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Abstract

For a zero-delayed random walk on the real line, let 7(x), N(x) and p(x) denote the first passage
time into the interval (x,00), the number of visits to the interval (—oo, x] and the last exit time
from (—o0, x], respectively. In the present paper, we provide ultimate criteria for the finiteness
of exponential moments of these quantities. Moreover, whenever these moments are finite, we
derive their asymptotic behaviour, as x — oo.

1 Introduction and main results

Let (X,),>; be a sequence of i.i.d. real-valued random variables and X := X;. Further, let (S,),>o
be the zero-delayed random walk with increments S,, — S,,_; = X,,, n = 1. For x € R, define the
first passage time into (x, 00)

7(x) := inf{ineN;:S, > x},

the number of visits to the interval (—oo0, x]

N(x) := #{neN:S, <x} = > Ly,

n>1
and the last exit time from (—o0, x]

[ supfneN:§, <x}, if inf5,S,<x,
p(x) = { 0, if inf,5;S, > x.

Note that, for x >0,
p(x) = supfneN;:S, <x}.
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For typographical ease, throughout the text we write 7 for 7(0), N for N(0) and p for p(0).

Our aim is to find criteria for the finiteness of the exponential moments of 7(x), N(x) and p(x),
and to determine the asymptotic behaviour of these moments, as x — oo.

Assuming that 0 < EX < oo, Heyde [11] Theorem 1] proved that

Ee?™™) < 0o for some a > 0 iff Ee®®” < oo for some b > 0.

See also [|3, Theorem 2] and [|6, Theorem II] for relevant results.
When P{X >0} =1and P{X =0} <1,

7(x)—1 = N(x) = p(x), x=>0. @))

Plainly, in this case, criteria for all the three random variables are the same (Proposition[1.1). An
intriguing consequence of our results in the case when P{X < 0} > 0 and P{X > 0} > 0, in which

7(x)—1 < N(x) < p(x), x>0, (2)

is that provided the abscissas of convergence of the moment generating functions of 7(x), N(x)
and p(x) are positive there exists a unique value R > 0 such that

Ee?™™ < 00, Ee™™ < o0 iff a <R, and Ee®™ < 00 ifa <R

whereas EefP™) is finite in some cases and infinite in others. Also we prove that whenever the
exponential moments are finite they exhibit the following asymptotics:

Ee® ™) ~ Cre"™ EeN®) ~ Cye™, Ee®™) ~ Cie™, x — o0,

for an explicitly given y > 0 and distinct positive constants C;, i = 1,2,3 (when the law of X
is lattice with span A > O the limit is taken over x € AN). Our results should be compared (or
contrasted) to the known facts concerning power moments (see [[13, Theorem 2.1 and Section
4.2] and [13} Theorem 2.2], respectively): for p > 0

E(t(x))Pr <00 & EWNMX))P <o < E(p(x))P <oo;

E(r()P = ENGOY = E(p(x)) = (;)p x = 00

Emin(X™*, x)
where f(x) =< g(x) means that 0 < lim inf £ < lim sup CIRSINY
x—o00 &(x) g(x)

X—00
Proposition is due to Beljaev and Maksimov [2, Theorem 1]. A shorter proof can be found in
[12) Theorem 2.1].

Proposition 1.1. Assume that P{X > 0} = 1 and let 8 := P{X = 0} € [0,1). Then for a > O the
following conditions are equivalent:

Ee®™ ™ < 0o for some (hence every) x > 0;

a< —logp
where —log 8 := oo if § = 0. The same equivalence holds for N(x) and p(x).
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Our first theorem provides sharp criteria for the finiteness of exponential moments of 7(x) and
N(x) in the case when P{X < 0} > 0. Before we present it, we introduce some notation. Let

¢ :[0,00) = (0,00], ¢(t):=Ee ¥ 3)

be the Laplace transform of X and
R:=—log %BS (t). @

Theorem 1.2. Let a > 0 and P{X < 0} > 0. Then the following conditions are equivalent:

an

e
Z —P{S, < x} < oo for some (hence every) x > 0; (5)
n
n>1
Ee?™ ™) < oo for some (hence every) x > 0; 6)
EeN™) < oo for some (hence every) x > 0; 7
a<R. (8

Our next theorem provides the corresponding result for the last exit time p(x).

Theorem 1.3. Let a > 0 and P{X < 0} > 0. Then the following conditions are equivalent:

Z e™P{S,, < x} < oo for some (hence every) x > 0; )
n>0

Ee®™) < oo for some (hence every) x > 0; (10)

a<R or a=Rand ¢'(y,)<0 1D

where v, is the unique positive number such that ¢(y,) =e .

It is worth pointing out that Theorem [1.3| and Proposition [1.1| could be merged into one result.
Indeed, if one sets v, := oo and ¢’(00) := lim,_,, ¢’(t)(= 0) in the case that P{X < 0} = 0, then
includes the criterion given in Propositionfor the finiteness of Ee®* ™) which, in this case,
is equivalent to the finiteness of Ee®*™) due to Eq. (T).

Now we turn our attention to the asymptotic behaviour of Ee?"™) Ee™ ™) and Ee® ™) and start
by quoting a known result which, given in other terms, can be found in [[12] Theorem 2.2]. In
view of equality we only state it for Ee?"™). The phrase ‘The law of X is A-lattice’ used in
Proposition and Theorem[1.5]is a shorthand for ‘The law of X is lattice with span A > 0.

Proposition 1.4. Let a > 0, P{X > 0} = 1 and P{X = 0} < 1. Assume that Ee®*™ < oo for some
(hence every) x > 0. Then, as x — oo,

1—e@
ar(x) rXx YEXe 1%
Ee ~ e X { A(1—e™)
(1—e M)EXe X

if the law of X is non-lattice,

if the law of X is A-lattice

where y is the unique positive number such that ¢(y) = Ee "X = ™9, and in the A-lattice case the
limit is taken over x € AN.

When 0 < a <R and P{X < 0} > 0, there exists a minimal y > 0 such that p(y) =e™%. This y can
be used to define a new probability measure PP, by

E,h(So,...,S,) = e"Ee "*h(S,,...,S,), ne€N, (12)
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for each nonnegative Borel function h on R*"!, where [E, denotes expectation with respect to
P,. Since E,.X = E,S; = —ep’(y) (where ¢’ denotes the left derivative of ¢) and since ¢ is
decreasing and convex on [0, Y], there are only two possibilities:

Either E,X €(0,00) or EX=0. 13)

When a < R, then the first alternative in prevails. When a = R, then typically ¢’(y) = 0
since y is then the unique minimizer of ¢ on [0, 00). In particular, E,X = 0. But even if a =R it
can occur that E, X > 0 or, equivalently, ¢’(y) < 0. Of course, then y is the right endpoint of the
interval {t > 0: ¢(t) < co}. We provide an example of this situation in Section

Now we are ready to formulate the last result of the paper.

Theorem 1.5. Let a > 0 and P{X < 0} > 0.

(a) Assume that Ee®™™) < 0o for some (hence every) x > 0. Then E,S; is positive and finite, and,

as x — 090,
(x) Ereuz“s 1)’ if the law of X is non-lattice,
Ee®™ ™ ~ e x o1 14
(1/1— M , if the law of X is A-lattice.
voT

(b) Assume that Ee®N™ < 0o for some (hence every) x > 0. Then E,S; is positive and finite, and,

as x — oo,
S.
e K, [T erE[eN N ]dy . . .
. tJo =3 ,  if the law of X is non-lattice,
Ee™N®W ~ e x {5 . (15)

AeTE, Y, e KR[N (=207 . . .

oS , if the law of X is A-lattice.

Yot

(c) Assume that Ee®’™) < oo for some (hence every) x > 0. Then M := inf,5; S, is positive with
positive probability, and, as x — 00,

e’“(l—IEe’yMJr)
EXe X 2
Fer () ~ e’ x ¥
Ae’a(l—IEe’“\ﬂ)
(1—e 2 )EXe 17X 2

if the law of X is non-lattice,

if the law of X is A-lattice.

In the A-lattice case the limit is taken over x € AN.

The rest of the paper is organized as follows. Section [2]is devoted to the proofs of Theorems
and In Section [3|we provide three examples illustrating our main results.

2 Proofs of the main results

Proof of Theorem 1.2} = (5). Pick any a € (0,R] and let y be as defined on p. With this
v, the equality

Z,(A) = Z w

n>1 n
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where A C R is a Borel set, defines a measure which is finite on bounded intervals. Furthermore,
according to [I, Theorem 1.2], if E,X > 0 then Z,((—00,0]) < oo, whereas if E,X = 0 (this may
only happen if a = R), then the function x — Z, ((—x,0]), x > 0, is of sublinear growth. Hence,
for every x >0,

et" 1
ZTP{SH SX} = Z;E),eys”]l{snsx} = J el Zy(dy) < 00.

n>1 n=1
(—00,x]

= (8). Suppose holds for some x = x, > 0 and a > R. Pick ¢ € (0,a —R). Then
ano el@=®p{S < x,} < oo which is a contradiction to [12, Theorem 2.1(aiii)] (reproduced here
as equivalence (9) < of Theorem|[1.3)).
= (6). The argument given below will also be used in the proof of Theorem [1.5
If (5) holds for some x > 0 then, according to the already proved equivalence < (), first,
a <R and, secondly, holds for every x > 0. For 0 < a <R and x > 0, we have

Ee?™™ = 14(e?— I)Zea”P{T(x) > n}
n=0
= 1+(e“—1)Ze‘mP{Mn§x} a7
n=0

where M,, := maXy<x<, Sx, n € Ny. According to [6, Formula (2.9)],
an Ee®" —1 aj .
Ze P{M, < x} = er P{L; =j,S; < x} (18)

n=0 j=0

where L; = inf{i € Ny : S; = M;}, j € Ny. Since a < R, we can use the exponential measure
transformation introduced in (12), which gives

eP{L;=j,S;<x} = ]EerSj]l{Lj=j,Sij}‘

Observe that L; = j holds iff j = o for some k € N, where o (0, := 0) denotes the kth strictly
ascending ladder epoch of the random walk (S,),>o. Thus,

ZeaJP{LJ = J:SJ S x} = ZEYeYSjIL{Lj:jsSj§X}

j=0 j=0
= Z E, Z 50 ]l{ok=j,Saka} =E, Z 7S ]]-{Sak <}
j=0 k>0 k>0
= e f e T o (x = Y)UZ (dy) =: e Z7 (x) (19)
R

where UY> denotes the renewal function of the random walk (S, )i>o under P, that is, U;(-) =
Zkzo P, {S,, € -}. Thus, Z;(x) is finite for all x > O since it is the integral of a directly Riemann
integrable function with respect to U’ .

fe) = and = (). Since 7(y) < N(y)+1, y > 0, it suffices to prove the first implication.
To this end, let

an

K(a) = Z%msn <o}.

n>1
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By a generalization of Spitzer’s formula [|6, Formula (2.6)], the assumption Ee®® < co immediately
entails the finiteness of K(a):

00 > Eet™ = 1+ (e — 1)ZeG”P{Mn =0} = 1+ (e —1)eX@,
n=>0

We already know that if the series in converges for x = 0, i.e., if K(a) < oo, then it converges
for every x > 0.
(@) = (7). By the equivalence (5) < (@), Ee®*™ < oo for every x > 0. According to [13, Formula
(3.54)],

P{N =k} = ]P{'ilr;{Sn > 0}P{t >k}, keN,,

where P{inf >, S, > 0} > 0, since, under the present assumptions, (S,),>o drifts to +oco a.s. Hence,
Ee®N < co. Further, for y € R,

N(x,y) := Z Lis,—s. <yt (20)

n>7(x)

is a copy of N(y) that is independent of (7(x),S;()). We have
N(x) = 7(x) = 1+N(x,x = S;0) < 7(x)+N(x,0) (21)
Hence, Ee®N™) < 0o, for every x > 0. The proof is complete. O

Proof of Theorem The equivalence () & has been proved in [[I2, Theorem 2.1].
®©) = (@0). According to the just mentioned equivalence, if (9) holds for some x > 0 it holds for
every x > 0. It remains to note that for x > 0

P{p(x)=n} = f P{infS, > x — y}P{S, €dy} < P{S, <x}. (22)

(—00,x]

(I0) = (1I). Suppose Ee® o) < oo for some x, > 0 and a > 0. Since Ee®™ is increasing in
x, we have Ee® < co. Condition a < R must hold in view of (2) and implication () = of
Theorem|[1.2] If a <R, we are done. In the case a =R it remains to show that

EXe "X > 0. (23)
Define the measure V by
V() = Y efpfs, €4}, (24)
n=0

for Borel sets A C R. Then from (22)) we infer that

o0 > EefP = J ]P’{il;ﬁSn > —y}v(dy). (25)
nz
(=00,0]
Under the present assumptions, the random walk (S,,),,>¢ drifts to +oo a.s. Therefore, P{inf,>; S, >
€} > 0 for some ¢ > 0. With such an ¢,
oo > f P{infS, > —y}V(dy) = P{infS§, > e}V ((—¢,0]).
n>1 n>1

(-¢,0]
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Thus,
o0 o0
00 > V((=¢,0]) = ZEYOeYOS"]l{SHE(_E’O]} > e‘YoEZPYO{—s <S, <0}
n=0 n=0
Hence (S, ),>o must be transient under P, , which yields the validity of in view of (13) and
E, S; = efEXe "X, The proof is complete. O

Proof of Theorem[1.5] (a) In view of (17), and (19), in order to find the asymptotics of
Ee®" ™) it suffices to determine the asymptotic behaviour of ZY> (x) defined in (I9). By the key
renewal theorem on the positive half-line,

El S if the law of X is non-lattice,
Z7) 2 3 T e law of X s Adlatti (26)
x—00 W if the law of X is A-lattice

where the limit x — oo is taken over x € AN when the law of X is lattice with span A > 0.

It remains to check that E, S is finite. As pointed out in (13), either E, X € (0,00) or E,.X =0. In
the first case, S, — oo a.s. under PP, and, therefore, E, T < 0o, see, for instance, [4, Theorem 2,
p. 151], which yields E, S, < oo by virtue of Wald’s identity. If, on the other hand, E,X = 0, then
E,T = oo and we cannot argue as above. But in this case, by [5, Formula (4a)], IE),(SIr ) < o0 is
sufficient for E, S < oo to hold. Now the finiteness of

E, e = o(y)" < oo,

implies the finiteness of E, (S Ir )2, and the proof of part (a) is complete.
(b) We only consider the case when the law of X is non-lattice since the lattice case can be treated
similarly. Denote by R, := S;(,) — x the overshoot. Since Ee?™ ™) = IEYeYSﬂx), we have in view of
the already proved part (a)
Ee®" —1

limE efr = —— @7)

X—00 YEYST
By Theorem if Ee?N™) < oo, then Ee?"™) < 0o. Therefore, according to part (a), we have
0 <E,S. < co. This implies (see, for instance, [[10, Theorem 10.3 on p. 103]) that, as x — 0o, R,
converges in distribution to a random variable R satisfying

1 pe
P {Ry < x} = 5S f P {S. > y}dy, x=0.
ot Jo

In particular, under P,, e« converges in distribution to e"R=. Further,

Ee® —1  Ee® -1

[e ]
VP S, > y}dy = — = .
L reeT vE,S. YE,S,

IEIYeYRoo =
E,S.

Therefore, (27) can be rewritten as follows:

limE, ™ = E, ™=, (28)
X—00

Now we invoke a variant of Fatou’s lemma sometimes called Pratt’s lemma [[14], Theorem 1]. To
this end, note that, by a standard coupling argument, we can assume w.l.o.g. that R, — R, P,-a.s.

From (21I) we infer that for f(y) := Ee™ ), y € R we have
flx) = Ee™() — e_“Ee“T(x)f(—Rx) = e”xe_aIEerRXf(—Rx).
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f is an increasing function and, therefore, has only countably many discontinuities. Hence
e« f(—R,) converges PP,-a.s. to e’ f (—R,,). Further,

e f(-R,) S €™ (0)
and e+ f(0) converges P, -a.s. to e’ £(0). Finally,
. R, _ R,
)CILIBOEYeY f(0) = E,e=f(0).

Therefore the assumptions of Pratt’s lemma are fulfilled and an application of the lemma yields

lime ™ f(x) = e “limE,e™f(-R,) = e “E,e=f(-Ry)
X—00 X—00
e @ joo
= eV f(=y)P{S; > y}dy
EYST 0 !
— Se
e, f) e (=) dy
B E,S, '

(¢) >From and (with R replaced by a and M = inf;; S;), we infer

Ee®() = J P{M >x —y}V(dy)

(—00,x]

V(x)P{M > 0} — f Vix—y)P{M €dy}, x=>0.

(0,00)
Assume that the law of X is non-lattice and set D; := Y]E;% It follows from that D, € (0, 00)
and from [[12, Theorem 2.2] that
V(x) ~ Dje"™, x — oo. 29)

The latter implies that for any € > 0 there exists an x, > 0 such that
(D; —€)e” < V(y) < (D +¢)e!”

for all y > x,. Fix one such x,. Then for all x > x,,

IA

(D, —¢g)e™ f e "V P{M edy} V(x—y)P{M edy}

(0,x—x] (0,x—x0]

A

(D, +¢e)e"™ f e 7 P{M edy},
(0,x—x,]
and f(x 20,00 V(x — y)P{M € dy} € [0,V (x)]. Letting first x — oo and then ¢ — 0 we conclude
—40>
that
lime™7* J V(x —y)P{M €dy} = D;Ee ™10

X—00
(0,00)
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Together with the latter yields
Ee®™) ~ D, (P{M >0} — IEe*YM]I{M>O})e”
= Dy(1-Ee ™ )er, x — oo.
Under the present assumptions, the random walk (S,),so drifts to 400 a.s. Therefore, P{M >
0} > 0 which implies that 1 — Ee™"™ "> 0and completes the proof in the non-lattice case.

The proof in the lattice case is based on the lattice version of [[12] Theorem 2.2] and follows the
same path. O

3 Examples
In this section, retaining the notation of Section 1, we illustrate the results of Theorem [1.2 and
Theorem[1.3|by three examples.

Example 3.1 (Simple random walk). Let1/2<p<landP{X =1}=p=1-P{X =-1}=:1—q.
Then the Laplace transform ¢ of X is given by ¢(t) = pe™ " +qe' and R = —log(2,/pq). According
to [18, Formula (3.7) on p. 272] and [[7, Example 1], respectively,

1 G
2q 2*"(2n — 1)

2
P{p=2n} = (p —q)( n")(pq)”, Plp=2n+1}=0, neN.

P{t=2n—-1} = 2v/p*", P{t =2n}=0, ne€N;

Stirling’s formula yields
(Znn) 1

22n . /man’

which implies that
Eef" <00 and Eef? =co.

Example 3.2. LetX L Y, —Y, where Y; and Y, are independent r.v.’s with exponential distributions

with parameters a and k, respectively, 0 < a < x. Then ¢(t) = Ee ™ = ﬁ and R =
—log (:f,’;)z ). According to [[9, Formula (8.4) on p. 193], for a € (O,R],

Ee® = (2a) Ya+x — \/(a + k)% — 4ake?) < oo.

Further, for n € N,

P{p=n} = J }P’{%E{Sk > —x}P{S, € dx}

(—00,0]

P{ggsk > —x — y}P{S; edy}P{S, €dx}.
(—00,0](—x,00) -

According to [9, Formula (5.9) on p.410],

a
P{infS, > —x — y} = P{sup(=S;) <x+y} = 1 — —e &)+,
k>0 k>0 K
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Note that S,, has the same law as the difference of two independent random variables with gamma
distribution with parameters (n,a) and (n,«), respectively, which particularly implies that, for
x > 0, the density of S; takes the form "‘ZQT_:X Thu forneN,

” A k-a)eby)) B
P{p=n} = 1——e dy P{S, € dx}
x K a+k
(=00,0]
K—a
= e P{S, € dx}
K

(=00,0]
k—a [® t -0 altstle—as jenyn—1p—xt
= e ' ' dsdt
 Jo Jo (n=1) (n—=1)
0
— K—-a ak" t2n—1e—(a+;<)tdt
k nl(n-=-1) ),

k—a . (2n—-1
= ——-a'k R
(x + a)®" n

and
K—a
P{p =0} =
Hence,
K—a 2n—1
e = (11 (M) -
K n>1 n

since relation (30) implies that the summands are of order 1//n, as n — oo.
Finally, we point out an explicit form of distribution of X for which EeR*™X) < oo for every x > 0.

Example 3.3. Fix h > 0 and take any probability law u; on R such that the Laplace-Stieltjes
transform

P(t) := J e My, (dx), t=>0,
R

is finite for 0 < t < h and infinite for t > h, and the left derivative of v at h, v’(h), is finite and
positive. For instance, one can take

py(dx) := ce ™ /(14 |x|)dx, xeR

where r > 2 and ¢ := (fR e (1 4 |x|")dx) 7! > 0.

Now choose s sufficiently large such that v’(h) < sy (h). Then p(t) = e~ (t) is the Laplace-
Stieltjes transform of the distribution u := &, * u;. Let X be a random variable with distribution
w. Plainly, ((t) is finite for O < ¢t < h but infinite for t > h. Furthermore,

@'(t) = e (W () —sy(t), [tI<h.

In particular, ¢’(h) < 0 which, among other things, implies that R = —log ¢ (h) and that y, = h.
Therefore, EXe "X = —’(h) > 0, and by Theorem (1.2} Ee®°™) < oo for all x > 0.

2We do not claim that this formula is new, but we have not been able to locate it in the literature.
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