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Einleitung

In vielen Anwendungen der Theorie der Gewichteten Verzweigungsprozesse ergibt sich
die folgende Fragestellung: Wie schnell wéchst eine bestimmte Population von Indivi-
duen, beziehungsweise irgendein anderer reproduktiver Prozess, im Hinblick auf eine
seiner/ihrer immanenten Eigenschaften (vgl. die Ausfiihrungen in [BuD], [Devl]|, [Dev2],
[Dev4], [Dev5|, [Dev6|, [Knu|, [Mah]|, [Pit]). Dabei ist zunédchst die Frage nach einer ge-
eigneten Vergleichsskala fiir die Grofe zu klaren. In den meisten Fillen beobachtet man
die grofenmafige Entwicklung des Prozesses im Laufe der Zeit. Das bedeutet, fiir die
Wachstumsgeschwindigkeit ist zum einen die Groke der Population zu einem Zeitpunkt
n, und zum anderen das asymptotische Verhalten dieser Grofse fiir n — oo interessant.
Dabei kann als Vergleichsskala neben dem Alter aber auch jede andere Eigenschaft des
Prozesses dienen, sofern sie sich mathematisch durch gewisse stochastische Gewichte mo-
dellieren ldsst. Wir nehmen in dieser Arbeit einen allgemeineren Standpunkt an, indem
wir einen zweifach gewichteten Verzweigungsprozess betrachten. Jedes Individuum wird
dabei mit zwei stochastisch unabhéngigen Gewichtsfunktionen versehen, welche zwei
beliebige, voneinander unabhéngige Eigenschaftsauspragungen des zugrunde liegenden
Prozesses repréasentieren. Fortan interessieren wir uns fiir das asymptotische Verhalten
der maximalen Auspridgung des einen Gewichtes relativ zur Grofse des anderen. Das
zweite Gewicht liefert uns also die Vergleichsgrofe (in obigem speziellen Fall das Alter
einer Population). Fiir die Untersuchung dieses Verhaltens erweisen sich einige Methoden
der Theorie der Grofen Abweichungen als ungemein hilfreich. Im speziellen sei hier die
Fenchel-Legendre- Transformierte der kumulantenerzeugenden Funktion einer Zufallsgro-
e X (Cramér-Funktion von X) und der Satz von Cramér genannt.

Um die Hauptresultate dieser Arbeit beweisen zu konnen, stellen wir zundchst das not-
wendige Riistzeug zusammen. Dazu fithren wir im ersten Kapitel einige Grundlagen der
Theorie der Grofsen Abweichungen ein, sofern sie fiir diese Arbeit relevant sind. Neben
dem Satz von Cramér sind das vor allem die Eigenschaften der Kumulanten erzeugen-
den Funktion sowie der Cramérfunktion. Fiir einen tieferen Einblick in das Fachgebiet
der Grofen Abweichungen verweisen wir auf die Standardwerke von A. Dembo und O.

Zeitouni, R. Rockafellar und F. den Hollander (|DuZ], [Roc|, [Hol]).

Im zweiten Kapitel definieren wir den oben erwahnten zweifach gewichteten Verzwei-



FEinleitung

gungsprozess und stellen seine wichtigsten Eigenschaften vor. Ausgehend von einem un-
endlich verzweigten b-adischen Baum versehen wir jede seiner Kanten mit zwei Gewich-
ten, die ihrerseits gewissen Unabhéngigkeitseigenschaften geniigen. Aufserdem befassen

wir uns mit den Eigenschaften der beiden zugrunde liegenden Gewichtsfunktionen.

Das dritte Kapitel stiitzt sich auf die Arbeit [BuD] von N. Broutin und L. Devroye.
Aufbauend auf den Definitionen und Ergebnissen der beiden ersten, vorbereitenden Ka-
pitel liefern wir das erste Hauptresultat iiber das oben angesprochene asymptotische
Verhalten. Wir zeigen, dass sich die gewichtete Hohe H,, eines zweifach gewichteten
Verzweigungsprozesses fiir n — oo asymptotisch so verhélt wie (nc),ecy mit einem ein-
deutig bestimmten ¢ > 0, welches wir mit Hilfe der zu den beiden Gewichtsfunktionen
gehorenden Cramér-Funktionen genau spezifizieren.

Im vierten Kapitel verallgemeinern wir die Situation des vorherigen Kapitels von b-
adischen Baumen auf solche mit einer beliebigen Reproduktionsverteilung (py,)nen, mit
Erwartungswert p > 1. Die Methoden aus dem dritten Kapitel lassen sich mit einigen
Abwandlungen auch auf die verallgemeinerte Situation anwenden, so dass wir auch in
diesem Fall eine Aussage iiber die Asymptotik der gewichteten Hohe erhalten.

Das fiinfte Kapitel befasst sich mit der Fragestellung nach der gewichteten Hohe eines
Baumes mit n Knoten. In vielen Anwendungen werden stochastische Bdume sukzessiv
- das heifst Knoten fiir Knoten durch Anhéngen an den bereits vorhandenen Baum —
aufgebaut. Aufierst interessant ist deshalb in diesem Zusammenhang die Frage nach dem
asymptotischen Verhalten der gewichteten Hohe eines Baumes nach n Sukzessionsschrit-
ten (nach dem Anhéngen des n-ten Knotens), welche wir mit H, bezeichnen. Mit Hilfe
der Ergebnisse des dritten Kapitels ergibt sich, dass H,, logarithmisch wéchst, und zwar
verhalt sich H, fir n — oo wie ﬁlogn mit dem ¢ aus Kapitel 3 und einem g, welches

wir noch naher spezifizieren.

Beispiele dazu sind der zufdllige bindre Suchbaum und der zufillige rekursive Baum, de-
ren Eigenschaften in den Arbeiten von D. E. Knuth, H. Mahmoud, L. Devroye und B.
Pittel, ([Knu|, [Devl], [Dev2]|, [Dev4], [Devh|, [Dev6], [Pit]) genau studiert worden sind.

Diese Beispiele befinden sich im sechsten und letzten Kapitel dieser Arbeit.

Fiir die Vergabe der Diplomarbeit und die Beratung und Unterstiitzung wéhrend der
Entstehungsphase mdchte ich Herrn Prof. Dr. G. Alsmeyer meinen Dank aussprechen.
Aufserdem danke ich all denen, die mich auf die eine oder andere Weise bei der Erstellung

dieser Arbeit unterstiitzt haben.

vi



1 Grundlagen der Theorie der
Grollen Abweichungen

1.1 Die grundlegende Problematik

Die Theorie der Grofsen Abweichungen beschéftigt sich mit der Asymptotik der Wahr-
scheinlichkeiten von sehr seltenen Ereignissen. Die exponentielle Abfallrate dieser Wahr-
scheinlichkeiten wird in Termen einer Variationsformel ausgedriickt, welche meist in-
teressante Riickschliisse auf die betrachteten Ereignisse zuldsst. Dabei ist zunéchst der
Begriff ,selten naher zu spezifizieren. Dazu betrachten wir zunéchst die Standardsitua-
tion, welche uns zu einer grundlegenden Problematik fithrt (vgl. dazu die Ausfithrungen
in [Kon]):

Gegeben seien unabhéngige und identisch verteilte reellwertige Zufallsgrofen Xi, X, . ..
mit Erwartungswert ¢ = 0 und Varianz 0% < co. Wir betrachten die Partialsummenfol-
ge (Sp)neny mit S, = > X;. Die Zufallsgroke %Sn wird auch manchmal empirischer
Durchschnitt von Xy, ..., X, genannt. Fiir uns interessant ist das Verhalten dieser Folge
fiir groke n. Betrachte zunéchst die folgenden drei bekannten Aussagen der Wahrschein-
lichkeitstheorie:

das schwache Gesetz der grofsen Zahlen:
lim P(|1S,| >¢) =0 fiir jedes ¢ > 0,
das starke Gesetz der grofien Zahlen:

1
P(lim —S, = 0) = 1,

n—oo M

der zentrale Grenzwertsatz:

ac2
Tim P(=5,<C) = o= LCOO e~z dz fiir jedes C' € R.
Wiéhrend diese klassischen Aussagen das ‘iibliche’ , das ‘normale’ Verhalten von S,
beschreiben, will die Theorie der Grofen Abweichungen das ‘untypische’ , das Abwei-

chungsverhalten analysieren. Préziser ausgedriickt, einer der Hauptgegenstinde dieser
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Theorie ist die asymptotische Analyse der Wahrscheinlichkeit des Ereignisses {15, > x}
bzw. {185, < —a} fiir n — oo, wobei z > 0. Im starken Gesetz der grofen Zahlen werden
zwar gleichzeitig diese beiden Abweichungen betrachtet, aber man ist dort zufrieden mit
der wenig tiefgriindigen Aussage, dass die Wahrscheinlichkeiten gegen Null konvergieren.
Im zentralen Grenzwertsatz entsprache dies der Wahl C' = —x+/n, iiber die allerdings
dort keinerlei Aussagen gemacht werden.

Mit Hilfe der Theorie der Grofsen Abweichungen stellt sich heraus, dass unter geeigneten
Annahmen an die Integrierbarkeit der X; diese Wahrscheinlichkeit sogar exponentiell
abfillt, also

P(1S, > z) m e %@ und P(LS, < —z) m e 50,

wobei A% (z) bzw. A% (—z) die Rate des exponentiellen Abfalls ist. A () steht dabei

fiir die so genannte Cramér-Funktion von X, die wir spater noch spezifizieren werden.

Als erstes werden wir uns mit der so genannten kumulantenerzeugenden Funktion einer
Zufallsgroke X befassen, deren Eigenschaften beim Studium der Cramér-Funktion eine

entscheidende Rolle spielen.



1.2 FEigenschaften der kumulantenerzeugende Funktion

1.2 Eigenschaften der kumulantenerzeugende
Funktion

Wir beschranken uns in diesem Kapitel manchmal auf den Fall einer reellwertigen Zu-
fallsgrofte X > 0, da es sich bei den in den folgenden Kapiteln betrachteten Gewichts-

funktionen grundsétzlich um positive Zufallsgrofen handelt.

Definition 1.1 Sei X eine reellwertige Zufallsgrofie. Dann heiftt fiir A € R
M () € E(e™)

die momenterzeugende Funktion von X.

Lemma 1.2 Seir X eine nichtnegative reellwertige Zufallsgroffe. Dann ist der Definiti-
onsbereich ihrer momenterzeugenden Funktion von der Form (—oo; \*) bzw. (—oo; \*,
mit \* & sup{\ € R| Mx(\) < oo} € [0;00]. Auflerdem ist Mx(\) monoton wachsend
auf {\ € R| Mx(\) < oo}, und es gilt Mx(0) = 1.

BEWEIS: (vgl. [Alsl], Lemma 40.2 und 40.3 Definition)

Seien X > 0 und A € R mit My (\) < oo und sei \g < A\. Dann ist e?¥ < e* da X
nicht-negativ und die Exponentialfunktion monoton wachsend ist. Deshalb gilt

Mx(Xo) = E(e?) < E(eM) = Mx())

aufgrund der Monotonie des Erwartungswertes. Daraus ergibt sich die behauptete Ge-
stalt des Definitionsbereiches von My. AuRerdem gilt A\* > 0 wegen Mx(0) = E(e%) =
E(1) =1 < oco. Dabei ist es selbstverstandlich moglich, dass \* = 0 bzw. A* = 0o
gilt.

U

Bemerkung 1.3 Die Monotonie von Mx(A) mit X wie in Lemma 1.2 ist genau dann
streng, wenn X nicht fast sicher konstant gleich 0 ist.

Lemma 1.4 (Existenz der Momente) Sei X eine nichtnegative reellwertige Zufalls-
grofle und Mx(\) < oo fiir ein A > 0. Dann gilt

E(X") < oo Vr>0.
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BEWEIS: Sei A > 0 mit Mx () < oo und sei r > 0 beliebig, dann existiert ein s > 0 mit

eM > t" fiir alle t > s. Dann liefert eine einfache Abschitzung die Behauptung.
OJ

Definition 1.5 Sei X eine reellwertige Zufallsgrofie. Dann heifst fiir A € R

Ax(A) £ log(Mx (1))
die kumulantenerzeugende Funktion von X. Ihren Definitionsbereich bezeichnen wir mit
Dx.

Die kumulantenerzeugende Funktion weist einige Eigenschaften auf, welche uns bei der
Betrachtung der Cramér-Funktion zu interessanten Ergebnissen fithren werden. Neben
der Differenzierbarkeit ist eine dieser Eigenschaften die der (strikten) Konvexitét, welche

wir in folgendem Lemma beweisen:

Lemma 1.6 (Strikte Konvexitidt der kumulantenerzeugenden Funktion) Die ku-
mulantenerzeugende Funktion Ax einer reellwertigen Zufallsgrofie X ist konvex, und es
qilt strikte Konvexitat, falls X nicht fast sicher konstant ist.

BEWEIS: Wie man sehr leicht einsieht, ist der Definitionsbereich von Ay gleich dem
Definitionsbereich von My. Auferdem folgt mit Hilfe der strengen Monotonie der Lo-
garithmusfunktion und der (strengen) Monotonie von My die (strenge) Monotonie von
A x innerhalb ihres Definitionsbereiches.

Die (strikte) Konvexitét von Ax gewinnt man durch Anwendung der Holderschen Un-
gleichung. Fiir A\; und Ay aus dem Definitionsbereich von Ax mit A\; < Ag und ¢ € (0;1)
beliebig gilt

Ax(thi+ (1 —1t)\y) = log E[(eAlX)t(e“X)l‘t]
log [(E(eMX)) (E(e*¥)) ]
tAx (M) + (1 —t)Ax (o).

IN

Dabei steht in der zweiten Zeile das <- Zeichen genau dann, wenn X nicht f.s. konstant
ist.
O

Lemma 1.7 (Differenzierbarkeit der kumulantenerzeugenden Funktion) Die Funk-

tion Ax ist stetig differenzierbar auf dem offenen Kern Dy ihres Definitionsbereiches.
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Insbesondere ist Ax stetig und es gilt

BEWEIS: Die Differenzierbarkeit von Ax()\) = log E(e*) und die Gestalt der Ableitung
folgen aus dem Satz von der Differentiation unter dem Integralzeichen (vgl. Kapitel 4,
Satz 5.7 und Zusatz in [Els|). Es gilt namlich:

(i) Fiir A € Dy ist eM € L1
ii) Fiir alle w € Q existiert die partielle Ableitung 2-e*X®) = X (w)e?®).
(o2

(iii) Fiir A € Dy beliebig und € > 0 so klein, dass [\ — €; A + ¢] C D gilt:
Es existiert ein n € N mit x < e Va > n. Mit diesem n folgt

XM = 1, (X)X + 1) (X) XM + 100 (X) XM

Dabei ist der erste Summand beschrankt. Fiir den zweiten und den dritten Sum-
mand gelten die folgenden Ungleichungsketten:

0> ]_(,OO;,H)(X)X(E)‘X > 1(,m;,n)(X)(—eelX‘)eAX = 1(,m;,n) (X)(—e(A_E)X),
beziehungsweise

0 S l(n;oo)(X)Xe/\X S 1(n;oo)(X)€€X6’\X = 1(n;oo) (X)G(AJFG)X.

Dabei sind e?~9% und e 99X integrierbar nach Wahl von € und damit sind auch

Xer und | Xer| integrierbar.

Die Stetigkeit der Ableitung folgt aus dem Satz von der Stetigen Abhdngigkeit des Inte-
grals von einem Parameter (vgl. Kapitel 4, Satz 5.6 in |Els|), denn es gilt:

(i) Fiir A € Dy ist Xe*¥ € L£! (siehe oben).

(ii) Fiir alle w € Q und X € Dy ist X (w)e?M©@) stetig in A.

(iii) Nach obiger Uberlegung gilt: E(|Xe*]) < oo.
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Lemma 1.8 Fir die kumulantenerzeugende Funktion Ax einer reellwertigen Zufalls-
grofie X mit E(X) = p gilt:
(1) Ax(0) =0.

(ZZ) Ax(/\) > )\,u fir alle A € Dy.

BEWEIS: Aussage (i) folgt aus Lemma 1.2 und Anwendung der Logarithmusfunktion.
Aufgrund der Konkavitit der Logarithmusfunktion folgt mit Hilfe der Jensen-Ungleichung

Ax()\) = logE(e™) > E(loge™) = AE(X) = M.

Und damit ist auch (ii) gezeigt.
U

Fiir die Untersuchung des Definitionsbereiches der Cramér-Funktion im folgenden Ab-
schnitt ist ein genaueres Studium der Asymptotik der ersten Ableitung der kumulan-
tenerzeugenden Funktion notwendig. Dafiir benotigen wir zunéchst zwei weitere Begriffe
der Wahrscheinlichkeitstheorie.

Definition 1.9 Fiir eine reellwertige Zufallsgrofse X heifsen

esssup(X) o N:Pi(r}\%:ﬂ wesg\;zNX(w) € (—o0; 00]

das essentielle Supremum von X und

. def .
essinf(X) =  sup inf X(w) € [—00;00
(X) youp Ll (w) €] )

das essentielle Infimum von X.

Lemma 1.10 Die Abbildung A — Ay ()\) hat die Asymptoten esssup(X) fir A\ — oo
und essinf(X) fir A — —oo.

BEWEIS: Definiere o & essinf(X) und Lof esssup(X). Dann gilt

N - EXeN) [z I?E‘gii(;) —a
= — = o
X E(eM) | <HEd =g
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Daraus folgt Ay (\) € [o; 3] VA € R. Sei nun € > 0 beliebig und

MY {X > [ — ¢}. Nach Definition von esssup(X) ist P(M¢) > 0. Dann gilt fiir A > 0

E(Xe) E(La (X)(8 - 0)e™)
E(erX) T E(1p (X)er) + E(lMg_(X)eAX)
E(Ly (X)e™)

= U IR@L ®e) + B (0
E(1az (X)erY)
> (8- 8) E(L (X)e)\xg) + ]P’(Mc)e)‘( 2
2 (B-¢)
denn
E(]_Mg (X)e)\X) y E(lM% (X)QAX)
AB) = eome)

> P(M%)e)‘%

Daraus ergibt sich

E(1a (X)erX)
Es folgt obige Behauptung und damit, da € > 0 beliebig gewéhlt war,

— 0.

E(XeM)
lim ———=
A—oo E(eM)

> .

Also besitzt A — A ()\) die Aymptote esssup(X) fiir A — oco. Analog zeigt man, dass
A — Ay()) fiir A — —oo die Aymptote essinf(X) besitzt. Dafiir definiert man sich
Mengen Ne & {X < a+ ¢} und verfdahrt dhnlich wie oben.

O
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1.3 Eigenschaften der Cramér-Funktion

In diesem Abschnitt beschéftigen wir uns mit einer der wichtigsten Funktionen aus
dem Gebiet der Grofen Abweichungen, der Fenchel-Legendre- Transformierten der ku-
mulantenerzeugenden Funktion einer reellwertigen Zufallsgrofe X. Wir werden diese
zunachst definieren und darauthin ihre wichtigsten Eigenschaften zusammentragen, wel-
che sich fiir uns im Hinblick auf den Satz von Cramér und die spéateren Untersuchungen
in Kapitel 3 als sehr niitzlich erweisen werden. Wir werden zeigen, dass die Fenchel-
Legendre-Transformierte fiir die Beschreibung der eingangs erwahnten exponentiellen
Abfallrate von IP(%S” > x) bestens geeignet ist. Die FEigenschaften dieser im Folgenden
auch als Cramér-Funktion bezeichneten Funktion - insbesondere ihre Differenzierbar-
keit, ihre strikte Konvexitidt und ihre genaue Gestalt auf gewissen Intervallen - fliefen
mafkgeblich in den Beweis des ersten Hauptresultates dieser Arbeit ein.

Selbstverstéandlich liefsen sich die folgenden Definitionen und einige der Lemmata auch
auf den Fall von Zufallsvariablen mit Werten in R"™ verallgemeinern. Diese Betrachtung
ist fiir die vorliegende Arbeit jedoch irrelevant. Weitergehende Untersuchungen finden

sich zum Beispiel in [Roc].

Definition 1.11 Fiir die kumulantenerzeugende Funktion Ay einer reellwertigen Zu-
fallsgrofse X heifst
A () Ysup (At — Ax(\), teR, (L.1)
AR
die Fenchel-Legendre-Transformierte von Ax. Im Folgenden wird A% auch Cramér-

Funktion von X genannt. Ihren Definitionsbereich bezeichnen wir mit D%.

Definition 1.12 Fir X und Ax wie oben heifst

Afx () Esup (At — Ax(N), teER,

A<0
die linksseitige Cramér-Funktion und

AL (t) Esup (M — Ax(\), tER,

A>0

die rechtsseitige Cramér-Funktion von X.

Aus diesen Definitionen ergeben sich bereits einige grundlegende Eigenschaften, welche
wir im folgenden Satz zusammenfassen. Im Hinblick auf die spéteren Betrachtungen
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in Kapitel 3 interessiert uns dabei vor allem die Gestalt von A% auf den Intervallen
(—o0; p] (fur den Fall, dass Ax () < oo fiir ein A < 0 gilt) und [u; 00) (fiir den Fall, dass
Ax(\) < oo fiir ein A > 0 gilt).

Satz 1.13 (Grundlegende Eigenschaften) Sei A% die Cramér-Funktion einer reell-
wertigen Zufallsgroffe X mit Erwartungswert BE(X) = u € R. Dann gilt:

(1) Im Falle Dx = {0} ist A% konstant gleich 0.
(ii) Es gilt A% () =0 und A% (t) > 0 fir alle t € R.
(117) Ist A(Ng) < oo fiir ein Ao > 0, dann gilt fir alle t > p

Ax(t) = sup (Mt = Ax(A) = A;x(t),

A>0
und A (t) ist monoton wachsend in t. Gilt ferner

A =sup{A > 0] Ax(\) < 00} < 00, so ist

Ax(t) = sup (M —Ax(N)).

0<A<A*
(v) Ist A(Ng) < oo fiir ein Ao < 0, dann gilt fir allet < u

Ax(t) = sup (M = Ax(A) = Ajx(1),

A<0

und Aj x(t) ist monoton fallend in t.

v) Es gilt A (t) =0 fiir allet < p und A} (t) =0 fir alle t > p.
r, X 1,X

BEWEIS: Zu (i): Sei Dx = {0}, also Ax(\) = oo fiir alle A € R\ {0} und damit
A% (t) = 0t — Ax(0) = 0 fiir alle t € R.
Zu (ii): Es gilt zum einen

As(t) = sup(M—Ax(\) > 0—Ax(0) = 0

A€ER

und zum anderen

Ax(p) = sup (Aup—Ax(X) < sup(Au—Ap) = 0.

AeR 1.8 XeR

Zu (iii): Sei Ax (o) < oo fiir ein A\g > 0 und sei ¢ > p beliebig. Dann gilt fiir jedes A < 0

A= Ax() < A= Ax(d) < Axlw) = 0.

~
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Mit A% (t) > 0 folgt A%(t) = A} x(t). Offensichtlich ist A} y(#) monoton wachsend in .
Gelte ferner A* = sup{A > 0] Ax(\) < oo} < oo. Fiir jedes A > A\* ist dann Ax () = oo
und damit At — Ax(\) = —oo unabhingig von der Wahl von ¢t € R. Daraus folgt
A% (t) = supgcrca- (At — Ax(N)).

Zu (iv): Sei Ax(Ag) < oo fiir ein A\g < 0 und sei ¢ < p beliebig. Analog zu (%ii) gilt dann
fiir jedes A > 0

M= Ax() € = Ax() < Ax(n) = 0.

Daraus folgt A% () = Aj x (), und A} x(¢) ist offensichtlich monoton fallend in ¢.
Zu (v): Nach Lemma 1.9 b) gilt fiir ¢t < p beliebig

=

Arx(t) = sup (At — Ax(N) < sup (M —Ap) = supA(t—p) = 0
A>0 A>0 A>0

und fiir ¢ > p beliebig

Ajx(t) = sup(\t —Ax(N)) < sup (M —Au) = supA(t—p) = 0.
A<0 A<0 A<0
Mit A} v, A] x > 0 folgt die Behauptung.
O

Als nachstes wollen wir uns mit dem Definitionsbereich der Cramér-Funktion auseinan-
dersetzen. Wie sich herausstellen wird, besteht diesbeziiglich ein sehr enger Zusammen-

hang zu dem Wertebereich der ersten Ableitung der kumulantenerzeugenden Funktion.

Lemma 1.14 (Existenz und Eindeutigkeit des Maximierers) Sei A% die Cramér-
Funktion einer nicht fast sicher konstanten reellwertigen Zufallsgrofie X . Dann wird fiir
jedes t € (essinf(X);esssup(X)) das Supremum in (1.1) in genau einem A\, € R ange-

nommen, das heif$t, es gilt

Fiir dieses \; gilt ferner

BEWEIS:

Findeutigkeit: Sei A\; ein Maximierer, das heift A% (t) = Mt — Ax(\;). Dann gilt 0 =
t— A (\) und es folgt A’ (\) = t. Ax ist strikt konvex, da nach Voraussetzung X nicht
fast sicher konstant ist (siche Lemma 1.6). Damit ist A’y streng monoton wachsend und

es folgt die Eindeutigkeit.
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1.3 FEigenschaften der Cramér-Funktion

FEzistenz: Nach Lemma 1.10 existiert zu ¢ € (essinf(X);esssup(X)) ein Ay € R mit
Ay ()\) = t. Also ist \; eine Nullstelle der Ableitung von A — At — Ax()\) und damit

. / . . .
wegen der strengen Monotonie von Ay ein Maximierer.

O

Lemma 1.15 Fir die Cramér-Funktion N einer Zufallsgrifie X gilt

Ax(t) =

oo fiir t¢ [essinf(X);esssup(X)]
< oo fir te (essinf(X);esssup(X)).

BEWEIS: Sei t > esssup(X) beliebig. Dann gilt fiir alle A > 0
N(t) > M —Ax(\)

1
= AMt—<Ax(A
(1= 32x00)
und folglich

AL() > limsup (t— 1AX(A))

A—00 )\
loc . AX

= limsup A (t — M)
A—00 A

= Oo’

denn
. log E(e) _ log M log E(eM)
A A A
1

= —X(log E(e*) — log ™)

1

= —Xloge_)‘tE(e’\X)
1

= —XlogE(eA(X_t))

> _% lOgE(e)\(esssup(X)ft))
= —(esssup(X) —t)
= t—esssup(X) > 0.

Ein &hnliches Argument liefert A% () = oo fiir ¢ < essinf(X). Die Aussage A% (t) < oo
fiir t € (essinf(X); esssup(X)) folgt aus Lemma 1.14.
0

11



1 Grundlagen der Theorie der Grofsen Abweichungen

Bemerkung 1.16 Nach Lemma 1.10 und 1.15 gilt
cl(D%) = [essinf(X); esssup(X)] = cl({Ax () | A € R}),

wobei mit ¢l der topologische Abschluss gemeint ist.

Lemma 1.17 Fir die Cramér-Funktion N einer reellwertigen Zufallsgrofie X mit Er-
wartungswert B(X) = p gilt

Axt)=0 & t=u.

BEWEIS: Ist X fast sicher konstant gleich p, so ist A% () = oo fiir ¢ # pu, und es ist
nichts weiter zu zeigen. Sei also jetzt X nicht fast sicher konstant und sei t € R mit

A% (t) = 0. Dann ist A\; = 0 der eindeutig bestimmte Maximierer im Sinne von Lemma
1.14. Mittels Lemma 1.14 folgt ferner

/

N (h) = Ay(0) = ZXE)

E (0% =E(X) = p.

O

Ebenfalls von sehr grofier Bedeutung fiir die spateren Ergebnisse sind die strikte Konvexi-
tat und die Differenzierbarkeit der Cramér-Funktion. Mit Hilfe der (strengen) Monotonie

von Ay ldsst sich das folgende Resultat beweisen:

Satz 1.18 (Strikte Konvexitidt der Cramér-Funktion) Die Cramér-Funktion A%
einer reellwertigen Zufallsgrofie X ist strikt konvex auf (essinf(X); esssup(X)).

BEWEIS: Fiir den Beweis der strikten Konvexitat benutzen wir die in Lemma 1.14 ge-
wonnene geometrische Interpretation von A% auf (essinf(X);esssup(X)): Fiir ¢1,t €
(essinf(X); esssup(X)) mit ¢; < to und 6 € (0, 1) beliebig gilt

OAX(t1) + (1 = 0)Ax(t2) = 6Osup (A1 — Ax(A)) + (1 —0) sup (M2 — Ax(N))

= iug(ﬁ)\tl —0Ax(\)) + iug ((1 i Nty — (1 — 0)Ax(N))
> sup ((Ot1 + (1 = O)t2) A — Ax(N))

= A%t + (1= O)ty).

Dabei steht hier in der vorletzten Zeile das Gleichheitszeichen genau dann, wenn beide
Suprema in der drittletzten Zeile im gleichen Punkt angenommen werden. Das bedeutet,

12



1.3 FEigenschaften der Cramér-Funktion

fir die Gleichheit muss A;;, = Ay, gelten (mit A, (¢ = 1,2) wie in Lemma 1.14). Nach
Lemma 1.14 gilt aber A (\;,) = t1 < ty = A (\y,) und damit \;, < Ay, weil A’y (streng)

monoton wachsend ist. Es gilt also das > - Zeichen und damit ist A% strikt konvex.

O

Satz 1.19 (Differenzierbarkeit der Cramér-Funktion) Die Cramér-Funktion A%
einer reellwertigen Zufallsgrofie X ist differenzierbar auf (essinf(X); esssup(X)).

BEWEIS: Der Beweis stiitzt sich auf den Satz von der Differenzierbarkeit implizit defi-
nierter Funktionen (vgl. Satz 170.1 auf Seite 295 in [Heu]).

Fiir ¢ € (essinf(X); esssup(X)) ist A% (t) = Mt — Ax(\) mit A, wie in Lemma 1.14. Da-
bei ist A\, nach Lemma 1.14 und wegen der strengen Monotonie von A’y genau dann ein
Maximierer von (1.1), wenn ); Nullstelle der Funktion A ~— t — A’y ()\) ist. Wir definieren

F:UxV R, FeNY - A0,

wobei U C (essinf(X); esssup(X)) eine offene Umgebung von ¢ und V eine offene Umge-
bung von )\, darstellt, auf welcher die Funktion A’y stetig differenzierbar ist. Die stetige
Differenzierbarkeit von A/X zeigt man analog zum Beweis von Lemma 1.7 (Differenzier-
barkeit der kumulantenerzeugenden Funktion) mit Hilfe der Satze 5.6 und 5.7, Kapitel

4 in [Els|. Zum einen gilt wegen der strengen Monotonie von A’y

8 1"
a_)\f(ta )\) - _AX<)‘> < 07
und zum anderen gilt
0
= = 1.

Daher ist die Funktion F(t, \) stetig partiell differenzierbar. Zusammen mit F (¢, \;) = 0
und a%]: (t,\) # 0 folgt aus dem Satz von der Differenzierbarkeit implizit definierter
Funktionen die Existenz einer an der Stelle ¢ differenzierbaren Funktion f : G — H
mit geeigneten offenen Teilmengen G C U und H C V und F(¢, f(t)) = 0 Vt €
G. Nach Lemma 1.14 (insbesondere der Eindeutigkeit des Maximierers) gilt A% (t) =
f()t—Ax(f(t)) und damit ist A% differenzierbar als Verkniipfung von differenzierbaren
Funktionen. Da ¢ € (essinf(X); esssup(X)) beliebig gewéhlt war, folgt die Behauptung.

0

Folgerung 1.20 (Ableitung an der Stelle p) Fiir die Cramér-Funktion N einer nicht
fast sicher konstanten reellwertigen Zufallsgrifie X mit Erwartungswert E(X) = p gilt

e
A% (O = 0.

13



1 Grundlagen der Theorie der Grofsen Abweichungen

BEWEIS: Die Behauptung folgt mit Hilfe der Ergebnisse des Lemmas 1.17 und den Sét-
zen 1.18 und 1.19. Die Cramér-Funktion A% ist strikt konvex und differenzierbar auf
(essinf(X); esssup(X)). Dabei liegt v in (essinf(X); esssup(X)), weil X nach Vorausset-
zung nicht fast sicher konstant ist. Auferdem gilt A% () > 0, wobei die Gleichheit nur
fiir t = p gilt. Demzufolge ist p ein lokales Minimum von A% und daraus folgt die Be-
hauptung.

O

Im Hinblick auf die spateren Ausfithrungen bendtigen wir noch ein weiteres Lemma, das
auf die Situation in Kapitel 3 zugeschnitten ist:

Lemma 1.21 Sei X eine nicht fast sicher konstante, nichtnegative Zufallsgrifse mat
E(X) < 00 und P(X =0) = 0. Dann gilt fiir ihre linksseitige Cramér-Funktion

li A} (1) = o0.
tlessligfl(X) l’X() o0

BEWEIS: Es gilt A}y (t) = supy< (At — Ax (X)) > Aot — log E(e*X) fiir alle Ay < 0. Fiir
K > 0 beliebig folgt daraus

lim  Aj(t) > lim At —logE(e™*
tlessliInrfl(X) l’X() tlessliInrfl(X) 0 08 <€ )

=)o essinf(X) — logE(e™¥) > K
fiir Ao hinreichend klein, denn nach Voraussetzung ist P(X = 0) = 0. Also existiert ein
e > 0 und eine Menge A mit P(A) > 0 und X (w) > essinf(X) + ¢ fiir alle w € A.

Setze d & essinf(X). Unter Beachtung von P(X > 0) = 1 gilt fir A < 0 beliebig die
Abschétzung

Jim (A —log E(e™)) = Jim (Ad—log ( / N dP + / eAXd]Il’))
——00 ——00 A c
= lim lim ()\d—log < / M dP + / e"XdIP))
A——00 ——00 A c
= lim (/\d—log < / MdP 4+ lim e"XdIP>)
A——00 A 60— —o00 AC
= lim (/\d—log / eAXdIP)
A——00 A

> lim ()\d—log / e“dﬁ)dP)
A——00 A

14



1.3 FEigenschaften der Cramér-Funktion

— lim_(Ad — log (P(4)eX¢9)
= lim (Ad—logP(A) — A(d+¢))

A——00

= Alim (—logP(A) — Xe)

= oo’

wobei wir die Stetigkeit der Logarithmusfunktion und der Abbildung X — [, e*XdP
benutzt haben. Daraus folgt die Behauptung des Lemmas.
0]

An dieser Stelle haben wir alle fiir die folgenden Kapitel bendtigten Eigenschaften der
Cramér-Funktion einer reellwertigen Zufallsgrofie X zusammengetragen und somit ihre
Charakterisierung abgeschlossen. Die folgende Abbildung veranschaulicht die Gestalt
einer typischen Cramér-Funktion (Die zugehorige Zufallsgrofe X wird hier als nicht fast
sicher konstant und fast sicher beschriankt angenommen, so dass —oo < essinf(X) <
esssup(X) < oo gilt).

Ax(®),

: t
essinf(X) p=E(X) esssup(X)

Abbildung 1: Geometrische Interpretation einer typischen Cramér-Funktion
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1 Grundlagen der Theorie der Grofsen Abweichungen

1.4 Der Satz von Crameér

Dieser Abschnitt ist dem Satz von Cramér, einem fundamentalen Ergebnis der Theo-
rie der Groflen Abweichungen, gewidmet. Der Satz von Cramér 16st das in Abschnitt
1.1 vorgestellte Grundproblem der exponentiellen Abfallrate. Wie in Abschnitt 1.1 sei
fiir unabhéngige und identisch verteilte reellwertige Zufallsgrofen Xy, Xs, ... die Parti-
alsummenfolge (S, )neny mit S, = > | X; gegeben. Mit Hilfe der Markov-Ungleichung
(vgl. Satz 17.4 auf Seite 72 in [Alsl]) konnen wir zeigen:

Lemma 1.22 Sei (X;);en eine Familie von stochastisch unabhdngigen und identisch
verteilten reellwertigen Zufallsgréfien mit Partialsummenfolge (Sy)nen und kumulanten-
erzeugenden Funktion Ax, = log Mx,. Ferner sei t > 0 beliebig. Dann gilt fiir jedes
A > 0 die Abschitzung

P(S,, > nt) < e "M (),

BEWEIS: Seien ¢t > 0 und A > 0 beliebig. Eine Anwendung der Markov-Ungleichung

liefert
P(Sn > nt) — P<€)\Sn > eAnt) < e—)\ntE(eASn) — e—)thxl ()\)n — e—n(At—Axl(A))'

Dabei haben wir fiir die vorletzte Gleichheit benutzt, dass die (X;);en stochastisch un-
abhéngig und identisch verteilt sind.
O

Da diese Abschétzung fiir alle A > 0 und alle n € N gilt, folgern wir

1
limsup —log P(S,, > nt) < —sup(At — Ax, (\)) = Ay« (t), t>0.
n k)

n—00 A>0

Unter der Zusatzvoraussetzung A(\g) < oo fiir ein A\g > 0 gilt somit nach Satz 1.13 fiir
t>p
1
limsup — log P(S,, > nt) < =A%, (t). (1.2)
n—oo T
Kommen wir nun zum angekiindigten Satz von Cramér. Dieser sagt aus, dass obige
Ungleichung auf der exponentiellen Skala scharf, das heifst, die rechte Seite von (1.2)

auch eine Abschétzung nach unten ist.
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1.4 Der Satz von Cramér

Satz 1.23 (Satz von Cramér) Fs sei (X;)en eine Familie von stochastisch unabhdn-
gigen und identisch verteilten reellwertigen Zufallsgréfien mit Erwartungswert p € R und
Varianz o® > 0, deren kumulantenerzeugende Funktion Ax,()\) an einer Stelle Ay > 0
endlich ist. Setze S, =Y ., X;. Dann gilt fir jedes t > p

1
lim —logP(S, > nt) = —A% (1),

n—oo 1,

wobei A die Cramér-Funktion von X, ist.

BEWEIS: Es reicht, ¢ = 0 zu behandeln, denn andernfalls gehen wir iiber zu den Zu-
fallsvariablen X; — ¢t (beachte: ¢ = 0 impliziert ¢ < 0) Also miissen wir zeigen, dass
lim,, o0  log P(S,, > 0) = —A%, (0) = infyer Ax, (X) = log p gilt, wobei wir

def .
P M

definieren. Fiir die letzte Gleichheit haben wir die Stetigkeit und die Monotonie der Lo-
garithmusfunktion benutzt.

Wir verwenden im Folgenden die Konvention log 0 & oo. Aus der strikten Konvexitit
von Ayx,, der strengen Monotonie der Logarithmusfunktion und der Ungleichung zwi-
schen dem geometrischen und dem arithmetrischen Mittel folgt die strikte Konvexitét
von My, (vgl. Beweis von Lemma 1.6) und es gilt

M, (0) = E(X,e™) = B(X,) = i < 0.
Ferner diirfen wir voraussetzen, dass die Verteilung der Zufallsgrofe X; Masse sowohl im

Intervall (—o0;0) als auch im Intervall (0; co) besitzt. Dies sieht man folgendermafien ein:

Wenn P(X; < 0) = 1 gilt, so ist M, streng fallend mit limy_.. Mx,(A\) = p = 0,
und es folgt die Behauptung, denn es ist P(S,, > 0) = 0. Falls P(X; < 0) = 1 und
P(X; =0) > 0, so ist My, fallend mit limy o, Mx, (A) = p =P(X; = 0) > 0. Aufgrund
der stochastischen Unabhéngigkeit der (X;);en gilt

]P(SnZO)ZIED(Xl:XQZ:Xn:O):pn’

woraus wiederum die Behauptung folgt. Wegen E(X;) < 0 kann X; nicht in [0;00)
konzentriert sein, sofern X; nicht konstant gleich 0 ist. Wie man leicht einsieht, folgt
die Behauptung auch in dem Trivialfall, dass X; konstant gleich 0 ist. Also kénnen wir
jetzt davon ausgehen, dass P(X; > 0) > 0 und P(X; < 0) > 0 gelten. Insbesondere ist
0 € (essinf(X7); esssup(X7)) und es gilt limy o Mx, (A) = 0o = limy_, o, Mx, (A).

Wegen der strikten Konvexitdt nimmt My, sein Minimum p in genau einem Punkt
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1 Grundlagen der Theorie der Grofsen Abweichungen

Ao € R an, und es gilt My (A\g) = 0. Die obere Schranke wird genau wie in Lemma 1.22

hergeleitet, was wir hier nicht wiederholen wollen. Also muss nur noch

1
lim inf —log P(S,, > 0) > log p

n—oo M

gezeigt werden.

Der nun folgende Beweis der unteren Schranke benutzt einen exponentiellen Mafswechsel
und ist fundamental in der Theorie der Grofen Abweichungen. Wir betrachten ein Mafy
P mit der Eigenschaft

A 1
P(X; € dr) = ;erxP(Xi € dz). (1.3)

Die Verteilung von X; wird also exponentiell mit Parameter Ay transformiert. Die rechte
Seite von (1.3) ist tatséchlich eine Wahrscheinlichkeitsverteilung, denn es gilt

p = Mx, (No) = E(e ).

Fiir dieses P gilt wegen der stochastischen Unabhéngigkeit der (X;);en

~

P(X, € day,..., X, € dx,) = p "M@t T0IP(X) € dry) .. . P(X, € dz,)
und mit Hilfe des Transformationssatzes
P(S, € ds) = p " P(S, € ds). (1.4)

Wir haben
lim E(e 5 11g,50)7 > 1

n—oo

nach dem zentralen Grenzwertsatz fiir S,,, denn wir konnen wie folgt abschéatzen:

N {(e"\oﬁ"@(% €[0;1]))n fiir Ay >0

3=

N 1 N =
E(e )\OSnl{SnZO})n 2 ]E(e Aosnl{sne(o,\/ﬁg)})

5 1 ,
P(% [0;1])n fir X <0
—A\po ~
Dabei gilt limnﬂoo(e—/\o\/ﬁo)% = lim, 00 e vi =1 und lim,, oo P(fgg € [0; 1])% =1,
denn P( \‘/gnﬂa € [0;1]) konvergiert nach dem zentralen Grenzwertsatz fiir n — oo gegen

eine positive Zahl (weil 22 fiir n — oo in Verteilung gegen eine N(0,1)- Verteilung
Vno

konvergiert).
Unter Verwendung von (1.4) erhalten wir schliefslich
1
liminf — logP(S,, > 0) > log p.
n—oo M
Damit ist die untere Schranke bewiesen und der Beweis des Satzes von Cramér abge-

schlossen.
OJ
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Bemerkung 1.24 (i) Die Aussage des Satzes von Cramér gilt auch fiir P(S,, < nt) an
Stelle von P(S,, > nt) fiir t < E(X}), sofern ein Ay < 0 existiert mit Ax, (Ag) < o0.
Dies folgt leicht aus einem Ubergang von X; zu —X;.

(i1) Die Verteilung PXi im Beweis von Satz 1.24 nennt man die Cramér- Transformierte
der Verteilung PXi. Diese Transformation wandelt das ,untypische Verhalten, das
Verhalten der Grofen Abweichung S, > 0, in ein ,typisches® um, auf das der

zentrale Grenzwertsatz angewendet werden kann.

(i7i) Fiir eine Folge von stochastisch unabhéngigen und identisch verteilten reellwertigen
Zufallsgrofen (X;);ey mit Ax, (Ag) < 0o sowie Ay, (A1) < oo fiir gewisse \g < 0 <
A1 (was genau der Situation in den folgenden Kapiteln entspricht), ldsst sich die

Aussage des Satzes von Cramér umformulieren zu
P(S, > nt) = ¢ ™ 0o — o7y OFel) g ¢ > B(X),

und
P(S, < nt) = ¢ "M Otom) — omnhi OFe) g < B(X).
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2 Der zweifach gewichtete
Verzweigungsprozess

In diesem Kapitel stellen wir den zweifach gewichteten Verzweigungsprozess vor, welcher
der Untersuchungsgegenstand der folgenden Kapitel sein wird. Im Gegensatz zu der
zugrunde liegenden Arbeit [BuD| verwenden wir hier eine leicht abgewandelte Notation,
welche an die in [Als3] angelehnt ist.

2.1 Modellbeschreibung

Wir betrachten einen b-adischen, unendlich verzweigten stochastischen Baum T.,,. Dabei
bedeutet ,,b-adisch”, dass jeder Knoten (jedes Individuum) des Baumes genau b Nach-
kommen besitzt, wobei b eine natiirliche Zahl > 2 ist. Somit handelt es sich bei T,
streng genommen gar nicht um einen stochastischen Baum, da der Zufall hier iberhaupt
keine Rolle spielt. Der Baum stellt gewissermafen das Rohmaterial fiir den zweifach
gewichteten Verzweigungsprozess dar.

Die Wurzel des Baumes bezeichnen wir mit () und fiir n € N einen Knoten der n-ten
Generation mit v = (vy,...,v,). Dabei nummerieren wir die Kinder des Knotens v von
links nach rechts und bezeichnen sie mit (v,1),...,(v,b), wobei (v,4) fir i € {1,...,b}
eine verkiirzte Schreibweise von (vy,...,v,,7) darstellt. Aukerdem bezeichnen wir fiir
einen Knoten v = (vy, ..., v,) dessen Urahnen der i-ten Generation mit v|i & (v1, ..., ;)
(Insbesondere gilt v|0 = (). Im Fall b = 3 ergibt sich das folgende Bild:
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2 Der zweifach gewichtete Verzweigungsprozess

(1,1)® (1,2)® (1,3)® (2,1)® (2,2)® (2,3)® (3,1)® (3,2)® (3,3)

Abbildung 2: Ausschnitt des Baumes T, bis zur zweiten Generation fiir b = 3

Wir bezeichnen mit I die Menge der Knoten von T, und fiir einen einzelnen Knoten
v = (vy,...,v,) € K sei [v]| = n. Das heiftt, |v| bezeichnet die Generation, der v ange-
hort. Speziell bedeutet dies || = 0. Fiir einen beliebigen Knoten v mit |v| > 1 bezeichne

ferner m(v) die Menge der Kanten des Astes von der Wurzel () bis zum Knoten wv.

Jeder Knoten v von T, werde zudem mit einem b-dimensionalen Zufallsvektor

(Z(v), E(v)) = (Z1(0), Er(v)), (Za(v), Ex(v)), -, (Z4(v), Ey(v)))

bestehend aus b Paaren von reellwertigen Zufallsgrofsen versehen. Dabei seien die Zufalls-
variablen (Z(v), E(v)),ex stochastisch unabhéngig, und jedes Paar (Z;(v), E;(v)), i €
{1,...,b}, v € K sei verteilt wie (Z, F) fiir nichtnegative und stochastisch unabhéngige

.......... py seien
ebenfalls stochastisch unabhéngig. Man beachte aber, dass fiir ein festes v € K innerhalb
des Zufallsvektors (Z(v), E(v)) die Paare (Z;(v), E;(v))i=1

héngig zu sein brauchen.

77777 » nicht stochastisch unab-
Die Zufallsgrofe E sei zudem nicht fast sicher konstant, und es gelte E(E) < oo und
E(Z) < oo, sowie P(E = 0) = 0. Auflerdem bendtigen wir noch eine weitere, im Hinblick
auf die Anwendung der im ersten Kapitel gewonnenen Ergebnisse sehr wichtige Eigen-
schaft: Die Zufallsgrofse Z erfiille die Bedingung Az(\) < oo fiir ein A > 0, wobei A die
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2.1 Modellbeschreibung

kumulantenerzeugende Funktion von 7 ist.

Die b Zufallsvariablen-Paare (Z;(v), Ey(v)), ..., (Zy(v), Ep(v)) werden den b Kanten, die
den Knoten v mit seinen b Kindern (v, 1), ..., (v, b) verbinden, zugewiesen. Im Fall b = 3
ergibt sich das folgende Bild:

(Z1(0), E1(D)) (Z2(0), E2(0)) (Z3(0), E5(0))

(2)

(Z3(1), E3(1)) (Z5(3), E3(3))

(Z1(2), E1(2))

E»(1))

(1,2)® (1,3)

(Z2(2)

(2,2)® (2,3)

E2(3))
(3,2)® (3,3)

(1,1) (2,1) (3,1)

Abbildung 3: Ausschnitt des zweifach gewichteten Baumes 7., bis zur zweiten
Generation fiir b = 3

Wir bezeichnen ferner mit £ die Menge der Kanten von T,,. Fiir eine beliebige Kante
e € &£ bezeichnen wir die ihr zugewiesenen Gewichte auch mit der kiirzeren Schreibweise

(Z., E.). Fiir einen Knoten v = (vy,...,v,) seien

» Z E. = Z E, (v|(i—1)) (Alter des Knotens v)

e€7r v

und

y Z Ze = Z Zy,(v](i — 1)) (Gewichtete Hohe des Knotens v)

eem(v)

die beiden kumulierten Gewichte des Astes mw(v). In den meisten Féllen interpretieren
wir GG, als den Geburtszeitpunkt von v und D, als die rdumliche Linge des Astes von
der Wurzel () bis zum Knoten v.
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2 Der zweifach gewichtete Verzweigungsprozess

Nun haben wir einen b-adischen Baum, dessen Knoten v jeweils mit zwei stochastisch un-
abhéangigen, nicht-negativen Gewichten GG, und D, versehen sind. Einen in der oben be-
schriebenen Art und Weise gewichteten Baum nennen wir fortan einen (b-adischen) zwei-
fach gewichteten Verzweigungsprozess und verwenden fiir ihn die Notation 7. Schliefs-
lich definieren wir fiir n € N die Zufallsvariable 7,, als den zufélligen Baum der Knoten
v von 7, fir die G,, < n gilt. Ferner sei KC,, die zufillige Menge der Knoten von 7,,.

Im Folgenden interessieren wir uns fiir die gewichtete Hohe
def
H, = max{D,| v e K,}

des zufélligen Teilbaumes 7,, von 7,,. Die Zufallsvariable H,, kann also als die gewichtete
Hohe des Baumes T, zum Zeitpunkt n interpretiert werden.

In Kapitel 3 geben wir eine vollstindige Charakterisierung des asymptotischen Verhal-
tens von H, an, welche génzlich unabhéngig von den Verteilungen der Zufallsgrofsen
Z und F ist. Fiir den Beweis dieses ersten Hauptresultates bemiihen wir die in Kapi-
tel 1 erarbeiteten grundlegenden Eigenschaften der Cramér-Funktion und den Satz von

Cramér.
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3 Asymptotik der gewichteten Hohe
des zweifach gewichteten
Verzweigungsprozesses

3.1 Vorbereitungen

Damit wir unser erstes Hauptresultat beweisen konnen, miissen wir zundchst noch wei-
tere technische Hilfsmittel bereitstellen. Im Folgenden sei 7., ein b-adischer zweifach
gewichteter Verzweigungsprozess mit Gewichtsfunktionen Z und E und allen Eigen-
schaften aus Kapitel 2. Um das asymptotische Verhalten der gewichteten Hohe H,, des
Baumes 7., zum Zeitpunkt n untersuchen zu kénnen, definieren wir zunéchst die Menge
Czr = {(p, @) | Ay(a) + Ap(p) = logh, a > E(Z), p <E(E)}.
Dabei stehen A% und A7}, fiir die Cramér-Funktionen der Gewichte Z und E. Wir unter-
suchen zunéchst die geometrische Gestalt der Menge C; . Mit Hilfe der Ergebnisse aus
Kapitel 1 lassen sich einige Charakteristika herleiten, welche von der Wahl der Zufalls-
grofen Z und E vollig unabhéngig sind.

Als erstes halten wir fest, dass aufgrund der Nichtnegativitit der Zufallsgrofe E (siehe
Kapitel 2) Ag(\) < oo fiir jedes A < 0 und damit Az (p) = A} z(p) fiir jedes p < E(E)
gilt (vgl. Satz 1.13). Auferdem existiert nach Voraussetzung ein A > 0 mit Az(\) < oo,
woraus auch A% (a) = A} () fiir jedes o > E(Z) folgt. Es gilt also

Coi = {(p,0) | Alz(@) + Afpl(p) = logb, a > E(Z), p < E(E)}.

Aus diesem Grund koénnen wir in den folgenden Ausfithrungen die Notationen A}, und
Aj g beziehungsweise A% und A , gleichermafen verwenden. Wie sich herausstellen wird,
beschreibt die Menge Cy g eine strikt konkave Kurve in dem Fall, dass Z nicht fast sicher
konstant ist. Den trivialen Fall, dass Z fast sicher konstant ist, behandelt das folgende

Lemma.
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3 Asymptotik der gewichteten Hohe des zweifach gewichteten Verzweigungsprozesses

Lemma 3.1 Sei Z fast sicher konstant. Dann besteht die Menge Cz g aus genau einem
Punkt.

BEWEIS: Sei Z fast sicher konstant. Nach Satz 1.13 gilt AL (E(Z)) = 0= AL (E(E)), und
nach Satz 1.19 ist A}, stetig auf (essinf(E); esssup(F)). Auferdem gilt
lim A =00
plessinf(E) Z’E(p)
nach Lemma 1.21. Deshalb existiert ein p* < E(E) mit A} ;(p*) = logb > 0 (denn b > 2)
und damit (p*,E(Z)) € Czpg. p* ist dabei eindeutig bestimmt, denn nach den Sétzen

1.13 und 1.18 ist A}, streng monoton fallend auf dem Intervall (essinf(F); E(E)).
O

Lemma 3.2 Ist Z nicht fast sicher konstant, so ist die Menge Cz g der Graph einer

stetigen und streng monoton wachsenden Kurve p — «a(p).

BEWEIS: Sei Z nicht fast sicher konstant. Dann gilt essinf(Z) < E(Z) < esssup(Z).

Nach Lemma 3.1 ist (p*,E(Z)) € Cz g und ) lin%(E) A5 (p) = oo. Wegen der Geome-
plessin

trie der Cramér-Funktionen von Z und E auf (essinf(Z);esssup(Z)) beziehungsweise
(essinf(E); esssup(F)) besteht Cz g aus mehr als nur einem Punkt (siche Abbildung 1 im
ersten Kapitel). Seien (p1, 1), (p2, a2) € Cz g mit p; < py beliebig. Dann gilt aufgrund
der strengen Monotonie der Cramér-Funktionen A7 und A7

AL (p1) > Ap(p2)

und daher
A}(Ch) < AE(OZQ)

Daraus ergibt sich a; < ap, denn wegen der strengen Monotonie der Cramér-Funktionen
ist fiir ein p; mit (p1, 1) € Cz g das zugehodrige a; eindeutig bestimmt.
Die Stetigkeit der Kurve Cz g folgt aus der Stetigkeit der Cramér-Funktionen.

OJ

Wir sprechen im Folgenden anstatt von der Menge Cz g auch von der Kurve Cz g und
kommen nun zu ihrer hinsichtlich unserer spéteren Ergebnisse wichtigsten Eigenschaft,
der strikten Konkavitét:

Lemma 3.3 (Strikte Konkavitéit der Kurve Czg) Ist Z nicht fast sicher konstant,

so ist die Kurve Cz g strikt konkav.
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3.1 Vorbereitungen

BEWEIS: Wie in Lemma 3.1 sei p* > 0 so gewdhlt, dass (p*,E(Z)) € Czp. Fir (p,a) €
Cz.p beliebig gilt dann p € [p*;E(E)] C (essinf(E); esssup(£)) und nach Satz 1.18 ist
A%, strikt konvex auf (essinf(E); esssup(E)). Seien nun oy, ag > E(Z) und py, po < E(E)
mit (p1, 1), (p2, a2) € Czp und = € (0;1) beliebig.

Setze o & zay + (1 — z)ay. Nach Lemma 3.2 gibt es dann genau ein p € [p*; E(£)] mit
(p,a) €Czp.

Fiir die strikte Konkavitét von Cz g geniigt es zu zeigen, dass p < zp; + (1 — z)p2
gilt. Mit Hilfe der strikten Konvexitat von A} und A7 erhalten wir

Ag(zpr+ (1 —x)p2) < aAg(p1) + (1 = 2)A%(p2)
— logh— (sA} () + (1 — 2)A%(az)
< logb— A% (xag + (1 — z)ay)

= Ax(p).
Da A%, monoton fallend ist, folgt p < zp; + (1 — x)p2.
O
In den folgenden Ausfiihrungen sei
def &
c= max —.
(p,0)eCz e P
Ist Z fast sicher konstant, so ist trivialerweise ¢ = Eﬁ()*z) nach Lemma 3.1. Sei daher im

Folgenden Z nicht fast sicher konstant. Falls ein a* > E(Z) existiert mit A% (a*) = logb,
so liegt der Punkt (E(E),a*) in Cz r und bildet gleichzeitig den rechten Endpunkt der
Kurve Cz g. In diesem Fall verlauft Cz g von (p*, E(Z)) bis (E(E), a*), wobei beide End-
punkte zu Cz g gehoren. Die Kurve Cz p ist dann kompakt. Aus der Kompaktheit folgt
wiederum die Existenz eines Punktes (po, ) € Czp mit ¢ = ‘;‘JO. Das Maximum wird
aber auch in dem Fall angenommen, dass kein o > E(Z) existiert mit A} (a) = logb.
Aufgrund der strengen Monotonie und der strikten Konvexitat von A7 auf dem Inter-
vall (E(Z);esssup(Z)) ist dies allerdings nur méglich, wenn esssup(Z) < oo gilt, denn

sonst wiirde ' lim 2 Ay (a) = lim A (a) = oo gelten. Ist esssup(Z) < oo, so gilt
aesssup a— 00

: lim . Ay (a) = Al(esssup(Z)) < logb und damit gehort auch in diesem Fall der
a|esssup

rechte Endpunkt (p;, esssup(Z)) (mit einem geeigneten p;) zu Cz g. Damit ist die Kurve

wiederum kompakt und das Maximum wird angenommen.

Von groffem Interesse ist an dieser Stelle die Frage, ob der Punkt (pg, ap) mit der Ei-

genschaft % = c auch eindeutig bestimmt ist, und ferner, an welcher Stelle er in Cz g
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3 Asymptotik der gewichteten Hohe des zweifach gewichteten Verzweigungsprozesses

liegt. Die erste Frage ist mit ,ja“ zu beantworten und auch auf die zweite gibt es eine

Antwort, wie das folgende Lemma zeigt:

Lemma 3.4 (Eindeutigkeit von (pg, ap) und Gestalt von Czg) Die Funktion f :
Czr — Rxo, f(p, ) oo % nimmt ihr Mazimum in einem eindeutig bestimmten Punkt
(po, o) an. Euxistiert ferner ein o > E(Z) mit Ay (a*) = logb, so liegt (po, o) im

Inneren von Cz .

BEWEIS: Zur Existenz eines Punktes (po,ap) mit ¢ = 22 ist nach der Vorbemerkung
nichts mehr zu sagen und die Eindeutigkeit folgt aus der strikten Konkavitiat von Cz g.
Gelte A% (a*) = logb fiir ein o > E(Z). Dann besitzt Czp die beiden Endpunkte
(p*,E(Z)) und (E(E), a*). Wegen Aj(E(E)) = 0 gilt p* < E(E) und daher A% (¢)];—,» <
0 wegen der strikten Konvexitit von Aj,. Daraus folgt zusammen mit %A% (¢)];—gz) = 0
(vgl. Folgerung 1.20), dass Cz r im Punkt (p*,E(Z)) die Steigung oo besitzt.

Analog zeigt man, dass Cz g im Punkt (E(F), a*) die Steigung 0 besitzt. Daraus folgt

die Behauptung mit Hilfe der strikten Konkavitét.
O

Ein wichtiges Beispiel fiir eine Zufallsgroke Z mit A% (a) < logb fiir alle a € [E(Z); esssup(Z)]
ist eine Bernoulli-verteilte Zufallsgrofe. Diese Moglichkeit wird in der Arbeit [BuD| von
den Autoren aufter Acht gelassen, obwohl sich einige ihrer Ausfiihrungen genau auf die-
sen Fall beziehen. In Kapitel 6 behandeln wir unter anderem den zufilligen rekursiven
Baum, dessen Gewichtsfunktion Z B(1, 5)-verteilt ist.

Beispiel 3.5 Fiir eine B(1, 3)-verteilte Zufallsgrifie Z eistiert kein a € [E(Z); esssup(Z)] =

(35 1] mit Aj() > log3.

BEWEIS: Sei a € [3;1]. Dann gilt fiir jedes A > 0

A —Az(A\) = Ala—logE(e*?)
1
= logeM —log 5(1+e’\)

| 26)\(1
O,
& 1+er

log 2

IN

A

log 3.
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3.1 Vorbereitungen

In den meisten Fallen tritt jedoch die Situation aus Lemma 3.4 auf. Dann hat C; p die
folgende Gestalt:

@,

CzE

Q[ ;

P po E(E)

Y

Abbildung 4: Geometrische Interpretation der Kurve Cz p zusammen mit der
Konstante ¢ = 2¢. Beachte, dass E(Z) < o < a” und p* < p < E(E). Die
Steigung der Tangente an die Kurve Cz g ist c.
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3 Asymptotik der gewichteten Hohe des zweifach gewichteten Verzweigungsprozesses

3.2 Das asymptotische Verhalten von H,,

Die Konstante ¢ aus dem vorherigen Abschnitt stellt sich im Folgenden als die einzig
richtige Wahl fiir den Grenzwert nach Wahrscheinlichkeit der Folge (%Hn)neN heraus.
Unabhéngig von der Wahl der Gewichtsfunktionen Z und F gilt:

Satz 3.6 (Das asymptotische Verhalten der gewichteten Héhe H,,) Sei 7., ein
b-adischer zweifach gewichteter Verzweigungsprozess mit Gewichtsfunktionen Z und E.
Dann gilt

lHn —s c

n n—oo

nach Wahrscheinlichkeit. Dabei ist ¢ = 2¢ das Mazimum von (p, ) — < in Czp mit

eindeutig bestimmten py und ay.

Wir spalten den Beweis von Satz 3.6 in zwei Lemmata auf, welche eine obere und eine
untere Schranke fiir den Wahrscheinlichkeitslimes der Folge (%Hn)neN bereitstellen.

Lemma 3.7 (Obere Schranke) Mit den Notationen aus Satz 3.6 und € > 0 beliebig
qilt

7Ih_)n(;lo P(H, > c¢(1+¢)n) = 0.
BeEweis: Fir n,k € N sei L, die Menge der Knoten v von 7, mit |v| = k. Zur
Erinnerung: In Kapitel 2 haben wir mit 7,, den Baum der Knoten v von 7, mit G, < n
bezeichnet. Dann gilt fiir o > E(Z) beliebig

P({3v € Loy : D, > ak}) = 1@( U (D, > ak})

'UELn,k

k k
< b’f]P(Z Z; > ak,y E; < n)
z:l =1 .
= b’“]P’(ZZZ- > ak)]P’(ZEZ- < n)

i=1 i=1

wobei wir bei der vorletzten Abschédtzung benutzt haben, dass P o-subadditiv und 7.,
b-adisch ist, sowie D, = Zle Zy,(v|(i — 1)) und G, = Zle E,,(v|(i — 1)) gilt. Da-
bei bezeichnen Z;, F; fir « = 1,...,k stochastisch unabhéngige Kopien von Z und
E. Nach Definition des zweifach gewichteten Verzweigungsprozesses sind die Familien
(Zi(v))vek, ieqn,...py und (E;(v))vek, icq1,...p} stochastisch unabhéngig. Das berechtigt uns

.....
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3.2 Das asymptotische Verhalten von H,

zu der Annahme der stochastischen Unabhangigkeit von Zle Z; und Zle E;. Wir set-

zen p o 7 und schitzen obige beiden Wahrscheinlichkeiten weiter ab. Beachte, dass

A z(a) = 0 fiir @ <E(Z) und Aj 5(p) = 0 fiir p > E(E) gilt (vgl. Satz 1.13 (v)). Mittels

k k
P(ZE; < n) :P(AZ@ > Apk), VA <0,
i=1 =1

und des Lemmas 1.22 fur die beiden Wahrscheinlichkeiten erhalten wir

k k
s <Z Z; > ozk)IP’(Z E; < pk> < BreFAZ(@) g kAT £ ()
=1 =1

F(logb—A7 4 () =A7 (o))

— e Fr(ap)

Dabei ist
def * *
Ve, p) = AL z(@) + Aj g(p) — logb.

Fiir £ > 0 wahlen wir nun o = ¢(1 4 ¢)p. Dann gilt
def . .
(e, p) = y(e(l +e)p, p) 2 8 = infy(c(1 +€)p, p) > inf y(cp, p) = 0. (3.1)

Zur Begriindung setzen wir f(p) o v(ep, p) und f.(p) o v(c(14¢€)p, p), sowie g(p) o cp
und g.(p) o ¢(1 + ¢)p. Nach den Ergebnissen des vorherigen Abschnitts behandeln
wir den héufigeren Fall, dass ein a > E(Z) existiert mit A («) = logb, wie folgt:
Wir haben inf,>¢ f(p) = f(po) = 0 mit dem py aus Abschnitt 3.1. Denn innerhalb
von (p5E(E)) x (E(Z);a*) gilt A} 4(a) + Af p(p) = AZ(a) + Ax(p) und auferhalb von
(5 E(E)) x (E(Z); ) nimmt A} ,(a) + Af p(p) hochstens gréfere Werte an, da A} p
monoton fallend auf (essinf(E); p*) und A} ,(a) = 0 fiir a < E(Z) beziehungsweise A; ,
monoton wachsend auf (a*;esssup(Z)) und A} ;(p) = 0 fiir p > E(E) gilt.

Sei jetzt I = [a;b] ein kompaktes Intervall mit p* < a < py < b < E(FE) so klein, dass
E(Z) < cp < c(l+¢)p < o fiir alle p € I gilt. Fiir p € I gilt also Ajz(p) = AR(p),
As 4(c(14¢€)p) = AZ(c(1 4 €)p) sowie A} ,(cp) = Ay (cp). Aufgrund der Stetigkeit der
Cramér-Funktionen von Z und E kénnen wir wiederum ¢ so klein wahlen, dass f. sein
Infimum ebenfalls im Inneren von I annimmt. Das bedeutet, es existiert ein p’ € I mit

inf f-(p) = inf f(p) = fo()) > f(p') = inf f(p) = inf f(p) = f(p0) = 0,

p=0 p=0

wobei wir benutzt haben, dass A}, streng monoton wachsend ist. Zur Veranschaulichung
der Situation betrachten wir das folgende Bild:
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3 Asymptotik der gewichteten Hohe des zweifach gewichteten Verzweigungsprozesses

X v>0
o .
9:(p)/ /9(p) Czk
(po,Oéo) v < 0
E(Z) |-/
o T E(E) P

Abbildung 5: Veranschaulichung der Situation mit den Geraden g.(p) und g(p),
sowie dem Intervall

Der zweite Fall, dass kein o« > E(Z) existiert mit A} (a) = logb, ist etwas komplizier-
ter. Liegt der Punkt (po, ) im Inneren von Cz g, so geht der Beweis vollig analog. Ist
aber ¢ = esss‘;% mit den Notationen aus Abschnitt 3.1, so gilt inf,>o f(p) = f(p1).
Anders als in obigem Fall lasst sich hier nicht einfach ein Intervall I konstruieren mit
pr<a<py<b<EE)und E(Z) < ¢(1+¢)p < o fiir alle p € I. Wir haben die
folgende Situation:

9:(p) 9(p) T=*
ESSSUP(Z) [rroreremsmemmresrmen oo gl

CzE

P2 P1

Y

Abbildung 6: Veranschaulichung der Situation im zweiten Fall
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3.2 Das asymptotische Verhalten von H,

In diesem Fall ist es angebracht, die Geraden g und g. als Funktionen von « aufzufassen.

Wir haben g(a) = ¢ und g.(a) = Mit diesen Notationen gilt

c(l—i—s)
«

f(pl)zirzl(f)f(p)z lim 7(%;)'

alesssup(Z)

Sei nun a < esssup(Z) beliebig nahe an esssup(Z). Aufgrund der Stetigkeit der Cramér-

Funktion kénnen wir wieder ¢ so klein wéhlen, dass auch o — v(« sein Infimum

i)
innerhalb von (a;esssup(Z)] annimmt. Fiir jedes § > 0 mit esssup(Z) — § > a gilt dann

esssup(Z) — 5)
c

%) > 7<esssup(Z) -9,

wegen der strengen Monotonie von Aj. Da aber A}, auch strikt konvex ist, gilt sogar

I © )> -
im o, ———— im a, —
atesssup(Z) " C(l -+ 8) atesssup(Z) i c

(denn der Abstand wéchst fiir § | 0), und damit folgt die Behauptung (3.1).

v (esssup(Z) — 4,

Fiir jedes K € N erhalten wir nun

P(H,>c(l1+e)n) = PEkeNIveL,p: D, >c(l+¢)n)

K-1

< ) PEv€E Ly Dy>c(l+e)n)
k=0

+ Z P(Jv € Lok : Dy, > c(l+¢e)n).
k=K

Fiir den zweiten Term folgt mittels (3.1)

ZIP’HUGLM D, > c¢(1+¢)n Ze _ O(e K9,
k=K

Sei Lo die Menge der Knoten v von 7, mit |v| = k. Dann liefert eine grobe Abschét-
zung mit Hilfe der Markov-Ungleichung (vgl. [Alsl], Satz 17.4(a) auf Seite 72)

K-1 K-1
> P(Fv€Lyg: Dy>c(l+en) < Y PFv€ Loy Dy >c(l+2)n)
k=0 k=0
< Kb* sup P(D, > c¢(1+¢)n)
0<k<K,0€Loo i
E(D,
< Kbv& sup #
0<k<KveLo, C(1+€)n
< g EED 0.

-
C(l—l—a—?)ﬂ n—oo
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3 Asymptotik der gewichteten Hohe des zweifach gewichteten Verzweigungsprozesses

Fiir die letzte Ungleichheit haben wir D, = """ | Z,,.(v|(i — 1)) benutzt. Fasst man diese

beiden Abschétzungen zusammen, so erhilt man
P(H, > c(1+¢)n) < O(e *7) + o(1).

Da K beliebig grof gewéahlt werden kann und 5 > 0 ist, folgt die Behauptung des
Lemmas.

O

Lemma 3.8 (Untere Schranke) Mit den Notationen aus Satz 3.6 und € > 0 beliebig
gilt
lim P(H, > ¢(1 —2¢)n) = 1.

n—oo

BEWEIS: Sei € > 0 beliebig. Im Folgenden heben wir zunéchst einen Ast von der Wurzel
() bis zu einem Knoten v hervor, fiir den D, > ¢(1 — 2¢) logn gilt. Um dies zu erreichen,
konstruieren wir innerhalb von 7., einen bestimmten Galton-Watson-Prozess mit Aus-
sterbewahrscheinlichkeit ¢ < 1.

Die Konstruktion startet in der Wurzel () von 7., welche auch die Wurzel unseres Galton-
Watson-Prozesses ist. Sei Lo, i die Menge der Knoten v von 7, mit |v| = K € N. Einen
Knoten v € Ly g bezeichnen wir als guten Knoten genau dann, wenn D, > oK und
G, < pK fir gewisse a > E(Z) und p < E(FE) gilt, welche wir spiter genau festlegen
werden.

Die guten Knoten v € Ly i seien nun die Kinder von () in unserem Galton-Watson-
Prozess. Diese Kinder reproduzieren sich wiederum unabhéngig voneinander geméf der-
selben Reproduktionsverteilung wie (). Das bedeutet, ein Knoten v genau K Genera-
tionen unterhalb eines Knotens u aus unserem Galton-Watson-Prozess ist genau dann
ein Kind von u (also ein guter Knoten), wenn die Bedingungen D, — D, > aK und
G, — Gy < pK gelten.

Nach Kapitel 2, 14.7 in [Als2] iiberlebt der Galton- Watson-Prozess der guten Knoten mit
positiver Wahrscheinlichkeit, wenn die erwartete Anzahl der Kinder eines Individuums
(also der Erwartungswert der Reproduktionsverteilung) echt grofser als 1 ist. Wir schrei-
ben N fiir die zufillige Anzahl der guten Knoten in der K-ten Generation von T..
Also ist N die Anzahl der Individuen der ersten Generation unseres Galton-Watson-
Prozesses der guten Knoten. Dann gilt analog zum Beweis von Lemma 3.7 mit Hilfe
des Satzes von Cramér (vgl. Bemerkung 1.24 und beachte, dass hier im Gegensatz zum
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3.2 Das asymptotische Verhalten von H,

Beweis von Lemma 3.7 o > E(Z) und p < E(E) gilt)

E(Ng) = ]E( Z 1ip,>ax, Gv<pK})

v:lv|=K
K K
— bKIP’(Z Z; > oK, E; < pK)
=1 =1
—y(ap) K +o(K)

= € .

Fiir die zweite Gleichheit haben wir benutzt, dass die Zufallsgroken (D, ). =k bezie-
hungsweise (G )q:|vj=x identisch verteilt sind.

Fiir K hinreichend grof gilt also E(Ng) > 1, sofern v(«, p) < 0 gilt. Setze nun a = ay
und p = \/'% und beachte, dass fiir € hinreichend klein p < E(FE) gilt. Aufgrund der
strengen Monotonie von A% folgt v(a, p) < 0 und damit E(Ng) > 1 fiir ein hinreichend

grofses K. Fiir diese a, p und K sei nun g < 1 die Aussterbewahrscheinlichkeit unseres
Galton-Watson-Prozesses der guten Knoten. Der Prozess iiberlebt also mit Wahrschein-
lichkeit 1 — q.

Im néchsten Schritt vergrofern wir diese Wahrscheinlichkeit, so dass sie beliebig nahe an
1 liegt. Um dies zu erreichen, starten wir den Galton-Watson-Prozess mit b**¢ Individuen
in der tK-ten Generation von 7, (¢t € N). Damit vergrokern wir die Chance, dass
wenigstens einer der dort startenden unabhéngigen Prozesse der guten Knoten iiberlebt.
Wir betrachten dafiir die Verteilung des Gewichtes

E(v) = (E1(v), Ex(v), ..., Ey(v))
eines Knotens v. Fiir 3 > 0 beliebig klein kénnen wir ein a > 0 finden mit
P(Ei(v) < a,Es(v) <a,...,Ey(v) <a)>1-0.
Setze nun
AY {E. < a fir alle Kanten e oberhalb der ¢t K-ten Generation von 7., }.
Dann liefert eine sehr grobe Abschétzung

IP(AC) < ﬁbtK+K — ﬁb(t+1)K.

Damit ereignet sich A, kontrolliert durch die Variable 3, mit Wahrscheinlichkeit beliebig
nahe an 1. Auerdem gilt G, < atK fiir alle Knoten v mit |v| = tK, falls A eintritt.
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3 Asymptotik der gewichteten Hohe des zweifach gewichteten Verzweigungsprozesses

Sei jetzt B das Ereignis, dass einer der b*% in der tK-ten Generation von 7., startenden
Galton-Watson-Prozesse der guten Knoten iiberlebt. Dann gilt wegen der stochastischen
Unabhéngigkeit der Prozesse

tK

P(B°) = ¢’

Wenn AN B eintritt, dann existiert fiir jedes k € N ein Knoten v in 7, mit |v| = tK+kK,
so dass G, < atK + pkK und D, = D, — D, + D, > akK 4+ 0 = akK (Dabei ist u der
Urahne von v in der tK-ten Generation). Setze

| {%] ([ ] Gaukklammer).

Mit a = ag und p = \/—1’0—: gilt dann fiir obigen Knoten v
Gy, <atK + pkK < atK +nv1—e<n

und

n(l—e)
Po

fiir n hinreichend grof. Es folgt

D, > akK > ( — 1) aoK =c(1 —e)n—ayK > ¢(l —2e)n

P(H, > ¢(1 — 2¢)n) > P(AN B) > 1 — P(A°) — P(B°).

Diese untere Schranke kénnen wir mit Hilfe der Konstanten § und ¢ so kontrollieren,
dass sie beliebig nahe an 1 liegt, indem wir zunéchst ¢ hinreichend grof und danach 3 in
Abhéngigkeit von ¢ hinreichend klein wéhlen. Daraus folgt die Behauptung des Lemmas.

O

Mit der oberen Schranke aus Lemma 3.7 und der unteren Schranke aus Lemma 3.8 ist
schlieBlich auch Satz 3.6 bewiesen.
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4 Verallgemeinerung der Situation
auf den Fall einer beliebigen
Reproduktionsverteilung

4.1 Verallgemeinerung des ersten Hauptresultates

In den bisherigen Abschnitten haben wir als Rohmaterial fiir unseren zweifach gewichte-
ten Verzweigungsprozess einen b-adischen Baum verwendet. Das ist im Hinblick auf die
Ergebnisse der dieser Arbeit zugrundeliegenden Ausarbeitung [BuD| vollkommen aus-
reichend. Trotzdem kann man sich die interessante Frage stellen, ob die Resultate aus
Kapitel 3 auf den Fall iibertragbar sind, in dem man b € N5 durch eine beliebige Repro-
duktionsverteilung (py, )nen, mit Erwartungswert p > 1 ersetzt. Der Fall p < 1 fiihrt zum
fast sicheren Aussterben der Population, weshalb er im Hinblick auf das asymptotische
Verhalten der gewichteten Hohe uninteressant ist. Sei also B ~ (pp)nen, €ine beliebige
Reproduktionsverteilung mit x4 d:efIE(B) > 1.

Wir konstruieren jetzt den verallgemeinerten zweifach gewichteten Verzweigungsprozess
7 : Die Notationen K, K,,, £ und 7(v) aus Kapitel 2 bleiben erhalten. Im Gegensatz zu
den Ausfiihrungen in Kapitel 2 ist der Rohbaum jetzt aber ein Galton-Watson-Prozess
mit Reproduktionsverteilung B. Diesen bezeichnen wir mit 77 . Dessen zufallige Kanten
e € & versehen wir wiederum mit zwei stochastisch unabhéngigen Zufallsgrofen Z, und
E. mit derselben Verteilung wie Z beziehungsweise . Dabei besitzen die Gewichtsfunk-
tionen Z und FE alle Eigenschaften aus Kapitel 2. Den Knoten v ordnen wir unabhéngig
die Gewichte

def
(Z(v), E()) = (Z1(v), Ev(v)), (Za2(v), E(v)), - - -, (ZBw) (v), Ew)(v)))
zu, nur dass jetzt B(v) eine zufillige Zahl aus Ny ist. Wie in Kapitel 2 seien die Fa-

milien (Z;(v))vex, i>o und (E;(v))yex, i>o stochastisch unabhéngig. Fiir jedes v € K sei
B(v) eine Kopie der Reproduktionsverteilung B (Zur Erinnerung: IC bezeichnet die (hier
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4 Verallgemeinerung der Situation auf den Fall einer beliebigen Reproduktionsverteilung

zufillige) Menge der Knoten von 7). Auferdem seien die Zufallsgrofsen (B(v))yex sto-
chastisch unabhéngig, und die Familie (B(v)),ex sei stochastisch unabhéngig von den
Familien (Z;(v))vex, i>0 und (E;(v))vek, i>0- Die Reproduktion von Individuen vollzieht
sich also unabhdngig von den beiden Kantengewichten.

Fiir einen Knoten v werden die kumulierten Gewichte des Astes 7(v) wieder mit D,, und
G, bezeichnet. Auferdem sei 7, der zufillige Baum der Knoten v von 7}, fiir die G, < n
gilt. Wir kénnen uns also den verallgemeinerten zweifach gewichteten Verzweigungspro-
zess 1 als einen gewdhnlichen Galton-Watson-Prozess vorstellen, dessen Kanten wir
zusatzlich mit zwei unabhéngigen Gewichten versehen haben.

Wie wir an spéaterer Stelle sehen werden, sind die Ergebnisse von Kapitel 3 nur ein Spe-

zialfall derer aus diesem Kapitel.

Zunachst miissen wir in Bezug auf die Notationen von Kapitel 3 einige Anpassungen

vornehmen. Im Folgenden sei

Cor £ {(pa) | Ay(a) + Ap(p) = log(n), p <E(E),a
<

= {(p,a) | A} z(a@) + A p(p) = log(p), p <E(E),a

v

E(Z)}
> E(Z)}.

Dann besitzt die Kurve C7 5 dieselben Eigenschaften wie Cz g aus Abschnitt 3.1. Da
@ > 1 gilt, iibertragen sich sémtliche Beweise der Lemmata 3.1 bis 3.4 auf den verall-
gemeinerten Fall, indem wir einfach b durch p ersetzen. Deshalb kénnen wir analog zu
Satz 3.6 den folgenden Satz formulieren:

Satz 4.1 (Das asymptotische Verhalten von H,, im verallgemeinerten Fall)

Sei T ein verallgemeinerter zweifach gewichteter Verzweigungsprozess mit Reprodukti-
onsverteilung B ~ (pn)nen, und Gewichtsfunktionen Z und E. Es gelte p = E(B) > 1.
Dann gilt fiir die gewichtete Hohe H,, = max{D,| v € K.} des zufilligen Teilbaumes 7.}

von T
1

-H, — ¢
n n—00

.. . . def . def
nach Wahrscheinlichkeit, wobei ¢* = <8 das Mazimum von f : Cz p — Rxo, fla,p) = "

mit dem eindeutig bestimmten Punkt (po, o) € Cy  ist.

Genau wie bei Satz 3.6 in Kapitel 3 spalten wir den Beweis von Satz 4.1 in zwei Lemmata

auf:
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4.1 Verallgemeinerung des ersten Hauptresultates

Lemma 4.2 (Obere Schranke) Mit den Notationen aus Satz 4.1 und ¢ > 0 beliebig
qilt

nlgglo P(H, > c*(1+¢)n) =0.
BEWEIS: Analog zu Lemma 3.7 betrachten wir fir @ > E(Z) die Wahrscheinlichkeit,
dass in der k-ten Generation von 7 * ein Knoten v existiert mit D, > ak. Seien also
a > E(Z) und n € N beliebig und bezeichne M, die zufillige Anzahl der Individuen in
der k-ten Generation von 7 *. Dann gilt

P({3v e T}, [v|=k: D,>ak}) = P( U (.= ak}>

veTx,|v|=k
- r(Utmn=in U 0.z
Jj=0 veTr |v|=k
= ZP({Mk =in J (D= akz})
j=0 veT} Jv|=k
- Yr(n=in U (D.zan)
7>0 V1,...,U5,|vi|=k
k k
< ZjP(Mk =J, ) Zi > ak, Yy E < n)
j>0 i=1 i=1
k
= ) jP(M; = j)P(Z Z; > ak)IP’(Z E; < n>
§>0 i=1 i=1

wobei wir die folgenden Tatsachen benutzt haben: Erstens gilt { M = j}N{M; =i} =0
fiir j # 4. Zweitens sind die Zufallsgrofen (D, )y:|o|=r beziehungsweise (G, )y vk identisch
verteilt, so dass wir an ihrer Stelle Zle Z; beziehungsweise Zle E; mit Z; und E; wie
im Beweis von Lemma 3.7 schreiben kénnen. Drittens sind My, (Z;);=1,...,
stochastisch unabhéngig, da nach Voraussetzung die Kantengewichte keinerlei Einfluss
auf die Reproduktion nehmen. Viertens betrégt fiir einen Galton-Watson-Prozess mit
Reproduktionsverteilung B ~ (p,)nen, und p = E(B) die erwartete Anzahl der Indi-
viduen der k-ten Generation u* (vgl. dazu [Als2], Abschnitt 14.7 Der Galton- Watson-

Verzweigungsprozess, Seite 116-120).

Der Rest des Beweises funktioniert analog zu dem Beweis von Lemma 3.7 mit dem
Unterschied, dass wir b durch p ersetzen miissen und in der letzten Abschétzung (mit
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4 Verallgemeinerung der Situation auf den Fall einer beliebigen Reproduktionsverteilung

der Markov-Ungleichung) zunéchst analog zu obiger Uberlegung

K-1 K-1
Y PUET,, [ol=k: D, >c(1+e)k}) < Y pP(D, > (1 +e)k)
k=0 k=0
< Kup®  sup  P(D, > c*(14e)k)

0<k<K,|v|=k

erhalten.
O

Lemma 4.3 (Untere Schranke) Mit den Notationen aus Satz 4.1 und € > 0 beliebig
gilt
lim P(H, > c¢*(1 —2¢)n) = 1.

n—oo

BEWEIS: Sei € > 0 beliebig. Analog zu Lemma 3.8 konstruieren wir den Galton-Watson-
Prozess der guten Knoten. Einen Knoten v der K-ten Generation von 7 nennen wir
dabei wieder einen guten Knoten genau dann, wenn D, > aK und G, < pK fir ge-
wisse a > E(Z) und p < E(FE) (welche wir spéter genau spezifizieren werden) gilt. Wie
im Beweis von Lemma 3.8 nennen wir einen Knoten v K Generationen unterhalb eines
Knotens u aus unserem neu konstruierten Galton-Watson-Prozess einen guten Knoten
genau dann, wenn D, — D, > oK und G, — G, < pK gilt.

Sei wieder N die zuféllige Anzahl der guten Knoten und Mg die zufillige Anzahl aller
Knoten in der K-ten Generation von 7 (vgl. Beweis von Lemma 4.2). Dann gilt

E(Nk) = E(Z 1{j}(MK)NK)

720
= Y E(14;(Mg)Ng)
j=0
= ZE( Z ]-{j}(MK)]-[aK;oo)X(foo;pK}(Dvia sz))
jZO Ul geeey vj,\vi\:K
K K
= Zj E<]—{j}(MK)]—[aK;oo)><(oo;pK] (Z Zi, Z Ez))
>0 i=1 i=1
k k
= ) jP(Mg = J)]P’<Z Z; > oK,y E; < pK)
>0 i—1 i—1

k k
= MKIP<Z Z; > aK)IP’(Z E; < pK>
=1 i=1

_ or(ap)Kto(K)
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4.1 Verallgemeinerung des ersten Hauptresultates

mit
7 (@ p) © A 4(@) + A p(p) — log i1 = Ay () + Ap(p) — log

(fiir « > E(Z) und p < E(FE)). Neben den in den entsprechenden Erlduterungen in-
nerhalb der Beweise der Lemmata 3.7 und 3.8 erwidhnten Voraussetzungen und Sétzen
haben wir zusétzlich noch folgende Tatsachen verwendet:

Die zweite Gleichheit gilt aufgrund des Satzes von der monotonen Konvergenz. Fiir die
vierte Gleichheit haben wir verwendet, dass die Zufallsgréfen (D,)q.v=x beziehungs-
weise (G )ujoj=k identisch verteilt sind, und bei der fiinften und der sechsten Gleichheit
k und (E;)i=1

nutzt. Der Rest folgt analog zu dem Beweis von Lemma 3.8 mit Hilfe des Satzes von

haben wir die stochastische Unabhéngigkeit von M, (Z;)i=1 K ausge-

----------

Cramér.

Setze nun o & ap und p aof \/’i—ofg. Dann folgt wegen der strengen Monotonie von A} g,
dass v*(a, p) < 0 gilt. Damit gilt auch E(Ng) > 1, sofern K hinreichend grof gewéhlt
wird. Fiir diese «, p und K gilt ¢ < 1 fiir die Aussterbewahrscheinlichkeit ¢ des Galton-

Watson-Prozesses der guten Knoten.

Im néchsten Schritt vergrofern wir die Uberlebenswahrscheinlichkeit 1 — ¢, indem wir
den Prozess analog zum Beweis von Lemma 3.8 in der ¢ K-ten Generation von 7% (t € N)
starten. Fiir einen Knoten v mit |v| = tK und § > 0 beliebig klein wihlen wir ein a > 0,
so dass P(G, < atK) > 1 — (3 gilt. Da die Zufallsgréfen (G, )q.vj—tx identisch verteilt
sind, gilt diese Abschétzung fiir jeden Knoten der ¢t K-ten Generation. Definiere

def

A={G, <atK Vv € K, mit |v| =tK}.
Dann gilt analog zum Beweis von Lemma 4.2

P(A°) = PH{3Ivek,, |v]|=tK mit G, > atK})
< IP’( U {G.> atK})
vEK:|v|=tK

> nP(Myc = n)P(G, > atK)
n>0

= PG, > atK)
< e

Sei ferner B das Ereignis, dass einer der in der tK-ten Generation von 7} startenden
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4 Verallgemeinerung der Situation auf den Fall einer beliebigen Reproduktionsverteilung

Galton-Watson-Prozesse der guten Knoten iiberlebt. Dann gilt

P(B°) = P({Alle in der tK-ten Generation startenden Prozesse sterben aus})
= IP’(U{M”( =n}nN ﬂ{Prozess P; stirbt aus})
n>0 =1

- ZP(MtK =n)q",
n>0
wobei wir wie im Beweis von Lemma 3.8 die stochastische Unabhéngigkeit der in der ¢ K-
ten Generation von 7 startenden Prozesse der guten Knoten P, Ps, . . ., sowie die Unab-
héngigkeit der Zufallsgrofen (B(v)),ex und die Unabhéngigkeit der Familien (B(v))yex,
(Zi(v))vex, i>0 und (E;(v))yex, i>0 ausgenutzt haben. Fiir ¢ hinreichend grof gilt dann

ZIP’(MtK =n)q" <e.

n=0

(Die Reihe konvergiert, da
(moglich, da p = E(B) > 1

Begriindung: Sei ng € N so gewiéhlt, dass ) ., ¢" <
0 < ¢ < 1), und t so grok, dass "' P(M;x = n)q" <

IO om

-----

diesem t folgt

[e’e) no—1 [e'e)
n=0 n=1 n=ng
g > n
< gt
n=ng
< g i £
2 2
= £.

Wie im Beweis von Lemma 3.8 folgt
P(H, > (1 —2e)n) >P(ANB) > 1—P(A°) — P(B°),

und diese untere Schranke kann durch Anpassung der Konstanten 3 und ¢ so kontrolliert

werden, dass sie beliebig nahe an 1 liegt. Daraus folgt die Behauptung des Lemmas.
OJ

Die Lemmata 4.2 und 4.3 liefern zusammen die Aussage von Satz 4.1.
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5 Die gewichtete Hohe sukzessiv
errichteter Baume

5.1 Vorbereitungen

In diesem Kapitel werden wir ein Resultat fiir die gewichtete Hohe eines sukzessiv (Indi-
viduum fiir Individuum) errichteten Baumes beweisen. In Kapitel 3 haben wir die Hohe
H,, des zufilligen Teilbaumes 7,, eines b-adischen zweifach gewichteten Verzweigungspro-
zesses betrachtet. Diese ergab sich als das Maximum der kumulierten Gewichte D, der
Aste 7(v) seiner Knoten v. Wird ein Baum nach einem bestimmten Schema sukzessiv
aufgebaut, so kann man mit gleichem Interesse nach dem asymptotischen Verhalten des
maximalen kumulierten Astgewichtes nach n Sukzessionsschritten (nach dem Anhéngen
des n-ten Knotens) fragen. Das grofite Problem dabei ist die Anzahl der Knoten. Um
unsere Ergebnisse aus den fritheren Kapiteln anwenden zu kénnen, miissen wir uns zu-
nachst mit der zufélligen Anzahl N der Knoten von 7, beschiftigen. Diese Anzahl ist
abhéngig von den Ergebnissen der Zufallsgrofen (G, ),exc. Die Vorgehensweise sieht im
Folgenden so aus:

Wir konzentrieren uns fiir ein zuvor festgelegtes n € N zunéchst darauf, m € N so zu
wahlen, dass die Anzahl N der Knoten von 7, ungefdhr n betrdgt. Danach werden wir
das zweite Hauptresultat iiber oben genanntes asymptotisches Verhalten beweisen. Die-
ses fiihrt in vielen Anwendungen zu interessanten Ergebnissen. Ein Beispiel fiir einen
sukzessiv errichteten Baum ist der so genannte zufdllige rekursive Baum: Die Rekursion
startet mit einem einzigen Individuum, der Wurzel (). Im ersten Schritt bekommt diese
dann den ersten Nachkommen. Ab dem zweiten Schritt regiert der Zufall, denn nun be-
kommt entweder die Wurzel mit Wahrscheinlichkeit % ein weiteres Kind, oder das neue
Individuum aus dem ersten Schritt bekommt ebenfalls mit Wahrscheinlichkeit % sein
erstes Kind. Dieser Vorgang wird iterativ fortgesetzt. Im k-ten Schritt wird mit Hilfe
einer Laplace-Verteilung auf den bereits vorhandenen & Individuen der Population ent-
schieden, welches von ihnen das néchste Kind (das (k + 1)-te Mitglied der Population)
bekommt.
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5 Die gewichtete Hohe sukzessiv errichteter Baume

In den folgenden Ausfiihrungen benétigen wir einen bestimmten Typ des Crump-Mode-
Jagers-Prozess (vgl. Ausfithrungen in [CuM]), ndmlich den so genannten Bellman-Harris-
Prozess (vgl. Ausfiihrungen in [AuN]).

Sei X eine Ng-wertige Zufallsgrofse mit g = E(X). Wir stellen uns einen Verzweigungs-
prozess vor, der mit einem einzigen Individuum () startet. Dieses Individuum stirbt zu
einem zufilligen Zeitpunkt M; und gebért im gleichen Moment X + 1 voneinander un-
abhéngige Individuen, die sich daraufhin genauso verhalten wie (. Wir nennen diese
Ereignisse, wenn ein Individuum der Population stirbt und gleichzeitig Nachkommen
hervorbringt, Ersetzungen. Als Verteilung fiir die Lebensdauern der Individuen unseres
Prozesses wihlen wir eine Exponentialverteilung, welche im Hinblick auf die weiter un-
ten geschilderten Betrachtungen die einzig verniinftige Wahl darstellt, da sie den Prozess
aufgrund der Gedachtnislosigkeit der Exponentialverteilung (vgl. [Alsl], Kapitel 5, Satz
31.6 und Abschnitt 32 ,Lebensdauerverteilungen® auf Seite 146-148) markovsch macht.
Wir stellen uns also vor, dass die Lebensdauer eines jeden Individuums der Populati-
on Exp(1l)-verteilt ist, also M; ~ Exp(1) gilt. Sei My, der zufillige Zeitpunkt der k-ten
Ersetzung und sei N, die Grofe der Population unmittelbar vor M. Wegen der Ge-
déchtnislosigkeit der Exponentialverteilung konnen wir uns vorstellen, zum Zeitpunkt
Mj, einen neuen Prozess mit Ni.1 = Ny + X zum Zeitpunkt M; geborenen Individu-
en zu starten, wobei die (Xj)r>1 stochastisch unabhéngige Kopien von X darstellen.
Das bedeutet, dass die bereits verstrichene Lebenszeit der vor M, geborenen und zum
Zeitpunkt M} noch lebenden Individuen ignoriert werden darf. Aus Symmetriegriinden
besitzt dann jedes der Ni,; Individuen dieselbe Wahrscheinlichkeit, als néchstes zu ster-
ben.

Sei nun (F;);>; eine Familie von stochastisch unabhéngigen, Exp(1)-verteilten Zufalls-

grofsen. Ein einfache Rechnung mit den jeweiligen Verteilungsfunktionen liefert

E
min{E, By, ..., Ep} ~ —. (5.1)
m

Wir setzen X, 4" 1 und erhalten:

Lemma 5.1 Fir E;, X; und My (j > 0; i,k > 1) wie oben gilt
k
E
My, ~ —
%5

BEWEIS: Die Aussage folgt aus der Gedachtnislosigkeit der Exponentialverteilung. Fiir
k =1 gilt M; ~ E; nach Modellannahme. Fiir £ = 2 erhalten wir

Es

My~ E
2 1+1—|—X1
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5.1 Vorbereitungen

nach (5.1), denn ; f)?(l entspricht in Verteilung der minimalen Lebensdauer eines der
1 4+ X, Individuen der Population unmittelbar nach M. Sukzessiv erhélt man so die

Behauptung fiir beliebiges k, denn nach (5.1) entspricht

Ej,
T+ X1+ + X

~ min{Fy, ..., Esia x.)

in Verteilung der minimalen Lebensdauer eines der 1 + X; + - - - + X _; Individuen der
Population unmittelbar nach M, _;.
O

Um die konkrete Anzahl der entstandenen Knoten abzuschétzen, nachdem wir den Pro-
zess zum Zeitpunkt m,, gestoppt haben, benotigen wir eine Aussage iiber das asympto-
tische Verhalten der Ersetzungszeitpunkte My fiir k& — oo. Dafiir wiederum brauchen
wir die folgenden Lemmata.

Lemma 5.2 (Lemma von Kronecker) Firn € N seien a,, und c,, reelle Zahlen mit

0<a; <ag <--- undlim,_, a, = oco. Auflerdem sei 220:1 e konvergent. Dann gilt

i > =0

i=1

(vgl. Lemma 35.9 auf Seite 177 in [Alsl] und Beweis in [Sch])

BEWEIS: 1. Schritt: Sei (b,)nen eine Folge in R mit b, — b € R. Dann gilt

n—00
n—1

lim Z wbi = b.
a

n—oo 4 n
i=1

Begriindung: Es gilt

n—1 n—1

Qi1 — Q4 Qi1 — Q4 3]
S Zhi—b=) (b —b)— —b
2, D Ul

i=1 n i=1

und ferner
n—1
Z Qi1 — Q4 an, — ay
= — 1.
- (079 an, n—00
=1

Sei nun € > 0 beliebig und ny € N so gewéhlt, dass |b, — b| < ¢ fiir alle n > ng. Dann

gilt
-1 -1
N Qi1 — Q4 < Qi1 — Q4 Ap — Qnyg ai
Y- b <Y b = b e 0 — b < 2
. an . an an an
i=1 =1
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5 Die gewichtete Hohe sukzessiv errichteter Baume

fiir n hinreichend grof, da lim,,_., a, = 0o nach Voraussetzung.

2. Schritt: Fir a,, ¢, wie oben setzen wir nun b(] 0 und by, def > 1 &, Daraus folgt

o0 Cz
=1 a;’

¢; = a;(b; — b;_1) und ferner, aufgrund der Konvergenz der Reihe

e e}

a C C;

+1 T ) i

—chl_b—Ej D D R =

Qp, n—0o0 ICL,L a;
=

=1 =1 =1

nach dem ersten Schritt.
O

Lemma 5.3 (Verallgemeinertes starkes Gesetz der groften Zahlen) Sei (E;);>1
ewne Famailie von stochastisch unabhdngigen und identisch verteilten Zufallsgrofien mit

P(E,>0)=1,p oo E(E;) < oo und o fVar(El) € (0;00). Dann gilt

1 & E
—_
1ng5 i1 1 k—oo

fast sicher. (Weiterfithrende Betrachtungen findet man zum Beispiel in [CuT].)

BEWEIS: Fir n > 2 setze
n

def Ez — K

1log1

Dann ist (W,),>2 ein Lo-Martingal beztiglich der Filtration F, df o{E;i|i=1,...,n}
(n > 1), denn fiir n > 3 gilt

E(WTL'./Tn_l) - E(Wn 1+
nlo

E _
‘an 1) :Wn 1+]E( Iu) :Wn—l

nlogn

fast sicher aufgrund der F,,_;-Messbarkeit von W,,_; und der stochastischen Unabhén-
gigkeit von E,, und o{FE},..., E,_1}. Die quadratische Integrierbarkeit der W, (n > 2)
folgt aus der quadratischen Integrierbarkeit und der stochastischen Unabhéngigkeit der
E; (i>1).
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5.1 Vorbereitungen

Mit Hilfe von Lemma 23.1 in [Als2] erhalten wir daher fiir n > 3

E(W?) = E(W3)+ ZE((Wz —Wi_1)?)

Ey — ’ - Ei—p ’
= E E
(5)) 2= (5
2 n 2

o o
~ (2log?2)? * Z (1logi)?
_ 2

- lz:; iQ(logi)2

Unter Beachtung von > 7, W < oo folgt aus dieser Abschitzung sup,,~, E(W?) <
oo. Insbesondere ist (W),),>2 gleichgradig integrierbar (vgl. [Alsl|, Definition 50.1 und
Satz 50.2(e) auf Seite 276).

Wegen der gleichgradigen Integrierbarkeit von (W,,),>2 folgt mit Hilfe von Satz 22.2 in
[Als2]

W, — Wy

n—oo

fast sicher fiir eine F oo o{E;| i > 1}-messbare Zufallsgrofe W,. Dann folgt mittels

Lemma 5.2 .

1 Ei—p
0
logn ; P nooo
fast sicher, und daraus wiederum
— =1
logniz1 7 oo - kljgologk:z

fast sicher. Dabei haben wir fiir die letzte Gleichheit v = limy_. (Zle % — log k:) (Eu-
lersche Konstante) verwendet.

O

Kommen wir nun zu dem oben angesprochenen Satz iiber das asymptotische Verhalten

der Ersetzungszeitpunkte:

Satz 5.4 (Asymptotisches Verhalten der Ersetzungszeitpunkte) Mitu = E(X)
gilt fiir die Ersetzungszeitpunkte (My)r>1
M;, 1
H —_—
log k k—oo

fast sicher.

47



5 Die gewichtete Hohe sukzessiv errichteter Baume

BEWEIS: Nach dem starken Gesetz der grofsen Zahlen gilt

1 1 Xi+-+X 111
SYX= o+ L = E(X)
1 4 7 1—1 1 i—o00
j=0 ~— ~ ~ ——
—0 —u f.S. —1

fast sicher. Die Behauptung des Satzes folgt mit Hilfe des Lemmas 5.3.
Nach Lemma 5.1 gilt

M,
log k logkzzZ ¢ long 121 1X

Seien € > 0 beliebig und w € () beliebig mit

i—1 k

%ZXJ‘(W) — 4 und ! ZEigw) — 1.

1—00 logk — k—o0
1=

j=0

Die zweite Bedingung gilt dabei nach Lemma 5.2 fast sicher, denn E(E;) = 1 fiir alle
i > 1. Zu € wihle nun [ € N so grofs, dass —ZZ L X (W) € (u— e+ e) fiir alle i > 1
gilt. Fiir £ > [ erhalten wir

w)
logkzzllX() B logk2211X lngZ llX()

=Il+1

(u—ll—slogkz (w)_ —elogk ZZH )

=l+1

(1—5 1+e¢ )
— & +e€

u+e u—e

fiir & hinreichend grof. Dabei haben wir in der zweiten Zeile benutzt, dass -+ g k Z

m

Ei(w)
i=1 S0 X, (@)
fiir & hinreichend grof in (—¢; ¢) liegt. Obige Abschétzung gilt fiir fast alle w € Q. Daraus
folgt

My, 1

% —
logk k—oo p

fast sicher.
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5.2 Das asymptotische Verhalten des maximalen
kumulierten Astgewichtes nach n
Sukzessionsschritten

Nach den Vorbereitungen im vorherigen Abschnitt sind wir nun in der Lage, die Anzahl

der Knoten des Baumes genauer zu studieren. Wir setzen

def 1
m, = —logn
1

und schreiben N (t) fiir die zufdllige Anzahl der Knoten des Baumes zum Zeitpunkt t > 0.
Es wird sich herausstellen, dass N(m,,) nahe genug bei n liegt, um Gebrauch von den
Ergebnissen des dritten Kapitels machen zu kénnen. Das asymptotische Verhalten der

Anzahl der Knoten untersucht der folgende Satz:

Satz 5.5 (Asymptotisches Verhalten der Anzahl der Knoten) Fir die Folge
(N(mp))n>1 der Anzahlen der Knoten bis zu den Zeitpunkten (my,),>1 gilt

logn  n—oo

fast sicher.

BEWEIS: Zunéchst liefert das starke Gesetz der grofen Zahlen

I+ X0+ + X1 Ny
K T E e

fast sicher (siehe Beweis von Satz 5.4). Daraus folgt

log Ny
1
logk k—oo
fast sicher, denn aus % oM fast sicher folgt sogar

N,
log Ny, — log k = log (?k) P log 1

fast sicher aufgrund der Stetigkeit des Logarithmus. Mit Hilfe von Satz 5.4 erhalten wir

ferner
log Ny
% 1
,UMk k—o00
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5 Die gewichtete Hohe sukzessiv errichteter Baume

fast sicher, und daher
log N (t) o
Iut t—o00
fast sicher. Mit t = m,, folgt die Behauptung.
O

Der nun folgende Satz ist von grofem Interesse in vielen Anwendungen (siehe Kapitel
6) und stellt das zweite Hauptresultat dieser Arbeit dar. Die Beweisidee stiitzt sich auf
die Ergebnisse aus Kapitel 4, insbesondere auf den Satz 4.1.

Einen sukzessiv aufgebauten Baum mit n Knoten generiert durch sukzessives Anhédngen
von 1+ X Kindern an einen Knoten, der zuféllig unter den bereits bestehenden Knoten
ausgewihlt wird, bezeichnen wir im Folgenden mit 7, . Die Lebensdauern seiner Indivi-
duen interpretieren wir im Folgenden als Fxp(1)-verteilte Astgewichte.

Um das Resultat im Hinblick auf die Anwendungen in Kapitel 6 so allgemein wie moglich
zu halten, versehen wir die Kanten e des sukzessiv aufgebauten Baumes mit zuséatzlichen
Gewichten Z., welche die gleichen Eigenschaften wie die Gewichte Z, aus Kapitel 2 be-
sitzen. Wie beim Modell fiir den zweifach gewichteten Verzweigungsprozess bezeichne fiir
einen Knoten v des sukzessiv aufgebauten Baumes D, = 3 () Ze = Z'j’:‘l Zy, (v](1—1))
die kumulierten Astgewichte des Astes von der Wurzel bis zum Knoten v.

Im Beweis von Satz 5.6 wird nun ausgenutzt, dass der so konstruierte (unendlich fort-
gesetzte) sukzessiv aufgebaute Baum 7. einem verallgemeinerten zweifach gewichte-
ten Verzweigungsprozess 7 mit der Reproduktionsverteilung (pg)gen, mit po = 0 und
e ¥ P(X =k — 1) fur £ € N und den Gewichtsfunktionen Z und F ~ Exp(l) ent-

spricht. Mit u = E(X) gilt dann insbesondere E((pg)ken,) = 1 + p.

Sei im Folgenden

H o max{D,| v Knoten von 7 }

die zufdllige Hihe eines sukzessiv aufgebauten Baumes mit n Knoten (bezliglich der

Kantengewichte Z,, e Kante von 7, ).

Satz 5.6 (Asymptotisches Verhalten der gewichteten Hohe H*) Sei 7, wic oben
ein sukzessiv aufgebauter Baum mit n Knoten und H seine zufdllige Hohe beziiglich des
Kantengewichtes Z. Ferner sei ¢* die Konstante aus Satz 4.1 beziiglich eines verallgemei-
nerten zweifach gewichteten Verzweigungsprozesses 15 mit der Reproduktionsverteilung
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(Pk)ken, mit po = 0 und pp = P(X =k — 1) fir k € N und den Gewichtsfunktionen Z
und E ~ Exp(l). Dann gilt
o c*
H —
logn n—oo

nach Wahrscheinlichkeit.

BEWEIS: Nach Satz 5.5 gilt % — 1 fast sicher. Mit Wahrscheinlichkeit beliebig

n—oo

nahe an 1 (fiir n hinreichend grof) folgt daraus
n'~¢ < N(my,) < n'*e,

und daraus weiter mit Wahrscheinlichkeit beliebig nahe an 1 (fiir n hinreichend grofs)

H?l—e H21—5 H;/' H21+5 H*;Ll-ﬁ-a

mn) < T
1—¢)logn My, m, T my (1+¢)logn

Die gewichtete Hohe Hy,, . des sukzessiv errichteten Baumes mit N (m,,) Knoten ent-
spricht nach Definition von N(m,,) der gewichteten Hohe des sukzessiv errichteten Bau-
mes zum Zeitpunkt m,,. Da die Lebensdauern der Individuen von 7__ aber durch Exp(1)-

verteilte Kantengewichte reprasentiert werden, gilt

mit H,,, der gewichteten Hohe des Teilbaumes 7 eines verallgemeinerten zweifach
gewichteten Verzweigungsprozesses 7.5 mit der Reproduktionsverteilung (pg)ren, und
den Gewichtsfunktionen Z und E ~ Ezp(1). Nach Satz 4.1 gilt

Hlog n H
1% . Mn C*

logn my, n—oo

nach Wahrscheinlichkeit. Zusammen mit der Abschétzung (5.2) folgt daraus die Behaup-

tung des Satzes.
O

Bemerkung 5.7 Da die Exponentialverteilung die einzige gedédchtnislose Verteilung ist,
fithrt die Wahl einer anderen Verteilung fiir die Gewichtsfunktion E zu ungleichen Wahr-
scheinlichkeiten unter den einzelnen Individuen der Population in Bezug auf ihre verblei-
bende Lebensdauer. Fiir diesen allgemeineren Fall ist noch kein vergleichbares Resultat
bekannt.
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6 Anwendungen

In diesem Kapitel tragen wir einige Beispiele bestimmter Verzweigungsprozesse zusam-
men. Eine Anwendung der in den ersten fiinf Kapiteln gewonnenen Ergebnisse fiihrt
dabei zu tieferen Einblicken in die Natur dieser Prozesse. Die Cramér-Funktionen A7
und A} sind in der Regel schwer in eine geschlossene Form zu bringen. Dadurch erweist
es sich oft als problematisch, den optimalen Punkt (pg, ) € Cz g fiir unsere Konstante
c aus den Sétzen 3.6 und 5.6 zu bestimmen.

6.1 Der zufallige bindare Suchbaum

Der zufdllige bindre Suchbaum (Abkiirzung RBST fiir random binary search tree) ist
ein Modell, welches den Vorgang beschreibt, n numerische Elemente der Grofe nach zu
sortieren. Es handelt sich um eine Version des Quicksort-Algorithmus (vgl. Kapitel 4,
Abschnitt 3 Beispiele in [Als3]). Dabei wird eine zufillige Permutation Yi,...,Y,, der
Zahlen {1,2,...,n} Element fiir Element als Knoten in einen anfinglich noch leeren
binédren (2-adischen) Baum eingefiigt. Wir definieren zunéchst den relativen Rang R;
des Elementes Y; als den Rang von Y; innerhalb der Menge {Y7,...,Y;}. Es gilt also

REN1<j<i: V<Vl

Im ersten Schritt der Konstruktion setzen wir Y7 als Wurzel in unseren noch leeren bi-
niaren Baum ein und schicken alle Y; mit Y; < Y] der Reihe nach in den linken und die
anderen Y; mit Y; > Y7 der Reihe nach in den rechten Teilbaum. Im zweiten Schritt
wenden wir dasselbe Verfahren auf die Mengen der Elemente im linken und im rechten
Teilbaum an. Diesen Prozess setzen wir sukzessiv fort, bis sich nur noch einelement-
rige Teilmengen der urspriinglichen Menge {Y7,...,Y,} in den jeweiligen Teilbdumen
befinden. Diese Elemente stellen zugleich die Knoten an jenen Stellen dar. Zur Veran-
schaulichung dient das folgende Bild:
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44 {4,3,8,9,1,7,10,2,5,6}

{8,9,7,10,5,6}

1 {9,10}

{10}

6@ {6}

Abbildung 7: Zufalliger bindrer Suchbaum der Permutation
4,3,8,9,1,7,10,2,5,6 fiir n = 10

Nach ¢ — 1 Sukzessionsschritten bezeichnen wir ferner einen bis dahin leer gebliebenen
Knoten als externen Knoten, sofern er Kind eines bereits besetzten Knotens ist, er also
im ¢-ten Sukzessionsschritt als Zielort fiir das Element Y; in Frage kommt. Aufterdem
bezeichnen wir nach ¢ — 1 Sukzessionsschritten einen Knoten als internen Knoten, wenn
er bis zu diesem Zeitpunkt bereits besetzt worden ist.

Uns interessiert im Folgenden das asymptotische Verhalten der gewichteten Hohe H
eines RBST mit n Knoten fiir n — oco. Eine Anwendung von Satz 5.6 liefert:

Satz 6.1 (Gewichtete Hohe des zufilligen bindren Suchbaumes) Fir die gewich-
tete Hohe H} eines zufdlligen bindren Suchbaumes mit n Knoten gilt

*
H’I’L
% C
log n n—oo

nach Wahrscheinlichkeit, wobei ¢ die eindeutig bestimmte Losung grofer als 1 von

1.
2 — e¢ jst.
C

BEWEIS: Bezeichne 7__ einen unendlich fortgesetzten RBST. L. Devroye zeigt in seinen

Arbeiten [Devl], [Dev2| und [Dev5|, dass ein binérer zweifach gewichteter Verzweigungs-
prozess mit Gewichtsfunktionen £ ~ Ezp(1) und Z = 1 ein geeignetes Modell fiir 7__,
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6.1 Der zufallige bindre Suchbaum

darstellt:

Fiir die in Kapitel 5 verwendeten Notationen erhalten wir speziell fiir den unendlich fort-
gesetzten RBST 1+ X = 2 und Z = 1 mit Wahrscheinlichkeit 1, denn es handelt sich
um einen bindren Baum und jede Kante des Baumes steht fiir genau einen Sukzessions-
schritt. Damit gilt fiir die gewichtete Hohe D, eines Knotens v, dass D,, = |v| fast sicher.
Fiir die Rechtfertigung der Exp(1)-Verteilung fiir das andere Astgewicht im unendlich
fortgesetzten RBST 7. verweisen wir auf die oben genannten Literaturquellen.

Der umfangreiche Beweis stiitzt sich zum einen auf die Eigenschaften der relativen Rénge
(Ri)i=1,.n einer zufélligen Permutation Y, ..., Y, der Zahlen {1,2, ..., n}: Nach Lemma
25.24 in [Als2] gilt, dass die Zufallsgrofen Ry, ..., R, stochastisch unabhéngig und fiir
i € {1,...,n} der relative Rang R; Laplace-verteilt ist auf der Menge {1,...,i} (siehe
auch [Mah|, [Knu|, [Dev3| und [Gli]). Daher besitzen in jedem Sukzessionsschritt alle
externen Knoten die gleiche Wahrscheinlichkeit, ausgewéhlt und durch ein Y; ersetzt zu
werden. Stellt man sich nun vor, dass sich die Individuen des unendlich fortgesetzten
RBST ’Tolo nach Ablauf ihrer Lebensdauer (welche durch das Kantengewicht E repré-
sentiert werden soll) jeweils in zwei neue Individuen aufteilen (eine unendliche Liste von
verschiedenen ganzen Zahlen wird auf zwei unendliche Teillisten aufgeteilt), so besitzen
also die Restlebensdauern der Individuen im unendlich fortgesetzten RBST unmittelbar
nach einem Sukzessionsschritt alle dieselbe Verteilung. Damit miissen die Verteilungen
der Lebensdauern der Individuen identisch und gedéchtnislos sein.

Zum anderen werden fiir einen Knoten v eines RBST 7, mit n Knoten die Grofen (das
heift die Anzahl der Knoten) des linken und des rechten Teilbaumes mit Wurzel (v, 1)
beziehungsweise (v,2) betrachtet. Tiefgriindige Uberlegungen fithren schlieklich dazu,
dass im unendlich fortgesetzten RBST 7, jedem Kantenpaar e und f, das einen Knoten
v mit seinen beiden Kindern (v,1) und (v,2) verbindet, Gewichte U, ~ R(0,1) und
1 — U, zugeordnet werden, wobei (U,)yex (mit IC der Menge der Knoten von 7. ) eine
Familie von stochastisch unabhingigen Zufallsgrofen ist. Fiir einen Knoten v von 7_
ergibt sich die Hohe beziiglich dieser Gewichte (die relative Grofse des Teilbaumes mit
Wurzel in v relativ zur Grofe des gesamten Baumes) als ein Produkt von stochastisch
unabhéngigen R(0, 1)-verteilten Zufallsgrofen. Eine Anwendung des Logarithmus liefert
einen Ubergang von diesem multiplikativen Modell zu einem additiven Modell. Schlief-
lich fithrt eine Grenzwertbetrachtung und eine Identifikation der gewichteten Hohe eines
Knotens v beziiglich des Kantengewichtes £ mit der relativen Grofe des Teilbaumes mit
Wurzel v unter Beachtung von —logU ~ Exp(1) fir U ~ R(0,1) zu der gewiinschten
Exp(1)-Verteilung des Kantengewichtes E (Einen detaillierten Beweis dazu findet man
in [Devl]|, [Dev2] und [Dev5|).
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Da uns im Kontext dieses Satzes nur das asymptotische Verhalten der gewichteten Hohe
eines RBST mit n Knoten fiir n — oo interessiert, geniigt es nach obigen Uberlegungen,
das Ergebnis von Satz 5.6 auf den Fall £ ~ FEzp(l), 1+ X = 2 und Z = 1 mit

Wahrscheinlichkeit 1 anzuwenden.

Fiir eine Fxp(1)-verteilte Gewichtsfunktion F gilt fiir ihre momenterzeugende Funktion
fir A # 1

Mp(A) = E(e*F) = B(U) = /0 1 (1>Adx _ ﬁ

T
Daher ist ihre kumulantenerzeugende Funktion fiir A <0
Ap()) = —log (1 —\).
Die Cramér-Funktion von E ergibt sich fiir essinf(E) =0 < p <1 =E(FE) als

Ap(p) = N g(p) = S;gg{kp —Ap(N)} = igrg{Ap +log (1 = A)}.

Dabei wird das Supremum nach Lemma 1.14 in A =1 — % <0

(& p=Ap()) = 1&5) angenommen und daher gilt fiir p > 0

Ag(p) = p—1—logp.

A (a) 0 fira=1
) =
d oo fiira#1

Da zudem

gilt, wird das Maximum von (p, «) — < in Cz . im Punkt (po, ) mit op = 1 und py der
eindeutig bestimmten Losung kleiner als 1 = E(F) von p—1—log p = log 2 angenommen
(denn A%(1) = 0). Deswegen ist ¢ = pio.
Das Ergebnis von Satz 5.6 und die Aquivalenz p—1—1log p = log2 < 2ep = e liefern die
Behauptung des Satzes. Eine numerische Approximation liefert pg &~ 0,2319 und damit
gilt ¢ ~ 4,3122.

O
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6.2 Der zufallige rekursive Baum

Beim zufdlligen rekursiven Baum (Abkitrzung RRT fir random rekursive tree) handelt
es sich um einen der einfachsten rekursiv aufgebauten Baume. Wie wir bereits in der
Einleitung des fiinften Kapitels erwdhnt haben, startet die Rekursion mit einem einzi-
gen Individuum, der Wurzel v;. Im ersten Schritt gebért dieses dann das erste Kind vy,
wonach im zweiten Schritt der Zufall ins Spiel kommt: Entweder bekommt mit Wahr-
scheinlichkeit % die Wurzel v, ein weiteres Kind, oder das neue Individuum vy aus dem
ersten Schritt bekommt mit Wahrscheinlichkeit % sein erstes Kind. Dieser Vorgang wird
sukzessiv fortgesetzt, so dass im k-ten Schritt mit Hilfe einer Laplace-Verteilung auf den
bereits vorhandenen k Individuen der Population vq, ..., v, entschieden wird, welches
von ihnen das (k+ 1)-te Mitglied der Population vy gebdren darf. Unser Hauptinteres-
se liegt wie beim vorangegangenen Beispiel auf dem asymptotischen Verhalten der Hohe
H eines RRT mit n Knoten fiir n — oo. Das folgende Bild veranschaulicht einen RRT

nach 8 Sukzessionsschritten.

Abbildung 8: Ein zufilliger rekursiver Baum nach 8 Sukzessionsschritten.
Die ausgefiillten Kreise stehen dabei fiir bereits besetzte (interne) Knoten,
wohingegen die transparenten Kreise die externen Knoten bezeichnen.
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Satz 6.2 (Gewichtete Hohe des zufilligen rekursiven Baumes) Fiir die gewich-

tete Hohe H} eines zufilligen rekursiven Baumes mit n Knoten gilt

*
Hn
% e
logn n—co

nach Wahrscheinlichkeit.

BEWEIS: Um Gebrauch von Satz 5.6 machen zu konnen, interpretieren wir den zufél-
ligen rekursiven Baum als bindren Baum (vgl. Abbildung 9). Im Beweis von Satz 6.1
haben wir gesehen, dass wir einen RBST aufbauen konnen, indem wir in jedem Sukzes-
sionsschritt einen externen Knoten mittels einer Laplace-Verteilung auf der Menge der
externen Knoten auswihlen und durch das entsprechende Element der zufilligen Permu-
tation ersetzen. Das funktioniert aufgrund der Eigenschaften der relativen Rénge: Fiir
jedes i € {1,...,n} ist R; Laplace-verteilt auf {1,...,7} (vgl. Lemma 25.24 in [Als2]).
Daher besteht von Natur aus ein sehr enger Zusammenhang zwischen dem sukzessiven
Auswahlprozess des RRT und dem des RBST.

Im ersten Schritt des Beweises wollen wir die Knoten des RRT auf die externen Knoten
eines korrespondierenden bindren Baumes abbilden. Dabei miissen wir zunéchst sicher-
stellen, dass die Information der Abstédnde der einzelnen Knoten von der Wurzel erhalten
bleiben, denn schliefslich wollen wir spater eine Aussage iiber die gewichtete Hohe des
Baumes machen. Sei 7, ein RRT mit n Knoten und sei S,, = {d;, d, ..., d,} die (zufilli-
ge) Menge der Absténde der Knoten vy, vg, . . . , v, von der Wurzel. Zur Veranschaulichung
der oben angesprochenen Abbildung beschreiben wir die Konstruktion des korrespon-
dierenden binéiren Baumes 7,” mit n externen Knoten zusammen mit der Menge S° der

gewichteten Distanzen seiner externen Knoten von der Wurzel (vgl. Abbildung 9).

7, besitzt nur einen einzigen Knoten, die Wurzel v;, und somit ist S; = {0}. Das
Anhéngen eines zweiten Knotens vy fithrt zu einem Baum mit den Knotenabstdnden
Sy = {0,1}. Sei nun 7 ein bindrer Baum mit zwei externen Knoten (in der ersten
Generation). Seine beiden Kanten bezeichnen wir mit e und f und gewichten diese mit
2. = 1 (linke Kante) und zy = 0 (rechte Kante). Aulerdem bezeichnen wir seinen linken
externen Knoten mit v, und seinen rechten externen Knoten mit v;. Das bedeutet, dass
im ersten Sukzessionsschritt im korrespondierenden bindren Baum der Knoten v; um eine
Generation nach rechts unten wandert und dessen Kind vy die Position links neben ihm
einnimmt. Die tatsdchlichen Abstdnde im RRT entsprechen also gerade den gewichteten
Abstédnden im korrespondierenden bindren Baum. Somit erhalten wir fiir die Menge der
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gewichteten Knotenabstinde S5 = {0,1} = Ss.

Nach n—1 Konstruktionsschritten wie oben erhalten wir fiir einen RRT 7, mit n Knoten
den zugehorigen biniren Baum 7.” mit n externen Knoten. Dabei stimmen die Distanzen
S, der Knoten des RRT mit den wie oben gewichteten Distanzen S? der externen Knoten
des bindren Baumes iiberein. Ein weiter Sukzessionsschritt stellt sich dann wie folgt dar:
Das Anhiingen eines Knotens v an einen bereits bestehenden Knoten u von 7, fiihrt dazu,
dass die nun neue Menge der Distanzen S, gleich S, U{d+ 1} mit d dem Abstand des
Knotens u von der Wurzel ist. Fiir den zugehorigen bindren Baum bedeutet das, dass
wir den externen Knoten u durch einen internen Knoten x ersetzen, wobei zwei neue
externe Knoten entstehen. Die beiden von x ausgehenden Kanten bezeichnen wir wieder
mit e (linke Kante) und f (rechte Kante) und gewichten diese wieder mit z, = 1 und
2y = 0. Das linke Kind von z bezeichnen wir mit v und das rechte entsprechend mit u.
Damit haben wir in der Tat S°,, = S? U{d + 1} = S,41 und damit stimmen fiir alle
n € N die Distanzen S,, der Knoten des RRT mit den gewichteten Distanzen S° der

externen Knoten des bindren Baumes tiberein.

O

5 @

Abbildung 9: Ein zufilliger rekursiver Baum und sein korrespondierender bindrer Baum.

Die weifen (internen) Knoten wurden aus Konstruktionsgriinden hinzugefiigt.
Gepunktete Linien stehen fiir Kanten mit Z = 0 und durchgezogene Linien fiir
Kanten mit Z = 1.
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Wir haben nun unseren RRT erfolgreich mit einem bindren sukzessiv aufgebauten Baum
identifiziert. Zur Bestimmung der Verteilung der Lebensdauern der Individuen des bi-
niren Baumes stellen wir die folgende Uberlegung an:

Zunachst interpretieren wir den bindren Baum als einen Prozess, bei dem sich jedes
Individuum nach Ablauf seiner Lebenszeit in zwei neue Individuen aufsplittet (Dass
wir dabei das linke Kind als von der Mutter verschieden und das rechte Kind als die
Mutter interpretieren, spielt fiir die Untersuchung der ,Splittingzeiten* keine Rolle). Da
nach Voraussetzung nach n Sukzessionsschritten jedes der n+ 1 Individuen des RRT die
gleiche Wahrscheinlichkeit n+r1 besitzt, als nachstes ein Kind zu gebéren, gilt, dass die
Restlebensdauern der Individuen des korrespondierenden bindren Baumes unmittelbar
nach der n-ten Splittingzeit dieselbe Verteilung besitzen. Die Verteilungen der Lebens-
dauern der Individuen miissen also identisch und gedéchtnislos sein. Aus diesem Grund
ist die Annahme einer Exzp(\)-Verteilung fiir das erste Kantengewicht E des korrespon-
dierenden bindren Baumes gerechtfertigt. Analog zu den Ausfithrungen im Beweis von
Satz 6.1 erhélt man A = 1 und damit £ ~ Exp(1) (siche Ausfithrungen in [Devl|, [Dev2]
und [Devb]).

Den zugehorigen zeitstetigen Markov-Sprungprozess (X;);>o (bei dem X, fiir t > 0 die
Anzahl der Individuen zum Zeitpunkt ¢ angibt) eines solchen bindren Baumes, des-
sen Individuen sich nach einer Exzp(1)-verteilten Lebensdauer in zwei neue Individuen
aufsplitten, nennt man auch einen Yule Prozess (Nahere Informationen zu den Eigen-
schaften des Yule-Prozesses findet man in [AuN]|, Kapitel 3. Man beachte, dass hier im
Gegensatz zum RBST die Wahl der Exp(1)-Verteilung fiir das erste Kantengewicht nicht
nur asymptotisch fiir den unendlich fortgesetzten RRT, sondern auch fiir dessen endliche
Teilbdume der ersten n Knoten gerechtfertigt ist.).

Nach den bisher angestellten Uberlegungen ist ein binérer zweifach gewichteter Verzwei-
gungsprozess mit den Gewichtsfunktionen E ~ Exp(1) und Z ~ B(1, 3) als Modell fiir
einen unendlich fortgesetzten RRT Tolo geeignet.

Begriindung fiir Z ~ B(1, %) Zur Abschiatzung der gewichteten Hohe interessiert uns

(wie wir im Beweis von Satz 5.6 gesehen haben) einzig und allein die Zufallsgrofe
H,,, = max{D,| veK,,}

Wie man leicht einsieht, ndhert sich die gewichtete Hohe H,, mit zugrunde liegender
Gewichtsfunktion Z ~ B(1, %) fiir m,, — oo asymptotisch der , gewichteten“ Hohe an,
bei der wir statt dessen unterstellen, dass nach links gerichtete Kanten das Gewicht 1
und nach rechts gerichtete Kanten das Gewicht 0 tragen. Denn wenn wir einen beliebigen
unendlichen Kantenpfad in 7__ auswihlen, so ist das Verhiltnis zwischen seinen nach
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6.2 Der zufillige rekursive Baum

links und seinen nach rechts gerichteten Kanten mit Wahrscheinlichkeit 1 ausgeglichen.
Das gilt nach dem starken Gesetz der grofsen Zahlen, da sich die Auswahl eines zufalligen
Kantenpfades im unendlich fortgesetzten bindren Baum mit Hilfe einer Folge von sto-
chastisch unabhéngigen und identisch B(1, %)—verteilten Zufallsgrofen beschreiben lasst.
Auf jeder Ebene des Baumes wird entschieden, ob der Weg nach links oder nach rechts
fortgesetzt wird, und beide Alternativen haben die Wahrscheinlichkeit %

Nach Satz 5.6 gilt
H,
% C
logn n—oo

wobel ¢ = % mit (po, &) dem eindeutig bestimmten Punkt in Cz g, so dass

2% = max €. Wir miissen also € auf der Kurve
ro (p,0)€Cz P

Czp = {(p, )| AZ(a) + Ap(p) =log2, p<1=E(E), a > =E(2)}

1
2
maximieren. Im Beweis von Satz 6.1 haben wir gesehen, dass Ay (p) = p— 1 —log p (fiir

p > 0) gilt. Wir bestimmen zunéchst die Cramér-Funktion A} einer B(1, 3)-verteilten
Zufallsgrofe Z:

Fiir die momenterzeugende Funktion der Zufallsgrofe Z ergibt sich

My(\) = B(eM) = %(eo +eM) = %(1 +eM.

Daher ist ihre kumulantenerzeugende Funktion
Az(A\) = —log2 +log (1 +¢),
und ihre Cramér-Funktion

Ay (@) = sup{da — Az(\)} = sup{da +log2 — log (1 + e*)}.
AeR AeR

Dabei wird das Supremum nach Lemma 1.14 in A = loga — log (1 — o)) angenommen,

denn es gilt
o

A,(N) = =a< A=loga—log(l— a).

1+ e
Daher haben wir
Ay (o) = aloga+ (1 —a)log (1 — a) + log 2

und ferner

}.

DN | —

Cze={(p.a)] aloga+ (1 —a)log(l—a)+p—logp=1, p€ (0;1), a >
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6 Anwendungen

Die Steigung der Kurve Cz  ist

af
da

cdg| _loga —log (1 —a)

o dpl, %—1

Y

wobei wir f(a) & alog a+(1—a)log (1 — «) und g(p) L og p—p—+1 definiert haben. Mit
Hilfe der in Abschnitt 3.1 gewonnenen geometrischen Interpretation von Cz g erhalten
wir fiir (pg, o) (vgl. Abbildung 4)

df
(i

Einsetzen in die Gleichung fiir C; g liefert

dg
¥

@Q

)Oéo—p() ( = (XolOgOKO—OéolOg(l—Oé(]):]_—po)
[40]

( & po=1—aglogag+ aglog (1 —ap) ).

1 —po+log(l—ag) =logpg+1—py = log(l—ap)=1logpo

= 1—05():p0.

Dabei haben wir benutzt, dass die Logarithmusfunktion streng monoton wachsend ist.
Erneutes Einsetzen in die Gleichung fiir C; g liefert schliefslich

ag = ap(logay — log (1 — ap)) = 1 =logag—log (1l — ayp)
(7)) (7))
= e= =—=c
I—ap  po

und die Behauptung des Satzes.
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6.3 Der random lopsided tree
6.3 Der random lopsided tree

Die Informationstheorie beschéftigt sich mit der Erschaffung von optimalen Codes im
Hinblick auf die unterschiedlichsten Anspriiche. Vorsilbenfreie Codes verdienen dabei
ein besonders grofes Interesse, da man diese auf direktem Wege decodieren kann, in-
dem man einem bestimmten Pfad durch einen stochastischen Baum folgt. Ein Knoten
u eines solchen Baumes repréisentiert ein Symbol p und die Nachkommen des Knotens
repréasentieren die Worter, welche man durch Anhéngen weiterer Symbole an p erhalten
kann. In digitalen Anwendungen werden Symbole mit Bits und Bytes codiert und in der
Regel erfordert jedes Symbol die gleiche Rechenzeit. Wir kénnen uns die erforderlichen
Rechenzeiten der einzelnen Symbole als die Langen der Kanten des Baumes vorstellen. In
diesem Fall haben also alle Kanten die gleiche Lénge. Es gibt jedoch auch Codes, bei de-
nen die verschiedenen Symbole stark voneinander abweichende Rechenzeiten benotigen.
Diese Codes nennt man Varn Codes (fiir eine tiefer gehende Einfithrung vergleiche die
Ausfithrungen in [Var|) und fithren zu Badumen, deren Kanten unterschiedliche Langen
besitzen - so genannten random lopsided trees (Abkiirzung RLT) (Die deutsche Uberset-
zung ,zufilliger schiefer Baum* erscheint hier nicht addquat. Daher verwenden wir den
englischen Namen). Beachte dazu die Ausfithrungen in [CuG| und in [KuR].

Seien ¢; < ¢y < - -+ < ¢ feste, positive reelle Zahlen, wobei die (¢;);=1,.. » nicht alle gleich
grofs sind. Einen b-adischen Baum nennt man lopsided, wenn fiir jeden seiner Knoten
und 1 < i < b die Kante zu dessen i-tem Kind die Léange ¢; besitzt. Wir definieren einen
RLT wie folgt:

Wir starten mit einem b-adischen Baum, dessen Wurzel sein einziger interner Knoten ist.
Schritt fiir Schritt wéhlen wir einen beliebigen externen Knoten mit Hilfe einer Laplace-
Verteilung auf der Menge der externen Knoten aus und ersetzen ihn durch einen internen
Knoten. Die b Kanten, welche von jedem der internen Knoten ausgehen (sofern die jewei-
ligen Nachkommen in der néchsten Generation schon besetzt sind) besitzen die Gewichte
C1,Co, ...,y Fir unser Modell wahlen wir einen b-adischen zweifach gewichteten Ver-
zweigungsprozess 7., mit Gewichtsfunktionen F ~ Ezp(1l) (mit demselben Argument
wie fiir den RRT, da hier derselbe Auswahlmechanismus vorliegt) und Z Laplace-verteilt
auf {c1,¢s,...,¢} (mit demselben Argument wie fiir Z ~ B(1, 1) im Beweis von Satz
6.2). Dann gilt der folgende Satz:

Satz 6.3 (Gewichtete Hohe des random lopsided tree) Fir die gewichtete
Hohe H eines b-adischen random lopsided tree mit n Knoten und Kantenlingen

{c1,¢9,... ¢} gilt
H c

—
logn n—oo b —1
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nach Wahrscheinlichkeit. Dabei ist ¢ das eindeutig bestimmte Maximum von % unter

der Bedingung
b
aX(a) — log (Z cieA(o‘)C") +p—1—logp=0,
i=1

wobei A(«v) eindeutig bestimmt ist durch

Z(a —¢;)eMe =, (6.1)

=1

BEWEIS: Nach obigen Voriiberlegungen kénnen wir wie in den Beweisen der Sétze 6.1
und 6.2 das Ergebnis von Satz 5.6 anwenden, wobei wir hier den Spezialfall X = b—1 fast
sicher, Z Laplace-verteilt auf {cy,co,...,¢} und E ~ Ezp(1) vorliegen haben. Daher
gilt

Ap(p) =p—1—logp
(fiir p > 0) und

b
Az(A) = logE(e*) = log (Z e)‘“) —logb.
i=1

Nach Lemma 1.14 wird das Supremum in A% («) = sup,g{ Ao — Az(\)} angenommen
fir ein A(a) € R mit

, Zf: Cie)\(a)ci
a=Az(Ma)) = bl—m
D iy M

und dieses A(«) ist eindeutig bestimmt, da die (¢;);=1

(< (6.1)),

..... » nach Voraussetzung nicht alle

gleich grof sind und somit Z nicht fast sicher konstant ist (vgl. Lemma 1.6 (Strikte
Konvexitét der kumulantenerzeugenden Funktion)). Dann gilt

b
Cze = {(p, )] aX(a) —log (Z cie““”i) +p—1—logp=0, pe(0;1), a>E(Z)}

i=1

und die Behauptung folgt unmittelbar aus Satz 5.6.
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6.4 Weitere Beispiele

Nachfolgend stellen wir noch einige weitere, einfachere Anwendungen unserer Ergebnisse
vor. Meistens geniigt es dabei, die Verteilung der Gewichtsfunktion Z entsprechend den
vorgestellten Spezialfidllen anzupassen und daraufhin die Ergebnisse der vorangegange-

nen Kapitel zu nutzen.
1. Richtungswechsel in zufalligen bindren Suchbaumen

Als erstens beschéftigen wir uns mit Richtungswechseln in zufélligen bindren Suchbau-
men. Sei 7__ ein unendlich fortgesetzter RBST und fiir einen seiner Knoten v sei 7(v)
die Menge der Kanten des Astes von der Wurzel () bis zum Knoten v (siehe Kapitel
2). Dann setzen wir D(w(v)) fiir die Anzahl der Richtungswechsel des Pfades der Kan-
ten w(v). Codieren wir die nach links gerichteten Kanten mit 1 und entsprechend die
nach rechts gerichteten Kanten mit 0, so gilt bespielsweise D(w(v)) = 5 fiir einen durch
0100101 codierten Kantenpfad m(v). Gezdhlt werden also die Stellen 01 und 10 innerhalb
der Codesequenz. Wir interessieren uns insbesondere fiir den Mazimalwert

Dz = max{D(m(v))| v Knoten von T}

der Richtungswechsel unter allen Pfaden des Baumes 7T, . Aus Konstruktionsgriinden
(vgl. Abschnitt 6.1) gleichen sich die Richtungswechsel nach links und die Richtungs-
wechsel nach rechts bei der Auswahl eines zufilligen Kantenpfades im unendlich fortge-
setzten RBST 7., mit Wahrscheinlichkeit 1 aus (siehe auch Beweis von Satz 6.2). Ein
Richtungswechsel nach links besitzt also asymptotisch die gleiche Wahrscheinlichkeit wie
ein Richtungswechsel nach rechts. Das bedeutet, ein passendes Modell zur Beschreibung
der Richtungswechsel innerhalb eines RBST ist ein zweifach gewichteter Verzweigungs-
prozess mit Gewichtsfunktionen Z ~ B(1,3) und E ~ Exp(1). Daher verhlt sich die
maximale Anzahl der Richtungswechsel innerhalb eines RBST asymptotisch wie die ge-
wichtete Hohe eines RRT (vgl. Modell in Abschnitt 6.2). Mit Hilfe von Satz 6.2 erhalten
wir deshalb das folgende Resultat:
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6 Anwendungen

Satz 6.4 (Richtungswechsel in zufilligen bindren Suchbdumen) Fir den Maxi-
malwert D, der Richtungswechsel unter allen Pfaden eines zufdilligen bindren Suchbau-
mes T, mit n Knoten gilt

DT/

logn n—oo

nach Wahrscheinlichkeit.

2. Elemente mit zwei Lebensdauern

Wir stellen uns einen bindren Baum vor, dessen Kanten zwei stochastisch unabhéngige,
Ezp(1)-verteilte Lebensdauern Z und E besitzen. Seien D, und G, wie in Kapitel 2 die
Alter des Knotens v in Bezug auf die Gewichte Z und E und sei wieder 7,, der zuféllige
Teilbaum der Knoten v € I mit G, < n. Interessant fiir uns ist nun der maximale Wert
H,, des Alters D, unter den Knoten v € K,,. Da die Gewichtsfunktionen Z und E den
Erwartungswert 1 und zudem dieselbe Cramér-Funktion A% (x) = Ay (z) =2 —1—logx
(fiir z > 0) besitzen, folgt mit Hilfe von Satz 3.6:

Satz 6.5 (Elemente mit zwei Lebensdauern) Sei 7., ein bindrer zweifach gewich-
teter Verzweigungsprozess, dessen Kanten zwei voneinander unabhingige, Exp(1)-verteilte
Lebensdauern Z und E besitzen. Dann gilt fir das Mazimum H, der Alter der Knoten
v € IC,, beziiglich der Gewichtsfunktion Z

H,
n n—oo

nach Wahrscheinlichkeit. Dabei ist ¢ =~ 5,82840157 das Maximum von % auf der Kurve

Cze={(p,a)]a—1—loga+p—1—logp=1log2, 0<p<1<a}l.

Gemessen an ihrem ersten Alter GG, existieren also Knoten v, deren zweites Alter D,

nahezu 6 mal grofer ist.
3. Zufallige k-Farbung von Kanten in einem zufilligen bindren Suchbaum

Wir stellen uns einen zufélligen bindren Suchbaum vor, dessen Kanten wir zufallig mit
jeweils einer von k zur Verfiigung stehenden Farben einfarben. Dabei habe fiir eine Kante
e jede der k Farben die gleiche Auftrittswahrscheinlichkeit % Unser Interesse liegt nun auf
dem asymptotischen Verhalten der maximalen Anzahl gleicher Farben auf dem Pfad der
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6.4 Weitere Beispiele

Kanten 7(v) fiir einen Knoten v € IC,, (also mit G, < n). Aus Symmetriegriinden konnen
wir gleich nach dem asymptotischen Verhalten der maximalen Anzahl des Auftretens
einer bestimmten Farbe auf jenem Pfad fragen. Um diese Frage zu beantworten, versehen
wir die Kanten des Baumes mit den Gewichtsfunktionen E ~ Ezp(1) und Z ~ B(1, 7)
(da das Auftreten einer bestimmten Farbe bei einer Kante die Wahrscheinlichkeit
und der urspriingliche RBST nach Abschnitt 6.1 die Gewichte £ ~ Exp(l) und Z =1
fast sicher besitzt. In dem urspriinglichen Gewicht Z = 1 fast sicher verbirgt sich keine
Information, die bei einer Anderung des Gewichtes verloren gehen kénnte.). Nach [DuZ]
gilt fiir die Cramér-Funktion einer B(1, )-verteilten

Zufallsgrofe Z

A (o) = alog (ka) + (1 — a)(log (1 — a) — log (k — 1)) + log k, (6.2)
und daher gilt fiir die relevante Kurve

Cow = {(p,a)] alog (ka) + (1 — a)(log (1 — a) — log (k — 1)) + log k + p— 1 — log p
=log2, 0<p<1, ka > 1}.

Mittels Satz 5.6 folgt:

Satz 6.6 (Zufillige k-Farbung von Kanten in einem zufilligen bindren Suchbaum)
Sei ¢, die Konstante aus Satz 3.6 beziiglich eines bindren, zweifach gewichteten Verzwei-
gungsprozesses T, mit Gewichtsfunktionen Z ~ B(1, %) und E ~ Exp(1). Dann gilt fir
die maximale Anzahl H} des Auftretens einer bestimmten von k Kantenfarben auf den

Pfaden eines zufdlligen bindren Suchbaumes mit n Knoten

*
HTL
— Ck
logn n—oo

nach Wahrscheinlichkeit.

Nachfolgende Tabelle zeigt die Werte von ¢, fir K = 1,...,10. Fiir K = 1 und k = 2
ergeben sich die bekannten Resultate fiir das asymptotische Verhalten der Hohe des
RBST und des RRT (vgl. Sdtze 6.1 und 6.2).

k 1 2 3 1 5

r 4,3110 2,7182 2,1206 1,7955 1,5869
k 6 7 8 9 10

Ch 1,4397 1,3292 1,2426 1,1725 1,1148
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Bemerkung 6.7 Selbstversténdlich kann man auch allgemeiner Z ~ B(1,p) mit p €
(0;1) anstatt p = ¢ fiir ein k& € N annchmen. Nach [DuZ| muss man dazu in (6.2) nur

das k durch % ersetzen und kann genauso verfahren wie in Satz 6.6.

Fiir das Studium des asymptotischen Verhaltens der maximalen Anzahl des Auftretens
einer bestimmten von k Kantenfarben bei einem zufdlligen rekursiven Baum geniigt es
(wie man sehr leicht einsieht) in obigem Modell die Gewichtsfunktion Z ~ B(1, 5-) =
B(1,3) * B(1, +) zu wihlen.

4. Maximale Links-Minus-Rechts-Abweichung

Fir die Knoten v eines bindren Baumes schreiben wir

D, 3 (L(e) - Re)).

e€m(v)

wobei L : &€ — {0,1} der Indikator dafiir sei, ob eine Kante e € £ nach links gerichtet,
und entsprechend R : € — {0, 1} der Indikator dafiir sei, ob eine Kante e € £ nach rechts
gerichtet ist. Wir wollen im Folgenden die maximale Links-Minus-Rechts-Abweichung H
von D, fiir den Fall studieren, dass der zugrunde liegende Baum ein RBST ist. Analog
zu den vorangegangenen Beispielen ist ein zweifach gewichteter Verzweigungsprozess mit
Gewichtsfunktionen Z mit P(Z = —1) = 1 =P(Z = 1) und E ~ Exp(1) ein geeignetes
Modell zur Beschreibung der hier vorgestellten Situation. Fiir die Gewichtsfunktion Z

erhalten wir
Az(\) =log (e* + ™) —log 2,

und daher gilt fiir die Cramérfunktion von Z

a 14+o 14 -« . _
A(a) = S log (E) + log 2 — log (\/E+ﬂ/1+_a) firE(Z)=0<a<1
00

fiir a > 1,

was sich durch Anwendung von Lemma 1.14 und Nachrechnen ergibt. Mit Hilfe von Satz
5.6 folgt ferner:
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Satz 6.8 (Maximale Links-Minus-Rechts-Abweichung) Fir die mazimale Links-

Minus-Rechts-Abweichung H}: eines zufilligen bindren Suchbaumes mit n Knoten gilt

*
Hn
% C
logn n—oo

nach Wahrscheinlichkeit. Dabei ist ¢ = 52 das Mazimum von (p, ) — S in Czp mit

eindeutig bestimmten py und oy und E, Z wie oben. Durch Anwendung numerischer
Werkzeuge ldsst sich ¢ ~ 2,07345 bestimmen.
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7 Symbolverzeichnis

Symbol

&%

[T

—~
L

S S

*

CzE
*
o

D,
Dx

Dx

essinf(X)
esssup(X)
E(X)

&

E, und Z,
E;(v) und Z;(v)

Gy

v(a, p)
v (@, p)

H,

L

K
K

n

n,k

Bedeutung

Punkt (a,b) € R* mit a,b € R

Intervall (a;0) CR mit a,b € R, a <b

Konstante > E(Z) mit (E(E),a*) € Czp

Maximum von (a, p) — % in Czg

Maximum von (a, p) — < in Cy p im verallgemeinerten
Fall

{(p,0) | Ay(@) + Ny(p) = logb, a > E(2), p < E(E)}
{(p, ) | AZ(a) + Ap(p) =logp, o = E(Z), p <E(E)}
mit ¢ dem Erwartungswert der Reproduktionsverteilung
im verallgemeinerten Fall

Gewichtete Hohe des Knotens v

Definitionsbereich der Kumulanten erzeugenden Funkti-
on Ax der Zufallsgrofe X

Definitionsbereich der Cramérfunktion A% der Zufalls-
groke X

Essentielles Infimum der Zufallsgrofe X

Essentielles Supremum der Zufallsgrofse X
Erwartungswert der Zufallsgrofe X

Menge der Kanten eines zweifach gewichteten Verzwei-
gungsprozesses 7.,

Gewichte der Kante e € £

Gewichte der Verbindungskante des Knotens v und sei-
nem i-ten Kind (v, 1)

Alter des Knotens v

A7 4(@) + A g(p) — log

A} z(a) + A} g(p) —log pp mit p dem Erwartungswert der
Reproduktionsverteilung im verallgemeinerten Fall
Gewichtete Hohe des Baumes 7., zum Zeitpunkt n
Menge der Knoten eines zweifach gewichteten Verzwei-
gungsprozesses 7o,

Zufallige Menge der Knoten von 7,

Menge der Knoten v von 7, mit |v| =k
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Loo,k:
\*

72

Menge der Knoten v von 7, mit |v| =k

sup{A € R| Mx () < oo}

Kumulante erzeugende Funktion der Zufallsgrofse X
Fenchel-Legendre-Transformierte von Ax bzw. Cramér-
funktion der Zufallsgrofse X

Linksseitige Cramérfunktion der Zufallsgrofie X
Rechtsseitige Cramérfunktion der Zufallsgrofe X
Momenterzeugende Funktion der Zufallsgrofe X
Menge der natiirlichen Zahlen

Symbol fiir eine Nullfolge (fiir n — o)

Symbol fiir eine Folge (ay)n>1 mit %= — d € R

n—oo

Reproduktionsverteilung eines Galton-Watson-
Prozesses

Menge der Kanten des Astes von der Wurzel () bis zum
Knoten v

Menge der reellen Zahlen

Konstante < E(E) mit (p*,E(Z)) € Czk

Eindeutig bestimmter Punkt in Cz g mit ‘;—8 =c
B-adischer Baum

Galton-Watson-Prozess mit Reproduktionsverteilung
(Pn)n>0

(b-adischer) Zweifach gewichteter Verzweigungsprozess
Verallgemeinerter zweifach gewichteter Verzweigungs-
prozess

Zufalliger Baum der Knoten v von 7, fiir die G, < n
gilt

Zufalliger Baum der Knoten v von 7%, fiir die G, < n
gilt (im verallgemeinerten Fall)

Sukzessiv aufgebauter Baum mit n Knoten

Knoten der n-ten Generation eines zweifach gewichteten
Verzweigungsprozesses

i-tes Kind des Knotens v

Generation, der v angehort

Urahne von v in der i-ten Generation

Wurzel eines Verzeigungsprozesses, leere Menge
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