Jun. Prof. Dr. Raphael Wittkowski

Jun. Prof. Dr. Raphael Wittkowski

Busso-Peus-Straße 10, Raum 120.024
48149 Münster

T: +49 251 83-34529

  • Forschungsschwerpunkte

    • Physik der weichen kondensierten Materie
    • Aktive weiche Materie
    • Aktive und passive kolloidale Teilchen
    • Biophysik
    • Mikroskopische Herleitung von Feldtheorien
    • Klassische dynamische Dichtefunktionaltheorie
    • Phasenfeldkristallmodelle
  • Vita

    Preise

    Forschungsstipendium (07/2015-09/2016) – Heinrich-Heine-Universität Düsseldorf
    Rückkehrstipendium (01/2015-06/2015) – Deutsche Forschungsgemeinschaft
    Forschungsstipendium (01/2013-12/2014) – Deutsche Forschungsgemeinschaft
    Forschungsstipendium (05/2012-12/2012) – Heinrich-Heine-Universität Düsseldorf
    Teilnahmestipendium – Wilhelm und Else Heraeus-Stiftung
    Auszeichnung als "Emerging Leader" – Journal of Physics: Condensed Matter (IOP Publishing)
    Aufnahme als ordentliches Mitglied in das Junge Kolleg der Nordrhein-Westfälischen Akademie der Wissenschaften und der Künste – Nordrhein-Westfälische Akademie der Wissenschaften und der Künste (NRW-AdW)
    Emmy Noether-Programm – Deutsche Forschungsgemeinschaft (DFG)
    Beste Dissertation in der Mathematisch-Naturwissenschaftlichen Fakultät 2012 – Heinrich-Heine-Universität Düsseldorf
    Stipendium für Studierende – Studienstiftung des deutschen Volkes
    Buchpreis – Deutsche Physikalische Gesellschaft

    Mitgliedschaft oder Aktivität in einem Gremium

    Mitglied im Jungen Kolleg der Nordrhein-Westfälischen Akademie der Wissenschaften und der Künste
  • Projekte

    Auswahl

    • Steuerung der Dynamik aktiver kolloidaler Flüssigkristalle durch externe Felder ()
      Gefördertes Einzelprojekt: DFG - Emmy Noether-Programm | Förderkennzeichen: WI 4170/3-1

    Gesamtliste

    • Steuerung der Dynamik aktiver kolloidaler Flüssigkristalle durch externe Felder ()
      Gefördertes Einzelprojekt: DFG - Emmy Noether-Programm | Förderkennzeichen: WI 4170/3-1
    • SFB 1459 B01 - Auf dem Weg zu intelligenten lichtgetriebenen Nano- und Mikrosystemen ()
      Teilprojekt in DFG-Verbund koordiniert an WWU: DFG - Sonderforschungsbereich | Förderkennzeichen: SFB 1459, B01
    • Steuerung der Dynamik aktiver kolloidaler Flüssigkristalle durch externe Felder ()
      Gefördertes Einzelprojekt: DFG - Emmy Noether-Programm | Förderkennzeichen: WI 4170/3-1
  • Publikationen

    Auswahl

    • Stenhammar J., Wittkowski R., Marenduzzo D., Cates M. E. . ‘Light-induced self-assembly of active rectification devices.’ Science advances 2: e1501850. doi: 10.1126/sciadv.1501850.
    • Tiribocchi A., Wittkowski R., Marenduzzo D., Cates M. E. . ‘Active Model H: scalar active matter in a momentum-conserving fluid.’ Physical Review Letters 115: 188302. doi: 10.1103/PhysRevLett.115.188302.
    • Stenhammar J., Wittkowski R., Marenduzzo D., Cates M. E. . ‘Activity-induced phase separation and self-assembly in mixtures of active and passive particles.’ Physical Review Letters 114: 018301. doi: 10.1103/PhysRevLett.114.018301.
    • ten Hagen B., Kümmel F., Wittkowski R., Takagi D., Löwen H., Bechinger C. . ‘Gravitaxis of asymmetric self-propelled colloidal particles.’ Nature Communications 5: 4829. doi: 10.1038/ncomms5829.
    • Wittkowski R., Tiribocchi A., Stenhammar J., Allen R. J., Marenduzzo D., Cates M. E. . ‘Scalar ϕ^4 field theory for active-particle phase separation.’ Nature Communications 5: 4351. doi: 10.1038/ncomms5351.

    Gesamtliste

    • te Vrugt, Michael; Wittkowski, Raphael. . ‘Perspective: New directions in dynamical density functional theory.’ Journal of Physics: Condensed Matter 35, Nr. 4: 041501. doi: 10.1088/1361-648X/ac8633.
    • Schmitz, Georg J.; te Vrugt, Michael; Haug-Warberg, Tore; Ellingsen, Lodin; Needham, Paul; Wittkowski, Raphael. . ‘Thermodynamics of an Empty Box.’ Entropy 25, Nr. 2: 315. doi: 10.3390/e25020315.
    • te Vrugt, M; Frohoff-Hülsmann, T; Heifetz, E; Thiele, U; Wittkowski, R. . ‘From a microscopic inertial active matter model to the Schrödinger equation.’ Nature Communications 14: 1302. doi: 10.1038/s41467-022-35635-1.
    • Raghuraman S, Schubert A S, Bröker S, Jurado A, Müller A, Brandt M, Vos B E, Hofemeier A D, Abbasi F, Stehling M, Wittkowski R, Ivaska J, Betz T. . ‘Pressure drives rapid burst-like coordinated cellular motion from 3D cancer aggregates.’ Advanced Science 9, Nr. 6: 2104808. doi: 10.1002/advs.202104808.
    • Voß J, Wittkowski R. . ‘Acoustically propelled nano- and microcones: fast forward and backward motion.’ Nanoscale Advances 4, Nr. 1: 281–293. doi: 10.1039/D1NA00655J.
    • Voß, Johannes; Wittkowski, Raphael. . ‘Orientation-dependent propulsion of triangular nano- and microparticles by a traveling ultrasound wave.’ ACS Nano 16, Nr. 3: 3604–3612. doi: 10.1021/acsnano.1c02302.
    • Voß, Johannes; Wittkowski, Raphael. . ‘Propulsion of bullet- and cup-shaped nano- and microparticles by traveling ultrasound waves.’ Physics of Fluids 34, Nr. 5: 052007. doi: 10.1063/5.0089367.
    • Monderkamp, P. A.; Wittmann, R.; te Vrugt, M.; Voigt, A.; Wittkowski, R.; Löwen, H. . ‘Topological fine structure of smectic grain boundaries and tetratic disclination lines within three-dimensional smectic liquid crystals.’ Physical Chemistry Chemical Physics 24, Nr. 26: 15691–15704. doi: 10.1039/D2CP00060A.
    • Bickmann, Jens; Bröker, Stephan; Jeggle, Julian; Wittkowski, Raphael. . ‘Analytical approach to chiral active systems: suppressed phase separation of interacting Brownian circle swimmers.’ Journal of Chemical Physics 156, Nr. 19: 194904. doi: 10.1063/5.0085122.
    • Nitschke, Tobias; Stenhammar, Joakim; Wittkowski, Raphael. . ‘Collective guiding of acoustically propelled nano- and microparticles.’ Nanoscale Advances 4, Nr. 13: 2844–2856. doi: 10.1039/D2NA00007E.
    • Voß, Johannes; Wittkowski, Raphael. . ‘Acoustic propulsion of nano- and microcones: dependence on the viscosity of the surrounding fluid.’ Langmuir 38, Nr. 35: 10736–10748. doi: 10.1021/acs.langmuir.2c00603.
    • Mayer Martins, Jonas; Wittkowski, Raphael. . ‘Inertial dynamics of an active Brownian particle.’ Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 106, Nr. 3: 034616. doi: 10.1103/PhysRevE.106.034616.
    • te Vrugt, M; Holl, M P; Koch, A; Wittkowski, R; Thiele, U. . ‘Derivation and analysis of a phase field crystal model for a mixture of active and passive particles.’ Modelling and Simulation in Materials Science and Engineering 30, Nr. 8: 084001. doi: 10.1088/1361-651X/ac856a.
    • Evers, Marina; Wittkowski, Raphael; Linsen, Lars. . ‘ASEVis: Visual Exploration of Active System Ensembles to Define Characteristic Measures.’ In 2022 IEEE Visualization and Visual Analytics (VIS), edited by -, 150–154. Oklahoma City: IEEE Press. doi: 10.1109/VIS54862.2022.00039.
    • te Vrugt Michael, Bickmann Jens, Wittkowski Raphael. . ‘Containing a pandemic: nonpharmaceutical interventions and the 'second wave'.’ Journal of Physics Communications 5, Nr. 5: 055008. doi: 10.1088/2399-6528/abf79f.
    • te Vrugt M, Hossenfelder S, Wittkowski R. . ‘Mori-Zwanzig formalism for general relativity: a new approach to the averaging problem.’ Physical Review Letters 127, Nr. 23: 231101. doi: 10.1103/PhysRevLett.127.231101.
    • te Vrugt M, Tóth G I, Wittkowski R. . ‘Master equations for Wigner functions with spontaneous collapse and their relation to thermodynamic irreversibility.’ Journal of Computational Electronics 20, Nr. 6: 2209–2231. doi: 10.1007/s10825-021-01804-6.
    • te Vrugt M, Jeggle J, Wittkowski R. . ‘Jerky active matter: a phase field crystal model with translational and orientational memory.’ New Journal of Physics 23, Nr. 6: 063023. doi: 10.1088/1367-2630/abfa61.
    • Jeggle Julian, Stenhammar Joakim, Wittkowski Raphael. . ‘Pair-distribution function of active Brownian spheres in two spatial dimensions: simulation results and analytic representation.’ Journal of Chemical Physics 152, Nr. 19: 194903. doi: 10.1063/1.5140725.
    • te Vrugt Michael, Wittkowski Raphael. . ‘Relations between angular and Cartesian orientational expansions.’ AIP Advances 10, Nr. 3: 035106. doi: 10.1063/1.5141367.
    • Bickmann Jens, Wittkowski Raphael. . ‘Predictive local field theory for interacting active Brownian spheres in two spatial dimensions.’ Journal of Physics: Condensed Matter 32, Nr. 21: 214001. doi: 10.1088/1361-648X/ab5e0e.
    • Voß J, Wittkowski R. . ‘On the shape-dependent propulsion of nano- and microparticles by traveling ultrasound waves.’ Nanoscale Advances 2, Nr. 9: 3890–3899. doi: 10.1039/D0NA00099J.
    • Sprenger A R, Fernandez-Rodriguez M A, Alvarez L, Isa L, Wittkowski R, Löwen H. . ‘Active Brownian motion with orientation-dependent motility: theory and experiments.’ Langmuir 36, Nr. 25: 7066–7073. doi: 10.1021/acs.langmuir.9b03617.
    • Bickmann Jens, Wittkowski Raphael. . ‘Collective dynamics of active Brownian particles in three spatial dimensions: a predictive field theory.’ Physical Review Research 2, Nr. 3: 033241. doi: 10.1103/PhysRevResearch.2.033241.
    • te Vrugt M, Wittkowski R. . ‘Projection operators in statistical mechanics: a pedagogical approach.’ European Journal of Physics 41, Nr. 1: 045101. doi: 10.1088/1361-6404/ab8e28.
    • te Vrugt M, Löwen H, Wittkowski R. . ‘Classical dynamical density functional theory: from fundamentals to applications.’ Advances in Physics 69, Nr. 2: 121–247. doi: 10.1080/00018732.2020.1854965.
    • te Vrugt M, Wittkowski R. . ‘Orientational order parameters for arbitrary quantum systems.’ Annalen der Physik 532, Nr. 12: 2000266. doi: 10.1002/andp.202000266.
    • te Vrugt M, Bickmann J, Wittkowski R. . ‘Effects of social distancing and isolation on epidemic spreading modeled via dynamical density functional theory.’ Nature Communications 11: 5576. doi: 10.1038/s41467-020-19024-0.
    • te Vrugt M, Wittkowski R. . ‘Mori-Zwanzig projection operator formalism for far-from-equilibrium systems with time-dependent Hamiltonians.’ Physical Review E - Statistical, nonlinear, and soft matter physics 99, Nr. 6: 062118. doi: 10.1103/PhysRevE.99.062118.
    • Sitta C. E., Smallenburg F., Wittkowski R., Löwen H. . ‘Liquid crystals of hard rectangles on flat and cylindrical manifolds.’ Physical Chemistry Chemical Physics 20, Nr. 7: 5285–5294. doi: 10.1039/C7CP07026H.
    • Praetorius S, Voigt A, Wittkowski R, Löwen H. . ‘Active crystals on a sphere.’ Physical Review E - Statistical, nonlinear, and soft matter physics Vol. 97, Iss. 5 — May 2018. doi: 10.1103/PhysRevE.97.052615.
    • Voß J, Wittkowski R. . ‘Hydrodynamic resistance matrices of colloidal particles with various shapes.’ arXiv.org 2018.
    • Praetorius S, Voigt A, Wittkowski R, Löwen H. . ‘Active crystals on a sphere.’ Physical Review E 97, Nr. 5: 052615. doi: 10.1103/PhysRevE.97.052615.
    • Wittkowski R., Stenhammar J., Cates M. E. . ‘Nonequilibrium dynamics of mixtures of active and passive colloidal particles.’ New Journal of Physics 19, Nr. 10: 105003. doi: 10.1088/1367-2630/aa8195.
    • Campbell A. I., Wittkowski R., ten Hagen B., Löwen H., Ebbens S. J. . ‘Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: experiment versus theory.’ Journal of Chemical Physics 147, Nr. 8: 084905. doi: 10.1063/1.4998605.
    • Sitta C. E., Smallenburg F., Wittkowski R., Löwen H. . ‘Hard rectangles near curved hard walls: tuning the sign of the Tolman length.’ Journal of Chemical Physics 145, Nr. 20: 204508. doi: 10.1063/1.4967876.
    • Glanz T., Wittkowski R., Löwen H. . ‘Symmetry breaking in clogging for oppositely driven particles.’ Physical Review E 94, Nr. 5: 052606. doi: 10.1103/PhysRevE.94.052606.
    • Stenhammar J., Wittkowski R., Marenduzzo D., Cates M. E. . ‘Light-induced self-assembly of active rectification devices.’ Science advances 2: e1501850. doi: 10.1126/sciadv.1501850.
    • Tiribocchi A., Wittkowski R., Marenduzzo D., Cates M. E. . ‘Active Model H: scalar active matter in a momentum-conserving fluid.’ Physical Review Letters 115: 188302. doi: 10.1103/PhysRevLett.115.188302.
    • Solon A. P., Stenhammar J., Wittkowski R., Kardar M., Kafri Y., Cates M. E., Tailleur J. . ‘Pressure and phase equilibria in interacting active Brownian spheres.’ Physical Review Letters 114: 198301. doi: 10.1103/PhysRevLett.114.198301.
    • ten Hagen B., Wittkowski R., Takagi D., Kümmel F., Bechinger C., Löwen H. . ‘Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?Journal of Physics: Condensed Matter 27: 194110. doi: 10.1088/0953-8984/27/19/194110.
    • Stenhammar J., Wittkowski R., Marenduzzo D., Cates M. E. . ‘Activity-induced phase separation and self-assembly in mixtures of active and passive particles.’ Physical Review Letters 114: 018301. doi: 10.1103/PhysRevLett.114.018301.
    • ten Hagen B., Kümmel F., Wittkowski R., Takagi D., Löwen H., Bechinger C. . ‘Gravitaxis of asymmetric self-propelled colloidal particles.’ Nature Communications 5: 4829. doi: 10.1038/ncomms5829.
    • Kümmel F., ten Hagen B., Wittkowski R., Takagi D., Buttinoni I., Eichhorn R., Volpe G., Löwen H., Bechinger C. . ‘Reply to “Comment on ‘Circular motion of asymmetric self-propelling particles’ ”.’ Physical Review Letters 113: 029802. doi: 10.1103/PhysRevLett.113.029802.
    • Wittkowski R., Tiribocchi A., Stenhammar J., Allen R. J., Marenduzzo D., Cates M. E. . ‘Scalar ϕ^4 field theory for active-particle phase separation.’ Nature Communications 5: 4351. doi: 10.1038/ncomms5351.
    • Kraft D. J., Wittkowski R., ten Hagen B., Edmond K. V., Pine D. J., Löwen H. . ‘Brownian motion and the hydrodynamic friction tensor for colloidal particles of complex shape.’ Physical Review E 88: 050301(R). doi: 10.1103/PhysRevE.88.050301.
    • Tarama M., Menzel A. M., ten Hagen B., Wittkowski R., Ohta T., Löwen H. . ‘Dynamics of a deformable active particle under shear flow.’ Journal of Chemical Physics 139: 104906. doi: 10.1063/1.4820416.
    • Wittkowski R., Löwen H., Brand H. R. . ‘Microscopic approach to entropy production.’ Journal of Physics A: Mathematical and Theoretical 46: 355003. doi: 10.1088/1751-8113/46/35/355003.
    • Praetorius S., Voigt A., Wittkowski R., Löwen H. . ‘Structure and dynamics of interfaces between two coexisting liquid-crystalline phases.’ Physical Review E 87: 052406. doi: 10.1103/PhysRevE.87.052406.
    • Kümmel F., ten Hagen B., Wittkowski R., Buttinoni I., Eichhorn R., Volpe G., Löwen H., Bechinger C. . ‘Circular motion of asymmetric self-propelling particles.’ Physical Review Letters 110: 198302. doi: 10.1103/PhysRevLett.110.198302.
    • Wensink H. H., Löwen H., Marechal M., Härtel A., Wittkowski R., Zimmermann U., Kaiser A., Menzel A. M. . ‘Differently shaped hard body colloids in confinement: from passive to active particles.’ European Physical Journal Special Topics 222: 3023–3037. doi: 10.1140/epjst/e2013-02073-0.
    • Wittkowski R., Löwen H., Brand H. R. . ‘Extended dynamical density functional theory for colloidal mixtures with temperature gradients.’ Journal of Chemical Physics 137: 224904. doi: 10.1063/1.4769101.
    • Wittkowski R., Löwen H. . ‘Self-propelled Brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers.’ Physical Review E 85: 021406. doi: 10.1103/PhysRevE.85.021406.
    • Emmerich H., Löwen H., Wittkowski R., Gruhn T., Tóth G. I., Tegze G., Gránásy L. . ‘Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview.’ Advances in Physics 61: 665–743. doi: 10.1080/00018732.2012.737555.
    • Wittkowski R. . Brownian dynamics of active and passive anisotropic colloidal particles. 1. Aufl. Aachen: Shaker Verlag. doi: 10.2370/9783844013689.
    • Wittkowski R., Löwen H. . ‘Dynamical density functional theory for colloidal particles with arbitrary shape.’ Molecular Physics 109: 2935–2943. doi: 10.1080/00268976.2011.609145.
    • Wittkowski R., Löwen H., Brand H. R. . ‘Microscopic and macroscopic theories for the dynamics of polar liquid crystals.’ Physical Review E 84: 041708. doi: 10.1103/PhysRevE.84.041708.
    • ten Hagen B., Wittkowski R., Löwen H. . ‘Brownian dynamics of a self-propelled particle in shear flow.’ Physical Review E 84: 031105. doi: 10.1103/PhysRevE.84.031105.
    • Achim C. V., Wittkowski R., Löwen H. . ‘Stability of liquid crystalline phases in the phase-field-crystal model.’ Physical Review E 83: 061712. doi: 10.1103/PhysRevE.83.061712.
    • Wittkowski R., Löwen H., Brand H. R. . ‘Polar liquid crystals in two spatial dimensions: the bridge from microscopic to macroscopic modeling.’ Physical Review E 83: 061706. doi: 10.1103/PhysRevE.83.061706.
    • Wittkowski R., Löwen H., Brand H. R. . ‘Derivation of a three-dimensional phase-field-crystal model for liquid crystals from density functional theory.’ Physical Review E 82: 031708. doi: 10.1103/PhysRevE.82.031708.
    • Wittkowski R., Schelin A. B., Spatschek K. H. . ‘Mean motion in stochastic plasmas with a space-dependent diffusion coefficient.’ Contributions to Plasma Physics 49: 55–69. doi: 10.1002/ctpp.200910009.
  • Promotionen

    Skalenübergreifende Feldtheorien für Nichtgleichgewichtssysteme
    Feldtheorien für aktive kolloidale Flüssigkristalle
    Selbstakustophoretische Teilchen
    Aktive Materialien in externen Feldern
    Aktive kolloidale Teilchen in externen Feldern
    Sitta, ChristophStruktur und Dynamik weicher Materie: Von zweidimensionalen Flüssigkristallen zu makromolekularer Diffusion durch Gele