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1 Einleitung

Gegeben einen reellen Zufallsvektor (C, Ty, Ts, T3, ...), betrachten wir die stochasti-
sche Rekursionsgleichung

REZY T;R;+C, (1.1)

Jj=1

wobei (R;),, unabhéngig und identisch verteilt (iid) und von (C,T1, T3, T3, ...) un-

abhéngig mit R < R, ist. Die Summe in (1.1) soll P-fast sicher (f.s.) existieren.

Das Ziel dieser Arbeit ist es, Bedingungen an (C, T}, T5, T3, ...) zu stellen, unter
denen eine Losung R von (1.1) existiert. Dariiber hinaus wollen wir unter entspre-
chenden Anforderungen an (C, Ty, T,, T3, ...) das asymptotische Verhalten der Tails
dieser Losung als polynomiell fallend charakterisieren, d.h. wir werden fiir ein a > 0
und Hy € [0, 00)

tllglo t*P (R >t) = H, bzw. tlggotaIP (R< —t)=H_ (1.2)
zeigen.

Auf Existenz einer Losung wird die Gleichung (1.1) sowohl in Kapitel 5 des Skrip-
tes [3] von Alsmeyer sowie in dem Paper [10] von Olvera-Cravioto und Jelenkovié
untersucht, wobei im Gegensatz zu Ersterem in Letzterem ebenfalls die Tails der
Losung charakterisiert werden.

Die Bedingungen (4.24) an (C, T}, T», T3, ...), die wir in Satz 4.10 fiir die Existenz
einer Losung von (1.1) mit endlichem S-Moment fordern, sind so in Kapitel 5 in [3]
zu finden, jedoch schwécher als die Anforderungen in [10]. In dem zweiten zentralen
Ergebnis dieser Arbeit, Satz 4.13 iiber das Verhalten (1.2) der Tails von R, kénnen
wir mithilfe dieser Bedingungen den Satz 4.6 in [10] verallgemeinern.

Um die Tails einer Zufallsgréfie zu charakterisieren, verallgemeinern wir in Ka-
pitel 3 das Implizite Erneuerungstheorem von Goldie auf den fiir uns interessanten
Fall der Verzweigung. In Kapitel 4 werden wir dann eine Losung R € Lg von (1.1)
konstruieren, die Eindeutigkeit ihrer Verteilung in Pg (R) zeigen und das Implizite
Erneuerungstheorem auf eine Losung anwenden. Diese Ergebnisse werden wir dann
in Kapitel 5 auf den PageRank anwenden, der ein Instrument bildet, die Bedeutsam-
keit einer Webseite und somit deren Prioritét in Ergebnislisten einer Suchmaschine
zu bestimmen. In diesem Zusammenhang entsprechen die Zufallsgrofle R dem Page-
Rank einer zufillig ausgewihlten Webseite und deren Tails der Wahrscheinlichkeit,
einen hohen PageRank vorzufinden. Lemmata und Sétze, die hier nicht bewiesen
werden, jedoch einen hoheren Stellenwert fiir den Kontext besitzen, werden im An-
hang aufgefiihrt.

Um den Lesefluss nicht unnétig zu storen, verzichten wir darauf alle Begriffe
einzufiihren, von denen wir zwar Gebrauch machen, die aber entweder Grundbegriffe
der Wahrscheinlichkeitstheorie oder nicht von herausragender Bedeutung fiir die
Beweisfithrung sind, und verweisen in diesen Féllen auf [2] und [3].
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Die hier dargestellten Ideen und ebenso die meisten Aussagen und Beweise ba-
sieren auf den Arbeiten von Olvera-Cravioto und Jelenkovié¢ in [10], [11] (Kapitel 3
und 4) und [9] (Kapitel 5).

An dieser Stelle mochte ich mich bei Herrn Prof. Dr. Gerold Alsmeyer fiir seine
motivierenden Vorlesungen, die interessante Themenstellung sowie seine Beratung
und Betreuung bedanken. Dariiber hinaus bedanke ich mich bei meinen Freunden
und meiner Familie fiir ihre Unterstiitzung.

2 Setup

Wir werden in der weiteren Arbeit die Ulam-Harris Notation nutzen. Um die Zweck-
méBigkeit derer zu sehen, betrachten wir zunéchst die Abbildung .#, definiert durch

S(F) = & (2]21 T;X; —i—C’), wobei (X;),., iid und von (C,T1,73,T5,...) un-
abhéngig mit X; L F st (Vgl. zu . Abschnitt 4.2). Die Losungen der Gleichung

(1.1) sind genau die Fixpunkte von .. Gehen wir davon aus, dass mit der Verteilung
F auch .7 (F), % (F) und .3 (F) existieren, so gilt

S (F) =% ZZ}XjJrC),
j=1

P (F) =2 [ XTI X R+ Y10 () + c) und

Jk=>1 Jj=1

SHE) =2 | D T ()T (k) X (k) + > ;T () C (k) + > T,C (j) + C

gk 1>1 Jk21 Jj=1

fiir (C (]) 7T1 (]) aTQ (]) 7T3 (]) ) )7] > 1; und (C (]k) 7T1 (]k) 7T1 (]k) 7T1 (]k) ) )7
J,k > 1, unabhéngige Kopien von (C,Ty,T5, T3, ...). Diese Iteration von . macht
die Nutzung der Ulam-Harris Notation sinnvoll.

Sei dazu

U::UN”

n>0

der Ulam-Harris Baum, wobei N° := {@}. Fiiri € Usei (C (i),T3 (i), T» (1), 73 (i), -..)
ein reeller Zufallsvektor derselben Verteilung wie (C, T}, Ts, T3, ...), sodass

(CH), T ({1), T2(i),T5(1), - )icr

iid ist. Fiir ein i = (iy,...,4,) € N*, n > 1, schreiben wir kurz i = 4;...i,, und fiir
k=1,...n

i|k =iy..0, € N¥

)
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Abb. 1: Mogliche Realisierung des Ulam-Harris Baums. Der Knoten i wird mit dem
Gewicht II (i) versehen.

sowie i|0 = (. Die Lénge eines Knotens notieren wir durch |i| = n fiir alle i € N,
n > 0. Weiter definieren wir II (@) := 1 und, fiir |i| =n, n > 1,

() =11 (i n— DT, (iln—1) = HTM il k).

Diese Produkte sind in der Veranschaulichung des Ulam-Harris Baum die Gewichte
der Knoten (vgl. Abbildung 1). Fiir i € U ist II (i) das Produkt der 7} (-) tiber den
Pfad von der Wurzel () zu i. Insbesondere in Abschnitt 4.2 wird bei der Konstruktion
der Losung R zu (1.1) in der Definition der W, von diesen Gewichten Gebrauch
gemacht.

Fiir einige Anwendungen definieren wir ebenfalls

V(i) := log [IL (i)}

fir n > 0, |il = n und

i) =D L0

Jj=1

Wir definieren die n-Vergangenheit im Ulam-Harris Baum als folgende o-Algebren:
So:={0,Q} und fir n > 1

§pi= o (CH), T (), To(),.): i <n—1). (2.1)

S$n enthélt also genau die Informationen iiber die Entwicklung bis zum Zeitpunkt
n einschliefilich, aber keine weiteren. Die Filtration (§y),, wird sich im Abschnitt
3.2 als Hilfsmittel im Beweis des Impliziten Erneuerungstheorems erweisen.
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3 Implizites Erneuerungstheorem mit Verzweigung

In diesem Kapitel werden wir das Implizite Erneuerungstheorem fiir den verzweigen-
den Fall vorstellen und beweisen. Bevor wir diesen Satz in Abschnitt 3.2 betrachten,
werden wir in Abschnitt 3.1 auf den Beweis vorbereitende Definitionen und Lemmata
angeben und beweisen.

3.1 Exponentielle Glattung und direkte Riemann-Integrier-
barkeit

Fiir den Beweis des Impliziten Erneuerungstheorems benotigen wir den Begriff der
exponentiellen Glattung. Diese ist nicht fiir alle A-messbaren Funktionen definiert,
sondern fiir 5 > 0 nur fiir die Teilmenge

L= {f : R — R messbar

/ P f (w) A (du) < oo fiir alletER}.
(70077&)

Es gilt Ly () C £3, wobei Ly (A) := {f : R — R messbar | [ |f (u)[A(du) < oo} die
X-integrierbaren Funktionen bezeichnet.

Definition 3.1. Sei § > 0. Fiir f € £5 definieren wir die exponentielle Glittung
f:R— R von f durch

ft) = /(_ ) e P F (A (du) -

Fiir einen Vektor f : R — R" von Funktionen f; € £3 sei fi= (E, ,ﬁ)

Wir merken an, dass fiir f € £5 und eine exponentialverteilte Zufallsgrofie X,

dh. £ (X) = Exp (8),

FW) == [ Be®f(t—wA(du) = SEf (t - X)
B J 0,00 B

gilt.
Lemma 3.2. Gegeben 5 > 0 gilt:

(a) Mit der punktweisen Addition + bildet (£5,+) eine Gruppe und die Zuordnung
J = f von Lg in die Gruppe der A-messbaren Funktionen ist ein Gruppenho-
momorphisus, d.h. fi + fo = fi + fo fir alle fi, fo € £5.

(b) Ist f € L5 A-quasiintegrierbar, so ist f ebenfalls A-quasiintegrierbar und es gilt

5/Rf(t))\(dt)=/Rf(U)A(du)~
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(c) Ist f € £5 A-quasiintegrierbar und p endliches Maf$ auf R, dann gilt f*p =
T,

Beweis. (a) Fir fi, fo € £5,t € R gilt
[ e+ f i@
(—OO,t)
< / e8| £, ()| A (du) + / e8| £, ()] A(du)
(_Ooat) (_Oovt)

und damit ist (£g,+) eine Gruppe, denn Assoziativitdat von +, 0 € £5 und
—f € £ fiir alle f € L5 ist klar. In der gleichen Rechnung ohne || besteht
Gleichheit und das zeigt die Additivitit der Zuordnung f +— f.

(b) Dies ist eine einfache Schlussfolgerung aus Fubini:!

f = e Pt £ (y U
o [Fonan=s[ [ e
— [ [ pereon@an = [ F @)
R (u,00) R

Mit analoger Rechnung fiir f* statt f folgt durch Tonelli und [ f* dA < oo die
A ® MIntegrierbarkeit von h™, wobei & durch h (u,t) := L(_ooy) (u) e P9 f (u)
definiert ist (bzw. jeweils das negative Pendant).

(c) Fir alle ¢ € R gilt mit Fubini und dem Transformationssatz fiir Lebesgue-
Integrale? (u +— u — )

Fou(t) = /( ) ) Al

—/) tu/fu—x(m»um

/ / ey () P £ (0 — ) (d)A (d)
//mm =)= £ () A (dv)p (dr)
~ [ Flt=a)uldn) = Frm) @,

h(u,2) = 1oy (u) e P f (u — z) ist p®@A-quasiintegrierbar, denn aufgrund
der Quasiintegrierbarkeit von f gilt mittels 1 (u) e ?~% <1 auf R?

/th(u,:c)}\(du)S/RdeA<OO

1Zu Fubini und Tonelli vgl. Satz 19.11 aus [2].
2Satz 14.5 in [2].
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fiir ein p € {+, —} und beliebiges = € R. Also folgt mit Tonelli, da u (R) < oo,

/RXthd(u@m\)z/R/th(u,x)A(du)u(dx)g/pr d\- 1 (R) < oo.

]

Als Anwendung des folgenden Lemmas, konnen wir im Hinblick auf den Ab-
schnitt 3.2 f (t) = r* (t) = e*P (X > €) bzw. f(t) =r~ (t) = e*P (X < —¢€') im
Hinterkopf haben.

Lemma 3.3. Gegeben eine monoton fallende Funktion g und f(t) = e®g(e'),
implizieren
- H
feLsund tliglof(t)—g
schon
tliglo Ft) =H.

Beweis. Seien b € (0, 1), € > 0 beliebig, und ¢, > 0 so groB, dass fiir alle ¢t > ¢, — 1

f(#)

< J—
gl B
gilt. Dann folgt mit der Monotonie von g fiir ¢t > t. — 1

U (t+0) = F(t)
_ B —B(t+b—u) _ —B(t-u)
e /(_Ooﬂb) e f(u)A(du) / e f(u)A(du)

(—OO,t)

-1

— 3t t
— e—ﬁt/ eﬁueaug (e“)%(du) S € g (6 ) <6(a+5)u‘z+b>
[t,t+b) a+f

e TS (1) f®)
— (@t+B)t (latB)d _ 1) — (@+B)b _ 1) .
(I (e 1) = L (el )

a4+ p

Also konnen wir f (¢) nach unten abschétzen durch

(40~ F (1) e 5
FO 2la+h)——cgn —— 2@+f) —m—
Ca+ [ -1 e’ +1
B clat®b 10T glarB 1<)

Analog zu der obigen Rechnung erhalten wir eine obere Abschétzung fir f (¢), t > .,
durch

f(t) < (a+p)

ft)—ePf(t—b) < a+pB [ 1—eP 1+ e PP
1 — e (atp)d - B 1 — e—(a+B)d + 1— ¢ (@nc)"
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Damit folgt

a+B( 1—eP 1+e P . L
! (1 L e ) 2 s £ (1) 2 i £ (1)

>Oz+,8 et —1 e+ 1
=75 \eletmr _1 olatBp _1°¢

und wir erhalten

a+pf 1—e? . . a+p e —1
51— arapt = limsup f (t) 2 liminf f (t) > 5 et _ 11
da € > 0 beliebig war. Mittels limy, e(fib,ﬁ = aLiﬁ = limyo %, welches der

Satz von L’Hospital liefert, schlieflen wir

H >limsup f (t) > li{ninff(t) > H.
—00

t—o00

O

Lemma 3.4. Gegeben ein Erneuerungsprozess (Sy),s, mit positiver Drift (d.h.
E[S1] € (0,00] ) und Erneuerungsmafl U, gilt fir eine Funktion f : R — R und
allet € R

f*U(t) < o0,
falls f nichtnegativ und direkt Riemann-integrierbar (dRi) ist.
Beweis. Seien fiir beliebiges 6 > 0 und n > 1

My = nf{f (z) |z € L5}, Mps :=sup{f (z)|z € I,s5},
gs (z) :== Zmn,é]lln,a (z), ¢° = (v) Z My 51y, 5 (), wobei I, 5 := (6n,6 (n+1)] .

nez ne”L

Nun gilt?

f*U(t)Sg‘s*U(t):/g‘s(t—x)lU(d:r)

=3 MU (t—Is) SU([=6,6]) Y My < 0.

nez nez

Hierbei wurde sowohl die direkte Riemann-Integrierbarkeit von f genutzt, um die
Endlichkeit von ) _, M, s nachzuweisen, als auch die gleichméfiige Beschranktheit
von U *

neL

sup U (t — I,,5) =sup U ([t — nd — d,t —nd]) < U ([—4,9])

nez nez

3Vgl. Beweis von Theorem 2.31 in [3].
4Vgl. Lemma 2.14 aus [3].
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fiir alle 6 > 0 und ¢ € R, und die Tatsache U ([—4,d]) < oo, die wir als néchstes
zeigen werden. Dies gilt, falls der zugehorige Erneuerungsprozess (S,),~, transient
ist,” d.h. -

P (]S, —z| <€ oo-oft) <1

fiir alle x € R und € > 0 erfiillt ist. Dies ist aber der Fall, da nach dem Starken
Gesetz der grofien Zahlen S,, — oo P-f.s..5 Somit folgt

0<P(|S, — 2| <e oc-oft) <P ({Sn - oo}c> —0.

3.2 Beweis des Impliziten Erneuerungstheorems

Zu Beginn des Abschnitts notieren wir folgende Konvention: Fiir § > 0 definieren
wir 0°log 0 := limy o t?logt = — lim,_,.c ze 7% = 0.

Fiir eine Zufallsgrofie X wollen wir das asymptotische Verhalten, t — oo, deren
Tails P (X > t) und P (X < —t) charakterisieren.

Hierzu fiihrte Goldie die Implizite Erneuerungstheorie ein. Wir beweisen in Satz
3.5 ein Implizites Erneurungstheorem mit Verzweigung, d.h. eine Verallgemeinerung
seines Originals (siehe Satz B.1). Auch die Struktur des hier présentierten Beweises
von Satz 3.5 lehnt sich stark an die des Beweises von Goldie an. Lemma 3.7 und
Definition 3.9 sind die Basis unseres Beweises. Wir legen neben dem reellen Zufalls-

vektor (7)., auch ein a > 0 zugrunde, definieren ¢ (v) := E [221 |TJ|V} € [0, <]
und folgende Bedingungen

pla)=E|Y |Ty|"| =1 (IRT-1)
j>1

pa =B | > |Tj|*log |T;|| € (0,00] (IRT-2)
J>1

i >0:P(T; #0) >0 und P (log |7;| € du,T; # 0) nichtarithmetisch.  (IRT-3)

Die in diesem Abschnitt auftretenden Summen von ZufallsgroBlen besitzen bis auf
eine Ausnahme nichtnegative Summanden und existieren deshalb schon P-f.s.. Die
Ausnahme sehen wir gerade in (IRT-2) und diese Bedingung fordert implizit die
P-f.s.-Existenz der Summe. (IRT-2) beinhaltet ebenfalls die Quasiintegrierbarkeit
bzgl. P von .. [T5]" log |Tj].

Wir betrachten in dieser Arbeit auch weiterhin lediglich den nichtarithmetischen
Fall (vgl. (IRT-3)). Zur Bedeutung der Bedingungen (IRT-1) und (IRT-2) siehe
insbesondere Bemerkung 3.8.

®Vgl. Korrolar 28.5 aus [1].
6Vgl. Satz von Etemadi, auch fiir den Fall, dass E[S1] = oo ist. Vgl. Satz 35.4 bzw. Korollar
35.6 in [2].
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Satz 3.5. Sei (1), ein reeller Zufallsvektor und o > 0. Es seien weiter (IRT-1) bis
(IRT-3) erfiillt und o (y) < oo fir einy € (0, ). X sei eine von (1}) .., unabhingige
Zufallsgrafse.

j>1

(a) Falls P (T; > 0 fir alle j > 1) =1, d.h. T; > 0 P-f.s. fir alle j € N, so gilt:

(1) Ist E [(X*)ﬁ} < oo fir alle § € [0,a) und

/ P (X >t) Z]I{Tx>t}] o dt < oo, (3.1)
0 j>1
so folgt
lim t“P (X >t) = H,, (3.2)

t—o0

(2) ist E [(X‘)ﬁ] < oo fir alle f € [0,a) und

/ P (X < —t) Z]I{T Xe<o t}] tldt < 00, (3.3)
0 j>1
so folgt
tliglot P(X<—t)=H_, (3.4)

wobei Hy € [0,00) definiert ist durch

1 o0
H, ::—/ P(£X >t)
Ko Jo

Lp [y o3 <<zj>i>‘“] |

S, )
jz1

Z Lty X>t}] ) > dt

7>1

Qg

(b) Falls P (T; <O fir einj > 1) > 0, P(T; >0 fir ein j > 1) > 0 und ebenfalls
E [|X]°] < oo fiir alle B € [0,a) erfillt ist, so folgt aus (3.1) und (3.3)

H,+H
lim P (X > ) = lim P (X < ~f) = H = =~ 2=

t—o00 2

. (35)

wobei

1 [~ [
H ::ﬂ/ <IP (I X|>t)—E Z]I{zjpt}]) totdt
a JO

i>1
| X ZITXI

7j>1

1
200l
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Bemerkung 3.6. (a) Der Satz 3.5 hat nur dann tatséchliche Aussagekraft iiber die
Tails von X, wenn E [(XT)%] = co (im Fall (al)) bzw. E[(X )] = oo (im Fall
(a2)) bzw. E[|X|*] = oo (im Fall (b)). Andernfalls gilt ndmlich im Fall (a)

]_ o o
He=— | (X*)" =) ((1;X)7) ]
Ha =1
_E[(x4)7] B | B [(x5)° m»@]] g
j>1
bzw. im Fall (b)
1 (0% (03
H=——F||X|" =Y |T;X]
Ha =1
—E(X] - E |3 T E[IX]°] <Tk>k21}] D o,
j>1

(X >t)t* — 0, t — oo, folgt aber direkt - ohne grofen Aufwand - aus
[(X1)%] < oo, denn mittels majorisierte Konvergenz’ gilt

= =

lm E[(X*)" 1xsy] =0

t—o00

und mit

E[(XT)" Lixsn] 2 t°E [Lixsy] =t*P(X > ) >0Vt >0
schlieen wir P (X > ¢)t* — 0, t — oc.
Analoge Aussagen gelten fiir die Fille (a2) und (b).

(b) In der Situation von Satz 3.5 folgt sowohl in Fall (a) als auch im Fall (b)

lim t*P (| X| >t)=H, + H_,

t—o00

falls (3.1) und (3.3) erfiillt sind.

(c) Satz 3.5 besagt, dass die Tails von X das gleiche asymptotische Verhalten be-
sitzen wie ¢ — Ht™ fiir H = H,, = H_ bzw. = H (Aussage (3.2), (3.4) bzw.

(3.5)).

Dass die Funktionen

f@)=P(X >t) und g (¢

Z Lyt X>t}]

7j>1

"Vgl. Satz 9.9 (c) in [2].
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das gleiche asymptotische Verhalten haben, stellt die Bedingung (3.1) sicher,
falls E[(X )] = oo erfiillt ist (bzw. jeweils die negativen Pendants) . Letzteres
bedeutet mit A (¢) := t*~* nach Lemma C.1 [° f (¢) h (t)dt = co.

Wenn das asymptotische Verhalten von f und g nicht gleich wére, dann gébe
es aufgrund der rechtsseitigen Stetigkeit von f,g ein € € (0,1) und ein t. > 0,
sodass fiir alle t > £,

-1 >e€

f(t) ‘

gilt (hier § := 1, € := sign (c) - 00, ¢ # 0). Daraus folgt |f (t) — g (t)] > €f (t)
fiir alle ¢ > t.. Dann aber folgt, da 0 < [° f (t) h (t)dt < oo,

‘g(t)

oo(?)/om\fa)—g(t)\h(t)dtze/twfa)h(t)dt:oo,

€

was offensichtlich ein Widerspruch ist. Also gilt

y (t) _ E [2321 ]l{TjX>t}] _
e () e P(X>1)

Gegeben zwei n x n-Matrizen 1H, oH, deren Eintrige Mafle auf (R,) sind,
definieren wir - analog zur Definition der Matrixaddition und -multiplikation iiber
R -

1H+oH = (1H;; +2H, ;)

1<i j<n

und, falls die Eintréage von 1 H, s H endliche Mafle sind,

1H * QH = (Z lHi,l * 2Hl,j> .
1<7,5<n

=1

Ist 1 H eine n x n-Matrix, deren Eintrige endliche MaBe auf (R,B) sind, und f :
R — R messbar ist, sei

Ho* f = <Z 1Hi,l * fi> )
1<i<n

=1

sofern dies existiert. Z.B. gilt dies, falls alle f; > 0 sind.
Um die Beweisidee fiir Satz 3.5 darzustellen, benttigen wir folgendes Lemma und
die darauf folgende Definition.

Lemma 3.7. Sei (T;)
auf (R,B) die Majse

j>1 € reeller Zufallsvektor und o > 0. Hierfiir definieren wir

wh(A) == Z eV niys01a (V (9))

li=n
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und
p, (A)=E Z eV niy<oyla (V (2))
|i|=n

fiirn > 1. D.h. insbesondere

0t (A) =l (A) = E | Y 1T Ligy0La (log (|T3))

J=1

und

W (A) =iy (A)=F

)

D AT Lz <opla (log (|T5])

jz1

fiir A € B =B (R). Mit 7 (A) = 5" (A) + 57 (4) = B |0, [T5]" 14 (log (|T31))
gilt nun, falls (IRT-1) und (IRT-2) erfillt sind:

(a) n=n"+n" ist ein Wahrscheinlichkeitsmaf§ mit Erwartungswert jiy:

/Rxn(dx):]E

= fla-

> |7y log (|Ty1)

Jj=1

+ -
(b) g = (1 py) und H := (Z Z+) erfillen fir alle n > 1:

w _ (Ha P : _ n
H*™ = e ) also insbesondere ,, = (1 0) x H™. (3.6)

(c) Die n-fache Faltung von n lisst sich wie folgt bestimmen:

1 1
u;tw;:un*(l) (1 0)*1{*"*(1) e

Hier bezeichnet 1 = Dirac(0) das Diracmafl in 0 und 0 = 0 das Nullma$.

Beweis. Es gilt nach Definition der u fiir beliebiges n > 1 und beliebiges f : R — R,
welches quasiintegrierbar bzgl. u ist,

[ i =B | 3 e o f ()] (3.7)

lij=n
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(a) 7(R) = E [zm T 1 (log(|Tj|))] —E [ijl |Tj|a] — 1 ist aufgrund von
IRT-1) erfiillt. Fiir id = idg (quasiintegrierbar bzgl. n* wegen (IRT-2)) gilt
( g gl. ™ weg g

/iddn - /iddn++/iddn‘
R R R

(3.7) o . a .

="E | D IT1" Lgsaid (og (T3) | +E | Y171 Lz, <opid (log (|T31)))
Lj>1 j>1

= E|)_IT|"log (IT;))
Lj=>1

(b) Fiir beliebige endliche MaBe a, b, ¢, d gilt
a b L (€ d\ f(axc+bxd axd+bxc (3.8)
b a d ¢)] \axd+bxc axc+bxd)’ ’
Dies zeigt, dass { (Z Z) ‘ a, b endliche Mafle } multiplikativ abgeschlossen ist.

Also reicht es, den zweiten Teil der Behauptung in (3.6) zu zeigen. Dazu fiithren
wir eine Induktion nach n > 1. Fiir n = 1 ist (3.6) die Definition von H und
w1 = (n™ n7). Gelte also die Behauptung fiir n > 1. Mit

(10)« H*" DY« H
ist zu zeigen, dass p,11 = u, * H gilt. Fiir beliebiges t € R gilt

pi1 ((—00,1])

=B | > VO3 e B0 0 420y T (oo (V (1) + log | T; (1))

li|=n j>1
= > E|> 4 npsg
pe{—+} li|=n.
-E Zealog|Tj(i)|]l{p 7y ()01 L(— o0, (V (i) + log|T; (DD‘ Sn]
j>1

= > /Z VOO 1) w)>0)

pe{—,+}""" li|=n

Zealog|T|]1{ 7,501 L (—oct—v (i) (w)) (log|Tj]) | P (dw)

ji>1

iy, (dz)

ZGOClOngl]l{ T>0}]]‘ —o0,t—1x] (log‘TD

j>1

zz/

pe{—+}
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= > [ " ((—o0,t —a]) i, (dx)

pe{_7+} R
= (77+ *:u:zr) ((_Oovt]) + (777 *H;) ((_Oo>t])’
mit §, aus (2.1), dem Transformationssatz® und in der vorletzten Gleichung

aufgrund von (3.7) (Quasiintegrierbarkeit ist klar, da n* als Mafe nichtnegativ
sind.). Vollkommen analog folgt

fir (=00, t]) = (* * ) (=00, 8]) + (1™ * 1} ((—o0,1]).
Damit gilt 1 = (07 %l + 07 % py 0t p, +07 % puh) = pn o+ H.

(c) Es gilt fir beliebige endliche MaBe a, b, ¢, d

a b 1 c d 1
(10)*(b a>*(1)*(10)*(d c)*<1>
=(a+b)x(c+d)=a*xct+axd+bxc+bxd
- axc+bxd axd+bxc 1
_(10)*<a*d+b*c a*c+b*d>*(1)' (3.9)
Induktiv folgt also nun aus (3.8) und (3.9)

(10)% H™ » G) _ ((1 0) + H * G))n

und damit die Behauptung.
O

Bemerkung 3.8. Mit einem Blick auf die Definition von 7 folgt fiir alle v € C, fiir
die das folgende Integral definiert ist,

Abb. 2: Graph von ¢

/ewn (dx) g
R

oI 6'“°g'Tj] =p(a+9).

j>1

Also ist ¢ (a + -) die analytische Transformierte von n. Wir erweitern hierfiir den
Definitionsbereich von ¢ auf eine Teilmenge von C.
Gegeben (IRT-1) und (IRT-2) sowie ¢ (7*) < oo fiir ein v* €
(0, ), werden wir zeigen, dass es ein Intervall (o — €, @)
gibt, auf dem die (auf R) konvexe Funktion ¢ echt kleiner 1
¢ ist und somit den Verlauf aus Abbildung 2 besitzt. In dieser
Situation folgt aus der Konvexitidt des Definitionsbereichs
I + iR von Analytischen Transformierten,” dass [y*,a] C I
gilt. Aufgrund des Differentiationssatzes'® ist ¢ auf dem
Inneren des Definitionsbereichs I + iR stetig differenzierbar
und mit dem Lemma von Fatou'! folgt

o

8Vgl. Satz 14.1 in [2].
9Vgl. Lemma 40.2 in [2].

0Vel. Satz 40.4 in [2].
HVel. Lemma 9.12 in [2].
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(IRT-2)

>E € (0,00].

> IT| log T}

Jj=1

> I og |75

liminf ¢’ (7) = liminf E
YTa .
Jj>1

Yt

Es existiert also ein € > 0 mit ¢’ (8) > 0 fiir alle 5 € (o — €, @) und damit ¢ (5) < 1
aufgrund von (IRT-1).

Definition 3.9. Gegeben ein o > 0, ein reeller Zufallsvektor (7)., und eine von
diesem unabhingige ZufallsgroBe X, definieren wir Funktionen 6,7+, ¢* : R — R
und 0,,7r,g: R — R (fiir n > 1) durch

Oy (1) = e"E Z Lm@)xsery | und 4, (1) == eI Z Limgyx<—ety |

li|=n lij=n
5+
Op := (6”> fiir n > 1, sowie analog

rt(t) =P (X >¢€') und r~ (t) := P (X < =€),

rt+ gt
ri= (7"‘) und g := (g_) =1 —0;. D.h. es gilt

gt (t)=e* (IP (X >¢€)—E

Z ]l{TjX>et}] )

Jj=1

und

O

Z ]l{TjX<—et}] ) .

j>1

Zu den Funktionen 0, 7%, g* merken wir an dieser Stelle an, dass hiermit nicht
die Positiv- bzw. Negativteile der Funktionen 9,,, r, g gemeint sind, sondern deren 1.
bzw. 2. Komponente.

Mit diesen Notationen konnen wir die Aussage von Satz 3.5 neu formulieren.
Unter den gegebenen Voraussetzungen folgt im Fall (a) aus

/ |97 | dA < oo (Bedingung (3.1)) bzw. / |97 | dA < oo (Bedingung (3.3)),
R R

dass

lim t“P (X > t) = /g+ d\ bzw. lim t°P (X < —t) = /g_ dA
R t—o0 R

t—o00
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gilt. Im Fall (b) folgt limy_,o t°P (£X > t) = 3 [ g7 + ¢~ dA aus beiden Bedingun-
gen zusamien.

Nun koénnen wir die Idee des Beweises fiir Satz 3.5 angeben. Wir wollen die
Identitéat

rt=vlxgt+4,, im Fall (al),
r~ =yl *g +6,.,, im Fall (a2)und (3.10)
7T=Gp*g+dpy1, im Fall (b)
. . . [Za i Ve ok -
fiir alle n > 0 zeigen, wobei G,, = V’l 1/+ : Zk oH™ und Gy = H™ die

Einheitsmatrix ist.

In Folge dessen werden wir das Key Renewal Theorem anwenden (Sétze A.2,
A.5) und mithilfe von (3.10) zeigen, dass (3.2), (3.4) bzw. (3.5) Giiltigkeit haben.
Der Vollstindigkeit halber werden wir wie in (3.10) ebenfalls im Beweis des Ofteren
die Fille (al), (a2) und (b) unterscheiden, wobei die grundsétzlichen Ideen sich in
allen Fallen gleichen.

Beweis von Satz 3.5. Wir wéhlen mithilfe von Bemerkung 3.8 ein § > 0 so grofi,
dass f < a und ¢ (8) < 1. Hier legen wir also (3 fest, welches insbesondere Einfluss
auf f + f hat. Im jeweils vorliegenden Fall gilt 0 € £5 (wegen (3.12), siehe unten).
Es gilt zudem r* € €5, da 7% (t) < e und 1(_o e @™ Mdintegrierbar ist.

Sei G das Matrixerneuerungsmafl von H (Definition A.1), d.h.

Jr
G—(V v ) ZH*k lim G,,.
n—oo

Dieser Limes existiert, da es sich um eine aufsteigende Folge von Maflen handelt
(eine aufsteigende Folge reeller Zahlen konvergiert - ggf. gegen co). Nach Definition
A.1 und Lemma 3.7 (c) ist v := v + v~ das Erneuerungsmaf} von 1. Da |g*| mittels
(3.1) bzw. (3.3) Mdintegrierbar ist, ist |g*| dRi.'* Somit gilt (v~ = 0 in den Fillen
(al) und (a2))

(yz *W) (t) < (1/+ *\_ﬂ) () < o0, im Fall (al),
(1/: *m) (t) < <1fr *|_—|> () < o0, im Fall (a2) und
o7)

im Fall (b)

fiir alle t € R, n > 1 aufgrund von Lemma 3.4. Also existieren insbesondere alle in
(3.10) auftretenden Terme.

12Vgl. Lemma 2.30 aus [3].
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Um die Identitét (3.10) nachzuweisen, werden wir
H %6, =0,,1 flirn>1sowie Hxr=6=1r—g (3.11)

zeigen (hier in allen Fillen (al), (a2), (b), da wir Faltungen fiir alle nichtnegativen
Funktionen definieren kénnen).
In der Tat folgt mit (3.11) mittels Lemma 3.2 (a) und (c) induktiv

n+1
:Z(n*)* *g++(n+)*0*g++n *5:“— ++1*g_+—|—(5;{+2, im Fall (al),
k=1
T V. e — +\*0  —
=0t xr g = *( g +5n+1>+(77) g
n+1 I
=N () g+ ) kg A0t w0, = kg 400y, im Fall (a2),
k=1
F=Hx+7+g 2 H Hx (GpxG+0,1) + HO %7
n+1
= H*k*§+H*O*§+H*5n+1:Gn+1*§+5n+2, im Fall (b),

wobei wir hierbei (3.10) fiir n > 0 als Induktionsvoraussetzung zugrunde legen.
Fiir n = 0 gilt (3.10) nach Definition von r, also zeigen die Gleichungen (3.11) die
Giiltigkeit von (3.10) fiir alle n > 0.

Um (3.11) zu zeigen, berechnen wir fiir beliebiges n > 1

(3.7) .
ntEs () = E || g6, (t—log |T)])
j=1
Z Z ‘T ’ ]l{T( 0}€7a10g‘Tj(i)|eat
ji>1 | |—'n

b ]l{n(i)X>et_l°g‘Tj(i)|} % <1>)j21,ieNn

= ¢"E ZZ]I{T >0t Ly (xsety | (15 (1) 51 1enm

=n j>1

= "E| > Lp gmsoplmmoxse|
_\i|:n+1

wobei wir (77) < (T} ()5, fiir [i| = n und die Unabhéngigkeit dieser beiden Folgen
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von X und (II (i)) benutzt haben. Analog erhalten wir

li|=n

N0, () =E | _|T|* Liry<0y6,, (t —log|T}])

Jj=1

at
=k Z ]l{TinH(i|n)<o}]1{H(i)X>ef}
lij=n+1

nt o, (1) =B | T Ur,500, (t—log|Ty)

Jj=1

at
=B D, Lip | yso) Lnmx<—e
li|=n+1

nw 0 (1) =B | DT Uiz, <q0 (¢ —log|T])

Jj=1

at
=B >, Lip <o) Lnmx<—e
lijl=n+1

Dies ergibt zusammen n* x 6, + 1~ %6, = §,,, sowie n* x 8, + 1~ x 6 =4, und
damit

H * 5TL — 5n+1.

Um die zweite Identitdt in (3.11) zu sehen, berechnen wir

(3.7) o
nt et () =B DT Loy (= log |T5)

Jj=1

a « —alog|T;
R Z’TA Lir;>0pe 8l Til R ]1{X>et_log’T,’} (Tj)jg

| 7>1
= ¢"E |E Z LizysopLymy x>ety (Tk)k21 ]
j=1
= "E Z ]l{Tj>0}]1{TjX>et}]
Lj>1
und analog
noxr (t)=E Z |Tg|a ]l{Tj<O}T_ (t —log |TJD = e"E Z ]l{Tj<0}]l{TjX>et}]
Jj=1 j>1
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E Z T3 Tyrysoyr™ (t = log [T;|) | = B Z Loy Ly x<—et)
Lj>1 Lj>1

noxrt () =E Z |75 IL{Tj<0}7ﬂL (t —log|Tj]) | = e™E Z Lirycop Lym x<—ety

Lj=>1 Li=>1

n"xrT (t)

Dies ergibt zusammen die zweite Identitét in (3.11):

ntwrt 4T e
Hxr= (77_*7’++7]+*7”_) =0 =1r—4g.
Somit haben wir (3.10) gezeigt.

In (3.10) mochten wir nun n — oo betrachten, um darauf das Key Renewal
Theorem anzuwenden. Mit dem Lemma 3.3 konnen wir dann einen Riickschluss auf
limy . 7 (t) ziehen. L

Fiir alle t € R folgt mittels majorisierter Konvergenz und |g_i’ < |g*|

(vTxgt)(t) = r}in;o gt (t — )t (dz) = nlggo (v * g7) (t) im Fall (al),
(vixg ) (t) = lim g (t— )y (dz) = lim (vf % g~) (t) im Fall (a2) und
e ) (1) — fﬁ(t—x)fr(dx)—{—fg(t—x)u_(dx)
(G+9) () = (fg+ (t—a)v (de)+ [g (t—x)v" (dx))
- (T 2 )4 [0 ) )
n=oo \ [ gt (t —x)v, (dz)+ [ g~ (t —z) v, (dx)
= nle (N, x7) (t) im Fall (b)

Jetzt wollen wir lim,,_,o 0, (t) = O fiir alle ¢ € R zeigen (auch hier nur in der ersten
Komponente im Fall (al), in der zweiten im Fall (a2) und in beiden im Fall (b)). Es
gilt mit Lemma C.1 und d(-) := (-), (:)” bzw. |-| in den Fillen (al), (a2) bzw. (b)

SE(t) = /( )e—ﬁ“—u)éf; (u) A (du)
—00,t

:/ e~ Blt—u) gaup Z]l{iﬂ(i)X>€"} %(dU)
(—o0,t) li|l=n

S / Z]l{d )>eul} 6 A(du)

(@ OE | 3 (i) ]E[(d(X))ﬂ noe ) (3.12)
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fir o) im Fall (al), 0, im Fall (a2) und fir §; sowie ¢, im Fall (b), da nach
Voraussetzung [ [(d (X))? ] < 00 gegeben ist. Somit bleibt nur noch zu zeigen, dass

I |y 1T 0)[°| %% 0 gilt. Mittels ¢ (8) < 1 folgt induktiv

> IT

i>1

M| =E| Y
il=n fil=n—1

T (j))jzl,|j|3n2]

=E| Y M@ (@) =¢(B)" ==0.

li|=n—1

Also konnen wir in (3.10) eine Grenzwertbildung fiir n — oo vornehmen und es gilt

rt=vtxgt im Fall (al),
r~=vtxg=, im Fall (a2) und (3.13)
T=G=x7, im Fall (b).

Nun konnen wir die einzelnen Fallen abschlie3en:

(a) Mittels (3.13), dem Key Renewal Theorem (Satz A.2), Bemerkung A.3 und
Lemma 3.2 (b) schlieflen wir

o - Krr 1 77 d\— Hy .
tlggor (t) = tlggo (vrxgt)(t) = d\ = 5 , im Fall (al) und
1
lim r= (t) = lim (v" g~ KRT / dA\= —, im Fall (a2).
t—o0 t—o0

(b) Nach Bemerkung A.6 (b) kénnen wir das verallgemeinerte Key Renewal Theo-
rem (Satz A.5) anwenden und mittels (3.13) und Lemma 3.2 (b) schlieflen wir

o (4 verall KRT 1 [gt+g dA _1(H
tggor(t)_tll%o(@*g)() 2Ma (fg_+—|—g__d)\>_5 H)"

Mit Lemma 3.3 folgt in jedem Fall die Behauptung. Die zweite Darstellung fiir
H.,H_ und H folgt mit Lemma C.1 aufgrund von (3.1) bzw. (3.3) und da

ZH{TX|>et}]>

j>1

g +g =€ ( (1X]>¢') —

H_ +H_ D

gilt. Letzteres zeigt ebenso H = —;
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4 Die Rekursionsgleichung R Q s iR+ C

Wir wollen in diesem Kapitel die zu Beginn der Arbeit vorgestellte stochastische
Rekursionsgleichung

REZY TyR;+C (1.1)

Jj=1

untersuchen, wobei (Rj)j21 und (C, T}, Ty, T3, ...) unabhéngige reelle Zufallsvektoren

sind, sodass (R;),-, iid mit Ry 2 R ist.

Nachdem wir in Abschnitt 4.1 die fiir unsere Resultate notwendigen Ungleichun-
gen bewiesen haben, wenden wir uns in Abschnitt 4.2 der Existenz und Eindeutigkeit
einer Losung zu (1.1) zu. In Abschnitt 4.3 werden wir in Satz 4.13 mittels Satz 3.5
das Tailverhalten einer Losung der Gleichung (1.1) charakterisieren.

Wie iiblich definieren wir fiir g > 1

11, = (B[ 1x1])°

fiir Zufallsgréien X und erhalten dadurch eine Halbnorm ||-||; auf Lg. Hier folgt
die Dreiecksungleichung durch die Minkowski-Ungleichung.'® Wie in Abschnitt 5.3
in [3] erweitern wir diese Definition fiir alle § > 0 durch

1X1 = <]E [|X|5D1A5

fiir Zufallsgréffen X und erhalten im Fall 8 < 1 jedoch keine Halbnorm, da fiir A € R
IAX ]y = N IX 5 < (A IX ]

gilt und im Allgemeinen hier auch keine Gleichheit gilt (echte Ungleichung, falls
A # 0 und X nicht P-f.s. verschwindet). Die Dreiecksungleichung ist aber auch im
Fall 8 < 1 aufgrund der Subadditivitit der Abbildung z +— 2 auf [0, 00) erfiillt:

1% + Xl = B [1X5 + Xl | B [1X1° + 1%)°] = 1K, + |1 Xz

4.1 Ungleichungen

Wir beginnen diesen Abschnitt mit einer Ungleichung, die auf Lemma 5.2 in [10]
beruht und einen wichtigen Baustein fiir die Aussagen und Beweise in Abschnitt 4.2
bildet.

13Satz 17.4(e) in [2].
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Lemma 4.1. Gegeben zwei unabhingige reelle Zufallsvektoren (Dj) -, und (Y;),,,
seien (Yj),5, iid und 3, (D,;Y;)" < oo P-fs.. Dann folgt fir ein B > 1 mit
p=[81

B
o<k (zwm)*) S (0| <,

Jz1 Jz1

> IDj]

Jj=1

B
B
Bemerkung 4.2. Im Allgemeinen miissen die in Lemma 4.1 vorkommenden Er-
wartungswerte sowie | [Z i>1 ((Dij)Jr)'B} nicht endlich sein. Gilt aber in der Tat

E [Z i>1 ((Dij)Jr)q < 00, so ist die Ungleichung aus dem Lemma gleichbedeutend

mit

B
+E

>, (DY) ")’

j>1

> IDj]

Jj=1

g
E (Z (Dij)+> <Yl

Jj=1

B

Beweis. Sei m € N beliebig. Mit dem Multinomialkoeffizienten

n n! “
. . )= ——— fiirn, 5, ..., Jm € N mit | =n
(]17"'ajm) jl']m' n J ;jl

gilt fiir y; > 0

m p
(Zy> = >, <j1 pj )y{1~--yZT
1:1 YA m

Ji€{0,...,p}, 2 i Ji=n

B p L\

§i€{0,p=1}3 500 Ji=n

8 . .
Mit der Subadditivitit von x +— x», % € (0,1], gilt weiter

(£ - ((E))

. ol
< >, (j1 o )y{l...yf;f +> Ty (A

Ji€{0,...,p—1},3 7000 Ji=n

<@

Seien nun ji, ..., jm € {0,...,p — 1} mit Y ", j; = p. Dann gilt

e .
H |Y2|jl
=1

E

= [T < TTimile, =l (4.2)
=1 =1
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wobel wir hier verwendet haben, dass ||-||, < ||-||, fur » < s gilt. Mittels der Jensen-
schen Ungleichung!'* folgt somit

B m
>+> _Z((D Y)+ B

| \j=1 j=1
i B8
p
(4.1) m '
S E ( ) H ’DZYZ‘JZ
. mo - .]17 7]m C
7i€{0,....,p— 1} >ty ji=n =1
r 8
<1 m ‘ m . P
< E <j ; > H ID,J'E H ;|7 (Dk)k21]
5:€40,....p— 1} S = NP =1

B
p

42) 8 » mo
< Wl E > (7 )er
ALY

Ji€{0,...,p}, > ji=n

= Il

m B
J=1 8

Um die Aussage des Lemmas herzuleiten, betrachten wir nun unter Grenzwertbil-
dung, m — oo, mittels monotoner Konvergenz

B
0<E (Z <Dij>+> = (D))’

Jz1 J=1
m ﬁ m
— T _ vat+)?
—mh_rgo <21 D;Y;) ) Zl((DJYJ) )
= =

< Vil lim_ = Vil

Z\D|

7j>1

wobei wir genutzt haben, dass (Z?jll yi)ﬁ - y; > (i yi) — doimy Yyl fiir
y; > 0 und alle m > 1 gilt (8 > 1), und wir somit monotone Konvergenz anwenden
kénnen. ]

Die folgenden Lemmata 4.3, 4.4 sowie 4.5 sind wesentliche Hilfsmittel im Be-
weis von Satz 4.13 die Bedingungen (3.1) und (3.3) aus Satz 3.5 nachzuweisen. Sie
beruhen auf den Lemmata 4.10, 4.8 und 4.9 sowie 4.11 in [10].

14vgl. Satz 17.4(f) in [2].
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Fiir die Beweise der folgenden Lemmata benotigen wir die elementaren Unglei-
chungen

2% —y?| < |z —y|* fur z,y > 0und v € (0,1]  (4.3)
2% — | < a(zVy)* 'z -y fir z,y > 0und a € (1,00) (4.4)
(z+))" < (@) +a((x+ t)+)a_1 tt  firz,t e Rund a € (1,00) (4.5)

Die Ungleichung (4.3) sieht man leicht durch die Dreiecksungleichung und die
Subadditivitdt der Funktion z — x®, x > 0, denn es gilt

*=lr—y+y|" <(z—yl+y)* <|lr—y|"+y°

(Vertausche danach die Rollen z und y).

Die Ungleichung (4.4) sieht man folgendermaflen: Fiir differenzierbare Funktio-
nen f, g: (y,00) - R, y € R, mit lim, |, f (z) > lim,, ¢ (z) und f' (z) > ¢’ (z) fir
alle x € (y,00) folgt, dass f (z) > g (x) fir alle x € (y,00) gilt. Fiir Ungleichung
(4.4) sei fiir festes y > 0 hier g (z) := z* — y* und f(z) == a(zVy)* " |z -yl
Damit folgt

f@)=az* ' (z—y) =4 (2)(z —y) und somit
['@) =g () +ala—1)a"?(z—y) > ¢ (2).

Die Ungleichung (4.5) ist eine Folgerung aus der Ungleichung (4.4): Fiir z,¢ > 0
stellen wir die Gleichung (4.4) mit y := = + ¢ um:

a (4.4)
(z+t)7) —a®=y*—a* <

azVvy) tr—yl=a@+t)* "t
Im Fall z < 0, t > 0 folgt mit (z +¢)" <t
(@+6)" = (@+")" @+
<a(@+0")" = (@) +a(@+)h)T
Fiir > 0, t < 0 gilt mit (z +¢)" < 2 schon
(z+)N) < (@)= @) +a((@+6)7) "

Im Fall z,t < 0 ist die Ungleichung trivial.

Lemma 4.3. Gegeben ein o > 0 und zwei unabhdngige reelle Zufallsvektoren (Tj)j21
und (Xj) 5, seien (X;) ., tid und E [(ijl |Tj|1i5>1+6] < oo fir ein e € (0,1)
sowie i1 |T;X;|* < 0o P-f.s.. Dann folgt aus || X1|| 5 < oo fiir alle 8 € (0, ), dass

0< / (E > Lgaer, x>0
0

j>1

Do (ATx) )" - ((Supd(Tij)> ) ] <0 (4.7)

j>1 izl

-P (sup d(T;X;) > t) > to 1t (4.6)
j>1

=—-E
«

gilt, wobei d : R — R eine der Funktionen id, —id oder |-| ist.
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Beweis. Durch Ubergang von (T5);5, wnd (Xj),-, auf (=T}),5, und (X;),,, bzw.
(I751);5, und (]X;]),5, sehen wir, dass die Voraussetzungen des Lemmas ebenfalls
fiir diese Folgen erfiillt sind und es folglich reicht die Behauptung fiir d = id zu
zeigen.

Da ]l{sup(Tij)+>t}
in (4.6) nichtnegativ und somit das Integral ebenfalls. Die Gleichheit in (4.7) folgt
mit Lemma C.1, falls (4.6) endlich ist. Letzteres verbleibt also zu zeigen. In (4.6)
konnen wir wegen Bemerkung C.2 (¢) das Riemann- durch das Lebesgue-Integral
ersetzen, da der Integrand auf jedem kompakten Teilintervall Riemann-integrierbar
ist. Dazu gilt zunédchst mit Tonelli

/ ( D Liaxytsd| —

_7>1
- / E
(0,00)

I Z]l{(Tij)+>t} - ]l{suijI(Tij)+>t} (Tk>k21 ] ta—lk(dﬂ
Lj>1

<D ]l{(Tij)+>t} fiir alle ¢ € (0, 00) gilt, ist der Integrand

<§1>1113 (T;X;)" > t)) A (db)

=k /(0 )E Z]l{(Tij)+>t} B ]l{sup,jzl(Tij)+>t} (Tk)kzl ta_lA(dt>] . (49)
ol Lzt _
Sei g : (0,00) = Rys—s—1+e®und f:= . Fiir g gilt limspg(s) =0 u
g (s) =1—e€7° >0, also ist g positiv und strikt monoton wachsend auf (0, 00). W

wollen zeigen, dass

fo®

Z ]l{(T X;) >t} {sup]>1 (T;X5) >t} (Tk)k21 O} (dt)

1 o o
< 5B [Ixf) (Z , \ﬂ> | ats)s s (4.9)
j>1 0
(1 ) 1+ 1+e
C + € _a € _a
= =—F [|X1| 1+e] (Z 17| 1+e> P-fs. (4.10)
Jj>1
und ¢ := fooo ~(+9ds < oo gilt. Fiir letzteres beachten wir zunéchst, dass mit

g(s) < % (folgt durch ( (s) — %) = —g(s) < 0und limgng(s) = %)

S)S S — S S=——"7——"1| S = ——— oo
.7 =2, 2(1—¢) 0) T 21—

gilt, und auf der anderen Seite, dass mit ¢ (s) < s

[ a5 eras < [t 2 (s7) = <o

€
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gilt, also zusammen ¢ < co. Um die Ungleichung (4.9) zu sehen, nutzen wir, dass
die (73X;);5,, unter (Ty),-, bedingt, unabhéngig sind:

(Tk)kzl

Z]l{(Tij)+>t} - {Supj>1 T;X;) ">t}
i>1

=> P((1x)" >t Tkk>1)+IP(sup(TX) gt'(Tk)k21>—1

i>1 7j>1

=>"P (T X)) > t] (T)sr) + [[ (1 =P ((TX)F > #] (Th)y1)) — 1

j>1 j>1

<yg (Z]P (T;X;)" >t (Tk)k>1)) P-fs., (4.11)

j>1

wobei wir in der letzten Zeile die Ungleichung [];5, (1 —s;) <[[;5,e7% <e” 22185
fiir (s;),5, € [0, 00 )" genutzt haben, was wiederum aus e~* + s — 1 = g (s) > 0 fiir
s > 0 folgt. Mit der Markov-Ungleichung!® folgt fiir j > 1

0<P <(TX > t‘ Tk: k>1) <t ﬁE [((EXJ')+)B‘ (Tk)kZJ
<GB 16| (T),e:| < B [1X°] 711507 Pt (4.12)

Setzen wir dies in (4.11) ein und nutzen die Monotonie von g, folgt

Jo?

(Tk)k21 A (dt)

Z ]1{ x>t} {sup]>1 T;X;) >t}

Jz

(4.11),(4.12)
< / g<tﬂE[|Xﬂ§:|ijﬁ>taIA(dt)
(0,00)

j>1

- [ ( o] mw) 06 [ Lo o|ras)

L))
SB[’ (Z |Tj|ﬂ> "\

_ %E 1, ]%;W) /(O’Oo)g@)s“%(ds) P-fs.,

15Vgl. Satz 17.4(a).
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1 1

wobei v @ (0,00) — (0,00);s sT7E [|X1|ﬂ]ﬁ <Zj21 |TJ]6>[3 ein C'-Diffeomor-

1
phismus ist, fiir den Lv (s) = —%s [|X1| ] (ijl |TJ]B) ’ gilt und wir den
Transformationssatz fiir Lebesgue-Integrale genutzt haben. Damit haben wir (4.9)
gezeigt und schlieffen

G

Z ]1{(T Xyttt T

(Sup (T;X,)" > t)) t* A (dt)

j>1 j=1
(48),(4.10) ¢ (1 + €) 14 e
Al c + € a o
< - E|x[]E (Z\lew) < 00
Jjz1
nach den Voraussetzungen. O]

Lemma 4.4. Gegeben ein oo > 0 und zwei unabhdngige reelle Zufallsvektoren (1)

j>1
und (X;) 5y, seien (X)), @id und Y-, |T;X;| < oo P-f.s., sowie weiterhin

ji>1

14€
¢ (a) < oo, E (Z|T!1+E> < oo fir ein e € (0,1) und

g=1 falls a < 1,
> T X" < 0o P-fis.,
Jj=1
Z |T| < 00 und Z T, X;| < oo P-fs., , falls o > 1
j>1 j>1

erfiillt. Dann folgt aus || X1, < oo fiir alle 8 € (0,«), dass

d (anj) = > d(T3X)"| < o0

j21 j=21

gilt, wobei d : R — R eine der Funktionen (-)*, (:)” oder || ist.

Beweis. Zunichst wollen wir uns klar machen, dass es reicht, den Fall d = ()" zu

betrachten. Es gilt

E <<ZTX>> S

j>1 j>1

((Z =) Xj) +>a > (=T X)) -

Jj=1 Jj=1

= F (4.13)




28 Felix Poettering

Also folgt der Fall d = (-)” aus dem Fall d = (-)" durch Ubergang von (T});5, auf
(=T});5,, wofiir die Bedingungen des Lemmas ebenfalls erfiillt sind. Weiter folgt aus

() ()

und Analogem fiir > .. [7;X;]%, dass

> T,

j>1

«

=) X

Jj=1

I

> T,

Jj=1

((Z TX)) - ()"

j=21 Jj21

((Z Tp@-) ) = (X))

j>1 j>1

<E

+E (4.14)

gilt. Also folgt der Fall d = |-| aus den Fillen d = (), (-)” und wir konnen uns auf
den Fall d = (-)* beschriinken. Nun gilt

> (@x))" - ((Z?}Xj)+>a

j>1 j>1

(Z ((Tij)Jr)a> ]l{zjzl Tij<0}]

Jjz1

+E E:WQ&VV-(ZX@&V)

IL{Z].>1zjj>0}]
Ll j>1 J>1

e[ (zmr) - ((gm0) )

und wir werden zeigen, dass die einzelnen Erwartungswerte in (4.15) endlich sind:
Zum ersten Erwartungswert in (4.15): Es sei a := 15 fiir a € (0, 1] und a:=1
fiir a € (1,2]. Mit b:= a — a gilt dann a + b = « sowie a, 2 < 1 und

E

<E

]I{ZjZITij>O}] (4.15)

b
TG = TG T X, < T XG0\ T X = > T, X,

Jj2=>1

b
= |T; X"

Z szij

J2#J

(4.16)
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auf {T;X; > 0t N {>_,, 5, T}, X, < 0}. Dies impliziert

I

Z((TJXJ) ) ]1{2J2>1 X32<0}]

Jj21

= E|E Z‘Tijya]l{TijZO}]l{szlTjQXjQSO} (Tk)kzl ]
Jj=1 -
b
(4.16) . "
< E Z|TJ‘ I |Xj| ZTJQXM (Tk)kzl
J=21 J2#J
al
E(IXiVE | ITI"E || > TuX (Th )k
j=21 J221
- b
2 <1 a
< [|X1|a]]E Z|Ty|a (Z |7}2|GE“XJ'2|G|(T1€)1€21])
Jj=1 J2=1
T b
apatb a a ’
- e S (S mr)
jz1 J2>1
- ath
a7 etl a ’
= Elx| E|| X IT :
| \j=1

wobei wir sowohl die Unabhéngigkeit von X; und (7},X; )J 4j» wenn wir unter
(T%)y>, bedingen, als auch die Unabhinigkeit (X )j>; und (Tk) r>1 Sowie die Jensen-

sche Ungleichung (z +— xg) und die Subadditivitit von x — z% nutzen. Also folgt
fiir den Fall o € (0, 1]

E

1+e
< E[| X% 1+6 <Z|T’1+e> < 00

j>1

D (TX)) Uy rx,<0)

J=z1

und fiir den Fall a € (1, 2]

«

I

> Ty

j>1

Z ((T‘]X])—i_) ]l{zj2>1Tj2Xj2§0}] S HXIH?
j21 a

Eine &hnliche Rechnung kénnen wir fiir den Fall @ > 2 anwenden (Benutzung von
(4.16) bendtigt nur a + b = «):

E

Z ((,TJXJ')—F)OC]I{Zj2>1Tj2Xj2<0}]

j>1
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= E ZIEleaﬂ{TijzO}]l{zj o1 Tjy X, <0}

Lj>1 =
@16 [ o o

EZ|TJ| 'E |X| 12 Tkk>1]

Li>1 J2F#J

< XEE S S e [, ||<Tk>k21}]
]>1 ]2>1
X X E (zmwl) (z mw)
j>1 i>1

< X 221Xl D 1T

ji>1

wobei wir die Unabhéngigkeit von X; und (T X; ); j» wenn wir unter (Th)j>1
bedingen, sowie die Superadditivitdt der Funktion = + z® fiir « > 1 nutzen. Fiir
den zweiten Erwartungswert in (4.15) benutzen wir Lemma 4.3 und Lemma 4.1. Im
Fall a € (0,1] sehen wir mittels Lemma 4.3, der Subadditivitidt von z +— z* auf
[0,00) und Zj21 Yj = sup;>, y; fir (yj)j21 < [0, OO)Na

> (1)) - (Z @Xj)*)a

Jj=1

E

<E

+E

(Z (TijV) - (sup (TjXN) )

Jj=1

< 2K

> (mx))" - (S,up (Tij)+)a < o0.

i>1
Im Fall @ > 1 folgt mit Lemma 4.1

> (1)) - (Z @XN)Q

j=21 J=21

(e

E

< X llfag -

> IT

Jz1

Es bleibt also die Endlichkeit vom dritten Erwartungswert in (4.15) zu zeigen: Im
Fall « € (0,1] nutzen wir die elementare Ungleichung (4.3) und sehen

j>1 j>1

E ‘(Z (EXJ)JF) - (ZEXJ) ]I{Zj>1TJ'XJ'>O}]
<E D (TX)" =D TX; 1{2J>ITX>0}]
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-E (Z (TJXJ)> ]l{ijlTijZO}
=B (Z((—E)Xj>+> 1{2j21<—Tj>XjS0}]’

was endlich ist, da wir schon gezeigt haben, dass der erste Erwartungswert in (4.15)
endlich ist (Hierzu Ubergang von (T} )5, zu (=Tk);s, ). Fiir den Fall a > 1 {iberlegen

a—1 a—1
wir uns, dass | |:<Zj>l (Tij)J“> (Tk)k>1:| < ¢a (ijl |T]|> P-f.s. fiir ein

o € [0,00): Fiir a € (1,2] gilt mit ¢, := || X1]|S7" < oo und der Jensenschen
Ungleichung

£ (Z (Tij)Jr> (Tk)k21

Jj=>1
a—1

< (Z \Tj!> E [1X1| (7)o = ca (Z !le) P-fs. (4.17)

j21 Jj=21

> (Tx)"

Jj=1

(Tk)kZI

und fiir a > 2 gilt mit p = [ — 1] und ¢, == | X1 ]|°2] + ||X1||p | <00

E (Z (Tij>+> (Tk)kzl

Jjz1

Bem. 4.2 a—1
< Z ((Tij)Jr) (Tk)kzl
j>1
. a—1
I “Xl‘p_l} (Tk>k21}ﬁ 1D <Z ’TJ‘> (Tk)kzl
j>1
-1
< D T E X1 (T sy + 1X00102 (Z\ﬂ)
7>1 7>1
a—1
a— 1>1
(Z |T|) P-fs.. (4.18)
7>1

Damit und mit der elementaren Ungleichung (4.4) folgt nun weiter fiir beliebiges
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a>1
a +\ ¢
IE (Z (EXJ)+) - ((Z Tl]XJ) ) ]l{Zj>lTij>0}]
j>1 jz1 )
- () - (Sm - mnr) e
j>1 j>1 gzl )
(4.4) . o .
< aB| (XX Do(GX) | Us | ryxs0)
| \j>1 i=1 ) ]
- a—1
< k| Sty (S0 )
| 5>1 Jo>1
- a—1
< olf Z’TJ‘E RETR S (Z (szXJ‘z)Jr> (Tk)kzl

Jo#7

Jj=1

< ol X E Z 75| (Z (Eszz)+) (Th )1

Jj=z1 J221
(4.17),(4.18)

< ac Xl E (ZIE!) (Zﬂb!)a_l

Jj=1 J221

> 1T

Jj=1

[0}

= QCq HX1H1 < 00,

[0}

wobei wir die Unabhéngigkeit von X; und (73, Xj,),,,;, wenn wir unter (7).,
bedingen, nutzen. Dies schlieft den Beweis ab. O]

Lemma 4.5. Gegeben ein o > 0 und zwet unabhdingige reelle Zufallsvektoren (Xj)j>1
und (C, T, Ty, Ts, ...), seien (X;),5, did, [|C||, < oo und 3° ;5 |TjX;| < oo P-fs.,

sowie H2j21 |75

< 00. Dann folgt aus || X1|| 5 < oo fiir alle 8 € [0, ), dass

E < 00

d(ZI}Xj+C>a—d<ZY}Xj>a

j=1 j>1

gilt, wobei d : R — R eine der Funktionen (-)*, ()~ oder || ist.

Beweis. Analog zu den Uberlegungen in (4.13) sehen wir, dass ein Ubergang von
C,(1});5, auf (=C),(=T});5, den Fall d = ()~ aus dem Fall d = (-)" folgen lasst.
Ebenso, analog zu (4.14), stellen die Fille d = ()", ()~ auch den Fall d = |- sicher.
Also konnen wir uns auf den Fall d = (-)™ beschrénken.
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Zunéchst nutzen wir die Ungleichung (4.3), falls o < 1 ist:

((zmeee)) -((520) )

(? E _ (Z:}“jxj+c>+ - (Zcrjxj>+ a]

E

LI \j=>1 j>1
Sl [[ R T PYNPEES o S T
LI \j=>1 j=1
+B (ZT}XJA—C) 1{2j21Tij2_C} ]I{ijlTij<0}]
j>1
=k |_ (ZTJXJ> ]1{2j21Tij<*C} _C]l{zjlejXJZ*C} ]1{2j>1Tij>0}]
j=1
+B || D_TiX;+C| 1 _oex . 7,40}
J>1 N
=E ZTJ’Xj Loss o mx,<c} +]E[‘C’a]l{zjzlTijZ‘C}]l{ZQlTJ'XjZU}}
j=1
+E ZTJ'XJ“"C ]1{0<Z].>1Tij+C’<C’}]
j=1

< B [|C|a ]I{OSijlTjXK*C}} +E [|C|a ]l{szIzjjzfc}]l{zjzlTijzo}}

+IE [’C|a 1{0§Zj21Tij+C<C}]

Sei nun o > 1. Wir nutzen hier die elementare Ungleichung (4.5). Iteriert angewendet
gilt fiir x,t € R:

(z+)")" = (27)" (4§5) o ((z+ t)+)a_1 tt

Yool (@) () Hala =1 (@+ ) ()

(4.5)
<
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1 € [a—1,a). Nutzen wir nun noch, dass « — g € (0, 1], also

wobei ¢ al —
< (M) ()M gilt, folgt

((m + t)+) o

((z+1)")" Z )" () + at (1) (4.19)

Dies hilft uns wie folgt:

of((zmee) ) () )

S ((ZTx)) €)' +aB (")

j>1 |
q . a—1 '
Sk (zmij | +as el w20)
i=1 i>1

Dies ist endlich. Der Beweis ist vollstandig, falls wir [E [<2j21 |TJXJ|> B ]C|Z] < 00

fiir i € {1, ..., q} zeigen kénnen. Dazu folgt zuniichst aus der Holder-Ungleichung!®

Zm Zw’ < (Zmr)w a\

7>1 1 7>1

a—i

—1

ICIE, < oo, (4.21)

- ZrT\

7j>1

furi € {1,...,q}. Furi € {1,...,¢ — 1} gilt mit Bemerkung 4.2 (o —i > 1)

(Z\TJXJO CI'| =E |ICI'E <Z!T1le> (T)yz1,C

j=21 Jj=21

< B |lcf (B [1x)

~1 (Tk)k21,c])raaz1 I (Z’T y) K (Tk)g>1,C

j>1
i>1
= IlsE (Z!Tj\) | +E |0\"Zw—im[\xj|a—i}]
g2l i1

16Vgl. Satz 11.3 aus [2]; mit 7 := &, s:=

3

l_+%::1
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a—i>1 s o i . T e
< I Xl= E (Z!Tﬂ) ICI| + Xl E (O] (ZIEI) < oo.

j>1 j>1

Fir ¢ = ¢ = [a] — 1 gilt, unter Beachtung von o — ¢ € (0, 1] mit der Jensenschen

Ungleichung,
a—1i r a—q A
(Z!J}Xﬂ) CI'| =E ||C]"E (ZIEXA) <Tk>k>l,c
j>1 L Jj>1

> 1T

Jj=1

cefor (e[ mnfmen)”
1)

=B |C‘q <Z|T|E |XH Tx) k>1>

l
(Z |Tj|> cr

Damit haben wir die Endlichkeit von (4.20) gezeigt und schliefien den Beweis ab. [

(4.21)

= X1||{T'E < 00.

4.2 Konstruktion einer L6sung

Fiir einen Messraum (A, Q) definieren wir Py (A) := {F W’Maf auf A} sowie, fir
B>0,Pz(A):= {F € By (A) ‘f 2|’ F (dz) < oo } Fiir eine Zufallsgréfie X notieren
wir deren Verteilung mit % (X) := P¥.

In diesem Abschnitt beschéftigen wir uns mit der Frage, unter welchen Bedin-
gungen die Gleichung (1.1) eine Losung in Ps (R) besitzt, konstruieren eine solche

Losung und zeigen die Eindeutigkeit deren Verteilung in Ps (R). Dazu ist die folgen-
de Definition von besonderer Bedeutung.

Definition 4.6. Gegeben ein reeller Zufallsvektor (C, T}, Ty, T3, ...), definieren wir
durch

) ) ITiX;| < 0o Pefs.,

J=1

@Z:{FEP()(R

(X;)

j21

iid, . (X;) = F, unabh. von (Tk)k21}
den Definitionsbereich der Abbildung

S D = P (R);F— & <ZTij+C> ,
j>1
wobel (Xj),., lid mit £ (X;) = F und unabhéngig von (C, T3, 15,15, ...) sei. &7
bezeichnen wir als smoothing transform.
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Bemerkung 4.7. (a) Die Bedingung in der Definition von ®© héngt nicht von der

Wahl der Folge (X;).., ab, denn mit (X]’»)j21 iid, .Z (X{) = F, unabhéngig
von (Ti),s, gilt & (Z?Zl ]T]XJ|) =Y (Z?:1 ‘TJX]’D fur alle n > 1, was
Z <Zj21 |T]X]\> =7 (ijl }T]XJ’D begriindet. Analog erhalten wir in dieser
Situation mit F' € © dann .Z <Zj21 T;X; + C’> =Y (Zj21 T; X + C), was
die Wohldefiniertheit von .7 zeigt.

(b) Gegeben szzl |75
sondere Pz (R) C ©, denn fiir 5 > 1 folgt

j>1

5 ¢ (B) < oo (im folgenden ist dies der Fall), gilt insbe-

E | ITX)|| =E Z|Tj|E[|Xj|\<Tk>k>J] = [ Xull, | D_IT|| < oo
j>1 j>1 j>1 1
und fiir g <1
E|\> X" =E ZlTj|ﬁE[|Xj|ﬁ\<Tk>kzl}] = | X1ll5 0 (8) < o0,
Jj=1 Jj=1

woraus in beiden Fallen .., |T;X;| < oo P-fs. folgt (wir nutzen 2 > x fiir
z e (0,1), falls 0 < g < 1).

Die smoothing transform ist fiir uns interessant, denn die Frage, ob Gleichung
(1.1) eine Losung in Lg besitzt, entspricht der Frage, ob die Abbildung .# einen
Fixpunkt in Ps (R) besitzt.

Sei nun F' € ® mit & (F), ?*(F) € D. Es gilt dann

SF) =2 > X, + c)

=2 () T (ZTj(k)X(jk) +C(k)> +C>

=2 )Y T, (k) X (jk) + Y TuC (k) +c>
k>1 j>1 k>1

mit (Xj),s, iid bzw. (X (jk)), >, lid und der Verteilung £ (X)) = & (F) bzw.

Z (X (11)) = F. Gegeben F € ® mit .7 (F),*(F),3(F),.... " (F) € D,

erhalten wir fiir n > 1 induktiv

S(F) =% ZH(i)X(iHi:ZH(i)o(i) : (4.22)

lij=n k=0 [i|]=k
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wobei (X (i))
Gehen wir fiir einen Moment davon aus, dass wir einen Fixpunkt ' € © von

unserer Abbildung . gefunden haben, dessen S-Moment existiert. Mit Blick auf die
Darstellung (4.22) folgt dann

iid mit Verteilung F'.

li|l=n

zuy%ﬂ:$§ﬁmmm+zgﬁmmn,
li|=n
fiir (X (1)) 35 iid mit Verteilung F, also insbesondere

SHHX @)+ Y MEC3EH S X(0), n— . (4.23)

lij=n lij<n—1

Gehen wir nun zusétzlich davon aus, dass ¢ (1 A 5) < 1 gilt, so folgt fiir alle € > 0
mit der Markov-Ungleichung und (4.30), welches wir erst spater beweisen, aber keine
weiteren Voraussetzungen benotigt,

B 1NB
Pl TOX3G)|>e| < éLABE D T() X ()
li|= lil=

1 . .
< B Y M X P
lil=
1 . .
= B [ MO E[IX @15
li|=
s 1

c1AB X ((D)Hy\ﬁ (1A 5)n 2700,
D.h. 37, () X (i) L 0, n — oo. Nun gilt mit (4.23) und dem Satz von Slutsky!”

STIGE) C ) S X (0), n— .

lil<n

Da diese Folge nicht von dem oben angenommenen Fixpunkt F von.¥ abhéngt, ste-
hen wir damit vor der Frage, unter welchen Voraussetzungen wir andersherum iiber
den Grenzwert dieser Folge einen Fixpunkt von . definieren kénnen. Die Antwort
(Satz 4.10 (a)) ist positiv, denn wir benétigen noch geringere Voraussetzungen als
oben. Wir fordern fiir ein g > 0

> IT

j>1

1Cl5, < oo und ¥ (B) < 1, (4.24)

B

17Vel. Satz 36.12 aus [2].
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wobei wir ¢ : (0,00) — [0, 0o] durch
(¢ (1) falls v € (0,1]

E) T | falls v € [1, 2]

Jj=1

E|) T

Lj>1

(V) Ve(2)V

' , falls v € [2,00)

\

definieren. Hierbei folgt in (4.24) die Bedingung >,

gung ¥ (B) < 1, falls 8 < 1 ist. Denn in diesem Fall gilt

(ZT)B E|> I3l

i>1
Bemerkung 4.8. Wir stellen mit unseren Bedingungen (4.24) schwéchere Forde-
rungen an (C, Ty, 75, Ts, ...) als Kapitel 4 in [10], denn dort wird (4.24) mit ¢* (8) < 1
anstelle von ¢ () < 1 gefordert, wobei ¢* : (0,00) — [0, 0o] durch
. v (1), falls v € (0, 1]
ot () =
() Ve(l), fallsye [l 00)

(1) gilt, folgt v < 9p*. Also sind

< oo aus der Bedin-
B

definiert ist. Da ¢ konvex ist und ‘E [Z i>1 }
die Bedingungen (4.24) in der Tat die schwécheren.

Gehen wir nun davon aus, dass die Bedingungen (4.24) fiir ein 8 > 0 erfiillt sind.
Wir wollen eine Zufallsgrofle R konstruieren, die die Gleichung (1.1) 16st, und dies
werden wir {iber eine Folge (R"), -, erreichen, deren P-f.s.-Grenzwert R sein wird.
Zunichst definieren wir fiir n > 0

W, =Y MG C (i
li|=n
Dass die Zufallsgroflen W, existieren, stellen schon die Bedingungen (4.24) sicher.
Falls 5 > 1 impliziert | [Z|i|:n I (i) C (1)|} = ¢(1)]|C]]; < oo insbesondere

> fij=n H (1) C ()] < oo P-f.s.. Falls 8 < 1 sieht man analog ;_,, [I1 (i) C 1)]” < o0
P-fs., was o5, [IL(i) C (i)] < oo P-f.s. impliziert (hier gilt 2P >z fiir v € (0,1)).

Mit Blick auf Abbildung 1 aus Kapitel 2 ist W,, die Summe iiber die n-te Ge-
neration der Gewichte II (i) multipliziert mit C (i). Fiir n > 1 lassen sich die W,
durch

W,=> THCH=)_ >

li|=n Jz1 fil=n,i|l=j

_ZT Z (HTHH Jig.. ) ]Z2 ZT @ W— 1,5 (425)

j>1 19,.0yin EN Jj=1
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beschreiben. Hierbei wird (Wo,;),-, = (C (j));», und

m—1
Wji= Y, C(ji. lH T, (i
) =0

fiir m, j > 1 gesetzt. Da die (C' (i), T1 (i), 72 (1), 75 (1) , --.) jjj<pn4q 1id sind, gilt eben-

falls, dass die (Wm7]~)j>1 iid sind und W, 4 W,, fiir alle m > 0 gilt.

Mit Blick auf Abbildung 1 veranschaulicht sich die Zerlegung (4.25) durch den
Ubergang auf die Teilbséume unterhalb der Knoten in der 1. Generation. Gehen wir
fir j € N = N! auf den Teilbaum unterhalb des Knotens j iiber, so entsprechen die
Wn—l bezogen auf diesen Teilbaum eben den W,,_; ;. Denn innerhalb des Teilbaums

mit Wurzel j ist II (i) = Gewicht des Knoten i = jis...i,,, da hier der Pfad

von i zur neuen Wurzel j und nicht mehr bis (§ fithrt (insbesondere TI (5) = 1).
Weiter definieren wir nun

SN BT

k=0 |i|=k

Wir wollen zeigen, dass der P-f.s.-Limes der Folge (R"),, existiert und dieser die
Gleichung (1.1) 16st. Fiir (R"),, erhalten wir eine Rekursion. Analog bzw. mithilfe
der Zerlegung (4.25) gilt ndmlich fir n > 1

- zn:ZTj(@) Wi+ Wo =T, (@i% +C(0)
k=1 j>1 j>1 k=0
=N TR+ C(0). (4.26)

Jj=1

Hierbei definieren wir fiir j > 1 und m > 0

m
- E Wk,j-
k=0

, iid ist, gilt dies auch fiir (R;”) - fir m > 0. Wy, 1 < W, impliziert

nun R7 L Rm , fur m > 0. Also zeigt (4.26), dass fiir alle n > 1 insbesondere
(R™ 1)) = £ (R™) und somit " (£ (C)) = £ (R") gilt. Hierbei setzen wir
Z (R") € ® fur n > 1 voraus. Letzteres ist mit Lemma 4.9 und Bemerkung 4.7 (b)
klar.
Wichtig fiir die P-f.s.-Konvergenz der Folge (R"), ., ist das folgende Lemma,
dessen Beweis wir am Ende des Abschnitts angeben.

Lemma 4.9. Gegeben ein 5 > 0 und ein reeller Zufallsvektor (C,Ty,Ts,Ts,...), die
die Bedingungen (4.24) erfiillen, existiert ein Kz > 0 (unabhdngig von n), sodass
fur alle n > 1 gilt:

B([IWl] < K50 (8)"
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Somit gilt insbesondere [|R"||; < oo, da die R™ endliche Summen von Zufalls-
grofien mit 5-Moment sind. Gelten die Bedingungen (4.24) fiir ein 8 > 0, so kénnen
wir

R:=> W, (4.27)
k>0

definieren. Die Zufallsgrofie R und sogar deren S-Moment existieren:

Satz 4.10. Gegeben ein 5 > 0 und ein reeller Zufallsvektor (C, Ty, T3, Ts, ...), folgt
aus den Bedingungen (4.24):

(a) Es existiert ein P-f.s. Limes R der Folge (R"),~,, der sich durch (4.27) be-
schreiben ldsst und fiir den [|R||; < oo gilt. Die Konvergenz ist ebenfalls in Lpg,
falls > 1.

(b) R ist Losung der Gleichung (1.1) und £ (R) ein Fizpunkt der Abbildung ..
(c) Es gilt & (P (R)) C P (R) und fir alle F' € Pz (R) dariber hinaus
S(F) S Z(R), n— .
Dies zeigt insbesondere, dass £ (R) eindeutiger Fizpunkt von . in Pg (R) ist.

Beweis. Wir stellen zunéachst fest:

1va 1vp
A (Z Hwkug R ¢ (Z (¢ <5>>’“Aé)

k>n B k>n

G .
(1 <w<>> )

(a) Mit der Markov-Ungleichung folgt fiir alle € > 0 mittels (4.28)

sup |[R™" — R"| >¢ | <P| su Wil >el| =P Wil > €
P (e > ) (mﬁz'k' ) (Z' . )

k=n-+1 k>n
B 1 v
_>
() | =] ==
k>n k>n

da ¢ (8) < 1. Damit ist R* — R P-f.s. und insbesondere die Existenz der
ZufallsgroBe R sichergestellt.

Mit analoger Argumentation folgt fiir das f-Moment von R

AL
1AL Al K, "
IRl <3 IWilly < K3 7Y v (81" = ———2— < o0,
k>0 >0 1—4(B)"?
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Fiir die Lg-Konvergenz im Fall 8 > 1 sehen wir nun, dass

> W

k>n

V3

E [|R - Rnﬂ -

B
gilt und mit (4.28) die Behauptung folgt.

In (a) haben wir gesehen, dass R eine Zufallsgrofe ist, deren S-Moment existiert.
Mittels Bemerkung 4.7 (b) gilt somit .Z (R) € ©. Dariiber hinaus ist R eine
Losung der Gleichung (1.1), denn mit der Zerlegung (4.26) gilt

. no__ 12 ) 7;—1
R= lim R _JLHQO;TJ(@))R] +C(0)
J

jz21 Jj=21

wobeil (Rj)j21 = (Zkzo Wk’j)jZl iid mit Ry £ R. Wir kénnen hier lim,,_,~ und
> j>1 vertauschen, da wir den Satz von der majorisierten Konvergenz bzgl. des

ZihlmaBes anwenden kénnen und )., [T} (0) ;| < oo P-fs. aus Z (R) € D
folgt. -

Gegeben ein F' € P3 (R), gilt aufgrund von Bemerkung 4.7 (b) zunéchst F' € ©.
Es gilt weiter .7 (F)) € P3(R) C D, da ||Cf]; < oo. [ (F)|; < oo wird
sichergestellt durch

E (;mxjy
> 1T

j=1

(

HXlufm_l + | Xal[5 0 (B) < o0, falls 8 > 1 und

B

A

E

Z |TJ|6E [|Xj|5’ (Tk)k>1}] =Xl (B) <oo, falls <1,

\ Jjz1

wobei wir im Fall § > 1 Bemerkung 4.2 benutzt haben. Damit haben wir
(P (R)) C Ps(R) gezeigt und es folgt .7 (F) € P3 (R) C © fiir alle n > 1.

Sei X Zufallsgréfle mit Verteilung F'. Wir betrachten den reellen Zufallsvektor
(X, T4, T5,Ts,...) fiir einen Moment als Grundlage unseres Modells (anstelle von
(C,T1,T5,T5,...)). Dieser erfiillt ebenso die Bedingungen in (4.24) (hier geht
| X5 < 00 ein) und damit gilt mit WX = > jij=n 1L (1) X (i) und Lemma 4.9 fiir
ein K é( > 0 fiir alle € > 0 mittels der Markov-Ungleichung

1 Lemma 4.9 K& oo
P> 00X@|>e| <5B[W] 7S Zwe =0

li|=n
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Also gilt 35, TT(1) X (i) = 0, n — oo,
Nun zuriick zum urspriinglichen Modell mit Grundlage (C,T3,T5,T53,...). Da
R4 Ron = oo, (folgt aus (a)), schliefen wir mittels dem Satz von Slutsky!®

ST X (1) + RS R, n— oo,

li|=n

was aufgrund von (4.22) mit .#" (F) = £ (R), n — oo, gleichbedeutend ist.
Ist F' € P3(R) ein Fixpunkt von .7, so gilt damit F = 7" (F) = Z(R), was
die Eindeutigkeitsaussage zeigt.

]

Bemerkung 4.11. Die Voraussetzungen des Lemmas 4.9 und des Satzes 4.10 sind
durch die Bedingungen (4.24) gegeben. Wie in Bemerkung 4.8 begriindet sind diese
schwicher als die Voraussetzungen in den entsprechenden Lemmata 4.3, 4.4 und
4.1 in [10]. AuBlerdem wird die Existenz der Losung R in den Arbeiten von Olvera-
Cravioto und Jelenkovi¢ nur fiir 8 < 1 oder T; > 0, j > 1 gezeigt und die Eindeu-
tigkeitsaussage nur im Fall 4 <1 und 7; > 0, j > 1.1

Die Anforderungen an (C,T},T5, T3, ...) sind jedoch in den Theoremen 5.45 (fiir
B <1),548 (B € (1,2]) und 5.53 (f > 2) in [3] zu finden, in denen die Existenz
und Eindeutigkeit eines Fixpunktes von . in Ps (R) bewiesen wird.

Nun kommen wir zum Beweis von Lemma 4.9: Wie wir in Kiirze sehen, 16st
sich der Fall 8 < 1 so elegant wie schnell durch die Subadditivitit der Funktion
x +— 27, Fiir 8 > 1 wird wesentlich mehr zu tun sein - im Fall 8 € (1,2] wird die
Topchii-Vatutin-Ungleichung (vgl. Kapitel D) an entscheidender Stelle eingehen. Im
Gegensatz zu dem Beweis von Theorem 5.53 in [3] nutzen wir hier im Fall 5 > 2 nicht
zudem die Burkholder-Ungleichung?, sondern nutzen mit Lemma 4.1 eine Methode
aus [10], um die Reduktion des Exponenten zu erreichen.

Beweis von Lemma 4.9. Zunichst betrachten wir den Fall g € (0,1]. Wie oben

erwithnt ist z — 27 in diesem Fall subadditiv, d.h. fiir (z;),., € [0, 00)" gilt

g
(Zj:1 xj) < Y., 27 Damit folgt fiir n > 1 mittels der Zerlegung (4.25)

j=1"j"

B

E[\Wnﬂ:E ST 0)Waory| | <EE

@B [Wart*] 2 0 (8)'E [[Wel?] = E[IC1] % (8)".

18Vel. Satz 36.12 aus [2].

Vel zur Existenz Lemma 4.1 in [10] bzw. Kapitel 4 in [11] und zur Eindeutigkeit Lemma 4.5
in [11].

20Vgl. Theorem B.4 in [3].

> 1T )7 (W1

Jj=1

(Tk ((Z)))k21] ]
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Setzen wir nun Kg := [|C’|B] < 00, so folgt die Behauptung fiir g < 1.

Kommen wir zum Fall § > 1. Fiir diesen Fall geniigt es zu zeigen, dass fiir
beliebiges p € N mit p > 1 die Behauptung fiir alle § € (p — 1,p] gilt. Hierfiir
fithren wir eine Induktion nach p, die den Rest des Beweises einnehmen wird. Sei
also zunéchst fiir den Induktionsanfang p = 2.

Wir wihlen ein beliebiges f € (1,2] und fiir § seien die Voraussetzungen des
Lemmas erfiillt. Wir erinnern an die o-Algebren §,, in (2.1). Fiir festes n > 1 definie-
ren wir fiir einen Moment den stochastischen Kern P,, wobei P, (w, ) := P8 (w, )
sei, d.h. fiir messbares A gilt P, (w, A) = E[14 |§,] (w). Dies bedeutet insbesondere,
dass fiir eine P,-quasiintegrierbare Zufallsgrofie X

E,[X]=E[X|3.] P-fs.

gilt. Wir definieren weiter fiir £ > 1

und M{ := 0, wobei {il}l €N} =N"und U (i) := 251 Ty (1) C (ij) gelte. Um die
Momente von W), abzuschétzen ist M}’ aufgrund der Beziehung

M7 =liminf M} = Wy — > TH E[U (1)) (4.29)
k—o0 ‘

fiir n > 0 interessant, die wir spéter in (4.33) zeigen werden.

Wir wollen zunéichst zeigen, dass (M}'),-, unter P, (d.h. unter §, bedingt) ein
Martingal bildet. Fiir & > 0 nutzen wir, dass E, [U (i)] = E[U (i) |§.] = E[U (i)]
P-f.s. fiir |i| = n gilt, da U (i) und §, unabhéngig sind, und folgern

By [ Mgy — M| M,ﬂ =B [B [ My, — M| M| 5]
E[E[M, — Mp| 3] | M]
B[ E UG -E[0G)]] 8] M)

(

[ 1k+) O‘M,J-O P-fs..

Also ist (M) 5, ein Martingal bzgl. (o (M7, ..., M}!)), >, unter F,. Mit der Topchii-

Vatutin-Ungleichung (vgl. Kapitel D) erhalten wir nun (z — |2|” ist konvex mit
konkaver Ableitung auf (0,00) und |0/° = 0)

B, |IM°] <237 B [ |0 - M|

>1

23 B 0@ U @) - B[ @)

>1

=B [n @) v () & )]s

>1
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—2> WA E UG -EU @)
li|=n

—2) G E [|U (i)~ E[U (i)]|ﬁ] P-f.s.,
li|l=n

5

wobei wir die Unabhéngigkeit von U (i) und §, fir |i| = n genutzt haben. Hierfiir
gilt fiir |i| = n auf der einen Seite

E [Z H<i>|5] [Z ) E
li|=n lijl=n—1
[Z |H ﬁ] zteratw(p(ﬁ)n (430)

lil=n—1

21T ()

7>1

aufgrund der Unabhéngigkeit von §, und (7 (i),7>(i),75(i),...), sowie auf der
anderen Seite mittels der elementaren Ungleichung (4.5) (z = |U (i)|,¢t = |E[U (1)]|)

5= B[06-Bw )] <B[0Uo)+ B0 6)]
< E[lo @]+ sE (v o)+ B Ew 6
T w[or] e lv P B al+sET @ @3

Dies ist genau dann endlich, wenn E []U (i)]° } < 00 ist, und dafiir gilt

E |G| < [(ZT cm)ﬁ

j>1

Bem. 4.2 _ E
L g [lop) zm e[S 1 0P 16 <Tk>k>1]
7>1 Lj>1
B

< lcly +¢(B) ||C||§ < o0,

> T3]

j21

B

Zusammen liefern also (4.30) und die Endlichkeit von (4.31)

E[1MLP] = E[E|1MLP[5] ]

> G)E |[U6) - B @)

lij=n

< oF <Kp(B).  (432)




Implizite Erneuerungstheorie und Verzweigung 45

Im folgenden weisen wir die Beziehung (4.29) nach, wobei wir in der zweiten Zeile
zum Limes iibergehen konnen, da die W, als P-f.s.-Limes existieren und (4.30) gilt:

k
M, = lim inf My = ngglflzln i) (U @) -E[U{)])
k k

— lim ST () U (i) — lim SO E [U(1)]

k—o00 k—00

=3 S G HC6) - Y THEW
li|=n

lij=n j=1

= Wit — Z G E[U ()] P-fs.. (4.33)

Wir berechnen mittels der Jensenschen Ungleichung fiir bedingte Erwartungswerte

SHOOHEUG| =D TOE|D T;|EC
li|=n

li|=n 5 j>1

=D TEHEC3) 3]

[i|=n 3 Jj=1
BB _ -
=E|[E|) I3)C®HE)|Fn E) T,
lil=n Lj>1
- sl 115, - _
<E|E||Y_TOHCH| (S]] [E|D T
lijl=n Lj>1

= [[Wallg |E

> T,

7>1

(4.34)

wobei wir die Unabhéngigkeit von C (i) und §,, und die Messbarkeit von II (i) bzgl.
§n fiir |i| = n genutzt haben. Setzen wir in

(420) | . . n .
Wl "2 |0z + SO EW @] < a2, + | S n@ED G
li|=n 5 lij=n 8
(4.32) und (4.34) ein, so erhalten wir iterativ

E|) T

7>1

|

Wl < (K3)7 0 (8)F + < (K3)* ¢ (B)% + ¢ (8) [[Wall 5
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<. < (K3) > (B)F 0 (B) + v (B [Woll,

— (k5)F v (8)? Z (v ) + v,

< () 0P Y (19 7) e e)* 10,

(T e, ) v = it v
()

mit K3 < oo nach den Voraussetzungen. Zusammengefasst zeigen wir also den
Induktionsanfang (p = 2), denn fiir alle 5 € (p — 1,p] = (1,2] und alle n > 0 gilt
unter den Bedingungen (4.24) fiir

B Wl < IWasalf < Kow (8).

Kommen wir nun zum Induktionsschritt. Sei also p € {3,4,5, ...} beliebig und
gelte die Behauptung fiir alle 2,...,p—1. Sei 5 € (p — 1, p] beliebig. Wir stellen fest,
dass die Bedingungen (4.24) auch fiir alle 8’ € [2, ] erfiillt sind (insbesondere fiir

= [B]—1=p—1), dasie fiir 8 erfiillt sind. Dies liegt unter anderem daran, dass v
auf [2,00) monoton wachsend ist (¢ ist auf (0, 00) konvex). Also kénnen wir mittels
der Induktionsvoraussetzung nun die Aussage fiir alle §’ € [2,p — 1] verwenden.

Wir berechnen mit der Zerlegung (4.25)

B
E|Wl’| =B || 370 Wy
ji>1

Bem. 4.2 3 3

< [Waall, Z|T! E | DI )17 Wi )| (Th (0))54

i>1 j>1
I.V.
Y - [ AE W]

7>1
(n

K3 (8) 77 + ¢ (B E [|Wn_1|]

IN

mit K = (Kp_l)rfl HZ_ , wobei wir die Monotonie von ¢ auf [2,00) ge-

nutzt haben. Nach den Bedingungen (4.24) und der Induktionsvoraussetzung gilt
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K} < oo. Tterativ folgt damit

n—1

B W] <. < K530 (8)7 1 Py 8) 4+ v (8)E [|C)°]
k=0
. (ng B Y (v ) ||c||§> v (o)
k=0

< <ng By # Y ()7 ) + H0H§> (8" = Kpw (8)"

mit K < oo, da ¢ (B) < 1 und K}, [|C||; < oo. Damit ist die Behauptung fiir alle
B € (p—1,p| gezeigt. Dies schliefit die Induktion nach p und damit den Fall 5 > 2
ab, somit auch den Beweis des Lemmas. O

Bemerkung 4.12. Im Kapitel 5 in [3] wird die Abbildung .# intensiver betrachtet.
Dort wird auf Ps (R) die Metrik

lg (F,G) = ' X-Y
$(FG)=  min XY,

definiert und unter anderem gezeigt, dass unter eben unseren Bedingungen (4.24)
die Abbildung . eine Kontraktion des metrischen Raums (Ps (R),l3) bildet, d.h.

I5(F (F), S (Q)) < ¢y (F,G) fir alle F,G € Py (R)

fiir ein ¢ € (0, 1) gilt, und somit einen eindeutigen Fixpunkt besitzt (vgl. Satz 4.10).
Es wird ebenfalls gezeigt, dass . (F) in lg gegen den Fixpunkt konvergiert (in Satz
4.10 (¢) Konvergenz in Verteilung).

4.3 Tailverhalten von L&sungen

Gegeben ein a > 0, ein reeller Zufallsvektor (C, T}, Ts, T3, ...) und ein € > 0, sodass
fir alle ' € (o —¢€,a) die Bedingungen (4.24) erfiillt sind, existiert nach Satz
4.10 eine Losung R € NgeoLp zu (1.1), deren Verteilung .Z (R) in Ng<oPs (R)
eindeutig ist. Es gilt hierbei Ps, (R) D Pg, (R) sowie Lg, D Lg, fiir alle 8; < f,. Der
nun folgende Satz 4.13 charakterisiert in genau dieser Situation das asymptotische
Verhalten der Tails der Losung R. Der Satz ist eine Verallgemeinerung des Satzes B.2
von Goldie, der das asymptotische Verhalten der Tails einer Losung der Gleichung

RLETR+C

untersucht.
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Satz 4.13. Gegeben ein a > 0 und ein reeller Zufallsvektor (C,Ty,Ts,...) mit
1C],, < oo und P (C #0) >0, seien sowohl (IRT-1) bis (IRT-3) als auch

1+e€
E <Z \T]|11> < oo firemee (0,1), fallsa <1,

i>1
E ZT] <1 und Z 5] < oo, falls o > 1, sowie zusdtzlich
i>1 i>1 N
¢ (2) <1, falls o > 2

erfillt. Dann ist (4.24) fir < « groff genug erfillt; sei R eine Losung zu (1.1) in
Ng<alpg. Es gilt:

a) Ist P (T; > 0 fiir alle j > 1) =1, so folgt
j

lim t“P (R > t) = H. und tlim t*P(R< —t)=H_,
—00

t—o00
wobei

1 o

Hy = — t* 1 P(xR>t) - E Z]l{:tTjR>t} dt
Ha Jo j>1
1 Y

a5 ee) ) -gow|
o i>1 Jj=1

(b) Ist P (T; <0 fiir ein j > 1) >0 und P (T; > 0 fir ein j > 1) > 0, so folgt

lim t“P (R > t) = tlim t*P(R< —t)=H,
—00

t—o0
wobei
H H_ 1 o
ot /tc” P (IR > 1) =B | Tgnrsn| | dt
2 216 Jo j>1
1 " o
= 5B (DTl +C| =) R[]
Ha §>1 Jj>1

Beweis von Satz 4.13. Wir nutzen die Voraussetzung 90(

sowie ¢ (1) = ([ S 1T < || 173
dass ein v* € (0,«) mit ¢ (7*) < oo existiert. Also sind mit Bemerkung 3.8 fiir
f < a grof genug alle Bedingungen in (4.24) erfiillt, da dann nach den gegebenen

Voraussetzungen v (5) < 1, ||C||/B,HZ].21 |T5]|| < oo gelten. Mit Satz 4.10 folgt

1%6)<ooimFaHoz§1

< o0 im Fall @ > 1 um zu folgern,

B
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die Existenz einer Losung R mit [|R|; < oo fiir alle 8 € (0,«). Damit sind alle
Voraussetzungen von Satz 3.5 bis auf die Bedingungen (3.1) und (3.3) erfiillt.

Um diese Bedingungen nachzuweisen, benétigen wir die Lemmata 4.3, 4.4 und
4.5. Wir wollen zuerst zeigen, dass alle deren Bedingungen erfiillt sind: Mithilfe von

@ (B),1R]l5 < 00 folgt B [ Yoy TR | = B [ Lot ITV E [IR1°| (T ]| < o0,
also insbesondere >, ITR;|” < 0o P-fs. gilt. Dies impliziert > o1 ITiR;|™ < o0
P-fs., da 2% < 27 fiir 2 € (0,1). Aus dem gleichen Grund folgt Y .., |T;R;| < oo
P-fs., falls @ < 1. Falls a > 1 liefern ¢ (1), ||R||; < oo mit einer &hnlichen Argu-

mentation )., [T;R;] < oo P-f.s.. Damit sind die Voraussetzungen der Lemmata
4.4 und 4.5 erfiillt. Im Fall a > 1 erhalten wir die Voraussetzungen von Lemma 4.3

durch
1+e€ «
E (Z |Tj|f+e) <E (Z rTj\) < o0,
j>1 j=1
fiir e € (0,1) mit 15 > 1.
Fiir d () =id bzw. d (-) = —id ist
/ P (d (R) > t) —E Z ﬂ{d(TjRj)>t}] t*ldt < o0
0 j>1
zu zeigen. Es gilt
/ P(d(R)>t)—E Z ]l{d(TjRj)>t}] ey
0 i1
§/‘h%ﬂﬂ)>ﬂ—P(wpﬂﬂRﬂ>é>W4ﬁ
0 j21

9Lt

jg:‘ﬂ&urﬂ%>>ﬂ]

Jj=1

o
0
und mit Lemma 4.3 bleibt nur noch zu zeigen, dass das erste Integral endlich ist.

Da R £ > i1 TR + C gilt, folgt mit Bemerkung C.2 (b) und den Lemmata 4.5,
4.4 und 4.3:

r

P (supd(TjRj) > t) —E

Jj=1

ot

PG(Xﬁwﬁ{>>Q—PG@M@&pw)

>1 j=1

(mon))) (e )|
l(oone ) -(foe)

IN
I
=
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i ((d (Z%)) ) - (@R
+ é]E > (@(T3R))" - <(§grl>d(TjRj)) )

Fiir die Anwendung der Lemmata nutzen wir (d(-))" = (-)¥, falls d(-) = id, und
(d(-))" = ()7, falls d(-) = —id. Die Behauptungen (a) und (b) sowie ebenfalls die
verschiedenen Darstellungen fiir H,, H_ und H folgen aus Satz 3.5. O

Bemerkung 4.14. (a) Wie in Bemerkung 4.8 merken wir an dieser Stelle an, dass
die Bedingungen an (C,Ty,T5,T5,...) in Satz 4.13 schwécher sind als die Be-
dingungen in Satz 4.6 in [10], denn dort wird im Fall o > 1 gefordert, dass
¢ (1) < 1 gilt. Wegen der Konvexitdt von ¢ und Bemerkung 3.8 gilt ¢ (2) < 1,
falls ¢ (1) < 1. Aufgrund von ’]E |:Zj>1 TJ}
Satz 4.13 in der Tat die schwécheren.

< ¢ (1) sind die Bedingungen in

(b) Wenden wir nun die Bemerkung 3.6 (c) auf die Situation von Satz 4.13 an, so
folgt hier direkt aus den Voraussetzungen des Satzes, dass die Funktionen

Z H{TjRj>t}]

j>1

tr—>]P(R>t):IP<ZTjRj+C>t> und t — E

Jj=1

das gleiche asymptotische Verhalten haben, falls E[(RT)"] = oo gilt. Ebenso
gilt das negative Pendant.

5 Der PageRank

Fithrende Suchmaschinen verwalten eine grofile Datenbank mit analysierten Web-
seiten.?!’ Wenn nach einem Begriff gesucht wird, ist die Frage, welche der infrage
kommenden Seiten aus der Datenbank dem Suchenden zuoberst angezeigt werden
soll. Ein wichtiges Instrument fiir dieses Ranking ist im Falle der Suchmaschine
Google der PageRank, benannt nach dem Google Mitbegriinder Larry Page.?? Jeder
analysierten Webseite wird ein solcher PageRank zugewiesen, welcher mithilfe des
Webgraphen bestimmt wird (siehe Abschnitt 5.1). Die Idee des PageRank ist es, die
Bedeutsamkeit einer Website zu bemessen, in dem zur Bestimmung die Riickverweise
der Seite sowie deren Bedeutsamkeit verwendet werden. Je hoher der PageRank ei-
ner Website, desto interessanter ist sie fiir den Suchenden und sollte auch weiter
oben in der Ergebnisliste eingeordnet werden.

21Vgl. Abschnitte 4.2 und 4.3 in [5] zur Webseitenanalyse (Crowling).
22Vgl. http://www.google.com/competition /howgooglesearchworks.html (19.09.2012).



Implizite Erneuerungstheorie und Verzweigung 51

In diesem Kapitel werden wir zuerst den PageRank von Google vorstellen (Ab-
schnitt 5.1) und unsere Ergebnisse aus Kapitel 4 danach auf diesen anwenden, um
auszusagen, wie sich die Tails eines PageRanks R einer zufillig ausgewéhlten Sei-
te verhalten (Abschnitte 5.2 und 5.3), d.h. eine Idee der Antwort auf die Frage zu
bekommen, wie wahrscheinlich es ist, viele Webseiten mit einem hohen PageRank
vorzufinden.

Grundlage fiir das Kapitel 5 ist [9], wobei wir in Abschnitt 5.1 ebenfalls [5]
zugrunde legen.

5.1 Googles PageRank

Wir betrachten eine zugrundeliegende Menge .# von Webseiten und Hyperlinks
zwischen Webseiten, die zusammen den zugehorigen Webgraphen bilden. Die Kno-
tenmenge des Webgraphen bildet .7, die Menge & der gerichteten Kanten besteht
aus den Hyperlinks, d.h. fiir p,q € .# gilt genau dann p — ¢ € &, wenn es auf der
Webseite ¢ einen Hyperlink gibt, der auf p verweist. Eine Kante p — ¢ € & nennen
wir auch einen Riickverweis auf die Webseite p.

Fiir eine Webseite p € 4 sei

(i) R(p) der PageRank von p,

(ii) A (p) :=={q € M |p— q € &} die Menge der Websites, die einen Riickverweis
auf p enthalten, und

(ii) L(p) :=|{q € #|q— p € &}| die Anzahl der von p ausgehenden Hyperlinks.

Weiter sei d € (0,1) ein Parameter.?® Fiir eine beliebige Webseite p € . soll gelten

1—d R (q)
Ry =" yq S ) (5.1)
) 2 L)
wobei die leere Summe g % = 0 definiert wird. Zunéchst gibt uns (5.1) ein Glei-

chungssystem mit |.#| Gleichungen an, welches wir durch einen Vektor (R (p)),c »
16sen mochten.

Bemerkung 5.1. (a) In der Beschreibung des PageRank (5.1) wird der Rang einer
Seite ¢ € . (p), die einen Riickverweis auf p enthélt, mit ﬁ gewichtet. Dies
passiert, um der Idee Rechnung zu tragen, dass Webseiten mit iiberméfig vielen
Hyperlinks iiber eine darauf verlinkte Seite eine geringere Aussage haben, als
Seiten mit wenigen Hyperlinks.

(b) Ist R eine Losung des durch (5.1) gegebenen Gleichungssystems mit R (p) > 0
fiir alle p € A, so ist

R:.# —1[0,1];p— R(p)

BMeist wird d = 0,85 angenommen. Vgl. Abschnitt 2 in [5] und Abschnitt 1.1 in [9].
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die Zéhldichte einer diskreten Wahrschemhchkeltsvertellung auf .. Da in der
doppelten Summe Zpe o e () L(q der Bruch £ (q) fiir ein festes ¢ genau

L (g)-mal vorkommt (aufgrund von L (q) = |{p € 4 |q € # (p)}|), folgt

> ko) ZWMZ > 7

£la) —1—d+dZL ﬂ

pEM pEM pE//ZqE//[ q qEM (Q)
d)> R(p)=1-
pEM
— Z R(p) =

pEM

(c) Wir definieren fiir n := |.#| zwei Matrizen A, A € R™™ durch

1
——, fallsqge # (p
1qu = L (q) ( ) und Qqu =1
0

sonst

fiir alle p,q € A . Dann ist R = (R (p)),c , genau dann ein Losungsvektor des
zu (5.1) gehorigen Gleichungssystems, wenn > , R (p) =1 und

1—d 1—d
R=-——+|: +d-1A-R:<

A4+d-1A|-R
0\ T 24+ -14)

erfiillt sind. Wir suchen also einen normierten, nichtnegativen Eigenvektor von
A=(1- )|M\—1-1A+d.2A

Mit quﬁ i —I—qu///(p Zig — Lfiralle p € ./ folgt, dass A eine stochastische
Matrix ist (Zeilen summieren sich zu 1). Somit ist die Frage nach einer Losung

u (5.1) genau die Frage nach einer stationdren Verteilung der zu A gehorigen
Markovkette.

5.2 Ubertragung auf die Gleichung R 4 2321 T;R; +C

Hier betrachten wir nun einen Teilgraphen des Webgraphen (aus Abschnitt 5.1), der
eine Baumstruktur besitzt.

Sei R der PageRank einer zufillig ausgewéhlten Seite. Wir konnen R durch die
stochastische Rekursionsgleichung

@|:u

beschreiben, wobei 7, ¢ > 0 Konstanten und N, (Dj)j>1, (Rj)j>1 Zufallsgrofien sind,
sodass - -

(5.2)
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(a)(LyLZIﬁdxnn.DlgzOIRfs.undlE[gﬂ <1,
(b) N Ny-wertig,

(c) (B)),5, iid mit Ry £ Rund

(d) N, (Dj);5,, (R;);5, unabhéngig sind.

In (5.1) entsprechen v bzw. ¢ dem Bruch (1 — d) |.#| " bzw. d, N der Anzahl an
Riickverweise auf die Webseite im Teilgraphen und die D; der Anzahl der ausge-
henden Hyperlinks L (¢g;) im Webgraphen der j-ten verweisenden Webseite ¢;. Um
die Unabhéngigkeitsforderung aufrecht zu halten, geht hier die Baumstruktur ein,
denn mit Zyklen innerhalb des Teilgraphen konnten die (R;);,, nicht plausibel als
unabhéngig angenommen werden. Auflerdem fithrt die Reduktion auf einen Teilgra-
phen dazu, dass die Folgerung einer Summation zu 1 von R : .# — R aus (5.1)
nicht auf die Losung R der Gleichung (5.2) iibertragen werden kann, da diese Re-
duktion nicht bei L (-) durchgefiihrt wird und dies weiterhin im ganzen Webgraphen
gemessen wird (vgl. Bemerkung 5.1 (b)). In der Tat kann eine solche Losung von
(5.2) mit positiver Wahrscheinlichkeit Werte grofler 1 annehmen.

Die Gleichung (5.2) wird nun in einem Schritt verallgemeinert zu der stochasti-
schen Rekursionsgleichung

N
REY"T;R; +C, (5.3)
j=1

wobei N, (T}) , C, (R)),5, ZufallsgroBen sind, sodass

Jj=1
@)@D iid mit 7, > 0 P-fs.,

Jj=1
(b) N Ny U {oo}-wertig, C' mit C' > 0 P-f.s. und P (C #0) > 0,

(¢) (R)),s, iid mit R £ R und

~

(d) N, (T]> , €, (R;);>, unabhéngig sind.
i>1

In (5.1) entsprechen C' dem dort konstanten Bruch (1 — d) |.# |™', N der Anzahl an

Riickverweise auf die Webseite im Teilgraphen und 7; dem Bruch % fiir die j-te
J

verweisende Webseite g;.
5.3 Tailverhalten von Lésungen der PageRank-Gleichung

Betrachten wir den PageRank R einer zufillig ausgewéhlten Seite, d.h. eine Losung
zur Gleichung (5.3). Die Frage nach der Existenz einer solchen Losung R und dem
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Verhalten von deren Tails beantwortet der Satz 5.2, der den Satz 4.13 auf unser
Beispiel anwendet.

Zunéchst formulieren wir fiir @ > 0 Bedingungen fiir den in diesem Kapitel
behandelten Fall, die den Bedingungen (IRT-1) bis (IRT-3) entsprechen werden:

E[N]E [Tf] ~1 (5.4)
E [Tf‘ log (Tlﬂ € (0, 0] (5.5)
P <10g <T1> e T+ O) ist nichtarithmetisch. (5.6)

Nun koénnen wir den folgenden Satz formulieren:
Satz 5.2. Gegeben ein a > 0 und ein reeller Zufallsvektor <N, C, Tl,Tg,Tg,...),
sodass N Ng U {oo}-wertig, C > 0 P-f.s., <Tj>j>1 iid mit Ty > 0 P-f.s. und N, C,
<Tj>j>1 unabhingig sind, seien weiterhin ||C|, _< oo, (5.4) bis (5.6), sowie

E [N'*] < oo fiir ein e € (0,1), falls o <1 und

E[N?] < oo sowie E[N]E [TAJ <1, falls o > 1

erfillt. Dann existiert eine Lisung R € Ng<oLg zu der Gleichung (5.3), deren Ver-
teilung in Ng<oPs (R) eindeutig ist und fir die R > 0 P-f.s. sowie

lim t*P (R >t) = H,
t—o0
qilt, wobei
1

E[N]E [Tf log Tl]
E[(SLBR+C) -2 (TR) ]
N QB [N]E [Tf“ log TH] |

H+ =

/OO (IP (R>1t)—E[N]P (T}R > t)) ta1qt

Beweis. Seien T} = ]l{NZj}’fj fir j > 1 ((7});5, 1-A. also weder unabhéingig noch
gleichverteilt). Dann ist (5.3) gleichbedeutend mit (1.1) fiir (C, 11, T3, 5, ...) und wir
wollen Satz 4.13 darauf anwenden. Aufgrund von (5.4) bis (5.6) gilt

N A
S mit| =k |y B
>1 =1

E =K

N} —E[N|E [T]} G, (IRT-1)

pa =B > |Tj|"log|Ty|| =B |> T3y log (@Mm})]
- = (IRT-2)
. R . 7 (5.5)
B Z]E[TjalogTj N} :E[N]]E[Tf‘long} € (0,00]
Lj=1

(hier ging 0% log0 = 0 ein) und
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P(logT, € -, Ty # 0 :113(10 e T 0>]P N>1
(log Tq 1 #0) g11 1 # ( ) (IRT-3)
ist aufgrund von (5.6) nichtarithmetisch

(hier ging die Unabhéngigkeit von N und T, ein).

Weiter gilt fiir o <1

I+e 1+e
a Bem 4.2 || .o [|1+e€ O (14¢)
| ()| ] S| |
i>1 i>1 e i>1
~_O 1+6
= ||| B[Nt +ENE [Tf} <
1

und fir a > 1

EY T :E[N]]E[Tl}<1
j>1
sowie
“ Bem 4.2 ~ |l @
EY |7 < ||Th Y Lzl +E|DTT
j>1 fel=1 |55 N j>1
— ]T] - 11|N|1§+E[N]1E[Tﬂ < o0.

Da alle Voraussetzungen erfiillt sind, existiert nach Satz 4.13 die Zufallsgrofie R als
Losung von (5.3). Nach der Konstruktion in (4.27) sehen wir sofort, dass R > 0
P-f.s.. Wir sind in Fall (a) von Satz 4.13, also folgen mit

E Y Lnnsg| =B Lvenlippeg| =B D LavzpE [ﬂ{mx} N]]
j=1 j=>1 j=>1
—Pp (TlR > t> E|Y 1| =E[N]P (TIR > t) (5.7)
j>1
fiir t > 0 die Behauptungen. O]

Bemerkung 5.3. Die Bedingung (3.1), die im Beweis von Satz 4.13 nachgewiesen
wird, vereinfacht sich hier unter den Gegebenheiten von Satz 5.2 zu

/ ‘IP(R >t) —E[N]P (TlR > t) t*7ldt < oo
0

(vgl. Rechnung (5.7)). Hieraus folgt insbesondere, dass

N
tHP(Zf}R+C>t> undtH]E[N]]P(TlR>t>

Jj=1

das gleiche asymptotische Verhalten besitzen, falls £ |R*| = oo (vgl. Bemerkung 3.6

(c))-
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A Das Key Renewal Theorem

Eine wichtige Anwendung von Blackwells Erneuerungsthorem?* ist das Key Renewal
Theorem, welches ein wichtiges Hilfsmittel fiir den Beweis des Impiliziten Erneue-
rungstheorems von Goldie ist (Satz B.1). Wir wollen hier sowohl das Key Renewal
Theorem als auch eine Verallgemeinerung dessen auf eine Matrix-Version vorstellen,
die entsprechend fiir den Beweis des Impliziten Erneuerungstheorems mit Verzwei-
gung von entscheidender Bedeutung ist (Satz 3.5). Zunéchst eine Definition.

Definition A.1l. Fiir ein endliches Mafi F' heifit

U::ZF*”

n>0

das zu F' gehorige Erneuerungsmafs. Fiir eine n X n-Matrix H, deren Eintrage end-

liche Mafle auf (R, B (R)) sind, heif3t

U .= ZH*n

n>0
das zu H gehorige Matrizerneuerungsmafs.

Damit lautet das Key Renewal Theorem:23
Satz A.2. Gegeben eine nichtarithmetische Verteilung F mit Erneuerungsmafl U
und Erwartungswert u € (0,00], gilt fir jede dRi Funktion f:R — R

lim (U*f)(t)Z%/Rf dA.

t—o00

Bemerkung A.3. Gegeben ein o > 0 und ein reellen Zufallsvektor (7})..,, die

(IRT-1) und (IRT-2) erfiillen, ist 7 genau dann nichtarithmetisch, wenn ZIRT—B)
gilt. Dies liegt daran, dass fir A € 95 (R)

0 (A4) =Y E[T|" 1 (log|T;))

j>1

gilt.
In der Situation von Satz 3.5 Fall (a) folgt mit Satz A.2 fiir jede dRi Funktion
fR-R

1
li *x = — dA.
lim (v* f) (t) ,ua/Rf

24Vgl. Theorem 1 in Kapitel 11 §9 in [6].
25Vgl. Bemerkung nach Theorem 1 in Kapitel 11 §9 in [6] bzw. fiir 4 = oo Theorem 4 in [12] mit
n=1.
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Fiir die verallgemeinerte Version benétigen wir die folgende Definition.?¢ Eine
Matrix P € {0,1}"*" heifit Permutationsmatriz, falls jede Zeilen- und jede Spalten-
summe 1 ergeben, also falls in jeder Spalte und jeder Zeile genau eine 1 steht.

Definition A.4. Eine Matrix A € R™*" heifit reduzibel, falls
(a) n=1und A =0 gilt oder

(b) ein r € {1,...,n — 1} und eine Permutationsmatrix P € R™*™ existieren, sodass

T (A Ay
prar- (4 4) an

fiir Matrizen A; € R™", Ay € R™" " A3 € R*" """ und die Nullmatrix
0 € R ™" gilt.

Eine Matrix, die nicht reduzibel ist, heifit irreduzibel.

Fiir eine Matrix A ist ihre Irreduzibilitit gleichbedeutent mit der Irreduzibilitat
von AT: Ist A reduzibel, erfiillt also (A.1) fiir eine Permutationsmatrix P, so gilt
fiir Einheitsmatrizen Iy, € R™", I, € R""""" und Nullmatrizen 0; € R™"",
02 6 RH—T’X’I‘

T
00 L\ rrn(00 LY ({00 L\ 5, (0 L
(12 02) PAPAL 0,) =\ 0,) AL o,
T T T T T
- 01 Il A1 AQ 01 11 . Ag 0 i Ag A2
o IQ 02 0 Ag [2 02 o AQ Al o OT A{ ’

also erfiillt AT (A.1) fiir # :=n —r und P := P ([).1 é1>
2 02

Gegeben eine nichtnegative, irreduzible Matrix A mit Eigenwert 1 als betragsmé-
Big grofitem Eigenwert (|[A| < 1 fir alle Eigenwerte A € C von A), besitzt der
Eigenraum zu 1 die algebraische Vielfachheit 1, einen linken Eigenvektor [ und einen
rechten r mit [;,r; > 0 fiir alle 7 = 1,...,n.%” Dies wird im folgenden Satz auf die
Matrix H (R) angewendet, die aufgrund der Nichtnegativitit der Eintrédge von H
nichtnegativ ist.

Fiir eine n x n-Matrix H von Maflen auf (R, (R)) und B € B (R) sei

H (B):= (Hy; (B)),o, < € [0, 00"

Ist g : R — R eine bzgl. allen H; ; quasiintegrierbare Funktion, so sei

R R 1<i,5<n

Nun kommen wir zum verallgemeinerten Key Renewal Theorem:?®

26Vgl. Definition 6.2.21 in [8].
2TVgl. Theorem 8.4.4 in [8]. Wir nutzen, dass [ rechter Eigenvektor zu AT ist.
28Vgl. Theorem 4 in [12].
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Satz A.5. Sei H eine symmetrische nxn-Matriz, deren Fintrdge endliche Mafe auf
(R, B (R)) sind und fiir die ), ; i, Hij nichtarithmetisch ist, und U ihr Matrizer-
neuerungsmaf. Nehmen wir an, dass H (R) eine irreduzible Matriz mit Eigenwert
1 als betragsmdfiig grofitem Eigenwert ist, | linker und r rechter Eigenvektor zum
Eigenwert 1 mit l;,r; > 0 fir allei = 1,...,n sind und p* == 1- [, id dH -r € (0, 00],

so gilt fir dRi Funktionen f; :R =R, j=1,..,n,

Jim (U« f) (t) = (i (Ui * fi) (t)> - ;—i </R fi dA) .

=1

Bemerkung A.6. (a) In Theorem 4 in [12] sind die Voraussetzungen an die Matrix
H schwécher. Wir haben hier auf diese allgemeinere Version dennoch verzichtet,
um die Ubersichtlichkeit und Funktionalitéit des Anhangs zu wahren.

(b) Befinden wir uns in der Situation von Fall (b) des Beweises von Satz 3.5, so gilt
hier insbesondere ™, 7~ # 0 und

+ —
H:(” n+),U:G.
non

Da H (R) eine reelle Matrix mit nichtverschwindenden Eintrégen ist, ist H (R)
offensichtlich irreduzibel, weiter sind 1 = 5 (R) =™ (R) +7~ (R) (vgl. (IRT-1))
und 7t (R) —n~ (R) € (-1, 1) Eigenwerte von H (R) und es gilt

== (D=2 = 1= (Z).

Mit >\, iy Hij = 21 folgt durch (IRT-3), dass >, ;, Hi ; nichtarithmetisch
ist. Also konnen wir hier mit Satz A.5 schieflen, dass

i g = lim (U * = rt ;
i (©x9) 0 = Jim (Vs 0= ([rm)
L (BN (fgrdy _ L (gt g dA
- 2pta (1 1) (f 9 dA) 241a (f g +g dA) '
B Goldies Implizites Erneuerungstheorem

Der Satz 3.5 verallgemeinert das von Goldie (1991) in [7] gegebene Implizite Erneue-
rungstheorem, welches den Fall ohne Verzweigung betrachtet und im folgenden an-
gegeben wird. Wir legen eine Zufallsgrofie T' zugrunde und die Bedingungen (IRT-1)
bis (IRT-3) entsprechen in diesem Fall fiir v > 0

E[IT]"] =1 (IRT-1%)
B(|7]° log |T1] € (0, 0] (RT-2')
P (log|T| € -, T # 0) ist nichtarithmetisch. (IRT-3%)
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Goldies Implizites Erneuerungstheorem lautet nun:’

Satz B.1. Gegeben ein o > 0 und eine reelle Zufallsgrofie T, die (IRT-1%) bis
(IRT-3*) erfiillen, sei X eine von T unabhingige Zufallsgrifse.

(a) Falls T >0 P-f.s., so gilt:

(1) Ist E [(X*)ﬁ} < oo fir alle § € [0,a) und

/ IP(X >t)—P(TX >t)|t* dt < oo, (B.1)
0
so folgt

lim t°P (X > t) = H,,

t—o00

(2) ist E [(X*)B] < oo fir alle § € [0,a) und

/ P (X < —t) — P(TX < —)[£*'dt < oo, (B.2)
0
so folgt

lim (P (X < —t) = H_,

t—o00

wobei Hy € [0,00) definiert ist durch

Hy ::i /OOO (P(£X >t) —P(£TX >t))t* 'dt
——B[(X)" - (TX)7)").

(b) Falls P(T <0) >0, P(T >0) >0 und E [|X|°] < oo fir alle B € [0,a), so
folgt, falls (B.1) und (B.2) erfillt sind,

H H_
lim £°P (X > #) = lim £°P (X < —t) = H = —+ 2=
t—00 t—o0 2
wober
1 o0
H ;:_/ (P(|X|>t)—P(TX|>t)t* 'dt
2ha Jo
1 « «
= B[X]" ~ |TX[].
Qg

Theorem 2.3 in [7].
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Neben Satz B.1 betrachtet Goldie auch die stochastische Rekursionsgleichung
RLTR+C (1.1%)

und beweist fiir eine Losung dieser Gleichung ein Analogon bzw. einen Spezialfall
von Satz 4.13:3°

Satz B.2. Gegeben ein a > 0 und ein reeller Zufallsvektor (C,T) mit P (C #0) > 0
und ||C||, < oo, seien (IRT-1*) bis (IRT-3*) erfillt. Dann ezistiert eine Losung R
zu (1.1%) in NgeoLp, deren Verteilung in Ng<oPs (R) eindeutig ist, und es gilt:

(a) Ist T > 0 P-f.s., so folgt
lim t*P (R >t) = Hy und lim t“P (R < —t) = H_,
t—00 t—00

wobet
H, = Mi N t* V(P (£R>t) —P(£TR >t))dt
— E[(TR+ )" - (GR)*)"

(b) Ist P (T <0) >0 und P (T >0) >0, so folgt:
lim t*P (R > t) = lim t°P (R < —t) = H,
t—00 t—00

wobei

H H_ 1 o
o et i / V(P (|R| > t) — P(|ITR| > t)) dt
2 2/La 0

E[TR+ C|" — |TR|"]

201,

C Grundlegende Integralgleichung

Lemma C.1. Seien Y, X, X1, Xo, X3, ... Zufallsgrofien und o > 0. Dann gilt

> 1 « «
/ ]E}]I{X>t}—]l{y>t}|ta‘1dt:EE\(XJF) — (Y. (C.1)
0

| e
0

und I [2321 (X;L)B} < oo fiir ein 5 € (0,a| erfillt ist, gilt ebenfalls

| E
0

30Vgl. Satz 4.1 in [7].

Falls

Z ]I{Xj>t} — ]l{y>t} ta_ldt < 00 (CQ)

j=1

> () = ()"

j>1

. (C3)

1
> Lixsn - ]1{Y>t}] "t = —E

- o
j=>1
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Beweis. Zunéchst gilt aufgrund von Tonelli (Riemann- und Lebesgue-Integral ent-

sprechen sich aufgrund von Bemerkung C.2 (c))

/ E |]1{X>t} B ]l{y>t}{ Tt = B [/ |]1{X>t} - ]l{Y>t}{ o ldt| .
0

Sei nun w € Q. Falls X (w) > Y (w), so gilt
/ L (@) = Lrsn )]t dt = / (Lixsn (@) = Tgysyy (w))t* dt
0 0
(C4)

/0°° (Lpesg (@) = Loy (w))t“dt' .

Da dies symmetrisch in X und Y ist, gilt (C.4) also auch, falls X (w) < Y (w).

Weiter gilt
1 Xt (w) 1 N
—t* — (XT (w))".

00 Xt (w)
/ Lixsey (W)t tdt = / t*tdt = <
0 0 o

0

B[ - ()7

Also folgt zusammen (C.1):
> a—1 (C_4) > a—
E [Lixsey — Liysg |t ldt] = E (Lixsty — Lyysey) t27'dt
0 0

(C.3) folgt mit dem Satz von Fubini und dem Satz von der monotonen Konver-
genz (Integrierbarkeit wird durch Tonelli und (C.2) sichergestellt, Riemann- und
Lebesgue-Integral entsprechen sich aufgrund von Bermerkung C.2 (c)):

] 1 dt

/ IE Z]l{Xj>t}_]l{Y>t}
0 j>1
= ]E / (Z ]l{Xj>t} - ]].{Y>t}> ta_ldt]
/0 i>1
= E / (Zﬂ{xj>t}> ta‘ldt—/ ]l{y>t}t°‘_1dt]
/0 \j>1 0
1>0 o o > o
=B Z/ Lix, >t 1dt—/ Liyspt 1dt]
(cs5 1 o @
2B | () - (V)7
j>1
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Bemerkung C.2. (a) Ist (C.1) endlich, so gilt dieselbe Gleichung auch ohne Be-
trage ((C.2) und (C.3) auf die Folge X := X; und Xy = X3 = ... = 0 angewen-
det).

(b) Fiir eine ZufallsgroBe X gilt insbesondere [P (X > ¢)t*dt = 1E[(X1)]
und fiir zwei Zufallsgrofen X, Y

/ IP(X >t)—P (Y >t)|t*'dt < / E[Lixs — Diysy|t*'dt
0 0

c1) 1 o o
2 g (x4 - (v)°].

(c) Gegeben ein £ € (0, ] mit E [221 (X;“)B} < o0, folgt fiir jedes Integral

b
/ E Z]I{Xj>t} — ﬂ{y>t} t*7ldt < o0
S
mit b > 0, denn es gilt
b )
/ E [Liysyt*'dt = / P(Ylyapy >t)t*tdt
0 0
Bem.(b a o
0B [(V) L] S8 <00 (C6)

und

b
|E
0

Ty, o tat = / E [1 ot
Z {X]>t}] Z 0 {Xjn{xt<b}>t}

j>1 j>1

Bem.(b) a—

0 g |3 () (x7) %{Xj<b}]
7>1

< VPR

> () | <

Jj=1

Nach Satz 9.17 aus [2] entsprechen also in diesem Fall in Lemma C.1 die Riemann-
jeweils den Lebesgue-Integralen. Die Rechnung (C.6) zeigt, dass wir aus dem
selben Grund (C.1) in jedem Fall als Lebesgue-Integral schreiben kénnen (ins-

besondere ohne die Forderung E [(X +)? } < 00).

(d) Eine analoge Aussage zu (C.1) gilt im zweiten Fall - also mit der Summe - im
Allgemeinen nicht.

Es ist sogar moglich, dass das entsprechende zweite Integral 0 und das ers-
te Integral noch nicht mal endlich ist: Seien dazu z.B. X, := 2-2Y. Wegen
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Z]>1 (X+) = (Y*)" sehen wir sofort

E

> () = ()7 =

Jj=1

Auf der anderen Seite gilt

9Lt

E Z Tix>ey — Liysy

j>1

:/0 E ;1{Y>2it} — ]1{2ét2Y>t} o lat
:/0 E ;1{y>2it}+1{zét>y>t}] t 1t
Z/OOIE Z]l ]dt Z/ P (X, > t)t* \dt
0 j>2 { §>2
1 o 1 @
=Y B[ = B[]

Ist also YT eine Zufallsgréfie mit unendlichem a-Moment, so ist dieses Integral
unendlich.

D Die Topchii-Vatutin-Ungleichung

Im Beweis von Lemma 4.9 nutzen wir die Topchii-Vatutin-Ungleichung fiir Martin-
gale mit endlichen EA (M,,), wobei h schwach konvex ist: Eine Funktion i : R — R
heifit schwach konvex, falls

(a) h eine konvexe, gerade Funktion mit A (0) = 0 ist,
(b) h auf (0, 00) differenzierbar ist, sodass lim, o k' (x) existiert, und
(c) K" auf (0,00) konkav ist.

Eine schwach konvexe Funktion ist insbesondere nichtnegativ und auf (0, c0) mono-
ton steigend (folgt direkt aus (a)). Die hier zu findende Version ist Theorem 1 in [4]
entnommen, es basiert auf der Originalversion, Theorem 2 in [13].
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Satz D.1. Sei h eine schwach konveze Funktion, (My),~, ein (6,),-,-Martingal
mit I [h o M,] < oo fiir alle n > 0. Dann folgt fiir ein ¢ > 0 und fir alle n > 1

Es kann in jedem Fall ¢ = 2 gewdhlt werden. Falls (M), nichtnegativ ist oder alle
M, — M,,_1 bedingt unter &,, symmetrisch sind, konnen wir sogar ¢ = 1 wdhlen.

Bezeichnen wir M, := liminf, ., M,, so folgt in der Situation von Satz D.1 mit
dem Lemma von Fatou

Eh (My) — Eh (M) < liminf Eh (M,) — Eh (M)

n—o0

S CZE}Z (M] — Mj—l)-

j>1
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