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1 Einleitung

Einige ergodische Markov-Prozesse zeigen einen scharfen Übergang bei der Konvergenz gegen

ihre stationäre Verteilung. Sie bleiben bis zu einem festen Zeitpunkt in weitem Abstand von

ihrer stationären Verteilung und nähern sich ihr im Anschluss exponentiell schnell an. Anfang

der achtziger Jahre wurde bei zufälligen Transpositionen auf der symmetrischen Gruppe in

[DS81] erstmalig eine solche abrupte Konvergenz gegen die stationäre Verteilung festgestellt.

Diesem Phänomen wurde von Aldous und Diaconis in [AD85] der Name Cut-Off-Effekt gegeben.

Einer der interessantesten und präzisesten Cut-Offs wurde in [DB92] von Diaconis und Beyer

bewiesen. In dieser Arbeit wurde die Frage beantwortet, wie oft ein anfänglich geordnetes

Kartenspiel mit der Mischmethode Riffle-Shuffle gemischt werden muss, damit es als gemischt

betrachtet werden kann. Wir zitieren hier das Hauptergebnis dieser Arbeit:

Theorem 1.1. Bezeichne P l
n die Verteilung eines anfänglich geordneten, aus n Karten be-

stehenden Kartenspiels nach l Mischungen mit der Mischmethode Riffle-Shuffle. Sei un die

Gleichverteilung über allen Permutationen und setze l = (3/2) log2 n + c. Dann gilt für großes

n

∥∥P l
n − un

∥∥
TV

= 1 − 2Φ

(
− 2−c

4
√

3

)
+O

(
1

n1/4

)
, wobei Φ(t) =

1√
2π

∫ t

−∞

e−s2/2ds.

Eine Reihe weiterer Beispiele für den Auftritt des Cut-Off-Effekts liefert Diaconis in der Über-

sichtsarbeit [Dia96]. Gemeinsamkeit dieser Beispiele ist, dass für den Beweis des Vorliegens

des Cut-Off-Effekts jeweils gründliche Kenntnisse der zugrundeliegenden Familie von Markov-

Prozessen vorliegen mussten. Insbesondere die Zeit, zu der ein Cut-Off auftritt, musste zum

Beweis der Existenz eines Cut-Offs bekannt sein.

Diaconis fragte deshalb in dem Übersichtsartikel [Dia96] nach einem allgemeinen Kriterium

für das Auftreten eines Cut-Offs in einer Familie endlicher, ergodischer Markov-Prozesse. Ein

1



erstes solches Kriterium bei der Untersuchung des Cut-Off-Phänomens gab Peres im Jahr

2004. Die Konvergenzrate wird bekanntermaßen vom betraglich zweitgrößten Eigenwert des

Markov-Prozesses bestimmt. Naheliegend ist demnach die Vermutung, dass die Spektrallücke,

welche im reversiblen Fall die Differenz zwischen Spektralradius und dem betraglich zweitgröß-

ten Eigenwert ist, in einem derartigen Kriterium auftaucht. Als zweite Größe integriert sich

die ǫ-Mischzeit, also die erste Zeit, zu der der Abstand zur stationären Verteilung einen fest

vorgegebenen Wert ǫ > 0 unterschreitet. Konkret formulierte Peres: Ein notwendiges — in vie-

len Fällen auch hinreichendes — Kriterium für Cut-Off in einer Familie endlicher reversibler

Markov-Prozesse ist das Folgende: Das Produkt aus Spektrallücke und Mischzeit geht gegen

unendlich. Bei diesem Kriterium muss also die Zeit, zu der der Cut-Off auftritt, nicht notwendig

bekannt sein, um Aussagen über die Existenz eines Cut-Offs machen zu können. Eine Reihe von

Arbeiten zur Gültigkeit des Peres-Kriteriums in verschiedenen Klassen von Markov-Prozessen

und bei Zugrundelegung verschiedener Abstandsbegriffe sind in jüngster Zeit erschienen. Es

zeigt sich, dass bei Abstandsmessung bezüglich der Lp-Norm, 1 < p ≤ ∞, das Kriterium von

Peres bei reversiblen Prozessen in der Tat notwendig und hinreichend ist. Dies wurde kürzlich

in [CSC08] und [Che06] bewiesen. Misst man den Abstand zur stationären Verteilung in totaler

Variation, ist es im Allgemeinen nicht hinreichend. Ein auf Aldous zurückgehendes Beispiel für

eine reversible Markov-Kette, welche das Kriterium erfüllt, aber keinen Cut-Off zeigt, werden

wir in Kapitel 7 vorstellen. Bei der ob ihrer mannigfaltigen Anwendungsgebiete sehr bedeuten-

den Klasse der Geburts- und Todesprozesse ist das Kriterium hingegen auch in Totalvariation

notwendig und hinreichend, wie Peres, Lubetzky und Ding in [DLP08] zeigten.

Wir betrachten in unserer Arbeit ebenfalls die Klasse der Geburts- und Todesprozesse und

messen den Abstand zur stationären Verteilung in Separation. Hauptergebnis unserer Arbeit

wird der Beweis sein, dass bei in 0 gestarteten, endlichen Geburts- und Todesprozessen in

stetiger Zeit und Abstandsmessung in Separation der Vorschlag von Peres ein notwendiges und

hinreichendes Kriterium für die Existenz eines Cut-Offs ist.

Wir formulieren jetzt dieses Hauptergebnis für Geburts- und Todesprozesse in stetiger Zeit.

Für jedes n bezeichne γt
n die Verteilung eines ergodischen, in 0 gestarteten, Geburts- und

Todesprozesses auf Ωn = {0, 1, ..., n} zur Zeit t. ξ∗n sei die zugehörige stationäre Verteilung. Die

2



Kapitel 1. Einleitung

Separation zwischen γt
n und der Zielverteilung ξ∗n ist definiert durch

s(γt
n, ξ

∗
n) = sup

ω∈Ωn

{1 − γt
n(ω)/ξ∗n(ω)}.

Seien λn,i ∈ [0, 2], i = 0, 1, 2, ..., n, die Eigenwerte, in nichtfallender Reihenfolge, von −Qn (wobei

Qn die zugehörige Q-Matrix ist, also die infinitesimale erzeugende Matrix des zugehörigen

Markov-Prozesses darstellt). λn,1 = λn heißt Spektrallücke. Setze

tn =

n∑

i=1

(λn,i)
−1.

Der Hauptsatz lautet folgendermaßen:

Theorem 1.2. In obiger Situation hat die Familie (Ωn, ξ
∗
n, (γ

t
n)t>0)n=1,2,... genau dann einen

Separations-Cut-Off , wenn Nn = λntn
n→ ∞.

tn kann man äquivalent durch die ǫ-Separations-Mischzeit

τ s

n = τ s

n(ǫ) = inf{t ≥ 0 : s(γt
n, ξ

∗
n) ≤ ǫ}

ersetzen, also die erste Zeit, zu der der Abstand in Separation zwischen der Verteilung des

Markov-Prozesses und der stationären Verteilung geringer als ǫ ist. Dieses Theorem werden wir

in Kapitel 5 beweisen.

Unsere Arbeit ist folgendermaßen aufgebaut: Zunächst werden wir in Kapitel 2 notwendige

Grundbegriffe der Theorie der Markov-Prozesse bereitstellen, verschiedene Abstandsbegriffe

zwischen Wahrscheinlichkeitsverteilungen vorstellen und diese miteinander vergleichen, bevor

wir den Cut-Off-Effekt definieren. Dabei werden wir auch den Begriff der Fenstergröße eines

Cut-Offs und mit dem Pre-Cut-Off eine schwächere Form des Cut-Off-Effekts präsentieren.

In Kapitel 3 werden wir eine Verbindung zwischen stark stationären Zeiten und der Abstands-

messung durch Separation herstellen. Stark stationäre Zeiten eines Markov-Prozesses entspre-

chen der Zeit bis zur Absorption eines sogenannten stark stationären dualen Prozesses zu diesem

Markov-Prozess. Die Entwicklung dieser Dualitätstheorie wird einen großen Teil dieser Arbeit

einnehmen und geht auf Diaconis und Fill [DF90b] sowie Fill [Fil92] zurück. Wir werden den

dualen Prozess erst im diskreten Fall untersuchen und danach den stetigen Fall behandeln.

Wir erhalten mit dem Algebraischen Dualitätstheorem eine notwendige und hinreichende Be-

dingung für die Existenz eines solchen dualen Prozesses und geben eine Pfad-Konstruktion des
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dualen Prozesses an. Bei Geburts- und Todesprozessen vereinfacht sich die Dualitätstheorie

signifikant und der von uns konstruierte duale Prozess hat eine besonders einfache Gestalt: Der

duale Prozess ist selbst ein Geburts- und Todesprozess mit den gleichen Eigenwerten. Unser

durch die Pfad-Konstruktion entstandene stark stationäre duale Prozess ist scharf, das heißt

die Zeit bis zur Absorption des dualen Prozesses liefert eine minimale stark stationäre Zeit für

den zugrundeliegenden Markov-Prozess. Der Separationsabstand zur Zeit t ist damit gleich der

Wahrscheinlichkeit, dass die stark stationäre Zeit größer als t ist.

Durch Untersuchung der Verteilung der Ersteintrittszeit des absorbierenden Geburts- und To-

desprozesses in Kapitel 4 erhalten wir eine Darstellung des Separationsabstands als Summe un-

abhängiger, exponentialverteilter Zufallsgrößen. Die Eigenwerte des zugrundeliegenden Markov-

Prozesses parametrisieren dabei diese Zufallsgrößen. Dies ist ein klassisches Resultat, welches

auf Keilson [Kei79] bzw. Karlin und Mcgregor [KM59] zurückgeht. Mittlerweile gibt es einen

neuen, stochastischen Beweis von Fill [Fil07], wobei wir aber den klassischen Beweis geben. Mit

Hilfe dieser Darstellung des Separationsabstands und einigen elementaren Folgerungen aus der

Chebychev-Ungleichung werden wir in Kapitel 5 unseren Hauptsatz über den Separations-Cut-

Off bei Geburts- und Todesprozessen beweisen. Des Weiteren erhalten wir Schranken für den

Separationsabstand und die Äquivalenz von Pre-Cut-Off und Cut-Off bei Abstandsmessung mit

Separation.

Aus der Darstellung des Separationsabstand als Summe unabhängiger, exponentialverteilter

Zufallsgrößen erhalten wir zusätzlich Aussagen über die Form des Cut-Offs, also über das Ver-

halten der Abstandsfunktion im Zeitfenster des abrupten Übergangs zur stationären Verteilung.

Einen Satz, der die Form des Cut-Offs bei Geburts- und Todesprozessen und Separationsab-

standsmessung beschreibt, werden wir in Kapitel 6 mit Hilfe der Theorie unendlich teilbarer

Verteilungen beweisen. In Kapitel 5 und 6 orientieren wir uns dabei wesentlich an den Resul-

taten von Diaconis und Saloff-Coste in [DSC06].

In Kapitel 7 präsentieren wir das erwähnte Beispiel von Aldous als Beispiel dafür, dass in To-

talvariation die Bedingung λnτn → ∞ nicht notwendigerweise einen Cut-Off impliziert. Des

Weiteren werden wir neueste Ergebnisse im Zusammenhang mit dem Peres-Kriterium und dem

Cut-Off-Effekt vorstellen. Insbesondere ziehen wir Verbindungen zwischen dem Totalvariations-

Cut-Off und dem Separations-Cut-Off bei Geburts- und Todesprozessen [DLP08]. Ein Überblick

über noch offene, verwandte Fragen rundet unsere Arbeit ab.
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2 Einführung in die Markov-Theorie in

diskreter und stetiger Zeit

2.1 Präliminarien

Eine stochastische Folge M = (Mn)n≥0 auf einem W-Raum (Ω,A, P ) mit Werten in dem

Zustandsraum S heißt Markov-Kette (in diskreter Zeit), falls

P (Mn+1 = xn+1|M0 = x0, ...,Mn = xn) = P (Mn+1 = xn+1|Mn = xn)

für alle xi ∈ S mit 0 ≤ i ≤ n und n ≥ 0. Wir sprechen von einer endlichen Markov-Kette

(EMK) bzw. einer diskreten Markov-Kette (DMK), falls S endlich oder diskret ist. Wir be-

trachten ausschließlich die Klasse zeitlich homogener Markov-Ketten mit höchstens abzählbar

unendlichem Zustandsraum. Zeitliche Homogenität bedeutet in diesem Zusammenhang, dass

P (Mn+1 = xn+1|Mn = xn) nicht von dem Zeitparameter n abhängt.

In diesem Fall ist die Verteilung einer Markov-Kette M = (Mn)n≥0 wegen des Satzes von

Ionescu-Tulcea durch ihre Startverteilung λ (die Verteilung von M0) und die Elementarwahr-

scheinlichkeiten

pxy = P (Mn+1 = y|Mn = x)

für alle x, y ∈ S vollständig determiniert. Die Elementarwahrscheinlichkeiten werden in der

sogenannten Übergangsmatrix P = (pxy)x,y∈S zusammengefasst. Für eine EMK (Mn)n≥0 mit

Übergangsmatrix P und Startverteilung λ, also P (M0 = x) = λ(x) für alle x ∈ S, ist die

Verteilung von Mn gegeben durch

P (Mn = x) = λP n(x) =
∑

y∈S

λ(y)P n(y, x) für alle x ∈ S,
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2.1. Präliminarien

wobei P n die n-Schritt-Übergangsmatrix ist, welche folgendermaßen iterativ definiert wird:

P n(x, y) =
∑

z∈S

P n−1(x, z)P (z, y) für alle x, y ∈ S.

In naheliegender Verallgemeinerung betrachten wir nun Markov-Ketten in stetiger Zeit, welche

wir allgemein als Markov-Prozesse (MP) und im Fall eines höchstens abzählbaren Zustands-

raums S als Markov-Sprungprozesse (MSP) bezeichnen. Die Gefahr der Explosion eines MSPs,

also des Auftretens unendlich vieler Übergänge in endlicher Zeit, schließen wir dadurch aus,

dass wir zunächst nur endliche Zustandsräume betrachten. Es gelte also |S| < ∞. Markov-

Sprungprozesse werden mittels eines infinitesimalen Erzeugers definiert, einer sogenannten Q-

Matrix. Wir betrachten in weiten Teilen dieser Arbeit MSP, deren Q-Matrix folgende spezielle

Gestalt hat: Gegeben eine Übergangsmatrix P , sei M = (Mt)t≥0 ein MSP mit infinitesimalem

Erzeuger Q = P − I. Es genügt —wegen zeitlicher Transformationsmöglichkeiten endlicher

MSP— bei der Untersuchung des Cut-Off-Phänomens diese speziellen MSP zu untersuchen,

wie wir zu Beginn von Kapitel 5 erläutern. Bei einem MSP verweilt man eine exponentialver-

teilte Zeit in einem Zustand x ∈ S und wechselt dann gemäß der Q-Matrix den Zustand. Die

Verteilung von Mt ist somit im endlichen Fall eindeutig bestimmt durch die Startverteilung λ

und die zeitstetige Halbgruppe Ht = e−t(I−P ) durch die Formel

P (Mt = x) =
∑

y∈S

λ(y)Ht(y, x) für alle x ∈ S, t ≥ 0.

Dabei ist Ht(x, y) = e−t
∑∞

n=0
tnP

n(x,y)
n!

für x, y ∈ S, t ≥ 0 und P 0 = I. M(S) bezeichne die

Menge der endlichen Maße auf S, W(S) die Menge der Verteilungen auf S, also der W-Maße auf

S. Gegeben eine Übergangsmatrix P , nennen wir ein Maß ξ ∈ M(S) stationär oder invariant

bezüglich P , falls ξ 6≡ 0 und ξP = ξ oder äquivalent ξ 6≡ 0 und

∑

y∈S

ξ(y)P (y, x) = ξ(x) für alle x ∈ S.

Ein Maß ξ ∈ M(S) heißt reversibel, falls ξ 6≡ 0 und ξ die detaillierten Gleichgewichtsgleichungen

ξ(x)P (x, y) = ξ(y)P (y, x) für alle x, y ∈ S

erfüllt. Ein reversibles Maß ist notwendigerweise stationär. Falls ξ stationär (reversibel) bezüg-

lich P ist, gilt für alle t ≥ 0, ξHt = ξ, oder äquivalent
∑

y∈S ξ(y)Ht(y, x) = ξ(x) für alle x ∈ S

(im reversiblen Fall: ξ(x)Ht(x, y) = ξ(y)Ht(y, x) für alle x, y ∈ S). Im Fall eines endlichen
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Kapitel 2. Einführung in die Markov-Theorie in diskreter und stetiger Zeit

Zustandsraums S existiert immer ein stationäres Maß ξ ∈ M(S), die Normierung ξ∗ = ξ/ξ(S)

ist somit eine stationäre Verteilung, also ξ∗ ∈ W(S).

Eine Übergangsmatrix P heißt irreduzibel, falls für alle x, y ∈ S ein n = n(x, y) existiert, so

dass P n(x, y) > 0. Ein Zustand x ∈ S heißt aperiodisch, falls P n(x, x) > 0 für genügend großes

n, und P heißt aperiodisch, falls alle Zustände aperiodisch sind. Aperiodizität ist eine Solida-

ritätseigenschaft, das heißt aus der Aperiodizität eines Zustands folgt die Aperiodizität aller

mit diesem Zustand kommunizierenden Zustände. Bei Irreduzibilität von P existiert eine ein-

deutige stationäre Verteilung ξ∗, welche überall positiv ist (Satz 10.4 in [Als05a]). Der folgende

Satz liefert den Zusammenhang zwischen stationären Verteilungen und dem asymptotischem

Verhalten von Markov-Ketten und Markov-Sprungprozessen (siehe Satz 11.1 in [Als05a] und

Satz 10.1 in [Als05b]).

Theorem 2.1. (Ergodensatz) Sei P eine irreduzible Übergangsmatrix auf einer endlichen

Menge S mit stationärer Verteilung ξ∗. Dann gilt

lim
t→∞

Ht(x, y) = ξ∗(y) für alle x, y ∈ S.

Falls P irreduzibel und aperiodisch ist, dann gilt

lim
n→∞

P n(x, y) = ξ∗(y) für alle x, y ∈ S.

Bei abzählbar unendlichen Zustandsräumen gelten die Aussagen des Satzes jeweils, falls zu-

sätzlich die Solidaritätseigenschaft positive Rekurrenz vorliegt. Ein Zustand x ∈ S heißt positiv

rekurrent, falls die erwartete Rückkehrzeit in diesen Zustand endlich ist. Eine Übergangsmatrix

nennen wir ergodisch, falls die zugehörige Markov-Kette konvergiert. Bei endlichen Zustandsräu-

men und unserer Definition einer stationären Verteilung als positive Verteilung ist Ergodizität

demnach im zeitstetigen Fall äquivalent zu Irreduzibilität und im zeitdiskreten Fall zu Irredu-

zibilität und Aperiodizität.

In dieser Arbeit betrachten wir ergodische, endliche MSP und ergodische EMK und untersuchen

die Abstandsfunktion der Verteilung des MSPs bzw. der EMK zu ihrer stationären Verteilung.

Qualitativ ist die Konvergenz nach Voraussetzung der Ergodizität klar, wir interessieren uns

vielmehr für eine quantitative Untersuchung der Konvergenzgeschwindigkeit und insbesondere

der Form des Übergangs zur Stationarität. Dazu stellen wir nun geeignete Abstandsbegriffe zwi-

schen Verteilungen vor und definieren im Anschluss den Cut-Off, also die abrupte Konvergenz

gegen die stationäre Verteilung.
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2.2. Abstände

2.2 Abstände

Seien µ, ν ∈ M(Ω), wobei Ω endlich ist. Wir betrachten ν als Referenzmaß, später wird ν als

stationäre Verteilung ξ∗ eines MSPs bzw. einer EMK gewählt und der Abstand der Verteilung

des MSPs bzw. der EMK zu dieser Verteilung untersucht. Wir möchten einen Abstandsbegriff

zwischen den beiden Maßen µ und ν haben, der im Fall µ, ν ∈ W(Ω) jeder endlichen Menge Ω

und jedem Paar µ und ν eine reelle Zahl D(µ, ν) ∈ [0, 1] zuordnet, so dass

sup
Ω

sup
µ,ν

D(µ, ν) = 1 (2.1)

und D(µ, ν) = 0 genau dann, wenn µ = ν. Die Variationsnorm ist ein Abstandsbegriff, der

diese Eigenschaften besitzt und folgendermaßen definiert ist.

Definition 2.1. Seien µ, ν ∈ M(Ω), wobei Ω endlich ist. Der Abstand in totaler Variation

(oder kurz die Variationsnorm) zwischen µ und ν ist folgendermaßen definiert:

D(µ, ν) = ‖µ− ν‖TV

def
= max

A⊂Ω
|µ(A) − ν(A)| . (2.2)

Ein sensiblerer Abstandsbegriff zwischen W-Maßen, der die Eigenschaften besitzt, ist Separa-

tion. Diese ist folgendermaßen definiert:

Definition 2.2. Seien µ, ν ∈ W(Ω), wobei Ω endlich ist. Die Separation von µ und ν ist

definiert durch

s(µ, ν)
def
= sup

ω∈Ω

{
1 − µ(ω)

ν(ω)

}
. (2.3)

Wir nutzen auch die Notation

s(t) = s(µt, ν),

falls µt die Verteilung einer Markov-Kette bzw. eines Markov-Prozesses zur Zeit t ist. Es gilt

0 ≤ s(µ, ν) ≤ 1, im Allgemeinen s(µ, ν) 6= s(ν, µ) und Separation majorisiert Totalvariation:

Bemerkung 2.1. Die Separation ist stets eine obere Schranke für den Abstand in totaler

Variation:

‖µ− ν‖TV ≤ s(µ, ν). (2.4)
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Kapitel 2. Einführung in die Markov-Theorie in diskreter und stetiger Zeit

Beweis. Setze A = {ω ∈ Ω : ν(ω) > µ(ω)}. Wir erhalten

‖µ− ν‖TV =
∑

ω∈A

(ν(ω) − µ(ω)) =
∑

ω∈A

ν(ω)

(
1 − µ(ω)

ν(ω)

)
≤ s(µ, ν)

und damit die Behauptung.

Verzichtet man auf die Beschränktheit des Abstands für W-Maße durch (2.1), kann man den

Abstand in Lp bzw. L∞ definieren.

Definition 2.3. Seien µ, ν ∈ M(Ω), wobei Ω endlich und ν als positiv vorausgesetzt ist. Der

Abstand in Lp für 1 ≤ p ≤ ∞ zwischen µ und ν ist definiert durch

‖µ− ν‖p =





(∑
ω∈Ω

∣∣∣µ(ω)
ν(ω)

− 1
∣∣∣
p

ν(ω)p
) 1

p

, falls 1 ≤ p <∞,

maxω∈Ω

∣∣∣µ(ω)
ν(ω)

− 1
∣∣∣ , falls p = ∞.

(2.5)

Bemerkung 2.2. Gilt µ(Ω) = ν(Ω), so ist der Abstand in totaler Variation die Hälfte des

Abstands in L1, weil :

‖µ− ν‖1 =
∑

ω∈Ω

∣∣∣∣
µ(ω)

ν(ω)
− 1

∣∣∣∣ ν(ω) =
∑

ω∈Ω

|µ(ω) − ν(ω)| = 2 ‖µ− ν‖TV .

Sowohl der Abstand in totaler Variation als auch der Abstand in Lp werden im Laufe dieser

Arbeit immer wieder eine Rolle spielen. In dieser Arbeit messen wir den Abstand zwischen

W-Maßen in Separation, falls wir es nicht explizit anders angeben. Wir werden in Kapitel 3

eine Verbindung zwischen Separation und stark stationären Zeiten vorstellen und die darauf

aufbauende Dualitätstheorie nach [DF90b] und [Fil92] entwickeln. Damit werden wir dann

in Kapitel 5 unseren Hauptsatz über Separations-Cut-Off bei Geburts- und Todesprozessen

beweisen. Hier stellen wir zunächst die formale Definition des Cut-Offs, also des abrupten

Übergangs zur stationären Verteilung, vor.

2.3 Cut-Off

Es sei (Ωn, νn), n=1,2,..., eine Folge (endlicher) W-Räume, wobei jeder einzelne W-Raum mit

einer Folge von W-Maßen (µk
n), k = 0, 1, 2, ..., ausgestattet ist, so dass limk→∞D(µk

n, νn) = 0.
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2.3. Cut-Off

D erfülle die in Abschnitt 2.2 geforderten Eigenschaften. Später werden wir Familien ergodischer

Markov-Ketten bzw. Familien ergodischer Markov-Sprungprozesse auf einem Zustandsraum der

Form Ωn = {0, ..., mn} betrachten, welche zur Zeit k die Verteilung µk
n bzw. zur Zeit t die

Verteilung γt
n besitzen und gegen die stationäre Verteilung νn = ξ∗n konvergieren.

Definition 2.4. Eine Familie
(
Ωn, νn, (µ

k
n)k=0,1,2,...

)
n=1,2,...

zeigt einen Cut-Off (genauer: einen

D-Cut-Off ), falls eine Folge (tn)n≥1 positiver reeller Zahlen existiert, so dass für alle ǫ ∈ (0, 1)

folgendes gilt:

(a) lim
n→∞

D(µkn
n , νn) = 0, falls kn > (1 + ǫ)tn für alle genügend großen n.

(b) lim
n→∞

D(µkn
n , νn) = 1, falls kn < (1 − ǫ)tn für alle genügend großen n.

In der nächsten Definition wird mit der Folge (bn)n≥1 das Zeitfenster beschrieben, in dem der

Cut-Off stattfindet.

Definition 2.5. Gegeben Folgen (tn)n≥1 und (bn)n≥1 positiver reeller Zahlen, sagen wir, dass

die Familie
(
Ωn, νn, (µ

k
n)k=0,1,2,...

)
n=1,2,...

einen (tn, bn)-Cut-Off (genauer: einen (tn, bn)-D-Cut-Off ) zeigt, falls bn

tn

n→∞→ 0 gilt und

(a) f+(c)= lim sup
n→∞

D(µ⌈tn+cbn⌉
n , νn) erfüllt lim

c→∞
f+(c) = 0, (2.6)

(b) f−(c) = lim inf
n→∞

D(µ⌊tn−cbn⌋
n , νn) erfüllt lim

c→∞
f−(c) = 1. (2.7)

Falls statt der diskreten Familie (µk
n)k=0,1,2,... von W-Maßen eine stetige Familie (γt

n)t≥0 vor-

liegt, modifizieren wir die Definition in naheliegender Weise und definieren f+ und f− ohne

Gaussklammer.

Die Existenz eines (tn, bn)-Cut-Offs impliziert die Existenz eines Cut-Offs. Eine Abschwächung

des Cut-Off Begriffs ist der Pre-Cut-Off.

Definition 2.6. Die Familie (Ωn, νn, (µ
k
n)k=0,1,2,...)n=1,2,... zeigt einen Pre-Cut-Off (genauer:

einen D-Pre-Cut-Off ), falls eine Folge (tn)n≥1 positiver reeller Zahlen und Konstanten

0 < c ≤ 1 ≤ C <∞ existieren, so dass

(a) lim
n→∞

D(µkn
n , νn) −→ 0, falls kn ≥ Ctn,

(b) lim
n→∞

D(µkn
n , νn) −→ 1, falls kn ≤ ctn.
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Kapitel 2. Einführung in die Markov-Theorie in diskreter und stetiger Zeit

Bemerkung 2.3. (a) In den Definitionen 2.4 und 2.5 muss nicht limn→∞ tn = ∞ gelten. Dies

wird bei der zeitlichen Transformation am Anfang von Kapitel 5 von Bedeutung sein.

(b) Weist eine Familie (µt
n) mit stetigem Zeitparameter sowohl einen (sn)-Cut-Off als auch

einen (tn)-Cut-Off auf, so folgt sn ∼ tn (limn→∞
sn

tn
= 1). Im diskreten Fall gilt dieses Resultat

nur, falls limn→∞ sn = ∞. Vergleiche Lemma 5.1.
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3 Stark stationäre Zeiten und

Dualitätstheorie

Im Hauptsatz dieser Arbeit werden wir die Existenz eines Cut-Offs bei endlichen in 0 gest-

arteten Geburts- und Todesprozessen in stetiger Zeit nachweisen, wenn wir den Abstand zur

stationären Verteilung in Separation messen. Wir werden im ersten Abschnitt dieses Kapitels

zunächst den Separationsabstand mit stark stationären Zeiten in Verbindung bringen. In den

folgenden beiden Abschnitten werden wir mit der Dualitätstheorie von Diaconis und Fill ein

allgemeines Konstruktionsverfahren für stark stationäre Zeiten vorstellen, welches das Problem

der Separationsabstandsbestimmung in ein Absorptionszeit-Problem, also ein Ersteintrittszeit-

Problem, verwandelt.

3.1 Stark stationäre Zeiten und Separation

Sei M = (Mt)t≥0 eine diskrete Markov-Kette oder ein Markov-Sprungprozess mit Startpunkt

i0 und stationärer Verteilung ξ∗. Zur Erklärung des Begriffs der stark stationären Zeit stellen

wir zunächst den Begriff der randomisierten Stoppzeit vor. Eine randomisierte Stoppzeit für

M ist eine Stoppregel für M , so dass die Entscheidung zur Zeit t zu stoppen nur auf der Basis

der Entwicklung von M bis zur Zeit t und (möglicher) unabhängiger Randomisierung getroffen

wird. Wir formalisieren den Begriff der randomisierten Stoppzeit.

Sei (Ω,A, P ) ein gegebener W-Raum. Der Zustandsraum S sei abzählbar. F = (Ft)0≤t<∞ sei

eine Filtration von (Ω,A) und F∞ := σ 〈Ft : 0 ≤ t <∞〉 die kleinste σ-Algebra, welche jedes Ft

enthält, also die aymptotische Gesamtinformation des Beobachters.
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Kapitel 3. Stark stationäre Zeiten und Dualitätstheorie

Definition 3.1. Sei T : Ω → [0,∞]. Falls in obiger Situation eine Unter-σ-Algebra G von A

existiert, welche unabhängig von F∞ ist, so dass

{T ≤ t} ∈ σ 〈Ft,G〉 für alle 0 ≤ t <∞, (3.1)

so nennen wir T eine randomisierte Stoppzeit bezüglich (Ft)t≥0.

T ist demnach eine Stoppzeit bezüglich der Filtration (Ft,G)t≥0 von (Ω,A). Nun sind wir in

der Lage den Begriff der stark stationären Zeit zu definieren.

Definition 3.2. Sei F = (Ft)t≥0 eine Filtration des W-Raums (Ω,A, P ), bezüglich derer

M = (Mt)t≥0 die Markov-Eigenschaft besitze. M habe die eindeutige stationäre Verteilung ξ∗

und nehme Werte in (S,S) an. Sei T eine randomisierte Stoppzeit bezüglich F. Wir nennen T

eine stark stationäre Zeit (SST) für M , falls, bedingt unter {T < ∞}, der gestoppte Prozess

MT die stationäre Verteilung ξ∗ hat und unabhängig von T ist, also

P (T ≤ t,MT = y) = P (T ≤ t)ξ∗(y) (3.2)

für jedes 0 ≤ t <∞ und y ∈ S.

Satz 3.1. Die folgenden drei Aussagen sind für eine randomisierte Stoppzeit äquivalent:

(a) T ist eine stark stationäre Zeit.

(b) P (T ≤ t,Mt = y) = P (T ≤ t)ξ∗(y) für alle 0 ≤ t <∞ und y ∈ S.

(c) P (T ≤ t,Mu = y) = P (T ≤ t)ξ∗(y) für alle 0 ≤ t < u <∞ und y ∈ S.

Beweis. Zum Beweis siehe Proposition 2.4 in [Fil91].

Bemerkung 3.1. Aus technischen Gründen müssen wir bei der Definition der stark stationären

Zeit im zeitstetigen Fall die Vollständigkeit und Rechtsstetigkeit der Filtration F = (Ft)t≥0

fordern. Dabei bedeutet Rechtsstetigkeit in diesem Zusammenhang: F ist rechtsstetig, falls

Ft =
⋂

u>t Fu für alle 0 ≤ t < ∞, und Vollständigkeit, dass F0 und damit Ft, 0 ≤ t < ∞, das

System aller A-Nullmengen enthält. Vergleiche dazu [Fil91].

Nun kommen wir zu dem bereits angekündigten Satz, der Separation und stark stationäre

Zeiten miteinander verbindet. Dabei betrachten wir zunächst diskrete Markov-Ketten (DMK).
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3.1. Stark stationäre Zeiten und Separation

Satz 3.2. Sei M = (Mn)n≥0 eine positiv rekurrente DMK bezüglich einer Filtration (Fn)n≥0

mit Zustandsraum S, stationärer Verteilung ξ∗ und beliebiger Anfangsverteilung.

(a) Ist T eine stark stationäre Zeit für M , so gilt

s(n) ≤ P (T > n)

für alle n ≥ 0.

(b) Es existiert bei endlichem Zustandsraum eine stark stationäre Zeit T für M , so dass

s(n) = P (T > n)

für alle n ≥ 0. In diesem Fall heißt T minimale stark stationäre Zeit.

Beweis. Der Beweis ist im Anhang nachzulesen.

Der folgende Satz ist das stetige Pendant zu Satz 3.2.

Satz 3.3. Sei M = (Mt)t≥0 ein ergodischer, nichtexplodierender Markov-Sprungprozess be-

züglich einer Filtration (Ft)t≥0 mit Zustandsraum S, stationärer Verteilung ξ∗ und beliebiger

Anfangsverteilung.

(a) Ist T eine stark stationäre Zeit für M , so gilt

s(t) ≤ P (T > t)

für alle 0 ≤ t <∞.

(b) Es existiert bei endlichem Zustandsraum eine stark stationäre Zeit T für M , so dass

s(t) = P (T > t)

für alle 0 ≤ t <∞ gilt.

Beweis. Der Beweis ist das Hauptergebnis von [Fil91].

Bemerkung 3.2. Verzichtet man bei Satz 3.2(b) auf die Voraussetzung der Endlichkeit des

Zustandsraums, kann man die Existenz einer minimalen stark stationären Zeit für gewisse

Klassen von Startverteilungen zeigen, wie zum Beispiel in [Als05a] ausgeführt wird. Eine analoge

Verallgemeinerungsmöglichkeit von Satz 3.3(b) auf abzählbar unendliche Zustandsräume wird

vermutet, der Nachweis ist aber noch offen.
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Kapitel 3. Stark stationäre Zeiten und Dualitätstheorie

3.2 Dualitätstheorie in diskreter Zeit

3.2.1 Existenz und Eigenschaften der stark stationären dualen Kette

Die Ergebnisse des vorangegangenen Abschnitts erlauben uns eine Bestimmung des Separa-

tionsabstands durch minimale stark stationäre Zeiten, also solcher reellwertiger nichtnegati-

ver Zufallsvariablen T , für die s(t) = P (T > t) gilt. Folglich befassen wir uns nun mit der

Konstruktion von SST, insbesondere minimaler SST. Dazu stellen wir eine vereinigende Theo-

rie für die Konstruktion von SST vor, welche auf Arbeiten von Diaconis und Fill zurückgeht

(siehe [Fil92] und [DF90b]). Diese Dualitätstheorie liefert einen probabilistischen Ansatz für

die Beschränkung der Konvergenzgeschwindigkeit gegen die stationäre Verteilung, welche zu

Ergebnissen führt, die zum Teil nicht mit anderen Techniken zur Beschränkung der Konver-

genzrate wie Kopplung, Fourieranalysis oder Eigenwertuntersuchungen erzielt werden können.

Wir konstruieren dazu einen sogenannten stark stationären dualen Prozess (SSD) für unsere

zugrundeliegende Markov-Kette (resp. unseren MSP), dessen Zeit zur Absorption eine SST für

die ursprüngliche Markov-Kette liefert. Wir transformieren somit das Problem der Bestimmung

einer stark stationären Zeit in ein Ersteintrittszeitproblem. Darüber hinaus geben wir Krite-

rien für die Minimalität der so erhaltenen SST an und betrachten speziell die uns in erster

Linie interessierende Klasse der Geburts- und Todesprozesse, für die der SSD eine besonders

einfache Gestalt hat. In dieser Klasse liefert uns die Dualitätstheorie den genauen Separations-

abstand. Aus beweistechnischen Gründen und wegen der historischen Entwicklung betrachten

wir zunächst diskrete Markov-Ketten, bevor wir Markov-Sprungprozesse behandeln.

Stark stationäre Zeiten und Dualität

M ∼ (λ,P ) stehe abkürzend dafür, dass M = (Mn)n≥0 eine zeithomogene Markov-Kette mit

Startverteilung λ und Übergangsfunktion P ist. Der zugehörige Zustandsraum S sei abzählbar

und der Zeitparameter n diskret. Sei nun M ∼ (λ,P ) eine ergodische Markov-Kette auf einem

W-Raum (Ω,A, P ) mit stationärer Verteilung ξ∗.

Definition 3.3. Sei X∗ = (X∗
n)n≥0 ein stochastischer Prozess auf (Ω,A, P ) mit Werten in

einem diskreten Zustandsraum S∗. Die folgenden drei Bedingungen seien erfüllt:
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3.2. Dualitätstheorie in diskreter Zeit

(a) Für jedes n ≥ 0 gilt

X∗
n und die Kette M sind bedingt unabhängig unter M0,M1, ...,Mn. (3.3)

(b) Es existiert ein Zustand ∞ ∈ S∗, so dass

P (Mn ∈ A|X∗
0 = x∗0, X

∗
1 = x∗1, ..., X

∗
n−1 = x∗n−1, X

∗
n = ∞) = ξ∗(A) (3.4)

für alle n ≥ 0, A ⊂ S und jeden möglichen Wert von (X∗
0 , ..., X

∗
n) der Form

(x∗0, ..., x
∗
n−1, x

∗
n = ∞).

(c) Für den Zustand ∞ gilt:

∞ ist ein absorbierender Zustand für X∗, (3.5)

also X∗
m = ∞ ⇒ X∗

k = ∞ für alle k ≥ m.

Dann heißt X∗ stark stationärer dualer Prozess für M .

Der nächste Satz zeigt uns, wie wir einen stark stationären dualen Prozess nutzen können, um

eine stark stationäre Zeit zu erhalten. Er zeigt ebenfalls umgekehrt, dass prinzipiell jede stark

stationäre Zeit aus einer solchen Konstruktion resultiert.

Satz 3.4. (a) Sei X∗ ein stark stationärer dualer Prozess zu M . Sei T = T ∗
∞ die Zeit bis zur

Absorption in ∞ für X∗. Dann ist T eine stark stationäre Zeit für M.

(b) Sei T umgekehrt eine stark stationäre Zeit für M . Sei S∗ = {0, 1, ...} ∪ {∞} und

X∗
n =




n, falls T > n,

∞, falls T ≤ n.

(3.6)

Dann ist X∗ ein stark stationärer dualer Prozess für M und es gilt T = T ∗
∞.

Beweis. (a) T = T ∗
∞ ist nach (3.3) eine randomisierte Stoppzeit für M . Für jedes n ≥ 0 und

A ⊂ S gilt nach (3.4)

P (Mn ∈ A|T = n) = P (Mn ∈ A|X∗
0 6= ∞, ..., X∗

n−1 6= ∞, X∗
n = ∞) = ξ∗(A).

(b) Die bedingte Unabhängigkeitsbedingung folgt, weil T eine SST ist. ∞ ist ein absorbierender

Zustand nach Definition von X∗. Die möglichen Werte von (X∗
0 , ..., X

∗
n) sind von der Form

(0,..., l-1,∞,...,∞) mit 0 ≤ l ≤ n+ 1. Falls 0 ≤ l ≤ n, folgt

P (Mn ∈ A|X∗
0 = 0, ..., X∗

l−1 = l − 1, X∗
l = ∞, ..., X∗

n = ∞) = P (Mn ∈ A|T = l) = ξ∗(A)
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Kapitel 3. Stark stationäre Zeiten und Dualitätstheorie

für alle A ⊂ S. Damit ist (3.4) nachgewiesen.

Insgesamt haben wir also gezeigt, dass X∗ ein SSD für M ist. T = T ∗
∞ folgt direkt aus (3.6).

In diesem Satz wird also die Einführung des stark stationären dualen Prozesses gerechtfertigt,

denn zum einen wird gezeigt, wie man aus dem dualen Prozess eine stark stationäre Zeit für

die zugrundeliegende Kette erhält und zum anderen wird bewiesen, dass jede stark stationäre

Zeit aus der Konstruktion eines solchen dualen Prozesses resultiert.

Im Beweis der Rückrichtung wird ein dualer Prozess X∗ aus einer stark stationären Zeit T

konstruiert ohne Berücksichtigung der Verteilungen P (Mn = ·|X∗
0 = x∗0, ..., X

∗
n = x∗n), außer

im Fall x∗n = ∞. Diese Konstruktion ist nicht eindeutig, es gibt im Allgemeinen viele stark

stationäre duale Prozesse zu einer stark stationären Zeit. Die Benutzung eines dualen Prozesses

bietet den Vorteil, dass Kenntnisse über die Verteilung des dualen Prozesses vor der Absorption

herangezogen werden können, um bessere Schranken für den Abstand in Totalvariation als den

Separationsabstand zu finden. Einzelheiten dazu finden sich in Abschnitt 2.5 in [DF90b].

Als erstes Beispiel für einen stark stationären dualen Prozess erinnern wir an den im Anhang

nachlesbaren Beweis von Satz 3.2 und die dortige Konstruktion einer minimalen SST. Wir

beschreiben diese Konstruktion in der Terminologie des dualen Prozesses. SeiM = (Mn)n≥0 eine

positiv rekurrente DMK mit stationärer Verteilung ξ∗. s(n) bezeichne den Separationsabstand

von M = (Mn)n≥0 zur stationären Verteilung ξ∗ zur Zeit n. Gegeben M0 = x0, setze

M∗
0 = ∞ mit Wahrscheinlichkeit (1 − s(0))ξ∗(x0)/λ(x0), und (3.7)

M∗
0 = 0 mit Wahrscheinlichkeit 1 − P (M∗

0 = ∞), (3.8)

mit von M unabhängiger Randomisierung. Induktiv definieren wir M∗ folgendermaßen: An-

genommen M0 = x0, ...,Mn−1 = xn−1 sind gegeben und M∗
0 = x∗0, ...,M

∗
n−1 = x∗n−1 wurden

festgelegt. Gegeben Mn = xn, setze

M∗
n = ∞ falls M∗

n−1 = ∞, und (3.9)

M∗
n = ∞ mit Wahrscheinlichkeit

s(n− 1) − s(n)

s(n− 1) − s(n, xn)
, falls M∗

n−1 6= ∞. (3.10)

Dann ist M∗ nach dem Beweis von Satz 3.2 ein stark stationärer dualer Prozess für M und die

erhaltene stark stationäre Zeit ist minimal für M .
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3.2. Dualitätstheorie in diskreter Zeit

Diese Konstruktion eines SSDs von Aldous und Diaconis benötigt die Separationsfunktion als

Input und damit die Kenntnis der Verteilung der Markov-Kette zu jeder Zeit n. In aller Regel

ist der Grund für die Konstruktion stark stationärer Zeiten aber gerade eine a priori nicht

bekannte Separationsfunktion s mittels Satz 3.2 zu beschränken. Also ist diese Konstruktion

nur von theoretischem Interesse. In Abschnitt 3.2.2 geben wir eine praktische Konstruktion

eines stark stationären dualen Prozesses für eine Vielzahl von Klassen von Markov-Ketten,

welche auch die Klasse der Geburts- und Todesprozesse umfasst.

Bemerkung 3.3. Im Allgemeinen ist ein stark stationärer dualer Prozess nicht notwendi-

gerweise markovsch. Der duale Prozess aus dem vorangegangenen Beispiel besitzt jedoch die

Eigenschaft, dass sowohl der bivariate Prozess (M∗,M) = (M∗
n ,Mn)n≥0 als auch der duale Pro-

zess M∗ Markov-Ketten sind. Startverteilung λ∗ und Übergangsmatrix P ∗ für M∗ sind gegeben

durch

λ∗(0) = s(0) = 1 − λ∗(∞),

P ∗(n− 1, n) = s(n)/s(n− 1) = 1 − P ∗(n− 1,∞), n = 1, 2, ...,

P ∗(∞,∞) = 1.

Ein Übergangskern —im Folgenden auch Link genannt— zwischen M und M∗ kann folgender-

maßen definiert werden:

Λ(x∗, x) := P (Mn = x|M∗
0 = x∗0,M

∗
1 = x∗1, ...,M

∗
n−1 = x∗n−1,M

∗
n = x∗).

Dieser hängt im Beispiel nicht von x∗0, x
∗
1, ..., x

∗
n−1 ab und ist definiert durch

Λ(n, ·) = [P (Mn = ·) − (1 − s(n))ξ∗(·)]/s(n), n = 0, 1, ...,

Λ(∞, ·) = ξ∗.

Nun werden wir allgemein versuchen, zu gegebener Markov-Kette M , einen stark stationären

dualen Prozess M∗ zu konstruieren, welcher selber eine Markov-Kette ist und (M∗,M) zu

einer bivariaten Markov-Kette macht. Zunächst werden wir dazu die parallele Konstruktion

von (M∗,M) besprechen. Sobald wir geklärt haben, unter welchen Umständen eine bivariate

Markov-Kette mit den gewünschten Eigenschaften existiert, werden wir zeigen, wie man M∗

aus einer Realisierung von M konstruiert. Die Bedingungen für die Existenz einer bivariaten
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Kapitel 3. Stark stationäre Zeiten und Dualitätstheorie

Markov-Kette mit den Koordinatenprozessen M und M∗ liefert das Algebraische Dualitäts-

theorem.

Seien P und P ∗ stochastische Matrizen auf diskreten Mengen S bzw. S∗ und λ ∈ W(S)

bzw. λ∗ ∈ W(S∗). Λ sei ein Link zwischen S und S∗. Wir suchen eine bivariate Markov-Kette

(M∗,M)=(M∗
n ,Mn)n≥0, so dass M eine zeithomogene, ergodische Markov-Kette mit Startver-

teilung λ und Übergangsmatrix P ist, M∗ eine zeithomogene, ergodische Markov-Kette mit

Startverteilung λ∗ und Übergangsmatrix P ∗ ist, und M mit M∗ durch Λ folgendermaßen ver-

knüpft ist:

P (Mn = ·|M∗
0 = x∗0, ...,M

∗
n = x∗n) = Λ(x∗n, ·). (3.11)

Dies impliziert

P (Mn = ·|M∗
n = x∗n) = Λ(x∗n, ·). (3.12)

Die Problemstellung ist motiviert durch das Ziel einen stark stationären dualen Prozess im

Sinne von Definition 3.3 zu konstruieren, M∗ wird später der duale Prozess von M sein.

Falls (3.3) erfüllt sein soll, muss notwendigerweise gelten

M∗
n−1 und Mn sind bedingt unabhängig unter Mn−1. (3.13)

Nach (3.11) muss außerdem gelten

M∗
n−1 und Mn sind bedingt unabhängig unter M∗

n. (3.14)

Folgendes kommutatives Diagramm dient dem Verständnis der beiden bedingten Unabhängig-

keitsbedingungen in (3.13) und (3.14).

M∗
n−1

P ∗

//

Λ
��

M∗
n

Λ
��

Mn−1 P
// Mn

Das Algebraische Dualitätstheorem gibt für die Existenz einer bivariaten Markov-Kette, welche

obige Bedingungen erfüllen soll, gewisse Anforderungen an die Beziehungen zwischen λ, λ∗,P ,P ∗

und Λ. Sind diese erfüllt, konstruieren wir im Beweis eine solche bivariate Markov-Kette. Um

Probleme mit Nullereignissen zu vermeiden, nehmen wir im Folgenden an, dass jedes x∗ ∈ S∗

erreichbar ist, d.h. P (M∗
n = x∗) > 0 für ein n ≥ 0.
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3.2. Dualitätstheorie in diskreter Zeit

Satz 3.5. (Algebraisches Dualitätstheorem) Seien (λ,P ) auf S, (λ∗,P ∗) auf S∗ und eine

Übergangsmatrix Λ von S∗ nach S gegeben. Es existiert genau dann eine bivariate Markov-

Kette (M∗,M) mit M∗ ∼ (λ∗,P ∗) und M ∼ (λ,P ), welche die bedingten Verteilungen (3.12)

besitzt und die Unabhängigkeitsbedingungen (3.13) und (3.14) erfüllt, wenn zwischen (λ∗,P ∗)

und (λ,P ) bezüglich des Links Λ die beiden folgenden algebraischen Dualitätsbedingungen erfüllt

sind:

λ = λ∗Λ, (3.15)

ΛP = P ∗Λ. (3.16)

Beweis. Nehmen wir zunächst an, dass (M∗,M) mit den gewünschten Eigenschaften existiert.

Wir zeigen die Gültigkeit von (3.15) und (3.16). Zunächst zu (3.15), also λ = λ∗Λ:

λ(x) = P (M0 = x) =
∑

x∗∈S∗

P (M∗
0 = x∗)P (M0 = x|M∗

0 = x∗) =
∑

x∗∈S∗

λ∗(x∗)Λ(x∗, x).

Für die letzte Gleichheit haben wir (3.12) genutzt. Damit gilt also λ = λ∗Λ.

Nun zeigen wir (3.16), also ΛP = P ∗Λ. Dazu bedingen wir P (Mn = y|M∗
n−1) einmal unter

Mn−1 und einmal unter M∗
n. Damit ergibt sich

P (Mn = y|M∗
n−1 = x∗) =

∑

x∈S

P (Mn−1 = x|M∗
n−1 = x∗)P (Mn = y|M∗

n−1 = x∗,Mn−1 = x)

=
∑

y∗∈S∗

P (M∗
n = y∗|M∗

n−1 = x∗)P (Mn = y|M∗
n−1 = x∗,M∗

n = y∗).

Wir sehen mit (3.12) und (3.13), dass in der ersten Summe der Eintrag (x∗, y) von ΛP steht.

Mit (3.12) und (3.14) ergibt sich in der zweiten Summe der Eintrag (x∗, y) von P ∗Λ. Damit ist

ΛP = P ∗Λ gezeigt.

Nun zur Rückrichtung. Wir werden, gegeben die Dualitätsgleichungen (3.15) und (3.16), eine

bivariate Markov-Kette auf S := ((x∗, x) : Λ(x∗, x) > 0) angeben, welche die Bedingungen

erfüllt. Als Startverteilung wählen wir

λ(x∗, x) = λ∗(x∗)Λ(x∗, x) (3.17)

und als Übergangsfunktion

P((x∗, x), (y∗, y)) =





P (x, y)P ∗(x∗, y∗)Λ(y∗, y)/∆(x∗, y), falls ∆(x∗, y) > 0,

0, sonst.
(3.18)
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Hierbei ist ∆ definiert als

∆(x∗, y) :=
∑

y∗∈S∗

P ∗(x∗, y∗)Λ(y∗, y) =
∑

x∈S

Λ(x∗, x)P (x, y), (3.19)

also ∆ = P ∗Λ = ΛP . Nachrechnen zeigt, dass (M∗,M) ∼ (λ,P) die Bedingungen erfüllt.

Bemerkung 3.4. Die Kette (M∗,M) ∼ (λ,P) erfüllt (3.11) und es gilt

P (M∗
0 = x∗0|M0 = x0) =

P (M∗
0 = x∗0,M0 = x0)

P (M0 = x0)
=
λ∗(x∗0)Λ(x∗0, x0)

λ(x0)
. (3.20)

Unter der Voraussetzung ∆(x∗n−1, xn) > 0, gilt

P (M∗
n = x∗n|M∗

0 = x∗0,M0 = x0; ...;M
∗
n−1 = x∗n−1,Mn−1 = xn−1;Mn = xn)

=
P ∗(x∗n−1, x

∗
n)Λ(x∗n, xn)

∆(x∗n−1, xn)
, n ≥ 1.

(3.21)

Außerdem gilt wegen (3.13)

P (Mn = xn|M∗
0 = x∗0,M0 = x0; ...;M

∗
n−1 = x∗n−1,Mn−1 = xn−1) = P (xn−1, xn), (3.22)

d.h., dass M bezüglich (σ(Mk,M
∗
k )k≤n)n≥0 die Markov-Eigenschaft besitzt.

Konstruktion des dualen Prozesses

Seien (λ,P ) auf S, (λ∗,P ∗) auf S∗ und ein Link Λ von S∗ nach S gegeben wie im Algebrai-

schen Dualitätstheorem. Angenommen, die Dualitätsbedingungen λ = λ∗Λ und ΛP = P ∗Λ

sind erfüllt. Im Beweis des Algebraischen Dualitätstheorems haben wir gezeigt, wie man eine

bivariate Kette (M∗,M) mit M ∼ (λ,P ) und M∗ ∼ (λ∗,P ∗) konstruiert, so dass (3.11) erfüllt

ist. Nun klären wir die Frage, wie man aus einer Realisierung von M den dualen Prozess M∗

konstruiert, welcher uns die gesuchte stark stationäre Zeit für M mittels Satz 3.4 liefert.

Nehmen wir also an, dass eine Realisierung der Kette M ∼ (λ,P ) vorliegt. Wir möchten aus

jedem Pfad von M einen Pfad von M∗ konstruieren. Dabei konstruieren wir M∗ zeitgleich zur

Entwicklung von M und es soll (3.3) gelten. Unter der Voraussetzung, dass M eine ergodische

Markov-Kette mit stationärer Verteilung ξ∗ ist und M∗ den absorbierenden Zustand ∞ mit

Λ(∞, ·) = ξ∗ besitzt, sind wir in der Lage die konstruierte Kette M∗ als dualen Prozess zu

M zu nutzen, dessen Absorptionszeit eine stark stationäre Zeit für M ist. Sollte der absorbie-

rende Zustand ∞ nicht bereits existieren, kann man ihn zu S∗ adjungieren und λ∗(∞) = 0,
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P ∗(∞,∞) = 1 sowie P ∗(∞, x∗) = P ∗(x∗,∞) = 0 für x∗ 6= ∞ setzen. Wir nennen einen stark

stationären dualen Prozess, welcher (3.11) erfüllt, einen Λ-verlinkten dualen Prozess. Explizit

konstruiert man M∗ mit Blick auf (3.20) und (3.21) in Bemerkung 3.4 mittels einer algorith-

mischen Form des Satzes von Bayes. Es gilt

λ(·) =
∑

x∗

0
∈S∗

λ∗(x∗0)Λ(x∗0, ·).

λ ist also eine Mischung der Verteilungen Λ(x∗0, ·). Wir möchten nun, nachdem wir mit der

Verteilung λ ein M0 gewählt haben, ein M∗
0 erzeugen, so dass

P (M0 = ·|M∗
0 = x∗0) = Λ(x∗0, ·).

Der Satz von Bayes liefert die folgende explizite Konstruktion:

Wenn M0 = x0 beobachtet wird, dann setze

M∗
0 = x∗0 mit Wahrscheinlichkeit λ∗(x∗0)Λ(x∗0, x0)/λ(x0). (3.23)

Induktiv setzen wir diese Konstruktion fort. Angenommen M0 = x0,..., Mn−1 = xn−1 wurden

beobachtet und entsprechend wurden M∗
0 = x∗0,..., M

∗
n−1 = x∗n−1 gesetzt. Wenn nun Mn = xn

beobachtet wird, setze

M∗
n = x∗n mit Wahrscheinlichkeit P ∗(x∗n−1, x

∗
n)Λ(x∗n, xn)/∆(x∗n−1, xn). (3.24)

Dabei ist wie vorher ∆ = P ∗Λ. Wir erhalten mit der Konstruktion (3.17) und (3.18), dass

(M∗,M) ∼ (λ,P). Wir haben also, gegeben die algebraischen Dualitätsbedingungen, einen

stark stationären dualen Prozess M∗ ∼ (λ∗,P ∗) konstruiert, welcher mit M über Λ verlinkt

ist. Mit Satz 3.4 erhalten wir eine stark stationäre Zeit für M . Besonders interessieren uns

minimale stark stationäre Zeiten, also solche Zeiten T , bei denen der Separationsabstand zur

Zeit n genau gleich der Wahrscheinlichkeit ist, dass der Prozess erst nach n mit T gestoppt

wird, also dass

s(n) = P (T > n)

gilt. Dies motiviert die folgende Definition.

Definition 3.4. Sei X∗ ein stark stationärer dualer Prozess zu M . Sei T = T ∗
∞ die zugehörige

stark stationäre Zeit. Falls T eine minimale stark stationäre Zeit ist, nennen wir den dualen

Prozess X∗ scharf.
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Bemerkung 3.5. Wann ist also der von uns in (3.23) und (3.24) konstruierte duale Prozess M∗

scharf? Es gilt P (Mn = ·) = P (M∗
n = ·)Λ. Hiermit und mit der Definition der Separation sieht

man, dass s(n) = P (T ∗
∞ > n) gilt, wenn (bei endlichem S genau dann, wenn) ein x ∈ S mit der

Eigenschaft existiert, dass für jedes S∗ ∋ x∗ 6= ∞ entweder P (M∗
n = x∗) = 0 oder Λ(x∗, x) = 0

gilt. Ist dies gegeben, kann wegen der Dualitätsbedingung P (Mn = ·) = P (M∗
n = ·)Λ der

Separationsabstand von x nur für x∗ = ∞ kleiner 1 sein. Dann folgt aber

1 − P (Mn = x)

ξ∗(x)
= 1 − P (M∗

n = ∞)Λ(∞, x)

ξ∗(x)
= 1 − P (M∗

n = ∞) = 1 − P (T ≤ n) = P (T > n).

Damit ist T eine minimale stark stationäre Zeit und der duale Prozess M∗ scharf.

3.2.2 Dualität bei Ketten mit monotonem Likelihoodquotienten

Bei der bisherigen Konstruktion stark stationärer dualer Prozesse haben wir keine Einschrän-

kungen bezüglich der Wahl von S∗,P ∗, λ∗ und Λ getroffen. Nur die Beziehungen ΛP = P ∗Λ

sowie λ = λ∗Λ mussten nach dem Algebraischen Dualitätstheorem erfüllt sein.

Die nun folgenden Restriktionen bei der Wahl von S∗ und Λ erlauben uns weitergehende Aussa-

gen über den dualen Prozess zu treffen. Der Zustandsraum S∗ des dualen Prozesses bestehe aus

Teilmengen des Zustandsraums S der zugrundeliegenden Markov-Kette M und Λ(x∗, ·) sei die

bei x∗ abgeschnittene stationäre Verteilung ξ∗ von M . Des Weiteren werden wir voraussetzen,

dass die Kette M eine noch zu präzisierende Monotonieeigenschaft besitzt.

Sei S eine endliche, linear geordnete Menge. Es kann also bei 2 Elementen aus S eindeutig

bestimmt werden, welches das größere und welches das kleinere ist. Sei M ∼ (λ,P ) eine ergodi-

sche Markov-Kette mit Zustandsraum S = {0, 1, ..., d} und stationärer Verteilung ξ∗. Sei λ(x)
ξ∗(x)

monoton in x, bei λ = δ0 ist dies offensichtlich erfüllt. Dann ist die Startverteilung λ∗ der von

uns in diesem Abschnitt konstruierten, mengenwertigen dualen Kette (also der dualen auf dem

aus Teilmengen von S bestehenden Zustandsraum S∗) auf Intervalle der Form {0, ..., z∗} mit

z∗ ∈ S konzentriert. Ein analoges Resultat ergibt sich für die dualen Übergänge P ∗ bei einer

geeigneten Monotoniebedingung an P . Durch Identifikation der Mengen der Form {0, ..., z∗}
mit ihren rechten Endpunkten lässt sich der duale Prozess so interpretieren, dass er Werte auf

dem Zustandsraum S annimmt, also auf dem gleichen Zustandsraum wie M lebt. Bei Geburts-
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3.2. Dualitätstheorie in diskreter Zeit

und Todesprozessen ergeben sich weitere Vereinfachungen.

Wir werden nun zunächst eine notwendige und hinreichende Bedingung dafür herleiten, dass

(λ,P ) bezüglich des Links Λ ein algebraisch duales Paar (λ∗,P ∗) besitzt mit Zustandsraum

S∗, der aus Teilmengen von S der Form {0, ..., z∗} besteht. Der Übergangskern Λ sei hierbei

die Familie der abgeschnittenen stationären Verteilungen

Λ(x∗, x) = I{0,...,x∗}(x)ξ
∗(x)/H(x∗), x, x∗ ∈ S. (3.25)

Es bezeichnet

H(x∗) :=
∑

x∈S:x≤x∗

ξ∗(x), x∗ ∈ R, (3.26)

die kumulierte Verteilungsfunktion für die stationäre Verteilung ξ∗.

Sobald wir algebraische Dualität vorliegen haben, können wir vermöge der allgemeinen Kon-

struktion (3.23) und (3.24) einen Λ-verlinkten dualen Prozess M∗ zu M konstruieren. Wir

werden zeigen, dass dieser duale Prozess scharf ist im Sinne von Definition 3.4.

Nach dem Algebraischen Dualitätstheorem müssen für die algebraische Dualität die Dualitäts-

bedingungen λ = λ∗Λ und ΛP = P ∗Λ erfüllt sein. Ausgeschrieben bedeutet das für die erste

der beiden Bedingungen

λ(x) =
∑

x∗≥x

λ∗(x∗)ξ∗(x)/H(x∗), x ∈ S,

umgeformt bedeutet das:

λ(x∗) = H(x∗)

[
λ(x∗)

ξ∗(x∗)
− λ(x∗ + 1)

ξ∗(x∗ + 1)

]
, x∗ ∈ S, (3.27)

mit der Konvention λ(d+1)
ξ∗(d+1)

= 0. Die Lösung ist nichtnegativ genau dann, wenn der Klammeraus-

druck in (3.27) nichtnegativ ist, also genau dann, wenn der Likelihoodquotient nicht wachsend

in x ist.

Die Beziehung ΛP = P ∗Λ liefert

∑

x≤x∗

ξ∗(x)P (x, y)/H(x∗) =
∑

y∗≥y

P ∗(x∗, y∗)ξ∗(y)/H(y∗),

das heißt

⇔
(
∑

x≤x∗

ξ∗(x)P (x, y)/ξ∗(y)

)
/H(x∗) =

∑

y∗≥y

P ∗(x∗, y∗)/H(y∗).
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Zur Interpretation sei

P̃ = ξ∗(x)P (x, y)/ξ∗(y), x, y ∈ S, (3.28)

der zeitlich invertierte Prozess zu P . Sei M̃ = (M̃n)n≥0 eine Markov-Kette mit Startverteilung

λ̃ und Übergangsfunktion P̃ . Falls M̃ deterministisch in y gestartet wird, also λ̃(y) = 1 gilt,

schreiben wir Py für das W-Maß P . Die Beziehung ΛP = P ∗Λ sagt uns dann

Py(M̃1 ≤ x∗)/H(x∗) =
∑

y∗≥y

P ∗(x∗, y∗)/H(y∗), x∗, y ∈ S. (3.29)

Elementare Umformungen liefern den zu (3.29) äquivalenten Ausdruck

P ∗(x∗, y∗) =
H(y∗)

H(x∗)

[
Py∗(M̃1 ≤ x∗) − Py∗+1(M̃1 ≤ x∗)

]
x∗, y∗ ∈ S. (3.30)

Dabei haben wir Pd+1(M̃1 ≤ x∗) = 0 für alle x∗ ∈ S gesetzt. Ergebnis ist, dass ΛP = P ∗Λ

genau dann eine nichtnegative Lösung besitzt, wenn Py∗(M̃1 ≤ x∗) in y∗ fällt für jedes feste x∗.

In diesem Fall ist P ∗ eindeutig gegeben durch (3.30). Die Eindeutigkeit folgt aus der Dualitäts-

bedingung ΛP = P ∗Λ und der Tatsache, dass Λ als untere Dreiecksmatrix mit strikt positiven

Einträgen auf der Diagonalen invertierbar ist, also gilt P ∗ = ΛPΛ−1.

Bemerkung 3.6. Die Bezeichung (stochastische) Monotonie für Py(M̃1 ≤ x), falls Py(M̃1 ≤ x)

in y fällt für jedes x, geht auf Daley zurück.

Wir erhalten folgendes Anologon zum Algebraischen Dualitätstheorem.

Satz 3.6. Sei M eine irreduzible und aperiodische Markov-Kette auf S = {0, ..., d} mit Start-

verteilung λ und Übergangsfunktion P . ξ∗ bezeichne die stationäre Verteilung und H die kumu-

lierte Verteilungsfunktion von ξ∗. Der zeitlich invertierte Prozess zu P sei P̃ (x, y) = ξ∗(y)P (y,x)
ξ∗(x)

.

Dann hat (λ,P ) genau dann ein algebraisch duales Paar (λ∗,P ∗) auf S∗ = S bezüglich des

Links Λ(x∗, x) = I{0,...,x∗}(x)ξ
∗(x)/H(x∗), wenn

λ(x)/ξ∗(x) monoton fallend in x (3.31)

und

P̃ stochastisch monoton ist. (3.32)

In diesem Fall ist das algebraisch duale Paar (λ∗,P ∗) eindeutig bestimmt durch

λ(x∗) = H(x∗)

[
λ(x∗)

ξ∗(x∗)
− λ(x∗ + 1)

ξ∗(x∗ + 1)

]
, x∗ ∈ S, (3.33)
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und

P ∗(x∗, y∗) =
H(y∗)

H(x∗)

[
Py∗(M̃1 ≤ x∗) − Py∗+1(M̃1 ≤ x∗)

]
, x∗, y∗ ∈ S. (3.34)

Bemerkung 3.7. Der Satz gibt uns also bei den vorgenommenen Restriktionen bezüglich

der Wahl von Λ und S∗ als notwendiges und hinreichendes Kriterium für die Existenz eines

algebraisch dualen Paars die Monotoniebedingungen (3.31) und (3.32). Sind diese erfüllt, liefert

uns der Satz mit (3.33) und (3.34) die Gestalt der algebraisch dualen Paars.

Analog zur Vorgehensweise im vorangegangenen Abschnitt 3.2.1 konstruieren wir nun pfad-

weise einen Λ-verlinkten stark stationären dualen Prozess M∗ zu einer Kette mit monotonem

Likelihoodquotienten M ∼ (λ,P ). Zunächst betrachten wir den Induktionsschritt. Mit (3.34)

und (3.25) erhalten wir für den Zähler in (3.24)

P ∗(x∗n−1, x
∗
n)Λ(x∗n, xn)

=
H(x∗n)

H(x∗n−1)H(x∗n)

[
Px∗

n
(M̃1 ≤ x∗n−1) − Px∗

n+1(M̃1 ≤ x∗n−1)
]
I{0,...,x∗

n}(xn)ξ∗(xn)

=
ξ∗(xn)

H(x∗n−1)

[
Px∗

n
(M̃1 ≤ x∗n−1) − Px∗

n+1(M̃1 ≤ x∗n−1)
]
I{0,...,x∗

n}(xn). (3.35)

Für den Nenner in (3.24) ergibt sich

∆(x∗n−1, xn) =
∑

y∗∈S

P ∗(x∗n−1, y
∗)Λ(y∗, xn)

=
∑

y∗∈S

H(y∗)

H(x∗n−1)H(y∗)

[
Py∗(M̃1 ≤ x∗n−1) − Py∗+1(M̃1 ≤ x∗n−1)

]
I{0,...,y∗}(xn)ξ∗(xn)

=
ξ∗(xn)

H(x∗n−1)

∑

y∗∈S

[
Py∗(M̃1 ≤ x∗n−1) − Py∗+1(M̃1 ≤ x∗n−1)

]
I{0,...,y∗}(xn)

=
ξ∗(xn)

H(x∗n−1)
Pxn(M̃1 ≤ x∗n−1). (3.36)

Also erhalten wir in (3.34) durch Einsetzen von (3.36) und (3.35) und anschliessendes Kürzen

P (M∗
n = x∗n|M∗

n−1 = x∗n−1,Mn = xn)

=

[
Px∗

n
(M̃1 ≤ x∗n−1) − Px∗

n+1(M̃1 ≤ x∗n−1)
]
I{0,...,x∗

n}(xn)

Pxn(M̃1 ≤ x∗n−1)
. (3.37)
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Nun zur Startverteilung von M∗, also zu (3.23). Mit (3.25) und (3.33) erhalten wir

P (M∗
0 = x∗0|M0 = x0)

=
H(x∗0)ξ

∗(x0)

H(x∗0)λ(x0)

[
λ(x∗0)

ξ∗(x∗0)
− λ(x∗0 + 1)

ξ∗(x∗0 + 1)

]
I{0,...,x∗

0
}(x0)

=

[
λ(x∗

0
)

ξ∗(x∗

0
)
− λ(x∗

0
+1)

ξ∗(x∗

0
+1)

]
I{0,...,x∗

0
}(x0)

λ(x0)
ξ∗(x0)

. (3.38)

Bemerkung 3.8. Der in (3.37) und (3.38) konstruierte stark stationäre duale Prozess M∗ ist

scharf im Sinne von Definition 3.4. Dies lässt sich mit der Bemerkung 3.5 einsehen. Der einzige

Zustand, der so groß ist wie y = d ∈ S, ist y∗ = d. Da aber Λ(x∗, ·) = ξ∗ genau dann gilt, wenn

x∗ = d, entspricht y∗ = d der Rolle von ∞ aus der Definition eines stark stationären dualen

Prozesses. Es gilt also Λ(y∗, d) = 0 für alle y∗ 6= ∞ und mit der gleichen Argumentation wie in

Bemerkung 3.5 folgt die Schärfe.

Nun werden wir die Klasse der Markov-Ketten vorstellen, für die wir den Separations-Cut-Off

beweisen.

3.2.3 Geburts- und Todesprozesse

Ein Geburts- und Todesprozess in diskreter Zeit ist eine Markov-Kette M auf einem W-Raum

(Ω,A, P ) mit Werten in dem Zustandsraum S = {0, 1, ..., d} (endlicher Fall) oder S = {0, 1, ...}
(abzählbar unendlicher Fall), welche nur von einem Zustand in einen benachbarten Zustand

springen oder im gegenwärtigen Zustand verharren kann. Wir behandeln nur den endlichen Fall

und setzen die Irreduzibilität voraus. Die Startverteilung von M bezeichnen wir mit λ. Die zu

M gehörige Übergangsmatrix P hat Tridiagonalgestalt, das heißt nur auf der Diagonalen und

auf den beiden Nebendiagonalen können positive Einträge stehen und alle anderen Einträge

sind gleich 0. Wir schreiben P (x, x + 1) = px, P (x, x − 1) = qx und P (x, x) = rx für die

jeweiligen Übergangswahrscheinlichkeiten für den Zustand x. Wir setzen pd = q0 = 0. Die
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Übergangsmatrix P hat somit die folgende Gestalt:

P =




r0 p0 0 0 0 . . . . . . . . . . . . . 0

q1 r1 p1 0 0 . . . . . . . . . . . . . 0

0 q2 r2 p2 0 . . . . . . . . . . . . . 0
...

. . . . . . . . . . . . . . . . . . . . . . . . .
...

0 . . . . . . . . . . . . . . 0 qd−1 rd−1 pd−1

0 . . . . . . . . . . . . . . . . . 0 qd rd




Irreduzibilität lässt sich bei Geburts- und Todesprozessen äquivalent durch die Forderung px > 0

für alle 0 ≤ x < d und qx > 0 für alle 0 < x ≤ d ausdrücken. Irreduzible Geburts- und

Todesprozesse sind reversibel, also gilt P = P̃ , und die stationäre Verteilung ist gegeben durch

ξ∗(x) = c

x∏

y=1

py−1

qy
,

wobei c = ξ∗(0) eine normalisierende Konstante ist. Ist P irreduzibel und aperiodisch (=ergo-

disch), folgt mit Satz 3.6, dass (λ,P ) genau dann eine S-wertige, algebraisch Duale (λ∗,P ∗)

besitzt, wenn die beiden Monotoniebedingungen

λ(x)

ξ∗(x)
ist fallend in x, d.h. qx+1λ(x+ 1) ≤ pxλ(x) für x < d, (3.39)

und

P ist monoton, d.h. px + qx+1 ≤ 1, x < d, (3.40)

erfüllt sind.

Bemerkung 3.9. Auf die Forderung der Aperiodizität kann verzichtet werden, da (3.40) diese

zusammen mit der Irreduzibilität wegen r0 = 1 − p0 > 1 − (p0 + q1) ≥ 0 impliziert.

Wie sieht nun der stark stationäre duale Prozess M∗ zu einem Geburts- und Todesprozess M

auf S = {0, ..., d} aus? Satz 3.6 und die Konstruktion (3.37) und (3.38) liefern uns einen dualen

Prozess auf S = {0, ..., d}, welcher ebenfalls ein Geburts- und Todesprozess ist.

Die Startverteilung von M∗ ist

λ∗(x∗) =





H(x∗)
ξ∗(x∗)px∗

[px∗λ(x∗) − qx∗+1λ(x∗ + 1)], x∗ < d,

λ(d)
ξ∗(d)

, x∗ = d.

(3.41)
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Die Übergangsparameter sind gegeben durch

P ∗(x∗, x∗ − 1) = q∗x∗ =
H(x∗ − 1)

H(x∗)
px∗ ,

P ∗(x∗, x∗ + 1) = p∗x∗ =
H(x∗ + 1)

H(x∗)
qx∗+1,

P ∗(x∗, x∗) = r∗x∗ = 1 − (px∗ + qx∗+1),

P ∗(x∗, x∗ + i) = P (x∗, x∗ − i) = 0 sonst.

Der Klammerausdruck in (3.34) liefert, dass M∗ nur in benachbarte Zustände springen kann.

Es gelte die übliche Konvention p∗d = q∗0 = 0. H bezeichne die kumulierte Verteilungsfunktion

der stationären Verteilung ξ∗. Mit Blick auf (3.37) erhalten wir bei reversiblen Prozessen bei

der Konstruktion des stark stationären dualen Prozesses

P (M∗
n = x∗n|Mn = xn,M

∗
n−1 = x∗n−1)

=
[Px∗

n
(M1 ≤ x∗n−1) − Px∗

n+1(M1 ≤ x∗n−1)]I{0,...,x∗

n}(xn)

Pxn(M1 ≤ x∗n−1)
, (3.42)

wobei der Nenner eine normalisierende Konstante ist.

Bemerkung 3.10. Bei Geburts- und Todesprozessen vereinfacht sich (3.42). Wir unterscheiden

drei Fälle:

(a) Falls x∗n−1 ≥ xn + 1 gilt, so ist (3.42)

px∗

n−1
, 1 − (p∗xn−1

+ qx∗

n−1
+1), qx∗

n−1
+1 oder 0 , je nachdem, ob x∗n−1 = x∗n − 1,

x∗n−1 = x∗n, x∗n−1 = x∗n + 1 oder |x∗n−1 − x∗n| > 1.

(b) Falls x∗n−1 = xn gilt, so ist (3.42) [1 − (px∗

n−1
+ qx∗

n−1
+1)]/[1 − px∗

n−1
], qx∗

n−1
+1/[1 − px∗

n−1
]

oder 0, je nachdem, ob x∗n = x∗n−1, x
∗
n = x∗n−1 + 1 oder weder noch ist.

(c) Ist x∗n−1 = xn − 1, so ist (3.42) 1, falls x∗n = xn und sonst 0.

3.3 Dualitätstheorie in stetiger Zeit

3.3.1 Existenz und Eigenschaften des stark stationären dualen

Prozesses

Die Dualitätstheorie im stetigen Fall kommt in weiten Teilen zu ähnlichen Ergebnissen wie die

Dualitätstheorie in diskreter Zeit. Insbesondere erhalten wir im Algebraischen Dualitätstheorem
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die gleichen Dualitätsbedingungen λ = λ∗Λ und ΛP (·) = P ∗(·)Λ. Neu ist dabei die äquivalente

Darstellung der zweiten Gleichung durch die Erzeuger G und G∗: ΛG = G∗Λ. Für die Klasse

der irreduziblen Geburts- und Todesprozesse ergibt sich ein dualer Prozess, welcher ein absor-

bierender Geburts- und Todesprozess auf dem gleichen Zustandsraum ist. Dieser duale Prozess

ist scharf, liefert also eine minimale stark stationäre Zeit für den zugrundeliegenden Geburts-

und Todesprozess, und es lässt sich mit der Dualitätsbedingung ΛG = G∗Λ eine Verbindung

zwischen den Eigenwerten der beiden Prozesse herstellen.

Beginnen wir nun mit unserer Definition des stark stationären dualen Prozesses in stetiger

Zeit. Wir schreiben M ∼ (λ,G,P (·), S) als Abkürzung dafür, dass M = (Mt)0≤t<∞ ein nicht-

explodierender Markov-Sprungprozess mit Zustandsraum S, Startverteilung λ, Erzeuger G und

Übergangsfunktion (P (t))0≤t<∞ ist. Wir bezeichnen in diesem Kapitel den Erzeuger mit G

und dessen Einträge mit gx,y, damit keine Verwechslungsgefahr mit den Todesraten bzw. To-

deswahrscheinlichkeiten qx bei Geburts- und Todesprozessen besteht. Wir sprechen von einer

Explosion eines MSPs, falls unendlich viele Übergänge des MSPs in endlicher Zeit auftreten.

Hinreichend für die Nichtexplosivität ist die Endlichkeit des Zustandsraums S. Wir setzen S

als diskret voraus, also als endlich oder abzählbar unendlich. Es sei M ∼ (λ,G,P (·), S) ein

ergodischer Markov-Sprungprozess mit stationärer Verteilung ξ∗ auf dem W-Raum (Ω,A, P ).

Sei (Ft)t≥0 eine Filtration von (Ω,A), bezüglich derer M die Markov-Eigenschaft besitzt, und

sei F∞ := σ 〈Ft : 0 ≤ t <∞〉 die asymptotische Gesamtinformation des Beobachters. Aus tech-

nischen Gründen und ohne Beschränkung der Allgemeinheit nehmen wir an, dass (Ft)t≥0 eine

vollständige, rechtsstetige Filtration ist. In der folgenden Definition ist die σ-Algebra, welche

zu dem Zustandsraum S∗ gehört, beliebig.

Definition 3.5. Sei X∗ = (X∗
t )0≤t<∞ ein stochastischer Prozess auf (Ω,A, P ), der Werte in

einem messbaren Zustandsraum S∗ annimmt. Die folgenden drei Bedingungen seien erfüllt:

(a) Es existiert eine von F∞ unabhängige Sub-σ-Algebra G von F, so dass

X∗
t messbar ist bezüglich σ 〈Ft,G〉 für alle 0 ≤ t <∞. (3.43)

(b) Definiere F∗
t := σ 〈X∗

s : s ≤ t〉 , 0 ≤ t <∞. Es existiert ein Zustand ∞ ∈ S∗, so dass

P (Mt = x|F∗
t ) = ξ∗(x) fast sicher auf {X∗

t = ∞} (3.44)

für alle 0 ≤ t <∞ und x ∈ S.
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(c) Für den Zustand ∞ gilt:

∞ ist ein absorbierender Zustand für X∗, (3.45)

also X∗
s = ∞ ⇒ X∗

t = ∞ für alle t ≥ s.

Dann heißt X∗ stark stationärer dualer Prozess zu M .

Nun stellen wir analog zum Vorgehen in diskreter Zeit eine Verbindung zwischen stark statio-

nären Zeiten des zugrundeliegenden Markov-Sprungprozesses mit der Zeit bis zur Absorption

des stark stationären dualen Prozesses her.

Satz 3.7. (a) Sei X∗ ein stark stationärer dualer Prozess von M . Sei T = T ∗
∞ die Zeit bis zur

Absorption in ∞ für X∗. Dann ist T eine stark stationäre Zeit für M .

(b) Sei T umgekehrt eine stark stationäre Zeit für M . Sei S∗ = [0,∞] (mit der Borelschen

σ-Algebra) und definiere

X∗
t =




t, falls T > t,

∞, falls T ≤ t.

(3.46)

Dann ist X∗ ein stark stationärer dualer Prozess von M , und es gilt T = T ∗
∞.

Beweis. (a) Für alle 0 ≤ t < ∞ gilt {T ≤ t} = {X∗
t = ∞} ∈ σ 〈Ft,G〉 wegen (3.43) in der

Definition des stark stationären dualen Prozesses. Also erfüllt T die technische Definition einer

randomisierten Stoppzeit aus Abschnitt 3.1. Weiter gilt für 0 ≤ t <∞

P (T ≤ t,Mt = x) = P (X∗
t = ∞,Mt = x) = E(P (X∗

t = ∞,Mt = x|F∗
t ))

= E(P (Mt = x|F∗
t );X

∗
t = ∞) = E(ξ∗(x);X∗

t = ∞)

= P (X∗
t = ∞)ξ∗(x) = P (T ≤ t)ξ∗(x).

Nach Satz 3.1 (b⇒ a) aus Abschnitt 3.1 ist T damit eine stark stationäre Zeit.

(b) Als randomisierte Stoppzeit erfüllt T die Messbarkeitsbedingung (3.43). Der Zustand ∞
ist wegen (3.46) ein absorbierender Zustand für X∗. Es bleibt also zum Nachweis, dass X∗

ein stark stationärer dualer Prozess zu M ist, die Bedingung (3.44) zu zeigen. Es gilt F∗
t =

σ 〈{T ≤ s} : s ≤ t〉 = σ
〈
TI{T≤t}

〉
. Wenn wir nun beide Seiten von (3.44) mit I{X∗

t =∞} multi-

plizieren, so sind beide Seiten von (3.44) nichtnegative Zufallsvariablen, welche bezüglich der
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σ-Algebra F∗
t messbar sind und den Erwartungswert P (Mt = x,X∗

t = ∞) = P (T ≤ t,Mt =

x) = P (T ≤ t)ξ∗(x) = ξ∗(x)P (X∗
t = ∞) haben. Weiter bilden die Ereignisse {T ≤ s} ein

π-System, welches F∗
t erzeugt und mit einer analogen Rechnung wie zuvor erhalten wir, dass

sich beide Seiten von (3.44) zu ξ∗(x)P (T ≤ s) integrieren. Damit ist (3.44) gezeigt und der

Beweis, dass X∗ ein stark stationärer dualer Prozess zu M ist, erbracht.

Die Gültigkeit von T = T ∗
∞ folgt direkt aus (3.46).

Bemerkung 3.11. Ein π-System auf einer Menge Ω ist eine Menge P bestehend aus Teilmen-

gen von Ω, so dass

(a)P nicht leer ist,

(b)A ∩ B ∈ P, wenn A und B in P sind.

Ein endliches Maß, also insbesondere jedes W-Maß, ist eindeutig bestimmt durch die Werte,

die es auf einem, die zugehörige σ-Algebra erzeugenden, π-System annimmt.

Im folgenden Abschnitt stellen wir das Algebraische Dualitätstheorem für Markov-Prozesse vor.

Algebraische Dualität

Seien P (·) und P ∗(·) nichtexplodierende Markov-Übergangsfunktionen auf den diskreten Men-

gen S und S∗ und λ ∈ W(S) bzw. λ∗ ∈ W(S∗). Die zugehörigen Erzeuger bezeichnen wir mit

G und G∗. Λ sei wie in der diskreten Dualitätstheorie ein Link, also ein Übergangskern, von

S∗ nach S. Wir möchten einen bivariaten Markov-Prozess (M∗,M) = (M∗
t ,Mt)0≤t<∞ mit den

Randverteilungen

M∗ ∼ (λ∗, G∗,P ∗(·), S∗) M ∼ (λ,G,P (·), S) (3.47)

konstruieren, so dass M und M∗ derart durch Λ verlinkt sind, dass für alle 0 ≤ t <∞, x∗ ∈ S∗

und x ∈ S

P (Mt = x|F∗
t ) = Λ(x∗, x) fast sicher auf {M∗

t = x∗} (3.48)

gilt. Dabei sei F∗
t := σ 〈M∗

s : s ≤ t〉 , 0 ≤ t < ∞. Falls wir F∗
=t = σ 〈M∗

t 〉 definieren, dann

erhalten wir aus (3.48)

P (Mt = x|F∗
=t) = Λ(x∗, x) fast sicher auf {M∗

t = x∗}. (3.49)

Um Probleme mit Nullereignissen zu vermeiden, nehmen wir die Erreichbarkeit von x∗ ∈ S∗
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an, d.h. P (M∗
t = x∗) > 0 für ein t ≥ 0. Dann können wir (3.49) schreiben als

P (Mt = x|M∗
t = x∗) = Λ(x∗, x). (3.50)

Wir interessieren uns für den bivariaten Markov-Sprungprozess, da wir zu einem gegebenen

Markov-Sprungprozess einen stark stationären dualen Prozess konstruieren möchten, der eben-

falls markovsch ist. Satz 3.7 erlaubt durch Untersuchung der Absorptionszeit des stark sta-

tionären dualen Markov-Sprungprozesses Aussagen über stark stationäre Zeiten des zugrunde-

liegenden Markov-Sprungprozesses zu treffen. Besonders interessieren uns dabei scharfe duale

Prozesse, welche minimale stark stationäre Zeiten liefern.

Damit M∗ ein stark stationärer dualer Markov-Sprungprozess im Sinne von Definition 3.5 ist,

müssen für 0 ≤ s ≤ t <∞ nach (3.43) und (3.48) die beiden folgenden bedingten Unabhängig-

keitsbedingungen gelten:

M∗
s und Mt sind bedingt unabhängig gegeben Ms, (3.51)

und

M∗
s und Mt sind bedingt unabhängig gegeben M∗

t . (3.52)

Wie im diskreten Fall liefert das Algebraische Dualitätstheorem ein notwendiges und hinrei-

chendes Kriterium für die Existenz eines bivariaten Markov-Sprungprozesses, welcher (3.47),

(3.50), (3.51) und (3.52) erfüllt. Neu ist dabei die Charakterisierung mittels Erzeugern.

Wir beschränken uns im Folgenden auf endliche Zustandsräume, also |S| <∞ und |S∗| <∞.

Satz 3.8. (Algebraisches Dualitätstheorem) Seien (λ,G,P (·)) auf einem endlichen Zu-

standsraum S, (λ∗, G∗,P ∗(·)) auf einem endlichen Zustandsraum S∗ und eine Übergangsmatrix

Λ von S∗ nach S gegeben. Genau dann existiert ein bivariater Markov-Sprungprozess (M∗,M)

mit M∗ ∼ (λ∗, G∗,P ∗(·)) und M ∼ (λ,G,P (·)), welcher die bedingten Verteilungen (3.50) be-

sitzt und die Unabhängigkeitsbedingungen (3.51) und (3.52) erfüllt, wenn zwischen (λ∗,P ∗(·))
und (λ,P (·)) bezüglich des Links Λ die beiden folgenden Dualitätsbedingungen erfüllt sind:

λ = λ∗Λ, (3.53)

ΛP (t) = P ∗(t)Λ, für alle 0 ≤ t <∞. (3.54)
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Des Weiteren ist (3.54) äquivalent mittels Erzeugern ausdrückbar:

ΛG = G∗Λ. (3.55)

Beweis. Die Notwendigkeit der Bedingungen (3.53) und (3.54) für die Existenz des bivariaten

Markov-Sprungprozesses (M∗,M) mit den vorgegebenen Eigenschaften wird wie im diskreten

Fall gezeigt, siehe Abschnitt 3.2. Die Äquivalenz von (3.54) und (3.55) liefert das Lemma 3.3.

Wir zeigen, dass die Bedingungen (3.53) und (3.54) hinreichend sind. Nehmen wir also an,

dass (3.53) und (3.54) gelten. Wir möchten einen bivariaten Markov-Sprungprozess konstruie-

ren, welcher (3.50), (3.51) und (3.52) erfüllt und die Randverteilungen (3.47) besitzt. Wie im

diskreten Fall wählen wir als bivariaten Zustandsraum S := {(x∗, x) : Λ(x∗, x) > 0} und als

Startverteilung

λ(x∗, x) := λ∗(x∗)Λ(x∗, x). (3.56)

Natürliche Wahl für die bivariate Übergangsfunktion ist

P(t) := lim
h↓0

(P(h))⌊t/h⌋ , 0 ≤ t <∞. (3.57)

P(h) bezeichnet die bivariate Ein-Schritt-Übergangsmatrix für das h-Skelett und ist folgender-

maßen definiert

P
(h)
(x∗,x),(y∗,y) =





P x,y(h)P
∗
x∗,y∗(h)Λ(y∗, y)/∆x∗,y(h), falls ∆x∗,y(h) > 0,

0, für x = 0.

(3.58)

Dabei ist ∆(h) = P ∗(h)Λ = ΛP (h). Vergleiche dazu (3.18) im Beweis des Algebraischen

Dualitätstheorems im diskreten Fall. Wir werden zeigen, dass der Grenzwert in (3.57) existiert

und dass der bivariate Markov-Sprungprozess mit Übergangsfunktion P(·) die gewünschten

Eigenschaften aufweist. Wir müssen dazu mit (3.57) arbeiten, da die Matrizen P(t) nicht die

Kolmogorov-Chapman Gleichungen erfüllen. Wir werden in Lemma 3.2 zeigen, dass

P(h) = I + hG + o(h) für h ↓ 0 (3.59)

für die Einheitsmatrix I und eine Matrix G gilt, die wir in Lemma 3.2 explizit angeben werden.

Es folgt aus (3.59), dass der Grenzwert in (3.57) existiert und dass

P(t) = exp(tG) (3.60)
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gilt. Aus (3.59) und der Tatsache, dass P(h) eine stochastische Matrix ist, folgt, dass G ein

Erzeuger ist. Demnach ist (3.60) eine Übergangsfunktion eines Markov-Sprungprozesses mit

Erzeuger G. Sei nun M = (M∗,M) ein Markov-Sprungprozess mit Startverteilung λ und

Übergangsfunktion P(·). Wir behaupten, dass (3.47) erfüllt ist, dass also M∗ ∼ (λ∗, G∗,P ∗(·))
und M ∼ (λ,G,P (·)) gilt. Wir setzen xk = (x∗k, xk). Sei 0 = t0 ≤ t1 ≤ ... ≤ tn. Wir erhalten

P (Mt0 = x0, ...,Mtn = xn)

=
∑

x∗

0
,...,x∗

n

λ(x0)

n∏

k=1

Pxk−1,xk
(tk − tk−1)

= lim
h↓0

∑

x∗

0
,...,x∗

n

λ(x0)
n∏

k=1

((P(h))⌊h−1(tk−tk−1)⌋)xk−1,xk

= lim
h↓0

λ(x0)
n∏

k=1

((P (h))⌊h−1(tk−1−tk)⌋)xk−1,xk

= lim
h↓0

λ(x0)
n∏

k=1

P xk−1,xk
(h
⌊
h−1(tk − tk−1)

⌋
)

= λ(x0)

n∏

k=1

P xk−1,xk
(tk − tk−1)

Dabei haben wir für die zweite Gleichung das Algebraische Dualitätstheorem im diskreten Fall

verwendet. Für M∗ erhalten wir das gewünschte Resultat durch analoge Vorgehensweise:

P (M∗
t0

= x∗0, ...,M
∗
tn = x∗n,Mtn = xn)

=

(
∑

x0,...,xn

λ(x0)
n∏

k=1

Pxk−1,xk
(tk − tk−1)

)
Λ(x∗n, xn)

=

(
lim
h↓0

∑

x0,...,xn

λ0(x0)
n∏

k=1

(P(h)⌊h−1(tk−tk−1)⌋)xk−1,xk

)
Λ(x∗n, xn)

=

(
lim
h↓0

λ∗(x∗0)
n∏

k=1

((P (h))

j

tk−tk−1

h

k

)xk−1,xk

)
Λ(x∗n, xn)

=

(
lim
h↓0

λ∗(x∗0)
n∏

k=1

P xk−1,xk
(h
⌊
h−1(tk − tk−1)

⌋
)

)
Λ(x∗n, xn)

= λ∗(x∗0)

n∏

k=1

P ∗
x∗

k−1
,x∗

k
(tk − tk−1) × Λ(x∗n, xn)

(3.61)

Diese Resultate liefern die gewünschten Ergebnisse M∗ ∼ (λ∗,P ∗(·)), M ∼ (λ,P (·)) und die

Verlinkung (3.48) ist erfüllt. Aus (3.48) folgt wiederum (3.50) und (3.52). Es bleibt also allein

noch nachzuweisen, dass (3.51) gilt. Diese Aussage folgt aus dem nachfolgenden Lemma.
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Lemma 3.1. Sei Ft := σ 〈Ms : 0 ≤ s ≤ t〉 , 0 ≤ t <∞. Analog definieren wir F∗
t . Dann sind F∗

t

und M bedingt unabhängig gegeben Ft.

Beweis. Es genügt wegen der Markov-Eigenschaft von M die folgende Gleichheit

P (B∗ ∩ B ∩ C) = P (B∗ ∩B)p (3.62)

für Ereignisse der Form

B∗ = {M∗(t1) = x∗1, ...,M
∗(tn) = x∗n}

B = {M(t1) = x1, ...,M(tn) = xn}

C = {M(u1) = y1, ...,M(um) = ym}

zu zeigen, wobei 0 ≤ t1 ≤ ... ≤ tn = u0 ≤ u1 ≤ ... ≤ um, xn = y0, und

p =
n∏

k=1

P yk−1,yk
(uk − uk−1)

Das diskrete Analogon dieses Lemmas ist (3.22) in Bemerkung 3.4. Anwenden von (3.22) auf

das Skelett und anschließende Grenzwertbildung liefert den Beweis.

Dieses Lemma zeigt also insbesondere die Gültigkeit von (3.51) in dem Beweis des Algebraischen

Dualitätstheorems. Das folgende Lemma wird (3.59) zeigen, also

P(h) = I + hG + o(h) für h ↓ 0.

Sei S := {(x∗, x) : Λ(x∗, x) > 0} und x = (x∗, x) ∈ S. Wir definieren den Erzeuger G(x,y).

Für festes x machen wir dies nun in fünf Fällen für y = (y∗, y) ∈ S, welche alle möglichen Fälle

abdecken. Wir schreiben Γ für die Matrix ΛG = G∗Λ.

1. y = x, y∗ = x∗. Dann setze

G(x,y) := −
[
g∗x∗ + gx +

Γ(x∗, x)

Λ(x∗, x)

]
. (3.63)

2. y 6= x, y∗ = x∗. Dann setze

G(x,y) := gx,y. (3.64)

3. y = x, y∗ 6= x∗. Dann setze

G(x,y) :=
g∗x∗,y∗Λ(y∗, x)

Λ(x∗, x)
. (3.65)
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4. y 6= x, Λ(x∗, y) = 0, g∗x∗,y∗ + gx,y > 0. Der Schnitt mit 2. ist leer, denn Λ(x∗, y) = 0

impliziert y∗ 6= x∗ wegen der Voraussetzung Λ(y∗, y) > 0. Des Weiteren gilt in diesem Fall, dass

Γ(x∗, y) > 0 gilt. Wenn zum Beispiel g∗x∗,y∗ > 0 gilt, dann folgt

Γ(x∗, y) =
∑

z∗∈S

g∗x∗,z∗Λ(z∗, y)

=
∑

z∗ 6=x∗

g∗x∗,z∗Λ(z∗, y) ≥ g∗x∗,y∗Λ(y∗, y) > 0.

Wir setzen

G(x,y) :=
gx,yg

∗
x∗,y∗Λ(y∗, y)

Γ(x∗, y)
. (3.66)

5. Für alle anderen Zustände y setzen wir

G(x,y) := 0. (3.67)

Lemma 3.2. Seien P(h) und G auf dem Zustandsraum S = {x = (x∗, x) : Λ(x∗, x) > 0}
definiert durch (3.58) beziehungsweise (3.63) bis (3.67). Dann gilt (3.59):

P(h) = I + hG + o(h) für h ↓ 0.

Beweis. Fixiere x und bezeichne mit Ci die Klasse der bivariaten Zustände y, welche unter

Fall i, i = 1, ..., 5, fallen. Wende die asymptotischen Beziehungen P (h) = I + hG + o(h),

P ∗(h) = I∗ + G∗ + o(h) und ∆(h) = P ∗(h)Λ = Λ + hG∗Λ + o(h) auf (3.58) an, um die x,y

Einträge in (3.59) für x fest und y in den Fällen 1 bis 4 zu erhalten. Im fünften Fall bemerken

wir zunächst, dass

h−1
∑

y∈C5

P(h)
xy

= h−1


1 −

∑

y/∈C5

P(h)
xy


 → −

4∑

i=1

∑

y∈Ci

G(x,y)

Einsetzen der Ausdrücke (3.63) - (3.66) liefert nach einiger Rechnung folgendes Ergebnis:

h−1
∑

y∈C5

P(h)
xy

→ 0

für h ↓ 0. Dies zeigt (3.59) für y in Fall 5 und das Lemma ist damit bewiesen.
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Bleibt zuletzt noch die Äquivalenz der Formulierung mit Erzeugern und Übergangsmatrizen zu

beweisen. Dann ist das Algebraische Dualitätstheorem vollständig bewiesen.

Lemma 3.3. In der Situation von Lemma 3.2 gilt

ΛP (t) = P ∗(t)Λ für alle 0 ≤ t <∞ (3.68)

genau dann, wenn

ΛG = G∗Λ. (3.69)

Beweis. Falls (3.68) gilt, dann bilde die (rechtsseitigen) Ableitungen in t=0 um (3.69) zu er-

halten. Falls umgekehrt (3.69) erfüllt ist, gilt ΛGn = (G∗)nΛ für n ≥ 0. Multipliziere nun beide

Seiten mit tn/n! und summiere über n, um (3.68) zu erhalten.

Wir lassen nun die Voraussetzung der Endlichkeit der Zustandsräume S und S∗ fallen. Es

stellt sich die Frage, welche Ergebnisse der Dualitätstheorie im endlichen Fall auf den abzähl-

bar unendlichen Fall übertragen werden können. Die Notwendigkeit der beiden algebraischen

Dualitätsbedingungen hängt nicht von der Endlichkeit von S und S∗ ab. In der Rückrichtung

des Beweises zeigt sich jedoch das Problem, dass die für den Beweis entscheidende Darstellung

der Übergangsfunktionen in Form der Matrixexponentialfunktionen in (3.60) nur für endliche

Zustandsräume gilt. Ein möglicher Beweis der Rückrichtung erfordert demnach einen anderen

Ansatz. Es zeigt sich, dass die für das weitere Vorgehen notwendigen Resultate weiterhin Be-

stand haben. Da wir in den nächsten Kapiteln unserer Arbeit nur den endlichen Fall betrachten,

verweisen wir für eine ausführlichere Diskussion auf [Fil91], Abschnitt 2.2b, und notieren das

für die weitere Entwicklung entscheidende Ergebnis:

Satz 3.9. Die Dualitätsbedingungen λ = λ∗Λ und ΛG = G∗Λ seien erfüllt. Falls M = (M∗,M)

ein bivariater Markov-Sprungprozess mit Startverteilung λ aus (3.56) und Erzeuger G aus

(3.63)-(3.67) ist, dann gilt M∗ ∼ (λ∗, G∗) und (3.48), (3.50) sowie (3.52) sind erfüllt.

Für die Herleitung des Satzes wurde folgende Situation vorausgesetzt, welche auch in unseren

nachfolgenden Überlegungen Bestand haben soll. S und S∗ seien diskret, M und M∗ nichtex-

plodierend. Wir nehmen an, dass genau ein Zustand ∞ ∈ S∗ existiert, so dass Λ(∞, ·) eine
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Kapitel 3. Stark stationäre Zeiten und Dualitätstheorie

stationäre Verteilung ξ∗ für M ist und ∞ für M∗ absorbierend ist. Abgesehen von der mögli-

chen Ausnahme S(∞) seien die Mengen S(x∗) alle endlich. Dabei gelte für jedes x∗ ∈ S∗ die

Notation S(x∗) = {x ∈ S : Λ(x∗, x) > 0}.

Wir konstruieren nun mit Hilfe des Algebraischen Dualitätstheorems bzw. Satz 3.9 zu einem

Markov-Sprungprozess M ∼ (λ,G) einen stark stationären dualen Markov-Sprungprozess M∗.

Konstruktion des dualen Prozesses

Seien (λ,G,P (·)) auf S, (λ∗, G∗,P ∗(·)) auf S∗ und ein Link von S∗ nach S gegeben. P (·) sei

ergodisch mit stationärer Verteilung ξ∗ und die Dualitätsbedingungen λ = λ∗Λ und ΛG = G∗Λ

seien erfüllt. Sei M ∼ (λ,G,P (·)) gegeben auf einem W-Raum (Ω,A, P ). Wir konstruieren nun

einen stochastischen Prozess M∗ auf dem selben W-Raum (Ω,A, P ), so dass M = (M∗,M) ein

bivariater Markov-Sprungprozess ist mit Startverteilung λ in (3.56) und Erzeuger G aus (3.63)

- (3.67). Nach Satz 3.9 gilt M∗ ∼ (λ∗, G∗) und die Verlinkungsbedingung (3.48) ist erfüllt.

Aus der Konstruktion wird ersichtlich sein, dass (3.43) erfüllt ist; der Markov-Sprungprozess

M∗ ist also ein die Verlinkungsbedingung (3.48) erfüllender, stark stationärer dualer Markov-

Sprungprozess zu M .

Beginnen wir nun mit der Konstruktion des dualen Markov-Sprungprozesses M∗. Sei (Yk)k≥0

die in M eingebettete, diskrete Markov-Kette, also der Pfad der von M besuchten Zustände.

Ohne Beschränkung der Allgemeinheit nehmen wir an, dass λ(M0) > 0 und gYk−1,Yk
> 0,

k ≥ 1, für jede Realisierung von M gilt. Bei Beobachtung von M0 = x0, nutze unabhängige

Randomisierung und setze

M∗
0 = x∗0 mit Wahrscheinlichkeit λ∗(x∗0)Λ(x∗0, x0)/λ(x0). (3.70)

Wegen der Dualitätsbedingung λ = λ∗Λ summieren sich die Wahrscheinlichkeiten in (3.70) zu

eins. Des Weiteren sieht man mit (3.70) direkt, dass fast sicher x0 ∈ S(x∗0) gilt und dass (3.56)

die gemeinsame Verteilung von (M∗
0 ,M0) ist.

Iterativ setzen wir die Definition des dualen Prozesses M∗ fort. Sei n ≥ 1 und angenommen, dass

M∗ bis zur Zeit τn−1 des (n − 1)-ten Übergangs des bivariaten Prozesses (M∗,M) konstruiert

wurde und τ0 := 0 gesetzt wurde. Wir beschreiben nun die Definition von τn und von M∗(τn)

mit einer exponentialverteilten Zufallsvariable V ∗
n . Wir schreiben x = (x∗, x) für den Wert von

39



3.3. Dualitätstheorie in stetiger Zeit

(M∗,M) zur Zeit τn−1, induktiv erhalten wir x ∈ S(x∗) fast sicher. Des Weiteren schreiben wir

G(x) := |G(x,x)| = −G(x,x) (3.71)

genauso wie gx = |gxx| = −gxx.

Sei V ∗ = V ∗
n ∼ Exp(G(x) − gx) unabhängig von V ∗

1 , ..., V
∗
n−1 und dem Prozess M . Wir un-

terscheiden zwischen dem Fall (τn−1 + V ∗) < σn oder (τn−1 + V ∗) > σn, wobei σn die erste

Wechselzeit für M nach τn−1 ist. Gleichheit tritt mit Wahrscheinlichkeit 0 auf wegen der Stetig-

keit der Exponentialverteilung. Die Idee für die iterative Definition von M∗ ist nun die folgende:

Wir lassen eine exponentielle Uhr unabhängig von der exponentiellen Uhr für M laufen. Die

Uhr, die zuerst abläuft, zeigt einen Wechsel für den nächsten Übergang von M an. Falls die Uhr

für M zuerst abläuft, findet bei M ein Zustandswechsel statt, aber nicht bei M∗, außer dieser

wird notwendig, um die Beziehung x ∈ S(x∗) zu erhalten. Falls die andere Uhr zuerst abläuft,

so verändern wir nur den Wert von M∗ und nicht von M . Formal bedeutet das folgendes:

(a) Falls τn−1+V ∗ > σn, setze τn = σn. Falls zur Zeit τn M nach y 6= x springt (so dass gxy > 0),

setze

M∗
τn

= y∗ mit Wahrscheinlichkeit G(x,y)/gxy (3.72)

mit y = (y∗, y). Mit (3.64) folgt — falls y ∈ S(x∗) — , dass M∗
τn

fast sicher auf x∗ gesetzt

wird und nur M den Zustand zur Zeit τn wechselt. Falls y /∈ S(x∗), dann wird der Wert y∗, der

y ∈ S(y∗) erfüllt für M∗
τn

gemäß (3.66) mit folgender Wahrscheinlichkeit gewählt:

g∗x∗,y∗Λ(y∗, y)/Γ(x∗, y). (3.73)

Da Γ = G∗Λ ist, summiert sich (3.73) zu eins. In diesem Fall verändern sowohl M als auch

(zwangsweise) M∗ den Zustand zur Zeit τn.

(b) Falls τn−1 + V ∗ < σn, dann ist der exponentielle Parameter

G(x) − gx =
∑

y∗ 6=x∗:x∈S(y∗) G((x∗, x), (y∗, y)) ohne Beschränkung der Allgemeinheit strikt po-

sitiv. Setze τn = τn−1 + V ∗. Dann setze für y∗ 6= x∗ mit x ∈ S(y∗)

M∗
τn

= y∗ mit Wahrscheinlichkeit
G((x∗, x), (y∗, y))

G(x) − gx
. (3.74)

In diesem Fall verändert nur M∗ den Zustand zur Zeit τn und M bleibt im gleichen Zustand.
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Kapitel 3. Stark stationäre Zeiten und Dualitätstheorie

Wir erhalten wie gewünscht M ∼ (λ, G). Besonders interessieren wir uns für stark stationäre

duale Prozesse, welche scharf sind im Sinne von Definition 3.4, also deren Zeit zur Absorption

eine minimale stark stationäre Zeit für den zugrundeliegenden Markov-Sprungprozess liefert.

Bemerkung 3.12. Der duale Prozess M∗, den wir in diesem Teilabschnitt in (3.72), (3.73) und

(3.74) definiert haben, ist für endliches S genau dann scharf, wenn ein y ∈ S existiert, welches

zu keinem S(y∗) gehört, außer zu S(∞) (wobei die Erreichbarkeitsbedingung jedes Zustands

für M∗ unterstellt wird). Dies bedeutet, dass ein y ∈ S existiert, für das Λ(y∗, y) = 0 für alle

S∗ ∋ y∗ 6= ∞. Mit der Begründung aus Bemerkung 3.5 folgt die Schärfe.

Wie im diskreten Fall werden wir nun nach der allgemeinen Konstruktion eines stark sta-

tionären dualen Markov-Sprungprozesses die bisherigen Resultate sukzessive auf Geburts- und

Todesprozesse zuschneiden. Zunächst stellen wir in Analogie zu Abschnitt 3.2.2 den mengenwer-

tigen dualen Prozess vor. Dazu sei M ∼ (λ,G,P (·), S) ein ergodischer Markov-Sprungprozess

mit stationärer Verteilung ξ∗. Sei S∗ eine Kollektion nichtleerer Teilmengen von S. Wir nehmen

an, dass S ∈ S∗ und dass alle anderen Elemente von S∗ endliche Teilmengen von S sind. Für

jedes x∗ ∈ S∗ sei Λ(x∗, x) die Renormierung von ξ∗ bezüglich der Menge x∗:

Λ(x∗, x) =
Ix∗(x)ξ∗(x)∑

y∈x∗ ξ∗(y)
, x ∈ S. (3.75)

In (3.75) ist Ix∗ der Indikator der Menge x∗.

3.3.2 Dualität bei Prozessen mit monotonem Likelihoodquotienten

Wir nehmen nun an, dass der diskrete Zustandsraum S linear geordnet ist. Wir können also

bei 2 beliebigen Elementen aus S eindeutig entscheiden, welches größer und welches kleiner ist.

Wir wählen S∗ = {0, 1, 2, ...} ∪ {∞} und definieren

Λ(x∗, x) = I{x≤x∗}ξ
∗(x)/H(x∗), x∗ ∈ S∗, x ∈ S, (3.76)

wobei H die Verteilungsfunktion für ξ∗ ist. Wir lassen also in (3.75) S∗ aus den Elementen

S (identifiziert mit ∞) und Teilmengen von S der Form {0, 1, ..., x∗} (identifiziert mit dem

größten Element x∗) bestehen.
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3.3. Dualitätstheorie in stetiger Zeit

Wir haben im Algebraischen Dualitätstheorem gesehen, dass ein durch Λ verlinkter, nichtex-

plodierender, stark stationärer dualer Markov-Prozess M∗ ∼ (λ∗, G∗,P ∗(·), S∗) für M genau

dann konstruiert werden kann, wenn die Dualitätsbedingungen λ = λ∗Λ und ΛG = G∗Λ erfüllt

sind. Für gegebenes (λ,G) und unsere Wahl von Λ in (3.76) kann man diese beiden Gleichun-

gen eindeutig für (λ∗, G∗) lösen. Diese Lösung ist allerdings nicht immer zulässig, d.h. ein Paar

einer Startverteilung und eines Erzeugers. Notwendige und hinreichende Bedingungen für die

Zulässigkeit der Lösung können wir mittels Übergangsfunktionen ausdrücken wie im diskreten

Theorem 2.2 von Diaconis und Fill in [DF90a] (Vergleiche dazu auch Satz 4.6 in [DF90b]). Wir

formulieren unseren zusammenfassenden Satz 3.10 mit Erzeugern und bezeichnen den zeitlich

invertierten Prozess zu G mit G̃:

g̃x,y = ξ∗(y)gyx/ξ
∗(x). (3.77)

Der Begriff MLR wird in der Bemerkung nach dem Satz erklärt.

Satz 3.10. (Dualitätstheorem für MLR-Prozesse.) Der Markov-Sprungprozess

(λ,G,P (·), S) besitzt genau dann einen algebraischen, nichtexplodierenden, dualen Markov-

Sprungprozess (λ∗, G∗,P ∗(·), S∗) bezüglich des Links Λ aus (3.76), wenn die folgenden Monotonie-

Bedingungen

λ(x)/ξ∗(x) fällt in x, (3.78)

∑

x≤x∗

g̃y∗,x





fällt

wächst

fällt

mit y∗ auf





{0, ..., x∗}

{x∗, x∗ + 1}

{x∗ + 1, x∗ + 2, ...}

(3.79)

für jedes feste x∗ = 0, 1, 2, ... erfüllt sind und der Erzeuger G∗ nichtexplodierend ist. Die Einträge

der erzeugenden Matrix des dualen Prozesses sind dabei folgendermaßen definiert:

g∗x∗,y∗ :=
H(y∗)

H(x∗)

∑

x≤x∗

(g̃y∗,x − g̃y∗+1,x), x∗, y∗ = 0, 1, ..., (3.80)

g∗x∗,∞ =
1

H(x∗)
lim
y↑∞

↓
∑

x≤x∗

g̃yx, x∗ = 0, 1, 2, ..., (3.81)

g∗∞,y∗ = 0 , y∗ ∈ S∗. (3.82)

In diesem Fall ist die duale Startverteilung eindeutig bestimmt durch

λ∗(x∗) = H(x∗)

[
λ(x∗)

ξ∗(x∗)
− λ(x∗ + 1)

ξ∗(x∗ + 1)

]
, x∗ = 0, 1, 2, ..., (3.83)
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Kapitel 3. Stark stationäre Zeiten und Dualitätstheorie

λ∗(∞) = lim
x↑∞

↓ λ(x)

ξ∗(x)
, (3.84)

und der duale Erzeuger ist eindeutig bestimmt durch (3.80) - (3.82).

Bemerkung 3.13. Der Ausdruck MLR-Kette (Kette mit monotonem Likelihoodquotienten)

kann wie in diskreter Zeit erklärt werden (vgl. Bemerkung 4.11 bei Diaconis und Fill in [DF90b]):

die Übergangsfunktion P (·) erhält genau dann fallenden Likelihoodquotienten bezüglich ξ∗,

wenn eine Übergangsfunktion P ∗(·) auf S∗ existiert, so dass die algebraische Dualitätsbedingung

ΛP (t) = P ∗(t)Λ für alle t ≥ 0 erfüllt ist.

Wenn die algebraischen Dualitätsbedingungen erfüllt sind, kann man mittels der Konstruktion

aus Abschnitt 3.3.1 einen stark stationären dualen Markov-Sprungprozess M∗ konstruieren.

Wie in diskreter Zeit, muss man dafür die kumulierte Verteilungsfunktion H nicht berechnen.

Außerdem ist der duale Markov-Sprungprozess bei endlichem Zustandsraum scharf im Sinne

von Definition 3.4, da Λ untere Dreiecksgestalt hat. Es existiert damit ein Zustand, der zu

keinem S(x∗) außer zu S(∞) gehört.

3.3.3 Geburts- und Todesprozesse

In diesem Abschnitt betrachten wir die Klasse der Geburts- und Todesprozesse. Ein Geburts-

und Todesprozess in stetiger Zeit ist ein Markov-Sprungprozess M auf einem W-Raum (Ω,A, P )

mit Zustandsraum S = {0, 1, ..., d} (endlicher Fall) oder S = {0, 1, ...} im abzählbar unend-

lichen Fall, welcher eine exponentialverteilte Zeit in einem Zustand x ∈ S verweilt und im

Anschluss in einen benachbarten Zustand springt. Wir betrachten irreduzible Geburts- und To-

desprozesse. Die Startverteilung von M bezeichnen wir mit λ. Die zu M gehörige Q-Matrix hat

Tridiagonalgestalt, das bedeutet nur auf der Hauptdiagonalen und auf den beiden Nebendiago-

nalen können Einträge stehen, welche ungleich 0 sind, und alle anderen Einträge sind gleich 0.

Wir schreiben G(x, x+ 1) = px für die Geburtsrate im Zustand x und G(x, x− 1) = qx für die

Todesrate im Zustand x, wobei q0 = 0. Die Beträge der Diagonaleinträge |G(x, x)| = gx = rx

geben die Parameter der exponentialverteilten Verweilzeit an, die Übergangswahrscheinlichkei-

ten von x nach x + 1 bzw. von x nach x − 1 werden durch px/rx bzw. qx/rx angegeben. Die
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erzeugende Matrix G hat also die Gestalt

G =




r0 p0 0 0 0 . . . 0

q1 r1 p1 0 0 . . . 0

0 q2 r2 p2 0 . . . 0
...

. . . . . . . . . . . . . . .
...




Irreduzibilität lässt sich bei Geburts- und Todesprozessen äquivalent durch die Forderung px > 0

für x ≥ 0 und qx > 0 für x ≥ 1 ausdrücken. Im Fall eines abzählbar unendlichen Zustands-

raums besteht Explosionsgefahr des Markov-Sprungprozesses M , im endlichen Fall kann M

nicht explodieren. Sei M ∼ (λ,G,P (·), S) nun ein irreduzibler, positiv rekurrenter Geburts-

und Todesprozess. Irreduzible Geburts- und Todesprozesse sind zeitlich reversibel, also gilt

G̃ = G. Die stationäre Verteilung ist proportional zu dem Vektor der potenziellen Koeffizienten

ξ∗(x) = c
x∏

y=1

py−1

qy
,

wobei c = ξ∗(0) eine normalisierende Konstante ist.

Wir erhalten in Satz 3.10 für 0 ≤ x∗, y∗ <∞,

∑

x≤x∗

gy∗,x =





−px∗, falls y∗ = x∗,

qx∗+1, falls y∗ = x∗ + 1,

0 sonst.

(3.85)

M = M̃ erfüllt also die stochastische Monotoniebedingung (3.79). Die Matrix G∗ aus (3.80) -

(3.82) ist der Erzeuger eines Geburts- und Todesprozesses auf {0, 1, ...} mit Sterberaten

q∗x∗ =
H(x∗ − 1)

H(x∗)
px∗ , x∗ = 1, 2, 3, ..., (3.86)

und Geburtsraten

p∗x∗ =
H(x∗ + 1)

H(x∗)
qx∗+1, x∗ = 0, 1, 2, .... (3.87)

Mit Reuters [Reu57] (Theorem 11) notwendiger und hinreichender Bedingung für die Nichtex-

plosivität eines Geburts- und Todesprozesses und einigen einfachen Berechnungen [Bré99]

(S.352f.) sieht man, dass der in (3.86) und (3.87) definierte Geburts- und Todesprozess genau

dann nichtexplodierend ist, wenn
∞∑

x=1

(
1

qx+1
+

px

qx+1qx
+ ...+

px · · · p1

qx+1 · · · q1

)
= ∞. (3.88)
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Erfüllt der duale Prozess diese Bedingung (3.88), so ist der Zustand ∞ in endlicher Zeit nicht

von einem endlichen Zustand erreichbar und kann deshalb vernachlässigt werden.

Wir starten nun den Geburts- und Todesprozess M deterministisch in 0, für die Startvertei-

lung λ gelte also λ = δ0. Damit ist die in Satz 3.10 formulierte Monotoniebedingung (3.78)

an die Startverteilung erfüllt und wegen (3.83) gilt für die Startverteilung λ∗ des dualen Pro-

zesses M∗ ebenfalls λ∗ = δ0. Also existiert nach (3.88) ein nichtexplodierender dualer Markov-

Sprungprozess. Um die Anwendung zu vereinfachen, beschreiben wir nun die Konstruktion von

τn und M∗
τn

aus Abschnitt 3.3.1 in Abhängigkeit davon, ob x∗ ≥ x+1 oder x∗ = x. Dabei gelte

(M∗,M) = (x∗, x) zur vorherigen Übergangsszeit τn−1 des bivariaten Markov-Sprungprozesses.

Wie in Abschnitt 3.3.1 bezeichnen wir mit σn die erste M-Übergangszeit nach τn−1. Die Zu-

fallsvariable V ∗ = V ∗
n sei

(1) exponentialverteilt mit Parameter α und

(2) unabhängig von V ∗
1 , ..., V

∗
n−1 und M .

1. Angenommen, dass x∗ ≥ x+ 1. Sei α = px∗ + qx∗+1.

(a) Falls τn−1 + V ∗ > σn, setze τn = σn und M∗(τn) = x∗.

(b) Falls τn−1 + V ∗ < σn, setze τn = τn−1 + V ∗ und

M∗
τn

=





x∗ − 1 mit Wahrscheinlichkeit
px∗

px∗ + qx∗+1
,

x∗ + 1 mit Wahrscheinlichkeit
qx∗+1

px∗ + qx∗+1
.

2. Angenommen, dass x∗ = x. Sei α = qx+1.

(a) Falls τn−1 + V ∗ > σn, setze τn = σn. Falls Mτn = x − 1, dann lasse den Wert von M∗

unverändert: M∗
τn

= x. Falls Mτn = x+ 1, setze M∗
τn

= x+ 1.

(b) Falls τn−1 + V ∗ < σn, setze τn = τn−1 + V ∗ und M∗
τn

= x+ 1.

Zusammenfassend liefert die Dualitätstheorie für irreduzible Geburts- und Todesprozesse die

Existenz eines dualen Prozesses, welcher ein absorbierender Geburts- und Todesprozess auf

dem gleichen Zustandsraum S mit den gleichen Eigenwerten ist und die Schärfebedingung in

Definition 3.4 erfüllt. In diskreter Zeit ist dieses Ergebnis auf monotone Ketten beschränkt. Die

Dualitätstheorie gestattet uns demnach bei Geburts- und Todesprozessen eine Bestimmung des

Separationsabstands mittels der Absorptionszeiten des dualen Prozesses, welche minimale stark
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stationäre Zeiten für den zugrundeliegenden Prozess liefern und somit Gleichheit in Satz 3.2

bzw. Satz 3.3 erfüllen.

Im folgenden Kapitel untersuchen wir Ersteintrittszeiten in 0 gestarteter Geburts- und To-

desprozesse. Bei absorbierenden Geburts- und Todesprozessen mit genau einem absorbierenden

Zustand ist die Ersteintrittszeit in diesen absorbierenden Zustand die Zeit bis zur Absorpti-

on. Wir erhalten eine Summendarstellung der Absorptionszeit und damit der minimalen stark

stationären Zeit mit exponentialverteilten Zufallsgrößen als Summanden, welche von den Ei-

genwerten der Geburts- und Todesprozesse parametrisiert werden.
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4 Ersteintrittszeiten bei Geburts- und

Todesprozessen

Sei M ein Geburts- und Todesprozess in stetiger Zeit mit Zustandsraum S = {0, ..., d}, Ge-

burtsrate px > 0 für 0 ≤ x ≤ d − 1 und Todesrate qx > 0 für 1 ≤ x ≤ d, wobei wie gehabt

q0 = pd = 0 gesetzt werde. In diesem Kapitel untersuchen wir die Verteilung der folgendermaßen

definierten Ersteintrittszeit.

Definition 4.1. Die Zufallsvariable

Tmn = inf
t≥0

{Mt = n|M0 = m}

heißt Ersteintrittszeit in den Zustand n bei Start in m.

Wir interessieren uns nun für die Verteilung von T0n, wählen also als Anfangsverteilung λ = δ0.

Die Dichte s0n(τ) der Ersteintrittszeit T0n ist:

s0n(τ) = − d

dτ
P (Mt < n, 0 < t < τ |M0 = 0). (4.1)

Analog ist

s+
n (τ) = snn+1(τ) = − d

dτ
P (Mt < n+ 1, 0 < t < τ |M0 = n) (4.2)

die Dichte der Zufallsvariable Tnn+1. Wir drücken nun die Dichte s0n(τ) von T0n als Faltung

der Dichten s+
i (τ) der Tii+1, 0 ≤ i ≤ n− 1, aus:

s0n(τ) = s+
0 (τ) ∗ s+

1 (τ) ∗ ... ∗ s+
n−1(τ), (4.3)

in Zufallsvariablen bedeutet dies T0n = T01 + ...+ Tn−1n. Diese Zufallsvariablen sind wegen der

Markov-Eigenschaft von M unabhängig. Mittels eines rekursiven probabilistischen Arguments
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erhalten wir s0n(τ) folgendermaßen: Sei vn = pn + qn die Verweilzeit im Zustand n. Die Dichte

der Verweilzeit hat die Form vne
−vnt und mit Wahrscheinlichkeit qn/vn findet ein nachfolgender

Wechsel nach n− 1 statt, mit Wahrscheinlichkeit pn/vn ein Wechsel nach n+1. Somit erhalten

wir:

s+
n (τ) =

pn

vn
vne

−vnτ +
qn
vn
vne

−vnτ ∗ s+
n−1(τ) ∗ s+

n (τ), n ≥ 1. (4.4)

Nun betrachten wir die Laplace-Transformierte (L.T.), welche mit dem jeweiligen griechischen

Kleinbuchstaben bezeichnet wird. Bei der Berechnung der L.T. von s+
n erhalten wir

σ+
n (s) =

pn

s+ pn + qn
+

qn
s+ pn + qn

σ+
n−1(s)σ

+
n (s)

⇒ 1 =
pn

(s+ pn + qn)σ+
n (s)

+
qn

s+ pn + qn
σ+

n−1(s)

⇒ 1 =
1

s+ pn + qn

(
pn

σ+
n (s)

+ qnσ
+
n−1(s)

)

⇒ s+ pn + qn =
pn

σ+
n (s)

+ qnσ
+
n−1(s)

⇒ σ+
n (s) =

pn

s+ pn + qn − qnσ
+
n−1(s)

,

(4.5)

wobei wir für die erste Gleichung den Multiplikationssatz für L.T. und deren Linearität ausge-

nutzt haben (siehe [Als05c], Kapitel 40-42). Wegen q0 = 0 gilt

σ+
0 (s) =

p0

p0 + s
, (4.6)

und wir erhalten σ+
n iterativ aus (4.5) und (4.6). Mit dem Multiplikationssatz für L.T. erhalten

wir aus (4.3):

σ0n(s) = σ+
0 (s)...σ+

n−1(s) (4.7)

und

σ0n+1(s) = σ0n(s)σ+
n (s). (4.8)

Der folgende Satz liefert uns nun Einblick in die Verteilung der Ersteintrittszeit T0N .

Satz 4.1. Sei M ein irreduzibler Geburts- und Todesprozess mit Zustandsraum S = {0, ..., d}
und N ∈ S. Dann gilt für die L.T. der Ersteintrittszeit T0N

σ0N (s) =
θN1

θN1 + s

θN2

θN2 + s
...

θNN

θNN + s
; θNj > 0, (4.9)

wobei θNj 6= θNi für alle i 6= j.
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Bemerkung 4.1. Eine Γ(α, β) verteilte Zufallsgröße X hat die L.T. σα,β(t) = ( β
β+t

)α. Ferner

bestimmt die L.T. eines endlichen Maßes, also insbesondere eines W-Maßes, dieses eindeutig,

sofern die L.T. für mindestens ein t existiert und endlich ist. Das Theorem zeigt somit wegen

der Struktur der L.T. von T0N unter Benutzung des Multiplikationssatzes für L.T., dass die

Ersteintrittszeit T0N eine Summe N unabhängiger exponentialverteilter Zufallsvariablen ist. Für

einen reinen Geburtsprozess ist dies klar, aber da ein irreduzibler Geburts- und Todesprozess

sich nach Erreichen eines Zustands n mit 0 < n < d auch wieder nach unten bewegen kann,

ist dieses Ergebnis durchaus überraschend und es existiert keine naheliegende stochastische

Interpretation. Wir werden dieses Resultat zunächst mit analytischen Mitteln beweisen und im

Anschluss eine Verbindung der Parameter mit den Eigenwerten der Q-Matrix M herstellen.

Des Weiteren geben wir mittels der Dualitätstheorie eine erste, allerdings wenig naheliegende,

stochastische Interpretation des Theorems.

Wir folgen dem Beweis von Keilson [Kei79]. Zunächst beweisen wir zwei Lemmata.

Lemma 4.1. Außer in Singularitäten ist σ+
n (s) monoton fallend für reelles s.

Beweis. Wir beweisen das Lemma per Induktion. σ+
0 (s) = p0

p0+s
ist monoton fallend für reelles s.

Nehmen wir also an, dass d
ds
σ+

n−1(s) < 0, s ∈ R, gilt. Wir erhalten außerhalb von Singularitäten

mit der Quotientenregel

d

ds
σ+

n (s) =
−pn(1 − qn

d
ds
σ+

n−1(s))

(s+ pn + qn − qnσ
+
n−1(s))

2
< 0,

da der Klammerausdruck im Zähler nach Induktionsvoraussetzung > 0 ist.

Lemma 4.2. σ+
n (s) ist eine rationale Funktion und hat einen einfachen Pol zwischen jedem

Paar von benachbarten Polen von σ+
n−1(s). Alle n + 1 Pole von σ+

n (s) liegen auf der negativen

Halbachse.

Beweis. Wieder gehen wir zunächst induktiv vor. σ+
0 (s) ist eine rationale Funktion. Aus der

Rationalität von σ+
n−1(s) folgt mit σ+

n (s) = pn

s+pn+qn−qnσ+

n−1
(s)

induktiv die Rationalität von

σ+
n (s). σ+

n (s) hat Pole in den Nullstellen von s+ pn + qn − qnσn−1(s). Das vorherige Lemma 4.1

liefert, dass zwischen jedem Paar von Polen von σ+
n−1(s) die Ableitung von s+pn+qn−qnσ+

n−1(s)

positiv ist, also
d

ds
(s+ pn + qn − qnσ

+
n−1(s)) = 1 − qn

d

ds
σ+

n−1(s) > 0.
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Wir erhalten mit dem Zwischenwertsatz für rationale Funktionen und der Monotonie, dass

genau eine Nullstelle von σ+
n−1(s) in diesem Intervall liegt. Diese Nullstelle korrespondiert mit

einem einfachen Pol von σ+
n (s), da der Nenner von σ+

n (s) gerade s+pn + qn −qnσ+
n−1(s) ist. Des

Weiteren liegen alle n+ 1 Pole von σ+
n (s) auf der negativen Halbachse. Dies folgt allgemein, da

die L.T. nichtnegativer Zufallsgrößen auf [0,∞) positiv und monoton fallend ist.

Beweis. [Satz 4.1] Wieder gehen wir induktiv vor. Der Induktionsanfang σ01(s) = θ11

θ11+s
= p0

p0+s

ist klar. Angenommen, der Satz gilt für N . Dann sehen wir mit (4.8) und n = N − 1, dass

die Nullstellen von σ+
N−1(s) die Polstellen von σ0N−1(s) sind und die Polstellen von σ+

N−1(s) die

Polstellen von σ0N (s) sind. Aus σ+
N(s) = pN

s+pN+qN−qNσ+

N−1
(s)

folgt, dass die Polstellen von σ+
N−1(s)

die Nullstellen von σ+
N(s) sind. Damit fallen die Nullstellen von σ+

N(s) mit den Polstellen von

σ0N (s) zusammen. Wir erhalten also in (4.8) mit N = n, dass σ0N+1(s) die gewünschte Form

hat.

Die Ersteintrittszeit T0N besitzt also eine Darstellung als Summe unabhängiger exponentialver-

teilter Zufallsvariablen, wobei alle Parameter ungleich sind.

Nun werden wir Brown und Shao [BS87] folgend einen Zusammenhang zwischen den Parame-

tern und den Eigenwerten des betrachteten Geburts- und Todesprozess M herstellen. Zunächst

erinnern wir daran, dass ein Geburts- und Todesprozess reversibel ist; die Übergangsratenma-

trix ist demnach ähnlich zu einer symmetrischen Matrix und wegen des Spektralsatzes für reell

symmetrische Matrizen sind somit alle Eigenwerte von M reell. Wir erhalten allgemein eine

Spektraldarstellung der Übergangsratenmatrix, so dass wir die Ersteintrittszeit Tjn von einem

Zustand 0 ≤ j < n in den Zustand n folgendermaßen darstellen können:

P (Tjn > t) =
n∑

i=1

γie
−λit, (4.10)

wobei λ1, ..., λn die Eigenwerte der Matrix Q(n) sind und Q(n) die n× n-Matrix ist, welche aus

den ersten n Spalten und Zeilen der Übergangsratenmatrix Q von M entsteht. Die γi in (4.10)

hängen von den zugehörigen rechten und linken Eigenvektoren ab.

Ein Geburts- und Todesprozess ist ein Markov-Sprungprozess, bei dem Übergänge vom gegen-

wärtigen Zustand nur in benachbarte Zustände möglich sind. Man bezeichnet Geburts- und To-

desprozesse deshalb auch als sprungfrei. Im Folgenden betrachten wir Markov-Sprungprozesse,
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welche die Eigenschaft der Sprungfreiheit nach oben besitzen und lassen die Voraussetzung

der Sprungfreiheit nach unten fallen. Wir betrachten also Markov-Sprungprozesse auf dem Zu-

standsraum S = {0, 1, ...} mit Übergangsraten

(i) Qi,i+1 = bi > 0

(ii) Qi,j = 0 für j ≥ i+ 2

(iii) −Qii <∞ für alle i.

(4.11)

Die zugehörige erzeugende Matrix Q hat demnach die folgende Gestalt

Q =




∗ b0 0 0 0 . . . 0

∗ ∗ b1 0 0 . . . 0

∗ ∗ ∗ b2 0 . . . 0
...

. . . . . . . . . . . . . . .
...



.

Ein Geburts- und Todesprozess ist insbesondere ein nach oben sprungfreier Markov-Sprungpro-

zess. Für die Klasse der nach oben sprungfreien Markov-Sprungprozesse kann man zeigen, dass

die Matrix Q(n) genau dann zu einer Diagonalmatrix ähnlich ist, wenn die Eigenwerte λ1, ..., λn

alle verschieden sind. Wir werden dieses Resultat zu einem späteren Zeitpunkt für Geburts- und

Todesprozesse mit positiven Geburts- und Todesraten zeigen. Wir haben also eine Spektraldar-

stellung der Form (4.10) genau dann zur Verfügung, wenn die Eigenwerte alle verschieden sind.

Der folgende Satz liefert uns für die Klasse der nach oben sprungfreien Markov-Sprungprozesse

eine Darstellung der γi in (4.10). Für diese Darstellung werden nur die Eigenwerte benötigt.

Eine Berechnung der rechten und linken Eigenvektoren entfällt.

Satz 4.2. Die Übergangsratenmatrix Q(n) zwischen den Zuständen {0, ..., n−1} eines Markov-

Sprungprozesses aus der Klasse der nach oben sprungfreien Markov-Sprungprozesse sei diago-

nalisierbar mit paarweise verschiedenen Eigenwerten λi. Dann hat die Ersteintrittszeit T0n die

folgende Verteilung:

P (T0n > t) =

n∑

i=1

∏

j 6=i

(
λj

λj − λi

)
e−λit. (4.12)

Aus (4.12) folgt weiter, dass für reelle λ1, ..., λn T0n die Faltung exponentialverteilter Zufallsva-

riablen mit Parametern λ1, ..., λn ist.

Beweis. Damit der Zustand n erreicht wird, muss wenigstens ein Übergang von i nach i + 1
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für i = 0, ..., n − 1 stattfinden. Deshalb ist T0n stochastisch größer als die Faltung n exponen-

tialverteilter Zufallsvariablen mit Parametern b0, ..., bn−1, welche wiederum stochastisch größer

als M ist, wobei M das Maximum n unabhängiger exponentialverteilter Zufallsvariablen mit

Parametern b0, ..., bn−1 ist. Definiere F (t)
0,n = P (T0n ≤ t). Es gilt:

F
(t)
0,n ≤ P (M ≤ t) = tn

(
n−1∏

i=0

bi

)
+ o(tn) für t→ 0. (4.13)

Seien nun die Eigenwerte λ1, ..., λn alle verschieden und (4.10) erfüllt. Dann ist F (t)
0,n = 1 −

P (T0n > t) nach (4.10) analytisch und o(tn−1) für t → 0 nach (4.13). Die Betrachtung der

Taylorentwicklung von F (t)
0,n in 0 liefert

dk

dtk
F

(t)
0,n|t=0 = 0 für k = 1, ..., n− 1, (4.14)

da F (t)
0,n = o(tn−1) ist. Aus den Gleichungen (4.10) und (4.14) folgt

n∑

i=1

γiλ
k
i =





1 für k = 0,

0 für k = 1, ..., n− 1.

(4.15)

Im Fall k = 0 folgt dies aus (4.10) und
∑n

i=1 γi = 1 und im Fall k = 1, ..., n − 1 mit der

Taylorentwicklung (4.14). Wir definieren γ = (γ1, ..., γn). W sei eine n × n-Matrix mit den

Einträgen Wik = λk−1
i , i, k = 1, 2, ..., n, und δ sei ein Spaltenvektor der Länge n mit δ1 = 1 und

δi = 0 für i = 2, ..., n. Wir schreiben (4.15) in der Form

γW = δT . (4.16)

Nun ist W die wohlbekannte Vandermonde-Matrix (Seite 72 in [Cul67]), welche die Determi-

nante
∏

i>j (λi − λj) besitzt und damit genau dann invertierbar ist, wenn λi 6= λj für alle i 6= j

mit 1 ≤ i, j ≤ n. (4.16) liefert, dass γT mit der ersten Zeile von W−1 übereinstimmt, also

γi = (W−1)1i =
∏

j 6=i

(
λj

λj − λi

)
. (4.17)

Einsetzen von γT in (4.10) liefert (4.12).

Falls die Eigenwerte λ1, ..., λn alle verschieden sind, dann folgt aus (4.12) bei Betrachten der

L.T. von T0n

σ0n(s) =
n∑

i=1

∏

j 6=i

(
λj

λj − λi

)
λi

λi + s
= p(s)

n∏

i=1

λi

λi + s
, (4.18)
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wobei p(s) definiert ist durch

p(s) =
n∑

i=1

[
∏

j 6=i

(
λj + s

λj − λi

)]
. (4.19)

Nun ist p(s) − 1 nach (4.19) ein Polynom von Grad n − 1 mit n verschiedenen Nullstellen

−λ1, ...,−λn. Das einzige Polynom in einem nullteilerfreien Ring, welches dies erfüllt, ist das

Nullpolynom. Also p(s) − 1 ≡ 0 und es folgt aus (4.18), dass σ0n(s) die folgende Gestalt hat:

σ0n(s) =

n∏

i=1

λi

λi + s
. (4.20)

Falls nun wie im Fall eines Geburts- und Todesprozesses die Eigenwerte λ1, ..., λn alle reell sind,

sind die Eigenwerte wegen P (T0n > t) → 0 notwendigerweise positiv. In diesem Fall liefert

die Gestalt der L.T. in (4.20), dass T0n eine Summe exponentialverteilter Zufallsvariablen mit

Parametern λ1, ..., λn ist.

Betrachten wir nun den Fall verschiedener reeller Eigenwerte λ1, ..., λr mit Vielfachheiten

m1, ..., mr. Wir können eine Folge von Vektoren λ(k) konstruieren, welche gegen den Vektor λ

konvergiert, wobei jeder einzelne Vektor λ(k) n verschiedene Einträge hat. Wir wählen dazu eine

Folge von Matrizen Q(k)
(n) mit Eigenwerten λ(k), welche gegen Q(n) mit Eigenwerten λ konvergiert.

Für den Prozess mit Übergangsratenmatrix Q(k)
(n) ist die Verteilung der zugehörigen Ersteintritt-

szeit T (k)
0n nach den obigen Überlegungen die Summe n exponentialverteilter Zufallsvariablen

und besitzt die L.T.

σk(s) =

n∏

i=1

[
λ

(k)
i

λ
(k)
i + s

]
. (4.21)

Grenzübergang k → ∞ liefert die Konvergenz in Verteilung von T
(k)
0n gegen T0n und (4.21)

konvergiert gegen

σ(s) = lim
k→∞

σk(s) =
r∏

i=1

[
λi

λi + s

]mi

. (4.22)

Bei der Untersuchung der Ersteintrittszeit T0n bei Geburts- und Todesprozessen hatten wir

gezeigt, dass T0n eine Summe n unabhängiger exponentialverteilter Zufallsvariablen Si ist, al-

so T =
∑n

i=1 Si, wobei für die Parameter θi der Si gilt, dass θi 6= θj für alle i 6= j. Da

T0n nach (4.22) nur dann eine Summe n unabhängiger, exponentialverteilter Zufallsvariablen

ist, wenn die Eigenwerte alle verschieden sind, liefert uns Satz 4.1.1 insbesondere, dass bei

Geburts- und Todesprozessen mit positiven Geburts- und Sterberaten die Eigenwerte λ1, ..., λn
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von Q(n) alle verschieden sind und für die Parameter in der Summendarstellung T0n =
∑n

i=1 Si

gilt Si ∼ Exp(λi). Damit ist die angekündigte Verbindung der Parameter zum Spektrum des

Geburts- und Todesprozesses hergestellt.

Bemerkung 4.2. Einen ersten stochastischen Beweis für Satz 4.1 liefert Fill [Fil07]. Wir skiz-

zieren seine Überlegungen. Sei M∗ ein Geburts- und Todesprozess in stetiger Zeit auf {0, ..., d},
wobei d absorbierend und alle anderen Geburts- und Todesraten positiv sind. T ∗

0d sei die Erstein-

trittszeit von 0 nach d, also die Zeit bis zur Absorption in d. Zu M∗ existiert ein sogenannter

“Anti-Dual” M , ein Geburts- und Todesprozess mit stark stationärem dualem Prozess M∗.

T ∗
0d ist eine minimale stark stationäre Zeit für M . Zu M kann man nun mit M∗ einen stark

stationären dualen Prozess M̂ konstruieren, welcher ein reiner Geburtsprozess ist, wobei die Ge-

burtsraten die nichtnegativen Eigenwerte der Matrix −Q∗ sind und Q∗ die erzeugende Matrix

von M∗ ist. Die Si können somit stochastisch als Wartezeiten für aufeinanderfolgende Gebur-

ten in M̂ interpretiert werden. Für Details und den diskreten Fall verweisen wir auf [Fil07],

insbesondere Theorem 3.1 und Theorem 4.2.

Zusammenfassend erhalten wir also mit den Ergebnissen aus diesem Kapitel und den Resultaten

aus der Dualitätstheorie den folgenden Satz:

Satz 4.3. (a) Sei M ein irreduzibler, in 0 gestarteter, Geburts- und Todesprozess mit Werten

in S = {0, ..., d}, stetigem Zeitparameter t und stationärer Verteilung ξ∗. Dann gilt für die

Separationsfunktion s:

s(t) = s(γt, ξ∗) = max
0≤x≤d

(
1 − γt(x)

ξ∗(x)

)
=

d∑

i=1

∏

j 6=i

λj

λj − λi

e−tλi = P (T > t),

wobei T =
∑d

i=1 Si und jedes Si eine exponentialverteilte Zufallsvariable mit Parameter λi ist

und die Si´s unabhängig sind. Dabei sind die λi´s die positiven Eigenwerte von −Q, und Q ist

die zugehörige erzeugende Matrix der Form Q = P − I. Insbesondere gilt

E(T ) =

d∑

i=1

λ−1
i , Var(T ) =

d∑

i=1

λ−2
i .

(b) Sei M ein irreduzibler, in 0 gestarteter, Geburts- und Todesprozess in diskreter Zeit mit

Werten in S = {0, ..., d} und stationärer Verteilung ξ∗. Die Monotoniebedingung px + qx+1 ≤ 1,
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0 ≤ x < d, sei erfüllt. Dann gilt:

s(k) = s(µk, ξ∗) = max
0≤x≤d

(
1 − µk(x)

ξ∗(x)

)
=

d∑

i=1

∏

j 6=i

λj

λj − λi

(1 − λi)
k = P (T > k),

wobei T eine Zufallsvariable ist mit

E(T ) =
d∑

i=1

(1 − λi)
−1, Var(T ) =

d∑

i=1

λi(1 − λi)
−2.

Die λi´s sind dabei die positiven Eigenwerte von −Q = −(P − I), wobei P die Ein-Schritt-

Übergangsmatrix von M ist. Die Zufallsvariable T kann als Summe T =
∑d

i=1 Si geschrieben

werden mit unabhängigen Zufallsvariablen Si, 1 ≤ i ≤ m. Si ist geometrisch verteilt mit Er-

folgswahrscheinlichkeit λi, falls λi ∈ [0, 1], und Si ist eine Bernoulli-Variable mit Parameter

(λ−1
i ), falls λi > 1.

Beweis. (a) ist im Wesentlichen eine Kombination der Sätze 4.1 und 4.2 mit der Aussage aus

der Dualitätstheorie, dass der duale Prozess eines endlichen Geburts- und Todesprozesses ein

absorbierender Geburts- und Todesprozess auf dem selben Zustandsraum mit den selben Ei-

genwerten ist. Es bleibt zu zeigen, dass Q(d) und Q die gleichen positiven Eigenwerte λ1, ..., λd

besitzen. Wir zeigen dies in (b) für Q-Matrizen der Form Q = P − I, die von uns bei der

Cut-Off Untersuchung ausschließlich betrachtet werden.

(b) Sei P ∗
(d) die d × d-Matrix, welche man durch Entfernen der letzten Zeile und Spalte der

Übergangsmatrix P ∗ des dualen Geburts- und Todesprozesses M∗ von M erhält. Da die Ei-

genwerte θ1, ..., θd von P ∗
(d) durch die Eigenwerte λ1, ..., λd von −Q(d) (Q(d) = P ∗

(d) − I ist

die erzeugende Matrix) eindeutig bestimmt sind (λi = 1 − θi), folgt aus der paarweisen Ver-

schiedenheit der λi, dass θi 6= θj für i 6= j. Ferner gilt für die Ersteintrittszeit T ∗
0d, dass die

wahrscheinlichkeitserzeugende Funktion von T ∗
0,d die folgende Gestalt hat

u→
d∏

j=1

[
(1 − θj)u

1 − θju

]
=

d∏

j=1

[
λju

1 + λju− u

]
. (4.23)

Da d ein absorbierender Zustand für M∗ ist, können wir die Eigenwerte von P ∗ und P ∗
(d)

leicht miteinander in Beziehung setzen. Entwicklung nach der letzten Zeile, welche nur auf der

Diagonalen einen Eintrag hat, liefert, dass die Eigenwerte von P ∗ gerade 1, θ1, ..., θd sind. Nun

gilt wegen des Algebraischen Dualitätstheorems ΛP = P ∗Λ. Die Invertierbarkeit von Λ als
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untere Dreiecksmatrix mit strikt positiven Diagonaleinträgen liefert somit die Ähnlichkeit von

P und P ∗. Folglich haben P und P ∗ dieselben Eigenwerte. Betrachtet man nun wieder P − I,

so hat P − I die Eigenwerte 0, λ1, ..., λd, welche nach Satz 4.1 zusammen mit Satz 4.2 alle

verschieden sind.

Argumentation wie im Beweis von Satz 4.1 liefert für

P (T ∗
0,d > k) =

d∑

i=1

γiθ
k
i

die explizite Gestalt der γi:

P (T ∗
0,d > k) =

d∑

i=1

(
∏

j 6=i

1 − θj

θi − θj

)
θk

i =

d∑

i=1

(
∏

j 6=i

λj

λi − λj

)
(1 − λi)

k.

Damit ist der Beweis vollständig.

Bemerkung 4.3. Lassen wir den Geburts- und Todesprozess am anderen Ende des Zustands-

raums d starten, erhalten wir, dass der Separationsabstand des in 0 bzw. in d gestarteten

Geburts- und Todesprozesses von der stationären Verteilung zu jeder Zeit gleich ist, da die Ei-

genwerte sich nicht verändern. Bei Abstandsmessung in totaler Variation ist dies nicht gültig.
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5 Separations-Cut-Off bei Geburts-

und Todesprozessen

In diesem Kapitel werden wir das Hauptresultat — eine notwendige und hinreichende Bedin-

gung für das Auftreten des Cut-Off-Effekts bei Geburts- und Todesprozessen — vorstellen und

beweisen. Da wir in diesem und den folgenden Kapiteln Familien von Markov-Prozessen be-

trachten, passen wir unsere bisherige Notation an diese neue Situation an. Mit γt
n bezeichnen

wir die Verteilung eines Markov-Prozesses Mn zur Zeit t, wobei t ein stetiger Parameter ist. Im

diskreten Fall schreiben wir µk
n für die Verteilung einer Markov-Kette Mn zur Zeit k.

Vor dem eigentlichen Beweis geben wir nun die Begründung, warum wir uns auf Q-Matrizen der

Form P − I für eine stochastische Matrix P und die Identität I beschränken können. Gegeben

eine Übergangsmatrix P auf einem abzählbaren Raum, können wir den von P − I erzeugten

Markov-Sprungprozess betrachten. Dieser hat bei Start in x zur Zeit t die Verteilung

Ht(x, ·) = γt(x, ·) = e−t

∞∑

k=0

tkP n(x, ·)
k!

.

Allgemein definiert man einen Markov-Sprungprozess mit Hilfe einer Matrix Q, für die
∑

y Q(x, y) = 0 und Q(x, y) ≥ 0 für x 6= y gilt. In dieser Allgemeinheit muss
∑

x 6=y Q(x, y) nicht

gleichmäßig beschränkt sein und es besteht die Gefahr der Explosion des Markov-Sprungprozes-

ses, also des Auftretens unendlich vieler Übergänge in endlicher Zeit. Auf einem endlichen Zu-

standsraum besteht diese Gefahr jedoch nicht. Wir setzen q = maxx{−Q(x, x)} und betrachten

P (x, y) = I(x, y) + q−1(Q(x, y)). Für die Verteilung γt
Q(x, ·) des in x gestarteten Markov-

Sprungprozesses mit Erzeuger Q gilt

γt
Q(x, ·) = γqt(x, ·) = Hqt(x, ·) = e−qt

∞∑

k=0

(qt)kP k(x, ·)
k!

. (5.1)
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Es folgt die Unabhängigkeit des Auftretens eines D-Cut-Offs in einer Familie ergodischer end-

licher Markov-Sprungprozesse (Ωn, νn, γ
t
Qn

(xn, ·)) von der gewählten Zeit-Skala: (5.1) liefert

γt
Qn

(xn, ·) = γqnt
n (xn, ·) = Hqnt(xn, ·) = e−qnt

∞∑

k=0

(qnt)
kP k(xn, ·)
k!

.

Demnach zeigt (Ωn, νn, γ
t
n(xn, ·)) genau dann einen D-Cut-Off zur Zeit tn (resp. einen

(tn, bn)-D-Cut-Off), wenn (Ωn, νn, γ
t
Qn

(xn, ·)) einen D-Cut-Off zur Zeit tn/qn zeigt (resp. einen

(tn/qn, bn/qn)-D-Cut-Off). Dies würde nicht gelten, falls limn→∞ tn = ∞ in der Cut-Off Defi-

nition vorausgesetzt worden wäre. Die zeitliche Transformationsmöglichkeit gestattet uns aus-

schließlich Markov-Sprungprozesse mit Q-Matrizen der Form Q = P − I zu betrachten, da der

Nachweis des Cut-Offs bei dem transformierten MSP äquivalent zur Existenz eines Cut-Offs

bei dem ursprünglichen MSP ist. Cut-Off Zeitpunkt tn und Fenstergröße bn verändern sich

entsprechend der Veränderung der Zeitskala durch qn.

Für den Beweis unseres Hauptresultates benötigen wir noch ein Lemma mit elementaren Fol-

gerungen aus der Chebychev-Ungleichung.

Folgerungen aus der Chebychev-Ungleichung

Sei P n(x, y) ein Markov-Kern auf einer endlichen Menge Ωn, welcher die eindeutige stationäre

Verteilung ξ∗n besitzt. Die Ergebnisse aus Kapitel 3 liefern bei Abstandsmessung in Separation

die Existenz einer Folge minimaler stark stationärer Zeiten TD
n , also eine Folge für die

D(µk
n, ξ

∗
n) = P (TD

n > k) bzw. D(γt
n, ξ

∗
n) = P (TD

n > t) (5.2)

gilt. Bezeichnet D den Totalvariationsabstand, so existiert ebenfalls eine Folge reeller nichtne-

gativer Zufallsvariablen TD
n , die stochastisch als minimale Kopplungszeiten interpretiert werden

können, welche (5.2) erfüllen. Den Erwartungswert der TD,
n s werden wir mit tn bezeichnen, die

Varianz mit σ2
n. Die Chebychev-Ungleichung in der Form P (X > t) ≤ σ2

σ2+t2
liefert uns für alle

a > 0

P (TD
n > tn + aσn) = P

(
TD

n − tn
σn

> a

)
≤ 1

1 + a2
, (5.3)

P (TD
n < tn − aσn) ≤ 1

1 + a2
. (5.4)

Wir erhalten folgendes Lemma:
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Kapitel 5. Separations-Cut-Off bei Geburts- und Todesprozessen

Lemma 5.1. (a) Für alle ǫ ∈ (0, 1) gilt für die Mischzeit τD
n (ǫ)

tn − (ǫ−1 − 1)−1/2σn ≤ τD
n (ǫ) ≤ tn + (ǫ−1 − 1)1/2σn.

(b) Falls eine Konstante c > 0 existiert, so dass ctn > σn, und ein Cut-Off zur Zeit sn vorliegt

mit limn→∞ sn = ∞, dann gilt sn ∼ tn. Im zeitstetigen Fall gilt sn ∼ tn auch ohne die Voraus-

setzung limn→∞ sn = ∞.

(c) Falls σ−1
n tn −→ ∞, dann liegt ein (tn, σn)-D-Cut-Off vor.

Beweis. (a) Wir setzen ǫ = (1 + a2)−1. Daraus folgt a = (ǫ−1 − 1)
1

2 und damit

P (TD
n > tn + aσn) = D(µtn+aσn

n , ξ∗n) ≤ ǫ ⇒ τD
n (ǫ) ≤ tn + aσn.

Analog folgt die untere Schranke aus der zweiten Ungleichung in (5.4) durch Lösen von

1 − ǫ = (1 + a2)−1.

(b) Wir behandeln nur den zeitstetigen Fall. Angenommen, es liegt ein Cut-Off zur Zeit sn

vor und seien ǫ, η ∈ (0, 1). Dann gilt nach Definition von Cut-Off und Mischzeit für genügend

großes n

(1 − η)sn ≤ τD
n (ǫ) ≤ (1 + η)sn.

Setze ǫ = (1+η2)−1. Daraus folgt η =
√
ǫ−1 − 1. Mit der zweiten Ungleichung in Lemma 5.1(a)

erhalten wir

τD
n (ǫ) ≤ tn + ησn

und damit

(1 − η)sn ≤ tn + ησn ≤ (1 + cη)tn,

wobei für die zweite Ungleichung die Voraussetzung ctn ≥ σn gebraucht wird. Nun setze

ǫ = (1 + η−2)−1. Daraus folgt η = (ǫ−1 − 1)−
1

2 . Mit der ersten Ungleichung in Lemma 5.1(a)

erhalten wir

τD
n (ǫ) ≥ tn − ησn

und damit

(1 − cη)tn ≤ tn − ησn ≤ (1 + η)sn.

Für die erste Ungleichung wurde wieder die Voraussetzung ctn ≥ σn gebraucht. Damit ist

limn→∞
sn

tn
= 1 gezeigt und (b) bewiesen.
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(c) Nachzuprüfen ist, ob Definition 2.5 erfüllt ist. Aus der Voraussetzung σ−1
n tn → ∞ folgt

sofort σn

tn
→ 0 und für f+, f− gilt wegen Ungleichung (5.3)

lim
a→∞

f+(a) = lim
a→∞

lim sup
n→∞

D(µtn+aσn
n , ξ∗n)

= lim
a→∞

lim sup
n→∞

P (TD
n > tn + aσn) ≤ lim

a→∞

1

1 + a2
= 0.

Analog folgt lima→∞ f−(a) = 1 und damit die Existenz eines (tn, σn)-D-Cut-Offs.

Kommen wir nun zur Formulierung des Hauptergebnisses. Für n = 1, 2, ... sei

Ωn = {0, 1, ..., mn} ausgestattet mit einem irreduziblen Geburts- und Todesprozess mit statio-

närer Verteilung ξ∗n. Seien qn,x, rn,x und pn,x die zugehörigen Übergangswahrscheinlichkeiten.

Sei µk
n die Verteilung des zugehörigen, in 0 gestarteten, Geburts- und Todesprozesses, mit dis-

kretem Zeitparameter k. Sei γt
n die Verteilung des zugehörigen, in 0 gestarteten, Geburts- und

Todesprozesses mit stetigem Zeitparameter t. Seien λn,i ∈ [0, 2], 0 ≤ i ≤ mn, die zugehörigen

Eigenwerte. Setze

λn = λn,1, tn =

mn∑

i=1

λ−1
n,i.

Den kleinsten positiven Eigenwert λn = λn,1 bezeichnet man als Spektrallücke. Für jedes

ǫ ∈ (0, 1) ist die ǫ-Separations-Mischzeit folgendermaßen definiert:

τn(ǫ) = inf{t ≥ 0 : s(γt
n, ξ

∗
n) ≤ ǫ}.

Theorem 5.1. (Separations-Cut-Off bei Geburts- und Todesprozessen)

In obiger Situation hat die Familie

(Ωn, ξ
∗
n, (γ

t
n)t>0)n=1,2,...

einen Separations-Cut-Off genau dann, wenn Nn = λntn
n→ ∞. Für jedes c>0 gelten die Sepa-

rationsschranken

s(γ(1+c)tn
n , ξ∗n) ≤

1

1 + c2Nn
, (5.5)

s(γ(1−c)tn
n , ξ∗n) ≥ 1 − 1

1 + c2Nn

. (5.6)

Für jedes feste ǫ ∈ (0, 1) ist die Bedingung λntn → ∞ äquivalent zu λnτn(ǫ) → ∞.
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Kapitel 5. Separations-Cut-Off bei Geburts- und Todesprozessen

Beweis. Mit Satz 4.3 erhalten wir

s(γt
n, ξ

∗
n) = P (Tn > t),

wobei

Tn =

mn∑

i=1

Sn,i und Sn,i ∼ Exp(λn,i).

Insbesondere gilt E(Tn) = tn.

Für die Varianz Var(Tn) = σ2
n gilt

σ2
n =

mn∑

i=1

λ−2
n,i =

mn∑

i=1

λ−2
n,i

(
λn

λn

)2

= λ−2
n

mn∑

i=1

(
λn

λn,i

)2

≤ λ−2
n

mn∑

i=1

λn

λn,i

= λ−2
n λn

mn∑

i=1

1

λn,i

= λ−1
n

mn∑

i=1

1

λn,i

= λ−1
n tn.

Für die Ungleichung haben wir genutzt, dass λn,i ≥ λn für alle i ≥ 1. Wegen

σn =

√√√√
mn∑

i=1

λ−2
n,i ≥ λ−1

n

gilt also

σn ≤ tn und σn ≤
√
λ−1

n tn = N
− 1

2
n tn. (5.7)

Die Separationsschranken (5.5) und (5.6) folgen direkt aus (5.7), Lemma 5.1 und Satz 4.3

s(γ(1+c)tn
n , ξ∗n) = P (Tn > tn + ctn) ≤ P (Tn > tn + cσnN

1

2
n ) ≤ 1

1 + c2Nn
.

Entsprechend:

s(γ(1−c)tn
n , ξ∗n) = P (Tn > tn − ctn) = 1 − P (Tn < tn − ctn)

≥ 1 − P (Tn < tn − cσnN
1

2
n ) ≥ 1 − 1

1 + c2Nn
.

Angenommen, dass Nn = λntn
n→ ∞. Aus der zweiten Ungleichung in (5.7) folgt, dass tn

σn

n→ ∞,

da N
1

2
n ≤ tn

σn
.

Nach Teil(c) von Lemma 5.1 folgt also, dass ein Separations-Cut-Off zur Zeit sn stattfindet und

sogar, dass ein (tn, σn)-Cut-Off stattfindet, wir also mit der Folge σn sogar die Fenstergröße

kennen.
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Falls umgekehrt zur Zeit sn ein Cut-Off stattfindet, dann ist nach (5.7) (σn ≤ tn) und Lemma

5.1(b) (σn ≤ 1tn und Cut-Off zur Zeit sn) sn ∼ tn (d.h. sn

tn
= 1), es muss also ein Cut-Off

zur Zeit tn vorliegen. Da die Separationsschranken (5.5) und (5.6) für jedes c > 0 gelten, folgt

Nn
n→ ∞.

Sei nun ǫ ∈ (0, 1) fest. Mit der oberen Grenze in Lemma 5.1(a) und der Beziehung σn ≤ tn

ergibt sich

τn(ǫ) ≤ tn + (ǫ−1 − 1)
1

2σn ≤ (1 + (ǫ−1 − 1)
1

2 tn.

Also gilt

(λnτn(ǫ)
n→ ∞) ⇒ (λntn

n→ ∞).

Umgekehrt, falls tnλn
n→ ∞, liegt ein Cut-Off zur Zeit tn vor (Begründung siehe weiter oben in

diesem Beweis) und nach (5.7) und Lemma 5.1(a) gilt

(1 − (ǫ−1 − 1)−
1

2 tn) ≤ τn(ǫ) ≤ (1 + (ǫ−1 − 1)
1

2 tn).

Es folgt wegen ǫ ∈ (0, 1) beliebig: λnτn(ǫ)
n→ ∞. Damit ist Theorem 5.1 gezeigt.

Bemerkung 5.1. (a) Theorem 5.1 zeigt, dass bei in 0 gestarteten Geburts- und Todesprozessen

mit stetigem Zeitparameter ein Separations-Cut-Off nur dann auftreten kann, wenn mn gegen

unendlich geht, da sonst die Summe Nn = λntn nicht gegen unendlich gehen kann.

(b) Die Separationsschranken in Theorem 5.1 liefern, dass kein Separations-Pre-Cut-Off im

Sinne von Definition 2.6 vorliegen kann, falls λntn beschränkt ist. Also folgt aus der Existenz

eines Separations-Pre-Cut-Offs die Unbeschränktheit von λntn und damit wegen Theorem 5.1

die Existenz eines Separations-Cut-Offs. Da aus der Existenz eines Separations-Cut-Offs immer

die Existenz eines Separations-Pre-Cut-Offs folgt (setze c = 1− ǫ bzw. C = 1 + ǫ), ist bei zeit-

stetigen Geburts- und Todesprozessen die Existenz eines Separations-Pre-Cut-Offs äquivalent

zur Existenz eines Separations-Cut-Offs.

(c) Folgendermaßen können wir in Theorem 5.1 die Separationsschranken umschreiben, so dass

wir sie in Abhängigkeit von Spektrallücke und Mischzeit erhalten:

Ñn = λnτn(ǫ) ≤ λn(tn + (ǫ−1 − 1)1/2σn)
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Kapitel 5. Separations-Cut-Off bei Geburts- und Todesprozessen

= λntn + (ǫ−1 − 1)1/2λnσn ≤ λntn + (ǫ−1 − 1)1/2λntn = (1 + (ǫ−1 − 1)1/2)Nn.

Daher gilt für alle c > 0 und ǫ ∈ (0, 1)

s(γ(1+c)tn , ξ∗n) ≤
1

1 + c2(1 + (ǫ−1 − 1)1/2)−1Ñn

und

s(γ(1−c)tn , ξ∗n) ≥ 1 − 1

1 + c2(1 + (ǫ−1 − 1)1/2)−1Ñn

.

Kommen wir nun zur diskreten Version des Hauptsatzes. Wir benötigen zusätzlich die Mono-

toniebedingung pn,x + qn,x+1 ≤ 1.

Theorem 5.2. Bezüglich der oben eingeführten Situation und Notation und unter der Annah-

me, dass für alle x ∈ {0, ..., mn − 1} die Monotoniebedingung

pn,x + qn,x+1 ≤ 1

erfüllt ist, hat die Familie

(Ωn, ξ
∗
n, (µ

k
n)k=0,1,...)n=1,2,...

genau dann einen Separations-Cut-Off, wenn Nn = λntn
n→ ∞.

Die Bedingung pn,x + qn,x+1 ≤ 1 impliziert die Aperiodizität der Markov-Kette mit analoger

Argumentation wie in Kapitel 3:

r0,0 = 0 ⇒ p0,1 = 1 ⇒ q1,0 = 0 ⇒  ,

da der Geburts- und Todesprozess als irreduzibel vorausgesetzt ist. Also gilt r0,0 > 0 und damit

ist Mn aperiodisch. Insbesondere konvergiert Mn nach dem Ergodensatz gegen eine eindeutige

stationäre Verteilung ξ∗n . Wie im stetigen Fall kann man das Theorem ebenfalls mit τn(ǫ)

anstelle von tn formulieren.

Nachdem wir das angekündigte Resultat, eine notwendige und hinreichende Bedingung für die

Existenz eines Separations-Cut-Offs bei Geburts- und Todesprozessen bewiesen haben, kommen

wir nun dazu die Form des Cut-Offs zu beschreiben.
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6 Die Form des Cut-Offs

Ist ein Cut-Off nachgewiesen — sagen wir zur Zeit tn — stellt sich natürlicherweise als Nächstes

die Frage nach der Schärfe des Cut-Offs, also nach der Abruptheit des Übergangs zur statio-

nären Verteilung. Wenn ein (sn, bn)-Cut-Off vorliegt (nach möglicher Anpassung der Folge (sn)),

untersuchen wir dazu das Cut-Off Fenster, also die Folge (bn). Die Form des Cut-Offs werden

wir in Satz 6.5 näher beschreiben, in dem wir die Funktionen f+ und f− aus der Cut-Off De-

finition bestimmen. Zunächst stellen wir einige Aussagen aus der Theorie unendlich teilbarer

Verteilungen vor, die wir beim Beweis von Satz 6.5 benötigen werden. Wir werden den Begriff

der unendlichen Teilbarkeit erklären. Die Gamma-Verteilung und damit insbesondere die Ex-

ponentialverteilung wird als unendlich teilbare Verteilung identifiziert. Danach wird mit der

Lévy-Khintschin Formel eine erschöpfende Beschreibung der unendlich teilbaren Verteilungen

auf R gegeben. Unsere Darstellung des Exkurses basiert auf Kapitel 16 aus [Kle08] sowie auf

Kapitel 48 aus [Als05c].

6.1 Exkurs: Unendliche Teilbarkeit

Definition 6.1. Ein W-Maß µ ∈ W(R) heißt unendlich teilbar, falls es für jedes n ∈ N ein

µn ∈ W(R) mit der Eigenschaft µ∗n
n = µ gibt.

Analog nennen wir eine charakteristische Funktion φ eines W-Maßes auf R (kurz: CFW) un-

endlich teilbar, falls es zu jedem n ∈ N eine CFW φn gibt mit φn
n = φ.

Eine reelle Zufallsvariable X heißt unendlich teilbar, falls es zu jedem n ∈ N unabhängig,

identisch verteilte Zufallsvariablen Xn,1, ..., Xn,n gibt mit X
d
= Xn,1 + ...+Xn,n.

Offenbar sind alle drei Begriffe der unendlichen Teilbarkeit äquivalent. Wir verzichten im Fol-

64



Kapitel 6. Die Form des Cut-Offs

genden auf eine ausführliche Vorstellung der Theorie unendlich teilbarer Verteilungen und kon-

zentrieren uns auf die Aussagen, die für den Beweis von Satz 6.5 benötigt werden.

Lemma 6.1. Die Exponentialverteilung mit Parameter λ ist unendlich teilbar, die dazugehö-

rigen Teiler sind gammaverteilt mit Parametern λ und 1/n.

Satz 6.1. Ist (µn)n∈N eine (schwach) konvergente Folge unendlich teilbarer Wahrscheinlich-

keitsmaße auf R, so ist µ = limn→∞ µn unendlich teilbar.

Definition 6.2. Ein σ-endliches Maß ν auf R mit ν({0}) = 0 und
∫

(x2 ∧ 1)ν(dx) < ∞ heißt

kanonisches Maß. Sind σ2 ≥ 0 und b ∈ R, so heißt (σ2, b, ν) kanonisches Tripel.

Satz 6.2. (Lévy-Khintschin Formel). Sei µ ∈ W(R) und ψ(t) = log
∫
eitxµ(dx). µ ist genau

dann unendlich teilbar, wenn es ein kanonisches Tripel (σ2, b, ν) gibt, so dass

ψ(t) =
σ2

2
t2 + ibt+

∫
(eitx − 1 − itxI{|x|<1})ν(dx) (6.1)

gilt. Dieses Tripel ist durch (6.1) eindeutig festgelegt. ν bezeichnet man als Lévy-Maß, σ2 als

Gaußschen Koeffizienten und b als Zentrierungskonstante.

Bemerkung 6.1. Die Lévy-Khintschin Formel sagt also insbesondere aus, dass eine unendlich

teilbare Verteilung einen normalverteilten Anteil hat. Wenn der normalverteilte Anteil ungleich

0 ist, ist also die Dichtefunktion der unendlich teilbaren Verteilung überall positiv, weil die

Normalverteilung diese Eigenschaft besitzt. Dieses Argument werden wir im Beweis von Satz

6.5(b) benötigen.

6.2 Form des Separations-Cut-Offs bei Geburts- und

Todesprozessen

Im Beweis von Satz 6.5 werden wir auf den Satz von Prohorov verweisen, der von uns jetzt in

der Version [Als05c] vorgestellt wird.

Definition 6.3. Eine Familie (Qi)i∈I endlicher Maße auf (Rd,Bd) heißt straff, wenn für jedes

ǫ > 0 ein Kompaktum K ⊂ R
d existiert mit

sup
i∈I

Qi(K
c) < ǫ.
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6.2. Form des Separations-Cut-Offs bei Geburts- und Todesprozessen

Satz 6.3. (Satz von Prohorov) Eine Familie M endlicher Maße auf einem polnischen Raum

(S,S) ist genau dann schwach relativ folgenkompakt (d.h. jede Folge in M enthält eine schwach

konvergente Teilfolge), wenn sie gleichmäßig beschränkt ist (supQ∈M
Q(S) <∞) und straff ist.

Im Beweis genügt uns der folgende Spezialfall:

Satz 6.4. Eine Familie W ⊂ W(R) ist genau dann schwach relativ folgenkompakt, wenn sie

straff ist.

Nun zu dem angekündigten Satz, der uns die Gestalt der Folge (bn) im Falle von Geburts- und

Todesprozessen und Abstandsmessung in Separation näher beschreibt.

Satz 6.5. Gegeben eine Familie von Geburts- und Todesprozessen wie im vorherigen Kapitel

gelte Nn = λntn → ∞, es liege also ein Separations-Cut-Off vor. Setze

σ2
n =

mn∑

i=1

λ−2
n,i.

(a) Gelte λnσn → ∞. Dann gilt für reelles c

lim
n→∞

s(γtn+cσn
n , ξ∗n) = 1 − Φ(c), wobei Φ(t) =

1√
2π

∫ t

−∞

e−x2/2dx.

Insbesondere liegt ein (tn, σn)-Cut-Off vor, aber kein (tn, λ
−1
n )-Cut-Off.

(b) Angenommen, dass λnσn beschränkt ist. Dann liegt ein (tn, σn)-Cut-Off vor (äquivalent ein

(tn, λ
−1
n ) -Cut-Off) und für jedes reelle c > 0 gilt

lim inf
n→∞

s(γtn+cσn
n , ξ∗n) > 0,

während für jedes reelle c < 0 gilt

lim sup
n→∞

s(γtn+cσn
n , ξ∗n) < 1.

Beweis. Nach Satz 4.3 gilt s(γt
n, ξ

∗
n) = P (T0n > t). Die momenterzeugende Funktion der Zu-

fallsvariablen T0n−tn
σn

hat folgende Gestalt

Mn(t) = E(et(T0n−tn)/σn).
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Kapitel 6. Die Form des Cut-Offs

Da T0n die Summe mn unabhängiger, exponentialverteilter Zufallsvariablen mit Parametern

λn,i ist, erhalten wir

Mn(t) = E
(
e

tT0n
σn

− ttn
σn

)
= e−

ttn
σn

mn∏

i=1

λn,i

λn,i − t/σn
= eFn(t),

wobei

Fn(t) = log

(
e−ttn/σn

mn∏

i=1

λn,i

λn,i − t/σn

)
= −ttn/σn +

mn∑

i=1

log

(
1

1 − t/(σnλn,i)

)

= −ttn/σn −
mn∑

i=1

log(1 − tσ−1
n λ−1

n,i) =

∞∑

k=2

θk(n)

kθ2(n)k/2
tk

mit

θk(n) =

mn∑

i=1

(λn,1/λn,i)
k.

Da die Eigenwerte λn,i monoton nicht fallend geordnet sind und im Intervall [0,2] liegen, gilt

1 ≤ θk(n) ≤ θ2(n), k ≥ 2. Damit konvergiert die obige Reihe, zumindest für t ∈ (0, 1), und da

Fn(t) = t2/2 +
∑∞

k=3
θk(n)

kθ2(n)k/2 t
k gilt, folgt

0 ≤ Fn(t) − t2

2
=

∞∑

k=3

tk

kθ2(n)(k−2)/2

θk(n)

θ2(n)
≤

∞∑

k=3

tk

kθ2(n)(k−2)/2
.

Es gilt ferner θ2(n) =
∑mn

i=1

(
λn,1

λn,i

)2

= λ2
n

∑mn

i=1

(
1

λn,i

)2

⇒ θ
1/2
2 = λnσn.

Falls also λnσn → ∞ gilt, dann folgt Mn(t) → et2/2 für jedes reelle t und damit ist

σ−1
n (T0n − tn) asymptotisch verteilt wie eine standardnormalverteilte Zufallsvariable. Wegen

s(γt
n, ξ

∗
n) = 1 − P (Tn ≤ t) ist (a) bewiesen.

Nun zum Beweis von (b). Angenommen λnσn ist beschränkt, also λnσn ≤ A. Dann gilt

λ−1
n ≤ σn ≤ Aλ−1

n

und, für jedes k=2,3,...,

1 ≤ θk(n) ≤ A <∞.

Die Chebychev-Ungleichung liefert P (|T0n−tn
σn

| ≥ ǫ) ≤ ǫ−2 und damit die Straffheit der Ver-

teilungen von σ−1
n (T0n − tn), n = 1, 2, .... Nach dem Satz von Prohorov können wir aus einer

beliebigen, gegebenen Teilfolge (nj) eine Teilfolge (njl
) wählen, so dass entlang dieser Teilfolge
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6.2. Form des Separations-Cut-Offs bei Geburts- und Todesprozessen

P (T0n > tn + cσn) gegen P (T > c), c ∈ R, konvergiert, für eine Zufallsvariable T . Nun folgt aus

der vorherigen Berechnung der momenterzeugenden Funktion, dass entlang der Teilfolge (njl
)

von (nj) der Grenzwert

lim
l→∞

θk(njl
) = θk ∈ [1, A]

für jedes k ≥ 2 existiert und T die momenterzeugende Funktion

exp

(
t2

2
+
∑

k≥3

θkt
k

kθ
k/2
2

)
(6.2)

hat für jedes t ∈ (−θ1/2
2 , θ

1/2
2 ). Die Zufallsvariablen σ−1

n (T0n − tn) sind unendlich teilbar, da T0n

als Summe exponentialverteilter Zufallsvariablen unendlich teilbar ist. Nach Satz 6.1 ist also

ebenfalls T unendlich teilbar. Mit Blick auf (6.2) sieht man, dass der normalverteilte Anteil

von T nichttrivial ist und T also mit Bemerkung 6.1 überall positive Dichte besitzt. Damit ist

Teil (b) des Satzes bewiesen. Da die Summe in (6.2) wegen der Beschränktheit von θ2 nicht

verschwindet, kann kein Grenzwert der Folge (T0n − tn)/σn normalverteilt sein. Damit ist Satz

6.5 bewiesen.

Bemerkung 6.2. Wegen des Auftretens der Normalverteilung sprechen wir in (a) auch von

einem Gaussschen-Cut-Off. In (b) ist die Form des Cut-Offs nach der Schlussbemerkung im

Beweis nicht gausssch. Wir haben also genau dann einen Gaussschen-Cut-Off, wenn die Grö-

ßenordnung der Fenstergröße strikt größer ist als die der Inversen der Spektrallücke. Die Inverse

der Spektrallücke bezeichnet man auch als relaxation-time.

Bemerkung 6.3. Der erste Teil von (b), also der Fakt, dass für jedes reelle c>0

lim inf
n→∞

s(γtn+cσn
n , ξ∗n) > 0

gilt, kann auch elementar hergeleitet werden. Um P (T0n > tn + cσn) von unten zu beschränken,

schreibe

P (T0n > tn + cσn)

≥ P

(
Sn,1 > λ−1

n + (c+ 1)σn;
mn∑

i=2

Sn,i >
mn∑

i=2

λ−1
n,i − σn

)

≥ P (Sn,1 > λ−1
n + (c+ 1)σn)P

(
mn∑

i=2

Sn,i >
mn∑

i=2

λ−1
n,i − σn

)
.
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Kapitel 6. Die Form des Cut-Offs

Mit der zweiten Ungleichung in (5.4) in der Form P (T0n > tn − σn) ≥ 1 − 1
1+1

und

σ2
n ≥ V ar(

∑mn

i=2 Sn,i), erhalten wir

P

(
mn∑

i=2

Sn,i >

mn∑

i=2

λ−1
n,i − σn

)
≥ 1

2
.

Es folgt

P (T0n > tn + cσn) ≥ 1

2
e−(λ−1

n +(c+1)σn)λn =
1

2
e−(1+(c+1)λnσn) ≥ 1

2
e−(1+(c+1)A).

Für den zweiten Teil von Teil (b) ist kein elementarer Beweis bekannt.

Bemerkung 6.4. Angenommen, dass in Satz 6.5(b) zusätzlich für jedes k

θk = lim
n→∞

(
λn

λn,i

)k

<∞

existiert. Dann gilt für jedes c ∈ R

lim
n→∞

s(γtn+cσn
n , ξ∗n) = 1 − F (c),

wobei F (t) die Verteilungsfunktion einer unendlich teilbaren Zufallsvariable ist, deren momen-

terzeugende Funktion für t ∈ (−θ−1/2
2 , θ

−1/2
2 ) gegeben ist durch (6.2). Insbesondere gilt nach

Satz 6.5(b), dass 0 < F (c) < 1 für alle c ∈ R.
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7 Ausblick

Nachdem wir in dieser Arbeit gezeigt haben, dass mit dem Kriterium von Peres eine not-

wendige und hinreichende Bedingung für das Auftreten des Cut-Off-Effekts bei Geburts- und

Todesprozessen und Abstandsmessung in Separation formuliert werden kann, stellt sich als

Nächstes natürlicherweise die Frage, ob dieses Kriterium auch für andere Klassen reversibler

Markov-Prozesse bei Abstandsmessung in Separation oder bei Geburts- und Todesprozessen

und Abstandsmessung in Totalvariation notwendig und hinreichend ist. Zunächst zur zweiten

Frage.

7.1 Totalvariations-Cut-Off bei Geburts- und

Todesprozessen

Ding, Lubetzky und Peres bewiesen 2008 die Gültigkeit des Peres-Kriteriums in der Klasse

der Geburts- und Todesprozesse bei Abstandsmessung in “worst-case”-Totalvariation [DLP08],

wobei “worst-case” in diesem Zusammenhang bedeutet, dass man den Startpunkt des Geburts-

und Todesprozesses so wählt, dass der Abstand der Verteilung des Geburts- und Todesprozesses

zur stationären Verteilung maximal ist. Eine Folge von Geburts- und Todesprozessen weist ge-

nau dann einen Cut-Off in “worst-case”-Totalvariation auf, wenn das Produkt aus Spektrallücke

und Mischzeit gegen unendlich geht (Korollar 3 in [DLP08]). Im Fall diskreter Zeit betrachten

die Autoren die Klasse der “lazy chains”, also die Klasse der Geburts- und Todesprozesse, für

die die Wahrscheinlichkeit, in einem Zustand zu verweilen, größer als 1/2 ist (Korollar 2 in

[DLP08]). Diese sind insbesondere monoton. Des Weiteren wird in diesem Paper gezeigt, dass

für Geburts- und Todesprozesse in stetiger Zeit und Geburts- und Todesprozesse in diskreter
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Kapitel 7. Ausblick

Zeit, welche “lazy” sind, der Separationsabstand maximal ist, wenn der Geburts- und Todespro-

zess in einem der beiden Endpunkte des Zustandsraums gestartet wird (Theorem 4 in [DLP08]).

Da die Separationsmischzeit und die Totalvariationsmischzeit dieselbe Ordnung haben, folgt die

Äquivalenz des Cut-Offs bei Geburts- und Todesprozessen und Separation bzw. Totalvariation

(Korollar 5 in [DLP08]):

Für eine Familie endlicher irreduzibler Geburts- und Todesprozesse in stetiger Zeit ist Cut-Off

in “worst-case”-Totalvariation äquivalent zu Cut-Off in “worst-case”-Separation.

Bei Separation startet man also immer in 0 oder in dem anderen Endpunkt des Zustandsraums.

Die Äquivalenz ist dabei in dem Sinne zu verstehen, dass die Existenz des einen Cut-Offs die

Existenz des anderen Cut-Offs impliziert; die Cut-Off Zeitpunkte können sich jedoch unter-

scheiden, was sie beispielsweise beim Bernoulli-Laplace-Modell (siehe Abschnitt 7 in [DSC06])

auch tun.

Die Vermutung liegt nahe, dass das Peres-Kriterium auch für Verwandte von Geburts- und

Todesprozessen gültig bleibt. Diese Vermutung ist aber im Allgemeinen nicht richtig. Wir stel-

len dazu nun ein auf David Aldous zurückgehendes Beispiel in der Version aus [CSC08] vor.

In diesem betrachten wir eine Familie reversibler MSP, welche eng mit den Geburts- und To-

desprozessen verwandt ist, bei der aber das Peres-Kriterium nicht hinreichend ist.

7.2 Beispiel von Aldous

Die von uns betrachtete Kette besteht aus drei Teilen, einem Tail und zwei Armen. Die beiden

Arme sind an dem Tail befestigt und an ihrem anderen Ende miteinander verbunden. Der Tail

hat die Länge n, ist also ein Abschnitt der Form {x1, x2, ..., xn}. Der linke Arm hat ebenfalls

die Länge n, {y1, ..., yn}. Der rechte Arm hat die doppelte Länge 2n, {z1, ..., z2n} mit z2n = yn.

Übergänge sind wie bei einem Geburts- und Todesprozess nur in einen benachbarten Zustand

möglich, falls eine Zustandsveränderung stattfindet, und wir haben in allen drei Teilen der

Markov-Kette eine Drift nach oben vorliegen, also innerhalb des linken Armes in Richtung yn,

entlang des rechten Armes in Richtung z2n und entlang des Tails in Richtung der Arme.

Präziser: pi,n > 1/2, qi,n < 1/2, pi,n + qi,n = 1, i = t, l, r, wobei t für Tail, l für links und r für

71



7.2. Beispiel von Aldous

rechts steht. Entlang des Tails gehen wir demnach mit Wahrscheinlichkeit pt,n nach oben und

mit qt,n nach unten. Am oberen Ende des Tails gehen wir mit Wahrscheinlichkeit (ql,n + qr,n)/2

nach unten, mit pl,n/2 nach links und mit pr,n/2 nach rechts. Entlang der Arme bewegen wir

uns hoch bzw. runter mit Wahrscheinlichkeiten pi,n, qi,n, i = l oder r. Im Punkt yn = z2n, gehen

wir mit Wahrscheinlichkeit ql,n nach yn−1, mit qr,n nach z2n−1 oder bleiben mit 1− (qr,n + ql,n).

Wir machen diese Kette reversibel durch geeignete Wahl der Wahrscheinlichkeiten entlang des

linken und rechten Armes, in diesem Fall durch pl,n/ql,n = (pr,n/qr,n)2.

Die Berechnung der stationären Verteilung liefert, dass diese im Wesentlichen im Übergangs-

punkt zwischen den beiden Armen yn = z2n konzentriert ist, da wir entlang beider Arme eine

Drift in Richtung dieses Punktes haben und entlang des Tails einen Drift in Richtung der Arme.

Unter der Annahme, dass pi,n > 2/3, i = t, l, r, kann man nun mit der Cheeger-Ungleichung

zeigen, dass die Spektrallücke dieser Kette größer einer echt positiven Konstanten ist. Siehe

dazu Prop.4.4 in [Che06].

Wir behaupten nun, dass 1 < a < b <∞ und ǫ ∈ (0, 1) existieren, so dass für die in x1 gestar-

tete Kette der Abstand in Totalvariation geringer als 1− ǫ zur Zeit an ist, aber größer als ǫ zur

Zeit bn, für alle großen n. Außerdem gilt, wie man sich leicht überlegt, dass der Startpunkt x1

derjenige Startpunkt ist, für den die Mischung der Kette am längsten dauert, also die Mischzeit

am größten ist. Das Produkt aus Spektrallücke und maximaler Totalvariations-Mischzeit ist

also von der Größenordnung n und geht somit gegen unendlich, da man die Spektrallücke nach

unten gegen eine echt positive Konstante abschätzen kann. In diesem Fall ist dies aber nicht

hinreichend für einen Cut-Off. Der Totalvariationsabstand ist zur Zeit an kleiner als 1− ǫ, weil

man eine gute Chance hat, yn in dieser Zeit zu erreichen. Der Grund, warum der Abstand in

Totalvariation zur Zeit bn größer als ǫ ist, liegt darin, dass es länger dauert, den Punkt yn durch

den doppelt so langen rechten Arm zu erreichen.

Auch wenn die Behauptung, dass kein Cut-Off vorliegt, intuitiv ist, sind die Berechnungen, ins-

besondere für die Abschätzung der Spektrallücke, nicht ganz einfach. Falls man die Drift von

n abhängig macht durch pi,n ≥ 1 − 1/n, i = t, l, r, vereinfachen sie sich, weil eine sehr starke

Konzentration der stationären Verteilung im Verbindungspunkt der beiden Arme vorliegt. Für

genauere Erläuterungen verweisen wir wiederum auf [Che06], Abschnitt 4.2.
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7.3 Ausblick und offene Fragen

Das vorangegangene Beispiel zeigt, dass es bei Geburts- und Todesprozessen genügt einen Über-

gang von n nach 0 zu erlauben, damit das Kriterium von Peres bei Abstandsmessung in Totalva-

riation seine Gültigkeit verliert. Dennoch wird in einer Reihe von Klassen von Markov-Prozessen

die Gültigkeit des Kriteriums von Peres vermutet; zu nennen sind insbesondere Random Walks

auf endlichen Gruppen.

Eine weitere offene Frage ist, ob eine Äquivalenz von Totalvariations-Cut-Off und Separa-

tions-Cut-Off auch im Allgemeinen bei Familien irreduzibler, reversibler Markov-Prozesse ana-

log zur Äquivalenz bei Geburts- und Todesprozessen vorliegt. In diesem Fall könnte man das

Beispiel von Aldous auch als Gegenbeispiel für den Separationsfall verwenden.

Des Weiteren führt das Beispiel von Aldous zurück zur Frage von Diaconis nach einem all-

gemeinen Kriterium für das Auftreten eines Cut-Offs in einer Familie endlicher, ergodischer

Markov-Prozesse.
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A Anhang

Wir geben nun den Beweis von Satz 3.2.

Satz A.1. Sei M = (Mn)n≥0 eine positiv rekurrente DMK bezüglich einer Filtration (Fn)n≥0

mit Zustandsraum S, stationärer Verteilung ξ∗ und beliebiger Anfangsverteilung.

(a) Ist T eine stark stationäre Zeit für M , so gilt

s(n) ≤ P (T > n)

für alle n ≥ 0.

(b) Es existiert bei endlichem Zustandsraum eine stark stationäre Zeit T für M , so dass

s(n) = P (T > n) (A.1)

für alle n ≥ 0. In diesem Fall heißt T minimale stark stationäre Zeit.

Beweis. Es gilt mit Satz 3.1(b)

P (Mn = i) ≥ P (Mn = i, T ≤ n) = P (T ≤ n)ξ∗(i) = (1 − P (T > n)ξ∗(i)

und folglich

P (T > n) ≥ 1 − P (Mn = i)

ξ∗(i)

für alle i ∈ S und n ≥ 0

Nun konstruieren wir für den Beweis von (b) eine minimale stark stationäre Zeit. Wir setzen

µn(i) = P (Mn = i),

an = min
i∈S

µn(i)

ξ∗(i)
= 1 − s(µn, ξ

∗).
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und k = inf{n ≥ 0 : an > 0}. Sei nun T so definiert, dass P (T < k) = 0,

P (T = k|Mk = i) =
akξ

∗(i)

µk(i)
, i ∈ S,

und induktiv

P (T = n|Mn = i, T > n− 1) =
an − an−1

µn(i)
ξ∗(i)

− an−1

, i ∈ S, n > k.

Wenn wir zeigen können, dass

P (Mm = i, T = m) = ξ∗(i)(am − am−1) (A.2)

für alle m ≥ k und i ∈ S gilt, so ist T eine stark stationäre Zeit, denn per Summation über

i ∈ S liefert (A.2) P (T = n) = an − an−1 und damit

P (Mn = i, T = n) = ξ∗(i)P (T = n)

für alle n ≥ 0. Außerdem folgt (A.1) aus der folgenden Rechnung

P (T > n) = 1 − P (T ≤ n) = ak +
n∑

l=k+1

(al − al−1) = 1 − an = s(µn, ξ
∗).

Wir beweisen nun (A.2) per Induktion über n ≥ k. Für n = k gilt dies nach Definition von

P (T = k|Mk = i). Nehmen wir also für den Induktionsschritt an, die Aussage sei wahr für alle

i ∈ S und m ≤ n− 1. Dies impliziert

P (Mn = i, T ≤ n− 1) = ξ∗(i)an−1,

denn für m ≤ n− 1 gilt

P (Mn = i, T = m) =
∑

j∈S

P (Mn = i,Mm = j, T = m)

=
∑

j∈S

P (Mn = i|Mm = j, T = m)P (Mm = j, T = m)

=
∑

j∈S

pjiξ
∗(j)(am − am−1)

= ξ∗(i)(am − am−1).

75



Folgendermaßen erhalten wir (A.2) für m = n

P (Mn = i, T = n) = P (T = n|Mn = i, T > n− 1)P (Mn = i, T > n− 1)

=
an − an−1

µn(i)
ξ∗(i)

− an−1

(P (Mn = i) − P (Mn = i, T ≤ n− 1))

=
an − an−1

µn(i)
ξ∗(i)

− an−1

(µn(i) − ξ∗(i)an−1)

= ξ∗(i)(an − an−1).

Damit ist der Satz bewiesen.
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