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Einleitung

Die vorliegende Arbeit hat das Ziel, das asymptotische Verhalten von Ran-
dom Walks in stetiger Zeit zu untersuchen (Kapitel 2). Die Grundlage hierfiir
liefert der Artikel ,, Asymptotic Distributions of Continuous-Time Random
Walks“ von Marcin Kotulski, der 1995 im Journal of Statistical Physics er-
schienen ist.

Um dieses Ziel zu erreichen, ist es notwendig, auf einige Bereiche der
Wahrscheinlichkeitstheorie zuriickzugreifen. Wéahrend die Theorie der be-
dingten Erwartungswerte innerhalb der Vorlesungen behandelt wurde, blei-
ben die stabilen Verteilungen und ihre Anziehungsbereiche ein fiir Studenten
weniger bekanntes Gebiet. Dies ist der Grund dafiir, diese in einem eigenen
Kapitel ausfiihrlich einzufiihren (Kapitel 1). Die Literaturgrundlagen fiir die-
sen Abschnitt sind die Biicher ,An Introduction to Probability Theory and
Its Applications (Volume IT)“ von William Feller und ,, Probability“ von Leo
Breiman.

Das dritte Kapitel dieser Arbeit behandelt ein Beispiel fiir einen Ran-
dom Walk in stetiger Zeit in der Chemie. Zu diesem Zweck gab es eine Zu-
sammenarbeit mit dem Arbeitskreis Heuer, Bereich Theoretische Chemie,
des Fachbereichs Chemie der Universitdt Miinster. Fiir die Moglichkeit, an
diesem Projekt teilzunehmen, mochte ich mich bei Herrn Prof. Dr. Heuer
bedanken.

Der Anhang beinhaltet eine Auflistung der Definitionen, Sétze und Lem-
mata, die in den Kapiteln 1 und 2 angewendet werden, aber nicht sinnvoll
in die Arbeit integriert werden kénnen.

Abschlielend mochte ich mich fiir die Auswahl des Diplomarbeitsthe-
mas und der guten Betreuung bei Herrn Prof. Dr. Alsmeyer und seinem
Assistenten Dipl.-Math. Matthias Meiners bedanken.






Kapitel 1

Stabile Verteilungen und
ihre Anziehungsbereiche

Im ersten Abschnitt dieses Kapitel beginnen wir mit der Einfiihrung stabiler
Verteilungen und diskutieren einige ihrer Eigenschaften elementar. In dem
folgenden Abschnitt untersuchen wir die Gestalt charakteristischer Funk-
tionen stabiler Verteilungen. Mit diesem neuen Wissen beleuchten wir die
Klasse der stabilen Verteilungen im Abschnitt 1.3 noch einmal. Der vier-
te Abschnitt beinhaltet eine allgemeine Definition des Anziehungsbereiches
einer Verteilung und einen fiir das zweite Kapitel wichtigen Satz, der eine
notwendige und hinreichende Bedingung angibt, wann eine Verteilung im
Anziehungsbereich einer stabilen Verteilung liegt.

Fiir das gesamte Kapitel seien unabhéingige, identisch verteilte Zufalls-
grofen X, X1, Xo,... mit Verteilung R gegeben und es sei S, := > | X;
die n-te Partialsumme der Folge (X;);en (n > 0).

1.1 Stabile Verteilungen

1.1.1 Definition (vgl. [Fe2], VI.1, Definition 1).
Die Verteilung R heifit stabil (im weiteren Sinne), wenn es fir jedes n € N
ein ¢, > 0 und ein v, € R gibt, so dass

(1.1) Sh 4 cn X + Y

dabei sei der Foll R = 6. fiir ein ¢ € R ausgeschlossen. R heif§t stabil im
engeren Sinne, wenn (1.1) mit v, = 0 gilt.

Betrachten wir direkt zwei Beispiele, um den Begriff , stabil“ zu verin-
nerlichen.
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1.1.2 Beispiele (vgl. [Fe2], VI1.2).

a) Die Normalverteilungen 91(0,0?) mit o

Sinne mit ¢, = /n.

> 0 sind stabil im engeren

b) Die Cauchy-Verteilungen C(a,b) mit a € R, b > 0 sind stabil im enge-
ren Sinne mit ¢, = n.

Begrindung. Zu a): Sei (X;);cn eine Familie unabhéngiger, identisch ver-
teilter Zufallsgrofien, wobei X; normalverteilt mit Erwartungswert 0 und
Varianz o2 > 0 sei. Dann gilt:

S, ~ M(0,6%)* ™ = N0, n0?) ~ vVnX;.

Zu b): Sei (X;)ien eine Familie unabhéngiger, identisch verteilter Zufalls-
grofien, wobei X7 C(a,b)-verteilt mit a € R, b > 0 sei. Dann gilt: S, besitzt
die Fourier-Transformierte

o (1) = (eiat—b|t\>n _ nliat—blt])

und zu nX; gehort die Fourier-Transformierte
Onx, (t) = ¢x,(nt) = giant=blnt| _ n(iat—blt|)

Aufgrund der Eindeutigkeit der Fourier-Transformierten muss S, 4 nXi
gelten. O

Kommen wir nun zu unserem ersten Satz, der eine weitere Definition
beinhaltet.

1.1.3 Satz und Definition (vgl. [Fe2], VI.1, Theorem 1).

Die Normierungskonstanten ¢, aus (1.1) kénnen nur von der Form n'/® fir
ein a > 0 sein. Daber wird die Konstante « charakteristischer Exponent
genannt.

Wir werden am Ende dieses Abschnitts zeigen, dass auflerdem stets 0 <
a < 2 gilt.

Beweis. Sei R stabil und X/,Xi,...,X;L seien unabhingige Kopien von

X, X1,...,X,. Betrachten wir Y " | (X; — X;):

n

SN X X)) = 80— 802 (caX +m) — (X +7m)
=1

= (X —X).

Daher ist die Verteilung R von X — Xi ebenfalls stabil — sogar stabil im
engeren Sinne — und besitzt dieselben Normierungskonstanten wie R. Es
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geniigt deshalb, die Behauptung fiir eine symmetrische, stabile Verteilung
zu beweisen. Dafiir miissen wir zunéchst ein paar Voriiberlegungen anstellen:

Smtn (m,n € IN) ist die Summe unabhéngiger Variablen S, und Sy, 4, —
Sm, die wie ¢, X bzw. ¢, X verteilt sind. Somit gilt

(1.2) CrminX 4 em X1 + e Xo.

Die Summe S, (r,k € IN) ldsst sich andererseits als

k 2k rk
i=1 =kt 1 i=(r—1)k+1

schreiben und daraus folgt: S,. 4 X1+ ...+ X, = LSy < ¢k (e, X). Da
aber auflerdem S5 wie ¢, X verteilt ist, muss

(1.3) Crk = CrCL

fiir alle r, k € IN gelten. Durch Induktion nach v € IN und durch das Anwen-
den von (1.3) kénnen wir nun schlieBen, dass

(1.4) cn, = ¢y ist, wenn n = 1" gilt.

Als néchstes zeigen wir, dass die Folge (¢, )nenw monoton wachsend ist: Dazu
betrachten wir fiir ein m € IN erst einmal

P(cminX > cnx) i Py X1 4+ cnXo > )
= Plen Xy + enXo > ez, Xo > 0)
(1.5) + P(cn X1+ cnXo > ez, Xo < 0)
> Pep Xy > epr, Xo > 0)
= IP(X1 > .%')IP(XQ > 0)

1

Nun wéhlen wir > 0 so klein, dass P(X; > z) eine positive Konstante ist.
Dies ist moglich, weil R # Jgy eine symmetrische Verteilung ist. Es folgt, dass
(¢m/Cm+n) beschrénkt ist: Andernfalls gébe es eine Folge ((my, nk))k>1, s0
dass (¢, /Cmp+ny) o und dann wiirde

1
P(cmy4np X > cmxz) =P (MX > x) — 0< 3 P(X; > z)

Cmy, k—o0

)}
k—oo

gelten, was im Widerspruch zu (1.5) steht.
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Setzen wir m = r” und m 4+ n = (r + 1)”, wobei wir r festhalten und v
gegen oo gehen lassen, so erhalten wir

Cm v cﬁf_(cr>y
Cman  Clrg1yp (14) ¢4 Cri1

Da wir ein paar Zeilen zuvor gezeigt haben, dass (¢, /¢min) beschrinkt
ist, ist auch die Folge ((¢,/cy41)”) fiir v — oo beschrinkt. Daher muss
¢r/crp1 < 1 fiir alle r € IN gelten, was dquivalent ist zu der Aussage, dass
¢y < ¢p4q fiir alle 7 € N ist, und die Monotonieeigenschaft der Folge (¢, )nen
liefert.

Und sie ist sogar streng monoton wachsend: Wire namlich ¢, = ¢4 fiir
ein r > 0, so folgte

d d
Sr=c X =c, 1 X =541=5+X11

und damit X,17 = 0 f.s., was im Widerspruch zur Voraussetzung R # g
steht.

Nun sind unsere Voriiberlegungen fast abgeschlossen. Wir betrachten
ganze Zahlen j,k > 2. Zu jedem hinreichend groflen v € IN existiert ein
eindeutig bestimmtes A\ € IN, so dass

gilt. Aufgrund der strengen Monotonie der (c,,) ldsst sich ¢jx < cpr < cjan
folgern und mit (1.4) wird daraus

(1.7) c;‘ << c;‘“,

was ¢; > 1 impliziert. Durch Logarithmieren lassen sich nun die Unglei-
chungen (1.6) und (1.7) umformen zu Alogj < vlogk < (A + 1)logj bzw.
A+ 1)"t(loge;) ™t < v l(loger) ! < A7 t(loge;) 7!, was zusammen

A logj logk  A+1 logj
< <
A+1 loge;  loge A loge;

ergibt. Da v in dieser Ungleichung nicht mehr enthalten ist, kann es beliebig
— also auch beliebig grof§ — gewéhlt werden, wodurch auch A beliebig grof3
wird. Fiir A — oo ist daher o := logk/logc, = logj/logc; und somit
unabhingig von k, woraus wir ¢, = k'/ fiir alle k € IN folgern kénnen. [

Mit dem Begriff ,,charakteristischer Exponent®“ kénnen wir Beispiel 1.1.2
umformulieren. Wir haben es dort mit Verteilungen zu tun, die im engeren
Sinne stabil sind mit charakteristischem Exponenten 2 bzw. 1.

Als weitere Folgerung aus Satz 1.1.3 erhalten wir den folgenden Satz:
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1.1.4 Satz (vgl. [Fe2], VI.1, Theorem 2).
Ist R im engeren Sinne stabil mit charakteristischem FExponenten «, dann
gilt fir alle s, t € [0,00):

sox) + /e x, L (s +1)l/ex.
Beweis. Nach Satz 1.1.3 gilt fiir Verteilungen, die im engeren Sinne stabil

sind, Gleichung (1.2), mit der sich die Behauptung fiir rationale s := s1/s9
und ¢ := ¢y /te mit s1, s9,t1,t2 € IN zeigen lisst:

1/a
Sl/aXl + tl/aXQ 82t2> Sltg)l/ X7 + (tlsg)l/an)

l/a
<82t2> (sate + t182)1/aX1)

a
s1ty + 1182 L
SQtQ
= (s+1) Ve x
Die Ausweitung auf beliebige s,t € [0, 00) folgt per Grenziibergang. O

Jede stabile Verteilung lédsst sich durch Verschiebung in eine im engeren
Sinne stabile Verteilung transformieren:

1.1.5 Satz (vgl. [Fe2], VI.1, Theorem 3).
Wenn R stabil ist mit charakteristischem Ezponenten o # 1, existiert eine
Konstante b, so dass R(- 4+ b) im engeren Sinne stabil ist.

Beweis. Wihlt man X; := X; —b (i € N) und X’ := X — b, so gilt

S =S, —nb g (enX 4+ vn) —nb = cpn(X —b) + (v + (¢, — n)b)
- Cn)(/'+'7;

mit 7,/1 := vn + (¢, — n)b. Es bleibt zu zeigen, dass ein b € R existiert, so
dass 'y; = 0 fiir alle n € IN gilt. Dafiir stellen wir zundchst einmal fest, dass
es moglich ist, b so zu wihlen, dass 7; = 0 ist: Da 7; = v+ (cg — 2)b ist, ist
es genau dann gleich 0, wenn b = /(2 — ¢2) gilt. Weil nach Voraussetzung
a # 1 gilt, ist ¢ = 2/ ungleich 2. Nehmen wir also an, dass 7/2 = 0 ist.

Die Summe S, lisst sich schreiben als (X; + X5) + (X5 + X)) + ... +
(Xg,_1 + Xa,), wobei X; + X, fir 1 < i < 2n wie X + 7' = X’
verteilt ist. Daraus folgt:

/ d / ’ /o d ’ ’ ’ /
Sop =X+ ...+ X,) =S, = ca(cn X +7,,) = c2cn X + 27,
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. / / ’ . .
AuBerdem ist Sy, = Y0, X; + 37", 1 X; auch die Summe zweier un-

abhéngiger Variablen, die wie S,; verteilt sind, woraus

/ d / / / / / / /
Son = (n X1+ 7) + (e Xy + ) = en(Xy + Xo) + 27,
en(c2X') + 27, = cnca X' +27,

1=

folgt. Es muss also CQ"}/;L = 27; und damit ’y,; = 0 gelten. U

Da die Faltung eine Art Glittung der Verteilung bewirkt, ist es nahelie-
gend zu vermuten, dass stabile Verteilungen stetig sind. Das folgende Lemma
bestéitigt diese Vermutung;:

1.1.6 Lemma (vgl. [Fe2], VI.1, Lemma 1).
Alle (im weiteren Sinne) stabilen Verteilungen sind stetig.

Um dieses Lemma beweisen zu konnen, benttigen wir jedoch die Aussage
eines weiteren Lemmas, das wir zuvor beweisen werden. Dazu benétigen wir
zwei neue Begriffe:

a heift genau dann Atom der Verteilung R, wenn R({a}) > 0 gilt;
p:= R({a}) wird dann das Gewicht von a genannt.

1.1.7 Lemma (vgl. [Fe2], V.11, Problem 8).

Die Verteilung R habe genau die Atome a;, i € I, mit den Gewichten p;,
i € I, und mit p werde das Maximum der p;, © € I, bezeichnet, wobei
) £ I C N gelte. Dann sind die Gewichte aller Atome von Rx R echt kleiner
als p, aufer im Fall I ={1,...,n} fir einn>1undp; =...=p, =1/n.

Beweis. Zunéchst zeigen wir, dass jedes Atom von R * R von der Gestalt
a; +a; fiir i, j € I ist:

Seien also ¢ ein Atom von R % R und X,Y unabhéngige Zufallsgrofien
mit Verteilung R. Dann ist unter Benutzung des Satzes 52.5 aus [A]

0O<R*R({c}) = P(X+Y=¢)
P(X +Y = ¢[X = z) P¥(dx)
P(Y =c¢—z) PX(dx)

= Z P(Y=c—z)P(X =ux).

z:P(Y=c—z)>0

I
——

Es folgt daher, dass es zumindest ein x gibt, so dass P(Y = ¢ —z) > 0 und
P(X =) > 0 gelten; d.h. 2’ := ¢ — x ist ein Atom von Y und z ein Atom
von X. Somit ist ¢ = x + 2’ von der behaupteten Gestalt.
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Alle Atome von R+ R haben also die Gestalt a; +a; mit ¢, j € I. Nehmen
wir uns nun ein solches Atom von R * R und betrachten

Rx R({a;+a;}) = PX+Y =a;+aj)
= /IP(Y:ai—l—aj—m)IPX(dw)
= Z IP(Y:aZ—Fa]—x)]P(X:x)
z:P(Y=a;+a;—x)>0

= Z]P(Y:ak)]P(X:ai—l—aj—ak)
kel

< p

<p

Aber wann genau gilt R * R({a; + a;}) = p? Dies ist genau dann der Fall,
wenn P(X =a; +a; —a;) =pfiralle k€ T und ), ., P(Y = a;) =1 gilt.
Daher muss in diesem Fall I gleich einer endlichen Menge {1,...,n} (n > 1)
und p=p; =...=p, = 1/n sein. O

Beweis von Lemma 1.1.6. Seien R eine (im weiteren Sinne) stabile Vertei-
lung, I € IN und a;, i € I, alle Atome von R mit zugehorigen Gewichten p;,
i € I. Angenommen, R ist nicht stetig, d.h. I # (). Dann wihlen wir ig € T
so, dass p;, = max;erp; ist. Wegen R * R(-) = P(co X1 + 72 € -) ist die
Menge der Atome von R x R gleich {coa; + v : @ € I} und fiir jedes i €
gilt: R« R({caa;+72}) = p;. Dann ist insbesondere R* R({caa;, +72}) = piy-
Mit Lemma 1.1.7 kénnen wir nun folgern, dass wir uns in folgender Situation
befinden:

I={1,...,n} fireinn>1undp; =...=p, =1/n.

Aus dem Beweis von Lemma 1.1.7 wissen wir auflerdem, dass die Menge
aller Atome von R * R gerade {a; + a; : 4,5 € I} ist, deren Méchtigkeit hier
gleich n ist.

Nehmen wir nun an, dass n > 2 ist. Zudem gelte 0.B.d.A. a1 < ... < a,.
Dann ist aber {a; +a; : 4,5 € I} D {a1 +a1,...,a1 +a,} U{az + a,} und
damit [{a; +a; : i,j € I}| > n+ 1. Widerspruch. Also muss n = 1 sein, was
bedeutet, dass R = . fiir ein ¢ > 0 ist. Dies ist aber wegen der Stabilitéit
von R ausgeschlossen. Daher muss unsere anféingliche Annahme, dass I # ()
ist, falsch sein. O

Es ldsst sich zeigen, dass stabile Verteilungen absolute Momente be-
stimmter Ordnungen besitzen:

1.1.8 Satz (vgl. [Fe2], VI.13, Problem 3).
FEine stabile Verteilung mit charakteristischem Exponenten o besitzt absolute
Momente jeder Ordnung 0 < 8 < a.
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Beweis. Der Beweis dieses Lemmas gliedert sich in drei Schritte.

Im ersten Schritt zeigen wir, dass fiir eine symmetrische stabile Vertei-
lung R mit charakteristischem Exponenten a die Folge n(1 — R(n'/®x)),
n € N, fiir alle hinreichend grofien = beschréankt ist: Wir setzen fiir festes
x>0 p, = P(|X1| > n'/*z) und damit gilt

n (1 - R (nl/a:v>> =nP (X1 > nl/a:v> = %n]P <|X1| > nl/ax) = %npn.

Als niichstes betrachten wir m,, := P(max;<p<,, | Xz| > n'/%z):
m, < 2P (|Sn| > nl/o‘x) =2P (| X1]| > x),
ATl

weil jede symmetrische stabile Verteilung im engeren Sinne stabil ist. Sei
nun z so grof}, dass 2P(|X1| > =) < 1 ist. Sehen wir uns m,, noch einmal
genauer an, so erkennen wir, dass es sich durch p,, ausdriicken lésst:

m, = 1—IP<1maX|Xk|<n/ )

<k
= 1-P (|X1| <n'ez, . |Xn| < nl/ax)
= 1-P (]Xﬂ < nl/ax>n
= 1= =pa)"
Umgekehrt ldsst sich natiirlich auch p,, durch m,, ausdriicken:
pn=1—(1—my)"™

Insgesamt konnen wir nun folgern, dass

n(l—R(nUagy)):%npn = %n( 1/n)
- Eeom o e o
= %n(l—ql/”>

mit ¢ :=1—2P(|X;| > x) € (0,1] ist. Und weil

(-0

n(l—el/"logqﬂ = |n 1-2%

N (1/nlogq)*| |~ (1/n)"(log )*
- _”; k! - ; k!
’k 1

1/nlogq
logg| Y /o8 A

— |log q|
o0
k>1

IN
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gilt, haben wir die erste Behauptung gezeigt.

Im zweiten Schritt zeigen wir nun, dass eine symmetrische stabile Ver-
teilung R mit charakteristischem Exponenten o absolute Momente jeder
Ordnung 0 < 8 < « besitzt: Sei dazu X eine Zufallsgrofie mit Verteilung
R. Wir kénnen 0.B.d.A. annehmen, dass die Folge n(1 — R(n'/®)), n > 1,
beschriankt ist. Denn nach Schritt 1 existiert ein x > 0, so dass die Folge
n(1 — R(nY%z)), n > 1, beschrinkt ist. Geht man von X zu ¢X fiir hinrei-
chend grofles ¢ > 0 iiber, so ldsst sich die Beschranktheit der obigen Folge
auch fiir x = 1 erreichen. Es gilt

E|X|° = /]RW PX(dz) = 2/ ? PX(dz).

(0,00)

Fiir alle 8> 0 ist [;° 2 P*(dz) = 3 [;7 2771 (1 — R(x)) dz (vgl. [A], (A.3)
auf Seite 115). Betrachten wir die rechte Seite dieser Gleichung:

5[ e
. / (=72)" (1= R () (aat ) "

= g/o xﬁ/o‘_llP(X>x1/a) dx

1 0
é(/ xﬁ/aldx%—/ xﬁ/a*IIP(X>x1/°‘) dx>.
«a 0 1
| S

=a/p

IN

Es bleibt zu zeigen, dass [} P01 P(X > x'/*) da < coist: Da f/a—1 < 0
gilt, ist die Funktion g(z) := #/*1P(X > 2'/*) monoton fallend in z.
Dadurch und weil §/a — 2 < —1 ist, konnen wir folgern, dass

/ 2Pl P(X > YY) da < Znﬁ/o‘_l P(X > n'/®)
1

n>1

= > aPPaP(X > al/)

n>1

=n(1—R(nl/e))

< 0Y <o,
Schritt 1 =1

gilt.

Abschliefend weiten wir die Aussage im dritten Schritt auf beliebige
stabile Verteilungen aus: Sei R eine beliebige stabile Verteilung mit charak-
teristischem Exponenten o und seien X7, Xo, ... und X/, X/, ... stochastisch
unabhéngige Zufallsgroflen, die wie R verteilt sind. Dann ist die Verteilung
R’ von X; — X/ symmetrisch und im engeren Sinne stabil. Wir haben bereits
gezeigt, dass in diesem Fall B|X; — X/|% < oo fiir alle 0 < 8 < « gilt.
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Sei a > 0 so groB, dass P(X; > a) < 1/2 und P(X; < —a) < 1/2 gilt.
Dann folgt aus Lemma A.1.2, dass fiir ¢t > 0

P(|X1| >t+a) <2P(|X; — X7| > t) Te 2P(| X, — X{| > 1)
ist, woraus sich Folgendes schlieflen ldsst:

E|X|° = 5/0 P(|Xy| > 2)2? L dx

:ﬁ/ P(|X,| > )z’ daH—ﬁ/ P(|X1| >z +a)(z+a)’ Ldx
0 0
<af
Saﬁ—i—ﬁ/ 2P(| X, — X1| > z)(z +a)’ L da
0

aP —i—BanQIP(]Xl - X1 > x)(x +a)5*1 dx
< +2°B X, — X}|5, falls B > 1,
a®+ 2B |X; — X5, falls 8 < 1,

< 0.
O

Mit Hilfe von Satz 1.1.8 kénnen wir nun auch zeigen, dass 0 < o < 2
gilt.

1.1.9 Folgerung (vgl. [Fe2], VI.1, im Text auf Seite 169).
Der charakteristische Ezponent o liegt im Intervall (0, 2].

Begriindung. Dass « > 0 ist, wissen wir bereits aus Satz 1.1.3. Wir neh-
men an, « sei echt grofler als 2. Gegeben seien eine stabile Verteilung R mit
charakteristischem Exponenten o und unabhéngige Kopien X/, X/, ... von
X1, Xo,.... Dann ist die Verteilung R’ von X; — X| symmetrisch, im enge-
ren Sinne stabil und besitzt ebenfalls den charakteristischen Exponenten a.
Nach Satz 1.1.8 existiert insbesondere das zweite Moment, also die Varianz
o? von R'. Weil X; — X/ nichtdegeneriert ist, gilt 02> > 0. Daher geniigt
die Folge (S,)n>1 mit S), := > | (X; — X!) dem zentralen Grenzwertsatz,
d.h., dass n=Y 28’ in Verteilung gegen die 91(0, 0%)-Verteilung konvergiert.
Da R’ im engeren Sinne stabil ist, gilt auBerdem: n=%/*S" ~ X; — X!. Die
linke Seite dieser Gleichung ldsst sich umformen zu n~/28 nl/2=1/a Da
1/2 = 1/a > 0 ist, strebt n'/2=1e fiir n — oo gegen oo: Widerspruch. [

1.2 Stabile charakteristische Funktionen

Wie in 1.1.1 definiert wurde, heifit eine Verteilung R stabil, wenn es fiir jedes

n € N ein ¢, > 0 und ein v, € R gibt, so dass S, < cn X + 7y ist.
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Beim Ubergang zu den charakteristischen Funktionen

¢s5, (1) = ¢x,(t) - - .- Ox, (1) = Pk (1)

und ‘
¢CnX+'Yn (t) = (bX (Cnt) ez')’nt

erhilt man die Gleichheit ¢% () = ¢x (c,t) €77, die folgende Definition nahe
legt.

1.2.1 Definition.
Eine charakteristische Funktion ¢ heifit stabil, wenn nicht |¢p| = 1 gilt und
es fir jedes n € N ein ¢, > 0 und ein v, € R gibt, so dass

(1.8) ¢"(t) = p(cat) e
gilt.

Als néchstes bestimmen wir die charakteristischen Funktionen aller sta-
bilen Verteilungen und bemerken dazu, dass wir fiir jede auf einem Intervall
I O {0} nullstellenfreie charakteristische Funktion ¢ mit log¢ die eindeu-
tig bestimmte stetige Funktion ¢ : I — R bezeichnen mit ¢(0) = 0 und

exp oy = ¢.

1.2.2 Satz (vgl. [Br], 9.9, Theorem 9.27).

Sei R eine stabile Verteilung mit charakteristischem Exponenten a € (0, 2].
Dann ist R fiir « = 2 eine Normalverteilung und im Fall o € (0,2) gibt es
Konstanten my > 0, mo > 0, m1 +mo > 0, und ein b € R, so dass

) .
Iy it it dz
10g¢R(t) = th—i‘Tnl\/0 <ezx—1—m>m

0 .
it it dx
S L
+m2/_oo <e 1+$2> [z

wobei ¢r die charakteristische Funktion von R bezeichne.

Beweis. Aus der Stabilitdt von R lisst sich direkt folgern, dass R unendlich
teilbar ist. Nach Satz A.1.3 gilt dann, dass

Yr(t) = logor(t)
2,2 : 2
(1.9) = bt — o +/ <em —-1- by > H_—qu(dx)

2 1+ 22 x

mit einem endlichen Mafl v auf R* ist. Mit dieser Darstellung kénnen wir
(1.8) zu

(1.10) (ewR(t)>n = e¥rlen)mt oder nyg(t) = PYr(cat) + iynt
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umformen, da 1 g stetig ist mit ¥z (0) = 0. Wir unterscheiden nun die beiden
folgenden Fille:
0?=0 und o2 > 0.

1. Fall: Sei 02 = 0. Wiire in (1.9) v = 0, so wiire R eine Diracverteilung,
was im Widerspruch zur Stabilitdt von R steht. Es muss also in diesem Fall
v # 0 gelten. Definieren wir ein Ma$ y durch p(B) = [5(1 + 2?)/2? v(dz),
B € B, so gelten

(1.11) YR(t) = ibt + / <em -1- %) p(dz)

and vrlent) = ibent+ [ <e@'cm—1_ fc_t’f;)mdx)

4 ot
= id,t+ / <ezcnt:v - 1= &) ,u(dm),

1+ 222

wobei dy, = ben+cn [ (1552 — 13552 )1(dw) ist. Dieses letzte Integral existiert,

weil
x x (1—c2)a3

T+c222 1+22  (1+222)(1+22)

fiir z — 0 asymptotisch dquivalent zu (1 — ¢2)z? ist, und sich

x x
/[a,a] (1 +222 1+ x2> u(dz)

deshalb fiir hinreichend kleines a > 0 wie

/ (1—c2)x(1 + 2?) v(dz) < oo
[_ava]
verhélt. Auflerhalb einer Umgebung [—a,a] (a > 0) von 0 ist das Integral

ebenfalls endlich, da der Integrand beschrankt ist und

w(l-a,a]?) = /H L ) < (1 n i) v(—a,a)%) < o0

gilt.
Als néchstes definieren wir ein Maf3

B
:U‘n(B) =R <_> aB € %,TL > 1,
Cn
und erhalten:
it
1+ 22

Yr(cnt) = idpt +/ <e“l“ -1- > fin (d),
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wodurch (1.10) zu

ibtn —i—/ <eim -1- T iiﬂ) nu(dr)

. it x
=z(vn+dn)t+/<et -1- 1”2)%(@)

wird. Nach Satz A.1.4 ist die Darstellung der charakteristischen Funktion
einer unendlich teilbaren Verteilung eindeutig und daher muss

(1.12) np = fn

gelten. Definieren wir nun M*(x) := u([z,00)) fir x > 0 und M~ () :=
p((—o0,x)) fiir z < 0, so folgt mit (1.12) und Satz 1.1.3 fiir n > 1 und den
charakteristischen Exponenten a:

nM*(z) = M7*(z/n'/?) fir z >0,
(1.13)
nM~(z) = M~ (z/n"?) fir z <0.

Die Gleichungen (1.13) ermoglichen eine sehr genaue Bestimmung der Funk-
tionen M™* und M ~:

1.2.3 Lemma (vgl. [Br], 9.9, Proposition 9.31).
In der obigen Situation gilt

M*(x) = x *M7*(1) firx >0,
(1.14)
M~ (x) = |z|7*M~(-1) firxz <0.

Beweis. Seien k,n > 1 und o € (0,2]. Aus (1.13) folgt, dass nM T ((n/k)Y/ <)
= Mt (1/kY®) fiir alle n,k > 1 ist. Ist n = k, ergibt sich: kMT(1) =
M™*(1/kY®). Setzen wir dies in die vorherige Gleichung ein, so erhalten
wir, dass nM*((n/k)*) = kM™*(1) bzw. M*((n/k)Y/*) = (n/k)~ M+ (1)
gilt, dh. M*(z) = z=*M*(z) fir z € {(n/k)/* : n,k > 1}. Da diese
Menge dicht in (0,00) liegt, folgt die Ausweitung auf alle z > 0 durch
Grenziibergang unter Benutzung der Monotonie von M'. Der Beweis fiir
M~ verlauft analog. O

Fortsetzung des Beweises von Satz 1.2.2: Durch Differentiation erhalten
wir aus (1.14), dass p die Lebesgue-Dichte

fulz) = aM*(l)x’(a+1)]l(07oo)(x) + aM*(_1)\xr<a+1>]1(,oo70) (x)

besitzt. Weil v # 0 gilt, ist u(R*) > 0 und wir kénnen mit Lemma 1.2.3
folgern, dass max{M* (1), M~ (=1)} > 0 ist. Wir nehmen 0.B.d.A. an, dass
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M™(1) > 0 ist. Dann gilt

oo>/ (1+2?)v(de) = / 22 p(dz)
[0,1] [0,1]

1
= /xzaMJr(l)x(a“)dx
0
1
= aM+(1)/ e,
0

was « < 2 impliziert. Die behauptete Gestalt von g (t) ergibt sich durch das
Einsetzen der Lebesgue-Dichte von p in (1.11), wobei wir my := aM™(1)
und mg := aM (1) setzen.

2. Fall: Sei 02 > 0. Dann gilt

) ot? , itx 14 22

Wir wollen zunéchst mit dem Satz von der majorisierten Konvergenz zeigen,
dass ¥g(t)/t? fiir t — oo gegen —a? /2 konvergiert. Dazu miissen wir priifen,
ob Folgendes gilt:

. it 1+ a2
1.15 dr_ 2 )Y | <
( ) g}) <e 1 +x2> 1222 .
rzeR*
. itx 1+ 22
1.1 e ) fii .
(1.16) <e 1+x2> 22 t—>—o>oo irz#0

Beweis von (1.15): Seien ¢ > 1 und z € R*. Betrachten wir zuerst den Fall,
dass |tz| > 1 ist. Dann gilt:

'((eit:’:—l)— itx >1+x2 2'1—{—3:2 itr 1+ 22
1+22) 222 222 1422 222
1 1 1
- ezt e +‘a
< 441

An dieser Stelle konnen wir leicht zeigen, dass (1.16) gegeben ist, denn:

(o0 t50) 5

Tl 22) 22

1

<2 =

+ |+

1222 tr | t—oo
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Sei nun |tz| < 1. Dann ist |z| < 1 und es gilt:

gitr _ 1 _ 1tx 1+ 22
1+22) t222

itr(14+ 22 —1)\ 1422
14 22 1222

:Kem—l—im—k

X

<2/} (@0)" o) +

n!

t n
<2} B2 ) < oeltel 41 < 2641,
n>0(n+2)'

Der Satz von der majorisierten Konvergenz lésst sich daher anwenden und
wir erhalten:

t 2 . it 1 2 2
lim Vr(t) :_U_+/ lim <em_1 e >£y(dm):—%.

t—oo  t2 2 Tl 22) 22

Dividieren wir nun (1.10) durch ¢? und lassen dann ¢ gegen oo laufen, erhal-
ten wir: ¢, = n'/2, d.h. wir befinden uns im Fall o = 2. (1.10) hat somit die
Gestalt nibr(t) = Yr(n'/?t) + iy,t, was dquivalent zu

wR(n1/2t) .TIn
t) =2 i
T;Z)R( ) nt2 + n
ist. Hier konvergiert ¢z(n'/?t)/(nt?) fiir n — oo gegen —¢2/2. Kénnen wir
nun zeigen, dass 7y,/n — b fir n — oo gilt, so haben wir gezeigt, dass
Yr(t) von der Gestalt ibt — (02/2)t? ist, d.h. R = N(b, 0?) gilt.

Klar ist, dass

, 17 1422
i bt + eite — 1 T i v(dz)
n n—oo 14 22 22

gilt. Insbesondere muss

it it 1+ 22

22
— /(1 — cos(tx)) Lt v(dz)

22

fiir alle t € R gelten. Da der Integrand fiir jedes ¢ nichtnegativ ist, muss er
v-f.ii. verschwinden. Daher ist v auf die Menge

L~ (o)

t>0

konzentriert. Weil nach Voraussetzung v({0}) = 0 ist, muss v,/n — b
n—oo

gelten. O
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1.2.4 Satz (vgl. [Br], 9.10, Theorem 9.32).

Fiir jede stabile Verteilung R gibt es Konstanten o € (0,2], ¢ > 0, 8 €
[—1,1] und p € R, so dass ihre charakteristische Funktion ¢ von der Gestalt
eYR st mit

iut — o®|t|* <1 - zﬁﬁ tan (”'2—0‘)) . falls a #1,

1.17 r(t) =
(L17) () ipt — olt| (1 + zﬁﬁ% log ]t!) , falls o = 1.

Umgekehrt ist jede solche Funktion ¢ die charakteristische Funktion einer
stabilen Verteilung.

Beweis. Sei R stabil. Der Fall o = 2 ist nach Satz 1.2.2 klar. Sei also 0 <

o < 2. Wir setzen
00 .
o it itz dz
L) -—/0 < ”‘@)ﬁ

und sehen direkt, dass I1(—t) = I;(t) ist. Deshalb berechnen wir I;(¢) nur
fiir ¢ > 0 und setzen

0 .
; tx dz
L(t) = we g ) S
0 = [ ()
0 .
_ —itx —ulw da _
A ( ol T) fepira = 10
Sei 0 < a < 1. Durch die Substitution x + t~!z (¢ > 0) erhalten wir
* . dx © 1 dx
_ itr s -
L(t) = /0 (€™ =1) 457 ”/O 15 22 20

. dzx )
- /0 (elm — 1) talera + ite

= itc+t"H(a),

wobei H(J) = [° (% — 1) y~*tdy und ¢ == — JoS 1+ x2)_1 ™ %dx
seien.
Sei 1 < a < 2. Dann erkennen wir mittels partieller Integration, dass

it [ . d d it [ d
b= [ (o ) [
0

a Cdrl+a?) 2 a Jo e
ist, wobei ¢ = a~! [7°(1 - %H?T)x_adx sei. Dabei ist hinsichtlich der
Existenz des Integrals zu beachten, dass 1 — %ﬁ in 0 eine Nullstelle

zweiter Ordnung besitzt. Analog zum Fall 0 < a < 1 bekommen wir durch
die Substitution z — t "1z (t > 0):

L) = itd + L H(a - 1).
«
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Sei @ = 1. Mit partieller Integration erhalten wir analog zum Fall 1 <

o < 2, dass
rr. d =z dz
Ii(t) =it lim et - ——— ) =
10 T—oo Jy < dac1—|—:c2> T
ist. Definieren wir nun J(7T',t) fo el — % H_mxg) %’3, so erhalten wir fiir

to > t; > 0 unter Verwendung des Satzes von Fubini:

T ) ) dr T ta
J(T,ts) — J(T,t)) = / (e — i) & :i/o </t emdz> dx
1
to to 1Tz
= / / 2 dr dz —/ 671612.
t1 z

Nach dem Lemma von Riemann und Lebesgue (vgl. Lemma A.1.5) ist

) to e’LTZ
lim
T—o0 t

dz =0,

z
woraus folgt, dass limy_,o (J(T,t2) — J(T,t1)) = log(t1/t2) fiir to > t1 >0
gilt. Betrachten wir nun limp_. J(7), 1

)
/OO eim_i € d_m _ > eia:_ 1—a” d_.%'
0 del14+22) = J, (14+22)2)
B 7T_i+/°°(1+ﬂ:2)2(:osx—(1—x2)dx
0

2 (1+ 22)? z
Dieses Integral existiert bei 0, da der Integrand dort stetig fortsetzbar ist.
Es existert ebenfalls bei oo, weil floo 2% dx als uneigentliches Riemann-

1—2? dx .

Integral und f1 4222 @ im Lebesgueschen Sinne existieren. Daher kénnen

wir folgern, dass
lim J(T,t) = —logt + "

T—o00
ist, wobei
Iy d = dx
4 = 1 J T 1 = / w.__ - -
¢ T (1) 0 ‘ del+2%) x
Iy n
= —+4c
5 1

mit ¢; := [ (cosz — % lfo)dx sei. Damit gilt fiir ¢ > 0

I (t) = itd" —itlogt = itc; — (7/2)t — itlogt.
Um nun endlich auf die behauptete Gestalt von ¥ zu kommen, miissen

wir noch H(«) fiir 0 < o < 1 bestimmen. Dies haben wir in Satz A.1.11
getan:
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wobei L reell und negativ ist. Aus dem vorherigen Satz und unseren An-
fangsiiberlegungen wissen wir:

wR(t) = bt + mlll(t) + mgfg(t) = bt + mlll(t) + moly (t)
Fiir 0 < a < 1 ist dann
Gr(t) = bt +my (ict + t*H(a)) + mo (—ict + tO‘H(a))

= qut+t* (mle_%io‘L(a) + mge%o‘L(a)>
= iut+t* ((ml + mg) L(«) cos % —i(my — mg)L(a) sin %)

~—_————
=R(H(e))
1 — Moy yiyes

; afq_;m—ma, T
= qut+ (my1 +me)R(H ()t (1 zml ey tan 5 >

= dut —o*t® (1 — i tan %)

mit g = b+ (my —ma)c € R, 0% := —(my + mo)R(H(a)) > 0 und 5 :=
(m1 —m2)/(m1 +m2) € [-1,1].
Im Fall 1 < o < 2 benotigen wir

Ha—-1)=e 2@ Dq—1) =i 2L(a—1).

Damit ist

4o qo_
Yr(t) = ibt+my <ic't + Z—H(a - 1)> + my <—ic/t - Z—H(a - 1))
«

«
. it . T . T
= dut+ —L(a— 1) (my + m2)icos -5 + (my1 — mg) sin o3
«

” _
= dut + (m1 +ma)L(a — 1)icos ?% <1 — 2% tan %)

= qut — o“t® (1 —iftan %)
mit g = b+ (my —meg)d € R, 0 := ((m1 + ma)/a)L(a — 1) cos Tar/2 > 0

und 3 = (m1 —ma)/(m1 +ma) € [—1,1].
Im Fall o = 1 gilt abschlieflend:

Gr(t) = bt +m (iclt - gt —itlog t) +ma <—z’c1t - gt +itlog t)
= dut— (my + mg)gt —i(my —mo)tlogt
. T mi — ma 2

2
= jut — ot <1 + Zﬁ; log t>
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mit g = b+ (my —ma)c; € R, 0 := (m1 +ma)r/2 > 0 und § := (my —
ma)/(mi +mg) € [—1,1].

Nach Satz A.1.3 existiert fiir gegebene Parameter a € (0,2], o > 0,
B € [—1,1] und p € R eine unendlich teilbare Verteilung mit einer charak-
teristischen Funktion der Gestalt (A.3), die sich in die Form (1.17) transfor-
mieren ldsst. Es kann leicht gepriift werden (mit Hilfe von Satz 1.3.4), dass
diese unendlich teilbare Verteilung stabil ist. U

1.2.5 Korollar.
Jede stabile Verteilung hat eine beliebig oft stetig differenzierbare Lebesgue-
Dichte.

Beweis. Sei R eine stabile Verteilung. Dann existieren nach Satz 1.2.4 Kon-
stanten « € (0,2], 0 > 0, 8 € [-1,1] und ein u € R, so dass die charakteris-
tische Funktion ¢ von R von der Gestalt e¥ ist mit

it — o®|t|* (1 - ’Lﬁﬁ tan (%)) ,  falls o # 1,
iut — olt (1 1Bt 2log \t\) : falls o = 1.

[GES

Damit gilt |p(t)] = exp(—o®|t|*) fiir alle t € R. Also ist ¢ Lebesgue-
integrierbar iiber R und nach der Umkehrformel (Satz 41.7 in [A]) ist eine
Lebesgue-Dichte von R gegeben durch

fa) = = / T ey dt (z € R).

:% .

Durch Induktion nach n kénnen wir nun zeigen, dass f fiir jedes n € Ny
n-mal differenzierbar ist mit Ableitung

() = ! / w(—it)"e—i%(t)dt (x € R).

=5 .

Fir n = 0 ist die Behauptung bereits gezeigt. Nehmen wir an, dass die
Behauptung fiir n € INg ebenfalls wahr ist, so erhalten wir wegen

d S\, —IT S\ —ix
L (itye o e) = (it e ()
und der Lebesgue-Integrierbarkeit von

i |(_Z~t)n+lefi:vt¢(t)| _ |t|n+167¢7a\t|a

aus Satz IV.5.7 in [E] die Behauptung. O
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1.3 Stabile Verteilungen (zweiter Teil)

Da wir im letzten Abschnitt die Gestalt der charakteristischen Funktion
einer stabilen Verteilung hergeleitet haben, konnen wir nun auf dieser Basis
eine Bezeichnung fiir stabile Verteilungen einfiihren:

Wir schreiben X ~ S, (o, 8, 1) mit a € (0,2], 0 >0, 8 € [-1,1] und p € R
genau dann, wenn X eine stabile Verteilung besitzt, deren charakteristische
Funktion ¢y die Gestalt e¥X mit

iut — o®|t|* <1 - zﬁﬁ tan (%)) ,  falls a # 1,

vx(t) iut — olt| <1—|—iﬁ‘—§|%log|t|) , falls a = 1,
hat. Dabei wird « charakteristischer Exponent (engl.: index of stability),
B Asymmetrieparameter (engl.: skewness parameter), o Skalierungsparame-
ter (engl.: scale parameter) und p Verschiebungsparameter (engl.: shift) ge-
nannt.

In diesem Zusammenhang kénnen wir noch einmal auf die Beispiele aus
1.1.2 zuriickkommen: Die Verteilung (0, 0?) mit 0 > 0 besitzt die Fourier-
Transformierte

¢(t) _ 6—02152/27

entspricht also aufgrund der Eindeutigkeit der Fourier-Transformierten der
Verteilung Sy (c/v/2,0,0). Die Verteilung C(a,b) mit a € R und b > 0 besitzt
die Fourier-Transformierte

¢(t) _ 6ianffb|t\

und entspricht somit der Verteilung S1(b,0,a).
Viel allgemeiner als das obige Beispiel kénnen wir Folgendes bemerken:

1.3.1 Bemerkung.
Die Normalverteilungen bilden eine Teilklasse der stabilen Verteilungen.

Beweis. Wie im obigen Beispiel durchgefiihrt, ldsst sich aufgrund der Ein-
deutigkeit der Fourier-Transformierten die Gleichheit

N(p,0%) = Sa(0/V2,0, 1)
nachweisen. O

Als néchstes werden wir einige grundlegende Eigenschaften stabiler Ver-
teilungen herleiten.

1.3.2 Satz (vgl. [Sam], 1.2, Property 1.2.2).
Es seien X ~ Sy (0,3, 1) und a eine reelle Konstante. Dann gilt:

X +an~ Sy(o,8,1+a).
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Beweis. Sei a # 1. Dann gilt:
log pxya(t) = loge™ox(t) = iat + ¢x (1)

= i(a+ p)t— ot (1 - w% tan <?>> .

Fiir o = 1 lésst sich eine dhnliche Rechnung durchfiithren. U

Damit ist klar, wieso i Verschiebungsparameter genannt wird; der néchs-
te Satz erkliart die Bezeichnung ,,Skalierungsparameter® fiir den Parameter
.

1.3.3 Satz (vgl. [Sam], 1.2, Property 1.2.3).
Es seien X ~ S (0,8, 1) und a # 0 eine reelle Konstante. Dann gilt:

aX ~ Sa(’a‘0-7 aﬁ/‘alvau) fUT’ « 7& L,
2
aX ~ S <\a!a, af/lal,ap — acS—log \a!) fiir a = 1.
T
Beweis. Ist a # 1, so gilt:

log pax(t) = logox(at)
iaut — o*lat|” <1 — 2ﬁ| t| (%))

— apt — (Jalo)® [t (1 - zﬁ% tan (%)) .

Ist a =1, so gilt:

log pux(t) = idaut — olat] <1—i—zﬁ| e 10g|at|>

= daut — olal|t| <1 + zﬁm—log ]t!) - zaﬁat log |al.

O

Bereits an der Definition sehen wir, dass verschobene und skalierte sta-
bile Verteilungen wieder stabil sind. Nach dem obigen Satz wissen wir nun
auch, wie die zugehorigen, neuen Parameter aussehen. Fiir die Faltung stabi-
ler Verteilungen (mit demselben charakteristischen Exponenten) liefert der
folgende Satz die neuen Parameter:

1.3.4 Satz (vgl. [Sam], 1.2, Property 1.2.1).
Es seien unabhingige Zufallsvariablen X1 und Xo mit X; ~ Sq (04, Bi, i),
i =1,2, gegeben. Dann gilt: X1 + X9 ~ Sy (0, 5, 1) mit

o*B1 + 055

= & 041/0{ =
o (O-l+o-2) ) ﬁ U%‘i‘gg

y M= p1 Tt o
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Beweis. Sei o # 1. Dann gilt:

Ingx,+x, (t) =In (¢X1 ¢X2) (t) = ¢x, (t) +Ux, (t)

. . t ye"
= i+ )t = (oF + o)t +ilof Py + o8 )l 1 tan ()
oL+ o8P t T

of +o5 |t]

= i+ )t~ oF + o)l 1 .

Fiir a = 1 lésst sich eine dhnliche Rechnung durchfiihren. U

1.3.5 Satz (vgl. [Sam], 1.2, Property 1.2.4).
Fiir jedes 0 < oo < 2 gilt: Ist X ~ S, (0,3,0), so ist —X ~ Sy(0,—03,0).

Beweis. Setzt man 4 = 0 und a = —1, so folgt die Behauptung aus Satz
1.3.3. ]

Wieso 0 Asymmetrieparameter genannt wird, erkléiren die folgenden bei-
den Sétze.

1.3.6 Satz (vgl. [Sam], 1.2, Property 1.2.5).
X ~ Su(o, B, 1) ist genau dann symmetrisch, wenn 3 = p = 0 gilt. X ist
genau dann symmetrisch bzgl. p, wenn 3 = 0 ist.

Beweis. Nach Satz 41.13 aus [A] ist eine Verteilung genau dann symme-
trisch, wenn ihre Fourier-Transformierte reellwertig ist. Und dies ist genau
dann der Fall, wenn 8 = p = 0 gilt. Die zweite Aussage folgt dann aus Satz
1.3.2. ]

Wir haben gerade anhand der Parameter charakterisiert, welche stabilen
Verteilungen symmetrisch sind, und werden nun untersuchen, welche stabi-
len Verteilungen auf [0, c0) konzentriert sind.

1.3.7 Satz (vgl. [Sat], 5, Example 24.12).
Sa(o, B, 1) ist genau dann auf [0,00) konzentriert, wenn o € (0,1), § =1
und p > 0 gilt.

Beweis. Nach [Sat], Beispiel 24.12, ist eine stabile Verteilung genau dann
auf [0,00) konzentriert, wenn ihre charakteristische Funktion ¢ die Gestalt
e? hat, wobei

ye:;

Y(t) =iut — o™[t|* (1 - z% tan <7>>

mit « € (0,1), beliebigem ¢ > 0 und p > 0 ist. Vergleicht man diese
Darstellung mit Gleichung (1.17), so erhélt man ferner 5 = 1. O

1.3.8 Bemerkung.
Aus Satz A.1.7 erhalten wir ebenfalls eine Implikation des obigen Satzes,
namlich dass S, (0,1, u) fiir @ € (0,1) und g > 0 auf [0, c0) konzentriert ist.
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Eine stabile Verteilung heifit vollstindig nach rechts ausgelenkt (engl.: to-
tally skewed to the right), wenn ihr Asymmetrieparameter = 1 ist. Analog
heifit eine stabile Verteilung vollstindig nach links ausgelenkt (engl.: totally
skewed to the left), wenn 3 = —1 ist.

1.3.9 Satz (vgl. [Sam], 1.2, Property 1.2.6).
X habe die Verteilung Sy (o, B3, ) mit o # 1. Dann gilt: X ist genau dann
stabil im engeren Sinne, wenn p =0 gilt.

Beweis. X1, Xo, ... seien unabhéingige Kopien von X und es gelte a # 1.
Durch wiederholtes Anwenden von Satz 1.3.4 erhalten wir fiir n € IN: S, ~
Sa(nl/aa, B,nu). Wegen der Definition 1.1.1 betrachten wir nun nYeX 4,,.
Hierfiir gilt nach den Sétzen 1.3.2 und 1.3.3:

nY X 4 v, ~ Sa(nt/ %o, B0 4 ).

X ist genau dann stabil im engeren Sinne, wenn S, 4 ot/ayx +v2 mit v, =0
fiir alle n € IN gilt, was genau dann der Fall ist, wenn p = 0 gilt. U

Als Folgerung aus den Sétzen 1.3.2 und 1.3.9 erhalten wir noch einmal
Satz 1.1.5, wobei wir sogar die Konstante b aus Satz 1.1.5 als den Verschie-
bungsparameter p identifizieren kénnen:

1.3.10 Korollar (vgl. [Sam], 1.2, Corollary 1.2.7).
X habe die Verteilung Sy (o, B, ) mit o # 1. Dann ist X — p stabil im
engeren Sinne.

Ist der charakteristische Exponent o« = 1, ldsst sich eine stabile Vertei-
lung nicht durch Verschiebung zu einer im engeren Sinne stabile Verteilung
transformieren:

1.3.11 Satz (vgl. [Sam], 1.2, Property 1.2.8).
X ~ Sq(o, B, p) ist genauw dann stabil im engeren Sinne, wenn 3 = 0 ist.

Beweis. X7 und X5 seien unabhéngige Kopien von X. Mit Hilfe der Sétze
1.3.4, 1.3.2 und 1.3.3 erhalten wir:

X1+ Xo ~ 51(20765 2:“‘)

und

2
2X ~ 5 (20,&, 2u — 203— 1n2> .
T

X ist nach Definition 1.1.1 genau dann stabil im engeren Sinne, wenn X7 +

X5 4 9x gilt. Dies ist genau dann der Fall, wenn QUﬁ% In2 = 0 gilt, d.h.,
wenn (= 0 ist. O
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1.3.12 Satz (vgl. [Sam], 1.2, Property 1.2.13).

X habe die Verteilung Sy (o, 3,0) mit a < 2. Dann gibt es zwei unabhdngige
und identsich verteilte Zufallsvariablen Y1 und Yo mit Y; ~ S, (0,1,0), i =
1,2, so dass

1/ _ 1/a
(1.18) x4 <ﬂ> Vi — <ﬂ> Ya fir o # 1

2 2
und
1 1-— 1 1 1-— 1-—
XiﬂYl——ﬁYz%—a +ﬂlog +ﬁ— ﬁlog b
2 2 s 2 s 2
fiir a =1 gilt.

Beweis. Mit Hilfe der Satze 1.3.4, 1.3.2 und 1.3.3 erhélt man die Behaup-
tung. ]

Kommen wir nun zu einer Aussage iiber das asymptotische Verhalten
der Uberlebenswahrscheinlichkeiten:

1.3.13 Satz (vgl. [Sam], 1.2, Property 1.2.15).
Ist die Zufallsgrofie X Sy (o, B, p)-verteilt und o € (0,2], dann gelten

1
lim y*P(X >vy) = aﬂ o
y—00 2
und
. a _ 1-— B o
lim y*P(X < —y) = C, o
y—00 2
mit

0ok — 11— ..
Ca: (/ Slnxdx> 1: F(QTCOS(%) furoz%la
o ¢ % fira=1

wobei Cy = 0 gesetzt wird.

Beweis. Zeigen wir zunéchst, dass C,, die behauptete Gestalt besitzt: Es ist
bekannt, dass fooo r tsinzdr = /2 ist. Sei nun a # 1. Dann entnehmen
wir der Ubungsaufgabe 2.12 a) aus [E], V.2:

/‘x’ sinz -1 T 1 2I'(a)sin e
dx = —— =
0 z° 2I' () sin T T

Mit Hilfe der Funktionalgleichung der Gammafunktion und der Gleichung
MNa—-1DI'(2—a) =7/(sin(m(a —1))) aus [Fi], VIL.4, Satz 5.1, erhalten wir:

B T B m(l — )
I(a) = (o - 1)1“(2 “)sin(n(a—1)) T(2—a)sinra’
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Wegen sin 2z = 2sinz cosx ist 2sin(ma/2) = sinwa/ cos(ma/2). Insgesamt

ergibt sich:
> sinx -1 11—«
——dx = —-
0 X ['(2 — o) cos &

Kommen wir zum asymptotischen Verhalten der Uberlebenswahrschein-
lichkeiten: Fiir o = 2 ist S, (0, 3, ) eine Normalverteilung. In diesem Fall
ist die Behauptung klar.

Sei nun 0 < a < 1. AuBerdem seien X wie Sy (o, 1,0) verteilt und ¢ die
Laplace-Transformierte von X. Dann gilt fiir ¢ > 0:

_ —tX _ _ o
p(t) =Ee e exp(—a®t®)
mit a® = 0%/ cos(7g*). Weil S,(o,1,0) ausschlieBlich auf (0,00) lebt (dies

ergibt sich aus Satz A.1.7 und auch aus Satz 1.3.7), folgt mit dem Satz von
Fubini:

/ e TP(X > 2)dr = / e_m/ P~ (ds) dz
0 0 T
= / e~ dx PX(ds)
0o Jo

_ /OO Lo pigy = Loelt)
0

t t
1— —afte
_ expi a ) ~ aatoz—l (t l 0)7
denn:
1 1— —a%t® 1 1) gk
exp(at): 1_2( )" (a”t®)
a®te—1 t a%te k!
k>0
_1\k—1( ,ara\k—1
oy G et
k! t—0
E>1
Mit Satz A.1.10 kénnen wir weiter folgern:
P(X > t)dt ~ Y ——
/0 (X >1) z  %a T@—a)
1
o l—a «
= o e T ara e @)

d.h.

l-a, o _ _ -1
% (m(l a)l'(1 —a)) o
Jo P(X > t)dt &—00
Mit der Regel von de ’'Hospital erhalten wir daraus:
-, -1
"% (I'(1 — «)) o
P(X > x) T—00
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Daher ist

1
'l —a)

O.a

I'(1 - a)cos (52)

P(X>z) ~ x %"

Y =0%Chx™® (z — o0)

und wir haben die Behauptung fiir « < 1, =1 und pu = 0 bewiesen.

Um die Behauptung auf beliebige § € [—1, 1] auszuweiten, betrachten
wir stochastisch unabhingige Zufallsgrofien Y7 und Y5 mit Y; ~ S, (0, 1,0),
i ={1,2}. Nach (1.18) ist dann

1/« B 1/a
X <#> v, - (#) Yy ~ Sa(0, 3,0),

woraus wir

P(X>z) = P <<#>1/QY1 > 3:)

= P <Y1 > <m> x) ~ 0 C’O,Tx

fiir ¢ — oo folgern konnen. Analog erhalten wir

1-p
2

P(X < —z)~0%C,

% (x — o0).

Betrachten wir nun den Fall a < 1, § € [-1,1], 0 > 0 und p # 0. Ist X
wie Sy (0, 3,0) verteilt, dann gilt: X + u ~ S, (0, 3, 1) und

POXtu>a) = P> o)~ atCo (32 ) e

1+5

~ O'Ca< 5

> = (x — o0).

Als néchstes zeigen wir die Aussage fiir 1 < o < 2 und § = 0. Dazu
seien X ~ S, (0,0,0) mit 0 < o/ < 2 und a € (0,a'). Weiter sei ¥ ~
Sa /o ((cos %‘,)a//a, 1,0) stochastisch unabhéngig von X. Dann besitzt Z :=
Y1/%' X nach Satz A.1.9 die Verteilung S, (c,0,0). Daraus folgt

t"P(Z>1) = t°P (Yl/a’X > t)

— o /( - P (Yl/a’x > t) P (dz)

= /( ) (to‘/x*a/)a/a/ P (Y > talx*a/) ¢ PX (dx).
0,00
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Weil a/a/ < 1 ist, wissen wir nach dem bereits Gezeigten, dass folgende
Konvergenzaussage gilt:

’ ’ % ro_ T %l of yiyes
(to‘ x_o‘) IP(Y>tO‘m O‘) — Ca <cos—) = (Ca cos —.
t—00 ol 20/ o 2(1/

Wihlen wir nun o/ = 2, so ist X ~ 9N(0,20?) und wir kénnen mit Hilfe des
Satzes von der majorisierten Konvergenz, I |X|* < oo, der Funktionalglei-
chung der Gamma-Funktion, der Gleichung I'(2)I'(1 — z) = «/sin(nz), der
Legendreschen Verdoppelungsformel und dem Additionstheorem sin(ra) =
2sin(mwa/2) cos(mar/2) folgern:

t*P(Z > 1) — C cosﬂ/mmaé e_f_édm
=00 2 4 Jo V21 202
= Ca cos ™ 2 0" /OO 2120 gy
T—20+/T 2 4 ﬁ 0

Ta 20 o
= C% cos T N
I(a/24+1/2) (1 —a/2)24 1o
(2 —a/2) NG
1-a 1 1

—0%=Cqz 0%
P(Q—OC)COS%QU a3 7

T(o/2 +1/2)

Die Erweiterung der Aussage auf p # 0 verliuft vollig analog zum Fall
a < 1. Die Ausweitung auf beliebiges § bleiben wir schuldig. O

FEinige stabile Verteilungen erhalten eine spezielle Bezeichnung:

1) fiir p = B = 0 haben wir es mit einer symmetrischen stabilen Vertei-
lung zu tun; sie erhélt die Bezeichnung Sa.S mit o > 0,

2) fiir 0 = 1 und pu = = 0 schreibt man kurz S,,

3) im Fall 0 = 1 und g = 0 erhalten wir die sogenannte Standard-stabile
Verteilung, die mit S, g bezeichnet wird.

Die Klasse der Standard-stabilen Verteilungen wird uns im Kapitel 2 haufi-
ger begegnen. Aus Satz 1.3.13 konnen wir folgern, wie sich die Dichte s, g
einer Standard-stabilen Verteilung S, g asymptotisch verhélt.

1.3.14 Folgerung.
Ist die Zufallsgrifie X S, g-verteilt und o € (0,2), dann gilt fir r — oo

1+ ﬂ T,fafl,
2

Sa,8(1r) ~ a Cy
(1.19)

1- ﬁ Tfafl
2

5q,8(—1) ~ a Cy
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mit

Co =
fir oo = 1.

{Wﬁés(ﬂ;) fiir a # 1,

3o H

Beweis. Die asymptotische Gestalt der Dichte folgt leicht aus Satz 1.3.13.
O

An der Gestalt (1.19) ldsst sich gut erkennen, dass f fiir das Symmetrie-
verhalten der Verteilung verantwortlich ist und dass a bestimmt, wie schnell
die Dichten abfallen.

Im Kapitel 2 wird uns noch eine weitere Verteilung begenen, die wir
bisher noch nicht kennengelernt haben. Da sie eine Variation der Standard-
stabilen Verteilug ist, ist dies die passende Stelle, um die inverse Standard-
stabile Verteilung H, fiir o € (0, 1) einzufiithren:

1— S, (r ) fi 0
(1.20) Ha(r) = )1 (7“ ) ur r > 0,
0 fir r <O0.

Der Beiname ,inverse“ ist sehr treffend, denn es gilt:

Ist die Zufallsgrifle X S 1-verteilt mit o € (0,1), so besitzt die
Zufallsgrofie X~ die Verteilung H,.

Diese Aussage ldsst sich leicht verifizieren: Wir betrachten dazu eine Zufalls-
grofie X mit X ~ S, 1. Dann gilt fiir r > 0

Ho(r) =1 — Sai (r*l/a> —P (X > r*l/a> —P (X <r).

1.4 Anziehungsbereiche

1.4.1 Definition (vgl. [Fe2], VI.1, Definition 2).
Die Verteilung R der unabhdngigen, identisch verteilten Zufallsvariablen X;,
i € IN, liegt im Anziehungsbereich einer (nichtdegenerierten) Verteilung F',
wenn es Konstanten a, > 0 und b, € R gibt, so dass

a, 1S, — by, 4 F

Aus dieser Definition ldsst sich folgern, dass eine Verteilung F' genau
dann einen nichtleeren Anziehungsbereich besitzt, wenn sie stabil ist, und
dass jede stabile Verteilung in ihrem eigenen Anziehungsbereich liegt. Die
Riickrichtung der ersten Aussage und die zweite Aussage sind klar, aber die
Hinrichtung der ersten Aussage werden wir kurz begriinden:
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Ist F' eine Verteilung mit nichtleerem Anziehungsbereich, so wissen wir,
dass F' nichtdegeneriert ist und Konstanten a,, > 0 und b,, € R existieren,

so dass a,, s, —b, SNy gilt. Fiir ein festes m € IN gilt daher

(1.21) azl Spm — bum — F.

(4)

Es seien nun Sy”, ¢ € IN, unabhéngige Kopien von 5,. Dann konvergiert
kazl(agls,(@k) —b,,) in Verteilung gegen F*(™) woraus sich

(1.22) a7 S — by, — )
folgern ldsst. Auf die Gleichungen (1.21) und (1.22) kénnen wir nun Lemma

A.1.6 anwenden und erhalten

Apm A anmbnm - anmbn 7
— — am # 0, b
a, mn—oo Ap, n— o0

und F*) (a2 + by,) = F(x) fiir 2 € C(F)NC(F*™), woraus wir schlieBen
konnen, dass (@)L (Sm — Bm) in Verteilung gegen X konvergiert. Anders
formuliert, haben wir Konstanten a,, > 0 und Bm = (&m)_li)m € R gefun-
den, so dass

d N A
Sm = ale + Bm
gilt.

1.4.2 Satz (vgl. [Br], 9.11, Theorem 9.34).

R liegt genau dann im Anziehungsbereich einer stabilen Verteilung mit cha-
rakteristischem Ezponenten o < 2, wenn es Konstanten M, M~ > 0 mit
M™* 4+ M~ >0 gibt, so dass die folgenden Bedingungen gelten:

R(-y) M~

1.2 _ M
(1:23) v 1= R(y)  M*F’

und fiir jedes & > 0 gilt:

1 — R(&y)

Ist M+ >0, st i =
S S0 18 ylﬂrgo T R(y) &
(1.24)
ist M— >0, soist lim M =&
y—oo R(—y)

Beweis. Wir verzichten auf den Beweis der Notwendigkeit, da diese Rich-
tung der Aussage in dieser Arbeit nicht benotigt wird. Wir zeigen nur, dass
die im Satz angegebenen Bedingungen hinreichend dafiir sind, dass F' im
Anziehungsbereich einer stabilen Verteilung mit charakteristischem Expo-
nenten o < 2 liegt: Dazu nehmen wir 0.B.d.A. an, dass M~ > 0 gilt.
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Behauptung: Es existiert eine Folge (an)new positiver Konstanten mit
nR(—a,) — M~.
n—oo
Wegen lim, .o R(—¢y)/R(—y) = £ ¢ fiir & > 0 ist R(—z) > 0 fir alle
r > xg, ro hinreichend grofi. Weil R wachsend ist, gilt sogar fiir alle x

R(—z) > 0. Fiir hinreichend grofies n € IN wéhlen wir a,, so, dass die
Bedingungen

(i) nR(—a,) > M~ und
(ii) nR(—(an +¢)) < M~ fir allee >0

gelten. Zunéchst zeigen wir, dass man die a,, n € IN, so wihlen kann. Dazu
sei ng € N fest und so grofl, dass ngR(0) > M~ gilt, und es sei fiir n > ng

M-
ap, = sup{x >0:R(—x) > —}
n
Wegen der rechtsseitigen Stetigkeit von R gilt dann: nR(—a,) > M~. Nach
der Definition von a,, gilt weiter: nR(—(a, +¢)) < M~ fiir jedes € > 0, d.h.
(an)nen leistet das Verlangte. Fiir diese Folge (a,)nen gilt dann:
liminf nR(—ay,) > M.

n—oo

Wiére limsup,, . nR(—ayn) > M~ (1 +6), 6 > 0, so gibe es eine Teilfolge
(nk)ken, so dass fiir jedes € > 0

. R(_(an + 6)) M~ 1
1 k = € (0,1
o R(=any) M=(1+06) 1+90 (0.1)
gilt. Weil aber
limsupw > limsupM =& furalle £ > 1
k—o00 R(_ank) k—o00 (_ank)

ist, gilt andererseits

k—o0 R(_amg)

Wir haben also einen Widerspruch erzeugt und kénnen daher folgern, dass
limsup,, . nR(—ay) < M~ ist. Also gilt:
(1.25) nR(—a,) — M™.
n—oo
Sei nun (ap)nen eine beliebige Folge positiver Zahlen, die Gleichung
(1.25) erfiillt. (Dann gilt notwendigerweise a,, — oo fiir n — o0o.) Fiir jedes
x > 0 erhilt man dann unter Benutzung von (1.24) und (1.25):

R(=anz) — Mz

nh(=ane) = nl(=an) == =
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Analog gilt:
1— R(an) 1 — R(apx)

n(l — R(apz)) = nR(—ay) R(—ay) 1= Rlay)
M
njc:o Mimxia = M+x7a,

wobei zusétzlich zu (1.24) und (1.25) noch (1.23) verwendet wurde. Sei i, :=
nP(a,' X1 € ), d.h. pp((—o0,2]) = nR(a,r), n € N. Dann gilt:

(1.26) pn((2,00)) = n(1 — R(apz)) — M 2™ (z>0),

n—00

(1.27) tn((—00,z]) = nR(apz) — M~ |z|™% (x<0),

n—oo

woraus wir folgern kénnen, dass die Folge (fup,)new straff ist. Dann ist auch
die Folge (V1 )nen, definiert durch

2

x
= T o Mn < ln ) )
Y (dx) T2t (dr) < pp(dx), neN

straff.
Sei ¢, die Fourier-Transformierte von a,,'S,. Wir nehmen ohne Ein-
schrankung an, dass a; = 1 ist. Dann folgt:

Ou(t) = B S0 = (g1 (taz"))".

Hier gilt a,, — oo fiir n — oo und auflerdem |¢1(t) — 1| < 1/2 fir alle
t € [=6,0] (0 hinreichend klein), wodurch wir folgende Aussage erhalten:
|p1(ta,t) — 1] < 1/2 fiir alle t € [—a,,6, and).

Aus der Funktionentheorie ist die Existenz eines eindeutig bestimmten,
stetigen Logarithmus v von ¢ auf [—d,d] mit ¢1(0) = 0 bekannt, d.h.,
es gilt exp(¢1(t)) = ¢1(t) fiir alle ¢t € [0, 6]. Analog ist ¢, auf [—a,0, a,d]
nullstellenfrei und besitzt einen eindeutig bestimmten, stetigen Logarithmus

P mit 1, (0) = 0.
Daher kénnen wir folgern, dass

exp(Pn(t)) = ¢n(t) = (1(ta,"))" = (exp(¥n(ta, )" = exp(ny (tay, )
fir t € [—an0, a,0] und damit
Ua(t) = nin(ta,’)
Yi(tay ) -
”W(gbl(mnl) -1)

log(1 — (1 = ¢1(ta,)))
b1 (tant) — 1

(1.28) =

n(¢y(ta, ") — 1)
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fiir t € [—and,ayd] gilt, wobei wir mit log den Hauptzweig des komplexen
Logarithmus bezeichnen. Weil log(1 — 2) ~ —z (z — 0) ist und 1 — ¢ (ta,*)
fiir n — oo kompakt gleichméBig gegen 0 konvergiert, gilt fiir ¢ € [—a,,0, a,d]:

10g(1 - (1 — ¢1(ta;1))) -
o1 (tan®) — 1 —= 1kp. glm.

Definieren wir
log(1— (1 - gu(ta;))))
¢1(tan’) — 1

so gilt £,(t) — 0 kp. glm. und wir konnen zusammenfassend schreiben:
n—oo

1+ep(t):

)

Ua(t) = (L+en(t)n(d1(te,") —1)
= (1 —|—€n(t))n/ <eit“’71“” — 1) R(dx)

= (1+ €n(t))/ (eim — 1) fin (dx)

= (1+ an(t))</ <em —1- %) 1Z—f27n(dx)
)
Seien
(1.29) bn ::/ﬁun(dm),

und ¢(0,t) := —t2/2, so ist € Cy(R?) und wir erhalten die Darstellung

(1.30) nlt) = (1+ en (1)) / (1) (dz) + (1 + £n(8))ibyt.

Im Folgenden zeigen wir, dass die Folge (7,)nenw schwach konvergiert:
Dazu seien f € Cy(R) beliebig und € > 0. Dann gilt:

Js@tan = [ g+ [ s

(_875)0

Definieren wir

X
g@) =J@) s vE€R
A(dz _ A(dx
(1.31) M(d.%’) = OzM+]l(O7OO)(.%') xi_H) + alM ]1(,0070)(.%') |$TT+3



1.4. Anziehungsbereiche 35

und

so lisst sich folgern:

/(576)0 f(@)yn(de) = / o) pin (d2)

(7€7€)C

— / £(@)2(dz) + 61 (e)

mit [01(e)] == C <f§ g(x)z=(FD) dx—l—fi g(x)|z| (@t dx) (C > 0 geeig-
net). d1(e) kénnen wir weiter abschétzen, wobei wir benutzen, dass o < 2
ist:

61 (6)

IN

€ 0

C (/ Fla)z?z= et dg 4 f(x)2?|z| (@) dx>
05 " . —& "

= C </0 f(z)x dx + _ef(x)]x\ dm) T 0.

Fiir unsere néchste Abschitzung benotigen wir das folgende Lemma,
dessen Beweis wir im Anschluss nachholen werden:

1.4.3 Lemma (vgl. [Br], 9.11, Proposition 9.35).
Fiir jedes 1 <p <2 und a € (0,p) gibt es ein 0 < ¢ < oo, so dass

n—00

lim sup/ 2P i (d) < pe(M™T + M7)eP™ =: 65(e)
(—ee

gilt.
Damit erhalten wir die angekiindigte Abschétzung:

timsup| [ () u(de) ~ [ () 7(do)
< lirr?jolip /(876)0 f(x)’yn(dx)—/f(w) v(dx)
+lim su )| Y (dx
mowp [ 1)l
< i(e) + £l |2]? pin (dz) — 0,
(—€.) €l0

<d2(e)
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aus der v, — ~ folgt. Weil wir bereits gezeigt haben, dass ¢ € Cy(R?) ist,
koénnen wir folgern, dass [ ¢(z,t)v,(dz) fiir n — oo gegen [ ¢(x,t)~y(dz)
konvergiert.

Die charakteristische Funktion von a,, 1S, — b, ist

E eit(aglsn*bn) = eiibntqbn(t) = eiibnt exp(¢n(t))

= exp <—z’bnt + (1 +e,(t)) / o(x,t) yn(dr) + (1 + sn(t))ibnt>

= exp <€n(t)ibnt + (1 4+e,(t)) / o(x,t) ’yn(dx)> .

Deshalb geniigt es zu zeigen, dass &,(t)b,, fiir n — oo gegen 0 konvergiert,
um zu erhalten, dass

(1.32) a 'S, — b, -5 X,

wobei X die Fourier-Transformierte exp( [ ¢(z,t) y(dz)) hat. Zeigen wir also
en(t)b, — O:
n—oo

log(1 — (1 - ¢1(ta, "))

el = é1(tan)) — 1 N 1'
_ |log(1 — (1 —du(tay"))) + (1 = ¢u(ta, ) ‘
b1 (tapt) — 1
= |[(¢1(ta,") —1)7! 3 (_13€Qk1 (1= ¢i(ta,")"
k=2
= |30 20 il
k=2

< 1—¢u(ta, )]

fiir hinreichend grofiles n € IN. Vergleichen wir die Gleichungen (1.28) und
(1.30) miteinander, so sechen wir, dass

nttan) =1 = 1 | [ o) alde) + it

gilt, und kénnen zusammen mit der obigen Ungleichung folgern:
bn
2 [ (e, 1) ()

2

b
len()bal < [(é1(tay ") = 1)ba < +e >

Nun miissen wir nur noch zeigen, dass b2 /n fiir n — oo gegen 0 konvergiert:
Sei dazu € > 0. Weil

A CTrtelde) S (o0 —el) + e 0)

— M|+ Mt

n—00
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gilt, kénnen wir mit Hilfe der Cauchy-Schwarzschen Ungleichung folgern:
2
b2 1 x
limsup = = limsup— / —— up(dx
n—>oop n n—>oop n < (—575) 1 + 1.2 lun( ))
) 2
x
+ lim sup — / — dx
n—>oop n < (—e,e)e 14 22 Mn( )>
) 2
x
lim sup — — dx
n—>oop n </(s,z—:) 1+ x2 Mn( )>

2
lim Sup% </( ) || ,un(dac)>
n—oo —E,€

1
< timsuppa(—2) [ Jof (o)
—E&,€

n— o0 ( 7)

IN

IN

< 1imsup/ |z|? pin (dx).
—£,

n—oo
Nach Lemma 1.4.3 gilt: lim sup,,_, ., f(_e o) |z|? p1, (dz) — O fiir € | 0. O

Beweis von Lemma 1.4.3. Wir definieren fiir z > 0

I(2) == /0 I R(—y) dy

mit 1 < p < 2. Weil p > « ist, gilt: I(z) — oo fiir x — oo. Wir zeigen
zunéchst, dass es eine Konstante ¢ gibt, so dass I(z) < cxPR(—x) fiir alle
hinreichend grofien x ist: Fiir ¢ > 7 ist

t
(1.33) I(tz) = I(T2) + acp/ EPIR(—x€) dE.
Sei x > 1 fest gewahlt und fiir gegebenes ¢ > 0 sei 7 so grof3, dass fiir £ > 7
R(—xf) _
——==>(1—-¢g)z ¢
R -7

gilt. Aus Gleichung (1.33) folgt dann:

I(tz) > I(tx)+2P"%(1 —¢) / EPIR(—€) de
= I(tx)+2P"*(1 —e)(I(t) — I(1))
und weiter:

aP=*(1 —e)I(7)
I(t)

+ 2P (1 —¢) —
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Da der erste und der dritte Summand der rechten Seite fiir ¢t — oo gegen 0
konvergieren, erhalten wir:

I
i g 2977 0-9

Diese Ungleichung gilt fiir alle € > 0, weil sie unabhéngig von 7 ist. Daher
konnen wir € | 0 gehen lassen:

I(t
lim inf (t2) > P,

Setzen wir nun in (1.33) 7 = 1, erhalten wir die folgende Gleichung:

I(tz) 2PR(—x) (' R(—x&)
@) T T Iw /1R<—m>

ertde.
Weil der Integrand dieses Integrals durch éP~! beschrinkt ist, gilt fiir ¢ > 1:

) 2B [
Zz 1

2PR(—x)

I(z)

< 1+ P

Betrachten wir nun den Limes inferior, dann erhalten wir:

I PR(_
P~ < liminf (tz) <1+ P liminf m,
2T TR

woraus wir fiir hinreichend grofles x folgern kénnen, dass

1P
T PR(—
I(z) < Ctp_a —® R(—x)
mit einer geeigneten Konstante C' gilt. Daher haben wir mit ¢ = CtP/(tP~*—
1) eine Konstante gefunden haben, so dass I(z) < cx? R(—x) fiir hinreichend
grofles z gilt.
Setzen wir in Satz 19.13 aus [A] ¢(x) := 2P und f(z) = —z, dann gilt:

[P o)
(7570}

T —00, — —€
p/o 1 (=00, —t) 1 (=, 0]) d

IN

&
np/ tPIR(—ayt) dt
0

n _
o / y* ' R(—y) dy
[O,ane)

IN

an
np
= El(ans) < npce? R(—ane)
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fiir hinreichend grofie n. Aus dieser Ungleichung wird mit Hilfe von (1.27)
endlich:

lim sup/ |z|P o, (dx) < peM ~eP™.
(—e,0

n—0o0

Der Schluss fiir das Integral f(o o’ pn(dz) verlduft mit 1 — R(x) anstelle
von R(—z) analog. O






Kapitel 2

Random Walks in stetiger
Zeit

In diesem Kapitel, das auf dem Artikel ,, Asymptotic Distributions of Con-
tinuous-Time Random Walks® von Marcin Kotulski (vgl. [Ko]) basiert, wer-
den wir Random Walks in stetiger Zeit in unterschiedlichen Situationen be-
trachten und einige Grenzwertséitze angeben. Den ersten Abschnitt nutzen
wir, um den Random Walk in stetiger Zeit einzufiihren. Auflerdem stellen
wir hier einige Voraussetzungen auf, die fiir die Formulierung der Gren-
zewrtsitze notwendig sind. Im folgenden Abschnitt 2.2 kniipfen wir eine
Verbindung zum vorherigen Kapitel 1, indem wir die Anziehungsbereiche
der Verteilungen betrachten, die einen Random Walk in stetiger Zeit be-
stimmen. Der dritte und letzte Abschnitt dieses Kapitels bildet das Ziel
unserer Bemiihungen. Dort werden wir die angekiindigten Grenzwertsétze
formulieren und auch beweisen.

2.1 Modellierung'

Man betrachtet die stochastisch unabhéngigen, identisch verteilten Zufalls-
vektoren (Ry,T1), (Re,T%), ... und setzt Ry = Tp = 0. Dabei bezeichnet
R;, i € IN, die reellwertige Sprunghohe eines Teilchen nach einem positiven
Wartezeitintervall T;, ¢ € IN. Daraus ergibt sich eine weitere Zufallsvariable:

k
(2.1) Nt:max{k:ZTiSt}
=0

ist die Anzahl der Spriinge im Zeitintervall [0,¢]. Random Walk in steti-
ger Zeit (im Folgenden kurz mit CTRW fiir continuous-time random walk

'Vegl. [Ko], 2.1, 779/780.

41
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bezeichnet) heifit der stochastische Prozess (X¢);-, der definiert ist durch

Nt
(2.2) X, = Z R;.
=0

Anschaulich beschreibt X; die Position eines Teilchens zum Zeitpunkt ¢.

In diesem Modell lassen sich zwei Arten von CTRW unterscheiden, der
sogenannte ungekoppelte CTRW (engl.: decoupled), bei dem R; fiir allei € IN
unabhéngig von T; ist, und der gekoppelte CTRW (engl.: coupled), bei dem
R; und T; fiir alle ¢ € IN voneinander abhéngig sind.

Die Paare (R;,T;);cn sind identisch verteilt und besitzen eine gemein-
same Verteilung auf R?. Fiir die zugehorigen Randverteilungen F' und G,
die auf R bzw. ]RSr leben, setzen wir fiir das gesamte zweite Kapitel Folgen-
des voraus: Ist ]ER% = 00, so gebe es Konstanten b > 0, § € [—1,1] und
0 <a<2mit

1-p
2

1+
2a

(2.3) F(—r)~b r~%und 1 —F(r)~b r~ (r — o0).

Dabei wird die Konstante b Griflenkoeffizient von F genannt. Im Fall o = 1
nehmen wir zusétzlich an, dass F' symmetrisch ist, was insbesondere 5 = 0
impliziert. Diese Zusatzvoraussetzung benéGtigen wir, um auf Seite 47 die

Konstanten a,, und b,, bestimmen zu koénnen. Ist ]ER% < 00, SO setzen wir
(2.4) a=2und 5 =0.

Fiir die Verteilungsfunktion von G setzen wir voraus: Ist ET? = oo, so
gebe es Konstanten & > 0 und 0 < o/ < 2 mit

/

(2.5) 1—G(t) ~ %t_“' (t — o).

Die Konstante b’ wird analog Gréfienkoeffizient von G genannt. Fiir E T2 <
oo sei o/ = 2.

Nimmt man beispielsweise an, dass das Paar (Rp,T)) eine gemeinsame,
zweidimensionale Lebesguedichte ¢ : R x IRSr — R? besitzt, mit deren Hilfe
die Wahrscheinlichkeitsdichten f von R; und g von 7} beschrieben werden
kénnen:

)= [t o) = [ vo0d
und nimmt man auflerdem an, dass

1-— 1
5 ﬁ T'_a_l und f(?") ~ b +B T—a—l

fl=r)~ b :

(r — o0)

fir 0 < a < 2 gilt, dann sind unsere Voraussetzungen erfiillt. Dies wollen
wir kurz begriinden: Weil L (r) := f(r)/r=*! fiir r — oo gegen b(1+ 3)/2
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konvergiert, ist Ly insbesondere langsam variierend (vgl. Definition A.2.1)
und es gilt:

(2.6) flr)y =177y (r)

mit einer langsam variierenden Funktion L, und 0 < o < 2. Daraus ergibt
sich nun:

Yy “Li(y)

A.2.2 « (y = 00).

1-F(y) = /y f(r)dr (;6) /y Ly(ryr—*tdr

Analoge Rechnungen lassen sich fiir F'(—y) und 1 — G(y) durchfiihren.
Im Weiteren bendtigen wir noch folgende Bezeichungen:

pw=ERy, 7:=ET,

falls p, T existieren; d.h. falls & > 1 bzw. o/ > 1 ist.

2.2 Im Anziehungsbereich einer Standard-stabilen
Verteilung

Als néchstes untersuchen wir, im Anziehungsbereich welcher stabilen Ver-
teilung F' bzw. G liegt. Dazu benétigen wir das folgende Lemma:

2.2.1 Lemma.

Die Verteilung F' liege im Anziehungsbereich einer Verteilung R. Dann gilt:
F' liegt genau dann im Anziehungsbereich der Verteilung Q, wenn Q aus R
durch Skalierung und Verschiebung hervorgeht.

Beweis. Dass F' im Anziehungsbereich von @ liegt, wenn @) aus R durch
Skalierung und Verschiebung hervorgeht, ist leicht zu verifizieren. Die um-
gekehrte Aussage folgt direkt aus Lemma A.1.6. O

2.2.2 Satz (vgl. [Ko], 2.2, 781).
Die Verteilung F der Zufallsgrofien R;, i € IN, liegt im Anziehungsbereich
der Standard-stabilen Verteilung S, mit 0 < a <2 und -1 < 3 < 1.

Beweis. Betrachten wir zuniichst den Fall, dass E R? < oo ist. Nach Glei-
chung (2.4) ist das der Fall, in dem o = 2 und 8 = 0 gilt. Dann folgt sofort
mit dem zentralen Grenzwertsatz, dass F' zum Anziehungsbereich einer Nor-
malverteilung gehort. Wenden wir hier Lemma 2.2.1 an, kénnen wir folgern,
dass F' auch im Anziehungsbereich der 9(0, 2)-Verteilung liegt. Aufgrund
von Bemerkung 1.3.1 wissen wir, dass die 9(0, 2)-Verteilung gleich der Sz -
Verteilung ist.

Ist ER? = oo, so befinden wir uns in dem Fall, dass 0 < a < 2 und
g € [—1,1] gilt. Hier wissen wir (vgl. Gleichung (2.3)), dass
1-p 1475

r~%und 1 —F(r)~b——r ¢
2 2a

F(—r)~b
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fiir r — oo gelten. Um nun zu zeigen, dass F im Anziehungsbereich der
Standard-stabilen Verteilung S, mit 0 < o < 2 und -1 < 8 < 1 liegt,
mochten wir Satz 1.4.2 anwenden. Priifen wir also die Bedingungen des
Satzes nach: Setzen wir M~ := b(1 — 3)/(2a) und Mt :=b(1 + 3)/(2a), so
ist (1.23) erfiillt, denn:

F(-y) b -pBy 2 _1-5
1— F(y) 20 b(1+ By~ 144’

wobei wir im Fall § = —1 fiir (1 — 8)/(1 + ) unendlich setzen. Sei £ > 0.
Dann gilt fiir r — oo:

1-F(&y) bA+/EY™ 2 1 |
1—F(y) b 2c0 b(1 + By~ = é-_a,a falls 0 # —1 ist,
und ebenso
F(=¢y) b1-P)(Ey)* 22 1 |
F(—y) b 2c b(1 — By« - g_aﬂ falls 5 # 1 ist.

Demnach sind alle Bedingungen des Satzes 1.4.2 erfiillt und wir haben ge-
zeigt, dass F' im Anziehungsbereich einer stabilen Verteilung S, (o, 3, ) mit
0 < a < 2 liegt. Mit Lemma 2.2.1 erhalten wir die Behauptung, dass F' zum
Anziehungsbereich der S, g-Verteilung gehort fiir a € (0, 2). O

2.2.3 Satz (vgl. [Ko], 2.2, 782).

Die Verteilung G der Zufallsgrofien T;, i € N, liegt im Anziehungsbereich
der Standard-stabilen Verteilung Sy 1, wenn 0 < o < 2 gilt, und gehért fir
o/ =2 zum Anziehungsbereich der M(0, 2)- Verteilung.

Beweis. Vollig analog zum Beweis von Satz 2.2.2. U

Wir wissen nun, dass F' im Anziehungsbereich der Standard-stabilen
Verteilung S, 3 mit 0 < o <2 und —1 < 8 < 1 liegt, d.h. nach Definition
1.4.1 gibt es Konstanten a,, > 0 und b, € R, so dass a;lsn — b, in Ver-
teilung gegen S, g konvergiert. Fiir unsere weiteren Untersuchungen ist es
notwendig, die genaue Gestalt der Konstanten a, und b, zu kennen. Da-
zu sehen wir uns den Beweis von Satz 1.4.2 noch einmal etwas genauer an:
Dort haben wir herausgefunden, dass (a, )nen beliebig gewihlt werden kann,
wenn nF(—a,) — M~ oder n(1 — F(ay)) — M* gilt. Weil nF(—n'/*) —
b(1 — B)/(2a) = M~ und n(1 — F(n'/*)) — b(1 + 3)/(2c) =: M+ gelten,
kénnen wir zuniichst a, = n'/® setzen. Weiterhin wissen wir (vgl. (1.32)),
dass dann a, S, — b, mit b, = [ x/(1 + 2?) p,(dx) in Verteilung gegen X
konvergiert, wobei X die Fourier-Transformierte e¥X mit

wx(t)=/<p(x7t)7(dx) = /(6”-1 - >1+—f27(d96)

1422 x

it ix
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besitzt. Da wir aus (1.31) die Gestalt von p kennen, konnen wir weiter

folgern:
00 .
B " it it dz
¢X(t) = aM /0 <€ _1_1—|—£C2> ot

0 .
X tx dx
M- ite ! .
o (/w<e 1+ﬁ>|ﬂM1

Dies ist gerade die Gestalt aus Satz 1.2.2 mit b = 0, m; = oM™ und mqy =
aM ™. Satz 1.2.4 bringt uns von dieser Gestalt der Fourier-Transformierten
zu der bekannten Form mit den vier eindeutig bestimmten Parametern, d.h.
X ~ Sa(6767ﬁ)'

Im Fall 0 < a < 1 sind dabei

1
¢ = —(m —l—mg)ifﬁ(H(a)):—a(MJr—i—M_)cos?<—EF(1—04)>
— b _.COC
- (XCa — 2>
= _ mi—my
b= mi +mg &
und
= )e = bfc mit ¢ = /OO L _oyg
&= (my —ma)c = bfec mit ¢ = ; T2t e

Betrachten wir nun b,, etwas genauer:

T 1 T
—— iy (dx) = —vn(d —— iy (dx).
[ = [ s | )

Dabei gelten:

1 1 T
—Yn(dx) — —v(dx) = / w(dx
/(e,e)c x ( ) n—oo J(_goye @ ( ) (—e,e)e 1+ x2 ( )

und

lim sup /
n—o0 (7575)

Daraus koénnen wir folgern, dass

X X
— lp(dr) — — u(d
/1+xﬂi(@nﬁw/1+xﬂ4$)
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gilt, und unsere Konvergenzaussage neu formulieren:

-1/« _ x d . N _ _
n= /s, / 22 p(dx) — X mit X ~ S, (7,5, 0).

Konnen wir nun noch zeigen, dass 7 = — [ x/(1 + 2?) p(dx) ist, so kénnen
wir endlich schlieflen, dass

;' o8, —4 X mit X ~ So(1,5,0) = S,
was dann impliziert, dass im Fall 0 < a < 1
(2.7) an = con® und b, = 0

gewihlt werden kann. Weisen wir nun die fehlende Behauptung nach:

X _ + [T et
/1+x2,u(dx) aM/O 52" dx

0
+aM_/i *
oIt

o 2|~ (@) dy

> 1
= a(MJr—M)/ 5o *dx
0 1—{—33
= —bBc=—n.
Im Fall 1 < o < 2 sind
_ mi + mg TQ
¢ = TL((X—l)COS7:C%,
— mi1 — My
B m1+m2_6’

und

1 [ d d
= (my —mao)d = b3 mit ¢ = —/ <1 :c ) x
@ Jo

Cdrl+a22) xe

Wir zeigen als niichstes, dass b, —n =1/ — —7 (n — o) gilt, wobei wir
die Konvergenzaussage aus [Br], 9.11, Problem 9, verwenden:

bn—n(lfl/a),u = b,—nn V*ER; :bn—/:c,un(dx)

_ /(Tfp—w>MNWL;;/<Tf§‘x>M“”

Setzen wir die Definition von u ein und integrieren partiell, so erhalten wir
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die obige Behauptung:

b, — n(l—l/oz)u — aMt /OO < Lo w) 2@t g
0

n—oo

ba3 [ < d = ) dx _
g _— 1 —_ ——2 _— = —ILL.
a Jo drl+ 2% ) x%
Daraus koénnen wir folgern, dass
cgln_l/o‘Sn — cgln(l_l/o‘),u X mit X ~ Sa(1,3,0),
und haben damit im Fall 1 < a < 2 die Gestalt von a, und b,, gefunden:
(2.8) an = con’® und b, = cz_ln(lfl/a),u.

Im Fall a = 1 gelten:

_ 0 T
T = (m1—|—m2)§:b5262,
g _ om-m

m1 4+ ma '

und
= (m1 - m2)01 =bfcy =0,

da vorausgesetzt wurde, dass F' im Fall o = 1 symmetrisch ist und damit
B =0 gilt. Weil auBerdem z/(1 + 2?) ungerade ist, kénnen wir b, = 0 fiir
alle n € IN folgern. Daher konvergiert

;'S -4 S1(1,0,0),
d.h. im Fall o = 1 erhalten wir:
(2.9) an = con’/® und b,, = 0.
2.3 Das asymptotische Verhalten von Random

Walks in stetiger Zeit

Bevor wir endlich zu unserem eigentlichen Anliegen, dem Grenzverhalten
von CTRWSs, kommen, betrachten wir kurz den Spezialfall, dass T; = m fiir
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alle 2 € IN und einem 7y € ]RS' ist?. Im Fall 7y = 1 hitten wir es dann mit
einem gewohnlichen Random Walk zu tun.
Ist T; = 7y f.s. fiir alle 7 € IN, so lidsst sich Ny genauer bestimmen:

k
Ny = max{k : ZTZ <t} = max{k : ok <t} = [t/10] fs.
i=0

Gilt zusitzlich E R? < oo, so ist auch der Erwartungswert von R; endlich
und wir haben eine Folge (R;);ew unabhéngiger, identisch verteilter Zufalls-
groBen mit Erwartungswert E Ry = pu < oo und Varianz ¢? := Var Ry =
ER? — (ER;)? € (0,00), wobei wir ohne Einschrinkung annehmen, dass
1 =0 gilt, die dem zentralen Grenzwertsatz geniigt:

Z?:l R;

L ~%, X mit X ~ 9N(0,1).
cin

Setzen wir n = Ny = |t/79] und benutzen, dass Ry = 0 gilt, so ist

Z?=1 R; _ Zivzto R; Xy

an'/? cthl/Z o {t/Tojl/Q'

Es folgt daher:
Xt d

e S I, ‘o
o [t/70)'?

Gilt aber stattdessen |2 Ry = 0o, so wissen wir aus Satz 2.2.2, dass die

Verteilung F' von R; im Anziechungsbereich der S, g-Verteilung mit 0 < o <

2 und g € [—1,1] liegt. Das heifit, es gibt Konstanten a, > 0 und b, € R,
so dass

n
— d
a," Y Ri— by == Sap.
=1

Setzen wir nun wieder n = Ny = [t/7], so erhalten wir
X — b
X M) 4,
At /7o)

mit b;c = apby, (k S IN)

Im degenerierten Fall konvergiert also ein geeignet zentrierter und ska-
lierter CTRW gegen die Standardnormalverteilung, wenn das zweite Mo-
ment von R endlich ist, und gegen eine Standard-stabile Verteilung, wenn
das zweite Moment von R; nicht existiert.

Kehren wir nun zu der allgemeinen Situation zuriick und betrachten
darin zunéchst den Fall, dass 7 endlich ist und © = 0 im Fall 1 < a < 2 gilt.

2Vgl. [Ko], 3.1, 783.
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2.3.1 Satz (vgl. [Ko], 3.1, 784).
Sei (X¢)i>0 ein CTRW. Dann gilt im soeben beschriebenen Fall

Xy 9 .
(210) P <W < 7') tjo>o (0, 1)(7"), falls ERl < 0 ’LSt,
Xt 2 .
(211) P <m S 7"> tjo>o Sa7ﬁ(’l"), falls ERI = o0 ’LSt,

mit ¢} = Var Ry und ca = (b/(OéCa))l/a'

Beweis. Wir wollen Satz A.2.4 anwenden. Dazu wahlen wir eine Folge t,,
n € N, mit ¢,, — oo und definieren p,, als den Median von N;,. Dann haben
wir eine Folge (Ny,)new nichtnegativer, ganzzahliger Zufallsvariablen mit
Ny — oo f.s. Aus Satz 2.2.2 wissen wir, dass es Konstanten a, > 0 und
b, € R gibt, so dass

;S — by ~5 X mit X ~ Sa g,

wobei S, = Y| R; ist. Und fiir @ € (0,2) wissen wir aus (2.7), (2.8)

und (2.9), dass a,, = con'/® und b, = 0 gilt. Kénnen wir noch zeigen, dass

Ny, /1, — 1 f.s. gilt, so kénnen wir Satz A.2.4 anwenden und damit folgern:
SN _ Xe 4,y

1/a
Qpan C2Mn/

wodurch unsere Behauptung gezeigt ist, denn:

X, X, (”n >1/QL,X
(tn/T) s e

tn/T
——

=1

Zeigen wir nun, dass Ny, /u, — 1 f.s. gilt: Aus der Erneuerungstheorie (vgl.
[A1], Korollar 29.3) wissen wir, dass Ny, /(t,/7) — 1 f.s. gilt. Daher geniigt
es zu zeigen, dass t, /T ~ p, (n — 00) ist. Sei dazu € > 0. Dann gilt:

N,
IP( In —1‘ze> — 0.

tn)T n—0o0

Daraus lassen sich folgende Konvergenzaussagen folgern:

P (Ntn > (1+g)t—"> — 0 und P <Ntn < (1—g)t—"> .0
T

n—oo T n—00

Es existiert also ein N € IN, so dass fiir alle n > N die beiden zuletzt
erwiahnten Wahrscheinlichkeiten < 1/2 sind. Dass p,, der Median von Ny,
ist, bedeutet, dass
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gilt. Dadurch kénnen wir folgende Ungleichungsketten fiir alle n > N fol-
gern:

t
P (Ntn > (1 +5)—"> <1/2 <P(Ny, > pn),
T
t
P <Ntn <(1- s)—"> <1/2 <P(Ny, < pn)
T

und erhalten damit: p, < (1 +&)t, /7 und (1 —&)t, /7 < .
Fiir o = 2 gilt mit Hilfe des zentralen Grenzwertsatzes:

i Ri a
qnfi/? — N(0,1),

so dass Satz A.2.4 analog zum Fall 0 < o < 2
Xy,
(tn/T)l/a €1

liefert. O

L, 2(0,1)

Als néchstes betrachten wir den Fall, dass p existiert, aber ungleich 0
ist. Wir befinden uns also in dem Fall, dass 1 < o < 2 und p # 0 gilt. Um
in diesem Fall die Grenzverteilung des CTRW zu bestimmen, miissen wir
mehr iiber das asymptotische Verhalten von N; wissen:

2.3.2 Lemma (vgl. [Ko], 3.2, 786 und 788).
Sei Xy ein CTRW. Dann gilt

Nt / .
(212) P (W < T) tjoé Ha/(T’), f(l”S 0<a <1 ’LSt,

Nt — t/T .
(2.13) P <t1/0"c’27—(1+1/a’) < 7“> . w.—1(r), falls 1 <o <2 ist,

Nt — t/T . ;
(214) i <m < T) tjo)o (0, 1)(7") f’LLT’ o = 2,

mit (¢))? := Var Ty und ¢, := (V' /(a/ Co))/ . Hy st fiir o/ € (0,1) die in
(1.20) eingefiihrte inverse Standard-stabile Verteilung.

Beweis. Bevor wir mit dem Beweis beginnen, bemerken wir kurz, dass wir es
im Fall 1 < o/ < 2 mit einer endlichen mittleren Wartezeit zu tun haben, und
dass 7 im Fall 0 < o/ < 1 nicht existiert. Am Ende des Abschnitts 2.2 haben
wir die genaue Gestalt der Konstanten a,, und b,, aus der Konvergenzaussage
2.2.2 bestimmt. Dies lésst sich vollig analog auch fiir die Konvergenzaussage
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2.2.3 durchfithren. Diese Ergebnisse benutzen wir als Basis, um die obigen
Aussagen zu beweisen. Aulerdem bezeichnen wir in diesem Beweis mit S,
(n € IN) die n-te Partialsumme der Folge (7;);en.

Sei 0 < o/ < 1. Es gilt (nach dem Analogon zu (2.7)):

(Cé)ilnfl/a/sn i) 50/71 (TL — OO)
Betrachten wir die Wahrscheinlichkeit in (2.12) fiir » > 0:

/

P (L < r> = P(N; <rt¥(cy)™)

)
—1-P (Nt > P“ta/(cé)*aq >

Weil

() e = ()

~~
—1
t—o0

1 1/ R
(6/2) 1. 1/a CI2 —r 1/a
t—o0

gilt, konnen wir aufgrund der Stetigkeit der Verteilungsfunktion Folgendes
schlieflen:

P <to/(]\77ta’ < 7"> — 1 — Sa/’l(ril/al) = Ha/(r).

6/2) t—o00

Sei 1 < o < 2. Es liegt folgende Konvergenzaussage zu Grunde (nach
dem Analogon zu (2.8)):

(cy) M (S, = n7) 5 Sary (n— o0).

Dann gilt fiir » > 0:

Nt_t/T o 1/0/ ’ 7(1+1/a/)
i (tl/a/cé’r_(l_i_l/a/) < T) =P (Nt <rt CoT + t/’T)

—1_P <Nt > Lﬂtl/a/c/QT—(l-l—l/a/) + t/ﬂ > —1-P <ZTZ < t)
i=1

=:mgy

= 1P () M (S — mir) < () o (4.
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Betrachten wir (cé)*lmt_l/a (t —myT) etwas genauer:

- ! / ’ 71/&'
(cy) " \m; Ve (f Zmyr) = O ()t (rtl/a o= (1H1/a) +t/r>
: (t - <rt1/°‘/c'27'7(1+1/a/) + t/T) 7')

fiir eine geeignete Konstante C. Weiter gilt:

’ , , —1/a’
() V7 (mr) =€) (e e ) )

. <—rt1/a/c'27'_(1+1/a/)7')

/ 12 —1 Cll
_cr(””“éf*””“”+WT> |

t/T
, AN\ —1/a’
1/a 1 —(141/a))
_ _Cr 1+7°t CoT R
t/T t—o0

Weil die Verteilungsfunktion von S,/ ; stetig ist, koénnen wir folgern:

N, —
P < (il 7s ) < r> — Soa(=7) = Sor,—1(r).

tl/a/cl27-7(1+1/a’ t—o0

Sei o/ = 2. In diesem Fall ist ET? endlich und damit natiirlich auch der
Erwartungswert von T7. Daher gilt nach dem zentralen Grenzwertsatz:

(&) ' Y2(S, — nr) -5 N0, 1).

Ab diesem Punkt kénnen wir den Beweis des Falls 1 < o/ < 2 analog
iibernehmen und erhalten damit die Behauptung. O

Im Fall 0 < o/ < 1 konvergiert also die geeignet skalierte Verteilung von
N; gegen eine inverse Standard-stabile Verteilung und im Fall 1 < o/ < 2
gegen eine Standard-stabile Verteilung, wobei zusétzlich zentriert werden
musste. Mit diesem Wissen kénnen wir nun den folgenden Satz beweisen:

2.3.3 Satz (vgl. [Ko], 3.2, 786-787).
Sei (X¢)i>0 ein CTRW. Ist 1 < a < 2 und existiert 1 # 0, dann gilt
im Falll <o’ <2

(2.15) P <m < r)

/ .
(t/T)Vecy — S 5(r), falls a < o' <2 ist,

t—o0

P~ o, —1(r), falls o/ < a <2 ist,
— 00

(2.16) IP( Xi/n =t/ <7“>

tl/a’c/QTf(lJrl/a/)
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(2.17) P <M < 7“) — N(0,1)(r), falls « =o' =2 ist,

/) ey =) o
X — t/T)p Ny
< =
(2.18) P < ) e, = U Sap (), falls oo =o' <2 ist,
und im Fall 0 < o/ < 1
X
(2.19) P ),
te (0/2)—04 t—o00

Dabei sind ¢ = (b)/(aCu))V/e, ¢y = (V' /(/Coy))V und 3 := Var(Ry —
(u/7)T1). Weiter ist cq so definiert wie ca mit dem Unterschied, dass anstelle
von b der Grifenkoeffizient von Ry — (u/7)T1 verwendet wird, und [y ist
das Pendant zu 3 aus (2.3).

Beweis. Sei zunichst 1 < o/ < 2. Betrachtet man die Zufallsgrofien R; — u
(1 € IN) anstatt R; (i € IN), so wird aus (2.2) X; — Nyp und damit aus (2.11)

Xt — Nt,u .
(220) P <W < 7”> t—>—o>o a,ﬁ(r), falls 1 < e < 2 gllt,

und aus (2.10)

(2.21) P <it(;_)# < 7“) b MN(0,1)(r), falls o = 2 gilt.
T)1/2¢ —00

Dass wir (2.11) bzw. (2.10) hier benutzen konnen, liegt daran, dass die dafiir
benétigten Voraussetzungen

(a) E(Rl—M)ZERl—E/LZERl—ERl:0,
(b) T < o0,

(c) B(Ry — p)? = o0, da fiir 1 < a < 2 ER? = o ist,
bzw. E(Ry — u)? = ER? — (E Ry)? < o0, da fiir o = 2 E R? < oo ist,

erfiillt sind.
Sei o < o/ < 2. Betrachten wir den zweiten Term auf der rechten Seite
in folgender Gleichung

Xt—(t/T)M_ Xt_Nt;u Nt—t/’T

/) ey, (/) e, ey
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so konnen wir zeigen, dass er in Wahrscheinlichkeit gegen 0 geht: Seien dazu

e >0 und o/ < 2. Dann gilt:
N, — ¢ N, ¢ 1/a—1/a’
limIP<'7( et/ >5>:limIP<‘ = t/T 5|02|<—> >
-

oot \[(/m) Ve, N
i (Y] ) v

Dieses Vorgehen verliuft fiir o/ = 2 vollig analog. Daher gilt, dass auch

— @/ Xi = Nep P, 0
(t/m) ey (t/m) e,

geht. Nun kénnen wir den Satz von Slutsky (Satz 36.12 in [A]) auf (2.20)
anwenden und erhalten (2.15).

Sei o/ < a < 2. Dieser Fall lisst sich analog behandeln. Wir benutzen
nur eine andere Ausgangsgleichung, namlich

(t/T) _ X¢ — Ny Ny — t/T
tl/a’/ —(1+1/a) tl/a’/ —(1+1/a) tl/a’/ —(1+1/a)?

wobei der erste Term auf der rechten Seite in Wahrscheinlichkeit gegen
0 geht. Um dies nachzuweisen, benutzt man (2.20) bzw. (2.21) und dass
1/a/ > 1/« gilt. Aussage (2.16) erhalten wir durch Anwendung des Satzes
von Slutsky auf (2.13).

Sei = o = 2. Hier betrachten wir die Zufallsgrofen R; — (u/7)T;
(1 € IN) anstelle von R; (i € IN). Aus (2.2) wird in diesem Fall

N

D (Ri— (u/1)Ti) = X¢ — = ZT

=0

Da E(Ry —(u/7)T1) = 0 und E(R; — (1/7)T1)? < oo sind, kénnen wir (2.10)
anwenden und erhalten

()" ) ) e

mit ¢z = Var(Ry — (u/7)Th). Mit 7(t) := inf{k > 1 : 25;1 > t} und
Y = Zi]\itl T; — t gilt nach Satz 4.1.3 (b) in [A2] (mit p=2 und gq=1):

_1/2< ZT>‘ = Bt Ty - Y|

VPR T+t PEY;, — 0,

t—o00

IN
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d.h. t71/2(t — Zfﬁo T;) konvergiert in Wahrscheinlichkeit gegen 0. Daher
konnen wir erneut den Satz von Slutsky anwenden und in der vorherigen
Konvergenzaussage vazto T; durch t ersetzen:

P <M < r) — M0, 1)(r).

(t/7)1/203 t—o00

Sei &« = o/ < 2. Auch hier betrachten wir die ZufallsgréBen R; — (u/7)T;
(1 € IN) anstelle der R; (i € IN). Es gilt zwar immer noch E(Ry — (u/7)T1) =
0, aber wegen der Voraussetzung o = o/ < 2 ist E(Ry — (u/7)T1)? = oc.
Daher kénnen wir hier (2.11) anwenden und erhalten (2.18).

Betrachten wir nun den Fall 0 < o/ < 1. Nach dem Satz von Etemadi
(Satz 35.4 in [A]) gilt

(2.22) lim Xt—/’u =1fs

P , .S.,

weil (R;)ien eine Folge unabhéngiger, identisch verteilter ZufallsgréBen mit
ER; = p ist. Wenden wir die Aussage (2.22) in Gleichung (2.12) an, so
erhalten wir die Behauptung. O

Abschlieend betrachten wir den Fall, dass 7 unendlich ist, d.h. o/ €
(0,1) gilt, und v € (0,1)U(1, 2] ist, wobei wir g = 0 im Fall & > 1 annehmen.

2.3.4 Satz (vgl. [Ko], 3.3, 789).
Sei (X¢)e>0 ein ungekoppelter CTRW. Dann gilt fir 0 < o < 2

2.23 P <r|] — S, /) Hy(d
22 P <) [ Sna (v ) st

und fir o =2

(2.24) IP< \/iX[a/ 75 < 7’) — / So. <7“x_1/2> H(dz)
0

ta//QCl(C,Q) t—o00

mit 3 € [~1,1] und 0 < o/ < 1. Dabei sind ¢ = Var Ry, ¢ = (b/(aCy))"/®
und ¢y = (V' /(a/ Co )" wie zuvor definiert.

Beweis. Weil die X;, ¢+ € IN, unabhéngig und identisch verteilt sind und zu-
dem von den Tj, i € IN, unabhéngig sind, sind die Voraussetzungen des Lem-
mas A.2.5, das eine viel allgemeinere Situation zu Grunde legt, offensichtlich
erfiillt. Nun wissen wir aus (2.12), dass es eine Funktion h(t) := t*' ()~
(a/ € (0,1), h(t) — oo) mit konstantem — also langsam variierendem — Anteil
(ch)~ = o/Cy /b gibt, so dass

P <% < r) P Hy(r)
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gilt, und aus (2.7), (2.8) und (2.9) wissen wir, dass

i R a

gilt, so dass uns das Lemma A.2.5

Xt o -1/
P (t“'/O‘CQ(C’Q)O‘//a < 7’) . /0 Sa,p(rex VH o (dx)

liefert.
Fiir o = 2 gilt mit Hilfe des zentralen Grenzwertsatzes:

" R,
ﬂ% —4, 0M(0,2) = Sa.0,

so dass wir in diesem Fall aus Lemma A.2.5

P( V2X,

1721 ()

2 < ) o / Spo(re™"/?) Ho (dz)
— 00 0

erhalten.

O

Fiir einen gekoppelten CTRW lassen sich leider keine allgemein giilti-
gen Aussagen machen. Daher geben wir zum Abschluss nur ein Beispiel an,
bei dem tatséchlich verschiedene Grenzverteilungen im ungekoppelten bzw.

gekoppelten Fall auftreten.

2.3.5 Beispiele (vgl. [Ko], 3.3, 790).
Es seien (X¢)i>0 ein CTRW und 0 < o < 1.

(a) Ist (X¢)i>0 ein ungekoppelter CTRW mit R; 4 T; fiir alle i € N, so

qilt:

X o
(2.25) P <Tt < r) b / Sa,1(r2)Sq,1(dx).

(b) Ist (Xi¢)e>0 ein gekoppelter CTRW mit R; = T; fir alle i € N, so gilt:

P <% < 7“> — Aresin(1 — a)(r).

t—o0

Arcsin(19) ist die sogenannte Arkussinus-Verteilung, die auf das Inter-

vall (0,1) konzentriert und durch die Wahrscheinlichkeitsdichte

sinmd _
q9(x) = - (1 —a)’ "1 (2)

fiir 0 < ¥ < 1 bestimmt ist.
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Begrindung. Zu (a): Sei X; ein ungekoppelter CTRW mit R; 4 T; fir alle
i € IN. Dann muss o = @/ und =1 gelten und aus Formel (2.23) wird

P <& < r> — / Sa1 (mfl/a> H,(dz),
0

t t—o00

was dquivalent zur behaupteten Gleichung (2.25) ist: Es seien X, Y stochas-
tisch unabhéngige und identisch verteilte Zufallsgréfien mit ¥ ~ S, 1. Aus
Kapitel 1 wissen wir, dass dann Y% ~ H,, gilt. Sei r > 0, dann gilt einerseits

]P(;ﬁr) = E(P(%STY))
o)

— /Sa,l (ry) Sa,1(dy)

und andererseits

P (% < r> - <IP (; <r Y‘O‘>> - /Sa,l <7“y_1/0‘> Ho(dy).

Zu (b): Sei X; ein gekoppelter CTRW mit R; = T; fiir alle ¢ € IN. Aus der
Grundvoraussetzung wissen wir, dass 1—G(z) ~ 2~ b /o ist. Daher kénnen
wir Satz A.2.7 anwenden und dieser liefert eine Zufallsgrofie Y; := t — X,
fiir die

Y,
Tt d Arcsin(a) (t — o0)

gilt, was uns direkt die Behauptung liefert:

X Y;
thl—f d Arcsin(l — a) (t — o0).






Kapitel 3

Eine Anwendung in der
Theoretischen Chemie

In diesem Abschnitt geht es darum, ein Beispiel fiir einen CTRW anzugeben.
Dabei soll kein Beispiel angegeben werden, das in einem mathematischen
Fachbuch steht, sondern ein Beispiel aus der Chemie. Dazu haben Mareike
Assink, die ihre Diplomarbeit mit dem Titel ,,Grenzwertsétze fiir mehrdi-
mensionale Random Walks in stetiger Zeit“ ebenfalls bei Herrn Alsmeyer
geschrieben hat, und ich in Partnerarbeit ein Projekt im Bereich Theore-
tische Chemie durchgefiihrt. Herr Prof. Dr. Heuer hat uns in seinem Ar-
beitskreis einen Arbeitsplatz zur Verfiigung und seine Assistentin, Frau Dr.
Aimorn Saksaengwijit, als Betreuerin bei der Durchfithrung des Projekts zur
Seite gestellt. Dabei haben wir mit Hilfe bereits geschriebener Computerpro-
gramme ein Glas simuliert und die Bewegung der einzelnen Atome bei einer
bestimmten Temperatur iiber einen gewissen Zeitraum beobachtet. Durch
eine geeignete Diskretisierung konnten wir nachweisen, dass es sich bei der
Bewegung um einen CTRW handelt.

Weil der Bereich Theoretische Chemie nicht sehr bekannt ist, werde ich
kurz die historische Namensgebung erlautern und grob beschreiben, womit
sich dieser Teilbereich der Chemie beschéftigt. Anschlielend folgt ein Ab-
schnitt iiber ,,Glas“. Was genau versteht man unter Glas? Wie verhélt sich
Glas?

3.1 Theoretische Chemie!

Urspriinglich fasste man mit dem Begriff ,, Theoretische Chemie“ den Lehr-
stoff zusammen, der nicht zur experimentellen Chemie gehorte. Spéater wur-
de dann das heute , Physikalische Chemie“ genannte Teilgebiet der Che-
mie so bezeichnet. Die Theoretische Chemie versteht sich heute vereinzelt

Vgl. [R], Theoretische Chemie.

59
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als Teilgebiet der Physikalischen Chemie, hidufiger jedoch als selbstédndiges
Wissensgebiet. Im universitédren Bereich ist es nahezu ebenbiirtig mit den
Teilgebieten Anorganische, Organische, Physikalische Chemie und Bioche-
mie.

Als ersten Grundpfeiler der Theoretischen Chemie kann man die Ther-
modynamik und die statistische Mechanik betrachten und als den zweiten
Grundpfeiler die Quantenmechanik, die im Allgemeinen als der wichtige-
re angesehen wird. Die moderne Theoretische Chemie entwickelte sich aber
nicht ausschliellich aus diesen Theorien, sie wurde auch stark durch empi-
rische Befunde aus der chemischen Forschung beeinflusst.

Das Teilgebiet der Theoretischen Chemie, das sich mit der Anwendung
der Quantenmechanik auf Fragen der Chemie beschiéiftigt, wird Quantenche-
mie genannt. Neben der theoretischen Untersuchung der Eigenschaften und
Wechselwirkungen von Atomen und Molekiilen behandelt die Quantenche-
mie auch ihre Dynamik. Haufig wird hierbei auch die klassische Mechanik
verwendet, z.B. in Form der Newtonschen Bewegungsgleichungen. Durch
Verkniipfung der Resultate quantenchemischer Berechnungen (Potentialhy-
perflichen und Energiezustinde) mit Methoden der statistischen Mechanik
lassen sich kinetische Groflen berechnen, insbesondere Reaktionsgeschwin-
digkeitskonstanten in Abh#ngigkeit von Energie und Drehimpuls.

Viele Fortschritte der Theoretischen Chemie wurden aber erst durch die
Entwicklung der elektronischen Datenverarbeitung ermoglicht.

3.2 Glas?

Unter Glas versteht man Stoffe, die sich im sogenannten glasartigen Zustand
befinden, d.h., in denen nur kleinste Bereiche kristallin geordnet sind. Der
Glaszustand 148t sich als eingefrorene, unterkiihlte Fliissigkeit bzw. Schmel-
ze auffassen, wobei man mit Schmelze einen im geschmolzenen Zustand be-
findlichen Stoff bezeichnet, der unter Normalbedingungen fest ist. Bei hinrei-
chend grofier Abkiihlgeschwindigkeit einer Schmelze oder bei der Kondensa-
tion von Molekiilen aus der Dampfphase auf extrem gekiihlte Substrate lasst
sich praktisch jeder Stoff in den Glaszustand iiberfithren. Die Temperatur
des Einfriervorgangs wird dabei zur Charakterisierung der Glaser herangezo-
gen. Sie wird Glastemperatur oder Transformationstemperatur genannt und
mit T, bezeichnet. Bei der Transformationstemperatur 7, haben die Gléser
eine Viskositéit von ca. 101 Pas und sind damit als ,, fest* anzusehen. Unter-
halb der Temperatur T, verhalten sich Gléser wie sprod-elastische Korper;
oberhalb der Temperatur 7, erweicht Glas mit zunehmender Temperatur je
nach Zusammensetzung mehr oder weniger stark und nimmt erst bei hohen
Temperaturen Fliissigkeitsverhalten mit niedrigen Viskosititen (< 10% Pas)
an.

*Vgl. [R], Glas.
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Hauptrohstoffe fiir die Herstellung von Glas sind Quarz(sand), Soda (So-
da ist der historische Name fiir Natriumcarbonat (NaaCO3)) und Kalkstein,
Marmor oder Kalkmergel. Die Korngrofie soll dabei moglichst einheitlich sein
und im Groéfenbereich von 0,5 — 0,05 mm liegen, um ein méglichst homoge-
nes Gemenge zu erreichen. Einen weiteren wichtigen Rohstoff bildet Altglas.
Weil Glas nahezu unbegrenzt wiederverwendet werden kann, wird schon im-
mer der bei der Produktion anfallende Glasabfall in den Herstellungsprozess
zuriickgefiihrt. Man fand sogar heraus, dass der Zusatz bestimmter Mengen
gemahlener Scherben zum Rohstoffgemenge das Schmelzverhalten optimiert.

3.3 Simulationen

Die Grundlage fiir unsere Arbeit ist ein Programm, das uns vom AK Heuer
zur Verfiigung gestellt wurde. Genauer gesagt, wurde es urspriinglich von Dr.
Jens Reinisch geschrieben und von Dr. Aimorn Saksaengwijit iiberarbeitet
und erweitert.

Dieses Programm simuliert die Bewegung der Atome eines Glases. Dazu
betrachtet man einen virtuellen Wiirfel der Kantenlénge [, in den so viele
Teilchen, wie man betrachten mochte, zufillig platziert werden, wobei die
Bedingung besteht, dass jedem Platz hochstens ein Teilchen zugeordnet wer-
den darf. In unserem Fall hat sich herausgestellt, dass 65 Teilchen ausreichen,
um das Glas hinreichend gut zu simulieren. Bei einer geringeren Teilchen-
anzahl wiesen charakteristische Graphen eine starke Abweichung gegeniiber
den Graphen auf, bei denen mit 65, 195 oder 1000 Teilchen simuliert wurde.
x;(t) € [-1/2,1/2)3,i € {1,...,65}, bezeichne nun den Ort, an dem sich das
i-te Teilchen zum Zeitpunkt ¢ befindet. Den Ort, an dem sich dieses Teilchen
zur Zeit t + At aufhéilt,

zi(t + At) = 2i(t) + vy,

erhiilt man aus der vorherigen Lage z;(t) und einer Verschiebung y, die
mit Hilfe des Potentials berechnet wird. Fiir unsere Arbeit wurde dafiir das
sogenannte Soft-Spheres-Potential

(31) Vi = ()

;,5(t)

mit

wij(t) = \/(Sﬂi(t) —z;(t)2, i,j € {1,...,65}, i # j,

verwendet, das die potentielle Energie zwischen den Teilchen ¢ und j zum
Zeitpunkt ¢ bestimmt.

Es ist natiirlich leicht moglich, dass sich ein Teilchen aus dem Wiirfel
herausbewegt. Damit trotzdem die Anzahl der Teilchen im Wiirfel immer
gleich bleibt, wurden periodische Randbedingungen eingefiihrt: Bewegt sich
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zum Beispiel ein Teilchen im rechten Winkel durch eine Wand des Wiirfels, so
l&sst man ein neues Teilchen im rechten Winkel durch die gegeniiberliegende
Wand wieder in den Wiirfel eintreten. Die periodischen Randbedingungen
sind die Erweiterung dieser Figenschaft auf alle Punkte der Oberfliche des
Wiirfels und alle moglichen Austrittswinkel.

Von der Betrachtung der einzelnen Teilchen kann man dazu iibergehen,
das Gesamtsystem zu betrachten. Die Energie des Gesamtsystems zum Zeit-
punkt ¢ ldsst sich wie folgt berechnen:

(3.2) | ;e
Vaes(x(t)) = Z Vij(t) mit z(t) = (z1(t),. .., ze5(t)) € [—5, 5} .
irj€{1,.-65},

Man kennt nun zu einem Zeitpunkt ¢ sowohl die Position z(t) als auch die
Energie Vges(2(t)) des Gesamtsystems. Diese Daten kann man gegeneinan-
der auftragen. Der entstehende Graph wird potentielle Energielandschaft
genannt. Wie ein solcher Graph aussehen kann, sieht man anhand einer bei-
spielhaften Auftragung in Abbildung 3.1:

Vges(X(t))

x
=V

Abbildung 3.1: Auftragung von Vges(z(t)) gegen x(t): beispielhaftes Ausse-
hen einer potentiellen Energielandschaft

Um besser zu verstehen, wie sich das Gesamtsystem verhélt, kann man
sich einen dreidimensionalen Raum vorstellen. Die Punkte der x-y-Ebene
stellen alle Positionen dar, die das Gesamtsystem annehmen kénnte. Auf
der z-Achse werden dann die zugehorigen potentiellen Energien aufgetragen,
die mit Hilfe der Gleichungen (3.1) und (3.2) berechnet wurden. Dadurch
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entsteht in dem Raum eine ,,Hiigellandschaft“. Einen Ausschnitt aus einer
solchen beispielhaften Landschaft zeigt Abbildung 3.2:

&

Abbildung 3.2: Ausschnitt aus einer beispielhaften , Hiigellandschaft* (Sicht
,von oben* mit Hohenlinien; Kreuze kennzeichnen Minima)

Der Weg, den das Gesamtsystem durch diese Landschaft zuriicklegt,
kénnte dann wie in der folgenden Abbildung 3.3 aussehen:

=1

Abbildung 3.3: Beispielhafter Weg des Gesamtsystems durch eine , Hiigel-
landschaft*

Es hat sich gezeigt, dass sich das Gesamtsystem iiberwiegend in der Ndhe
der Minima aufhélt und nur kurz hohe Energiewerte annimmt. Aufgrund die-
ser Erkenntnis ist man dazu {ibergegangen, die Bewegung des Gesamtsys-
tems vereinfacht zu betrachten. Dazu diskretisiert man die Hiigellandschaft,
indem man nach einem bestimmten Verfahren Linien zwischen den Minima
festlegt, wie in Abbildung 3.2 beispielhaft zu sehen ist. Das Gesamtsystem
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nimmt nun nicht mehr alle Energiewerte an, sondern ihm wird innerhalb ei-
nes Gebietes der Energiewert des zugehorigen Minimums zugeordnet. Uber-
schreitet es eine der Linien, ordnet man ihm die nichste Minimumenergie
7u.

Trégt man nach dieser Vereinfachung die Gesamtenergie gegen die Zeit
auf, erhélt man ein Bild wie in Abbildung 3.4:
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is(t) Jj - ’ Lr o + . b
292, . : N
204 ¢ 1 i % §3*‘ Ty

L hs + -+ o+ : +
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-302™ : : : ]
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Abbildung 3.4: Auftragung der Minimaenergien gegen die Zeit

Man sieht dort sehr schon, dass es trotz der Vereinfachung noch zu star-
ken Fluktuationen kommt, so dass es schwierig ist, irgendwelche Aussagen
iiber die Bewegung zu treffen. Deshalb ist man dazu iibergegangen, Mi-
nimumgebiete nach einem bestimmten Prinzip zu sogenannten Metabass-
ins zusammenzufassen. Dies geschieht folgendermafien: Nummeriert man
die Minimumgebiete durch, legt das Gesamtsystem beispielsweise folgende
Strecke zuriick:

1-2-3-2-3-4-6-3-5—-2-1.

Nach der Theorie der Metabassins hétte sich das Gesamtsystem wéhrend
dieses Zeitabschnitts ausschliefllich im Metabassin 1 aufgehalten. Betrachten
wir ein weiteres Beispiel:

1-3-2-4-1-2-3-4-5-3-2—-4-5-6-4-6-7—-4.

Hier hitte sich das Gesamtsystem zunichst im Metabassin 1 aufgehalten,
dann wire es ins Metabassin 2 und danach ins Metabassin 4 gewechselt, wo
es bis zum Ende bleibt. Bei der Anwendung der Metabassin-Theorie hélt
man also das erste Minimumgebiet (bezeichnen wir es mit A), in dem sich
das Gesamtsystem aufhélt, fest und schaut, ob das System noch ein oder
mehrere Male hierher zuriickkehrt. Unter Metabassin A werden nun all die
Minimumgebiete zusammengefasst, in denen sich das Gesamtsystem in der
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Zeit der ersten Begegnung mit dem Minimumgebiet A bis zur letzten Be-
gegnung mit dem Minimumgebiet A aufgehalten hat. Danach hélt man das
néichste Minimumgebiet fest und schaut, ob das Gesamtsystem noch einmal
dorthin zuriickkehrt, usw. Fiithrt man dieses Verfahren an der kompletten
Beobachtungsreihe durch, erhilt man eine vollig andere Art der Bewegung.
Das Gesamtsystem hélt sich eine bestimmte Zeit in einem Metabassin auf
und ,,springt*“ dann ins néchste Metabassin, usw.

An dieser Stelle kommt der CTRW ins Spiel. Allerdings haben wir es hier
nicht mit einem eindimensionalen CTRW zu tun, wie wir ihn in Kapitel 2
eingefiihrt haben, sondern mit einem mehrdimensionen CTRW. Daher geben
wir zunéchst die Definition eines d-dimensionalen CTRW an:

3.3.1 Definition.

Es seien (T;)ien, (Yi)iew Folgen unabhingiger, identisch verteilter Zufallsva-
riablen mit Werten in Ry bzw. RY. Weiter werde angenommen, dass (T})ien
und (Y;)iew voneinander unabhingig seien und Ty = Yy = 0 gelte. Dann wird
der stochastische Prozess (Xi)i>0, der definiert ist durch

N
(3.3) X =) v,
i=1

wobei Ny wie in (2.1) definiert ist, d-dimensionaler Random Walk in stetiger
Zeit, kurz d-dimensionaler CTRW, genannt.

Wir haben uns die Position des Gesamtsystems im Minimum jedes Me-
tabassins und die Aufenthaltslinge des Gesamtsystems in jedem Metabas-
sin ausgeben lassen und als Realisierungen der obigen Zufallsvariablen Y,
i€ {l,...,M} (M sei hierbei die Anzahl der Metabassins), bzw. T;, i €
{1,..., M}, aus der obigen Definition 3.3.1 interpretiert. Damit der aus
diesen Zufallsvariablen nach obiger Gleichung (3.3) entstehende stochas-
tische Prozess ein (3 - 65)-dimensionaler CTRW ist, sind die geforderten
Unabhéngigkeitsbedingungen zu priifen. Bei unseren Studien haben wir uns
auf den stochastischen Prozess (X;)i>0, der durch

A~ N
X, => D
i=1

mit Ny wie in (2.1) und einer Folge reellwertiger Zufallsgrofen D;, i €
{1,..., M} gegeben ist, beschrinkt und fiir diesen eindimensionalen CTRW
die geforderten Unabhéngigkeiten gepriift. D;, i € {1,..., M}, bezeichnet
dabei die effektive Strecke, die das Gesamtsystem vom (i — 1)-ten Metabas-
sin zum i-ten Metabassin zuriickgelegt hat, wobei wir Dy erhalten haben,
indem wir die Strecke von einem fiktiven Nullpunkt zum ersten Metabassin
berechnet haben. Mittels selbstgeschriebener Computerprogramme haben
wir die Korrelation zwischen den Zufallsgrofien betrachtet: Zuerst haben
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wir uns die Korrelation zwischen den Zufallsvektoren D = (Dy,...,Dys)
und 7' = (11, ...,Ty) angesehen, indem wir den Korrelationskoeffizienten
Kov(D,T)
D, T) =
D) (Var D)Y/2(Var T')!/2

berechnet haben. Unser Programm errechnete p(D,T) = 0,0424259. Um die
Korrelation der D;, i € {1,..., M}, bzw. T;, i € {1,..., M}, betrachten zu
konnen, haben wir mit einer leichten Variation dieser Formel gearbeitet:

(M —m)"' 3™ ((log Diym — Elog D)(log D; — Elog D))

m(log D) = )
pm(log D) E(log D — Elog D)2

wobei m € IN beliebig wihlbar ist und log D := (log D1, ...,log Dys). In
Abbildung 3.5 ist p,,,(log D) gegen m aufgetragen:

Korrelation log(D_i)

N=65T=105
1 : : ‘ ‘

Abbildung 3.5: Korrelationsabbildung der Folge log D;, i € {1,..., M}, fiir
1 <m <50

Hier erkennt man, dass der Graph fiir m = 3 kleiner als 0,1 ist und
fiir m = 2 erst knapp den Wert 0, 1 {iberschritten hat. Dies spricht dafiir,
dass die Folge D;, i € {1,..., M}, unkorreliert ist. Fiir die Folge T;, i €
{1,..., M}, haben wir durch analoges Vorgehen einen sehr dhnlichen Gra-
phen erhalten, so dass wir zu dem Schluss kommen konnen, dass es sich bei
dem stochastischen Prozess (Xt)tzo um einen eindimensionalen CTRW han-
delt. Dies ist ein Indiz dafiir, dass (X;)¢>0 ein (3 - 65)-dimensionaler CTRW
ist.

Genauere Informationen iiber die Durchfithrung der Simulationen und
iiber die Theorie der Metabassins finden sich in dem Werk ,, The Dynamics
of a Small Model Glass Former as Viewed from Its Potential Energy Lands-
cape® von B. Doliwa ([Do]). Zum Abschluss mochte ich den Artikel , The
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potential energy landscape of glass-forming systems - What do we learn
about the dynamics?“ von Prof. Dr. Heuer erwiahnen, der in Kiirze in der
Zeitschrift Journal of Physics: Condensed Matter (topical review) erscheinen
wird. Ein Teil dieses Artikels beschéftigt sich mit dem Soft-Spheres-System
und enthélt die Ergebnisse unserer Simulationen, die aus chemischer Sicht
sehr interessant sind, aber den Rahmen dieser Arbeit sprengen wiirden.






Anhang A

Hilfsergebnisse

Hier sind die Sétze, Lemmata und Definitionen aufgefiihrt, die in den Kapi-
teln 1 und 2 benutzt wurden, aber nicht sinnvoll integriert werden konnten.
Wir werden allerdings nicht all diese Sétze und Lemmata beweisen. Ana-
lytische Hilfsmittel und bekannte Ergebnisse, deren Beweise innerhalb der
Vorlesungen vorgetragen wurden, werden ohne Beweis angegeben. Ebenso
wie Aussagen, deren Beweise sich auf zahlreiche Ergebnisse anderer Theorien
beziehen. Es wire zu umfangreich und daher nicht sinnvoll, solche Beweise
im Anhang einer Diplomarbeit zu prisentieren.

Dieses Kapitel ist eine Ansammlung verschiedenster Aussagen, die nur
in einigen, wenigen Féllen einen direkten Zusammenhang haben. Der Uber-
sichtlichkeit halber sind deshalb die Ergebnisse danach sortiert, ob sie im ers-
ten oder zweiten Kapitel benutzt werden und zu welcher Theorie sie gehoren.

A.1 Ergebnisse fiir Kapitel 1

A.1.1 Lemma (vgl. [Fel], V.5, Lemma 2).

Wenn die Zufallsgriffen X1, ..., X, unabhingig sind und symmetrische Ver-
teilungen besitzen, dann hat auch S, = X1 + ...+ X,, eine symmetrische
Verteilung und es gilt

1
P(|S,| >t) > =P (max | X5 | > t) .
2 1<i<n
Beweis. Seien T := inf{k € {1,...,n} : |Xi| = maxj<;<p |X;|} und M =
X: sowie T := S, — M. Das Paar (M, T) ist in dem Sinne symmetrisch ver-
teilt, dass die vier Kombinationen (+M,+T) dieselbe Verteilung besitzen,

was sich leicht aus der Unabhéngigkeit und der symmetrischen Verteilung
der X;, 1 <1 < n, ergibt. Es gilt:

P(M>t)<P(M>tT>0)+P(M>tT<0).

69
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Da die beiden Wahrscheinlichkeiten auf der rechten Seite gleich sind, erhal-
ten wir:

P(|S,|>t) > P(S,>t)=P(M+T >1)

1
> P(M>t,T>0)2> 3 P(M>1),

womit wir die Behauptung bewiesen haben. O

A.1.2 Lemma (vgl. [Fe2], V.5, Lemma 1).
Wenn X1 und Xo unabhdingig und identisch verteilt sind, gilt firt > 0

(A1) P(|X, — Xa| > t) < 2P(|Xy| > t/2).

Wenn a > 0 so gewdhlt ist, dass P(X; > a) <1—pund P(X; < —a)<1-—p
qgilt, ist

(A2) P(‘Xl — XQ‘ > t) >p P(‘Xl‘ > t+a).
Beweis. Zu (A.1):

P(|X, — Xao| >t) < P(|X1| > t/2 oder |Xa| > t/2)

<
< P(IX1 >t/2) + P (| Xa| > t/2) =2 P (|X1| > t/2).

Zu (A.2): Sei a > 0 so gewihlt, dass P(X; > a) <1 —pund P(X; < —a) <
1 — p gilt. Dann ist

P(|X1—Xo|>t) > P(X;>t+a,Xs<a)
+ P(X1 < —(t+a), X2 > —a)
= P(X;>t+a)P(Xs < a)
+ P (X1 < —(t+a))P(Xy > —a)
p (P(X1=t+a)+P (X < —(t+a)))
= p P(|X1| >t +a).

O

A.1.3 Satz (vgl. [Br], 9.5, Theorem 9.17).

X hat eine unendlich teilbare Verteilung, wenn Konstanten 3 € R, 02 > 0
und ein endliches Maf$ v auf R* existieren, so dass seine charakteristische
Funktion ¢ von der Gestalt

(A.3) log ¢(t) = ift — ? + / <6it:r 1 it > 1+ 22 (do)

142 2

ist. Umgekehrt ist eine charakteristische Funktion einer solchen Gestalt die
charakteristische Funktion einer unendlich teilbaren Verteilung.
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A.1.4 Satz.
Die Parameter 3,0% und v der obigen Darstellung (A.3) einer unendlich
teilbaren Verteilung sind eindeutig bestimmt.

Der folgende Beweis verlauft analog zum Beweis der Eindeutigkeit der
Parameter der Lévy-Khintchine-Darstellung aus Satz 48.9 in [A].

Beweis. Es sei vorausgesetzt, dass der Logarithmus der charakteristischen
Funktion ¢ einer unendlich teilbaren Verteilung R von der Gestalt (A.3) sei.
Nehmen wir nun an, dass aulerdem

2,2 ‘ it 1+ a2
log ¢(t) = i&t — TT + / <6m -1 G > LT p(dz)

1t a2 2

mit ¢ € R, 72 > 0 und einem endlichen Maf 1 auf R* gilt. Dann erhalten

wir folgende Gleichung
(A.4)

z‘(ﬁ—ﬁ)t—MJr/(em—l it >1+—2~m2(u—u)(dm):0

2 142 x

fiir alle t € R. Betrachten wir zundchst nur den Realteil, so erhalten wir fiir

t #0:
1+ 2 _ 2
2 (Cost:c—l)w(y—,u)(dx) =o0° -7

Weil

2

1 1
g—/|1—costx| tr
$2

S v+ )

1222

‘/(cos tz — 1)”—“’”2 (v — p)(dz)

ist und wir (1.15) und (1.16) bereits bewiesen haben, kénnen wir den Satz
von der majorisierten Konvergenz (vgl. [E], IV.5.2) anwenden und erhalten:

. 1+ 22
tEIgOQ/(COS(m) — V5o (v —p)(de) =
Daher muss 02 = 72 gelten.

Als néchstes wollen wir mit Hilfe des Satzes von Fubini zeigen, dass die
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beiden Mafle v und p iibereinstimmen:

1 u+1 ) ; 1 2
0 = 5/u_1 <z‘(ﬂ—§)t+/<em—1—1i—xx2>%(v—u)(dw)> dt

=0 nach (A.4)
(gt [ (e o1 Y R
i u e 2 (v —p)(de
=0 nach (A.4)

- %//u“:l <eitz _1_ 1:%32) 1—;—f2dt(y—p)(dx)
_/ <ei“l“— 1— 1?:;) 1;—2902(1/—#)(6@0)

_ / (eiux%(eiw L 11‘;) 1;:—;52 (v — p)(dw)
_/ (é“l‘— 1— 1?:;) 1;—2902(1/—#)(6@0)

- / <emSi2”” —1- %) 11—;62 (v — p)(dz)
[ (o )

_ / u (Sizx _ 1) L ;””2 (v — p)(dx).

Da die MaBie v(dx) := (1— %)i—fﬂ(dm) und zi(dzx) := (1— %)i—fu(dm)
endlich sind, was wir gleich zeigen werden, folgt nach dem Eindeutigkeitssatz
fiir Fourier-Transformierte ihre Gleichheit. Und da 1 — *2* auf ganz R*

positiv ist, folgt:

%(m) - (1 . Sizx>_1 Lg+(2) = %(x),

d.h. v =p.
Zeigen wir nun, dass die Mafle 7 und g endlich sind: Wir wissen, dass v
und p endliche Mafle mit v({0}) = 0 = p({0}) sind. Aulerdem gelten:

sin x 1+ 22

< 2 fiir alle z € R* und 5
x

0<1-

< 2 fiir alle |x| > 1.

Demnach ist die Funktion = — (1 — %)1:—352 fiir alle |z| > 1 beschrénkt.
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Sei |z| < 1. Dann gilt:

1_singv 1+ 22 < QL 1_sinuv
x 22 22 x
1 1 _1k 2k+1
- 25| 2 G
T xkzo (2k + 1)!
1 1 -1 k—1,.2k+1
i EZ( (2)k+xl)'
k>1 ’
i
< 2
k>0 2k+3
< 2kl < 2.

Setzt man in (A.4) 02 = 72 und v = g, so erhilt man auch die Gleichheit
von 3 und &. O

A.1.5 Lemma (vgl. [Br], 10.2, Riemann-Lebesgue Lemma).
Ist f(x) By-messbar und ist [ |f(x)|dx endlich, dann gilt

: itx _
Jim [ et sie) i =
A.1.6 Lemma (vgl. [Fe2], VIIL.2, Lemma 1).
F und G seien nichtdegenerierte Wahrscheinlichkeitsverteilungen. Wenn fiir
eine Folge (Fy,)new von Wahrscheinlichkeitsverteilungen und Konstanten
an >0, a, > 0 und by, 6, € R
(A.5) F.(apz +b,) — F(x), Fy(anx+ 6,) — G(x)

n—oo n—oo

fiir alle x € C(F)NC(G) gilt, gibt es Konstanten A > 0 und B € R, so dass

(A.6) G(z) = F(Ax + B)

und

(A.7) o _, A, B = b — B.
Ay, M—0 an, n— o0

Gilt umgekehrt (A.7), so implizieren sich die beiden Aussagen in (A.5) ge-
genseitig und auch (A.6) ist giiltig.

Beweis. Es gelte (A.7). Seien = > 0, y := Az + B und € > 0. Dann ist
an(y —€) + by, = apAx + an B + b, — ape

Aus (A.7) folgt, dass ein ng € IN existiert, so dass fiir alle n > ng



74 Anhang A. Hilfsergebnisse

(1) anA < an + ane/(2z) und apA > o, — ane/(2z),
(i1) anB + by, < By + ane/2 und ap, B + by, > (B, — ane/2

gelten. Damit ist

anAx + apB 4+ b, —ane < anx 4 ane/2+ By + ane/2 — ane

anx + Bn

(an A+ ane/(2z))x + (an B + by + ane/2)
= a,Ax + ane +a,B+ b,

= ap(y+e)+by

N

und daher gilt fiir alle n > ng:
Fo(an(y —e) + byp) < Fplanx + Bn) < Fu(an(y +€) + by).

Aus dieser Ungleichung wollen wir nun folgern, dass sich die Aussagen aus
(A.5) gegenseitig implizieren. Gehen wir also davon aus, dass die erste der
beiden Aussagen gilt. Dann kénnen wir F,,(apz + (,) — F(y) (n — o0)
folgern, falls y = Ax + B € C(F) gilt. Definieren wir G(z) := F(Ax + B), so
haben wir die Giiltigkeit der zweiten Aussage und zudem auch gleich (A.6)
fiir x > 0 gezeigt. Fir x < 0 kann man analog vorgehen. Ebenso ldsst sich
die erste Aussage der Gleichung (A.5) vollig analog aus der zweiten folgern.

Es gelte nun (A.5). Seien 2’ < z” € C(G) so gewiihlt, dass 0 < G(2') <

G(z") < 1 gilt. Dann existieren /', y” € C(F) mit F(y') < G(z') < G(2") <
F(y") und wir kénnen fiir alle n > ng mit geeignet gewiihltem ng € IN aus
(A.5) schlieflen, dass

any/ +b, < Can, + ﬁn < anx” + Bn < any” + by,

gilt, und daraus fiir n > ng weiter folgern:

I /
On y' =y Bn—by r Qn oy Qp gy
— S —; 7 cWYy ——x,y ——T |.
a, — ' —=x G, an, an,

Aus Symmetriegriinden bleibt auch die Folge (a; /o, )n>0 beschriankt. Daher
existiert nach dem Satz von Bolzano und Weierstra$l eine Folge (nj)x>1 mit

)
Ap, k—oo an,

— B
k—o00

k k

fiir ein A > 0 und ein B € R. Die Umkehraussage des Lemmas haben wir
bereits im ersten Teil dieses Beweises gezeigt und kénnen deshalb folgern,
dass (A.6) gilt, worin A und B eindeutig bestimmt sind. Dies impliziert,
dass fiir jede Folge (n;);>1 eine Teilfolge (n});>1 existiert, fiir die (A.7) fiir
Jj — oo gilt. Dies wiederum zeigt, dass (A.7) auch fiir n — oo giiltig ist. O
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A.1.7 Satz (vgl. [Sam], 1.2, Proposition 1.2.11).

Seien 0 < a < 1, § > 0, N eine Zufallsvariable mit Ns ~ Poi(6~%) und
Y5, k > 1, unabhingige, identisch verteilte und positive Zufallsvariablen,
die von Ny unabhdngig sind, mit

P ir A > 6
P(Yyz > \) = fiir X >,
’ 1 fiir X <0.
Dann gilt:
N
X5:= > Yo —5 X ~ 8a(0,1,0) (6 — 0)
k=1
mit

o =T(1 — «a)cos(mra/2).
Ferner ist die Laplace-Transformierte o von X gegeben durch
o(t) =Ee X =79 >0,
mit a >0 und a® =T'(1 — a) = 0%/ cos(ra/2).

Beweis. Fiir die erzeugende Funktion fs5 von Ns gilt fiir |r| < 1:

5 s
fs(r) =B = Z’I“kIP(N(; =k)= Zrki( k!) ed
k>0 k>0
_ 675_0‘67’5_"‘ _ 6(7’71)5_“‘

Fiir die Fourier-Transformierte ¢5 von X5 folgt mit (52.4) aus [A]:
¢5(t) =B = E(E (e"*|Ny))

= B Iy, B (e"|N; = k)
k>0

= B Z ]l{N6=k‘} P(Né = k)il E (]l{Na:k}eith:1 Y&,j)
k>0

= EZ 1{N5=k‘} IP(N5 = k)*l IP(N5 — k) (]E ez’tYM)
k>0

= Y gy (B
k>0

= E(Be1)" = (B eon),

k

Aus der vorherigen Rechnung wissen wir, dass

fs(E eity“’l) = exp (570‘ (E (eity‘svl — 1)))

= exp <5_°‘/ (em — 1) §azp~ (@t dm)
J

= exp </ (eitw - 1) oz~ @+ dw)
é
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ist, und der Grenziibergang § — 0 liefert:

o0
lim Ee®™ = lim exp </ (elm — 1) oz~ (@l dx>
6—0 6—0 0

= exp </ (eitw - 1) oz~ (@t dw) ,
0

wobei hier der Satz von der majorisierten Konvergenz verwendet wurde.
Wir miissen also fooo(eim — 1)az= (@D dz genauer bestimmen. Durch die
Substitution z + ¢t~ 12 (¢ > 0) und mit Hilfe partieller Integration erhalten
wir:

/ (eitx B 1) ax—(a—H) dr _ / (eim B 1) atoﬂ—lx—(a#—l)% dx
0 0
= ato‘/ (em — 1) PG,
0

= —taef%iaf(l — ).
A111

Als nichstes berechnen wir mit Hilfe von Satz 1.2.4 die Fourier-Trans-
formierte ¢x von X fiir ¢t > 0:

ox(t) = exp <—a°‘t°‘ (1 — itan %))
= exp <—F(1 — ) cos %to‘ <1 — itan ?))
= exp <—t0‘e_%iOT(1 — a)> .

Die Laplace-Transformierte erhalten wir durch eine analoge Rechnung mit
—t anstelle von t, t > 0. ]

A.1.8 Satz (vgl. [Sam], 1.2, Proposition 1.2.12).
Die Laplace-Transformierte ¢ von X mit X ~ So(0,1,0), 0 < a < 2 und
o > 0, ist von der Gestalt

a

o(t) = Ee X = exp <— 7 — ta> fir o # 1,
cos 5

2
o(t) = Ee tX — exp <0—t10g t> fir o = 1.
T

Beweis. Nach Satz A.1.7gilt fir0<a<lundt>0

cos T2

o(t) = exp(—t°T(1 — @) = exp (-ta “: ) .

Da der Fall o > 1 um einiges schwieriger zu beweisen ist und in dieser Arbeit
nicht bendtigt wird, bleibt er ohne Beweis. O
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A.1.9 Satz (vgl. [Sam], 1.3, Proposition 1.3.1).
Gegeben seien X ~ So(0,0,0) mit 0 < o/ <2 und 0 < o < /. Weiter sei

Y ~ Sq 0 <(cos %)O//a , 1 0) stochastisch unabhdingig von X. Dann gilt:

Z =YX ~ S,(0,0,0).

Beweis. X hat die Fourier-Transformierte ¢(t) = B e = exp(—o®'|t|*)
und Y hat die Laplace-Transformierte

/ a/a’
" ((cos 2)°) , ,
p(t) =Ee™ ad i o5 7@ 1/ | = exp(—t/).
o 2a/

Dann folgt

Be” = B (exp (itV/"'X)) = F (]E <exp (i x) 'Y))
- Ba(o)-nem )

= Boxp (—o”|1"Y) = ¢ (ot
= exp (—a®[t]*),

wobei Y > 0 f.s. ausgenutzt wurde. U

A.1.10 Satz (vgl. [Bi], 1.7, Theorem 1.7.1).

U sei eine monoton wachsende, rechtsseitig stetige Funktion auf R mit
U(z) = 0 fir alle x < 0. Wenn [ eine langsam variierende Funktion ist
und ¢ > 0, p > 0 gelten, sind die folgenden Aussagen dquivalent:

(A.8) U() ~ cal(x)/T(L +p) (x — o),

(A.9) U(s) ~csPl(1/s) (s ]0)
mit U(s) := [ et U(dx).

A.1.11 Satz.
Fir0<a<1 ist

o i 1 ]
1r —5
/0 (e — 1) Tt dr =e 2%L(a),

wobei L(a) := [°(e™" — D=+ dy = —1T7(1 —a) < 0 dst.
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Beweis. Sei ¢ > 0. Wir betrachten fiir diesen Beweis den geschlossenen
Integrationsweg v = 71 + 72 + 3 — 74 in C mit

v :[0,1] = C, t— e+ t(R—e),
Yo : [0,7/2] = C, t+— Re™,

v3:[0,1] — C, t — iR+ t(ic —iR),
Y4 :[0,7/2] = C, t+— ee'.

Da die Funktion f(z) = (¢* — 1)z~ (4% wobei z~(1+®) den Hauptzweig der
Potenz bezeichne, in C\ (—o0, 0] holomorph ist, folgt mit dem Cauchyschen

Integralsatz:
/ f(z)dz =0.
gl

Mit Hilfe der Standardabschétzung kénnen wir folgern, dass

/y (eiz — 1) Zlia dz
2

< % o R+ — zp—

- R—o0

und

/ (eiz — 1) —11 dz‘ < e Cee(F0) — oZl-a __ g
v Zlto 2 2 e—0

Da ehi%, f,ﬂ f(z)dz = [{% (e — 1)z~ (H) dy gilt, folgt

R—oo
/ (eix _ 1) = F)gr = _ lim / f(z)dz
0 EHO’ V3

_ / (¢ — 1) =1+ gy
0

Mittels partieller Integration kénnen wir L(«) genau bestimmen:

«

L(a) = /Ooo(el“ — 1)z~ 0+ gy = . Fl—a) 0O<a<l).
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A.2 Ergebnisse fiir Kapitel 2

A.2.1 Definition (vgl. [Bi], 1.2.1, Definition).
Sei | eine positive, messbare Funktion in einer Umgebung [X,00) von oo,
die die Bedingung

I(A
(Az) — 1 fiir alle A >0
l(x) z—o0

erfillt. Dann heif$t | langsam variierend.

A.2.2 Satz (vgl. [Bi], 1.5.6, Proposition 1.5.10).
Ist | langsam variierend und o < —1, dann konvergiert foo tU(t) dt und es
qgilt:
$a+1l(1‘)
[ tel(t) de

— —a—1 (z— o).

A.2.3 Satz (vgl. [Bi], 1.7.6, Theorem 1.7.6).
Seien' V>0, ¢>0, p>—1, V(s) :== s [;" e ¥V (z) dx < oo fiir s >0 und
[ € Ry. Ist die Aussage

V(@) ~ cal(@)/T(1 +p) (2 — o)
wahr, dann gilt auch
‘7(3) ~cs Pl(1/s) (s]0).

Die umgekehrte Implikation ist giltig, wenn zusdtzlich

(A.10) lim liminf inf 202~ U@) >0
AL z—oo tel1,y]  xPl(x)

gilt.

A.2.4 Satz (vgl. [Wi], Theorem 5.2).
FE's seien X1, X, ... unabhingige und identisch verteilte Zufallsvariablen und
Ty, Ta, . .. eine Folge nichtnegativer, ganzzahliger Zufallsvariablen mit Median
tn. Wenn die folgenden drei Bedingungen

(i) T i 00,
(1) Tn/pn N &, wobei & eine positive Variable ist,

(iii) fir ein ¢, gilt Sy/cn Ay fiir eine Zufallsgrifse Y mit stabiler Ver-
teilung mit charakteristischem Ezponenten o

erfullt sind, gilt Sr,/cu, , /ey 4 €YY | wobei v unabhingig von
(X:)ien ist und wie & verteilt ist.
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A.2.5 Lemma (vgl. [Ke], Lemma 1).

FEs seien Zy, Z1,... eine irreduzible, endliche Markov-Kette mit Zustands-
raum {1,...,n} (n € N), Fy,..., F, Verteilungsfunktionen und Xy, X1, ...
eine Folge von Zufallsvariablen, die der Gleichung

P(Xo <o, X1 < 21,..., X < 2k Z0 = Jo, Z1 = j1, Z2 = j2, .- .)

k
=0

geniigen. Weiter sei N(\) eine nichtnegative, ganzzahlige Zufallsvariable, so
dass
P(N(A) < k| Xo, X1, Xo,..., 20, 21, Z2, . ..)
=P(N\) < k| Xo,..., Xk, Z0, .-, Zk)
gilt. Wenn Funktionen f(k) = k“Li(k) (o > 0) und h(\) = MNLy(\)

(B > 0,h(\) — oo fir A\ — o), wobei L1 und Lo langsam variierende
Funktionen sind, existieren, so dass

YioXi N _ ) L
]P< IR h(A)gy>—F<x>G<y>

lim
k—00, \—00

NQ) 5 0o
lim P (M < ﬂ:) :/ F(zy™®) G(dy).
0

ist, gilt:

A=oo \ f(R(N))

A.2.6 Lemma (vgl. [Fe2], XIV, Lemma).
Sei F' die Verteilungsfunktion eines Wahrscheinlichkeitsmafes auf (0,00)
mit 1 — F(x) =2~ *L(z), 0 < o < 1, fiir eine langsam variierende Funktion
L :[0,00) — [0,00). Dann gilt

1 ¢

(A.11) U(z) ~ (1 —a)l(1+a)L(z)

(z — o0)

fiir U =3 F*™ und

sin o

(A.12) (1- F(2))U(z) —

r—00 iye’

Beweis. Setzen wir (A.11) als gegeben voraus, so kénnen wir Gleichung
(A.12) folgern, denn:

(1-Fx)U(z) = a *Lx)U(z)
1 ¢

'l —a)l'(1+a) L(x)

~ oz %L(x)
1

I’.(l —a)al(a)
— Miza (x — o0).
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Es geniigt also, (A.11) zu beweisen. Sei ¢ die Laplace-Transformierte von
F'. Dann gilt mit Hilfe des Satzes von Fubini fiir t > 0

o(t) = / e ' F(dx) / / e "du F(dx)
[0,00) [0,00)
= / / F(dz)e ™ du = / te " F(u) du,
0,u]

woraus wir

(A.13) /000 e (1 — F(x)) dx = 1%80@)

folgern konnen. Wir wollen nun Satz A.2.3 anwenden und wéhlen dazu
V(z) :==1— F(z), x > 0. Dann gilt

V() =1~ F(x) =2 "L(x) = WL“”)H’

d.h. die Voraussetzungen des Satzes sind mit ¢ := I'(1 — «), l(x) := L(x)
und p := —q erfiillt und wir erhalten

1—p(s) = S/OOO eV (x)de = V(z) ~ D(1—a)s“L(1/s) (s 0).

(A.13) A23
Setzen wir jetzt ¢p(t f[o 00) e~ U(dx), so gilt fiir t >0
] oot
n>07[0:%0) n>0 Y~ — ()

=(p(t)"
Aufgrund der vorherigen Gleichungskette konnen wir weiter folgern:

1 1 1 1

v =10 ~Ta—aeLan Ta-a! nap O

Wir kénnen nun die umgekehrte Implikation aus Satz A.2.3 benutzen, denn
V' besitzt die geforderte asymptotische Gestalt, wenn wir V' := U wiéhlen,
und (A.10) ist trivialerweise erfiillt. Dann gilt fiir das entsprechende V:

Vis) = s/ e U (x)dx = s/ e_sx/ U(dy) dx
0 0 [0,]
= / / se” T dxU(dy) = / e YU (dy)
[0,00) J[y,00) [0,00)

|
= v~ Tas ¢LO
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wobei zu beachten ist, dass mit L auch 1/L langsam variierend ist. Aus Satz
A2.3 mit ¢ :== 1/T(1 — @), p := a und [(z) := 1/L(z) erhalten wir nun
(A.11):

1 1 1

Ve~ s T T s e &

O

A.2.7 Satz (vgl. [Fe2], XIV.3, Theorem).
(Xi)iew sei eine Folge positiver, unabhdngiger und identisch verteilter Zu-
fallsgrofien mit X; ~ F und S, = > | X; sei die n-te Partialsumme. Fir
festes t > 0 sei Ny = max{k > 0: Sy <t}. Gilt

(A.14) 1 — F(z) = 2 “L(x),

0 < a < 1, mit einer langsam variierenden Funktion L, so gilt fir die
normierte Zufallsvariable Y/t mit Yy ==t — Sy, :

AN Arcsin(a).

Die Arkussinus-Verteilung wurde bereits in Beispiel 2.3.5 auf Seite 57
definiert.

Beweis. Seien 0 < 1 < xo < 1. Dann gilt fiir ¢ > 0:

{try <Yy <txy} = {tzry <t— Sy, < txa}
= {t(1 —xz2) < Sn, <t(l—x1)}
= {I3neNopund Jy e (1 —x2,1 — 1) :
Sn = ty, Xp41 > t(1 —y)}.

Setzen wir U = 3°°° P9 so folgt:

o0
P (:cl <t7Y, < xQ) = Z]P (t_lsn €(l—wx9,1—m1), Xpp1 >t — Sn)

)

o0
=>'E (1? <t15n e(l—x9,1—x1),Xpnp1 >t— S,
n=0

- P(Xo1 > £ — ty) P50 (dy)
n—0 (1—z2,1—x1)
_ / P(Xy >t — ty) Ultdy)
(1—z2,1—x1)

_ / (1= F(t(1 —y))) Ultdy)
(1—z2,1—x1)

. 1 - F(t(1 —y)) Ul(tdy)
—a-rowo [ e




A.2. Ergebnisse fiir Kapitel 2 83

Die Voraussetzungen von Lemma A.2.6 sind hier erfiillt. Daher sind in die-
sem Beweis die beiden Aussagen (A.11) und (A.12) giiltig und wir kénnen
fiir ¢ — oo schlieflen:

P (3:1 <t7ly, < :Ug) ~

sin o / 1—F(t(1 —y)) U(tdy)
T Ja—gei-a) 1= F(t) ut)

Hier haben wir unser Ziel schon fast erreicht. Schauen wir uns aber das Maf}
und den Integranden etwas genauer an. Beginnen wir dabei mit dem Maf.
Unter Benutzung von (A.11) erhalten wir fir y > 0:

U(to,y]) _ U([0,ty]) _ Ulty) Y L
Uiy U@l U@ _/0 oy~ dy.

Mit Satz 43.7 in [A] kénnen wir daraus folgern, dass
U(tdy) v
—
U(t)
fiir ¢ — oo gilt. Definieren wir ein endliches Maf§ y; durch
UtBN(1—x9,1—
U(t)
so gilt nach Satz 43.6 b) in [A] fiir ¢ — oo:

ay® Mg o) (y) A(dy)

je(B) = ") pew,

pr == oy gy 1) () A(dy).

Da die Funktion y — (1 —y)™® auf (1 — 29,1 — 1) stetig und beschrénkt
ist, konnen wir weiter folgern:

L Utdy) e
/(112,1:1:1)(1 —Y U(t) - /(1 y)~ m(dy)

(A.15) — (1—y) “ay™! A(dy)
o0 (1—z2,1—21)
1—x1
= / ay 1 —y)"“dy.
1—x2
Kommen wir nun zum Integranden:
1-Ft(-y) _ (0 -y)*LEtA-y))
1—F(t) t=L(t)
L(t(1—y))

= (1-y)™* 10 e (1—y)™ ™

Weil =)

—F(t
abgeschlossenen Intervall [1 — x9,1 — x1] gleichméfig, d.h. fiir gegebenes
€ > 0 gibt es ein tp, so dass

1-F((1-y)
1- F(t)

in y monoton wachsend ist, ist die obige Konvergenz im

-(1-y) % <e
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fiir alle t > tp und y € [1 — z2,1 — 2] gilt. Mit diesen neuen Informationen
koénnen wir fiir alle ¢ > ¢y schlieflen:

1—F(t(l—y)) Utd 1=z _ Y
/ ( ( y)) ( y) . / aya 1(1 _ y) dy
(1—z2,1—x1) 1

1 - F(t) U(t) —x2

IN

/ 1- F(t(l - y)) - (1 o )—oc U(tdy)
(1—z2,1—x1) 1— F(t) U(t)

_o Ultdy) —1 —
+ / (1-y)* —/ ay® (1-y) “dy
(1—za,1—21) U(t) (1—za,1—21)

Aus Gleichung (A.15) wissen wir, dass der zweite Summand gegen 0 kon-
vergiert. Mit Hilfe der Standardabschétzung und weil
U(t(l —.%'2,1 —.%'1)) < U(t) -1

U(t) U@

gilt, kénnen wir den ersten Summanden gegen e abschétzen. U
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