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4.3 Tailverhalten von Lösungen . . . . . . . . . . . . . . . . . . . . . . . 47

5 Der PageRank 50
5.1 Googles PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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1 Einleitung

Gegeben einen reellen Zufallsvektor (C, T1, T2, T3, ...), betrachten wir die stochasti-
sche Rekursionsgleichung

R
d
=
∑
j≥1

TjRj + C, (1.1)

wobei (Rj)j≥1 unabhängig und identisch verteilt (iid) und von (C, T1, T2, T3, ...) un-

abhängig mit R
d
= R1 ist. Die Summe in (1.1) soll P-fast sicher (f.s.) existieren.

Das Ziel dieser Arbeit ist es, Bedingungen an (C, T1, T2, T3, ...) zu stellen, unter
denen eine Lösung R von (1.1) existiert. Darüber hinaus wollen wir unter entspre-
chenden Anforderungen an (C, T1, T2, T3, ...) das asymptotische Verhalten der Tails
dieser Lösung als polynomiell fallend charakterisieren, d.h. wir werden für ein α > 0
und H± ∈ [0,∞)

lim
t→∞

tαP (R > t) = H+ bzw. lim
t→∞

tαP (R < −t) = H− (1.2)

zeigen.
Auf Existenz einer Lösung wird die Gleichung (1.1) sowohl in Kapitel 5 des Skrip-

tes [3] von Alsmeyer sowie in dem Paper [10] von Olvera-Cravioto und Jelenković
untersucht, wobei im Gegensatz zu Ersterem in Letzterem ebenfalls die Tails der
Lösung charakterisiert werden.

Die Bedingungen (4.24) an (C, T1, T2, T3, ...), die wir in Satz 4.10 für die Existenz
einer Lösung von (1.1) mit endlichem β-Moment fordern, sind so in Kapitel 5 in [3]
zu finden, jedoch schwächer als die Anforderungen in [10]. In dem zweiten zentralen
Ergebnis dieser Arbeit, Satz 4.13 über das Verhalten (1.2) der Tails von R, können
wir mithilfe dieser Bedingungen den Satz 4.6 in [10] verallgemeinern.

Um die Tails einer Zufallsgröße zu charakterisieren, verallgemeinern wir in Ka-
pitel 3 das Implizite Erneuerungstheorem von Goldie auf den für uns interessanten
Fall der Verzweigung. In Kapitel 4 werden wir dann eine Lösung R ∈ Lβ von (1.1)
konstruieren, die Eindeutigkeit ihrer Verteilung in Pβ (R) zeigen und das Implizite
Erneuerungstheorem auf eine Lösung anwenden. Diese Ergebnisse werden wir dann
in Kapitel 5 auf den PageRank anwenden, der ein Instrument bildet, die Bedeutsam-
keit einer Webseite und somit deren Priorität in Ergebnislisten einer Suchmaschine
zu bestimmen. In diesem Zusammenhang entsprechen die Zufallsgröße R dem Page-
Rank einer zufällig ausgewählten Webseite und deren Tails der Wahrscheinlichkeit,
einen hohen PageRank vorzufinden. Lemmata und Sätze, die hier nicht bewiesen
werden, jedoch einen höheren Stellenwert für den Kontext besitzen, werden im An-
hang aufgeführt.

Um den Lesefluss nicht unnötig zu stören, verzichten wir darauf alle Begriffe
einzuführen, von denen wir zwar Gebrauch machen, die aber entweder Grundbegriffe
der Wahrscheinlichkeitstheorie oder nicht von herausragender Bedeutung für die
Beweisführung sind, und verweisen in diesen Fällen auf [2] und [3].
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Die hier dargestellten Ideen und ebenso die meisten Aussagen und Beweise ba-
sieren auf den Arbeiten von Olvera-Cravioto und Jelenković in [10], [11] (Kapitel 3
und 4) und [9] (Kapitel 5).

An dieser Stelle möchte ich mich bei Herrn Prof. Dr. Gerold Alsmeyer für seine
motivierenden Vorlesungen, die interessante Themenstellung sowie seine Beratung
und Betreuung bedanken. Darüber hinaus bedanke ich mich bei meinen Freunden
und meiner Familie für ihre Unterstützung.

2 Setup

Wir werden in der weiteren Arbeit die Ulam-Harris Notation nutzen. Um die Zweck-
mäßigkeit derer zu sehen, betrachten wir zunächst die Abbildung S , definiert durch

S (F ) = L
(∑

j≥1 TjXj + C
)

, wobei (Xj)j≥1 iid und von (C, T1, T2, T3, ...) un-

abhängig mit X1
d
= F ist (Vgl. zu S Abschnitt 4.2). Die Lösungen der Gleichung

(1.1) sind genau die Fixpunkte von S . Gehen wir davon aus, dass mit der Verteilung
F auch S (F ), S 2 (F ) und S 3 (F ) existieren, so gilt

S (F ) = L

(∑
j≥1

TjXj + C

)
,

S 2 (F ) = L

(∑
j,k≥1

TjTk (j)X (jk) +
∑
j≥1

TjC (j) + C

)
und

S 3 (F ) = L

( ∑
j,k,l≥1

TjTk (j)Tl (jk)X (jkl) +
∑
j,k≥1

TjTk (j)C (jk) +
∑
j≥1

TjC (j) + C

)

für (C (j) , T1 (j) , T2 (j) , T3 (j) , ...), j ≥ 1, und (C (jk) , T1 (jk) , T1 (jk) , T1 (jk) , ...),
j, k ≥ 1, unabhängige Kopien von (C, T1, T2, T3, ...). Diese Iteration von S macht
die Nutzung der Ulam-Harris Notation sinnvoll.

Sei dazu

U :=
⋃
n≥0

Nn

der Ulam-Harris Baum, wobei N0 := {∅}. Für i ∈ U sei (C (i) , T1 (i) , T2 (i) , T3 (i) , ...)
ein reeller Zufallsvektor derselben Verteilung wie (C, T1, T2, T3, ...), sodass

(C (i) , T1 (i) , T2 (i) , T3 (i) , ...)i∈U

iid ist. Für ein i = (i1, ..., in) ∈ Nn, n ≥ 1, schreiben wir kurz i = i1...in und für
k = 1, ..., n

i| k = i1...ik ∈ Nk
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Abb. 1: Mögliche Realisierung des Ulam-Harris Baums. Der Knoten i wird mit dem
Gewicht Π (i) versehen.

sowie i| 0 = ∅. Die Länge eines Knotens notieren wir durch |i| = n für alle i ∈ Nn,
n ≥ 0. Weiter definieren wir Π (∅) := 1 und, für |i| = n, n ≥ 1,

Π (i) := Π ( i|n− 1)Tin ( i|n− 1) =
n−1∏
k=0

Tik+1
( i| k).

Diese Produkte sind in der Veranschaulichung des Ulam-Harris Baum die Gewichte
der Knoten (vgl. Abbildung 1). Für i ∈ U ist Π (i) das Produkt der Tj (·) über den
Pfad von der Wurzel ∅ zu i. Insbesondere in Abschnitt 4.2 wird bei der Konstruktion
der Lösung R zu (1.1) in der Definition der Wn von diesen Gewichten Gebrauch
gemacht.

Für einige Anwendungen definieren wir ebenfalls

V (i) := log |Π (i)|

für n ≥ 0, |i| = n und

N (i) :=
∑
j≥1

1{Tj(i)6=0}.

Wir definieren die n-Vergangenheit im Ulam-Harris Baum als folgende σ-Algebren:
F0 := {∅,Ω} und für n ≥ 1

Fn := σ ((C (i) , T1 (i) , T2 (i) , ...) : |i| ≤ n− 1) . (2.1)

Fn enthält also genau die Informationen über die Entwicklung bis zum Zeitpunkt
n einschließlich, aber keine weiteren. Die Filtration (Fn)n≥1 wird sich im Abschnitt
3.2 als Hilfsmittel im Beweis des Impliziten Erneuerungstheorems erweisen.
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3 Implizites Erneuerungstheorem mit Verzweigung

In diesem Kapitel werden wir das Implizite Erneuerungstheorem für den verzweigen-
den Fall vorstellen und beweisen. Bevor wir diesen Satz in Abschnitt 3.2 betrachten,
werden wir in Abschnitt 3.1 auf den Beweis vorbereitende Definitionen und Lemmata
angeben und beweisen.

3.1 Exponentielle Glättung und direkte Riemann-Integrier-
barkeit

Für den Beweis des Impliziten Erneuerungstheorems benötigen wir den Begriff der
exponentiellen Glättung. Diese ist nicht für alle λλ-messbaren Funktionen definiert,
sondern für β > 0 nur für die Teilmenge

Lβ :=

{
f : R→ R messbar

∣∣∣∣∫
(−∞,t)

eβu |f (u)|λλ (du) <∞ für alle t ∈ R
}

.

Es gilt L1 (λλ) ⊂ Lβ, wobei L1 (λλ) :=
{
f : R→ R messbar

∣∣∫ |f (u)|λλ (du) <∞
}

die
λλ-integrierbaren Funktionen bezeichnet.

Definition 3.1. Sei β > 0. Für f ∈ Lβ definieren wir die exponentielle Glättung
f : R→ R von f durch

f (t) :=

∫
(−∞,t)

e−β(t−u)f(u)λλ (du) .

Für einen Vektor f : R 7→ Rn von Funktionen fi ∈ Lβ sei f :=
(
f1, ..., fn

)
.

Wir merken an, dass für f ∈ Lβ und eine exponentialverteilte Zufallsgröße X,
d.h. L (X) = Exp (β),

f (t) =
1

β

∫
(0,∞)

βe−βuf (t− u)λλ (du) =
1

β
Ef (t−X)

gilt.

Lemma 3.2. Gegeben β > 0 gilt:

(a) Mit der punktweisen Addition + bildet (Lβ,+) eine Gruppe und die Zuordnung
f 7→ f von Lβ in die Gruppe der λλ-messbaren Funktionen ist ein Gruppenho-
momorphisus, d.h. f1 + f2 = f1 + f2 für alle f1, f2 ∈ Lβ.

(b) Ist f ∈ Lβ λλ-quasiintegrierbar, so ist f ebenfalls λλ-quasiintegrierbar und es gilt

β

∫
R

f (t)λλ (dt) =

∫
R

f (u)λλ (du).
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(c) Ist f ∈ Lβ λλ-quasiintegrierbar und µ endliches Maß auf R, dann gilt f ∗ µ =
f ∗ µ.

Beweis. (a) Für f1, f2 ∈ Lβ, t ∈ R gilt∫
(−∞,t)

e−β(t−u) |f1 (u) + f2 (u)|λλ (du)

≤
∫

(−∞,t)
e−β(t−u) |f1 (u)|λλ (du) +

∫
(−∞,t)

e−β(t−u) |f2 (u)|λλ (du)

und damit ist (Lβ,+) eine Gruppe, denn Assoziativität von +, 0 ∈ Lβ und
−f ∈ Lβ für alle f ∈ Lβ ist klar. In der gleichen Rechnung ohne |·| besteht
Gleichheit und das zeigt die Additivität der Zuordnung f 7→ f .

(b) Dies ist eine einfache Schlussfolgerung aus Fubini:1

β

∫
R

f (t)λλ (dt) = β

∫
R

∫
(−∞,t)

e−β(t−u)f (u)λλ (du)λλ (dt)

=

∫
R
f (u)

∫
(u,∞)

βe−β(t−u)λλ (dt)λλ (du) =

∫
R

f (u)λλ (du).

Mit analoger Rechnung für f+ statt f folgt durch Tonelli und
∫
f+ dλλ <∞ die

λλ⊗ λλ-Integrierbarkeit von h+, wobei h durch h (u, t) := 1(−∞,t) (u) e−β(t−u)f (u)
definiert ist (bzw. jeweils das negative Pendant).

(c) Für alle t ∈ R gilt mit Fubini und dem Transformationssatz für Lebesgue-
Integrale2 (u 7→ u− x)

f ∗ µ (t) =

∫
(∞,t)

e−β(t−u) (f ∗ µ) (u)λλ (du)

=

∫
(∞,t)

e−β(t−u)

∫
R
f (u− x)µ (dx)λλ (du)

=

∫
R

∫
R
1(−∞,t) (u) e−β(t−u)f (u− x)µ (dx)λλ (du)

=

∫
R

∫
(−∞,t−x)

e−β((t−x)−v)f (v)λλ (dv)µ (dx)

=

∫
R
f (t− x)µ (dx) =

(
f ∗ µ

)
(t) .

h (u, x) := 1(−∞,t) (u) e−β(t−u)f (u− x) ist µ⊗λλ-quasiintegrierbar, denn aufgrund
der Quasiintegrierbarkeit von f gilt mittels 1(−∞,t) (u) e−β(t−u) ≤ 1 auf R2∫

R
hp (u, x)λλ (du) ≤

∫
R
fp dλλ <∞

1Zu Fubini und Tonelli vgl. Satz 19.11 aus [2].
2Satz 14.5 in [2].
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für ein p ∈ {+,−} und beliebiges x ∈ R. Also folgt mit Tonelli, da µ (R) <∞,∫
R×R

hpd (µ⊗ λλ) =

∫
R

∫
R
hp (u, x)λλ (du)µ (dx) ≤

∫
R
fp dλλ · µ (R) <∞.

Als Anwendung des folgenden Lemmas, können wir im Hinblick auf den Ab-
schnitt 3.2 f (t) = r+ (t) = eαtP (X > et) bzw. f (t) = r− (t) = eαtP (X < −et) im
Hinterkopf haben.

Lemma 3.3. Gegeben eine monoton fallende Funktion g und f (t) := eαtg (et),
implizieren

f ∈ Lβ und lim
t→∞

f (t) =
H

β

schon

lim
t→∞

f (t) = H.

Beweis. Seien b ∈ (0, 1), ε > 0 beliebig, und tε > 0 so groß, dass für alle t > tε − 1∣∣∣∣f (t)− H

β

∣∣∣∣ < ε

β

gilt. Dann folgt mit der Monotonie von g für t > tε − 1

eβbf (t+ b)− f (t)

= eβb
∫

(−∞,t+b)
e−β(t+b−u)f (u)λλ (du)−

∫
(−∞,t)

e−β(t−u)f (u)λλ (du)

= e−βt
∫

[t,t+b )

eβueαug (eu)λλ (du) ≤ e−βtg (et)

α + β

(
e(α+β)u

∣∣t+b
t

)
=
e−(α+β)tf (t)

α + β
e(α+β)t

(
e(α+β)b − 1

)
=

f (t)

α + β

(
e(α+β)b − 1

)
.

Also können wir f (t) nach unten abschätzen durch

f (t) ≥ (α + β)
eβbf (t+ b)− f (t)

e(α+β)b − 1
≥ (α + β)

eβb H−ε
β
− H+ε

β

e(α+β)b − 1

=
α + β

β

(
eβb − 1

e(α+β)b − 1
H − eβb + 1

e(α+β)b − 1
ε

)
.

Analog zu der obigen Rechnung erhalten wir eine obere Abschätzung für f (t), t > tε,
durch

f (t) ≤ (α + β)
f (t)− e−βbf (t− b)

1− e−(α+β)b
≤ α + β

β

(
1− e−βb

1− e−(α+β)b
H +

1 + e−βb

1− e−(α+β)b
ε

)
.
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Damit folgt

α + β

β

(
1− e−βb

1− e−(α+β)b
H +

1 + e−βb

1− e−(α+β)b
ε

)
≥ lim sup

t→∞
f (t) ≥ lim inf

t→∞
f (t)

≥ α + β

β

(
eβb − 1

e(α+β)b − 1
H − eβb + 1

e(α+β)b − 1
ε

)
und wir erhalten

α + β

β

1− e−βb

1− e−(α+β)b
H ≥ lim sup

t→∞
f (t) ≥ lim inf

t→∞
f (t) ≥ α + β

β

eβb − 1

e(α+β)b − 1
H,

da ε > 0 beliebig war. Mittels limb↓0
eβb−1

e(α+β)b−1
= β

α+β
= limb↓0

1−e−βb
1−e−(α+β)b , welches der

Satz von L’Hospital liefert, schließen wir

H ≥ lim sup
t→∞

f (t) ≥ lim inf
t→∞

f (t) ≥ H.

Lemma 3.4. Gegeben ein Erneuerungsprozess (Sn)n≥1 mit positiver Drift (d.h.
E [S1] ∈ (0,∞]) und Erneuerungsmaß U, gilt für eine Funktion f : R → R und
alle t ∈ R

f ∗U (t) <∞,

falls f nichtnegativ und direkt Riemann-integrierbar (dRi) ist.

Beweis. Seien für beliebiges δ > 0 und n ≥ 1

mn,δ := inf{f (x) | x ∈ In,δ}, Mn,δ := sup{f (x) | x ∈ In,δ},

gδ (x) :=
∑
n∈Z

mn,δ1In,δ (x), gδ := (x)
∑
n∈Z

Mn,δ1In,δ (x), wobei In,δ := (δn, δ (n+ 1)] .

Nun gilt3

f ∗U (t) ≤ gδ ∗U (t) =

∫
gδ (t− x)U (dx)

=
∑
n∈Z

Mn,δU (t− In,δ) ≤ U ([−δ, δ])
∑
n∈Z

Mn,δ <∞.

Hierbei wurde sowohl die direkte Riemann-Integrierbarkeit von f genutzt, um die
Endlichkeit von

∑
n∈ZMn,δ nachzuweisen, als auch die gleichmäßige Beschränktheit

von U,4

sup
n∈Z

U (t− In,δ) = sup
n∈Z

U ([t− nδ − δ, t− nδ]) ≤ U ([−δ, δ])

3Vgl. Beweis von Theorem 2.31 in [3].
4Vgl. Lemma 2.14 aus [3].
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für alle δ > 0 und t ∈ R, und die Tatsache U ([−δ, δ]) < ∞, die wir als nächstes
zeigen werden. Dies gilt, falls der zugehörige Erneuerungsprozess (Sn)n≥0 transient
ist,5 d.h.

P (|Sn − x| < ε ∞-oft) < 1

für alle x ∈ R und ε > 0 erfüllt ist. Dies ist aber der Fall, da nach dem Starken
Gesetz der großen Zahlen Sn →∞ P-f.s..6 Somit folgt

0 ≤ P (|Sn − x| < ε ∞-oft) ≤ P
(
{Sn →∞}C

)
= 0.

3.2 Beweis des Impliziten Erneuerungstheorems

Zu Beginn des Abschnitts notieren wir folgende Konvention: Für β > 0 definieren
wir 0β log 0 := limt↓0 t

β log t = − limx→∞ xe
−βx = 0.

Für eine Zufallsgröße X wollen wir das asymptotische Verhalten, t→∞, deren
Tails P (X > t) und P (X < −t) charakterisieren.

Hierzu führte Goldie die Implizite Erneuerungstheorie ein. Wir beweisen in Satz
3.5 ein Implizites Erneurungstheorem mit Verzweigung, d.h. eine Verallgemeinerung
seines Originals (siehe Satz B.1). Auch die Struktur des hier präsentierten Beweises
von Satz 3.5 lehnt sich stark an die des Beweises von Goldie an. Lemma 3.7 und
Definition 3.9 sind die Basis unseres Beweises. Wir legen neben dem reellen Zufalls-

vektor (Tj)j≥1 auch ein α > 0 zugrunde, definieren ϕ (γ) := E
[∑

j≥1 |Tj|
γ
]
∈ [0,∞]

und folgende Bedingungen

ϕ (α) = E

[∑
j≥1

|Tj|α
]

= 1 (IRT-1)

µα := E

[∑
j≥1

|Tj|α log |Tj|

]
∈ (0,∞] (IRT-2)

∃i ≥ 0 : P (Ti 6= 0) > 0 und P (log |Ti| ∈ du, Ti 6= 0) nichtarithmetisch. (IRT-3)

Die in diesem Abschnitt auftretenden Summen von Zufallsgrößen besitzen bis auf
eine Ausnahme nichtnegative Summanden und existieren deshalb schon P-f.s.. Die
Ausnahme sehen wir gerade in (IRT-2) und diese Bedingung fordert implizit die
P-f.s.-Existenz der Summe. (IRT-2) beinhaltet ebenfalls die Quasiintegrierbarkeit
bzgl. P von

∑
j≥1 |Tj|

α log |Tj|.
Wir betrachten in dieser Arbeit auch weiterhin lediglich den nichtarithmetischen

Fall (vgl. (IRT-3)). Zur Bedeutung der Bedingungen (IRT-1) und (IRT-2) siehe
insbesondere Bemerkung 3.8.

5Vgl. Korrolar 28.5 aus [1].
6Vgl. Satz von Etemadi, auch für den Fall, dass E [S1] = ∞ ist. Vgl. Satz 35.4 bzw. Korollar

35.6 in [2].
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Satz 3.5. Sei (Tj)j≥1 ein reeller Zufallsvektor und α > 0. Es seien weiter (IRT-1) bis
(IRT-3) erfüllt und ϕ (γ) <∞ für ein γ ∈ (0, α). X sei eine von (Tj)j≥1 unabhängige
Zufallsgröße.

(a) Falls P (Tj ≥ 0 für alle j ≥ 1) = 1, d.h. Tj ≥ 0 P-f.s. für alle j ∈ N, so gilt:

(1) Ist E
[
(X+)

β
]
<∞ für alle β ∈ [0, α) und

∫ ∞
0

∣∣∣∣∣P (X > t)− E

[∑
j≥1

1{TjX>t}

]∣∣∣∣∣ tα−1dt <∞, (3.1)

so folgt

lim
t→∞

tαP (X > t) = H+, (3.2)

(2) ist E
[
(X−)

β
]
<∞ für alle β ∈ [0, α) und

∫ ∞
0

∣∣∣∣∣P (X < −t)− E

[∑
j≥1

1{TjX<−t}

]∣∣∣∣∣ tα−1dt <∞, (3.3)

so folgt

lim
t→∞

tαP (X < −t) = H−, (3.4)

wobei H± ∈ [0,∞) definiert ist durch

H± :=
1

µα

∫ ∞
0

(
P (±X > t)− E

[∑
j≥1

1{±TjX>t}

])
tα−1dt

=
1

αµα
E

[(
X±
)α −∑

j≥1

(
(TjX)±

)α]
.

(b) Falls P (Tj < 0 für ein j ≥ 1) > 0, P (Tj > 0 für ein j ≥ 1) > 0 und ebenfalls
E
[
|X|β

]
<∞ für alle β ∈ [0, α) erfüllt ist, so folgt aus (3.1) und (3.3)

lim
t→∞

tαP (X > t) = lim
t→∞

tαP (X < −t) = H =
H+ +H−

2
, (3.5)

wobei

H :=
1

2µα

∫ ∞
0

(
P (|X| > t)− E

[∑
j≥1

1{|TjX|>t}

])
tα−1dt

=
1

2αµα
E

[
|X|α −

∑
j≥1

|TjX|α
]

.
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Bemerkung 3.6. (a) Der Satz 3.5 hat nur dann tatsächliche Aussagekraft über die
Tails von X, wenn E [(X+)

α
] =∞ (im Fall (a1)) bzw. E [(X−)

α
] =∞ (im Fall

(a2)) bzw. E [|X|α] =∞ (im Fall (b)). Andernfalls gilt nämlich im Fall (a)

H± =
1

αµα
E

[(
X±
)α −∑

j≥1

(
(TjX)±

)α]

= E
[(
X±
)α]− E[∑

j≥1

Tαj E
[(
X±
)α∣∣ (Tk)k≥1

]] (IRT-1)
= 0

bzw. im Fall (b)

H =
1

αµα
E

[
|X|α −

∑
j≥1

|TjX|α
]

= E [|X|α]− E

[∑
j≥1

|Tj|αE
[
|X|α| (Tk)k≥1

]] (IRT-1)
= 0.

P (X > t) tα → 0, t → ∞, folgt aber direkt - ohne großen Aufwand - aus
E [(X+)

α
] <∞, denn mittels majorisierte Konvergenz7 gilt

lim
t→∞

E
[(
X+
)α
1{X>t}

]
= 0

und mit

E
[(
X+
)α
1{X>t}

]
≥ tαE

[
1{X>t}

]
= tαP (X > t) ≥ 0 ∀t > 0

schließen wir P (X > t) tα → 0, t→∞.

Analoge Aussagen gelten für die Fälle (a2) und (b).

(b) In der Situation von Satz 3.5 folgt sowohl in Fall (a) als auch im Fall (b)

lim
t→∞

tαP (|X| > t) = H+ +H−,

falls (3.1) und (3.3) erfüllt sind.

(c) Satz 3.5 besagt, dass die Tails von X das gleiche asymptotische Verhalten be-
sitzen wie t 7→ Ĥt−α für Ĥ = H+, = H− bzw. = H (Aussage (3.2), (3.4) bzw.
(3.5)).

Dass die Funktionen

f (t) := P (X > t) und g (t) := E

[∑
j≥1

1{TjX>t}

]
7Vgl. Satz 9.9 (c) in [2].
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das gleiche asymptotische Verhalten haben, stellt die Bedingung (3.1) sicher,
falls E [(X+)

α
] =∞ erfüllt ist (bzw. jeweils die negativen Pendants) . Letzteres

bedeutet mit h (t) := tα−1 nach Lemma C.1
∫∞

0
f (t)h (t)dt =∞.

Wenn das asymptotische Verhalten von f und g nicht gleich wäre, dann gäbe
es aufgrund der rechtsseitigen Stetigkeit von f ,g ein ε ∈ (0, 1) und ein tε > 0,
sodass für alle t > tε ∣∣∣∣ g (t)

f (t)
− 1

∣∣∣∣ > ε

gilt (hier 0
0

:= 1, c
0

:= sign (c) · ∞, c 6= 0). Daraus folgt |f (t)− g (t)| ≥ εf (t)

für alle t > tε. Dann aber folgt, da 0 ≤
∫ tε

0
f (t)h (t)dt <∞,

∞
(3.1)
>

∫ ∞
0

|f (t)− g (t)|h (t)dt ≥ ε

∫ ∞
tε

f (t)h (t)dt =∞,

was offensichtlich ein Widerspruch ist. Also gilt

lim
t→∞

g (t)

f (t)
= lim

t→∞

E
[∑

j≥1 1{TjX>t}

]
P (X > t)

= 1.

Gegeben zwei n × n-Matrizen 1H, 2H, deren Einträge Maße auf (R,B) sind,
definieren wir - analog zur Definition der Matrixaddition und -multiplikation über
R -

1H + 2H := (1Hi,j + 2Hi,j)1≤i,j≤n

und, falls die Einträge von 1H, 2H endliche Maße sind,

1H ∗ 2H :=

(
n∑
l=1

1Hi,l ∗ 2Hl,j

)
1≤i,j≤n

.

Ist 1H eine n × n-Matrix, deren Einträge endliche Maße auf (R,B) sind, und f :
R→ Rn

messbar ist, sei

1H ∗ f :=

(
n∑
l=1

1Hi,l ∗ fi

)
1≤i≤n

,

sofern dies existiert. Z.B. gilt dies, falls alle fi ≥ 0 sind.
Um die Beweisidee für Satz 3.5 darzustellen, benötigen wir folgendes Lemma und

die darauf folgende Definition.

Lemma 3.7. Sei (Tj)j≥1 ein reeller Zufallsvektor und α > 0. Hierfür definieren wir
auf (R,B) die Maße

µ+
n (A) := E

∑
|i|=n

eαV (i)1{Π(i)>0}1A (V (i))


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und

µ−n (A) := E

∑
|i|=n

eαV (i)1{Π(i)<0}1A (V (i))


für n ≥ 1. D.h. insbesondere

η+ (A) := µ+
1 (A) = E

[∑
j≥1

|Tj|α 1{Tj>0}1A (log (|Tj|))

]

und

η− (A) := µ−1 (A) = E

[∑
j≥1

|Tj|α 1{Tj<0}1A (log (|Tj|))

]
,

für A ∈ B = B (R). Mit η (A) := η+ (A) + η− (A) = E
[∑

j≥1 |Tj|
α
1A (log (|Tj|))

]
gilt nun, falls (IRT-1) und (IRT-2) erfüllt sind:

(a) η = η+ + η− ist ein Wahrscheinlichkeitsmaß mit Erwartungswert µα:∫
R
x η (dx) = E

[∑
j≥1

|Tj|α log (|Tj|)

]
= µα.

(b) µn :=
(
µ+
n µ−n

)
und H :=

(
η+ η−

η− η+

)
erfüllen für alle n ≥ 1:

H∗n =

(
µ+
n µ−n
µ−n µ+

n

)
, also insbesondere µn = (1 0) ∗H∗n. (3.6)

(c) Die n-fache Faltung von η lässt sich wie folgt bestimmen:

µ+
n + µ−n = µn ∗

(
1
1

)
= (1 0) ∗H∗n ∗

(
1
1

)
= η∗n

Hier bezeichnet 1 = Dirac(0) das Diracmaß in 0 und 0 ≡ 0 das Nullmaß.

Beweis. Es gilt nach Definition der µ±n für beliebiges n ≥ 1 und beliebiges f : R→ R,
welches quasiintegrierbar bzgl. µ±n ist,

∫
R
fdµ±n = E

∑
|i|=n

eαVi1{±Π(i)>0}f (Vi)

 . (3.7)
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(a) η (R) = E
[∑

j≥1 |Tj|
α
1R (log (|Tj|))

]
= E

[∑
j≥1 |Tj|

α
]

= 1 ist aufgrund von

(IRT-1) erfüllt. Für id = idR (quasiintegrierbar bzgl. η± wegen (IRT-2)) gilt∫
R

id dη =

∫
R

id dη+ +

∫
R

id dη−

(3.7)
= E

[∑
j≥1

|Tj|α 1{Tj>0}id (log (|Tj|))

]
+ E

[∑
j≥1

|Tj|α 1{Tj<0}id (log (|Tj|))

]

= E

[∑
j≥1

|Tj|α log (|Tj|)

]
= µα.

(b) Für beliebige endliche Maße a, b, c, d gilt(
a b
b a

)
∗
(
c d
d c

)
=

(
a ∗ c+ b ∗ d a ∗ d+ b ∗ c
a ∗ d+ b ∗ c a ∗ c+ b ∗ d

)
. (3.8)

Dies zeigt, dass

{(
a b
b a

)∣∣∣∣ a, b endliche Maße

}
multiplikativ abgeschlossen ist.

Also reicht es, den zweiten Teil der Behauptung in (3.6) zu zeigen. Dazu führen
wir eine Induktion nach n ≥ 1. Für n = 1 ist (3.6) die Definition von H und
µ1 = (η+ η−). Gelte also die Behauptung für n ≥ 1. Mit

(1 0) ∗H∗(n+1) I.V.= µn ∗H

ist zu zeigen, dass µn+1 = µn ∗H gilt. Für beliebiges t ∈ R gilt

µ+
n+1 ((−∞, t ])

= E

∑
|i|=n

eαV (i)
∑
j≥1

eα log|Tj(i)|1{Π(i)Tj(i)>0}1(−∞,t] (V (i) + log |Tj (i)|)


=

∑
p∈{−,+}

E

∑
|i|=n

eαV (i)1{p Π(i)>0}

· E

[∑
j≥1

eα log|Tj(i)|1{p Tj(i)>0}1(−∞,t] (V (i) + log |Tj (i)|)

∣∣∣∣∣Fn
]

=
∑

p∈{−,+}

∫
Ω

∑
|i|=n

eαV (i)(ω)1{p Π(i)(ω)>0}

· E

[∑
j≥1

eα log|Tj |1{p Tj>0}1(−∞,t−V (i)(ω)] (log |Tj|)

]
P (dω)

=
∑

p∈{−,+}

∫
R
E

[∑
j≥1

eα log|Tj |1{p Tj>0}1(−∞,t−x] (log |Tj|)

]
µpn (dx)
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=
∑

p∈{−,+}

∫
R
ηp ((−∞, t− x] )µpn (dx)

=
(
η+ ∗ µ+

n

)
((−∞, t] ) +

(
η− ∗ µ−n

)
((−∞, t] ) ,

mit Fn aus (2.1), dem Transformationssatz8 und in der vorletzten Gleichung
aufgrund von (3.7) (Quasiintegrierbarkeit ist klar, da η± als Maße nichtnegativ
sind.). Vollkommen analog folgt

µ−n+1 ((−∞, t ]) =
(
η+ ∗ µ−n

)
((−∞, t] ) +

(
η− ∗ µ+

n

)
((−∞, t] ) .

Damit gilt µn+1 =
(
η+ ∗ µ+

n + η− ∗ µ−n η+ ∗ µ−n + η− ∗ µ+
n

)
= µn ∗H.

(c) Es gilt für beliebige endliche Maße a, b, c, d

(1 0) ∗
(
a b
b a

)
∗
(

1
1

)
∗ (1 0) ∗

(
c d
d c

)
∗
(

1
1

)
= (a+ b) ∗ (c+ d) = a ∗ c+ a ∗ d+ b ∗ c+ b ∗ d

= (1 0) ∗
(
a ∗ c+ b ∗ d a ∗ d+ b ∗ c
a ∗ d+ b ∗ c a ∗ c+ b ∗ d

)
∗
(

1
1

)
. (3.9)

Induktiv folgt also nun aus (3.8) und (3.9)

(1 0) ∗H∗n ∗
(

1
1

)
=

(
(1 0) ∗H ∗

(
1
1

))∗n
und damit die Behauptung.

Bemerkung 3.8. Mit einem Blick auf die Definition von η folgt für alle γ ∈ C, für
die das folgende Integral definiert ist,∫

R
eγxη (dx)

(3.7)
= E

[∑
j≥1

|Tj|α eγ log|Tj |

]
= ϕ (α + γ) .

Also ist ϕ (α + ·) die analytische Transformierte von η. Wir erweitern hierfür den

Abb. 2: Graph von ϕ

Definitionsbereich von ϕ auf eine Teilmenge von C.
Gegeben (IRT-1) und (IRT-2) sowie ϕ (γ∗) <∞ für ein γ∗ ∈
(0, α), werden wir zeigen, dass es ein Intervall (α− ε′, α)
gibt, auf dem die (auf R) konvexe Funktion ϕ echt kleiner 1
ist und somit den Verlauf aus Abbildung 2 besitzt. In dieser
Situation folgt aus der Konvexität des Definitionsbereichs
I + iR von Analytischen Transformierten,9 dass [γ∗, α] ⊂ I
gilt. Aufgrund des Differentiationssatzes10 ist ϕ auf dem
Inneren des Definitionsbereichs I̊+ iR stetig differenzierbar
und mit dem Lemma von Fatou11 folgt

8Vgl. Satz 14.1 in [2].
9Vgl. Lemma 40.2 in [2].

10Vgl. Satz 40.4 in [2].
11Vgl. Lemma 9.12 in [2].
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lim inf
γ↑α

ϕ′ (γ) = lim inf
γ↑α

E

[∑
j≥1

|Tj|γ log |Tj|

]
≥ E

[∑
j≥1

|Tj|α log |Tj|

]
(IRT-2)
∈ (0,∞] .

Es existiert also ein ε′ > 0 mit ϕ′ (β) > 0 für alle β ∈ (α− ε′, α) und damit ϕ (β) < 1
aufgrund von (IRT-1).

Definition 3.9. Gegeben ein α > 0, ein reeller Zufallsvektor (Tj)j≥1 und eine von

diesem unabhängige Zufallsgröße X, definieren wir Funktionen δ±n , r
±, g± : R → R

und δn, r, g : R→ R2
(für n ≥ 1) durch

δ+
n (t) := eαtE

∑
|i|=n

1{Π(i)X>et}

 und δ−n (t) := eαtE

∑
|i|=n

1{Π(i)X<−et}

 ,

δn :=

(
δ+
n

δ−n

)
für n ≥ 1, sowie analog

r+ (t) := eαtP
(
X > et

)
und r− (t) := eαtP

(
X < −et

)
,

r :=

(
r+

r−

)
und g :=

(
g+

g−

)
:= r − δ1. D.h. es gilt

g+ (t) = eαt

(
P
(
X > et

)
− E

[∑
j≥1

1{TjX>et}

])

und

g− (t) = eαt

(
P
(
X < −et

)
− E

[∑
j≥1

1{TjX<−et}

])
.

Zu den Funktionen δ±n , r
±, g± merken wir an dieser Stelle an, dass hiermit nicht

die Positiv- bzw. Negativteile der Funktionen δn, r, g gemeint sind, sondern deren 1.
bzw. 2. Komponente.

Mit diesen Notationen können wir die Aussage von Satz 3.5 neu formulieren.
Unter den gegebenen Voraussetzungen folgt im Fall (a) aus∫

R

∣∣g+
∣∣ dλλ <∞ (Bedingung (3.1)) bzw.

∫
R

∣∣g−∣∣ dλλ <∞ (Bedingung (3.3)),

dass

lim
t→∞

tαP (X > t) =

∫
R
g+ dλλ bzw. lim

t→∞
tαP (X < −t) =

∫
R
g− dλλ



16 Felix Poettering

gilt. Im Fall (b) folgt limt→∞ t
αP (±X > t) = 1

2

∫
R g

+ + g− dλλ aus beiden Bedingun-
gen zusammen.

Nun können wir die Idee des Beweises für Satz 3.5 angeben. Wir wollen die
Identität

r+ = ν+
n ∗ g+ + δ+

n+1, im Fall (a1),

r− = ν+
n ∗ g− + δ−n+1, im Fall (a2) und

r = Gn ∗ g + δn+1, im Fall (b)

(3.10)

für alle n ≥ 0 zeigen, wobei Gn :=

(
ν+
n ν−n
ν−n ν+

n

)
:=
∑n

k=0 H
∗k und G0 = H∗0 die

Einheitsmatrix ist.
In Folge dessen werden wir das Key Renewal Theorem anwenden (Sätze A.2,

A.5) und mithilfe von (3.10) zeigen, dass (3.2), (3.4) bzw. (3.5) Gültigkeit haben.
Der Vollständigkeit halber werden wir wie in (3.10) ebenfalls im Beweis des Öfteren
die Fälle (a1), (a2) und (b) unterscheiden, wobei die grundsätzlichen Ideen sich in
allen Fällen gleichen.

Beweis von Satz 3.5. Wir wählen mithilfe von Bemerkung 3.8 ein β > 0 so groß,
dass β < α und ϕ (β) < 1. Hier legen wir also β fest, welches insbesondere Einfluss
auf f 7→ f hat. Im jeweils vorliegenden Fall gilt δ±n ∈ Lβ (wegen (3.12), siehe unten).
Es gilt zudem r± ∈ Lβ, da r± (t) ≤ eαt und 1(−∞,t)e

(α+β)t λλ-integrierbar ist.
Sei G das Matrixerneuerungsmaß von H (Definition A.1), d.h.

G :=

(
ν+ ν−

ν− ν+

)
:=

∞∑
k=0

H∗k = lim
n→∞

Gn.

Dieser Limes existiert, da es sich um eine aufsteigende Folge von Maßen handelt
(eine aufsteigende Folge reeller Zahlen konvergiert - ggf. gegen ∞). Nach Definition
A.1 und Lemma 3.7 (c) ist ν := ν+ +ν− das Erneuerungsmaß von η. Da |g±| mittels
(3.1) bzw. (3.3) λλ-integrierbar ist, ist |g±| dRi.12 Somit gilt (ν− ≡ 0 in den Fällen
(a1) und (a2))(

ν+
n ∗ |g+|

)
(t) ≤

(
ν+ ∗ |g+|

)
(t) <∞, im Fall (a1),(

ν+
n ∗ |g−|

)
(t) ≤

(
ν+ ∗ |g−|

)
(t) <∞, im Fall (a2) und(

ν ∗ |g+|
)

(t) ,
(
ν ∗ |g−|

)
(t) <∞

⇒
(
Gn ∗ |g|

)
(t) ≤

(
G ∗ |g|

)
(t) <∞,

im Fall (b)

für alle t ∈ R, n ≥ 1 aufgrund von Lemma 3.4. Also existieren insbesondere alle in
(3.10) auftretenden Terme.

12Vgl. Lemma 2.30 aus [3].
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Um die Identität (3.10) nachzuweisen, werden wir

H ∗ δn = δn+1 für n ≥ 1 sowie H ∗ r = δ1 = r − g (3.11)

zeigen (hier in allen Fällen (a1), (a2), (b), da wir Faltungen für alle nichtnegativen
Funktionen definieren können).

In der Tat folgt mit (3.11) mittels Lemma 3.2 (a) und (c) induktiv

r+ = η+ ∗ r+ + g+ I.V.
= η+ ∗

(
ν+
n ∗ g+ + δ+

n+1

)
+
(
η+
)∗0 ∗ g+

=
n+1∑
k=1

(
η+
)∗k ∗ g+ +

(
η+
)∗0 ∗ g+ + η+ ∗ δ+

n+1 = ν+
n+1 ∗ g+ + δ+

n+2, im Fall (a1),

r− = η+ ∗ r− + g−
I.V.
= η+ ∗

(
ν+
n ∗ g− + δ−n+1

)
+
(
η+
)∗0 ∗ g−

=
n+1∑
k=1

(
η+
)∗k ∗ g− +

(
η+
)∗0 ∗ g− + η+ ∗ δ−n+1 = ν+

n+1 ∗ g− + δ−n+2, im Fall (a2),

r = H ∗ r + g
I.V.
= H ∗

(
Gn ∗ g + δn+1

)
+H∗0 ∗ g

=
n+1∑
k=1

H∗k ∗ g +H∗0 ∗ g +H ∗ δn+1 = Gn+1 ∗ g + δn+2, im Fall (b),

wobei wir hierbei (3.10) für n ≥ 0 als Induktionsvoraussetzung zugrunde legen.
Für n = 0 gilt (3.10) nach Definition von r, also zeigen die Gleichungen (3.11) die
Gültigkeit von (3.10) für alle n ≥ 0.

Um (3.11) zu zeigen, berechnen wir für beliebiges n ≥ 1

η+ ∗ δ+
n (t)

(3.7)
= E

[∑
j≥1

|Tj|α 1{Tj>0}δ
+
n (t− log |Tj|)

]

= E

∑
j≥1

∑
|i|=n

|Tj (i)|α 1{Tj(i)>0}e
−α log|Tj(i)|eαt

· E

1{
Π(i)X>e

t−log|Tj(i)|
}
∣∣∣∣∣∣ (Tj (i))j≥1,i∈Nn


= eαtE

E
∑
|i|=n

∑
j≥1

1{Tj(i)>0}1{Π(i)Tj(i)X>et}

∣∣∣∣∣∣ (Tj (i))j≥1,i∈Nn


= eαtE

 ∑
|i|=n+1

1{Tin+1
(i|n )>0}1{Π(i)X>et}

 ,

wobei wir (Tj)
d
= (Tj (i))j≥1 für |i| = n und die Unabhängigkeit dieser beiden Folgen
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von X und (Π (i))|i|=n benutzt haben. Analog erhalten wir

η− ∗ δ−n (t) = E

[∑
j≥1

|Tj|α 1{Tj<0}δ
−
n (t− log |Tj|)

]

= eαtE

 ∑
|i|=n+1

1{Tin+1
(i|n )<0}1{Π(i)X>et}


η+ ∗ δ−n (t) = E

[∑
j≥1

|Tj|α 1{Tj>0}δ
−
n (t− log |Tj|)

]

= eαtE

 ∑
|i|=n+1

1{Tin+1
(i|n )>0}1{Π(i)X<−et}


η− ∗ δ+

n (t) = E

[∑
j≥1

|Tj|α 1{Tj<0}δ
+
n (t− log |Tj|)

]

= eαtE

 ∑
|i|=n+1

1{Tin+1
(i|n )<0}1{Π(i)X<−et}

 .

Dies ergibt zusammen η+ ∗ δ+
n + η− ∗ δ−n = δ+

n+1 sowie η+ ∗ δ−n + η− ∗ δ+
n = δ−n+1 und

damit

H ∗ δn = δn+1.

Um die zweite Identität in (3.11) zu sehen, berechnen wir

η+ ∗ r+ (t)
(3.7)
= E

[∑
j≥1

|Tj|α 1{Tj>0}r
+ (t− log |Tj|)

]

= eαtE

∑
j≥1

|Tj|α 1{Tj>0}e
−α log|Tj |E

1{
X>e

t−log|Tj|
}
∣∣∣∣∣∣ (Tj)j≥1


= eαtE

[
E

[∑
j≥1

1{Tj>0}1{TjX>et}

∣∣∣∣∣ (Tk)k≥1

]]

= eαtE

[∑
j≥1

1{Tj>0}1{TjX>et}

]

und analog

η− ∗ r− (t) = E

[∑
j≥1

|Tj|α 1{Tj<0}r
− (t− log |Tj|)

]
= eαtE

[∑
j≥1

1{Tj<0}1{TjX>et}

]
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η+ ∗ r− (t) = E

[∑
j≥1

|Tj|α 1{Tj>0}r
− (t− log |Tj|)

]
= eαtE

[∑
j≥1

1{Tj>0}1{TjX<−et}

]

η− ∗ r+ (t) = E

[∑
j≥1

|Tj|α 1{Tj<0}r
+ (t− log |Tj|)

]
= eαtE

[∑
j≥1

1{Tj<0}1{TjX<−et}

]
.

Dies ergibt zusammen die zweite Identität in (3.11):

H ∗ r =

(
η+ ∗ r+ + η− ∗ r−
η− ∗ r+ + η+ ∗ r−

)
= δ1 = r − g.

Somit haben wir (3.10) gezeigt.
In (3.10) möchten wir nun n → ∞ betrachten, um darauf das Key Renewal

Theorem anzuwenden. Mit dem Lemma 3.3 können wir dann einen Rückschluss auf
limt→∞ r (t) ziehen.

Für alle t ∈ R folgt mittels majorisierter Konvergenz und
∣∣g±∣∣ ≤ |g±|(

ν+ ∗ g+
)

(t) = lim
n→∞

∫
g+ (t− x)ν+

n (dx) = lim
n→∞

(
ν+
n ∗ g+

)
(t) im Fall (a1),(

ν+ ∗ g−
)

(t) = lim
n→∞

∫
g− (t− x)ν+

n (dx) = lim
n→∞

(
ν+
n ∗ g−

)
(t) im Fall (a2) und

(G ∗ g) (t) =

(∫
g+ (t− x) ν+ (dx) +

∫
g− (t− x) ν− (dx)∫

g+ (t− x) ν− (dx) +
∫
g− (t− x) ν+ (dx)

)
= lim

n→∞

(∫
g+ (t− x) ν+

n (dx) +
∫
g− (t− x) ν−n (dx)∫

g+ (t− x) ν−n (dx) +
∫
g− (t− x) ν+

n (dx)

)
= lim

n→∞
(Nn ∗ g) (t) im Fall (b).

Jetzt wollen wir limn→∞ δn (t) = 0 für alle t ∈ R zeigen (auch hier nur in der ersten
Komponente im Fall (a1), in der zweiten im Fall (a2) und in beiden im Fall (b)). Es
gilt mit Lemma C.1 und d (·) := (·)+, (·)− bzw. |·| in den Fällen (a1), (a2) bzw. (b)

δ±n (t) =

∫
(−∞,t)

e−β(t−u)δ±n (u)λλ (du)

=

∫
(−∞,t)

e−β(t−u)eαuE

∑
|i|=n

1{±Π(i)X>eu}

λλ (du)

≤ e(α−β)t

∫
R
E

∑
|i|=n

1{d(Π(i)X)>eu}

 eβuλλ (du)

=
1

β
e(α−β)tE

∑
|i|=n

(d (Π (i)X))β


≤ 1

β
e(α−β)tE

∑
|i|=n

|Π (i)|β
E [(d (X))β

]
n→∞−−−→ 0 (3.12)
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für δ+
n im Fall (a1), δ−n im Fall (a2) und für δ+

n sowie δ−n im Fall (b), da nach

Voraussetzung E
[
(d (X))β

]
<∞ gegeben ist. Somit bleibt nur noch zu zeigen, dass

E
[∑

|i|=n |Π (i)|β
]

n→∞−−−→ 0 gilt. Mittels ϕ (β) < 1 folgt induktiv

E

∑
|i|=n

|Π (i)|β
 = E

 ∑
|i|=n−1

|Π (i)|β E

[∑
j≥1

|Tj (i)|β
∣∣∣∣∣ (Tj (j))j≥1,|j|≤n−2

]
= E

 ∑
|i|=n−1

|Π (i)|β ϕ (β)

 = ϕ (β)n
n→∞−−−→ 0.

Also können wir in (3.10) eine Grenzwertbildung für n→∞ vornehmen und es gilt

r+ = ν+ ∗ g+, im Fall (a1),

r− = ν+ ∗ g−, im Fall (a2) und

r = G ∗ g, im Fall (b).

(3.13)

Nun können wir die einzelnen Fällen abschließen:

(a) Mittels (3.13), dem Key Renewal Theorem (Satz A.2), Bemerkung A.3 und
Lemma 3.2 (b) schließen wir

lim
t→∞

r+ (t) = lim
t→∞

(
ν+ ∗ g+

)
(t)

KRT
=

1

µα

∫
g+ dλλ =

H+

β
, im Fall (a1) und

lim
t→∞

r− (t) = lim
t→∞

(
ν+ ∗ g−

)
(t)

KRT
=

1

µα

∫
g− dλλ =

H−
β

, im Fall (a2).

(b) Nach Bemerkung A.6 (b) können wir das verallgemeinerte Key Renewal Theo-
rem (Satz A.5) anwenden und mittels (3.13) und Lemma 3.2 (b) schließen wir

lim
t→∞

r (t) = lim
t→∞

(G ∗ g) (t)
verall. KRT

=
1

2µα

(∫
g+ + g− dλλ∫
g+ + g− dλλ

)
=

1

β

(
H
H

)
.

Mit Lemma 3.3 folgt in jedem Fall die Behauptung. Die zweite Darstellung für
H+, H− und H folgt mit Lemma C.1 aufgrund von (3.1) bzw. (3.3) und da

g+ + g− = eαt

(
P
(
|X| > et

)
− E

[∑
j≥1

1{|TjX|>et}

])

gilt. Letzteres zeigt ebenso H = H++H−
2

.
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4 Die Rekursionsgleichung R
d
=
∑

j≥1 TjRj + C

Wir wollen in diesem Kapitel die zu Beginn der Arbeit vorgestellte stochastische
Rekursionsgleichung

R
d
=
∑
j≥1

TjRj + C (1.1)

untersuchen, wobei (Rj)j≥1 und (C, T1, T2, T3, ...) unabhängige reelle Zufallsvektoren

sind, sodass (Rj)j≥1 iid mit R1
d
= R ist.

Nachdem wir in Abschnitt 4.1 die für unsere Resultate notwendigen Ungleichun-
gen bewiesen haben, wenden wir uns in Abschnitt 4.2 der Existenz und Eindeutigkeit
einer Lösung zu (1.1) zu. In Abschnitt 4.3 werden wir in Satz 4.13 mittels Satz 3.5
das Tailverhalten einer Lösung der Gleichung (1.1) charakterisieren.

Wie üblich definieren wir für β ≥ 1

‖X‖β :=
(
E
[
|X|β

]) 1
β

für Zufallsgrößen X und erhalten dadurch eine Halbnorm ‖·‖β auf Lβ. Hier folgt

die Dreiecksungleichung durch die Minkowski-Ungleichung.13 Wie in Abschnitt 5.3
in [3] erweitern wir diese Definition für alle β > 0 durch

‖X‖β :=
(
E
[
|X|β

])1∧ 1
β

für Zufallsgrößen X und erhalten im Fall β ≤ 1 jedoch keine Halbnorm, da für λ ∈ R

‖λX‖β = |λ|β ‖X‖β ≤ |λ| ‖X‖β

gilt und im Allgemeinen hier auch keine Gleichheit gilt (echte Ungleichung, falls
λ 6= 0 und X nicht P-f.s. verschwindet). Die Dreiecksungleichung ist aber auch im
Fall β ≤ 1 aufgrund der Subadditivität der Abbildung x 7→ xβ auf [0,∞) erfüllt:

‖X1 +X2‖β = E
[
|X1 +X2|β

]
≤ E

[
|X1|β + |X2|β

]
= ‖X1‖β + ‖X2‖β .

4.1 Ungleichungen

Wir beginnen diesen Abschnitt mit einer Ungleichung, die auf Lemma 5.2 in [10]
beruht und einen wichtigen Baustein für die Aussagen und Beweise in Abschnitt 4.2
bildet.

13Satz 17.4(e) in [2].
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Lemma 4.1. Gegeben zwei unabhängige reelle Zufallsvektoren (Dj)j≥1 und (Yj)j≥1,

seien (Yj)j≥1 iid und
∑

j≥1 (DjYj)
+ < ∞ P-f.s.. Dann folgt für ein β > 1 mit

p := dβe

0 ≤ E

(∑
j≥1

(DjYj)
+

)β

−
∑
j≥1

(
(DjYj)

+)β ≤ ‖Y ‖βp−1

∥∥∥∥∥∑
j≥1

|Dj|

∥∥∥∥∥
β

β

.

Bemerkung 4.2. Im Allgemeinen müssen die in Lemma 4.1 vorkommenden Er-

wartungswerte sowie E
[∑

j≥1

(
(DjYj)

+)β] nicht endlich sein. Gilt aber in der Tat

E
[∑

j≥1

(
(DjYj)

+)β] <∞, so ist die Ungleichung aus dem Lemma gleichbedeutend

mit

E

(∑
j≥1

(DjYj)
+

)β
 ≤ ‖Y ‖βp−1

∥∥∥∥∥∑
j≥1

|Dj|

∥∥∥∥∥
β

β

+ E

[∑
j≥1

(
(DjYj)

+)β] .

Beweis. Sei m ∈ N beliebig. Mit dem Multinomialkoeffizienten(
n

j1, ..., jm

)
:=

n!

j1!...jm!
für n, j1, ..., jm ∈ N mit

m∑
i=1

jl = n

gilt für yi ≥ 0(
m∑
i=1

yi

)p

=
∑

ji∈{0,...,p},
∑m
i=1 ji=n

(
p

j1, ..., jm

)
yj11 ...y

jm
m

=
∑

ji∈{0,...,p−1},
∑m
i=1 ji=n

(
p

j1, ..., jm

)
yj11 ...y

jm
m +

m∑
i=1

ypi .

Mit der Subadditivität von x 7→ x
β
p , β

p
∈ (0, 1] , gilt weiter

(
m∑
i=1

yi

)β

=

((
m∑
i=1

yi

)p)β
p

≤

 ∑
ji∈{0,...,p−1},

∑m
i=1 ji=n

(
p

j1, ..., jm

)
yj11 ...y

jm
m


β
p

+
m∑
i=1

y
pβ
p

i . (4.1)

Seien nun j1, ..., jm ∈ {0, ..., p− 1} mit
∑m

i=1 ji = p. Dann gilt

E

[
m∏
l=1

|Yl|jl
]

=
m∏
l=1

‖Yl‖jljl ≤
m∏
l=1

‖Y1‖jlp−1 = ‖Y1‖pp−1 , (4.2)
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wobei wir hier verwendet haben, dass ‖·‖r ≤ ‖·‖s für r ≤ s gilt. Mittels der Jensen-
schen Ungleichung14 folgt somit

0 ≤ E

( m∑
j=1

(DjYj)
+

)β

−
m∑
j=1

(
(DjYj)

+)β
(4.1)

≤ E


 ∑
ji∈{0,...,p−1},

∑m
i=1 ji=n

(
p

j1, ..., jm

) m∏
l=1

|DlYl|jl


β
p


β
p
≤1

≤ E


 ∑
ji∈{0,...,p−1},

∑m
i=1 ji=n

(
p

j1, ..., jm

) m∏
l=1

|Dl|jlE

[
m∏
l=1

|Yl|jl
∣∣∣∣∣ (Dk)k≥1

]
β
p


(4.2)

≤ ‖Y1‖
pβ
p

p−1E


 ∑
ji∈{0,...,p},

∑m
i=1 ji=n

(
p

j1, ..., jm

) m∏
l=1

|Dl|jl


β
p


= ‖Y1‖βp−1

∥∥∥∥∥
m∑
j=1

|Dj|

∥∥∥∥∥
β

β

<∞.

Um die Aussage des Lemmas herzuleiten, betrachten wir nun unter Grenzwertbil-
dung, m→∞, mittels monotoner Konvergenz

0 ≤ E

(∑
j≥1

(DjYj)
+

)β

−
∑
j≥1

(
(DjYj)

+)β
= lim

m→∞
E

( m∑
j=1

(DjYj)
+

)β

−
m∑
j=1

(
(DjYj)

+)β
≤ ‖Y1‖βp−1 lim

m→∞

∥∥∥∥∥
m∑
j=1

|Dj|

∥∥∥∥∥
β

β

= ‖Y1‖βp−1

∥∥∥∥∥∑
j≥1

|Dj|

∥∥∥∥∥
β

β

<∞,

wobei wir genutzt haben, dass
(∑m+1

i=1 yi
)β −∑m+1

i=1 yβi ≥ (
∑m

i=1 yi)
β −

∑m
i=1 y

β
i für

yi ≥ 0 und alle m ≥ 1 gilt (β > 1), und wir somit monotone Konvergenz anwenden
können.

Die folgenden Lemmata 4.3, 4.4 sowie 4.5 sind wesentliche Hilfsmittel im Be-
weis von Satz 4.13 die Bedingungen (3.1) und (3.3) aus Satz 3.5 nachzuweisen. Sie
beruhen auf den Lemmata 4.10, 4.8 und 4.9 sowie 4.11 in [10].

14Vgl. Satz 17.4(f) in [2].
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Für die Beweise der folgenden Lemmata benötigen wir die elementaren Unglei-
chungen

|xα − yα| ≤ |x− y|α für x, y ≥ 0 und α ∈ (0, 1] (4.3)

|xα − yα| ≤ α (x ∨ y)α−1 |x− y| für x, y ≥ 0 und α ∈ (1,∞) (4.4)(
(x+ t)+)α ≤ (x+

)α
+ α

(
(x+ t)+)α−1

t+ für x, t ∈ R und α ∈ (1,∞) (4.5)

Die Ungleichung (4.3) sieht man leicht durch die Dreiecksungleichung und die
Subadditivität der Funktion x 7→ xα, x ≥ 0, denn es gilt

xα = |x− y + y|α ≤ (|x− y|+ y)α ≤ |x− y|α + yα

(Vertausche danach die Rollen x und y).
Die Ungleichung (4.4) sieht man folgendermaßen: Für differenzierbare Funktio-

nen f , g : (y,∞)→ R, y ∈ R, mit limx↓y f (x) ≥ limx↓y g (x) und f ′ (x) ≥ g′ (x) für
alle x ∈ (y,∞) folgt, dass f (x) ≥ g (x) für alle x ∈ (y,∞) gilt. Für Ungleichung
(4.4) sei für festes y ≥ 0 hier g (x) := xα − yα und f (x) := α (x ∨ y)α−1 |x− y|.
Damit folgt

f (x) = αxα−1 (x− y) = g′ (x) (x− y) und somit

f ′ (x) = g′ (x) + α (α− 1)xα−2 (x− y) ≥ g′ (x) .

Die Ungleichung (4.5) ist eine Folgerung aus der Ungleichung (4.4): Für x, t ≥ 0
stellen wir die Gleichung (4.4) mit y := x+ t um:(

(x+ t)+)α − xα = yα − xα
(4.4)

≤ α (x ∨ y)α−1 |x− y| = α (x+ t)α−1 t.

Im Fall x < 0, t ≥ 0 folgt mit (x+ t)+ ≤ t(
(x+ t)+)α =

(
(x+ t)+)α−1

(x+ t)+

≤ α
(
(x+ t)+)α−1

t+ =
(
x+
)α

+ α
(
(x+ t)+)α−1

t+.

Für x ≥ 0, t < 0 gilt mit (x+ t)+ ≤ x schon(
(x+ t)+)α ≤ (x+

)α
=
(
x+
)α

+ α
(
(x+ t)+)α t+.

Im Fall x, t < 0 ist die Ungleichung trivial.

Lemma 4.3. Gegeben ein α > 0 und zwei unabhängige reelle Zufallsvektoren (Tj)j≥1

und (Xj)j≥1, seien (Xj)j≥1 iid und E

[(∑
j≥1 |Tj|

α
1+ε

)1+ε
]
< ∞ für ein ε ∈ (0, 1)

sowie
∑

j≥1 |TjXj|α <∞ P-f.s.. Dann folgt aus ‖X1‖β <∞ für alle β ∈ (0, α), dass

0 ≤
∫ ∞

0

(
E

[∑
j≥1

1{d(TjXj)>t}

]
− P

(
sup
j≥1

d (TjXj) > t

))
tα−1dt (4.6)

=
1

α
E

[∑
j≥1

(
d (TjXj)

+)α −((sup
j≥1

d (TjXj)

)+
)α]

<∞ (4.7)

gilt, wobei d : R→ R eine der Funktionen id, −id oder |·| ist.
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Beweis. Durch Übergang von (Tj)j≥1 und (Xj)j≥1 auf (−Tj)j≥1 und (Xj)j≥1 bzw.
(|Tj|)j≥1 und (|Xj|)j≥1 sehen wir, dass die Voraussetzungen des Lemmas ebenfalls
für diese Folgen erfüllt sind und es folglich reicht die Behauptung für d = id zu
zeigen.

Da 1{sup(TjXj)
+>t} ≤

∑
j≥1 1{(TjXj)

+>t} für alle t ∈ (0,∞) gilt, ist der Integrand

in (4.6) nichtnegativ und somit das Integral ebenfalls. Die Gleichheit in (4.7) folgt
mit Lemma C.1, falls (4.6) endlich ist. Letzteres verbleibt also zu zeigen. In (4.6)
können wir wegen Bemerkung C.2 (c) das Riemann- durch das Lebesgue-Integral
ersetzen, da der Integrand auf jedem kompakten Teilintervall Riemann-integrierbar
ist. Dazu gilt zunächst mit Tonelli∫

(0,∞)

(
E

[∑
j≥1

1{(TjXj)
+>t}

]
− P

(
sup
j≥1

(TjXj)
+ > t

))
tα−1λλ (dt)

=

∫
(0,∞)

E

[
E

[∑
j≥1

1{(TjXj)
+>t} − 1{supj≥1 (TjXj)

+>t}

∣∣∣∣∣ (Tk)k≥1

]]
tα−1λλ (dt)

= E

[∫
(0,∞)

E

[∑
j≥1

1{(TjXj)
+>t} − 1{supj≥1 (TjXj)

+>t}

∣∣∣∣∣ (Tk)k≥1

]
tα−1λλ (dt)

]
. (4.8)

Sei g : (0,∞) → R; s 7→ s − 1 + e−s und β := α
1+ε

. Für g gilt lims↓0 g (s) = 0 und
g′ (s) = 1− e−s > 0, also ist g positiv und strikt monoton wachsend auf (0,∞). Wir
wollen zeigen, dass∫

(0,∞)

E

[∑
j≥1

1{(TjXj)
+>t} − 1{supj≥1 (TjXj)

+>t}

∣∣∣∣∣ (Tk)k≥1

]
tα−1λλ (dt)

≤ 1

β
E
[
|X1|β

]α
β

(∑
j≥1

|Tj|β
)α

β ∫ ∞
0

g (s) s−(2+ε)ds (4.9)

=
c (1 + ε)

α
E
[
|X1|

α
1+ε

]1+ε
(∑
j≥1

|Tj|
α

1+ε

)1+ε

P-f.s. (4.10)

und c :=
∫∞

0
g (s) s−(2+ε)ds <∞ gilt. Für letzteres beachten wir zunächst, dass mit

g (s) ≤ s2

2
(folgt durch d

ds

(
g (s)− s2

2

)
= −g (s) < 0 und lims↓0 g (s) = 02

2
)

∫ 1

0

g (s) s−(2+ε)ds ≤ 1

2

∫ 1

0

s−εds =
1

2 (1− ε)

(
s(1−ε)∣∣1

0

)
=

1

2 (1− ε)
<∞

gilt, und auf der anderen Seite, dass mit g (s) ≤ s∫ ∞
1

g (s) s−(2+ε)ds ≤
∫ ∞

1

s−(1+ε)ds =
−1

ε

(
s−ε
∣∣∞
1

)
=

1

ε
<∞
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gilt, also zusammen c < ∞. Um die Ungleichung (4.9) zu sehen, nutzen wir, dass
die (TjXj)j≥1, unter (Tk)k≥1 bedingt, unabhängig sind:

E

[∑
j≥1

1{(TjXj)
+>t} − 1{supj≥1 (TjXj)

+>t}

∣∣∣∣∣ (Tk)k≥1

]

=
∑
j≥1

P
(

(TjXj)
+ > t

∣∣ (Tk)k≥1

)
+ P

(
sup
j≥1

(TjXj)
+ ≤ t

∣∣∣∣ (Tk)k≥1

)
− 1

=
∑
j≥1

P
(

(TjXj)
+ > t

∣∣ (Tk)k≥1

)
+
∏
j≥1

(
1− P

(
(TjXj)

+ > t
∣∣ (Tk)k≥1

))
− 1

≤ g

(∑
j≥1

P
(

(TjXj)
+ > t

∣∣ (Tk)k≥1

))
P-f.s., (4.11)

wobei wir in der letzten Zeile die Ungleichung
∏

j≥1 (1− sj) ≤
∏

j≥1 e
−sj ≤ e−

∑
j≥1 sj

für (sj)j≥1 ∈ [0,∞)N genutzt haben, was wiederum aus e−s + s− 1 = g (s) ≥ 0 für

s ≥ 0 folgt. Mit der Markov-Ungleichung15 folgt für j ≥ 1

0 ≤ P
(

(TjXj)
+ > t

∣∣ (Tk)k≥1

)
≤ t−βE

[(
(TjXj)

+)β∣∣∣ (Tk)k≥1

]
≤ t−β |Tj|β E

[
|Xj|β

∣∣∣ (Tk)k≥1

]
≤ E

[
|X1|β

]
t−β |Tj|β P-f.s.. (4.12)

Setzen wir dies in (4.11) ein und nutzen die Monotonie von g, folgt∫
(0,∞)

E

[∑
j≥1

1{(TjXj)
+>t} − 1{supj≥1 (TjXj)

+>t}

∣∣∣∣∣ (Tk)k≥1

]
tα−1λλ (dt)

(4.11),(4.12)

≤
∫

(0,∞)

g

(
t−βE

[
|X1|β

]∑
j≥1

|Tj|β
)
tα−1λλ (dt)

=

∫
(0,∞)

g

(
v (s)−β E

[
|X1|β

]∑
j≥1

|Tj|β
)
v (s)α−1

∣∣∣∣ ddsv (s)

∣∣∣∣λλ (ds)

=

∫
(0,∞)

g (s)

s− 1
βE
[
|X1|β

] 1
β

(∑
j≥1

|Tj|β
) 1

β

α−1

· 1
β
s−

1
β
−1
E
[
|X1|β

] 1
β

(∑
j≥1

|Tj|β
) 1

β

λλ (ds)

=
1

β
E
[
|X1|β

]α
β

(∑
j≥1

|Tj|β
)α

β ∫
(0,∞)

g (s) s−
α+β
β λλ (ds) P-f.s.,

15Vgl. Satz 17.4(a).
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wobei v : (0,∞) → (0,∞) ; s 7→ s−
1
βE
[
|X1|β

] 1
β
(∑

j≥1 |Tj|
β
) 1
β

ein C1-Diffeomor-

phismus ist, für den d
ds
v (s) = − 1

β
s−

1
β
−1
E
[
|X1|β

] 1
β
(∑

j≥1 |Tj|
β
) 1
β

gilt und wir den

Transformationssatz für Lebesgue-Integrale genutzt haben. Damit haben wir (4.9)
gezeigt und schließen

∫
(0,∞)

(
E

[∑
j≥1

1{(TjXj)
+>t}

]
− P

(
sup
j≥1

(TjXj)
+ > t

))
tα−1λλ (dt)

(4.8),(4.10)

≤ c (1 + ε)

α
E
[
|X1|

α
ε

]1+ε

E

(∑
j≥1

|Tj|
α

1+ε

)1+ε
 <∞

nach den Voraussetzungen.

Lemma 4.4. Gegeben ein α > 0 und zwei unabhängige reelle Zufallsvektoren (Tj)j≥1

und (Xj)j≥1, seien (Xj)j≥1 iid und
∑

j≥1 |TjXj| <∞ P-f.s., sowie weiterhin

ϕ (α) <∞, E

(∑
j≥1

|Tj|
α

1+ε

)1+ε
 <∞ für ein ε ∈ (0, 1) und

∑
j≥1

|TjXj|α <∞ P-f.s.,

falls α ≤ 1,

∥∥∥∥∥∑
j≥1

|Tj|

∥∥∥∥∥
α

<∞ und
∑
j≥1

|TjXj| <∞ P-f.s., , falls α > 1

erfüllt. Dann folgt aus ‖X1‖β <∞ für alle β ∈ (0, α), dass

E

∣∣∣∣∣d
(∑
j≥1

TjXj

)α

−
∑
j≥1

d (TjXj)
α

∣∣∣∣∣ <∞
gilt, wobei d : R→ R eine der Funktionen (·)+, (·)− oder |·| ist.

Beweis. Zunächst wollen wir uns klar machen, dass es reicht, den Fall d = (·)+ zu
betrachten. Es gilt

E

∣∣∣∣∣
((∑

j≥1

TjXj

)−)α

−
∑
j≥1

(
(TjXj)

−)α∣∣∣∣∣
= E

∣∣∣∣∣
((∑

j≥1

(−Tj)Xj

)+)α

−
∑
j≥1

(
((−Tj)Xj)

+)α∣∣∣∣∣ . (4.13)
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Also folgt der Fall d = (·)− aus dem Fall d = (·)+ durch Übergang von (Tj)j≥1 auf
(−Tj)j≥1, wofür die Bedingungen des Lemmas ebenfalls erfüllt sind. Weiter folgt aus∣∣∣∣∣∑

j≥1

TjXj

∣∣∣∣∣
α

=

((∑
j≥1

TjXj

)+)α

+

((∑
j≥1

TjXj

)−)α

und Analogem für
∑

j≥1 |TjXj|α, dass

E

∣∣∣∣∣
∣∣∣∣∣∑
j≥1

TjXj

∣∣∣∣∣
α

−
∑
j≥1

|TjXj|α
∣∣∣∣∣

≤ E

∣∣∣∣∣
((∑

j≥1

TjXj

)+)α

−
∑
j≥1

(
(TjXj)

+)α∣∣∣∣∣
+ E

∣∣∣∣∣
((∑

j≥1

TjXj

)−)α

−
∑
j≥1

(
(TjXj)

−)α∣∣∣∣∣ . (4.14)

gilt. Also folgt der Fall d = |·| aus den Fällen d = (·)+ , (·)− und wir können uns auf
den Fall d = (·)+ beschränken. Nun gilt

E

∣∣∣∣∣∑
j≥1

(
(TjXj)

+)α −((∑
j≥1

TjXj

)+)α∣∣∣∣∣
≤ E

[(∑
j≥1

(
(TjXj)

+)α)
1{∑j≥1 TjXj≤0}

]

+ E

[∣∣∣∣∣∑
j≥1

(
(TjXj)

+)α −(∑
j≥1

(TjXj)
+

)α∣∣∣∣∣1{∑j≥1 TjXj>0}

]

+ E

[∣∣∣∣∣
(∑
j≥1

(TjXj)
+

)α

−

((∑
j≥1

TjXj

)+)α∣∣∣∣∣1{∑j≥1 TjXj>0}

]
(4.15)

und wir werden zeigen, dass die einzelnen Erwartungswerte in (4.15) endlich sind:

Zum ersten Erwartungswert in (4.15): Es sei a := α
1+ε

für α ∈ (0, 1] und a := 1

für α ∈ (1, 2] . Mit b := α− a gilt dann a+ b = α sowie a, b
a
≤ 1 und

|TjXj|α = |TjXj|a |TjXj|b ≤ |TjXj|a
∣∣∣∣∣TjXj −

∑
j2≥1

Tj2Xj2

∣∣∣∣∣
b

= |TjXj|a
∣∣∣∣∣∑
j2 6=j

Tj2Xj2

∣∣∣∣∣
b

(4.16)
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auf {TjXj ≥ 0} ∩ {
∑

j2≥1 Tj2Xj2 ≤ 0}. Dies impliziert

E

[∑
j≥1

(
(TjXj)

+)α
1{∑j2≥1 Tj2Xj2≤0}

]

= E

[
E

[∑
j≥1

|TjXj|α1{TjXj≥0}1{∑j2≥1 Tj2Xj2≤0}

∣∣∣∣∣ (Tk)k≥1

]]
(4.16)

≤ E

∑
j≥1

|Tj|aE

 |Xj|a
∣∣∣∣∣∑
j2 6=j

Tj2Xj2

∣∣∣∣∣
b
∣∣∣∣∣∣ (Tk)k≥1


= E [|X1|a]E

∑
j≥1

|Tj|aE

∣∣∣∣∣∑
j2≥1

Tj2Xj2

∣∣∣∣∣
a b
a

∣∣∣∣∣∣ (Tk)k≥1


a, b
a
≤1

≤ E [|X1|a]E

∑
j≥1

|Tj|a
(∑
j2≥1

|Tj2|
a
E
[
|Xj2 |

a| (Tk)k≥1

]) b
a


= E [|X1|a]

a+b
a E

∑
j≥1

|Tj|a
(∑
j2≥1

|Tj2|
a

) b
a


= E [|X1|a]

a+b
a E

(∑
j≥1

|Tj|a
)a+b

a

 ,

wobei wir sowohl die Unabhängigkeit von Xj und (Tj2Xj2)j2 6=j, wenn wir unter
(Tk)k≥1 bedingen, als auch die Unabhänigkeit (Xj)j≥1 und (Tk)k≥1 sowie die Jensen-

sche Ungleichung (x 7→ x
b
a ) und die Subadditivität von x 7→ xa nutzen. Also folgt

für den Fall α ∈ (0, 1]

E

[∑
j≥1

(
(TjXj)

+)α
1{∑j2≥0 Tj2Xj2≤0}

]
≤ E [|X1|a]1+ε

E

(∑
j≥1

|Tj|
α

1+ε

)1+ε
 <∞

und für den Fall α ∈ (1, 2]

E

[∑
j≥1

(
(TjXj)

+)α
1{∑j2≥1 Tj2Xj2≤0}

]
≤ ‖X1‖α1

∥∥∥∥∥∑
j≥1

|Tj|

∥∥∥∥∥
α

α

<∞.

Eine ähnliche Rechnung können wir für den Fall α > 2 anwenden (Benutzung von
(4.16) benötigt nur a+ b = α):

E

[∑
j≥1

(
(TjXj)

+)α
1{∑j2≥1 Tj2Xj2≤0}

]



30 Felix Poettering

= E

[∑
j≥1

|TjXj|α1{TjXj≥0}1{∑j2≥1 Tj2Xj2≤0}

]
(4.16)

≤ E

[∑
j≥1

|Tj|α−1
E

[
|Xj|α−1

∣∣∣∣∣∑
j2 6=j

Tj2Xj2

∣∣∣∣∣
∣∣∣∣∣ (Tk)k≥1

]]

≤ ‖X1‖α−1
α−1E

[∑
j≥1

|Tj|α−1
∑
j2≥1

|Tj2|E
[
|Xj2|| (Tk)k≥1

]]

= ‖X1‖α−1
α−1 ‖X1‖1E

[(∑
j≥1

|Tj|α−1

)(∑
j≥1

|Tj|

)]

≤ ‖X1‖α−1
α−1 ‖X1‖1

∥∥∥∥∥∑
j≥1

|Tj|

∥∥∥∥∥
α

α

<∞,

wobei wir die Unabhängigkeit von Xj und (Tj2Xj2)j2 6=j, wenn wir unter (Tk)k≥1

bedingen, sowie die Superadditivität der Funktion x 7→ xα für α > 1 nutzen. Für
den zweiten Erwartungswert in (4.15) benutzen wir Lemma 4.3 und Lemma 4.1. Im
Fall α ∈ (0, 1] sehen wir mittels Lemma 4.3, der Subadditivität von x 7→ xα auf
[0,∞) und

∑
j≥1 yj ≥ supj≥1 yj für (yj)j≥1 ∈ [0,∞)N,

E

∣∣∣∣∣∑
j≥1

(
(TjXj)

+)α −(∑
j≥1

(TjXj)
+

)α∣∣∣∣∣
≤ E

∣∣∣∣∣∑
j≥1

(
(TjXj)

+)α − (sup
j≥1

(TjXj)
+

)α∣∣∣∣∣
+ E

∣∣∣∣∣
(∑
j≥1

(TjXj)
+

)α

−
(

sup
j≥1

(TjXj)
+

)α∣∣∣∣∣
≤ 2E

∣∣∣∣∣∑
j≥1

(
(TjXj)

+)α − (sup
j≥1

(TjXj)
+

)α∣∣∣∣∣ <∞.

Im Fall α > 1 folgt mit Lemma 4.1

E

∣∣∣∣∣∑
j≥1

(
(TjXj)

+)α −(∑
j≥1

(TjXj)
+

)α∣∣∣∣∣ ≤ ‖X1‖αdαe−1

∥∥∥∥∥∑
j≥1

|Tj|

∥∥∥∥∥
α

α

<∞.

Es bleibt also die Endlichkeit vom dritten Erwartungswert in (4.15) zu zeigen: Im
Fall α ∈ (0, 1] nutzen wir die elementare Ungleichung (4.3) und sehen

E

[∣∣∣∣∣
(∑
j≥1

(TjXj)
+

)α

−

(∑
j≥1

TjXj

)α∣∣∣∣∣1{∑j≥1 TjXj>0}

]

≤ E

[∣∣∣∣∣∑
j≥1

(TjXj)
+ −

∑
j≥1

TjXj

∣∣∣∣∣
α

1{∑j≥1 TjXj≥0}

]
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= E

[(∑
j≥1

(TjXj)
−

)α

1{∑j≥1 TjXj≥0}

]

= E

[(∑
j≥1

((−Tj)Xj)
+

)α

1{∑j≥1 (−Tj)Xj≤0}

]
,

was endlich ist, da wir schon gezeigt haben, dass der erste Erwartungswert in (4.15)
endlich ist (Hierzu Übergang von (Tk)k≥1 zu (−Tk)k≥1). Für den Fall α > 1 überlegen

wir uns, dass E

[(∑
j≥1 (TjXj)

+
)α−1

∣∣∣∣ (Tk)k≥1

]
≤ cα

(∑
j≥1 |Tj|

)α−1

P-f.s. für ein

cα ∈ [0,∞) : Für α ∈ (1, 2] gilt mit cα := ‖X1‖α−1
1 < ∞ und der Jensenschen

Ungleichung

E

(∑
j≥1

(TjXj)
+

)α−1
∣∣∣∣∣∣ (Tk)k≥1


≤

(
E

[∑
j≥1

(TjXj)
+

∣∣∣∣∣ (Tk)k≥1

])α−1

≤

(∑
j≥1

|Tj|

)α−1

E
[
|Xj|| (Tk)k≥1

]α−1
= cα

(∑
j≥1

|Tj|

)α−1

P-f.s. (4.17)

und für α > 2 gilt mit p := dα− 1e und cα := ‖X1‖α−1
α−1 + ‖X1‖α−1

p−1 <∞

E

(∑
j≥1

(TjXj)
+

)α−1
∣∣∣∣∣∣ (Tk)k≥1


Bem. 4.2

≤ E

[∑
j≥1

(
(TjXj)

+)α−1

∣∣∣∣∣ (Tk)k≥1

]

+E
[
|X1|p−1

∣∣ (Tk)k≥1

]α−1
p−1 E

(∑
j≥1

|Tj|

)α−1
∣∣∣∣∣∣ (Tk)k≥1


≤

∑
j≥1

|Tj|α−1
E
[
|Xj|α−1

∣∣ (Tk)k≥1

]
+ ‖X1‖α−1

p−1

(∑
j≥1

|Tj|

)α−1

α−1>1

≤ cα

(∑
j≥1

|Tj|

)α−1

P-f.s.. (4.18)

Damit und mit der elementaren Ungleichung (4.4) folgt nun weiter für beliebiges
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α > 1

E

[∣∣∣∣∣
(∑
j≥1

(TjXj)
+

)α

−

((∑
j≥1

TjXj

)+)α∣∣∣∣∣1{∑j≥1 TjXj>0}

]

= E

[∣∣∣∣∣
(∑
j≥1

(TjXj)
+

)α

−

(∑
j≥1

(TjXj)
+ −

∑
j≥1

(TjXj)
−

)α∣∣∣∣∣1{∑j≥1 TjXj>0}

]
(4.4)

≤ αE

(∑
j≥1

(TjXj)
+

)α−1 ∣∣∣∣∣∑
j≥1

(TjXj)
−

∣∣∣∣∣1{∑j≥1 TjXj>0}


≤ αE

∑
j≥1

|TjXj|1{TjXj<0}

(∑
j2≥1

(Tj2Xj2)
+

)α−1


≤ αE

∑
j≥1

|Tj|E

 |Xj|1{TjXj<0}

(∑
j2 6=j

(Tj2Xj2)
+

)α−1
∣∣∣∣∣∣ (Tk)k≥1


≤ α ‖X1‖1E

∑
j≥1

|Tj|E

(∑
j2≥1

(Tj2Xj2)
+

)α−1
∣∣∣∣∣∣ (Tk)k≥1


(4.17),(4.18)

≤ αcα ‖X1‖1E

(∑
j≥1

|Tj|

)(∑
j2≥1

|Tj2|

)α−1


= αcα ‖X1‖1

∥∥∥∥∥∑
j≥1

|Tj|

∥∥∥∥∥
α

α

<∞,

wobei wir die Unabhängigkeit von Xj und (Tj2Xj2)j2 6=j, wenn wir unter (Tk)k≥1

bedingen, nutzen. Dies schließt den Beweis ab.

Lemma 4.5. Gegeben ein α > 0 und zwei unabhängige reelle Zufallsvektoren (Xj)j≥1

und (C, T1, T2, T3, ...), seien (Xj)j≥1 iid, ‖C‖α < ∞ und
∑

j≥1 |TjXj| < ∞ P-f.s.,

sowie
∥∥∥∑j≥1 |Tj|

∥∥∥
α
<∞. Dann folgt aus ‖X1‖β <∞ für alle β ∈ [0, α) , dass

E

∣∣∣∣∣d
(∑
j≥1

TjXj + C

)α

− d

(∑
j≥1

TjXj

)α∣∣∣∣∣ <∞
gilt, wobei d : R→ R eine der Funktionen (·)+, (·)− oder |·| ist.

Beweis. Analog zu den Überlegungen in (4.13) sehen wir, dass ein Übergang von
C, (Tj)j≥1 auf (−C) , (−Tj)j≥1 den Fall d = (·)− aus dem Fall d = (·)+ folgen lässt.

Ebenso, analog zu (4.14), stellen die Fälle d = (·)+ , (·)− auch den Fall d = |·| sicher.
Also können wir uns auf den Fall d = (·)+ beschränken.



Implizite Erneuerungstheorie und Verzweigung 33

Zunächst nutzen wir die Ungleichung (4.3), falls α ≤ 1 ist:

E

∣∣∣∣∣
((∑

j≥1

TjXj + C

)+)α

−

((∑
j≥1

TjXj

)+)α∣∣∣∣∣
(4.3)

≤ E

[∣∣∣∣∣
(∑
j≥1

TjXj + C

)+

−

(∑
j≥1

TjXj

)+∣∣∣∣∣
α]

= E

[∣∣∣∣∣
(∑
j≥1

TjXj + C

)
1{∑j≥1 TjXj≥−C} −

∑
j≥1

TjXj

∣∣∣∣∣
α

1{∑j≥1 TjXj≥0}

]

+E

[∣∣∣∣∣
(∑
j≥1

TjXj + C

)
1{∑j≥1 TjXj≥−C}

∣∣∣∣∣
α

1{∑j≥1 TjXj<0}

]

= E

[∣∣∣∣∣−
(∑
j≥1

TjXj

)
1{∑j≥1 TjXj<−C} − C1{

∑
j≥1 TjXj≥−C}

∣∣∣∣∣
α

1{∑j≥1 TjXj≥0}

]

+E

[∣∣∣∣∣∑
j≥1

TjXj + C

∣∣∣∣∣
α

1{−C≤∑j≥1 TjXj<0}

]

= E

[∣∣∣∣∣∑
j≥1

TjXj

∣∣∣∣∣
α

1{0≤
∑
j≥1 TjXj<−C}

]
+ E

[
|C|α 1{∑j≥1 TjXj≥−C}1{

∑
j≥1 TjXj≥0}

]
+E

[∣∣∣∣∣∑
j≥1

TjXj + C

∣∣∣∣∣
α

1{0≤
∑
j≥1 TjXj+C<C}

]
≤ E

[
|C|α 1{0≤

∑
j≥1 TjXj<−C}

]
+ E

[
|C|α 1{∑j≥1 TjXj≥−C}1{

∑
j≥1 TjXj≥0}

]
+E

[
|C|α 1{0≤

∑
j≥1 TjXj+C<C}

]
≤ ‖C‖α <∞.

Sei nun α > 1. Wir nutzen hier die elementare Ungleichung (4.5). Iteriert angewendet
gilt für x, t ∈ R:

(
(x+ t)+)α − (x+

)α (4.5)

≤ α
(
(x+ t)+)α−1

t+

(4.5)

≤
1∑
i=1

αi
(
x+
)α−i (

t+
)i

+ α (α− 1)
(
(x+ t)+)α−2 (

t+
)2

≤
1∑
i=1

αi
(
x+
)α−i (

t+
)i

+ α2
(
(x+ t)+)α−2 (

t+
)2

(4.5)

≤ ...
(4.5)

≤
q−1∑
i=1

αi
(
x+
)α−i (

t+
)i

+ αq
(
(x+ t)+)α−q (t+)q ,
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wobei q := dαe − 1 ∈ [α− 1, α) . Nutzen wir nun noch, dass α − q ∈ (0, 1] , also(
(x+ t)+)α−q ≤ (x+)

α−q
+ (t+)

α−q
gilt, folgt

(
(x+ t)+)α − (x+

)α ≤ q∑
i=1

αi
(
x+
)α−i (

t+
)i

+ αq
(
t+
)α

. (4.19)

Dies hilft uns wie folgt:

E

∣∣∣∣∣
((∑

j≥1

TjXj + C

)+)α

−

((∑
j≥1

TjXj

)+)α∣∣∣∣∣
(4.19)

≤
q∑
i=1

αiE

((∑
j≥1

TjXj

)+)α−i (
C+
)i+ αqE

[(
C+
)α]

≤
q∑
i=1

αiE

(∑
j≥1

|TjXj|

)α−i

|C|i
+ αq ‖C‖αα . (4.20)

Dies ist endlich. Der Beweis ist vollständig, falls wir E

[(∑
j≥1 |TjXj|

)α−i
|C|i

]
<∞

für i ∈ {1, ..., q} zeigen können. Dazu folgt zunächst aus der Hölder-Ungleichung16∥∥∥∥∥∥
(∑
j≥1

|Tj|

)α−i

|C|i
∥∥∥∥∥∥

1

≤

∥∥∥∥∥∥
(∑
j≥1

|Tj|

)α−i
∥∥∥∥∥∥

α
α−i

∥∥∥|C|i∥∥∥
α
i

=

∥∥∥∥∥∑
j≥1

|Tj|

∥∥∥∥∥
α−i

α

‖C‖iα <∞, (4.21)

für i ∈ {1, ..., q}. Für i ∈ {1, ..., q − 1} gilt mit Bemerkung 4.2 (α− i > 1)

E

(∑
j≥1

|TjXj|

)α−i

|C|i
 = E

|C|iE
(∑

j≥1

|TjXj|

)α−i
∣∣∣∣∣∣ (Tk)k≥1 , C


≤ E

|C|i (E [ |Xj|dα−ie−1
∣∣∣ (Tk)k≥1 , C

]) α−i
dα−ie−1

E

(∑
j≥1

|Tj|

)α−i
∣∣∣∣∣∣ (Tk)k≥1 , C


+E

[
|C|i

∑
j≥1

|Tj|α−iE
[
|Xj|α−i

∣∣∣ (Tk)k≥1 , C
]]

= ‖X1‖α−iq−i E

(∑
j≥1

|Tj|

)α−i

|C|i
+ E

[
|C|i

∑
j≥1

|Tj|α−iE
[
|Xj|α−i

]]
16Vgl. Satz 11.3 aus [2]; mit r := α

i , s := α
α−i gilt 1

r + 1
s = 1
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α−i>1

≤ ‖X1‖α−iq−i E

(∑
j≥1

|Tj|

)α−i

|C|i
+ ‖X1‖α−iα−iE

|C|i(∑
j≥1

|Tj|

)α−i
 (4.21)

< ∞.

Für i = q = dαe − 1 gilt, unter Beachtung von α − q ∈ (0, 1] mit der Jensenschen
Ungleichung,

E

(∑
j≥1

|TjXj|

)α−i

|C|i
 = E

[
|C|q E

[(∑
j≥1

|TjXj|

)α−q∣∣∣∣∣ (Tk)k≥1 , C

]]

≤ E

[
|C|q

(
E

[∑
j≥1

|TjXj|

∣∣∣∣∣ (Tk)k≥1 , C

])α−q]

= E

[
|C|q

(∑
j≥1

|Tj|E
[
|Xj|| (Tk)k≥1 , C

])α−q]

= ‖X1‖α−q1 E

[(∑
j≥1

|Tj|

)α−q

|C|q
]

(4.21)
< ∞.

Damit haben wir die Endlichkeit von (4.20) gezeigt und schließen den Beweis ab.

4.2 Konstruktion einer Lösung

Für einen Messraum (A,A) definieren wir P0 (A) := {F W’Maß auf A} sowie, für

β > 0, Pβ (A) :=
{
F ∈ P0 (A)

∣∣∣∫ |x|βF (dx) <∞
}

. Für eine Zufallsgröße X notieren

wir deren Verteilung mit L (X) := PX .
In diesem Abschnitt beschäftigen wir uns mit der Frage, unter welchen Bedin-

gungen die Gleichung (1.1) eine Lösung in Pβ (R) besitzt, konstruieren eine solche
Lösung und zeigen die Eindeutigkeit deren Verteilung in Pβ (R). Dazu ist die folgen-
de Definition von besonderer Bedeutung.

Definition 4.6. Gegeben ein reeller Zufallsvektor (C, T1, T2, T3, ...), definieren wir
durch

D :=

{
F ∈ P0 (R)

∣∣∣∣∣∑
j≥1

|TjXj| <∞ P-f.s.,

(Xj)j≥1 iid, L (X1) = F , unabh. von (Tk)k≥1

}
den Definitionsbereich der Abbildung

S : D→ P0 (R) ;F 7→ L

(∑
j≥1

TjXj + C

)
,

wobei (Xj)j≥1 iid mit L (X1) = F und unabhängig von (C, T1, T2, T3, ...) sei. S
bezeichnen wir als smoothing transform.
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Bemerkung 4.7. (a) Die Bedingung in der Definition von D hängt nicht von der
Wahl der Folge (Xj)j≥1 ab, denn mit

(
X ′j
)
j≥1

iid, L (X ′1) = F , unabhängig

von (Tk)k≥1 gilt L
(∑n

j=1 |TjXj|
)

= L
(∑n

j=1

∣∣TjX ′j∣∣) für alle n ≥ 1, was

L
(∑

j≥1 |TjXj|
)

= L
(∑

j≥1

∣∣TjX ′j∣∣) begründet. Analog erhalten wir in dieser

Situation mit F ∈ D dann L
(∑

j≥1 TjXj + C
)

= L
(∑

j≥1 TjX
′
j + C

)
, was

die Wohldefiniertheit von S zeigt.

(b) Gegeben
∥∥∥∑j≥1 |Tj|

∥∥∥
β
, ϕ (β) < ∞ (im folgenden ist dies der Fall), gilt insbe-

sondere Pβ (R) ⊂ D, denn für β ≥ 1 folgt

E

[∑
j≥1

|TjXj|

]
= E

[∑
j≥1

|Tj|E
[
|Xj|

∣∣(Tk)k≥1

]]
= ‖X1‖1

∥∥∥∥∥∑
j≥1

|Tj|

∥∥∥∥∥
1

<∞

und für β ≤ 1

E

[∑
j≥1

|TjXj|β
]

= E

[∑
j≥1

|Tj|β E
[
|Xj|β

∣∣(Tk)k≥1

]]
= ‖X1‖β ϕ (β) <∞,

woraus in beiden Fällen
∑

j≥1 |TjXj| < ∞ P-f.s. folgt (wir nutzen xβ > x für
x ∈ (0, 1), falls 0 < β < 1).

Die smoothing transform ist für uns interessant, denn die Frage, ob Gleichung
(1.1) eine Lösung in Lβ besitzt, entspricht der Frage, ob die Abbildung S einen
Fixpunkt in Pβ (R) besitzt.

Sei nun F ∈ D mit S (F ), S 2 (F ) ∈ D. Es gilt dann

S 2 (F ) = L

(∑
k≥1

TkX
′
k + C

)

= L

(∑
k≥1

Tk

(∑
j≥1

Tj (k)X (jk) + C (k)

)
+ C

)

= L

(∑
k≥1

∑
j≥1

TkTj (k)X (jk) +
∑
k≥1

TkC (k) + C

)

mit (X ′k)k≥1 iid bzw. (X (jk))j,k≥1 iid und der Verteilung L (X ′1) = S (F ) bzw.

L (X (11)) = F . Gegeben F ∈ D mit S (F ) ,S 2 (F ) ,S 3 (F ) , ...,S n−1 (F ) ∈ D,
erhalten wir für n ≥ 1 induktiv

S n (F ) = L

∑
|i|=n

Π (i)X (i) +
n−1∑
k=0

∑
|i|=k

Π (i)C (i)

 , (4.22)
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wobei (X (i))|i|=n iid mit Verteilung F .

Gehen wir für einen Moment davon aus, dass wir einen Fixpunkt F̂ ∈ D von
unserer Abbildung S gefunden haben, dessen β-Moment existiert. Mit Blick auf die
Darstellung (4.22) folgt dann

F̂ = S n
(
F̂
)

= L

∑
|i|=n

Π (i)X (i) +
n−1∑
k=0

∑
|i|=k

Π (i)C (i)

 ,

für (X (i))|i|≥0 iid mit Verteilung F̂ , also insbesondere∑
|i|=n

Π (i)X (i) +
∑
|i|≤n−1

Π (i)C (i)
d−→ X (∅) , n→∞. (4.23)

Gehen wir nun zusätzlich davon aus, dass ϕ (1 ∧ β) < 1 gilt, so folgt für alle ε > 0
mit der Markov-Ungleichung und (4.30), welches wir erst später beweisen, aber keine
weiteren Voraussetzungen benötigt,

P

∣∣∣∣∣∣
∑
|i|=n

Π (i)X (i)

∣∣∣∣∣∣ > ε

 ≤ 1

ε1∧β
E


∣∣∣∣∣∣
∑
|i|=n

Π (i)X (i)

∣∣∣∣∣∣
1∧β


≤ 1

ε1∧β
E

∑
|i|=n

|Π (i)X (i)|1∧β


=
1

ε1∧β
E

∑
|i|=n

|Π (i)|1∧β E
[
|X (i)|1∧β

∣∣∣Fn]


(4.30)
=

1

ε1∧β
‖X (∅)‖1∧β ϕ (1 ∧ β)n

n→∞−−−→ 0.

D.h.
∑
|i|=n Π (i)X (i)

P−→ 0, n→∞. Nun gilt mit (4.23) und dem Satz von Slutsky17

∑
|i|≤n

Π (i)C (i)
d−→ X (∅) , n→∞.

Da diese Folge nicht von dem oben angenommenen Fixpunkt F̂ von S abhängt, ste-
hen wir damit vor der Frage, unter welchen Voraussetzungen wir andersherum über
den Grenzwert dieser Folge einen Fixpunkt von S definieren können. Die Antwort
(Satz 4.10 (a)) ist positiv, denn wir benötigen noch geringere Voraussetzungen als
oben. Wir fordern für ein β > 0

‖C‖β ,

∥∥∥∥∥∑
j≥1

|Tj|

∥∥∥∥∥
β

<∞ und ψ (β) < 1, (4.24)

17Vgl. Satz 36.12 aus [2].
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wobei wir ψ : (0,∞)→ [0,∞] durch

ψ (γ) :=



ϕ (γ) , falls γ ∈ (0, 1]

ϕ (γ) ∨

∣∣∣∣∣E
[∑
j≥1

Tj

]∣∣∣∣∣ , falls γ ∈ [1, 2]

ϕ (γ) ∨ ϕ (2) ∨

∣∣∣∣∣E
[∑
j≥1

Tj

]∣∣∣∣∣ , falls γ ∈ [2,∞)

definieren. Hierbei folgt in (4.24) die Bedingung
∥∥∥∑j≥1 |Tj|

∥∥∥
β
< ∞ aus der Bedin-

gung ψ (β) < 1, falls β ≤ 1 ist. Denn in diesem Fall gilt

E

(∑
j≥1

|Tj|

)β
 ≤ E[∑

j≥1

|Tj|β
]

= ϕ (β) .

Bemerkung 4.8. Wir stellen mit unseren Bedingungen (4.24) schwächere Forde-
rungen an (C, T1, T2, T3, ...) als Kapitel 4 in [10], denn dort wird (4.24) mit ψ∗ (β) < 1
anstelle von ψ (β) < 1 gefordert, wobei ψ∗ : (0,∞)→ [0,∞] durch

ψ∗ (γ) :=

{
ϕ (γ) , falls γ ∈ (0, 1]

ϕ (γ) ∨ ϕ (1) , falls γ ∈ [1,∞)

definiert ist. Da ϕ konvex ist und
∣∣∣E [∑j≥1 Tj

]∣∣∣ ≤ ϕ (1) gilt, folgt ψ ≤ ψ∗. Also sind

die Bedingungen (4.24) in der Tat die schwächeren.

Gehen wir nun davon aus, dass die Bedingungen (4.24) für ein β > 0 erfüllt sind.
Wir wollen eine Zufallsgröße R konstruieren, die die Gleichung (1.1) löst, und dies
werden wir über eine Folge (Rn)n≥1 erreichen, deren P-f.s.-Grenzwert R sein wird.
Zunächst definieren wir für n ≥ 0

Wn :=
∑
|i|=n

Π (i)C (i).

Dass die Zufallsgrößen Wn existieren, stellen schon die Bedingungen (4.24) sicher.

Falls β ≥ 1 impliziert E
[∑

|i|=n |Π (i)C (i)|
]

= ϕ (1) ‖C‖1 < ∞ insbesondere∑
|i|=n |Π (i)C (i)| <∞ P-f.s.. Falls β ≤ 1 sieht man analog

∑
|i|=n |Π (i)C (i)|β <∞

P-f.s., was
∑
|i|=n |Π (i)C (i)| <∞ P-f.s. impliziert (hier gilt xβ > x für x ∈ (0, 1)).

Mit Blick auf Abbildung 1 aus Kapitel 2 ist Wn die Summe über die n-te Ge-
neration der Gewichte Π (i) multipliziert mit C (i). Für n ≥ 1 lassen sich die Wn

durch

Wn =
∑
|i|=n

Π (i)C (i) =
∑
j≥1

∑
|i|=n, i|1=j

Π (i)C (i)

=
∑
j≥1

Tj (∅)
∑

i2,...,in∈N

(
n−1∏
l=1

Til+1
(ji2...il)

)
C (ji2...in) =

∑
j≥1

Tj (∅)Wn−1,j (4.25)
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beschreiben. Hierbei wird (W0,j)j≥1 := (C (j))j≥1 und

Wm,j :=
∑

i1,...,im∈N

C (ji1...im)
m−1∏
l=0

Til+1
(ji1...il)

für m, j ≥ 1 gesetzt. Da die (C (i) , T1 (i) , T2 (i) , T3 (i) , ...)|i|≤m+1 iid sind, gilt eben-

falls, dass die (Wm,j)j≥1 iid sind und Wm,1
d
= Wm für alle m ≥ 0 gilt.

Mit Blick auf Abbildung 1 veranschaulicht sich die Zerlegung (4.25) durch den
Übergang auf die Teilbäume unterhalb der Knoten in der 1. Generation. Gehen wir
für j ∈ N = N1 auf den Teilbaum unterhalb des Knotens j über, so entsprechen die
W̃n−1 bezogen auf diesen Teilbaum eben den Wn−1,j. Denn innerhalb des Teilbaums

mit Wurzel j ist Π̃ (i) = Π(i)
Tj(∅) das Gewicht des Knoten i = ji2...in, da hier der Pfad

von i zur neuen Wurzel j und nicht mehr bis ∅ führt (insbesondere Π̃ (j) ≡ 1).
Weiter definieren wir nun

Rn :=
n∑
k=0

Wk =
n∑
k=0

∑
|i|=k

Π (i)C (i).

Wir wollen zeigen, dass der P-f.s.-Limes der Folge (Rn)n≥1 existiert und dieser die
Gleichung (1.1) löst. Für (Rn)n≥1 erhalten wir eine Rekursion. Analog bzw. mithilfe
der Zerlegung (4.25) gilt nämlich für n ≥ 1

Rn =
n∑
k=1

∑
j≥1

Tj (∅)Wk−1,j +W0 =
∑
j≥1

Tj (∅)
n−1∑
k=0

Wk,j + C (∅)

=
∑
j≥1

Tj (∅)Rn−1
j + C (∅) . (4.26)

Hierbei definieren wir für j ≥ 1 und m ≥ 0

Rm
j :=

m∑
k=0

Wk,j.

Da (Wm,j)j≥1 iid ist, gilt dies auch für
(
Rm
j

)
j≥1

, für m ≥ 0. Wm,1
d
= Wm impliziert

nun Rm
j

d
= Rm, für m ≥ 0. Also zeigt (4.26), dass für alle n ≥ 1 insbesondere

S (L (Rn−1)) = L (Rn) und somit S n (L (C)) = L (Rn) gilt. Hierbei setzen wir
L (Rn) ∈ D für n ≥ 1 voraus. Letzteres ist mit Lemma 4.9 und Bemerkung 4.7 (b)
klar.

Wichtig für die P-f.s.-Konvergenz der Folge (Rn)n≥1 ist das folgende Lemma,
dessen Beweis wir am Ende des Abschnitts angeben.

Lemma 4.9. Gegeben ein β > 0 und ein reeller Zufallsvektor (C, T1, T2, T3, ...), die
die Bedingungen (4.24) erfüllen, existiert ein Kβ > 0 (unabhängig von n), sodass
für alle n ≥ 1 gilt:

E
[
|Wn|β

]
≤ Kβ · ψ (β)n.
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Somit gilt insbesondere ‖Rn‖β < ∞, da die Rn endliche Summen von Zufalls-
größen mit β-Moment sind. Gelten die Bedingungen (4.24) für ein β > 0, so können
wir

R :=
∑
k≥0

Wk (4.27)

definieren. Die Zufallsgröße R und sogar deren β-Moment existieren:

Satz 4.10. Gegeben ein β > 0 und ein reeller Zufallsvektor (C, T1, T2, T3, ...), folgt
aus den Bedingungen (4.24):

(a) Es existiert ein P-f.s. Limes R der Folge (Rn)n≥1, der sich durch (4.27) be-
schreiben lässt und für den ‖R‖β <∞ gilt. Die Konvergenz ist ebenfalls in Lβ,
falls β ≥ 1.

(b) R ist Lösung der Gleichung (1.1) und L (R) ein Fixpunkt der Abbildung S .

(c) Es gilt S (Pβ (R)) ⊂ Pβ (R) und für alle F ∈ Pβ (R) darüber hinaus

S n (F )
w−→ L (R) , n→∞.

Dies zeigt insbesondere, dass L (R) eindeutiger Fixpunkt von S in Pβ (R) ist.

Beweis. Wir stellen zunächst fest:∥∥∥∥∥∑
k>n

|Wk|

∥∥∥∥∥
1∨β

β

≤

(∑
k>n

‖Wk‖β

)1∨β
Lemma 4.9

≤ Kβ

(∑
k>n

(ψ (β))k·1∧
1
β

)1∨β

=
Kβ (ψ (β))n+1(

1− (ψ (β))1∧ 1
β

)1∨β
n→∞−−−→ 0. (4.28)

(a) Mit der Markov-Ungleichung folgt für alle ε > 0 mittels (4.28)

P

(
sup
m>n
|Rm −Rn| > ε

)
≤ P

(
sup
m>n

m∑
k=n+1

|Wk| > ε

)
= P

(∑
k>n

|Wk| > ε

)

≤ 1

εβ
E

(∑
k>n

|Wk|

)β
 =

1

εβ

∥∥∥∥∥∑
k>n

|Wk|

∥∥∥∥∥
1∨β

β

n→∞−−−→ 0,

da ψ (β) < 1. Damit ist Rn → R P-f.s. und insbesondere die Existenz der
Zufallsgröße R sichergestellt.

Mit analoger Argumentation folgt für das β-Moment von R

‖R‖β ≤
∑
k≥0

‖Wk‖β ≤ K
1∧ 1

β

β

∑
k≥0

ψ (β)k·1∧
1
β =

K
1∧ 1

β

β

1− ψ (β)1∧ 1
β

<∞.
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Für die Lβ-Konvergenz im Fall β ≥ 1 sehen wir nun, dass

E
[
|R−Rn|β

]
=

∥∥∥∥∥∑
k>n

|Wk|

∥∥∥∥∥
1∨β

β

gilt und mit (4.28) die Behauptung folgt.

(b) In (a) haben wir gesehen, dass R eine Zufallsgröße ist, deren β-Moment existiert.
Mittels Bemerkung 4.7 (b) gilt somit L (R) ∈ D. Darüber hinaus ist R eine
Lösung der Gleichung (1.1), denn mit der Zerlegung (4.26) gilt

R = lim
n→∞

Rn = lim
n→∞

∑
j≥1

Tj (∅)Rn−1
j + C (∅)

=
∑
j≥1

Tj (∅) lim
n→∞

Rn−1
j + C (∅) =

∑
j≥1

TjRj + C,

wobei (Rj)j≥1 :=
(∑

k≥0Wk,j

)
j≥1

iid mit R1
d
= R. Wir können hier limn→∞ und∑

j≥1 vertauschen, da wir den Satz von der majorisierten Konvergenz bzgl. des
Zählmaßes anwenden können und

∑
j≥1 |Tj (∅)Rj| < ∞ P-f.s. aus L (R) ∈ D

folgt.

(c) Gegeben ein F ∈ Pβ (R), gilt aufgrund von Bemerkung 4.7 (b) zunächst F ∈ D.
Es gilt weiter S (F ) ∈ Pβ (R) ⊂ D, da ‖C‖β < ∞. ‖S (F )‖β < ∞ wird
sichergestellt durch

E

(∑
j≥1

|TjXj|

)β


≤


‖X1‖βdβe−1

∥∥∥∥∥∑
j≥1

|Tj|

∥∥∥∥∥
β

+ ‖X1‖β ϕ (β) <∞, falls β > 1 und

E

[∑
j≥1

|Tj|β E
[
|Xj|β

∣∣∣ (Tk)k≥1

]]
= ‖X1‖β ϕ (β) <∞, falls β ≤ 1,

wobei wir im Fall β > 1 Bemerkung 4.2 benutzt haben. Damit haben wir
S (Pβ (R)) ⊂ Pβ (R) gezeigt und es folgt S n (F ) ∈ Pβ (R) ⊂ D für alle n ≥ 1.

Sei X Zufallsgröße mit Verteilung F . Wir betrachten den reellen Zufallsvektor
(X,T1, T2, T3, ...) für einen Moment als Grundlage unseres Modells (anstelle von
(C, T1, T2, T3, ...)). Dieser erfüllt ebenso die Bedingungen in (4.24) (hier geht
‖X‖β <∞ ein) und damit gilt mit WX

n =
∑
|i|=n Π (i)X (i) und Lemma 4.9 für

ein KX
β > 0 für alle ε > 0 mittels der Markov-Ungleichung

P

∣∣∣∣∣∣
∑
|i|=n

Π (i)X (i)

∣∣∣∣∣∣ > ε

 ≤ 1

εβ
E
[∣∣WX

n

∣∣β] Lemma 4.9

≤
KX
β

εβ
ψ (β)n

n→∞−−−→ 0.
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Also gilt
∑
|i|=n Π (i)X (i)

P−→ 0, n→∞.

Nun zurück zum ursprünglichen Modell mit Grundlage (C, T1, T2, T3, ...). Da

Rn−1 d−→ R, n→∞, (folgt aus (a)), schließen wir mittels dem Satz von Slutsky18∑
|i|=n

Π (i)X (i) +Rn−1 d−→ R, n→∞,

was aufgrund von (4.22) mit S n (F )
w−→ L (R), n → ∞, gleichbedeutend ist.

Ist F̂ ∈ Pβ (R) ein Fixpunkt von S , so gilt damit F̂ = S n
(
F̂
)

w−→ L (R), was

die Eindeutigkeitsaussage zeigt.

Bemerkung 4.11. Die Voraussetzungen des Lemmas 4.9 und des Satzes 4.10 sind
durch die Bedingungen (4.24) gegeben. Wie in Bemerkung 4.8 begründet sind diese
schwächer als die Voraussetzungen in den entsprechenden Lemmata 4.3, 4.4 und
4.1 in [10]. Außerdem wird die Existenz der Lösung R in den Arbeiten von Olvera-
Cravioto und Jelenković nur für β ≤ 1 oder Tj ≥ 0, j ≥ 1 gezeigt und die Eindeu-
tigkeitsaussage nur im Fall β ≤ 1 und Tj ≥ 0, j ≥ 1.19

Die Anforderungen an (C, T1, T2, T3, ...) sind jedoch in den Theoremen 5.45 (für
β < 1), 5.48 (β ∈ (1, 2]) und 5.53 (β > 2) in [3] zu finden, in denen die Existenz
und Eindeutigkeit eines Fixpunktes von S in Pβ (R) bewiesen wird.

Nun kommen wir zum Beweis von Lemma 4.9: Wie wir in Kürze sehen, löst
sich der Fall β ≤ 1 so elegant wie schnell durch die Subadditivität der Funktion
x 7→ xβ. Für β > 1 wird wesentlich mehr zu tun sein - im Fall β ∈ (1, 2] wird die
Topchii-Vatutin-Ungleichung (vgl. Kapitel D) an entscheidender Stelle eingehen. Im
Gegensatz zu dem Beweis von Theorem 5.53 in [3] nutzen wir hier im Fall β > 2 nicht
zudem die Burkholder-Ungleichung20, sondern nutzen mit Lemma 4.1 eine Methode
aus [10], um die Reduktion des Exponenten zu erreichen.

Beweis von Lemma 4.9. Zunächst betrachten wir den Fall β ∈ (0, 1] . Wie oben
erwähnt ist x 7→ xβ in diesem Fall subadditiv, d.h. für (xj)n≥1 ∈ [0,∞)N gilt(∑

j=1 xj

)β
≤
∑

j=1 x
β
j . Damit folgt für n ≥ 1 mittels der Zerlegung (4.25)

E
[
|Wn|β

]
= E

∣∣∣∣∣∑
j≥1

Tj (∅)Wn−1,j

∣∣∣∣∣
β
 ≤ E[E[∑

j≥1

|Tj (∅)|β |Wn−1,j|β
∣∣∣∣∣ (Tk (∅))k≥1

]]

= ϕ (β)E
[
|Wn−1|β

]
iterativ

= ϕ (β)nE
[
|W0|β

]
= E

[
|C|β

]
ψ (β)n.

18Vgl. Satz 36.12 aus [2].
19Vgl. zur Existenz Lemma 4.1 in [10] bzw. Kapitel 4 in [11] und zur Eindeutigkeit Lemma 4.5

in [11].
20Vgl. Theorem B.4 in [3].
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Setzen wir nun Kβ := E
[
|C|β

]
<∞, so folgt die Behauptung für β ≤ 1.

Kommen wir zum Fall β > 1. Für diesen Fall genügt es zu zeigen, dass für
beliebiges p ∈ N mit p > 1 die Behauptung für alle β ∈ (p− 1, p ] gilt. Hierfür
führen wir eine Induktion nach p, die den Rest des Beweises einnehmen wird. Sei
also zunächst für den Induktionsanfang p = 2.

Wir wählen ein beliebiges β ∈ (1, 2] und für β seien die Voraussetzungen des
Lemmas erfüllt. Wir erinnern an die σ-Algebren Fn in (2.1). Für festes n ≥ 1 definie-
ren wir für einen Moment den stochastischen Kern Pn, wobei Pn (ω, ·) := P·|Fn (ω, ·)
sei, d.h. für messbares A gilt Pn (ω,A) = E [1A |Fn ] (ω). Dies bedeutet insbesondere,
dass für eine Pn-quasiintegrierbare Zufallsgröße X

En [X] = E [X |Fn ] P-f.s.

gilt. Wir definieren weiter für k ≥ 1

Mn
k :=

k∑
l=1

Π
(
il
) (
U
(
il
)
− E

[
U
(
il
)])

und Mn
0 := 0, wobei

{
il
∣∣ l ∈ N

}
= Nn und U (i) :=

∑
j≥1 Tj (i)C (ij) gelte. Um die

Momente von Wn abzuschätzen ist Mn
k aufgrund der Beziehung

Mn
∞ := lim inf

k→∞
Mn

k = Wn+1 −
∑
|i|=n

Π (i)E [U (i)] (4.29)

für n ≥ 0 interessant, die wir später in (4.33) zeigen werden.
Wir wollen zunächst zeigen, dass (Mn

k )k≥0 unter Pn (d.h. unter Fn bedingt) ein
Martingal bildet. Für k ≥ 0 nutzen wir, dass En [U (i)] = E [U (i) |Fn ] = E [U (i)]
P-f.s. für |i| = n gilt, da U (i) und Fn unabhängig sind, und folgern

En
[
Mn

k+1 −Mn
k

∣∣Mn
k

]
= E

[
E
[
Mn

k+1 −Mn
k

∣∣Mn
k

]∣∣Fn]
= E

[
E
[
Mn

k+1 −Mn
k

∣∣Fn]∣∣Mn
k

]
= E

[
Π
(
ik+1

)
E
[
U
(
ik+1

)
− E

[
U
(
ik+1

)]∣∣Fn]∣∣Mn
k

]
= E

[
Π
(
ik+1

)
· 0
∣∣Mn

k

]
= 0 P-f.s..

Also ist (Mn
k )k≥0 ein Martingal bzgl. (σ (Mn

1 , ...,M
n
k ))k≥0 unter Pn. Mit der Topchii-

Vatutin-Ungleichung (vgl. Kapitel D) erhalten wir nun (x 7→ |x|β ist konvex mit
konkaver Ableitung auf (0,∞) und |0|β = 0)

En

[
|Mn
∞|

β
]
≤ 2

∑
l≥1

En

[∣∣Mn
l −Mn

l−1

∣∣β]
= 2

∑
l≥1

En

[∣∣Π (il)∣∣β ∣∣U (il)− E [U (il)]∣∣β]
= 2

∑
l≥1

E
[∣∣Π (il)∣∣β ∣∣U (il)− E [U (il)]∣∣β∣∣∣Fn]
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= 2
∑
|i|=n

|Π (i)|β E
[
|U (i)− E [U (i)]|β

∣∣∣Fn]
= 2

∑
|i|=n

|Π (i)|β E
[
|U (i)− E [U (i)]|β

]
P-f.s.,

wobei wir die Unabhängigkeit von U (i) und Fn für |i| = n genutzt haben. Hierfür
gilt für |i| = n auf der einen Seite

E

∑
|i|=n

|Π (i)|β
 = E

 ∑
|i|=n−1

|Π (i)|β E

[∑
j≥1

|Tj (i)|β
∣∣∣∣∣Fn
]

= ϕ (β)E

 ∑
|i|=n−1

|Π (i)|β
 iterativ

= ϕ (β)n (4.30)

aufgrund der Unabhängigkeit von Fn und (T1 (i) , T2 (i) , T3 (i) , ...), sowie auf der
anderen Seite mittels der elementaren Ungleichung (4.5) (x = |U (i)| , t = |E [U (i)]|)

K∗β
2

:= E
[
|U (i)− E [U (i)]|β

]
≤ E

[
(|U (i)|+ |E [U (i)]|)β

]
(4.5)

≤ E
[
|U (i)|β

]
+ βE

[
(|U (i)|+ |E [U (i)]|)β−1

]
|E [U (i)]|

β−1≤1

≤ E
[
|U (i)|β

]
+ βE

[
|U (i)|β−1

]
|E [U (i)]|+ β |E [U (i)]|β . (4.31)

Dies ist genau dann endlich, wenn E
[
|U (i)|β

]
<∞ ist, und dafür gilt

E
[
|U (i)|β

]
≤ E

(∑
j≥1

|Tj (i)| |C (ij)|

)β


Bem. 4.2

≤ E
[
|C|p−1] β

p−1

∥∥∥∥∥∑
j≥1

|Tj|

∥∥∥∥∥
β

β

+ E

[
E

[∑
j≥1

|Tj (i)|β |C (ij)|β
∣∣∣∣∣ (Tk)k≥1

]]

≤ ‖C‖β1

∥∥∥∥∥∑
j≥1

|Tj|

∥∥∥∥∥
β

β

+ ϕ (β) ‖C‖ββ <∞.

Zusammen liefern also (4.30) und die Endlichkeit von (4.31)

E
[
|Mn
∞|

β
]

= E
[
E
[
|Mn
∞|

β
∣∣∣Fn]]

≤ 2E

∑
|i|=n

|Π (i)|β E
[
|U (i)− E [U (i)]|β

] ≤ K∗βϕ (β)n. (4.32)
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Im folgenden weisen wir die Beziehung (4.29) nach, wobei wir in der zweiten Zeile
zum Limes übergehen können, da die Wn als P-f.s.-Limes existieren und (4.30) gilt:

Mn
∞ = lim inf

k→∞
Mn

k = lim inf
k→∞

k∑
l=1

Π
(
il
) (
U
(
il
)
− E

[
U
(
il
)])

= lim
k→∞

k∑
l=1

Π
(
il
)
U
(
il
)
− lim

k→∞

k∑
l=1

Π
(
il
)
E
[
U
(
il
)]

=
∑
|i|=n

∑
j≥1

Π (i)Tj (i)C (ij)−
∑
|i|=n

Π (i)E [U (i)]

= Wn+1 −
∑
|i|=n

Π (i)E [U (i)] P-f.s.. (4.33)

Wir berechnen mittels der Jensenschen Ungleichung für bedingte Erwartungswerte∥∥∥∥∥∥
∑
|i|=n

Π (i)E [U (i)]

∥∥∥∥∥∥
β

=

∥∥∥∥∥∥
∑
|i|=n

Π (i)E

[∑
j≥1

Tj

]
E [C]

∥∥∥∥∥∥
β

=

∥∥∥∥∥∥
∑
|i|=n

Π (i)E [C (i) |Fn ]

∥∥∥∥∥∥
β

∣∣∣∣∣E
[∑
j≥1

Tj

]∣∣∣∣∣
= E


∣∣∣∣∣∣E
∑
|i|=n

Π (i)C (i)

∣∣∣∣∣∣Fn
∣∣∣∣∣∣

β


1
β ∣∣∣∣∣E

[∑
j≥1

Tj

]∣∣∣∣∣
≤ E

E

∣∣∣∣∣∣
∑
|i|=n

Π (i)C (i)

∣∣∣∣∣∣
β
∣∣∣∣∣∣∣Fn



1
β ∣∣∣∣∣E

[∑
j≥1

Tj

]∣∣∣∣∣
= ‖Wn‖β

∣∣∣∣∣E
[∑
j≥1

Tj

]∣∣∣∣∣ , (4.34)

wobei wir die Unabhängigkeit von C (i) und Fn und die Messbarkeit von Π (i) bzgl.
Fn für |i| = n genutzt haben. Setzen wir in

‖Wn+1‖β
(4.29)
=

∥∥∥∥∥∥Mn
∞ +

∑
|i|=n

Π (i)E [U (i)]

∥∥∥∥∥∥
β

≤ ‖Mn
∞‖β +

∥∥∥∥∥∥
∑
|i|=n

Π (i)E [U (i)]

∥∥∥∥∥∥
β

(4.32) und (4.34) ein, so erhalten wir iterativ

‖Wn+1‖β ≤
(
K∗β
) 1
β ϕ (β)

n
β +

∣∣∣∣∣E
[∑
j≥1

Tj

]∣∣∣∣∣ ‖Wn‖β ≤
(
K∗β
) 1
β ψ (β)

n
β + ψ (β) ‖Wn‖β
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≤ ... ≤
(
K∗β
) 1
β

n∑
k=0

ψ (β)
n−k
β ψ (β)k + ψ (β)n+1 ‖W0‖β

=
(
K∗β
) 1
β ψ (β)

n
β

n∑
k=0

(
ψ (β)

β−1
β

)k
+ ψ (β)n+1 ‖C‖β

≤
(
K∗β
) 1
β ψ (β)

n
β

∞∑
k=0

(
ψ (β)

β−1
β

)k
+ ψ (β)

n+1
β ‖C‖β

=

(K∗β) 1
β ψ (β)

−1
β

1− ψ (β)
β−1
β

+ ‖C‖β

ψ (β)
n+1
β =: (Kβ)

1
β ψ (β)

n+1
β

mit Kβ < ∞ nach den Voraussetzungen. Zusammengefasst zeigen wir also den
Induktionsanfang (p = 2), denn für alle β ∈ (p− 1, p ] = (1, 2] und alle n ≥ 0 gilt
unter den Bedingungen (4.24) für β

E
[
|Wn+1|β

]
≤ ‖Wn+1‖ββ ≤ Kβψ (β)n+1.

Kommen wir nun zum Induktionsschritt. Sei also p ∈ {3, 4, 5, ...} beliebig und
gelte die Behauptung für alle 2, ..., p−1. Sei β ∈ (p− 1, p] beliebig. Wir stellen fest,
dass die Bedingungen (4.24) auch für alle β′ ∈ [2, β] erfüllt sind (insbesondere für
β′ = dβe−1 = p−1), da sie für β erfüllt sind. Dies liegt unter anderem daran, dass ψ
auf [2,∞) monoton wachsend ist (ϕ ist auf (0,∞) konvex). Also können wir mittels
der Induktionsvoraussetzung nun die Aussage für alle β′ ∈ [2, p− 1] verwenden.

Wir berechnen mit der Zerlegung (4.25)

E
[
|Wn|β

]
= E

∣∣∣∣∣∑
j≥1

Tj (∅)Wn−1,j

∣∣∣∣∣
β


Bem. 4.2

≤ ‖Wn−1‖βp−1

∥∥∥∥∥∑
j≥1

|Tj|

∥∥∥∥∥
β

β

+ E

[
E

[∑
j≥1

|Tj (∅)|β |Wn−1,j|β
∣∣∣∣∣ (Tk (∅))k≥1

]]

I.V.

≤
(
Kp−1ψ (p− 1)n−1) β

p−1

∥∥∥∥∥∑
j≥1

|Tj|

∥∥∥∥∥
β

β

+ ϕ (β)E
[
|Wn−1|β

]
≤ K∗βψ (β)

β(n−1)
p−1 + ψ (β)E

[
|Wn−1|β

]

mit K∗β := (Kp−1)
β
p−1

∥∥∥∑j≥1 |Tj|
∥∥∥β
β
, wobei wir die Monotonie von ψ auf [2,∞) ge-

nutzt haben. Nach den Bedingungen (4.24) und der Induktionsvoraussetzung gilt
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K∗β <∞. Iterativ folgt damit

E
[
|Wn|β

]
≤ ... ≤ K∗β

n−1∑
k=0

ψ (β)
β
p−1

(n−1−k)ψ (β)k + ψ (β)nE
[
|C|β

]
=

(
K∗βψ (β)−

β
p−1

n−1∑
k=0

(
ψ (β)

β
p−1
−1
)n−k

+ ‖C‖ββ

)
ψ (β)n

≤

(
K∗βψ (β)−

β
p−1

∞∑
k=0

(
ψ (β)

β
p−1
−1
)k

+ ‖C‖ββ

)
ψ (β)n =: Kβψ (β)n

mit Kβ < ∞, da ψ (β) < 1 und K∗β, ‖C‖β < ∞. Damit ist die Behauptung für alle
β ∈ (p− 1, p] gezeigt. Dies schließt die Induktion nach p und damit den Fall β > 2
ab, somit auch den Beweis des Lemmas.

Bemerkung 4.12. Im Kapitel 5 in [3] wird die Abbildung S intensiver betrachtet.
Dort wird auf Pβ (R) die Metrik

lβ (F,G) := min
L (X)=F , L (Y )=G

‖X − Y ‖β

definiert und unter anderem gezeigt, dass unter eben unseren Bedingungen (4.24)
die Abbildung S eine Kontraktion des metrischen Raums (Pβ (R) , lβ) bildet, d.h.

lβ (S (F ) ,S (G)) ≤ c · lβ (F,G) für alle F,G ∈ Pβ (R)

für ein c ∈ (0, 1) gilt, und somit einen eindeutigen Fixpunkt besitzt (vgl. Satz 4.10).
Es wird ebenfalls gezeigt, dass S n (F ) in lβ gegen den Fixpunkt konvergiert (in Satz
4.10 (c) Konvergenz in Verteilung).

4.3 Tailverhalten von Lösungen

Gegeben ein α > 0, ein reeller Zufallsvektor (C, T1, T2, T3, ...) und ein ε′ > 0, sodass
für alle β′ ∈ (α− ε′, α) die Bedingungen (4.24) erfüllt sind, existiert nach Satz
4.10 eine Lösung R ∈ ∩β<αLβ zu (1.1), deren Verteilung L (R) in ∩β<αPβ (R)
eindeutig ist. Es gilt hierbei Pβ1 (R) ⊃ Pβ2 (R) sowie Lβ1 ⊃ Lβ2 für alle β1 < β2. Der
nun folgende Satz 4.13 charakterisiert in genau dieser Situation das asymptotische
Verhalten der Tails der Lösung R. Der Satz ist eine Verallgemeinerung des Satzes B.2
von Goldie, der das asymptotische Verhalten der Tails einer Lösung der Gleichung

R
d
= TR + C

untersucht.
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Satz 4.13. Gegeben ein α > 0 und ein reeller Zufallsvektor (C, T1, T2, ...) mit
‖C‖α <∞ und P (C 6= 0) > 0, seien sowohl (IRT-1) bis (IRT-3) als auch

E

(∑
j≥1

|Tj|
α

1+ε

)1+ε
 <∞ für ein ε ∈ (0, 1) , falls α ≤ 1,

∣∣∣∣∣E
[∑
j≥1

Tj

]∣∣∣∣∣ < 1 und

∥∥∥∥∥∑
j≥1

|Tj|

∥∥∥∥∥
α

<∞, falls α > 1, sowie zusätzlich

ϕ (2) < 1, falls α > 2

erfüllt. Dann ist (4.24) für β < α groß genug erfüllt; sei R eine Lösung zu (1.1) in
∩β<αLβ. Es gilt:

(a) Ist P (Tj ≥ 0 für alle j ≥ 1) = 1, so folgt

lim
t→∞

tαP (R > t) = H+ und lim
t→∞

tαP (R < −t) = H−,

wobei

H± :=
1

µα

∫ ∞
0

tα−1

(
P (±R > t)− E

[∑
j≥1

1{±TjR>t}

])
dt

=
1

αµα
E

[((∑
j≥1

TjRj + C

)±)α

−
∑
j≥1

(
(TjRj)

±)α] .

(b) Ist P (Tj < 0 für ein j ≥ 1) > 0 und P (Tj > 0 für ein j ≥ 1) > 0, so folgt

lim
t→∞

tαP (R > t) = lim
t→∞

tαP (R < −t) = H,

wobei

H :=
H+ +H−

2
=

1

2µα

∫ ∞
0

tα−1

(
P (|R| > t)− E

[∑
j≥1

1{|TjR|>t}

])
dt

=
1

2αµα
E

[∣∣∣∣∣∑
j≥1

TjRj + C

∣∣∣∣∣
α

−
∑
j≥1

|TjRj|α
]

.

Beweis von Satz 4.13. Wir nutzen die Voraussetzung ϕ
(

α
1+ε

)
< ∞ im Fall α ≤ 1

sowie ϕ (1) =
∥∥∥∑j≥1 |Tj|

∥∥∥
1
≤
∥∥∥∑j≥1 |Tj|

∥∥∥
α
< ∞ im Fall α > 1 um zu folgern,

dass ein γ∗ ∈ (0, α) mit ϕ (γ∗) < ∞ existiert. Also sind mit Bemerkung 3.8 für
β < α groß genug alle Bedingungen in (4.24) erfüllt, da dann nach den gegebenen

Voraussetzungen ψ (β) < 1, ‖C‖β ,
∥∥∥∑j≥1 |Tj|

∥∥∥
β
< ∞ gelten. Mit Satz 4.10 folgt
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die Existenz einer Lösung R mit ‖R‖β < ∞ für alle β ∈ (0, α). Damit sind alle
Voraussetzungen von Satz 3.5 bis auf die Bedingungen (3.1) und (3.3) erfüllt.

Um diese Bedingungen nachzuweisen, benötigen wir die Lemmata 4.3, 4.4 und
4.5. Wir wollen zuerst zeigen, dass alle deren Bedingungen erfüllt sind: Mithilfe von

ϕ (β) , ‖R‖β < ∞ folgt E
[∑

j≥1 |TjRj|β
]

= E
[∑

j≥1 |Tj|
β
E
[
|Rj|β

∣∣∣ (Tk)k≥1

]]
< ∞,

also insbesondere
∑

j≥1 |TjRj|β < ∞ P-f.s. gilt. Dies impliziert
∑

j≥1 |TjRj|α < ∞
P-f.s., da xα ≤ xβ für x ∈ (0, 1). Aus dem gleichen Grund folgt

∑
j≥1 |TjRj| < ∞

P-f.s., falls α ≤ 1. Falls α > 1 liefern ϕ (1) , ‖R‖1 < ∞ mit einer ähnlichen Argu-
mentation

∑
j≥1 |TjRj| < ∞ P-f.s.. Damit sind die Voraussetzungen der Lemmata

4.4 und 4.5 erfüllt. Im Fall α > 1 erhalten wir die Voraussetzungen von Lemma 4.3
durch

E

(∑
j≥1

|Tj|
α

1+ε

)1+ε
 ≤ E[(∑

j≥1

|Tj|

)α]
<∞,

für ε ∈ (0, 1) mit α
1+ε

> 1.
Für d (·) = id bzw. d (·) = −id ist∫ ∞

0

∣∣∣∣∣P (d (R) > t)− E

[∑
j≥1

1{d(TjRj)>t}

]∣∣∣∣∣ tα−1dt <∞

zu zeigen. Es gilt∫ ∞
0

∣∣∣∣∣P (d (R) > t)− E

[∑
j≥1

1{d(TjRj)>t}

]∣∣∣∣∣ tα−1dt

≤
∫ ∞

0

∣∣∣∣P (d (R) > t)− P
(

sup
j≥1

d (TjRj) > t

)∣∣∣∣ tα−1dt

+

∫ ∞
0

∣∣∣∣∣P
(

sup
j≥1

d (TjRj) > t

)
− E

[∑
j≥1

1{d(TjRj)>t}

]∣∣∣∣∣ tα−1dt

und mit Lemma 4.3 bleibt nur noch zu zeigen, dass das erste Integral endlich ist.

Da R
d
=
∑

j≥1 TjRj + C gilt, folgt mit Bemerkung C.2 (b) und den Lemmata 4.5,
4.4 und 4.3:∫ ∞

0

∣∣∣∣∣P
(
d

(∑
j≥1

TjRj + C

)
> t

)
− P

(
sup
j≥1

d (TjRj) > t

)∣∣∣∣∣ tα−1dt

≤ 1

α
E

∣∣∣∣∣
((

d

(∑
j≥1

TjRj + C

))+)α

−

((
sup
j≥1

d (TjRj)

)+
)α∣∣∣∣∣

≤ 1

α
E

∣∣∣∣∣
((

d

(∑
j≥1

TjRj + C

))+)α

−

((
d

(∑
j≥1

TjRj

))+)α∣∣∣∣∣
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+
1

α
E

∣∣∣∣∣
((

d

(∑
j≥1

TjRj

))+)α

−
∑
j≥1

(
(d (TjRj))

+)α∣∣∣∣∣
+

1

α
E

∣∣∣∣∣∑
j≥1

(
(d (TjRj))

+)α −((sup
j≥1

d (TjRj)

)+
)α∣∣∣∣∣

<∞.

Für die Anwendung der Lemmata nutzen wir (d (·))+ = (·)+, falls d (·) = id, und
(d (·))+ = (·)−, falls d (·) = −id. Die Behauptungen (a) und (b) sowie ebenfalls die
verschiedenen Darstellungen für H+, H− und H folgen aus Satz 3.5.

Bemerkung 4.14. (a) Wie in Bemerkung 4.8 merken wir an dieser Stelle an, dass
die Bedingungen an (C, T1, T2, T3, ...) in Satz 4.13 schwächer sind als die Be-
dingungen in Satz 4.6 in [10], denn dort wird im Fall α > 1 gefordert, dass
ϕ (1) < 1 gilt. Wegen der Konvexität von ϕ und Bemerkung 3.8 gilt ϕ (2) < 1,

falls ϕ (1) < 1. Aufgrund von
∣∣∣E [∑j≥1 Tj

]∣∣∣ ≤ ϕ (1) sind die Bedingungen in

Satz 4.13 in der Tat die schwächeren.

(b) Wenden wir nun die Bemerkung 3.6 (c) auf die Situation von Satz 4.13 an, so
folgt hier direkt aus den Voraussetzungen des Satzes, dass die Funktionen

t 7→ P (R > t) = P

(∑
j≥1

TjRj + C > t

)
und t 7→ E

[∑
j≥1

1{TjRj>t}

]

das gleiche asymptotische Verhalten haben, falls E [(R+)
α
] = ∞ gilt. Ebenso

gilt das negative Pendant.

5 Der PageRank

Führende Suchmaschinen verwalten eine große Datenbank mit analysierten Web-
seiten.21 Wenn nach einem Begriff gesucht wird, ist die Frage, welche der infrage
kommenden Seiten aus der Datenbank dem Suchenden zuoberst angezeigt werden
soll. Ein wichtiges Instrument für dieses Ranking ist im Falle der Suchmaschine
Google der PageRank, benannt nach dem Google Mitbegründer Larry Page.22 Jeder
analysierten Webseite wird ein solcher PageRank zugewiesen, welcher mithilfe des
Webgraphen bestimmt wird (siehe Abschnitt 5.1). Die Idee des PageRank ist es, die
Bedeutsamkeit einer Website zu bemessen, in dem zur Bestimmung die Rückverweise
der Seite sowie deren Bedeutsamkeit verwendet werden. Je höher der PageRank ei-
ner Website, desto interessanter ist sie für den Suchenden und sollte auch weiter
oben in der Ergebnisliste eingeordnet werden.

21Vgl. Abschnitte 4.2 und 4.3 in [5] zur Webseitenanalyse (Crowling).
22Vgl. http://www.google.com/competition/howgooglesearchworks.html (19.09.2012).
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In diesem Kapitel werden wir zuerst den PageRank von Google vorstellen (Ab-
schnitt 5.1) und unsere Ergebnisse aus Kapitel 4 danach auf diesen anwenden, um
auszusagen, wie sich die Tails eines PageRanks R einer zufällig ausgewählten Sei-
te verhalten (Abschnitte 5.2 und 5.3), d.h. eine Idee der Antwort auf die Frage zu
bekommen, wie wahrscheinlich es ist, viele Webseiten mit einem hohen PageRank
vorzufinden.

Grundlage für das Kapitel 5 ist [9], wobei wir in Abschnitt 5.1 ebenfalls [5]
zugrunde legen.

5.1 Googles PageRank

Wir betrachten eine zugrundeliegende Menge M von Webseiten und Hyperlinks
zwischen Webseiten, die zusammen den zugehörigen Webgraphen bilden. Die Kno-
tenmenge des Webgraphen bildet M , die Menge E der gerichteten Kanten besteht
aus den Hyperlinks, d.h. für p, q ∈M gilt genau dann p→ q ∈ E , wenn es auf der
Webseite q einen Hyperlink gibt, der auf p verweist. Eine Kante p→ q ∈ E nennen
wir auch einen Rückverweis auf die Webseite p.

Für eine Webseite p ∈M sei

(i) R (p) der PageRank von p,

(ii) M (p) := {q ∈M | p→ q ∈ E } die Menge der Websites, die einen Rückverweis
auf p enthalten, und

(iii) L (p) := |{q ∈M | q → p ∈ E }| die Anzahl der von p ausgehenden Hyperlinks.

Weiter sei d ∈ (0, 1) ein Parameter.23 Für eine beliebige Webseite p ∈M soll gelten

R (p) =
1− d
|M |

+ d
∑

q∈M (p)

R (q)

L (q)
, (5.1)

wobei die leere Summe
∑

q∈∅
R(q)
L(q)

= 0 definiert wird. Zunächst gibt uns (5.1) ein Glei-

chungssystem mit |M | Gleichungen an, welches wir durch einen Vektor (R (p))p∈M

lösen möchten.

Bemerkung 5.1. (a) In der Beschreibung des PageRank (5.1) wird der Rang einer
Seite q ∈ M (p), die einen Rückverweis auf p enthält, mit 1

L(q)
gewichtet. Dies

passiert, um der Idee Rechnung zu tragen, dass Webseiten mit übermäßig vielen
Hyperlinks über eine darauf verlinkte Seite eine geringere Aussage haben, als
Seiten mit wenigen Hyperlinks.

(b) Ist R eine Lösung des durch (5.1) gegebenen Gleichungssystems mit R (p) ≥ 0
für alle p ∈M , so ist

R : M → [0, 1] ; p 7→ R (p)

23Meist wird d = 0, 85 angenommen. Vgl. Abschnitt 2 in [5] und Abschnitt 1.1 in [9].



52 Felix Poettering

die Zähldichte einer diskreten Wahrscheinlichkeitsverteilung auf M . Da in der
doppelten Summe

∑
p∈M

∑
q∈M (p)

R(q)
L(q)

der Bruch R(q)
L(q)

für ein festes q genau

L (q)-mal vorkommt (aufgrund von L (q) = |{p ∈M | q ∈M (p)}|), folgt∑
p∈M

R (p) =
∑
p∈M

1− d
|M |

+ d
∑
p∈M

∑
q∈M (p)

R (q)

L (q)
= 1− d+ d

∑
q∈M

L (q)
R (q)

L (q)

⇐⇒ (1− d)
∑
p∈M

R (p) = 1− d

⇐⇒
∑
p∈M

R (p) = 1.

(c) Wir definieren für n := |M | zwei Matrizen 1A, 2A ∈ Rn×n durch

1Apq :=


1

L (q)
, falls q ∈M (p)

0, sonst

und 2Apq := 1

für alle p, q ∈M . Dann ist R = (R (p))p∈M genau dann ein Lösungsvektor des
zu (5.1) gehörigen Gleichungssystems, wenn

∑
p∈M R (p) = 1 und

R =
1− d
|M |

1
...
1

+ d · 1A ·R =

(
1− d
|M |

· 2A+ d · 1A

)
·R

erfüllt sind. Wir suchen also einen normierten, nichtnegativen Eigenvektor von
A := (1− d) |M |−1 · 1A+ d · 2A.

Mit
∑

q∈M
1−d
|M |+

∑
q∈M (p)

d
L(q)

= 1 für alle p ∈M folgt, dass A eine stochastische

Matrix ist (Zeilen summieren sich zu 1). Somit ist die Frage nach einer Lösung
zu (5.1) genau die Frage nach einer stationären Verteilung der zu A gehörigen
Markovkette.

5.2 Übertragung auf die Gleichung R
d
=
∑

j≥1 TjRj + C

Hier betrachten wir nun einen Teilgraphen des Webgraphen (aus Abschnitt 5.1), der
eine Baumstruktur besitzt.

Sei R der PageRank einer zufällig ausgewählten Seite. Wir können R durch die
stochastische Rekursionsgleichung

R
d
= c

N∑
j=1

Rj

Dj

+ γ (5.2)

beschreiben, wobei γ, c > 0 Konstanten und N , (Dj)j≥1, (Rj)j≥1 Zufallsgrößen sind,
sodass
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(a) (Dj)j≥1 iid mit D1 ≥ 0 P-f.s. und E
[

1
D1

]
< 1,

(b) N N0-wertig,

(c) (Rj)j≥1 iid mit R1
d
= R und

(d) N , (Dj)j≥1, (Rj)j≥1 unabhängig sind.

In (5.1) entsprechen γ bzw. c dem Bruch (1− d) |M |−1 bzw. d, N der Anzahl an
Rückverweise auf die Webseite im Teilgraphen und die Dj der Anzahl der ausge-
henden Hyperlinks L (qj) im Webgraphen der j-ten verweisenden Webseite qj. Um
die Unabhängigkeitsforderung aufrecht zu halten, geht hier die Baumstruktur ein,
denn mit Zyklen innerhalb des Teilgraphen könnten die (Rj)j≥1 nicht plausibel als
unabhängig angenommen werden. Außerdem führt die Reduktion auf einen Teilgra-
phen dazu, dass die Folgerung einer Summation zu 1 von R : M → R aus (5.1)
nicht auf die Lösung R der Gleichung (5.2) übertragen werden kann, da diese Re-
duktion nicht bei L (·) durchgeführt wird und dies weiterhin im ganzen Webgraphen
gemessen wird (vgl. Bemerkung 5.1 (b)). In der Tat kann eine solche Lösung von
(5.2) mit positiver Wahrscheinlichkeit Werte größer 1 annehmen.

Die Gleichung (5.2) wird nun in einem Schritt verallgemeinert zu der stochasti-
schen Rekursionsgleichung

R
d
=

N∑
j=1

T̂jRj + C, (5.3)

wobei N ,
(
T̂j

)
j≥1

, C, (Rj)j≥1 Zufallsgrößen sind, sodass

(a)
(
T̂j

)
j≥1

iid mit T̂1 ≥ 0 P-f.s.,

(b) N N0 ∪ {∞}-wertig, C mit C ≥ 0 P-f.s. und P (C 6= 0) > 0,

(c) (Rj)j≥1 iid mit R1
d
= R und

(d) N ,
(
T̂j

)
j≥1

, C, (Rj)j≥1 unabhängig sind.

In (5.1) entsprechen C dem dort konstanten Bruch (1− d) |M |−1, N der Anzahl an
Rückverweise auf die Webseite im Teilgraphen und T̂j dem Bruch d

L(qj)
für die j-te

verweisende Webseite qj.

5.3 Tailverhalten von Lösungen der PageRank-Gleichung

Betrachten wir den PageRank R einer zufällig ausgewählten Seite, d.h. eine Lösung
zur Gleichung (5.3). Die Frage nach der Existenz einer solchen Lösung R und dem
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Verhalten von deren Tails beantwortet der Satz 5.2, der den Satz 4.13 auf unser
Beispiel anwendet.

Zunächst formulieren wir für α > 0 Bedingungen für den in diesem Kapitel
behandelten Fall, die den Bedingungen (IRT-1) bis (IRT-3) entsprechen werden:

E [N ]E
[
T̂α1

]
= 1 (5.4)

E
[
T̂α1 log

(
T̂1

)]
∈ (0,∞] (5.5)

P
(

log
(
T̂1

)
∈ ·, T̂1 6= 0

)
ist nichtarithmetisch. (5.6)

Nun können wir den folgenden Satz formulieren:

Satz 5.2. Gegeben ein α > 0 und ein reeller Zufallsvektor
(
N,C, T̂1, T̂2, T̂3, ...

)
,

sodass N N0 ∪ {∞}-wertig, C ≥ 0 P-f.s.,
(
T̂j

)
j≥1

iid mit T̂1 ≥ 0 P-f.s. und N , C,(
T̂j

)
j≥1

unabhängig sind, seien weiterhin ‖C‖α <∞, (5.4) bis (5.6), sowie

E
[
N1+ε

]
<∞ für ein ε ∈ (0, 1) , falls α ≤ 1 und

E [Nα] <∞ sowie E [N ]E
[
T̂1

]
< 1, falls α > 1

erfüllt. Dann existiert eine Lösung R ∈ ∩β<αLβ zu der Gleichung (5.3), deren Ver-
teilung in ∩β<αPβ (R) eindeutig ist und für die R ≥ 0 P-f.s. sowie

lim
t→∞

tαP (R > t) = H+

gilt, wobei

H+ :=
1

E [N ]E
[
T̂α1 log T̂1

] ∫ ∞
0

(
P (R > t)− E [N ]P

(
T̂1R > t

))
tα−1dt

=
E
[(∑N

j=1 T̂jRj + C
)α
−
∑N

j=1

(
T̂jRj

)α]
αE [N ]E

[
T̂α1 log T̂1

] .

Beweis. Seien Tj := 1{N≥j}T̂j für j ≥ 1 ((Tj)j≥1 i.A. also weder unabhängig noch
gleichverteilt). Dann ist (5.3) gleichbedeutend mit (1.1) für (C, T1, T2, T3, ...) und wir
wollen Satz 4.13 darauf anwenden. Aufgrund von (5.4) bis (5.6) gilt

E

[∑
j≥1

|Tj|α
]

= E

[
N∑
j=1

E
[
T̂αj

∣∣∣N]] = E [N ]E
[
T̂j

]
(5.4)
= 1, (IRT-1)

µα = E

[∑
j≥1

|Tj|α log |Tj|

]
= E

[∑
j≥1

T̂αj 1{N≥j} log
(
T̂j1{N≥j}

)]

= E

[
N∑
j=1

E
[
T̂αj log T̂j

∣∣∣N]] = E [N ]E
[
T̂α1 log T̂1

] (5.5)
∈ (0,∞ ]

(IRT-2)

(hier ging 0α log 0 = 0 ein) und
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P (log T1 ∈ ·, T1 6= 0) = P
(

log T̂1 ∈ ·, T̂1 6= 0
)
P (N ≥ 1)

ist aufgrund von (5.6) nichtarithmetisch
(IRT-3)

(hier ging die Unabhängigkeit von N und T̂1 ein).

Weiter gilt für α ≤ 1

E

(∑
j≥1

|Tj|
α

1+ε

)1+ε
 Bem 4.2

≤
∥∥∥T̂ α

1+ε

1

∥∥∥1+ε

1

∥∥∥∥∥∑
j≥1

1{N≤1}

∥∥∥∥∥
1+ε

1+ε

+ E

[∑
j≥1

T
α

1+ε
(1+ε)

j

]

=
∥∥∥T̂ α

1+ε

1

∥∥∥1+ε

1
E
[
N1+ε

]
+ E [N ]E

[
T̂α1

]
<∞

und für α > 1 ∣∣∣∣∣E
[∑
j≥1

Tj

]∣∣∣∣∣ = E [N ]E
[
T̂1

]
< 1

sowie

E

[(∑
j≥1

|Tj|

)α]
Bem 4.2

≤
∥∥∥T̂1

∥∥∥α
dαe−1

∥∥∥∥∥∑
j≥1

1{N≥j}

∥∥∥∥∥
α

α

+ E

[∑
j≥1

Tαj

]
=

∥∥∥T̂1

∥∥∥α
dαe−1

‖N‖αα + E [N ]E
[
T̂α1

]
<∞.

Da alle Voraussetzungen erfüllt sind, existiert nach Satz 4.13 die Zufallsgröße R als
Lösung von (5.3). Nach der Konstruktion in (4.27) sehen wir sofort, dass R ≥ 0
P-f.s.. Wir sind in Fall (a) von Satz 4.13, also folgen mit

E

[∑
j≥1

1{TjR>t}

]
= E

[∑
j≥1

1{N≥j}1{T̂jR>t}

]
= E

[∑
j≥1

1{N≥j}E
[
1{T̂jR>t}

∣∣∣N]]

= P
(
T̂1R > t

)
E

[∑
j≥1

1{N≥j}

]
= E [N ]P

(
T̂1R > t

)
(5.7)

für t > 0 die Behauptungen.

Bemerkung 5.3. Die Bedingung (3.1), die im Beweis von Satz 4.13 nachgewiesen
wird, vereinfacht sich hier unter den Gegebenheiten von Satz 5.2 zu∫ ∞

0

∣∣∣P (R > t)− E [N ]P
(
T̂1R > t

)∣∣∣ tα−1dt <∞

(vgl. Rechnung (5.7)). Hieraus folgt insbesondere, dass

t 7→ P

(
N∑
j=1

T̂jR + C > t

)
und t 7→ E [N ]P

(
T̂1R > t

)
das gleiche asymptotische Verhalten besitzen, falls E |Rα| =∞ (vgl. Bemerkung 3.6
(c)).
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A Das Key Renewal Theorem

Eine wichtige Anwendung von Blackwells Erneuerungsthorem24 ist das Key Renewal
Theorem, welches ein wichtiges Hilfsmittel für den Beweis des Impiliziten Erneue-
rungstheorems von Goldie ist (Satz B.1). Wir wollen hier sowohl das Key Renewal
Theorem als auch eine Verallgemeinerung dessen auf eine Matrix-Version vorstellen,
die entsprechend für den Beweis des Impliziten Erneuerungstheorems mit Verzwei-
gung von entscheidender Bedeutung ist (Satz 3.5). Zunächst eine Definition.

Definition A.1. Für ein endliches Maß F heißt

U :=
∑
n≥0

F ∗n

das zu F gehörige Erneuerungsmaß. Für eine n× n-Matrix H, deren Einträge end-
liche Maße auf (R,B (R)) sind, heißt

U :=
∑
n≥0

H∗n

das zu H gehörige Matrixerneuerungsmaß.

Damit lautet das Key Renewal Theorem:25

Satz A.2. Gegeben eine nichtarithmetische Verteilung F mit Erneuerungsmaß U
und Erwartungswert µ ∈ (0,∞] , gilt für jede dRi Funktion f : R→ R

lim
t→∞

(U ∗ f) (t) =
1

µ

∫
R
f dλλ.

Bemerkung A.3. Gegeben ein α > 0 und ein reellen Zufallsvektor (Tj)j≥1, die
(IRT-1) und (IRT-2) erfüllen, ist η genau dann nichtarithmetisch, wenn (IRT-3)
gilt. Dies liegt daran, dass für A ∈ B (R)

η (A) =
∑
j≥1

E [|Tj|α 1A (log |Tj|)]

gilt.
In der Situation von Satz 3.5 Fall (a) folgt mit Satz A.2 für jede dRi Funktion

f : R→ R

lim
t→∞

(
ν+ ∗ f

)
(t) =

1

µα

∫
R
f dλλ.

24Vgl. Theorem 1 in Kapitel 11 §9 in [6].
25Vgl. Bemerkung nach Theorem 1 in Kapitel 11 §9 in [6] bzw. für µ =∞ Theorem 4 in [12] mit

n = 1.
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Für die verallgemeinerte Version benötigen wir die folgende Definition.26 Eine
Matrix P ∈ {0, 1}n×n heißt Permutationsmatrix, falls jede Zeilen- und jede Spalten-
summe 1 ergeben, also falls in jeder Spalte und jeder Zeile genau eine 1 steht.

Definition A.4. Eine Matrix A ∈ Rn×n heißt reduzibel, falls

(a) n = 1 und A = 0 gilt oder

(b) ein r ∈ {1, ..., n− 1} und eine Permutationsmatrix P ∈ Rn×n existieren, sodass

P TAP =

(
A1 A2

0 A3

)
(A.1)

für Matrizen A1 ∈ Rr×r, A2 ∈ Rr×n−r, A3 ∈ Rn−r×n−r und die Nullmatrix
0 ∈ Rn−r×r gilt.

Eine Matrix, die nicht reduzibel ist, heißt irreduzibel.

Für eine Matrix A ist ihre Irreduzibilität gleichbedeutent mit der Irreduzibilität
von AT : Ist A reduzibel, erfüllt also (A.1) für eine Permutationsmatrix P , so gilt
für Einheitsmatrizen I1 ∈ Rr×r, I2 ∈ Rn−r×n−r und Nullmatrizen 01 ∈ Rr×n−r,
02 ∈ Rn−r×r(

01 I1

I2 02

)T
P TATP

(
01 I1

I2 02

)
=

((
01 I1

I2 02

)T
P TAP

(
01 I1

I2 02

))T

=

((
01 I1

I2 02

)T (
A1 A2

0 A3

)(
01 I1

I2 02

))T

=

((
A3 0
A2 A1

))T
=

(
AT3 AT2
0T AT1

)
,

also erfüllt AT (A.1) für r̂ := n− r und P̂ := P

(
01 I1

I2 02

)
.

Gegeben eine nichtnegative, irreduzible Matrix A mit Eigenwert 1 als betragsmä-
ßig größtem Eigenwert (|λ| ≤ 1 für alle Eigenwerte λ ∈ C von A), besitzt der
Eigenraum zu 1 die algebraische Vielfachheit 1, einen linken Eigenvektor l und einen
rechten r mit li, ri ≥ 0 für alle i = 1, ..., n.27 Dies wird im folgenden Satz auf die
Matrix H (R) angewendet, die aufgrund der Nichtnegativität der Einträge von H
nichtnegativ ist.

Für eine n× n-Matrix H von Maßen auf (R,B (R)) und B ∈ B (R) sei

H (B) := (Hi,j (B))1≤i,j≤n ∈ [0,∞]n×n .

Ist g : R→ R eine bzgl. allen Hi,j quasiintegrierbare Funktion, so sei∫
R
g dH :=

(∫
R
g dHi,j

)
1≤i,j≤n

.

Nun kommen wir zum verallgemeinerten Key Renewal Theorem:28

26Vgl. Definition 6.2.21 in [8].
27Vgl. Theorem 8.4.4 in [8]. Wir nutzen, dass l rechter Eigenvektor zu AT ist.
28Vgl. Theorem 4 in [12].
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Satz A.5. Sei H eine symmetrische n×n-Matrix, deren Einträge endliche Maße auf
(R,B (R)) sind und für die

∑
1≤i,j≤nHi,j nichtarithmetisch ist, und U ihr Matrixer-

neuerungsmaß. Nehmen wir an, dass H (R) eine irreduzible Matrix mit Eigenwert
1 als betragsmäßig größtem Eigenwert ist, l linker und r rechter Eigenvektor zum
Eigenwert 1 mit li, ri ≥ 0 für alle i = 1, ..., n sind und µ∗ := l ·

∫
R id dH · r ∈ (0,∞] ,

so gilt für dRi Funktionen fj : R→ R, j = 1, ..., n,

lim
t→∞

(U ∗ f) (t) =

(
n∑
i=1

(Ui,j ∗ fi) (t)

)
1≤j≤n

=
rl

µ∗

(∫
R
fj dλλ

)
1≤j≤n

.

Bemerkung A.6. (a) In Theorem 4 in [12] sind die Voraussetzungen an die Matrix
H schwächer. Wir haben hier auf diese allgemeinere Version dennoch verzichtet,
um die Übersichtlichkeit und Funktionalität des Anhangs zu wahren.

(b) Befinden wir uns in der Situation von Fall (b) des Beweises von Satz 3.5, so gilt
hier insbesondere η+, η− 6≡ 0 und

H =

(
η+ η−

η− η+

)
, U = G.

Da H (R) eine reelle Matrix mit nichtverschwindenden Einträgen ist, ist H (R)
offensichtlich irreduzibel, weiter sind 1 = η (R) = η+ (R) +η− (R) (vgl. (IRT-1))
und η+ (R)− η− (R) ∈ (−1, 1) Eigenwerte von H (R) und es gilt

l = (1 1) , r =

(
1
1

)
, µ∗ = 2

∫
id dη = 2µα, f = g =

(
g+

g−

)
.

Mit
∑

1≤i,j≤2Hi,j = 2η folgt durch (IRT-3), dass
∑

1≤i,j≤2Hi,j nichtarithmetisch
ist. Also können wir hier mit Satz A.5 schießen, dass

lim
t→∞

(G ∗ g) (t) = lim
t→∞

(U ∗ f) (t) =
rl

µ∗

(∫
fj dλλ

)
1≤j≤2

=
1

2µα

(
1 1
1 1

)(∫
g+ dλλ∫
g− dλλ

)
=

1

2µα

(∫
g+ + g− dλλ∫
g+ + g− dλλ

)
.

B Goldies Implizites Erneuerungstheorem

Der Satz 3.5 verallgemeinert das von Goldie (1991) in [7] gegebene Implizite Erneue-
rungstheorem, welches den Fall ohne Verzweigung betrachtet und im folgenden an-
gegeben wird. Wir legen eine Zufallsgröße T zugrunde und die Bedingungen (IRT-1)
bis (IRT-3) entsprechen in diesem Fall für α > 0

E [|T |α] = 1 (IRT-1∗)

E [|T |α log |T |] ∈ (0,∞] (IRT-2∗)

P (log |T | ∈ ·, T 6= 0) ist nichtarithmetisch. (IRT-3∗)
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Goldies Implizites Erneuerungstheorem lautet nun:29

Satz B.1. Gegeben ein α > 0 und eine reelle Zufallsgröße T , die (IRT-1∗) bis
(IRT-3∗) erfüllen, sei X eine von T unabhängige Zufallsgröße.

(a) Falls T ≥ 0 P-f.s., so gilt:

(1) Ist E
[
(X+)

β
]
<∞ für alle β ∈ [0, α) und∫ ∞

0

|P (X > t)− P (TX > t)| tα−1dt <∞, (B.1)

so folgt

lim
t→∞

tαP (X > t) = H+,

(2) ist E
[
(X−)

β
]
<∞ für alle β ∈ [0, α) und∫ ∞

0

|P (X < −t)− P (TX < −t)| tα−1dt <∞, (B.2)

so folgt

lim
t→∞

tαP (X < −t) = H−,

wobei H± ∈ [0,∞) definiert ist durch

H± :=
1

µα

∫ ∞
0

(P (±X > t)− P (±TX > t)) tα−1dt

=
1

αµα
E
[(
X±
)α − ((TX)±

)α]
.

(b) Falls P (T < 0) > 0, P (T > 0) > 0 und E
[
|X|β

]
< ∞ für alle β ∈ [0, α) , so

folgt, falls (B.1) und (B.2) erfüllt sind,

lim
t→∞

tαP (X > t) = lim
t→∞

tαP (X < −t) = H =
H+ +H−

2
,

wobei

H :=
1

2µα

∫ ∞
0

(P (|X| > t)− P (|TX| > t)) tα−1dt

=
1

2αµα
E [|X|α − |TX|α] .

29Theorem 2.3 in [7].
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Neben Satz B.1 betrachtet Goldie auch die stochastische Rekursionsgleichung

R
d
= TR + C (1.1∗)

und beweist für eine Lösung dieser Gleichung ein Analogon bzw. einen Spezialfall
von Satz 4.13:30

Satz B.2. Gegeben ein α > 0 und ein reeller Zufallsvektor (C, T ) mit P (C 6= 0) > 0
und ‖C‖α < ∞, seien (IRT-1∗) bis (IRT-3∗) erfüllt. Dann existiert eine Lösung R
zu (1.1∗) in ∩β<αLβ, deren Verteilung in ∩β<αPβ (R) eindeutig ist, und es gilt:

(a) Ist T ≥ 0 P-f.s., so folgt

lim
t→∞

tαP (R > t) = H+ und lim
t→∞

tαP (R < −t) = H−,

wobei

H± :=
1

µα

∫ ∞
0

tα−1 (P (±R > t)− P (±TR > t)) dt

=
1

αµα
E
[(

(TR + C)±
)α − ((TjRj)

±)α]
(b) Ist P (T < 0) > 0 und P (T > 0) > 0, so folgt:

lim
t→∞

tαP (R > t) = lim
t→∞

tαP (R < −t) = H,

wobei

H :=
H+ +H−

2
=

1

2µα

∫ ∞
0

tα−1 (P (|R| > t)− P (|TR| > t)) dt

=
1

2αµα
E [|TR + C|α − |TR|α]

C Grundlegende Integralgleichung

Lemma C.1. Seien Y,X,X1, X2, X3, ... Zufallsgrößen und α > 0. Dann gilt∫ ∞
0

E
∣∣1{X>t} − 1{Y >t}∣∣ tα−1dt =

1

α
E
∣∣(X+

)α − (Y +
)α∣∣ . (C.1)

Falls ∫ ∞
0

E

∣∣∣∣∣∑
j≥1

1{Xj>t} − 1{Y >t}

∣∣∣∣∣ tα−1dt <∞ (C.2)

und E
[∑

j≥1

(
X+
j

)β]
<∞ für ein β ∈ (0, α] erfüllt ist, gilt ebenfalls∫ ∞

0

E

[∑
j≥1

1{Xj>t} − 1{Y >t}

]
tα−1dt =

1

α
E

[∑
j≥1

(
X+
j

)α − (Y +
)α]

. (C.3)

30Vgl. Satz 4.1 in [7].
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Beweis. Zunächst gilt aufgrund von Tonelli (Riemann- und Lebesgue-Integral ent-
sprechen sich aufgrund von Bemerkung C.2 (c))∫ ∞

0

E
∣∣1{X>t} − 1{Y >t}∣∣ tα−1dt = E

[∫ ∞
0

∣∣1{X>t} − 1{Y >t}∣∣ tα−1dt

]
.

Sei nun ω ∈ Ω. Falls X (ω) ≥ Y (ω), so gilt∫ ∞
0

∣∣1{X>t} (ω)− 1{Y >t} (ω)
∣∣tα−1dt =

∫ ∞
0

(
1{X>t} (ω)− 1{Y >t} (ω)

)
tα−1dt

=

∣∣∣∣∫ ∞
0

(
1{X>t} (ω)− 1{Y >t} (ω)

)
tα−1dt

∣∣∣∣ . (C.4)

Da dies symmetrisch in X und Y ist, gilt (C.4) also auch, falls X (ω) < Y (ω).
Weiter gilt∫ ∞

0

1{X>t} (ω) tα−1dt =

∫ X+(ω)

0

tα−1dt =

(
1

α
tα
∣∣∣∣X+(ω)

0

=
1

α

(
X+ (ω)

)α
. (C.5)

Also folgt zusammen (C.1):

E

[∫ ∞
0

∣∣1{X>t} − 1{Y >t}∣∣ tα−1dt

]
(C.4)
= E

∣∣∣∣∫ ∞
0

(
1{X>t} − 1{Y >t}

)
tα−1dt

∣∣∣∣
(C.5)
=

1

α
E
∣∣(X+

)α − (Y +
)α∣∣ .

(C.3) folgt mit dem Satz von Fubini und dem Satz von der monotonen Konver-
genz (Integrierbarkeit wird durch Tonelli und (C.2) sichergestellt, Riemann- und
Lebesgue-Integral entsprechen sich aufgrund von Bermerkung C.2 (c)):∫ ∞

0

E

[∑
j≥1

1{Xj>t} − 1{Y >t}

]
tα−1dt

= E

[∫ ∞
0

(∑
j≥1

1{Xj>t} − 1{Y >t}

)
tα−1dt

]

= E

[∫ ∞
0

(∑
j≥1

1{Xj>t}

)
tα−1dt−

∫ ∞
0

1{Y >t}t
α−1dt

]
1≥0
= E

[∑
j≥1

∫ ∞
0

1{Xj>t}t
α−1dt−

∫ ∞
0

1{Y >t}t
α−1dt

]
(C.5)
=

1

α
E

[∑
j≥1

(
X+
j

)α − (Y +
)α]

.
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Bemerkung C.2. (a) Ist (C.1) endlich, so gilt dieselbe Gleichung auch ohne Be-
träge ((C.2) und (C.3) auf die Folge X := X1 und X2 ≡ X3 ≡ ... ≡ 0 angewen-
det).

(b) Für eine Zufallsgröße X gilt insbesondere
∫∞

0
P (X > t) tα−1dt = 1

α
E [(X+)

α
]

und für zwei Zufallsgrößen X, Y∫ ∞
0

|P (X > t)− P (Y > t)| tα−1dt ≤
∫ ∞

0

E
∣∣1{X>t} − 1{Y >t}∣∣ tα−1dt

(C.1)
=

1

α
E
∣∣(X+

)α − (Y +
)α∣∣ .

(c) Gegeben ein β ∈ (0, α] mit E
[∑

j≥1

(
X+
j

)β]
<∞, folgt für jedes Integral

∫ b

0

E

∣∣∣∣∣∑
j≥1

1{Xj>t} − 1{Y >t}

∣∣∣∣∣ tα−1dt <∞

mit b > 0, denn es gilt∫ b

0

E
[
1{Y >t}

]
tα−1dt =

∫ ∞
0

P
(
Y 1{Y <b} > t

)
tα−1dt

Bem.(b)
= E

[(
Y +
)α
1{Y <b}

]
≤ bα <∞ (C.6)

und ∫ b

0

E

[∑
j≥1

1{Xj>t}

]
tα−1dt =

∑
j≥1

∫ ∞
0

E

1{
Xj1{Xj<b}>t

}
 tα−1dt

Bem.(b)
= E

[∑
j≥1

(
X+
j

)β (
X+
j

)α−β
1{Xj<b}

]

≤ bα−βE

[∑
j≥1

(
X+
j

)β]
<∞.

Nach Satz 9.17 aus [2] entsprechen also in diesem Fall in Lemma C.1 die Riemann-
jeweils den Lebesgue-Integralen. Die Rechnung (C.6) zeigt, dass wir aus dem
selben Grund (C.1) in jedem Fall als Lebesgue-Integral schreiben können (ins-

besondere ohne die Forderung E
[
(X+)

β
]
<∞).

(d) Eine analoge Aussage zu (C.1) gilt im zweiten Fall - also mit der Summe - im
Allgemeinen nicht.

Es ist sogar möglich, dass das entsprechende zweite Integral 0 und das ers-
te Integral noch nicht mal endlich ist: Seien dazu z.B. Xj := 2−

j
αY . Wegen
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∑
j≥1

(
X+
j

)α
= (Y +)

α
sehen wir sofort

E

∣∣∣∣∣∑
j≥1

(
X+
j

)α − (Y +
)α∣∣∣∣∣ = 0.

Auf der anderen Seite gilt∫ ∞
0

E

∣∣∣∣∣∑
j≥1

1{Xj>t} − 1{Y >t}

∣∣∣∣∣ tα−1dt

=

∫ ∞
0

E

∣∣∣∣∣∑
j≥2

1{
Y >2

j
α t

} −
(
1{Y >t} − 1{Y >2

1
α t
})∣∣∣∣∣ tα−1dt

=

∫ ∞
0

E

∣∣∣∣∣∑
j≥2

1{
Y >2

j
α t

} − 1{
2

1
α t≥Y >t

}
∣∣∣∣∣ tα−1dt

=

∫ ∞
0

E

[∑
j≥2

1{
Y >2

j
α t

} + 1{
2

1
α t≥Y >t

}
]
tα−1dt

≥
∫ ∞

0

E

[∑
j≥2

1{
Y >2

j
α t

}
]
dt =

∑
j≥2

∫ ∞
0

P (Xj > t) tα−1dt

=
∑
j≥2

1

α
E
[(
X+
j

)α]
=

1

2α
E
[(
Y +
)α]

Ist also Y + eine Zufallsgröße mit unendlichem α-Moment, so ist dieses Integral
unendlich.

D Die Topchii-Vatutin-Ungleichung

Im Beweis von Lemma 4.9 nutzen wir die Topchii-Vatutin-Ungleichung für Martin-
gale mit endlichen Eh (Mn), wobei h schwach konvex ist: Eine Funktion h : R→ R
heißt schwach konvex, falls

(a) h eine konvexe, gerade Funktion mit h (0) = 0 ist,

(b) h auf (0,∞) differenzierbar ist, sodass limx↓0 h
′ (x) existiert, und

(c) h′ auf (0,∞) konkav ist.

Eine schwach konvexe Funktion ist insbesondere nichtnegativ und auf (0,∞) mono-
ton steigend (folgt direkt aus (a)). Die hier zu findende Version ist Theorem 1 in [4]
entnommen, es basiert auf der Originalversion, Theorem 2 in [13].
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Satz D.1. Sei h eine schwach konvexe Funktion, (Mn)n≥0 ein (Gn)n≥0-Martingal
mit E [h ◦Mn] <∞ für alle n ≥ 0. Dann folgt für ein c > 0 und für alle n ≥ 1

Eh (Mn)− Eh (M0) ≤ c

n∑
j=1

Eh (Mj −Mj−1).

Es kann in jedem Fall c = 2 gewählt werden. Falls (Mn)n≥0 nichtnegativ ist oder alle
Mn −Mn−1 bedingt unter Gn symmetrisch sind, können wir sogar c = 1 wählen.

Bezeichnen wir M∞ := lim infn→∞Mn, so folgt in der Situation von Satz D.1 mit
dem Lemma von Fatou

Eh (M∞)− Eh (M0) ≤ lim inf
n→∞

Eh (Mn)− Eh (M0)

≤ c
∑
j≥1

Eh (Mj −Mj−1).
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existiert, β > 0
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dRi direkt Riemann-integrierbar

f.s. fast sicher

iid unabhängig und identisch verteilt
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