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Einleitung

In vielen Anwendungen der Theorie der Gewichteten Verzweigungsprozesse ergibt sich
die folgende Fragestellung: Wie schnell wächst eine bestimmte Population von Indivi-
duen, beziehungsweise irgendein anderer reproduktiver Prozess, im Hinblick auf eine
seiner/ihrer immanenten Eigenschaften (vgl. die Ausführungen in [BuD], [Dev1], [Dev2],
[Dev4], [Dev5], [Dev6], [Knu], [Mah], [Pit]). Dabei ist zunächst die Frage nach einer ge-
eigneten Vergleichsskala für die Größe zu klären. In den meisten Fällen beobachtet man
die größenmäßige Entwicklung des Prozesses im Laufe der Zeit. Das bedeutet, für die
Wachstumsgeschwindigkeit ist zum einen die Größe der Population zu einem Zeitpunkt
n, und zum anderen das asymptotische Verhalten dieser Größe für n → ∞ interessant.
Dabei kann als Vergleichsskala neben dem Alter aber auch jede andere Eigenschaft des
Prozesses dienen, sofern sie sich mathematisch durch gewisse stochastische Gewichte mo-
dellieren lässt. Wir nehmen in dieser Arbeit einen allgemeineren Standpunkt an, indem
wir einen zweifach gewichteten Verzweigungsprozess betrachten. Jedes Individuum wird
dabei mit zwei stochastisch unabhängigen Gewichtsfunktionen versehen, welche zwei
beliebige, voneinander unabhängige Eigenschaftsausprägungen des zugrunde liegenden
Prozesses repräsentieren. Fortan interessieren wir uns für das asymptotische Verhalten
der maximalen Ausprägung des einen Gewichtes relativ zur Größe des anderen. Das
zweite Gewicht liefert uns also die Vergleichsgröße (in obigem speziellen Fall das Alter
einer Population). Für die Untersuchung dieses Verhaltens erweisen sich einige Methoden
der Theorie der Großen Abweichungen als ungemein hilfreich. Im speziellen sei hier die
Fenchel-Legendre-Transformierte der kumulantenerzeugenden Funktion einer Zufallsgrö-
ße X (Cramér-Funktion von X) und der Satz von Cramér genannt.

Um die Hauptresultate dieser Arbeit beweisen zu können, stellen wir zunächst das not-
wendige Rüstzeug zusammen. Dazu führen wir im ersten Kapitel einige Grundlagen der
Theorie der Großen Abweichungen ein, sofern sie für diese Arbeit relevant sind. Neben
dem Satz von Cramér sind das vor allem die Eigenschaften der Kumulanten erzeugen-
den Funktion sowie der Cramérfunktion. Für einen tieferen Einblick in das Fachgebiet
der Großen Abweichungen verweisen wir auf die Standardwerke von A. Dembo und O.
Zeitouni, R. Rockafellar und F. den Hollander ([DuZ], [Roc], [Hol]).

Im zweiten Kapitel definieren wir den oben erwähnten zweifach gewichteten Verzwei-
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Einleitung

gungsprozess und stellen seine wichtigsten Eigenschaften vor. Ausgehend von einem un-
endlich verzweigten b-adischen Baum versehen wir jede seiner Kanten mit zwei Gewich-
ten, die ihrerseits gewissen Unabhängigkeitseigenschaften genügen. Außerdem befassen
wir uns mit den Eigenschaften der beiden zugrunde liegenden Gewichtsfunktionen.

Das dritte Kapitel stützt sich auf die Arbeit [BuD] von N. Broutin und L. Devroye.
Aufbauend auf den Definitionen und Ergebnissen der beiden ersten, vorbereitenden Ka-
pitel liefern wir das erste Hauptresultat über das oben angesprochene asymptotische
Verhalten. Wir zeigen, dass sich die gewichtete Höhe Hn eines zweifach gewichteten
Verzweigungsprozesses für n → ∞ asymptotisch so verhält wie (nc)n∈N mit einem ein-
deutig bestimmten c > 0, welches wir mit Hilfe der zu den beiden Gewichtsfunktionen
gehörenden Cramér-Funktionen genau spezifizieren.

Im vierten Kapitel verallgemeinern wir die Situation des vorherigen Kapitels von b-
adischen Bäumen auf solche mit einer beliebigen Reproduktionsverteilung (pn)n∈N0 mit
Erwartungswert µ > 1. Die Methoden aus dem dritten Kapitel lassen sich mit einigen
Abwandlungen auch auf die verallgemeinerte Situation anwenden, so dass wir auch in
diesem Fall eine Aussage über die Asymptotik der gewichteten Höhe erhalten.

Das fünfte Kapitel befasst sich mit der Fragestellung nach der gewichteten Höhe eines
Baumes mit n Knoten. In vielen Anwendungen werden stochastische Bäume sukzessiv
- das heißt Knoten für Knoten durch Anhängen an den bereits vorhandenen Baum −
aufgebaut. Äußerst interessant ist deshalb in diesem Zusammenhang die Frage nach dem
asymptotischen Verhalten der gewichteten Höhe eines Baumes nach n Sukzessionsschrit-
ten (nach dem Anhängen des n-ten Knotens), welche wir mit H∗

n bezeichnen. Mit Hilfe
der Ergebnisse des dritten Kapitels ergibt sich, dass H∗

n logarithmisch wächst, und zwar
verhält sich H∗

n für n → ∞ wie c
µ

log n mit dem c aus Kapitel 3 und einem µ, welches
wir noch näher spezifizieren.

Beispiele dazu sind der zufällige binäre Suchbaum und der zufällige rekursive Baum, de-
ren Eigenschaften in den Arbeiten von D. E. Knuth, H. Mahmoud, L. Devroye und B.
Pittel, ([Knu], [Dev1], [Dev2], [Dev4], [Dev5], [Dev6], [Pit]) genau studiert worden sind.
Diese Beispiele befinden sich im sechsten und letzten Kapitel dieser Arbeit.

Für die Vergabe der Diplomarbeit und die Beratung und Unterstützung während der
Entstehungsphase möchte ich Herrn Prof. Dr. G. Alsmeyer meinen Dank aussprechen.
Außerdem danke ich all denen, die mich auf die eine oder andere Weise bei der Erstellung
dieser Arbeit unterstützt haben.
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1 Grundlagen der Theorie der
Großen Abweichungen

1.1 Die grundlegende Problematik

Die Theorie der Großen Abweichungen beschäftigt sich mit der Asymptotik der Wahr-
scheinlichkeiten von sehr seltenen Ereignissen. Die exponentielle Abfallrate dieser Wahr-
scheinlichkeiten wird in Termen einer Variationsformel ausgedrückt, welche meist in-
teressante Rückschlüsse auf die betrachteten Ereignisse zulässt. Dabei ist zunächst der
Begriff „selten“ näher zu spezifizieren. Dazu betrachten wir zunächst die Standardsitua-
tion, welche uns zu einer grundlegenden Problematik führt (vgl. dazu die Ausführungen
in [Kön]):

Gegeben seien unabhängige und identisch verteilte reellwertige Zufallsgrößen X1, X2, . . .

mit Erwartungswert µ = 0 und Varianz σ2 < ∞. Wir betrachten die Partialsummenfol-
ge (Sn)n∈N mit Sn =

∑n
i=1 Xi. Die Zufallsgröße 1

n
Sn wird auch manchmal empirischer

Durchschnitt von X1, . . . , Xn genannt. Für uns interessant ist das Verhalten dieser Folge
für große n. Betrachte zunächst die folgenden drei bekannten Aussagen der Wahrschein-
lichkeitstheorie:

das schwache Gesetz der großen Zahlen:

lim
n→∞

P(| 1
n
Sn| ≥ ε) = 0 für jedes ε > 0,

das starke Gesetz der großen Zahlen:

P( lim
n→∞

1

n
Sn = 0) = 1,

der zentrale Grenzwertsatz :

lim
n→∞

P( 1√
nσ2

Sn ≤ C) = 1√
2π

∫ C

−∞ e−
x2

2 dx für jedes C ∈ R.

Während diese klassischen Aussagen das ‘übliche’ , das ‘normale’ Verhalten von Sn

beschreiben, will die Theorie der Großen Abweichungen das ‘untypische’ , das Abwei-
chungsverhalten analysieren. Präziser ausgedrückt, einer der Hauptgegenstände dieser
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1 Grundlagen der Theorie der Großen Abweichungen

Theorie ist die asymptotische Analyse der Wahrscheinlichkeit des Ereignisses { 1
n
Sn > x}

bzw. { 1
n
Sn < −x} für n →∞, wobei x > 0. Im starken Gesetz der großen Zahlen werden

zwar gleichzeitig diese beiden Abweichungen betrachtet, aber man ist dort zufrieden mit
der wenig tiefgründigen Aussage, dass die Wahrscheinlichkeiten gegen Null konvergieren.
Im zentralen Grenzwertsatz entspräche dies der Wahl C = −x

√
n, über die allerdings

dort keinerlei Aussagen gemacht werden.

Mit Hilfe der Theorie der Großen Abweichungen stellt sich heraus, dass unter geeigneten
Annahmen an die Integrierbarkeit der Xi diese Wahrscheinlichkeit sogar exponentiell
abfällt, also

P( 1
n
Sn > x) ≈ e−nΛ∗X(x) und P( 1

n
Sn < −x) ≈ e−nΛ∗X(−x),

wobei Λ∗
X1

(x) bzw. Λ∗
X1

(−x) die Rate des exponentiellen Abfalls ist. Λ∗
X1

(x) steht dabei
für die so genannte Cramér-Funktion von X1, die wir später noch spezifizieren werden.

Als erstes werden wir uns mit der so genannten kumulantenerzeugenden Funktion einer
Zufallsgröße X befassen, deren Eigenschaften beim Studium der Cramér-Funktion eine
entscheidende Rolle spielen.
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1.2 Eigenschaften der kumulantenerzeugende Funktion

1.2 Eigenschaften der kumulantenerzeugende
Funktion

Wir beschränken uns in diesem Kapitel manchmal auf den Fall einer reellwertigen Zu-
fallsgröße X ≥ 0, da es sich bei den in den folgenden Kapiteln betrachteten Gewichts-
funktionen grundsätzlich um positive Zufallsgrößen handelt.

Definition 1.1 Sei X eine reellwertige Zufallsgröße. Dann heißt für λ ∈ R

MX(λ)
def
= E(eλX)

die momenterzeugende Funktion von X.

Lemma 1.2 Sei X eine nichtnegative reellwertige Zufallsgröße. Dann ist der Definiti-
onsbereich ihrer momenterzeugenden Funktion von der Form (−∞; λ∗) bzw. (−∞; λ∗],
mit λ∗

def
= sup{λ ∈ R| MX(λ) < ∞} ∈ [0;∞]. Außerdem ist MX(λ) monoton wachsend

auf {λ ∈ R| MX(λ) < ∞}, und es gilt MX(0) = 1.

Beweis: (vgl. [Als1], Lemma 40.2 und 40.3 Definition)

Seien X ≥ 0 und λ ∈ R mit MX(λ) < ∞ und sei λ0 ≤ λ. Dann ist eλ0X ≤ eλX , da X

nicht-negativ und die Exponentialfunktion monoton wachsend ist. Deshalb gilt

MX(λ0) = E(eλ0x) ≤ E(eλx) = MX(λ)

aufgrund der Monotonie des Erwartungswertes. Daraus ergibt sich die behauptete Ge-
stalt des Definitionsbereiches von MX . Außerdem gilt λ∗ ≥ 0 wegen MX(0) = E(e0x) =

E(1) = 1 < ∞. Dabei ist es selbstverständlich möglich, dass λ∗ = 0 bzw. λ∗ = ∞
gilt.

�

Bemerkung 1.3 Die Monotonie von MX(λ) mit X wie in Lemma 1.2 ist genau dann
streng, wenn X nicht fast sicher konstant gleich 0 ist.

Lemma 1.4 (Existenz der Momente) Sei X eine nichtnegative reellwertige Zufalls-
größe und MX(λ) < ∞ für ein λ > 0. Dann gilt

E(Xr) < ∞ ∀r > 0.
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1 Grundlagen der Theorie der Großen Abweichungen

Beweis: Sei λ > 0 mit MX(λ) < ∞ und sei r > 0 beliebig, dann existiert ein s > 0 mit
eλt ≥ tr für alle t ≥ s. Dann liefert eine einfache Abschätzung die Behauptung.

�

Definition 1.5 Sei X eine reellwertige Zufallsgröße. Dann heißt für λ ∈ R

ΛX(λ)
def
= log(MX(λ))

die kumulantenerzeugende Funktion von X. Ihren Definitionsbereich bezeichnen wir mit
DX .

Die kumulantenerzeugende Funktion weist einige Eigenschaften auf, welche uns bei der
Betrachtung der Cramér-Funktion zu interessanten Ergebnissen führen werden. Neben
der Differenzierbarkeit ist eine dieser Eigenschaften die der (strikten) Konvexität, welche
wir in folgendem Lemma beweisen:

Lemma 1.6 (Strikte Konvexität der kumulantenerzeugenden Funktion) Die ku-
mulantenerzeugende Funktion ΛX einer reellwertigen Zufallsgröße X ist konvex, und es
gilt strikte Konvexität, falls X nicht fast sicher konstant ist.

Beweis: Wie man sehr leicht einsieht, ist der Definitionsbereich von ΛX gleich dem
Definitionsbereich von MX . Außerdem folgt mit Hilfe der strengen Monotonie der Lo-
garithmusfunktion und der (strengen) Monotonie von MX die (strenge) Monotonie von
ΛX innerhalb ihres Definitionsbereiches.
Die (strikte) Konvexität von ΛX gewinnt man durch Anwendung der Hölderschen Un-
gleichung. Für λ1 und λ2 aus dem Definitionsbereich von ΛX mit λ1 < λ2 und t ∈ (0; 1)

beliebig gilt

ΛX(tλ1 + (1− t)λ2) = log E[(eλ1X)t(eλ2X)1−t]

≤ log [(E(eλ1X))t(E(eλ2X))1−t]

= tΛX(λ1) + (1− t)ΛX(λ2).

Dabei steht in der zweiten Zeile das <- Zeichen genau dann, wenn X nicht f.s. konstant
ist.

�

Lemma 1.7 (Differenzierbarkeit der kumulantenerzeugenden Funktion) Die Funk-
tion ΛX ist stetig differenzierbar auf dem offenen Kern D◦

X ihres Definitionsbereiches.
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1.2 Eigenschaften der kumulantenerzeugende Funktion

Insbesondere ist ΛX stetig und es gilt

Λ
′

X(λ) =
1

MX(λ)
E(XeλX).

Beweis: Die Differenzierbarkeit von ΛX(λ) = log E(eλX) und die Gestalt der Ableitung
folgen aus dem Satz von der Differentiation unter dem Integralzeichen (vgl. Kapitel 4,
Satz 5.7 und Zusatz in [Els]). Es gilt nämlich:

(i) Für λ ∈ D◦
X ist eλX ∈ L1.

(ii) Für alle ω ∈ Ω existiert die partielle Ableitung ∂
∂λ

eλX(ω) = X(ω)eλX(ω).

(iii) Für λ ∈ D◦
X beliebig und ε > 0 so klein, dass [λ− ε; λ + ε] ⊆ D◦

X gilt:
Es existiert ein n ∈ N mit x < eεx ∀x > n. Mit diesem n folgt

XeλX = 1[−n;n](X)XeλX + 1(−∞;−n)(X)XeλX + 1(n;∞)(X)XeλX .

Dabei ist der erste Summand beschränkt. Für den zweiten und den dritten Sum-
mand gelten die folgenden Ungleichungsketten:
0 ≥ 1(−∞;−n)(X)XeλX ≥ 1(−∞;−n)(X)(−eε|X|)eλX = 1(−∞;−n)(X)(−e(λ−ε)X),
beziehungsweise
0 ≤ 1(n;∞)(X)XeλX ≤ 1(n;∞)(X)eεXeλX = 1(n;∞)(X)e(λ+ε)X .
Dabei sind e(λ−ε)X und e(λ+ε)X integrierbar nach Wahl von ε und damit sind auch
XeλX und |XeλX | integrierbar.

Die Stetigkeit der Ableitung folgt aus dem Satz von der Stetigen Abhängigkeit des Inte-
grals von einem Parameter (vgl. Kapitel 4, Satz 5.6 in [Els]), denn es gilt:

(i) Für λ ∈ D◦
X ist XeλX ∈ L1 (siehe oben).

(ii) Für alle ω ∈ Ω und λ ∈ D◦
X ist X(ω)eλX(ω) stetig in λ.

(iii) Nach obiger Überlegung gilt: E(|XeλX |) < ∞.

�
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1 Grundlagen der Theorie der Großen Abweichungen

Lemma 1.8 Für die kumulantenerzeugende Funktion ΛX einer reellwertigen Zufalls-
größe X mit E(X) = µ gilt:

(i) ΛX(0) = 0.

(ii) ΛX(λ) ≥ λµ für alle λ ∈ DX .

Beweis: Aussage (i) folgt aus Lemma 1.2 und Anwendung der Logarithmusfunktion.
Aufgrund der Konkavität der Logarithmusfunktion folgt mit Hilfe der Jensen-Ungleichung

ΛX(λ) = log E(eλX) ≥ E(log eλX) = λE(X) = λµ.

Und damit ist auch (ii) gezeigt.
�

Für die Untersuchung des Definitionsbereiches der Cramér-Funktion im folgenden Ab-
schnitt ist ein genaueres Studium der Asymptotik der ersten Ableitung der kumulan-
tenerzeugenden Funktion notwendig. Dafür benötigen wir zunächst zwei weitere Begriffe
der Wahrscheinlichkeitstheorie.

Definition 1.9 Für eine reellwertige Zufallsgröße X heißen

esssup(X) def
= inf

N :P (N)=0
sup

ω∈Ω�N

X(ω) ∈ (−∞;∞]

das essentielle Supremum von X und

essinf(X) def
= sup

N :P (N)=0

inf
ω∈Ω�N

X(ω) ∈ [−∞;∞)

das essentielle Infimum von X.

Lemma 1.10 Die Abbildung λ → Λ
′
X(λ) hat die Asymptoten esssup(X) für λ → ∞

und essinf(X) für λ → −∞.

Beweis: Definiere α
def
= essinf(X) und β

def
= esssup(X). Dann gilt

Λ
′

X(λ) =
E(XeλX)

E(eλX)
=

{
≥ E(αeλX)

E(eλX)
= α

≤ E(βeλX)
E(eλX)

= β.
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1.2 Eigenschaften der kumulantenerzeugende Funktion

Daraus folgt Λ
′
X(λ) ∈ [α; β] ∀λ ∈ R. Sei nun ε > 0 beliebig und

Mε
def
= {X > β − ε}. Nach Definition von esssup(X) ist P(Mε) > 0. Dann gilt für λ > 0

E(XeλX)

E(eλX)
≥

E(1Mε(X)(β − ε)eλX)

E(1Mε(X)eλX) + E(1Mc
ε(X)eλX)

= (β − ε)
E(1Mε(X)eλX)

E(1Mε(X)eλX) + E(1Mc
ε(X)eλX)

≥ (β − ε)
E(1Mε(X)eλX)

E(1Mε(X)eλX) + P(M c
ε)eλ(β−ε)

−→
λ→∞

(β − ε),

denn

E(1Mε(X)eλX)

eλ(β−ε)
≥

E(1M ε
2

(X)eλX)

eλ(β−ε)

≥ P(M ε
2
)eλ ε

2

−→
λ→∞

∞ (da P(M ε
2
) > 0).

Daraus ergibt sich
eλ(β−ε)

E(1Mε(X)eλX)
−→ 0.

Es folgt obige Behauptung und damit, da ε > 0 beliebig gewählt war,

lim
λ→∞

E(XeλX)

E(eλX)
≥ β.

Also besitzt λ → Λ
′
X(λ) die Aymptote esssup(X) für λ → ∞. Analog zeigt man, dass

λ → Λ
′
X(λ) für λ → −∞ die Aymptote essinf(X) besitzt. Dafür definiert man sich

Mengen Nε
def
= {X < α + ε} und verfährt ähnlich wie oben.

�
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1 Grundlagen der Theorie der Großen Abweichungen

1.3 Eigenschaften der Cramér-Funktion

In diesem Abschnitt beschäftigen wir uns mit einer der wichtigsten Funktionen aus
dem Gebiet der Großen Abweichungen, der Fenchel-Legendre-Transformierten der ku-
mulantenerzeugenden Funktion einer reellwertigen Zufallsgröße X. Wir werden diese
zunächst definieren und daraufhin ihre wichtigsten Eigenschaften zusammentragen, wel-
che sich für uns im Hinblick auf den Satz von Cramér und die späteren Untersuchungen
in Kapitel 3 als sehr nützlich erweisen werden. Wir werden zeigen, dass die Fenchel-
Legendre-Transformierte für die Beschreibung der eingangs erwähnten exponentiellen
Abfallrate von P( 1

n
Sn > x) bestens geeignet ist. Die Eigenschaften dieser im Folgenden

auch als Cramér-Funktion bezeichneten Funktion - insbesondere ihre Differenzierbar-
keit, ihre strikte Konvexität und ihre genaue Gestalt auf gewissen Intervallen - fließen
maßgeblich in den Beweis des ersten Hauptresultates dieser Arbeit ein.
Selbstverständlich ließen sich die folgenden Definitionen und einige der Lemmata auch
auf den Fall von Zufallsvariablen mit Werten in Rn verallgemeinern. Diese Betrachtung
ist für die vorliegende Arbeit jedoch irrelevant. Weitergehende Untersuchungen finden
sich zum Beispiel in [Roc].

Definition 1.11 Für die kumulantenerzeugende Funktion ΛX einer reellwertigen Zu-
fallsgröße X heißt

Λ∗
X(t)

def
= sup

λ∈R
(λt− ΛX(λ)), t ∈ R, (1.1)

die Fenchel-Legendre-Transformierte von ΛX . Im Folgenden wird Λ∗
X auch Cramér-

Funktion von X genannt. Ihren Definitionsbereich bezeichnen wir mit D∗
X .

Definition 1.12 Für X und ΛX wie oben heißt

Λ∗
l,X(t)

def
= sup

λ≤0
(λt− ΛX(λ)), t ∈ R,

die linksseitige Cramér-Funktion und

Λ∗
r,X(t)

def
= sup

λ≥0
(λt− ΛX(λ)), t ∈ R,

die rechtsseitige Cramér-Funktion von X.

Aus diesen Definitionen ergeben sich bereits einige grundlegende Eigenschaften, welche
wir im folgenden Satz zusammenfassen. Im Hinblick auf die späteren Betrachtungen

8



1.3 Eigenschaften der Cramér-Funktion

in Kapitel 3 interessiert uns dabei vor allem die Gestalt von Λ∗
X auf den Intervallen

(−∞; µ] (für den Fall, dass ΛX(λ) < ∞ für ein λ < 0 gilt) und [µ;∞) (für den Fall, dass
ΛX(λ) < ∞ für ein λ > 0 gilt).

Satz 1.13 (Grundlegende Eigenschaften) Sei Λ∗
X die Cramér-Funktion einer reell-

wertigen Zufallsgröße X mit Erwartungswert E(X) = µ ∈ R. Dann gilt:

(i) Im Falle DX = {0} ist Λ∗
X konstant gleich 0.

(ii) Es gilt Λ∗
X(µ) = 0 und Λ∗

X(t) ≥ 0 für alle t ∈ R.

(iii) Ist Λ(λ0) < ∞ für ein λ0 > 0, dann gilt für alle t ≥ µ

Λ∗
X(t) = sup

λ≥0
(λt− ΛX(λ)) = Λ∗

r,X(t),

und Λ∗
r,X(t) ist monoton wachsend in t. Gilt ferner

λ∗ = sup {λ ≥ 0| ΛX(λ) < ∞} < ∞, so ist

Λ∗
X(t) = sup

0≤λ≤λ∗
(λt− ΛX(λ)).

(iv) Ist Λ(λ0) < ∞ für ein λ0 < 0, dann gilt für alle t ≤ µ

Λ∗
X(t) = sup

λ≤0
(λt− ΛX(λ)) = Λ∗

l,X(t),

und Λ∗
l,X(t) ist monoton fallend in t.

(v) Es gilt Λ∗
r,X(t) = 0 für alle t < µ und Λ∗

l,X(t) = 0 für alle t > µ.

Beweis: Zu (i): Sei DX = {0}, also ΛX(λ) = ∞ für alle λ ∈ R�{0} und damit
Λ∗

X(t) = 0t− ΛX(0) = 0 für alle t ∈ R.
Zu (ii): Es gilt zum einen

Λ∗
X(t) = sup

λ∈R
(λt− ΛX(λ)) ≥ 0− ΛX(0) = 0

und zum anderen

Λ∗
X(µ) = sup

λ∈R
(λµ− ΛX(λ)) ≤

1.8
sup
λ∈R

(λµ− λµ) = 0.

Zu (iii): Sei ΛX(λ0) < ∞ für ein λ0 > 0 und sei t ≥ µ beliebig. Dann gilt für jedes λ < 0

λt− ΛX(λ) ≤ λµ− ΛX(λ) ≤ Λ∗
X(µ) =

(i)
0.

9



1 Grundlagen der Theorie der Großen Abweichungen

Mit Λ∗
X(t) ≥ 0 folgt Λ∗

X(t) = Λ∗
r,X(t). Offensichtlich ist Λ∗

r,X(t) monoton wachsend in t.
Gelte ferner λ∗ = sup {λ ≥ 0| ΛX(λ) < ∞} < ∞. Für jedes λ > λ∗ ist dann ΛX(λ) = ∞
und damit λt − ΛX(λ) = −∞ unabhängig von der Wahl von t ∈ R. Daraus folgt
Λ∗

X(t) = sup0≤λ≤λ∗ (λt− ΛX(λ)).
Zu (iv): Sei ΛX(λ0) < ∞ für ein λ0 < 0 und sei t ≤ µ beliebig. Analog zu (iii) gilt dann
für jedes λ > 0

λt− ΛX(λ) ≤ λµ− ΛX(λ) ≤ Λ∗
X(µ) =

(i)
0.

Daraus folgt Λ∗
X(t) = Λ∗

l,X(t), und Λ∗
l,X(t) ist offensichtlich monoton fallend in t.

Zu (v): Nach Lemma 1.9 b) gilt für t < µ beliebig

Λ∗
r,X(t) = sup

λ≥0
(λt− ΛX(λ)) ≤ sup

λ≥0
(λt− λµ) = sup

λ≥0
λ(t− µ) = 0

und für t > µ beliebig

Λ∗
l,X(t) = sup

λ≤0
(λt− ΛX(λ)) ≤ sup

λ≤0
(λt− λµ) = sup

λ≤0
λ(t− µ) = 0.

Mit Λ∗
r,X , Λ∗

l,X ≥ 0 folgt die Behauptung.
�

Als nächstes wollen wir uns mit dem Definitionsbereich der Cramér-Funktion auseinan-
dersetzen. Wie sich herausstellen wird, besteht diesbezüglich ein sehr enger Zusammen-
hang zu dem Wertebereich der ersten Ableitung der kumulantenerzeugenden Funktion.

Lemma 1.14 (Existenz und Eindeutigkeit des Maximierers) Sei Λ∗
X die Cramér-

Funktion einer nicht fast sicher konstanten reellwertigen Zufallsgröße X. Dann wird für
jedes t ∈ (essinf(X); esssup(X)) das Supremum in (1.1) in genau einem λt ∈ R ange-
nommen, das heißt, es gilt

Λ∗
X(t) = λtt− ΛX(λt).

Für dieses λt gilt ferner
Λ
′

X(λt) = t.

Beweis:
Eindeutigkeit : Sei λt ein Maximierer, das heißt Λ∗

X(t) = λtt − ΛX(λt). Dann gilt 0 =

t−Λ
′
X(λt) und es folgt Λ

′
X(λt) = t. ΛX ist strikt konvex, da nach Voraussetzung X nicht

fast sicher konstant ist (siehe Lemma 1.6). Damit ist Λ
′
X streng monoton wachsend und

es folgt die Eindeutigkeit.

10



1.3 Eigenschaften der Cramér-Funktion

Existenz : Nach Lemma 1.10 existiert zu t ∈ (essinf(X); esssup(X)) ein λt ∈ R mit
Λ
′
X(λt) = t. Also ist λt eine Nullstelle der Ableitung von λ 7→ λt − ΛX(λ) und damit

wegen der strengen Monotonie von Λ
′
X ein Maximierer.

�

Lemma 1.15 Für die Cramér-Funktion Λ∗
X einer Zufallsgröße X gilt

Λ∗
X(t) =

{
∞ für t /∈ [essinf(X); esssup(X)]

< ∞ für t ∈ (essinf(X); esssup(X)).

Beweis: Sei t > esssup(X) beliebig. Dann gilt für alle λ > 0

Λ∗
X(t) ≥ λt− ΛX(λ)

= λ

(
t− 1

λ
ΛX(λ)

)
und folglich

Λ∗
X(t) ≥ lim sup

λ→∞
λ

(
t− 1

λ
ΛX(λ)

)
= lim sup

λ→∞
λ

(
t− log E(eλX)

λ

)
= ∞,

denn

t− log E(eλX)

λ
=

log eλt

λ
− log E(eλX)

λ

= −1

λ
(log E(eλX)− log eλt)

= −1

λ
log e−λtE(eλX)

= −1

λ
log E(eλ(X−t))

≥
λ>0

−1

λ
log E(eλ(esssup(X)−t))

= −(esssup(X)− t)

= t− esssup(X) > 0.

Ein ähnliches Argument liefert Λ∗
X(t) = ∞ für t < essinf(X). Die Aussage Λ∗

X(t) < ∞
für t ∈ (essinf(X); esssup(X)) folgt aus Lemma 1.14.

�
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1 Grundlagen der Theorie der Großen Abweichungen

Bemerkung 1.16 Nach Lemma 1.10 und 1.15 gilt

cl(D∗
X) = [essinf(X); esssup(X)] = cl({Λ′

X(λ) | λ ∈ R}),

wobei mit cl der topologische Abschluss gemeint ist.

Lemma 1.17 Für die Cramér-Funktion Λ∗
X einer reellwertigen Zufallsgröße X mit Er-

wartungswert E(X) = µ gilt

Λ∗
X(t) = 0 ⇔ t = µ.

Beweis: Ist X fast sicher konstant gleich µ, so ist Λ∗
X(t) = ∞ für t 6= µ, und es ist

nichts weiter zu zeigen. Sei also jetzt X nicht fast sicher konstant und sei t ∈ R mit
Λ∗

X(t) = 0. Dann ist λt = 0 der eindeutig bestimmte Maximierer im Sinne von Lemma
1.14. Mittels Lemma 1.14 folgt ferner

Λ
′

X(λt) = Λ
′

X(0) =
E(Xe0X)

E(e0X)
= E(X) = µ.

�

Ebenfalls von sehr großer Bedeutung für die späteren Ergebnisse sind die strikte Konvexi-
tät und die Differenzierbarkeit der Cramér-Funktion. Mit Hilfe der (strengen) Monotonie
von Λ

′
X lässt sich das folgende Resultat beweisen:

Satz 1.18 (Strikte Konvexität der Cramér-Funktion) Die Cramér-Funktion Λ∗
X

einer reellwertigen Zufallsgröße X ist strikt konvex auf (essinf(X); esssup(X)).

Beweis: Für den Beweis der strikten Konvexität benutzen wir die in Lemma 1.14 ge-
wonnene geometrische Interpretation von Λ∗

X auf (essinf(X); esssup(X)): Für t1, t2 ∈
(essinf(X); esssup(X)) mit t1 < t2 und θ ∈ (0, 1) beliebig gilt

θΛ∗
X(t1) + (1− θ)Λ∗

X(t2) = θ sup
λ∈R

(λt1 − ΛX(λ)) + (1− θ) sup
λ∈R

(λt2 − ΛX(λ))

= sup
λ∈R

(θλt1 − θΛX(λ)) + sup
λ∈R

((1− θ)λt2 − (1− θ)ΛX(λ))

≥ sup
λ∈R

((θt1 + (1− θ)t2)λ− ΛX(λ))

= Λ∗
X(θt1 + (1− θ)t2).

Dabei steht hier in der vorletzten Zeile das Gleichheitszeichen genau dann, wenn beide
Suprema in der drittletzten Zeile im gleichen Punkt angenommen werden. Das bedeutet,

12



1.3 Eigenschaften der Cramér-Funktion

für die Gleichheit muss λt1 = λt2 gelten (mit λti (i = 1, 2) wie in Lemma 1.14). Nach
Lemma 1.14 gilt aber Λ

′
X(λt1) = t1 < t2 = Λ

′
X(λt2) und damit λt1 < λt2 , weil Λ

′
X (streng)

monoton wachsend ist. Es gilt also das > - Zeichen und damit ist Λ∗
X strikt konvex.

�

Satz 1.19 (Differenzierbarkeit der Cramér-Funktion) Die Cramér-Funktion Λ∗
X

einer reellwertigen Zufallsgröße X ist differenzierbar auf (essinf(X); esssup(X)).

Beweis: Der Beweis stützt sich auf den Satz von der Differenzierbarkeit implizit defi-
nierter Funktionen (vgl. Satz 170.1 auf Seite 295 in [Heu]).
Für t ∈ (essinf(X); esssup(X)) ist Λ∗

X(t) = λtt−ΛX(λt) mit λt wie in Lemma 1.14. Da-
bei ist λt nach Lemma 1.14 und wegen der strengen Monotonie von Λ

′
X genau dann ein

Maximierer von (1.1), wenn λt Nullstelle der Funktion λ 7→ t−Λ
′
X(λ) ist. Wir definieren

F : U × V → R, F(t, λ)
def
= t− Λ

′

X(λ),

wobei U ⊆ (essinf(X); esssup(X)) eine offene Umgebung von t und V eine offene Umge-
bung von λt darstellt, auf welcher die Funktion Λ

′
X stetig differenzierbar ist. Die stetige

Differenzierbarkeit von Λ
′
X zeigt man analog zum Beweis von Lemma 1.7 (Differenzier-

barkeit der kumulantenerzeugenden Funktion) mit Hilfe der Sätze 5.6 und 5.7, Kapitel
4 in [Els]. Zum einen gilt wegen der strengen Monotonie von Λ

′
X

∂

∂λ
F(t, λ) = −Λ

′′

X(λ) < 0,

und zum anderen gilt
∂

∂t
F(t, λ) = 1.

Daher ist die Funktion F(t, λ) stetig partiell differenzierbar. Zusammen mit F(t, λt) = 0

und ∂
∂λ
F(t, λ) 6= 0 folgt aus dem Satz von der Differenzierbarkeit implizit definierter

Funktionen die Existenz einer an der Stelle t differenzierbaren Funktion f : G → H

mit geeigneten offenen Teilmengen G ⊆ U und H ⊆ V und F(t, f(t)) = 0 ∀t ∈
G. Nach Lemma 1.14 (insbesondere der Eindeutigkeit des Maximierers) gilt Λ∗

X(t) =

f(t)t−ΛX(f(t)) und damit ist Λ∗
X differenzierbar als Verknüpfung von differenzierbaren

Funktionen. Da t ∈ (essinf(X); esssup(X)) beliebig gewählt war, folgt die Behauptung.
�

Folgerung 1.20 (Ableitung an der Stelle µ) Für die Cramér-Funktion Λ∗
X einer nicht

fast sicher konstanten reellwertigen Zufallsgröße X mit Erwartungswert E(X) = µ gilt

d

dt
Λ∗

X(t)|t=µ = 0.
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1 Grundlagen der Theorie der Großen Abweichungen

Beweis: Die Behauptung folgt mit Hilfe der Ergebnisse des Lemmas 1.17 und den Sät-
zen 1.18 und 1.19. Die Cramér-Funktion Λ∗

X ist strikt konvex und differenzierbar auf
(essinf(X); esssup(X)). Dabei liegt µ in (essinf(X); esssup(X)), weil X nach Vorausset-
zung nicht fast sicher konstant ist. Außerdem gilt Λ∗

X(t) ≥ 0, wobei die Gleichheit nur
für t = µ gilt. Demzufolge ist µ ein lokales Minimum von Λ∗

X und daraus folgt die Be-
hauptung.

�

Im Hinblick auf die späteren Ausführungen benötigen wir noch ein weiteres Lemma, das
auf die Situation in Kapitel 3 zugeschnitten ist:

Lemma 1.21 Sei X eine nicht fast sicher konstante, nichtnegative Zufallsgröße mit
E(X) < ∞ und P(X = 0) = 0. Dann gilt für ihre linksseitige Cramér-Funktion

lim
t↓essinf(X)

Λ∗
l,X(t) = ∞.

Beweis: Es gilt Λ∗
l,X(t) = supλ≤0 (λt− ΛX(λ)) ≥ λ0t− log E(eλ0X) für alle λ0 ≤ 0. Für

K > 0 beliebig folgt daraus

lim
t↓essinf(X)

Λ∗
l,X(t) ≥ lim

t↓essinf(X)
λ0t− log E(eλ0X)

= λ0 essinf(X)− log E(eλ0X) > K

für λ0 hinreichend klein, denn nach Voraussetzung ist P(X = 0) = 0. Also existiert ein
ε > 0 und eine Menge A mit P(A) > 0 und X(ω) > essinf(X) + ε für alle ω ∈ A.
Setze d

def
= essinf(X). Unter Beachtung von P(X > 0) = 1 gilt für λ < 0 beliebig die

Abschätzung

lim
λ→−∞

(λd− log E(eλX)) = lim
λ→−∞

(
λd− log

(∫
A

eλXdP +

∫
Ac

eλXdP
))

= lim
λ→−∞

lim
θ→−∞

(
λd− log

(∫
A

eλXdP +

∫
Ac

eθXdP
))

= lim
λ→−∞

(
λd− log

(∫
A

eλXdP + lim
θ→−∞

∫
Ac

eθXdP
))

= lim
λ→−∞

(
λd− log

∫
A

eλXdP
)

≥ lim
λ→−∞

(
λd− log

∫
A

eλ(d+ε)dP
)

14



1.3 Eigenschaften der Cramér-Funktion

= lim
λ→−∞

(λd− log (P(A)eλ(d+ε)))

= lim
λ→−∞

(λd− log P(A)− λ(d + ε))

= lim
λ→−∞

(− log P(A)− λε)

= ∞,

wobei wir die Stetigkeit der Logarithmusfunktion und der Abbildung λ 7→
∫

A
eλXdP

benutzt haben. Daraus folgt die Behauptung des Lemmas.
�

An dieser Stelle haben wir alle für die folgenden Kapitel benötigten Eigenschaften der
Cramér-Funktion einer reellwertigen Zufallsgröße X zusammengetragen und somit ihre
Charakterisierung abgeschlossen. Die folgende Abbildung veranschaulicht die Gestalt
einer typischen Cramér-Funktion (Die zugehörige Zufallsgröße X wird hier als nicht fast
sicher konstant und fast sicher beschränkt angenommen, so dass −∞ < essinf(X) <

esssup(X) < ∞ gilt).

r

r

r r
essinf(X) esssup(X)

∞

µ = E(X)

Λ∗X(t)

t-�

6

?

Abbildung 1: Geometrische Interpretation einer typischen Cramér-Funktion
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1.4 Der Satz von Cramér

Dieser Abschnitt ist dem Satz von Cramér, einem fundamentalen Ergebnis der Theo-
rie der Großen Abweichungen, gewidmet. Der Satz von Cramér löst das in Abschnitt
1.1 vorgestellte Grundproblem der exponentiellen Abfallrate. Wie in Abschnitt 1.1 sei
für unabhängige und identisch verteilte reellwertige Zufallsgrößen X1, X2, . . . die Parti-
alsummenfolge (Sn)n∈N mit Sn =

∑n
i=1 Xi gegeben. Mit Hilfe der Markov-Ungleichung

(vgl. Satz 17.4 auf Seite 72 in [Als1]) können wir zeigen:

Lemma 1.22 Sei (Xi)i∈N eine Familie von stochastisch unabhängigen und identisch
verteilten reellwertigen Zufallsgrößen mit Partialsummenfolge (Sn)n∈N und kumulanten-
erzeugenden Funktion ΛX1 = log MX1. Ferner sei t > 0 beliebig. Dann gilt für jedes
λ ≥ 0 die Abschätzung

P(Sn ≥ nt) ≤ e−n(λt−ΛX1
(λ)).

Beweis: Seien t > 0 und λ ≥ 0 beliebig. Eine Anwendung der Markov-Ungleichung
liefert

P(Sn ≥ nt) = P(eλSn ≥ eλnt) ≤ e−λntE(eλSn) = e−λntMX1(λ)n = e−n(λt−ΛX1
(λ)).

Dabei haben wir für die vorletzte Gleichheit benutzt, dass die (Xi)i∈N stochastisch un-
abhängig und identisch verteilt sind.

�

Da diese Abschätzung für alle λ ≥ 0 und alle n ∈ N gilt, folgern wir

lim sup
n→∞

1

n
log P(Sn ≥ nt) ≤ − sup

λ≥0
(λt− ΛX1(λ)) = Λ∗

r,X1
(t), t > 0.

Unter der Zusatzvoraussetzung Λ(λ0) < ∞ für ein λ0 > 0 gilt somit nach Satz 1.13 für
t ≥ µ

lim sup
n→∞

1

n
log P(Sn ≥ nt) ≤ −Λ∗

X1
(t). (1.2)

Kommen wir nun zum angekündigten Satz von Cramér. Dieser sagt aus, dass obige
Ungleichung auf der exponentiellen Skala scharf, das heißt, die rechte Seite von (1.2)
auch eine Abschätzung nach unten ist.
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Satz 1.23 (Satz von Cramér) Es sei (Xi)i∈N eine Familie von stochastisch unabhän-
gigen und identisch verteilten reellwertigen Zufallsgrößen mit Erwartungswert µ ∈ R und
Varianz σ2 ≥ 0, deren kumulantenerzeugende Funktion ΛX1(λ) an einer Stelle λ0 > 0

endlich ist. Setze Sn =
∑n

i=1 Xi. Dann gilt für jedes t ≥ µ

lim
n→∞

1

n
log P(Sn ≥ nt) = −Λ∗

X1
(t),

wobei Λ∗
X1

die Cramér-Funktion von X1 ist.

Beweis: Es reicht, t = 0 zu behandeln, denn andernfalls gehen wir über zu den Zu-
fallsvariablen Xi − t (beachte: t = 0 impliziert µ ≤ 0) Also müssen wir zeigen, dass
limn→∞

1
n

log P(Sn ≥ 0) = −Λ∗
X1

(0) = infλ∈R ΛX1(λ) = log ρ gilt, wobei wir

ρ
def
= inf

λ∈R
MX1(λ)

definieren. Für die letzte Gleichheit haben wir die Stetigkeit und die Monotonie der Lo-
garithmusfunktion benutzt.
Wir verwenden im Folgenden die Konvention log 0

def
= −∞. Aus der strikten Konvexität

von ΛX1 , der strengen Monotonie der Logarithmusfunktion und der Ungleichung zwi-
schen dem geometrischen und dem arithmetrischen Mittel folgt die strikte Konvexität
von MX1 (vgl. Beweis von Lemma 1.6) und es gilt

M
′

X1
(0) = E(X1e

0X1) = E(X1) = µ ≤ 0.

Ferner dürfen wir voraussetzen, dass die Verteilung der Zufallsgröße X1 Masse sowohl im
Intervall (−∞; 0) als auch im Intervall (0;∞) besitzt. Dies sieht man folgendermaßen ein:

Wenn P(X1 < 0) = 1 gilt, so ist MX1 streng fallend mit limλ→∞ MX1(λ) = ρ = 0,
und es folgt die Behauptung, denn es ist P(Sn ≥ 0) = 0. Falls P(X1 ≤ 0) = 1 und
P(X1 = 0) > 0, so ist MX1 fallend mit limλ→∞ MX1(λ) = ρ = P(X1 = 0) > 0. Aufgrund
der stochastischen Unabhängigkeit der (Xi)i∈N gilt

P(Sn ≥ 0) = P(X1 = X2 = · · · = Xn = 0) = ρn,

woraus wiederum die Behauptung folgt. Wegen E(X1) ≤ 0 kann X1 nicht in [0;∞)

konzentriert sein, sofern X1 nicht konstant gleich 0 ist. Wie man leicht einsieht, folgt
die Behauptung auch in dem Trivialfall, dass X1 konstant gleich 0 ist. Also können wir
jetzt davon ausgehen, dass P(X1 > 0) > 0 und P(X1 < 0) > 0 gelten. Insbesondere ist
0 ∈ (essinf(X1); esssup(X1)) und es gilt limλ→∞ MX1(λ) = ∞ = limλ→−∞ MX1(λ).
Wegen der strikten Konvexität nimmt MX1 sein Minimum ρ in genau einem Punkt
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1 Grundlagen der Theorie der Großen Abweichungen

λ0 ∈ R an, und es gilt M
′
X1

(λ0) = 0. Die obere Schranke wird genau wie in Lemma 1.22
hergeleitet, was wir hier nicht wiederholen wollen. Also muss nur noch

lim inf
n→∞

1

n
log P(Sn ≥ 0) ≥ log ρ

gezeigt werden.

Der nun folgende Beweis der unteren Schranke benutzt einen exponentiellen Maßwechsel
und ist fundamental in der Theorie der Großen Abweichungen. Wir betrachten ein Maß
P̂ mit der Eigenschaft

P̂(Xi ∈ dx) =
1

ρ
eλ0xP(Xi ∈ dx). (1.3)

Die Verteilung von Xi wird also exponentiell mit Parameter λ0 transformiert. Die rechte
Seite von (1.3) ist tatsächlich eine Wahrscheinlichkeitsverteilung, denn es gilt

ρ = MX1(λ0) = E(eλ0Xi).

Für dieses P̂ gilt wegen der stochastischen Unabhängigkeit der (Xi)i∈N

P̂(X1 ∈ dx1, . . . , Xn ∈ dxn) = ρ−neλ0(x1+···+xn)P(X1 ∈ dx1) . . . P(Xn ∈ dxn)

und mit Hilfe des Transformationssatzes

P̂(Sn ∈ ds) = ρ−neλ0sP(Sn ∈ ds). (1.4)

Wir haben
lim

n→∞
Ê(e−λ0Sn1{Sn≥0})

1
n ≥ 1

nach dem zentralen Grenzwertsatz für Sn, denn wir können wie folgt abschätzen:

Ê(e−λ0Sn1{Sn≥0})
1
n ≥ Ê(e−λ0Sn1{Sn∈(0,

√
nσ)})

1
n ≥

{
(e−λ0

√
nσP̂( Sn√

nσ
∈ [0; 1]))

1
n für λ0 > 0

P̂( Sn√
nσ
∈ [0; 1])

1
n für λ0 ≤ 0

Dabei gilt limn→∞(e−λ0
√

nσ)
1
n = limn→∞ e

−λ0σ√
n = 1 und limn→∞ P̂( Sn√

nσ
∈ [0; 1])

1
n = 1,

denn P̂( Sn√
nσ
∈ [0; 1]) konvergiert nach dem zentralen Grenzwertsatz für n → ∞ gegen

eine positive Zahl (weil Sn√
nσ

für n → ∞ in Verteilung gegen eine N(0, 1)- Verteilung
konvergiert).
Unter Verwendung von (1.4) erhalten wir schließlich

lim inf
n→∞

1

n
log P(Sn ≥ 0) ≥ log ρ.

Damit ist die untere Schranke bewiesen und der Beweis des Satzes von Cramér abge-
schlossen.

�
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Bemerkung 1.24 (i) Die Aussage des Satzes von Cramér gilt auch für P(Sn ≤ nt) an
Stelle von P(Sn ≥ nt) für t ≤ E(X1), sofern ein λ0 < 0 existiert mit ΛX1(λ0) < ∞.
Dies folgt leicht aus einem Übergang von Xi zu −Xi.

(ii) Die Verteilung P̂Xi im Beweis von Satz 1.24 nennt man die Cramér-Transformierte
der Verteilung PXi . Diese Transformation wandelt das „untypische“ Verhalten, das
Verhalten der Großen Abweichung Sn ≥ 0, in ein „typisches“ um, auf das der
zentrale Grenzwertsatz angewendet werden kann.

(iii) Für eine Folge von stochastisch unabhängigen und identisch verteilten reellwertigen
Zufallsgrößen (Xi)i∈N mit ΛX1(λ0) < ∞ sowie ΛX1(λ1) < ∞ für gewisse λ0 < 0 <

λ1 (was genau der Situation in den folgenden Kapiteln entspricht), lässt sich die
Aussage des Satzes von Cramér umformulieren zu

P(Sn ≥ nt) = e−nΛ∗X1
(t)+o(n) = e−nΛ∗r,X1

(t)+o(n) für t ≥ E(X1),

und
P(Sn ≤ nt) = e−nΛ∗X1

(t)+o(n) = e−nΛ∗l,X1
(t)+o(n) für t ≤ E(X1).
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2 Der zweifach gewichtete
Verzweigungsprozess

In diesem Kapitel stellen wir den zweifach gewichteten Verzweigungsprozess vor, welcher
der Untersuchungsgegenstand der folgenden Kapitel sein wird. Im Gegensatz zu der
zugrunde liegenden Arbeit [BuD] verwenden wir hier eine leicht abgewandelte Notation,
welche an die in [Als3] angelehnt ist.

2.1 Modellbeschreibung

Wir betrachten einen b-adischen, unendlich verzweigten stochastischen Baum T∞. Dabei
bedeutet „b-adisch“, dass jeder Knoten (jedes Individuum) des Baumes genau b Nach-
kommen besitzt, wobei b eine natürliche Zahl ≥ 2 ist. Somit handelt es sich bei T∞

streng genommen gar nicht um einen stochastischen Baum, da der Zufall hier überhaupt
keine Rolle spielt. Der Baum stellt gewissermaßen das Rohmaterial für den zweifach
gewichteten Verzweigungsprozess dar.

Die Wurzel des Baumes bezeichnen wir mit ∅ und für n ∈ N einen Knoten der n-ten
Generation mit v = (v1, . . . , vn). Dabei nummerieren wir die Kinder des Knotens v von
links nach rechts und bezeichnen sie mit (v, 1), . . . , (v, b), wobei (v, i) für i ∈ {1, . . . , b}
eine verkürzte Schreibweise von (v1, . . . , vn, i) darstellt. Außerdem bezeichnen wir für
einen Knoten v = (v1, . . . , vn) dessen Urahnen der i-ten Generation mit v|i def

= (v1, . . . , vi)

(Insbesondere gilt v|0 = ∅). Im Fall b = 3 ergibt sich das folgende Bild:
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2 Der zweifach gewichtete Verzweigungsprozess

v

v v v

v v v v v v v v v

�
�

�
�

�
�

�
�

�
�

�
�

�

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q

�
�
�
�
�
�
�
�
�

A
A

A
A

A
A

A
A
A

�
�
�
�
�
�
�
�
�

A
A

A
A

A
A

A
A
A

�
�
�
�
�
�
�
�
�

A
A

A
A

A
A

A
A
A

∅

(1) (2) (3)

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

Abbildung 2: Ausschnitt des Baumes T∞ bis zur zweiten Generation für b = 3

Wir bezeichnen mit K die Menge der Knoten von T∞, und für einen einzelnen Knoten
v = (v1, . . . , vn) ∈ K sei |v| = n. Das heißt, |v| bezeichnet die Generation, der v ange-
hört. Speziell bedeutet dies |∅| = 0. Für einen beliebigen Knoten v mit |v| ≥ 1 bezeichne
ferner π(v) die Menge der Kanten des Astes von der Wurzel ∅ bis zum Knoten v.

Jeder Knoten v von T∞ werde zudem mit einem b-dimensionalen Zufallsvektor

(Z(v), E(v))
def
= ((Z1(v), E1(v)), (Z2(v), E2(v)), . . . , (Zb(v), Eb(v)))

bestehend aus b Paaren von reellwertigen Zufallsgrößen versehen. Dabei seien die Zufalls-
variablen (Z(v), E(v))v∈K stochastisch unabhängig, und jedes Paar (Zi(v), Ei(v)), i ∈
{1, . . . , b}, v ∈ K sei verteilt wie (Z,E) für nichtnegative und stochastisch unabhängige
Zufallsgrößen Z und E. Die Familien (Zi(v))v∈K, i∈{1,...,b} und (Ei(v))v∈K, i∈{1,...,b} seien
ebenfalls stochastisch unabhängig. Man beachte aber, dass für ein festes v ∈ K innerhalb
des Zufallsvektors (Z(v), E(v)) die Paare (Zi(v), Ei(v))i=1,...,b nicht stochastisch unab-
hängig zu sein brauchen.
Die Zufallsgröße E sei zudem nicht fast sicher konstant, und es gelte E(E) < ∞ und
E(Z) < ∞, sowie P(E = 0) = 0. Außerdem benötigen wir noch eine weitere, im Hinblick
auf die Anwendung der im ersten Kapitel gewonnenen Ergebnisse sehr wichtige Eigen-
schaft: Die Zufallsgröße Z erfülle die Bedingung ΛZ(λ) < ∞ für ein λ > 0, wobei ΛZ die
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2.1 Modellbeschreibung

kumulantenerzeugende Funktion von Z ist.

Die b Zufallsvariablen-Paare (Z1(v), E1(v)), . . . , (Zb(v), Eb(v)) werden den b Kanten, die
den Knoten v mit seinen b Kindern (v, 1), . . . , (v, b) verbinden, zugewiesen. Im Fall b = 3

ergibt sich das folgende Bild:
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Abbildung 3: Ausschnitt des zweifach gewichteten Baumes T∞ bis zur zweiten
Generation für b = 3

Wir bezeichnen ferner mit E die Menge der Kanten von T∞. Für eine beliebige Kante
e ∈ E bezeichnen wir die ihr zugewiesenen Gewichte auch mit der kürzeren Schreibweise
(Ze, Ee). Für einen Knoten v = (v1, . . . , vn) seien

Gv
def
=

∑
e∈π(v)

Ee =
n∑

i=1

Evi
(v|(i− 1)) (Alter des Knotens v)

und

Dv
def
=

∑
e∈π(v)

Ze =
n∑

i=1

Zvi
(v|(i− 1)) (Gewichtete Höhe des Knotens v)

die beiden kumulierten Gewichte des Astes π(v). In den meisten Fällen interpretieren
wir Gv als den Geburtszeitpunkt von v und Dv als die räumliche Länge des Astes von
der Wurzel ∅ bis zum Knoten v.
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2 Der zweifach gewichtete Verzweigungsprozess

Nun haben wir einen b-adischen Baum, dessen Knoten v jeweils mit zwei stochastisch un-
abhängigen, nicht-negativen Gewichten Gv und Dv versehen sind. Einen in der oben be-
schriebenen Art und Weise gewichteten Baum nennen wir fortan einen (b-adischen) zwei-
fach gewichteten Verzweigungsprozess und verwenden für ihn die Notation T∞. Schließ-
lich definieren wir für n ∈ N die Zufallsvariable Tn als den zufälligen Baum der Knoten
v von T∞, für die Gv ≤ n gilt. Ferner sei Kn die zufällige Menge der Knoten von Tn.

Im Folgenden interessieren wir uns für die gewichtete Höhe

Hn
def
= max{Dv| v ∈ Kn}

des zufälligen Teilbaumes Tn von T∞. Die Zufallsvariable Hn kann also als die gewichtete
Höhe des Baumes T∞ zum Zeitpunkt n interpretiert werden.

In Kapitel 3 geben wir eine vollständige Charakterisierung des asymptotischen Verhal-
tens von Hn an, welche gänzlich unabhängig von den Verteilungen der Zufallsgrößen
Z und E ist. Für den Beweis dieses ersten Hauptresultates bemühen wir die in Kapi-
tel 1 erarbeiteten grundlegenden Eigenschaften der Cramér-Funktion und den Satz von
Cramér.
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3 Asymptotik der gewichteten Höhe
des zweifach gewichteten
Verzweigungsprozesses

3.1 Vorbereitungen

Damit wir unser erstes Hauptresultat beweisen können, müssen wir zunächst noch wei-
tere technische Hilfsmittel bereitstellen. Im Folgenden sei T∞ ein b-adischer zweifach
gewichteter Verzweigungsprozess mit Gewichtsfunktionen Z und E und allen Eigen-
schaften aus Kapitel 2. Um das asymptotische Verhalten der gewichteten Höhe Hn des
Baumes T∞ zum Zeitpunkt n untersuchen zu können, definieren wir zunächst die Menge

CZ,E
def
= {(ρ, α) | Λ∗

Z(α) + Λ∗
E(ρ) = log b, α ≥ E(Z), ρ ≤ E(E)}.

Dabei stehen Λ∗
Z und Λ∗

E für die Cramér-Funktionen der Gewichte Z und E. Wir unter-
suchen zunächst die geometrische Gestalt der Menge CZ,E. Mit Hilfe der Ergebnisse aus
Kapitel 1 lassen sich einige Charakteristika herleiten, welche von der Wahl der Zufalls-
größen Z und E völlig unabhängig sind.

Als erstes halten wir fest, dass aufgrund der Nichtnegativität der Zufallsgröße E (siehe
Kapitel 2) ΛE(λ) < ∞ für jedes λ < 0 und damit Λ∗

E(ρ) = Λ∗
l,E(ρ) für jedes ρ ≤ E(E)

gilt (vgl. Satz 1.13). Außerdem existiert nach Voraussetzung ein λ > 0 mit ΛZ(λ) < ∞,
woraus auch Λ∗

Z(α) = Λ∗
r,Z(α) für jedes α ≥ E(Z) folgt. Es gilt also

CZ,E = {(ρ, α) | Λ∗
r,Z(α) + Λ∗

l,E(ρ) = log b, α ≥ E(Z), ρ ≤ E(E)}.

Aus diesem Grund können wir in den folgenden Ausführungen die Notationen Λ∗
E und

Λ∗
l,E beziehungsweise Λ∗

Z und Λ∗
r,Z gleichermaßen verwenden. Wie sich herausstellen wird,

beschreibt die Menge CZ,E eine strikt konkave Kurve in dem Fall, dass Z nicht fast sicher
konstant ist. Den trivialen Fall, dass Z fast sicher konstant ist, behandelt das folgende
Lemma.
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3 Asymptotik der gewichteten Höhe des zweifach gewichteten Verzweigungsprozesses

Lemma 3.1 Sei Z fast sicher konstant. Dann besteht die Menge CZ,E aus genau einem
Punkt.

Beweis: Sei Z fast sicher konstant. Nach Satz 1.13 gilt Λ∗
Z(E(Z)) = 0 = Λ∗

E(E(E)), und
nach Satz 1.19 ist Λ∗

E stetig auf (essinf(E); esssup(E)). Außerdem gilt

lim
ρ↓essinf(E)

Λ∗
l,E(ρ) = ∞

nach Lemma 1.21. Deshalb existiert ein ρ∗ ≤ E(E) mit Λ∗
l,E(ρ∗) = log b > 0 (denn b ≥ 2)

und damit (ρ∗, E(Z)) ∈ CZ,E. ρ∗ ist dabei eindeutig bestimmt, denn nach den Sätzen
1.13 und 1.18 ist Λ∗

E streng monoton fallend auf dem Intervall (essinf(E); E(E)).
�

Lemma 3.2 Ist Z nicht fast sicher konstant, so ist die Menge CZ,E der Graph einer
stetigen und streng monoton wachsenden Kurve ρ 7→ α(ρ).

Beweis: Sei Z nicht fast sicher konstant. Dann gilt essinf(Z) < E(Z) < esssup(Z).
Nach Lemma 3.1 ist (ρ∗, E(Z)) ∈ CZ,E und lim

ρ↓essinf(E)
Λ∗

E(ρ) = ∞. Wegen der Geome-

trie der Cramér-Funktionen von Z und E auf (essinf(Z); esssup(Z)) beziehungsweise
(essinf(E); esssup(E)) besteht CZ,E aus mehr als nur einem Punkt (siehe Abbildung 1 im
ersten Kapitel). Seien (ρ1, α1), (ρ2, α2) ∈ CZ,E mit ρ1 < ρ2 beliebig. Dann gilt aufgrund
der strengen Monotonie der Cramér-Funktionen Λ∗

E und Λ∗
Z

Λ∗
E(ρ1) > Λ∗

E(ρ2)

und daher
Λ∗

Z(α1) < Λ∗
Z(α2).

Daraus ergibt sich α1 < α2, denn wegen der strengen Monotonie der Cramér-Funktionen
ist für ein ρ1 mit (ρ1, α1) ∈ CZ,E das zugehörige α1 eindeutig bestimmt.
Die Stetigkeit der Kurve CZ,E folgt aus der Stetigkeit der Cramér-Funktionen.

�

Wir sprechen im Folgenden anstatt von der Menge CZ,E auch von der Kurve CZ,E und
kommen nun zu ihrer hinsichtlich unserer späteren Ergebnisse wichtigsten Eigenschaft,
der strikten Konkavität:

Lemma 3.3 (Strikte Konkavität der Kurve CZ,E) Ist Z nicht fast sicher konstant,
so ist die Kurve CZ,E strikt konkav.
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3.1 Vorbereitungen

Beweis: Wie in Lemma 3.1 sei ρ∗ ≥ 0 so gewählt, dass (ρ∗, E(Z)) ∈ CZ,E. Für (ρ, α) ∈
CZ,E beliebig gilt dann ρ ∈ [ρ∗; E(E)] ⊆ (essinf(E); esssup(E)) und nach Satz 1.18 ist
Λ∗

E strikt konvex auf (essinf(E); esssup(E)). Seien nun α1, α2 ≥ E(Z) und ρ1, ρ2 ≤ E(E)

mit (ρ1, α1), (ρ2, α2) ∈ CZ,E und x ∈ (0; 1) beliebig.
Setze α

def
= xα1 + (1− x)α2. Nach Lemma 3.2 gibt es dann genau ein ρ ∈ [ρ∗; E(E)] mit

(ρ, α) ∈ CZ,E.

Für die strikte Konkavität von CZ,E genügt es zu zeigen, dass ρ < xρ1 + (1 − x)ρ2

gilt. Mit Hilfe der strikten Konvexität von Λ∗
E und Λ∗

Z erhalten wir

Λ∗
E(xρ1 + (1− x)ρ2) < xΛ∗

E(ρ1) + (1− x)Λ∗
E(ρ2)

= log b− (xΛ∗
Z(α1) + (1− x)Λ∗

Z(α2)

< log b− Λ∗
Z(xα1 + (1− x)α2)

= Λ∗
E(ρ).

Da Λ∗
E monoton fallend ist, folgt ρ < xρ1 + (1− x)ρ2.

�

In den folgenden Ausführungen sei

c
def
= max

(ρ,α)∈CZ,E

α

ρ
.

Ist Z fast sicher konstant, so ist trivialerweise c = E(Z)
ρ∗

nach Lemma 3.1. Sei daher im
Folgenden Z nicht fast sicher konstant. Falls ein α∗ ≥ E(Z) existiert mit Λ∗

Z(α∗) = log b,
so liegt der Punkt (E(E), α∗) in CZ,E und bildet gleichzeitig den rechten Endpunkt der
Kurve CZ,E. In diesem Fall verläuft CZ,E von (ρ∗, E(Z)) bis (E(E), α∗), wobei beide End-
punkte zu CZ,E gehören. Die Kurve CZ,E ist dann kompakt. Aus der Kompaktheit folgt
wiederum die Existenz eines Punktes (ρ0, α0) ∈ CZ,E mit c = α0

ρ0
. Das Maximum wird

aber auch in dem Fall angenommen, dass kein α ≥ E(Z) existiert mit Λ∗
Z(α) = log b.

Aufgrund der strengen Monotonie und der strikten Konvexität von Λ∗
Z auf dem Inter-

vall (E(Z); esssup(Z)) ist dies allerdings nur möglich, wenn esssup(Z) < ∞ gilt, denn
sonst würde lim

α↑esssup(Z)
Λ∗

Z(α) = lim
α→∞

Λ∗
Z(α) = ∞ gelten. Ist esssup(Z) < ∞, so gilt

lim
α↑esssup(Z)

Λ∗
Z(α) = Λ∗

Z(esssup(Z)) < log b und damit gehört auch in diesem Fall der

rechte Endpunkt (ρ1, esssup(Z)) (mit einem geeigneten ρ1) zu CZ,E. Damit ist die Kurve
wiederum kompakt und das Maximum wird angenommen.

Von großem Interesse ist an dieser Stelle die Frage, ob der Punkt (ρ0, α0) mit der Ei-
genschaft α0

ρ0
= c auch eindeutig bestimmt ist, und ferner, an welcher Stelle er in CZ,E
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3 Asymptotik der gewichteten Höhe des zweifach gewichteten Verzweigungsprozesses

liegt. Die erste Frage ist mit „ ja“ zu beantworten und auch auf die zweite gibt es eine
Antwort, wie das folgende Lemma zeigt:

Lemma 3.4 (Eindeutigkeit von (ρ0, α0) und Gestalt von CZ,E) Die Funktion f :

CZ,E → R≥0, f(ρ, α)
def
= α

ρ
nimmt ihr Maximum in einem eindeutig bestimmten Punkt

(ρ0, α0) an. Existiert ferner ein α∗ > E(Z) mit Λ∗
Z(α∗) = log b, so liegt (ρ0, α0) im

Inneren von CZ,E.

Beweis: Zur Existenz eines Punktes (ρ0, α0) mit c = α0

ρ0
ist nach der Vorbemerkung

nichts mehr zu sagen und die Eindeutigkeit folgt aus der strikten Konkavität von CZ,E.
Gelte Λ∗

Z(α∗) = log b für ein α∗ > E(Z). Dann besitzt CZ,E die beiden Endpunkte
(ρ∗, E(Z)) und (E(E), α∗). Wegen Λ∗

E(E(E)) = 0 gilt ρ∗ < E(E) und daher d
dt

Λ∗
E(t)|t=ρ∗ <

0 wegen der strikten Konvexität von Λ∗
E. Daraus folgt zusammen mit d

dt
Λ∗

Z(t)|t=E(Z) = 0

(vgl. Folgerung 1.20), dass CZ,E im Punkt (ρ∗, E(Z)) die Steigung ∞ besitzt.
Analog zeigt man, dass CZ,E im Punkt (E(E), α∗) die Steigung 0 besitzt. Daraus folgt
die Behauptung mit Hilfe der strikten Konkavität.

�

Ein wichtiges Beispiel für eine Zufallsgröße Z mit Λ∗
Z(α) < log b für alle α ∈ [E(Z); esssup(Z)]

ist eine Bernoulli-verteilte Zufallsgröße. Diese Möglichkeit wird in der Arbeit [BuD] von
den Autoren außer Acht gelassen, obwohl sich einige ihrer Ausführungen genau auf die-
sen Fall beziehen. In Kapitel 6 behandeln wir unter anderem den zufälligen rekursiven
Baum, dessen Gewichtsfunktion Z B(1, 1

2
)-verteilt ist.

Beispiel 3.5 Für eine B(1, 1
2
)-verteilte Zufallsgröße Z existiert kein α ∈ [E(Z); esssup(Z)] =

[1
2
; 1] mit Λ∗

Z(α) ≥ log 3.

Beweis: Sei α ∈ [1
2
; 1]. Dann gilt für jedes λ ≥ 0

λα− ΛZ(λ) = λα− log E(eλZ)

= log eλα − log
1

2
(1 + eλ)

= log
2eλα

1 + eλ

≤ log 2

< log 3.

�
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3.1 Vorbereitungen

In den meisten Fällen tritt jedoch die Situation aus Lemma 3.4 auf. Dann hat CZ,E die
folgende Gestalt:
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��
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?

r

α

ρ
ρ∗

E(Z)
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α∗

ρ0

α0

CZ,E

Abbildung 4: Geometrische Interpretation der Kurve CZ,E zusammen mit der
Konstante c = α0

ρ0
. Beachte, dass E(Z) < α < α∗ und ρ∗ < ρ < E(E). Die

Steigung der Tangente an die Kurve CZ,E ist c.
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3 Asymptotik der gewichteten Höhe des zweifach gewichteten Verzweigungsprozesses

3.2 Das asymptotische Verhalten von Hn

Die Konstante c aus dem vorherigen Abschnitt stellt sich im Folgenden als die einzig
richtige Wahl für den Grenzwert nach Wahrscheinlichkeit der Folge ( 1

n
Hn)n∈N heraus.

Unabhängig von der Wahl der Gewichtsfunktionen Z und E gilt:

Satz 3.6 (Das asymptotische Verhalten der gewichteten Höhe Hn) Sei T∞ ein
b-adischer zweifach gewichteter Verzweigungsprozess mit Gewichtsfunktionen Z und E.
Dann gilt

1

n
Hn −→

n→∞
c

nach Wahrscheinlichkeit. Dabei ist c = α0

ρ0
das Maximum von (ρ, α) 7→ α

ρ
in CZ,E mit

eindeutig bestimmten ρ0 und α0.

Wir spalten den Beweis von Satz 3.6 in zwei Lemmata auf, welche eine obere und eine
untere Schranke für den Wahrscheinlichkeitslimes der Folge ( 1

n
Hn)n∈N bereitstellen.

Lemma 3.7 (Obere Schranke) Mit den Notationen aus Satz 3.6 und ε > 0 beliebig
gilt

lim
n→∞

P(Hn ≥ c(1 + ε)n) = 0.

Beweis: Für n, k ∈ N sei Ln,k die Menge der Knoten v von Tn mit |v| = k. Zur
Erinnerung: In Kapitel 2 haben wir mit Tn den Baum der Knoten v von T∞ mit Gv ≤ n

bezeichnet. Dann gilt für α > E(Z) beliebig

P({∃v ∈ Ln,k : Dv ≥ αk}) = P
( ⋃

v∈Ln,k

{Dv ≥ αk}
)

≤ bkP
( k∑

i=1

Zi ≥ αk,

k∑
i=1

Ei ≤ n

)

= bkP
( k∑

i=1

Zi ≥ αk

)
P
( k∑

i=1

Ei ≤ n

)
,

wobei wir bei der vorletzten Abschätzung benutzt haben, dass P σ-subadditiv und T∞
b-adisch ist, sowie Dv =

∑k
i=1 Zvi

(v|(i − 1)) und Gv =
∑k

i=1 Evi
(v|(i − 1)) gilt. Da-

bei bezeichnen Zi, Ei für i = 1, . . . , k stochastisch unabhängige Kopien von Z und
E. Nach Definition des zweifach gewichteten Verzweigungsprozesses sind die Familien
(Zi(v))v∈K, i∈{1,...,b} und (Ei(v))v∈K, i∈{1,...,b} stochastisch unabhängig. Das berechtigt uns
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3.2 Das asymptotische Verhalten von Hn

zu der Annahme der stochastischen Unabhängigkeit von
∑k

i=1 Zi und
∑k

i=1 Ei. Wir set-
zen ρ

def
= n

k
und schätzen obige beiden Wahrscheinlichkeiten weiter ab. Beachte, dass

Λ∗
r,Z(α) = 0 für α < E(Z) und Λ∗

l,E(ρ) = 0 für ρ > E(E) gilt (vgl. Satz 1.13 (v)). Mittels

P
( k∑

i=1

Ei ≤ n

)
= P

(
λ

k∑
i=1

Ei ≥ λρk

)
, ∀λ < 0,

und des Lemmas 1.22 für die beiden Wahrscheinlichkeiten erhalten wir

bkP
( k∑

i=1

Zi ≥ αk

)
P
( k∑

i=1

Ei ≤ ρk

)
≤ bke−kΛ∗r,Z(α)e−kΛ∗l,E(ρ)

= ek(log b−Λ∗r,Z(α)−Λ∗l,E(ρ))

= e−kγ(α,ρ).

Dabei ist
γ(α, ρ)

def
= Λ∗

r,Z(α) + Λ∗
l,E(ρ)− log b.

Für ε > 0 wählen wir nun α = c(1 + ε)ρ. Dann gilt

γ(α, ρ) = γ(c(1 + ε)ρ, ρ) ≥ β
def
= inf

ρ≥0
γ(c(1 + ε)ρ, ρ) > inf

ρ≥0
γ(cρ, ρ) = 0. (3.1)

Zur Begründung setzen wir f(ρ)
def
= γ(cρ, ρ) und fε(ρ)

def
= γ(c(1+ε)ρ, ρ), sowie g(ρ)

def
= cρ

und gε(ρ)
def
= c(1 + ε)ρ. Nach den Ergebnissen des vorherigen Abschnitts behandeln

wir den häufigeren Fall, dass ein α ≥ E(Z) existiert mit Λ∗
Z(α) = log b, wie folgt:

Wir haben infρ≥0 f(ρ) = f(ρ0) = 0 mit dem ρ0 aus Abschnitt 3.1. Denn innerhalb
von (ρ∗; E(E))× (E(Z); α∗) gilt Λ∗

r,Z(α) + Λ∗
l,E(ρ) = Λ∗

Z(α) + Λ∗
E(ρ) und außerhalb von

(ρ∗; E(E)) × (E(Z); α∗) nimmt Λ∗
r,Z(α) + Λ∗

l,E(ρ) höchstens größere Werte an, da Λ∗
l,E

monoton fallend auf (essinf(E); ρ∗) und Λ∗
r,Z(α) = 0 für α < E(Z) beziehungsweise Λ∗

r,Z

monoton wachsend auf (α∗; esssup(Z)) und Λ∗
l,E(ρ) = 0 für ρ > E(E) gilt.

Sei jetzt I = [a; b] ein kompaktes Intervall mit ρ∗ < a < ρ0 < b < E(E) so klein, dass
E(Z) < cρ < c(1 + ε)ρ < α∗ für alle ρ ∈ I gilt. Für ρ ∈ I gilt also Λ∗

l,E(ρ) = Λ∗
E(ρ),

Λ∗
r,Z(c(1 + ε)ρ) = Λ∗

Z(c(1 + ε)ρ) sowie Λ∗
r,Z(cρ) = Λ∗

Z(cρ). Aufgrund der Stetigkeit der
Cramér-Funktionen von Z und E können wir wiederum ε so klein wählen, dass fε sein
Infimum ebenfalls im Inneren von I annimmt. Das bedeutet, es existiert ein ρ

′ ∈ I mit

inf
ρ≥0

fε(ρ) = inf
ρ∈I

fε(ρ) = fε(ρ
′
) > f(ρ

′
) ≥ inf

ρ∈I
f(ρ) = inf

ρ≥0
f(ρ) = f(ρ0) = 0,

wobei wir benutzt haben, dass Λ∗
Z streng monoton wachsend ist. Zur Veranschaulichung

der Situation betrachten wir das folgende Bild:
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Abbildung 5: Veranschaulichung der Situation mit den Geraden gε(ρ) und g(ρ),
sowie dem Intervall I

Der zweite Fall, dass kein α ≥ E(Z) existiert mit Λ∗
Z(α) = log b, ist etwas komplizier-

ter. Liegt der Punkt (ρ0, α0) im Inneren von CZ,E, so geht der Beweis völlig analog. Ist
aber c = esssup(Z)

ρ1
mit den Notationen aus Abschnitt 3.1, so gilt infρ≥0 f(ρ) = f(ρ1).

Anders als in obigem Fall lässt sich hier nicht einfach ein Intervall I konstruieren mit
ρ∗ < a < ρ0 < b < E(E) und E(Z) < c(1 + ε)ρ < α∗ für alle ρ ∈ I. Wir haben die
folgende Situation:

gε(ρ) g(ρ) γ = ∞

γ < ∞
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Abbildung 6: Veranschaulichung der Situation im zweiten Fall
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3.2 Das asymptotische Verhalten von Hn

In diesem Fall ist es angebracht, die Geraden g und gε als Funktionen von α aufzufassen.
Wir haben g(α) = α

c
und gε(α) = α

c(1+ε)
. Mit diesen Notationen gilt

f(ρ1) = inf
ρ≥0

f(ρ) = lim
α↑esssup(Z)

γ
(
α,

α

c

)
.

Sei nun a < esssup(Z) beliebig nahe an esssup(Z). Aufgrund der Stetigkeit der Cramér-
Funktion können wir wieder ε so klein wählen, dass auch α 7→ γ(α, α

c(1+ε)
) sein Infimum

innerhalb von (a; esssup(Z)] annimmt. Für jedes δ > 0 mit esssup(Z)− δ > a gilt dann

γ

(
esssup(Z)− δ,

esssup(Z)− δ

c(1 + ε)

)
> γ

(
esssup(Z)− δ,

esssup(Z)− δ

c

)
wegen der strengen Monotonie von Λ∗

E. Da aber Λ∗
E auch strikt konvex ist, gilt sogar

lim
α↑esssup(Z)

γ

(
α,

α

c(1 + ε)

)
> lim

α↑esssup(Z)
γ

(
α,

α

c

)
(denn der Abstand wächst für δ ↓ 0), und damit folgt die Behauptung (3.1).

Für jedes K ∈ N erhalten wir nun

P(Hn ≥ c(1 + ε)n) = P(∃k ∈ N ∃v ∈ Ln,k : Dv ≥ c(1 + ε)n)

≤
K−1∑
k=0

P(∃v ∈ Ln,k : Dv ≥ c(1 + ε)n)

+
∞∑

k=K

P(∃v ∈ Ln,k : Dv ≥ c(1 + ε)n).

Für den zweiten Term folgt mittels (3.1)
∞∑

k=K

P(∃v ∈ Ln,k : Dv ≥ c(1 + ε)n) ≤
∞∑

k=K

e−kβ = O(e−Kβ).

Sei L∞,k die Menge der Knoten v von T∞ mit |v| = k. Dann liefert eine grobe Abschät-
zung mit Hilfe der Markov-Ungleichung (vgl. [Als1], Satz 17.4(a) auf Seite 72)

K−1∑
k=0

P(∃v ∈ Ln,k : Dv ≥ c(1 + ε)n) ≤
K−1∑
k=0

P(∃v ∈ L∞,k : Dv ≥ c(1 + ε)n)

≤ KbK sup
0≤k<K,v∈L∞,k

P(Dv ≥ c(1 + ε)n)

≤ KbK sup
0≤k<K,v∈L∞,k

E(Dv)

c(1 + ε)n

≤ KbK K E(Z)

c(1 + ε)n
−→
n→∞

0.
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3 Asymptotik der gewichteten Höhe des zweifach gewichteten Verzweigungsprozesses

Für die letzte Ungleichheit haben wir Dv =
∑n

i=1 Zvi
(v|(i−1)) benutzt. Fasst man diese

beiden Abschätzungen zusammen, so erhält man

P(Hn ≥ c(1 + ε)n) ≤ O(e−Kβ) + o(1).

Da K beliebig groß gewählt werden kann und β > 0 ist, folgt die Behauptung des
Lemmas.

�

Lemma 3.8 (Untere Schranke) Mit den Notationen aus Satz 3.6 und ε > 0 beliebig
gilt

lim
n→∞

P(Hn ≥ c(1− 2ε)n) = 1.

Beweis: Sei ε > 0 beliebig. Im Folgenden heben wir zunächst einen Ast von der Wurzel
∅ bis zu einem Knoten v hervor, für den Dv ≥ c(1− 2ε) log n gilt. Um dies zu erreichen,
konstruieren wir innerhalb von T∞ einen bestimmten Galton-Watson-Prozess mit Aus-
sterbewahrscheinlichkeit q < 1.
Die Konstruktion startet in der Wurzel ∅ von T∞, welche auch die Wurzel unseres Galton-
Watson-Prozesses ist. Sei L∞,K die Menge der Knoten v von T∞ mit |v| = K ∈ N. Einen
Knoten v ∈ L∞,K bezeichnen wir als guten Knoten genau dann, wenn Dv ≥ αK und
Gv ≤ ρK für gewisse α ≥ E(Z) und ρ ≤ E(E) gilt, welche wir später genau festlegen
werden.
Die guten Knoten v ∈ L∞,K seien nun die Kinder von ∅ in unserem Galton-Watson-
Prozess. Diese Kinder reproduzieren sich wiederum unabhängig voneinander gemäß der-
selben Reproduktionsverteilung wie ∅. Das bedeutet, ein Knoten v genau K Genera-
tionen unterhalb eines Knotens u aus unserem Galton-Watson-Prozess ist genau dann
ein Kind von u (also ein guter Knoten), wenn die Bedingungen Dv − Du ≥ αK und
Gv −Gu ≤ ρK gelten.

Nach Kapitel 2, 14.7 in [Als2] überlebt der Galton-Watson-Prozess der guten Knoten mit
positiver Wahrscheinlichkeit, wenn die erwartete Anzahl der Kinder eines Individuums
(also der Erwartungswert der Reproduktionsverteilung) echt größer als 1 ist. Wir schrei-
ben NK für die zufällige Anzahl der guten Knoten in der K-ten Generation von T∞.
Also ist NK die Anzahl der Individuen der ersten Generation unseres Galton-Watson-
Prozesses der guten Knoten. Dann gilt analog zum Beweis von Lemma 3.7 mit Hilfe
des Satzes von Cramér (vgl. Bemerkung 1.24 und beachte, dass hier im Gegensatz zum
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3.2 Das asymptotische Verhalten von Hn

Beweis von Lemma 3.7 α ≥ E(Z) und ρ ≤ E(E) gilt)

E(NK) = E
( ∑

v:|v|=K

1{Dv≥αK, Gv≤ρK}

)

= bKP
( K∑

i=1

Zi ≥ αK,

K∑
i=1

Ei ≤ ρK

)
= e−γ(α,ρ)K+o(K).

Für die zweite Gleichheit haben wir benutzt, dass die Zufallsgrößen (Dv)v:|v|=K bezie-
hungsweise (Gv)v:|v|=K identisch verteilt sind.
Für K hinreichend groß gilt also E(NK) > 1, sofern γ(α, ρ) < 0 gilt. Setze nun α = α0

und ρ = ρ0√
1−ε

und beachte, dass für ε hinreichend klein ρ ≤ E(E) gilt. Aufgrund der
strengen Monotonie von Λ∗

E folgt γ(α, ρ) < 0 und damit E(NK) > 1 für ein hinreichend
großes K. Für diese α, ρ und K sei nun q < 1 die Aussterbewahrscheinlichkeit unseres
Galton-Watson-Prozesses der guten Knoten. Der Prozess überlebt also mit Wahrschein-
lichkeit 1− q.

Im nächsten Schritt vergrößern wir diese Wahrscheinlichkeit, so dass sie beliebig nahe an
1 liegt. Um dies zu erreichen, starten wir den Galton-Watson-Prozess mit btK Individuen
in der tK-ten Generation von T∞ (t ∈ N). Damit vergrößern wir die Chance, dass
wenigstens einer der dort startenden unabhängigen Prozesse der guten Knoten überlebt.
Wir betrachten dafür die Verteilung des Gewichtes

E(v) = (E1(v), E2(v), . . . , Eb(v))

eines Knotens v. Für β > 0 beliebig klein können wir ein a > 0 finden mit

P(E1(v) ≤ a, E2(v) ≤ a, . . . , Eb(v) ≤ a) ≥ 1− β.

Setze nun

A
def
= {Ee ≤ a für alle Kanten e oberhalb der tK-ten Generation von T∞}.

Dann liefert eine sehr grobe Abschätzung

P(Ac) ≤ βbtK+K = βb(t+1)K .

Damit ereignet sich A, kontrolliert durch die Variable β, mit Wahrscheinlichkeit beliebig
nahe an 1. Außerdem gilt Gv ≤ atK für alle Knoten v mit |v| = tK, falls A eintritt.
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3 Asymptotik der gewichteten Höhe des zweifach gewichteten Verzweigungsprozesses

Sei jetzt B das Ereignis, dass einer der btK in der tK-ten Generation von T∞ startenden
Galton-Watson-Prozesse der guten Knoten überlebt. Dann gilt wegen der stochastischen
Unabhängigkeit der Prozesse

P(Bc) = qbtK

.

Wenn A∩B eintritt, dann existiert für jedes k ∈ N ein Knoten v in T∞ mit |v| = tK+kK,
so dass Gv ≤ atK + ρkK und Dv = Dv −Du + Du ≥ αkK + 0 = αkK (Dabei ist u der
Urahne von v in der tK-ten Generation). Setze

k
def
=

[
n(1− ε)

ρ0K

]
([ ] Gaußklammer).

Mit α = α0 und ρ = ρ0√
1−ε

gilt dann für obigen Knoten v

Gv ≤ atK + ρkK ≤ atK + n
√

1− ε < n

und
Dv ≥ αkK ≥

(
n(1− ε)

ρ0K
− 1

)
α0K = c(1− ε)n− α0K ≥ c(1− 2ε)n

für n hinreichend groß. Es folgt

P(Hn ≥ c(1− 2ε)n) ≥ P(A ∩B) ≥ 1− P(Ac)− P(Bc).

Diese untere Schranke können wir mit Hilfe der Konstanten β und t so kontrollieren,
dass sie beliebig nahe an 1 liegt, indem wir zunächst t hinreichend groß und danach β in
Abhängigkeit von t hinreichend klein wählen. Daraus folgt die Behauptung des Lemmas.

�

Mit der oberen Schranke aus Lemma 3.7 und der unteren Schranke aus Lemma 3.8 ist
schließlich auch Satz 3.6 bewiesen.
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4 Verallgemeinerung der Situation
auf den Fall einer beliebigen
Reproduktionsverteilung

4.1 Verallgemeinerung des ersten Hauptresultates

In den bisherigen Abschnitten haben wir als Rohmaterial für unseren zweifach gewichte-
ten Verzweigungsprozess einen b-adischen Baum verwendet. Das ist im Hinblick auf die
Ergebnisse der dieser Arbeit zugrundeliegenden Ausarbeitung [BuD] vollkommen aus-
reichend. Trotzdem kann man sich die interessante Frage stellen, ob die Resultate aus
Kapitel 3 auf den Fall übertragbar sind, in dem man b ∈ N≥2 durch eine beliebige Repro-
duktionsverteilung (pn)n∈N0 mit Erwartungswert µ > 1 ersetzt. Der Fall µ ≤ 1 führt zum
fast sicheren Aussterben der Population, weshalb er im Hinblick auf das asymptotische
Verhalten der gewichteten Höhe uninteressant ist. Sei also B ∼ (pn)n∈N0 eine beliebige
Reproduktionsverteilung mit µ

def
= E(B) > 1.

Wir konstruieren jetzt den verallgemeinerten zweifach gewichteten Verzweigungsprozess
T ∗
∞: Die Notationen K, Kn, E und π(v) aus Kapitel 2 bleiben erhalten. Im Gegensatz zu

den Ausführungen in Kapitel 2 ist der Rohbaum jetzt aber ein Galton-Watson-Prozess
mit Reproduktionsverteilung B. Diesen bezeichnen wir mit T ∗

∞. Dessen zufällige Kanten
e ∈ E versehen wir wiederum mit zwei stochastisch unabhängigen Zufallsgrößen Ze und
Ee mit derselben Verteilung wie Z beziehungsweise E. Dabei besitzen die Gewichtsfunk-
tionen Z und E alle Eigenschaften aus Kapitel 2. Den Knoten v ordnen wir unabhängig
die Gewichte

(Z(v), E(v))
def
= ((Z1(v), E1(v)), (Z2(v), E2(v)), . . . , (ZB(v)(v), EB(v)(v)))

zu, nur dass jetzt B(v) eine zufällige Zahl aus N0 ist. Wie in Kapitel 2 seien die Fa-
milien (Zi(v))v∈K, i≥0 und (Ei(v))v∈K, i≥0 stochastisch unabhängig. Für jedes v ∈ K sei
B(v) eine Kopie der Reproduktionsverteilung B (Zur Erinnerung: K bezeichnet die (hier
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4 Verallgemeinerung der Situation auf den Fall einer beliebigen Reproduktionsverteilung

zufällige) Menge der Knoten von T ∗
∞). Außerdem seien die Zufallsgrößen (B(v))v∈K sto-

chastisch unabhängig, und die Familie (B(v))v∈K sei stochastisch unabhängig von den
Familien (Zi(v))v∈K, i≥0 und (Ei(v))v∈K, i≥0. Die Reproduktion von Individuen vollzieht
sich also unabhängig von den beiden Kantengewichten.
Für einen Knoten v werden die kumulierten Gewichte des Astes π(v) wieder mit Dv und
Gv bezeichnet. Außerdem sei T ∗

n der zufällige Baum der Knoten v von T ∗
∞, für die Gv ≤ n

gilt. Wir können uns also den verallgemeinerten zweifach gewichteten Verzweigungspro-
zess T ∗

∞ als einen gewöhnlichen Galton-Watson-Prozess vorstellen, dessen Kanten wir
zusätzlich mit zwei unabhängigen Gewichten versehen haben.
Wie wir an späterer Stelle sehen werden, sind die Ergebnisse von Kapitel 3 nur ein Spe-
zialfall derer aus diesem Kapitel.

Zunächst müssen wir in Bezug auf die Notationen von Kapitel 3 einige Anpassungen
vornehmen. Im Folgenden sei

C∗Z,E
def
= {(ρ, α) | Λ∗

Z(α) + Λ∗
E(ρ) = log(µ), ρ ≤ E(E), α ≥ E(Z)}

= {(ρ, α) | Λ∗
r,Z(α) + Λ∗

l,E(ρ) = log(µ), ρ ≤ E(E), α ≥ E(Z)}.

Dann besitzt die Kurve C∗Z,E dieselben Eigenschaften wie CZ,E aus Abschnitt 3.1. Da
µ > 1 gilt, übertragen sich sämtliche Beweise der Lemmata 3.1 bis 3.4 auf den verall-
gemeinerten Fall, indem wir einfach b durch µ ersetzen. Deshalb können wir analog zu
Satz 3.6 den folgenden Satz formulieren:

Satz 4.1 (Das asymptotische Verhalten von Hn im verallgemeinerten Fall)
Sei T ∗

∞ ein verallgemeinerter zweifach gewichteter Verzweigungsprozess mit Reprodukti-
onsverteilung B ∼ (pn)n∈N0 und Gewichtsfunktionen Z und E. Es gelte µ = E(B) > 1.
Dann gilt für die gewichtete Höhe Hn = max{Dv| v ∈ Kn} des zufälligen Teilbaumes T ∗

n

von T ∗
∞

1

n
Hn −→

n→∞
c∗

nach Wahrscheinlichkeit, wobei c∗
def
= α0

ρ0
das Maximum von f : C∗Z,E → R≥0, f(α, ρ)

def
= α

ρ

mit dem eindeutig bestimmten Punkt (ρ0, α0) ∈ C∗Z,E ist.

Genau wie bei Satz 3.6 in Kapitel 3 spalten wir den Beweis von Satz 4.1 in zwei Lemmata
auf:
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4.1 Verallgemeinerung des ersten Hauptresultates

Lemma 4.2 (Obere Schranke) Mit den Notationen aus Satz 4.1 und ε > 0 beliebig
gilt

lim
n→∞

P(Hn ≥ c∗(1 + ε)n) = 0.

Beweis: Analog zu Lemma 3.7 betrachten wir für α > E(Z) die Wahrscheinlichkeit,
dass in der k-ten Generation von T ∗

n ein Knoten v existiert mit Dv ≥ αk. Seien also
α > E(Z) und n ∈ N beliebig und bezeichne Mk die zufällige Anzahl der Individuen in
der k-ten Generation von T ∗

n . Dann gilt

P({∃v ∈ T ∗
n , |v| = k : Dv ≥ αk}) = P

( ⋃
v∈T ∗n ,|v|=k

{Dv ≥ αk}
)

= P
(⋃

j≥0

({Mk = j} ∩
⋃

v∈T ∗n ,|v|=k

{Dv ≥ αk})
)

=
∑
j≥0

P
(
{Mk = j} ∩

⋃
v∈T ∗n ,|v|=k

{Dv ≥ αk}
)

=
∑
j≥0

P
(
{Mk = j} ∩

⋃
v1,...,vj ,|vi|=k

{Dvi
≥ αk}

)

≤
∑
j≥0

jP
(

Mk = j,
k∑

i=1

Zi ≥ αk,
k∑

i=1

Ei ≤ n

)

=
∑
j≥0

jP(Mk = j)P
( k∑

i=1

Zi ≥ αk

)
P
( k∑

i=1

Ei ≤ n

)

= µkP
( k∑

i=1

Zi ≥ αk

)
P
( k∑

i=1

Ei ≤ n

)
,

wobei wir die folgenden Tatsachen benutzt haben: Erstens gilt {Mk = j}∩{Mk = i} = ∅
für j 6= i. Zweitens sind die Zufallsgrößen (Dv)v:|v|=k beziehungsweise (Gv)v:|v|=k identisch
verteilt, so dass wir an ihrer Stelle

∑k
i=1 Zi beziehungsweise

∑k
i=1 Ei mit Zi und Ei wie

im Beweis von Lemma 3.7 schreiben können. Drittens sind Mk, (Zi)i=1,...,k und (Ei)i=1,...,k

stochastisch unabhängig, da nach Voraussetzung die Kantengewichte keinerlei Einfluss
auf die Reproduktion nehmen. Viertens beträgt für einen Galton-Watson-Prozess mit
Reproduktionsverteilung B ∼ (pn)n∈N0 und µ = E(B) die erwartete Anzahl der Indi-
viduen der k-ten Generation µk (vgl. dazu [Als2], Abschnitt 14.7 Der Galton-Watson-
Verzweigungsprozess, Seite 116-120).

Der Rest des Beweises funktioniert analog zu dem Beweis von Lemma 3.7 mit dem
Unterschied, dass wir b durch µ ersetzen müssen und in der letzten Abschätzung (mit
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4 Verallgemeinerung der Situation auf den Fall einer beliebigen Reproduktionsverteilung

der Markov-Ungleichung) zunächst analog zu obiger Überlegung
K−1∑
k=0

P({∃v ∈ T ∗
n , |v| = k : Dv ≥ c∗(1 + ε)k}) ≤

K−1∑
k=0

µkP(Dv ≥ c∗(1 + ε)k)

≤ KµK sup
0≤k<K,|v|=k

P(Dv ≥ c∗(1 + ε)k)

erhalten.
�

Lemma 4.3 (Untere Schranke) Mit den Notationen aus Satz 4.1 und ε > 0 beliebig
gilt

lim
n→∞

P(Hn ≥ c∗(1− 2ε)n) = 1.

Beweis: Sei ε > 0 beliebig. Analog zu Lemma 3.8 konstruieren wir den Galton-Watson-
Prozess der guten Knoten. Einen Knoten v der K-ten Generation von T ∗

∞ nennen wir
dabei wieder einen guten Knoten genau dann, wenn Dv ≥ αK und Gv ≤ ρK für ge-
wisse α ≥ E(Z) und ρ ≤ E(E) (welche wir später genau spezifizieren werden) gilt. Wie
im Beweis von Lemma 3.8 nennen wir einen Knoten v K Generationen unterhalb eines
Knotens u aus unserem neu konstruierten Galton-Watson-Prozess einen guten Knoten
genau dann, wenn Dv −Du ≥ αK und Gv −Gu ≤ ρK gilt.

Sei wieder NK die zufällige Anzahl der guten Knoten und MK die zufällige Anzahl aller
Knoten in der K-ten Generation von T ∗

∞ (vgl. Beweis von Lemma 4.2). Dann gilt

E(NK) = E
(∑

j≥0

1{j}(MK)NK

)
=

∑
j≥0

E(1{j}(MK)NK)

=
∑
j≥0

E
( ∑

v1,...,vj ,|vi|=K

1{j}(MK)1[αK;∞)×(−∞;ρK](Dvi
, Gvi

)

)

=
∑
j≥0

j E
(
1{j}(MK)1[αK;∞)×(−∞;ρK]

( K∑
i=1

Zi,
K∑

i=1

Ei

))

=
∑
j≥0

jP(MK = j)P
( k∑

i=1

Zi ≥ αK,
k∑

i=1

Ei ≤ ρK

)

= µKP
( k∑

i=1

Zi ≥ αK

)
P
( k∑

i=1

Ei ≤ ρK

)
= e−γ∗(α,ρ)K+o(K)
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4.1 Verallgemeinerung des ersten Hauptresultates

mit

γ∗(α, ρ)
def
= Λ∗

r,Z(α) + Λ∗
l,E(ρ)− log µ = Λ∗

Z(α) + Λ∗
E(ρ)− log µ

(für α ≥ E(Z) und ρ ≤ E(E)). Neben den in den entsprechenden Erläuterungen in-
nerhalb der Beweise der Lemmata 3.7 und 3.8 erwähnten Voraussetzungen und Sätzen
haben wir zusätzlich noch folgende Tatsachen verwendet:
Die zweite Gleichheit gilt aufgrund des Satzes von der monotonen Konvergenz. Für die
vierte Gleichheit haben wir verwendet, dass die Zufallsgrößen (Dv)v:|v|=K beziehungs-
weise (Gv)v:|v|=K identisch verteilt sind, und bei der fünften und der sechsten Gleichheit
haben wir die stochastische Unabhängigkeit von MK , (Zi)i=1,...,K und (Ei)i=1,...,K ausge-
nutzt. Der Rest folgt analog zu dem Beweis von Lemma 3.8 mit Hilfe des Satzes von
Cramér.
Setze nun α

def
= α0 und ρ

def
= ρ0√

1−ε
. Dann folgt wegen der strengen Monotonie von Λ∗

l,E,
dass γ∗(α, ρ) < 0 gilt. Damit gilt auch E(NK) > 1, sofern K hinreichend groß gewählt
wird. Für diese α, ρ und K gilt q < 1 für die Aussterbewahrscheinlichkeit q des Galton-
Watson-Prozesses der guten Knoten.

Im nächsten Schritt vergrößern wir die Überlebenswahrscheinlichkeit 1 − q, indem wir
den Prozess analog zum Beweis von Lemma 3.8 in der tK-ten Generation von T ∗

∞ (t ∈ N)
starten. Für einen Knoten v mit |v| = tK und β > 0 beliebig klein wählen wir ein a > 0,
so dass P(Gv ≤ atK) ≥ 1 − β gilt. Da die Zufallsgrößen (Gv)v:|v|=tK identisch verteilt
sind, gilt diese Abschätzung für jeden Knoten der tK-ten Generation. Definiere

A
def
= {Gv ≤ atK ∀v ∈ Kn mit |v| = tK}.

Dann gilt analog zum Beweis von Lemma 4.2

P(Ac) = P({∃v ∈ Kn, |v| = tK mit Gv > atK})

≤ P
( ⋃

v∈K:|v|=tK

{Gv > atK}
)

=
∑
n≥0

nP(MtK = n)P(Gv > atK)

= µtKP(Gv > atK)

≤ µtKβ.

Sei ferner B das Ereignis, dass einer der in der tK-ten Generation von T ∗
∞ startenden
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4 Verallgemeinerung der Situation auf den Fall einer beliebigen Reproduktionsverteilung

Galton-Watson-Prozesse der guten Knoten überlebt. Dann gilt

P(Bc) = P({Alle in der tK-ten Generation startenden Prozesse sterben aus})

= P
(⋃

n≥0

{MtK = n} ∩
n⋂

i=1

{Prozess Pi stirbt aus}
)

=
∑
n≥0

P(MtK = n)qn,

wobei wir wie im Beweis von Lemma 3.8 die stochastische Unabhängigkeit der in der tK-
ten Generation von T ∗

∞ startenden Prozesse der guten Knoten P1,P2, . . ., sowie die Unab-
hängigkeit der Zufallsgrößen (B(v))v∈K und die Unabhängigkeit der Familien (B(v))v∈K,
(Zi(v))v∈K, i≥0 und (Ei(v))v∈K, i≥0 ausgenutzt haben. Für t hinreichend groß gilt dann

∞∑
n=0

P(MtK = n)qn < ε.

Begründung: Sei n0 ∈ N so gewählt, dass
∑

n≥n0
qn < ε

2
(Die Reihe konvergiert, da

0 ≤ q < 1), und t so groß, dass
∑n0−1

n=1 P(MtK = n)qn < ε
2

(möglich, da µ = E(B) > 1

und MtK ≈
∏tK

i=1 Bi mit (Bi)i=1,...,tK stochastisch unabhängige Kopien von B). Mit
diesem t folgt

∞∑
n=0

P(MtK = n)qn =

n0−1∑
n=1

P(MtK = n)qn +
∞∑

n=n0

P(MtK = n)qn

<
ε

2
+

∞∑
n=n0

qn

<
ε

2
+

ε

2
= ε.

Wie im Beweis von Lemma 3.8 folgt

P(Hn ≥ c∗(1− 2ε)n) ≥ P(A ∩B) ≥ 1− P(Ac)− P(Bc),

und diese untere Schranke kann durch Anpassung der Konstanten β und t so kontrolliert
werden, dass sie beliebig nahe an 1 liegt. Daraus folgt die Behauptung des Lemmas.

�

Die Lemmata 4.2 und 4.3 liefern zusammen die Aussage von Satz 4.1.
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5 Die gewichtete Höhe sukzessiv
errichteter Bäume

5.1 Vorbereitungen

In diesem Kapitel werden wir ein Resultat für die gewichtete Höhe eines sukzessiv (Indi-
viduum für Individuum) errichteten Baumes beweisen. In Kapitel 3 haben wir die Höhe
Hn des zufälligen Teilbaumes Tn eines b-adischen zweifach gewichteten Verzweigungspro-
zesses betrachtet. Diese ergab sich als das Maximum der kumulierten Gewichte Dv der
Äste π(v) seiner Knoten v. Wird ein Baum nach einem bestimmten Schema sukzessiv
aufgebaut, so kann man mit gleichem Interesse nach dem asymptotischen Verhalten des
maximalen kumulierten Astgewichtes nach n Sukzessionsschritten (nach dem Anhängen
des n-ten Knotens) fragen. Das größte Problem dabei ist die Anzahl der Knoten. Um
unsere Ergebnisse aus den früheren Kapiteln anwenden zu können, müssen wir uns zu-
nächst mit der zufälligen Anzahl N der Knoten von Tm beschäftigen. Diese Anzahl ist
abhängig von den Ergebnissen der Zufallsgrößen (Gv)v∈K. Die Vorgehensweise sieht im
Folgenden so aus:
Wir konzentrieren uns für ein zuvor festgelegtes n ∈ N zunächst darauf, m ∈ N so zu
wählen, dass die Anzahl N der Knoten von Tm ungefähr n beträgt. Danach werden wir
das zweite Hauptresultat über oben genanntes asymptotisches Verhalten beweisen. Die-
ses führt in vielen Anwendungen zu interessanten Ergebnissen. Ein Beispiel für einen
sukzessiv errichteten Baum ist der so genannte zufällige rekursive Baum: Die Rekursion
startet mit einem einzigen Individuum, der Wurzel ∅. Im ersten Schritt bekommt diese
dann den ersten Nachkommen. Ab dem zweiten Schritt regiert der Zufall, denn nun be-
kommt entweder die Wurzel mit Wahrscheinlichkeit 1

2
ein weiteres Kind, oder das neue

Individuum aus dem ersten Schritt bekommt ebenfalls mit Wahrscheinlichkeit 1
2

sein
erstes Kind. Dieser Vorgang wird iterativ fortgesetzt. Im k-ten Schritt wird mit Hilfe
einer Laplace-Verteilung auf den bereits vorhandenen k Individuen der Population ent-
schieden, welches von ihnen das nächste Kind (das (k + 1)-te Mitglied der Population)
bekommt.
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5 Die gewichtete Höhe sukzessiv errichteter Bäume

In den folgenden Ausführungen benötigen wir einen bestimmten Typ des Crump-Mode-
Jagers-Prozess (vgl. Ausführungen in [CuM]), nämlich den so genannten Bellman-Harris-
Prozess (vgl. Ausführungen in [AuN]).
Sei X eine N0-wertige Zufallsgröße mit µ = E(X). Wir stellen uns einen Verzweigungs-
prozess vor, der mit einem einzigen Individuum ∅ startet. Dieses Individuum stirbt zu
einem zufälligen Zeitpunkt M1 und gebärt im gleichen Moment X + 1 voneinander un-
abhängige Individuen, die sich daraufhin genauso verhalten wie ∅. Wir nennen diese
Ereignisse, wenn ein Individuum der Population stirbt und gleichzeitig Nachkommen
hervorbringt, Ersetzungen. Als Verteilung für die Lebensdauern der Individuen unseres
Prozesses wählen wir eine Exponentialverteilung, welche im Hinblick auf die weiter un-
ten geschilderten Betrachtungen die einzig vernünftige Wahl darstellt, da sie den Prozess
aufgrund der Gedächtnislosigkeit der Exponentialverteilung (vgl. [Als1], Kapitel 5, Satz
31.6 und Abschnitt 32 „Lebensdauerverteilungen“ auf Seite 146-148) markovsch macht.
Wir stellen uns also vor, dass die Lebensdauer eines jeden Individuums der Populati-
on Exp(1)-verteilt ist, also M1 ∼ Exp(1) gilt. Sei Mk der zufällige Zeitpunkt der k-ten
Ersetzung und sei Nk die Größe der Population unmittelbar vor Mk. Wegen der Ge-
dächtnislosigkeit der Exponentialverteilung können wir uns vorstellen, zum Zeitpunkt
Mk einen neuen Prozess mit Nk+1 = Nk + Xk zum Zeitpunkt Mk geborenen Individu-
en zu starten, wobei die (Xk)k≥1 stochastisch unabhängige Kopien von X darstellen.
Das bedeutet, dass die bereits verstrichene Lebenszeit der vor Mk geborenen und zum
Zeitpunkt Mk noch lebenden Individuen ignoriert werden darf. Aus Symmetriegründen
besitzt dann jedes der Nk+1 Individuen dieselbe Wahrscheinlichkeit, als nächstes zu ster-
ben.
Sei nun (Ei)i≥1 eine Familie von stochastisch unabhängigen, Exp(1)-verteilten Zufalls-
größen. Ein einfache Rechnung mit den jeweiligen Verteilungsfunktionen liefert

min{E1, E2, . . . , Em} ∼
E1

m
. (5.1)

Wir setzen X0
def
= 1 und erhalten:

Lemma 5.1 Für Ei, Xj und Mk (j ≥ 0; i, k ≥ 1) wie oben gilt

Mk ∼
k∑

i=1

Ei∑i−1
j=0 Xj

.

Beweis: Die Aussage folgt aus der Gedächtnislosigkeit der Exponentialverteilung. Für
k = 1 gilt M1 ∼ E1 nach Modellannahme. Für k = 2 erhalten wir

M2 ∼ E1 +
E2

1 + X1
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5.1 Vorbereitungen

nach (5.1), denn E2

1+X1
entspricht in Verteilung der minimalen Lebensdauer eines der

1 + X1 Individuen der Population unmittelbar nach M1. Sukzessiv erhält man so die
Behauptung für beliebiges k, denn nach (5.1) entspricht

Ek

1 + X1 + · · ·+ Xk−1

∼ min{E1, . . . , E∑k−1
i=0 Xi

}

in Verteilung der minimalen Lebensdauer eines der 1 + X1 + · · ·+ Xk−1 Individuen der
Population unmittelbar nach Mk−1.

�

Um die konkrete Anzahl der entstandenen Knoten abzuschätzen, nachdem wir den Pro-
zess zum Zeitpunkt mn gestoppt haben, benötigen wir eine Aussage über das asympto-
tische Verhalten der Ersetzungszeitpunkte Mk für k → ∞. Dafür wiederum brauchen
wir die folgenden Lemmata.

Lemma 5.2 (Lemma von Kronecker) Für n ∈ N seien an und cn reelle Zahlen mit
0 < a1 < a2 < · · · und limn→∞ an = ∞. Außerdem sei

∑∞
n=1

cn

an
konvergent. Dann gilt

lim
n→∞

1

an

n∑
i=1

ci = 0.

(vgl. Lemma 35.9 auf Seite 177 in [Als1] und Beweis in [Sch])

Beweis: 1. Schritt: Sei (bn)n∈N eine Folge in R mit bn −→
n→∞

b ∈ R. Dann gilt

lim
n→∞

n−1∑
i=1

ai+1 − ai

an

bi = b.

Begründung: Es gilt

n−1∑
i=1

ai+1 − ai

an

bi − b =
n−1∑
i=1

ai+1 − ai

an

(bi − b)− a1

an

b

und ferner
n−1∑
i=1

ai+1 − ai

an

=
an − a1

an

−→
n→∞

1.

Sei nun ε > 0 beliebig und n0 ∈ N so gewählt, dass |bn − b| < ε für alle n ≥ n0. Dann
gilt ∣∣∣∣∣

n−1∑
i=1

ai+1 − ai

an

bi − b

∣∣∣∣∣ ≤
n0−1∑
i=1

ai+1 − ai

an

|bi − b|+ ε
an − an0

an

+
a1

an

|b| < 2ε
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5 Die gewichtete Höhe sukzessiv errichteter Bäume

für n hinreichend groß, da limn→∞ an = ∞ nach Voraussetzung.

2. Schritt: Für an, cn wie oben setzen wir nun b0
def
= 0 und bn

def
=

∑n
i=1

ci

ai
. Daraus folgt

ci = ai(bi − bi−1) und ferner, aufgrund der Konvergenz der Reihe
∑∞

i=1
ci

ai
,

1

an

n∑
i=1

ci = bn −
n−1∑
i=1

ai+1 − ai

an

bi −→
n→∞

∞∑
i=1

ci

ai

−
∞∑
i=1

ci

ai

= 0

nach dem ersten Schritt.
�

Lemma 5.3 (Verallgemeinertes starkes Gesetz der großen Zahlen) Sei (Ei)i≥1

eine Familie von stochastisch unabhängigen und identisch verteilten Zufallsgrößen mit
P(E1 ≥ 0) = 1, µ

def
= E(E1) < ∞ und σ2 def

= V ar(E1) ∈ (0;∞). Dann gilt

1

log k

k∑
i=1

Ei

i
−→
k→∞

µ

fast sicher. (Weiterführende Betrachtungen findet man zum Beispiel in [CuT].)

Beweis: Für n ≥ 2 setze

Wn
def
=

n∑
i=2

Ei − µ

i log i
.

Dann ist (Wn)n≥2 ein L2-Martingal bezüglich der Filtration Fn
def
= σ{Ei| i = 1, . . . , n}

(n ≥ 1), denn für n ≥ 3 gilt

E(Wn|Fn−1) = E
(

Wn−1 +
En − µ

n log n

∣∣∣∣Fn−1

)
= Wn−1 + E

(
En − µ

n log n

)
= Wn−1

fast sicher aufgrund der Fn−1-Messbarkeit von Wn−1 und der stochastischen Unabhän-
gigkeit von En und σ{E1, . . . , En−1}. Die quadratische Integrierbarkeit der Wn (n ≥ 2)
folgt aus der quadratischen Integrierbarkeit und der stochastischen Unabhängigkeit der
Ei (i ≥ 1).
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5.1 Vorbereitungen

Mit Hilfe von Lemma 23.1 in [Als2] erhalten wir daher für n ≥ 3

E(W 2
n) = E(W 2

2 ) +
n∑

i=3

E((Wi −Wi−1)
2)

= E
((

E2 − µ

2 log 2

)2)
+

n∑
i=3

E
((

Ei − µ

i log i

)2)
=

σ2

(2 log 2)2
+

n∑
i=3

σ2

(i log i)2

= σ2

n∑
i=2

1

i2(log i)2
.

Unter Beachtung von
∑∞

n=2
1

i2(log i)2
< ∞ folgt aus dieser Abschätzung supn≥2 E(W 2

n) <

∞. Insbesondere ist (Wn)n≥2 gleichgradig integrierbar (vgl. [Als1], Definition 50.1 und
Satz 50.2(e) auf Seite 276).
Wegen der gleichgradigen Integrierbarkeit von (Wn)n≥2 folgt mit Hilfe von Satz 22.2 in
[Als2]

Wn −→
n→∞

W∞

fast sicher für eine F∞
def
= σ{Ei| i ≥ 1}-messbare Zufallsgröße W∞. Dann folgt mittels

Lemma 5.2
1

log n

n∑
i=1

Ei − µ

i
−→
n→∞

0

fast sicher, und daraus wiederum

1

log n

n∑
i=1

Ei

i
−→
n→∞

µ = lim
k→∞

1

log k

k∑
i=1

µ

i

fast sicher. Dabei haben wir für die letzte Gleichheit γ = limk→∞
(∑k

i=1
1
i
− log k

)
(Eu-

lersche Konstante) verwendet.
�

Kommen wir nun zu dem oben angesprochenen Satz über das asymptotische Verhalten
der Ersetzungszeitpunkte:

Satz 5.4 (Asymptotisches Verhalten der Ersetzungszeitpunkte) Mit µ = E(X)

gilt für die Ersetzungszeitpunkte (Mk)k≥1

Mk

log k
−→
k→∞

1

µ

fast sicher.
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5 Die gewichtete Höhe sukzessiv errichteter Bäume

Beweis: Nach dem starken Gesetz der großen Zahlen gilt

1

i

i−1∑
j=0

Xj =
1

i︸︷︷︸
→0

+
X1 + · · ·+ Xi−1

i− 1︸ ︷︷ ︸
→µ f.s.

i− 1

i︸ ︷︷ ︸
→1

−→
i→∞

µ = E(X)

fast sicher. Die Behauptung des Satzes folgt mit Hilfe des Lemmas 5.3.
Nach Lemma 5.1 gilt

Mk

log k
∼ 1

log k

k∑
i=1

Ei∑i−1
j=0 Xj

=
1

log k

k∑
i=1

Ei

i1
i

∑i−1
j=0 Xj

.

Seien ε > 0 beliebig und ω ∈ Ω beliebig mit

1

i

i−1∑
j=0

Xj(ω) −→
i→∞

µ und
1

log k

k∑
i=1

Ei(ω)

i
−→
k→∞

1.

Die zweite Bedingung gilt dabei nach Lemma 5.2 fast sicher, denn E(Ei) = 1 für alle
i ≥ 1. Zu ε wähle nun l ∈ N so groß, dass 1

i

∑i−1
j=0 Xj(ω) ∈ (µ − ε; µ + ε) für alle i > l

gilt. Für k > l erhalten wir

1

log k

k∑
i=1

Ei(ω)∑i−1
j=0 Xj(ω)

=
1

log k

l∑
i=1

Ei(ω)∑i−1
j=0 Xj(ω)

+
1

log k

k∑
i=l+1

Ei(ω)∑i−1
j=0 Xj(ω)

∈
(

1

µ + ε

1

log k

k∑
i=l+1

Ei(ω)

i
− ε;

1

µ− ε

1

log k

k∑
i=l+1

Ei(ω)

i
+ ε

)
⊆

(
1− ε

µ + ε
− ε;

1 + ε

µ− ε
+ ε

)
für k hinreichend groß. Dabei haben wir in der zweiten Zeile benutzt, dass 1

log k

∑l
i=1

Ei(ω)∑i−1
j=0 Xj(ω)

für k hinreichend groß in (−ε; ε) liegt. Obige Abschätzung gilt für fast alle ω ∈ Ω. Daraus
folgt

Mk

log k
−→
k→∞

1

µ

fast sicher.
�
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5.2 Das asymptotische Verhalten des maximalen kumulierten Astgewichtes nach n Sukzessionsschritten

5.2 Das asymptotische Verhalten des maximalen
kumulierten Astgewichtes nach n

Sukzessionsschritten

Nach den Vorbereitungen im vorherigen Abschnitt sind wir nun in der Lage, die Anzahl
der Knoten des Baumes genauer zu studieren. Wir setzen

mn
def
=

1

µ
log n

und schreiben N(t) für die zufällige Anzahl der Knoten des Baumes zum Zeitpunkt t > 0.
Es wird sich herausstellen, dass N(mn) nahe genug bei n liegt, um Gebrauch von den
Ergebnissen des dritten Kapitels machen zu können. Das asymptotische Verhalten der
Anzahl der Knoten untersucht der folgende Satz:

Satz 5.5 (Asymptotisches Verhalten der Anzahl der Knoten) Für die Folge
(N(mn))n≥1 der Anzahlen der Knoten bis zu den Zeitpunkten (mn)n≥1 gilt

log N(mn)

log n
−→
n→∞

1

fast sicher.

Beweis: Zunächst liefert das starke Gesetz der großen Zahlen

1 + X1 + · · ·+ Xk−1

k
=

Nk

k
−→
k→∞

µ

fast sicher (siehe Beweis von Satz 5.4). Daraus folgt

log Nk

log k
−→
k→∞

1

fast sicher, denn aus Nk

k
−→
k→∞

µ fast sicher folgt sogar

log Nk − log k = log
(Nk

k

)
−→
k→∞

log µ

fast sicher aufgrund der Stetigkeit des Logarithmus. Mit Hilfe von Satz 5.4 erhalten wir
ferner

log Nk

µMk

−→
k→∞

1
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5 Die gewichtete Höhe sukzessiv errichteter Bäume

fast sicher, und daher
log N(t)

µt
−→
t→∞

1

fast sicher. Mit t = mn folgt die Behauptung.
�

Der nun folgende Satz ist von großem Interesse in vielen Anwendungen (siehe Kapitel
6) und stellt das zweite Hauptresultat dieser Arbeit dar. Die Beweisidee stützt sich auf
die Ergebnisse aus Kapitel 4, insbesondere auf den Satz 4.1.

Einen sukzessiv aufgebauten Baum mit n Knoten generiert durch sukzessives Anhängen
von 1 + X Kindern an einen Knoten, der zufällig unter den bereits bestehenden Knoten
ausgewählt wird, bezeichnen wir im Folgenden mit T ′

n . Die Lebensdauern seiner Indivi-
duen interpretieren wir im Folgenden als Exp(1)-verteilte Astgewichte.
Um das Resultat im Hinblick auf die Anwendungen in Kapitel 6 so allgemein wie möglich
zu halten, versehen wir die Kanten e des sukzessiv aufgebauten Baumes mit zusätzlichen
Gewichten Ze, welche die gleichen Eigenschaften wie die Gewichte Ze aus Kapitel 2 be-
sitzen. Wie beim Modell für den zweifach gewichteten Verzweigungsprozess bezeichne für
einen Knoten v des sukzessiv aufgebauten Baumes Dv =

∑
e∈π(v) Ze =

∑|v|
i=1 Zvi

(v|(i−1))

die kumulierten Astgewichte des Astes von der Wurzel bis zum Knoten v.

Im Beweis von Satz 5.6 wird nun ausgenutzt, dass der so konstruierte (unendlich fort-
gesetzte) sukzessiv aufgebaute Baum T ′

∞ einem verallgemeinerten zweifach gewichte-
ten Verzweigungsprozess T ∗

∞ mit der Reproduktionsverteilung (pk)k∈N0 mit p0 = 0 und
pk

def
= P(X = k − 1) für k ∈ N und den Gewichtsfunktionen Z und E ∼ Exp(1) ent-

spricht. Mit µ = E(X) gilt dann insbesondere E((pk)k∈N0) = 1 + µ.

Sei im Folgenden

H∗
n

def
= max{Dv| v Knoten von T ′

n}

die zufällige Höhe eines sukzessiv aufgebauten Baumes mit n Knoten (bezüglich der
Kantengewichte Ze, e Kante von T ′

n).

Satz 5.6 (Asymptotisches Verhalten der gewichteten Höhe H∗
n) Sei T ′

n wie oben
ein sukzessiv aufgebauter Baum mit n Knoten und H∗

n seine zufällige Höhe bezüglich des
Kantengewichtes Z. Ferner sei c∗ die Konstante aus Satz 4.1 bezüglich eines verallgemei-
nerten zweifach gewichteten Verzweigungsprozesses T ∗

∞ mit der Reproduktionsverteilung
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5.2 Das asymptotische Verhalten des maximalen kumulierten Astgewichtes nach n Sukzessionsschritten

(pk)k∈N0 mit p0 = 0 und pk = P(X = k − 1) für k ∈ N und den Gewichtsfunktionen Z

und E ∼ Exp(1). Dann gilt
H∗

n

log n
−→
n→∞

c∗

µ

nach Wahrscheinlichkeit.

Beweis: Nach Satz 5.5 gilt log N(mn)
log n

−→
n→∞

1 fast sicher. Mit Wahrscheinlichkeit beliebig
nahe an 1 (für n hinreichend groß) folgt daraus

n1−ε ≤ N(mn) ≤ n1+ε,

und daraus weiter mit Wahrscheinlichkeit beliebig nahe an 1 (für n hinreichend groß)

µ(1− ε)
H∗

[n1−ε]

(1− ε) log n
=

H∗
[n1−ε]

mn

≤
H∗

N(mn)

mn

≤
H∗

[n1+ε]

mn

= µ(1 + ε)
H∗

[n1+ε]

(1 + ε) log n
. (5.2)

Die gewichtete Höhe H∗
N(mn) des sukzessiv errichteten Baumes mit N(mn) Knoten ent-

spricht nach Definition von N(mn) der gewichteten Höhe des sukzessiv errichteten Bau-
mes zum Zeitpunkt mn. Da die Lebensdauern der Individuen von T ′

∞ aber durch Exp(1)-
verteilte Kantengewichte repräsentiert werden, gilt

H∗
N(mn) = Hmn

mit Hmn der gewichteten Höhe des Teilbaumes T ∗
mn

eines verallgemeinerten zweifach
gewichteten Verzweigungsprozesses T ∗

∞ mit der Reproduktionsverteilung (pk)k∈N0 und
den Gewichtsfunktionen Z und E ∼ Exp(1). Nach Satz 4.1 gilt

H log n
µ

log n
µ =

Hmn

mn

−→
n→∞

c∗

nach Wahrscheinlichkeit. Zusammen mit der Abschätzung (5.2) folgt daraus die Behaup-
tung des Satzes.

�

Bemerkung 5.7 Da die Exponentialverteilung die einzige gedächtnislose Verteilung ist,
führt die Wahl einer anderen Verteilung für die Gewichtsfunktion E zu ungleichen Wahr-
scheinlichkeiten unter den einzelnen Individuen der Population in Bezug auf ihre verblei-
bende Lebensdauer. Für diesen allgemeineren Fall ist noch kein vergleichbares Resultat
bekannt.
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6 Anwendungen

In diesem Kapitel tragen wir einige Beispiele bestimmter Verzweigungsprozesse zusam-
men. Eine Anwendung der in den ersten fünf Kapiteln gewonnenen Ergebnisse führt
dabei zu tieferen Einblicken in die Natur dieser Prozesse. Die Cramér-Funktionen Λ∗

Z

und Λ∗
E sind in der Regel schwer in eine geschlossene Form zu bringen. Dadurch erweist

es sich oft als problematisch, den optimalen Punkt (ρ0, α0) ∈ CZ,E für unsere Konstante
c aus den Sätzen 3.6 und 5.6 zu bestimmen.

6.1 Der zufällige binäre Suchbaum

Der zufällige binäre Suchbaum (Abkürzung RBST für random binary search tree) ist
ein Modell, welches den Vorgang beschreibt, n numerische Elemente der Größe nach zu
sortieren. Es handelt sich um eine Version des Quicksort-Algorithmus (vgl. Kapitel 4,
Abschnitt 3 Beispiele in [Als3]). Dabei wird eine zufällige Permutation Y1, . . . , Yn der
Zahlen {1, 2, . . . , n} Element für Element als Knoten in einen anfänglich noch leeren
binären (2-adischen) Baum eingefügt. Wir definieren zunächst den relativen Rang Ri

des Elementes Yi als den Rang von Yi innerhalb der Menge {Y1, . . . , Yi}. Es gilt also

Ri
def
= |{1 ≤ j ≤ i : Yj ≤ Yi}|.

Im ersten Schritt der Konstruktion setzen wir Y1 als Wurzel in unseren noch leeren bi-
nären Baum ein und schicken alle Yi mit Yi < Y1 der Reihe nach in den linken und die
anderen Yi mit Yi > Y1 der Reihe nach in den rechten Teilbaum. Im zweiten Schritt
wenden wir dasselbe Verfahren auf die Mengen der Elemente im linken und im rechten
Teilbaum an. Diesen Prozess setzen wir sukzessiv fort, bis sich nur noch einelement-
rige Teilmengen der ursprünglichen Menge {Y1, . . . , Yn} in den jeweiligen Teilbäumen
befinden. Diese Elemente stellen zugleich die Knoten an jenen Stellen dar. Zur Veran-
schaulichung dient das folgende Bild:
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Abbildung 7: Zufälliger binärer Suchbaum der Permutation
4, 3, 8, 9, 1, 7, 10, 2, 5, 6 für n = 10

Nach i − 1 Sukzessionsschritten bezeichnen wir ferner einen bis dahin leer gebliebenen
Knoten als externen Knoten, sofern er Kind eines bereits besetzten Knotens ist, er also
im i-ten Sukzessionsschritt als Zielort für das Element Yi in Frage kommt. Außerdem
bezeichnen wir nach i− 1 Sukzessionsschritten einen Knoten als internen Knoten, wenn
er bis zu diesem Zeitpunkt bereits besetzt worden ist.
Uns interessiert im Folgenden das asymptotische Verhalten der gewichteten Höhe H∗

n

eines RBST mit n Knoten für n →∞. Eine Anwendung von Satz 5.6 liefert:

Satz 6.1 (Gewichtete Höhe des zufälligen binären Suchbaumes) Für die gewich-
tete Höhe H∗

n eines zufälligen binären Suchbaumes mit n Knoten gilt

H∗
n

log n
−→
n→∞

c

nach Wahrscheinlichkeit, wobei c die eindeutig bestimmte Lösung größer als 1 von
2e
c

= e
1
c ist.

Beweis: Bezeichne T ′
∞ einen unendlich fortgesetzten RBST. L. Devroye zeigt in seinen

Arbeiten [Dev1], [Dev2] und [Dev5], dass ein binärer zweifach gewichteter Verzweigungs-
prozess mit Gewichtsfunktionen E ∼ Exp(1) und Z ≡ 1 ein geeignetes Modell für T ′

∞
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6.1 Der zufällige binäre Suchbaum

darstellt:
Für die in Kapitel 5 verwendeten Notationen erhalten wir speziell für den unendlich fort-
gesetzten RBST 1 + X = 2 und Z = 1 mit Wahrscheinlichkeit 1, denn es handelt sich
um einen binären Baum und jede Kante des Baumes steht für genau einen Sukzessions-
schritt. Damit gilt für die gewichtete Höhe Dv eines Knotens v, dass Dv = |v| fast sicher.
Für die Rechtfertigung der Exp(1)-Verteilung für das andere Astgewicht im unendlich
fortgesetzten RBST T ′

∞ verweisen wir auf die oben genannten Literaturquellen.
Der umfangreiche Beweis stützt sich zum einen auf die Eigenschaften der relativen Ränge
(Ri)i=1,...,n einer zufälligen Permutation Y1, . . . , Yn der Zahlen {1, 2, . . . , n}: Nach Lemma
25.24 in [Als2] gilt, dass die Zufallsgrößen R1, . . . , Rn stochastisch unabhängig und für
i ∈ {1, . . . , n} der relative Rang Ri Laplace-verteilt ist auf der Menge {1, . . . , i} (siehe
auch [Mah], [Knu], [Dev3] und [Gli]). Daher besitzen in jedem Sukzessionsschritt alle
externen Knoten die gleiche Wahrscheinlichkeit, ausgewählt und durch ein Yi ersetzt zu
werden. Stellt man sich nun vor, dass sich die Individuen des unendlich fortgesetzten
RBST T ′

∞ nach Ablauf ihrer Lebensdauer (welche durch das Kantengewicht E reprä-
sentiert werden soll) jeweils in zwei neue Individuen aufteilen (eine unendliche Liste von
verschiedenen ganzen Zahlen wird auf zwei unendliche Teillisten aufgeteilt), so besitzen
also die Restlebensdauern der Individuen im unendlich fortgesetzten RBST unmittelbar
nach einem Sukzessionsschritt alle dieselbe Verteilung. Damit müssen die Verteilungen
der Lebensdauern der Individuen identisch und gedächtnislos sein.
Zum anderen werden für einen Knoten v eines RBST T ′

n mit n Knoten die Größen (das
heißt die Anzahl der Knoten) des linken und des rechten Teilbaumes mit Wurzel (v, 1)

beziehungsweise (v, 2) betrachtet. Tiefgründige Überlegungen führen schließlich dazu,
dass im unendlich fortgesetzten RBST T ′

∞ jedem Kantenpaar e und f , das einen Knoten
v mit seinen beiden Kindern (v, 1) und (v, 2) verbindet, Gewichte Uv ∼ R(0, 1) und
1 − Uv zugeordnet werden, wobei (Uv)v∈K (mit K der Menge der Knoten von T ′

∞) eine
Familie von stochastisch unabhängigen Zufallsgrößen ist. Für einen Knoten v von T ′

∞

ergibt sich die Höhe bezüglich dieser Gewichte (die relative Größe des Teilbaumes mit
Wurzel in v relativ zur Größe des gesamten Baumes) als ein Produkt von stochastisch
unabhängigen R(0, 1)-verteilten Zufallsgrößen. Eine Anwendung des Logarithmus liefert
einen Übergang von diesem multiplikativen Modell zu einem additiven Modell. Schließ-
lich führt eine Grenzwertbetrachtung und eine Identifikation der gewichteten Höhe eines
Knotens v bezüglich des Kantengewichtes E mit der relativen Größe des Teilbaumes mit
Wurzel v unter Beachtung von − log U ∼ Exp(1) für U ∼ R(0, 1) zu der gewünschten
Exp(1)-Verteilung des Kantengewichtes E (Einen detaillierten Beweis dazu findet man
in [Dev1], [Dev2] und [Dev5]).
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6 Anwendungen

Da uns im Kontext dieses Satzes nur das asymptotische Verhalten der gewichteten Höhe
eines RBST mit n Knoten für n →∞ interessiert, genügt es nach obigen Überlegungen,
das Ergebnis von Satz 5.6 auf den Fall E ∼ Exp(1), 1 + X = 2 und Z = 1 mit
Wahrscheinlichkeit 1 anzuwenden.

Für eine Exp(1)-verteilte Gewichtsfunktion E gilt für ihre momenterzeugende Funktion
für λ 6= 1

ME(λ) = E(eλE) = E(U−λ) =

∫ 1

0

(
1

x

)λ

dx =
1

1− λ
.

Daher ist ihre kumulantenerzeugende Funktion für λ ≤ 0

ΛE(λ) = − log (1− λ).

Die Cramér-Funktion von E ergibt sich für essinf(E) = 0 ≤ ρ ≤ 1 = E(E) als

Λ∗
E(ρ) = Λ∗

l,E(ρ) = sup
λ≤0

{λρ− ΛE(λ)} = sup
λ≤0

{λρ + log (1− λ)}.

Dabei wird das Supremum nach Lemma 1.14 in λ = 1− 1
ρ

< 0

(⇔ ρ = Λ
′
E(λ) = 1

1−λ
) angenommen und daher gilt für ρ > 0

Λ∗
E(ρ) = ρ− 1− log ρ.

Da zudem

Λ∗
Z(α) =

{
0 für α = 1

∞ für α 6= 1

gilt, wird das Maximum von (ρ, α) 7→ α
ρ

in CZ,E im Punkt (ρ0, α0) mit α0 = 1 und ρ0 der
eindeutig bestimmten Lösung kleiner als 1 = E(E) von ρ−1− log ρ = log 2 angenommen
(denn Λ∗

Z(1) = 0). Deswegen ist c = 1
ρ0

.
Das Ergebnis von Satz 5.6 und die Äquivalenz ρ−1− log ρ = log 2 ⇔ 2eρ = eρ liefern die
Behauptung des Satzes. Eine numerische Approximation liefert ρ0 ≈ 0, 2319 und damit
gilt c ≈ 4, 3122.

�
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6.2 Der zufällige rekursive Baum

6.2 Der zufällige rekursive Baum

Beim zufälligen rekursiven Baum (Abkürzung RRT für random rekursive tree) handelt
es sich um einen der einfachsten rekursiv aufgebauten Bäume. Wie wir bereits in der
Einleitung des fünften Kapitels erwähnt haben, startet die Rekursion mit einem einzi-
gen Individuum, der Wurzel v1. Im ersten Schritt gebärt dieses dann das erste Kind v2,
wonach im zweiten Schritt der Zufall ins Spiel kommt: Entweder bekommt mit Wahr-
scheinlichkeit 1

2
die Wurzel v1 ein weiteres Kind, oder das neue Individuum v2 aus dem

ersten Schritt bekommt mit Wahrscheinlichkeit 1
2

sein erstes Kind. Dieser Vorgang wird
sukzessiv fortgesetzt, so dass im k-ten Schritt mit Hilfe einer Laplace-Verteilung auf den
bereits vorhandenen k Individuen der Population v1, . . . , vk entschieden wird, welches
von ihnen das (k +1)-te Mitglied der Population vk+1 gebären darf. Unser Hauptinteres-
se liegt wie beim vorangegangenen Beispiel auf dem asymptotischen Verhalten der Höhe
H∗

n eines RRT mit n Knoten für n →∞. Das folgende Bild veranschaulicht einen RRT
nach 8 Sukzessionsschritten.
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Abbildung 8: Ein zufälliger rekursiver Baum nach 8 Sukzessionsschritten.
Die ausgefüllten Kreise stehen dabei für bereits besetzte (interne) Knoten,
wohingegen die transparenten Kreise die externen Knoten bezeichnen.
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6 Anwendungen

Satz 6.2 (Gewichtete Höhe des zufälligen rekursiven Baumes) Für die gewich-
tete Höhe H∗

n eines zufälligen rekursiven Baumes mit n Knoten gilt

H∗
n

log n
−→
n→∞

e

nach Wahrscheinlichkeit.

Beweis: Um Gebrauch von Satz 5.6 machen zu können, interpretieren wir den zufäl-
ligen rekursiven Baum als binären Baum (vgl. Abbildung 9). Im Beweis von Satz 6.1
haben wir gesehen, dass wir einen RBST aufbauen können, indem wir in jedem Sukzes-
sionsschritt einen externen Knoten mittels einer Laplace-Verteilung auf der Menge der
externen Knoten auswählen und durch das entsprechende Element der zufälligen Permu-
tation ersetzen. Das funktioniert aufgrund der Eigenschaften der relativen Ränge: Für
jedes i ∈ {1, . . . , n} ist Ri Laplace-verteilt auf {1, . . . , i} (vgl. Lemma 25.24 in [Als2]).
Daher besteht von Natur aus ein sehr enger Zusammenhang zwischen dem sukzessiven
Auswahlprozess des RRT und dem des RBST.

Im ersten Schritt des Beweises wollen wir die Knoten des RRT auf die externen Knoten
eines korrespondierenden binären Baumes abbilden. Dabei müssen wir zunächst sicher-
stellen, dass die Information der Abstände der einzelnen Knoten von der Wurzel erhalten
bleiben, denn schließlich wollen wir später eine Aussage über die gewichtete Höhe des
Baumes machen. Sei T ′

n ein RRT mit n Knoten und sei Sn = {d1, d2, . . . , dn} die (zufälli-
ge) Menge der Abstände der Knoten v1, v2, . . . , vn von der Wurzel. Zur Veranschaulichung
der oben angesprochenen Abbildung beschreiben wir die Konstruktion des korrespon-
dierenden binären Baumes T b

n mit n externen Knoten zusammen mit der Menge Sb
n der

gewichteten Distanzen seiner externen Knoten von der Wurzel (vgl. Abbildung 9).

T ′
1 besitzt nur einen einzigen Knoten, die Wurzel v1, und somit ist S1 = {0}. Das

Anhängen eines zweiten Knotens v2 führt zu einem Baum mit den Knotenabständen
S2 = {0, 1}. Sei nun T b

2 ein binärer Baum mit zwei externen Knoten (in der ersten
Generation). Seine beiden Kanten bezeichnen wir mit e und f und gewichten diese mit
ze = 1 (linke Kante) und zf = 0 (rechte Kante). Außerdem bezeichnen wir seinen linken
externen Knoten mit v2 und seinen rechten externen Knoten mit v1. Das bedeutet, dass
im ersten Sukzessionsschritt im korrespondierenden binären Baum der Knoten v1 um eine
Generation nach rechts unten wandert und dessen Kind v2 die Position links neben ihm
einnimmt. Die tatsächlichen Abstände im RRT entsprechen also gerade den gewichteten
Abständen im korrespondierenden binären Baum. Somit erhalten wir für die Menge der
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6.2 Der zufällige rekursive Baum

gewichteten Knotenabstände Sb
2 = {0, 1} = S2.

Nach n−1 Konstruktionsschritten wie oben erhalten wir für einen RRT T ′
n mit n Knoten

den zugehörigen binären Baum T b
n mit n externen Knoten. Dabei stimmen die Distanzen

Sn der Knoten des RRT mit den wie oben gewichteten Distanzen Sb
n der externen Knoten

des binären Baumes überein. Ein weiter Sukzessionsschritt stellt sich dann wie folgt dar:
Das Anhängen eines Knotens v an einen bereits bestehenden Knoten u von T ′

n führt dazu,
dass die nun neue Menge der Distanzen Sn+1 gleich Sn∪{d+1} mit d dem Abstand des
Knotens u von der Wurzel ist. Für den zugehörigen binären Baum bedeutet das, dass
wir den externen Knoten u durch einen internen Knoten x ersetzen, wobei zwei neue
externe Knoten entstehen. Die beiden von x ausgehenden Kanten bezeichnen wir wieder
mit e (linke Kante) und f (rechte Kante) und gewichten diese wieder mit ze = 1 und
zf = 0. Das linke Kind von x bezeichnen wir mit v und das rechte entsprechend mit u.
Damit haben wir in der Tat Sb

n+1 = Sb
n ∪ {d + 1} = Sn+1 und damit stimmen für alle

n ∈ N die Distanzen Sn der Knoten des RRT mit den gewichteten Distanzen Sb
n der

externen Knoten des binären Baumes überein.
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Abbildung 9: Ein zufälliger rekursiver Baum und sein korrespondierender binärer Baum.
Die weißen (internen) Knoten wurden aus Konstruktionsgründen hinzugefügt.
Gepunktete Linien stehen für Kanten mit Z = 0 und durchgezogene Linien für
Kanten mit Z = 1.
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Wir haben nun unseren RRT erfolgreich mit einem binären sukzessiv aufgebauten Baum
identifiziert. Zur Bestimmung der Verteilung der Lebensdauern der Individuen des bi-
nären Baumes stellen wir die folgende Überlegung an:
Zunächst interpretieren wir den binären Baum als einen Prozess, bei dem sich jedes
Individuum nach Ablauf seiner Lebenszeit in zwei neue Individuen aufsplittet (Dass
wir dabei das linke Kind als von der Mutter verschieden und das rechte Kind als die
Mutter interpretieren, spielt für die Untersuchung der „Splittingzeiten“ keine Rolle). Da
nach Voraussetzung nach n Sukzessionsschritten jedes der n+1 Individuen des RRT die
gleiche Wahrscheinlichkeit 1

n+1
besitzt, als nächstes ein Kind zu gebären, gilt, dass die

Restlebensdauern der Individuen des korrespondierenden binären Baumes unmittelbar
nach der n-ten Splittingzeit dieselbe Verteilung besitzen. Die Verteilungen der Lebens-
dauern der Individuen müssen also identisch und gedächtnislos sein. Aus diesem Grund
ist die Annahme einer Exp(λ)-Verteilung für das erste Kantengewicht E des korrespon-
dierenden binären Baumes gerechtfertigt. Analog zu den Ausführungen im Beweis von
Satz 6.1 erhält man λ = 1 und damit E ∼ Exp(1) (siehe Ausführungen in [Dev1], [Dev2]
und [Dev5]).
Den zugehörigen zeitstetigen Markov-Sprungprozess (Xt)t≥0 (bei dem Xt für t ≥ 0 die
Anzahl der Individuen zum Zeitpunkt t angibt) eines solchen binären Baumes, des-
sen Individuen sich nach einer Exp(1)-verteilten Lebensdauer in zwei neue Individuen
aufsplitten, nennt man auch einen Yule Prozess (Nähere Informationen zu den Eigen-
schaften des Yule-Prozesses findet man in [AuN], Kapitel 3. Man beachte, dass hier im
Gegensatz zum RBST die Wahl der Exp(1)-Verteilung für das erste Kantengewicht nicht
nur asymptotisch für den unendlich fortgesetzten RRT, sondern auch für dessen endliche
Teilbäume der ersten n Knoten gerechtfertigt ist.).

Nach den bisher angestellten Überlegungen ist ein binärer zweifach gewichteter Verzwei-
gungsprozess mit den Gewichtsfunktionen E ∼ Exp(1) und Z ∼ B(1, 1

2
) als Modell für

einen unendlich fortgesetzten RRT T ′
∞ geeignet.

Begründung für Z ∼ B(1, 1
2
): Zur Abschätzung der gewichteten Höhe interessiert uns

(wie wir im Beweis von Satz 5.6 gesehen haben) einzig und allein die Zufallsgröße

Hmn = max{Dv| v ∈ Kmn}.

Wie man leicht einsieht, nähert sich die gewichtete Höhe Hmn mit zugrunde liegender
Gewichtsfunktion Z ∼ B(1, 1

2
) für mn → ∞ asymptotisch der „gewichteten“ Höhe an,

bei der wir statt dessen unterstellen, dass nach links gerichtete Kanten das Gewicht 1

und nach rechts gerichtete Kanten das Gewicht 0 tragen. Denn wenn wir einen beliebigen
unendlichen Kantenpfad in T ′

∞ auswählen, so ist das Verhältnis zwischen seinen nach
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6.2 Der zufällige rekursive Baum

links und seinen nach rechts gerichteten Kanten mit Wahrscheinlichkeit 1 ausgeglichen.
Das gilt nach dem starken Gesetz der großen Zahlen, da sich die Auswahl eines zufälligen
Kantenpfades im unendlich fortgesetzten binären Baum mit Hilfe einer Folge von sto-
chastisch unabhängigen und identisch B(1, 1

2
)-verteilten Zufallsgrößen beschreiben lässt.

Auf jeder Ebene des Baumes wird entschieden, ob der Weg nach links oder nach rechts
fortgesetzt wird, und beide Alternativen haben die Wahrscheinlichkeit 1

2
.

Nach Satz 5.6 gilt
H∗

n

log n
−→
n→∞

c,

wobei c = α0

ρ0
mit (ρ0, α0) dem eindeutig bestimmten Punkt in CZ,E, so dass

α0

ρ0
= max

(ρ,α)∈CZ,E

α
ρ
. Wir müssen also α

ρ
auf der Kurve

CZ,E = {(ρ, α)| Λ∗
Z(α) + Λ∗

E(ρ) = log 2, ρ ≤ 1 = E(E), α ≥ 1

2
= E(Z)}

maximieren. Im Beweis von Satz 6.1 haben wir gesehen, dass Λ∗
E(ρ) = ρ− 1− log ρ (für

ρ > 0) gilt. Wir bestimmen zunächst die Cramér-Funktion Λ∗
Z einer B(1, 1

2
)-verteilten

Zufallsgröße Z:

Für die momenterzeugende Funktion der Zufallsgröße Z ergibt sich

MZ(λ) = E(eλZ) =
1

2
(e0 + eλ) =

1

2
(1 + eλ).

Daher ist ihre kumulantenerzeugende Funktion

ΛZ(λ) = − log 2 + log (1 + eλ),

und ihre Cramér-Funktion

Λ∗
Z(α) = sup

λ∈R
{λα− ΛZ(λ)} = sup

λ∈R
{λα + log 2− log (1 + eλ)}.

Dabei wird das Supremum nach Lemma 1.14 in λ = log α − log (1− α) angenommen,
denn es gilt

Λ
′

Z(λ) =
eλ

1 + eλ
= α ⇔ λ = log α− log (1− α).

Daher haben wir
Λ∗

Z(α) = α log α + (1− α) log (1− α) + log 2

und ferner

CZ,E = {(ρ, α)| α log α + (1− α) log (1− α) + ρ− log ρ = 1, ρ ∈ (0; 1), α ≥ 1

2
}.
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Die Steigung der Kurve CZ,E ist

df

dα

∣∣∣∣
α

:
dg

dρ

∣∣∣∣
ρ

=
log α− log (1− α)

1
ρ
− 1

,

wobei wir f(α)
def
= α log α+(1−α) log (1− α) und g(ρ)

def
= log ρ−ρ+1 definiert haben. Mit

Hilfe der in Abschnitt 3.1 gewonnenen geometrischen Interpretation von CZ,E erhalten
wir für (ρ0, α0) (vgl. Abbildung 4)(

df

dα

∣∣∣∣
α0

:
dg

dρ

∣∣∣∣
ρ0

)
α0 = ρ0 ( ⇔ α0 log α0 − α0 log (1− α0) = 1− ρ0 )

( ⇔ ρ0 = 1− α0 log α0 + α0 log (1− α0) ).

Einsetzen in die Gleichung für CZ,E liefert

1− ρ0 + log (1− α0) = log ρ0 + 1− ρ0 ⇒ log (1− α0) = log ρ0

⇒ 1− α0 = ρ0.

Dabei haben wir benutzt, dass die Logarithmusfunktion streng monoton wachsend ist.
Erneutes Einsetzen in die Gleichung für CZ,E liefert schließlich

α0 = α0(log α0 − log (1− α0)) ⇒ 1 = log α0 − log (1− α0)

⇒ e =
α0

1− α0

=
α0

ρ0

= c

und die Behauptung des Satzes.
�
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6.3 Der random lopsided tree

Die Informationstheorie beschäftigt sich mit der Erschaffung von optimalen Codes im
Hinblick auf die unterschiedlichsten Ansprüche. Vorsilbenfreie Codes verdienen dabei
ein besonders großes Interesse, da man diese auf direktem Wege decodieren kann, in-
dem man einem bestimmten Pfad durch einen stochastischen Baum folgt. Ein Knoten
u eines solchen Baumes repräsentiert ein Symbol p und die Nachkommen des Knotens
repräsentieren die Wörter, welche man durch Anhängen weiterer Symbole an p erhalten
kann. In digitalen Anwendungen werden Symbole mit Bits und Bytes codiert und in der
Regel erfordert jedes Symbol die gleiche Rechenzeit. Wir können uns die erforderlichen
Rechenzeiten der einzelnen Symbole als die Längen der Kanten des Baumes vorstellen. In
diesem Fall haben also alle Kanten die gleiche Länge. Es gibt jedoch auch Codes, bei de-
nen die verschiedenen Symbole stark voneinander abweichende Rechenzeiten benötigen.
Diese Codes nennt man Varn Codes (für eine tiefer gehende Einführung vergleiche die
Ausführungen in [Var]) und führen zu Bäumen, deren Kanten unterschiedliche Längen
besitzen - so genannten random lopsided trees (Abkürzung RLT) (Die deutsche Überset-
zung „zufälliger schiefer Baum“ erscheint hier nicht adäquat. Daher verwenden wir den
englischen Namen). Beachte dazu die Ausführungen in [CuG] und in [KuR].
Seien c1 ≤ c2 ≤ · · · ≤ cb feste, positive reelle Zahlen, wobei die (ci)i=1,...,b nicht alle gleich
groß sind. Einen b-adischen Baum nennt man lopsided, wenn für jeden seiner Knoten
und 1 ≤ i ≤ b die Kante zu dessen i-tem Kind die Länge ci besitzt. Wir definieren einen
RLT wie folgt:
Wir starten mit einem b-adischen Baum, dessen Wurzel sein einziger interner Knoten ist.
Schritt für Schritt wählen wir einen beliebigen externen Knoten mit Hilfe einer Laplace-
Verteilung auf der Menge der externen Knoten aus und ersetzen ihn durch einen internen
Knoten. Die b Kanten, welche von jedem der internen Knoten ausgehen (sofern die jewei-
ligen Nachkommen in der nächsten Generation schon besetzt sind) besitzen die Gewichte
c1, c2, . . . , cb. Für unser Modell wählen wir einen b-adischen zweifach gewichteten Ver-
zweigungsprozess T∞ mit Gewichtsfunktionen E ∼ Exp(1) (mit demselben Argument
wie für den RRT, da hier derselbe Auswahlmechanismus vorliegt) und Z Laplace-verteilt
auf {c1, c2, . . . , cb} (mit demselben Argument wie für Z ∼ B(1, 1

2
) im Beweis von Satz

6.2). Dann gilt der folgende Satz:

Satz 6.3 (Gewichtete Höhe des random lopsided tree) Für die gewichtete
Höhe H∗

n eines b-adischen random lopsided tree mit n Knoten und Kantenlängen
{c1, c2, . . . , cb} gilt

H∗
n

log n
−→
n→∞

c

b− 1
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nach Wahrscheinlichkeit. Dabei ist c das eindeutig bestimmte Maximum von α
ρ

unter
der Bedingung

αλ(α)− log

( b∑
i=1

cie
λ(α)ci

)
+ ρ− 1− log ρ = 0,

wobei λ(α) eindeutig bestimmt ist durch

b∑
i=1

(α− ci)e
λ(α)ci = 0. (6.1)

Beweis: Nach obigen Vorüberlegungen können wir wie in den Beweisen der Sätze 6.1
und 6.2 das Ergebnis von Satz 5.6 anwenden, wobei wir hier den Spezialfall X = b−1 fast
sicher, Z Laplace-verteilt auf {c1, c2, . . . , cb} und E ∼ Exp(1) vorliegen haben. Daher
gilt

Λ∗
E(ρ) = ρ− 1− log ρ

(für ρ > 0) und

ΛZ(λ) = log E(eλZ) = log

( b∑
i=1

eλci

)
− log b.

Nach Lemma 1.14 wird das Supremum in Λ∗
Z(α) = supλ∈R{λα − ΛZ(λ)} angenommen

für ein λ(α) ∈ R mit

α = Λ
′

Z(λ(α)) =

∑b
i=1 cie

λ(α)ci∑b
i=1 eλ(α)ci

(⇔ (6.1)),

und dieses λ(α) ist eindeutig bestimmt, da die (ci)i=1,...,b nach Voraussetzung nicht alle
gleich groß sind und somit Z nicht fast sicher konstant ist (vgl. Lemma 1.6 (Strikte
Konvexität der kumulantenerzeugenden Funktion)). Dann gilt

CZ,E = {(ρ, α)| αλ(α)− log

( b∑
i=1

cie
λ(α)ci

)
+ ρ− 1− log ρ = 0, ρ ∈ (0; 1), α ≥ E(Z)}

und die Behauptung folgt unmittelbar aus Satz 5.6.
�
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6.4 Weitere Beispiele

Nachfolgend stellen wir noch einige weitere, einfachere Anwendungen unserer Ergebnisse
vor. Meistens genügt es dabei, die Verteilung der Gewichtsfunktion Z entsprechend den
vorgestellten Spezialfällen anzupassen und daraufhin die Ergebnisse der vorangegange-
nen Kapitel zu nutzen.

1. Richtungswechsel in zufälligen binären Suchbäumen

Als erstens beschäftigen wir uns mit Richtungswechseln in zufälligen binären Suchbäu-
men. Sei T ′

∞ ein unendlich fortgesetzter RBST und für einen seiner Knoten v sei π(v)

die Menge der Kanten des Astes von der Wurzel ∅ bis zum Knoten v (siehe Kapitel
2). Dann setzen wir D(π(v)) für die Anzahl der Richtungswechsel des Pfades der Kan-
ten π(v). Codieren wir die nach links gerichteten Kanten mit 1 und entsprechend die
nach rechts gerichteten Kanten mit 0, so gilt bespielsweise D(π(v)) = 5 für einen durch
0100101 codierten Kantenpfad π(v). Gezählt werden also die Stellen 01 und 10 innerhalb
der Codesequenz. Wir interessieren uns insbesondere für den Maximalwert

DT ′n = max{D(π(v))| v Knoten von T ′

n}

der Richtungswechsel unter allen Pfaden des Baumes T ′
n . Aus Konstruktionsgründen

(vgl. Abschnitt 6.1) gleichen sich die Richtungswechsel nach links und die Richtungs-
wechsel nach rechts bei der Auswahl eines zufälligen Kantenpfades im unendlich fortge-
setzten RBST T ′

∞ mit Wahrscheinlichkeit 1 aus (siehe auch Beweis von Satz 6.2). Ein
Richtungswechsel nach links besitzt also asymptotisch die gleiche Wahrscheinlichkeit wie
ein Richtungswechsel nach rechts. Das bedeutet, ein passendes Modell zur Beschreibung
der Richtungswechsel innerhalb eines RBST ist ein zweifach gewichteter Verzweigungs-
prozess mit Gewichtsfunktionen Z ∼ B(1, 1

2
) und E ∼ Exp(1). Daher verhält sich die

maximale Anzahl der Richtungswechsel innerhalb eines RBST asymptotisch wie die ge-
wichtete Höhe eines RRT (vgl. Modell in Abschnitt 6.2). Mit Hilfe von Satz 6.2 erhalten
wir deshalb das folgende Resultat:
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Satz 6.4 (Richtungswechsel in zufälligen binären Suchbäumen) Für den Maxi-
malwert DT ′n der Richtungswechsel unter allen Pfaden eines zufälligen binären Suchbau-
mes T ′

n mit n Knoten gilt
DT ′n
log n

−→
n→∞

e

nach Wahrscheinlichkeit.

2. Elemente mit zwei Lebensdauern

Wir stellen uns einen binären Baum vor, dessen Kanten zwei stochastisch unabhängige,
Exp(1)-verteilte Lebensdauern Z und E besitzen. Seien Dv und Gv wie in Kapitel 2 die
Alter des Knotens v in Bezug auf die Gewichte Z und E und sei wieder Tn der zufällige
Teilbaum der Knoten v ∈ K mit Gv ≤ n. Interessant für uns ist nun der maximale Wert
Hn des Alters Dv unter den Knoten v ∈ Kn. Da die Gewichtsfunktionen Z und E den
Erwartungswert 1 und zudem dieselbe Cramér-Funktion Λ∗

Z(x) = Λ∗
E(x) = x− 1− log x

(für x > 0) besitzen, folgt mit Hilfe von Satz 3.6:

Satz 6.5 (Elemente mit zwei Lebensdauern) Sei T∞ ein binärer zweifach gewich-
teter Verzweigungsprozess, dessen Kanten zwei voneinander unabhängige, Exp(1)-verteilte
Lebensdauern Z und E besitzen. Dann gilt für das Maximum Hn der Alter der Knoten
v ∈ Kn bezüglich der Gewichtsfunktion Z

Hn

n
−→
n→∞

c

nach Wahrscheinlichkeit. Dabei ist c ≈ 5, 82840157 das Maximum von α
ρ

auf der Kurve

CZ,E = {(ρ, α)| α− 1− log α + ρ− 1− log ρ = log 2, 0 < ρ ≤ 1 ≤ α}.

Gemessen an ihrem ersten Alter Gv existieren also Knoten v, deren zweites Alter Dv

nahezu 6 mal größer ist.

3. Zufällige k-Färbung von Kanten in einem zufälligen binären Suchbaum

Wir stellen uns einen zufälligen binären Suchbaum vor, dessen Kanten wir zufällig mit
jeweils einer von k zur Verfügung stehenden Farben einfärben. Dabei habe für eine Kante
e jede der k Farben die gleiche Auftrittswahrscheinlichkeit 1

k
. Unser Interesse liegt nun auf

dem asymptotischen Verhalten der maximalen Anzahl gleicher Farben auf dem Pfad der
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Kanten π(v) für einen Knoten v ∈ Kn (also mit Gv ≤ n). Aus Symmetriegründen können
wir gleich nach dem asymptotischen Verhalten der maximalen Anzahl des Auftretens
einer bestimmten Farbe auf jenem Pfad fragen. Um diese Frage zu beantworten, versehen
wir die Kanten des Baumes mit den Gewichtsfunktionen E ∼ Exp(1) und Z ∼ B(1, 1

k
)

(da das Auftreten einer bestimmten Farbe bei einer Kante die Wahrscheinlichkeit 1
k

und der ursprüngliche RBST nach Abschnitt 6.1 die Gewichte E ∼ Exp(1) und Z = 1

fast sicher besitzt. In dem ursprünglichen Gewicht Z = 1 fast sicher verbirgt sich keine
Information, die bei einer Änderung des Gewichtes verloren gehen könnte.). Nach [DuZ]
gilt für die Cramér-Funktion einer B(1, 1

k
)-verteilten

Zufallsgröße Z

Λ∗
Z(α) = α log (kα) + (1− α)(log (1− α)− log (k − 1)) + log k, (6.2)

und daher gilt für die relevante Kurve

CZ,E = {(ρ, α)| α log (kα) + (1− α)(log (1− α)− log (k − 1)) + log k + ρ− 1− log ρ

= log 2, 0 < ρ ≤ 1, kα ≥ 1}.

Mittels Satz 5.6 folgt:

Satz 6.6 (Zufällige k-Färbung von Kanten in einem zufälligen binären Suchbaum)
Sei ck die Konstante aus Satz 3.6 bezüglich eines binären, zweifach gewichteten Verzwei-
gungsprozesses T∞ mit Gewichtsfunktionen Z ∼ B(1, 1

k
) und E ∼ Exp(1). Dann gilt für

die maximale Anzahl H∗
n des Auftretens einer bestimmten von k Kantenfarben auf den

Pfaden eines zufälligen binären Suchbaumes mit n Knoten

H∗
n

log n
−→
n→∞

ck

nach Wahrscheinlichkeit.

Nachfolgende Tabelle zeigt die Werte von ck für k = 1, . . . , 10. Für k = 1 und k = 2

ergeben sich die bekannten Resultate für das asymptotische Verhalten der Höhe des
RBST und des RRT (vgl. Sätze 6.1 und 6.2).

k 1 2 3 4 5
ck 4,3110 2,7182 2,1206 1,7955 1,5869
k 6 7 8 9 10
ck 1,4397 1,3292 1,2426 1,1725 1,1148
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Bemerkung 6.7 Selbstverständlich kann man auch allgemeiner Z ∼ B(1, p) mit p ∈
(0; 1) anstatt p = 1

k
für ein k ∈ N annehmen. Nach [DuZ] muss man dazu in (6.2) nur

das k durch 1
p

ersetzen und kann genauso verfahren wie in Satz 6.6.

Für das Studium des asymptotischen Verhaltens der maximalen Anzahl des Auftretens
einer bestimmten von k Kantenfarben bei einem zufälligen rekursiven Baum genügt es
(wie man sehr leicht einsieht) in obigem Modell die Gewichtsfunktion Z ∼ B(1, 1

2k
) =

B(1, 1
2
) ∗B(1, 1

k
) zu wählen.

4. Maximale Links-Minus-Rechts-Abweichung

Für die Knoten v eines binären Baumes schreiben wir

Dv
def
=

∑
e∈π(v)

(L(e)−R(e)),

wobei L : E → {0, 1} der Indikator dafür sei, ob eine Kante e ∈ E nach links gerichtet,
und entsprechend R : E → {0, 1} der Indikator dafür sei, ob eine Kante e ∈ E nach rechts
gerichtet ist. Wir wollen im Folgenden die maximale Links-Minus-Rechts-Abweichung H∗

n

von Dv für den Fall studieren, dass der zugrunde liegende Baum ein RBST ist. Analog
zu den vorangegangenen Beispielen ist ein zweifach gewichteter Verzweigungsprozess mit
Gewichtsfunktionen Z mit P(Z = −1) = 1

2
= P(Z = 1) und E ∼ Exp(1) ein geeignetes

Modell zur Beschreibung der hier vorgestellten Situation. Für die Gewichtsfunktion Z

erhalten wir
ΛZ(λ) = log (eλ + e−λ)− log 2,

und daher gilt für die Cramérfunktion von Z

Λ∗
Z(α) =

α
2

log

(
1+α
1−α

)
+ log 2− log

(√
1+α
1−α

+
√

1−α
1+α

)
für E(Z) = 0 ≤ α < 1

∞ für α ≥ 1,

was sich durch Anwendung von Lemma 1.14 und Nachrechnen ergibt. Mit Hilfe von Satz
5.6 folgt ferner:
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Satz 6.8 (Maximale Links-Minus-Rechts-Abweichung) Für die maximale Links-
Minus-Rechts-Abweichung H∗

n eines zufälligen binären Suchbaumes mit n Knoten gilt

H∗
n

log n
−→
n→∞

c

nach Wahrscheinlichkeit. Dabei ist c = α0

ρ0
das Maximum von (ρ, α) 7→ α

ρ
in CZ,E mit

eindeutig bestimmten ρ0 und α0 und E, Z wie oben. Durch Anwendung numerischer
Werkzeuge lässt sich c ≈ 2, 07345 bestimmen.
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7 Symbolverzeichnis

Symbol Bedeutung

(a, b) Punkt (a, b) ∈ R2 mit a, b ∈ R
(a; b) Intervall (a; b) ⊆ R mit a, b ∈ R, a < b
α∗ Konstante ≥ E(Z) mit (E(E), α∗) ∈ CZ,E

c Maximum von (α, ρ) 7→ α
ρ

in CZ,E

c∗ Maximum von (α, ρ) 7→ α
ρ

in C∗Z,E im verallgemeinerten
Fall

CZ,E {(ρ, α) | Λ∗
Z(α) + Λ∗

E(ρ) = log b, α ≥ E(Z), ρ ≤ E(E)}
C∗Z,E {(ρ, α) | Λ∗

Z(α) + Λ∗
E(ρ) = log µ, α ≥ E(Z), ρ ≤ E(E)}

mit µ dem Erwartungswert der Reproduktionsverteilung
im verallgemeinerten Fall

Dv Gewichtete Höhe des Knotens v
DX Definitionsbereich der Kumulanten erzeugenden Funkti-

on ΛX der Zufallsgröße X
D∗

X Definitionsbereich der Cramérfunktion Λ∗
X der Zufalls-

größe X
essinf(X) Essentielles Infimum der Zufallsgröße X
esssup(X) Essentielles Supremum der Zufallsgröße X
E(X) Erwartungswert der Zufallsgröße X
E Menge der Kanten eines zweifach gewichteten Verzwei-

gungsprozesses T∞
Ee und Ze Gewichte der Kante e ∈ E
Ei(v) und Zi(v) Gewichte der Verbindungskante des Knotens v und sei-

nem i-ten Kind (v, i)
Gv Alter des Knotens v
γ(α, ρ) Λ∗

r,Z(α) + Λ∗
l,E(ρ)− log b

γ∗(α, ρ) Λ∗
r,Z(α)+Λ∗

l,E(ρ)− log µ mit µ dem Erwartungswert der
Reproduktionsverteilung im verallgemeinerten Fall

Hn Gewichtete Höhe des Baumes T∞ zum Zeitpunkt n
K Menge der Knoten eines zweifach gewichteten Verzwei-

gungsprozesses T∞
Kn Zufällige Menge der Knoten von Tn

Ln,k Menge der Knoten v von Tn mit |v| = k
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L∞,k Menge der Knoten v von T∞ mit |v| = k
λ∗ sup{λ ∈ R| MX(λ) < ∞}
ΛX Kumulante erzeugende Funktion der Zufallsgröße X
Λ∗

X Fenchel-Legendre-Transformierte von ΛX bzw. Cramér-
funktion der Zufallsgröße X

Λ∗
l,X Linksseitige Cramérfunktion der Zufallsgröße X

Λ∗
r,X Rechtsseitige Cramérfunktion der Zufallsgröße X

MX Momenterzeugende Funktion der Zufallsgröße X
N Menge der natürlichen Zahlen
o(n) Symbol für eine Nullfolge (für n →∞)
O(n) Symbol für eine Folge (an)n≥1 mit an

n
−→
n→∞

d ∈ R
(pn)n≥0 Reproduktionsverteilung eines Galton-Watson-

Prozesses
π(v) Menge der Kanten des Astes von der Wurzel ∅ bis zum

Knoten v
R Menge der reellen Zahlen
ρ∗ Konstante ≤ E(E) mit (ρ∗, E(Z)) ∈ CZ,E

(ρ0, α0) Eindeutig bestimmter Punkt in CZ,E mit α0

ρ0
= c

T∞ B-adischer Baum
T ∗
∞ Galton-Watson-Prozess mit Reproduktionsverteilung

(pn)n≥0

T∞ (b-adischer) Zweifach gewichteter Verzweigungsprozess
T ∗
∞ Verallgemeinerter zweifach gewichteter Verzweigungs-

prozess
Tn Zufälliger Baum der Knoten v von T∞, für die Gv ≤ n

gilt
T ∗

n Zufälliger Baum der Knoten v von T ∗
∞, für die Gv ≤ n

gilt (im verallgemeinerten Fall)
T ′

n Sukzessiv aufgebauter Baum mit n Knoten
v = (v1, . . . , vn) Knoten der n-ten Generation eines zweifach gewichteten

Verzweigungsprozesses
(v, i) i-tes Kind des Knotens v
|v| Generation, der v angehört
v|i Urahne von v in der i-ten Generation
∅ Wurzel eines Verzeigungsprozesses, leere Menge

72



Literaturverzeichnis

[Als1] G. Alsmeyer, Wahrscheinlichkeitstheorie. Skripten zur Mathematischen Sta-
tistik, Nr. 30, 3. Auflage, Universität Münster (2003)

[Als2] G. Alsmeyer, Stochastische Prozesse, Teil 1. Skripten zur Mathematischen
Statistik, Nr. 33, Universität Münster (2002)

[Als3] G. Alsmeyer, Verzweigungsprozesse. Universität Münster (2001)

[AuN] K. B. Athreya und P. E. Ney, Branching Prozesses. Springer, Berlin (1972)

[BuD] N. Broutin und L. Devroye, Large Deviations for the Weighted Height of
an Extended Class of Trees. Algorithmica (2005)

[CuG] V. Choi und M. J. Golin, Lopsided trees 1: a combinatorial analysis. Algo-
rithmica, Nr. 31, Seite 240-290 (2001)

[CuM] K. S. Crump und C. J. Mode, A general age-dependent branching process.
Journal of Mathematical Analysis and its Applications, Nr. 24, Seite 494-508
(1968)

[CuT] Y. S. Chow und H. Teicher, Probability Theorie: Independence, Interchan-
geability, Martingales. Springer (1978)

[DuZ] A. Dembo und O. Zeitouni, Large Deviation Techniques and Applications.
2. Auflage, Springer (1998)

[Dev1] L. Devroye, A note on the height of binary search trees. Journal of the ACM,
Nr. 33, Seite 489-498 (1986)

[Dev2] L. Devroye, Branching processes in the analysis of the height of trees. Acta
Informatica, Nr. 24, Seite 277-298 (1987)

[Dev3] L. Devroye, Applications of the theory of records in the study of random trees.
Acta Informatica, Nr. 26, Seite 123-130 (1988)

73



Literaturverzeichnis

[Dev4] L. Devroye, On the expected height of fringe balanced trees. Acta Informatica,
Nr. 30, Seite 459-466 (1993)

[Dev5] L. Devroye, Branching processes and their applications in the analysis of tree
structures and tree algorithms in Probabilistic Methods for Algorithmic Discrete
Mathematics, Nr. 16, Springer Series on Algorithms and Combinatorics, Sprin-
ger, Seite 249-314, Berlin (1998)

[Dev6] L. Devroye, Universal limit laws for depth in random trees. SIAM Journal
on Computing, Nr. 28(2), Seite 409-432 (1998)

[Els] J. Elstrodt, Maß- und Integrationstheorie. 3. erweiterte Auflage, Springer,
Berlin (2002)

[Gli] N. Glick, Breaking records and breaking boards. American Mathemathical
Monthly, Nr. 85, Seite 2-26 (1978)

[GuS] G. R. Grimmett und D. R. Stirzaker, Probability and Random Processes.
2. Auflage, Oxfort University Press (2001)

[Har] T. E. Harris, The Theory of Branching Processes. Springer, Berlin (1963)

[Heu] H. Heuser, Lehrbuch der Analysis, Teil 2. 11. Auflage, B.G.Teubner, Stutt-
gart, Leipzig, Wiesbaden (2000)

[Hol] F. den Hollander, Large Deviations. American Mathematical Society (2000)

[Knu] D. E. Knuth, The Art of Computer Programming: Sorting and Searching. 3.
Auflage, Addison-Wesley, Reading, MA (1973)

[Kön] W. König, Grosse Abweichungen, Techniken und Anwendungen. Vorlesungs-
skript, Universität Leipzig (2005)

[KuR] S. Kapoor und E. Reingold, Optimum lopsided binary trees. Journal of the
ACM, Nr. 36(3), Seite 573-590 (1989)

[Mah] H. Mahmoud, Evolution of Random Search Trees. Wiley, New York (1992)

[Pit] B. Pittel, Note on the height of recursive trees and m-ary search trees. Ran-
dom Structures and Algorithms, Nr. 5, Seite 337-347 (1994)

[Roc] R. Rockafellar, Convex Analysis. Princeton University Press, Princeton,
NJ (1970)

74



Literaturverzeichnis

[Sch] V. Schmidt, Stochastik. Vorlesungsskript, Universität Ulm (2004)

[Var] B. F. Varn, Optimal variable length codes (arbitrary symbol costs and equal
code word probabilities). Informat. Contr., Nr. 19, Seite 289-301 (1971)

75



Münster, den 14. Mai 2006

Ich versichere hiermit, die vorliegende Arbeit selbständig verfasst und keine anderen
Hilfsmittel als die angegebenen verwendet zu haben.

Sebastian Gebennus

76


