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1 Einleitung

Einige ergodische Markov-Prozesse zeigen einen scharfen Ubergang bei der Konvergenz gegen
ihre stationére Verteilung. Sie bleiben bis zu einem festen Zeitpunkt in weitem Abstand von
ihrer stationdren Verteilung und ndhern sich ihr im Anschluss exponentiell schnell an. Anfang
der achtziger Jahre wurde bei zufélligen Transpositionen auf der symmetrischen Gruppe in
[DS81] erstmalig eine solche abrupte Konvergenz gegen die stationdre Verteilung festgestellt.
Diesem Phédnomen wurde von Aldous und Diaconis in [AD85] der Name Cut-Off-Effekt gegeben.
Einer der interessantesten und prézisesten Cut-Offs wurde in [DB92] von Diaconis und Beyer
bewiesen. In dieser Arbeit wurde die Frage beantwortet, wie oft ein anfdnglich geordnetes
Kartenspiel mit der Mischmethode Riffle-Shuffle gemischt werden muss, damit es als gemischt

betrachtet werden kann. Wir zitieren hier das Hauptergebnis dieser Arbeit:

Theorem 1.1. Bezeichne P! die Verteilung eines anfinglich geordneten, aus n Karten be-
stehenden Kartenspiels nach | Mischungen mit der Mischmethode Riffle-Shuffle. Sei w, die
Gleichverteilung tiber allen Permutationen und setze | = (3/2)logyn + ¢. Dann gilt fir grofies

n

—C

2 1 1 t 2
P .. =1—20(— O —- bei B(t) = —— —5°/2(s.
H n uHTV <4\/§)+ (711/4)7 wobei  D(t) /_27T/ooe s

Eine Reihe weiterer Beispiele fiir den Auftritt des Cut-Off-Effekts liefert Diaconis in der Uber-

sichtsarbeit |Dia96]. Gemeinsamkeit dieser Beispiele ist, dass fiir den Beweis des Vorliegens
des Cut-Off-Effekts jeweils griindliche Kenntnisse der zugrundeliegenden Familie von Markov-
Prozessen vorliegen mussten. Insbesondere die Zeit, zu der ein Cut-Off auftritt, musste zum
Beweis der Existenz eines Cut-Offs bekannt sein.

Diaconis fragte deshalb in dem Ubersichtsartikel [Dia96] nach einem allgemeinen Kriterium

fiir das Auftreten eines Cut-Offs in einer Familie endlicher, ergodischer Markov-Prozesse. Ein



erstes solches Kriterium bei der Untersuchung des Cut-Off-Phénomens gab Peres im Jahr
2004. Die Konvergenzrate wird bekanntermafsen vom betraglich zweitgrofiten Eigenwert des
Markov-Prozesses bestimmt. Naheliegend ist demnach die Vermutung, dass die Spektralliicke,
welche im reversiblen Fall die Differenz zwischen Spektralradius und dem betraglich zweitgrofs-
ten Eigenwert ist, in einem derartigen Kriterium auftaucht. Als zweite Grofse integriert sich
die e-Mischzeit, also die erste Zeit, zu der der Abstand zur stationdren Verteilung einen fest
vorgegebenen Wert € > 0 unterschreitet. Konkret formulierte Peres: Ein notwendiges — in vie-
len Féllen auch hinreichendes — Kriterium fiir Cut-Off in einer Familie endlicher reversibler
Markov-Prozesse ist das Folgende: Das Produkt aus Spektralliicke und Mischzeit geht gegen
unendlich. Bei diesem Kriterium muss also die Zeit, zu der der Cut-Off auftritt, nicht notwendig
bekannt sein, um Aussagen iiber die Existenz eines Cut-Offs machen zu kénnen. Eine Reihe von
Arbeiten zur Giiltigkeit des Peres-Kriteriums in verschiedenen Klassen von Markov-Prozessen
und bei Zugrundelegung verschiedener Abstandsbegriffe sind in jiingster Zeit erschienen. Es
zeigt sich, dass bei Abstandsmessung beziiglich der LP-Norm, 1 < p < oo, das Kriterium von
Peres bei reversiblen Prozessen in der Tat notwendig und hinreichend ist. Dies wurde kiirzlich
in [CSCO8| und [Che06] bewiesen. Misst man den Abstand zur stationéren Verteilung in totaler
Variation, ist es im Allgemeinen nicht hinreichend. Ein auf Aldous zuriickgehendes Beispiel fiir
eine reversible Markov-Kette, welche das Kriterium erfiillt, aber keinen Cut-Off zeigt, werden
wir in Kapitel 7 vorstellen. Bei der ob ihrer mannigfaltigen Anwendungsgebiete sehr bedeuten-
den Klasse der Geburts- und Todesprozesse ist das Kriterium hingegen auch in Totalvariation

notwendig und hinreichend, wie Peres, Lubetzky und Ding in [DLP0S8| zeigten.

Wir betrachten in unserer Arbeit ebenfalls die Klasse der Geburts- und Todesprozesse und
messen den Abstand zur stationédren Verteilung in Separation. Hauptergebnis unserer Arbeit
wird der Beweis sein, dass bei in 0 gestarteten, endlichen Geburts- und Todesprozessen in
stetiger Zeit und Abstandsmessung in Separation der Vorschlag von Peres ein notwendiges und

hinreichendes Kriterium fir die Existenz eines Cut-Ofls ist.

Wir formulieren jetzt dieses Hauptergebnis fiir Geburts- und Todesprozesse in stetiger Zeit.
Fiir jedes n bezeichne ~% die Verteilung eines ergodischen, in 0 gestarteten, Geburts- und

Todesprozesses auf €, = {0,1,...,n} zur Zeit t. £ sei die zugehorige stationédre Verteilung. Die



Kapitel 1. Einleitung

Separation zwischen 7 und der Zielverteilung & ist definiert durch
s(1. &) = sup {1 — Tn(W) /& (W)}
welly
Seien \,.; € [0,2],7 =0,1,2,...,n, die Eigenwerte, in nichtfallender Reihenfolge, von —@),, (wobei
(@), die zugehorige )-Matrix ist, also die infinitesimale erzeugende Matrix des zugehorigen

Markov-Prozesses darstellt). A\, = A, heifit Spektralliicke. Setze

n

ty =Y ()"

i=1

Der Hauptsatz lautet folgendermafsen:

Theorem 1.2. In obiger Situation hat die Familie (0, &5, (V.)i0)n=12... genau dann einen

Separations-Cut-Off , wenn N, = Aut,, — 00.

t,, kann man dquivalent durch die e-Separations-Mischzeit
5 =13(e) =inf{t > 0:5(7%, &) <€}

ersetzen, also die erste Zeit, zu der der Abstand in Separation zwischen der Verteilung des
Markov-Prozesses und der stationdren Verteilung geringer als € ist. Dieses Theorem werden wir
in Kapitel 5 beweisen.

Unsere Arbeit ist folgendermafsen aufgebaut: Zunéichst werden wir in Kapitel 2 notwendige
Grundbegriffe der Theorie der Markov-Prozesse bereitstellen, verschiedene Abstandsbegriffe
zwischen Wahrscheinlichkeitsverteilungen vorstellen und diese miteinander vergleichen, bevor
wir den Cut-Off-Effekt definieren. Dabei werden wir auch den Begriff der Fenstergrofe eines
Cut-Offs und mit dem Pre-Cut-Off eine schwéchere Form des Cut-Off-Effekts prasentieren.

In Kapitel 3 werden wir eine Verbindung zwischen stark stationdren Zeiten und der Abstands-
messung durch Separation herstellen. Stark stationére Zeiten eines Markov-Prozesses entspre-
chen der Zeit bis zur Absorption eines sogenannten stark stationdren dualen Prozesses zu diesem
Markov-Prozess. Die Entwicklung dieser Dualitétstheorie wird einen grofen Teil dieser Arbeit
einnehmen und geht auf Diaconis und Fill [DF90b| sowie Fill [Fil92] zuriick. Wir werden den
dualen Prozess erst im diskreten Fall untersuchen und danach den stetigen Fall behandeln.
Wir erhalten mit dem Algebraischen Dualitdtstheorem eine notwendige und hinreichende Be-

dingung fiir die Existenz eines solchen dualen Prozesses und geben eine Pfad-Konstruktion des



dualen Prozesses an. Bei Geburts- und Todesprozessen vereinfacht sich die Dualitdtstheorie
signifikant und der von uns konstruierte duale Prozess hat eine besonders einfache Gestalt: Der
duale Prozess ist selbst ein Geburts- und Todesprozess mit den gleichen Eigenwerten. Unser
durch die Pfad-Konstruktion entstandene stark stationére duale Prozess ist scharf, das heifst
die Zeit bis zur Absorption des dualen Prozesses liefert eine minimale stark stationére Zeit fiir
den zugrundeliegenden Markov-Prozess. Der Separationsabstand zur Zeit ¢ ist damit gleich der
Wahrscheinlichkeit, dass die stark stationére Zeit grofer als ¢ ist.

Durch Untersuchung der Verteilung der Ersteintrittszeit des absorbierenden Geburts- und To-
desprozesses in Kapitel 4 erhalten wir eine Darstellung des Separationsabstands als Summe un-
abhéngiger, exponentialverteilter Zufallsgrofsen. Die Eigenwerte des zugrundeliegenden Markov-
Prozesses parametrisieren dabei diese Zufallsgrofien. Dies ist ein klassisches Resultat, welches
auf Keilson [Kei79] bzw. Karlin und Mcgregor [KM59] zuriickgeht. Mittlerweile gibt es einen
neuen, stochastischen Beweis von Fill [Fil07|, wobei wir aber den klassischen Beweis geben. Mit
Hilfe dieser Darstellung des Separationsabstands und einigen elementaren Folgerungen aus der
Chebychev-Ungleichung werden wir in Kapitel 5 unseren Hauptsatz iiber den Separations-Cut-
Off bei Geburts- und Todesprozessen beweisen. Des Weiteren erhalten wir Schranken fiir den
Separationsabstand und die Aquivalenz von Pre-Cut-Off und Cut-Off bei Abstandsmessung mit
Separation.

Aus der Darstellung des Separationsabstand als Summe unabhéngiger, exponentialverteilter
Zufallsgrofen erhalten wir zusétzlich Aussagen iiber die Form des Cut-Offs, also iiber das Ver-
halten der Abstandsfunktion im Zeitfenster des abrupten Ubergangs zur stationiren Verteilung.
Einen Satz, der die Form des Cut-Offs bei Geburts- und Todesprozessen und Separationsab-
standsmessung beschreibt, werden wir in Kapitel 6 mit Hilfe der Theorie unendlich teilbarer
Verteilungen beweisen. In Kapitel 5 und 6 orientieren wir uns dabei wesentlich an den Resul-
taten von Diaconis und Saloff-Coste in [DSCO06].

In Kapitel 7 présentieren wir das erwéhnte Beispiel von Aldous als Beispiel dafiir, dass in To-
talvariation die Bedingung A,7, — o0 nicht notwendigerweise einen Cut-Off impliziert. Des
Weiteren werden wir neueste Ergebnisse im Zusammenhang mit dem Peres-Kriterium und dem
Cut-Off-Effekt vorstellen. Insbesondere ziehen wir Verbindungen zwischen dem Totalvariations-
Cut-Off und dem Separations-Cut-Off bei Geburts- und Todesprozessen [DLP08|. Ein Uberblick

iiber noch offene, verwandte Fragen rundet unsere Arbeit ab.



2 Einfuhrung in die Markov-Theorie in

diskreter und stetiger Zeit

2.1 Praliminarien

Eine stochastische Folge M = (M,),>o auf einem W-Raum (2,2, P) mit Werten in dem
Zustandsraum S heift Markov-Kette (in diskreter Zeit), falls

P(Mn—H = xn+1|M0 = T0, -+ M, = xn) = P(Mn—H = xn+1|Mn = xn)

fiir alle x; € S mit 0 < ¢ < n und n > 0. Wir sprechen von einer endlichen Markov-Kette
(EMK) bzw. einer diskreten Markov-Kette (DMK), falls S endlich oder diskret ist. Wir be-
trachten ausschliefslich die Klasse zeitlich homogener Markov-Ketten mit hochstens abzahlbar
unendlichem Zustandsraum. Zeitliche Homogenitdt bedeutet in diesem Zusammenhang, dass
P(M, 1 = xp41|M,, = x,) nicht von dem Zeitparameter n abhéngt.

In diesem Fall ist die Verteilung einer Markov-Kette M = (M,),>0 wegen des Satzes von
Tonescu-Tulcea durch ihre Startverteilung A (die Verteilung von Mj) und die Elementarwahr-

scheinlichkeiten

Pay = P(Myniy = y|M,, = x)
fiir alle z,y € S vollstandig determiniert. Die Elementarwahrscheinlichkeiten werden in der
sogenannten Ubergangsmatriz P = (Pay)zyes zusammengefasst. Fiir eine EMK (M, ),>0 mit
Ubergangsmatrix P und Startverteilung A, also P(My = z) = A\(z) fiir alle z € S, ist die
Verteilung von M,, gegeben durch
P(M, =xz)=AP"(z) = Z AMy)P"(y, x) fir alle x € S,

yes



2.1. Priliminarien

wobei P" die n-Schritt-Ubergangsmatriz ist, welche folgendermafen iterativ definiert wird:

P"(x,y) = Z P (z,2)P(z,y) fir alle x,y € S.

ze8

In naheliegender Verallgemeinerung betrachten wir nun Markov-Ketten in stetiger Zeit, welche
wir allgemein als Markov-Prozesse (MP) und im Fall eines héchstens abzéhlbaren Zustands-
raums S als Markov-Sprungprozesse (MSP) bezeichnen. Die Gefahr der Explosion eines MSPs,
also des Auftretens unendlich vieler Ubergéinge in endlicher Zeit, schlieRen wir dadurch aus,
dass wir zunéchst nur endliche Zustandsrdume betrachten. Es gelte also |S| < oo. Markov-
Sprungprozesse werden mittels eines infinitesimalen Erzeugers definiert, einer sogenannten (-
Matriz. Wir betrachten in weiten Teilen dieser Arbeit MSP, deren Q-Matrix folgende spezielle
Gestalt hat: Gegeben eine Ubergangsmatrix P, sei M = (M;);>o ein MSP mit infinitesimalem
Erzeuger Q = P — I. Es geniigt —wegen zeitlicher Transformationsméoglichkeiten endlicher
MSP— bei der Untersuchung des Cut-Off-Phénomens diese speziellen MSP zu untersuchen,
wie wir zu Beginn von Kapitel 5 erlautern. Bei einem MSP verweilt man eine exponentialver-
teilte Zeit in einem Zustand x € S und wechselt dann geméfs der @)-Matrix den Zustand. Die
Verteilung von M, ist somit im endlichen Fall eindeutig bestimmt durch die Startverteilung A
und die zeitstetige Halbgruppe H, = e *!=P) durch die Formel

P(M; =x) = Z AMy)H(y, x) fir alle z € S,t > 0.

yes

Dabei ist Hy(z,y) = e > >, W fiir z,y € S, t > 0 und P° = I. M(S) bezeichne die
Menge der endlichen Mafse auf S, 20(S) die Menge der Verteilungen auf S, also der W-Mafe auf
S. Gegeben eine Ubergangsmatrix P, nennen wir ein Maf & € 9(S) stationdr oder invariant

beziiglich P, falls £ Z 0 und (P = £ oder dquivalent £ # 0 und

Y ¢(y)Ply,x) = £(x)  fiirallex € S.

yes

Ein Maf & € 9(.S) heifst reversibel, falls £ # 0 und & die detaillierten Gleichgewichtsgleichungen
E(x)P(z,y) =E&(y) Py, ) fir alle x,y € S

erfiillt. Ein reversibles Mafs ist notwendigerweise stationér. Falls £ stationér (reversibel) beziig-
lich P ist, gilt fiir alle t > 0, {H, = &, oder dquivalent ¢ &(y)Hi(y,z) = {(x) fiir alle z € S
(im reversiblen Fall: {(z)Hi(x,y) = &(y)H(y,x) fir alle x,y € S). Im Fall eines endlichen



Kapitel 2. Einfiihrung in die Markov-Theorie in diskreter und stetiger Zeit

Zustandsraums S existiert immer ein stationdres Mak & € 9(S), die Normierung £* = £/£(S)
ist somit eine stationédre Verteilung, also £* € 20(S).

Eine Ubergangsmatrix P heift irreduzibel, falls fiir alle 2,5y € S ein n = n(x,y) existiert, so
dass P"(x,y) > 0. Ein Zustand x € S heilt aperiodisch, falls P"(z, z) > 0 fir geniigend grofses
n, und P heiflt aperiodisch, falls alle Zustédnde aperiodisch sind. Aperiodizitat ist eine Solida-
ritdtseigenschaft, das heifst aus der Aperiodizitit eines Zustands folgt die Aperiodizitit aller
mit diesem Zustand kommunizierenden Zustande. Bei Irreduzibilitdt von P existiert eine ein-
deutige stationére Verteilung £*, welche iiberall positiv ist (Satz 10.4 in [Als05a]). Der folgende
Satz liefert den Zusammenhang zwischen stationdren Verteilungen und dem asymptotischem
Verhalten von Markov-Ketten und Markov-Sprungprozessen (siche Satz 11.1 in [AlsO5a] und
Satz 10.1 in [AlsO5b]).

Theorem 2.1. (Ergodensatz) Sei P eine irreduzible Ubergangsmatriz auf einer endlichen

Menge S mit stationdrer Verteilung £*. Dann gilt
tlim Hi(z,y) =& (y) fiir alle x,y € S.
Falls P irreduzibel und aperiodisch ist, dann gilt

lim P"(z,y) = £ (y) fiir alle x,y € S.

n—~0o0

Bei abzéhlbar unendlichen Zustandsrdumen gelten die Aussagen des Satzes jeweils, falls zu-
satzlich die Solidaritatseigenschaft positive Rekurrenz vorliegt. Ein Zustand z € S heift positiv
rekurrent, falls die erwartete Riickkehrzeit in diesen Zustand endlich ist. Eine Ubergangsmatrix
nennen wir ergodisch, falls die zugehorige Markov-Kette konvergiert. Bei endlichen Zustandsrau-
men und unserer Definition einer stationdren Verteilung als positive Verteilung ist Ergodizitéit
demnach im zeitstetigen Fall dquivalent zu Irreduzibilitdt und im zeitdiskreten Fall zu Irredu-
zibilitdt und Aperiodizitét.

In dieser Arbeit betrachten wir ergodische, endliche MSP und ergodische EMK und untersuchen
die Abstandsfunktion der Verteilung des MSPs bzw. der EMK zu ihrer stationdren Verteilung.
Qualitativ ist die Konvergenz nach Voraussetzung der Ergodizitat klar, wir interessieren uns
vielmehr fiir eine quantitative Untersuchung der Konvergenzgeschwindigkeit und insbesondere
der Form des Ubergangs zur Stationaritit. Dazu stellen wir nun geeignete Abstandsbegriffe zwi-
schen Verteilungen vor und definieren im Anschluss den Cut-Off, also die abrupte Konvergenz

gegen die stationdre Verteilung.



2.2. Abstande

2.2 Abstande

Seien p,v € M(2), wobei 2 endlich ist. Wir betrachten v als Referenzmaf, spéter wird v als
stationére Verteilung £* eines MSPs bzw. einer EMK gewihlt und der Abstand der Verteilung
des MSPs bzw. der EMK zu dieser Verteilung untersucht. Wir méchten einen Abstandsbegriff
zwischen den beiden Mafen p und v haben, der im Fall p, v € 20(Q) jeder endlichen Menge 2
und jedem Paar p und v eine reelle Zahl D(u,v) € [0, 1] zuordnet, so dass

supsup D(u,v) =1 (2.1)
Qv

und D(p,v) = 0 genau dann, wenn p = v. Die Variationsnorm ist ein Abstandsbegriff, der

diese Eigenschaften besitzt und folgendermafen definiert ist.

Definition 2.1. Seien p,v € 9MM(Q2), wobei 2 endlich ist. Der Abstand in totaler Variation

(oder kurz die Variationsnorm) zwischen p und v ist folgendermafen definiert:

def
D) = = vl " max u(4) — v(A)] (2.2
Ein sensiblerer Abstandsbegriff zwischen W-Mafen, der die Eigenschaften besitzt, ist Separa-
tion. Diese ist folgendermafien definiert:

Definition 2.2. Seien p,v € 20(52), wobei Q endlich ist. Die Separation von p und v ist
definiert durch

s(u,v) Y sup {1 - ’“‘M} . (2.3)

we V<w)

Wir nutzen auch die Notation
S(t) = S(:uh V)7

falls p; die Verteilung einer Markov-Kette bzw. eines Markov-Prozesses zur Zeit t ist. Es gilt

0 < s(p,v) <1,im Allgemeinen s(u, ) # s(v, u) und Separation majorisiert Totalvariation:

Bemerkung 2.1. Die Separation ist stets eine obere Schranke fiir den Abstand in totaler

Variation:

= vligy < s(p,v). (2.4)



Kapitel 2. Einfiihrung in die Markov-Theorie in diskreter und stetiger Zeit

Beweis. Setze A ={w € Q:v(w) > p(w)}. Wir erhalten

= vy = Z(

w€eA w€eA

=
=
I
=
=
|
=
=
N\
—_
=
&
N——
A
P2y
=
S

und damit die Behauptung. O

Verzichtet man auf die Beschrénktheit des Abstands fiir W-Mafe durch (2.1), kann man den
Abstand in L? bzw. L*> definieren.

Definition 2.3. Seien p, v € MM(Q2), wobei §2 endlich und v als positiv vorausgesetzt ist. Der

Abstand in LP fiir 1 < p < oo zwischen p und v ist definiert durch

p 1
(Zweﬂ 558 - 1’ I/(W)p> " falls 1 < p < oo,

Iy =1l = (2.5)
max,eq ‘% -1, falls p = cc.

Bemerkung 2.2. Gilt p(2) = v(Q2), so ist der Abstand in totaler Variation die Hélfte des
Abstands in L', weil :

lu=vii=)

weN

pw) 1\ v(w) = Y |uw) = v()] = 2]lp = vl

v(w) =

Sowohl der Abstand in totaler Variation als auch der Abstand in LP werden im Laufe dieser
Arbeit immer wieder eine Rolle spielen. In dieser Arbeit messen wir den Abstand zwischen
W-Mafen in Separation, falls wir es nicht explizit anders angeben. Wir werden in Kapitel 3
eine Verbindung zwischen Separation und stark stationdren Zeiten vorstellen und die darauf
aufbauende Dualitétstheorie nach [DF90b] und [Fil92| entwickeln. Damit werden wir dann
in Kapitel 5 unseren Hauptsatz iiber Separations-Cut-Off bei Geburts- und Todesprozessen
beweisen. Hier stellen wir zunéchst die formale Definition des Cut-Offs, also des abrupten

Ubergangs zur stationéiren Verteilung, vor.

2.3 Cut-Off

Es sei (2,,v,), n=1,2,..., eine Folge (endlicher) W-Réume, wobei jeder einzelne W-Raum mit

einer Folge von W-Mafen (u*), k =0, 1,2, ..., ausgestattet ist, so dass limy_.., D(u*,v,,) = 0.



2.3. Cut-Off

D erfiille die in Abschnitt 2.2 geforderten Eigenschaften. Spéter werden wir Familien ergodischer
Markov-Ketten bzw. Familien ergodischer Markov-Sprungprozesse auf einem Zustandsraum der
Form €, = {0,...,m,} betrachten, welche zur Zeit k die Verteilung u* bzw. zur Zeit t die

Verteilung 77 besitzen und gegen die stationédre Verteilung v, = £ konvergieren.

Definition 2.4. Eine Familie (Qn, Vp, (,uﬁ)kzo,m,__) zeigt einen Cut-Off (genauer: einen

n=1,2,...
D-Cut-Off ), falls eine Folge (t,),>1 positiver reeller Zahlen existiert, so dass fiir alle € € (0,1)

folgendes gilt:

(a) lim D(u*, v,) =0, falls k, > (1 +€)t, fiir alle genligend grofen n.

n—oo

(b) lim D(u™ v,) =1, falls k, < (1 —e)t, fur alle geniigend grofen n.

n—oo

In der néchsten Definition wird mit der Folge (b,),>1 das Zeitfenster beschrieben, in dem der

Cut-Off stattfindet.
Definition 2.5. Gegeben Folgen (t,),>1 und (b,),>1 positiver reeller Zahlen, sagen wir, dass
die Familie

(7 (Mﬁ)k:o;,z...)n:m,___

einen (t,,b,)-Cut-Off (genauer: einen (t,,b,)-D-Cut-Off) zeigt, falls It’—: "0 gilt und

(a)  fi(c)=limsupD(pt*1 v,) erfilllt  lim f,(c) =0, (2.6)
(b)  f-(c) = iminfD(plt=) v,)  erfilllt  lim f_(c) = 1. (2.7)

Falls statt der diskreten Familie (1%)g=012. . von W-MaRen eine stetige Familie (/)i vor-
liegt, modifizieren wir die Definition in naheliegender Weise und definieren f, und f_ ohne

Gaussklammer.

Die Existenz eines (t,, b,)-Cut-Offs impliziert die Existenz eines Cut-Offs. Eine Abschwéichung
des Cut-Off Begriffs ist der Pre-Cut-Off.

Definition 2.6. Die Familie (Qn,l/n,([I/I:L)kzo’LQ’__)n:LQ’_“ zeigt einen Pre-Cut-Off (genauer:
einen D-Pre-Cut-Off), falls eine Folge (t,,),>1 positiver reeller Zahlen und Konstanten

0 <c<1<C(C < oo existieren, so dass

(a) lim D(pfr v,) — 0, falls k&, > Ct,,

n—oo

(b)  lim D(pfr v,) — 1, falls k, < ct,.

n—0o0
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Kapitel 2. Einfiihrung in die Markov-Theorie in diskreter und stetiger Zeit

Bemerkung 2.3. (a) In den Definitionen 2.4 und 2.5 muss nicht lim,,_, t,, = co gelten. Dies
wird bei der zeitlichen Transformation am Anfang von Kapitel 5 von Bedeutung sein.

(b) Weist eine Familie (p!) mit stetigem Zeitparameter sowohl einen (s,)-Cut-Off als auch
einen (t,)-Cut-Off auf, so folgt s, ~ t, (lim, o= 1). Im diskreten Fall gilt dieses Resultat

nur, falls lim,, ., s,, = co. Vergleiche Lemma 5.1.
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3 Stark stationare Zeiten und

Dualitatstheorie

Im Hauptsatz dieser Arbeit werden wir die Existenz eines Cut-Offs bei endlichen in 0 gest-
arteten Geburts- und Todesprozessen in stetiger Zeit nachweisen, wenn wir den Abstand zur
stationdren Verteilung in Separation messen. Wir werden im ersten Abschnitt dieses Kapitels
zunachst den Separationsabstand mit stark stationdren Zeiten in Verbindung bringen. In den
folgenden beiden Abschnitten werden wir mit der Dualitatstheorie von Diaconis und Fill ein
allgemeines Konstruktionsverfahren fiir stark stationére Zeiten vorstellen, welches das Problem
der Separationsabstandsbestimmung in ein Absorptionszeit-Problem, also ein Ersteintrittszeit-

Problem, verwandelt.

3.1 Stark stationare Zeiten und Separation

Sei M = (M;)i>o eine diskrete Markov-Kette oder ein Markov-Sprungprozess mit Startpunkt
1o und stationdrer Verteilung &*. Zur Erklarung des Begriffs der stark stationéren Zeit stellen
wir zunédchst den Begriff der randomisierten Stoppzeit vor. Eine randomisierte Stoppzeit fiir
M ist eine Stoppregel fiir M, so dass die Entscheidung zur Zeit ¢ zu stoppen nur auf der Basis
der Entwicklung von M bis zur Zeit ¢ und (mdoglicher) unabhéngiger Randomisierung getroffen
wird. Wir formalisieren den Begriff der randomisierten Stoppzeit.

Sei (2,2, P) ein gegebener W-Raum. Der Zustandsraum S sei abzahlbar. § = (§¢)o<t<oo Sei
eine Filtration von (,2) und oo := 0 (F; : 0 < ¢t < 00) die kleinste o-Algebra, welche jedes §;

enthélt, also die aymptotische Gesamtinformation des Beobachters.

12



Kapitel 3. Stark stationére Zeiten und Dualitdtstheorie

Definition 3.1. Sei T': Q — [0, o0]. Falls in obiger Situation eine Unter-o-Algebra & von 2

existiert, welche unabhéngig von §, ist, so dass
{T'<t}eo(F,®) fir alle 0 < t < o0, (3.1)

so nennen wir 7" eine randomisierte Stoppzeit beztiglich (F)>o-

T ist demnach eine Stoppzeit beziiglich der Filtration (§:, &)i>0 von (2,2). Nun sind wir in

der Lage den Begriff der stark stationédren Zeit zu definieren.

Definition 3.2. Sei § = (§:)i>0 eine Filtration des W-Raums (2,2, P), beziiglich derer

M = (M,;)>o die Markov-Eigenschaft besitze. M habe die eindeutige stationédre Verteilung &*
und nehme Werte in (S, &) an. Sei T eine randomisierte Stoppzeit beziiglich §. Wir nennen 7'
eine stark stationdre Zeit (SST) fiir M, falls, bedingt unter {T" < oo}, der gestoppte Prozess

My die stationdre Verteilung £* hat und unabhéngig von 7T ist, also
P(T < t, My = y) = P(T < H€"(y) (3.2
fiir jedes 0 <t < oound y € S.

Satz 3.1. Die folgenden drei Aussagen sind fiir eine randomisierte Stoppzeit dquivalent:
(a) T ist eine stark stationdre Zeit.

(b) P(T <t,M;,=y)=P(T <t){*(y) fir alle0 <t <ocundy€S.

(c) P(T<t,M,=y)=P(T <t)*(y) fir alle0 <t <u<ooundy€S.

Beweis. Zum Beweis siehe Proposition 2.4 in [Fil91]. O

Bemerkung 3.1. Aus technischen Griinden miissen wir bei der Definition der stark stationéaren
Zeit im zeitstetigen Fall die Vollstdndigkeit und Rechtsstetigkeit der Filtration § = (§¢)i>0
fordern. Dabei bedeutet Rechtsstetigkeit in diesem Zusammenhang: § ist rechtsstetig, falls
S: = ﬂu>t S, fiir alle 0 <t < oo, und Vollstéandigkeit, dass §o und damit F;,0 < t < oo, das
System aller 2-Nullmengen enthélt. Vergleiche dazu [Fil91].

Nun kommen wir zu dem bereits angekiindigten Satz, der Separation und stark stationére

Zeiten miteinander verbindet. Dabei betrachten wir zunéchst diskrete Markov-Ketten (DMK).

13



3.1. Stark stationére Zeiten und Separation

Satz 3.2. Sei M = (M,),>0 eine positiv rekurrente DMK beziiglich einer Filtration (§,)n>0
mit Zustandsraum S, stationdrer Verteilung & und beliebiger Anfangsverteilung.

(a) Ist T eine stark stationdre Zeit fir M, so gilt
s(n) < P(T > n)

fiir alle n > 0.

(b) Es ezistiert bei endlichem Zustandsraum eine stark stationdre Zeit T fiir M, so dass
s(n) = P(T > n)

fir alle n > 0. In diesem Fall heifst T' minimale stark stationdre Zeit.

Beweis. Der Beweis ist im Anhang nachzulesen. O

Der folgende Satz ist das stetige Pendant zu Satz 3.2.

Satz 3.3. Sei M = (M;)i>0 ein ergodischer, nichtexplodierender Markov-Sprungprozess be-
ziglich einer Filtration (§t)i>0 mit Zustandsraum S, stationdrer Verteilung £ und beliebiger
Anfangsverteilung.

(a) Ist T eine stark stationdre Zeit fir M, so gilt
s(t) < P(T >t)

fir alle 0 <t < 0.

(b) Es ezistiert bei endlichem Zustandsraum eine stark stationdre Zeit T fiir M, so dass
s(t)=P(T >t)

fir alle 0 <t < oo gilt.

Beweis. Der Beweis ist das Hauptergebnis von [Fil91]. O

Bemerkung 3.2. Verzichtet man bei Satz 3.2(b) auf die Voraussetzung der Endlichkeit des
Zustandsraums, kann man die Existenz einer minimalen stark stationéren Zeit fiir gewisse
Klassen von Startverteilungen zeigen, wie zum Beispiel in [Als05a] ausgefiihrt wird. Eine analoge
Verallgemeinerungsmoglichkeit von Satz 3.3(b) auf abzahlbar unendliche Zustandsraume wird

vermutet, der Nachweis ist aber noch offen.
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Kapitel 3. Stark stationére Zeiten und Dualitdtstheorie

3.2 Dualitatstheorie in diskreter Zeit

3.2.1 Existenz und Eigenschaften der stark stationdren dualen Kette

Die Ergebnisse des vorangegangenen Abschnitts erlauben uns eine Bestimmung des Separa-
tionsabstands durch minimale stark stationére Zeiten, also solcher reellwertiger nichtnegati-
ver Zufallsvariablen T, fiir die s(t) = P(T > t) gilt. Folglich befassen wir uns nun mit der
Konstruktion von SST, insbesondere minimaler SST. Dazu stellen wir eine vereinigende Theo-
rie fiir die Konstruktion von SST vor, welche auf Arbeiten von Diaconis und Fill zuriickgeht
(siche [Fil92] und [DF90b]). Diese Dualitétstheorie liefert einen probabilistischen Ansatz fiir
die Beschrankung der Konvergenzgeschwindigkeit gegen die stationédre Verteilung, welche zu
Ergebnissen fiihrt, die zum Teil nicht mit anderen Techniken zur Beschrinkung der Konver-
genzrate wie Kopplung, Fourieranalysis oder Eigenwertuntersuchungen erzielt werden kénnen.
Wir konstruieren dazu einen sogenannten stark stationdren dualen Prozess (SSD) fiir unsere
zugrundeliegende Markov-Kette (resp. unseren MSP), dessen Zeit zur Absorption eine SST fiir
die urspriingliche Markov-Kette liefert. Wir transformieren somit das Problem der Bestimmung
einer stark stationdren Zeit in ein Ersteintrittszeitproblem. Dariiber hinaus geben wir Krite-
rien fir die Minimalitdt der so erhaltenen SST an und betrachten speziell die uns in erster
Linie interessierende Klasse der Geburts- und Todesprozesse, fiir die der SSD eine besonders
einfache Gestalt hat. In dieser Klasse liefert uns die Dualitédtstheorie den genauen Separations-
abstand. Aus beweistechnischen Griinden und wegen der historischen Entwicklung betrachten

wir zundchst diskrete Markov-Ketten, bevor wir Markov-Sprungprozesse behandeln.
Stark stationire Zeiten und Dualitat

M ~ (), P) stehe abkiirzend dafiir, dass M = (M,,),>o eine zeithomogene Markov-Kette mit
Startverteilung A und Ubergangsfunktion P ist. Der zugehorige Zustandsraum S sei abzihlbar
und der Zeitparameter n diskret. Sei nun M ~ (A, P) eine ergodische Markov-Kette auf einem

W-Raum (2,2, P) mit stationédrer Verteilung £*.

Definition 3.3. Sei X* = (X}),>0 ein stochastischer Prozess auf (2,2(, P) mit Werten in

einem diskreten Zustandsraum S*. Die folgenden drei Bedingungen seien erfiillt:
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3.2. Dualitatstheorie in diskreter Zeit

(a) Fiir jedes n > 0 gilt
X} und die Kette M sind bedingt unabhéngig unter My, My, ..., M, (3.3)
(b) Es existiert ein Zustand oo € S*, so dass

P(M, € AIX; =ux3,X] =a7,..,. X, 1 =x,_1,X; =00)=E"(A) (3.4)

n—1»
fir alle n > 0, A C S und jeden moglichen Wert von (X{, ..., X}}) der Form
(X, ey Ty, 2 = 00).

(c) Fiir den Zustand oo gilt:
oo ist ein absorbierender Zustand fiir X, (3.5)

also X =00 = X = oo fiir alle k > m.

Dann heilst X* stark stationdarer dualer Prozess fur M.

Der néchste Satz zeigt uns, wie wir einen stark stationdren dualen Prozess nutzen koénnen, um
eine stark stationdre Zeit zu erhalten. Er zeigt ebenfalls umgekehrt, dass prinzipiell jede stark

stationdre Zeit aus einer solchen Konstruktion resultiert.

Satz 3.4. (a) Sei X* ein stark stationdrer dualer Prozess zu M. Sei T = T die Zeit bis zur
Absorption in oo fiir X*. Dann ist T eine stark stationdre Zeit fir M.

(b) Sei T umgekehrt eine stark stationdre Zeit fir M. Sei S* ={0,1,...} U {oco} und
n, fallsT > n,

X, = (3.6)
oo, falls T <n.

Dann ist X* ein stark stationdrer dualer Prozess fiir M und es gilt T' =T .

Beweis. (a) T = TZ% ist nach (3.3) eine randomisierte Stoppzeit fiir M. Fiir jedes n > 0 und
A C S gilt nach (3.4)

P(M, € AIT =n)=P(M, € A|X; #00,... X | #00, X} =00)=E(A).

(b) Die bedingte Unabhéngigkeitsbedingung folgt, weil 7" eine SST ist. oo ist ein absorbierender
Zustand nach Definition von X*. Die moglichen Werte von (X, ..., X}}) sind von der Form

(0,..., 1-1,00,...,00) mit 0 <1 <n+1. Falls 0 <[ < n, folgt

P(M, € AIX;=0,.. X7, =1—1,X; =00,..,X: =00) = P(M, € A|T =) = £*(A)
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Kapitel 3. Stark stationére Zeiten und Dualitdtstheorie

fir alle A C S. Damit ist (3.4) nachgewiesen.
Insgesamt haben wir also gezeigt, dass X* ein SSD fiir M ist. T = T folgt direkt aus (3.6). O

In diesem Satz wird also die Einfiithrung des stark stationédren dualen Prozesses gerechtfertigt,
denn zum einen wird gezeigt, wie man aus dem dualen Prozess eine stark stationére Zeit fiir
die zugrundeliegende Kette erhélt und zum anderen wird bewiesen, dass jede stark stationére

Zeit aus der Konstruktion eines solchen dualen Prozesses resultiert.

Im Beweis der Riickrichtung wird ein dualer Prozess X* aus einer stark stationdren Zeit T’
konstruiert ohne Beriicksichtigung der Verteilungen P(M,, = | X§ = zf,..., X} = z), auber
im Fall 27 = oo. Diese Konstruktion ist nicht eindeutig, es gibt im Allgemeinen viele stark
stationére duale Prozesse zu einer stark stationdren Zeit. Die Benutzung eines dualen Prozesses
bietet den Vorteil, dass Kenntnisse iiber die Verteilung des dualen Prozesses vor der Absorption
herangezogen werden konnen, um bessere Schranken fiir den Abstand in Totalvariation als den

Separationsabstand zu finden. Einzelheiten dazu finden sich in Abschnitt 2.5 in [DF90b].

Als erstes Beispiel fiir einen stark stationdren dualen Prozess erinnern wir an den im Anhang
nachlesbaren Beweis von Satz 3.2 und die dortige Konstruktion einer minimalen SST. Wir
beschreiben diese Konstruktion in der Terminologie des dualen Prozesses. Sei M = (M,,),>¢ €ine
positiv rekurrente DMK mit stationdrer Verteilung £*. s(n) bezeichne den Separationsabstand

von M = (M,),>o zur stationdren Verteilung £* zur Zeit n. Gegeben My = x, setze

Mj; = oo mit Wahrscheinlichkeit (1 — s(0))£*(z0)/A(z0), und (3.7)

Mj =0 mit Wahrscheinlichkeit 1 — P(M] = o0), (3.8)

mit von M unabhéngiger Randomisierung. Induktiv definieren wir M* folgendermafsen: An-
genommen My = zy,..., M,y = x,_; sind gegeben und M§ = xy,..., M) | = x,_, wurden

festgelegt. Gegeben M, = z,,, setze

M = o0 falls M, =00, und (3.9)

s(n—1)— s(n)
s(n—1) = s(n,z,)

M = oo  mit Wahrscheinlichkeit , falls M¥ | # oo. (3.10)

Dann ist M* nach dem Beweis von Satz 3.2 ein stark stationarer dualer Prozess fiir M und die

erhaltene stark stationare Zeit ist minimal fir M.
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3.2. Dualitatstheorie in diskreter Zeit

Diese Konstruktion eines SSDs von Aldous und Diaconis benétigt die Separationsfunktion als
Input und damit die Kenntnis der Verteilung der Markov-Kette zu jeder Zeit n. In aller Regel
ist der Grund fiir die Konstruktion stark stationérer Zeiten aber gerade eine a priori nicht
bekannte Separationsfunktion s mittels Satz 3.2 zu beschrénken. Also ist diese Konstruktion
nur von theoretischem Interesse. In Abschnitt 3.2.2 geben wir eine praktische Konstruktion
eines stark stationdren dualen Prozesses fiir eine Vielzahl von Klassen von Markov-Ketten,

welche auch die Klasse der Geburts- und Todesprozesse umfasst.

Bemerkung 3.3. Im Allgemeinen ist ein stark stationdrer dualer Prozess nicht notwendi-
gerweise markovsch. Der duale Prozess aus dem vorangegangenen Beispiel besitzt jedoch die
Eigenschaft, dass sowohl der bivariate Prozess (M*, M) = (M}, M, )n>o als auch der duale Pro-
zess M* Markov-Ketten sind. Startverteilung \* und Ubergangsmatrix P* fiir M* sind gegeben
durch

A*(0) = s(0) =1 — X*(00),
P (n—1,n)=s(n)/s(n—1)=1—P* (n—1,00), n=12, ..,
P*(c0,0) = 1.

Ein Ubergangskern —im Folgenden auch Link genannt— zwischen M und M* kann folgender-

maflen definiert werden:

A(z*, x) == P(M,, = x| M} = xf, M{ = xf, ..., M| = x}_, M} = x*).

n—1
Dieser hangt im Beispiel nicht von xf, 27, ..., z;_; ab und ist definiert durch

Aln, ) =[P(M, =) = (1 = s(n))§"(1)]/s(n), n=0,1,..,
A(oo, ) =&".

Nun werden wir allgemein versuchen, zu gegebener Markov-Kette M, einen stark stationaren
dualen Prozess M* zu konstruieren, welcher selber eine Markov-Kette ist und (M*,M) zu
einer bivariaten Markov-Kette macht. Zunéchst werden wir dazu die parallele Konstruktion
von (M*,M) besprechen. Sobald wir geklart haben, unter welchen Umsténden eine bivariate
Markov-Kette mit den gewilinschten Eigenschaften existiert, werden wir zeigen, wie man M*

aus einer Realisierung von M konstruiert. Die Bedingungen fiir die Existenz einer bivariaten
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Kapitel 3. Stark stationére Zeiten und Dualitdtstheorie

Markov-Kette mit den Koordinatenprozessen M und M™* liefert das Algebraische Dualitéts-

theorem.

Seien P und P* stochastische Matrizen auf diskreten Mengen S bzw. S* und A € 20(S5)
bzw. \* € 20(S*). A sei ein Link zwischen S und S*. Wir suchen eine bivariate Markov-Kette
(M*,M)=(M}, M,)n>0, so dass M eine zeithomogene, ergodische Markov-Kette mit Startver-
teilung A und Ubergangsmatrix P ist, M* eine zeithomogene, ergodische Markov-Kette mit
Startverteilung \* und Ubergangsmatrix P* ist, und M mit M* durch A folgendermafen ver-
kntipft ist:

P(M, =-|M; =x3,...., M) =a) = Az}, -). (3.11)

Dies impliziert

P(M, = |M* = z*) = A(z?, ). (3.12)

n’
Die Problemstellung ist motiviert durch das Ziel einen stark stationdren dualen Prozess im

Sinne von Definition 3.3 zu konstruieren, M* wird spéter der duale Prozess von M sein.

Falls (3.3) erfiillt sein soll, muss notwendigerweise gelten
M _, und M, sind bedingt unabhéngig unter M,,_;. (3.13)
Nach (3.11) muss auferdem gelten

M, und M, sind bedingt unabhéngig unter M. (3.14)

n

Folgendes kommutatives Diagramm dient dem Versténdnis der beiden bedingten Unabhéngig-

keitsbedingungen in (3.13) und (3.14).

Das Algebraische Dualitétstheorem gibt fiir die Existenz einer bivariaten Markov-Kette, welche
obige Bedingungen erfiillen soll, gewisse Anforderungen an die Beziehungen zwischen A\, \*, P, P~
und A. Sind diese erfiillt, konstruieren wir im Beweis eine solche bivariate Markov-Kette. Um
Probleme mit Nullereignissen zu vermeiden, nehmen wir im Folgenden an, dass jedes z* € S*

erreichbar ist, d.h. P(M;} = x*) > 0 fiir ein n > 0.
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3.2. Dualitatstheorie in diskreter Zeit

Satz 3.5. (Algebraisches Dualitdtstheorem) Seien (A, P) auf S, (\*, P*) auf S* und eine
Ubergangsmatriz A von S* nach S gegeben. Es existiert genau dann eine bivariate Markov-
Kette (M*, M) mit M* ~ (X, P*) und M ~ (\, P), welche die bedingten Verteilungen (3.12)
besitzt und die Unabhdngigkeitsbedingungen (3.13) und (3.14) erfillt, wenn zwischen (X*, P*)
und (X, P) beziiglich des Links A die beiden folgenden algebraischen Dualitdtsbedingungen erfillt
sind:

A= MA, (3.15)

AP = P*A. (3.16)

Beweis. Nehmen wir zunéichst an, dass (M*, M) mit den gewiinschten Eigenschaften existiert.
Wir zeigen die Giiltigkeit von (3.15) und (3.16). Zunéchst zu (3.15), also A = A*A:

Mz)=P(My=x)= Y _ P(Mj=a")P(My=z|M; =2")= Y N(z")A(z" x).

JB*ES* !L’*GS*

Fiir die letzte Gleichheit haben wir (3.12) genutzt. Damit gilt also A = A\*A.

Nun zeigen wir (3.16), also AP = P*A. Dazu bedingen wir P(M,, = y|M}_,) einmal unter
M,,—1 und einmal unter M. Damit ergibt sich

P(M, = y|M;—1 =1") = ZP(Mn—l = le::—l =2")P(M,, = y|M;—1 =1z", My = )

z€eS

= Y P0G =y M = ") PO, = y|M; = 2" M =),
y*es*
Wir sehen mit (3.12) und (3.13), dass in der ersten Summe der Eintrag (z*,y) von AP steht.

Mit (3.12) und (3.14) ergibt sich in der zweiten Summe der Eintrag (z*,y) von P*A. Damit ist
AP = P*A gezeigt.

Nun zur Riickrichtung. Wir werden, gegeben die Dualitdtsgleichungen (3.15) und (3.16), eine
bivariate Markov-Kette auf S := ((z*,z) : A(z*,2) > 0) angeben, welche die Bedingungen

erfiillt. Als Startverteilung wéhlen wir
A(z", x) = N (a")A(2", x) (3.17)
und als Ubergangsfunktion

P(x,y)P*(x*, y")A(y*,y)/A(x*,y), falls A(x*, 0,
P((z".2). (s".4)) = (z,y) P (", y*)A(y", y)/ Az, y) (%, y) > (3.18)

0, sonst.
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Kapitel 3. Stark stationére Zeiten und Dualitdtstheorie

Hierbei ist A definiert als

Alz®,y) = > P(a"y")Ay"y) = Y A", 2)P(x,y), (3.19)

y*esS* zeS

also A = P*A = AP. Nachrechnen zeigt, dass (M*, M) ~ (X, P) die Bedingungen erfiillt. [

Bemerkung 3.4. Die Kette (M*, M) ~ (X, P) erfiillt (3.11) und es gilt

P(Mg = x5, Mo = x0) N (x5) A2, 70)

P(My = x5|My = = = 3.20
( 0 xO‘ 0 370) P(MO _ xO) )\(ZL‘Q) ( )
Unter der Voraussetzung A(z}_,, z,) > 0, gilt
P<M:; = 'r;kz‘ME)k = 'rgu MO = T0; -3 M:;—l = x;kl—h Mnfl = Tn-1; Mn = xn)
P ()1, 7)), 22) (3.21)
= , n > 1.
A(xzflvl‘n)
Auferdem gilt wegen (3.13)
P<Mn = .Tn|M8< = SL’S, MO = Zo; -3 M;;fl = 1’271, Mnfl = xnfl) = P<xn717xn>7 (322>

d.h., dass M beztiglich (o (M, M} )r<n)n>0 die Markov-Eigenschaft besitzt.

Konstruktion des dualen Prozesses

Seien (A, P) auf S, (A\*, P*) auf S* und ein Link A von S* nach S gegeben wie im Algebrai-
schen Dualitdtstheorem. Angenommen, die Dualitdtsbedingungen A = M*A und AP = P*A
sind erfiillt. Im Beweis des Algebraischen Dualitédtstheorems haben wir gezeigt, wie man eine
bivariate Kette (M*, M) mit M ~ (A, P) und M* ~ (\*, P*) konstruiert, so dass (3.11) erfiillt
ist. Nun klaren wir die Frage, wie man aus einer Realisierung von M den dualen Prozess M*

konstruiert, welcher uns die gesuchte stark stationdre Zeit fiir M mittels Satz 3.4 liefert.

Nehmen wir also an, dass eine Realisierung der Kette M ~ (A, P) vorliegt. Wir méchten aus
jedem Pfad von M einen Pfad von M* konstruieren. Dabei konstruieren wir M* zeitgleich zur
Entwicklung von M und es soll (3.3) gelten. Unter der Voraussetzung, dass M eine ergodische
Markov-Kette mit stationédrer Verteilung &* ist und M* den absorbierenden Zustand oo mit
A(oo,-) = & besitzt, sind wir in der Lage die konstruierte Kette M* als dualen Prozess zu
M zu nutzen, dessen Absorptionszeit eine stark stationére Zeit fiir M ist. Sollte der absorbie-

rende Zustand oo nicht bereits existieren, kann man ihn zu S* adjungieren und A*(c0) = 0,
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3.2. Dualitatstheorie in diskreter Zeit

P*(00,00) = 1 sowie P*(00,x*) = P*(z*,00) = 0 fiir * # oo setzen. Wir nennen einen stark
stationdren dualen Prozess, welcher (3.11) erfiillt, einen A-verlinkten dualen Prozess. Explizit
konstruiert man M* mit Blick auf (3.20) und (3.21) in Bemerkung 3.4 mittels einer algorith-
mischen Form des Satzes von Bayes. Es gilt
AC)= ) N () A, )
z5ES*
A ist also eine Mischung der Verteilungen A(xj,-). Wir mochten nun, nachdem wir mit der

Verteilung A ein M, gewahlt haben, ein M erzeugen, so dass
P(My = -|Mg = x5) = Axg, )

Der Satz von Bayes liefert die folgende explizite Konstruktion:

Wenn M, = xy beobachtet wird, dann setze
Mg; =) mit Wahrscheinlichkeit — \*(zf) A (x5, o)/ A(xo). (3.23)

Induktiv setzen wir diese Konstruktion fort. Angenommen M, = x,..., M,,_1 = x,_1 wurden
beobachtet und entsprechend wurden M = zj,..., M) | = x;_, gesetzt. Wenn nun M, = z,

beobachtet wird, setze

M =z,  mit Wahrscheinlichkeit — P*(z,_,, 2 )A(z), )/ A(x) _1, xp). (3.24)

n n n—1%n

Dabei ist wie vorher A = P*A. Wir erhalten mit der Konstruktion (3.17) und (3.18), dass
(M*, M) ~ (X P). Wir haben also, gegeben die algebraischen Dualitdtsbedingungen, einen
stark stationdren dualen Prozess M* ~ (A\*, P*) konstruiert, welcher mit M iiber A verlinkt
ist. Mit Satz 3.4 erhalten wir eine stark stationére Zeit fiir M. Besonders interessieren uns
minimale stark stationdre Zeiten, also solche Zeiten T', bei denen der Separationsabstand zur
Zeit n genau gleich der Wahrscheinlichkeit ist, dass der Prozess erst nach n mit T gestoppt
wird, also dass

s(n) = P(T > n)
gilt. Dies motiviert die folgende Definition.

Definition 3.4. Sei X* ein stark stationdrer dualer Prozess zu M. Sei T' = T die zugehorige

stark stationédre Zeit. Falls T' eine minimale stark stationére Zeit ist, nennen wir den dualen

Prozess X* scharf.
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Bemerkung 3.5. Wann ist also der von uns in (3.23) und (3.24) konstruierte duale Prozess M*
scharf? Es gilt P(M,, = -) = P(M; = -)A. Hiermit und mit der Definition der Separation sieht
man, dass s(n) = P(T% > n) gilt, wenn (bei endlichem S genau dann, wenn) ein x € S mit der
Eigenschaft existiert, dass fiir jedes S* 5 z* # oo entweder P(M, = 2*) = 0 oder A(z*,z) =0
gilt. Ist dies gegeben, kann wegen der Dualitdtsbedingung P(M, = -) = P(M} = -)A der
Separationsabstand von x nur fiir 2* = oo kleiner 1 sein. Dann folgt aber

P(M,, =) . P(M} = oo)A(o0, z)
£ () £ (x)

Damit ist T" eine minimale stark stationare Zeit und der duale Prozess M™* scharf.

1-— =1—-P(M;=00)=1—P(T <n)=P(T >n).

3.2.2 Dualitat bei Ketten mit monotonem Likelihoodquotienten

Bei der bisherigen Konstruktion stark stationdrer dualer Prozesse haben wir keine Einschran-
kungen beziiglich der Wahl von S*, P*, \* und A getroffen. Nur die Beziehungen AP = P*A

sowie A = A*A mussten nach dem Algebraischen Dualitdtstheorem erfiillt sein.

Die nun folgenden Restriktionen bei der Wahl von S* und A erlauben uns weitergehende Aussa-
gen iiber den dualen Prozess zu treffen. Der Zustandsraum S* des dualen Prozesses bestehe aus
Teilmengen des Zustandsraums S der zugrundeliegenden Markov-Kette M und A(z*,-) sei die
bei z* abgeschnittene stationdre Verteilung £* von M. Des Weiteren werden wir voraussetzen,

dass die Kette M eine noch zu prézisierende Monotonieeigenschaft besitzt.

Sei S eine endliche, linear geordnete Menge. Es kann also bei 2 Elementen aus S eindeutig

bestimmt werden, welches das grofere und welches das kleinere ist. Sei M ~ (A, P) eine ergodi-

Az)
€ (z)

monoton in x, bei A = § ist dies offensichtlich erfiillt. Dann ist die Startverteilung \* der von

sche Markov-Kette mit Zustandsraum S = {0, 1,...,d} und stationédrer Verteilung &*. Sei

uns in diesem Abschnitt konstruierten, mengenwertigen dualen Kette (also der dualen auf dem
aus Teilmengen von S bestehenden Zustandsraum S*) auf Intervalle der Form {0, ..., 2*} mit
2* € S konzentriert. Ein analoges Resultat ergibt sich fiir die dualen Ubergiinge P* bei einer
geeigneten Monotoniebedingung an P. Durch Identifikation der Mengen der Form {0, ..., z*}
mit ihren rechten Endpunkten lasst sich der duale Prozess so interpretieren, dass er Werte auf

dem Zustandsraum S annimmt, also auf dem gleichen Zustandsraum wie M lebt. Bei Geburts-
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3.2. Dualitatstheorie in diskreter Zeit

und Todesprozessen ergeben sich weitere Vereinfachungen.

Wir werden nun zunéchst eine notwendige und hinreichende Bedingung dafiir herleiten, dass
(A, P) beziiglich des Links A ein algebraisch duales Paar (A\*, P*) besitzt mit Zustandsraum
S*, der aus Teilmengen von S der Form {0, ..., 2*} besteht. Der Ubergangskern A sei hierbei

die Familie der abgeschnittenen stationdren Verteilungen

Azx™,x) = Ijo, o (2)€" () /H(z"), x,x* € S. (3.25)
Es bezeichnet
H(z*):= >  &(x), 2"€R, (3.26)
rzeSx<z

die kumulierte Verteilungsfunktion fiir die stationédre Verteilung &*.

Sobald wir algebraische Dualitat vorliegen haben, kénnen wir vermoge der allgemeinen Kon-
struktion (3.23) und (3.24) einen A-verlinkten dualen Prozess M* zu M konstruieren. Wir

werden zeigen, dass dieser duale Prozess scharf ist im Sinne von Definition 3.4.

Nach dem Algebraischen Dualitédtstheorem miissen fiir die algebraische Dualitét die Dualitéts-
bedingungen A = A*A und AP = P*A erfiillt sein. Ausgeschrieben bedeutet das fiir die erste
der beiden Bedingungen
= YN @/HE), wes
o>
umgeformt bedeutet das:

e [A@) A D]
Az*) = H(x™) [§*<x*) e 1) €S, (3.27)

= (. Die Loésung ist nichtnegativ genau dann, wenn der Klammeraus-

Ad+1)
£*(d+1)

druck in (3.27) nichtnegativ ist, also genau dann, wenn der Likelihoodquotient nicht wachsend

mit der Konvention

in x ist.
Die Beziehung AP = P*A liefert

Y €@ Pay)/H) =) P (a",y)E )/ Hy),

r<x* y*2y

das heifst

(Zf P(x,y)/¢(y ) =Y P2’ y)/H(y").

r<z* y*2y
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Zur Interpretation sei
P =¢'(@)P(r,y)/¢(y), wy€S, (3.28)

der zeitlich invertierte Prozess zu P. Sei M = (Mn)nzo eine Markov-Kette mit Startverteilung
X und Ubergangsfunktion P. Falls M deterministisch in y gestartet wird, also X(y) = 1 gilt,
schreiben wir P, fiir das W-Maf P. Die Beziechung AP = P*A sagt uns dann

P,(M; <a*)/H(z") =Y P*(a",y")/H(y"), a"y€S. (3.29)

>y

Elementare Umformungen liefern den zu (3.29) dquivalenten Ausdruck

H(y")

P (2" y") = [Py*(]\z <x¥)— Py*+1(]\z <z¥) Yt e S (3.30)

Dabei haben wir Pdﬂ(]\z < z*) = 0 fiir alle * € S gesetzt. Ergebnis ist, dass AP = P*A
genau dann eine nichtnegative Losung besitzt, wenn Py*(]\z < x*) in y* fallt fir jedes feste z*.
In diesem Fall ist P* eindeutig gegeben durch (3.30). Die Eindeutigkeit folgt aus der Dualitéats-
bedingung AP = P*A und der Tatsache, dass A als untere Dreiecksmatrix mit strikt positiven

Eintrigen auf der Diagonalen invertierbar ist, also gilt P* = APA~L.

Bemerkung 3.6. Die Bezeichung (stochastische) Monotonie fiir Py(Ml < ), falls Py(Ml < )
in y féllt fir jedes x, geht auf Daley zuriick.

Wir erhalten folgendes Anologon zum Algebraischen Dualitédtstheorem.

Satz 3.6. Sei M eine irreduzible und aperiodische Markov-Kette auf S = {0, ...,d} mit Start-
verteilung \ und Ubergangsfunktion P. £ bezeichne die stationdre Verteilung und H die kumu-
lierte Verteilungsfunktion von £*. Der zeitlich invertierte Prozess zu P sei P(ZL‘ y) = %1(1()3/1)'
Dann hat (X, P) genau dann ein algebraisch duales Paar (\*, P*) auf S* = S beziglich des

Links AMa*, x) = I, o+ (2)§* (x)/H(z*), wenn
A(x)/€*(x) monoton fallend in x (3.31)

und

P stochastisch monoton ist. (3.32)

In diesem Fall ist das algebraisch duale Paar (\*, P*) eindeutig bestimmt durch

M) Aat 1)

M) =HE) [e@) " e+

z* €S, (3.33)
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3.2. Dualitatstheorie in diskreter Zeit

und

[Py*(z\Z <) = Pp (M, <7)|, 2%yt es. (3.34)

Bemerkung 3.7. Der Satz gibt uns also bei den vorgenommenen Restriktionen beziiglich
der Wahl von A und S* als notwendiges und hinreichendes Kriterium fiir die Existenz eines
algebraisch dualen Paars die Monotoniebedingungen (3.31) und (3.32). Sind diese erfiillt, liefert
uns der Satz mit (3.33) und (3.34) die Gestalt der algebraisch dualen Paars.

Analog zur Vorgehensweise im vorangegangenen Abschnitt 3.2.1 konstruieren wir nun pfad-
weise einen A-verlinkten stark stationdren dualen Prozess M* zu einer Kette mit monotonem
Likelihoodquotienten M ~ (A, P). Zunéchst betrachten wir den Induktionsschritt. Mit (3.34)
und (3.25) erhalten wir fiir den Zahler in (3.24)

Pz, x0)A(z), x,)

n—1%n

Hix B
B H(x;_i?;—;(;y;) [P (Ml < xn 1) Pxfl-l—l(Ml S l‘;_l)] I{o ..... mz}(l‘n)g*(;pn)
_ % [P (M < @} ) = Py (M; < a;;;_l)] Igo....any (). (3.35)

Fiir den Nenner in (3.24) ergibt sich

n17 ZP* n17 (y xn)

y*esS

v es no1)H(yr)
=B XG:S [PV, < 2,)) = Pra (M < 25)| T,y (20)
. 5*($n)
= men(Ml < ). (3.36)

Also erhalten wir in (3.34) durch Einsetzen von (3.36) und (3.35) und anschliessendes Kiirzen

PM:=x:|M; | =x,_|, M, =x,)

n—17

P:L“ZU\Z <) — P:v“rl(]\z <z ) Io.,..., x2}<$n) (3.37)
— . 3.3
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Nun zur Startverteilung von M*, also zu (3.23). Mit (3.25) und (3.33) erhalten wir

[A(x?i) . A(x?iﬂ)]

& (xf)  E*(xg+1)

= o) . (3.38)
§*(z0)

Bemerkung 3.8. Der in (3.37) und (3.38) konstruierte stark stationédre duale Prozess M* ist
scharf im Sinne von Definition 3.4. Dies lasst sich mit der Bemerkung 3.5 einsehen. Der einzige
Zustand, der so grofs ist wie y = d € S, ist y* = d. Da aber A(z*,-) = £* genau dann gilt, wenn
x* = d, entspricht y* = d der Rolle von oo aus der Definition eines stark stationdren dualen
Prozesses. Es gilt also A(y*,d) = 0 fir alle y* # oo und mit der gleichen Argumentation wie in

Bemerkung 3.5 folgt die Schérfe.

Nun werden wir die Klasse der Markov-Ketten vorstellen, fiir die wir den Separations-Cut-Off

beweisen.

3.2.3 Geburts- und Todesprozesse

Ein Geburts- und Todesprozess in diskreter Zeit ist eine Markov-Kette M auf einem W-Raum
(2,2, P) mit Werten in dem Zustandsraum S = {0, 1, ..., d} (endlicher Fall) oder S = {0, 1, ...}
(abzéhlbar unendlicher Fall), welche nur von einem Zustand in einen benachbarten Zustand
springen oder im gegenwértigen Zustand verharren kann. Wir behandeln nur den endlichen Fall
und setzen die Irreduzibilitdt voraus. Die Startverteilung von M bezeichnen wir mit A. Die zu
M gehorige Ubergangsmatrix P hat Tridiagonalgestalt, das heifit nur auf der Diagonalen und
auf den beiden Nebendiagonalen konnen positive Eintrdge stehen und alle anderen Eintrage
sind gleich 0. Wir schreiben P(x,z + 1) = p,, P(x,z — 1) = ¢, und P(z,z) = r, fiir die

jeweiligen Ubergangswahrscheinlichkeiten fiir den Zustand z. Wir setzen py = ¢y = 0. Die
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3.2. Dualitatstheorie in diskreter Zeit

Ubergangsmatrix P hat somit die folgende Gestalt:

To Do 0 0 0 ... 0
g T P1 0 0 ..o 0
p— O q2 T9 D2 0 ... 0
0 .. 0 dd—1 Td—1 Pd—1
0 o 0 dd Td

Irreduzibilitat ldsst sich bei Geburts- und Todesprozessen dquivalent durch die Forderung p, > 0
fir alle 0 < x < d und ¢, > 0 fiir alle 0 < 2 < d ausdriicken. Irreduzible Geburts- und
Todesprozesse sind reversibel, also gilt P = 13, und die stationdre Verteilung ist gegeben durch
e — [T
=1 b
wobei ¢ = £*(0) eine normalisierende Konstante ist. Ist P irreduzibel und aperiodisch (=ergo-
disch), folgt mit Satz 3.6, dass (A, P) genau dann eine S-wertige, algebraisch Duale (\*, P*)

besitzt, wenn die beiden Monotoniebedingungen

A(z)
£ ()

ist fallend in z, d.h. ¢, A(z+ 1) < pA(x) fiir x < d, (3.39)
und

P ist monoton, d.h. p, + ¢.41 < 1, x <d, (3.40)
erfiillt sind.

Bemerkung 3.9. Auf die Forderung der Aperiodizitat kann verzichtet werden, da (3.40) diese

zusammen mit der Irreduzibilitdt wegen ro =1 —pg > 1 — (pg + ¢1) > 0 impliziert.

Wie sieht nun der stark stationdre duale Prozess M* zu einem Geburts- und Todesprozess M
auf S = {0, ..., d} aus? Satz 3.6 und die Konstruktion (3.37) und (3.38) liefern uns einen dualen

Prozess auf S = {0, ..., d}, welcher ebenfalls ein Geburts- und Todesprozess ist.

Die Startverteilung von M* ist

o [P A2") — e AzF + 1)), aF < d,
A(a7) = i((d) - : (3.41)
£ (d)’ x* =d.
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Die Ubergangsparameter sind gegeben durch

P (l‘ y L — 1) = Gy = E':[(ZL’*) )par*a
P (z", 2" +1)=pi. = 75_{@*) )qm*ﬂ,

P (2%, 2%) = 1 = 1= (por + Gor41),
P (", 2" 4+i)=P(z", 2" —i) =0 sonst.
Der Klammerausdruck in (3.34) liefert, dass M* nur in benachbarte Zusténde springen kann.
Es gelte die iibliche Konvention p}; = ¢; = 0. H bezeichne die kumulierte Verteilungsfunktion
der stationdren Verteilung &*. Mit Blick auf (3.37) erhalten wir bei reversiblen Prozessen bei

der Konstruktion des stark stationaren dualen Prozesses

P(M; = $Z|Mn =Tn, M, | = x;—l)
_ [P:v:;(Ml <) - P:v:;Jrl(Ml < xZ—l)][{O ----- x;}($n) (3.42)
Pxn(Ml S x;';,fl) ’ .

wobei der Nenner eine normalisierende Konstante ist.

Bemerkung 3.10. Bei Geburts- und Todesprozessen vereinfacht sich (3.42). Wir unterscheiden
drei Félle:

(a) Falls ¥ | >z, + 1 gilt, so ist (3.42)

Per_ 1= (D5, + G 41), @ 41 oder 0, je nachdem, ob x| = a7, — 1,

xf o =uar, af =z +1oder |z} | —ai| > 1.

(b) Falls 2 | = x, gilt, so ist (3.42) [1 — (p;,;;_1 + qm;_lﬂ)]/[l — pm;_l], qm;_lﬂ/[l — pm;_l]

oder 0, je nachdem, ob 2} =z} _,, ) = x;_; + 1 oder weder noch ist.

(c) Ist 7| =z, — 1, so ist (3.42) 1, falls 2} = z,, und sonst 0.

3.3 Dualitatstheorie in stetiger Zeit

3.3.1 Existenz und Eigenschaften des stark stationaren dualen

Prozesses

Die Dualitatstheorie im stetigen Fall kommt in weiten Teilen zu dhnlichen Ergebnissen wie die

Dualitatstheorie in diskreter Zeit. Insbesondere erhalten wir im Algebraischen Dualitdtstheorem
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die gleichen Dualitdtsbedingungen A = A*A und AP(-) = P*(-)A. Neu ist dabei die dquivalente
Darstellung der zweiten Gleichung durch die Erzeuger G und G*: AG = G*A. Fiir die Klasse
der irreduziblen Geburts- und Todesprozesse ergibt sich ein dualer Prozess, welcher ein absor-
bierender Geburts- und Todesprozess auf dem gleichen Zustandsraum ist. Dieser duale Prozess
ist scharf, liefert also eine minimale stark stationdre Zeit fiir den zugrundeliegenden Geburts-
und Todesprozess, und es ldsst sich mit der Dualitdtsbedingung AG = G*A eine Verbindung

zwischen den Eigenwerten der beiden Prozesse herstellen.

Beginnen wir nun mit unserer Definition des stark stationdren dualen Prozesses in stetiger
Zeit. Wir schreiben M ~ (X, G, P(-),5) als Abkiirzung dafiir, dass M = (M;)o<t<oo €in nicht-
explodierender Markov-Sprungprozess mit Zustandsraum S, Startverteilung A\, Erzeuger G und
Ubergangsfunktion (P(t))o<i<oo ist. Wir bezeichnen in diesem Kapitel den Erzeuger mit G
und dessen Eintrage mit g, ,, damit keine Verwechslungsgefahr mit den Todesraten bzw. To-
deswahrscheinlichkeiten ¢, bei Geburts- und Todesprozessen besteht. Wir sprechen von einer
Explosion eines MSPs, falls unendlich viele Ubergéinge des MSPs in endlicher Zeit auftreten.
Hinreichend fiir die Nichtexplosivitét ist die Endlichkeit des Zustandsraums S. Wir setzen S
als diskret voraus, also als endlich oder abzdhlbar unendlich. Es sei M ~ (A G, P(+),S) ein
ergodischer Markov-Sprungprozess mit stationdrer Verteilung £* auf dem W-Raum (2,2, P).
Sei (Ft)i>o0 eine Filtration von (€2, 2(), beziiglich derer M die Markov-Eigenschaft besitzt, und
sel §oo := 0 (F: : 0 <t < 00) die asymptotische Gesamtinformation des Beobachters. Aus tech-
nischen Griinden und ohne Beschrankung der Allgemeinheit nehmen wir an, dass (§:):>0 eine
vollstédndige, rechtsstetige Filtration ist. In der folgenden Definition ist die o-Algebra, welche

zu dem Zustandsraum S* gehort, beliebig.

Definition 3.5. Sei X* = (X} )o<t<co €in stochastischer Prozess auf (2,2, P), der Werte in
einem messbharen Zustandsraum S* annimmt. Die folgenden drei Bedingungen seien erfiillt:

(a) Es existiert eine von §,, unabhéngige Sub-o-Algebra & von §, so dass
X/ messbar ist beziiglich o (F;, ®) fiir alle 0 < ¢ < 0. (3.43)
(b) Definiere §; := 0 (X} : s <t),0 <t < co. Es existiert ein Zustand co € S*, so dass
P(M; = z|§;) = £ () fast sicher auf {X; = oo} (3.44)

firalle0<t<oound xz € S.
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(¢) Fiir den Zustand oo gilt:
00 ist ein absorbierender Zustand fiir X™, (3.45)

also X7 =00 = X =ooc fiirallet > s.

Dann heilst X* stark stationdrer dualer Prozess zu M.

Nun stellen wir analog zum Vorgehen in diskreter Zeit eine Verbindung zwischen stark statio-
niren Zeiten des zugrundeliegenden Markov-Sprungprozesses mit der Zeit bis zur Absorption

des stark stationaren dualen Prozesses her.

Satz 3.7. (a) Sei X* ein stark stationdrer dualer Prozess von M. Sei T =T die Zeit bis zur
Absorption in oo fiir X*. Dann ist T eine stark stationdre Zeit fiir M.
(b) Sei T umgekehrt eine stark stationdre Zeit fir M. Sei S* = [0,00] (mit der Borelschen
o-Algebra) und definiere
t, falls T > t,
X/ = (3.46)
00, falls T' < t.

Dann ist X* ein stark stationdrer dualer Prozess von M, und es gilt T' =T, .

Beweis. (a) Fiir alle 0 < t < oo gilt {T' < t} = {X} = o0} € 0 (F,®) wegen (3.43) in der
Definition des stark stationiren dualen Prozesses. Also erfiillt 7" die technische Definition einer

randomisierten Stoppzeit aus Abschnitt 3.1. Weiter gilt fiir 0 <t < oo
P(T <t,M;=x)=P(X] =00, M; =2x) = E(P(X] = 00, M; = z|§}))

— B(P(M, = al§}); X; = o) = E(¢"(x); X; = o)
— P(X; = s0)¢'(x) = P(T < )€ ().

Nach Satz 3.1 (b = a) aus Abschnitt 3.1 ist 7" damit eine stark stationére Zeit.

(b) Als randomisierte Stoppzeit erfiillt T die Messbarkeitsbedingung (3.43). Der Zustand oo
ist wegen (3.46) ein absorbierender Zustand fiir X*. Es bleibt also zum Nachweis, dass X*
ein stark stationédrer dualer Prozess zu M ist, die Bedingung (3.44) zu zeigen. Es gilt §; =
o ({T' < s}:s5<t) =0 (TIr<y). Wenn wir nun beide Seiten von (3.44) mit I{ys_oy multi-

plizieren, so sind beide Seiten von (3.44) nichtnegative Zufallsvariablen, welche beziiglich der
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o-Algebra §; messbar sind und den Erwartungswert P(M; = z, X; = o0) = P(T < t,M; =
x) = P(T < t)¢*(z) = £ (v)P(X] = oo) haben. Weiter bilden die Ereignisse {7 < s} ein
m-System, welches §} erzeugt und mit einer analogen Rechnung wie zuvor erhalten wir, dass
sich beide Seiten von (3.44) zu £*(z)P(T < s) integrieren. Damit ist (3.44) gezeigt und der
Beweis, dass X* ein stark stationérer dualer Prozess zu M ist, erbracht.

Die Giiltigkeit von 7' = TZ folgt direkt aus (3.46). O

Bemerkung 3.11. Ein 7-System auf einer Menge 2 ist eine Menge P bestehend aus Teilmen-
gen von {2, so dass

(a)P nicht leer ist,

(b)AN B € P, wenn A und B in P sind.

Ein endliches Mafs, also insbesondere jedes W-Malfs, ist eindeutig bestimmt durch die Werte,

die es auf einem, die zugehorige o-Algebra erzeugenden, 7m-System annimmt.

Im folgenden Abschnitt stellen wir das Algebraische Dualitétstheorem fiir Markov-Prozesse vor.
Algebraische Dualitét

Seien P(-) und P*(-) nichtexplodierende Markov-Ubergangsfunktionen auf den diskreten Men-
gen S und S* und A € 20(5) bzw. A* € 2(S*). Die zugehorigen Erzeuger bezeichnen wir mit
G und G*. A sei wie in der diskreten Dualitétstheorie ein Link, also ein Ubergangskern, von
S* nach S. Wir mochten einen bivariaten Markov-Prozess (M*, M) = (M, M;)o<t<oo mit den
Randverteilungen

M~ (X, G, P*(-),8%) M~ (\G,P(),S) (3.47)

konstruieren, so dass M und M* derart durch A verlinkt sind, dass fiir alle 0 < ¢t < oo, 2* € S*
und z € S
P(M; = z|§;) = A(z", x) fast sicher auf {M; = 2"} (3.48)

gilt. Dabei sei §; = o (M :s<1t),0 <t < oo. Falls wir §*, = o (M) definieren, dann

erhalten wir aus (3.48)
P(M; = z|§~,) = A(a™, z) fast sicher auf {M; = 2™}. (3.49)

Um Probleme mit Nullereignissen zu vermeiden, nehmen wir die Erreichbarkeit von z* € S*
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an, d.h. P(M;] = x*) > 0 fiir ein ¢ > 0. Dann kénnen wir (3.49) schreiben als
P(M; = x|M] = x*) = A(z", z). (3.50)

Wir interessieren uns fiir den bivariaten Markov-Sprungprozess, da wir zu einem gegebenen
Markov-Sprungprozess einen stark stationidren dualen Prozess konstruieren mochten, der eben-
falls markovsch ist. Satz 3.7 erlaubt durch Untersuchung der Absorptionszeit des stark sta-
tionaren dualen Markov-Sprungprozesses Aussagen iiber stark stationére Zeiten des zugrunde-
liegenden Markov-Sprungprozesses zu treffen. Besonders interessieren uns dabei scharfe duale

Prozesse, welche minimale stark stationére Zeiten liefern.

Damit M* ein stark stationdrer dualer Markov-Sprungprozess im Sinne von Definition 3.5 ist,
miissen fiir 0 < s <t < oo nach (3.43) und (3.48) die beiden folgenden bedingten Unabhéngig-
keitsbedingungen gelten:

M? und M, sind bedingt unabhingig gegeben M,, (3.51)

s

und

M und M, sind bedingt unabhéngig gegeben M. (3.52)

s

Wie im diskreten Fall liefert das Algebraische Dualitédtstheorem ein notwendiges und hinrei-
chendes Kriterium fiir die Existenz eines bivariaten Markov-Sprungprozesses, welcher (3.47),

(3.50), (3.51) und (3.52) erfiillt. Neu ist dabei die Charakterisierung mittels Erzeugern.
Wir beschrénken uns im Folgenden auf endliche Zustandsrédume, also |S| < oo und |S*| < oc.

Satz 3.8. (Algebraisches Dualititstheorem) Seien (A, G, P(-)) auf einem endlichen Zu-
standsraum S, (\*, G*, P*(-)) auf einem endlichen Zustandsraum S* und eine Ubergangsmatriz
A von S* nach S gegeben. Genau dann existiert ein bivariater Markov-Sprungprozess (M*, M)
mit M* ~ (X\*,G*, P*(:)) und M ~ (\,G, P(-)), welcher die bedingten Verteilungen (3.50) be-
sitzt und die Unabhdngigkeitsbedingungen (3.51) und (3.52) erfillt, wenn zwischen (A*, P*(+))
und (N, P(-)) beziglich des Links A die beiden folgenden Dualitdtsbedingungen erfillt sind:

A= MA, (3.53)

AP(t) = P*(t)A, fiir alle 0 <t < 0. (3.54)
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Des Weiteren ist (3.54) dquivalent mittels Erzeugern ausdriickbar:

AG = G*A. (3.55)

Beweis. Die Notwendigkeit der Bedingungen (3.53) und (3.54) fiir die Existenz des bivariaten
Markov-Sprungprozesses (M*, M) mit den vorgegebenen Eigenschaften wird wie im diskreten
Fall gezeigt, sieche Abschnitt 3.2. Die Aquivalenz von (3.54) und (3.55) liefert das Lemma 3.3.
Wir zeigen, dass die Bedingungen (3.53) und (3.54) hinreichend sind. Nehmen wir also an,
dass (3.53) und (3.54) gelten. Wir mochten einen bivariaten Markov-Sprungprozess konstruie-
ren, welcher (3.50), (3.51) und (3.52) erfiillt und die Randverteilungen (3.47) besitzt. Wie im
diskreten Fall wéhlen wir als bivariaten Zustandsraum S := {(z*,z) : A(z*,2) > 0} und als

Startverteilung

A(z*, x) == N (x")A(z", x). (3.56)

Natiirliche Wahl fiir die bivariate Ubergangsfunktion ist

P(t) := 1}1?01(P<h>)tt/hJ , 0<t< oo, (3.57)

P™ bezeichnet die bivariate Ein-Schritt-Ubergangsmatrix fiir das h-Skelett und ist folgender-
mafen definiert

B P, (h)P. .(M)A(y*,y)/As=y(h), falls Ag-y(R) >0, (3.58)

0, fiir x = 0.

)
Pl o))

Dabei ist A(h) = P*(h)A = AP(h). Vergleiche dazu (3.18) im Beweis des Algebraischen
Dualitatstheorems im diskreten Fall. Wir werden zeigen, dass der Grenzwert in (3.57) existiert
und dass der bivariate Markov-Sprungprozess mit Ubergangsfunktion P(-) die gewiinschten
Eigenschaften aufweist. Wir miissen dazu mit (3.57) arbeiten, da die Matrizen P® nicht die

Kolmogorov-Chapman Gleichungen erfiillen. Wir werden in Lemma 3.2 zeigen, dass
P =1+ hG+o(h) firh |0 (3.59)

fiir die Einheitsmatrix I und eine Matrix G gilt, die wir in Lemma 3.2 explizit angeben werden.

Es folgt aus (3.59), dass der Grenzwert in (3.57) existiert und dass

P(t) = exp(tG) (3.60)
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gilt. Aus (3.59) und der Tatsache, dass P™ eine stochastische Matrix ist, folgt, dass G ein

Erzeuger ist. Demnach ist (3.60) eine Ubergangsfunktion eines Markov-Sprungprozesses mit

Erzeuger G. Sei nun M = (M*, M) ein Markov-Sprungprozess mit Startverteilung A und
Ubergangsfunktion P(-). Wir behaupten, dass (3.47) erfiillt ist, dass also M* ~ (\*, G*, P*())

und M ~ (A, G, P(-)) gilt. Wir setzen x; = (2}, 2x). Sei 0 =t < t; < ...

P(Mto = Ty -.ny Mtn = $n)

Xk—1:Xk

= lim A(x0) ﬁ((P(h)) [P (et | )

k=1

= 1im (o) 1 Porsn(h [ (1 = tin) ])
k=1

= M20) [ [ P (s — ti1)

< t,,. Wir erhalten

Dabei haben wir fiir die zweite Gleichung das Algebraische Dualitétstheorem im diskreten Fall

verwendet. Fiir M* erhalten wir das gewiinschte Resultat durch analoge Vorgehensweise:

* % * ok _
P(M; = xg,..., M] =z}, M, = x,)
n

= 22 A0 ] Poson, (B —tk1)> Az, )

= N(25) [ Pl st — ticr) X Ala )
k=1

Il
—
5
>
(@)
—~
[
(@)
SN—
—=
—~
T
G
=
>
|
=
ol
N
ol
L
=
SN—
%
x>
L
K
=
\_/
-
—~
=
3 x
=
3
SN—

(3.61)

Diese Resultate liefern die gewiinschten Ergebnisse M* ~ (A*, P*(-)), M ~ (A, P(-)) und die
Verlinkung (3.48) ist erfiillt. Aus (3.48) folgt wiederum (3.50) und (3.52). Es bleibt also allein

noch nachzuweisen, dass (3.51) gilt. Diese Aussage folgt aus dem nachfolgenden Lemma.

O

35



3.3. Dualitatstheorie in stetiger Zeit

Lemma 3.1. Sei §; :=0 (M;:0<s<t),0<t<o00. Analog definieren wir §;. Dann sind §;

und M bedingt unabhdngig gegeben ;.

Beweis. Es geniigt wegen der Markov-Eigenschaft von M die folgende Gleichheit
P(B*NnBNC)=P(B*NB)p (3.62)
fiir Ereignisse der Form
B*={M*(ty) = a}, ..., M*(t,) =z}
B={M(t)) =x1,...., M(t,) = x,}

C={M(u1) =y, ... M(tm) = ym}
zu zeigen, wobei 0 < t; < ... <t, =ug < uy < ... < U, Ty = Yo, und

n
= HPyk—hyk(uk - uk—l)

k=

]

Das diskrete Analogon dieses Lemmas ist (3.22) in Bemerkung 3.4. Anwenden von (3.22) auf

das Skelett und anschliefsende Grenzwertbildung liefert den Beweis. O

Dieses Lemma zeigt also insbesondere die Giiltigkeit von (3.51) in dem Beweis des Algebraischen

Dualitatstheorems. Das folgende Lemma wird (3.59) zeigen, also
P" =1+ hG+o(h)  firh|O0.

Sei S := {(z*,2) : A(z*,z) > 0} und x = (2*,x) € S. Wir definieren den Erzeuger G(x,y).
Fiir festes x machen wir dies nun in fiinf Féllen fiir y = (y*,y) € S, welche alle méglichen Fille

abdecken. Wir schreiben T fiir die Matrix AG = G*A.

1.y = z,y* = z*. Dann setze

Gxy) = — |gh +g. + iizg . (3.63)

2.y # x,y* = x*. Dann setze
G(X,Y) = gay- (3.64)

3.y =ux,y" # x*. Dann setze
Glxy) 1= Lrar AW T) (3.65)
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4.y # x, Mz",y) = 0, g5« o + gay > 0. Der Schnitt mit 2. ist leer, denn A(z*,y) = 0
impliziert y* # x* wegen der Voraussetzung A(y*, y) > 0. Des Weiteren gilt in diesem Fall, dass
['(z*,y) > 0 gilt. Wenn zum Beispiel g}. . > 0 gilt, dann folgt

ng 2 7'3/

z*eS

Z Gor N2 Y) 2 o o Ay™,y) > 0.

2* Lo
Wir setzen
JoyGae Ny, Y)
G(x,y) = : 3.66
oY) = T N y) (390
5. Fiir alle anderen Zustédnde y setzen wir
G(x,y) :=0. (3.67)

Lemma 3.2. Seien P" und G auf dem Zustandsraum S = {x = (z*,z) : A(z*,z) > 0}
definiert durch (3.58) beziehungsweise (3.63) bis (3.67). Dann gilt (3.59):

P"™ =1+ hG +o(h)  firh | 0.

Bewers. Fixiere x und bezeichne mit C; die Klasse der bivariaten Zustédnde y, welche unter
Fall 7,¢ = 1,...,5, fallen. Wende die asymptotischen Beziehungen P(h) = I + hG + o(h),
P*(h) = I" + G* + o(h) und A(h) = P*(h)A = A + hG*A + o(h) auf (3.58) an, um die x,y
Eintrége in (3.59) fiir x fest und y in den Féllen 1 bis 4 zu erhalten. Im fiinften Fall bemerken

wir zunéachst, dass

S TPE —nt 1= Y P = =) Gxy)

yels y&Cs i=1 yeC;

Einsetzen der Ausdriicke (3.63) - (3.66) liefert nach einiger Rechnung folgendes Ergebnis:

Kt Z Pg;) — 0

yeCls

fiir h | 0. Dies zeigt (3.59) fiir y in Fall 5 und das Lemma ist damit bewiesen. O
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Bleibt zuletzt noch die Aquivalenz der Formulierung mit Erzeugern und Ubergangsmatrizen zu

beweisen. Dann ist das Algebraische Dualitdtstheorem vollstdndig bewiesen.

Lemma 3.3. In der Situation von Lemma 3.2 gilt
AP(t)=P*(t)A  firalle0 <t < oo (3.68)

genau dann, wenn

AG = G*A. (3.69)

Beweis. Falls (3.68) gilt, dann bilde die (rechtsseitigen) Ableitungen in t=0 um (3.69) zu er-
halten. Falls umgekehrt (3.69) erfiillt ist, gilt AG™ = (G*)"A fiir n > 0. Multipliziere nun beide

Seiten mit ¢"/n! und summiere tiber n, um (3.68) zu erhalten. O

Wir lassen nun die Voraussetzung der Endlichkeit der Zustandsrdume S und S* fallen. Es
stellt sich die Frage, welche Ergebnisse der Dualitédtstheorie im endlichen Fall auf den abzihl-
bar unendlichen Fall iibertragen werden kénnen. Die Notwendigkeit der beiden algebraischen
Dualitatsbedingungen héangt nicht von der Endlichkeit von S und S* ab. In der Riickrichtung
des Beweises zeigt sich jedoch das Problem, dass die fiir den Beweis entscheidende Darstellung
der Ubergangsfunktionen in Form der Matrixexponentialfunktionen in (3.60) nur fiir endliche
Zustandsraume gilt. Ein moglicher Beweis der Riickrichtung erfordert demnach einen anderen
Ansatz. Es zeigt sich, dass die fiir das weitere Vorgehen notwendigen Resultate weiterhin Be-
stand haben. Da wir in den néchsten Kapiteln unserer Arbeit nur den endlichen Fall betrachten,
verweisen wir fiir eine ausfiihrlichere Diskussion auf [Fil91], Abschnitt 2.2b, und notieren das

fiir die weitere Entwicklung entscheidende Ergebnis:

Satz 3.9. Die Dualitdtsbedingungen A = \*A und AG = G*A seien erfillt. Falls M = (M*, M)
ein bivariater Markov-Sprungprozess mit Startverteilung X aus (3.56) und Erzeuger G aus

(3.63)-(3.67) ist, dann gilt M* ~ (X", G*) und (3.48), (3.50) sowie (3.52) sind erfillt.

Fiir die Herleitung des Satzes wurde folgende Situation vorausgesetzt, welche auch in unseren
nachfolgenden Uberlegungen Bestand haben soll. S und S* seien diskret, M und M* nichtex-

plodierend. Wir nehmen an, dass genau ein Zustand co € S* existiert, so dass A(oo,-) eine
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stationére Verteilung &* fiir M ist und oo fiir M* absorbierend ist. Abgesehen von der mdgli-
chen Ausnahme S(oc0) seien die Mengen S(z*) alle endlich. Dabei gelte fiir jedes 2* € S* die
Notation S(z*) = {z € S: A(z*,z) > 0}.

Wir konstruieren nun mit Hilfe des Algebraischen Dualitatstheorems bzw. Satz 3.9 zu einem

Markov-Sprungprozess M ~ (A, G) einen stark stationdren dualen Markov-Sprungprozess M*.
Konstruktion des dualen Prozesses

Seien (A, G, P(+)) auf S, (\*,G*, P*(-)) auf S* und ein Link von S* nach S gegeben. P(-) sei
ergodisch mit stationérer Verteilung £* und die Dualitdtsbedingungen A = A*A und AG = G*A
seien erfiillt. Sei M ~ (A, G, P(-)) gegeben auf einem W-Raum (2, 2(, P). Wir konstruieren nun
einen stochastischen Prozess M* auf dem selben W-Raum (2,2, P), so dass M = (M*, M) ein
bivariater Markov-Sprungprozess ist mit Startverteilung A in (3.56) und Erzeuger G aus (3.63)
- (3.67). Nach Satz 3.9 gilt M* ~ (A\*,G*) und die Verlinkungsbedingung (3.48) ist erfiillt.
Aus der Konstruktion wird ersichtlich sein, dass (3.43) erfiillt ist; der Markov-Sprungprozess
M~ ist also ein die Verlinkungsbedingung (3.48) erfiillender, stark stationdrer dualer Markov-

Sprungprozess zu M.

Beginnen wir nun mit der Konstruktion des dualen Markov-Sprungprozesses M*. Sei (Y)r>o0
die in M eingebettete, diskrete Markov-Kette, also der Pfad der von M besuchten Zustéande.
Ohne Beschrinkung der Allgemeinheit nehmen wir an, dass A(My) > 0 und gy, ,y, > O,
k > 1, fiir jede Realisierung von M gilt. Bei Beobachtung von My = z(, nutze unabhéngige

Randomisierung und setze
M =z} mit Wahrscheinlichkeit \*(xg)A (x5, zo)/A(zo). (3.70)

Wegen der Dualitatsbedingung A = A*A summieren sich die Wahrscheinlichkeiten in (3.70) zu
eins. Des Weiteren sieht man mit (3.70) direkt, dass fast sicher zy € S(xf) gilt und dass (3.56)
die gemeinsame Verteilung von (M, M) ist.

Iterativ setzen wir die Definition des dualen Prozesses M* fort. Sei n > 1 und angenommen, dass
M* bis zur Zeit 7,,_; des (n — 1)-ten Ubergangs des bivariaten Prozesses (M*, M) konstruiert
wurde und 7y := 0 gesetzt wurde. Wir beschreiben nun die Definition von 7, und von M*(7,)

mit einer exponentialverteilten Zufallsvariable V*. Wir schreiben x = (z*, z) fiir den Wert von
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(M*, M) zur Zeit 7,1, induktiv erhalten wir = € S(z*) fast sicher. Des Weiteren schreiben wir
G(x) = |G(x,x)| = —G(x,x) (3.71)

genauso wie g; = |guz| = —Ggaa-

Sei V* = V* ~ Exp(G(x) — ¢,) unabhéngig von Vi*,...,V* ; und dem Prozess M. Wir un-
terscheiden zwischen dem Fall (7,,_1 + V*) < o, oder (1,_1 + V*) > o, wobei o, die erste
Wechselzeit fiir M nach 7,,_; ist. Gleichheit tritt mit Wahrscheinlichkeit 0 auf wegen der Stetig-
keit der Exponentialverteilung. Die Idee fiir die iterative Definition von M™ ist nun die folgende:
Wir lassen eine exponentielle Uhr unabhéngig von der exponentiellen Uhr fiir M laufen. Die
Uhr, die zuerst ablauft, zeigt einen Wechsel fiir den nichsten Ubergang von M an. Falls die Uhr
flir M zuerst ablauft, findet bei M ein Zustandswechsel statt, aber nicht bei M™*, aufer dieser
wird notwendig, um die Beziehung = € S(2*) zu erhalten. Falls die andere Uhr zuerst ablauft,

so verdndern wir nur den Wert von M* und nicht von M. Formal bedeutet das folgendes:

(a) Falls 7,,_1 +V* > 0, setze 7,, = 0,,. Falls zur Zeit 7,, M nach y # x springt (so dass g,, > 0),

setze

M =y* mit Wahrscheinlichkeit G(x,y)/ ¢y (3.72)

mit y = (y*,y). Mit (3.64) folgt — falls y € S(z*) — , dass M fast sicher auf z* gesetzt
wird und nur M den Zustand zur Zeit 7,, wechselt. Falls y ¢ S(2*), dann wird der Wert y*, der
y € S(y*) erfiillt fiir M?* gemif (3.66) mit folgender Wahrscheinlichkeit gewéhlt:

Goe - Ny y) /T (2%, y). (3.73)

Da I' = G*A ist, summiert sich (3.73) zu eins. In diesem Fall verdndern sowohl M als auch

(zwangsweise) M* den Zustand zur Zeit 7,,.

(b) Falls 7,1 + V* < 0,,, dann ist der exponentielle Parameter
G(X) = 9z = Dy arres) G2, ), (¥, y)) ohne Beschréinkung der Allgemeinheit strikt po-
sitiv. Setze 7, = 7,,_1 + V*. Dann setze fiir y* # 2* mit = € S(y*)

G((z*, ), (y",v))

M: =vy* mit Wahrscheinlichkeit

. (3.74)

In diesem Fall verédndert nur M* den Zustand zur Zeit 7, und M bleibt im gleichen Zustand.
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Wir erhalten wie gewiinscht M ~ (A, G). Besonders interessieren wir uns fiir stark stationére
duale Prozesse, welche scharf sind im Sinne von Definition 3.4, also deren Zeit zur Absorption

eine minimale stark stationére Zeit fiir den zugrundeliegenden Markov-Sprungprozess liefert.

Bemerkung 3.12. Der duale Prozess M*, den wir in diesem Teilabschnitt in (3.72), (3.73) und
(3.74) definiert haben, ist fiir endliches S genau dann scharf, wenn ein y € S existiert, welches
zu keinem S(y*) gehort, aufer zu S(oco) (wobei die Erreichbarkeitsbedingung jedes Zustands
fiir M* unterstellt wird). Dies bedeutet, dass ein y € S existiert, fiir das A(y*,y) = 0 fiir alle

S* 3 y* # co. Mit der Begriindung aus Bemerkung 3.5 folgt die Schérfe.

Wie im diskreten Fall werden wir nun nach der allgemeinen Konstruktion eines stark sta-
tionaren dualen Markov-Sprungprozesses die bisherigen Resultate sukzessive auf Geburts- und
Todesprozesse zuschneiden. Zunéchst stellen wir in Analogie zu Abschnitt 3.2.2 den mengenwer-
tigen dualen Prozess vor. Dazu sei M ~ (A, G, P(-),S) ein ergodischer Markov-Sprungprozess
mit stationdrer Verteilung £*. Sei S* eine Kollektion nichtleerer Teilmengen von .S. Wir nehmen
an, dass S € S* und dass alle anderen Elemente von S* endliche Teilmengen von S sind. Fiir
jedes x* € S* sei A(z*, x) die Renormierung von £* beziiglich der Menge x*:

L ()€ ()
> year §F ()

In (3.75) ist I~ der Indikator der Menge z*.

A(z*,x) = x € S. (3.75)

3.3.2 Dualitat bei Prozessen mit monotonem Likelihoodquotienten

Wir nehmen nun an, dass der diskrete Zustandsraum S linear geordnet ist. Wir kénnen also

bei 2 beliebigen Elementen aus S eindeutig entscheiden, welches grofser und welches kleiner ist.

Wir wéhlen S* = {0, 1,2,...} U {co} und definieren
A", x) = Ip<on & () /H(z"), e S rel, (3.76)

wobei H die Verteilungsfunktion fiir £* ist. Wir lassen also in (3.75) S* aus den Elementen
S (identifiziert mit co) und Teilmengen von S der Form {0,1,...,2*} (identifiziert mit dem

groften Element 2*) bestehen.

41



3.3. Dualitatstheorie in stetiger Zeit

Wir haben im Algebraischen Dualitéitstheorem gesehen, dass ein durch A verlinkter, nichtex-
plodierender, stark stationdrer dualer Markov-Prozess M* ~ (\*, G*, P*(-), S*) fir M genau
dann konstruiert werden kann, wenn die Dualitdtsbedingungen A = \*A und AG = G*A erfiillt
sind. Fiir gegebenes (A, G) und unsere Wahl von A in (3.76) kann man diese beiden Gleichun-
gen eindeutig fiir (A*, G*) 16sen. Diese Losung ist allerdings nicht immer zuléssig, d.h. ein Paar
einer Startverteilung und eines Erzeugers. Notwendige und hinreichende Bedingungen fiir die
Zulissigkeit der Losung kénnen wir mittels Ubergangsfunktionen ausdriicken wie im diskreten
Theorem 2.2 von Diaconis und Fill in [DF90a] (Vergleiche dazu auch Satz 4.6 in [DF90b]). Wir
formulieren unseren zusammenfassenden Satz 3.10 mit Erzeugern und bezeichnen den zeitlich

invertierten Prozess zu G mit G-

gm,y = g*(y>gym/£*<x) (377>
Der Begrifft MLR wird in der Bemerkung nach dem Satz erklért.

Satz 3.10. (Dualitdtstheorem fiir MLR-Prozesse.) Der Markov-Sprungprozess
(N, G, P(-),S) besitzt genau dann einen algebraischen, nichtexplodierenden, dualen Markov-

Sprungprozess (N*, G*, P*(-), S*) beziiglich des Links A aus (3.76), wenn die folgenden Monotonie-

Bedingungen
MNx) /& (x)  fallt in x, (3.78)
(fdllt ({O,...,:c*}
Z Gy .z § wichst  mity" auf § {z* z* 4+ 1} (3.79)
- \fc’illt \{x*+1,x*+2,...}

fiir jedes feste x* = 0,1, 2, ... erfillt sind und der Erzeuger G* nichtexplodierend ist. Die Eintrige

der erzeugenden Matriz des dualen Prozesses sind dabei folgendermaflen definiert:

g = 2
x*,y* . H(x*)

> Gra—Gprsra) 2y =01, (3.80)

r<x*

1

* o =——Ilim Ty t*=0,1,2,.., 3.81
ga: ,00 H(I‘*) yloo l g;x* gy ( )
Gy =0 Ly €S (3.82)

In diesem Fall ist die duale Startverteilung eindeutig bestimmt durch

M) Mot + 1)
() & (zr +1)

N (a%) = H(z") { } . 2 =0,1,2, .., (3.83)

42



Kapitel 3. Stark stationére Zeiten und Dualitdtstheorie

ot M)
N(oo) = lim L S,

und der duale Erzeuger ist eindeutig bestimmt durch (3.80) - (3.82).

(3.84)

Bemerkung 3.13. Der Ausdruck MLR-Kette (Kette mit monotonem Likelihoodquotienten)
kann wie in diskreter Zeit erklart werden (vgl. Bemerkung 4.11 bei Diaconis und Fill in [DF90b]):
die Ubergangsfunktion P(-) erhilt genau dann fallenden Likelihoodquotienten beziiglich &*,
wenn eine Ubergangsfunktion P*(-) auf S* existiert, so dass die algebraische Dualitéitsbedingung

AP(t) = P*(t)A fiir alle ¢ > 0 erfiillt ist.

Wenn die algebraischen Dualitéatsbedingungen erfiillt sind, kann man mittels der Konstruktion
aus Abschnitt 3.3.1 einen stark stationdren dualen Markov-Sprungprozess M™* konstruieren.
Wie in diskreter Zeit, muss man dafiir die kumulierte Verteilungsfunktion H nicht berechnen.
Auferdem ist der duale Markov-Sprungprozess bei endlichem Zustandsraum scharf im Sinne
von Definition 3.4, da A untere Dreiecksgestalt hat. Es existiert damit ein Zustand, der zu

keinem S(z*) aufler zu S(oo) gehort.

3.3.3 Geburts- und Todesprozesse

In diesem Abschnitt betrachten wir die Klasse der Geburts- und Todesprozesse. Ein Geburts-
und Todesprozess in stetiger Zeit ist ein Markov-Sprungprozess M auf einem W-Raum (2,2, P)
mit Zustandsraum S = {0,1,...,d} (endlicher Fall) oder S = {0,1,...} im abzdhlbar unend-
lichen Fall, welcher eine exponentialverteilte Zeit in einem Zustand x € S verweilt und im
Anschluss in einen benachbarten Zustand springt. Wir betrachten irreduzible Geburts- und To-
desprozesse. Die Startverteilung von M bezeichnen wir mit A. Die zu M gehorige Q)-Matrix hat
Tridiagonalgestalt, das bedeutet nur auf der Hauptdiagonalen und auf den beiden Nebendiago-
nalen konnen Eintrége stehen, welche ungleich 0 sind, und alle anderen Eintrage sind gleich 0.
Wir schreiben G(z,z + 1) = p, fiir die Geburtsrate im Zustand = und G(z,z — 1) = ¢, fiir die
Todesrate im Zustand x, wobei gy = 0. Die Betrége der Diagonaleintrage |G(z,z)| = g, = 72
geben die Parameter der exponentialverteilten Verweilzeit an, die Ubergangswahrscheinlichkei-

ten von z nach z + 1 bzw. von x nach x — 1 werden durch p,/r, bzw. ¢, /r, angegeben. Die
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3.3. Dualitatstheorie in stetiger Zeit

erzeugende Matrix G hat also die Gestalt

 po 0 0 O 0
- @1 om0 0 0
p2 O 0

0 q@

Irreduzibilitét ldsst sich bei Geburts- und Todesprozessen dquivalent durch die Forderung p, > 0
fir x > 0 und ¢, > 0 fiir z > 1 ausdriicken. Im Fall eines abzéhlbar unendlichen Zustands-
raums besteht Explosionsgefahr des Markov-Sprungprozesses M, im endlichen Fall kann M
nicht explodieren. Sei M ~ (A, G, P(-),.S) nun ein irreduzibler, positiv rekurrenter Geburts-
und Todesprozess. Irreduzible Geburts- und Todesprozesse sind zeitlich reversibel, also gilt

G = G. Die stationire Verteilung ist proportional zu dem Vektor der potenziellen Koeffizienten

-1 I
wobei ¢ = £*(0) eine normalisierende Konstante ist.
Wir erhalten in Satz 3.10 fiir 0 < x*, y* < oo,
( —Da, falls y* = x*,
Z Iy .z =  Qurt1, falls y* = o™ + 1, (3.85)
r<z*
) 0 sonst.

M = M erfiillt also die stochastische Monotoniebedingung (3.79). Die Matrix G* aus (3.80) -
(3.82) ist der Erzeuger eines Geburts- und Todesprozesses auf {0, 1, ...} mit Sterberaten

H(z* —1)

f = LDy, *=1,2,3, .., 3.86

und Geburtsraten
. H@ +1)
Dy = H(ZL‘*) Qz*+1,

o =0,1,2, ... (3.87)
Mit Reuters [Reu57| (Theorem 11) notwendiger und hinreichender Bedingung fiir die Nichtex-
plosivitit eines Geburts- und Todesprozesses und einigen einfachen Berechnungen [Bré99|
(S.352f.) sieht man, dass der in (3.86) und (3.87) definierte Geburts- und Todesprozess genau
dann nichtexplodierend ist, wenn

o 1 . N
Z( + -2 +...+u):oo. (3.88)

Gz+1 Jz+14x Qe+1 " 1

=1
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Kapitel 3. Stark stationére Zeiten und Dualitdtstheorie

Erfiillt der duale Prozess diese Bedingung (3.88), so ist der Zustand oo in endlicher Zeit nicht

von einem endlichen Zustand erreichbar und kann deshalb vernachlassigt werden.

Wir starten nun den Geburts- und Todesprozess M deterministisch in 0, fiir die Startvertei-
lung A gelte also A = dp. Damit ist die in Satz 3.10 formulierte Monotoniebedingung (3.78)
an die Startverteilung erfiillt und wegen (3.83) gilt fiir die Startverteilung A* des dualen Pro-
zesses M™* ebenfalls \* = §y. Also existiert nach (3.88) ein nichtexplodierender dualer Markov-
Sprungprozess. Um die Anwendung zu vereinfachen, beschreiben wir nun die Konstruktion von
7, und M? aus Abschnitt 3.3.1 in Abhéngigkeit davon, ob 2* > x+ 1 oder z* = x. Dabei gelte
(M*, M) = (z*,z) zur vorherigen Ubergangsszeit 7,,_, des bivariaten Markov-Sprungprozesses.
Wie in Abschnitt 3.3.1 bezeichnen wir mit o, die erste M-Ubergangszeit nach 7,_;. Die Zu-
fallsvariable V* = V* sei

(1) exponentialverteilt mit Parameter « und

(2) unabhéngig von Vi*,...,V* | und M.

n

1. Angenommen, dass * > = + 1. Sei a = pu« + Quei1-
(a) Falls 7,,_1 + V* > o,,, setze 7, = 0, und M*(7,,) = z*.
(b) Falls 7,_1 + V* < gy, setze 7, = 7,1 + V* und
-1 mit Wahrscheinlichkeit L,
M* = Pa + Qer1
" x4+ 1 mit Wahrscheinlichkeit it
Pa* + Qg1
2. Angenommen, dass x* = z. Sel @ = @y 41-
(a) Falls 7,1 + V* > o, setze 7, = 0,. Falls M, = x — 1, dann lasse den Wert von M*
unverdndert: M* = x. Falls M, =z + 1, setze M} =+ 1.
(b) Falls 7,1 + V* < 0y, setze 7, = 7oy + V¥ und M} =+ 1.

Zusammenfassend liefert die Dualitdtstheorie fiir irreduzible Geburts- und Todesprozesse die
Existenz eines dualen Prozesses, welcher ein absorbierender Geburts- und Todesprozess auf
dem gleichen Zustandsraum S mit den gleichen Eigenwerten ist und die Schérfebedingung in
Definition 3.4 erfiillt. In diskreter Zeit ist dieses Ergebnis auf monotone Ketten beschrénkt. Die
Dualitatstheorie gestattet uns demnach bei Geburts- und Todesprozessen eine Bestimmung des

Separationsabstands mittels der Absorptionszeiten des dualen Prozesses, welche minimale stark
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3.3. Dualitatstheorie in stetiger Zeit

stationdre Zeiten fiir den zugrundeliegenden Prozess liefern und somit Gleichheit in Satz 3.2
bzw. Satz 3.3 erfiillen.

Im folgenden Kapitel untersuchen wir Ersteintrittszeiten in 0 gestarteter Geburts- und To-
desprozesse. Bei absorbierenden Geburts- und Todesprozessen mit genau einem absorbierenden
Zustand ist die Ersteintrittszeit in diesen absorbierenden Zustand die Zeit bis zur Absorpti-
on. Wir erhalten eine Summendarstellung der Absorptionszeit und damit der minimalen stark
stationdren Zeit mit exponentialverteilten Zufallsgrofen als Summanden, welche von den Ei-

genwerten der Geburts- und Todesprozesse parametrisiert werden.
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4 Ersteintrittszeiten bei Geburts- und

Todesprozessen

Sei M ein Geburts- und Todesprozess in stetiger Zeit mit Zustandsraum S = {0, ...,d}, Ge-
burtsrate p, > 0 fir 0 < x < d — 1 und Todesrate ¢, > 0 fiir 1 < x < d, wobei wie gehabt
qo = pq = 0 gesetzt werde. In diesem Kapitel untersuchen wir die Verteilung der folgendermafsen

definierten Ersteintrittszeit.

Definition 4.1. Die Zufallsvariable
Trn = %Izlg{Mt =n|My =m}

heilst Ersteintrittszeit in den Zustand n bei Start in m.

Wir interessieren uns nun fiir die Verteilung von Tp,,, wihlen also als Anfangsverteilung A = dy.

Die Dichte sg,(7) der Ersteintrittszeit T, ist:

d
son(T) = —d—P(Mt <n,0<t<T7|My=0). (4.1)
-
Analog ist
d
ST(T) = Spny1(T) = —d—P(Mt <n+1,0<t<71|My=n) (4.2)
T

die Dichte der Zufallsvariable T, ;. Wir driicken nun die Dichte s, (7) von Ty, als Faltung

der Dichten s; () der Ty11,0 <i <n—1, aus:
Son(T) = 8¢ (1) * 87 (7) * ... x st (7), (4.3)

in Zufallsvariablen bedeutet dies T, = To1 + ... + T,,_1,. Diese Zufallsvariablen sind wegen der

Markov-Eigenschaft von M unabhéngig. Mittels eines rekursiven probabilistischen Arguments
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erhalten wir sq,(7) folgendermafen: Sei v, = p,, + ¢, die Verweilzeit im Zustand n. Die Dichte
der Verweilzeit hat die Form v,e~"* und mit Wahrscheinlichkeit g, /v, findet ein nachfolgender
Wechsel nach n — 1 statt, mit Wahrscheinlichkeit p,, /v, ein Wechsel nach n 4 1. Somit erhalten
Wir:

st(r) = &vne*”” + q—nvne’”” x5t (T)xst(T), n>1 (4.4)
Un Un,

Nun betrachten wir die Laplace-Transformierte (L.T.), welche mit dem jeweiligen griechischen

Kleinbuchstaben bezeichnet wird. Bei der Berechnung der L.T. von s; erhalten wir

ol(s) = Pn + I ol (s)ot (s
pn qn +
:}1: g, S
(s+pu+aqn)ot(s)  s+pn+an n-1(8)
1 Pn
=1= WO
(e ) (45)
=S+t qn = D + QHU:LZI(S)

Pn
= 0:(3) = )
S +pn + Gn — Qno':{_1<3)

wobei wir fiir die erste Gleichung den Multiplikationssatz fiir L. T. und deren Linearitit ausge-

nutzt haben (siche [Als05c¢|, Kapitel 40-42). Wegen ¢y = 0 gilt

Do
75 (5) = (146)

und wir erhalten o iterativ aus (4.5) und (4.6). Mit dem Multiplikationssatz fiir L.T. erhalten
wir aus (4.3):

oon(s) = 04 (5)...0,_1(s) (4.7)
und

Oon+1(5) = oon(s)7, (5). (4.8)

Der folgende Satz liefert uns nun Einblick in die Verteilung der Ersteintrittszeit Ty .

Satz 4.1. Sei M ein irreduzibler Geburts- und Todesprozess mit Zustandsraum S = {0, ..., d}
und N € S. Dann gilt fir die L.T. der Ersteintrittszeit Ty

On1 Ono Onn
= ; On; >0, 4.9
Oni+sOna+s Onn+s NI (4.9)

O'QN(S)

wobei On; # On; fiir alle i # j.
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Kapitel 4. Ersteintrittszeiten bei Geburts- und Todesprozessen

Bemerkung 4.1. Eine I'(«, 3) verteilte Zufallsgrofe X hat die L.T. 0, 4(t) = (%)a Ferner
bestimmt die L.T. eines endlichen Mafes, also insbesondere eines W-Mafes, dieses eindeutig,
sofern die L.T. fiir mindestens ein ¢ existiert und endlich ist. Das Theorem zeigt somit wegen
der Struktur der L.T. von Ty unter Benutzung des Multiplikationssatzes fiir L.T., dass die
Ersteintrittszeit Tj eine Summe N unabhéngiger exponentialverteilter Zufallsvariablen ist. Fiir
einen reinen Geburtsprozess ist dies klar, aber da ein irreduzibler Geburts- und Todesprozess
sich nach Erreichen eines Zustands n mit 0 < n < d auch wieder nach unten bewegen kann,
ist dieses Ergebnis durchaus iiberraschend und es existiert keine naheliegende stochastische
Interpretation. Wir werden dieses Resultat zunéchst mit analytischen Mitteln beweisen und im
Anschluss eine Verbindung der Parameter mit den Eigenwerten der Q-Matrix M herstellen.

Des Weiteren geben wir mittels der Dualitidtstheorie eine erste, allerdings wenig naheliegende,

stochastische Interpretation des Theorems.

Wir folgen dem Beweis von Keilson [Kei79]|. Zunéchst beweisen wir zwei Lemmata.

Lemma 4.1. Aufler in Singularitaten ist o' (s) monoton fallend fiir reelles s.

Beweis. Wir beweisen das Lemma per Induktion. o7 (s) = 1% ist monoton fallend fiir reelles s.
Nehmen wir also an, dass d%a,f_l(s) <0, s € R, gilt. Wir erhalten auferhalb von Singularitdten

mit der Quotientenregel

d —pn(l —qndol (s
g el madola )
ds (s + o+ Gn — Gno,_1(5))?
da der Klammerausdruck im Zahler nach Induktionsvoraussetzung > 0 ist. U

Lemma 4.2. o,/ (s) ist eine rationale Funktion und hat einen einfachen Pol zwischen jedem

+

Paar von benachbarten Polen von o, {(s). Alle n+ 1 Pole von o, (s) liegen auf der negativen

Halbachse.

Beweis. Wieder gehen wir zunéchst induktiv vor. o (s) ist eine rationale Funktion. Aus der

Rationalitit von o ;(s) folgt mit o} (s) = p— L e induktiv die Rationalitdt von
nTqn—qn0,, 1

ot (s). o (s) hat Pole in den Nullstellen von s+ p, + ¢, — ¢,0,_1(s). Das vorherige Lemma 4.1

liefert, dass zwischen jedem Paar von Polen von o', (s) die Ableitung von s+p,+¢, — .o, ()
positiv ist, also

d
——(5+Dnt Gn = 0y 1(5) = 1= a0, 4 (s) > 0.

ds ds
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Wir erhalten mit dem Zwischenwertsatz fiir rationale Funktionen und der Monotonie, dass

genau eine Nullstelle von o | (s) in diesem Intervall liegt. Diese Nullstelle korrespondiert mit
einem einfachen Pol von ;7 (s), da der Nenner von o7 (s) gerade s+ p, + gn — gno,_1(s) ist. Des

Weiteren liegen alle n + 1 Pole von o/ (s) auf der negativen Halbachse. Dies folgt allgemein, da

die L.T. nichtnegativer Zufallsgrofen auf [0, c0) positiv und monoton fallend ist. O
Beweis. [Satz 4.1] Wieder gehen wir induktiv vor. Der Induktionsanfang oo (s) = ﬁ = pfis

ist klar. Angenommen, der Satz gilt fiir N. Dann sehen wir mit (4.8) und n = N — 1, dass

die Nullstellen von o;_,(s) die Polstellen von oy _1(s) sind und die Polstellen von oy_,(s) die

PN
s+pN+an—anog_,(s)

Polstellen von ooy (s) sind. Aus o3 (s) = folgt, dass die Polstellen von o, (s)

die Nullstellen von o} (s) sind. Damit fallen die Nullstellen von oy (s) mit den Polstellen von
oon(s) zusammen. Wir erhalten also in (4.8) mit N = n, dass ogy41(s) die gewiinschte Form

hat. O

Die Ersteintrittszeit Ty besitzt also eine Darstellung als Summe unabhéngiger exponentialver-

teilter Zufallsvariablen, wobei alle Parameter ungleich sind.

Nun werden wir Brown und Shao [BS87] folgend einen Zusammenhang zwischen den Parame-
tern und den Eigenwerten des betrachteten Geburts- und Todesprozess M herstellen. Zunéchst
erinnern wir daran, dass ein Geburts- und Todesprozess reversibel ist; die Ubergangsratenma-
trix ist demnach dhnlich zu einer symmetrischen Matrix und wegen des Spektralsatzes fiir reell
symmetrische Matrizen sind somit alle Eigenwerte von M reell. Wir erhalten allgemein eine
Spektraldarstellung der Ubergangsratenmatrix, so dass wir die Ersteintrittszeit T}, von einem

Zustand 0 < j < n in den Zustand n folgendermafen darstellen kénnen:

P(T;, > t) % , 4.10
j

wobei Ay, ..., A, die Eigenwerte der Matrix ()(,) sind und Q) die n x n-Matrix ist, welche aus
den ersten n Spalten und Zeilen der Ubergangsratenmatrix @ von M entsteht. Die v; in (4.10)
hangen von den zugehorigen rechten und linken Eigenvektoren ab.

Ein Geburts- und Todesprozess ist ein Markov-Sprungprozess, bei dem Ubergéinge vom gegen-
wartigen Zustand nur in benachbarte Zustdnde moglich sind. Man bezeichnet Geburts- und To-

desprozesse deshalb auch als sprungfrei. Im Folgenden betrachten wir Markov-Sprungprozesse,
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Kapitel 4. Ersteintrittszeiten bei Geburts- und Todesprozessen

welche die Eigenschaft der Sprungfreiheit nach oben besitzen und lassen die Voraussetzung
der Sprungfreiheit nach unten fallen. Wir betrachten also Markov-Sprungprozesse auf dem Zu-

standsraum S = {0, 1, ...} mit Ubergangsraten
(1) Qiiv1=0;>0
(i) Qi; =0 fiirj>i+2 (4.11)

Die zugehérige erzeugende Matrix ) hat demnach die folgende Gestalt

x bp 0 0 O 0

* *x b 0 0 0
Q =

* k% by 0 0

Ein Geburts- und Todesprozess ist insbesondere ein nach oben sprungfreier Markov-Sprungpro-
zess. Fiir die Klasse der nach oben sprungfreien Markov-Sprungprozesse kann man zeigen, dass
die Matrix ¢,y genau dann zu einer Diagonalmatrix ahnlich ist, wenn die Eigenwerte Ay, ..., A,
alle verschieden sind. Wir werden dieses Resultat zu einem spéateren Zeitpunkt fiir Geburts- und
Todesprozesse mit positiven Geburts- und Todesraten zeigen. Wir haben also eine Spektraldar-
stellung der Form (4.10) genau dann zur Verfiigung, wenn die Eigenwerte alle verschieden sind.
Der folgende Satz liefert uns fiir die Klasse der nach oben sprungfreien Markov-Sprungprozesse
eine Darstellung der v; in (4.10). Fiir diese Darstellung werden nur die Eigenwerte benttigt.

Eine Berechnung der rechten und linken Eigenvektoren entféllt.

Satz 4.2. Die Ubergangsratenmatriz Qn) 2wischen den Zustinden {0, ...,n — 1} eines Markov-
Sprungprozesses aus der Klasse der nach oben sprungfreien Markov-Sprungprozesse sei diago-
nalisierbar mit paarweise verschiedenen Eigenwerten ;. Dann hat die Ersteintrittszeit Ty, die

folgende Verteilung:

P(Tp, > t) = zn: 11 (AjA_j Ai) e Nt (4.12)

=1 j#i
Aus (4.12) folgt weiter, dass fiir reelle Ay, ..., A, To, die Faltung exponentialverteilter Zufallsva-

riablen mit Parametern Ay, ..., A, 1st.

Beweis. Damit der Zustand n erreicht wird, muss wenigstens ein Ubergang von i nach i + 1
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fiir ¢ = 0,...,n — 1 stattfinden. Deshalb ist T, stochastisch grofier als die Faltung n exponen-
tialverteilter Zufallsvariablen mit Parametern by, ..., b,_1, welche wiederum stochastisch groéfter
als M ist, wobei M das Maximum n unabhéngiger exponentialverteilter Zufallsvariablen mit

Parametern by, ..., b, ist. Definiere FO(?L = P(Ty, < t). Es gilt:

F) < P(M (Hb>+ot” fiir t — 0. (4.13)

Seien nun die Eigenwerte Ay, ..., A, alle verschieden und (4.10) erfiillt. Dann ist Fo(t% =1-
P(Ty, > t) nach (4.10) analytisch und o(¢t"~!) fiir ¢ — 0 nach (4.13). Die Betrachtung der
Taylorentwicklung von Fo(tr)b in 0 liefert

dk

e Pl = 0 fiir k= 1,.m = 1, (4.14)

da Fo(t,)L = o(t"!) ist. Aus den Gleichungen (4.10) und (4.14) folgt

n 1 fiir £ =0,
> k= (4.15)
i=1 0 firk=1,...,n—1.
Im Fall £ = 0 folgt dies aus (4.10) und > v = 1 und im Fall £ = 1,...,n — 1 mit der
Taylorentwicklung (4.14). Wir definieren v = (91, ...,7,). W sei eine n x n-Matrix mit den
Eintragen W;, = )\f_l, 1,k =1,2,...,n, und ¢ sei ein Spaltenvektor der Lange n mit 4; = 1 und
9; = 0 fur ¢ = 2,...,n. Wir schreiben (4.15) in der Form

YW = 6T, (4.16)

Nun ist W die wohlbekannte Vandermonde-Matrix (Seite 72 in [Cul67]), welche die Determi-

nante [[,.. (A\; — A;) besitzt und damit genau dann invertierbar ist, wenn \; # \; fiir alle ¢ # j

i (
mit 1 < 4,5 < n. (4.16) liefert, dass 47 mit der ersten Zeile von W' iibereinstimmt, also

vi=Whu=]] (AjA_in) . (4.17)

J#i

Einsetzen von 47 in (4.10) liefert (4.12).
Falls die Eigenwerte A, ..., A, alle verschieden sind, dann folgt aus (4.12) bei Betrachten der
L.T. von Ty,

(4.18)

Pon(s ZH(A —)\))\Jrs: lj

i=1 j#i
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wobei p(s) definiert ist durch

(4.19)

. i H )‘j + S
B LN =N
i=1 L[j#i

Nun ist p(s) — 1 nach (4.19) ein Polynom von Grad n — 1 mit n verschiedenen Nullstellen

—A1, ..., —A\n. Das einzige Polynom in einem nullteilerfreien Ring, welches dies erfiillt, ist das

Nullpolynom. Also p(s) —1 = 0 und es folgt aus (4.18), dass oo, (s) die folgende Gestalt hat:

oon(s) = [ (4.20)
i=1""

Falls nun wie im Fall eines Geburts- und Todesprozesses die Eigenwerte Ay, ..., A, alle reell sind,
sind die Eigenwerte wegen P(Tp, > t) — 0 notwendigerweise positiv. In diesem Fall liefert
die Gestalt der L.T. in (4.20), dass Tp, eine Summe exponentialverteilter Zufallsvariablen mit

Parametern \q, ..., A, ist. O

Betrachten wir nun den Fall verschiedener reeller Eigenwerte \q, ..., A\, mit Vielfachheiten

ma, ..., my. Wir kénnen eine Folge von Vektoren A*) konstruieren, welche gegen den Vektor A
konvergiert, wobei jeder einzelne Vektor A*) n verschiedene Eintréige hat. Wir withlen dazu eine
Folge von Matrizen QEZ)) mit Eigenwerten A®), welche gegen Q) mit Eigenwerten A konvergiert.
Fiir den Prozess mit Ubergangsratenmatrix QEZ)) ist die Verteilung der zugehorigen Ersteintritt-

szeit T O(k) nach den obigen Uberlegungen die Summe n exponentialverteilter Zufallsvariablen

n

und besitzt die L.T. )

9-11 |3

i=1

4.21
)\(k + s ( )

Grenziibergang k£ — oo liefert die Konvergenz in Verteilung von 7| 0(];) gegen Ty, und (4.21)

konvergiert gegen

o(s) = lim o(s) = H1 [ Ai J : (4.22)
Bei der Untersuchung der Ersteintrittszeit Ty, bei Geburts- und Todesprozessen hatten wir
gezeigt, dass Ty, eine Summe n unabhéngiger exponentialverteilter Zufallsvariablen S; ist, al-
so T = > " S;, wobei fiir die Parameter 0; der S; gilt, dass 6; # 6; fiir alle ¢ # j. Da
To, nach (4.22) nur dann eine Summe n unabhéngiger, exponentialverteilter Zufallsvariablen

ist, wenn die Eigenwerte alle verschieden sind, liefert uns Satz 4.1.1 insbesondere, dass bei

Geburts- und Todesprozessen mit positiven Geburts- und Sterberaten die Eigenwerte Ay, ..., A,

93



von () alle verschieden sind und fiir die Parameter in der Summendarstellung Tp,, = Z?Zl S;
gilt S; ~ Exp()\;). Damit ist die angekiindigte Verbindung der Parameter zum Spektrum des

Geburts- und Todesprozesses hergestellt.

Bemerkung 4.2. Einen ersten stochastischen Beweis fiir Satz 4.1 liefert Fill [Fil07]. Wir skiz-
zieren seine Uberlegungen. Sei M* ein Geburts- und Todesprozess in stetiger Zeit auf {0, ..., d},
wobei d absorbierend und alle anderen Geburts- und Todesraten positiv sind. 7§, sei die Erstein-
trittszeit von 0 nach d, also die Zeit bis zur Absorption in d. Zu M* existiert ein sogenannter
“Anti-Dual” M, ein Geburts- und Todesprozess mit stark stationdrem dualem Prozess M™*.
15, ist eine minimale stark stationdre Zeit fiir M. Zu M kann man nun mit M* einen stark
stationiren dualen Prozess M konstruieren, welcher ein reiner Geburtsprozess ist, wobei die Ge-
burtsraten die nichtnegativen Eigenwerte der Matrix —@Q* sind und Q* die erzeugende Matrix
von M* ist. Die S; konnen somit stochastisch als Wartezeiten fiir aufeinanderfolgende Gebur-
ten in M interpretiert werden. Fiir Details und den diskreten Fall verweisen wir auf [Fil07],

insbesondere Theorem 3.1 und Theorem 4.2.

Zusammenfassend erhalten wir also mit den Ergebnissen aus diesem Kapitel und den Resultaten

aus der Dualitdtstheorie den folgenden Satz:

Satz 4.3. (a) Sei M ein irreduzibler, in 0 gestarteter, Geburts- und Todesprozess mit Werten
in S = {0,...,d}, stetigem Zeitparameter t und stationdrer Verteilung £*. Dann gilt fir die

Separationsfunktion s:

" d
_ £y i (2) _ Aj —th _
wober T' = Zle S; und jedes S; eine exponentialverteilte Zufallsvariable mit Parameter \; ist
und die S; ‘s unabhdngig sind. Dabei sind die \; “s die positiven Eigenwerte von —Q), und @) st

die zugehdrige erzeugende Matrix der Form QQ = P — I. Insbesondere gilt
d d
E(T) =) _ X\ Var(T) = > A%
i=1 i=1
(b) Sei M ein irreduzibler, in 0 gestarteter, Geburts- und Todesprozess in diskreter Zeit mit

Werten in S = {0, ..., d} und stationdrer Verteilung £*. Die Monotoniebedingung p, + qz11 < 1,
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Kapitel 4. Ersteintrittszeiten bei Geburts- und Todesprozessen

0 <x<d, sei erfillt. Dann gilt:

d
s(k) = s(u*,€") = max, (1 - /2 ;j ) = ;1;[

wobei T eine Zufallsvariable ist mit

A)f = P(T > k),

@

d d

E(T)=) (1-X\)" Var(T) =) " \i(1 =) 7%

i=1 =1
Die \; s sind dabei die positiven Figenwerte von —Q = —(P — I), wobei P die Ein-Schritt-
Ubergangsmatriz von M ist. Die Zufallsvariable T kann als Summe T = Z?Zl S; geschrieben
werden mit unabhdngigen Zufallsvariablen S;;1 < 1 < m. S; ist geometrisch verteilt mit Er-
folgswahrscheinlichkeit \;, falls N; € [0,1], und S; ist eine Bernoulli-Variable mit Parameter
(A1), falls Ny > 1.

Beweis. (a) ist im Wesentlichen eine Kombination der Sétze 4.1 und 4.2 mit der Aussage aus
der Dualitétstheorie, dass der duale Prozess eines endlichen Geburts- und Todesprozesses ein
absorbierender Geburts- und Todesprozess auf dem selben Zustandsraum mit den selben Ei-
genwerten ist. Es bleibt zu zeigen, dass Q4 und @) die gleichen positiven Eigenwerte Ay, ..., Ag
besitzen. Wir zeigen dies in (b) fiir )-Matrizen der Form () = P — I, die von uns bei der
Cut-Off Untersuchung ausschliellich betrachtet werden.

(b) Sei P, die d x d-Matrix, welche man durch Entfernen der letzten Zeile und Spalte der
Ubergangsmatrlx P* des dualen Geburts- und Todesprozesses M* von M erhélt. Da die Ei-
genwerte 61, ...,6,; von P y durch die Eigenwerte A1, ..., Aq von —Qq) (Quy = Pfd) — I ist
die erzeugende Matrix) emdeutlg bestimmt sind (A\; = 1 — 6;), folgt aus der paarweisen Ver-
schiedenheit der );, dass 0, # 0, fiir ¢ # j. Ferner gilt fiir die Ersteintrittszeit 7;, dass die

wahrscheinlichkeitserzeugende Funktion von 7§, die folgende Gestalt hat
(1-6)) : Aju
= —7 1. 4.23
u_)H{l—Hu} 1_[1{1+)\ju—u] (4.23)
Da d ein absorbierender Zustand fiir M* ist, konnen wir die Eigenwerte von P* und P,
leicht miteinander in Beziehung setzen. Entwicklung nach der letzten Zeile, welche nur auf der

Diagonalen einen Eintrag hat, liefert, dass die Eigenwerte von P* gerade 1,6, ..., 0, sind. Nun

gilt wegen des Algebraischen Dualitdtstheorems AP = P*A. Die Invertierbarkeit von A als
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untere Dreiecksmatrix mit strikt positiven Diagonaleintrigen liefert somit die Ahnlichkeit von
P und P*. Folglich haben P und P* dieselben Eigenwerte. Betrachtet man nun wieder P — I,
so hat P — I die Eigenwerte 0, \q, ..., Ay, welche nach Satz 4.1 zusammen mit Satz 4.2 alle
verschieden sind.

Argumentation wie im Beweis von Satz 4.1 liefert fiir

d
P(Tgq> k) =Y 70}
i=1

die explizite Gestalt der ~;:

. 10\ i« Aj
P> h =2 (15 =5 =2 Ai— A
g#i "

i=1 \j#i = i=1

) (1—X\)-.

Damit ist der Beweis vollsténdig. O

Bemerkung 4.3. Lassen wir den Geburts- und Todesprozess am anderen Ende des Zustands-
raums d starten, erhalten wir, dass der Separationsabstand des in 0 bzw. in d gestarteten
Geburts- und Todesprozesses von der stationdren Verteilung zu jeder Zeit gleich ist, da die Ei-

genwerte sich nicht verdindern. Bei Abstandsmessung in totaler Variation ist dies nicht giiltig.
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5 Separations-Cut-Off bei Geburts-

und Todesprozessen

In diesem Kapitel werden wir das Hauptresultat — eine notwendige und hinreichende Bedin-
gung fiir das Auftreten des Cut-Off-Effekts bei Geburts- und Todesprozessen — vorstellen und
beweisen. Da wir in diesem und den folgenden Kapiteln Familien von Markov-Prozessen be-
trachten, passen wir unsere bisherige Notation an diese neue Situation an. Mit 77 bezeichnen
wir die Verteilung eines Markov-Prozesses M,, zur Zeit ¢, wobei ¢ ein stetiger Parameter ist. Im
diskreten Fall schreiben wir p* fiir die Verteilung einer Markov-Kette M, zur Zeit k.

Vor dem eigentlichen Beweis geben wir nun die Begriindung, warum wir uns auf (-Matrizen der
Form P — [ fiir eine stochastische Matrix P und die Identitéit I beschrinken kénnen. Gegeben
eine Ubergangsmatrix P auf einem abzihlbaren Raum, kénnen wir den von P — I erzeugten

Markov-Sprungprozess betrachten. Dieser hat bei Start in x zur Zeit ¢ die Verteilung

= tFP(x, -
Ht(ﬂj‘,'):’}/t<l’7~>:€ tz%
k=0 )

Allgemein definiert man einen Markov-Sprungprozess mit Hilfe einer Matrix @, fiir die

Zy Q(z,y) = 0und Q(z,y) > 0 fiir z # y gilt. In dieser Allgemeinheit muss Z#y Q(z,y) nicht
gleichméfig beschrankt sein und es besteht die Gefahr der Explosion des Markov-Sprungprozes-
ses, also des Auftretens unendlich vieler Ubergéinge in endlicher Zeit. Auf einem endlichen Zu-
standsraum besteht diese Gefahr jedoch nicht. Wir setzen ¢ = max,{—Q(z, z)} und betrachten
P(z,y) = I(x,y) + ¢ (Q(z,y)). Fiir die Verteilung ¢ (z,-) des in z gestarteten Markov-

Sprungprozesses mit Erzeuger @) gilt

() = A, ) = Hyla, ) = e 3 W PL@), (5.1)
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Es folgt die Unabhéngigkeit des Auftretens eines D-Cut-Offs in einer Familie ergodischer end-
licher Markov-Sprungprozesse (€2, v, 75, (¥, -)) von der gewdhlten Zeit-Skala: (5.1) liefert

(gnt) P (Tn, )
fYthCUnv ) ,ant<xm ) ant :Un" = Z :
k=0

Demnach zeigt (2, v, V. (2, +)) genau dann einen D-Cut-Off zur Zeit t,, (resp. einen

(tn, bn)-D-Cut-Off), wenn (€, vy, 76, (Tn, -)) einen D-Cut-Off zur Zeit t,/q,, zeigt (resp. einen
(tn/qn, bn/qn)-D-Cut-Off). Dies wiirde nicht gelten, falls lim,, .., t, = 0o in der Cut-Off Defi-
nition vorausgesetzt worden wire. Die zeitliche Transformationsmdoglichkeit gestattet uns aus-
schlieklich Markov-Sprungprozesse mit ()-Matrizen der Form ) = P — I zu betrachten, da der
Nachweis des Cut-Offs bei dem transformierten MSP &quivalent zur Existenz eines Cut-Offs
bei dem urspriinglichen MSP ist. Cut-Off Zeitpunkt ¢, und Fenstergrofe b, verdndern sich

entsprechend der Verdnderung der Zeitskala durch g,.

Fiir den Beweis unseres Hauptresultates bendtigen wir noch ein Lemma mit elementaren Fol-

gerungen aus der Chebychev-Ungleichung.
Folgerungen aus der Chebychev-Ungleichung

Sei P, (z,y) ein Markov-Kern auf einer endlichen Menge (2,,, welcher die eindeutige stationére
Verteilung £ besitzt. Die Ergebnisse aus Kapitel 3 liefern bei Abstandsmessung in Separation

die Existenz einer Folge minimaler stark stationiirer Zeiten TP, also eine Folge fiir die
D(p. &) = P(T) > k) baw. D(y,,, &) = P(T) > 1) (5.2)

gilt. Bezeichnet D den Totalvariationsabstand, so existiert ebenfalls eine Folge reeller nichtne-
gativer Zufallsvariablen TP die stochastisch als minimale Kopplungszeiten interpretiert werden
konnen, welche (5.2) erfiillen. Den Erwartungswert der T)”'s werden wir mit ¢, bezeichnen, die

Varianz mit o2. Die Chebychev-Ungleichung in der Form P(X > t) < liefert uns fiir alle

2+t2
a>0
TP —¢ 1
D o n n
P(TP < t, —ao,) < ! (5.4)
n n n _1+a2- .

Wir erhalten folgendes Lemma:
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Kapitel 5. Separations-Cut-Off bei Geburts- und Todesprozessen

Lemma 5.1. (a) Fiir alle e € (0,1) gilt fiir die Mischzeit TP (€)
tn — (€1 =1)" Y20, <7P(e) <t + (1 = 1)V20,.

(b) Falls eine Konstante ¢ > 0 existiert, so dass ct, > o,, und ein Cut-Off zur Zeit s,, vorliegt
mat lim, ..o S, = 00, dann gilt s, ~ t,. Im zeitstetigen Fall gilt s, ~ t,, auch ohne die Voraus-
setzung lim,, .. s, = 00.

(c) Falls o, 't,, — oo, dann liegt ein (t,,0,)-D-Cut-Off vor.

Beweis. (a) Wir setzen ¢ = (1 4 a2)~. Daraus folgt a = (¢7* — 1)2 und damit

P(TP > t, +ac,) = D(uirt*m &) <e = 7(e) < t, + aoy,.

n

Analog folgt die untere Schranke aus der zweiten Ungleichung in (5.4) durch Losen von

l—e=(1+a*""

(b) Wir behandeln nur den zeitstetigen Fall. Angenommen, es liegt ein Cut-Off zur Zeit s,
vor und seien €, € (0,1). Dann gilt nach Definition von Cut-Off und Mischzeit fiir gentigend
grofes n

(1= m)sn < 72() < (14 7)sn.
Setze € = (1+n%)~!. Daraus folgt n = Ve~ — 1. Mit der zweiten Ungleichung in Lemma 5.1(a)
erhalten wir

P(e) < t, +no,

und damit

wobei fiir die zweite Ungleichung die Voraussetzung ct,, > o, gebraucht wird. Nun setze
e = (14 n72)"%. Daraus folgt n = (¢* — 1)~2 . Mit der ersten Ungleichung in Lemma 5.1(a)
erhalten wir

7’7?(6) > tp —Nop

und damit

(1= ety <t =00y < (1417)s,.

Fiir die erste Ungleichung wurde wieder die Voraussetzung ct, > o, gebraucht. Damit ist

lim,, o = = 1 gezeigt und (b) bewiesen.
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c¢) Nachzupriifen ist, ob Definition 2.5 erfiillt ist. Aus der Voraussetzung o 't,, — oo folgt
P g o, g

sofort £ — 0 und fur f4, f- gilt wegen Ungleichung (5.3)

lim f+((l) = lim lim sup D(Mﬁln-l—aan’g*)

n
a—00 a—00 00

1
= alggo hin—igp P(TP > t, +ao,) < alggo o = 0
Analog folgt lim, .o f-(a) = 1 und damit die Existenz eines (t,, 0,,)-D-Cut-Offs. O

Kommen wir nun zur Formulierung des Hauptergebnisses. Fiir n = 1,2, ... sei

Q, ={0,1,...,m,} ausgestattet mit einem irreduziblen Geburts- und Todesprozess mit statio-
narer Verteilung &:. Seien ¢, 4, 7 und p,, die zugehorigen Ubergangswahrscheinlichkeiten.
Sei p* die Verteilung des zugehdrigen, in 0 gestarteten, Geburts- und Todesprozesses, mit dis-
kretem Zeitparameter k. Sei 7% die Verteilung des zugehorigen, in 0 gestarteten, Geburts- und
Todesprozesses mit stetigem Zeitparameter ¢. Seien A, ; € [0,2],0 < i < m,, die zugehdrigen

Eigenwerte. Setze

A=At = AL
i=1
Den Kkleinsten positiven Eigenwert A, = M, 1 bezeichnet man als Spektralliicke. Fiir jedes

e € (0,1) ist die e-Separations-Mischzeit folgendermafsen definiert:
Ta(€) = inf{t > 0:s(7%, &) < e}
Theorem 5.1. (Separations-Cut-Off bei Geburts- und Todesprozessen)

In obiger Situation hat die Familie

(Qm 6:,7 (72)t>0)n:1,27...

einen Separations-Cut-Off genau dann, wenn N, = Atn,— 0o. Fiir jedes c>0 gelten die Sepa-

rationsschranken
c * 1
SO 6) < T (5.5)
—c * 1
(M ey > 1 — 1+ 2N, (5.6)

Fiir jedes feste € € (0, 1) ist die Bedingung \,t,, — 0o dquivalent zu A\, 7,(€) — oo.
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Kapitel 5. Separations-Cut-Off bei Geburts- und Todesprozessen

Beweis. Mit Satz 4.3 erhalten wir

s(1 &) = P(To > 1),

wobei

T, = Z Spi und Sy ~ Exp(A).

Insbesondere gilt E(T,,) = t,.

Fiir die Varianz Var(T},,) = o2 gilt

mn mn )\ 2 mn )\ 2
= Z W= YN (A—) Sy ()

gilt also
op <t, und o, <A ', =N, 2. (5.7)

Die Separationsschranken (5.5) und (5.6) folgen direkt aus (5.7), Lemma 5.1 und Satz 4.3

1 1
S(’Y£L1+C)tn7§*) = P(Tn > t, + Ctn) < P(Tn > t, + CCTnNnQ) < m

n

Entsprechend:
S(71(11 C)tn7£*) = P<Tn >ty — Ctn) =1- P<Tn <t, — Ctn)

1 1
>1-P(T, <t,—co,NZ)>1— ——
> (T, < co,N;?) T oN

Angenommen, dass N,, = A\ t,, — oco. Aus der zweiten Ungleichung in (5.7) folgt, dass 5—’; = 0,

1
da N2 < é—"

Nach Teil(c) von Lemma 5.1 folgt also, dass ein Separations-Cut-Off zur Zeit s,, stattfindet und
sogar, dass ein (t,,0,)-Cut-Off stattfindet, wir also mit der Folge o, sogar die Fenstergrofe

kennen.
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Falls umgekehrt zur Zeit s, ein Cut-Off stattfindet, dann ist nach (5.7) (0, <t,) und Lemma
5.1(b) (on < 1t, und Cut-Off zur Zeit s,,) s, ~ t, (d.h.3* = 1), es muss also ein Cut-Off
zur Zeit t,, vorliegen. Da die Separationsschranken (5.5) und (5.6) fiir jedes ¢ > 0 gelten, folgt

n
N, — oo.

Sei nun € € (0,1) fest. Mit der oberen Grenze in Lemma 5.1(a) und der Beziehung o, < t,
ergibt sich
7€) < tut (61 =120, < (1+ (671 — 1)2¢,.

Also gilt

n

(AnTn(€) 2 00) = (Mntp — 00).

Umgekehrt, falls t,\, — o0, liegt ein Cut-Off zur Zeit ¢, vor (Begriindung siehe weiter oben in

diesem Beweis) und nach (5.7) und Lemma 5.1(a) gilt

N

(1— (et =1)73t,) < 7le) < (14 (61 = 1)3t,,).

Es folgt wegen € € (0,1) beliebig: \,7,,(¢) = co. Damit ist Theorem 5.1 gezeigt. O

Bemerkung 5.1. (a) Theorem 5.1 zeigt, dass bei in 0 gestarteten Geburts- und Todesprozessen
mit stetigem Zeitparameter ein Separations-Cut-Off nur dann auftreten kann, wenn m,, gegen

unendlich geht, da sonst die Summe N, = A\,t,, nicht gegen unendlich gehen kann.

(b) Die Separationsschranken in Theorem 5.1 liefern, dass kein Separations-Pre-Cut-Off im
Sinne von Definition 2.6 vorliegen kann, falls A,t, beschrinkt ist. Also folgt aus der Existenz
eines Separations-Pre-Cut-Offs die Unbeschranktheit von A,t, und damit wegen Theorem 5.1
die Existenz eines Separations-Cut-Offs. Da aus der Existenz eines Separations-Cut-Offs immer
die Existenz eines Separations-Pre-Cut-Offs folgt (setze ¢ =1 — € bzw. C' = 1+ ¢), ist bei zeit-
stetigen Geburts- und Todesprozessen die Existenz eines Separations-Pre-Cut-Offs dquivalent

zur Existenz eines Separations-Cut-Offs.

(c) Folgendermafen kénnen wir in Theorem 5.1 die Separationsschranken umschreiben, so dass

wir sie in Abhéngigkeit von Spektralliicke und Mischzeit erhalten:

Ny = Mamnl€) < Mty + (€71 = 1DY20,)
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Kapitel 5. Separations-Cut-Off bei Geburts- und Todesprozessen

= Mptn + (€1 = DY2N0, < Mt + (61 = DY2Nt, = (14 (71 = 1)Y2)N,,.

Daher gilt fiir alle ¢ > 0 und € € (0, 1)

A ! _
L+ (14 (e 1= 1)¥2) 1N,

und
1

14 e(Lf (e = 1)Y2)IN,

Kommen wir nun zur diskreten Version des Hauptsatzes. Wir benotigen zuséatzlich die Mono-

toniebedingung py, » + gnz+1 < 1.

Theorem 5.2. Beziiglich der oben eingefiihrten Situation und Notation und unter der Annah-

me, dass fir alle z € {0, ...,m, — 1} die Monotoniebedingung

pn,a: + Qn,x-‘rl S 1

erfillt ist, hat die Familie
(Qna g:m (MZ)kzO,l,...)n:l,Z,...

genau dann einen Separations-Cut-Off, wenn N,, = At, — 0.

Die Bedingung py, » + gnz+1 < 1 impliziert die Aperiodizitdt der Markov-Kette mit analoger

Argumentation wie in Kapitel 3:
roo=0 = poa=1 = qo=0 = 1,

da der Geburts- und Todesprozess als irreduzibel vorausgesetzt ist. Also gilt 79 > 0 und damit
ist M,, aperiodisch. Insbesondere konvergiert M, nach dem Ergodensatz gegen eine eindeutige
stationdre Verteilung & . Wie im stetigen Fall kann man das Theorem ebenfalls mit 7, ()

anstelle von ¢,, formulieren.

Nachdem wir das angekiindigte Resultat, eine notwendige und hinreichende Bedingung fiir die
Existenz eines Separations-Cut-Offs bei Geburts- und Todesprozessen bewiesen haben, kommen

wir nun dazu die Form des Cut-Offs zu beschreiben.
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6 Die Form des Cut-Offs

Ist ein Cut-Off nachgewiesen — sagen wir zur Zeit ¢,, — stellt sich natiirlicherweise als Néachstes
die Frage nach der Schirfe des Cut-Offs, also nach der Abruptheit des Ubergangs zur statio-
néren Verteilung. Wenn ein (s, b, )-Cut-Off vorliegt (nach moglicher Anpassung der Folge (s,,)),
untersuchen wir dazu das Cut-Off Fenster, also die Folge (b,,). Die Form des Cut-Offs werden
wir in Satz 6.5 naher beschreiben, in dem wir die Funktionen f, und f_ aus der Cut-Off De-
finition bestimmen. Zunéchst stellen wir einige Aussagen aus der Theorie unendlich teilbarer
Verteilungen vor, die wir beim Beweis von Satz 6.5 benttigen werden. Wir werden den Begriff
der unendlichen Teilbarkeit erkldaren. Die Gamma-Verteilung und damit insbesondere die Ex-
ponentialverteilung wird als unendlich teilbare Verteilung identifiziert. Danach wird mit der
Lévy-Khintschin Formel eine erschépfende Beschreibung der unendlich teilbaren Verteilungen
auf R gegeben. Unsere Darstellung des Exkurses basiert auf Kapitel 16 aus [Kle08] sowie auf
Kapitel 48 aus [Als05¢].

6.1 Exkurs: Unendliche Teilbarkeit

Definition 6.1. Ein W-Maf p € 20(R) heift unendlich teilbar, falls es fiir jedes n € N ein
tn € W(R) mit der Eigenschaft p™" = u gibt.

Analog nennen wir eine charakteristische Funktion ¢ eines W-Mafes auf R (kurz: CFW) un-
endlich teilbar, falls es zu jedem n € N eine CFW ¢,, gibt mit ¢, = ¢.

Eine reelle Zufallsvariable X heifst unendlich teilbar, falls es zu jedem n € N unabhéngig,

identisch verteilte Zufallsvariablen X, i, ..., X,,,, gibt mit X 4 Xnp1+ ..+ X

Offenbar sind alle drei Begriffe der unendlichen Teilbarkeit dquivalent. Wir verzichten im Fol-
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genden auf eine ausfiihrliche Vorstellung der Theorie unendlich teilbarer Verteilungen und kon-

zentrieren uns auf die Aussagen, die fiir den Beweis von Satz 6.5 benétigt werden.

Lemma 6.1. Die Exponentialverteilung mit Parameter A ist unendlich teilbar, die dazugehd-

rigen Teiler sind gammaverteilt mit Parametern \ und 1/n.

Satz 6.1. Ist (in)nen eine (schwach) konvergente Folge unendlich teilbarer Wahrscheinlich-

keitsmafle auf R, so ist p = lim, o, p,, unendlich teilbar.

Definition 6.2. Ein o-endliches Mak v auf R mit v({0}) = 0 und [(2% A 1)v(dz) < oo heift
kanonisches Maf. Sind 02 > 0 und b € R, so heift (02,b,v) kanonisches Tripel.

Satz 6.2. (Lévy-Khintschin Formel). Sei i € W(R) und ¢(t) = log [ € u(dx). p ist genau

dann unendlich teilbar, wenn es ein kanonisches Tripel (o2,b,v) gibt, so dass

2
w(t) = %tQ + ibt + /(em —1- itx[{‘x‘<1})v(dl’) (6.1)

2

gilt. Dieses Tripel ist durch (6.1) eindeutig festgelegt. v bezeichnet man als Lévy-Maf, o= als

Gaufischen Koeffizienten und b als Zentrierungskonstante.

Bemerkung 6.1. Die Lévy-Khintschin Formel sagt also insbesondere aus, dass eine unendlich
teilbare Verteilung einen normalverteilten Anteil hat. Wenn der normalverteilte Anteil ungleich
0 ist, ist also die Dichtefunktion der unendlich teilbaren Verteilung iiberall positiv, weil die

Normalverteilung diese Eigenschaft besitzt. Dieses Argument werden wir im Beweis von Satz

6.5(b) benotigen.

6.2 Form des Separations-Cut-Offs bei Geburts- und

Todesprozessen

Im Beweis von Satz 6.5 werden wir auf den Satz von Prohorov verweisen, der von uns jetzt in

der Version [AlsO5c¢| vorgestellt wird.

Definition 6.3. Eine Familie (Q;);c; endlicher Mafe auf (R 9B¢) heift straff, wenn fiir jedes

e > 0 ein Kompaktum K C R? existiert mit

sup Q;(K°) < e.

el
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6.2. Form des Separations-Cut-Offs bei Geburts- und Todesprozessen

Satz 6.3. (Satz von Prohorov) Eine Familie M endlicher MafSe auf einem polnischen Raum
(S, G) ist genau dann schwach relativ folgenkompakt (d.h. jede Folge in 9 enthdlt eine schwach
konvergente Teilfolge), wenn sie gleichmdfSig beschrinkt ist (supgeon @(S) < o0) und straff ist.

Im Beweis geniigt uns der folgende Spezialfall:

Satz 6.4. Fine Familie 20 C 20(R) ist genau dann schwach relativ folgenkompakt, wenn sie
straff ist.

Nun zu dem angekiindigten Satz, der uns die Gestalt der Folge (b,,) im Falle von Geburts- und
Todesprozessen und Abstandsmessung in Separation ndher beschreibt.

Satz 6.5. Gegeben eine Familie von Geburts- und Todesprozessen wie im vorherigen Kapitel

gelte N, = \,t, — o0, es liege also ein Separations-Cut-Off vor. Setze

(a) Gelte \,o,, — co. Dann gilt fir reelles ¢

1 t )
lim S0 €)= 1= (), wobei () = = [ o,

n—0o0

Insbesondere liegt ein (t,, 0,,)-Cut-Off vor, aber kein (t,, \;')-Cut-Off.
(b) Angenommen, dass \,o,, beschrinkt ist. Dann liegt ein (t,,, 0,,)-Cut-Off vor (dquivalent ein
(tn, A1) -Cut-Off ) und fiir jedes reelle ¢ > 0 gilt

lim inf s(yfn e &) > 0,

wéhrend fiir jedes reelle ¢ < 0 gilt

lim sup s(yf oo €5) < 1.

n n
n—oo

Beweis. Nach Satz 4.3 gilt s(7%, &) = P(Ty, > t). Die momenterzeugende Funktion der Zu-

fallsvariablen TO’;—;t” hat folgende Gestalt

M,,(t) = E(e!Ton—t)/on),
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Kapitel 6. Die Form des Cut-Offs

Da Tj, die Summe m, unabhéngiger, exponentialverteilter Zufallsvariablen mit Parametern

An,i ist, erhalten wir

. %0_& ttn ?n Fn(t)
Mn(t)_E(en )_e H)\ t/an = e
wobel
E,(t) =log | e tn/on ﬁ _mi —tt, /oy + Zlog ;
=1 ’ 7
i=1
mit
Or(n) = Z(Ang/)\m)k-
i=1

Da die Eigenwerte )\, ; monoton nicht fallend geordnet sind und im Intervall 0,2] liegen, gilt
1 < 0k(n) < By(n), k > 2. Damit konvergiert die obige Reihe, zumindest fiir ¢ € (0,1), und da
Fut) =1/2+ 30 o 9k<’;g/2tk gilt, folgt

e}

0 < Fu( Z (k2/2922 Z (k2

= k=3

2
Es gilt ferner 6(n) = > (i"l) =My (}\1 ) = 91/2 = A0y

1

Falls also A0, — oo gilt, dann folgt M, (t) — e/*/2 fiir jedes reelle ¢ und damit ist
0, (Ton — t,) asymptotisch verteilt wie eine standardnormalverteilte Zufallsvariable. Wegen

s(vh, &%) =1— P(T,, <t) ist (a) bewiesen.
Nun zum Beweis von (b). Angenommen \,,0,, ist beschrankt, also A\,0,, < A. Dann gilt
M <o, < AN

und, fiir jedes k=2,3,...,

1 <6i(n) <A< oc.

Die Chebychev-Ungleichung liefert P(|TOZ—;t"| > €¢) < ¢ 2 und damit die Straffheit der Ver-
teilungen von o, '(Ty, — t,),n = 1,2,.... Nach dem Satz von Prohorov konnen wir aus einer

beliebigen, gegebenen Teilfolge (n;) eine Teilfolge (n;,) wéhlen, so dass entlang dieser Teilfolge

67



6.2. Form des Separations-Cut-Offs bei Geburts- und Todesprozessen

P(Ty, > tn,+coy) gegen P(T > ¢), ¢ € R, konvergiert, fiir eine Zufallsvariable 7. Nun folgt aus
der vorherigen Berechnung der momenterzeugenden Funktion, dass entlang der Teilfolge (n;,)
von (n;) der Grenzwert

llim Ox(n;,) = 6k € [1, A]

fiir jedes k > 2 existiert und 7" die momenterzeugende Funktion

¢ Oy, t*
exp <§ + Z W) (6.2)

k>3 V2
hat fiir jedes t € (—6/%,63/%). Die Zufallsvariablen o7, (T, — t,) sind unendlich teilbar, da Tp,
als Summe exponentialverteilter Zufallsvariablen unendlich teilbar ist. Nach Satz 6.1 ist also
ebenfalls 7" unendlich teilbar. Mit Blick auf (6.2) sicht man, dass der normalverteilte Anteil
von T nichttrivial ist und 7" also mit Bemerkung 6.1 iiberall positive Dichte besitzt. Damit ist
Teil (b) des Satzes bewiesen. Da die Summe in (6.2) wegen der Beschrianktheit von 6, nicht
verschwindet, kann kein Grenzwert der Folge (7}, — t,) /0, normalverteilt sein. Damit ist Satz

6.5 bewiesen. O

Bemerkung 6.2. Wegen des Auftretens der Normalverteilung sprechen wir in (a) auch von
einem Gaussschen-Cut-Off. In (b) ist die Form des Cut-Offs nach der Schlussbemerkung im
Beweis nicht gausssch. Wir haben also genau dann einen Gaussschen-Cut-Off, wenn die Gro-
Kenordnung der Fenstergrofe strikt grofier ist als die der Inversen der Spektralliicke. Die Inverse

der Spektralliicke bezeichnet man auch als relazation-time.

Bemerkung 6.3. Der erste Teil von (b), also der Fakt, dass fiir jedes reelle ¢>0

lim inf (4 £5) > 0

n
n—oo

gilt, kann auch elementar hergeleitet werden. Um P(Tp,, > t,, + co,,) von unten zu beschridnken,
schreibe

P(To, > t, + coy)

> P (Sn,l > )\;1 + (C+ 1)0n7 an,l > Z)\;; - U”)
=2 i=

=2

> P(Sp1 > A+ (c+ 1)a,) P (Z Sni > Ak an> .

=2 =2

68



Kapitel 6. Die Form des Cut-Offs

Mit der zweiten Ungleichung in (5.4) in der Form P(Tpy, > t, — 0,) > 1 — =~ und

T+
02 > Var(} " Syi), erhalten wir

Mp Mn 1
P : - > —.
(Z 55300 gn) . ]
=2 =2
Es folgt

1

P(Ton > o+ com) > e O Hetmy L o—arernne) 5 Lo-arema
mn n n - 2 n 2 iy .

N | —

Fiir den zweiten Teil von Teil (b) ist kein elementarer Beweis bekannt.

Bemerkung 6.4. Angenommen, dass in Satz 6.5(b) zusétzlich fiir jedes k
A\ .

00
)\n,i

lim s(4 ", €}) = 1 - F(¢),

n—0o0

existiert. Dann gilt fiir jedes ¢ € R

wobei F(t) die Verteilungsfunktion einer unendlich teilbaren Zufallsvariable ist, deren momen-
terzeugende Funktion fiir ¢t € (—6, Y ?.0; Y %) gegeben ist durch (6.2). Insbesondere gilt nach

Satz 6.5(b), dass 0 < F(¢) < 1 fiir alle ¢ € R.
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7 Ausblick

Nachdem wir in dieser Arbeit gezeigt haben, dass mit dem Kriterium von Peres eine not-
wendige und hinreichende Bedingung fiir das Auftreten des Cut-Off-Effekts bei Geburts- und
Todesprozessen und Abstandsmessung in Separation formuliert werden kann, stellt sich als
Néchstes natiirlicherweise die Frage, ob dieses Kriterium auch fiir andere Klassen reversibler
Markov-Prozesse bei Abstandsmessung in Separation oder bei Geburts- und Todesprozessen
und Abstandsmessung in Totalvariation notwendig und hinreichend ist. Zunéchst zur zweiten

Frage.

7.1 Totalvariations-Cut-Off bei Geburts- und

Todesprozessen

Ding, Lubetzky und Peres bewiesen 2008 die Giiltigkeit des Peres-Kriteriums in der Klasse
der Geburts- und Todesprozesse bei Abstandsmessung in “worst-case’Totalvariation [DLPOS],
wobei “worst-case” in diesem Zusammenhang bedeutet, dass man den Startpunkt des Geburts-
und Todesprozesses so wihlt, dass der Abstand der Verteilung des Geburts- und Todesprozesses
zur stationédren Verteilung maximal ist. Eine Folge von Geburts- und Todesprozessen weist ge-
nau dann einen Cut-Off in “worst-case”-Totalvariation auf, wenn das Produkt aus Spektralliicke
und Mischzeit gegen unendlich geht (Korollar 3 in [DLPO08]). Im Fall diskreter Zeit betrachten
die Autoren die Klasse der “lazy chains”, also die Klasse der Geburts- und Todesprozesse, fiir
die die Wahrscheinlichkeit, in einem Zustand zu verweilen, grofer als 1/2 ist (Korollar 2 in
[DLPO08|). Diese sind insbesondere monoton. Des Weiteren wird in diesem Paper gezeigt, dass

fiir Geburts- und Todesprozesse in stetiger Zeit und Geburts- und Todesprozesse in diskreter
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Kapitel 7. Ausblick

Zeit, welche “lazy” sind, der Separationsabstand maximal ist, wenn der Geburts- und Todespro-
zess in einem der beiden Endpunkte des Zustandsraums gestartet wird (Theorem 4 in [DLP0S]).
Da die Separationsmischzeit und die Totalvariationsmischzeit dieselbe Ordnung haben, folgt die
Aquivalenz des Cut-Offs bei Geburts- und Todesprozessen und Separation bzw. Totalvariation

(Korollar 5 in [DLPO0S8|):

Fiir eine Familie endlicher irreduzibler Geburts- und Todesprozesse in stetiger Zeit ist Cut-Off

in ‘“worst-case”™ Totalvariation dquivalent zu Cut-Off in “worst-case™Separation.

Bei Separation startet man also immer in 0 oder in dem anderen Endpunkt des Zustandsraums.
Die Aquivalenz ist dabei in dem Sinne zu verstehen, dass die Existenz des einen Cut-Offs die
Existenz des anderen Cut-Offs impliziert; die Cut-Off Zeitpunkte kénnen sich jedoch unter-
scheiden, was sie beispielsweise beim Bernoulli-Laplace-Modell (sieche Abschnitt 7 in [DSCO06])

auch tun.

Die Vermutung liegt nahe, dass das Peres-Kriterium auch fiir Verwandte von Geburts- und
Todesprozessen giiltig bleibt. Diese Vermutung ist aber im Allgemeinen nicht richtig. Wir stel-
len dazu nun ein auf David Aldous zuriickgehendes Beispiel in der Version aus [CSCO8] vor.
In diesem betrachten wir eine Familie reversibler MSP, welche eng mit den Geburts- und To-

desprozessen verwandt ist, bei der aber das Peres-Kriterium nicht hinreichend ist.

7.2 Beispiel von Aldous

Die von uns betrachtete Kette besteht aus drei Teilen, einem Tail und zwei Armen. Die beiden
Arme sind an dem Tail befestigt und an ihrem anderen Ende miteinander verbunden. Der Tail
hat die Lénge n, ist also ein Abschnitt der Form {zy, xo, ..., z,}. Der linke Arm hat ebenfalls
die Lange n, {y1, ..., yn}. Der rechte Arm hat die doppelte Lange 2n, {z1, ..., 20, } mit 29, = y,,.
Ubergiinge sind wie bei einem Geburts- und Todesprozess nur in einen benachbarten Zustand
moglich, falls eine Zustandsverdnderung stattfindet, und wir haben in allen drei Teilen der
Markov-Kette eine Drift nach oben vorliegen, also innerhalb des linken Armes in Richtung vy,
entlang des rechten Armes in Richtung zs, und entlang des Tails in Richtung der Arme.

Préziser: p;n > 1/2,¢in < 1/2,pin + Gin = 1,7 = t,1,r, wobei ¢ fiir Tail, { fiir links und r fur
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7.2. Beispiel von Aldous

rechts steht. Entlang des Tails gehen wir demnach mit Wahrscheinlichkeit p,, nach oben und
mit ¢, nach unten. Am oberen Ende des Tails gehen wir mit Wahrscheinlichkeit (g, + ¢r.n)/2
nach unten, mit p;,,/2 nach links und mit p,,/2 nach rechts. Entlang der Arme bewegen wir
uns hoch bzw. runter mit Wahrscheinlichkeiten p; ,,, i n, ¢ = [ oder r. Im Punkt y,, = 2, gehen
wir mit Wahrscheinlichkeit ¢;,, nach y,_;, mit ¢, ,, nach 2, 1 oder bleiben mit 1 — (¢, + qi.n)-
Wir machen diese Kette reversibel durch geeignete Wahl der Wahrscheinlichkeiten entlang des
linken und rechten Armes, in diesem Fall durch pi,./qn = (Prn/Grn)>.

Die Berechnung der stationiren Verteilung liefert, dass diese im Wesentlichen im Ubergangs-
punkt zwischen den beiden Armen y,, = 29, konzentriert ist, da wir entlang beider Arme eine
Drift in Richtung dieses Punktes haben und entlang des Tails einen Drift in Richtung der Arme.
Unter der Annahme, dass p;,, > 2/3,i = t,[,r, kann man nun mit der Cheeger-Ungleichung
zeigen, dass die Spektralliicke dieser Kette grofser einer echt positiven Konstanten ist. Siehe
dazu Prop.4.4 in [Che06].

Wir behaupten nun, dass 1 < a < b < oo und € € (0, 1) existieren, so dass fir die in z; gestar-
tete Kette der Abstand in Totalvariation geringer als 1 — € zur Zeit an ist, aber grofer als € zur
Zeit, bn, fir alle grofen n. Auferdem gilt, wie man sich leicht iiberlegt, dass der Startpunkt z;
derjenige Startpunkt ist, fiir den die Mischung der Kette am langsten dauert, also die Mischzeit
am groften ist. Das Produkt aus Spektralliicke und maximaler Totalvariations-Mischzeit ist
also von der Grofsenordnung n und geht somit gegen unendlich, da man die Spektralliicke nach
unten gegen eine echt positive Konstante abschétzen kann. In diesem Fall ist dies aber nicht
hinreichend fiir einen Cut-Off. Der Totalvariationsabstand ist zur Zeit an kleiner als 1 — e, weil
man eine gute Chance hat, y, in dieser Zeit zu erreichen. Der Grund, warum der Abstand in
Totalvariation zur Zeit bn grofer als € ist, liegt darin, dass es ldnger dauert, den Punkt y,, durch
den doppelt so langen rechten Arm zu erreichen.

Auch wenn die Behauptung, dass kein Cut-Off vorliegt, intuitiv ist, sind die Berechnungen, ins-
besondere fiir die Abschédtzung der Spektralliicke, nicht ganz einfach. Falls man die Drift von
n abhéngig macht durch p;, > 1 — 1/n,i = t,1,r, vereinfachen sie sich, weil eine sehr starke
Konzentration der stationdren Verteilung im Verbindungspunkt der beiden Arme vorliegt. Fiir

genauere Erlduterungen verweisen wir wiederum auf [Che06], Abschnitt 4.2.
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Kapitel 7. Ausblick

7.3 Ausblick und offene Fragen

Das vorangegangene Beispiel zeigt, dass es bei Geburts- und Todesprozessen geniigt einen Uber-
gang von n nach 0 zu erlauben, damit das Kriterium von Peres bei Abstandsmessung in Totalva-
riation seine Giiltigkeit verliert. Dennoch wird in einer Reihe von Klassen von Markov-Prozessen
die Giiltigkeit des Kriteriums von Peres vermutet; zu nennen sind insbesondere Random Walks

auf endlichen Gruppen.

Eine weitere offene Frage ist, ob eine Aquivalenz von Totalvariations-Cut-Off und Separa-
tions-Cut-Off auch im Allgemeinen bei Familien irreduzibler, reversibler Markov-Prozesse ana-
log zur Aquivalenz bei Geburts- und Todesprozessen vorliegt. In diesem Fall konnte man das

Beispiel von Aldous auch als Gegenbeispiel fiir den Separationsfall verwenden.

Des Weiteren fithrt das Beispiel von Aldous zuriick zur Frage von Diaconis nach einem all-
gemeinen Kriterium fiir das Auftreten eines Cut-Offs in einer Familie endlicher, ergodischer

Markov-Prozesse.
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A Anhang

Wir geben nun den Beweis von Satz 3.2.

Satz A.1. Sei M = (M,),>0 eine positiv rekurrente DMK beziiglich einer Filtration (§,)n>0
mit Zustandsraum S, stationdrer Verteilung & und beliebiger Anfangsverteilung.

(a) Ist T eine stark stationdre Zeit fir M, so gilt
s(n) < P(T > n)

fiir alle n > 0.

(b) Es existiert bei endlichem Zustandsraum eine stark stationdre Zeit T fiir M, so dass
s(n) = P(T > n) (A.1)

fir alle n > 0. In diesem Fall heifit T minimale stark stationdre Zeit.

Beweis. Es gilt mit Satz 3.1(b)

und folglich

firalleie Sund n >0

Nun konstruieren wir fiir den Beweis von (b) eine minimale stark stationdre Zeit. Wir setzen

pn(i) = P(M, = i),

o= min 42— 1= 50, ).
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Anhang A. Anhang

und k = inf{n > 0: a, > 0}. Sei nun T so definiert, dass P(T < k) =0,

P(T = k|Mj = i) = 45 0 es
i (7)
und induktiv
P(T:n|Mn:i,T>n—1):uaZ)_$, icSn>k

[0 — Up-1

Wenn wir zeigen konnen, dass
P(M,, =i, T=m)=¢&"(i)(am — am-1) (A.2)

fiir alle m > k und ¢ € S gilt, so ist T eine stark stationédre Zeit, denn per Summation iiber

i € S liefert (A.2) P(T =n) = a, — a,_1 und damit
PM,=i,T=n)=¢G)P(T =n)
fiir alle n > 0. Auferdem folgt (A.1) aus der folgenden Rechnung

P(T>n)=1-P(T<n)=ar+ Y (a—a1)=1—a,=s(m,E).
I=k+1

Wir beweisen nun (A.2) per Induktion iiber n > k. Fiir n = k gilt dies nach Definition von
P(T = k|M;, = i). Nehmen wir also fiir den Induktionsschritt an, die Aussage sei wahr fiir alle

1 € S und m < n — 1. Dies impliziert
P(M, =i,T <n—1)=¢&(i)ap1,
denn fiir m <n — 1 gilt

P(M,=i,T=m)=Y» P(M,=i,M,=jT=m)

JjeSs

= P(M,=i|M,, = j,T =m)P(M, = j,T =m)
Jjes

= ijig*(ﬁ(am — Gm-1)
jes

=& () (am — am-1).
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Folgendermafsen erhalten wir (A.2) fiir m =n

P(M, =i, T=n)=P(T=n|M,=i,T >n—1)P(M, =i, T >n—1)

_ %(P(Mn —i)—P(M, =i, T<n—1))
g0  dn-1
Ap — Qp—1 .

= T (d) (MN(Z) - (Z)an—l)

Damit ist der Satz bewiesen.
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