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Einleitung

Die vorliegende Arbeit hat das Ziel, das asymptotische Verhalten von Ran-
dom Walks in stetiger Zeit zu untersuchen (Kapitel 2). Die Grundlage hierfür
liefert der Artikel

”
Asymptotic Distributions of Continuous-Time Random

Walks“ von Marcin Kotulski, der 1995 im Journal of Statistical Physics er-
schienen ist.

Um dieses Ziel zu erreichen, ist es notwendig, auf einige Bereiche der
Wahrscheinlichkeitstheorie zurückzugreifen. Während die Theorie der be-
dingten Erwartungswerte innerhalb der Vorlesungen behandelt wurde, blei-
ben die stabilen Verteilungen und ihre Anziehungsbereiche ein für Studenten
weniger bekanntes Gebiet. Dies ist der Grund dafür, diese in einem eigenen
Kapitel ausführlich einzuführen (Kapitel 1). Die Literaturgrundlagen für die-
sen Abschnitt sind die Bücher

”
An Introduction to Probability Theory and

Its Applications (Volume II)“ von William Feller und
”
Probability“ von Leo

Breiman.
Das dritte Kapitel dieser Arbeit behandelt ein Beispiel für einen Ran-

dom Walk in stetiger Zeit in der Chemie. Zu diesem Zweck gab es eine Zu-
sammenarbeit mit dem Arbeitskreis Heuer, Bereich Theoretische Chemie,
des Fachbereichs Chemie der Universität Münster. Für die Möglichkeit, an
diesem Projekt teilzunehmen, möchte ich mich bei Herrn Prof. Dr. Heuer
bedanken.

Der Anhang beinhaltet eine Auflistung der Definitionen, Sätze und Lem-
mata, die in den Kapiteln 1 und 2 angewendet werden, aber nicht sinnvoll
in die Arbeit integriert werden können.

Abschließend möchte ich mich für die Auswahl des Diplomarbeitsthe-
mas und der guten Betreuung bei Herrn Prof. Dr. Alsmeyer und seinem
Assistenten Dipl.-Math. Matthias Meiners bedanken.
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Kapitel 1

Stabile Verteilungen und
ihre Anziehungsbereiche

Im ersten Abschnitt dieses Kapitel beginnen wir mit der Einführung stabiler
Verteilungen und diskutieren einige ihrer Eigenschaften elementar. In dem
folgenden Abschnitt untersuchen wir die Gestalt charakteristischer Funk-
tionen stabiler Verteilungen. Mit diesem neuen Wissen beleuchten wir die
Klasse der stabilen Verteilungen im Abschnitt 1.3 noch einmal. Der vier-
te Abschnitt beinhaltet eine allgemeine Definition des Anziehungsbereiches
einer Verteilung und einen für das zweite Kapitel wichtigen Satz, der eine
notwendige und hinreichende Bedingung angibt, wann eine Verteilung im
Anziehungsbereich einer stabilen Verteilung liegt.

Für das gesamte Kapitel seien unabhängige, identisch verteilte Zufalls-
größen X,X1,X2, . . . mit Verteilung R gegeben und es sei Sn :=

∑n
i=1Xi

die n-te Partialsumme der Folge (Xi)i∈N (n ≥ 0).

1.1 Stabile Verteilungen

1.1.1 Definition (vgl. [Fe2], VI.1, Definition 1).
Die Verteilung R heißt stabil (im weiteren Sinne), wenn es für jedes n ∈ N
ein cn > 0 und ein γn ∈ R gibt, so dass

(1.1) Sn
d
= cnX + γn;

dabei sei der Fall R = δc für ein c ∈ R ausgeschlossen. R heißt stabil im
engeren Sinne, wenn (1.1) mit γn = 0 gilt.

Betrachten wir direkt zwei Beispiele, um den Begriff
”
stabil“ zu verin-

nerlichen.
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4 Kapitel 1. Stabile Verteilungen und ihre Anziehungsbereiche

1.1.2 Beispiele (vgl. [Fe2], VI.2).

a) Die Normalverteilungen N(0, σ2) mit σ2 > 0 sind stabil im engeren
Sinne mit cn =

√
n.

b) Die Cauchy-Verteilungen C(a, b) mit a ∈ R, b > 0 sind stabil im enge-
ren Sinne mit cn = n.

Begründung. Zu a): Sei (Xi)i∈N eine Familie unabhängiger, identisch ver-
teilter Zufallsgrößen, wobei X1 normalverteilt mit Erwartungswert 0 und
Varianz σ2 > 0 sei. Dann gilt:

Sn ∼ N(0, σ2)∗(n) = N(0, nσ2) ∼ √
nX1.

Zu b): Sei (Xi)i∈N eine Familie unabhängiger, identisch verteilter Zufalls-
größen, wobei X1 C(a, b)-verteilt mit a ∈ R, b > 0 sei. Dann gilt: Sn besitzt
die Fourier-Transformierte

φnX1
(t) =

(
eiat−b|t|

)n
= en(iat−b|t|)

und zu nX1 gehört die Fourier-Transformierte

φnX1(t) = φX1(nt) = eiant−b|nt| = en(iat−b|t|).

Aufgrund der Eindeutigkeit der Fourier-Transformierten muss Sn
d
= nX1

gelten.

Kommen wir nun zu unserem ersten Satz, der eine weitere Definition
beinhaltet.

1.1.3 Satz und Definition (vgl. [Fe2], VI.1, Theorem 1).
Die Normierungskonstanten cn aus (1.1) können nur von der Form n1/α für
ein α > 0 sein. Dabei wird die Konstante α charakteristischer Exponent
genannt.

Wir werden am Ende dieses Abschnitts zeigen, dass außerdem stets 0 <
α ≤ 2 gilt.

Beweis. Sei R stabil und X
′

,X
′

1, . . . ,X
′

n seien unabhängige Kopien von
X,X1, . . . ,Xn. Betrachten wir

∑n
i=1(Xi −X

′

i):

n∑

i=1

(Xi −X
′

i) = Sn − S
′

n
d
= (cnX + γn) − (cnX

′

+ γn)

= cn(X −X
′

).

Daher ist die Verteilung R
′

von X1 −X
′

1 ebenfalls stabil – sogar stabil im
engeren Sinne – und besitzt dieselben Normierungskonstanten wie R. Es



1.1. Stabile Verteilungen 5

genügt deshalb, die Behauptung für eine symmetrische, stabile Verteilung
zu beweisen. Dafür müssen wir zunächst ein paar Vorüberlegungen anstellen:

Sm+n (m,n ∈ N) ist die Summe unabhängiger Variablen Sm und Sm+n−
Sm, die wie cmX bzw. cnX verteilt sind. Somit gilt

(1.2) cm+nX
d
= cmX1 + cnX2.

Die Summe Srk (r, k ∈ N) lässt sich andererseits als

k∑

i=1

Xi +

2k∑

i=k+1

Xi + . . .+

rk∑

i=(r−1)k+1

Xi

schreiben und daraus folgt: Srk
d
= ckX1 + . . .+ ckXr = ckSr

d
= ck(crX). Da

aber außerdem Srk wie crkX verteilt ist, muss

crk = crck(1.3)

für alle r, k ∈ N gelten. Durch Induktion nach ν ∈ N und durch das Anwen-
den von (1.3) können wir nun schließen, dass

(1.4) cn = cνr ist, wenn n = rν gilt.

Als nächstes zeigen wir, dass die Folge (cn)n∈N monoton wachsend ist: Dazu
betrachten wir für ein m ∈ N erst einmalP(cm+nX > cmx) =

(1.2)
P(cmX1 + cnX2 > cmx)

= P(cmX1 + cnX2 > cmx,X2 ≥ 0)

+ P(cmX1 + cnX2 > cmx,X2 < 0)(1.5)

≥ P(cmX1 > cmx,X2 ≥ 0)

= P(X1 > x)P(X2 ≥ 0)

≥ 1

2
P(X1 > x).

Nun wählen wir x > 0 so klein, dass P(X1 > x) eine positive Konstante ist.
Dies ist möglich, weil R 6= δ0 eine symmetrische Verteilung ist. Es folgt, dass
(cm/cm+n) beschränkt ist: Andernfalls gäbe es eine Folge ((mk, nk))k≥1, so
dass (cmk

/cmk+nk
) −→
k→∞

∞ und dann würdeP(cmk+nk
X > cmk

x) = P( cmk+nk

cmk︸ ︷︷ ︸
−→

k→∞

0

X > x

)
−→
k→∞

0 <
1

2
P(X1 > x)

gelten, was im Widerspruch zu (1.5) steht.
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Setzen wir m = rν und m+ n = (r + 1)ν , wobei wir r festhalten und ν
gegen ∞ gehen lassen, so erhalten wir

cm
cm+n

=
crν

c(r+1)ν
=

(1.4)

cνr
cνr+1

=

(
cr
cr+1

)ν
.

Da wir ein paar Zeilen zuvor gezeigt haben, dass (cm/cm+n) beschränkt
ist, ist auch die Folge ((cr/cr+1)

ν) für ν → ∞ beschränkt. Daher muss
cr/cr+1 ≤ 1 für alle r ∈ N gelten, was äquivalent ist zu der Aussage, dass
cr ≤ cr+1 für alle r ∈ N ist, und die Monotonieeigenschaft der Folge (cn)n∈N
liefert.

Und sie ist sogar streng monoton wachsend: Wäre nämlich cr = cr+1 für
ein r > 0, so folgte

Sr
d
= crX = cr+1X

d
= Sr+1 = Sr +Xr+1

und damit Xr+1 = 0 f.s., was im Widerspruch zur Voraussetzung R 6= δ0
steht.

Nun sind unsere Vorüberlegungen fast abgeschlossen. Wir betrachten
ganze Zahlen j, k ≥ 2. Zu jedem hinreichend großen ν ∈ N existiert ein
eindeutig bestimmtes λ ∈ N, so dass

(1.6) jλ ≤ kν < jλ+1

gilt. Aufgrund der strengen Monotonie der (cn) lässt sich cjλ ≤ ckν < cjλ+1

folgern und mit (1.4) wird daraus

(1.7) cλj ≤ cνk < cλ+1
j ,

was cj > 1 impliziert. Durch Logarithmieren lassen sich nun die Unglei-
chungen (1.6) und (1.7) umformen zu λ log j ≤ ν log k < (λ + 1) log j bzw.
(λ+ 1)−1(log cj)

−1 < ν−1(log ck)
−1 ≤ λ−1(log cj)

−1, was zusammen

λ

λ+ 1

log j

log cj
<

log k

log ck
<
λ+ 1

λ

log j

log cj

ergibt. Da ν in dieser Ungleichung nicht mehr enthalten ist, kann es beliebig
– also auch beliebig groß – gewählt werden, wodurch auch λ beliebig groß
wird. Für λ → ∞ ist daher α := log k/ log ck = log j/ log cj und somit
unabhängig von k, woraus wir ck = k1/α für alle k ∈ N folgern können.

Mit dem Begriff
”
charakteristischer Exponent“ können wir Beispiel 1.1.2

umformulieren. Wir haben es dort mit Verteilungen zu tun, die im engeren
Sinne stabil sind mit charakteristischem Exponenten 2 bzw. 1.

Als weitere Folgerung aus Satz 1.1.3 erhalten wir den folgenden Satz:
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1.1.4 Satz (vgl. [Fe2], VI.1, Theorem 2).
Ist R im engeren Sinne stabil mit charakteristischem Exponenten α, dann
gilt für alle s, t ∈ [0,∞):

s1/αX1 + t1/αX2
d
= (s+ t)1/αX.

Beweis. Nach Satz 1.1.3 gilt für Verteilungen, die im engeren Sinne stabil
sind, Gleichung (1.2), mit der sich die Behauptung für rationale s := s1/s2
und t := t1/t2 mit s1, s2, t1, t2 ∈ N zeigen lässt:

s1/αX1 + t1/αX2 =

(
1

s2t2

)1/α (
(s1t2)

1/αX1 + (t1s2)
1/αX2

)

d
=

(
1

s2t2

)1/α (
(s1t2 + t1s2)

1/αX1

)

=

(
s1t2 + t1s2

s2t2

)1/α

X1

= (s+ t)1/αX1.

Die Ausweitung auf beliebige s, t ∈ [0,∞) folgt per Grenzübergang.

Jede stabile Verteilung lässt sich durch Verschiebung in eine im engeren
Sinne stabile Verteilung transformieren:

1.1.5 Satz (vgl. [Fe2], VI.1, Theorem 3).
Wenn R stabil ist mit charakteristischem Exponenten α 6= 1, existiert eine
Konstante b, so dass R(· + b) im engeren Sinne stabil ist.

Beweis. Wählt man X
′

i := Xi − b (i ∈ N) und X ′ := X − b, so gilt

S
′

n := Sn − nb
d
= (cnX + γn) − nb = cn(X − b) + (γn + (cn − n)b)

= cnX
′

+ γ
′

n

mit γ
′

n := γn + (cn − n)b. Es bleibt zu zeigen, dass ein b ∈ R existiert, so
dass γ

′

n = 0 für alle n ∈ N gilt. Dafür stellen wir zunächst einmal fest, dass
es möglich ist, b so zu wählen, dass γ

′

2 = 0 ist: Da γ
′

2 = γ2 + (c2 − 2)b ist, ist
es genau dann gleich 0, wenn b = γ2/(2 − c2) gilt. Weil nach Voraussetzung
α 6= 1 gilt, ist c2 = 21/α ungleich 2. Nehmen wir also an, dass γ

′

2 = 0 ist.

Die Summe S
′

2n lässt sich schreiben als (X
′

1 +X
′

2) + (X
′

3 +X
′

4) + . . . +
(X

′

2n−1 + X
′

2n), wobei X
′

i + X
′

i+1 für 1 ≤ i < 2n wie c2X
′

+ γ2
′ = c2X

′

verteilt ist. Daraus folgt:

S
′

2n
d
= c2(X

′

1 + . . .+X
′

n) = c2S
′

n
d
= c2(cnX

′

+ γ
′

n) = c2cnX
′

+ c2γ
′

n.
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Außerdem ist S
′

2n =
∑n

i=1X
′

i +
∑2n

i=n+1X
′

i auch die Summe zweier un-

abhängiger Variablen, die wie S
′

n verteilt sind, woraus

S
′

2n
d
= (cnX

′

1 + γ
′

n) + (cnX
′

2 + γ
′

n) = cn(X
′

1 +X
′

2) + 2γ
′

n

d
= cn(c2X

′

) + 2γ
′

n = cnc2X
′

+ 2γ
′

n

folgt. Es muss also c2γ
′

n = 2γ
′

n und damit γ
′

n = 0 gelten.

Da die Faltung eine Art Glättung der Verteilung bewirkt, ist es nahelie-
gend zu vermuten, dass stabile Verteilungen stetig sind. Das folgende Lemma
bestätigt diese Vermutung:

1.1.6 Lemma (vgl. [Fe2], VI.1, Lemma 1).
Alle (im weiteren Sinne) stabilen Verteilungen sind stetig.

Um dieses Lemma beweisen zu können, benötigen wir jedoch die Aussage
eines weiteren Lemmas, das wir zuvor beweisen werden. Dazu benötigen wir
zwei neue Begriffe:

a heißt genau dann Atom der Verteilung R, wenn R({a}) > 0 gilt;
p := R({a}) wird dann das Gewicht von a genannt.

1.1.7 Lemma (vgl. [Fe2], V.11, Problem 8).
Die Verteilung R habe genau die Atome ai, i ∈ I, mit den Gewichten pi,
i ∈ I, und mit p werde das Maximum der pi, i ∈ I, bezeichnet, wobei
∅ 6= I ⊆ N gelte. Dann sind die Gewichte aller Atome von R∗R echt kleiner
als p, außer im Fall I = {1, . . . , n} für ein n ≥ 1 und p1 = . . . = pn = 1/n.

Beweis. Zunächst zeigen wir, dass jedes Atom von R ∗ R von der Gestalt
ai + aj für i, j ∈ I ist:

Seien also c ein Atom von R ∗ R und X,Y unabhängige Zufallsgrößen
mit Verteilung R. Dann ist unter Benutzung des Satzes 52.5 aus [A]

0 < R ∗R({c}) = P(X + Y = c)

=

∫ P(X + Y = c|X = x) PX(dx)

=

∫ P(Y = c− x) PX(dx)

=
∑

x:P(Y=c−x)>0

P(Y = c− x)P(X = x).

Es folgt daher, dass es zumindest ein x gibt, so dass P(Y = c− x) > 0 undP(X = x) > 0 gelten; d.h. x′ := c− x ist ein Atom von Y und x ein Atom
von X. Somit ist c = x+ x′ von der behaupteten Gestalt.
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Alle Atome von R∗R haben also die Gestalt ai+aj mit i, j ∈ I. Nehmen
wir uns nun ein solches Atom von R ∗R und betrachten

R ∗R({ai + aj}) = P(X + Y = ai + aj)

=

∫ P(Y = ai + aj − x)PX(dx)

=
∑

x:P(Y=ai+aj−x)>0

P(Y = ai + aj − x)P(X = x)

=
∑

k∈I
P(Y = ak)P(X = ai + aj − ak)︸ ︷︷ ︸

≤p
≤ p.

Aber wann genau gilt R ∗ R({ai + aj}) = p? Dies ist genau dann der Fall,
wenn P(X = ai + aj − ak) = p für alle k ∈ I und

∑
k∈I P(Y = ak) = 1 gilt.

Daher muss in diesem Fall I gleich einer endlichen Menge {1, . . . , n} (n ≥ 1)
und p = p1 = . . . = pn = 1/n sein.

Beweis von Lemma 1.1.6. Seien R eine (im weiteren Sinne) stabile Vertei-
lung, I ⊆ N und ai, i ∈ I, alle Atome von R mit zugehörigen Gewichten pi,
i ∈ I. Angenommen, R ist nicht stetig, d.h. I 6= ∅. Dann wählen wir i0 ∈ I
so, dass pi0 = maxi∈I pi ist. Wegen R ∗ R(·) = P (c2X1 + γ2 ∈ ·) ist die
Menge der Atome von R ∗ R gleich {c2ai + γ2 : i ∈ I} und für jedes i ∈ I
gilt: R∗R({c2ai+γ2}) = pi. Dann ist insbesondere R∗R({c2ai0 +γ2}) = pi0.
Mit Lemma 1.1.7 können wir nun folgern, dass wir uns in folgender Situation
befinden:

I = {1, . . . , n} für ein n ≥ 1 und p1 = . . . = pn = 1/n.

Aus dem Beweis von Lemma 1.1.7 wissen wir außerdem, dass die Menge
aller Atome von R ∗R gerade {ai + aj : i, j ∈ I} ist, deren Mächtigkeit hier
gleich n ist.

Nehmen wir nun an, dass n ≥ 2 ist. Zudem gelte o.B.d.A. a1 < . . . < an.
Dann ist aber {ai + aj : i, j ∈ I} ⊇ {a1 + a1, . . . , a1 + an} ∪ {a2 + an} und
damit |{ai + aj : i, j ∈ I}| ≥ n+ 1. Widerspruch. Also muss n = 1 sein, was
bedeutet, dass R = δc für ein c > 0 ist. Dies ist aber wegen der Stabilität
von R ausgeschlossen. Daher muss unsere anfängliche Annahme, dass I 6= ∅
ist, falsch sein.

Es lässt sich zeigen, dass stabile Verteilungen absolute Momente be-
stimmter Ordnungen besitzen:

1.1.8 Satz (vgl. [Fe2], VI.13, Problem 3).
Eine stabile Verteilung mit charakteristischem Exponenten α besitzt absolute
Momente jeder Ordnung 0 < β < α.
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Beweis. Der Beweis dieses Lemmas gliedert sich in drei Schritte.
Im ersten Schritt zeigen wir, dass für eine symmetrische stabile Vertei-

lung R mit charakteristischem Exponenten α die Folge n(1 − R(n1/αx)),
n ∈ N, für alle hinreichend großen x beschränkt ist: Wir setzen für festes
x > 0 pn := P(|X1| > n1/αx) und damit gilt

n
(
1 −R

(
n1/αx

))
= nP(X1 > n1/αx

)
=

1

2
nP(|X1| > n1/αx

)
=

1

2
npn.

Als nächstes betrachten wir mn := P(max1≤k≤n |Xk| > n1/αx):

mn ≤
A.1.1

2P(|Sn| > n1/αx
)

= 2P (|X1| > x) ,

weil jede symmetrische stabile Verteilung im engeren Sinne stabil ist. Sei
nun x so groß, dass 2P(|X1| > x) < 1 ist. Sehen wir uns mn noch einmal
genauer an, so erkennen wir, dass es sich durch pn ausdrücken lässt:

mn = 1 − P( max
1≤k≤n

|Xk| ≤ n1/αx

)

= 1 − P(|X1| ≤ n1/αx, . . . , |Xn| ≤ n1/αx
)

= 1 − P(|X1| ≤ n1/αx
)n

= 1 − (1 − pn)
n.

Umgekehrt lässt sich natürlich auch pn durch mn ausdrücken:

pn = 1 − (1 −mn)
1/n.

Insgesamt können wir nun folgern, dass

n
(
1 −R

(
n1/αx

))
=

1

2
npn =

1

2
n
(
1 − (1 −mn)

1/n
)

≤ 1

2
n
(
1 − (1 − 2P(|X1| > x))1/n

)

=
1

2
n
(
1 − q1/n

)

mit q := 1 − 2P(|X1| > x) ∈ (0, 1] ist. Und weil

∣∣∣n
(
1 − q1/n

)∣∣∣ =
∣∣∣n
(
1 − e1/n log q

)∣∣∣ =

∣∣∣∣∣∣
n


1 −

∑

k≥0

(1/n log q)k

k!




∣∣∣∣∣∣

=

∣∣∣∣∣∣
−n
∑

k≥1

(1/n log q)k

k!

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

k≥1

(1/n)k−1(log q)k

k!

∣∣∣∣∣∣

≤ | log q|
∑

k≥1

|1/n log q|k−1

k!
−→
n→∞

| log q|
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gilt, haben wir die erste Behauptung gezeigt.
Im zweiten Schritt zeigen wir nun, dass eine symmetrische stabile Ver-

teilung R mit charakteristischem Exponenten α absolute Momente jeder
Ordnung 0 < β < α besitzt: Sei dazu X eine Zufallsgröße mit Verteilung
R. Wir können o.B.d.A. annehmen, dass die Folge n(1 − R(n1/α)), n ≥ 1,
beschränkt ist. Denn nach Schritt 1 existiert ein x > 0, so dass die Folge
n(1 − R(n1/αx)), n ≥ 1, beschränkt ist. Geht man von X zu cX für hinrei-
chend großes c > 0 über, so lässt sich die Beschränktheit der obigen Folge
auch für x = 1 erreichen. Es giltE |X|β =

∫R |x|β PX(dx) = 2

∫

(0,∞)
xβ PX(dx).

Für alle β > 0 ist
∫∞
0 xβ PX(dx) = β

∫∞
0 xβ−1(1 −R(x)) dx (vgl. [A], (A.3)

auf Seite 115). Betrachten wir die rechte Seite dieser Gleichung:

β

∫ ∞

0
xβ−1(1 −R(x)) dx

= β

∫ ∞

0

(
x1/α

)β−1 (
1 −R

(
x1/α

))(
αx1−1/α

)−1
dx

=
β

α

∫ ∞

0
xβ/α−1P(X > x1/α

)
dx

≤ β

α

(∫ 1

0
xβ/α−1 dx

︸ ︷︷ ︸
=α/β

+

∫ ∞

1
xβ/α−1P(X > x1/α

)
dx

)
.

Es bleibt zu zeigen, dass
∫∞
1 xβ/α−1P(X > x1/α) dx <∞ ist: Da β/α−1 < 0

gilt, ist die Funktion g(x) := xβ/α−1P(X > x1/α) monoton fallend in x.
Dadurch und weil β/α− 2 < −1 ist, können wir folgern, dass

∫ ∞

1
xβ/α−1P(X > x1/α)dx ≤

∑

n≥1

nβ/α−1P(X > n1/α)

=
∑

n≥1

nβ/α−2 nP(X > n1/α)︸ ︷︷ ︸
=n(1−R(n1/α))

≤
Schritt 1

C
∑

n≥1

nβ/α−2 <∞,

gilt.
Abschließend weiten wir die Aussage im dritten Schritt auf beliebige

stabile Verteilungen aus: Sei R eine beliebige stabile Verteilung mit charak-
teristischem Exponenten α und seien X1,X2, . . . und X ′

1,X
′
2, . . . stochastisch

unabhängige Zufallsgrößen, die wie R verteilt sind. Dann ist die Verteilung
R′ von X1−X ′

1 symmetrisch und im engeren Sinne stabil. Wir haben bereits
gezeigt, dass in diesem Fall E |X1 −X ′

1|β <∞ für alle 0 < β < α gilt.
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Sei a > 0 so groß, dass P(X1 ≥ a) ≤ 1/2 und P(X1 ≤ −a) ≤ 1/2 gilt.
Dann folgt aus Lemma A.1.2, dass für t > 0P(|X1| > t+ a) ≤ 2P(|X1 −X ′

1| ≥ t) =
1.1.6

2P(|X1 −X ′
1| > t)

ist, woraus sich Folgendes schließen lässt:E |X|β = β

∫ ∞

0
P(|X1| > x)xβ−1 dx

= β

∫ a

0
P(|X1| > x)xβ−1 dx

︸ ︷︷ ︸
≤aβ

+β

∫ ∞

0
P(|X1| > x+ a)(x+ a)β−1 dx

≤ aβ + β

∫ ∞

0
2P(|X1 −X ′

1| > x)(x+ a)β−1 dx

≤





aβ + β
∫ a
0 2P(|X1 −X ′

1| > x)(x+ a)β−1 dx

+ 2β E |X1 −X ′
1|β , falls β ≥ 1,

aβ + 2E |X1 −X ′
1|β , falls β < 1,

<∞.

Mit Hilfe von Satz 1.1.8 können wir nun auch zeigen, dass 0 < α ≤ 2
gilt.

1.1.9 Folgerung (vgl. [Fe2], VI.1, im Text auf Seite 169).
Der charakteristische Exponent α liegt im Intervall (0, 2].

Begründung. Dass α > 0 ist, wissen wir bereits aus Satz 1.1.3. Wir neh-
men an, α sei echt größer als 2. Gegeben seien eine stabile Verteilung R mit
charakteristischem Exponenten α und unabhängige Kopien X ′

1,X
′
2, . . . von

X1,X2, . . .. Dann ist die Verteilung R′ von X1 −X ′
1 symmetrisch, im enge-

ren Sinne stabil und besitzt ebenfalls den charakteristischen Exponenten α.
Nach Satz 1.1.8 existiert insbesondere das zweite Moment, also die Varianz
σ2 von R′. Weil X1 − X ′

1 nichtdegeneriert ist, gilt σ2 > 0. Daher genügt
die Folge (S′

n)n≥1 mit S′
n :=

∑n
i=1(Xi −X ′

i) dem zentralen Grenzwertsatz,
d.h., dass n−1/2S′

n in Verteilung gegen die N(0, σ2)-Verteilung konvergiert.
Da R′ im engeren Sinne stabil ist, gilt außerdem: n−1/αS′

n ∼ X1 −X ′
1. Die

linke Seite dieser Gleichung lässt sich umformen zu n−1/2S′
nn

1/2−1/α. Da
1/2 − 1/α > 0 ist, strebt n1/2−1/α für n→ ∞ gegen ∞: Widerspruch.

1.2 Stabile charakteristische Funktionen

Wie in 1.1.1 definiert wurde, heißt eine Verteilung R stabil, wenn es für jedes

n ∈ N ein cn > 0 und ein γn ∈ R gibt, so dass Sn
d
= cnX + γn ist.
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Beim Übergang zu den charakteristischen Funktionen

φSn(t) = φX1(t) · . . . · φXn(t) = φnX(t)

und
φcnX+γn(t) = φX(cnt) e

iγnt

erhält man die Gleichheit φnX(t) = φX(cnt) e
iγnt, die folgende Definition nahe

legt.

1.2.1 Definition.
Eine charakteristische Funktion φ heißt stabil, wenn nicht |φ| = 1 gilt und
es für jedes n ∈ N ein cn > 0 und ein γn ∈ R gibt, so dass

(1.8) φn(t) = φ(cnt) e
iγnt

gilt.

Als nächstes bestimmen wir die charakteristischen Funktionen aller sta-
bilen Verteilungen und bemerken dazu, dass wir für jede auf einem Intervall
I ⊇ {0} nullstellenfreie charakteristische Funktion φ mit log φ die eindeu-
tig bestimmte stetige Funktion ψ : I −→ R bezeichnen mit ψ(0) = 0 und
exp ◦ψ = φ.

1.2.2 Satz (vgl. [Br], 9.9, Theorem 9.27).
Sei R eine stabile Verteilung mit charakteristischem Exponenten α ∈ (0, 2].
Dann ist R für α = 2 eine Normalverteilung und im Fall α ∈ (0, 2) gibt es
Konstanten m1 ≥ 0, m2 ≥ 0, m1 +m2 > 0, und ein b ∈ R, so dass

log φR(t) = ibt+m1

∫ ∞

0

(
eitx − 1 − itx

1 + x2

)
dx

x1+α

+m2

∫ 0

−∞

(
eitx − 1 − itx

1 + x2

)
dx

|x|1+α ,

wobei φR die charakteristische Funktion von R bezeichne.

Beweis. Aus der Stabilität von R lässt sich direkt folgern, dass R unendlich
teilbar ist. Nach Satz A.1.3 gilt dann, dass

ψR(t) := log φR(t)

= ibt− σ2t2

2
+

∫ (
eitx − 1 − itx

1 + x2

)
1 + x2

x2
ν(dx)(1.9)

mit einem endlichen Maß ν auf R∗ ist. Mit dieser Darstellung können wir
(1.8) zu

(1.10)
(
eψR(t)

)n
= eψR(cnt)eiγnt oder nψR(t) = ψR(cnt) + iγnt
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umformen, da ψR stetig ist mit ψR(0) = 0. Wir unterscheiden nun die beiden
folgenden Fälle:

σ2 = 0 und σ2 > 0.

1. Fall: Sei σ2 = 0. Wäre in (1.9) ν = 0, so wäre R eine Diracverteilung,
was im Widerspruch zur Stabilität von R steht. Es muss also in diesem Fall
ν 6= 0 gelten. Definieren wir ein Maß µ durch µ(B) =

∫
B(1 + x2)/x2 ν(dx),

B ∈ B, so gelten

(1.11) ψR(t) = ibt+

∫ (
eitx − 1 − itx

1 + x2

)
µ(dx)

und ψR(cnt) = ibcnt+

∫ (
eicntx − 1 − icntx

1 + x2

)
µ(dx)

= idnt+

∫ (
eicntx − 1 − icntx

1 + c2nx
2

)
µ(dx),

wobei dn = bcn+cn
∫
( x
1+c2nx

2 − x
1+x2 )µ(dx) ist. Dieses letzte Integral existiert,

weil
x

1 + c2nx
2
− x

1 + x2
=

(1 − c2n)x
3

(1 + c2nx
2)(1 + x2)

für x→ 0 asymptotisch äquivalent zu (1 − c2n)x
3 ist, und sich

∫

[−a,a]

(
x

1 + c2nx
2
− x

1 + x2

)
µ(dx)

deshalb für hinreichend kleines a > 0 wie
∫

[−a,a]
(1 − c2n)x(1 + x2) ν(dx) <∞

verhält. Außerhalb einer Umgebung [−a, a] (a > 0) von 0 ist das Integral
ebenfalls endlich, da der Integrand beschränkt ist und

µ([−a, a]c) =

∫

[−a,a]c

1 + x2

x2
ν(dx) ≤

(
1 +

1

a2

)
ν([−a, a]c) <∞

gilt.
Als nächstes definieren wir ein Maß

µn(B) := µ

(
B

cn

)
, B ∈ B, n ≥ 1,

und erhalten:

ψR(cnt) = idnt+

∫ (
eitx − 1 − itx

1 + x2

)
µn(dx),
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wodurch (1.10) zu

ibtn+

∫ (
eitx − 1 − itx

1 + x2

)
nµ(dx)

= i(γn + dn)t+

∫ (
eitx − 1 − itx

1 + x2

)
µn(dx)

wird. Nach Satz A.1.4 ist die Darstellung der charakteristischen Funktion
einer unendlich teilbaren Verteilung eindeutig und daher muss

(1.12) nµ = µn

gelten. Definieren wir nun M+(x) := µ([x,∞)) für x > 0 und M−(x) :=
µ((−∞, x)) für x < 0, so folgt mit (1.12) und Satz 1.1.3 für n ≥ 1 und den
charakteristischen Exponenten α:

nM+(x) = M+(x/n1/α) für x > 0,

(1.13)

nM−(x) = M−(x/n1/α) für x < 0.

Die Gleichungen (1.13) ermöglichen eine sehr genaue Bestimmung der Funk-
tionen M+ und M−:

1.2.3 Lemma (vgl. [Br], 9.9, Proposition 9.31).
In der obigen Situation gilt

M+(x) = x−αM+(1) für x > 0,

(1.14)

M−(x) = |x|−αM−(−1) für x < 0.

Beweis. Seien k, n ≥ 1 und α ∈ (0, 2]. Aus (1.13) folgt, dass nM+((n/k)1/α)
= M+(1/k1/α) für alle n, k ≥ 1 ist. Ist n = k, ergibt sich: kM+(1) =
M+(1/k1/α). Setzen wir dies in die vorherige Gleichung ein, so erhalten
wir, dass nM+((n/k)1/α) = kM+(1) bzw. M+((n/k)1/α) = (n/k)−1M+(1)
gilt, d.h. M+(x) = x−αM+(x) für x ∈ {(n/k)1/α : n, k ≥ 1}. Da diese
Menge dicht in (0,∞) liegt, folgt die Ausweitung auf alle x > 0 durch
Grenzübergang unter Benutzung der Monotonie von M+. Der Beweis für
M− verläuft analog.

Fortsetzung des Beweises von Satz 1.2.2: Durch Differentiation erhalten
wir aus (1.14), dass µ die Lebesgue-Dichte

fµ(x) = αM+(1)x−(α+1)1(0,∞)(x) + αM−(−1)|x|−(α+1)1(−∞,0)(x)

besitzt. Weil ν 6= 0 gilt, ist µ(R∗) > 0 und wir können mit Lemma 1.2.3
folgern, dass max{M+(1),M−(−1)} > 0 ist. Wir nehmen o.B.d.A. an, dass
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M+(1) > 0 ist. Dann gilt

∞ >

∫

[0,1]
(1 + x2)ν(dx) =

∫

[0,1]
x2µ(dx)

=

∫ 1

0
x2αM+(1)x−(α+1)dx

= αM+(1)

∫ 1

0
x1−αdx,

was α < 2 impliziert. Die behauptete Gestalt von ψR(t) ergibt sich durch das
Einsetzen der Lebesgue-Dichte von µ in (1.11), wobei wir m1 := αM+(1)
und m2 := αM−(1) setzen.

2. Fall: Sei σ2 > 0. Dann gilt

ψR(t) = ibt− σ2t2

2
+

∫ (
eitx − 1 − itx

1 + x2

)
1 + x2

x2
ν(dx).

Wir wollen zunächst mit dem Satz von der majorisierten Konvergenz zeigen,
dass ψR(t)/t2 für t→ ∞ gegen −σ2/2 konvergiert. Dazu müssen wir prüfen,
ob Folgendes gilt:

(1.15) sup
t≥1,
x∈R∗

∣∣∣∣
(
eitx − 1 − itx

1 + x2

)
1 + x2

t2x2

∣∣∣∣ <∞,

(1.16)

(
eitx − 1 − itx

1 + x2

)
1 + x2

t2x2
−→
t→∞

0 für x 6= 0.

Beweis von (1.15): Seien t ≥ 1 und x ∈ R∗. Betrachten wir zuerst den Fall,
dass |tx| ≥ 1 ist. Dann gilt:

∣∣∣∣
(

(eitx − 1) − itx

1 + x2

)
1 + x2

t2x2

∣∣∣∣ ≤ 2

∣∣∣∣
1 + x2

t2x2

∣∣∣∣+
∣∣∣∣
itx

1 + x2

1 + x2

t2x2

∣∣∣∣

= 2

∣∣∣∣
1

t2x2
+

1

t2

∣∣∣∣+
∣∣∣∣
1

tx

∣∣∣∣
≤ 4 + 1.

An dieser Stelle können wir leicht zeigen, dass (1.16) gegeben ist, denn:

∣∣∣∣
(

(eitx − 1) − itx

1 + x2

)
1 + x2

t2x2

∣∣∣∣ ≤ 2

∣∣∣∣
1

t2x2
+

1

t2

∣∣∣∣+
∣∣∣∣
1

tx

∣∣∣∣ −→t→∞
0.
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Sei nun |tx| ≤ 1. Dann ist |x| ≤ 1 und es gilt:

∣∣∣∣
(
eitx − 1 − itx

1 + x2

)
1 + x2

t2x2

∣∣∣∣ =

∣∣∣∣
(
eitx − 1 − itx+

itx(1 + x2 − 1)

1 + x2

)
1 + x2

t2x2

∣∣∣∣

≤ 2

∣∣∣∣∣∣

∑

n≥2

(itx)n

n!
(tx)−2

∣∣∣∣∣∣
+

∣∣∣∣
ix

t

∣∣∣∣

≤ 2
∑

n≥0

|tx|n
(n+ 2)!

+ 1 ≤ 2e|tx| + 1 ≤ 2e+ 1.

Der Satz von der majorisierten Konvergenz lässt sich daher anwenden und
wir erhalten:

lim
t→∞

ψR(t)

t2
= −σ

2

2
+

∫
lim
t→∞

(
eitx − 1 − itx

1 + x2

)
1 + x2

t2x2
ν(dx) = −σ

2

2
.

Dividieren wir nun (1.10) durch t2 und lassen dann t gegen ∞ laufen, erhal-
ten wir: cn = n1/2, d.h. wir befinden uns im Fall α = 2. (1.10) hat somit die
Gestalt nψR(t) = ψR(n1/2t) + iγnt, was äquivalent zu

ψR(t) = t2
ψR(n1/2t)

nt2
+ i

γn
n
t

ist. Hier konvergiert ψR(n1/2t)/(nt2) für n → ∞ gegen −σ2/2. Können wir
nun zeigen, dass γn/n −→ b für n → ∞ gilt, so haben wir gezeigt, dass
ψR(t) von der Gestalt ibt− (σ2/2)t2 ist, d.h. R = N(b, σ2) gilt.

Klar ist, dass

i
γn
n
t −→
n→∞

ibt+

∫ (
eitx − 1 − itx

1 + x2

)
1 + x2

x2
ν(dx)

gilt. Insbesondere muss

0 = −ℜ
(∫ (

eitx − 1 − itx

1 + x2

)
1 + x2

x2
ν(dx)

)

=

∫
(1 − cos(tx))

1 + x2

x2
ν(dx)

für alle t ∈ R gelten. Da der Integrand für jedes t nichtnegativ ist, muss er
ν-f.ü. verschwinden. Daher ist ν auf die Menge

⋂

t>0

2πZ
t

= {0}

konzentriert. Weil nach Voraussetzung ν({0}) = 0 ist, muss γn/n −→
n→∞

b

gelten.
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1.2.4 Satz (vgl. [Br], 9.10, Theorem 9.32).
Für jede stabile Verteilung R gibt es Konstanten α ∈ (0, 2], σ > 0, β ∈
[−1, 1] und µ ∈ R, so dass ihre charakteristische Funktion φR von der Gestalt
eψR ist mit

(1.17) ψR(t) =




iµt− σα|t|α

(
1 − iβ t

|t| tan
(
πα
2

))
, falls α 6= 1,

iµt− σ|t|
(
1 + iβ t

|t|
2
π log |t|

)
, falls α = 1.

Umgekehrt ist jede solche Funktion φ die charakteristische Funktion einer
stabilen Verteilung.

Beweis. Sei R stabil. Der Fall α = 2 ist nach Satz 1.2.2 klar. Sei also 0 <
α < 2. Wir setzen

I1(t) :=

∫ ∞

0

(
eitx − 1 − itx

1 + x2

)
dx

x1+α

und sehen direkt, dass I1(−t) = I1(t) ist. Deshalb berechnen wir I1(t) nur
für t > 0 und setzen

I2(t) :=

∫ 0

−∞

(
eitx − 1 − itx

1 + x2

)
dx

|x|1+α

=
x 7→−x

−
∫ 0

∞

(
e−itx − 1 − −itx

1 + x2

)
dx

|x|1+α = I1(−t).

Sei 0 < α < 1. Durch die Substitution x 7→ t−1x (t > 0) erhalten wir

I1(t) =

∫ ∞

0

(
eitx − 1

) dx

x1+α
− it

∫ ∞

0

1

1 + x2

dx

xα

=

∫ ∞

0

(
eix − 1

)
tα

dx

x1+α
+ itc

= itc+ tαH(α),

wobei H(ϑ) :=
∫∞
0

(
eiy − 1

)
y−(ϑ+1)dy und c := −

∫∞
0

(
1 + x2

)−1
x−αdx

seien.
Sei 1 < α < 2. Dann erkennen wir mittels partieller Integration, dass

I1(t) =
it

α

∫ ∞

0

(
eitx − d

dx

x

1 + x2

)
dx

xα
= itc′ +

it

α

∫ ∞

0
(eitx − 1)

dx

xα

ist, wobei c′ := α−1
∫∞
0 (1 − d

dx
x

1+x2 )x−αdx sei. Dabei ist hinsichtlich der

Existenz des Integrals zu beachten, dass 1 − d
dx

x
1+x2 in 0 eine Nullstelle

zweiter Ordnung besitzt. Analog zum Fall 0 < α < 1 bekommen wir durch
die Substitution x 7→ t−1x (t > 0):

I1(t) = itc′ + tα
i

α
H(α− 1).
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Sei α = 1. Mit partieller Integration erhalten wir analog zum Fall 1 <
α < 2, dass

I1(t) = it lim
T→∞

∫ T

0

(
eitx − d

dx

x

1 + x2

)
dx

x

ist. Definieren wir nun J(T, t) :=
∫ T
0 (eitx − d

dx
x

1+x2 ) dxx , so erhalten wir für
t2 ≥ t1 > 0 unter Verwendung des Satzes von Fubini:

J(T, t2) − J(T, t1) =

∫ T

0

(
eit2x − eit1x

) dx
x

= i

∫ T

0

(∫ t2

t1

eixz dz

)
dx

= i

∫ t2

t1

∫ T

0
eixz dx dz =

∫ t2

t1

eiT z − 1

z
dz.

Nach dem Lemma von Riemann und Lebesgue (vgl. Lemma A.1.5) ist

lim
T→∞

∫ t2

t1

eiT z

z
dz = 0,

woraus folgt, dass limT→∞ (J(T, t2) − J(T, t1)) = log(t1/t2) für t2 ≥ t1 > 0
gilt. Betrachten wir nun limT→∞ J(T, 1):

∫ ∞

0

(
eix − d

dx

x

1 + x2

)
dx

x
=

∫ ∞

0

(
eix − 1 − x2

(1 + x2)2

)
dx

x

=
πi

2
+

∫ ∞

0

(1 + x2)2 cos x− (1 − x2)

(1 + x2)2
dx

x
.

Dieses Integral existiert bei 0, da der Integrand dort stetig fortsetzbar ist.
Es existert ebenfalls bei ∞, weil

∫∞
1

cos x
x dx als uneigentliches Riemann-

Integral und
∫∞
1

1−x2

(1+x2)2
dx
x im Lebesgueschen Sinne existieren. Daher können

wir folgern, dass
lim
T→∞

J(T, t) = − log t+ c′′

ist, wobei

c′′ := lim
T→∞

J(T, 1) =

∫ ∞

0

(
eix − d

dx

x

1 + x2

)
dx

x

=
πi

2
+ c1

mit c1 :=
∫∞
0 (cos x− d

dx
x

1+x2 )dxx sei. Damit gilt für t > 0

I1(t) = itc′′ − it log t = itc1 − (π/2)t − it log t.

Um nun endlich auf die behauptete Gestalt von ψR zu kommen, müssen
wir noch H(α) für 0 < α < 1 bestimmen. Dies haben wir in Satz A.1.11
getan:

H(ϑ) = e−
πi
2
ϑL(ϑ),
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wobei L reell und negativ ist. Aus dem vorherigen Satz und unseren An-
fangsüberlegungen wissen wir:

ψR(t) = ibt+m1I1(t) +m2I2(t) = ibt+m1I1(t) +m2I1(t).

Für 0 < α < 1 ist dann

ψR(t) = ibt+m1 (ict+ tαH(α)) +m2

(
−ict+ tαH(α)

)

= iµt+ tα
(
m1e

−πi
2
αL(α) +m2e

πi
2
αL(α)

)

= iµt+ tα
(

(m1 +m2)L(α) cos
πα

2︸ ︷︷ ︸
=ℜ(H(α))

−i(m1 −m2)L(α) sin
πα

2

)

= iµt+ (m1 +m2)ℜ(H(α))tα
(

1 − i
m1 −m2

m1 +m2
tan

πα

2

)

= iµt− σαtα
(
1 − iβ tan

πα

2

)

mit µ := b + (m1 −m2)c ∈ R, σα := −(m1 + m2)ℜ(H(α)) > 0 und β :=
(m1 −m2)/(m1 +m2) ∈ [−1, 1].

Im Fall 1 < α < 2 benötigen wir

H(α− 1) = e−
πi
2

(α−1)L(α− 1) = ie−
πi
2
αL(α− 1).

Damit ist

ψR(t) = ibt+m1

(
ic′t+

itα

α
H(α− 1)

)
+m2

(
−ic′t− itα

α
H(α− 1)

)

= iµt+
itα

α
L(α− 1)

(
(m1 +m2)i cos

πα

2
+ (m1 −m2) sin

πα

2

)

= iµt+ (m1 +m2)L(α− 1)i cos
πα

2

itα

α

(
1 − i

m1 −m2

m1 +m2
tan

πα

2

)

= iµt− σαtα
(
1 − iβ tan

πα

2

)

mit µ = b + (m1 −m2)c
′ ∈ R, σα := ((m1 +m2)/α)L(α − 1) cos πα/2 > 0

und β = (m1 −m2)/(m1 +m2) ∈ [−1, 1].
Im Fall α = 1 gilt abschließend:

ψR(t) = ibt+m1

(
ic1t−

π

2
t− it log t

)
+m2

(
−ic1t−

π

2
t+ it log t

)

= iµt− (m1 +m2)
π

2
t− i(m1 −m2)t log t

= iµt− (m1 +m2)
π

2
t

(
1 + i

m1 −m2

m1 +m2

2

π
log t

)

= iµt− σt

(
1 + iβ

2

π
log t

)
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mit µ := b + (m1 − m2)c1 ∈ R, σ := (m1 + m2)π/2 > 0 und β := (m1 −
m2)/(m1 +m2) ∈ [−1, 1].

Nach Satz A.1.3 existiert für gegebene Parameter α ∈ (0, 2], σ > 0,
β ∈ [−1, 1] und µ ∈ R eine unendlich teilbare Verteilung mit einer charak-
teristischen Funktion der Gestalt (A.3), die sich in die Form (1.17) transfor-
mieren lässt. Es kann leicht geprüft werden (mit Hilfe von Satz 1.3.4), dass
diese unendlich teilbare Verteilung stabil ist.

1.2.5 Korollar.
Jede stabile Verteilung hat eine beliebig oft stetig differenzierbare Lebesgue-
Dichte.

Beweis. Sei R eine stabile Verteilung. Dann existieren nach Satz 1.2.4 Kon-
stanten α ∈ (0, 2], σ > 0, β ∈ [−1, 1] und ein µ ∈ R, so dass die charakteris-
tische Funktion φ von R von der Gestalt eψ ist mit

ψ(t) =




iµt− σα|t|α

(
1 − iβ t

|t| tan
(
πα
2

))
, falls α 6= 1,

iµt− σ|t|
(
1 + iβ t

|t|
2
π log |t|

)
, falls α = 1.

Damit gilt |φ(t)| = exp(−σα|t|α) für alle t ∈ R. Also ist φ Lebesgue-
integrierbar über R und nach der Umkehrformel (Satz 41.7 in [A]) ist eine
Lebesgue-Dichte von R gegeben durch

f(x) =
1

2π

∫ ∞

−∞
e−ixtφ(t) dt (x ∈ R).

Durch Induktion nach n können wir nun zeigen, dass f für jedes n ∈ N0

n-mal differenzierbar ist mit Ableitung

f (n)(x) =
1

2π

∫ ∞

−∞
(−it)ne−ixtφ(t) dt (x ∈ R).

Für n = 0 ist die Behauptung bereits gezeigt. Nehmen wir an, dass die
Behauptung für n ∈ N0 ebenfalls wahr ist, so erhalten wir wegen

d

dx
(−it)ne−ixtφ(t) = (−it)n+1e−ixtφ(t)

und der Lebesgue-Integrierbarkeit von

t 7→ |(−it)n+1e−ixtφ(t)| = |t|n+1e−σ
α|t|α

aus Satz IV.5.7 in [E] die Behauptung.
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1.3 Stabile Verteilungen (zweiter Teil)

Da wir im letzten Abschnitt die Gestalt der charakteristischen Funktion
einer stabilen Verteilung hergeleitet haben, können wir nun auf dieser Basis
eine Bezeichnung für stabile Verteilungen einführen:
Wir schreiben X ∼ Sα(σ, β, µ) mit α ∈ (0, 2], σ > 0, β ∈ [−1, 1] und µ ∈ R
genau dann, wenn X eine stabile Verteilung besitzt, deren charakteristische
Funktion φX die Gestalt eψX mit

ψX(t) =




iµt− σα|t|α

(
1 − iβ t

|t| tan
(
πα
2

))
, falls α 6= 1,

iµt− σ|t|
(
1 + iβ t

|t|
2
π log |t|

)
, falls α = 1,

hat. Dabei wird α charakteristischer Exponent (engl.: index of stability),
β Asymmetrieparameter (engl.: skewness parameter), σ Skalierungsparame-
ter (engl.: scale parameter) und µ Verschiebungsparameter (engl.: shift) ge-
nannt.

In diesem Zusammenhang können wir noch einmal auf die Beispiele aus
1.1.2 zurückkommen: Die Verteilung N(0, σ2) mit σ2 > 0 besitzt die Fourier-
Transformierte

φ(t) = e−σ
2t2/2,

entspricht also aufgrund der Eindeutigkeit der Fourier-Transformierten der
Verteilung S2(σ/

√
2, 0, 0). Die Verteilung C(a, b) mit a ∈ R und b > 0 besitzt

die Fourier-Transformierte

φ(t) = eiat−b|t|

und entspricht somit der Verteilung S1(b, 0, a).
Viel allgemeiner als das obige Beispiel können wir Folgendes bemerken:

1.3.1 Bemerkung.
Die Normalverteilungen bilden eine Teilklasse der stabilen Verteilungen.

Beweis. Wie im obigen Beispiel durchgeführt, lässt sich aufgrund der Ein-
deutigkeit der Fourier-Transformierten die Gleichheit

N(µ, σ2) = S2(σ/
√

2, 0, µ)

nachweisen.

Als nächstes werden wir einige grundlegende Eigenschaften stabiler Ver-
teilungen herleiten.

1.3.2 Satz (vgl. [Sam], 1.2, Property 1.2.2).
Es seien X ∼ Sα(σ, β, µ) und a eine reelle Konstante. Dann gilt:

X + a ∼ Sα(σ, β, µ + a).
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Beweis. Sei α 6= 1. Dann gilt:

log φX+a(t) = log eiatφX(t) = iat+ ψX(t)

= i(a+ µ)t− σα|t|α
(

1 − iβ
t

|t| tan
(πα

2

))
.

Für α = 1 lässt sich eine ähnliche Rechnung durchführen.

Damit ist klar, wieso µ Verschiebungsparameter genannt wird; der nächs-
te Satz erklärt die Bezeichnung

”
Skalierungsparameter“ für den Parameter

σ.

1.3.3 Satz (vgl. [Sam], 1.2, Property 1.2.3).
Es seien X ∼ Sα(σ, β, µ) und a 6= 0 eine reelle Konstante. Dann gilt:

aX ∼ Sα(|a|σ, aβ/|a|, aµ) für α 6= 1,

aX ∼ S1

(
|a|σ, aβ/|a|, aµ − aσβ

2

π
log |a|

)
für α = 1.

Beweis. Ist α 6= 1, so gilt:

log φaX(t) = log φX(at)

= iaµt− σα|at|α
(

1 − iβ
at

|at| tan
(πα

2

))

= iaµt− (|a|σ)α|t|α
(

1 − i
aβ

|a|
t

|t| tan
(πα

2

))
.

Ist α = 1, so gilt:

log φaX(t) = iaµt− σ|at|
(

1 + iβ
at

|at|
2

π
log |at|

)

= iaµt− σ|a||t|
(

1 + i
aβ

|a|
t

|t|
2

π
log |t|

)
− iaβσt

2

π
log |a|.

Bereits an der Definition sehen wir, dass verschobene und skalierte sta-
bile Verteilungen wieder stabil sind. Nach dem obigen Satz wissen wir nun
auch, wie die zugehörigen, neuen Parameter aussehen. Für die Faltung stabi-
ler Verteilungen (mit demselben charakteristischen Exponenten) liefert der
folgende Satz die neuen Parameter:

1.3.4 Satz (vgl. [Sam], 1.2, Property 1.2.1).
Es seien unabhängige Zufallsvariablen X1 und X2 mit Xi ∼ Sα(σi, βi, µi),
i = 1, 2, gegeben. Dann gilt: X1 +X2 ∼ Sα(σ, β, µ) mit

σ = (σα1 + σα2 )1/α , β =
σα1 β1 + σα2 β2

σα1 + σα2
, µ = µ1 + µ2.
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Beweis. Sei α 6= 1. Dann gilt:

lnφX1+X2(t) = ln (φX1φX2) (t) = ψX1(t) + ψX2(t)

= i(µ1 + µ2)t− (σα1 + σα2 )|t|α + i(σα1 β1 + σα2 β2)|t|α
t

|t| tan
(πα

2

)

= i(µ1 + µ2)t− (σα1 + σα2 )|t|α
(

1 − i
σα1 β1 + σα2 β2

σα1 + σα2

t

|t| tan
(πα

2

))
.

Für α = 1 lässt sich eine ähnliche Rechnung durchführen.

1.3.5 Satz (vgl. [Sam], 1.2, Property 1.2.4).
Für jedes 0 < α < 2 gilt: Ist X ∼ Sα(σ, β, 0), so ist −X ∼ Sα(σ,−β, 0).
Beweis. Setzt man µ = 0 und a = −1, so folgt die Behauptung aus Satz
1.3.3.

Wieso β Asymmetrieparameter genannt wird, erklären die folgenden bei-
den Sätze.

1.3.6 Satz (vgl. [Sam], 1.2, Property 1.2.5).
X ∼ Sα(σ, β, µ) ist genau dann symmetrisch, wenn β = µ = 0 gilt. X ist
genau dann symmetrisch bzgl. µ, wenn β = 0 ist.

Beweis. Nach Satz 41.13 aus [A] ist eine Verteilung genau dann symme-
trisch, wenn ihre Fourier-Transformierte reellwertig ist. Und dies ist genau
dann der Fall, wenn β = µ = 0 gilt. Die zweite Aussage folgt dann aus Satz
1.3.2.

Wir haben gerade anhand der Parameter charakterisiert, welche stabilen
Verteilungen symmetrisch sind, und werden nun untersuchen, welche stabi-
len Verteilungen auf [0,∞) konzentriert sind.

1.3.7 Satz (vgl. [Sat], 5, Example 24.12).
Sα(σ, β, µ) ist genau dann auf [0,∞) konzentriert, wenn α ∈ (0, 1), β = 1
und µ ≥ 0 gilt.

Beweis. Nach [Sat], Beispiel 24.12, ist eine stabile Verteilung genau dann
auf [0,∞) konzentriert, wenn ihre charakteristische Funktion φ die Gestalt
eψ hat, wobei

ψ(t) = iµt− σα|t|α
(

1 − i
t

|t| tan
(πα

2

))

mit α ∈ (0, 1), beliebigem σ > 0 und µ ≥ 0 ist. Vergleicht man diese
Darstellung mit Gleichung (1.17), so erhält man ferner β = 1.

1.3.8 Bemerkung.
Aus Satz A.1.7 erhalten wir ebenfalls eine Implikation des obigen Satzes,
nämlich dass Sα(σ, 1, µ) für α ∈ (0, 1) und µ ≥ 0 auf [0,∞) konzentriert ist.
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Eine stabile Verteilung heißt vollständig nach rechts ausgelenkt (engl.: to-
tally skewed to the right), wenn ihr Asymmetrieparameter β = 1 ist. Analog
heißt eine stabile Verteilung vollständig nach links ausgelenkt (engl.: totally
skewed to the left), wenn β = −1 ist.

1.3.9 Satz (vgl. [Sam], 1.2, Property 1.2.6).
X habe die Verteilung Sα(σ, β, µ) mit α 6= 1. Dann gilt: X ist genau dann
stabil im engeren Sinne, wenn µ = 0 gilt.

Beweis. X1,X2, . . . seien unabhängige Kopien von X und es gelte α 6= 1.
Durch wiederholtes Anwenden von Satz 1.3.4 erhalten wir für n ∈ N: Sn ∼
Sα(n

1/ασ, β, nµ). Wegen der Definition 1.1.1 betrachten wir nun n1/αX+γn.
Hierfür gilt nach den Sätzen 1.3.2 und 1.3.3:

n1/αX + γn ∼ Sα(n
1/ασ, β, n1/αµ+ γn).

X ist genau dann stabil im engeren Sinne, wenn Sn
d
= 21/αX+γ2 mit γn = 0

für alle n ∈ N gilt, was genau dann der Fall ist, wenn µ = 0 gilt.

Als Folgerung aus den Sätzen 1.3.2 und 1.3.9 erhalten wir noch einmal
Satz 1.1.5, wobei wir sogar die Konstante b aus Satz 1.1.5 als den Verschie-
bungsparameter µ identifizieren können:

1.3.10 Korollar (vgl. [Sam], 1.2, Corollary 1.2.7).
X habe die Verteilung Sα(σ, β, µ) mit α 6= 1. Dann ist X − µ stabil im
engeren Sinne.

Ist der charakteristische Exponent α = 1, lässt sich eine stabile Vertei-
lung nicht durch Verschiebung zu einer im engeren Sinne stabile Verteilung
transformieren:

1.3.11 Satz (vgl. [Sam], 1.2, Property 1.2.8).
X ∼ S1(σ, β, µ) ist genau dann stabil im engeren Sinne, wenn β = 0 ist.

Beweis. X1 und X2 seien unabhängige Kopien von X. Mit Hilfe der Sätze
1.3.4, 1.3.2 und 1.3.3 erhalten wir:

X1 +X2 ∼ S1(2σ, β, 2µ)

und

2X ∼ S1

(
2σ, β, 2µ − 2σβ

2

π
ln 2

)
.

X ist nach Definition 1.1.1 genau dann stabil im engeren Sinne, wenn X1 +

X2
d
= 2X gilt. Dies ist genau dann der Fall, wenn 2σβ 2

π ln 2 = 0 gilt, d.h.,
wenn β = 0 ist.
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1.3.12 Satz (vgl. [Sam], 1.2, Property 1.2.13).
X habe die Verteilung Sα(σ, β, 0) mit α < 2. Dann gibt es zwei unabhängige
und identsich verteilte Zufallsvariablen Y1 und Y2 mit Yi ∼ Sα(σ, 1, 0), i =
1, 2, so dass

(1.18) X
d
=

(
1 + β

2

)1/α

Y1 −
(

1 − β

2

)1/α

Y2 für α 6= 1

und

X
d
=

1 + β

2
Y1 −

1 − β

2
Y2 + σ

(
1 + β

π
log

1 + β

2
− 1 − β

π
log

1 − β

2

)

für α = 1 gilt.

Beweis. Mit Hilfe der Sätze 1.3.4, 1.3.2 und 1.3.3 erhält man die Behaup-
tung.

Kommen wir nun zu einer Aussage über das asymptotische Verhalten
der Überlebenswahrscheinlichkeiten:

1.3.13 Satz (vgl. [Sam], 1.2, Property 1.2.15).
Ist die Zufallsgröße X Sα(σ, β, µ)-verteilt und α ∈ (0, 2], dann gelten

lim
y→∞

yαP(X > y) = Cα
1 + β

2
σα

und

lim
y→∞

yαP(X < −y) = Cα
1 − β

2
σα

mit

Cα =

(∫ ∞

0

sinx

xα
dx

)−1

=

{
1−α

Γ(2−α) cos(πα
2

) für α 6= 1,

2
π für α = 1,

wobei C2 = 0 gesetzt wird.

Beweis. Zeigen wir zunächst, dass Cα die behauptete Gestalt besitzt: Es ist
bekannt, dass

∫∞
0 x−1 sinx dx = π/2 ist. Sei nun α 6= 1. Dann entnehmen

wir der Übungsaufgabe 2.12 a) aus [E], V.2:

(∫ ∞

0

sinx

xα
dx

)−1

=

(
π

2Γ(α) sin πα
2

)−1

=
2Γ(α) sin πα

2

π
.

Mit Hilfe der Funktionalgleichung der Gammafunktion und der Gleichung
Γ(α− 1)Γ(2−α) = π/(sin(π(α− 1))) aus [Fi], VII.4, Satz 5.1, erhalten wir:

Γ(α) = (α− 1)
π

Γ(2 − α) sin(π(α− 1))
=

π(1 − α)

Γ(2 − α) sin πα
.
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Wegen sin 2x = 2 sin x cos x ist 2 sin(πα/2) = sinπα/ cos(πα/2). Insgesamt
ergibt sich: (∫ ∞

0

sinx

xα
dx

)−1

=
1 − α

Γ(2 − α) cos πα2
.

Kommen wir zum asymptotischen Verhalten der Überlebenswahrschein-
lichkeiten: Für α = 2 ist Sα(σ, β, µ) eine Normalverteilung. In diesem Fall
ist die Behauptung klar.

Sei nun 0 < α < 1. Außerdem seien X wie Sα(σ, 1, 0) verteilt und ϕ die
Laplace-Transformierte von X. Dann gilt für t ≥ 0:

ϕ(t) = E e−tX =
A.1.8

exp(−aαtα)

mit aα = σα/ cos(πα2 ). Weil Sα(σ, 1, 0) ausschließlich auf (0,∞) lebt (dies
ergibt sich aus Satz A.1.7 und auch aus Satz 1.3.7), folgt mit dem Satz von
Fubini:

∫ ∞

0
e−tx P(X > x)dx =

∫ ∞

0
e−tx

∫ ∞

x
PX(ds) dx

=

∫ ∞

0

∫ s

0
e−txdx PX(ds)

=

∫ ∞

0

1 − e−st

t
PX(ds) =

1 − ϕ(t)

t

=
1 − exp(−aαtα)

t
∼ aαtα−1 (t ↓ 0),

denn:

1

aαtα−1

1 − exp(−aαtα)
t

=
1

aαtα


1 −

∑

k≥0

(−1)k(aαtα)k

k!




=
∑

k≥1

(−1)k−1(aαtα)k−1

k!
−→
t→0

1.

Mit Satz A.1.10 können wir weiter folgern:
∫ x

0
P(X > t)dt ∼ x1−αaα

1

Γ(2 − α)

= x1−αaα
1

(1 − α)Γ(1 − α)
(x→ ∞),

d.h.
x1−αaα ((1 − α)Γ(1 − α))−1

∫ x
0 P(X > t)dt

−→
x→∞

1.

Mit der Regel von de l’Hospital erhalten wir daraus:

x−αaα (Γ(1 − α))−1P(X > x)
−→
x→∞

1.
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Daher istP(X > x) ∼ x−αaα
1

Γ(1 − α)

=
σα

Γ(1 − α) cos
(
πα
2

)x−α = σαCαx
−α (x→ ∞)

und wir haben die Behauptung für α < 1, β = 1 und µ = 0 bewiesen.
Um die Behauptung auf beliebige β ∈ [−1, 1] auszuweiten, betrachten

wir stochastisch unabhängige Zufallsgrößen Y1 und Y2 mit Yi ∼ Sα(σ, 1, 0),
i = {1, 2}. Nach (1.18) ist dann

X :=

(
1 + β

2

)1/α

Y1 −
(

1 − β

2

)1/α

Y2 ∼ Sα(σ, β, 0),

woraus wirP(X > x) = P((1 + β

2

)1/α

Y1 > x

)

= P(Y1 >

(
2

1 + β

)1/α

x

)
∼ σαCα

1 + β

2
x−α

für x→ ∞ folgern können. Analog erhalten wirP(X < −x) ∼ σαCα
1 − β

2
x−α (x→ ∞).

Betrachten wir nun den Fall α < 1, β ∈ [−1, 1], σ > 0 und µ 6= 0. Ist X
wie Sα(σ, β, 0) verteilt, dann gilt: X + µ ∼ Sα(σ, β, µ) undP(X + µ > x) = P(X > x− µ) ∼ σαCα

(
1 + β

2

)
(x− µ)−α

∼ σαCα

(
1 + β

2

)
x−α (x→ ∞).

Als nächstes zeigen wir die Aussage für 1 ≤ α < 2 und β = 0. Dazu
seien X ∼ Sα′(σ, 0, 0) mit 0 < α′ ≤ 2 und α ∈ (0, α′). Weiter sei Y ∼
Sα/α′((cos πα

2α′ )
α′/α, 1, 0) stochastisch unabhängig von X. Dann besitzt Z :=

Y 1/α′

X nach Satz A.1.9 die Verteilung Sα(σ, 0, 0). Daraus folgt

tαP(Z > t) = tαP(Y 1/α′

X > t
)

= tα
∫

(0,∞)
P(Y 1/α′

x > t
)PX(dx)

=

∫

(0,∞)

(
tα

′

x−α
′

)α/α′ P(Y > tα
′

x−α
′

)
xαPX(dx).
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Weil α/α′ < 1 ist, wissen wir nach dem bereits Gezeigten, dass folgende
Konvergenzaussage gilt:

(
tα

′

x−α
′

) α
α′ P(Y > tα

′

x−α
′

)
−→
t→∞

C α
α′

((
cos

πα

2α′

)α′

α

) α
α′

= C α
α′

cos
πα

2α′ .

Wählen wir nun α′ = 2, so ist X ∼ N(0, 2σ2) und wir können mit Hilfe des
Satzes von der majorisierten Konvergenz, E |X|α < ∞, der Funktionalglei-
chung der Gamma-Funktion, der Gleichung Γ(z)Γ(1 − z) = π/ sin(πz), der
Legendreschen Verdoppelungsformel und dem Additionstheorem sin(πα) =
2 sin(πα/2) cos(πα/2) folgern:

tαP(Z > t) −→
t→∞

Cα
2

cos
πα

4

∫ ∞

0
xα

1√
2π

√
2σ2

e−
x2

4σ2 dx

=
x 7→2σ

√
x

Cα
2

cos
πα

4

2α−1σα√
π

∫ ∞

0
xα/2−1/2e−xdx

= Cα
2

cos
πα

4

2α−1σα√
π

Γ(α/2 + 1/2)

=
Γ(α/2 + 1/2)

Γ(2 − α/2)

(1 − α/2)2α−1σα√
π

=
1 − α

Γ(2 − α) cos πα2

1

2
σα = Cα

1

2
σα.

Die Erweiterung der Aussage auf µ 6= 0 verläuft völlig analog zum Fall
α < 1. Die Ausweitung auf beliebiges β bleiben wir schuldig.

Einige stabile Verteilungen erhalten eine spezielle Bezeichnung:

1) für µ = β = 0 haben wir es mit einer symmetrischen stabilen Vertei-
lung zu tun; sie erhält die Bezeichnung SαS mit σ > 0,

2) für σ = 1 und µ = β = 0 schreibt man kurz Sα,

3) im Fall σ = 1 und µ = 0 erhalten wir die sogenannte Standard-stabile
Verteilung, die mit Sα,β bezeichnet wird.

Die Klasse der Standard-stabilen Verteilungen wird uns im Kapitel 2 häufi-
ger begegnen. Aus Satz 1.3.13 können wir folgern, wie sich die Dichte sα,β
einer Standard-stabilen Verteilung Sα,β asymptotisch verhält.

1.3.14 Folgerung.
Ist die Zufallsgröße X Sα,β-verteilt und α ∈ (0, 2), dann gilt für r → ∞

sα,β(r) ∼ α Cα
1 + β

2
r−α−1,

(1.19)

sα,β(−r) ∼ α Cα
1 − β

2
r−α−1
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mit

Cα =

{
1−α

Γ(2−α) cos(πα
2

) für α 6= 1,

2
π für α = 1.

Beweis. Die asymptotische Gestalt der Dichte folgt leicht aus Satz 1.3.13.

An der Gestalt (1.19) lässt sich gut erkennen, dass β für das Symmetrie-
verhalten der Verteilung verantwortlich ist und dass α bestimmt, wie schnell
die Dichten abfallen.

Im Kapitel 2 wird uns noch eine weitere Verteilung begenen, die wir
bisher noch nicht kennengelernt haben. Da sie eine Variation der Standard-
stabilen Verteilug ist, ist dies die passende Stelle, um die inverse Standard-
stabile Verteilung Hα für α ∈ (0, 1) einzuführen:

(1.20) Hα(r) =

{
1 − Sα,1

(
r−1/α

)
für r > 0,

0 für r ≤ 0.

Der Beiname
”
inverse“ ist sehr treffend, denn es gilt:

Ist die Zufallsgröße X Sα,1-verteilt mit α ∈ (0, 1), so besitzt die
Zufallsgröße X−α die Verteilung Hα.

Diese Aussage lässt sich leicht verifizieren: Wir betrachten dazu eine Zufalls-
größe X mit X ∼ Sα,1. Dann gilt für r > 0

Hα(r) = 1 − Sα,1

(
r−1/α

)
= P(X > r−1/α

)
= P (X−α ≤ r

)
.

1.4 Anziehungsbereiche

1.4.1 Definition (vgl. [Fe2], VI.1, Definition 2).
Die Verteilung R der unabhängigen, identisch verteilten Zufallsvariablen Xi,
i ∈ N, liegt im Anziehungsbereich einer (nichtdegenerierten) Verteilung F ,
wenn es Konstanten an > 0 und bn ∈ R gibt, so dass

a−1
n Sn − bn

d−→ F.

Aus dieser Definition lässt sich folgern, dass eine Verteilung F genau
dann einen nichtleeren Anziehungsbereich besitzt, wenn sie stabil ist, und
dass jede stabile Verteilung in ihrem eigenen Anziehungsbereich liegt. Die
Rückrichtung der ersten Aussage und die zweite Aussage sind klar, aber die
Hinrichtung der ersten Aussage werden wir kurz begründen:



1.4. Anziehungsbereiche 31

Ist F eine Verteilung mit nichtleerem Anziehungsbereich, so wissen wir,
dass F nichtdegeneriert ist und Konstanten an > 0 und bn ∈ R existieren,

so dass a−1
n Sn − bn

d−→ F gilt. Für ein festes m ∈ N gilt daher

(1.21) a−1
nmSnm − bnm

d−→ F.

Es seien nun S
(i)
n , i ∈ N, unabhängige Kopien von Sn. Dann konvergiert∑m

k=1(a
−1
n S

(k)
n − bn) in Verteilung gegen F ∗(m), woraus sich

(1.22) a−1
n Snm −mbn

d−→ F ∗(m)

folgern lässt. Auf die Gleichungen (1.21) und (1.22) können wir nun Lemma
A.1.6 anwenden und erhalten

anm
an

−→
n→∞

âm 6= 0,
anmbnm − anmbn

an
−→
n→∞

b̂m

und F ∗(m)(âmx+ b̂m) = F (x) für x ∈ C(F )∩C(F ∗(m)), woraus wir schließen
können, dass (âm)−1(Sm − b̂m) in Verteilung gegen X1 konvergiert. Anders
formuliert, haben wir Konstanten âm > 0 und β̂m := (âm)−1b̂m ∈ R gefun-
den, so dass

Sm
d
= âmX1 + β̂m

gilt.

1.4.2 Satz (vgl. [Br], 9.11, Theorem 9.34).
R liegt genau dann im Anziehungsbereich einer stabilen Verteilung mit cha-
rakteristischem Exponenten α < 2, wenn es Konstanten M+,M− ≥ 0 mit
M+ +M− > 0 gibt, so dass die folgenden Bedingungen gelten:

(1.23) lim
y→∞

R(−y)
1 −R(y)

=
M−

M+
;

und für jedes ξ > 0 gilt:

Ist M+ > 0, so ist lim
y→∞

1 −R(ξy)

1 −R(y)
= ξ−α;

(1.24)

ist M− > 0, so ist lim
y→∞

R(−ξy)
R(−y) = ξ−α.

Beweis. Wir verzichten auf den Beweis der Notwendigkeit, da diese Rich-
tung der Aussage in dieser Arbeit nicht benötigt wird. Wir zeigen nur, dass
die im Satz angegebenen Bedingungen hinreichend dafür sind, dass F im
Anziehungsbereich einer stabilen Verteilung mit charakteristischem Expo-
nenten α < 2 liegt: Dazu nehmen wir o.B.d.A. an, dass M− > 0 gilt.
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Behauptung: Es existiert eine Folge (an)n∈N positiver Konstanten mit
nR(−an) −→

n→∞
M−.

Wegen limy→∞R(−ξy)/R(−y) = ξ−α für ξ > 0 ist R(−x) > 0 für alle
x ≥ x0, x0 hinreichend groß. Weil R wachsend ist, gilt sogar für alle x
R(−x) > 0. Für hinreichend großes n ∈ N wählen wir an so, dass die
Bedingungen

(i) nR(−an) ≥M− und

(ii) nR(−(an + ε)) ≤M− für alle ε > 0

gelten. Zunächst zeigen wir, dass man die an, n ∈ N, so wählen kann. Dazu
sei n0 ∈ N fest und so groß, dass n0R(0) ≥M− gilt, und es sei für n ≥ n0

an := sup

{
x ≥ 0 : R(−x) ≥ M−

n

}
.

Wegen der rechtsseitigen Stetigkeit von R gilt dann: nR(−an) ≥M−. Nach
der Definition von an gilt weiter: nR(−(an + ε)) < M− für jedes ε > 0, d.h.
(an)n∈N leistet das Verlangte. Für diese Folge (an)n∈N gilt dann:

lim inf
n→∞

nR(−an) ≥M−.

Wäre lim supn→∞ nR(−an) ≥ M−(1 + δ), δ > 0, so gäbe es eine Teilfolge
(nk)k∈N, so dass für jedes ε > 0

lim sup
k→∞

R(−(ank
+ ε))

R(−ank
)

<
M−

M−(1 + δ)
=

1

1 + δ
∈ (0, 1)

gilt. Weil aber

lim sup
k→∞

R(−(ank
+ ε))

R(−ank
)

≥ lim sup
k→∞

R(−ank
ξ)

R(−ank
)

= ξ−α für alle ξ > 1

ist, gilt andererseits

lim sup
k→∞

R(−(ank
+ ε))

R(−ank
)

≥ 1.

Wir haben also einen Widerspruch erzeugt und können daher folgern, dass
lim supn→∞ nR(−an) ≤M− ist. Also gilt:

(1.25) nR(−an) −→
n→∞

M−.

Sei nun (an)n∈N eine beliebige Folge positiver Zahlen, die Gleichung
(1.25) erfüllt. (Dann gilt notwendigerweise an −→ ∞ für n→ ∞.) Für jedes
x > 0 erhält man dann unter Benutzung von (1.24) und (1.25):

nR(−anx) = nR(−an)
R(−anx)
R(−an)

−→
n→∞

M−x−α.
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Analog gilt:

n(1 −R(anx)) = nR(−an)
1 −R(an)

R(−an)
1 −R(anx)

1 −R(an)

−→
n→∞

M−M
+

M−x
−α = M+x−α,

wobei zusätzlich zu (1.24) und (1.25) noch (1.23) verwendet wurde. Sei µn :=
nP(a−1

n X1 ∈ ·), d.h. µn((−∞, x]) = nR(anx), n ∈ N. Dann gilt:

(1.26) µn((x,∞)) = n(1 −R(anx)) −→
n→∞

M+x−α (x > 0),

(1.27) µn((−∞, x]) = nR(anx) −→
n→∞

M−|x|−α (x < 0),

woraus wir folgern können, dass die Folge (µn)n∈N straff ist. Dann ist auch
die Folge (γn)n∈N, definiert durch

γn(dx) :=
x2

1 + x2
µn(dx) ≤ µn(dx), n ∈ N,

straff.
Sei φn die Fourier-Transformierte von a−1

n Sn. Wir nehmen ohne Ein-
schränkung an, dass a1 = 1 ist. Dann folgt:

φn(t) = E eita−1
n Sn =

(
φ1(ta

−1
n )
)n
.

Hier gilt an −→ ∞ für n → ∞ und außerdem |φ1(t) − 1| < 1/2 für alle
t ∈ [−δ, δ] (δ hinreichend klein), wodurch wir folgende Aussage erhalten:
|φ1(ta

−1
n ) − 1| < 1/2 für alle t ∈ [−anδ, anδ].

Aus der Funktionentheorie ist die Existenz eines eindeutig bestimmten,
stetigen Logarithmus ψ1 von φ1 auf [−δ, δ] mit ψ1(0) = 0 bekannt, d.h.,
es gilt exp(ψ1(t)) = φ1(t) für alle t ∈ [−δ, δ]. Analog ist φn auf [−anδ, anδ]
nullstellenfrei und besitzt einen eindeutig bestimmten, stetigen Logarithmus
ψn mit ψn(0) = 0.

Daher können wir folgern, dass

exp(ψn(t)) = φn(t) =
(
φ1(ta

−1
n )
)n

=
(
exp(ψ1(ta

−1
n )
)n

= exp(nψ1(ta
−1
n ))

für t ∈ [−anδ, anδ] und damit

ψn(t) = nψ1(ta
−1
n )

= n
ψ1(ta

−1
n )

φ1(ta
−1
n ) − 1

(φ1(ta
−1
n ) − 1)(1.28)

=
log(1 − (1 − φ1(ta

−1
n )))

φ1(ta
−1
n ) − 1

n(φ1(ta
−1
n ) − 1)
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für t ∈ [−anδ, anδ] gilt, wobei wir mit log den Hauptzweig des komplexen
Logarithmus bezeichnen. Weil log(1− z) ∼ −z (z → 0) ist und 1−φ1(ta

−1
n )

für n→ ∞ kompakt gleichmäßig gegen 0 konvergiert, gilt für t ∈ [−anδ, anδ]:

log(1 − (1 − φ1(ta
−1
n )))

φ1(ta
−1
n ) − 1

−→
n→∞

1 kp. glm.

Definieren wir

1 + εn(t) :=
log(1 − (1 − φ1(ta

−1
n )))

φ1(ta
−1
n ) − 1

,

so gilt εn(t) −→
n→∞

0 kp. glm. und wir können zusammenfassend schreiben:

ψn(t) = (1 + εn(t))n (φ1(ta
−1
n ) − 1)

= (1 + εn(t))n

∫ (
eita

−1
n x − 1

)
R(dx)

= (1 + εn(t))

∫ (
eitx − 1

)
µn(dx)

= (1 + εn(t))

(∫ (
eitx − 1 − itx

1 + x2

)
1 + x2

x2
γn(dx)

+

∫
itx

1 + x2
µn(dx)

)
.

Seien

(1.29) bn :=

∫
x

1 + x2
µn(dx),

ϕ(x, t) :=

(
eitx − 1 − itx

1 + x2

)
1 + x2

x2
, x 6= 0,

und ϕ(0, t) := −t2/2, so ist ϕ ∈ Cb(R2) und wir erhalten die Darstellung

(1.30) ψn(t) = (1 + εn(t))

∫
ϕ(x, t) γn(dx) + (1 + εn(t))ibnt.

Im Folgenden zeigen wir, dass die Folge (γn)n∈N schwach konvergiert:
Dazu seien f ∈ Cb(R) beliebig und ε > 0. Dann gilt:

∫
f(x) γn(dx) =

∫

(−ε,ε)
f(x) γn(dx) +

∫

(−ε,ε)c

f(x) γn(dx).

Definieren wir

g(x) := f(x)
x2

1 + x2
, x ∈ R,

(1.31) µ(dx) := αM+1(0,∞)(x)
λλ(dx)

xα+1
+ αM−1(−∞,0)(x)

λλ(dx)

|x|α+1
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und

γ(dx) :=
x2

1 + x2
µ(dx),

so lässt sich folgern:
∫

(−ε,ε)c

f(x) γn(dx) =

∫

(−ε,ε)c

g(x)µn(dx)

−→
n→∞

αM+

∫ ∞

ε
g(x)x−(α+1) dx+ αM−

∫ −ε

−∞
g(x)|x|−(α+1) dx

= α

(
M+

∫ ∞

0
g(x)x−(α+1) dx+M−

∫ 0

−∞
g(x)|x|−(α+1) dx

)
+ δ1(ε)

=

∫
f(x) γ(dx) + δ1(ε)

mit |δ1(ε)| := C
(∫ ε

0 g(x)x
−(α+1) dx+

∫ 0
−ε g(x)|x|−(α+1) dx

)
(C > 0 geeig-

net). δ1(ε) können wir weiter abschätzen, wobei wir benutzen, dass α < 2
ist:

δ1(ε) ≤ C

(∫ ε

0
f(x)x2x−(α+1) dx+

∫ 0

−ε
f(x)x2|x|−(α+1) dx

)

= C

(∫ ε

0
f(x)x−α+1 dx+

∫ 0

−ε
f(x)|x|−α+1 dx

)
−→
ε↓0

0.

Für unsere nächste Abschätzung benötigen wir das folgende Lemma,
dessen Beweis wir im Anschluss nachholen werden:

1.4.3 Lemma (vgl. [Br], 9.11, Proposition 9.35).
Für jedes 1 ≤ p ≤ 2 und α ∈ (0, p) gibt es ein 0 < c <∞, so dass

lim sup
n→∞

∫

(−ε,ε)
|x|pµn(dx) ≤ pc(M+ +M−)εp−α =: δ2(ε)

gilt.

Damit erhalten wir die angekündigte Abschätzung:

lim sup
n→∞

∣∣∣∣
∫
f(x) γn(dx) −

∫
f(x) γ(dx)

∣∣∣∣

≤ lim sup
n→∞

∣∣∣∣∣

∫

(−ε,ε)c

f(x) γn(dx) −
∫
f(x) γ(dx)

∣∣∣∣∣

+ lim sup
n→∞

∫

(−ε,ε)
|f(x)| γn(dx)

≤ δ1(ε) + ||f ||
∫

(−ε,ε)
|x|2 µn(dx)

︸ ︷︷ ︸
≤δ2(ε)

−→
ε↓0

0,
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aus der γn
w−→ γ folgt. Weil wir bereits gezeigt haben, dass ϕ ∈ Cb(R2) ist,

können wir folgern, dass
∫
ϕ(x, t) γn(dx) für n → ∞ gegen

∫
ϕ(x, t) γ(dx)

konvergiert.
Die charakteristische Funktion von a−1

n Sn − bn istE eit(a−1
n Sn−bn) = e−ibntφn(t) = e−ibnt exp(ψn(t))

= exp

(
−ibnt+ (1 + εn(t))

∫
ϕ(x, t) γn(dx) + (1 + εn(t))ibnt

)

= exp

(
εn(t)ibnt+ (1 + εn(t))

∫
ϕ(x, t) γn(dx)

)
.

Deshalb genügt es zu zeigen, dass εn(t)bn für n → ∞ gegen 0 konvergiert,
um zu erhalten, dass

(1.32) a−1
n Sn − bn

d−→ X,

wobei X die Fourier-Transformierte exp(
∫
ϕ(x, t) γ(dx)) hat. Zeigen wir also

εn(t)bn −→
n→∞

0:

|εn(t)| =

∣∣∣∣
log(1 − (1 − φ1(ta

−1
n )))

φ1(ta
−1
n ) − 1

− 1

∣∣∣∣

=

∣∣∣∣
log(1 − (1 − φ1(ta

−1
n ))) + (1 − φ1(ta

−1
n ))

φ1(ta
−1
n ) − 1

∣∣∣∣

=

∣∣∣∣∣(φ1(ta
−1
n ) − 1)−1

∞∑

k=2

(−1)2k−1

k
(1 − φ1(ta

−1
n ))k

∣∣∣∣∣

=

∣∣∣∣∣

∞∑

k=2

1

k
(1 − φ1(ta

−1
n ))k−1

∣∣∣∣∣

≤ |1 − φ1(ta
−1
n )|

für hinreichend großes n ∈ N. Vergleichen wir die Gleichungen (1.28) und
(1.30) miteinander, so sehen wir, dass

|φ1(ta
−1
n ) − 1| =

1

n

∣∣∣∣
∫
ϕ(x, t) γn(dx) + itbn

∣∣∣∣

gilt, und können zusammen mit der obigen Ungleichung folgern:

|εn(t)bn| ≤ |(φ1(ta
−1
n ) − 1)bn| ≤

∣∣∣∣
bn
n

∫
ϕ(x, t) γn(dx)

∣∣∣∣ + |t|b
2
n

n
.

Nun müssen wir nur noch zeigen, dass b2n/n für n→ ∞ gegen 0 konvergiert:
Sei dazu ε > 0. Weil

∫

(−ε,ε)c

x

1 + x2
µn(dx) ≤ µn((−∞,−ε]) + µn([ε,∞))

−→
n→∞

M−|ε|−α +M+ε−α
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gilt, können wir mit Hilfe der Cauchy-Schwarzschen Ungleichung folgern:

lim sup
n→∞

b2n
n

= lim sup
n→∞

1

n

(∫

(−ε,ε)

x

1 + x2
µn(dx)

)2

+ lim sup
n→∞

1

n

(∫

(−ε,ε)c

x

1 + x2
µn(dx)

)2

≤ lim sup
n→∞

1

n

(∫

(−ε,ε)

x

1 + x2
µn(dx)

)2

≤ lim sup
n→∞

1

n

(∫

(−ε,ε)
|x|µn(dx)

)2

≤ lim sup
n→∞

1

n
µn(−ε, ε)

∫

(−ε,ε)
|x|2 µn(dx)

≤ lim sup
n→∞

∫

(−ε,ε)
|x|2 µn(dx).

Nach Lemma 1.4.3 gilt: lim supn→∞
∫
(−ε,ε) |x|2 µn(dx) → 0 für ε ↓ 0.

Beweis von Lemma 1.4.3. Wir definieren für x ≥ 0

I(x) :=

∫ x

0
yp−1R(−y) dy

mit 1 ≤ p ≤ 2. Weil p > α ist, gilt: I(x) −→ ∞ für x → ∞. Wir zeigen
zunächst, dass es eine Konstante c gibt, so dass I(x) ≤ cxpR(−x) für alle
hinreichend großen x ist: Für t > τ ist

(1.33) I(tx) = I(τx) + xp
∫ t

τ
ξp−1R(−xξ) dξ.

Sei x > 1 fest gewählt und für gegebenes ε > 0 sei τ so groß, dass für ξ > τ

R(−xξ)
R(−ξ) ≥ (1 − ε)x−α

gilt. Aus Gleichung (1.33) folgt dann:

I(tx) ≥ I(τx) + xp−α(1 − ε)

∫ t

τ
ξp−1R(−ξ) dξ

= I(τx) + xp−α(1 − ε)(I(t) − I(τ))

und weiter:

I(tx)

I(t)
≥ I(τx)

I(t)
+ xp−α(1 − ε) − xp−α(1 − ε)I(τ)

I(t)
.
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Da der erste und der dritte Summand der rechten Seite für t → ∞ gegen 0
konvergieren, erhalten wir:

lim inf
t→∞

I(tx)

I(t)
≥ xp−α(1 − ε).

Diese Ungleichung gilt für alle ε > 0, weil sie unabhängig von τ ist. Daher
können wir ε ↓ 0 gehen lassen:

lim inf
t→∞

I(tx)

I(t)
≥ xp−α.

Setzen wir nun in (1.33) τ = 1, erhalten wir die folgende Gleichung:

I(tx)

I(x)
= 1 +

xpR(−x)
I(x)

∫ t

1

R(−xξ)
R(−x) ξ

p−1 dξ.

Weil der Integrand dieses Integrals durch ξp−1 beschränkt ist, gilt für t > 1:

I(tx)

I(x)
≤ 1 +

xpR(−x)
I(x)

∫ t

1
ξp−1 dξ

≤ 1 +
xpR(−x)
I(x)

tp.

Betrachten wir nun den Limes inferior, dann erhalten wir:

tp−α ≤ lim inf
x→∞

I(tx)

I(x)
≤ 1 + tp lim inf

x→∞
xpR(−x)
I(x)

,

woraus wir für hinreichend großes x folgern können, dass

I(x) ≤ C
tp

tp−α − 1
xpR(−x)

mit einer geeigneten Konstante C gilt. Daher haben wir mit c = Ctp/(tp−α−
1) eine Konstante gefunden haben, so dass I(x) ≤ cxpR(−x) für hinreichend
großes x gilt.

Setzen wir in Satz 19.13 aus [A] ϕ(x) := xp und f(x) = −x, dann gilt:

∫

(−ε,0]
|x|p µn(dx) = p

∫ ∞

0
tp−1µn((−∞,−t) ∩ (−ε, 0]) dt

≤ np

∫ ε

0
tp−1R(−ant) dt

≤ np

apn

∫

[0,anε)
yp−1R(−y) dy

=
np

apn
I(anε) ≤ npcεpR(−anε)
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für hinreichend große n. Aus dieser Ungleichung wird mit Hilfe von (1.27)
endlich:

lim sup
n→∞

∫

(−ε,0]
|x|p µn(dx) ≤ pcM−εp−α.

Der Schluss für das Integral
∫
(0,ε) x

p µn(dx) verläuft mit 1 − R(x) anstelle

von R(−x) analog.





Kapitel 2

Random Walks in stetiger
Zeit

In diesem Kapitel, das auf dem Artikel
”
Asymptotic Distributions of Con-

tinuous-Time Random Walks“ von Marcin Kotulski (vgl. [Ko]) basiert, wer-
den wir Random Walks in stetiger Zeit in unterschiedlichen Situationen be-
trachten und einige Grenzwertsätze angeben. Den ersten Abschnitt nutzen
wir, um den Random Walk in stetiger Zeit einzuführen. Außerdem stellen
wir hier einige Voraussetzungen auf, die für die Formulierung der Gren-
zewrtsätze notwendig sind. Im folgenden Abschnitt 2.2 knüpfen wir eine
Verbindung zum vorherigen Kapitel 1, indem wir die Anziehungsbereiche
der Verteilungen betrachten, die einen Random Walk in stetiger Zeit be-
stimmen. Der dritte und letzte Abschnitt dieses Kapitels bildet das Ziel
unserer Bemühungen. Dort werden wir die angekündigten Grenzwertsätze
formulieren und auch beweisen.

2.1 Modellierung1

Man betrachtet die stochastisch unabhängigen, identisch verteilten Zufalls-
vektoren (R1, T1), (R2, T2), . . . und setzt R0 = T0 = 0. Dabei bezeichnet
Ri, i ∈ N, die reellwertige Sprunghöhe eines Teilchen nach einem positiven
Wartezeitintervall Ti, i ∈ N. Daraus ergibt sich eine weitere Zufallsvariable:

(2.1) Nt = max

{
k :

k∑

i=0

Ti ≤ t

}

ist die Anzahl der Sprünge im Zeitintervall [0, t]. Random Walk in steti-
ger Zeit (im Folgenden kurz mit CTRW für continuous-time random walk

1Vgl. [Ko], 2.1, 779/780.

41
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bezeichnet) heißt der stochastische Prozess (Xt)t≥0, der definiert ist durch

(2.2) Xt =

Nt∑

i=0

Ri.

Anschaulich beschreibt Xt die Position eines Teilchens zum Zeitpunkt t.
In diesem Modell lassen sich zwei Arten von CTRW unterscheiden, der

sogenannte ungekoppelte CTRW (engl.: decoupled), bei demRi für alle i ∈ N
unabhängig von Ti ist, und der gekoppelte CTRW (engl.: coupled), bei dem
Ri und Ti für alle i ∈ N voneinander abhängig sind.

Die Paare (Ri, Ti)i∈N sind identisch verteilt und besitzen eine gemein-
same Verteilung auf R2. Für die zugehörigen Randverteilungen F und G,
die auf R bzw. R+

0 leben, setzen wir für das gesamte zweite Kapitel Folgen-
des voraus: Ist ER2

1 = ∞, so gebe es Konstanten b > 0, β ∈ [−1, 1] und
0 < α < 2 mit

(2.3) F (−r) ∼ b
1 − β

2α
r−α und 1 − F (r) ∼ b

1 + β

2α
r−α (r → ∞).

Dabei wird die Konstante b Größenkoeffizient von F genannt. Im Fall α = 1
nehmen wir zusätzlich an, dass F symmetrisch ist, was insbesondere β = 0
impliziert. Diese Zusatzvoraussetzung benötigen wir, um auf Seite 47 die
Konstanten an und bn bestimmen zu können. Ist ER2

1 <∞, so setzen wir

(2.4) α = 2 und β = 0.

Für die Verteilungsfunktion von G setzen wir voraus: Ist ET 2
1 = ∞, so

gebe es Konstanten b′ > 0 und 0 < α′ < 2 mit

(2.5) 1 −G(t) ∼ b′

α′ t
−α′

(t → ∞).

Die Konstante b′ wird analog Größenkoeffizient von G genannt. Für ET 2
1 <

∞ sei α′ = 2.
Nimmt man beispielsweise an, dass das Paar (R1, T1) eine gemeinsame,

zweidimensionale Lebesguedichte ψ : R×R+
0 → R2 besitzt, mit deren Hilfe

die Wahrscheinlichkeitsdichten f von R1 und g von T1 beschrieben werden
können:

f(r) =

∫ ∞

0
ψ(r, t)dt, g(t) =

∫ ∞

−∞
ψ(r, t)dr,

und nimmt man außerdem an, dass

f(−r) ∼ b
1 − β

2
r−α−1 und f(r) ∼ b

1 + β

2
r−α−1 (r → ∞)

für 0 < α < 2 gilt, dann sind unsere Voraussetzungen erfüllt. Dies wollen
wir kurz begründen: Weil L+(r) := f(r)/r−α−1 für r → ∞ gegen b(1+β)/2
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konvergiert, ist L+ insbesondere langsam variierend (vgl. Definition A.2.1)
und es gilt:

(2.6) f(r) = r−α−1L+(r)

mit einer langsam variierenden Funktion L+ und 0 < α < 2. Daraus ergibt
sich nun:

1 − F (y) =

∫ ∞

y
f(r) dr =

(2.6)

∫ ∞

y
L+(r)r−α−1 dr ∼

A.2.2

y−αL+(y)

α
(y → ∞).

Analoge Rechnungen lassen sich für F (−y) und 1 −G(y) durchführen.
Im Weiteren benötigen wir noch folgende Bezeichungen:

µ := ER1, τ := ET1,

falls µ, τ existieren; d.h. falls α > 1 bzw. α′ > 1 ist.

2.2 Im Anziehungsbereich einer Standard-stabilen
Verteilung

Als nächstes untersuchen wir, im Anziehungsbereich welcher stabilen Ver-
teilung F bzw. G liegt. Dazu benötigen wir das folgende Lemma:

2.2.1 Lemma.
Die Verteilung F liege im Anziehungsbereich einer Verteilung R. Dann gilt:
F liegt genau dann im Anziehungsbereich der Verteilung Q, wenn Q aus R
durch Skalierung und Verschiebung hervorgeht.

Beweis. Dass F im Anziehungsbereich von Q liegt, wenn Q aus R durch
Skalierung und Verschiebung hervorgeht, ist leicht zu verifizieren. Die um-
gekehrte Aussage folgt direkt aus Lemma A.1.6.

2.2.2 Satz (vgl. [Ko], 2.2, 781).
Die Verteilung F der Zufallsgrößen Ri, i ∈ N, liegt im Anziehungsbereich
der Standard-stabilen Verteilung Sα,β mit 0 < α ≤ 2 und −1 ≤ β ≤ 1.

Beweis. Betrachten wir zunächst den Fall, dass ER2
1 < ∞ ist. Nach Glei-

chung (2.4) ist das der Fall, in dem α = 2 und β = 0 gilt. Dann folgt sofort
mit dem zentralen Grenzwertsatz, dass F zum Anziehungsbereich einer Nor-
malverteilung gehört. Wenden wir hier Lemma 2.2.1 an, können wir folgern,
dass F auch im Anziehungsbereich der N(0, 2)-Verteilung liegt. Aufgrund
von Bemerkung 1.3.1 wissen wir, dass die N(0, 2)-Verteilung gleich der S2,0-
Verteilung ist.

Ist ER2
1 = ∞, so befinden wir uns in dem Fall, dass 0 < α < 2 und

β ∈ [−1, 1] gilt. Hier wissen wir (vgl. Gleichung (2.3)), dass

F (−r) ∼ b
1 − β

2α
r−α und 1 − F (r) ∼ b

1 + β

2α
r−α
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für r → ∞ gelten. Um nun zu zeigen, dass F im Anziehungsbereich der
Standard-stabilen Verteilung Sα,β mit 0 < α ≤ 2 und −1 ≤ β ≤ 1 liegt,
möchten wir Satz 1.4.2 anwenden. Prüfen wir also die Bedingungen des
Satzes nach: Setzen wir M− := b(1− β)/(2α) und M+ := b(1 + β)/(2α), so
ist (1.23) erfüllt, denn:

F (−y)
1 − F (y)

∼ b(1 − β)y−α

2α

2α

b(1 + β)y−α
=

1 − β

1 + β
,

wobei wir im Fall β = −1 für (1 − β)/(1 + β) unendlich setzen. Sei ξ > 0.
Dann gilt für r → ∞:

1 − F (ξy)

1 − F (y)
∼ b(1 + β)(ξy)−α

2α

2α

b(1 + β)y−α
=

1

ξα
, falls β 6= −1 ist,

und ebenso

F (−ξy)
F (−y) ∼ b(1 − β)(ξy)−α

2α

2α

b(1 − β)y−α
=

1

ξα
, falls β 6= 1 ist.

Demnach sind alle Bedingungen des Satzes 1.4.2 erfüllt und wir haben ge-
zeigt, dass F im Anziehungsbereich einer stabilen Verteilung Sα(σ, β, µ) mit
0 < α < 2 liegt. Mit Lemma 2.2.1 erhalten wir die Behauptung, dass F zum
Anziehungsbereich der Sα,β-Verteilung gehört für α ∈ (0, 2).

2.2.3 Satz (vgl. [Ko], 2.2, 782).
Die Verteilung G der Zufallsgrößen Ti, i ∈ N, liegt im Anziehungsbereich
der Standard-stabilen Verteilung Sα′,1, wenn 0 < α′ < 2 gilt, und gehört für
α′ = 2 zum Anziehungsbereich der N(0, 2)-Verteilung.

Beweis. Völlig analog zum Beweis von Satz 2.2.2.

Wir wissen nun, dass F im Anziehungsbereich der Standard-stabilen
Verteilung Sα,β mit 0 < α ≤ 2 und −1 ≤ β ≤ 1 liegt, d.h. nach Definition
1.4.1 gibt es Konstanten an > 0 und bn ∈ R, so dass a−1

n Sn − bn in Ver-
teilung gegen Sα,β konvergiert. Für unsere weiteren Untersuchungen ist es
notwendig, die genaue Gestalt der Konstanten an und bn zu kennen. Da-
zu sehen wir uns den Beweis von Satz 1.4.2 noch einmal etwas genauer an:
Dort haben wir herausgefunden, dass (an)n∈N beliebig gewählt werden kann,
wenn nF (−an) → M− oder n(1 − F (an)) → M+ gilt. Weil nF (−n1/α) →
b(1 − β)/(2α) =: M− und n(1 − F (n1/α)) → b(1 + β)/(2α) =: M+ gelten,
können wir zunächst an = n1/α setzen. Weiterhin wissen wir (vgl. (1.32)),
dass dann a−1

n Sn − bn mit bn =
∫
x/(1 + x2)µn(dx) in Verteilung gegen X

konvergiert, wobei X die Fourier-Transformierte eψX mit

ψX(t) =

∫
ϕ(x, t)γ(dx) =

∫ (
eitx − 1 − itx

1 + x2

)
1 + x2

x2
γ(dx)

=

∫ (
eitx − 1 − itx

1 + x2

)
µ(dx)
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besitzt. Da wir aus (1.31) die Gestalt von µ kennen, können wir weiter
folgern:

ψX(t) = αM+

∫ ∞

0

(
eitx − 1 − itx

1 + x2

)
dx

xα+1

+αM−
∫ 0

−∞

(
eitx − 1 − itx

1 + x2

)
dx

|x|α+1
.

Dies ist gerade die Gestalt aus Satz 1.2.2 mit b = 0, m1 = αM+ und m2 =
αM−. Satz 1.2.4 bringt uns von dieser Gestalt der Fourier-Transformierten
zu der bekannten Form mit den vier eindeutig bestimmten Parametern, d.h.
X ∼ Sα(σ, β, µ).

Im Fall 0 < α < 1 sind dabei

σα = −(m1 +m2)ℜ(H(α)) = −α(M+ +M−) cos
πα

2

(
− 1

α
Γ(1 − α)

)

=
b

αCα
=: cα2 ,

β =
m1 −m2

m1 +m2
= β,

und

µ = (m1 −m2)c = bβc mit c = −
∫ ∞

0

1

1 + x2
x−α dx.

Betrachten wir nun bn etwas genauer:

∫
x

1 + x2
µn(dx) =

∫

(−ε,ε)c

1

x
γn(dx) +

∫

(−ε,ε)

x

1 + x2
µn(dx).

Dabei gelten:

∫

(−ε,ε)c

1

x
γn(dx) −→

n→∞

∫

(−ε,ε)c

1

x
γ(dx) =

∫

(−ε,ε)c

x

1 + x2
µ(dx)

und

lim sup
n→∞

∫

(−ε,ε)

∣∣∣∣
x

1 + x2

∣∣∣∣ µn(dx) ≤ lim sup
n→∞

∫

(−ε,ε)
|x|µn(dx)

≤
1.4.3

c(M+ +M−)ε1−α −→
ε↓0

0.

Daraus können wir folgern, dass

∫
x

1 + x2
µn(dx) −→

n→∞

∫
x

1 + x2
µ(dx)
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gilt, und unsere Konvergenzaussage neu formulieren:

n−1/αSn −
∫

x

1 + x2
µ(dx)

d−→ X mit X ∼ Sα(σ, β, µ).

Können wir nun noch zeigen, dass µ = −
∫
x/(1 + x2)µ(dx) ist, so können

wir endlich schließen, dass

c−1
2 n−1/αSn

d−→ X mit X ∼ Sα(1, β, 0) = Sα,β,

was dann impliziert, dass im Fall 0 < α < 1

(2.7) an = c2n
1/α und bn = 0

gewählt werden kann. Weisen wir nun die fehlende Behauptung nach:

∫
x

1 + x2
µ(dx) = αM+

∫ ∞

0

x

1 + x2
x−(α+1) dx

+αM−
∫ 0

−∞

x

1 + x2
|x|−(α+1) dx

= α(M+ −M−)

∫ ∞

0

1

1 + x2
x−α dx

= −bβc = −µ.

Im Fall 1 < α < 2 sind

σα =
m1 +m2

α
L(α− 1) cos

πα

2
= cα2 ,

β =
m1 −m2

m1 +m2
= β,

und

µ = (m1 −m2)c
′ = bβc′ mit c′ =

1

α

∫ ∞

0

(
1 − d

dx

x

1 + x2

)
dx

xα
.

Wir zeigen als nächstes, dass bn− n(1−1/α)µ→ −µ (n→ ∞) gilt, wobei wir
die Konvergenzaussage aus [Br], 9.11, Problem 9, verwenden:

bn − n(1−1/α)µ = bn − nn−1/αER1 = bn −
∫
xµn(dx)

=

∫ (
x

1 + x2
− x

)
µn(dx) −→

n→∞

∫ (
x

1 + x2
− x

)
µ(dx).

Setzen wir die Definition von µ ein und integrieren partiell, so erhalten wir
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die obige Behauptung:

bn − n(1−1/α)µ −→
n→∞

αM+

∫ ∞

0

(
x

1 + x2
− x

)
x−(α+1) dx

+αM−
∫ 0

−∞

(
x

1 + x2
− x

)
|x|−(α+1) dx

= bβ

∫ ∞

0

(
x

1 + x2
− x

)
x−(α+1) dx

= −bβ
α

∫ ∞

0

(
1 − d

dx

x

1 + x2

)
dx

xα
= −µ.

Daraus können wir folgern, dass

c−1
2 n−1/αSn − c−1

2 n(1−1/α)µ
d−→ X mit X ∼ Sα(1, β, 0),

und haben damit im Fall 1 < α < 2 die Gestalt von an und bn gefunden:

(2.8) an = c2n
1/α und bn = c−1

2 n(1−1/α)µ.

Im Fall α = 1 gelten:

σ = (m1 +m2)
π

2
= b

π

2
= c2,

β =
m1 −m2

m1 +m2
= β = 0,

und

µ = (m1 −m2)c1 = bβc1 = 0,

da vorausgesetzt wurde, dass F im Fall α = 1 symmetrisch ist und damit
β = 0 gilt. Weil außerdem x/(1 + x2) ungerade ist, können wir bn = 0 für
alle n ∈ N folgern. Daher konvergiert

c−1
2 n−1Sn

d−→ S1(1, 0, 0),

d.h. im Fall α = 1 erhalten wir:

(2.9) an = c2n
1/α und bn = 0.

2.3 Das asymptotische Verhalten von Random
Walks in stetiger Zeit

Bevor wir endlich zu unserem eigentlichen Anliegen, dem Grenzverhalten
von CTRWs, kommen, betrachten wir kurz den Spezialfall, dass Ti ≡ τ0 für
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alle i ∈ N und einem τ0 ∈ R+
0 ist2. Im Fall τ0 = 1 hätten wir es dann mit

einem gewöhnlichen Random Walk zu tun.

Ist Ti ≡ τ0 f.s. für alle i ∈ N, so lässt sich Nt genauer bestimmen:

Nt = max{k :
k∑

i=0

Ti ≤ t} = max{k : τ0k ≤ t} = ⌊t/τ0⌋ f.s.

Gilt zusätzlich ER2
1 < ∞, so ist auch der Erwartungswert von R1 endlich

und wir haben eine Folge (Ri)i∈N unabhängiger, identisch verteilter Zufalls-
größen mit Erwartungswert ER1 = µ < ∞ und Varianz c21 := VarR1 =ER2

1 − (ER1)
2 ∈ (0,∞), wobei wir ohne Einschränkung annehmen, dass

µ = 0 gilt, die dem zentralen Grenzwertsatz genügt:

∑n
i=1Ri

c1n1/2

d−→ X mit X ∼ N(0, 1).

Setzen wir n = Nt = ⌊t/τ0⌋ und benutzen, dass R0 = 0 gilt, so ist

∑n
i=1Ri

c1n1/2
=

∑Nt
i=0Ri

c1N
1/2
t

=
Xt

c1 ⌊t/τ0⌋1/2
.

Es folgt daher:
Xt

c1 ⌊t/τ0⌋1/2

d−→ X.

Gilt aber stattdessen ER1 = ∞, so wissen wir aus Satz 2.2.2, dass die
Verteilung F von R1 im Anziehungsbereich der Sα,β-Verteilung mit 0 < α <
2 und β ∈ [−1, 1] liegt. Das heißt, es gibt Konstanten an > 0 und bn ∈ R,
so dass

a−1
n

n∑

i=1

Ri − bn
d−→ Sα,β.

Setzen wir nun wieder n = Nt = ⌊t/τ0⌋, so erhalten wir

Xt − b′⌊t/τ0⌋
a⌊t/τ0⌋

d−→ Sα,β

mit b′k := akbk (k ∈ N).

Im degenerierten Fall konvergiert also ein geeignet zentrierter und ska-
lierter CTRW gegen die Standardnormalverteilung, wenn das zweite Mo-
ment von R1 endlich ist, und gegen eine Standard-stabile Verteilung, wenn
das zweite Moment von R1 nicht existiert.

Kehren wir nun zu der allgemeinen Situation zurück und betrachten
darin zunächst den Fall, dass τ endlich ist und µ = 0 im Fall 1 < α ≤ 2 gilt.

2Vgl. [Ko], 3.1, 783.
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2.3.1 Satz (vgl. [Ko], 3.1, 784).
Sei (Xt)t≥0 ein CTRW. Dann gilt im soeben beschriebenen Fall

(2.10) P( Xt

(t/τ)1/2c1
≤ r

)
−→
t→∞

N(0, 1)(r), falls ER2
1 <∞ ist,

(2.11) P( Xt

(t/τ)1/αc2
≤ r

)
−→
t→∞

Sα,β(r), falls ER2
1 = ∞ ist,

mit c21 = VarR1 und c2 = (b/(αCα))1/α.

Beweis. Wir wollen Satz A.2.4 anwenden. Dazu wählen wir eine Folge tn,
n ∈ N, mit tn → ∞ und definieren µn als den Median von Ntn . Dann haben
wir eine Folge (Ntn)n∈N nichtnegativer, ganzzahliger Zufallsvariablen mit
Nt → ∞ f.s. Aus Satz 2.2.2 wissen wir, dass es Konstanten an > 0 und
bn ∈ R gibt, so dass

a−1
n Sn − bn

d−→ X mit X ∼ Sα,β,

wobei Sn =
∑n

i=1Ri ist. Und für α ∈ (0, 2) wissen wir aus (2.7), (2.8)
und (2.9), dass an = c2n

1/α und bn = 0 gilt. Können wir noch zeigen, dass
Ntn/µn −→ 1 f.s. gilt, so können wir Satz A.2.4 anwenden und damit folgern:

SNtn

aµn

=
Xtn

c2µ
1/α
n

d−→ X,

wodurch unsere Behauptung gezeigt ist, denn:

Xtn

(tn/τ)
1/α c2

=
Xtn

µ
1/α
n c2

(
µn
tn/τ︸ ︷︷ ︸
→1

)1/α
d−→ X.

Zeigen wir nun, dass Ntn/µn → 1 f.s. gilt: Aus der Erneuerungstheorie (vgl.
[A1], Korollar 29.3) wissen wir, dass Ntn/(tn/τ) → 1 f.s. gilt. Daher genügt
es zu zeigen, dass tn/τ ∼ µn (n→ ∞) ist. Sei dazu ε > 0. Dann gilt:P(∣∣∣∣ Ntn

tn/τ
− 1

∣∣∣∣ ≥ ε

)
−→
n→∞

0.

Daraus lassen sich folgende Konvergenzaussagen folgern:P(Ntn ≥ (1 + ε)
tn
τ

)
−→
n→∞

0 und P(Ntn ≤ (1 − ε)
tn
τ

)
−→
n→∞

0.

Es existiert also ein N ∈ N, so dass für alle n ≥ N die beiden zuletzt
erwähnten Wahrscheinlichkeiten < 1/2 sind. Dass µn der Median von Ntn

ist, bedeutet, dass P(Ntn ≥ µn) ∧ P(Ntn ≤ µn) ≥ 1/2
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gilt. Dadurch können wir folgende Ungleichungsketten für alle n ≥ N fol-
gern: P(Ntn ≥ (1 + ε)

tn
τ

)
< 1/2 ≤ P(Ntn ≥ µn),P(Ntn ≤ (1 − ε)

tn
τ

)
< 1/2 ≤ P(Ntn ≤ µn)

und erhalten damit: µn < (1 + ε)tn/τ und (1 − ε)tn/τ < µn.
Für α = 2 gilt mit Hilfe des zentralen Grenzwertsatzes:

∑n
i=1Ri

c1n1/2

d−→ N(0, 1),

so dass Satz A.2.4 analog zum Fall 0 < α < 2

Xtn

(tn/τ)
1/α c1

d−→ N(0, 1)

liefert.

Als nächstes betrachten wir den Fall, dass µ existiert, aber ungleich 0
ist. Wir befinden uns also in dem Fall, dass 1 < α ≤ 2 und µ 6= 0 gilt. Um
in diesem Fall die Grenzverteilung des CTRW zu bestimmen, müssen wir
mehr über das asymptotische Verhalten von Nt wissen:

2.3.2 Lemma (vgl. [Ko], 3.2, 786 und 788).
Sei Xt ein CTRW. Dann gilt

(2.12) P( Nt

tα′(c′2)
−α′

< r

)
−→
t→∞

Hα′(r), falls 0 < α′ < 1 ist,

(2.13) P( Nt − t/τ

t1/α
′

c′2τ
−(1+1/α′)

< r

)
−→
t→∞

Sα′,−1(r), falls 1 < α′ ≤ 2 ist,

(2.14) P( Nt − t/τ

t1/2c′1τ
−(1+1/2)

< r

)
−→
t→∞

N(0, 1)(r) für α′ = 2,

mit (c′1)
2 := Var T1 und c′2 := (b′/(α′Cα′))1/α

′

. Hα′ ist für α′ ∈ (0, 1) die in
(1.20) eingeführte inverse Standard-stabile Verteilung.

Beweis. Bevor wir mit dem Beweis beginnen, bemerken wir kurz, dass wir es
im Fall 1 < α′ ≤ 2 mit einer endlichen mittleren Wartezeit zu tun haben, und
dass τ im Fall 0 < α′ < 1 nicht existiert. Am Ende des Abschnitts 2.2 haben
wir die genaue Gestalt der Konstanten an und bn aus der Konvergenzaussage
2.2.2 bestimmt. Dies lässt sich völlig analog auch für die Konvergenzaussage
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2.2.3 durchführen. Diese Ergebnisse benutzen wir als Basis, um die obigen
Aussagen zu beweisen. Außerdem bezeichnen wir in diesem Beweis mit Sn
(n ∈ N) die n-te Partialsumme der Folge (Ti)i∈N.

Sei 0 < α′ < 1. Es gilt (nach dem Analogon zu (2.7)):

(c′2)
−1n−1/α′

Sn
d−→ Sα′,1 (n → ∞).

Betrachten wir die Wahrscheinlichkeit in (2.12) für r > 0:P( Nt

tα′(c′2)
−α′

< r

)
= P(Nt < rtα

′

(c′2)
−α′

)

= 1 − P(Nt ≥
⌈
rtα

′

(c′2)
−α′

⌉

︸ ︷︷ ︸
=:nt

)

= 1 − P( nt∑

i=1

Ti ≤ t

)

= 1 − P((c′2)−1n
−1/α′

t Snt ≤ (c′2)
−1n

−1/α′

t t
)
.

Weil

(c′2)
−1n

−1/α′

t t = (c′2)
−1

⌈
rtα

′

(c′2)
−α′

⌉−1/α′

(rtα′(c′2)
−α′)−1/α′

︸ ︷︷ ︸
−→
t→∞

1

(rtα
′

(c′2)
−α′

)−1/α′

t

−→
t→∞

(c′2)
−1r−1/α′

c′2 = r−1/α′

gilt, können wir aufgrund der Stetigkeit der Verteilungsfunktion Folgendes
schließen: P( Nt

tα′(c′2)
−α′

< r

)
−→
t→∞

1 − Sα′,1(r
−1/α′

) = Hα′(r).

Sei 1 < α′ < 2. Es liegt folgende Konvergenzaussage zu Grunde (nach
dem Analogon zu (2.8)):

(c′2)
−1n−1/α′

(Sn − nτ)
d−→ Sα′,1 (n→ ∞).

Dann gilt für r > 0:P( Nt − t/τ

t1/α
′

c′2τ
−(1+1/α′)

< r

)
= P(Nt < rt1/α

′

c′2τ
−(1+1/α′) + t/τ

)

= 1 − P(Nt ≥
⌈
rt1/α

′

c′2τ
−(1+1/α′) + t/τ

⌉

︸ ︷︷ ︸
=:mt

)
= 1 − P( mt∑

i=1

Ti ≤ t

)

= 1 − P((c′2)−1m
−1/α′

t (Smt −mtτ) ≤ (c′2)
−1m

−1/α′

t (t−mtτ)
)
.
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Betrachten wir (c′2)
−1m

−1/α′

t (t−mtτ) etwas genauer:

(c′2)
−1m

−1/α′

t (t−mtτ) = C (c′2)
−1
(
rt1/α

′

c′2τ
−(1+1/α′) + t/τ

)−1/α′

·
(
t−

(
rt1/α

′

c′2τ
−(1+1/α′) + t/τ

)
τ
)

für eine geeignete Konstante C. Weiter gilt:

(c′2)
−1m

−1/α′

t (t−mtτ) = C (c′2)
−1
(
rt1/α

′

c′2τ
−(1+1/α′) + t/τ

)−1/α′

·
(
−rt1/α′

c′2τ
−(1+1/α′)τ

)

= −C r
(
rt1/α

′

c′2τ
−(1+1/α′) + t/τ

t/τ

)−1/α′

= −C r
(

1 +
rt1/α

′

c′2τ
−(1+1/α′)

t/τ

)−1/α′

−→
t→∞

−r.

Weil die Verteilungsfunktion von Sα′,1 stetig ist, können wir folgern:P( Nt − t/τ

t1/α′c′2τ
−(1+1/α′)

< r

)
−→
t→∞

Sα′,1(−r) = Sα′,−1(r).

Sei α′ = 2. In diesem Fall ist ET 2
1 endlich und damit natürlich auch der

Erwartungswert von T1. Daher gilt nach dem zentralen Grenzwertsatz:

(c′1)
−1n−1/2(Sn − nτ)

d−→ N(0, 1).

Ab diesem Punkt können wir den Beweis des Falls 1 < α′ < 2 analog
übernehmen und erhalten damit die Behauptung.

Im Fall 0 < α′ < 1 konvergiert also die geeignet skalierte Verteilung von
Nt gegen eine inverse Standard-stabile Verteilung und im Fall 1 < α′ ≤ 2
gegen eine Standard-stabile Verteilung, wobei zusätzlich zentriert werden
musste. Mit diesem Wissen können wir nun den folgenden Satz beweisen:

2.3.3 Satz (vgl. [Ko], 3.2, 786-787).
Sei (Xt)t≥0 ein CTRW. Ist 1 < α ≤ 2 und existiert µ 6= 0, dann gilt
im Fall 1 < α′ ≤ 2

(2.15) P(Xt − (t/τ)µ

(t/τ)1/αc2
≤ r

)
−→
t→∞

Sα,β(r), falls α < α′ ≤ 2 ist,

(2.16) P( Xt/µ− t/τ

t1/α′c′2τ
−(1+1/α′)

< r

)
−→
t→∞

Sα′,−1(r), falls α′ < α ≤ 2 ist,
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(2.17) P(Xt − (t/τ)µ

(t/τ)1/2c3
≤ r

)
−→
t→∞

N(0, 1)(r), falls α = α′ = 2 ist,

(2.18) P(Xt − (t/τ)µ

(t/τ)1/αc4
≤ r

)
−→
t→∞

Sα,β1(r), falls α = α′ < 2 ist,

und im Fall 0 < α′ < 1

(2.19) P( Xt/µ

tα′(c′2)
−α′

< r

)
−→
t→∞

Hα′(r).

Dabei sind c2 = (b/(αCα))1/α, c′2 = (b′/(α′Cα′))1/α
′

und c23 := Var(R1 −
(µ/τ)T1). Weiter ist c4 so definiert wie c2 mit dem Unterschied, dass anstelle
von b der Größenkoeffizient von R1 − (µ/τ)T1 verwendet wird, und β1 ist
das Pendant zu β aus (2.3).

Beweis. Sei zunächst 1 < α′ ≤ 2. Betrachtet man die Zufallsgrößen Ri − µ
(i ∈ N) anstatt Ri (i ∈ N), so wird aus (2.2) Xt−Ntµ und damit aus (2.11)

(2.20) P(Xt −Ntµ

(t/τ)1/αc2
≤ r

)
−→
t→∞

Sα,β(r), falls 1 < α < 2 gilt,

und aus (2.10)

(2.21) P(Xt −Ntµ

(t/τ)1/2c1
≤ r

)
−→
t→∞

N(0, 1)(r), falls α = 2 gilt.

Dass wir (2.11) bzw. (2.10) hier benutzen können, liegt daran, dass die dafür
benötigten Voraussetzungen

(a) E(R1 − µ) = ER1 − Eµ = ER1 −ER1 = 0,

(b) τ <∞,

(c) E(R1 − µ)2 = ∞, da für 1 < α < 2 ER2
1 = ∞ ist,

bzw. E(R1 − µ)2 = ER2
1 − (ER1)

2 <∞, da für α = 2 ER2
1 <∞ ist,

erfüllt sind.

Sei α < α′ ≤ 2. Betrachten wir den zweiten Term auf der rechten Seite
in folgender Gleichung

Xt − (t/τ)µ

(t/τ)1/αc2
=
Xt −Ntµ

(t/τ)1/αc2
+ µ

Nt − t/τ

(t/τ)1/αc2
,
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so können wir zeigen, dass er in Wahrscheinlichkeit gegen 0 geht: Seien dazu
ε > 0 und α′ < 2. Dann gilt:

lim
t→∞

P(∣∣∣∣ Nt − t/τ

(t/τ)1/αc2

∣∣∣∣ > ε

)
= lim

t→∞
P( ∣∣∣∣Nt − t/τ

(t/τ)1/α′

∣∣∣∣ > ε |c2|
(
t

τ

)1/α−1/α′

︸ ︷︷ ︸
→∞

)

≤ lim
t→∞

P(∣∣∣∣Nt − t/τ

(t/τ)1/α′

∣∣∣∣ > K

)
∀ K > 0

=
(2.13)

1 − Sα′,−1(K) −→
K→∞

0.

Dieses Vorgehen verläuft für α′ = 2 völlig analog. Daher gilt, dass auch

Xt − (t/τ)µ

(t/τ)1/αc2
− Xt −Ntµ

(t/τ)1/αc2

P−→ 0

geht. Nun können wir den Satz von Slutsky (Satz 36.12 in [A]) auf (2.20)
anwenden und erhalten (2.15).

Sei α′ < α ≤ 2. Dieser Fall lässt sich analog behandeln. Wir benutzen
nur eine andere Ausgangsgleichung, nämlich

Xt − (t/τ)µ

µt1/α′c′2τ
−(1+1/α′)

=
Xt −Ntµ

µt1/α′c′2τ
−(1+1/α′)

+
Nt − t/τ

t1/α′c′2τ
−(1+1/α′)

,

wobei der erste Term auf der rechten Seite in Wahrscheinlichkeit gegen
0 geht. Um dies nachzuweisen, benutzt man (2.20) bzw. (2.21) und dass
1/α′ > 1/α gilt. Aussage (2.16) erhalten wir durch Anwendung des Satzes
von Slutsky auf (2.13).

Sei α = α′ = 2. Hier betrachten wir die Zufallsgrößen Ri − (µ/τ)Ti
(i ∈ N) anstelle von Ri (i ∈ N). Aus (2.2) wird in diesem Fall

Nt∑

i=0

(Ri − (µ/τ)Ti) = Xt −
µ

τ

Nt∑

i=0

Ti.

Da E(R1−(µ/τ)T1) = 0 und E(R1−(µ/τ)T1)
2 <∞ sind, können wir (2.10)

anwenden und erhaltenP(( t
τ

)−1/2

c−1
3

(
Xt −

µ

τ

Nt∑

i=0

Ti

)
≤ r

)
−→
t→∞

N(0, 1)(r)

mit c23 = Var(R1 − (µ/τ)T1). Mit τ(t) := inf{k ≥ 1 :
∑k

i=1 > t} und

Yt :=
∑Mt

i=1 Ti − t gilt nach Satz 4.1.3 (b) in [A2] (mit p=2 und q=1):E ∣∣∣∣∣t−1/2

(
t−

Nt∑

i=0

Ti

)∣∣∣∣∣ = E t−1/2
∣∣Tτ(t) − Yt

∣∣

≤ t−1/2E Tτ(t) + t−1/2EYt −→
t→∞

0,
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d.h. t−1/2(t −∑Nt
i=0 Ti) konvergiert in Wahrscheinlichkeit gegen 0. Daher

können wir erneut den Satz von Slutsky anwenden und in der vorherigen
Konvergenzaussage

∑Nt
i=0 Ti durch t ersetzen:P(Xt − (t/τ)µ

(t/τ)1/2c3
≤ r

)
−→
t→∞

N(0, 1)(r).

Sei α = α′ < 2. Auch hier betrachten wir die Zufallsgrößen Ri− (µ/τ)Ti
(i ∈ N) anstelle der Ri (i ∈ N). Es gilt zwar immer noch E(R1− (µ/τ)T1) =
0, aber wegen der Voraussetzung α = α′ < 2 ist E(R1 − (µ/τ)T1)

2 = ∞.
Daher können wir hier (2.11) anwenden und erhalten (2.18).

Betrachten wir nun den Fall 0 < α′ < 1. Nach dem Satz von Etemadi
(Satz 35.4 in [A]) gilt

(2.22) lim
t→∞

Xt/µ

Nt
= 1 f.s.,

weil (Ri)i∈N eine Folge unabhängiger, identisch verteilter Zufallsgrößen mitER1 = µ ist. Wenden wir die Aussage (2.22) in Gleichung (2.12) an, so
erhalten wir die Behauptung.

Abschließend betrachten wir den Fall, dass τ unendlich ist, d.h. α′ ∈
(0, 1) gilt, und α ∈ (0, 1)∪(1, 2] ist, wobei wir µ = 0 im Fall α > 1 annehmen.

2.3.4 Satz (vgl. [Ko], 3.3, 789).
Sei (Xt)t≥0 ein ungekoppelter CTRW. Dann gilt für 0 < α < 2

(2.23) P( Xt

tα
′/αc2(c

′
2)

−α′/α
≤ r

)
−→
t→∞

∫ ∞

0
Sα,β

(
rx−1/α

)
Hα′(dx)

und für α = 2

(2.24) P( √
2Xt

tα′/2c1(c′2)
−α′/2

≤ r

)
−→
t→∞

∫ ∞

0
S2,β

(
rx−1/2

)
Hα′(dx)

mit β ∈ [−1, 1] und 0 < α′ < 1. Dabei sind c21 = VarR1, c2 = (b/(αCα))1/α

und c′2 = (b′/(α′Cα′))1/α
′

wie zuvor definiert.

Beweis. Weil die Xi, i ∈ N, unabhängig und identisch verteilt sind und zu-
dem von den Ti, i ∈ N, unabhängig sind, sind die Voraussetzungen des Lem-
mas A.2.5, das eine viel allgemeinere Situation zu Grunde legt, offensichtlich
erfüllt. Nun wissen wir aus (2.12), dass es eine Funktion h(t) := tα

′

(c′2)
−α′

(α′ ∈ (0, 1), h(t) → ∞) mit konstantem – also langsam variierendem – Anteil
(c′2)

−α′

= α′Cα′/b′ gibt, so dassP( Nt

h(t)
< r

)
−→
t→∞

Hα′(r)
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gilt, und aus (2.7), (2.8) und (2.9) wissen wir, dass

∑n
i=1Ri

c2n1/α

d−→ Sα,β

gilt, so dass uns das Lemma A.2.5P( Xt

tα
′/αc2(c

′
2)

−α′/α
≤ r

)
−→
t→∞

∫ ∞

0
Sα,β(rx

−1/α)Hα′(dx)

liefert.
Für α = 2 gilt mit Hilfe des zentralen Grenzwertsatzes:

√
2

∑n
i=1Ri

c1n1/2

d−→ N(0, 2) = S2,0,

so dass wir in diesem Fall aus Lemma A.2.5P( √
2Xt

tα′/2c1(c′2)
−α′/2

≤ r

)
−→
t→∞

∫ ∞

0
S2,0(rx

−1/2)Hα′(dx)

erhalten.

Für einen gekoppelten CTRW lassen sich leider keine allgemein gülti-
gen Aussagen machen. Daher geben wir zum Abschluss nur ein Beispiel an,
bei dem tatsächlich verschiedene Grenzverteilungen im ungekoppelten bzw.
gekoppelten Fall auftreten.

2.3.5 Beispiele (vgl. [Ko], 3.3, 790).
Es seien (Xt)t≥0 ein CTRW und 0 < α < 1.

(a) Ist (Xt)t≥0 ein ungekoppelter CTRW mit Ri
d
= Ti für alle i ∈ N, so

gilt:

(2.25) P(Xt

t
≤ r

)
−→
t→∞

∫ ∞

0
Sα,1(rx)Sα,1(dx).

(b) Ist (Xt)t≥0 ein gekoppelter CTRW mit Ri = Ti für alle i ∈ N, so gilt:P(Xt

t
≤ r

)
−→
t→∞

Arcsin(1 − α)(r).

Arcsin(ϑ) ist die sogenannte Arkussinus-Verteilung, die auf das Inter-
vall (0, 1) konzentriert und durch die Wahrscheinlichkeitsdichte

qϑ(x) =
sinπϑ

π
x−ϑ(1 − x)ϑ−11(0,1)(x)

für 0 < ϑ < 1 bestimmt ist.
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Begründung. Zu (a): Sei Xt ein ungekoppelter CTRW mit Ri
d
= Ti für alle

i ∈ N. Dann muss α = α′ und β = 1 gelten und aus Formel (2.23) wirdP(Xt

t
≤ r

)
−→
t→∞

∫ ∞

0
Sα,1

(
rx−1/α

)
Hα(dx),

was äquivalent zur behaupteten Gleichung (2.25) ist: Es seien X,Y stochas-
tisch unabhängige und identisch verteilte Zufallsgrößen mit Y ∼ Sα,1. Aus
Kapitel 1 wissen wir, dass dann Y −α ∼ Hα gilt. Sei r > 0, dann gilt einerseitsP(X

Y
≤ r

)
= E(P(X

Y
≤ r

∣∣∣∣Y
))

=

∫ P(X
y

≤ r

)PY (dy)

=

∫
Sα,1 (ry)Sα,1(dy)

und andererseitsP(X
Y

≤ r

)
= E(P(X

Y
≤ r

∣∣∣∣Y
−α
))

=

∫
Sα,1

(
ry−1/α

)
Hα(dy).

Zu (b): Sei Xt ein gekoppelter CTRW mit Ri = Ti für alle i ∈ N. Aus der
Grundvoraussetzung wissen wir, dass 1−G(x) ∼ x−α

′

b′/α′ ist. Daher können
wir Satz A.2.7 anwenden und dieser liefert eine Zufallsgröße Yt := t − Xt,
für die

Yt
t

d−→ Arcsin(α) (t → ∞)

gilt, was uns direkt die Behauptung liefert:

Xt

t
= 1 − Yt

t

d−→ Arcsin(1 − α) (t → ∞).





Kapitel 3

Eine Anwendung in der
Theoretischen Chemie

In diesem Abschnitt geht es darum, ein Beispiel für einen CTRW anzugeben.
Dabei soll kein Beispiel angegeben werden, das in einem mathematischen
Fachbuch steht, sondern ein Beispiel aus der Chemie. Dazu haben Mareike
Assink, die ihre Diplomarbeit mit dem Titel

”
Grenzwertsätze für mehrdi-

mensionale Random Walks in stetiger Zeit“ ebenfalls bei Herrn Alsmeyer
geschrieben hat, und ich in Partnerarbeit ein Projekt im Bereich Theore-
tische Chemie durchgeführt. Herr Prof. Dr. Heuer hat uns in seinem Ar-
beitskreis einen Arbeitsplatz zur Verfügung und seine Assistentin, Frau Dr.
Aimorn Saksaengwijit, als Betreuerin bei der Durchführung des Projekts zur
Seite gestellt. Dabei haben wir mit Hilfe bereits geschriebener Computerpro-
gramme ein Glas simuliert und die Bewegung der einzelnen Atome bei einer
bestimmten Temperatur über einen gewissen Zeitraum beobachtet. Durch
eine geeignete Diskretisierung konnten wir nachweisen, dass es sich bei der
Bewegung um einen CTRW handelt.

Weil der Bereich Theoretische Chemie nicht sehr bekannt ist, werde ich
kurz die historische Namensgebung erläutern und grob beschreiben, womit
sich dieser Teilbereich der Chemie beschäftigt. Anschließend folgt ein Ab-
schnitt über

”
Glas“. Was genau versteht man unter Glas? Wie verhält sich

Glas?

3.1 Theoretische Chemie1

Ursprünglich fasste man mit dem Begriff
”
Theoretische Chemie“ den Lehr-

stoff zusammen, der nicht zur experimentellen Chemie gehörte. Später wur-
de dann das heute

”
Physikalische Chemie“ genannte Teilgebiet der Che-

mie so bezeichnet. Die Theoretische Chemie versteht sich heute vereinzelt

1Vgl. [R], Theoretische Chemie.

59



60 Kapitel 3. Eine Anwendung in der Theoretischen Chemie

als Teilgebiet der Physikalischen Chemie, häufiger jedoch als selbständiges
Wissensgebiet. Im universitären Bereich ist es nahezu ebenbürtig mit den
Teilgebieten Anorganische, Organische, Physikalische Chemie und Bioche-
mie.

Als ersten Grundpfeiler der Theoretischen Chemie kann man die Ther-
modynamik und die statistische Mechanik betrachten und als den zweiten
Grundpfeiler die Quantenmechanik, die im Allgemeinen als der wichtige-
re angesehen wird. Die moderne Theoretische Chemie entwickelte sich aber
nicht ausschließlich aus diesen Theorien, sie wurde auch stark durch empi-
rische Befunde aus der chemischen Forschung beeinflusst.

Das Teilgebiet der Theoretischen Chemie, das sich mit der Anwendung
der Quantenmechanik auf Fragen der Chemie beschäftigt, wird Quantenche-
mie genannt. Neben der theoretischen Untersuchung der Eigenschaften und
Wechselwirkungen von Atomen und Molekülen behandelt die Quantenche-
mie auch ihre Dynamik. Häufig wird hierbei auch die klassische Mechanik
verwendet, z.B. in Form der Newtonschen Bewegungsgleichungen. Durch
Verknüpfung der Resultate quantenchemischer Berechnungen (Potentialhy-
perflächen und Energiezustände) mit Methoden der statistischen Mechanik
lassen sich kinetische Größen berechnen, insbesondere Reaktionsgeschwin-
digkeitskonstanten in Abhängigkeit von Energie und Drehimpuls.

Viele Fortschritte der Theoretischen Chemie wurden aber erst durch die
Entwicklung der elektronischen Datenverarbeitung ermöglicht.

3.2 Glas2

Unter Glas versteht man Stoffe, die sich im sogenannten glasartigen Zustand
befinden, d.h., in denen nur kleinste Bereiche kristallin geordnet sind. Der
Glaszustand läßt sich als eingefrorene, unterkühlte Flüssigkeit bzw. Schmel-
ze auffassen, wobei man mit Schmelze einen im geschmolzenen Zustand be-
findlichen Stoff bezeichnet, der unter Normalbedingungen fest ist. Bei hinrei-
chend großer Abkühlgeschwindigkeit einer Schmelze oder bei der Kondensa-
tion von Molekülen aus der Dampfphase auf extrem gekühlte Substrate lässt
sich praktisch jeder Stoff in den Glaszustand überführen. Die Temperatur
des Einfriervorgangs wird dabei zur Charakterisierung der Gläser herangezo-
gen. Sie wird Glastemperatur oder Transformationstemperatur genannt und
mit Tg bezeichnet. Bei der Transformationstemperatur Tg haben die Gläser
eine Viskosität von ca. 1012 Pas und sind damit als

”
fest“ anzusehen. Unter-

halb der Temperatur Tg verhalten sich Gläser wie spröd-elastische Körper;
oberhalb der Temperatur Tg erweicht Glas mit zunehmender Temperatur je
nach Zusammensetzung mehr oder weniger stark und nimmt erst bei hohen
Temperaturen Flüssigkeitsverhalten mit niedrigen Viskositäten (< 102 Pas)
an.

2Vgl. [R], Glas.
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Hauptrohstoffe für die Herstellung von Glas sind Quarz(sand), Soda (So-
da ist der historische Name für Natriumcarbonat (Na2CO3)) und Kalkstein,
Marmor oder Kalkmergel. Die Korngröße soll dabei möglichst einheitlich sein
und im Größenbereich von 0, 5−0, 05 mm liegen, um ein möglichst homoge-
nes Gemenge zu erreichen. Einen weiteren wichtigen Rohstoff bildet Altglas.
Weil Glas nahezu unbegrenzt wiederverwendet werden kann, wird schon im-
mer der bei der Produktion anfallende Glasabfall in den Herstellungsprozess
zurückgeführt. Man fand sogar heraus, dass der Zusatz bestimmter Mengen
gemahlener Scherben zum Rohstoffgemenge das Schmelzverhalten optimiert.

3.3 Simulationen

Die Grundlage für unsere Arbeit ist ein Programm, das uns vom AK Heuer
zur Verfügung gestellt wurde. Genauer gesagt, wurde es ursprünglich von Dr.
Jens Reinisch geschrieben und von Dr. Aimorn Saksaengwijit überarbeitet
und erweitert.

Dieses Programm simuliert die Bewegung der Atome eines Glases. Dazu
betrachtet man einen virtuellen Würfel der Kantenlänge l, in den so viele
Teilchen, wie man betrachten möchte, zufällig platziert werden, wobei die
Bedingung besteht, dass jedem Platz höchstens ein Teilchen zugeordnet wer-
den darf. In unserem Fall hat sich herausgestellt, dass 65 Teilchen ausreichen,
um das Glas hinreichend gut zu simulieren. Bei einer geringeren Teilchen-
anzahl wiesen charakteristische Graphen eine starke Abweichung gegenüber
den Graphen auf, bei denen mit 65, 195 oder 1000 Teilchen simuliert wurde.
xi(t) ∈ [−l/2, l/2]3, i ∈ {1, . . . , 65}, bezeichne nun den Ort, an dem sich das
i-te Teilchen zum Zeitpunkt t befindet. Den Ort, an dem sich dieses Teilchen
zur Zeit t+ ∆t aufhält,

xi(t+ ∆t) = xi(t) + y,

erhält man aus der vorherigen Lage xi(t) und einer Verschiebung y, die
mit Hilfe des Potentials berechnet wird. Für unsere Arbeit wurde dafür das
sogenannte Soft-Spheres-Potential

(3.1) Vi,j(t) =

(
1

xi,j(t)

)n

mit

xi,j(t) :=
√

(xi(t) − xj(t))2, i, j ∈ {1, . . . , 65}, i 6= j,

verwendet, das die potentielle Energie zwischen den Teilchen i und j zum
Zeitpunkt t bestimmt.

Es ist natürlich leicht möglich, dass sich ein Teilchen aus dem Würfel
herausbewegt. Damit trotzdem die Anzahl der Teilchen im Würfel immer
gleich bleibt, wurden periodische Randbedingungen eingeführt: Bewegt sich
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zum Beispiel ein Teilchen im rechten Winkel durch eine Wand des Würfels, so
lässt man ein neues Teilchen im rechten Winkel durch die gegenüberliegende
Wand wieder in den Würfel eintreten. Die periodischen Randbedingungen
sind die Erweiterung dieser Eigenschaft auf alle Punkte der Oberfläche des
Würfels und alle möglichen Austrittswinkel.

Von der Betrachtung der einzelnen Teilchen kann man dazu übergehen,
das Gesamtsystem zu betrachten. Die Energie des Gesamtsystems zum Zeit-
punkt t lässt sich wie folgt berechnen:
(3.2)

Vges(x(t)) =
∑

i,j∈{1,...,65},
i<j

Vi,j(t) mit x(t) = (x1(t), . . . , x65(t)) ∈
[
− l

2
,
l

2

]3·65
.

Man kennt nun zu einem Zeitpunkt t sowohl die Position x(t) als auch die
Energie Vges(x(t)) des Gesamtsystems. Diese Daten kann man gegeneinan-
der auftragen. Der entstehende Graph wird potentielle Energielandschaft
genannt. Wie ein solcher Graph aussehen kann, sieht man anhand einer bei-
spielhaften Auftragung in Abbildung 3.1:

Abbildung 3.1: Auftragung von Vges(x(t)) gegen x(t): beispielhaftes Ausse-
hen einer potentiellen Energielandschaft

Um besser zu verstehen, wie sich das Gesamtsystem verhält, kann man
sich einen dreidimensionalen Raum vorstellen. Die Punkte der x-y-Ebene
stellen alle Positionen dar, die das Gesamtsystem annehmen könnte. Auf
der z-Achse werden dann die zugehörigen potentiellen Energien aufgetragen,
die mit Hilfe der Gleichungen (3.1) und (3.2) berechnet wurden. Dadurch
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entsteht in dem Raum eine
”
Hügellandschaft“. Einen Ausschnitt aus einer

solchen beispielhaften Landschaft zeigt Abbildung 3.2:

Abbildung 3.2: Ausschnitt aus einer beispielhaften
”
Hügellandschaft“ (Sicht

”
von oben“ mit Höhenlinien; Kreuze kennzeichnen Minima)

Der Weg, den das Gesamtsystem durch diese Landschaft zurücklegt,
könnte dann wie in der folgenden Abbildung 3.3 aussehen:

Abbildung 3.3: Beispielhafter Weg des Gesamtsystems durch eine
”
Hügel-

landschaft“

Es hat sich gezeigt, dass sich das Gesamtsystem überwiegend in der Nähe
der Minima aufhält und nur kurz hohe Energiewerte annimmt. Aufgrund die-
ser Erkenntnis ist man dazu übergegangen, die Bewegung des Gesamtsys-
tems vereinfacht zu betrachten. Dazu diskretisiert man die Hügellandschaft,
indem man nach einem bestimmten Verfahren Linien zwischen den Minima
festlegt, wie in Abbildung 3.2 beispielhaft zu sehen ist. Das Gesamtsystem
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nimmt nun nicht mehr alle Energiewerte an, sondern ihm wird innerhalb ei-
nes Gebietes der Energiewert des zugehörigen Minimums zugeordnet. Über-
schreitet es eine der Linien, ordnet man ihm die nächste Minimumenergie
zu.

Trägt man nach dieser Vereinfachung die Gesamtenergie gegen die Zeit
auf, erhält man ein Bild wie in Abbildung 3.4:

Abbildung 3.4: Auftragung der Minimaenergien gegen die Zeit

Man sieht dort sehr schön, dass es trotz der Vereinfachung noch zu star-
ken Fluktuationen kommt, so dass es schwierig ist, irgendwelche Aussagen
über die Bewegung zu treffen. Deshalb ist man dazu übergegangen, Mi-
nimumgebiete nach einem bestimmten Prinzip zu sogenannten Metabass-
ins zusammenzufassen. Dies geschieht folgendermaßen: Nummeriert man
die Minimumgebiete durch, legt das Gesamtsystem beispielsweise folgende
Strecke zurück:

1 − 2 − 3 − 2 − 3 − 4 − 6 − 3 − 5 − 2 − 1.

Nach der Theorie der Metabassins hätte sich das Gesamtsystem während
dieses Zeitabschnitts ausschließlich im Metabassin 1 aufgehalten. Betrachten
wir ein weiteres Beispiel:

1 − 3 − 2 − 4 − 1 − 2 − 3 − 4 − 5 − 3 − 2 − 4 − 5 − 6 − 4 − 6 − 7 − 4.

Hier hätte sich das Gesamtsystem zunächst im Metabassin 1 aufgehalten,
dann wäre es ins Metabassin 2 und danach ins Metabassin 4 gewechselt, wo
es bis zum Ende bleibt. Bei der Anwendung der Metabassin-Theorie hält
man also das erste Minimumgebiet (bezeichnen wir es mit A), in dem sich
das Gesamtsystem aufhält, fest und schaut, ob das System noch ein oder
mehrere Male hierher zurückkehrt. Unter Metabassin A werden nun all die
Minimumgebiete zusammengefasst, in denen sich das Gesamtsystem in der
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Zeit der ersten Begegnung mit dem Minimumgebiet A bis zur letzten Be-
gegnung mit dem Minimumgebiet A aufgehalten hat. Danach hält man das
nächste Minimumgebiet fest und schaut, ob das Gesamtsystem noch einmal
dorthin zurückkehrt, usw. Führt man dieses Verfahren an der kompletten
Beobachtungsreihe durch, erhält man eine völlig andere Art der Bewegung.
Das Gesamtsystem hält sich eine bestimmte Zeit in einem Metabassin auf
und

”
springt“ dann ins nächste Metabassin, usw.

An dieser Stelle kommt der CTRW ins Spiel. Allerdings haben wir es hier
nicht mit einem eindimensionalen CTRW zu tun, wie wir ihn in Kapitel 2
eingeführt haben, sondern mit einem mehrdimensionen CTRW. Daher geben
wir zunächst die Definition eines d-dimensionalen CTRW an:

3.3.1 Definition.
Es seien (Ti)i∈N, (Yi)i∈N Folgen unabhängiger, identisch verteilter Zufallsva-
riablen mit Werten in R+

0 bzw. Rd. Weiter werde angenommen, dass (Ti)i∈N
und (Yi)i∈N voneinander unabhängig seien und T0 = Y0 = 0 gelte. Dann wird
der stochastische Prozess (Xt)t≥0, der definiert ist durch

(3.3) Xt =

Nt∑

i=1

Yi,

wobei Nt wie in (2.1) definiert ist, d-dimensionaler Random Walk in stetiger
Zeit, kurz d-dimensionaler CTRW, genannt.

Wir haben uns die Position des Gesamtsystems im Minimum jedes Me-
tabassins und die Aufenthaltslänge des Gesamtsystems in jedem Metabas-
sin ausgeben lassen und als Realisierungen der obigen Zufallsvariablen Yi,
i ∈ {1, . . . ,M} (M sei hierbei die Anzahl der Metabassins), bzw. Ti, i ∈
{1, . . . ,M}, aus der obigen Definition 3.3.1 interpretiert. Damit der aus
diesen Zufallsvariablen nach obiger Gleichung (3.3) entstehende stochas-
tische Prozess ein (3 · 65)-dimensionaler CTRW ist, sind die geforderten
Unabhängigkeitsbedingungen zu prüfen. Bei unseren Studien haben wir uns
auf den stochastischen Prozess (X̂t)t≥0, der durch

X̂t =

Nt∑

i=1

Di

mit Nt wie in (2.1) und einer Folge reellwertiger Zufallsgrößen Di, i ∈
{1, . . . ,M} gegeben ist, beschränkt und für diesen eindimensionalen CTRW
die geforderten Unabhängigkeiten geprüft. Di, i ∈ {1, . . . ,M}, bezeichnet
dabei die effektive Strecke, die das Gesamtsystem vom (i− 1)-ten Metabas-
sin zum i-ten Metabassin zurückgelegt hat, wobei wir D1 erhalten haben,
indem wir die Strecke von einem fiktiven Nullpunkt zum ersten Metabassin
berechnet haben. Mittels selbstgeschriebener Computerprogramme haben
wir die Korrelation zwischen den Zufallsgrößen betrachtet: Zuerst haben
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wir uns die Korrelation zwischen den Zufallsvektoren D = (D1, . . . ,DM )
und T = (T1, . . . , TM ) angesehen, indem wir den Korrelationskoeffizienten

ρ(D,T ) =
Kov(D,T )

(VarD)1/2(Var T )1/2

berechnet haben. Unser Programm errechnete ρ(D,T ) = 0, 0424259. Um die
Korrelation der Di, i ∈ {1, . . . ,M}, bzw. Ti, i ∈ {1, . . . ,M}, betrachten zu
können, haben wir mit einer leichten Variation dieser Formel gearbeitet:

ρm(logD) =
(M −m)−1

∑M−m
i=1 ((logDi+m −E logD)(logDi − E logD))E(logD − E logD)2

,

wobei m ∈ N beliebig wählbar ist und logD := (logD1, . . . , logDM ). In
Abbildung 3.5 ist ρm(logD) gegen m aufgetragen:

0 10 20 30 40 50
0

0,2

0,4

0,6

0,8

1

Korrelation log(D_i)
N=65 T=1.05

Abbildung 3.5: Korrelationsabbildung der Folge logDi, i ∈ {1, . . . ,M}, für
1 ≤ m ≤ 50

Hier erkennt man, dass der Graph für m = 3 kleiner als 0, 1 ist und
für m = 2 erst knapp den Wert 0, 1 überschritten hat. Dies spricht dafür,
dass die Folge Di, i ∈ {1, . . . ,M}, unkorreliert ist. Für die Folge Ti, i ∈
{1, . . . ,M}, haben wir durch analoges Vorgehen einen sehr ähnlichen Gra-
phen erhalten, so dass wir zu dem Schluss kommen können, dass es sich bei
dem stochastischen Prozess (X̂t)t≥0 um einen eindimensionalen CTRW han-
delt. Dies ist ein Indiz dafür, dass (Xt)t≥0 ein (3 · 65)-dimensionaler CTRW
ist.

Genauere Informationen über die Durchführung der Simulationen und
über die Theorie der Metabassins finden sich in dem Werk

”
The Dynamics

of a Small Model Glass Former as Viewed from Its Potential Energy Lands-
cape“ von B. Doliwa ([Do]). Zum Abschluss möchte ich den Artikel

”
The
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potential energy landscape of glass-forming systems - What do we learn
about the dynamics?“ von Prof. Dr. Heuer erwähnen, der in Kürze in der
Zeitschrift Journal of Physics: Condensed Matter (topical review) erscheinen
wird. Ein Teil dieses Artikels beschäftigt sich mit dem Soft-Spheres-System
und enthält die Ergebnisse unserer Simulationen, die aus chemischer Sicht
sehr interessant sind, aber den Rahmen dieser Arbeit sprengen würden.





Anhang A

Hilfsergebnisse

Hier sind die Sätze, Lemmata und Definitionen aufgeführt, die in den Kapi-
teln 1 und 2 benutzt wurden, aber nicht sinnvoll integriert werden konnten.
Wir werden allerdings nicht all diese Sätze und Lemmata beweisen. Ana-
lytische Hilfsmittel und bekannte Ergebnisse, deren Beweise innerhalb der
Vorlesungen vorgetragen wurden, werden ohne Beweis angegeben. Ebenso
wie Aussagen, deren Beweise sich auf zahlreiche Ergebnisse anderer Theorien
beziehen. Es wäre zu umfangreich und daher nicht sinnvoll, solche Beweise
im Anhang einer Diplomarbeit zu präsentieren.

Dieses Kapitel ist eine Ansammlung verschiedenster Aussagen, die nur
in einigen, wenigen Fällen einen direkten Zusammenhang haben. Der Über-
sichtlichkeit halber sind deshalb die Ergebnisse danach sortiert, ob sie im ers-
ten oder zweiten Kapitel benutzt werden und zu welcher Theorie sie gehören.

A.1 Ergebnisse für Kapitel 1

A.1.1 Lemma (vgl. [Fe1], V.5, Lemma 2).
Wenn die Zufallsgrößen X1, . . . ,Xn unabhängig sind und symmetrische Ver-
teilungen besitzen, dann hat auch Sn = X1 + . . . + Xn eine symmetrische
Verteilung und es giltP(|Sn| > t) ≥ 1

2
P(max

1≤i≤n
|Xi| > t

)
.

Beweis. Seien τ := inf{k ∈ {1, . . . , n} : |Xk| = max1≤i≤n |Xi|} und M :=
Xτ sowie T := Sn−M . Das Paar (M,T ) ist in dem Sinne symmetrisch ver-
teilt, dass die vier Kombinationen (±M,±T ) dieselbe Verteilung besitzen,
was sich leicht aus der Unabhängigkeit und der symmetrischen Verteilung
der Xi, 1 ≤ i ≤ n, ergibt. Es gilt:P(M > t) ≤ P(M > t, T ≥ 0) +P(M > t, T ≤ 0).

69
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Da die beiden Wahrscheinlichkeiten auf der rechten Seite gleich sind, erhal-
ten wir: P(|Sn| > t) ≥ P(Sn > t) = P(M + T > t)

≥ P(M > t, T ≥ 0) ≥ 1

2
P(M > t),

womit wir die Behauptung bewiesen haben.

A.1.2 Lemma (vgl. [Fe2], V.5, Lemma 1).
Wenn X1 und X2 unabhängig und identisch verteilt sind, gilt für t > 0

(A.1) P(|X1 −X2| > t) ≤ 2P(|X1| > t/2).

Wenn a ≥ 0 so gewählt ist, dass P(Xi ≥ a) ≤ 1−p und P(Xi ≤ −a) ≤ 1−p
gilt, ist

(A.2) P(|X1 −X2| ≥ t) ≥ p P(|X1| > t+ a).

Beweis. Zu (A.1):P(|X1 −X2| > t) ≤ P(|X1| > t/2 oder |X2| > t/2)

≤ P (|X1| > t/2) + P (|X2| > t/2) = 2 P (|X1| > t/2) .

Zu (A.2): Sei a ≥ 0 so gewählt, dass P(Xi ≥ a) ≤ 1 − p und P(Xi ≤ −a) ≤
1 − p gilt. Dann istP(|X1 −X2| ≥ t) ≥ P(X1 ≥ t+ a,X2 < a)

+ P(X1 ≤ −(t+ a),X2 > −a)
= P (X1 ≥ t+ a)P(X2 < a)

+ P (X1 ≤ −(t+ a))P(X2 > −a)
≥ p (P (X1 ≥ t+ a) + P (X1 ≤ −(t+ a)))

= p P(|X1| ≥ t+ a).

A.1.3 Satz (vgl. [Br], 9.5, Theorem 9.17).
X hat eine unendlich teilbare Verteilung, wenn Konstanten β ∈ R, σ2 ≥ 0
und ein endliches Maß ν auf R∗ existieren, so dass seine charakteristische
Funktion φ von der Gestalt

(A.3) log φ(t) = iβt− σ2t2

2
+

∫ (
eitx − 1 − itx

1 + x2

)
1 + x2

x2
ν(dx)

ist. Umgekehrt ist eine charakteristische Funktion einer solchen Gestalt die
charakteristische Funktion einer unendlich teilbaren Verteilung.
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A.1.4 Satz.
Die Parameter β, σ2 und ν der obigen Darstellung (A.3) einer unendlich
teilbaren Verteilung sind eindeutig bestimmt.

Der folgende Beweis verläuft analog zum Beweis der Eindeutigkeit der
Parameter der Lévy-Khintchine-Darstellung aus Satz 48.9 in [A].

Beweis. Es sei vorausgesetzt, dass der Logarithmus der charakteristischen
Funktion φ einer unendlich teilbaren Verteilung R von der Gestalt (A.3) sei.
Nehmen wir nun an, dass außerdem

log φ(t) = iξt− τ2t2

2
+

∫ (
eitx − 1 − itx

1 + x2

)
1 + x2

x2
µ(dx)

mit ξ ∈ R, τ2 ≥ 0 und einem endlichen Maß µ auf R∗ gilt. Dann erhalten
wir folgende Gleichung
(A.4)

i(β − ξ)t− (σ2 − τ2)t2

2
+

∫ (
eitx − 1 − itx

1 + x2

)
1 + x2

x2
(ν − µ)(dx) = 0

für alle t ∈ R. Betrachten wir zunächst nur den Realteil, so erhalten wir für
t 6= 0:

2

∫
(cos tx− 1)

1 + x2

t2x2
(ν − µ)(dx) = σ2 − τ2.

Weil

∣∣∣∣
∫

(cos tx− 1)
1 + x2

t2x2
(ν − µ)(dx)

∣∣∣∣ ≤
1

t2

∫
|1 − cos tx|

∣∣∣∣
1 + x2

x2

∣∣∣∣ (ν + µ)(dx)

ist und wir (1.15) und (1.16) bereits bewiesen haben, können wir den Satz
von der majorisierten Konvergenz (vgl. [E], IV.5.2) anwenden und erhalten:

lim
t→∞

2

∫
(cos(tx) − 1)

1 + x2

t2x2
(ν − µ)(dx) = 0.

Daher muss σ2 = τ2 gelten.

Als nächstes wollen wir mit Hilfe des Satzes von Fubini zeigen, dass die
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beiden Maße ν und µ übereinstimmen:

0 =
1

2

∫ u+1

u−1

(
i(β − ξ)t+

∫ (
eitx − 1 − itx

1 + x2

)
1 + x2

x2
(ν − µ)(dx)

)

︸ ︷︷ ︸
=0 nach (A.4)

dt

−
(
i(β − ξ)u+

∫ (
eiux − 1 − iux

1 + x2

)
1 + x2

x2
(ν − µ)(dx)

︸ ︷︷ ︸
=0 nach (A.4)

)

=
1

2

∫ ∫ u+1

u−1

(
eitx − 1 − itx

1 + x2

)
1 + x2

x2
dt (ν − µ)(dx)

−
∫ (

eiux − 1 − iux

1 + x2

)
1 + x2

x2
(ν − µ)(dx)

=

∫ (
eiux

1

2ix
(eix − e−ix) − 1 − iux

1 + x2

)
1 + x2

x2
(ν − µ)(dx)

−
∫ (

eiux − 1 − iux

1 + x2

)
1 + x2

x2
(ν − µ)(dx)

=

∫ (
eiux

sinx

x
− 1 − iux

1 + x2

)
1 + x2

x2
(ν − µ)(dx)

−
∫ (

eiux − 1 − iux

1 + x2

)
1 + x2

x2
(ν − µ)(dx)

=

∫
eiux

(
sinx

x
− 1

)
1 + x2

x2
(ν − µ)(dx).

Da die Maße ν̃(dx) := (1− sinx
x )1+x2

x2 ν(dx) und µ̃(dx) := (1− sinx
x )1+x2

x2 µ(dx)
endlich sind, was wir gleich zeigen werden, folgt nach dem Eindeutigkeitssatz
für Fourier-Transformierte ihre Gleichheit. Und da 1 − sinx

x auf ganz R∗

positiv ist, folgt:

dν

dν̃
(x) =

(
1 − sinx

x

)−1 1R∗(x) =
dµ

dµ̃
(x),

d.h. ν = µ.

Zeigen wir nun, dass die Maße ν̃ und µ̃ endlich sind: Wir wissen, dass ν
und µ endliche Maße mit ν({0}) = 0 = µ({0}) sind. Außerdem gelten:

0 ≤ 1 − sinx

x
≤ 2 für alle x ∈ R∗ und

1 + x2

x2
≤ 2 für alle |x| ≥ 1.

Demnach ist die Funktion x 7→ (1 − sinx
x )1+x2

x2 für alle |x| ≥ 1 beschränkt.
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Sei |x| ≤ 1. Dann gilt:

∣∣∣∣
(

1 − sinx

x

)
1 + x2

x2

∣∣∣∣ ≤ 2

∣∣∣∣
1

x2

∣∣∣∣
∣∣∣∣1 − sinx

x

∣∣∣∣

= 2

∣∣∣∣
1

x2

∣∣∣∣

∣∣∣∣∣∣
1 − 1

x

∑

k≥0

(−1)kx2k+1

(2k + 1)!

∣∣∣∣∣∣

= 2

∣∣∣∣
1

x2

∣∣∣∣

∣∣∣∣∣∣
1

x

∑

k≥1

(−1)k−1x2k+1

(2k + 1)!

∣∣∣∣∣∣

≤ 2
∑

k≥0

|x|2k
(2k + 3)!

≤ 2e|x| ≤ 2e.

Setzt man in (A.4) σ2 = τ2 und ν = µ, so erhält man auch die Gleichheit
von β und ξ.

A.1.5 Lemma (vgl. [Br], 10.2, Riemann-Lebesgue Lemma).
Ist f(x) B1-messbar und ist

∫
|f(x)| dx endlich, dann gilt

lim
t→±∞

∫
eitxf(x) dx = 0.

A.1.6 Lemma (vgl. [Fe2], VIII.2, Lemma 1).
F und G seien nichtdegenerierte Wahrscheinlichkeitsverteilungen. Wenn für
eine Folge (Fn)n∈N von Wahrscheinlichkeitsverteilungen und Konstanten
an > 0, αn > 0 und bn, βn ∈ R
(A.5) Fn(anx+ bn) −→

n→∞
F (x), Fn(αnx+ βn) −→

n→∞
G(x)

für alle x ∈ C(F )∩ C(G) gilt, gibt es Konstanten A > 0 und B ∈ R, so dass

(A.6) G(x) = F (Ax+B)

und

(A.7)
αn
an

−→
n→∞

A,
βn − bn
an

−→
n→∞

B.

Gilt umgekehrt (A.7), so implizieren sich die beiden Aussagen in (A.5) ge-
genseitig und auch (A.6) ist gültig.

Beweis. Es gelte (A.7). Seien x > 0, y := Ax+B und ε > 0. Dann ist

an(y − ε) + bn = anAx+ anB + bn − anε.

Aus (A.7) folgt, dass ein n0 ∈ N existiert, so dass für alle n ≥ n0
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(i) anA < αn + anε/(2x) und anA > αn − anε/(2x),

(ii) anB + bn < βn + anε/2 und anB + bn > βn − anε/2

gelten. Damit ist

anAx+ anB + bn − anε < αnx+ anε/2 + βn + anε/2 − anε

= αnx+ βn

< (anA+ anε/(2x))x + (anB + bn + anε/2)

= anAx+ anε+ anB + bn

= an(y + ε) + bn

und daher gilt für alle n ≥ n0:

Fn(an(y − ε) + bn) ≤ Fn(αnx+ βn) ≤ Fn(an(y + ε) + bn).

Aus dieser Ungleichung wollen wir nun folgern, dass sich die Aussagen aus
(A.5) gegenseitig implizieren. Gehen wir also davon aus, dass die erste der
beiden Aussagen gilt. Dann können wir Fn(αnx + βn) −→ F (y) (n → ∞)
folgern, falls y = Ax+B ∈ C(F ) gilt. Definieren wir G(x) := F (Ax+B), so
haben wir die Gültigkeit der zweiten Aussage und zudem auch gleich (A.6)
für x > 0 gezeigt. Für x ≤ 0 kann man analog vorgehen. Ebenso lässt sich
die erste Aussage der Gleichung (A.5) völlig analog aus der zweiten folgern.

Es gelte nun (A.5). Seien x′ < x′′ ∈ C(G) so gewählt, dass 0 < G(x′) ≤
G(x′′) < 1 gilt. Dann existieren y′, y′′ ∈ C(F ) mit F (y′) < G(x′) ≤ G(x′′) <
F (y′′) und wir können für alle n ≥ n0 mit geeignet gewähltem n0 ∈ N aus
(A.5) schließen, dass

any
′ + bn ≤ αnx

′ + βn ≤ αnx
′′ + βn ≤ any

′′ + bn

gilt, und daraus für n ≥ n0 weiter folgern:

αn
an

≤ y′′ − y′

x′′ − x′
,
βn − bn
an

∈
[
y′ − αn

an
x′, y′′ − αn

an
x′′
]
.

Aus Symmetriegründen bleibt auch die Folge (an/αn)n≥0 beschränkt. Daher
existiert nach dem Satz von Bolzano und Weierstraß eine Folge (nk)k≥1 mit

αnk

ank

−→
k→∞

A,
βnk

− bnk

ank

−→
k→∞

B

für ein A > 0 und ein B ∈ R. Die Umkehraussage des Lemmas haben wir
bereits im ersten Teil dieses Beweises gezeigt und können deshalb folgern,
dass (A.6) gilt, worin A und B eindeutig bestimmt sind. Dies impliziert,
dass für jede Folge (nj)j≥1 eine Teilfolge (n′j)j≥1 existiert, für die (A.7) für
j → ∞ gilt. Dies wiederum zeigt, dass (A.7) auch für n→ ∞ gültig ist.
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A.1.7 Satz (vgl. [Sam], 1.2, Proposition 1.2.11).
Seien 0 < α < 1, δ > 0, Nδ eine Zufallsvariable mit Nδ ∼ Poi(δ−α) und
Yδ,k, k ≥ 1, unabhängige, identisch verteilte und positive Zufallsvariablen,
die von Nδ unabhängig sind, mitP(Yδ,k > λ) =

{
δαλ−α für λ > δ,

1 für λ ≤ δ.

Dann gilt:

Xδ :=

Nδ∑

k=1

Yδ,k
d−→ X ∼ Sα(σ, 1, 0) (δ → 0)

mit
σα = Γ(1 − α) cos(πα/2).

Ferner ist die Laplace-Transformierte ϕ von X gegeben durch

ϕ(t) = E e−tX = e−a
αtα , t ≥ 0,

mit a > 0 und aα = Γ(1 − α) = σα/ cos(πα/2).

Beweis. Für die erzeugende Funktion fδ von Nδ gilt für |r| ≤ 1:

fδ(r) = E rNδ =
∑

k≥0

rk P(Nδ = k) =
∑

k≥0

rk
(δ−α)

k

k!
e−δ

−α

= e−δ
−α
erδ

−α
= e(r−1)δ−α

.

Für die Fourier-Transformierte φδ von Xδ folgt mit (52.4) aus [A]:

φδ(t) = E eitXδ = E (E (eitXδ |Nδ

))

= E∑
k≥0

1{Nδ=k}E (eitXδ |Nδ = k
)

= E∑
k≥0

1{Nδ=k}P(Nδ = k)−1E(1{Nδ=k}e
it
∑k

j=1 Yδ,j

)

= E∑
k≥0

1{Nδ=k}P(Nδ = k)−1P(Nδ = k)
(E eitYδ,1

)k

= E∑
k≥0

1{Nδ=k}
(E eitYδ,1

)k

= E (E eitYδ,1
)Nδ = fδ(E eitYδ,1).

Aus der vorherigen Rechnung wissen wir, dass

fδ(E eitYδ,1) = exp
(
δ−α

(E (eitYδ,1 − 1
)))

= exp

(
δ−α

∫ ∞

δ

(
eitx − 1

)
δααx−(α+1) dx

)

= exp

(∫ ∞

δ

(
eitx − 1

)
αx−(α+1) dx

)
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ist, und der Grenzübergang δ → 0 liefert:

lim
δ→0

E eitXδ = lim
δ→0

exp

(∫ ∞

0

(
eitx − 1

)
αx−(α+1) dx

)

= exp

(∫ ∞

0

(
eitx − 1

)
αx−(α+1) dx

)
,

wobei hier der Satz von der majorisierten Konvergenz verwendet wurde.
Wir müssen also

∫∞
0 (eitx − 1)αx−(α+1) dx genauer bestimmen. Durch die

Substitution x 7→ t−1x (t > 0) und mit Hilfe partieller Integration erhalten
wir:

∫ ∞

0

(
eitx − 1

)
αx−(α+1) dx =

∫ ∞

0

(
eix − 1

)
αtα+1x−(α+1) 1

t
dx

= αtα
∫ ∞

0

(
eix − 1

)
x−(α+1)dx

=
A.1.11

−tαe−πi
2
αΓ(1 − α).

Als nächstes berechnen wir mit Hilfe von Satz 1.2.4 die Fourier-Trans-
formierte φX von X für t > 0:

φX(t) = exp
(
−σαtα

(
1 − i tan

πα

2

))

= exp
(
−Γ(1 − α) cos

πα

2
tα
(
1 − i tan

πα

2

))

= exp
(
−tαe−πi

2
αΓ(1 − α)

)
.

Die Laplace-Transformierte erhalten wir durch eine analoge Rechnung mit
−t anstelle von it, t ≥ 0.

A.1.8 Satz (vgl. [Sam], 1.2, Proposition 1.2.12).
Die Laplace-Transformierte ϕ von X mit X ∼ Sα(σ, 1, 0), 0 < α ≤ 2 und
σ > 0, ist von der Gestalt

ϕ(t) = E e−tX = exp

(
− σα

cos πα2
tα
)

für α 6= 1,

ϕ(t) = E e−tX = exp

(
σ

2

π
t log t

)
für α = 1.

Beweis. Nach Satz A.1.7 gilt für 0 < α < 1 und t ≥ 0

ϕ(t) = exp(−tαΓ(1 − α)) = exp

(
−tα σα

cos πα2

)
.

Da der Fall α ≥ 1 um einiges schwieriger zu beweisen ist und in dieser Arbeit
nicht benötigt wird, bleibt er ohne Beweis.



A.1. Ergebnisse für Kapitel 1 77

A.1.9 Satz (vgl. [Sam], 1.3, Proposition 1.3.1).
Gegeben seien X ∼ Sα′(σ, 0, 0) mit 0 < α′ ≤ 2 und 0 < α < α′. Weiter sei

Y ∼ Sα/α′

((
cos πα

2α′

)α′/α
, 1, 0

)
stochastisch unabhängig von X. Dann gilt:

Z := Y 1/α′

X ∼ Sα(σ, 0, 0).

Beweis. X hat die Fourier-Transformierte φ(t) = E eitX = exp(−σα′ |t|α′

)
und Y hat die Laplace-Transformierte

ϕ(t) = E e−tY =
A.1.8

exp


−

((
cos πα

2α′

)α′/α
)α/α′

cos πα
2α′

tα/α
′


 = exp(−tα/α′

).

Dann folgtE eitZ = E(exp
(
itY 1/α′

X
))

= E(E(exp
(
itY 1/α′

X
) ∣∣∣∣Y

))

= Eφ(tY 1/α′

)
= E exp

(
−σα′ |tY 1/α′ |α′

)

= E exp
(
−σα′ |t|α′

Y
)

= ϕ
(
σα

′ |t|α′

)

= exp (−σα|t|α) ,

wobei Y ≥ 0 f.s. ausgenutzt wurde.

A.1.10 Satz (vgl. [Bi], 1.7, Theorem 1.7.1).
U sei eine monoton wachsende, rechtsseitig stetige Funktion auf R mit
U(x) = 0 für alle x < 0. Wenn l eine langsam variierende Funktion ist
und c ≥ 0, ρ ≥ 0 gelten, sind die folgenden Aussagen äquivalent:

(A.8) U(x) ∼ cxρl(x)/Γ(1 + ρ) (x→ ∞),

(A.9) Ũ(s) ∼ cs−ρl(1/s) (s ↓ 0)

mit Ũ(s) :=
∫∞
−∞ e−sx U(dx).

A.1.11 Satz.
Für 0 < α < 1 ist

∫ ∞

0

(
eix − 1

) 1

x1+α
dx = e−

πi
2
αL(α),

wobei L(α) :=
∫∞
0 (e−x − 1)x−(1+α) dx = − 1

α Γ(1 − α) < 0 ist.
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Beweis. Sei ε > 0. Wir betrachten für diesen Beweis den geschlossenen
Integrationsweg γ = γ1 + γ2 + γ3 − γ4 in C mit

γ1 : [0, 1] → C, t 7−→ ε+ t(R− ε),

γ2 : [0, π/2] → C, t 7−→ Reit,

γ3 : [0, 1] → C, t 7−→ iR+ t(iε− iR),

γ4 : [0, π/2] → C, t 7−→ εeit.

Da die Funktion f(z) = (eiz−1)z−(1+α), wobei z−(1+α) den Hauptzweig der
Potenz bezeichne, in C \ (−∞, 0] holomorph ist, folgt mit dem Cauchyschen
Integralsatz: ∫

γ
f(z) dz = 0.

Mit Hilfe der Standardabschätzung können wir folgern, dass

∣∣∣∣
∫

γ2

(
eiz − 1

) 1

z1+α
dz

∣∣∣∣ ≤
πR

2
2 R−(1+α) = πR−α −→

R→∞
0

und ∣∣∣∣
∫

γ4

(
eiz − 1

) 1

z1+α
dz

∣∣∣∣ ≤
πε

2
Cε ε−(1+α) = C

π

2
ε1−α −→

ε→0
0.

Da lim
ε→0,
R→∞

∫
γ1
f(z)dz =

∫∞
0 (eix − 1)x−(1+α)dx gilt, folgt

∫ ∞

0

(
eix − 1

)
x−(1+α)dx = − lim

ε→0,
R→∞

∫

γ3

f(z)dz

=

∫ i∞

0

(
eiy − 1

)
y−(1+α)dy

=
y 7→iy

∫ ∞

0
i
(
e−y − 1

)
(iy)−(1+α)dy

= i−α
∫ ∞

0

(
e−y − 1

)
y−(1+α)dy

︸ ︷︷ ︸
<0

= e−
πi
2
αL(α).

Mittels partieller Integration können wir L(α) genau bestimmen:

L(α) =

∫ ∞

0
(e−x − 1)x−(1+α) dx = − 1

α
Γ(1 − α) (0 < α < 1).
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A.2 Ergebnisse für Kapitel 2

A.2.1 Definition (vgl. [Bi], 1.2.1, Definition).
Sei l eine positive, messbare Funktion in einer Umgebung [X,∞) von ∞,
die die Bedingung

l(λx)

l(x)
−→
x→∞

1 für alle λ > 0

erfüllt. Dann heißt l langsam variierend.

A.2.2 Satz (vgl. [Bi], 1.5.6, Proposition 1.5.10).
Ist l langsam variierend und α < −1, dann konvergiert

∫∞
tαl(t) dt und es

gilt:
xα+1l(x)∫∞
x tαl(t) dt

−→ −α− 1 (x→ ∞).

A.2.3 Satz (vgl. [Bi], 1.7.6, Theorem 1.7.6).
Seien V ≥ 0, c ≥ 0, ρ > −1, Ṽ (s) := s

∫∞
0 e−sxV (x) dx < ∞ für s > 0 und

l ∈ R0. Ist die Aussage

V (x) ∼ cxρl(x)/Γ(1 + ρ) (x→ ∞)

wahr, dann gilt auch

Ṽ (s) ∼ cs−ρl(1/s) (s ↓ 0).

Die umgekehrte Implikation ist gültig, wenn zusätzlich

(A.10) lim
λ↓1

lim inf
x→∞

inf
t∈[1,λ]

U(tx) − U(x)

xρl(x)
≥ 0

gilt.

A.2.4 Satz (vgl. [Wi], Theorem 5.2).
Es seien X1,X2, . . . unabhängige und identisch verteilte Zufallsvariablen und
τ1, τ2, . . . eine Folge nichtnegativer, ganzzahliger Zufallsvariablen mit Median
µn. Wenn die folgenden drei Bedingungen

(i) τn
P−→ ∞,

(ii) τn/µn
P−→ ξ, wobei ξ eine positive Variable ist,

(iii) für ein cn gilt Sn/cn
d−→ Y für eine Zufallsgröße Y mit stabiler Ver-

teilung mit charakteristischem Exponenten α

erfüllt sind, gilt Sτn/cµn

d−→ γ1/αY
d
= ξ1/αY , wobei γ unabhängig von

(Xi)i∈N ist und wie ξ verteilt ist.
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A.2.5 Lemma (vgl. [Ke], Lemma 1).
Es seien Z0, Z1, . . . eine irreduzible, endliche Markov-Kette mit Zustands-
raum {1, . . . , n} (n ∈ N), F1, . . . , Fn Verteilungsfunktionen und X0,X1, . . .
eine Folge von Zufallsvariablen, die der GleichungP(X0 ≤ x0,X1 ≤ x1, . . . ,Xk ≤ xk|Z0 = j0, Z1 = j1, Z2 = j2, . . .)

=
k∏

i=0

Fji(xi)

genügen. Weiter sei N(λ) eine nichtnegative, ganzzahlige Zufallsvariable, so
dass P(N(λ) ≤ k|X0,X1,X2, . . . , Z0, Z1, Z2, . . .)

= P(N(λ) ≤ k|X0, . . . ,Xk, Z0, . . . , Zk)

gilt. Wenn Funktionen f(k) = kαL1(k) (α > 0) und h(λ) = λβL2(λ)
(β ≥ 0, h(λ) −→ ∞ für λ → ∞), wobei L1 und L2 langsam variierende
Funktionen sind, existieren, so dass

lim
k→∞, λ→∞

P(∑k
i=0Xi

f(k)
≤ x,

N(λ)

h(λ)
≤ y

)
= F (x)G(y)

ist, gilt:

lim
λ→∞

P(∑N(λ)
i=0 Xi

f(h(λ))
≤ x

)
=

∫ ∞

0
F (xy−α) G(dy).

A.2.6 Lemma (vgl. [Fe2], XIV, Lemma).
Sei F die Verteilungsfunktion eines Wahrscheinlichkeitsmaßes auf (0,∞)
mit 1−F (x) = x−αL(x), 0 < α < 1, für eine langsam variierende Funktion
L : [0,∞) → [0,∞). Dann gilt

(A.11) U(x) ∼ 1

Γ(1 − α)Γ(1 + α)

xα

L(x)
(x→ ∞)

für U =
∑
F ∗(n) und

(A.12) (1 − F (x))U(x) −→
x→∞

sinπα

πα
.

Beweis. Setzen wir (A.11) als gegeben voraus, so können wir Gleichung
(A.12) folgern, denn:

(1 − F (x))U(x) = x−αL(x)U(x)

∼
(A.11)

x−αL(x)
1

Γ(1 − α)Γ(1 + α)

xα

L(x)

=
1

Γ(1 − α)αΓ(α)

=
sinπα

πα
(x→ ∞).



A.2. Ergebnisse für Kapitel 2 81

Es genügt also, (A.11) zu beweisen. Sei ϕ die Laplace-Transformierte von
F . Dann gilt mit Hilfe des Satzes von Fubini für t > 0

ϕ(t) =

∫

[0,∞)
e−tx F (dx) =

∫

[0,∞)
t

∫ ∞

x
e−tuduF (dx)

=

∫ ∞

0
t

∫

[0,u]
F (dx) e−tu du =

∫ ∞

0
te−tuF (u) du,

woraus wir

(A.13)

∫ ∞

0
e−tx(1 − F (x)) dx =

1 − ϕ(t)

t

folgern können. Wir wollen nun Satz A.2.3 anwenden und wählen dazu
V (x) := 1 − F (x), x ≥ 0. Dann gilt

V (x) = 1 − F (x) = x−αL(x) = x−αL(x)
Γ(1 − α)

Γ(1 − α)
,

d.h. die Voraussetzungen des Satzes sind mit c := Γ(1 − α), l(x) := L(x)
und ρ := −α erfüllt und wir erhalten

1 − ϕ(s) =
(A.13)

s

∫ ∞

0
e−sxV (x) dx =: Ṽ (x) ∼

A.2.3
Γ(1 − α)sαL(1/s) (s ↓ 0).

Setzen wir jetzt ϕU (t) :=
∫
[0,∞) e

−tx U(dx), so gilt für t > 0

ϕU (t) =
∑

n≥0

∫

[0,∞)
e−txF ∗(n)(dx) =

∑

n≥0

ϕF ∗(n)(t)︸ ︷︷ ︸
=(ϕ(t))n

=
1

1 − ϕ(t)
.

Aufgrund der vorherigen Gleichungskette können wir weiter folgern:

ϕU (t) =
1

1 − ϕ(t)
∼ 1

Γ(1 − α)tαL(1/t)
=

1

Γ(1 − α)
t−α

1

L(1/t)
(t ↓ 0).

Wir können nun die umgekehrte Implikation aus Satz A.2.3 benutzen, denn
Ṽ besitzt die geforderte asymptotische Gestalt, wenn wir V := U wählen,
und (A.10) ist trivialerweise erfüllt. Dann gilt für das entsprechende Ṽ :

Ṽ (s) = s

∫ ∞

0
e−sxU(x) dx = s

∫ ∞

0
e−sx

∫

[0,x]
U(dy) dx

=

∫

[0,∞)

∫

[y,∞)
se−sx dxU(dy) =

∫

[0,∞)
e−sy U(dy)

= ϕU (s) ∼ 1

Γ(1 − α)
s−α

1

L(1/s)
(s ↓ 0),
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wobei zu beachten ist, dass mit L auch 1/L langsam variierend ist. Aus Satz
A.2.3 mit c := 1/Γ(1 − α), ρ := α und l(x) := 1/L(x) erhalten wir nun
(A.11):

U(x) ∼ 1

Γ(1 − α)
xα

1

L(x)

1

Γ(1 + α)
(x→ ∞).

A.2.7 Satz (vgl. [Fe2], XIV.3, Theorem).
(Xi)i∈N sei eine Folge positiver, unabhängiger und identisch verteilter Zu-
fallsgrößen mit X1 ∼ F und Sn =

∑n
i=1Xi sei die n-te Partialsumme. Für

festes t > 0 sei Nt = max{k ≥ 0 : Sk ≤ t}. Gilt

(A.14) 1 − F (x) = x−αL(x),

0 < α < 1, mit einer langsam variierenden Funktion L, so gilt für die
normierte Zufallsvariable Yt/t mit Yt := t− SNt:

Yt
d−→ Arcsin(α).

Die Arkussinus-Verteilung wurde bereits in Beispiel 2.3.5 auf Seite 57
definiert.

Beweis. Seien 0 < x1 < x2 < 1. Dann gilt für t > 0:

{tx1 < Yt < tx2} = {tx1 < t− SNt < tx2}
= {t(1 − x2) < SNt < t(1 − x1)}
= {∃n ∈ N0 und ∃ y ∈ (1 − x2, 1 − x1) :

Sn = ty,Xn+1 > t(1 − y)}.

Setzen wir U =
∑∞

n=0 P
Sn , so folgt:P (x1 < t−1Yt < x2

)
=

∞∑

n=0

P (t−1Sn ∈ (1 − x2, 1 − x1),Xn+1 > t− Sn
)

=

∞∑

n=0

E(P(t−1Sn ∈ (1 − x2, 1 − x1),Xn+1 > t− Sn

∣∣∣∣Sn
))

=
∞∑

n=0

∫

(1−x2,1−x1)
P(Xn+1 > t− ty) Pt−1Sn(dy)

=

∫

(1−x2,1−x1)
P(X1 > t− ty)U(tdy)

=

∫

(1−x2,1−x1)
(1 − F (t(1 − y)))U(tdy)

= (1 − F (t))U(t)

∫

(1−x2,1−x1)

1 − F (t(1 − y))

1 − F (t)

U(tdy)

U(t)
.
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Die Voraussetzungen von Lemma A.2.6 sind hier erfüllt. Daher sind in die-
sem Beweis die beiden Aussagen (A.11) und (A.12) gültig und wir können
für t→ ∞ schließen:P (x1 < t−1Yt < x2

)
∼ sinπα

πα

∫

(1−x2,1−x1)

1 − F (t(1 − y))

1 − F (t)

U(tdy)

U(t)
.

Hier haben wir unser Ziel schon fast erreicht. Schauen wir uns aber das Maß
und den Integranden etwas genauer an. Beginnen wir dabei mit dem Maß.
Unter Benutzung von (A.11) erhalten wir für y ≥ 0:

U(t[0, y])

U(t)
=
U([0, ty])

U(t)
=
U(ty)

U(t)
−→
t→∞

yα =

∫ y

0
αyα−1 dy.

Mit Satz 43.7 in [A] können wir daraus folgern, dass

U(tdy)

U(t)

v−→ α yα−11[0,∞)(y)λλ(dy)

für t→ ∞ gilt. Definieren wir ein endliches Maß µt durch

µt(B) :=
U(tB ∩ (1 − x2, 1 − x1))

U(t)
, B ∈ B,

so gilt nach Satz 43.6 b) in [A] für t→ ∞:

µt
w−→ α yα−11(1−x2,1−x1)(y)λλ(dy).

Da die Funktion y 7→ (1 − y)−α auf (1 − x2, 1 − x1) stetig und beschränkt
ist, können wir weiter folgern:
∫

(1−x2,1−x1)
(1 − y)−α

U(tdy)

U(t)
=

∫
(1 − y)−α µt(dy)

−→
t→∞

∫

(1−x2,1−x1)
(1 − y)−ααyα−1 λλ(dy)(A.15)

=

∫ 1−x1

1−x2

α yα−1(1 − y)−α dy.

Kommen wir nun zum Integranden:

1 − F (t(1 − y))

1 − F (t)
=

(t(1 − y))−αL(t(1 − y))

t−αL(t)

= (1 − y)−α
L(t(1 − y))

L(t)
−→
t→∞

(1 − y)−α.

Weil 1−F (t(1−y))
1−F (t) in y monoton wachsend ist, ist die obige Konvergenz im

abgeschlossenen Intervall [1 − x2, 1 − x1] gleichmäßig, d.h. für gegebenes
ε > 0 gibt es ein t0, so dass

∣∣∣∣
1 − F (t(1 − y))

1 − F (t)
− (1 − y)−α

∣∣∣∣ < ε
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für alle t ≥ t0 und y ∈ [1 − x2, 1 − x1] gilt. Mit diesen neuen Informationen
können wir für alle t ≥ t0 schließen:

∣∣∣∣∣

∫

(1−x2,1−x1)

1 − F (t(1 − y))

1 − F (t)

U(tdy)

U(t)
−
∫ 1−x1

1−x2

α yα−1(1 − y)−α dy

∣∣∣∣∣

≤
∣∣∣∣∣

∫

(1−x2,1−x1)

1 − F (t(1 − y))

1 − F (t)
− (1 − y)−α

U(tdy)

U(t)

∣∣∣∣∣

+

∣∣∣∣∣

∫

(1−x2,1−x1)
(1 − y)−α

U(tdy)

U(t)
−
∫

(1−x2,1−x1)
α yα−1(1 − y)−α dy

∣∣∣∣∣ .

Aus Gleichung (A.15) wissen wir, dass der zweite Summand gegen 0 kon-
vergiert. Mit Hilfe der Standardabschätzung und weil

U(t(1 − x2, 1 − x1))

U(t)
≤ U(t)

U(t)
= 1

gilt, können wir den ersten Summanden gegen ε abschätzen.
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