∏

j=1

mj


xn ≤ g(x) ≤ 2


 n∏

j=1

mj


xn

für alle x ∈ [0, ε] gilt.
Zu (c): Sei ξ ≤ n. Zu gegebenem F (−1) ∈ [0, α[ wählen wir k0 ∈ � mit
g◦(k0)(F (−1)) < min{ε, (2∏n

j=1 mj)−1}. Dann ist

l := log


2


 n∏

j=1

mj


 g◦(k0)(F (−1))


 < 0

und es gilt für alle k > k0:

g◦(k)(F (−1)) = g(g◦(k−1)(F (−1))) ≤

2

n∏
j=1

mj


(

g◦(k−1)(F (−1))
)n

≤ . . . ≤

2

n∏
j=1

mj



∑k−k0−1

j=0 nj (
g◦(k0)(F (−1))

)nk−k0

≤

2

n∏
j=1

mj




nk−k0

(g◦(k0)(F (−1)))n
k−k0 = exp

(
nk−k0l

)
.
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Wir können nun die Summanden aus (2.11) für k > k0 und beliebiges s > 0
wie folgt abschätzen:

esξk+1
g◦(k)(F (−1)) ≤ exp

(
sξk+1 + nk−k0l

)
= exp

(
nk
(
sξ(ξ/n)k + l/nk0

))
,

d.h. die Summanden konvergieren im Falle ξ < n schließlich mit doppelt ex-
ponentieller Konvergenzgeschwindigkeit gegen 0 und die Reihe konvergiert.
Ist ξ = n, so liegt Konvergenz der Reihe sicher dann vor, wenn s < − l

ξnk0
.

Es folgt die Aussage (c).
Zu (d): Seien ξ > n und s > 0 beliebig. Es gilt F (−1) ∈ ]0, α[. Wir bemühen
diesmal (2.12) und (2.14). Zunächst liefert uns nämlich (2.14) vermöge Ite-
ration (wobei k0 ∈ � so groß sei, dass g◦(k0)(F (−1)) < ε ist) für alle k > k0

(mit l̃ := log
(
g◦(k0)(F (−1)) n

√
1
2

∏n
j=1 mj

)
):

g◦(k)(F (−1)) = g(g◦(k−1)(F (−1)))

≥

1

2

n∏
j=1

mj



∑k−k0−1

j=0 nj (
g◦(k0)(F (−1))

)nk−k0

≥

1

2

n∏
j=1

mj




nk−k0−1

(g◦(k0)(F (−1)))n
k−k0

= exp
(
nk−k0 l̃

)
.

Wir können uns nun an die Abschätzung der Summanden in (2.12) für k > k0

begeben:

esξk
g◦(k)(F (−1)) ≥ exp

(
sξk + nk−k0 l̃

)
= exp

(
ξk(s + l̃/nk0 · (n/ξ)k)

)
−→
k→∞

∞,

d.h. es kann keine Konvergenz der unendlichen Reihe in (2.12) vorliegen.
Die Laplace-Transformierte von Q existiert also nicht in s, und da s > 0
beliebig war, existiert die Laplace-Transformierte also in keinem s > 0.

2.2.2 Fixpunktgleichungen mit zufälliger Anzahl von Maxi-
ma und Minima

Um ein Beispiel für eine Fixpunktgleichung der Gestalt (2.5) zu geben, wo
die auftretende Funktion g kein Polynom ist, kann man die Fragestellung
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zu Beginn dieses Kapitels verallgemeinern, indem man statt einer fixen An-
zahl von Maxima und Minima in (2.2) eine zufällige Anzahl verwendet. Wir
wollen diesen Gedanken wie folgt präzisieren: Vorgelegt seien �-wertige, sto-
chastisch unabhängige Zufallsgrößen X,Y, Y1, Y2, . . ., wobei Yi ∼ Y für alle
i ≥ 1 gelte. Für ein ξ > 1 betrachten wir dann die Fixpunktgleichung

(2.15) W
d= ξ · max

1≤i≤X
min

1≤j≤Yi

Wi,j,

wobei (Wi,j)i,j∈� eine von X und der Familie der Yi unabhängige Familie
unabhängiger Zufallsgrößen sei und wie im Kontext von (2.2) die Wi,j Kopien
von W seien. Darüber hinaus sei X unabhängig von der von den Yi und Wi,j

erzeugten σ-Algebra.
Wir möchten als nächstes ein Analogon zu (2.4) für die Fixpunktglei-

chungen mit zufälliger Anzahl von Maxima und Minima herleiten. Dazu
bezeichnen wir mit F := FW die Verteilungsfunktion von W , mit fX , fY die
erzeugenden Funktionen von X bzw. Y ; d.h. für x ∈ [0, 1] gilt:

fX(x) =
∞∑

k=1

P (X = k) · xk und fY (x) =
∞∑

k=1

P (Y = k) · xk.

Nun kann man für t ∈ � wie folgt rechnen:

F (t) = P (W ≤ t) = P

(
ξ · max

1≤i≤X
min

1≤j≤Yi

Wi,j ≤ t

)

=
∞∑

k=1

P

(
X = k, max

1≤i≤k
min

1≤j≤Yi

Wi,j ≤ t/ξ

)

=
∞∑

k=1

P (X = k)
(

P ( min
1≤j≤Y

W1,j ≤ t/ξ)
)k

=
∞∑

k=1

P (X = k)

(
1 −

∞∑
l=1

P (Y = l, min
1≤j≤l

W1,j > t/ξ)

)k

=
∞∑

k=1

P (X = k)

(
1 −

∞∑
l=1

P (Y = l)P (W > t/ξ)l
)k

=
∞∑

k=1

P (X = k)

(
1 −

∞∑
l=1

P (Y = l)(1 − F (t/ξ))l
)k

= fX

(
1 − fY (1 − F (t/ξ))

)
,

d.h. man hat wieder eine Gleichung vom Typ (2.5) mit einem g : [0, 1] −→
[0, 1] der Gestalt

(2.16) g(x) = fX(1 − fY (1 − x)) für x ∈ [0, 1],
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wobei P (X = 0) = P (Y = 0) = 0 impliziert, dass fX(0) = fY (0) = 0
und damit auch g(0) = 0 und g(1) = 1 gilt. Da fX und fY auf [0, 1] nach
bekannten Sätzen aus der Analysis stetig und weiterhin streng monoton
wachsend sind, gilt das gleiche auch für g. Also ist g ∈ G und wir können
die Ergebnisse aus Abschnitt 2.1 auf diese Problemstellung anwenden.

Es folgt ein Beispiel, in dem X und Y in unserem Sinne so günstige
Verteilungen besitzen, dass fX(1 − fY (1 − ·)) einfach zu berechnen ist.

2.2.7 Beispiel. Seien 0 < α, β < 1 und

pk :=

{
0, für k = 0,

(−1)k−1
(
α
k

)
, für k ∈ �.

Weiter sei qk für k ∈ �0 definiert wie pk mit β anstelle von α. Dann definieren
(pk)k≥0 und (qk)k≥0 Wahrscheinlichkeitsverteilungen auf �0 (sogar auf �).
Zum Nachweis dieser Aussage beschränken wir uns aus Symmetriegründen
auf die Folge (pk)k≥0 und stellen zunächst fest, dass für alle k ≥ 1

pk = (−1)k−1

(
α

k

)
= (−1)k−1 α(α − 1) · . . . · (α − k + 1)

k!

=
α(1 − α) · . . . · (k + 1 − α)

k!
≥ 0

gilt (p0 ≥ 0 ist evident); d.h. (pk)k≥0 definiert ein Maß auf �0.
Weiter gilt für alle k ≥ 1:

pk+1

pk
=

k − α

k + 1
= 1 − 1 + α

k + 1
,

d.h.
∑∞

k=0 pk konvergiert nach dem Raabeschen Konvergenzkriterium (siehe
[Heu], Satz 33.10). Unter Benutzung des Abelschen Grenzwertsatzes erhält
man:

(2.17)
∞∑

k=0

pk = lim
s↑1

∞∑
k=1

pks
k = 1 − lim

s↑1

∞∑
k=0

(
α

k

)
(−s)k = 1 − lim

s↑1
(1 − s)α = 1,

d.h. (pk)k≥0 definiert tatsächlich eine Wahrscheinlichkeitsverteilung auf �0,
deren erzeugende Funktion f(s) = 1 − (1 − s)α (s ∈ [0, 1]) ist.

Seien nun X, Y �-wertige Zufallsgrößen mit Verteilung (pk)k≥0 bzw.
(qk)k≥0 und W eine reellwertige Zufallsgröße, die (2.15) mit dieser speziellen
Wahl von X, Y erfüllt (mit einem festen ξ > 1). Die Verteilungsfunktion F
von W erfüllt dann (2.5) mit g(s) = 1 − (1 − sβ)α (s ∈ [0, 1]). g ist in ]0, 1[
beliebig oft differenzierbar und es gilt lims↓0 g′(s) = lims↑1 g′(s) = ∞. Daher
ist g > id in einer Umgebung von 0 und g < id in einer Umgebung von 1,
also muss nach den Ergebnissen von Abschnitt 2.1 W = 0 f.s. gelten.
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Die Tatsache, dass die Fixpunktgleichung im Falle des Beipiels 2.2.7
nur die triviale Lösung hat, kann man also daran erkennen, dass die Ab-
leitung von g bei 0 und bei 1 sehr groß wird. Die Ursache für dieses Ver-
halten von g ist die Tatsache, dass für die in diesem Beispiel benutzten
Verteilungen die Erwartungswerte nicht existieren und gleichzeitig P (X =
1), P (Y = 1) > 0 gilt. Wir wollen den Exkurs über stochastische Maximin-
Fixpunktgleichungen mit zufälliger Anzahl von Maxima und Minima mit
einer allgemeinen Betrachtung des oben beschriebenen Phänomens beschlie-
ßen.

2.2.8 Lemma. Seien X,Y �-wertige Zufallsgrößen, fX , fY die zugehörigen
erzeugenden Funktionen und wie oben g(x) := fX(1−fY (1−x)) für x ∈ [0, 1].
Dann gelten die folgenden Aussagen:

• Im Falle EY < ∞ gilt g′(0) = P (X = 1) · EY .

• Im Falle EX < ∞ gilt g′(1) = EX · P (Y = 1).

Beweis. Es gilt zunächst für x ∈ ]0, 1[:

g′(x) = f ′
X(1 − fY (1 − x))f ′

Y (1 − x).

Ist nun EY < ∞, so existiert g′(0) und g′ ist stetig in 0. Man erhält also
unter Benutzung von f ′

X(0) = P (X = 1), f ′
Y (1) = EY die erste Aussage.

Die zweite erhält man analog.

2.2.9 Bemerkung. Gegeben sei die Fixpunktgleichung (2.15) mit der zu-
gehörigen Funktion g. Im Falle des Beispiels 2.2.7 hat die zugehörige Fix-
punktgleichung nur die triviale Lösung δ0, da (mit dem entsprechenden g)
limx→0 g′(x) = limx→1 g′(x) = ∞ gilt. Mit Lemma 2.2.8 können wir den im
Beispiel auftretenden Effekt nun allgemein beschreiben. Wir beschränken
uns im Folgenden auf die Frage nach der Existenz einer auf ]0,∞[ nichttri-
vialen Lösung; der andere Fall kann entsprechend behandelt werden.

Notwendig für die Existenz einer Lösung Q ∈ Lg,ξ mit Q(]0,∞[) �= 0 ist
g′(1) ≤ 1, hinreichend ist g′(1) < 1. Mit Blick auf Lemma 2.2.8 stehen uns
damit die folgenden Kriterien zur Verfügung:

• Im Fall EX < ∞ ist P (Y = 1) ≤ (EX)−1 notwendig und die gleiche
Ungleichung mit einem strikten <-Zeichen hinreichend für die Existenz
einer Verteilung Q ∈ Lg,ξ mit Q(]0,∞[) > 0.

• Ist EX = ∞, so folgt aus P (Y = 1) > 0, dass keine Verteilung Q ∈
Lg,ξ mit Q(]0,∞[) > 0 existiert.

Offen bleiben damit die beiden folgenden Fälle:

(i) EX = ∞ und P (Y = 1) = 0;
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(ii) EX · P (Y = 1) = 1.

Wir wollen dies aber im Folgenden nicht weiter vertiefen. Es sei lediglich ab-
schließend angemerkt, dass man z.B. unter Benutzung höherer (faktorieller)
Momente von X und Y weiterschließen kann.

2.3 Lg,ξ als Teilmenge von �p

Das Fixpunktproblem dieses Kapitels soll nun wie folgt übersetzt werden.
Für ein g ∈ G und ξ > 1 definieren wir die maßwertige Abbildung

Sg : W(�) −→ W(�), Q �−→ Sg(Q),

wobei Sg(Q) diejenige Verteilung auf�mit der Verteilungsfunktion FSg(Q) =
g(FQ(·/ξ)) (Q ∈ W(�)) sei. Dabei ist für jedes g ∈ G und Q ∈ W(�) Sg(Q)
offenbar wieder ein Element von W(�), da g(FQ(·/ξ)) wegen der Stetigkeit
und Monotonie von g wiederum rechtsseitig stetig und monoton wachsend
ist; wegen 0, 1 ∈ Fg gilt auch limt→−∞ g(FQ(t/ξ)) = 0, limt→∞ g(FQ(t/ξ)) =
1. Wir unterschlagen in der Notation die Abhängigkeit der Abbildung von
ξ, die wir im Folgenden implizit unterstellen.

Die Frage nach den Lösungen der stochastischen Fixpunktgleichung (2.5)
entspricht in diesem Kontext der Frage nach den Fixpunkten der Abbildung
Sg. Wir haben in Satz 2.1.2 gesehen, dass die Abbildungen Sg im Allgemei-
nen sehr viele Fixpunkte haben. Wir wollen nun die Struktur der Lösungs-
menge Lg,ξ in einem geeigneten metrischen Raum ⊆ W(�) untersuchen. Als
geeignet erweisen sich die Räume (�p, dp), wobei für p ≥ 1

�p :=
{

Q ∈ W(�) :
∫
�

|x|p Q(dx) < ∞
}

sei und dp den minimalen Lp-Abstand auf �p bezeichne (vgl. [A2]).
Wir verstärken zunächst die Voraussetzungen an die Funktion g (al-

lerdings nur so moderat, dass die Funktionen in (2.7) weiterhin behandelt
werden), um die Abbildung Sg besser in den Griff zu bekommen, und defi-
nieren G1 := {g ∈ G : g ist stetig differenzierbar}. Jedes g in G1 ist damit
nach dem Mittelwertsatz der Differentialrechnung Lipschitz-stetig mit Lip-
schitzkonstante ‖g′‖[0,1] := supx∈[0,1] |g′(x)|, d.h. für alle x, y ∈ [0, 1] ist
|g(x) − g(y)| ≤ ‖g′‖[0,1] · |x − y|.

Mit dieser Beobachtung lässt sich leicht nachweisen, dass Sg für jedes
p ≥ 1 von �p nach �p abbildet:

2.3.1 Lemma. Seien g ∈ G1, ξ > 1, p ≥ 1 und Sg die zu g und ξ korre-
spondierende maßwertige Abbildung. Ist dann Q ∈�p, so auch Sg(Q).
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Beweis. Es genügt zu zeigen, dass
∫
�
|x|p Sg(Q)(dx) < ∞ gilt, falls Q ∈�p

ist. Dazu kann man wie folgt unter Ausnutzung von g(0) = 0, g(1) = 1, Satz
19.13 in [A1] und dem Mittelwertsatz der Differentialrechnung abschätzen:

∫
�

|x|p Sg(Q)(dx) =
∫ ∞

0
ptp−1Sg(Q)(] −∞,−t[∪]t,∞[) dt

≤
∫ ∞

0
ptp−1 (g(F (−t/ξ)) + 1 − g(F (t/ξ))) dt

= ξp

∫ ∞

0
ptp−1 (g(F (−t)) + 1 − g(F (t))) dt

≤ ξp‖g′‖[0,1]

∫ ∞

0
ptp−1 (F (−t) + 1 − F (t)) dt < ∞,

wenn Q ∈�p ist, wobei man beachte, dass λλ({t ≥ 0|ptp−1Q({−t}) > 0}) =
0 gilt.

2.3.2 Bemerkung. Betrachtet man speziell die Fixpunktgleichungen mit
einem g wie in (2.7), so kann man für dieses g die Aussage von Lemma 2.3.1
einfacher beweisen, indem man unabhängige Zufallsgrößen Wi,j (1 ≤ i ≤ n,
1 ≤ j ≤ mi) mit Verteilung Q wählt. Dann hat nämlich

W := ξ · max
1≤i≤n

min
1≤j≤mi

Wi,j

die Verteilung Sg(Q) und es gilt:

|W |p ≤ ξp
n∑

i=1

mi∑
j=1

|Wi,j|p.

Die rechte Seite ist aber im Falle Q ∈ �p als Summe integrierbarer Funk-
tionen integrierbar.

Das folgende Lemma zeigt, dass Sg unter den Voraussetzungen des letz-
ten Lemmas eine stetige Abbildung auf (�p, dp) ist.

2.3.3 Lemma. Sei g ∈ G1, ξ > 1, Sg die zugehörige maßwertige Abbildung
und p ≥ 1. Dann gilt für alle Q,R ∈�p:

(2.18) dp(Sg(Q),Sg(R)) ≤ ξ‖g′‖
1
p

[0,1]dp(Q,R),

insbesondere ist Sg Lipschitz-stetig auf (�p, dp).
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Beweis. Seien Q,R ∈ �p, F := FQ und G := FR die zugehörigen Vertei-
lungsfunktionen. Dann gilt (mit den entsprechenden Pseudo-Inversen):

dp
p(Sg(Q),Sg(R)) =

∫
]0,1[

∣∣(g(F (·/ξ)))−1(y) − (g(G(·/ξ)))−1(y)
∣∣p λλ(dy)

=
∫
]0,1[

∣∣∣ξF−1(g◦(−1)(y)) − ξG−1(g◦(−1)(y))
∣∣∣p λλ(dy)

= ξp

∫
]0,1[

g′(y)
∣∣F−1(y) − G−1(y)

∣∣p λλ(dy)

≤ ξp‖g′‖[0,1]d
p
p(Q,R).

Zum Abschluss dieses Kapitels sollen unter geeigneten Voraussetzungen
einige Struktureigenschaften der Menge Lg,ξ im metrischen Raum (�p, dp)
nachgewiesen werden.

2.3.4 Satz. Seien ξ > 1, g ∈ G1 mit m := max {g′(0), g′(1)} < 1 und

p < q :=

{
log 1

m
log ξ , falls 0 < m < 1,

∞, falls m = 0.

Dann ist Lg,ξ eine unbeschränkte und perfekte Teilmenge des metrischen
Raums (�p, dp).

Beweis. Nach Satz 2.1.6 gilt Lg,ξ ⊆ �p. Wegen δ0 ∈ Lg,ξ ist Lg,ξ �= ∅. Es
bleibt für den Nachweis der Perfektheit zu zeigen, dass Lg,ξ gleich der Menge
seiner Häufungspunkte ist.

Dazu zeigen wir zunächst die Abgeschlossenheit von Lg,ξ in �p: Sei also
(Qn ∈ Lg,ξ)n∈� eine in (�p, dp) gegen Q ∈ �p konvergente Folge, d.h. es
gelte dp(Qn, Q) → 0 (n → ∞). Wir bezeichnen mit Fn die Verteilungsfunk-
tion von Qn (n ∈ �) und mit F die Verteilungsfunktion von Q. Dann gilt
limn→∞ Fn(t) = F (t) für alle t ∈ C(F ), wobei wir mit C(F ) die Menge der
Stetigkeitspunkte von F bezeichnen.

Mit F ist auch F (·/ξ) die Verteilungsfunktion einer Verteilung auf �.
Da monotone Funktionen auf � bekanntlich höchstens abzählbar viele Un-
stetigkeitsstellen haben, sind also C(F )c und C(F ( ·

ξ ))c abzählbar. Daher ist
C(F ) ∩ C(F (·/ξ)) Komplement einer abzählbaren Menge und liegt dicht in
�. Wir können also jeden beliebig vorgelegten Punkt x ∈ � durch Elemente
von C(F )∩C(F (·/ξ)) approximieren und unter Ausnutzung der rechtsseitigen
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Stetigkeit von Verteilungsfunktionen wie folgt rechnen:

F (x) = lim
t↓x: t∈C(F )∩C(F (·/ξ))

F (t)

= lim
t↓x: t∈C(F )∩C(F (·/ξ))

lim
n→∞Fn(t)

= lim
t↓x: t∈C(F )∩C(F (·/ξ))

lim
n→∞ g(Fn(t/ξ))

= lim
t↓x: t∈C(F )∩C(F (·/ξ))

g(F (t/ξ))

= g(F (x/ξ));

d.h. F erfüllt die Fixpunktgleichung (2.5) und daher gilt Q ∈ Lg,ξ.
Es bleibt zu zeigen, dass jedes Q ∈ Lg,ξ Häufungspunkt von Lg,ξ ist. Sei

also Q ∈ Lg,ξ vorgelegt und ε > 0, o.B.d.A. gelte ε < 1. Wir müssen eine
Fallunterscheidung vornehmen, ob Q = δ0 gilt oder nicht.

Sei zunächst Q �= δ0 und W eine Zufallsgröße mit W
d= Q. Dann gilt

‖W‖p > 0, und es ist auch Q �= R ∈ Lg,ξ, wobei R die Verteilung von
(1 + ε

‖W‖p+1)W sei. Nun können wir wie folgt abschätzen:

dp(Q,R) ≤
∥∥∥∥∥W −

(
1 +

ε

‖W‖p + 1

)
W

∥∥∥∥∥
p

=
ε

‖W‖p + 1
‖W‖p

< ε.

Um den Beweis abzuschließen, müssen wir nur noch zeigen, dass auch δ0

Häufungspunkt von Lg,ξ ist. Dies ist aber unmittelbar klar, da Lg,ξ bezüglich
Skalierung mit positiven Faktoren abgeschlossen ist und wegen m < 1 nach
Satz 2.1.2 ein δ0 �= R ∈ Lg,ξ existiert. Es folgt die Perfektheit von Lg,ξ. Die
Unbeschränktheit von Lg,ξ folgt ebenfalls aus der Abgeschlossenheit von Lg,ξ

bezüglich der Skalierung mit positiven Faktoren.

Im Beweis von Satz 2.3.4 nutzen wir die Abgeschlossenheit von Lg,ξ

gegenüber Streckung aus. In speziellen Fällen, insbesondere im Fall der
Maximin-Fixpunktgleichungen (2.4), ist es aber nicht notwendig, eine Ver-
teilung Q ∈ Lg,ξ durch eine Streckung bzw. Stauchung von Q selbst zu
approximieren. Vielmehr lässt sich jedes Q ∈ Lg,ξ auch durch andere Lösun-
gen der Fixpunktgleichung approximieren. Die folgende Definition und das
folgende Lemma gehen näher darauf ein.

2.3.5 Definition. Seien g ∈ G und ξ > 1. Wir definieren eine Äquivalenz-
relation ≈ auf Lg,ξ wie folgt: Für Q,R ∈ Lg,ξ sei

Q ≈ R :⇐⇒ ∃γ > 0 : FR = FQ

( ·
γ

)
,
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d.h. es gilt Q ≈ R genau dann, wenn ein γ > 0 existiert, so dass für jede
Zufallsgröße W mit der Verteilung Q die Zufallsgröße γW die Verteilung R
hat. Eine Äquivalenzklasse [Q] bzgl. ≈ nennen wir einen Zweig von Lg,ξ.

2.3.6 Lemma. In der Situation von Satz 2.3.4 gelte nun verschärfend
g′(0), g′(1) < ξ−1. Dann kann jedes Q ∈ Lg,ξ durch Elemente anderer Zwei-
ge, d.h. durch gewisse R �∈ [Q], beliebig genau approximiert werden.

Beweis. Sei δ0 �= Q ∈ Lg,ξ (für Q = δ0 ist nach Satz 2.3.4 nichts zu
zeigen). F sei die Verteilungsfunktion von Q. Wir nehmen zunächst an,
dass Q(]0,∞[) > 0 ist und erkiesen eine Verteilung R ∈ Lg,ξ mit Ver-
teilungsfunktion G, für die G(t) = F (t) für alle t < 0 gilt. Seien weiter
U ∼ R(0, 1) und F−1, G−1 die zu F , G gehörenden Pseudo-Inversen. Dann
gilt F−1|]0,c1[ = G−1|]0,c1[, wobei c1 = F (0) der größte Fixpunkt von g in
]0, 1[ sei (dieser existiert wegen g′(1) < ξ−1 < 1). Wir erhalten daher:

dp
p(Q,R) = E

∣∣F−1(U) − G−1(U)
∣∣p

=
∫

]0,1[

∣∣F−1(y) − G−1(y)
∣∣p λλ(dy)

=
∫

]c1,1[

∣∣F−1(y) − G−1(y)
∣∣p λλ(dy)

=
∑
n∈�

∫ g◦(n+1)(F (1))

g◦(n)(F (1))

∣∣F−1(y) − G−1(y)
∣∣p dy,

und weiter unter Ausnutzung der Gültigkeit von (2.5) für F , G und der
Identität (g◦(n)(F (·/ξn)))−1 = ξn · F−1 ◦ g◦(−n)(·):

dp
p(Q,R) =

∑
n∈�

ξn

∫ g◦(n+1)(F (1))

g◦(n)(F (1))

∣∣∣F−1(g◦(−n)(y)) − G−1(g◦(−n)(y))
∣∣∣p dy

=
∑
n∈�

ξn

∫ g(F (1))

F (1)
(g◦(n))′(y)

∣∣F−1(y) − G−1(y)
∣∣p dy.

Nach Gleichung (1.1) im Beweis von Lemma 1.2.2 (a) existiert zu einem fest
vorgegebenen γ ∈ ]g′(1), ξ−1[ eine Konstante Cγ > 0 mit (g◦(n))′(y) ≤ Cγ ·γn

für alle y ∈ [F (1), 1] und n ≥ 0 . Diese Konstante Cγ hängt nur von g, γ
und F (1) ab, aber nicht von R.

Weil g(c1) = c1 < 1 ist und g > id auf ]c1, 1[ gilt, kann man g′(c1) wie
folgt abschätzen:

g′(c1) = lim
t↓c1

g(t) − g(c1)
t − c1

= lim
t↓c1

g(t) − c1

t − c1
≥ 1.

Also ist (g◦(−1))′(c1) ≤ 1 < ξ und wir können analog zur Argumentation
für g zu vorgegebenem β ∈ ](g◦(−1))′(c1), ξ[ die Existenz eines Cβ > 0 mit
(g◦(−n))′(y) ≤ Cβ · βn für alle y ∈ [c1, g(F (1))] und alle n ≥ 0 folgern.
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Zur Vereinfachung setzen wir

cR :=

(∫ g(F (1))

F (1)

∣∣F−1(y) − G−1(y)
∣∣p dy

)1/p

,

und schätzen wie folgt ab:

dp
p(Q,R) =

∞∑
n=0

ξn

∫ g(F (1))

F (1)
(g◦(n))′(y)

∣∣F−1(y) − G−1(y)
∣∣p dy

+
∞∑

n=1

ξ−n

∫ g(F (1))

F (1)
(g◦(−n))′(y)

∣∣F−1(y) − G−1(y)
∣∣p dy

≤ cp
R

(
Cγ

∞∑
n=0

(ξγ)n + Cβ

∞∑
n=1

(
β

ξ

)n
)

≤ cp
R

(
Cγ

1 − ξγ
+

Cβ

1 − ξ−1β

)

und damit

dp(Q,R) ≤ cR
p

√
Cγ

1 − ξγ
+

Cβ

1 − ξ−1β
.

Da es sich bei Cγ

1−ξγ + Cβ

1−ξ−1β
um eine Konstante in Abhängigkeit von g,

F und ξ handelt (β, γ können auch in Abhängigkeit von g, ξ fest gewählt
werden), genügt es also zu zeigen, dass man Verteilungen R ∈ Lg,ξ mit
beliebig kleinem cR findet.

Sei also ε > 0; wir nehmen o.B.d.A. an, dass ε < ξ − 1 ist, und wählen
ein n ∈ � mit ε ·n > ξ − 1. Sei δ := n−1(ξ − 1). Wir unterscheiden nun zwei
Fälle:
Fall 1: F ist stetig auf [1, ξ]. Wir setzen dann

G(t) := F (1 + δk)

für alle t ∈ [1 + δk, 1 + δ(k + 1)[, 0 ≤ k < n.
Fall 2: F hat eine Unstetigkeitsstelle in [1, ξ], d.h. es gibt ein t0 ∈]1, ξ] mit
F (t0−) < F (t0). Wir setzen dann

G(t) := F (1 + δk) + δ−1(F (1 + δ(k + 1)) − F (1 + δk))(t − (1 + δk))

für alle t ∈ [1 + δk, 1 + δ(k + 1)[, 0 ≤ k < n.
G kann in beiden Fällen wie in Satz 2.1.2 zu einer Verteilungsfunktion

auf � fortgesetzt werden, die (2.5) erfüllt, wobei wir G|]−∞,0[ = F |]−∞,0[

setzen. In beiden Fällen gelten für jedes y ∈ ]F (1), g(F (1))[ wegen δ < ε die
Implikationen

F (t) ≥ y =⇒ G(t + ε) ≥ y
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und
G(t) ≥ y =⇒ F (t + ε) ≥ y,

also ∣∣F−1(y) − G−1(y)
∣∣ ≤ ε,

für alle y ∈ ]F (1), g(F (1))[. Wir bezeichnen nun mit R die zu G korrespon-
dierende Wahrscheinlichkeitsverteilung auf �. Dann gilt

cR =

(∫ g(F (1))

F (1)

∣∣F−1(y) − G−1(y)
∣∣p dy

)1/p

≤ ε · (g(F (1)) − F (1))1/p < ε.

Weiterhin gilt in jedem Fall [Q] �= [R], denn im ersten Fall ist F nach
Folgerung 2.1.4 stetig auf ]0,∞[, während G Unstetigkeitsstellen in ]0,∞[
besitzt, und im zweiten Fall hat F eine Unstetigkeitsstelle in [1, ξ], während
G wiederum nach Folgerung 2.1.4 stetig auf ]0,∞[ ist.

Ist Q �= δ0 eine Verteilung mit Q(]0,∞[) = 0, so liefert ein analoges
Vorgehen auf der negativen Halbachse eine geeignete Approximation von
Q.

Die Funktionen x �−→ (1−(1−x)b)b für b ≥ 2, die in Kapitel 1 auftreten,
erfüllen allesamt die Voraussetzungen des Lemmas, d.h. für diese Funktionen
besitzt Lg,ξ in (�p, dp) die in Satz 2.3.4 und Lemma 2.3.6 beschriebene
Struktur.



Kapitel 3

Bestimmung der Verteilung
von W ∗

Dieses Kapitel widmet sich der Bestimmung der Verteilung von W ∗, die im
zweiten Abschnitt des Kapitels gelingt. Der erste Abschnitt des Kapitels
liefert mit Satz 3.1.4 einen entscheidenden Beitrag dazu.

3.1 Konvergenzbedingungen für (S
◦(n)
g (Q))n im Ma-

ximin-Fall

In diesem Abschnitt wollen wir Untersuchungen hinsichtlich der Konver-
genz der Folge (S◦(n)

g (Q))n∈� in Verteilung vornehmen und uns dabei auf
die Funktionen g der Form x �−→ (1 − (1 − x)b)b (b ≥ 2) beschränken.
Wir halten also bis auf Weiteres ein solches b mit zugehöriger Funktion g
fest und bezeichnen mit α dabei stets den eindeutigen Fixpunkt von g in
]0, 1[. Einige Aussagen dieses Abschnitts sind nicht von der konkreten Wahl
von g abhängig und können für jedes beliebige g ∈ G in angepasster Form
bewiesen werden. Dies geht aus den entsprechenden Beweisen hervor und
wird nicht extra bemerkt. Wir sammeln im folgenden Lemma zunächst of-
fensichtlich notwenige Bedingungen an die Verteilung Q für die Konvergenz
von S

◦(n)
g (Q).

3.1.1 Lemma. Seien Q ∈ W(�) und F := FQ die zugehörige Verteilungs-
funktion. Konvergiert dann (S◦(n)

g (Q))n∈�0 in Verteilung gegen Q0, so gel-
ten:

(a) F (0−) ≤ α,

(b) F (0) ≥ α.

Weiter folgt aus F (0−) < α, dass Q0(]−∞, 0[) = 0 gilt, und aus F (0) > α,
dass Q0(]0,∞[) = 0 gilt.

51
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Beweis. Sei F (0−) > α. Dann gilt für jedes t < 0 und alle hinreichend
großen k ∈ �, dass

g◦(k)

(
F

(
t

ξk

))
≥ g◦(k)(α) = α

ist. Wegen S
◦(k)
g (Q)(] −∞, t]) = g◦(k)(F (t/ξk)) kann (S◦(n)

g (Q))n∈�0 damit
nicht in Verteilung konvergieren. Aussage (a) folgt nun mit Kontraposition.
Aussage (b) und die Zusätze lassen sich ähnlich beweisen.

Es ist klar, dass für den Grenzübergang nicht das ganze Verhalten von F
wichtig ist, sondern nur das Verhalten nahe bei der Null. Dieses Verhalten ist
besonders bei Verteilungen mit in � diskretem Träger leicht zu beschreiben.
Der folgende Satz befasst sich mit dem Fall einer solchen Startverteilung Q:

3.1.2 Satz. Seien ξ > 1 und Q ∈ W(�) eine Verteilung, deren Träger
Ω0 diskret in � sei, d.h. Ω0 habe keinen Häufungspunkt in �. Sei W0 eine
reellwertige Zufallsgröße mit Verteilung Q und Verteilungsfunktion F . Dann
gelten die folgenden Aussagen:

(a) Gilt F (t) �= α für alle t ∈ �, so existiert eine Konstante γ ∈ �, so
dass S

◦(n)
g (P (W0 + γ ∈ ·)) d−→

n→∞ δ0.

(b) Existiert ein t ∈ � mit F (t) = α, so existieren keine Konstanten
β > 0, γ ∈ �, so dass (S◦(n)

g (P (βW0 + γ ∈ ·)))n∈� in Verteilung
konvergiert.

Beweis. Wir beweisen zunächst (a) und setzen γ := − inf{t ∈ �|F (t) > α}.
γ ist eine reelle Zahl. Für jedes t ∈ � ist dann Fγ(t) := P (W0 + γ ≤ t) =
P (W0 ≤ t − γ) = F (t − γ). Einerseits gilt damit Fγ(0) = F (−γ) ≥ α nach
Wahl von γ; der Fall F (−γ) = α ist aber nach Voraussetzung ausgeschlossen,
d.h. es gilt Fγ(0) > α und damit

S◦(n)
g (P (W0 + γ ∈ ·))(] −∞, t]) = g◦(n)(Fγ(t/ξn)) ≥ g◦(n)(Fγ(0)) −→

n→∞ 1

für alle t ≥ 0. Andererseits folgt aus der Diskretheit von Ω0 in �, dass
Fγ(0−) = F ((−γ)−) < α ist, und damit folgt

S◦(n)
g (P (W0 + γ ∈ ·))(] −∞, t]) = g◦(n)(Fγ(t/ξn)) ≤ g◦(n)(Fγ(0−)) −→

n→∞ 0

für alle t < 0, d.h. es gilt (a).
Zum Beweis von (b) nehmen wir die Existenz von β > 0 und γ ∈ � an,

für die (S◦(n)
g (P (βW0 + γ ∈ ·)))n∈� in Verteilung konvergiert, und setzen

Fβ,γ(t) := P (βW0 + γ ≤ t) = F ((t − γ)/β). Notwendig für die Verteilungs-
konvergenz der Folge (S◦(n)

g (P (W0 + γ ∈ ·))n∈� ist nach Lemma 3.1.1, dass
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Fβ,γ(0−) ≤ α und Fβ,γ(0) ≥ α gilt. Da der Wert α von Fβ,γ angenommen
wird, kann nicht in beiden Fällen das strenge Ungleichheitszeichen stehen.
Mit Ω0 ist aber auch der Träger von βW0 + γ diskret in � und es existiert
ein ε > 0, so dass Fβ,γ(t) = α für alle t ∈ [−ε, 0[ oder Fβ,γ(t) = α für alle
t ∈ [0, ε[ gilt. Es folgt limn→∞ g◦(n)(Fβ,γ(t/ξn)) = α für alle t < 0 im ers-
ten bzw. für alle t > 0 im zweiten Fall im Widerpruch zur angenommenen
Verteilungskonvergenz der Folge (S◦(n)

g (P (W0 + γ ∈ ·)))n∈�.

In der Situation von (a) kann man darüber hinaus keine reelle Zahl γ′

finden kann, so dass die Folge (S◦(n)
g (P (W0 +γ′ ∈ ·))n∈� schwach gegen eine

Verteilung Q �= δ0 konvergiert.
Obwohl Satz 3.1.2 sehr einfach ist, stellt er doch immerhin fest, dass

man eine Zufallsgröße W0 mit Binomial- oder Poissonverteilung oder einer
von vielen anderen bekannten und häufig in Beispielen auftretenden dis-
kreten Verteilungen nicht in sinnvoller Weise so skalieren und verschieben
kann, dass man im Grenzübergang bei iterierter Anwendung von Sg auf die
Verteilung von W0 Verteilungskonvergenz erhält.

Allerdings muss auch dann keine Verteilungskonvergenz vorliegen, wenn
die Ausgangsverteilung Q jeder punktierten Umgebung U −{0} von 0 posi-
tive Wahrscheinlichkeit zuordnet, wie das folgende Beispiel zeigt:

3.1.3 Beispiel. Wir definieren eine Verteilung Q ∈ W(�) über ihre Vertei-
lungsfunktion F := FQ. Da für den Grenzübergang, wie weiter oben festge-
stellt wurde, nur das Verhalten von F in einer Umgebung von 0 wichtig ist,
müssen wir F nur auf ] − ξ, ξ[ festlegen. Wir werden uns sogar nur auf das
Intervall [0, ξ[ beschränken (man kann z.B. F |]−∞,0[ = 0 setzen); durch ein
analoges Vorgehen auf ] − ξ, 0] kann man ein entsprechendes Ergebnis auf
der negativen Halbachse erzielen.

Wir geben uns nun eine Konstante α < c < 1 vor und setzen F (t) := c
für alle t ∈ [1, ξ[. Weiter wählen wir eine monoton fallende Nullfolge (εn)n∈�
reeller Zahlen > 0, wobei wir der Einfachheit halber annehmen, dass ε1 <
min {c − α, 1 − c} gilt, und setzen k0 := 0 und für n ∈ �0 für bereits defi-
nierte k0 ≤ . . . ≤ k2n:

F (ξ−k) := g◦(−2(k−k2n))(F (ξ−k2n)) für alle k2n ≤ k ≤ k2n+1,

wobei k2n+1 := min
{
k > k2n : g◦(−(k−2k2n))(F (ξ−k2n)) < α + ε2n+1

}
, und

F (ξ−k) := F (ξ−k2n+1) für alle k2n+1 ≤ k ≤ k2n+2

mit k2n+2 := min
{
k > k2n+1 : g◦(k)(F (ξ−k2n+1)) > 1 − ε2n+2

}
. Lemma 1.2.1

liefert induktiv die Existenz von kn für alle n ≥ 0, d.h. F ist wohldefiniert
in ξ−k für alle k ≥ 0. Für t ∈ ]0, 1] setzen wir nun F (t) := F (ξ−k) mit dem
k ∈ �0, für das ξ−k ≤ t < ξ−k+1 gilt, sowie F (0) := α. Dann ist F monoton
wachsend und rechtsseitig stetig in [0, ξ], kann also zu einer Verteilungs-
funktion fortgesetzt werden. Wir betrachten eine beliebige Fortsetzung von



54 Kapitel 3. Bestimmung der Verteilung von W ∗

F zu einer Verteilungsfunktion auf �, die wir wiederum mit F bezeichnen,
die korrespondierende Wahrscheinlichkeitsverteilung nennen wir Q. Seien Fk

die Verteilungsfunktion von S◦(k)
g (Q) (k ≥ 0) und ε > 0. Wir wählen dann

zu vorgegebener Schranke K > 0 ein n ∈ � so groß, dass ε2n+1 ≤ ε und
k2n+1 ≥ K sind. Dann gilt für alle 1 ≤ t < ξ:

Fk2n+1(t) = g◦(k2n+1)(F (ξ−k2n+1))

= g◦(k2n+1) ◦ g◦(−2(k2n+1−k2n))(F (ξ−k2n))
= g◦(−(k2n+1−2k2n))(F (ξ−k2n))
< α + ε2n+1

≤ α + ε

und

Fk2n+2(t) = g◦(k2n+2)(F (ξ−k2n+2))

= g◦(k2n+2)(F (ξ−k2n+1))
> 1 − ε2n+2

≥ 1 − ε,

d.h. α, 1 sind Häufungspunkte der Folge (Fk(t))k≥0. Für jedes t > 0 gibt es
nun ein kt ∈ � mit 1 ≤ ξktt < ξ, und es gilt dann für alle k ≥ max {−kt, 0}:

Fk(t) = g◦(k)(F (
t

ξk
)) = g◦(−kt) ◦ g◦(k+kt)(F (

tξkt

ξk+kt
)) = g◦(−kt)(Fk+kt(tξ

kt)),

und nach dem oben Gezeigten hat die Folge (Fk+kt(tξ
kt))k≥max{−kt,0} die

Häufungspunkte α und 1, also hat auch die Folge (Fk(t))k≥0 die Häufungs-
punkte α und 1. Damit konvergiert (Fk(t))k≥0 für kein t > 0, also auch
(S◦(k)

g (Q))k≥0 nicht in Verteilung.

Mit Blick auf Satz 1.3.3 interessieren wir uns in erster Linie für den Fall,
dass (S◦(n)

g (Q))n∈� gegen eine Verteilung Qh mit stetiger Verteilungsfunkti-
on h konvergiert mit h(x) �∈ {0, 1} für alle x ∈ �. Nach Lemma 3.1.1 können
wir uns bei der Suche nach einer hinreichenden Bedingung für die Vertei-
lungskonvergenz von (S◦(n)

g (Q))n∈� auf den Fall beschränken, dass für die
Ausgangsverteilung Q mit Verteilungsfunktion F := FQ

(3.1) F (0−) = F (0) = α

gilt. Der folgende Satz liefert in der obigen Situation im Falle ξ = g′(α)
unter einer Zusatzvoraussetzung (an das Verhalten von F in 0) ein Kriteri-
um, das sich auf viele bekannte Verteilungen anwenden lässt (z.B. auf alle
Verteilungen mit einer stückweise stetigen λλ-Dichte).
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3.1.4 Satz. Sei ξ = g′(α). Weiter sei Q ∈ W(�) mit Verteilungsfunkti-
on F und es gelte F (0) = α. Weiterhin sei F in 0 linksseitig und rechts-
seitig differenzierbar mit linksseitiger Ableitung c− ≥ 0 und rechtsseitiger
Ableitung c+ ≥ 0, wobei nicht notwendig c− = c+ gelte. Dann konvergiert
(S◦(n)

g (Q))n∈� genau dann in Verteilung, wenn c−, c+ > 0 gilt, und in die-
sem Fall hat die Verteilungsfunktion F0 der Grenzverteilung Q0 die Gestalt

(3.2) F0(t) =

{
h∗(c+t), falls t ≥ 0,

h∗(c−t), falls t ≤ 0,

wobei h∗ die in Satz 1.3.3 auftretende Verteilungsfunktion ist. Definiert man
dann β := c−1

+ , γ := c−1
− und bezeichnet mit W ∗ eine Zufallsgröße mit

Verteilungsfunktion h∗, so gilt

S◦(n)
g (Q) d−→

n→∞ β · (W ∗)+ − γ · (W ∗)−.

Beweis. Da F0 stetig ist, müssen wir

S◦(n)
g (Q)(] −∞, t]) −→

n→∞ F0(t)

für alle t ∈ � zeigen (wollten wir die uns bereits aus Satz 1.3.3 bekannte
Stetigkeit von h∗ nicht verwenden, so könnten wir uns in diesem Beweis im
Wesentlichen auf die Stetigkeitspunkte von F0 beschränken). Dabei müssen
wir die Fälle t ≥ 0 und t ≤ 0 unterscheiden. Da die Argumentationen in
den beiden Fällen praktisch identisch sind, beschränken wir uns auf den Fall
t ≥ 0.

Sei also t ≥ 0. Aus der rechtsseitigen Differenzierbarkeit von F in 0 mit
Ableitung c+ ≥ 0 schließen wir auf die Identität

F (s) = α + c+s + r(s)

für alle s ≥ 0, wobei r : [0,∞[−→ � eine Funktion ist mit

(3.3) lim
s↓0, s �=0

r(s)
s

= 0.

Sei ε > 0. Dann gibt es wegen (3.3) ein δ > 0 mit r(s) ≤ εs für alle
s ∈ [0, δ]. Damit gilt für alle n ≥ 0 mit t/ξn ≤ δ:

S◦(n)
g (Q)(] −∞, t]) = g◦(n)(F (t/ξn))

≤ g◦(n)(α + (c+ + ε)t/ξn)
−→
n→∞ h∗((c+ + ε)t),

d.h. es gilt
lim sup

n→∞
S◦(n)

g (Q)(] −∞, t]) ≤ h∗((c+ + ε)t).
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Da ε > 0 beliebig gewählt war und h∗ stetig ist, gilt sogar

lim sup
n→∞

S◦(n)
g (Q)(] −∞, t]) ≤ h∗(c+t).

Im Falle c+ = 0 folgt wegen h∗(0) = α, dass (S◦(n)
g (Q))n∈�0 nicht in Vertei-

lung konvergieren kann.
Sei also im Folgenden c+ > 0 und 0 < ε < c+. Wiederum wegen (3.3)

finden wir ein δ > 0 mit r(s) ≥ −εs für alle s ∈ [0, δ]. Dann gilt für jedes
n ≥ 0 mit t/ξn ≤ δ:

S◦(n)
g (Q)(] −∞, t]) = g◦(n)(F (t/ξn))

≥ g◦(n)(α + (c+ − ε)t/ξn)
−→
n→∞ h∗((c+ − ε)t),

also
lim inf
n→∞ S◦(n)

g (Q)(] −∞, t]) ≥ h∗((c+ − ε)t).

Der Grenzübergang ε ↓ 0 liefert die Behauptung.

Dieser Satz liefert eine Möglichkeit, die in Satz 1.3.3 auftretende Vertei-
lung für jedes b ≥ 2 zu bestimmen, wie sich im folgenden Abschnitt zeigt.

3.2 Bestimmung der Verteilung von W ∗

In diesem Abschnitt wollen wir für alle b ≥ 2 die Verteilung von W ∗ bestim-
men, die als Grenzverteilung des passend normierten Wertes eines b-adisch
verzweigten, zufällig bewerteten Maximinbaums der Höhe 2k für k → ∞ auf-
tritt (man beachte, dass W ∗ von b abhängt). In der zu Beginn von Abschnitt
2.3 eingeführten Sprache heißt das, dass wir limk→∞ S◦(k)

g (R(−α, 1 − α))
(bezüglich schwacher Konvergenz) für jede Funktion g : [0, 1] −→ [0, 1],
x �−→ (1 − (1 − x)b)b, bestimmen wollen, wobei α jeweils der eindeutige
Fixpunkt von g in ]0, 1[ und ξ := g′(α) sei.

Dazu nehmen wir für ein festes solches g und zugehöriges ξ zunächst an,
dass ein Q ∈ Lg,ξ mit Verteilungsfunktion F existiert, die in 0 differenzierbar
ist mit Ableitung 1. Nach Satz 3.1.4 gilt dann

(3.4) Q = lim
n→∞S◦(n)

g (Q) d= W ∗.

Wir haben das Problem also gelöst, wenn wir eine solche Lösung Q ∈ Lg,ξ an-
geben können. Dazu wagen wir einen noch viel optimistischeren Ansatz. Wir
geben nämlich eine Lösung an, deren Verteilungsfunktion die Einschränkung
einer ganzen Funktion auf � ist.
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3.2.1 Satz. Sei b ∈ �, b ≥ 2, g : [0, 1] −→ [0, 1], x �−→ (1−(1−x)b)b. h∗ sei
die Verteilungsfunktion, die als Grenzwert in Satz 1.3.3 im b-adischen Fall
auftritt. Weiter seien α der eindeutige Fixpunkt von g in ]0, 1[ und ξ = g′(α).
Dann ist h∗ die Einschränkung einer ganzen Funktion auf �. Folglich lässt
sich h∗ bei 0 in eine Potenzreihe entwickeln, die auf ganz � konvergiert. Die
Koeffizienten (an)n≥0 der Potenzreihe lassen sich wie folgt bestimmen:

a0 = α,

a1 = 1,

(3.5) an =
1

ξn − ξ
·

b2∑
k=2

ck

∑
j1+...+jk=n, j1,...,jk≥1

aj1 · . . . · ajk
(n ≥ 2),

wobei c0, . . . , cb2 die Koeffizienten des in α entwickelten Polynoms g seien.
Insbesondere existiert f∗ := dP (W ∗∈·)

d λλ , und es gilt f∗ ∈ C∞.

Beweis. Wir zeigen zuerst, dass der Konvergenzradius r der Potenzreihe∑∞
n=0 antn positiv ist. Dafür setzen wir h(z) :=

∑∞
n=0 anzn für alle z ∈ �

mit |z| < r. Für beliebiges γ > 0 setzen wir weiter a
(γ)
0 := α, a

(γ)
1 := γ,

und für n ≥ 2 definieren wir a
(γ)
n wie in (3.5), allerdings unter Rückgriff auf

a
(γ)
1 , . . . , a

(γ)
n−1 statt auf a1, . . . , an−1. Offenbar gilt dann für alle n ∈ �0:

(3.6) a(γ)
n = γnan.

Die a
(γ)
n sind dann die Koeffizienten der Taylorentwicklung der Funktion

h(γ ·) in 0. Es gilt nun für alle n ≥ 2:

|an| =

∣∣∣∣∣∣
1

ξn − ξ
·

b2∑
k=2

ck

∑
j1+...+jk=n

aj1 · . . . · ajk

∣∣∣∣∣∣(3.7)

≤ 1
ξn − ξ

·
b2∑

k=2

|ck|
(

n − 1
k − 1

)
· max{|a1|, . . . , |an−1|}k

=:
1

ξn − ξ
· p(n) · max{1, |a1|, . . . , |an−1|}b2 ,

wobei für die Abschätzung verwendet wurde, dass es genau
(n−1
k−1

)
ungeord-

nete k-Partitionen von n gibt, und p(n) :=
∑b2

k=2 |ck|
(n−1
k−1

)
für n ∈ � sei. p

ist ein Polynom in n. Folglich gibt es ein n0 ∈ � mit p(n) ≤ ξn − ξ für alle
n ≥ n0. Wir wählen nun γ > 0 so klein, dass∣∣∣a(γ)

1

∣∣∣ , . . . , ∣∣∣a(γ)
n0−1

∣∣∣ ≤ 1
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gilt, was sich im Hinblick auf (3.6) leicht einrichten lässt. Indem wir nun die
Abschätzung (3.7) für die a

(γ)
n anstelle der an durchführen, erkennen wir,

dass immerhin |a(γ)
n | ≤ 1 für alle n ≥ 0 gilt. Daher konvergiert die Reihe∑

n≥0 a
(γ)
n zn auf K1(0). Wegen (3.6) folgt r ≥ γ > 0.

Es gilt weiter für |z| < r unter Benutzung von (3.5) und c1 = g′(α) = ξ:

h(z) − α =
∞∑

n=1

anzn

=
∞∑

n=1

ξ−n
b2∑

k=1

ck

∑
j1+...+jk=n

aj1 · . . . · ajk
zn

=
b2∑

k=1

ck

∞∑
j1=1

. . .

∞∑
jk=1

aj1

(
z

ξ

)j1

· . . . · ajk

(
z

ξ

)jk

=
b2∑

k=1

ck(h(z/ξ) − α)k

= g(h(z/ξ)) − α,

d.h. es gilt

(3.8) h(z) = g(h(z/ξ)) für alle |z| < r.

Sei R > 0. Wir wählen n ∈ � so groß, dass R < γξn. Für z ∈ KR(0)
können wir nun hR(z) := g◦(n)(h( z

ξn )) setzen und erhalten so eine Funktion
auf KR(0), die als Verkettung holomorpher Funktionen wieder holomorph
ist. Auf KR(0) ∩ Kr(0) stimmt hR wegen (3.8) mit unserer ursprünglichen
Funktion h überein. Da R > 0 beliebig war, lässt sich h auf ganz � holo-
morph fortsetzen, ist also eine ganze Funktion. Es folgt aus der Analytizität
holomorpher Funktionen und dem Identitätssatz für Potenzreihen, dass die
Potenzreihe

∑∞
n=0 anzn für alle z ∈ � konvergiert, d.h. es gilt r = ∞. Die

Einschränkung von h auf � ist stetig, reellwertig – da die Potenzreihe nur
reelle Koeffizienten hat – und wegen h′(0) = 1 wachsend in einer Umgebung
von 0. Damit lassen sich s0 < 0 < t0 mit 0 < h(s0) < α < h(t0) < 1 finden,
so dass Satz 2.1.2 auf die Funktionen h− := h|[s0ξ,s0[ und h+ := h|[t0,t0ξ[ an-
wendbar ist. Der Satz liefert in Verbindung mit (3.8), dass die Einschränkung
von h auf� eine Verteilungsfunktion ist. Bezeichnet man mit Q die zugehöri-
ge Wahrscheinlichkeitsverteilung auf �, so gilt wegen (3.4) schon Q = PW ∗

,
also auch h = h∗.

Da h∗ als ganze Funktion insbesondere stetig differenzierbar auf � ist,
definiert f∗ := (h∗)′|� eine Version von dP (W ∗∈ ·)

d λλ und ist als Einschränkung
einer ganzen Funktion auf � eine C∞-Funktion.

Abbildung 3.1 auf Seite 59 zeigt den Funktionsverlauf von h∗ im Fall
b = 2. Als Näherung von h∗ ist

∑50
k=0 ãkx

k dargestellt, wobei ã0, . . . , ã50 Ap-
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Abbildung 3.1: Die Verteilungsfunktion h∗ und die Dichte f∗ für b = 2
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Abbildung 3.2: Die Funktion g6 für b = 2

proximationen der ersten 51 Koeffizienten a0, . . . , a50 der Taylorentwicklung
von h∗ um 0 sind, die unter Zuhilfenahme der Rekursionsgleichung (3.5)
angenähert sind. f∗ wird durch

∑49
k=0(k + 1)ãk+1x

k angenähert.
Abbildung 3.2 zeigt den Graphen von g6 ebenfalls für b = 2 im gleichen

Intervall (zur Erinnerung: g6(x) = g◦(6)(α + x/ξ6)). Die Funktionsverläufe
von g6 und h∗ ähneln sich im betrachteten Intervall so sehr, dass mit dem
bloßen Auge kaum ein Unterschied feststellbar ist.



Kapitel 4

Eine weitere Klasse
stochastischer
Fixpunktgleichungen

In der Arbeit [AR] von Alsmeyer und Rösler werden die folgenden stochas-
tischen Fixpunktgleichungen betrachtet:

(4.1) W
d= inf

j∈J
tjWj

und

(4.2) W
d= sup

j∈J
tjWj,

wobei {tj : j ∈ J} (J ⊆ �) eine endliche oder abzählbare Menge reel-
ler Zahlen und W,W1,W2, . . . unabhängige, identisch verteilte Zufallsgrößen
seien.

Uns interessiert in dieser Arbeit vor allem Gleichung (4.2) im Hinblick auf
bestehende Zusammenhänge mit der Fixpunktgleichung (2.1). Seien etwa W
eine Lösung von (4.2) und (Wj)j∈� sowie (Wi,j)i,j∈� Familien unabhängiger,
identisch wie W verteilter Zufallsgrößen. Dann gilt

W
d= sup

i∈J
tiWi

d= sup
i∈J

ti sup
j∈J

tjWi,j.

Gilt nun J = {1, . . . , b} für ein b ≥ 2 und sind t1 = . . . = tb = −√
ξ mit

einem ξ > 1, so liest sich die obige Gleichung wie folgt:

60



4.1. Einführende Überlegungen 61

W
d= sup

i∈J
ti sup

j∈J
tjWi,j

= max
1≤i≤b

−
√

ξ max
1≤j≤b

−
√

ξWi,j

= ξ · max
1≤i≤b

min
1≤j≤b

Wi,j,

d.h. W erfüllt Gleichung (2.1). Bezeichnen wir also für (t) = (tj)j∈J mit
Fmax

(t) die Menge aller Wahrscheinlichkeitsverteilungen auf �, die (4.2) lösen
(und entsprechend Fmin

(t) die Menge aller Wahrscheinlichkeitsverteilungen auf
�, die (4.1) lösen), so gilt für den Vektor (t) = (−√

ξ, . . . ,−√
ξ) der Länge

b und die Funktion g : x �−→ (1 − (1 − x)b)b:

(4.3) Fmax
(t) ⊆ Lg,ξ.

Aufgrund dieses Zusammenhangs möchten wir nun die Fixpunktglei-
chung (4.2) betrachten und ihre Lösungsmenge Fmax

(t) – insbesondere im Fall
(t) = (−√

ξ, . . . ,−√
ξ) wie oben – charakterisieren. Wir hoffen dadurch er-

kennen zu können, welche Verteilungen Q ∈ Lg,ξ sogar in Fmax
(t) liegen. Wir

lehnen unser weiteres Vorgehen an die bereits zitierte Arbeit [AR] an.

4.1 Einführende Überlegungen

Wir begeben uns nun bis auf weiteres in die folgende allgemeine Situation:
Sei J ⊆ �; der Einfachheit halber nehmen wir gleich an, dass J = {1, . . . , n}
für ein n ∈ � gilt oder J = � ist. Weiter sei (t) = (tj)j∈J ein(e) Vek-
tor/Folge reeller Zahlen. Zu J und (t) betrachten wir nun die stochastischen
Fixpunktgleichungen (4.1) und (4.2) und ihre Lösungsmengen Fmin

(t) ⊆ W(�)
bzw. Fmax

(t) ⊆ W(�). Es gilt dann

PW ∈ Fmax
(t) ⇐⇒ P−W ∈ Fmin

(t) .

Wir können uns also auf eine der beiden Fixpunktgleichungen beschränken.
Im Hinblick auf (4.3) beschränken wir uns auf Gleichung (4.2).

Weiterhin kann man sich auf den Fall beschränken, in dem tj �= 0 für
alle j ∈ J gilt. Behandelt man nämlich diese eingeschränkte Klasse von Fix-
punktgleichungen, so kann man zurück auf die allgemeine schließen, indem
man von (4.2) zur Fixpunktgleichung

(4.4) W
d= 0 ∨ sup

j∈J
tjWj

übergeht. Für jede Lösung PW von (4.4) gilt offenbar P (W ≥ 0) = 1.
Weiterhin löst W auch die Fixpunktgleichung (4.2). Ist umgekehrt PW eine
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Lösung von (4.2) mit P (W ≥ 0) = 1, so löst PW auch die Fixpunktgleichung
(4.4).
Man kann sich also auf die folgenden Fälle beschränken:

(F1) tj > 0 für alle j ∈ J ;

(F2) tj < 0 für alle j ∈ J ;

(F3) es gibt i, j ∈ J mit ti < 0 < tj .

Darüber hinaus ist der Fall J = {1} trivial, denn für t1 = 0 liefert er
direkt Fmax

(t) = {δ0}, für t1 > 0 liefert er die folgende Funktionalgleichung für
die Verteilungsfunktion F einer Lösung W ∈ Fmax

(t) :

F (t) = F (t/t1) für alle t ∈ �,

die für t1 �= 1 Fmax
(t) = {δ0} impliziert und für t1 = 1 Fmax

(t) = W(�). Für
t1 = −1 lösen alle symmetrischen Verteilungen auf � die Fixpunktgleichung,
für t1 < 0, t1 �= −1 muss wieder Fmax

(t) = {δ0} gelten, denn für PW ∈ Fmax
(t)

gilt W ∼ t1W ∼ t21W, und hier ist 1 �= t21 > 0. Wir nehmen daher im
Folgenden stets |J | ≥ 2 an.

Wir wollen uns – wieder im Hinblick auf (4.3) – auf die Bearbeitung des
Falls (F2) beschränken. Der Fall (F1) wird in der bereits zitierten Arbeit
[AR] von Alsmeyer und Rösler ausführlich diskutiert.

4.2 Eine Charakterisierung von Fmax
(t)

Wir wollen nun eine Charakterisierung von Fmax
(t) angeben, die wir leicht

modifiziert aus [AR] (Satz 5.1) übernehmen. Für den Rest des Kapitels sei
stets J = {1, . . . , b} für ein b ∈ � − {1} oder J = �. Wir beginnen die
Charakterisierung von Fmax

(t) mit einer Definition:

4.2.1 Definition. Sei J endlich und (t) = (tj)j∈J ein Vektor reeller Zahlen
mit tj < 0 für alle j ∈ J . Dann definieren wir den Operator �(t) : W(�) −→
W(�) wie folgt: Für ein Q ∈ W(�) sei �(t)Q die Verteilung auf � mit
Verteilungsfunktion F�(t)Q(t) =

∏
j∈J(1 − FQ(t/tj−)).

In Termen von Zufallsgrößen entspricht die Anwendung des Operators
�(t) dem Übergang W �−→ supj∈J tjWj für u.i.v. W,W1,W2, . . . mit Vertei-
lung Q, denn für alle t ∈ � ist

F�(t)Q(t) =
∏
j∈J

(1 − FQ(t/tj−)) =
∏
j∈J

P (W ≥ t/tj) = P

(
sup
j∈J

tjWj ≤ t

)
.

4.2.2 Satz. Sei (t) = (tj)j∈J ein(e) Vektor/Folge reeller Zahlen mit tj < 0
für alle j ∈ J .
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(a) Ist J = {1, . . . , b} für ein b ∈ � und β die eindeutige Lösung der
Gleichung xb+x = 1 im Einheitsintervall, so besteht Fmax

(t) −{δ0} genau
aus allen Verteilungen der Gestalt βQ>+βb�(t)Q>, wobei Q> ∈ W(�)
eine beliebige Verteilung auf ]0,∞[ mit

(4.5) 1 − βQ>(]t,∞[) =
b∏

i=1


1 −

b∏
j=1

βQ>

(
]

t

titj
,∞[

) (t ≥ 0)

ist.

(b) Im Fall J = � gilt Fmax
(t) = {δ0}.

Beweis. Sei Q ∈ Fmax
(t) − {δ0}, F die zu Q korrespondierende Verteilungs-

funktion und W,Wj , j ∈ J , Zufallsgrößen mit Verteilung Q, wobei die Wj

(j ∈ J) unabhängig seien. Dann gilt folgende Gleichung für F :

(4.6) F (t) =
∏
j∈J

(1 − F (t/tj−))

für alle t ∈ �. Analog gilt:

(4.7) F (t−) =
∏
j∈J

(1 − F (t/tj))

für alle t ∈ �.
Zu (a): Seien nun J = {1, . . . , b} für ein b ≥ 2 und Q, F wie oben.

Weiter seien u := Q(] − ∞, 0[), v := Q({0}) und w := Q(]0,∞[). Dann
gilt u + v + w = 1 und nach (4.7) u = wb. (4.6) liefert u + v = (w + v)b,
zusammen folgt wb + v = (w + v)b. In dieser Gleichung können wir v als
v = 1 − u − w = 1 − wb − w schreiben und erhalten die Gleichung

(4.8) 1 − w = (1 − wb)b

für w. Nach Voraussetzung (Q �= δ0) ist 0 < w < 1, und im offenen Einheits-
intervall hat die Gleichung (4.8) nach Lemma 1.2.3 genau eine Lösung, die
wir mit β bezeichnen. Nach Bemerkung 1.2.4 löst β die Gleichung β+βb = 1.
Damit ist w = Q(]0,∞[) = β, w + u = w + wb = 1 und v = 0.

Nun folgt für beliebiges t ≤ 0 unter Benutzung von (4.6):

P (W ≤ t|W < 0) =
P (W ≤ t)

u

=
b∏

j=1

1 − F (t/tj−)
w

=
b∏

j=1

P (W ≥ t/tj |W > 0).
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Setzt man nun Q> := P (W ∈ ·|W > 0), so gilt P (W ∈ ·|W < 0) = �(t)Q>,
also

Q = βP (W ∈ ·|W > 0) + βbP (W ∈ ·|W < 0) = βQ> + βb
�(t)Q>.

Wir müssen nun noch zeigen, dass Q> die Gleichung (4.5) erfüllt. Sei dazu
t > 0. Dann erhält man unter Verwendung von (4.6)

1 − βQ>(]t,∞[) = 1 − P (W > t) = F (t)

=
b∏

i=1

(
1 − F

(
t

ti
−
))

=
b∏

i=1

(
β + βb

�(t)Q>

([
t

ti
,∞

[))

=
b∏

i=1

(
β + βb

(
1 − F�(t)Q>

(
t

ti
−
)))

=
b∏

i=1


β + βb


1 −

b∏
j=1

Q>

(]
t

titj
,∞

[)



=
b∏

i=1


1 − βb

b∏
j=1

Q>

(]
t

titj
,∞

[)

=
b∏

i=1


1 −

b∏
j=1

βQ>

(]
t

titj
,∞

[)

und dieses Ergebnis auch für t = 0 durch Grenzübergang t ↓ 0.

Umgekehrt ist nun zu zeigen, dass jedes Q der angegebenen Gestalt eine
Lösung der Fixpunktgleichung (4.2) ist. Sei also Q = βQ> + βb�(t)Q> für
ein Wahrscheinlichkeitsmaß Q> wie unter (a). F,F> seien die zugehörigen
Verteilungsfunktionen. Wir weisen nun die Gültigkeit von (4.6) für F nach.
Sei dazu zunächst t ≤ 0 beliebig. Dann erhält man unter Beachtung von
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F>|]−∞,0] = 0:

F (t) = βF>(t) + βb
b∏

j=1

(1 − F>(t/tj−))

=
b∏

j=1

β − βF>(t/tj−))

=
b∏

j=1

1 − (βF>(t/tj−) + βb)

=
b∏

j=1

1 − F (t/tj−).

Weiter gilt für t > 0

F (t) = βF>(t) + βb
b∏

j=1

(1 − F>(t/tj−))

= 1 − β + βF>(t)
= 1 − βQ>(]t,∞[)

=
b∏

i=1


1 −

b∏
j=1

βQ>

(]
t

titj
,∞

[)

=
b∏

i=1


1 − βb

b∏
j=1

Q>

(]
t

titj
,∞

[)

=
b∏

i=1

1 − F (t/ti−),

wobei man für die letzte Gleichheit beachte, dass für i = 1, . . . , b

F (t/ti−) = βQ>(] −∞, t/ti[) + βb
�(t)Q>(] −∞, t/ti[)

= βb
�(t)Q>(] −∞, t/ti[)

= βb
b∏

j=1

Q>

(]
t

titj
,∞

[)

gilt.
Zu (b): Nach (4.6) ist im Falle J = � insbesondere also F (0−) = 0, denn

wäre F (0−) ∈ ]0, 1], so lieferte (4.6) F (0) = 0 und damit einen Widerspruch
zur Isotonie von F . Es folgt dann wiederum aus (4.6) F (0) = 1, also ist
Q = δ0 und daher Fmax

(t) ⊆ {δ0}. Die umgekehrte Inklusion ist trivial.
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Ebenso wie der Operator �(t) eine Entsprechung auf dem Niveau der
Zufallsgrößen hat, hat auch die Gleichung (4.5) eine solche. Wählen wir
nämlich in der Situation des Satzes für b := |J | < ∞ u.i.v. Zufallsgrößen
W,Wi,j (1 ≤ i, j ≤ b) mit Verteilung βbδ0 + βQ> (dabei sei Q> eine Vertei-
lung auf ]0,∞[), so gilt für alle t ≥ 0:

P

(
max
1≤i≤b

min
1≤j≤b

titjWi,j ≤ t

)
=

b∏
i=1

P

(
min

1≤j≤b
titjWi,j ≤ t

)

=
b∏

i=1

1 − P

(
min

1≤j≤b
titjWi,j > t

)

=
b∏

i=1


1 −

b∏
j=1

βQ>

(]
t

titj
,∞

[) ,

d.h. die Verteilungen Q> auf ]0,∞[, die (4.5) erfüllen, sind genau die Ver-
teilungen Q> auf ]0,∞[, für die βbδ0 + βQ> die Fixpunktgleichung

W
d= max

1≤i≤b
min

1≤j≤b
titjWi,j

erfüllt, wobei wie üblich W,Wi,j u.i.v. mit Verteilung βbδ0 + βQ> seien.

4.3 Bestimmung von Fmax
(t) im Falle t1 = . . . = tb < 0

Die Bestimmung von Fmax
(t) im Falle t1 = . . . = tb < 0 für 2 ≤ b < ∞ ist nun

nicht mehr schwierig, denn die Sätze 2.1.2 und 4.2.2 liefern im schwierigeren
Fall t1 < −1 fast unmittelbar den folgenden Satz:

4.3.1 Satz. Seien J = {1, . . . , b}, b ≥ 2 und t1 = . . . = tb < 0, und β
bezeichne wie in Satz 4.2.2 die eindeutige Lösung der Gleichung xb + x = 1
im offenen Einheitsintervall. Dann gelten die folgenden Aussagen:

(a) Ist |t1| < 1, so gilt Fmax
(t) = {δ0}.

(a) Ist t1 = −1, so gilt Fmax
(t) = {(1 − β)δ−a + βδa|a ≥ 0}.

(c) Ist
√

ξ := |t1| > 1, so definiert für jede Funktion f+ : [1, ξ[−→ �, die
rechtsseitig stetig und monoton wachsend mit limt→ξ f+(t) ≤ g(f+(1))
und βb < f+(1) ≤ 1 ist, die Verteilungsfunktion F , die durch

(4.9) F (t) =




g◦(n)
(
f+

(
t

ξn

))
, falls t > 0,

βb, falls t = 0 und f+(1) < 1,
1, falls t = 0 und f+(1) = 1,
(1 − F ((−t/

√
ξ)−))b, sonst,
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gegeben wird (wobei in der vierten Zeile der Definition auf die erste
Zeile der Definition zurückgegriffen wird und dort wie in Satz 2.1.2
n ∈ � so zu wählen ist, dass 1 ≤ t/ξn < ξ ist), eine Verteilung
Q ∈ Fmax

(t) .

Umgekehrt hat jede Verteilung Q ∈ Fmax
(t) eine Verteilungsfunktion der

angegebenen Gestalt.

Beweis. Zu (a) und (b): Sei Q ∈ Fmax
(t) . Setzen wir ξ := t21 und g(x) :=

(1 − (1 − x)b)b für 0 ≤ x ≤ 1, so gilt F (t) = g(F (t/ξ)) für alle t ∈ � (vgl.
(4.3)).

Im Falle ξ < 1 gilt für jedes t > 0:

F (t) = g◦(n)(F (t/ξn)) −→
n→∞ 1.

Die rechtsseitige Stetigkeit von F liefert auch F (0) = 1. Analog zum Fall
t > 0 sieht man auch F (t) = 0 für alle t < 0 ein, also insgesamt F = 1[0,∞[

und damit Q = δ0.
Im Falle ξ = 1 ist jeder Wert F (t) Fixpunkt von g, d.h. F (t) ∈ {0, 1−β, 1}

für alle t ∈ �. W sei eine Zufallsgröße mit Verteilung Q. Ist W fast sicher
konstant, so muss W fast sicher = 0 sein. Ist W nicht fast sicher konstant,
so existieren immerhin reelle Zahlen a′ < a mit P (W ∈ {a′, a}) = 1. Sind
W1, . . . ,Wb ∼ W u.i.v., so gilt P (W ∈ {−a′,−a}) = P (max1≤j≤b −Wj ∈
{−a′,−a}) = 1, d.h. {−a′,−a} = {a′, a}. Es folgt a′ = −a und W ∼ (1 −
β)δ−a+βδa. Umgekehrt kann man leicht nachrechnen, dass (1−β)δ−a+βδa ∈
Fmax

(t) für alle a ≥ 0 gilt.
Zu (c): Sei f+ : [1, ξ[−→ � rechtsseitig stetig und monoton wachsend mit

limt→ξ f+(t) ≤ g(f+(1)) und βb < f+(1) ≤ 1. Dann wird nach Satz 2.1.2
durch die Funktion

(4.10) F̃ (t) =




g◦(n)
(
f+

(
t

ξn

))
, falls t > 0,

βb, falls t = 0 und f+(t0) < 1,
1, falls t = 0 und f+(t0) = 1,
0, sonst,

eine Verteilungsfunktion definiert, für deren korrespondierendes Wahrschein-
lichkeitsmaß Q̃ gilt: Q̃ ∈ Lg,ξ. Wir bezeichnen mit Q> das Wahrscheinlich-
keitsmaß mit Verteilungsfunktion β−1(F̃ − βb1[0,∞[). Dann ist Q̃ = βbδ0 +
βQ>. Also erfüllt Q> die Gleichung (4.5). Nach Satz 4.2.2 ist dann βQ> +
βb�(t)Q> ∈ Fmax

(t) . βQ> + βb�(t)Q> hat aber gerade die in (4.9) angegebene
Verteilungsfunktion.

Umgekehrt ist nach Satz 4.2.2 jedes Q ∈ Fmax
(t) darstellbar als βQ> +

βb�(t)Q> mit einem Q> ∈ W(]0,∞[), für das βbδ0 + βQ> ∈ Lg,ξ gilt. Dann
existiert eine Funktion f+ mit den im Satz geforderten Eigenschaften, so
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dass die Verteilungsfunktion von βbδ0 + βQ> auf ]0,∞[ von der in (4.9)
angegebenen Gestalt ist (vgl. dazu Abschnitt 2.1). Diese Verteilungsfunktion
stimmt aber auf [0,∞[ mit der Verteilungsfunktion von Q = βQ>+βb

�(t)Q>

überein, da �(t)Q>(] − ∞, 0[) = 1 gilt. Die Behauptung für F |]−∞,0[ folgt
aus (4.6). Damit ist der Satz vollständig bewiesen.

Teil (b) des Satzes sagt also aus, dass man die Verteilungsfunktionen
der Lösungen der Fixpunktgleichung (4.2) mit t1 = . . . = tb < −1 wie folgt
zusammensetzen kann: Man nimmt sich eine Funktion f+ mit den im Satz
beschriebenen Eigenschaften und setzt diese wie im Satz 2.1.2 zur Vertei-
lungsfunktion einer Lösung F der Fixpunktgleichung (2.1) fort, allerdings
nur auf [0,∞[. Im Gegensatz zur Fixpunktgleichung (2.1) kann man nun
nicht in der in Satz 2.1.2 angegebenen Weise unter Zuhilfenahme einer be-
liebigen Funktion f− wie in letzterem Satz F |]−∞,0[ konstruieren und F
einfach aus F |]−∞,0[ und F |[0,∞[ zusammensetzen, sondern muss einen Zu-
sammenhang zwischen F |[0,∞[ und F |]−∞,0[ respektieren, der die Wahl von
f− (bei gegebenem f+) eindeutig macht.

Die letzte Frage, die wir uns in dieser Arbeit stellen, ist, ob die Lösun-
gen PW ∗

aus Satz 1.3.3 diesen Zusammenhang respektieren, also auch die
restriktivere Fixpunktgleichung (4.2) mit t1 = . . . = tb = −√

ξ erfüllen.
Dieser Frage gehen wir im letzten Abschnitt dieser Arbeit nach.

4.4 Der Nachweis von P (W ∗ ∈ ·) ∈ Fmax
(t)

Für den Rest dieses Abschnitts seien b ≥ 2 fest, β die eindeutige Lösung der
Gleichung xb+x = 1 in ]0, 1[ und α := 1−β. Dann hat die zugehörige Vertei-
lung PW ∗

eine holomorphe Verteilungsfunktion h∗. Mit dem Verhalten der
Verteilungsfunktion h∗ auf der positiven Halbachse ist also auch schon das
Verhalten von h∗ auf der negativen Halbachse bestimmt. Die Holomorphie
der Verteilungsfunktion lässt uns weiterhin annehmen, dass sie sich dort in
unserem Sinne gutartig verhält, d.h. auch eine Lösung der Gleichung (4.6)
ist.

Um zu beweisen, dass tatsächlich PW ∗ ∈ Fmax
(t) gilt, müssen wir nach

Satz 4.3.1

(4.11) h∗(t) =
(

1 − h∗
(
− t√

ξ

))b

für alle t < 0 zeigen.
Wie im Beweis von Satz 3.2.1 machen wir einen Potenzreihenansatz und

nehmen an, dass eine in einer kreisförmigen Umgebung U von 0 holomorphe
Lösung h von (4.11) existiert, für die überdies h(0) = 1 − β = βb und
h′(0) = 1 gilt. Wir schreiben h(z) =

∑∞
n=0 anzn (z ∈ U) und setzen g̃(z) :=
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(1− z)b (z ∈ �). Wir können g̃ in α entwickeln und erhalten die Darstellung
g̃(z) =

∑b
k=0 ck(z − α)k (z ∈ �). Eine Anwendung von (4.11) liefert:

∞∑
n=1

anzn = h(z) − α

= g̃(h(−z/
√

ξ)) − α

=
b∑

k=1

ck(h(−z/
√

ξ) − α)k

=
b∑

k=1

ck(
∞∑

n=1

(−1)nξ−n/2anzn)k

=
b∑

k=1

ck

∑
n1,...,nk≥1

(−1)
∑k

j=1 njξ−
∑k

j=1 nj/2an1 · . . . · ank
z
∑k

j=1 nj

=
∞∑

n=1

(−1)nξ−n/2

(
b∑

k=1

ck

∑
n1+...+nk=n

an1 · . . . · ank

)
zn

für z ∈ U . Vermöge eines Koeffizientenvergleichs erhalten wir

an(1 + (−1)n−1ξ−n/2c1) = (−1)nξ−n/2

(
b∑

k=2

ck

∑
n1+...+nk=n

an1 · . . . · ank

)

für alle n ≥ 1. Beachtet man nun, dass g̃ streng monoton fallend auf ]0, 1[
ist, also g̃′(α) < 0, und g̃′(α)2 = (g̃ ◦ g̃)′(α) = ξ, so erhält man c1 = −√

ξ.
Damit liefert der Koeffizientenvergleich im Falle n = 1 die leere Bedingung
0 = 0 und im Falle n ≥ 2 die Rekursionsformel

an =
(−1)nξ−n/2

1 + (−1)nξ−(n−1)/2

(
b∑

k=2

ck

∑
n1+...+nk=n

an1 · . . . · ank

)
.

An dieser Darstellung erkennt man ebenso wie im Beweis von Satz 3.2.1,
dass die Potenzreihe

∑∞
n=0 anzn auf ganz � konvergiert. h ist also eine ganze

Funktion; zweimalige Anwendung der Identität (4.11) liefert, dass h auch die
Gleichung (2.3) erfüllt. Nun kann man weiterschließen wie im Beweis von
Satz 3.2.1 und erhält den folgenden Satz:

4.4.1 Satz. Seien b ≥ 2, g : [0, 1] −→ [0, 1], x �−→ (1− (1−x)b)b, ξ := g′(α)
für den eindeutigen Fixpunkt α von g in ]0, 1[ und W ∗ zu b wie im Satz 1.3.3
gewählt. Dann gilt PW ∗ ∈ Fmax

(t) , d.h. W ∗ erfüllt die Fixpunktgleichung

W
d= max

1≤i≤b
−
√

ξWi = −
√

ξ min
1≤i≤b

Wi,

wobei W1, . . . ,Wb unabhängige, wie W verteilte Zufallsgrößen seien.
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