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Introduction

Iterated Function Systems have a wide range of applications, for example
simulation algorithms, control theory, queuing theory and other branches of
applied probability. Moreover, Markov chains can be constructed by iter-
ated random functions which makes it possible to consider this theory from
another point of view. Diaconis and Freedman give an excellent review on
the theory of iterated random functions and its applications including an ex-
tensive list of relevant literature. The following two examples are described
there in detail, see [DF]. We will use them for an introduction in this thesis.

Consider the open unit interval (0, 1) and choose any point x ∈ (0, 1).
Then pick one of the intervals (0, x) and (x, 1) and move to a random y in
the interval you have chosen. We can describe this procedure by the functions

φu(x) = ux and ψu(x) = x+ u(1− x)

where on the one hand u is uniformly chosen on (0, 1), and on the other
hand we choose one of the two functions with probability 1/2. Now we
continue this procedure with starting point y. If (un)n≥1 is a sequence of
uniformly distributed random variables and Fn ∈ {φun , ψun}, n ≥ 1, each
with probability 1/2, we can describe this system as follows: M0 = x, Mx

1 =
F1(x), M

x
2 = F2 ◦ F1(x) and inductively

Mx
n = Fn(Mx

n−1), n ≥ 1.

In the second example let X = R, a ∈ (0, 1) and consider the functions
Fζn = ax + ζn where x ∈ X and ζn = ±1, each with probability 1/2 for
all n ≥ 1. Also in this case we can consider a system of iterations, namely
M0 = x,

Mx
n = Fζn(Mx

ζn−1
), n ≥ 1.

More generally, let (X, d) be a complete separable metric space and (Fn)n≥1

a sequence of independent, identically distributed functions from X to X.
Furthermore, assume that these functions are uniform Lipschitz, i.e.

l(Fn) = sup
x 6=y

d(Fn(x), Fn(y))

d(x, y)
<∞ a.s.
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We are interested in analysing the system M0 = x,

Mx
n = Fn(Mx

n−1) = Fn ◦ . . . ◦ F1(x), n ≥ 1, x ∈ X.

Provided that the Liapunov exponent l∗
def
= limn→∞

1
n

log l(Fn ◦ . . .◦F1) < 0
a.s., E log+ L1 <∞ and E log+ d(F1(x0), x0) <∞ the forward iteration Mx

n ,
n ≥ 1, converges weakly to a unique stationary distribution π for each x ∈ X,
while the associated backward iterations M̂x

n = F1 ◦ . . .◦Fn(x) converges a.s.
to a random variable M̂∞ which is independent of x and has distribution π.
Going back to our second example the forward and backward iterations are
given by

Mx
n = anx+ an−1ζ1 + . . .+ aζn−1 + ζn

M̂x
n = anx+ ζ1 + aζ2 + . . .+ an−1ζn

for all n ≥ 1. With this discription it becomes clear why we have different
kinds of convergence: Considering the forward process at stage n new ran-
domness is introduced by ζn. Otherwise, the new randomness at stage n, with
respect to the backward process is damped by an−1 (note that a ∈ (0, 1)).

Alsmeyer and Fuh establish [AF] limit theorems under slightly stronger
assumptions, namely the mean contratction assumption E logL1 < 0 and
E log+ d(F1(x0), x0) < ∞ for some x0 ∈ X. Particularly, they analyse for
each γ ∈ (γ∗, 1) the probability

P(d(M̂∞, M̂
x
n ) > γn)

for large n, where γ∗ is a suitable constant arising from their analysis. The
key to the proof of these results is the analysis of the inequality

d(M̂x
n+m, M̂

x
n ) ≤ exp

(
n∑

k=1

l(Fk)

)
d(Fn+1 ◦ . . . ◦ Fn+m(x), x) a.s.

which holds true for all n,m ≥ 0. Since E logL1 < 0, the sequence
(
∑n

k=1 logLk)n≥1
constitutes an ordinary random walk with negative drift.

By imposing additional polynomial or exponential moment conditions on
log(1 + L1) and log(1 + d(F1(x0), x0)) it is possible to provide suitable esti-
mates for the factor d(Fn+1 ◦ . . . ◦ Fn+m(x), x) so as to ensure that the right
hand side of the foregoing inequality converges to 0 a.s. It is in fact shown
in [AF] that the decrease of the Prokhorov distance between P n(x, ·) and π
is of polynomial, respectively exponential order where P n(x, ·) denotes the
n-step transition kernel of the Markov chain of the forward iterations.
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A closer look at the approach chosen by Alsmeyer and Fuh shows that
their results can be improved in several aspects. First, it seems quite natural
to work with the weaker conditions ”l∗ < 0 a.s. and E log+ L1 <∞” instead
of ”E logL1 < 0” so as to ensure contraction of the given Iterated Function
System. Second, and indeed more important, the constant γ∗ arising in
various results in [AF] should be el∗ but is actually larger there caused by
the chosen estimate

l(F1:n) ≤
n∑

k=1

l(Fk)

at the outset of the analysis. This estimate is too crude to give γ∗ = el∗ .
As a consequence, we will here provide a refined analysis involving both,
(l(F1:n))n≥1 and (

∑n
k=1 l(Fk))n≥1.

The thesis is organised as follows: Iterated Function Systems including
necessary notation are formally introduced in Chapter 1, which also sketches
some of the central ideas of our approach as opposed to that in [AF]. Chapter
2 contains necessary technical results which serve as prerequisites thereafter.
It may be skipped at first reading. Chapter 3 contains our main results in-
cluding their proofs and is followed by three Appendices collecting some facts
from renewal theory, the definition of the Prokhorov metric and formulas for
calculating expected values.

I would like to thank all, who supported me by writing my diploma thesis.
In particular, thanks to my supervisor Prof. Dr. Alsmeyer. He has spared
a lot of time for me answering every question I had and has given me many
helpful comments.





Contents

1 IFS and its properties 9

2 Prerequisites 15
2.1 The excursions . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Auxiliary lemmata . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Condition set (A) . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Condition set (B) . . . . . . . . . . . . . . . . . . . . . 33

3 Limit Theorems 37
3.1 Limit theorems for condition set (A) . . . . . . . . . . . . . . 39
3.2 Limit theorems for condition set (B) . . . . . . . . . . . . . . 42
3.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . 45
3.3.2 Proof of Theorem 3.5 . . . . . . . . . . . . . . . . . . . 52

A Renewal Theory 55

B Prokhorov metric 61

C Auxiliary results 63

Bibliography 67

7





Chapter 1

Iterated Function System and
its properties

The brief examples we have seen in the introduction may serve as a mo-
tivation to define an Iterated Function System in the following way. Let
(X, d) be a complete separable metric space with Borel-σ-field B(X) and as-
sume M0, ϑ1, ϑ2, . . . are random variables defined on a given probability space
(Ω,A,P). Furthermore, the ϑ1, ϑ2, . . . have identical distribution Λ and take
values in a measurable space (Θ,A). Let F : (Θ×X,A⊗B(X)) → (X,B(X))
be a jointly measurable function which is Lipschitz continuous in the second
argument, i.e., if x, y ∈ X and ϑ ∈ Θ, the inequality

d(F (ϑ, x), F (ϑ, y)) ≤ Kϑd(x, y) (1.1)

holds true for some Kϑ depending on ϑ. Then

Mn = F (ϑn,Mn−1), n ≥ 1, (1.2)

is called an iterated function system (IFS ) of i .i .d . Lipschitz maps . Since
M0, ϑ1, ϑ2, . . . are independent, (Mn)n≥0 constitutes a homogeneous Markov
chain with state space X and transition kernel given by

P (x,B) = Λ(F (·, x) ∈ B)

for x ∈ X and B ∈ B(X). P n denotes the n-step transition kernel, respec-
tively. We further write Px and Ex for P(·|M0 = x) and E(·|M0 = x), respec-

tively. If ν is a probability distribution on X, then Pν
def
=

∫
Pxν(dx) with

expectation operator Eν . For probabilities and expectations not depending
on initial conditions we simply write P and E, respectively.

9



10 CHAPTER 1. IFS AND ITS PROPERTIES

We are naturally interested in the minimal Kϑ satisfying (1.1). Hence we
consider the function

l : CLip(X,X) → R+
0 ∪ {∞},

f 7→ l(f)
def
= sup

x6=y

d(f(x), f(y)

d(x, y)
(1.3)

where CLip(X,X) is the set of all Lipschitz continuous mappings f : X → X.
It is necessary to make some comments about the measurable structure of

CLip(X,X) and the measurability of l to ensure that the following expressions
are well defined. To this end let X0 be a dense subset of X and M(X0,X)
the set of all mappings f : X0 → X. We endow M(X0,X) with the product
topology and product-σ-field. Then we have the following

Lemma 1.1. CLip(X,X) is a Borel subset of M(X0,X), the mappings

Φ : CLip(X,X)× X → X
(f, x) 7→ f(x)

and l are Borel-measurable.

Proof. For a proof and further details see [DF, p. 58].

In our situation this means that

Ln
def
= l(F (ϑn, ·)), n ≥ 1, (1.4)

is measurable and that (Ln)n≥1 constitutes a sequence of i.i.d. random vari-
ables due to our model assumptions.

In order to simplify the notation, let us write Fn(x) for F (ϑn, x). We

define Fk:n
def
= Fk ◦ . . . ◦ Fn and the reverse iteration Fn:k

def
= Fn ◦ . . . ◦ Fk

for all 1 ≤ k ≤ n. Put F0:1(x) = F1:0(x)
def
= x. By introducing this notation

we obtain
Mn = Fn(Mn−1) = Fn:1(M0) (1.5)

for all n ≥ 1.
The question now is: Under which conditions does an IFS converge to

a stationary distribution π? A positive answer is that the random variable
L1 has to be less than 1 for typical ϑ1, in other words: it has to be mean
contractive. Alsmeyer and Fuh, see [AF], work with the conditions

E logL1 < 0 and E log+ d(F1(x0), x0) <∞ (1.6)

for some x0 ∈ X.
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The idea to prove convergence is to analyse the backwards iteration

M̂n
def
= F1:n(M0), n ≥ 1, (1.7)

rather than the forward iteration Mn. This turns out to be fruitful because,
on the one hand, the backward iterations exhibit a.s. convergence rather
than only weak convergence and, on the other hand,

Px(Mn ∈ ·) = Px(M̂n ∈ ·) (1.8)

for all n ≥ 1 and x ∈ X which holds true by the independence ofM0, ϑ1, ϑ2, . . .
Further it is useful to introduce the sequences

Mx
n

def
= Fn:1(x)

M̂x
n

def
= F1:n(x)

for x ∈ X. The reason is that we will do comparisons between either Mx
n and

My
n or M̂x

n and M̂y
n to prove our assertions. Also note the identity

P((Mx
n , M̂

x
n ) ∈ ·) = Px((Mn, M̂n) ∈ ·).

Returning to our initial question, we will try more precisely to estimate
the distance d(M̂x

∞, M̂
x0
n ) and show that it converges to 0 a.s. Therefore M̂∞

is then a.s. the limit of M̂n with distribution π, say. How this works and what
the basic idea in this context is becomes clear if we consider the inequality

d(M̂x
n+m, M̂

x
n ) = d(F1:n(Fn+1:n+m(x)), F1:n(x))

≤ l(F1:n)d(Fn+1:n+m(x), x)

≤

(
n∏

k=1

l(Fk)

)
d(Fn+1:n+m(x), x) a.s.

(1.9)

which holds true for all n,m ≥ 0 and x ∈ X. This suggests to provide further
estimates by studying the zero-delayed random walk

n∑
k=1

log l(Fk) = log

(
n∏

k=1

l(Fk)

)
, n ≥ 0,

as it is done in [AF].
Recalling the condition of contraction, E log l(F1) < 0, the random walk

has negative drift, i.e.
∑n

k=1 log l(Fk) → −∞ as n→∞. In other words we
may assume that by iterating sufficient many functions we have

n∑
k=1

log l(Fk) ≤ log γ
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where γ is arbitrarily chosen in (0, 1). Moreover, we may assume that this
really happens by iterating finitely many functions with respect to the ex-
pected value. This procedure makes clear that renewal theory might provide
appropriate methods to analyse IFS which are contractive. Embedding this
verbally formulated idea in a mathematically correct formalism means to

consider the level log γ epochs σ0(γ)
def
= 0,

σn(γ)
def
= inf

k > σn−1(γ) :
k∑

j=σn−1(γ)+1

log l(Fj) ≤ log γ

 , n ≥ 1. (1.10)

The condition E logL1 < 0 ensures that σ1(γ) is an a.s. finite passage time
with finite expectation, say µ∗(γ), and (σn(γ))n≥0 constitutes an ordinary
discrete renewal process, see [AF] for further details.

Of course, (Mσn(γ))n≥0 again forms an IFS of i.i.d. Lipschitz maps. But
note that this IFS is strictly contractive, i.e.

max{l(F1:σ1(γ)), l(Fσ1(γ):1)} ≤ γ < 1

by definition of σ1. Using M̂x
σn(γ) = F1:σn(γ)(x) we infer from (1.9)

d(M̂x
σn+m(γ), M̂

x
σn(γ)) ≤ γnd(Fσn(γ)+1:σn+m(γ)(x), x) (1.11)

for all n,m ≥ 0 and x ∈ X.
The proof of convergence results of (Mn)n≥0 will now be done in two

steps. First provide conditions under which the strictly contractive sequences
(Mσn(γ))n≥0, or (M̂σn(γ))n≥0, converge for any γ ∈ (0, 1). In a second step
ensure that the excursions between two successive ladder epochs are moder-
ate enough to ensure convergence of the full sequences (Mn)n≥0, respectivly

(M̂n)n≥0. If they are not given in the generality worked out in the first step
adjust the results for the original sequences.

For instance, it is shown in [AF] that, given

E logL1 < 0 and E log+ d(F1(x0), x0) <∞,

the assertion
lim

n→∞
P(d(M̂x

∞, M̂
x0
n ) > γn) = 0 (1.12)

holds true for all x ∈ X and γ ∈ (γ∗, 1) where γ∗ is a constant defined as
follows:

log γ∗
def
= inf

γ∈(0,1)

log γ

µ∗(γ)
(1.13)

(recall that µ∗(γ) = Eσ1(γ)).
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The aim of this thesis is to restate the convergence results under slightly
weaker conditions. Particularly, we drop the condition E logL1 < 0 and
just claim E log+ L1 < ∞. Of course, we then have to find a new condition
which guarantees a suitable kind of contraction. To this end we introduce
the Liapunov exponent.

Proposition and Definition 1.2. Given an IFS of i.i.d. Lipschitz maps
and E log+ L1 <∞, there exists a constant l∗ satisfying

lim
n→∞

1

n
log l(Fn:1) = inf

n≥1

1

n
log l(Fn:1) = l∗ a.s. (1.14)

as well as

lim
n→∞

1

n

∫
log l(Fn:1)dP = l∗. (1.15)

l∗ is called the Liapunov exponent.

Proof. The Liapunov exponent exists by Kingman’s Subadditive Ergodic
Theorem where it is to be noted that log l(·) is subadditive, i.e. log l(F ◦G) ≤
log l(F )+log l(G) for any two functions F,G ∈ CLip(X,X). For further details
see Proposition 2 in [Elt, p. 40] and the subsequent remark.

Let l∗ < 0 a.s. Then there exists an ε > 0 satisfying l∗ + ε < 0 a.s.
Obviously, the inequality

1

n
log l(Fn:1) < l∗ + ε a.s. (1.16)

for all n ≥ N where N is a suitable positive integer. By further calculations
we observe

l(Fn:1) < exp((l∗ + ε)n) < 1 a.s. (1.17)

for all n ≥ N .
Considering the last inequality it becomes clear that the condition l∗ < 0

a.s. ensures contraction. Moreover, we again may expect that the first ladder
epoch

ξ1
def
= inf

{
k ≥ 1 :

1

k
log l(F1:k) < l∗ + ε

}
has finite mean. The idea of considering ladder epochs and the corresponding
ladder heights here also turns out to be the right tool.

But we will improve [AF] in a second aspect, which is indeed more impor-
tant. Most of the results in [AF] hold for any γ in the open interval (γ∗, 1),
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see for example (1.12). It will turn out that the limit theorems are even valid
for values in the open interval (exp(l∗), 1) which is bigger than (γ∗, 1).

At the end of this chapter our considerations come back to the excursions
between two ladder epochs we will analyse in the second step. It will come
out of the proofs that the required properties with respect to the excursions
will not hold in the desired generality. To this end additional restrictions are
necessary. First we will study the excursion under the assumptions that for
some p > 0 and x0 ∈ X

E logp+1(1 + L1) <∞ and E logp+1(1 + d(F1(x0), x0)) <∞ (1.18)

hold true. In a second step we will replace these conditions by a new set of
assumptions, namely,

ELp
1 <∞ and Ed(F1(x0), x0)

p <∞ (1.19)

for some p > 0 and some x0 ∈ X. We will denote these sets of conditions
also by (A) and (B) to provide associated notations.



Chapter 2

Prerequisites

In this chapter we will collect the main tools which are necessary to prove
the limit theorems presented in Chapter 3. In the first section we introduce
the excursions between two ladder epochs on the basis of the idea presenting
in the chapter before and state some properties. In Section 2.2 we provide
among other things necessary moment results for the excursions and an esti-
mation for the distance d(M̂x0

∞ M̂
x
n ). We will distinguish between the sets of

conditions (A) and (B).

2.1 The excursions

Throughout this chapter we make the standing assumptions

l∗ < 0 a.s., (2.1)

E log+ L1 <∞ and E log+ d(F1(x0), x0) <∞ (2.2)

for some x0 ∈ X.
Inequality (1.17) and the idea of introducing suitable ladder epochs to

find a strictly contractive IFS turns out to be the right key to prove the
convergence results given below. To this end we define for any l ∈ (l∗, 0) the

ladder epochs ξ0(l)
def
= 0,

ξn(l)
def
= inf

{
k ≥ ξn−1 + 1 :

1

k − ξn−1

log l(Fξn−1+1:k) < l

}
, n ≥ 1. (2.3)

Since 1
n

log l(F1:n) → l∗ < l, ξ1 is a.s. finite and by Proposition 27.3 j)
in [ASP, p. 247], (ξn)n≥0 constitutes an ordinary random walk. Moreover,
(ξn)n≥0 is also an ordinary renewal process because, obviously, the increments

δn(l)
def
= ξn(l)− ξn−1(l) are positive for all n ≥ 0.

15
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By the following lemma we want to ensure that µ(l)
def
= Eξ1(l) is finite.

In other words: is it possible, with respect to the expected value, to iterate
the system finitely many times such that the process l(Fn:1) falls below the
associated bound? Before we start our considerations it turns out to be
helpful to simplify the notation: we will write ξn instead of ξn(l) and δn for
δn(l), respectively, for all n ∈ N and, similarly, µ = µ(l).

Lemma 2.1. Given the conditions (2.1), (2.2), let l ∈ (l∗, 0). Then E ξ1 <∞.
If in addition E logp+1(1 + L1) <∞ holds true for some p > 0 the (p+ 1)-st
moment of ξ1 is also finite. Finally, if ELp

1 < ∞, there exists s0 > 0 such
that E exp(sξ1) <∞ for all |s| < s0.

Proof. By Proposition 2 in [Elt] we know that there exists m ∈ N such that
1
m

E log l(Fm:1) < l, thus also E 1
m

log l(F1:m) < l because of (1.8). For any
n ≥ 1 we obtain

1

nm
log l(F1:nm) ≤ 1

nm

n−1∑
j=0

log l(Fjm+1:(j+1)m)

=
1

n

n−1∑
j=0

1

m
log l(Fjm+1:(j+1)m).

In the following we consider

ζ
def
= inf{n ∈ mN :

1

n
log l(F1:n) < l}.

We clearly have ζ ≥ ξ1 and therefore E ξ1 <∞ if Eζ <∞. We further have

ζ

m
= inf{n ≥ 1 :

1

nm
log l(F1:nm) < l}

≤ inf{n ≥ 1 :
1

n

n−1∑
j=0

1

m
log l(Fjm+1:(j+1)m)− l < 0}

= inf{n ≥ 1 :
n−1∑
j=0

1

m
log l(Fjm+1:(j+1)m)− nl < 0}

= inf{n ≥ 1 :
n−1∑
j=0

(
1

m
log l(Fjm+1:(j+1)m)− l) < 0}.

The elements of the sequence (log l(Fjm+1:(j+1)m) − l)j∈N0 are i.i.d., and by
definition of m we obtain

E(
1

m
log l(Fjm+1:(j+1)m)− l) = E(

1

m
log l(F1:m)− l) < 0
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which implies that the random walk ( 1
m

log l(Fjm+1:(j+1)m) − l)j∈N0 has neg-

ative drift. Using Theorem A.7, E ζ
m
< ∞ and therefore E ξ1 < ∞ as

claimed.
To prove the second assertion first note that by Minkowski’s inequality

(recall −l > 0),(
E
(

1

m
log l(F1:m)− l

)p+1
)1/(p+1)

≤

(
E
(

1

m
log l(F1:m)

)p+1
)1/(p+1)

− l.

Using log l(F1:m) ≤
∑m

j=1 logLj, independence of the Lj and Minkowski’s
inequality a second time, we estimate the last expression as follows:(

E
(

1

m
log l(F1:m)

)p+1
)1/(p+1)

≤ 1

m

m∑
j=1

(
E logp+1 L1

)1/(p+1)

=
(
E logp+1 L1

)1/(p+1)

which is finite by assumption. Referring again to the above quoted theorem,
the (p+ 1)-st moment of ζ exists and the assertion is proved.

For the last assertion we assume ELp
1 < ∞. By utilising that the Lj are

i.i.d. and p/m ≤ p we have

E exp

(
p

(
1

m
log l(F1:m)− l

))
= e−plEl(F1:m)p/m

≤ e−plE
m∏

j=1

L
p/m
j

≤ e−pl (ELp
1)

m .

The last expression is finite by assumption and by Theorem A.8 there exists
s0 such that E exp(sζ) < ∞ for all |s| < s0. Since ζ ≥ ξ1, E exp(sξ1) < ∞
for all |s| < s0 and the proof is completed.

The starting point of our considerations is to estimate d(M̂x0
∞ , M̂

x
n ), see

Chapter 1. To this end we first introduce a stopping time with respect to
the sequence (ξn)n≥0, namely,

τ(n)
def
= inf{j ≥ 0 : ξj(l) ≥ n}, n ≥ 0. (2.4)

The random variables τ(n) turns out to be helpful for the subsequent con-
siderations. Note that, by the Elementary Renewal theorem, we obtain

lim
n→∞

τ(n)

n
=

1

µ
a.s., (2.5)
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see also Corollary A.12.
Using the triangle inequality,

d(M̂x0
ξτ(n)+m

, M̂x
n ) ≤ d(M̂x0

ξτ(n)
, M̂x0

n ) + d(M̂x0
ξτ(n)+m

, M̂x0
ξτ(n)

) + d(M̂x
n , M̂

x0
n )

holds true for all n,m ≥ 0. Furthermore, estimating every summand sepa-
rately we obtain

d(M̂x0
ξτ(n)

, M̂x0
n ) ≤ l(F1:ξ1) · . . . · l(Fξτ(n)−2+1:ξτ(n)−1

)

· d(Fξτ(n)−1+1:ξτ(n)
(x0), Fξτ(n)−1+1:n(x0)) a.s.,

for the first one,

d(M̂x0
ξτ(n)+m

, M̂x0
ξτ(n)

) ≤ l(F1:ξ1) · . . . · l(Fξτ(n)−1+1:ξτ(n)
)

· d(Fξτ(n)+1:ξτ(n)+m
(x0), x0) a.s.

for the second one, and

d(M̂x
n , M̂

x0
n ) ≤ l(F1:n)d(x, x0), a.s.

for the last one (n,m ≥ 0).
At this point we are interested in the excursions, more precisely, in

d(Fξτ(n)−1+1:ξτ(n)
(x0), Fξτ(n)−1+1:n(x0)) and d(Fξτ(n)+1:ξτ(n)+m

(x0), x0).

The problem is complicated by the fact that m will later converge to infinity.
We can estimate the excursions by the random varibles Cn+1 and Dn defined

through C0
def
= 0,

Cn+1
def
= max{d(Fξn+1:ξn+1(x0), x0);

d(Fξn+1:ξn+1(x0), Fξn+1:k(x0)), ξn < k < ξn+1}
(2.6)

and
Dn

def
=
∑
j≥0

exp(lj)d(Fξn+j+1:ξn+j+1
(x0), x0), (2.7)

respectively, for all n ≥ 0.
First note that our model assumptions imply that (Cn)n≥1 and

(Fξn+1:ξn+1)n≥0 are both consisting of i.i.d. random variables. This in turn fur-
ther implies that (Dn)n≥0 constitutes a stationary sequence, see for instance
[Dur]. We will show that the condition E log+ d(F1(x0), x0) <∞ implies the
a.s. finiteness ofDn for all n ≥ 0. Furthermore, (Dn)n≥0 is ergodic, as defined
in [Bre], and autoregressive of order 1 for Dn = d(Fξn+1:ξn+1(x0), x0)+e

lDn+1.
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Observing the fact that (Fξτ(n)+k)k≥1 and (Fk)k≥1 are identically distributed
for any n ≥ 0, we also have

Dτ(n) ∼ D0 (2.8)

for all n ≥ 0, and Dτ(n) is independent of (Lj, Fj)1≤j≤ξτ(n)
and of τ(n). Fur-

ther note that the random variables Cn and Dn are linked by the inequality

Dn ≤
∑
j≥1

exp(l(j − 1))Cn+j (2.9)

for all n ≥ 0, as d(Fξn−1+1:ξn(x0), x0) ≤ Cn for each n ≥ 1.

Finally, Cτ(n) converges weakly to a limiting variable C∞, see Lemma
2.3. For this reason, and also for some of the proofs, we obtain by renewal
theoretic arguments:

Lemma 2.2. Let l ∈ (l∗, 0) and H : [0,∞) → [0,∞) be an arbitrary function
satisfying H(0) = 0. Further let � ∈ {>,≤} and U denote the renewal
measure of (ξn)n≥0. For any t ≥ 0 and n ≥ 0 then

P(H(Cτ(n))� t) =
n∑

j=1

U(n− j)P(ξ1 ≥ j,H(C1)� t) (2.10)

holds true.

Remark. For some useful informations on renewal measures see Appendix
A.

Proof. First note that

{τ(n) = j} = {ξj ≥ n, ξj−1 < n}

=
n−1⋃
k=0

{ξj ≥ n, ξj−1 = k}

=
n−1⋃
k=0

{ξj − ξj−1 ≥ n− k, ξj−1 = k}

holds true for all n, j ∈ N. Moreover, ξj−1 = δj−1 + . . . + δ1 is independent
of both ξj − ξj−1 = δj and Cj. Now choose an arbitrary t ≥ 0. Since
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ξj − ξj−1 ∼ ξ1 we have

P(H(Cτ(n))� t) =
n∑

j=0

P(τ(n) = j,H(Cj)� t)

=
n∑

j=1

P

(
n−1⋃
k=0

{ξj − ξj−1 ≥ n− k, ξj−1 = k} ∩ {H(Cj)� t}

)

=
n∑

j=1

n−1∑
k=0

P(ξj−1 = k)P(ξ1 ≥ n− k,H(C1)� t)

=
n∑

k=1

n∑
j=1

P(ξj−1 = n− k)P(ξ1 ≥ k,H(C1)� t)

=
n∑

k=1

U({n− k})P(ξ1 ≥ k,H(C1)� t)

With the help of the previous lemma, we are now able to prove two
important results:

Proposition 2.3. Cτ(n) converges weakly to a limiting variable, say C∞, with
distribution function

P(C∞ ≤ t) =
1

Eξ1

∑
n≥1

P(ξ1 ≥ n,C1 ≤ t), t ≥ 0. (2.11)

Proof. Since ξn ≥ 0 for all n ≥ 0, U({n − k}) = 0 for all k ≥ n + 1. By
Blackwell’s renewal theorem, see also A.11, we know limn→∞ U({n}) = 1/µ.
Using (2.10) (with H(x) = x on [0,∞)) and the dominated convergence
theorem, see [Sch, p. 409], we deduce

lim
n→∞

P(Cτ(n) ≤ t) = lim
n→∞

∞∑
j=1

U({n− j})P(ξ1 ≥ j, C1 ≤ t)

=
∞∑

j=1

lim
n→∞

U({n− j})P(ξ1 ≥ j, C1 ≤ t)

=
1

µ

∞∑
j=1

P(ξ1 ≥ j, C1 ≤ t)
def
= P(C∞ ≤ t)

for all t ≥ 0. The weak convergence follows by Proposition 36.5 [AWT, p.
182].



2.2. AUXILIARY LEMMATA 21

Proposition 2.4. In the situation of Lemma 2.2 the inequality

P(H(Cτ(n)) > t) ≤ Eξ11{H(Cτ(n))>t} (2.12)

holds true for all n ≥ 0 and t ≥ 0. Moreover,

sup
n≥0

EH(Cτ(n)) ≤ Eξ1H(C1). (2.13)

Proof. Since the ξk are strictly increasing, we clearly have
∑

k≥0 1{ξk=n} ≤ 1
and therefore we obtain

sup
n≥0

U({n}) = sup
n≥0

E
∑
k≥0

1{ξk=n} ≤ 1.

By combining this with (2.10), we deduce

P(H(Cτ(n)) > t) =
n∑

j=1

U({n− j})P(ξ1 ≥ j,H(C1) > t)

≤
n∑

j=1

P(ξ1 ≥ j,H(C1) > t)

≤
∑
j≥0

P(ξ1 > j,H(C1) > t)

= Eξ11{H(C1)>t}

for all t ≥ 0 and n ≥ 0. Note that the last equality follows from Corollary
C.2. Hence the first assertion is shown. Using this result and again Corollary
C.2 we obtain

EH(Cτ(n)) =

∫ ∞

0

P(H(Cτ(n)) > t)dt

≤
∫ ∞

0

Eξ11{H(C1)>t}dt = Eξ1H(C1)

for all n ≥ 0 which proves the second assertion.

2.2 Auxiliary lemmata

We start by estimating d(M̂x0
∞ , M̂

x
n ) and will do so first under the stronger

assumption that our given IFS is strongly contractive, i.e. l(F1) ≤ el a.s. for
some l ∈ (l∗, 0). As a consequence, ξn = ξn(l) ≡ n, Cn = d(Fn(x0), x0) and
Dn =

∑
j≥1 exp(l(j − 1))d(Fn+j(x0), x0).

Using the notation d(Fn+1:∞(x0), x0)
def
= limm→∞ d(Fn+1:n+m(x0), x0) for

all n ∈ N and M̂x0
∞

def
= limn→∞ M̂

x0
n we obtain
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Lemma 2.5. Let (Mn)n≥0 be an IFS of i.i.d. Lipschitz maps. Suppose the
conditions (2.1) and (2.2) are given. Assume that l(F1) ≤ el a.s. for some
l ∈ (l∗, 0). Then the Dn are a.s. finite and

d(Fn+1:∞(x0), x0) ≤ Dn a.s. (2.14)

holds true for all n ≥ 0. Furthermore,

d(M̂x0
∞ , M̂

x
n ) ≤ exp(nl)(Dn + d(x, x0)) a.s. (2.15)

for all n ≥ 0 and x ∈ X.

Proof. We first claim

d(Fn+1:n+m(x0), x0) ≤ d(Fn+1(x0), x0)

+
m∑

i=2

d(Fn+1:n+i(x0), Fn+1:n+i−1(x0)) a.s.
(2.16)

for all m ≥ 2 and n ≥ 0.

This result can be obtained by induction over m. Let n ≥ 0. For m = 2
we observe by the triangle inequality

d(Fn+1:n+2(x0), x0) ≤ d(Fn+1:n+1(x0), x0) + d(Fn+1:n+2(x0), Fn+1:n+1(x0))

almost surely and since Fn+1:n+1(x0) = Fn+1(x0) the assertion is proved for
the case m = 2. We assume that the assertion holds true for all m ≥ 2 and
consider the inductive step m −→ m+ 1:

d(Fn+1:n+m+1(x0), x0) ≤ d(Fn+1:n+m+1(x0), Fn+1:n+m(x0))

+ d(Fn+1:n+m(x0), x0)

≤ d(Fn+1:n+m+1(x0), Fn+1:n+m(x0))

+ d(Fn+1(x0), x0) +
m∑

i=2

d(Fn+1:n+i(x0), Fn+1:n+i−1(x0))

= d(Fn+1(x0), x0) +
m+1∑
i=2

d(Fn+1:n+i(x0), Fn+1:n+i−1(x0))

almost surely where we get the first inequality by the triangle inequality and
the second by the induction hypothesis.
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Using the property l(F1) ≤ el a.s. we conclude

d(Fn+1:n+m(x0), x0) ≤ d(Fn+1(x0), x0) +
m∑

i=2

d(Fn+1:n+i(x0), Fn+1:n+i−1(x0))

≤ d(Fn+1(x0), x0) +
m∑

i=2

l(Fn+1:n+i−1)d(Fn+i(x0), x0)

≤ d(Fn+1(x0), x0) +
m∑

i=2

exp((i− 1)l)d(Fn+i(x0), x0)

=
m∑

i=1

exp((i− 1)l)d(Fn+i(x0), x0) a.s.

for all n ≥ 0 and m ≥ 2. As m converges to infinity the first associated
assertion follows.

On the other side we obtain with the help of the triangle inequality

d(M̂x0
∞ , M̂

x
n ) ≤ d(M̂x0

∞ , M̂
x0
n ) + d(M̂x0

n , M̂x
n )

≤ l(F1) · . . . · l(Fn)d(Fn+1:∞(x0), x0) + l(F1) · . . . · l(Fn)d(x, x0)

a.s. for all n ≥ 0 and x ∈ X. Since l(F1) ≤ el a.s. and the Fi are i.i.d., we
get the desired result for all n ≥ 0 and x ∈ X.

In the next step we will show that Dn are a.s. finite for all n ≥ 1. First
note that for any δ ∈ (−1, 0) there exists i0 ∈ N such that 2 log i

li
> δ for all

i > i0 because 0 > 2 log i
li

→ 0 as i→∞. Hence 1+ 2 log i
li

> 1+ δ for all i > i0.
With these preparations and Corollary C.2(iv) we obtain∑

i≥1

P(elid(Fn+i(x0), x0) > i−2)

=
∑
i≥1

P(log d(F1(x0), x0) > −li− 2 log i)

=
∑
i≥1

P
(

log d(F1(x0), x0) > i

(
1 +

2 log i

li

)
(−l)

)

≤
i0∑

i=1

1 +
∑
i>io

P(log d(F1(x0), x0) > i(1 + δ)(−l))

≤ C(1 + E(log d(F1(x0), x0))
+).

(2.17)

for a suitable C > 0. Since E log+ d(F1(x0), x0) <∞ the last expression of
the foregoing inequality is finite. Applying the Borel-Cantelli lemma, we
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know that there are only finitely many i such that elid(Fn+i(x0), x0) > i−2.
W.l.o.g we may assume that elid(Fn+i(x0), x0) ≤ i−2 holds true for all i ∈ N.
Hence we conclude

Dn =
∑
i≥1

el(i−1)d(Fn+i(x0), x0) ≤
1

el

∑
i≥1

i−2 =
π2

6

1

el
.

Lemma 2.6. Given an IFS (Mn)n≥0 of i.i.d. Lipschitz maps with the con-
ditions (2.1) and (2.2) and an arbitrary l ∈ (l∗, 0), the Dn are a.s. finite and
E log+Cn <∞. Moreover,

d(M̂x0
∞ , M̂

x
n )

≤ exp(lξτ(n)−1)Cτ(n) + exp(lξτ(n))Dτ(n) + l(F1:n)d(x, x0) a.s.
(2.18)

holds true for all n ≥ 0 and x ∈ X.

Remark. In some cases we will apply a slightly different inequality. Since
ξτ(n)−1 < ξτ(n) and l < 0 we get exp(lξτ(n))Dτ(n) ≤ exp(lξτ(n)−1)Dτ(n) and
therefore

d(M̂x0
∞ , M̂

x
n ) ≤ exp(lξτ(n)−1)Cτ(n)

+ exp(lξτ(n)−1)Dτ(n) + l(F1:n)d(x, x0) a.s.
(2.19)

holds true for all n ≥ 0 and x ∈ X.

Before we prove Lemma 2.6, let us define log∗
def
= log(1 + x). In the

following we will use log∗ instead of log+. This ensures that log∗X is non-
negative whenever this holds true for X. It will also be helpful to assert some
properties of log∗:

Lemma 2.7. log∗ x is subadditive, i.e. log∗(x + y) ≤ log∗ x + log∗ y for all
x, y ≥ 0, and satisfies log∗(xy) ≤ log∗ x+ log∗ y for all x, y ≥ 0.

Proof. Since xy ≥ 0, we have

log∗(x+ y) = log(1 + x+ y)

≤ log(1 + x+ y + xy) = log((1 + x)(1 + y)) = log∗ x+ log∗ y

which proves the fist assertion. We get the other inequality by a similar
calculation:

log∗(xy) = log(1 + xy)

≤ log(1 + x+ y + xy) = log((1 + x)(1 + y)) = log∗ x+ log∗ y

since x+ y ≥ 0.
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Another helpful tool will be the random variable

Un
def
= max

{
k∏

j=1

Lj, 0 ≤ k ≤ n

}
, n ≥ 0.

In the next lemma we will state inequalities for Un.

Lemma 2.8. The following inequalities hold for all n ≥ 0:

Un ≤
n∏

k=1

(1 + Lk) and log∗ Un ≤
n∑

k=1

log∗ Lk. (2.20)

Proof. For each n ≥ 0, we have

Un ≤ max

{
k∏

j=1

(1 + Lj), 0 ≤ k ≤ n

}
=

n∏
j=1

(1 + Lj)

which proves the first inequality. But the second then follows from the sub-
additivity of log∗ as stated in Lemma 2.7.

Now we are able to prove Lemma 2.6:

Proof of Lemma 2.6. First transform the original IFS into one which is strongly

contractive. Defining F ′
n

def
= Fξn−1+1:ξn we have by construction of the ξn

l(F ′
n) = l(Fξn−1+1:ξn) < exp(l(ξn − ξn−1)) ≤ exp(l) a.s. (2.21)

for all n ≥ 1 since l ∈ (l∗, 0). The (F ′
n, l(F

′
n)) are i.i.d. and therefore

F ′
n:1(M0), n ≥ 0, (2.22)

is a strongly contractive IFS of i.i.d. Lipschitz maps which satisfies

M̂ξn = F ′
1:n(M0), n ≥ 0,

i.e. the backward process of both, the original and the new strongly contrac-
tive one, are equal.

Using the triangle inequality we observe

d(M̂x0
∞ , M̂

x
n ) ≤ d(M̂x0

ξτ(n)
, M̂x0

n ) + d(M̂x0
∞ , M̂

x0
ξτ(n)

) + d(M̂x
n , M̂

x0
n ).

In the following we analyse the three summands on the right hand side with
the help of the above defined IFS and Lemma 2.5. For the first one we obtain
for each n ≥ 0 the inequaltiy

d(M̂x0
ξτ(n)

, M̂x0
n ) ≤ l(F ′

1) · . . . · l(F ′
ξτ(n)−1

)d(Fξτ(n)−1+1:ξτ(n)
(x0), Fξτ(n)−1+1:n(x))

≤ exp(lξτ(n)−1)Cτ(n) a.s.
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Applying Lemma 2.5 we have for the second summand

d(M̂x0
∞ , M̂

x0
ξτ(n)

) ≤ l(F1:ξ1) · . . . · l(Fξτ(n)−1+1:ξτ(n)
)d(F ′

ξτ(n)+1:∞(x0), x0)

≤ exp(lξτ(n))Dτ(n) a.s.

for all n ≥ 0. For the last expression, obviously,

d(M̂x
n , M̂

x0
n ) ≤ l(F1:n)d(x, x0)

holds true a.s. for all n ≥ 0. Therefore the asserted inequality (2.18) is
shown.

Before we show the remaining assertions let us note that, by an appeal
to Lemma 2.5 for the strictly contractive IFS (Fξn:1)n≥0 (which defines Dn,
see (2.7)), we infer Dn <∞ a.s. for all n ≥ 0 if E log+ d(F1:ξ1(x0), x0) <∞.
Since log+ d(F1:ξ1(x0), x0) ≤ log+C1 it is enough to prove E log+C1 <∞.

To this end first consider the following inequality:

d(F1:ξ1(x0), x0) ≤ d(F1:ξ1(x0), F1:1(x0)) + d(F1:1(x0), x0)

≤ d(F1:ξ1(x0), F1:2(x0)) + d(F1:2(x0), F1:1(x0)) + d(F1:1(x0), x0)

≤ . . .

≤ d(F1:ξ1(x0), F1:ξ1−1(x0)) +

ξ1−1∑
j=1

d(F1:j(x0), F1:j−1(x0))

=

ξ1∑
j=1

d(F1:j(x0), F1:j−1(x0)).

Note that the first summand of each inequality is an element of the set
{d(F1:ξ1(x0), F1:k(x0)), 0 < k < ξ1}. Altogether, we infer

C1 ≤
ξ1∑

j=1

d(F1:j(x0), F1:j−1(x0)). (2.23)
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By definition of Un and its properties, see Lemma 2.8, we obtain

C1 ≤
ξ1∑

j=1

d(F1:j(x0), F1:j−1(x0))

≤
ξ1∑

j=1

l(F1:j−1)d(Fj(x0), x0)

≤
ξ1∑

j=1

L1 · . . . · Lj−1d(Fj(x0), x0)

≤ Uξ1

ξ1∑
j=1

d(Fj(x0), x0).

(2.24)

With the help of the above inequality, Lemmata 2.8 and 2.7 as well as Wald’s
first identity (see also Lemma A.9) we are now able to conclude

E log∗C1 ≤ E log∗

(
Uξ1

ξ1∑
j=1

d(Fj(x0), x0)

)

≤ E

(
log∗ Uξ1 + log∗

ξ1∑
j=1

d(Fj(x0), x0)

)

≤ E

(
ξ1∑

j=1

log∗ Lj

)
+ E

(
ξ1∑

j=1

log∗ d(Fj(x0), x0)

)
= Eξ1 (E log∗ L1 + E log∗ d(F1(x0), x0))

which is finite by Lemma 2.1 and condition (2.2).

2.2.1 Condition set (A)

Further results for the excursions will be proved hereafter under the addi-
tional conditions

E logp+1(1 + L1) <∞ and E logp+1(1 + d(F1(x0), x0)) <∞ (2.25)

for some p > 0 and x0 ∈ X. The next lemma will provide necessary moment
results to prove the limit theorems given in Chapter 3.

Lemma 2.9. Let l ∈ (l∗, 0) and p > 0. If

E logp+1(1 + L1) <∞ and E logp+1(1 + d(F1(x0), x0)) <∞, (2.26)
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then the following assertions hold for all n ≥ 0:

E logp+1(1 + C1) <∞ (2.27)

E logp(1 +D0) = E logp(1 +Dτ(n)) <∞. (2.28)

The family {logp(1 + Cτ(n)), n ≥ 0} is uniformly integrable and satisfies

sup
n≥0

E logp(1 + Cτ(n)) ≤ Eξ1 logp(1 + C1) <∞. (2.29)

Remark. Since the Dτ(n) are identically distributed by (2.8) we obtain the
uniform integrability of {logp(1 + Dτ(n)), n ≥ 0} by (2.28). Furthermore,
{logp(1 + Cτ(n) + Dτ(n)), n ≥ 0} is uniformly integrable since both families
{logp+1(1 + Cτ(n)), n ≥ 0} and {logp(1 + Dτ(n)), n ≥ 0} are uniformly inte-
grable.

Proof. By Lemma 2.1, E logp+1(1 + L1) < ∞ implies Eξp+1
1 < ∞. Together

with Theorem A.6 we obtain

E

(
ξ1∑

j=1

log∗ Lj

)p+1

≤ Np+1Eξp+1
1 E logp+1

∗ L1 <∞

where Np+1 is a numerical constant depending on (p+1). Since on the other
hand (log∗ d(Fn(x0), x0))n≥1 is a sequence of i.i.d. random variables and, by
assumption, E logp+1

∗ d(F1(x0), x0) <∞, there exists Mp+1 > 0 such that

E

(
ξ1∑

j=1

log∗ d(Fj(x0), x0)

)p+1

≤Mp+1Eξp+1
1 E logp+1

∗ d(F1(x0), x0) <∞.

Moreover, by the proof of Lemma 2.6, we observe

E(log∗C1)
p+1 ≤ E

(
log∗ Uξ1

ξ1∑
j=1

d(Fj(x0), x0)

)p+1

≤ E

(
ξ1∑

j=1

log∗ Lj +

ξ1∑
j=1

log∗ d(Fj(x0), x0)

)p+1

.

Using Minkowsky’s inequality we finally deduce(
E(log∗C1)

p+1
)1/(p+1)

≤

E

(
ξ1∑

j=1

log∗ Lj

)p+1
1/(p+1)

+

E

(
ξ1∑

j=1

log∗ d(Fj(x0), x0)

)p+1
1/(p+1)
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which is finite by the foregoing preparations and therefore the (p + 1)-st
moment of C1 exists.

To show (2.28) it is sufficient to consider E logp
∗D0 since Dτ(n) and D0

are identically distributed. For this purpose let a > 1 satisfying ael < 1 and
1

2el ≤ b
def
= 1−ael

ael ≤ 1
el . Then

P(D0 > et) ≤ P

(∑
j≥1

el(j−1)Cj > et

)
≤ P(el(j−1)Cj > b(ael)jet for some j ≥ 1).

(2.30)

holds true by (2.9) for any t ∈ (0,∞). For the last step some more explana-
tions are necessary. We claim that

A
def
= {ω ∈ Ω :

∑
j≥1

el(j−1)Cj > et}

⊂ B
def
= {ω ∈ Ω : ∃j ≥ 1 el(j−1)Cj > b(ael)jet}.

To this end let ω ∈ A and assume that ω /∈ B, i.e.

el(j−1)Cj ≤ b(ael)jet

holds true for all j ≥ 1. Then we obtain∑
j≥1

el(j−1)Cj ≤
∑
j≥1

b(ael)jet

=
∑
j≥0

b(ael)j+1et

= b
ael

1− ael
et = et.

But this is a contradiction to ω ∈ A. Therefore ω must be an element of B
and the assertion is shown. With this we obtain in (2.30)

P(D0 > et) ≤ P(el(j−1)Cj > b(ael)jet for some j ≥ 1)

= P(Cj > bajelet for some j ≥ 1)

≤ P(2Cj > ajet for some j ≥ 1)

≤ P

(⋃
j≥1

(2Cj > ajet)

)
≤
∑
j≥1

P(2C1 > ajet)

(2.31)
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where we have used that the Cj are i.i.d. By combining this with Corollary
C.2(ii) we obtain

E((logD0)
+)p =

∫ ∞

0

ptp−1P(logD0 > t)dt

=

∫ ∞

0

ptp−1P(D0 > et)dt

≤
∫ ∞

0

ptp−1
∑
j≥1

P(2C1 > ajet)dt

=
∑
j≥1

∫ ∞

0

ptp−1P(2C1 > ajet)dt

=
∑
j≥1

∫ ∞

0

ptp−1P(log 2C1 − j log a > t)dt

=
∑
j≥1

E((log 2C1 − j log a)+)p

(2.32)

where Fubini’s theorem has been used in line 4. By the first part of this proof
we have E((log 2C1)

+)p+1 ≤ E logp+1
∗ 2C1 < ∞ and, in combination with

Corollary C.3, we conclude E((logD0)
+)p <∞ and therefore E logp

∗D0 <∞.

To prove the remaining assertions consider the function H(t)
def
= logp

∗ t.
By Hölder’s inequality we obtain

Eξ1 logp
∗ C1 ≤ (Eξp+1

1 )1/(p+1)(E logp+1
∗ C1)

p/(p+1).

The expression on the right side is finite by Lemma 2.1 and (2.27). The uni-
form integrability of {logp(1 +Cτ(n)), n ≥ 0} follows by (2.12) and Corollary
50.3 in [AWT, p. 278]. Furthermore, (2.29) easily follows from (2.13).

In the previous lemma we provided necessary tools for the first two sum-
mands of inequality (2.18). The next lemma will be used to estimate the last
term on the right hand side in (2.18).

Lemma 2.10. Given l∗ < 0 a.s. and E logp+1(1 + L1) <∞ for some p > 0,∑
n≥1

np−1P(l(F1:n) > exp(ln)) <∞ (2.33)

holds true as well as

lim
n→∞

npP(l(F1:n) > exp(ln)) = 0 (2.34)

for any l ∈ (l∗, 0).
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Proof. Let l ∈ (l∗, 0). Choose m so large that l′ = 1
m

E log l(F1:m) ∈ (l∗, l− ε)
for some ε ∈ (0, l− l∗), compare Proposition 1.2. By left truncation we may
assume w.l.o.g. that E| log l(F1:m)|p+1 < ∞. Using Fnm+1:nm+r ∼ F1:r, we
obtain∑

n≥1

np−1P(l(F1:n) > eln) =
m∑

r=1

∑
n≥0

(nm+ r)p−1P(l(F1:nm+r) > el(nm+r))

≤ C
m∑

r=1

∑
n≥0

np−1P(e−nml′l(F1:nm)l(Fnm+1:nm+r) > e(l+εn)m)

≤ C
m∑

r=1

∑
n≥1

np−1P(l(F1:r) > e(l+εn)m/2)

+ Cm
∑
n≥1

np−1P(e−nml′l(F1:nm) > e(l+εn)m/2)

where C is some positive constant. By (2.25) and l(F1:r) ≤ L1 · . . . · Lr, we
observe∑
n≥0

np−1P(l(F1:r) > e(l+εn)m/2) =
∑
n≥0

np−1P(log l(F1:r) + log 2− lm > εnm)

≤ C ′ (1 + E logp
∗ L1) <∞

for some constant C ′ > 0.
Moreover, we have log(e−nml′l(F1:nm)) ≤ Vn, where

Vn
def
=

n−1∑
j=0

(log l(Fjm+1:(j+1)m)−ml′), n ≥ 1,

is a zero-mean random walk with i.i.d. increments satisfying (again by (2.25))

E|V1|p+1 <∞.

Consequently,∑
n≥1

np−1P(e−nml′l(F1:nm) > e(l+εn)m/2)

≤
∑
n≥1

np−1P(Vn + log 2− lm > εnm) <∞

follows by the one-sided tail estimates obtained by Chow and Lai [CL]. By
the corollary to Theorem 1 in this article, see [CL, p. 56], we further infer
from E|V1|p+1 <∞ that∑

n≥1

np−1P
(

sup
k≥n

|k−1Vk| > ε̂

)
<∞
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and thus

npP
(

sup
k≥n

|k−1Vk| > ε̂

)
→∞ as n→∞

for all ε̂ > 0 using Lemma C.4. Now the desired conclusion follows from the
following inequalities:

P(l(F1:nm+r) > el(nm+r))

≤ P(l(F1:r) > e(l+εn)m/2) + P(e−nml′l(F1:nm) > e(l+εn)m/2).

Since E logp+1
∗ l(F1:r) < ∞, the first term on the right hand side is of order

o(n−p). For the second, we have for sufficiently large n

P(e−nml′l(F1:nm) > e(l+εn)m/2) ≤ P(Vn − lm+ log 2 > εnm)

≤ P
(

sup
k≥n

|k−1Vk| > εm/2

)
and thus from the above mentioned result

npP(e−nml′l(F1:nm) > e(l+εn)m/2) → 0 as n→∞.

We will repeatedly consider the probability of the right side of inequality
(2.18). It turns out to be helpful to split this probability into a sum of two
probabilities of the disjoint sets {ξτ(n)−1 ≤ (1 − ρ)n} and its complement.
For this set we observe results as stated below.

Lemma 2.11. Let l ∈ (l∗, 0), p > 0 and E logp+1(1 + L1) <∞. Then∑
n≥1

np−1P(ξτ(n)−1 ≤ (1− ρ)n) <∞ (2.35)

holds true as well as

lim
n→∞

npP(ξτ(n)−1 ≤ (1− ρ)n) = 0 (2.36)

for all ρ > 0.

Proof. By Lemma (2.1), E logp+1(1 + L1) < ∞ implies Eξp+1
1 <∞. In the

following we consider the increments δj = ξj−ξj−1 and note that Eδp+1
1 <∞



2.2. AUXILIARY LEMMATA 33

since δ1 = ξ1. Observe that τ(n) ≤ n since 0 = ξ0 < ξ1 < ξ2 < . . . Recalling
that the δj are i.i.d. we have∑

n≥0

np−1P(δτ(n) > ρn) ≤
∑
n≥0

np−1
∑

1≤k≤n

P(δk > ρn)

≤
∑
n≥0

np−1nP(δ1 > ρn)

=
∑
n≥0

npP(δ1 > ρn)

= CEδp+1
1 <∞

for all ρ > 0 and some positive constant C. Since ξτ(n) ≥ n by definition of
τ(n), we are now able to conlude∑

n≥0

np−1P(ξτ(n)−1 ≤ (1− ρ)n) =
∑
n≥0

np−1P(ξτ(n) − δτ(n) ≤ (1− ρ)n)

≤
∑
n≥0

np−1P(n− δτ(n) ≤ (1− ρ)n)

=
∑
n≥0

np−1P(δτ(n) ≥ ρn) <∞

for all ρ > 0.
The second assertion also follows from the previous calculations. For this

purpose note that the first inequality also provides∑
n≥0

npP(δ1 > ρn) <∞

for all ρ > 0 and therefore npP(δ1 ≥ ρn) → 0 as n → ∞. By the same
considerations as above then

0 ≤ lim
n→∞

npP(ξτ(n)−1 ≤ (1− ρ)n) ≤ lim
n→∞

npP(δ1 ≥ ρn) = 0

holds true for all ρ > 0 which completes the proof.

2.2.2 Condition set (B)

In this subsection we will work out similar assertions as in the foregoing one,
but now for slightly different conditions, namely,

ELp
1 <∞ and Ed(F1(x0), x0)

p <∞ (2.37)



34 CHAPTER 2. PREREQUISITES

for some p > 0 and x0 ∈ X. The assertions will be similar because the
theorems of both sets of conditions are of the same type and with it the idea
how to prove them. Hence we will analyse the excursions with respect to the
new situation in the following lemma.

Lemma 2.12. Let l ∈ (l∗, 0) and p > 0. Then

ELp
1 <∞ and Ed(F1(x0), x0)

p <∞ (2.38)

implies the following assertions for some η > 0:

EC2η
1 <∞ (2.39)

ED2η
0 = ED2η

τ(n) <∞. (2.40)

Moreover, the family {Cη
τ(n), n ≥ 0} is uniformly integrable and satisfies

the inequality
sup
n≥0

ECη
τ(n) ≤ Eξ1Cη

1 <∞. (2.41)

Remark. Also in this case we have uniform integrability of {D2η
τ(n), n ≥ 0}

by (2.40) since the Dτ(n) are identically distributed. By the same argument
as in the remark following Lemma 2.9 the family {(Cτ(n) +Dτ(n))

η, n ≥ 0} is
uniformly integrable.

Proof. By assumption, E exp(p logL1) = ELp
1 < ∞. On the other side,

compare Lemma 2.1, there exists s0 > 0 such that E exp(sξ1) < ∞ for all
0 < s < s0. This again implies that

∑
n≥0 e

snP(ξ1 = n) converges, see
Corollary C.2, and therefore

P(ξ1 = n) = o(e−sn) as n→∞. (2.42)

Furthermore, we obtain by Hölder’s inequality

E exp

(
4η

ξ1∑
k=1

log∗ Lk

)
=
∑
n≥0

∫
Ω

1{ξ1=n} exp

(
4η

n∑
k=1

log∗ Lk

)
dP

≤
∑
n≥0

(P(ξ1 = n))1/2

(
E exp

(
8η

n∑
k=1

log∗ Lk

))1/2

for some constant C > 0. Since

E exp

(
8η

n∑
k=1

log∗ Lk

)
→ 1 as η → 0,
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we can find in combination with (2.42) η ≤ p/4 sufficiently small such that

E exp

(
4η

ξ1∑
k=1

log∗ Lk

)
<∞.

Apply Theorem A.6 to see that

E

(
ξ1∑

j=1

d(Fj(x0), x0)

)4η

<∞,

since (d(Fj(x0), x0))j∈N constitutes a random walk and 4η ≤ p. By (2.24)
and Lemma 2.8 we write

C2η
1 ≤ (Uξ1)

2η

(
ξ1∑

j=1

d(Fj(x0), x0)

)2η

≤ exp

(
2η

ξ1∑
j=1

log∗ Lj

)(
ξ1∑

j=1

d(Fj(x0), x0)

)2η

a.s.

Applying Hölder’s inequality, we are now able to conclude

EC2η
1 ≤

(
E exp

(
4η

ξ1∑
k=1

log∗ Lk

))1/2
E

(
ξ1∑

j=1

d(Fj(x0), x0)

)4η
1/2

<∞.

To prove (2.40) we split our considerations into two cases. At first we
assume that 2η ≥ 1. By the infinite version of Minkowski’s inequality and
Dn ≤

∑
j≥1 exp(l(j − 1))Cn+j, see also (2.9), we deduce

(
ED2η

0

)1/(2η) ≤

E

(∑
j≥1

exp(l(j − 1))Cj

)2η
1/(2η)

≤
∑
j≥1

exp(l(j − 1))
(
EC2η

1

)1/(2η)

=

(
EC2η

1

)1/(2η)

1− el
<∞.

If 0 < 2η < 1, then t 7→ t2η is subadditve and, again with (2.9), we deduce

ED2η
0 ≤ E

(∑
j≥1

exp(l(j − 1))Cj

)2η

≤
∑
j≥1

exp(2ηl(j − 1))EC2η
1

=
EC2η

1

1− exp(2ηl)
<∞.
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This completes the proof of (2.40).
In the beginning of this proof we have already shown that EC2η

1 <∞ and
E exp(sξ1) < ∞ for some s > 0. Also note that ξ2

1 ≤ exp(sξ1) if ξ1 is large
enough. Then, by Hölder’s inequality, we conclude

ECη
1 ξ1 ≤ (EC2η

1 )1/2(Eξ2
1)

1/2 ≤ C(EC2η
1 )1/2(E exp(sξ1))

1/2 <∞

where C is some positive constant. Moreover, let H(t)
def
= tη. Now the

uniform integrability follows by (2.12) and Corollary 50.3 in [AWT, p. 278].
Furthermore, the asserted inequality is a result from (2.13).

Lemma 2.13. Let l ∈ (l∗, 0) and ELp
1 < ∞ for some p > 0. Then there

exists α ∈ (0, 1) such that

P(l(F1:n) > εαn) ≤ ε−1αn (2.43)

holds true for all n ≥ 1 and ε > 0.

Proof. Let l ∈ (l∗, 0). By assumption, ELr
1 is a convex function of r on [0, p)

with negative derivative E logL1 at 0. Hence there exists a q ∈ (0,min{p, 1})
with mq

def
= ELq

1 < 1. Since l(F1:n) ≤ L1:n, n ≥ 1, we have

El(F1:n)q ≤ ELq
1:n = mn

q

for all n ≥ 1 and therefore

P(l(F1:n) > εβn) ≤ ε−1

(
mq

βq

)n

for all ε, β > 0 and n ≥ 1. We arrive at the desired conclusion by choosing
any β ∈ (m

1/q
q , 1) and then α = max{β,mq/β

q}.
Lemma 2.14. Let l ∈ (l∗, 0) and p > 0. If ELp

1 <∞ there exists c > 0 such
that

lim
n→∞

α−nP(ξτ(n)−1 ≤ (1− ρ)n) = 0 (2.44)

holds true for all ρ > 0 and α ∈ (c, 1) where α depends on l and ρ.

Proof. As ELp
1 < ∞, Lemma 2.1 implies E exp(βξ1) < ∞ for some β > 0.

By a similar argument to that used in the proof of Lemma 2.11 we have

P(ξτ(n)−1 ≤ (1− ρ)n) ≤ P(δ1 > ρn)

ρ > 0. Further note that δ1 = ξ1. Using Markov’s inequality, we deduce

P(ξτ(n)−1 ≤ (1− ρ)n) ≤ 1

exp(ρβn)
E exp(βξ1) <∞

for all ρ > 0 and n ≥ 1. The assertion now is given for all α ∈ (exp(−βρ), 1).



Chapter 3

Limit Theorems

In the previous chapter we have collected the neccessary tools to obtain the
results which hold for IFS with i.i.d. contractive Lipschitz maps.

Theorem 3.1. Let (Mn)n≥0 be an IFS of i.i.d. Lipschitz maps and assume
that l∗ < 0, E log+ L1 < ∞ and E log+ d(F1(x0), x0) < ∞ for some x0 ∈ X.
Then the following assertions hold:

(a) M̂n converges a.s. to a random variable M̂∞ with distribution π which
is independent of the initial distribution.

(b) For each l ∈ (l∗, 0), limn→∞ Px(d(M̂∞, M̂n) > enl) = 0 for all x ∈ X.

(c) Mn converges in distribution to π under every Px, x ∈ X.

(d) π is the unique stationary distribution of (Mn)n≥0 and (M̂n)n≥0 a sta-
tionary sequence under Pπ.

(e) (Mn)n≥0 is ergodic under Pπ.

Remark. The assertions (a), (c), (d) and (e) were proved earlier by Elton
[Elt] for general stationary sequences (Fn)n≥0.

Proof. It remains to prove part (b). Choose any l̂ ∈ (l∗, 0). Then there exists
an l such that l∗ < l < l̂. Hence we can write l̂ as l̂ = l + ε for some ε > 0.
Using (2.19), we obtain

Px

(
d(M̂∞, M̂n) > enl̂

)
= P

(
d(M̂x0

∞ , M̂
x
n ) > enl̂

)
≤ P

(
exp

(
−nl̂ + lξτ(n)−1

)
(Cτ(n) +Dτ(n)) + e−nl̂l(F1:n)d(x, x0) > 1

)
.

37
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In the following we will show that the last expression converges to 0 for all
x ∈ X as n→∞. To this end we consider each of the summands in the last
line separately.

First note that, by the Elementary Renewal Theorem (see A.12) and the
strong law of large numbers,

n

τ(n)− 1
→ µ and

ξτ(n)−1

τ(n)− 1
→ µ a.s.

as n→∞. Therefore

lξτ(n)−1 − nl̂ = (τ(n)− 1)

(
l
ξτ(n)−1

τ(n)− 1
− n

τ(n)− 1
(l + ε)

)
→ −∞ (3.1)

a.s. as n→∞.
We have already shown that the Cτ(n) converges in distribution to a finite

random variable. With Slutsky’s theorem, see [AWT, p. 185], and Proposi-
tion 36.3. in [AWT, p. 181], we deduce

exp
(
−nl̂ + lξτ(n)−1

)
Cτ(n)

P→ 0 (3.2)

where
P→ means convergence in probability.

Using Dτ(n) ∼ D0, we have for any κ > 0 and t > 0

lim
m→∞

sup
n≥m

P
(
exp

(
−nl̂ + lξτ(n)−1

)
Dτ(n) > κ

)
≤ lim

m→∞
sup
n≥m

P
(
exp

(
−nl̂ + lξτ(n)−1

)
> κ/t

)
+ P(D0 > t)

= P(D0 > t).

Since D0 is a.s. finite, P(D0 > t) → 0 as t→∞ and we conclude

exp
(
−nl̂ + lξτ(n)−1

)
Dτ(n)

P→ 0. (3.3)

At least note that, if n→∞,

log exp(−nl̂)l(F1:n) = −nl̂ + log l(F1:n)

= n(−l̂ + log l(F1:n)

n
)

P→ −∞ a.s.

since log l(Fn:1)
n

→ l∗ a.s.
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3.1 Limit theorems for condition set (A)

Under additional assumptions we are now able to state limit theorems we
already have mentioned in the introduction and Chapter 1.

Theorem 3.2. Given the situation of Theorem 3.1 and the additional con-
ditions

E logp+1(1 + L1) <∞ and E logp+1(1 + d(F1(x0), x0)) <∞ (3.4)

for some p > 0 and x0 ∈ X, the following assertions hold true:

(a) For each l ∈ (l∗, 0),∑
n≥1

np−1Px(d(M̂∞, M̂n) > exp(ln)) ≤ cl (1 + logp(1 + d(x, x0))) (3.5)

and
lim

n→∞
npPx(d(M̂∞, M̂n) > exp(ln)) = 0 (3.6)

for all x ∈ X and some cl ∈ (0,∞).

(b) For each l ∈ (l∗, 0),

lim sup
n→∞

n(p−1)/p

(
1

n
log d(M̂∞, M̂n)− l

)
≤ 0 Px−a.s . (3.7)

for all x ∈ X. In the case 0 < p ≤ 1 this also remains true for l = l∗.

(c) If p ≥ 1, then

lim
n→∞

exp(−nl)d(M̂∞, M̂n) = 0 Px−a.s .

for all x ∈ X and l ∈ (l∗, 0).

(d)
ρ(P n(x, ·), π) ≤ Ax(n+ 1)−p

for all n ≥ 0, x ∈ X and some positive constant Ax of the form
max{A, 2d(x, x0)}. Furthermore, A does neither depend on x nor on
n.

(e)
∫

X logp(1 + d(x, x0))π(dx) =
∫∞

0
ptp−1π(x : log(1 + d(x, x0)) > t)dt <∞.

Remark. Note that both constants cl and Ax depend on p for which the
moment conditions hold.
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The proof will take up a lot of space. Furthermore, these results will
establish new assertions. For this reason we have shifted the proof to the end
of this discussion, see Chapter 3.3.1.

The results of the foregoing theorem, in which the backward process was
subject of our considerations, are applicable to the forward process. To this
end we analyse the distance d(Mx

n ,M
y
n), x, y ∈ X, which reflects the coupling

rate of the forward iterations at time n with different starting points x and
y. The connection is given by the fact that (Mx

n ,M
y
n) and (M̂x

n , M̂
y
n) are

identically distributed and

d(M̂x
n , M̂

y
n) ≤ d(M̂x0

∞ , M̂
x
n ) + d(M̂x0

∞ , M̂
y
n) (3.8)

for all x, y ∈ X and n ≥ 0.

Corollary 3.3. Given the situation of Theorem 3.2, the following assertions
hold:

(a) For each l ∈ (l∗, 0),∑
n≥1

np−1P(d(Mx
n ,M

y
n) > exp(ln))

≤ cl (1 + logp(1 + d(x, x0)) + logp(1 + d(y, x0)))

(3.9)

and
lim

n→∞
npP(d(Mx

n ,M
y
n) > exp(ln)) = 0 (3.10)

for all x, y ∈ X and some cl ∈ (0,∞).

(b) For each l ∈ (l∗, 0),

lim sup
n→∞

n(p−1)/p

(
1

n
log d(Mx

n ,M
y
n)− l

)
≤ 0 a.s . (3.11)

for all x, y ∈ X. In the case 0 < p ≤ 1 this remains true for l = l∗.

(c) If p ≥ 1, then
lim

n→∞
exp(−nl)d(Mx

n ,M
y
n) = 0 a.s .

for all x, y ∈ X and l ∈ (l∗, 0).

Proof. (a) Let l ∈ (l∗, 0). There exists n0 ∈ N such that

l∗ < − log 2

n0

+ l ≤ − log 2

n
+ l < l
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for all n ≥ n0 and, obviously, − log 2
n0

+l ∈ (l∗, 0). Using the triangle inequality,
we have

P(d(M̂x
n ,M̂

y
n) > exp(ln))

≤ P(d(M̂x0
∞ , M̂

x
n ) + d(M̂x0

∞ , M̂
y
n) > exp(ln))

≤ P(d(M̂x0
∞ , M̂

x
n ) > exp(ln)/2) + P(d(M̂x0

∞ , M̂
y
n) > exp(ln)/2)

≤ P(d(M̂x0
∞ , M̂

x
n ) > exp(n(l − (log 2)/n0)))

+ P(d(M̂x0
∞ , M̂

y
n) > exp(n(l − (log 2)/n0)))

for all n ≥ n0 and x, y ∈ X. Since (Mx
n ,M

y
n) and (M̂x

n , M̂
y
n) are identically

distributed, the assertion follows by the foregoing theorem.
(b) Given l ∈ (l∗, 0), we have for any n ≥ 1 and x, y ∈ X
1

n
logd(M̂y

n , M̂
x
n )− l ≤ 1

n
log(2 max{d(M̂x0

∞ , M̂
x
n ), d(M̂x0

∞ , M̂
y
n)})− 2l

≤ 1

n
log 2 + (

1

n
log d(M̂x0

∞ , M̂
x
n )− l) + (

1

n
log d(M̂x0

∞ , M̂
y
n)− l).

Since n(p−1)/p 1
n

log 2 → 0 as n → ∞, the assertion follows by Theorem 3.2
part (b).

(c) The notes which lead to this corollary are sufficient.

Denote by Mπ
0 a random variable with distribution π. The proceeding

corollary will provide more informations on the distance of Mx
n for any x ∈ X

to a stationary counterpart Mπ
n

def
= Fn:1(M

π
0 ). The key for these considera-

tions is the identity

P(d(Mx
n ,M

π
n ) ∈ ·) =

∫
X

P(d(Mx
n ,M

y
n) ∈ ·)π(dy) (3.12)

for all n ≥ 0 and x ∈ X, compare the notations in Chapter 1. Doing this we
obtain the following results:

Corollary 3.4. Given the situation of Theorem 3.2, the following assertions
hold:

(a) For each l ∈ (l∗, 0)∑
n≥1

np−1P(d(Mx
n ,M

π
n ) > exp(nl)) ≤ cl(1 + logp(1 + d(x, x0)))

holds true as well as

lim
n→∞

npP(d(Mx
n ,M

π
n ) > exp(nl)) = 0

for all x ∈ X and some constant cl ∈ (0,∞).
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(b) For each l ∈ (l∗, 0),

lim sup
n→∞

n(p−1)/p

(
1

n
log d(Mx

n ,M
π
n )− l

)
≤ 0 a.s . (3.13)

for all x ∈ X. In the case 0 < p ≤ 1 this remains also true for l = l∗.

(c) If p ≥ 1, then

lim
n→∞

exp(−nl)d(Mx
n ,M

π
n ) = 0 a.s .

for all x ∈ X and l ∈ (l∗, 0).

Proof. (a) For any x, y ∈ X, the sequence (npP(d(Mx
n ,M

y
n) > exp(ln)))n≥1

is bounded by part (a) of the previous corollary. Hence the second assertion
follows with the dominated convergence theorem and identity (3.12). On the
other side, we have∑

n≥1

np−1P(d(Mx
n ,M

π
n ) > exp(nl))

≤
∫

X
ĉl(1 + logp(1 + d(x, x0)) + logp(1 + d(y, x0)))π(dy)

for all x ∈ X and some ĉl ∈ (0,∞). Since
∫

X log(1 + d(y, x0))π(dy) < ∞ by
Theorem 3.2(e) and

∫
X π(dy) = 1, this completes the proof.

(b) This result is a consequence of

P
(

lim sup
n→∞

n(p−1)/p

(
1

n
log d(Mx

n ,M
y
n)− l

)
≤ 0

)
= 1

for each l ∈ (l∗, 0) and x, y ∈ X,
∫

X π(dy) = 1 and (3.12).
(c) Adapt the arguments of part (b).

3.2 Limit theorems for condition set (B)

If we replace the set of conditions in Section 3.1 by the condition set (B)
analogous results hold true:

Theorem 3.5. Given the situation of Theorem 3.1 and additionally

ELp
1 <∞ and Ed(F1(x0), x0)

p <∞ (3.14)

for some p > 0 and x0 ∈ X, the following assertions hold:
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(a) For each l ∈ (l∗, 0),

lim
n→∞

α−n
l Px(d(M̂∞, M̂n) > exp(nl)) = 0

for all x ∈ X and some αl ∈ (0, 1).

(b) There exists η > 0 such that for each q ∈ (0, η),

lim
n→∞

sup
x∈X

α−n
q (1 + d(x, x0))

−qExd(M̂∞, M̂n)q = 0

for some αq ∈ (0, 1). The same holds true for q = η with αq = 1.

(c)
ρ(P n(x, ·), π) ≤ Axr

n

for all n ≥ 0, x ∈ X, some r ∈ (0, 1) and a constant Ax of the form
max{A, 2d(x, x0)}. The constants r and A do neither depend on x nor
on n.

(d)
∫

X d(x, x0)
ηπ(dx) =

∫∞
0
ηtη−1π(x : d(x, x0) > t)dt <∞ for some η > 0.

Remark. Note that the constants αl, αq, Ax and r depend on p > 0 for
which the moment conditions hold.

Proof. See Subsection 3.3.2.

As in Section 3.1, we use the foregoing theorem to state results for the
distance d(Mx

n ,M
y
n).

Corollary 3.6. Given the situation of Theorem 3.5, the following assertions
hold:

(a) If l ∈ (l∗, 0)
lim

n→∞
α−n

l P(d(Mx
n ,M

y
n) > exp(nl)) = 0

for all x, y ∈ X and some αl ∈ (0, 1).

(b) There exists η > 0 such that for each q ∈ (0, η),

lim
n→∞

sup
x,y∈X

α−n
q (1 + max{d(x, x0), d(y, x0)})−qEd(Mx

n ,M
y
n)q = 0

for some αq ∈ (0, 1). The same holds true for q = η with αq = 1.

Proof. (a) Compare the proof to Corollary 3.3(a).
(b) Choose η ∈ (0, 1) such that Lemma 2.12 holds true. Obviously, we

have (1 + max{d(x, x0), d(y, x0)})−q ≤ (1 + d(x, x0))
−q for all x, y ∈ X. Then

the assertion follows from Theorem 3.5 by the triangle inequality (3.8).
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By Fubini’s theorem, we observe

Ed(Mx
n ,M

π
n )q =

∫ ∞

0

qtq−1P(d(Mx
n ,M

π
n ) > t)dt

=

∫ ∞

0

qtq−1

∫
X

P(d(Mx
n ,M

y
n) > t)π(dy)dt

=

∫
X

∫ ∞

0

qtq−1P(d(Mx
n ,M

y
n) > t)dt π(dy)

=

∫
X

Ed(Mx
n ,M

y
n)qπ(dy)

(3.15)

for all n ≥ 0, x, y ∈ X and q > 0, and closure this section with

Corollary 3.7. Given the situation of Theorem 3.5, the following assertions
hold:

(a) For each l ∈ (l∗, 0),

lim
n→∞

α−n
l P(d(Mx

n ,M
π
n ) > exp(nl)) = 0

for all x ∈ X and some αl ∈ (0, 1).

(b) There exists η > 0 such that for each q ∈ (0, η),

lim
n→∞

sup
x∈X

α−n
q (1 + d(x, x0))

−qEd(Mx
n ,M

π
n )q = 0

for some αq ∈ (0, 1). The same holds true for q = η with αq = 1.

Proof. (a) See the proof of the corresponding part of Corollary 3.4.
(b) Using

(1 + d(x, x0))
q(1 + d(y, x0))

q ≥ (1 + max{d(x, x0), d(y, x0)})q

in combination with (3.15) and Theorem 3.5(d), we obtain

lim
n→∞

sup
x∈X

α−n
q (1 + d(x, x0))

−qEd(Mx
n ,M

π
n )q

≤ lim
n→∞

∫
X

sup
x∈X

α−n
q (1 + d(x, x0))

−qEd(Mx
n ,M

y
n)qπ(dy)

≤ lim
n→∞

∫
X

sup
x,z∈X

α−n
q

Ed(Mx
n ,M

z
n)q

(1 + max{d(x, x0), d(z, x0)})q
(1 + d(y, x0))

qπ(dy)

≤ C lim
n→∞

sup
x,z∈X

α−n
q (1 + max{d(x, x0), d(z, x0)})qEd(Mx

n ,M
z
n)q

for some C > 0 and Corollary 3.6 gives the desired result.
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3.3 Proofs

3.3.1 Proof of Theorem 3.2

Proof of Theorem 3.2. (a) Choose any l̂ ∈ (l∗, 0). Then one can find an l
such that l∗ < l < l̂. Hence there exists ε > 0 with l̂ = l + ε. Note that
exp(nl)d(x, x0) ≥ enl̂/3 iff n ≤ log 3d(x,x0)

ε

def
= n0. Further, let 0 < ρ < − ε

l

which implies η̃
def
= l + ε− (1− ρ)l > 0.

To make the following considerations easier first note that the following
holds true for all sets A,B ⊂ Ω:

P(B) = P((A ∪ A{) ∩B) = P ((A ∩B) ∪ (A{ ∩B))

= P(A ∩B) + P(A{ ∩B) ≤ P(A) + P(A{ ∩B).
(3.16)

If we apply this inequality to

A
def
= {ω ∈ Ω : ξτ(n)−1 ≤ (1− ρ)n}

and

B
def
= {ω ∈ Ω : exp(lξτ(n)−1)(Cτ(n) +Dτ(n)) + l(F1:n)d(x, x0) > exp(l̂n)}

we obtain

P
(
exp

(
lξτ(n)−1

)
Cτ(n) + exp

(
lξτ(n)−1

)
Dτ(n) + l(F1:n)d(x, x0) > exp(l̂n)

)
≤ P

(
ξτ(n)−1 ≤ (1− ρ)n

)
+ P(exp(l(1− ρ)n)Cτ(n) + exp(l(1− ρ)n)Dτ(n) + l(F1:n)d(x, x0) > exp(l̂n))

≤ P
(
ξτ(n)−1 ≤ (1− ρ)n

)
+ P(exp(l(1− ρ)n)Cτ(n) > exp(l̂n)/3)

+ P(exp(l(1− ρ)n)Dτ(n) > exp(l̂n)/3) + P(l(F1:n)d(x, x0) > exp(l̂n)/3)

for all n ≥ 0 and ρ > 0. Considering again inequality (3.16) for

A′
def
= {ω ∈ Ω : exp(nl)d(x, x0) > enl̂/3}

and
B′ def

= {ω ∈ Ω : l(F1:n)d(x, x0) > exp(l̂n)/3},

we have

P(l(F1:n)d(x, x0) > exp(l̂n)/3)

≤ 1(exp(nl)d(x, x0) > exp(nl̂)/3) + P(l(F1:n) > exp(nl))
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for all n ≥ 0 and all x ∈ X. With the help of inequality (2.19), we finally
observe

P(d(M̂x0
∞ ,M̂

x
n ) > exp(l̂n)) ≤ P

(
ξτ(n)−1 ≤ (1− ρ)n

)
+ P(exp(l(1− ρ)n)Cτ(n) > exp(l̂n)/3)

+ P(exp(l(1− ρ)n)Cτ(n) > exp(l̂n)/3)

+ P(l(F1:n) > exp(nl)) + 1(exp(nl)d(x, x0) > exp(nl̂)/3)

(3.17)

for all x ∈ X and n ≥ 0.
This inequality turns out to be an useful tool to prove the given assertions.

The idea is to analyse each summand on the right side separately.
That∑

n≥1

np−1P
(
ξτ(n)−1 ≤ (1− ρ)n

)
and

∑
n≥1

np−1P(l(F1:n) > exp(nl))

are finite, is guaranteed by Lemmata 2.11 and 2.10, respectively. In the
following let C > 0 be a generic constant which may differ from line to line.
Note that C will always be independent of x. Using Hölder’s inequality and

(2.12) (with H(y)
def
= log∗ 3y and t

def
= nη̃), we have∑

n≥1

np−1P( exp(n(1− ρ)l)Cτ(n) > exp(nl̂)/3)

≤
∑
n≥1

np−1P(log∗ 3Cτ(n) > n(l + ε)− n(1− ρ)l)

≤
∑
n≥1

np−1Eξ11{log∗ 3C1>neη}
≤ CEξ1 logp

∗ 3C1

≤ C(Eξp+1
1 )1/(p+1)(E logp+1

∗ 3C1)
p/(p+1).

The last expression is finite by (2.27) and Lemma 2.1. Recalling that Dτ(n) ∼
D0, we obtain on the other side∑

n≥1

np−1P(exp(n(1− ρ)l)Dτ(n) > exp(nl̂/3)) ≤
∑
n≥1

np−1P(log∗ 3D0 > nη̃)

≤ CE logp
∗D0 <∞

which is finite by (2.28). By definition of n0 we observe∑
n≥1

np−11(exp(nl)d(x, x0) > enl̂/3) =

n0∑
n=1

np−11(exp(nl)d(x, x0) > enl̂/3)

≤ Cnp
0 ≤ ĉl logp

∗ d(x, x0)
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where ĉl is some positive constant depending on l (recall that n0 depends on
ε which again depends on the choice of l).

To prove the second assertion of (a) we again consider inequality (3.17).
By Markov’s inequality, we observe

P(log∗ 3Cτ(n) > nη̃) ≤ 1

npη̃p

∫
{log∗ 3Cτ(n)≥neη} logp

∗ 3Cτ(n)dP

≤ 1

npη̃p
sup
k≥0

∫
{logp

∗ 3Cτ(k)≥npeηp}
logp

∗ 3Cτ(k)dP

for all n ≥ 1. Therefore we obtain

npP(exp(n(1− ρ)l)Cτ(n) > exp(nl̂)/3)

≤ 1

η̃p
sup
k≥0

∫
{logp

∗ 3Cτ(k)≥npeηp}
logp

∗ 3Cτ(k)dP

for all n ≥ 1. Since {logp
∗ Cτ(n), n ≥ 0} is uniformly integrable the right side

of the foregoing inequality converges to 0 as n goes to infinity and hence

npP(exp(n(1− ρ)l)Cτ(n) > exp(nl̂)/3) → 0 as n→∞.

Recalling that {logp
∗Dτ(n), n ≥ 0} is also uniformly integrable, we can prove

along the same path

npP(exp(n(1− p)l)Dτ(n) > exp(nl̂)/3) → 0 as n→∞.

Obviously, np1(exp(nl)d(x, x0) > exp(nl̂)/3) = 0 for all n > n0. In combina-
tion with Lemmata 2.11 and 2.10 we have shown the desired assertion.

(b) Again we use inequality (2.19) to estimate 1
n

log d(M̂x0
∞ , M̂

x
n ). By some

further calculations we then observe

1

n
log d(M̂x0

∞ , M̂
x
n )

≤ 1

n
log(exp(lξτ(n)−1)Cτ(n) + exp(lξτ(n)−1)Dτ(n) + l(F1:n)d(x, x0))

≤ 1

n
lξτ(n)−1 +

1

n
log(Cτ(n) +Dτ(n) + exp(−lξτ(n)−1)l(F1:n)d(x, x0))

(3.18)

a.s. for all n ≥ 1, x ∈ X and l ∈ (l∗, 0).
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Choose an arbitrary l̂ in (l∗, 0) and let l ∈ (l∗, l̂). By the foregoing in-
equality we then obtain almost surely for each n ≥ 1 and x ∈ X

n
p−1

p

(
1

n
log d(M̂x0

∞ , M̂
x
n )− l̂

)
≤ n

p−1
p l

(
− l̂
l
+

1

n
ξτ(n)−1

)
+ n−1/p log(Cτ(n) +Dτ(n) + exp(−lξτ(n)−1)l(F1:n)d(x, x0)).

(3.19)

The assertion is proved if the upper limit of the last expression is less then 0
Px-a.s. for all x ∈ X. First, we claim

lim
n→∞

n−1/p log(Cτ(n) +Dτ(n) + exp(−lξτ(n)−1)l(F1:n)d(x, x0)) = 0 a.s. (3.20)

for each p > 0. To this end note, that

−lξτ(n)−1 + log l(F1:n)

= (τ(n)− 1)

(
−l

ξτ(n)−1

τ(n)− 1
+

log l(F1:n)

n

n

τ(n)− 1

)
→ −∞ a.s.

as n → ∞. This holds true, because the bracket converges by the strong
law of large numbers, Lemma 1.2 and the Elementary Renewal Theorem to
−lµ+ l∗µ < 0. Hence this gives

lim
n→∞

exp(−lξτ(n)−1)l(F1:n)d(x, x0) = 0 a.s.

and therefore there exists an n0 such that

exp(−lξτ(n)−1)l(F1:n)d(x, x0) < 1 a.s. (3.21)

for all n ≥ n0. W.l.o.g. we may assume n0 = 1 which makes the following
considerations easier.

Let C > 0 be a generic constant which may differ from line to line. Since
Dτ(n) ∼ D0, we obtain for each α > 0∑

n≥1

P(log∗Dτ(n) > n1/pα/2) ≤
∑
n≥1

P(logp
∗D0 > n(α/2)p) ≤ CE logp

∗D0

which is finite by Lemma 2.9. Moreover, inequality (2.12) (with H(t) =
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log∗ t) and Hölder’s inequality give∑
n≥1

P(log∗Cτ(n) > n1/pα/2) ≤
∑
n≥1

Eξ11{log∗ C1>n1/pα/2}

= E

(
ξ1
∑
n≥1

1{log∗ C1>n1/pα/2}

)

≤ E

(
ξ1
∑
n≥1

1{logp
∗ C1>n(α/2)p}

)
≤ CEξ1 logp

∗ C1

≤ C(Eξp+1
1 )1/(p+1)(E logp+1

∗ C1)
p/(p+1).

for all α > 0. The last expression is finite by Lemmata 2.1 and 2.9.
Using the result of (3.21) and subadditivity of log∗, we obtain

P
(

sup
n≥m

n−1/p log(Cτ(n) +Dτ(n) + exp(−lξτ(n)−1)l(F1:n)d(x, x0)) > α

)
≤ P

(
sup
n≥m

n−1/p log∗(Cτ(n) +Dτ(n)) > α

)
≤ P

(⋃
n≥m

{n−1/p log∗(Cτ(n) +Dτ(n)) > α}

)
≤
∑
n≥m

P(log∗(Cτ(n) +Dτ(n)) > n1/pα)

≤
∑
n≥m

P(log∗Cτ(n) + log∗Dτ(n) > n1/pα)

≤
∑
n≥m

P(log∗Cτ(n) > n1/pα/2) +
∑
n≥m

P(log∗Dτ(n) > n1/pα)

for all α > 0 and m ≥ 1. Since both series are convergent, we consequently
have

P
(

sup
n≥m

n−1/p log(Cτ(n) +Dτ(n) + exp(−lξτ(n)−1)l(F1:n)d(x, x0)) > α

)
→ 0

as m→∞ and the desired result follows by the P− sup criteria, see Propo-
sition 34.4 in [AWT, p. 167].

In a second step we consider the first summand of inequality (3.19). Note,
that by the Elementary Renewal Theorem and the strong law of large num-
bers

τ(n)− 1

n

ξτ(n)−1

τ(n)− 1
→ 1 Px − a.s.
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holds true as n→∞. Since − l̂
l
> −1, we have

− l̂
l
+
τ(n)− 1

n

ξτ(n)−1

τ(n)− 1
≥ 0 Px − a.s.

for n large enough. This ensures

lim sup
n→∞

n
p−1

p l

(
− l̂
l
+

1

n
ξτ(n)−1

)

= lim sup
n→∞

n
p−1

p l

(
− l̂
l
+
τ(n)− 1

n

ξτ(n)−1

τ(n)− 1

)
≤ 0 Px − a.s.

for all x ∈ X.
In conclusion, the assertion

lim sup
n→∞

n
p−1

p

(
1

n
log d(M̂x0

∞ , M̂
x
n )− l̂

)
≤ 0 Px − a.s. (3.22)

holds true for all x ∈ X and l̂ ∈ (l∗, 0). Since n(p−1)/p → 0 if p ∈ (0, 1),
n(p−1)/p ≡ 1 if p = 1, we may obviously replace l̂ by l∗ in (3.22).

(c) In part (b) we have shown that for p = 1

lim sup
n→∞

1

n
log d(M̂∞, M̂n)− l∗ ≤ 0 Px−a.s.

for all x ∈ X. Then we can find a suitable sequence (Rn)n≥0 which satisfies

d(M̂∞, M̂n) ≤ (exp(l∗)Rn)n a.s.

for all n ≥ 0 with limn→∞Rn = 1 Px-a.s. for all x ∈ X. Hence we have for
all l ∈ (l∗, 0) and x ∈ X

exp(−nl)d(M̂∞, M̂n) ≤ (exp(l∗ − l)Rn)n → 0 Px−a.s.

It remains to show that the assertion holds in the case p > 1. To this end
choose any ε > 0 and l ∈ (l∗, 0). By (3.6), the inequality

npPx(d(M̂∞, M̂n) > ε exp(nl)) ≤ K(l, ε)



3.3. PROOFS 51

holds true for n large enough, where K(l, ε) is a positive constant depending
on l and ε. W.l.o.g. we may assume that this inequatlity is also true for
every n ≥ 1. Then we deduce∑

n≥1

Px(d(M̂∞, M̂n) > ε exp(nl)) ≤ K(l, ε)
∑
n≥1

n−p <∞.

By the Borel-Cantelli lemma we have Px(d(M̂∞, M̂n) > ε exp(nl) i.o.) = 0.
Since ε was arbitrarily chosen the assertion is proved.

(d) By Lemma 2.10, we also have

lim
n→∞

(n+ 1)pP(l(F1:n) > (n+ 1)−p) = 0.

Now let l ∈ (l∗, 0), ρ ∈ (0, 1) and finally Ax so large that, on the one side,

P(ξτ(n)−1 ≤ (1− ρ)n) ≤ Ax(n+ 1)−p/2

for all n ≥ 0, which is possible by Lemma 2.11, and

P(exp(l(1− ρ)n)(Cτ(n) +Dτ(n)) + l(F1:n)d(x, x0) > Ax(n+ 1)−p)

≤ P(log∗(Cτ(n) +Dτ(n)) > (−l)(1− ρ)n+ log(Ax/2)− p log(n+ 1))

+ P(l(F1:n)d(x, x0) > Ax(n+ 1)−p/2)

≤ A(n+ 1)−p/2

for all n ≥ 1 and some A > 0, where we have used Markov’s inequality and
the uniform integrability of {log∗(Cτ(n) + Dτ(n)), n ≥ 1}. Using a similar
inequality as in part (a) we conclude

P(d(M̂x0
∞ , M̂

x
n ) > Ax(n+ 1)−p)

≤ P(ξτ(n)−1 ≤ (1− ρ)n) + P(l(F1:n)d(x, x0) > Ax(n+ 1)−p/2)

+ P(log∗(Cτ(n) +Dτ(n)) > (−l)(1− ρ)n+ log(Ax/2)− p log(n+ 1))

≤ Ax(n+ 1)−p/2 + A(n+ 1)−p/2

≤ Ax(n+ 1)−p

for all n ≥ 0. The assertion now follows by Lemma B.3.
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(e) By Corollary C.2(ii), we clearly have∫
X

logp(1 + d(x, x0))π(dx) =

∫ ∞

0

ptp−1π(x : log(1 + d(x, x0)) > t)dt.

Using inequality (2.18) in combination with τ(0) = C0 = 0, we obtain
d(M̂x0

∞ , x0) ≤ D0 and further calculations give∫ ∞

0

ptp−1π(x : log∗ d(x, x0) > t)dt

=

∫ ∞

0

ptp−1P(log∗ d(M̂
x0
∞ , x0) > t)dt

≤
∫ ∞

0

ptp−1P(log∗D0 > t)dt.

The last expression is finite since E logp
∗D0 <∞ by (2.28).

3.3.2 Proof of Theorem 3.5

Proof of Theorem 3.5. (a) Choose η > 0 such that Lemma 2.12 holds true.
As in the proof of Theorem 3.2 part (a) we once more use inequality (3.17).
In detail, let l̂ ∈ (l∗, 0). Then there exists l with l∗ < l < l̂. Hence l̂ = l+ε for

some ε > 0. We further have exp(nl)d(x, x0) ≥ enl̂/3 iff n ≤ log 3d(x,x0)
ε

def
= n0.

Choose 0 < ρ < − ε
l

which implies η̃
def
= l + ε− (1− ρ)l > 0.

By Markov’s inequality, we obtain

1

αn
P(exp(l(1− ρ)n)Cτ(n) > exp(l̂n)/3) =

1

αn
P(3Cτ(n) > exp(nη̃))

≤ 1

αn exp(nη̃η)
sup
k≥0

E3ηCη
τ(k)

for all n ≥ 0. Since {Cη
τ(n), n ≥ 1} is uniformly integrable,

α−nP(exp(l(1− ρ)n)Cτ(n) > exp(l̂n)/3) → 0

as n→∞ for all α ∈ (exp(−η̃η), 1). Along the same path we show

α−nP(exp(l(1− ρ)n)Dτ(n) > exp(l̂n)/3) → 0

as n→∞ for all α ∈ (exp(−η̃η), 1). By Lemmata 2.14, 2.13 and the defini-
tion of n0 the assertion follows.
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(b) First choose η ∈ (0, 1) such that Lemma 2.12 holds true and mq =
ELq

1 < 1 for q ∈ (0, η], see also the proof of Lemma 2.13. We further have
1+d(x, x0) ≥ 1 and d(x, x0)

q ≤ (1+d(x, x0))
q. By inequality (2.19), we then

obtain for all l ∈ (l∗, 0), n ≥ 1 and q ≤ η

(1 + d(x, x0))
−qd(M̂x0

∞ , M̂
x
n )q ≤ exp(qlξτ(n)−1)(Cτ(n) +Dτ(n))

q + l(F1:n)q a.s.

Note that the right side does not depend on x, converges in probability to 0
and is uniformly integrable by Lemma 2.12. This implies the asserted result
for q = η. If q ∈ (0, 1), we deduce by Hölder’s inequality

E exp(qlξτ(n)−1)(Cτ(n) +Dτ(n))
q

≤
(
E exp(ηqlξτ(n)−1/(η − q))

)(η−q)/η (E(Cτ(n) +Dτ(n))
η
)q/η

for all n ≥ 1. By the uniform integrability and El(F1:n)q ≤ EL1:n = mn
q it

remains to show that

lim
n→∞

α−n
q

(
E exp(ηqlξτ(n)−1/(η − q))

)(η−q)/η
= 0.

for some αq ∈ (mq, 1). To this end first note that(
E exp(ηqlξτ(n)−1/(η − q))

)(η−q)/η

≤
(
E exp(ηqlξτ(n)−1/(η − q))1{ξτ(n)−1≤(1−ρ)n}

)(η−q)/η

+ exp(l(1− ρ)n)

holds true for all n ≥ 1 and ρ ∈ (0, 1) since t 7→ t(η−q)/η is subadditive.
Moreover, we obtain for the first summand of the last expression(

E exp(ηqlξτ(n)−1/(η − q))1{ξτ(n)−1≤(1−ρ)n}

)(η−q)/η

≤
(
E exp(2ηqlξτ(n)−1/(η − q))

)(η−q)/(2η) P(ξτ(n)−1 ≤ (1− ρ)n)(η−q)/(2η)

≤ P(ξτ(n)−1 ≤ (1− ρ)n)(η−q)/(2η)

for all n ≥ 1 and ρ ∈ (0, 1) using Hölder’s inequality and the fact that
exp(2ηqlξτ(n)−1/(η − q)) ≤ 1. In conclusion,

lim
n→∞

α−n
q P(ξτ(n)−1 ≤ (1− ρ)n)(η−q)/(2η) + α−n

q exp(l(1− ρ)n) = 0

follows for some αq ∈ (mq, 1) by Lemma 2.14 and part (b) is shown.
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(c) Let l ∈ (l∗, 0), ρ ∈ (0, 1) and β ∈ (exp((1 − ρ)l), 1). Since the
family {(Cτ(n) + Dτ(n))

η, n ≥ 0} is uniformly integrable we have Kη =
supn≥0 E(Cτ(n) +Dτ(n))

η <∞. By Lemmata 2.13 and 2.14

P(l(F1:n)d(x, x0) > εαn/2) ≤ 2ε−1d(x, x0)α
n

and
P(ξτ(n)−1 ≤ (1− ρ)n) ≤ cαn

holds true for all n ≥ 1, ε > 0 and some suitable c > 0 and α ∈ (0, 1).
Note that c and α both depend on l chosen in the beginning of this proof.
Moreover, using Markov’s inequality, we obtain

P(exp(lξτ(n)−1)(Cτ(n) +Dτ(n)) > Aβn/2)

≤ P(ξτ(n)−1 ≤ (1− ρ)n)

+ P(exp((1− ρ)nl)(Cτ(n) +Dτ(n)) > Aβn/2)

≤ cαn +
2η exp((1− ρ)ηnl)Kη

Aβηn

≤ Arn

for all n ≥ 0, all A > 0 sufficiently large and with r
def
= max{α, β, exp((1−ρ)ηl)

βη }.
Hence r ∈ (0, 1) and setting Ax = max{A+ 1, 2d(x, x0)} we conclude

P(d(M̂x0
∞ , M̂

x
n ) > Axr

n) ≤ P(l(F1:n)d(x, x0) > Axr
n/2)

+ P(ξτ(n)−1 ≤ (1− ρ)n)

+ P(exp((1− ρ)nl)(Cτ(n) +Dτ(n)) > Axr
n/2)

≤ rn + Arn ≤ Axr
n

for all n ≥ 0 and x ∈ X. The assertion now follows by Lemma B.3.

(d) Suppose l ∈ (l∗, 0) and η > 0 such that Lemma 2.12 holds true. A
similar estimation as in Theorem 3.2 part (e) leads to∫ ∞

0

ηtη−1π(x : d(x, x0) > t)dt ≤
∫ ∞

0

ηtη−1P(D0 > t)dt.

Since EDη
0 <∞ by Lemma 2.12, the proof is completed.



Appendix A

Renewal Theory

The renewal theory turns out to be a very powerful tool to analyse IFS
of i.i.d. random Lipschitz maps. For this reason we state some important
results which will be used in our thesis. Essentially, this description is based
on the presentation of renewal theory in [ASP] and [Gut]. For further details
and proofs consult these references.

Throughout this chapter let (Ω,A, P ) be a probability space. Consider
the sequence (Xn)n≥1 of i.i.d. random variables, also called increments , and
the independent starting point S0 which is called delay . We call (Sn)n≥0

defined by Sn
def
= S0 +

∑n
i=1Xn a random walk . Further, let Q be the

distribution of X1 and Q0 be the one of S0. If S0 = 0 a.s., we say (Sn)n≥0 is
a standard random walk . Moreover, if S0, X1, X2, ... are all a.s. nonnegative
and µ = EX1 > 0, the random walk (Sn)n≥0 is called renewal process with
positive drift µ, respectively, standard renewal process if S0 = 0.

We distinguish two kinds of random walks according to the lattice on

which they are concentrated. For this purpose we define G0
def
= R which is

an additive group and the closed subgroups G∞
def
= {0} and Gd

def
= dZ.

Definition A.1 ([ASP], Definition 26.2). Let Q be a probability measure on
R. Then

d(Q)
def
= sup{d ∈ [0,∞] : Q(Gd = 1)}

is called the span of Q. Q is called nonarithmetic if d(Q) = 0 and arithmetic
with span d, respectively d-arithmetic, if d(Q) = d for some d > 0. In
analogy, the random variableX is nonarithmetic / d-arithmetic if the induced
probability measure PX is nonarithmetic / d-arithmetic.

If the increments Xn, n ≥ 1, a.s. take values in a pure subgroup of R,
this also holds true for any Sn and we have
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Definition A.2 ([ASP], Definition 26.4). A random walk (Sn)n≥0 is called
nonarithmetic if X1 is nonarithmetic and d-arithmetic if X1 is d-arithmetic
and P (S0 ∈ Gd) = 1.

Furthermore, N is a stopping time with respect to an increasing sequence
of sub-σ-algebras, (Fn)n≥1, such that Xn is Fn-measurable and independent
of Fn−1 for all n, that is, for every n ≥ 1, we have

{N = n} ∈ Fn.

More precisely, we are interested in the stopping times when the process
achives a temporary maximum or minimum, respectively, and sequences of
maxima or minima.

Definition A.3. Let (Sn)n≥0 be a random walk with i.i.d. increments
(Xn)n≥1 and S0 = 0 a.s.

(a) ν(t) = inf{n ≥ 0 : Sn ≥ t} is called the first passage time.

(b) The the random variables σ0
def
= 0,

σ>
n

def
= inf{k > σn−1 :

k∑
j=σn−1+1

Xj > 0},

σ≥n
def
= inf{k > σn−1 :

k∑
j=σn−1+1

Xj ≥ 0},

are called strong ascending , weak ascending , and analogous, σ< strong

descending , σ≤ weak descending ladder epochs (inf ∅ def
= ∞). More-

over, the corresponding random variables

S>
n

def
= Sσ>

n
1{σ>

n <∞}, S≥n
def
= S

σ≥n
1{σ≥n <∞},

S<
n

def
= Sσ<

n
1{σ<

n <∞}, S≤n
def
= S

σ≤n
1{σ≤n <∞},

are called strong ascending , weak ascending , strong descending , weak
descending ladder heights .

In the case that the increments are all nonnegative a.s., we obviously
have σ≥n = n a.s. By the strong law of large numbers we obtain the following
results:
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Lemma A.4 ([ASP], Corollary 27.5). Let (Sn)n≥0 be a standard random walk
with P (X1 = 0) < 1. Then the following assertions are equivalent:

(a) (σ�n , Sσ�n
)n≥0 is a standard random walk and takes values in N0×R for

� ∈ {>,≥} ({<,≤}).

(b) σ�1 <∞ P -a.s. for � ∈ {>,≥} ({<,≤}).

(c) lim supn→∞ Sn = ∞ P -a.s. (lim infn→∞ Sn = −∞ P -a.s.)

For a standard random walk (Sn)n≥0 with increments (Xn)n≥1 we have
defined the drift by µ = EX1. In the following we assume that µ exists.
Again by the strong law of large numbers the following holds true:

Theorem A.5 ([Gut], Theorem II.8.3).

(a) If 0 < µ ≤ ∞ the random walk drifts to +∞, i.e. Sn → +∞ a.s. as
n→∞.

(b) If −∞ ≤ µ < 0 the random walk drifts to −∞, i.e. Sn → −∞ a.s. as
n→∞.

(c) If µ = 0 and P (X1 = 0) < 1 the random walk oscillates between −∞
and +∞.

In the following we will state some moment results which will basically
be used for the analysis of the excursions.

Theorem A.6 ([Gut], Theorems I.5.1 and I.5.2). Given a standard random
walk (Sn)n≥0 with increments (Xn)n≥1 and a stopping time N , suppose that
E|X1|r <∞ for some r ∈ (0,∞).

(a) If 0 < r ≤ 1,
E|SN |r ≤ E|X1|rEN

holds true.

(b) If 1 ≤ r <∞, there exists a numerical constant B′
r depending on r only

such that
E|SN |r ≤ B′

rE|X1|rEN r.

Theorem A.7 ([Gut], Theorem III.3.1). Given a standard random walk
(Sn)n≥0 with increments (Xn)n≥1 and positive drift µ. Furthermore, let
ν(t) = inf{n ≥ 0 : Sn ≥ t} and r ≥ 1. Then the following assertions
hold:
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(i) E(X−
1 )r <∞⇔ E(ν(t))r <∞.

(ii) E(X+
1 )r <∞⇔ E(Sν(t))

r <∞.

Theorem A.8 ([Gut], Theorem III.3.2). There exists s0 > 0 such that

Eesν(t) <∞ for |s| < s0 iff there exists s1 > 0 such that EesX−
1 for |s| < s1.

Theorem A.9 ([ASP], Lemma 10.3). Given a standard random walk (Sn)n≥0

with µ = EX1 > 0.

(a) For each stopping time τ with respect to (Fn)n≥0 Wald′s identity

ESτ = µEτ (A.1)

holds true.

(b) Furthermore, if τ(t) = inf{n ≥ 0 : Sn > t}, t ≥ 0, then

τ(t)

t
→ 1

µ
P − f.s. and

Eτ(t)

t
→ 1

µ
as t→∞.

Given a random walk (Sn)n≥0, we define the random variable

N(B)
def
=
∑
n≥0

1{Sn∈B}

for all B ∈ B, where B denotes the Borel-σ-field on R. N(B) counts the
number of renewals in the set B.

Definition A.10. Given a random walk (Sn)n≥0,

B 3 B 7→ U(B)
def
= EN(B)

is called renewal measure and

U(t)
def
= U((−∞, t]), t ∈ R

renewal function. The stochastic process (Nt)t∈R defined byNt
def
= N((−∞, t])

is called renewal counting process .

The renewal function U(B) is the expected number of renewals in the set
B. Obviously,

U(B) = E(N(B)) = E
∑
n≥0

1{Sn∈B} =
∑
n≥0

P (Sn ∈ B)

holds true for each B ∈ B. Moreover, the convergence results stated below
hold.
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Theorem A.11 (Blackwell’s renewal theorem, see [ASP]). Given a random
walk (Sn)n≥0 with drift µ = EX1 ∈ (0,∞] and span d, the following assertions
hold:

lim
t→∞

U([t, t+ a]) =
a

µ
, if d = 0,

and

lim
n→∞

U({n}) =
1

µ
, if d = 1.

Corollary A.12 (Elementary Renewal Theorem, see Corollaries 29.3 and
30.2 in [ASP]). Given a random walk (Sn)n≥0 with positive drift,

lim
t→∞

U([0, t])

t
=

1

µ
and lim

t→∞

U([−t, 0])

t
= 0

hold true. Furthermore, if (Sn)n≥0 is a renewal process,

lim
t→∞

U(t)

t
=

1

µ
and lim

t→∞

Nt

t
=

1

µ
a.s .

hold true. By convention ∞−1 = 0.





Appendix B

Prokhorov metric

Two results stated in this thesis concern the distance of the n-step transition
kernel P n(x, ·) for x ∈ X and π which is the associated distribution of M̂∞.
Doing this we have to introduce the Prokhorov metric. By representing the
results below we follow the description of Dudley, see [Dud].

Consider the metric space (X, d) and let ε > 0. For any B ∈ B let

Bε def
= {y ∈ X : d(x, y) < ε for some x ∈ B}. (B.1)

Definition B.1. Given a metric space (X, d), let λ1 and λ2 be two laws on
X. Then

ρ(λ1, λ2)
def
= inf{ε > 0 : λ1(B) ≤ λ2(B

ε) + ε for all B ∈ B} (B.2)

is called the Prokhorov metric.

Theorem B.2 ([Dud], Theorem 11.3.1). For any metric space (X, d), ρ is a
metric on the set of all laws on X.

To prove the results mentioned above the following lemma will be helpful.

Lemma B.3. Let (X, d) be a metric space and X1, X2 be two X-valued ran-
dom variables with distributions λ1 and λ2. Then P(d(X1, X2) ≥ ε) < ε
implies ρ(λ1, λ2) ≤ ε.

Proof. Assume that B is an arbitrary set in B. If X1 ∈ B, then either
X2 ∈ Bε or d(X1, X2) ≥ ε and we obtain the following inequality:

λ1(B) = P(X1 ∈ B) ≤ P({X2 ∈ Bε} + {d(X1, X2) ≥ ε})
≤ P(X2 ∈ Bε) + ε = λ2(B

ε) + ε.

Since ρ(λ1, λ2) ≤ ε by definition of ρ the assertion is proved.
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Auxiliary results

In this chapter we provide some helpful results to hold the proofs concise
as far as possible. In particular, we give formulas for calculating expected
values.

Proposition C.1 ([AWT], Proposition A.1). Let X be a nonnegative ran-
dom variable on a probability space (Ω,A, P ) and φ : [0,∞) → [0,∞) be a
continuous, monotone increasing and on (0,∞) continuously differentiable
function with φ(0) = 0. Then the indentity∫

A

φ(X)dP =

∫ ∞

0

φ′(t)P (A ∩ {X > t})dt

holds true for all A ∈ A.

Corollary C.2 ([AWT], Corollary A.2). Let X be a nonnegative random
variable. Then the following assertions hold true:

(i) EX =
∫∞

0
P (X > t)dt,

(ii) EXp =
∫∞

0
ptp−1P (X > t)dt (p > 0),

(iii) E((X − a)+)p =
∫∞

a
p(t− a)p−1P (X > t)dt (a, p > 0).

Furthermore, if X is additionally a.s. integer, we also have

(iv) EX =
∑

n≥0 P (X > n),

(v) EX2 =
∑

n≥0(2n+ 1)P (X > n),

(vi) E(eaX − 1) = (ea − 1)
∑

n≥0 e
anP (X > n) (a ∈ R),
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(vii) ∑
n≥1

p(n− 1)p−1P (X > n) ≤ EXp

≤
∑
n≥0

p(n+ 1)p−1P (X > n) (p ≥ 1)

Corollary C.3. Given a nonnegative random variable X and p > 0, the
condition EXp+1 <∞ implies∑

j≥1

E((X − cj)+)p <∞

for all c > 0.

Proof. Let c > 0. Using (ii) and (iii) from the previous corollary and Fubini’s
theorem, we obtain∑

j≥1

E((X − cj)+)p =
∑
j≥1

∫ ∞

cj

p(t− cj)p−1P(X > t)dt

=
∑
j≥1

∫ ∞

cj

[
d

dt
(t− cj)p

]
P(X > t)dt

=

∫ ∞

c

∑
j∈N, j≤t/c

[
d

dt
(t− cj)p

]
P(X > t)dt

=

∫ ∞

c

 d
dt

∑
j∈N, j≤t/c

(t− cj)p

P(X > t)dt

≤
∫ ∞

c

[
d

dt

t

c
tp
]

P(X > t)dt

≤ C

∫ ∞

0

(p+ 1)tpP(X > t)dt

= CEXp+1

where C is some positive constant. By assumption the last expression is
finite and the assertion is proved.

Lemma C.4. Let p > 0 and (an)n≥1 be a nonnegative, monotone decreasing
sequence satisfying

∑
n≥1 n

p−1an <∞. Then

npan → 0 as n→∞.
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Proof. Write an =
∑

k≥n(ak− ak+1) which is possible, because all differences
under the sum are nonnegative. Now,

∑
n≥1

np−1an =
∑
n≥1

np−1
∑
k≥n

(ak − ak+1) =
∑
k≥1

(ak − ak+1)
k∑

n=1

np−1

≥ C
∑
k≥1

kp(ak − ak+1)

for some suitable constant C > 0. Since
∑

n≥1 n
p−1an < ∞, we also have∑

k≥1 k
p(ak − ak+1) <∞ and conclude

npan =
∑
k≥n

np(ak − ak+1) ≤
∑
k≥n

kp(ak − ak+1) → 0

as n→∞.
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