On the zeros and coefficients of certain weakly holomorphic Drinfeld modular forms

SoYoung Choi

Gyeongsang National University

Arithmetic of function fields, Münster, June, 27, 2017

k an even integer,

f a nonzero weakly holomorphic modular form of weight k for

$$\frac{k}{12} = ord_{\infty}f + \frac{1}{2}ord_{i}f + \frac{1}{3}ord_{\rho}f + \sum_{\tau \in \Re \setminus \{i,\rho\}} ord_{\tau}f$$

Let

Classical case

k an even integer,

f a nonzero weakly holomorphic modular form of weight k for

$$\frac{k}{12} = ord_{\infty}f + \frac{1}{2}ord_{i}f + \frac{1}{3}ord_{\rho}f + \sum_{\tau \in \Re \setminus \{i,\rho\}} ord_{\tau}f$$

Let

Classical case

k an even integer,

f a nonzero weakly holomorphic modular form of weight k for

$$\frac{k}{12} = ord_{\infty}f + \frac{1}{2}ord_{i}f + \frac{1}{3}ord_{\rho}f + \sum_{\tau \in \mathfrak{F}\setminus\{i,\rho\}} ord_{\tau}f$$

Let

Classical case

k an even integer,

f a nonzero weakly holomorphic modular form of weight k for $SL_2(\mathbb{Z})$,

 \mathfrak{F} the usual fundamental domain for $SL_2(\mathbb{Z})$.

Then we have the valence formula:

$$\frac{k}{12} = ord_{\infty}f + \frac{1}{2}ord_{i}f + \frac{1}{3}ord_{\rho}f + \sum_{\tau \in \mathfrak{F}\setminus\{i,\rho\}} ord_{\tau}f$$

Let

Classical case

k an even integer,

f a nonzero weakly holomorphic modular form of weight k for $SL_2(\mathbb{Z}),$

$$\frac{k}{12} = ord_{\infty}f + \frac{1}{2}ord_{i}f + \frac{1}{3}ord_{\rho}f + \sum_{\tau \in \mathcal{T} \setminus \{i, o\}} ord_{\tau}f$$

Let

Classical case

k an even integer,

f a nonzero weakly holomorphic modular form of weight k for $SL_2(\mathbb{Z}),$

 \mathfrak{F} the usual fundamental domain for $SL_2(\mathbb{Z})$.

Then we have the valence formula:

$$\frac{k}{12} = ord_{\infty}f + \frac{1}{2}ord_{i}f + \frac{1}{3}ord_{\rho}f + \sum_{\tau \in \mathcal{T} \setminus \{i, o\}} ord_{\tau}f$$

Let

k an even integer,

f a nonzero weakly holomorphic modular form of weight k for $SL_2(\mathbb{Z}),$

 \mathfrak{F} the usual fundamental domain for $SL_2(\mathbb{Z})$.

Then we have the valence formula:

$$\frac{k}{12} = ord_{\infty}f + \frac{1}{2}ord_{i}f + \frac{1}{3}ord_{\rho}f + \sum_{\tau \in \mathfrak{F} \setminus \{i,\rho\}} ord_{\tau}f$$

Remark

Write $k = 12l_k + r_k$ with unique $l_k \in \mathbb{Z}$ and $r_k \in \{0, 4, 6, 8, 10, 14\}$.

$$k = 12I_k + r_k$$
 with $r_k \in \{0, 4, 6, 8, 10, 14\}$.

$$f_{k,n}(z) = q^{-n} + O(q^{l_k+1})$$
 $(q = e^{2\pi i z}, z \in \mathbb{H}).$

Remark

Write $k = 12l_k + r_k$ with unique $l_k \in \mathbb{Z}$ and $r_k \in \{0, 4, 6, 8, 10, 14\}$. Then $ord_{\infty}f < I_k$.

$$k = 12I_k + r_k$$
 with $r_k \in \{0, 4, 6, 8, 10, 14\}$.

$$f_{k,n}(z) = q^{-n} + O(q^{l_k+1}) \quad (q = e^{2\pi i z}, z \in \mathbb{H}).$$

Remark

Write $k = 12l_k + r_k$ with unique $l_k \in \mathbb{Z}$ and $r_k \in \{0, 4, 6, 8, 10, 14\}$. Then $ord_{\infty}f < I_k$.

Theorem (Duke and Jenkins, 2008)

For an even integer k, let

$$k = 12l_k + r_k$$
 with $r_k \in \{0, 4, 6, 8, 10, 14\}$.

$$f_{k,n}(z) = q^{-n} + O(q^{l_k+1}) \quad (q = e^{2\pi i z}, z \in \mathbb{H}).$$

Remark

Write $k = 12l_k + r_k$ with unique $l_k \in \mathbb{Z}$ and $r_k \in \{0, 4, 6, 8, 10, 14\}$. Then $ord_{\infty}f < I_k$.

Theorem (Duke and Jenkins, 2008)

For an even integer k, let

$$k = 12I_k + r_k$$
 with $r_k \in \{0, 4, 6, 8, 10, 14\}$.

$$f_{k,n}(z) = q^{-n} + O(q^{l_k+1}) \quad (q = e^{2\pi i z}, z \in \mathbb{H}).$$

Remark

Write $k = 12l_k + r_k$ with unique $l_k \in \mathbb{Z}$ and $r_k \in \{0, 4, 6, 8, 10, 14\}$. Then $ord_{\infty}f < I_k$.

Theorem (Duke and Jenkins, 2008)

For an even integer k, let

$$k = 12I_k + r_k$$
 with $r_k \in \{0, 4, 6, 8, 10, 14\}$.

For each integer $-n \le l_k$, we have a unique weakly holomorphic modular form $f_{k,n}$ of weight k for $SL_2(\mathbb{Z})$ having the q-expansion of the form:

$$f_{k,n}(z) = q^{-n} + O(q^{l_k+1}) \quad (q = e^{2\pi i z}, z \in \mathbb{H}).$$

Remark

Write $k = 12I_k + r_k$ with unique $I_k \in \mathbb{Z}$ and $r_k \in \{0, 4, 6, 8, 10, 14\}$. Then $ord_{\infty}f \leq I_k$.

Theorem (Duke and Jenkins, 2008)

For an even integer k, let

$$k = 12I_k + r_k$$
 with $r_k \in \{0, 4, 6, 8, 10, 14\}$.

For each integer $-n \le l_k$, we have a unique weakly holomorphic modular form $f_{k,n}$ of weight k for $SL_2(\mathbb{Z})$ having the q-expansion of the form :

$$f_{k,n}(z) = q^{-n} + O(q^{l_k+1}) \quad (q = e^{2\pi i z}, z \in \mathbb{H}).$$

the elements $f_{k,n}$ form a basis for $M_k^!$.

Let
$$f_{k,n}(z) = \sum_{i>-n} a_k(n,i)q^i$$
.

if
$$(n, i) = 1$$
, then $i^{k-1}|a_k(n, i)$.

Remark

the elements $f_{k,n}$ have integral Fourier coefficients.

the elements $f_{k,n}$ form a basis for $M_k^!$.

Let
$$f_{k,n}(z) = \sum_{i>-n} a_k(n,i)q^i$$
.

if
$$(n, i) = 1$$
, then $i^{k-1}|a_k(n, i)$.

Remark

the elements $f_{k,n}$ have integral Fourier coefficients. the elements $f_{k,n}$ form a basis for $M_k^!$.

Let
$$f_{k,n}(z) = \sum_{i \ge -n} a_k(n,i) q^i$$
.

if
$$(n, i) = 1$$
, then $i^{k-1}|a_k(n, i)$.

Remark

the elements $f_{k,n}$ have integral Fourier coefficients. the elements $f_{k,n}$ form a basis for $M_k^!$.

Theorem (Duke and Jenkins, 2008)

Let
$$f_{k,n}(z) = \sum_{i \ge -n} a_k(n,i) q^i$$
.

if
$$(n, i) = 1$$
, then $i^{k-1}|a_k(n, i)$.

Remark

the elements $f_{k,n}$ have integral Fourier coefficients. the elements $f_{k,n}$ form a basis for $M_k^!$.

Theorem (Duke and Jenkins, 2008)

Let
$$f_{k,n}(z) = \sum_{i>-n} a_k(n,i)q^i$$
.

if
$$(n, i) = 1$$
, then $i^{k-1}|a_k(n, i)$.

Remark

the elements $f_{k,n}$ have integral Fourier coefficients. the elements $f_{k,n}$ form a basis for $M_k^!$.

Theorem (Duke and Jenkins, 2008)

Let
$$f_{k,n}(z) = \sum_{i \geq -n} a_k(n,i) q^i$$
.

if
$$(n, i) = 1$$
, then $i^{k-1}|a_k(n, i)$.

Remark

the elements $f_{k,n}$ have integral Fourier coefficients. the elements $f_{k,n}$ form a basis for $M_k^!$.

Theorem (Duke and Jenkins, 2008)

Let
$$f_{k,n}(z) = \sum_{i \geq -n} a_k(n,i)q^i$$
.

if
$$(n, i) = 1$$
, then $i^{k-1}|a_k(n, i)$.

Theorem (Duke and Jenkins, 2008)

If $n \ge |I_k| - I_k$ then all of the zeros of $f_{k,n}$ in \mathfrak{F} lie on the unit circle.

Theorem (Choi and Im, 2016)

The zeros in \mathfrak{F}^+ of almost all elements of a certain canonical basis for the space of weakly holomorphic modular forms for $\Gamma_0^+(2)$ lie on the circle with radius $1/\sqrt{2}$ which is a lower boundary arc of the fundamental domain \mathfrak{F}^+ for $\Gamma_0^+(2)$. Here $\Gamma_0^+(2) = \langle \Gamma_0(2), W_2 \rangle$.

Theorem (Duke and Jenkins, 2008)

If $n \ge |I_k| - I_k$ then all of the zeros of $f_{k,n}$ in \mathfrak{F} lie on the unit circle.

Theorem (Choi and Im, 2016)

The zeros in \mathfrak{F}^+ of almost all elements of a certain canonical basis for the space of weakly holomorphic modular forms for $\Gamma_0^+(2)$ lie on the circle with radius $1/\sqrt{2}$ which is a lower boundary arc of the fundamental domain \mathfrak{F}^+ for $\Gamma_0^+(2)$. Here $\Gamma_0^+(2) = \langle \Gamma_0(2), W_2 \rangle$.

Theorem (Duke and Jenkins, 2008)

If $n \ge |I_k| - I_k$ then all of the zeros of $f_{k,n}$ in \mathfrak{F} lie on the unit circle.

Theorem (Choi and Im, 2016)

The zeros in \mathfrak{F}^+ of almost all elements of a certain canonical basis for the space of weakly holomorphic modular forms for $\Gamma_0^+(2)$ lie on the circle with radius $1/\sqrt{2}$ which is a lower boundary arc of the fundamental domain \mathfrak{F}^+ for $\Gamma_0^+(2)$. Here $\Gamma_0^+(2) = \langle \Gamma_0(2), W_2 \rangle$.

- Define a weakly holomorphic Drinfeld modular form of weight k and type m for $GL_2(A)$.
- Construct a canonical basis for the space of weakly holomorphic Drinfeld modular forms of weight k and type m for $GL_2(A)$.
- investigate a generating function of the basis elements
- A duality of t-expansion coefficients of the basis elements
- Congruence properties of t-expansion coefficients of the basis elements
- The location of all zeros of the basis elements

- Define a weakly holomorphic Drinfeld modular form of weight k and type m for $GL_2(A)$.
- Construct a canonical basis for the space of weakly holomorphic Drinfeld modular forms of weight k and type m for $GL_2(A)$.
- investigate a generating function of the basis elements
- A duality of t-expansion coefficients of the basis elements
- Congruence properties of t-expansion coefficients of the basis elements
- The location of all zeros of the basis elements

- Define a weakly holomorphic Drinfeld modular form of weight k and type m for $GL_2(A)$.
- Construct a canonical basis for the space of weakly holomorphic Drinfeld modular forms of weight k and type m for GL₂(A).
- investigate a generating function of the basis elements
- A duality of t-expansion coefficients of the basis elements
- Congruence properties of t-expansion coefficients of the basis elements
- The location of all zeros of the basis elements

- Define a weakly holomorphic Drinfeld modular form of weight k and type m for $GL_2(A)$.
- Construct a canonical basis for the space of weakly holomorphic Drinfeld modular forms of weight k and type m for GL₂(A).
- investigate a generating function of the basis elements
- A duality of *t*-expansion coefficients of the basis elements
- Congruence properties of t-expansion coefficients of the basis elements
- The location of all zeros of the basis elements

- Define a weakly holomorphic Drinfeld modular form of weight k and type m for $GL_2(A)$.
- Construct a canonical basis for the space of weakly holomorphic Drinfeld modular forms of weight k and type m for GL₂(A).
- investigate a generating function of the basis elements
- A duality of t-expansion coefficients of the basis elements
- Congruence properties of t-expansion coefficients of the basis elements
- The location of all zeros of the basis elements

- Define a weakly holomorphic Drinfeld modular form of weight k and type m for $GL_2(A)$.
- Construct a canonical basis for the space of weakly holomorphic Drinfeld modular forms of weight k and type m for $GL_2(A)$.
- investigate a generating function of the basis elements
- A duality of t-expansion coefficients of the basis elements
- Congruence properties of t-expansion coefficients of the basis elements
- The location of all zeros of the basis elements

- Define a weakly holomorphic Drinfeld modular form of weight k and type m for $GL_2(A)$.
- Construct a canonical basis for the space of weakly holomorphic Drinfeld modular forms of weight k and type m for $GL_2(A)$.
- investigate a generating function of the basis elements
- A duality of t-expansion coefficients of the basis elements
- Congruence properties of t-expansion coefficients of the basis elements
- The location of all zeros of the basis elements

- Define a weakly holomorphic Drinfeld modular form of weight k and type m for $GL_2(A)$.
- Construct a canonical basis for the space of weakly holomorphic Drinfeld modular forms of weight k and type m for $GL_2(A)$.
- investigate a generating function of the basis elements
- A duality of t-expansion coefficients of the basis elements
- Congruence properties of t-expansion coefficients of the basis elements
- The location of all zeros of the basis elements

- \mathbb{F}_q be the finite field of characteristic p with q elements,
- $A = \mathbb{F}_q[T]$ be the ring of polynomials in an indeterminate T,
- $K = \mathbb{F}_q(T)$ be the field of rational functions in an indeterminate T,
- $K_{\infty} = \mathbb{F}_q((1/T))$ be the completion of K at its infinite place,
- C be the completed algebraic closure of K_{∞} ,
- $\Omega = C K_{\infty}$ be the Drinfeld upper half-plane,
- $\mathfrak{T} := \{z \in \Omega : |z| = \inf\{|z a| : a \in A\} \ge 1\}$ the fundamental domain for $GL_2(A)$.

- \mathbb{F}_q be the finite field of characteristic p with q elements,
- $A = \mathbb{F}_{a}[T]$ be the ring of polynomials in an indeterminate T,
- $K = \mathbb{F}_q(T)$ be the field of rational functions in an indeterminate T,
- $K_{\infty} = \mathbb{F}_{q}((1/T))$ be the completion of K at its infinite place,
- C be the completed algebraic closure of K_{∞} ,
- $\Omega = C K_{\infty}$ be the Drinfeld upper half-plane,
- $\mathfrak{T} := \{z \in \Omega : |z| = \inf\{|z a| : a \in A\} \ge 1\}$ the

- \mathbb{F}_q be the finite field of characteristic p with q elements,
- $A = \mathbb{F}_q[T]$ be the ring of polynomials in an indeterminate T,
- $K = \mathbb{F}_q(T)$ be the field of rational functions in an indeterminate T,
- $K_{\infty} = \mathbb{F}_q((1/T))$ be the completion of K at its infinite place,
- C be the completed algebraic closure of K_{∞} ,
- $\Omega = C K_{\infty}$ be the Drinfeld upper half-plane,
- $\mathfrak{T} := \{z \in \Omega : |z| = \inf\{|z a| : a \in A\} \ge 1\}$ the fundamental domain for $GL_2(A)$.

- \mathbb{F}_q be the finite field of characteristic p with q elements,
- $A = \mathbb{F}_a[T]$ be the ring of polynomials in an indeterminate T,
- $K = \mathbb{F}_q(T)$ be the field of rational functions in an indeterminate T,
- $K_{\infty} = \mathbb{F}_{q}((1/T))$ be the completion of K at its infinite place,
- C be the completed algebraic closure of K_{∞} ,
- $\Omega = C K_{\infty}$ be the Drinfeld upper half-plane,
- $\mathfrak{T} := \{z \in \Omega : |z| = \inf\{|z a| : a \in A\} \ge 1\}$ the

- \mathbb{F}_q be the finite field of characteristic p with q elements,
- $A = \mathbb{F}_q[T]$ be the ring of polynomials in an indeterminate T,
- $K = \mathbb{F}_q(T)$ be the field of rational functions in an indeterminate T,
- $K_{\infty} = \mathbb{F}_{q}((1/T))$ be the completion of K at its infinite place,
- C be the completed algebraic closure of K_{∞} ,
- $\Omega = C K_{\infty}$ be the Drinfeld upper half-plane,
- $\mathfrak{T} := \{z \in \Omega : |z| = \inf\{|z a| : a \in A\} \ge 1\}$ the

- \mathbb{F}_q be the finite field of characteristic p with q elements,
- $A = \mathbb{F}_q[T]$ be the ring of polynomials in an indeterminate T,
- $K = \mathbb{F}_a(T)$ be the field of rational functions in an indeterminate T,
- $K_{\infty} = \mathbb{F}_q((1/T))$ be the completion of K at its infinite place,
- C be the completed algebraic closure of K_{∞} ,
- $\Omega = C K_{\infty}$ be the Drinfeld upper half-plane,
- $\mathfrak{T} := \{z \in \Omega : |z| = \inf\{|z a| : a \in A\} > 1\}$ the

- \mathbb{F}_q be the finite field of characteristic p with q elements,
- $A = \mathbb{F}_q[T]$ be the ring of polynomials in an indeterminate T,
- $K = \mathbb{F}_a(T)$ be the field of rational functions in an indeterminate T,
- $K_{\infty} = \mathbb{F}_q((1/T))$ be the completion of K at its infinite place,
- C be the completed algebraic closure of K_{∞} ,
- $\Omega = C K_{\infty}$ be the Drinfeld upper half-plane,
- $\mathfrak{T} := \{z \in \Omega : |z| = \inf\{|z a| : a \in A\} > 1\}$ the

A generating function and dualities

- \mathbb{F}_q be the finite field of characteristic p with q elements,
- $A = \mathbb{F}_q[T]$ be the ring of polynomials in an indeterminate T,
- $K = \mathbb{F}_a(T)$ be the field of rational functions in an indeterminate T,
- $K_{\infty} = \mathbb{F}_q((1/T))$ be the completion of K at its infinite place,
- C be the completed algebraic closure of K_{∞} ,
- $\Omega = C K_{\infty}$ be the Drinfeld upper half-plane,
- $\mathfrak{T} := \{z \in \Omega : |z| = \inf\{|z a| : a \in A\} > 1\}$ the

- \mathbb{F}_q be the finite field of characteristic p with q elements,
- $A = \mathbb{F}_a[T]$ be the ring of polynomials in an indeterminate T,
- $K = \mathbb{F}_{\sigma}(T)$ be the field of rational functions in an indeterminate T,
- $K_{\infty} = \mathbb{F}_q((1/T))$ be the completion of K at its infinite place,
- C be the completed algebraic closure of K_{∞} ,
- $\Omega = C K_{\infty}$ be the Drinfeld upper half-plane,
- $\mathfrak{T} := \{z \in \Omega : |z| = \inf\{|z a| : a \in A\} \ge 1\}$ the fundamental domain for $GL_2(A)$.

- \mathbb{F}_q be the finite field of characteristic p with q elements,
- $A = \mathbb{F}_a[T]$ be the ring of polynomials in an indeterminate T,
- $K = \mathbb{F}_{\sigma}(T)$ be the field of rational functions in an indeterminate T,
- $K_{\infty} = \mathbb{F}_q((1/T))$ be the completion of K at its infinite place,
- C be the completed algebraic closure of K_{∞} ,
- $\Omega = C K_{\infty}$ be the Drinfeld upper half-plane,
- $\mathfrak{T} := \{z \in \Omega : |z| = \inf\{|z a| : a \in A\} \ge 1\}$ the fundamental domain for $GL_2(A)$.

From now on, fix an integer m with $0 \le m < q - 1$. Let $k \in \mathbb{Z}$ with $k \equiv 2m \pmod{q-1}$.

Definition

A weakly holomorphic Drinfeld modular form of weight k and type m for $GL_2(A)$ is a C-valued holomorphic function $f: \Omega \to C$ that satisfies:

- (1) $f(\gamma z) = (\det \gamma)^{-m} (cz + d)^k f(z)$ for any $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(A)$
- (2) f is meromorphic at the cusp ∞ .

For convenience we denote by $M_{k,m}^!$ the space of weakly holomorphic Drinfeld modular forms of weight k and type m.

From now on, fix an integer m with $0 \le m < q - 1$. Let $k \in \mathbb{Z}$ with $k \equiv 2m \pmod{q-1}$.

Definition

A weakly holomorphic Drinfeld modular form of weight k and type m for $GL_2(A)$ is a C-valued holomorphic function $f:\Omega\to C$ that satisfies:

- (1) $f(\gamma z) = (det \gamma)^{-m} (cz + d)^k f(z)$ for any $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(A)$,
- (2) f is meromorphic at the cusp ∞ .

For convenience we denote by $M_{k,m}^!$ the space of weakly holomorphic Drinfeld modular forms of weight k and type m.

From now on, fix an integer m with $0 \le m < q - 1$. Let $k \in \mathbb{Z}$ with $k \equiv 2m \pmod{q-1}$.

Definition

A weakly holomorphic Drinfeld modular form of weight k and type *m* for $GL_2(A)$ is a C-valued holomorphic function $f: \Omega \to C$ that satisfies:

- (2) f is meromorphic at the cusp ∞ .

For convenience we denote by $M_{k,m}^!$ the space of weakly holomorphic Drinfeld modular forms of weight k and type m.

From now on, fix an integer m with $0 \le m < q - 1$. Let $k \in \mathbb{Z}$ with $k \equiv 2m \pmod{q-1}$.

Definition

A weakly holomorphic Drinfeld modular form of weight k and type m for $GL_2(A)$ is a C-valued holomorphic function $f: \Omega \to C$ that satisfies:

- (1) $f(\gamma z) = (det \gamma)^{-m} (cz + d)^k f(z)$ for any $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(A)$,
- (2) f is meromorphic at the cusp ∞ .

For convenience we denote by $M_{k,m}^!$ the space of weakly holomorphic Drinfeld modular forms of weight k and type m.

From now on, fix an integer m with $0 \le m < q - 1$. Let $k \in \mathbb{Z}$ with $k \equiv 2m \pmod{q-1}$.

Definition

A weakly holomorphic Drinfeld modular form of weight k and type m for $GL_2(A)$ is a C-valued holomorphic function $f: \Omega \to C$ that satisfies:

- (1) $f(\gamma z) = (det \gamma)^{-m} (cz + d)^k f(z)$ for any $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(A)$,
- (2) f is meromorphic at the cusp ∞ .

For convenience we denote by $M_{k}^{!}$ the space of weakly holomorphic Drinfeld modular forms of weight k and type m. We denote by e the Carlitz exponential which is defined by

$$e(z) = z \prod_{\lambda \in L} (1 - \frac{z}{\lambda})$$

$$t(z) = 1/e(\tilde{\pi}z)$$

A function field case

We denote by e the Carlitz exponential which is defined by

$$e(z) = z \prod_{\lambda \in L} (1 - \frac{z}{\lambda})$$

$$t(z) = 1/e(\tilde{\pi}z).$$

A function field case

We denote by e the Carlitz exponential which is defined by

$$e(z) = z \prod_{\lambda \in L} (1 - \frac{z}{\lambda})$$

$$t(z) = 1/e(\tilde{\pi}z).$$

We denote by e the Carlitz exponential which is defined by

 $e(z)=z\prod(1-\frac{z}{\lambda})$

$$e(z) = z \prod_{\lambda \in L} (1 - \frac{z}{\lambda})$$

$$t(z) = 1/e(\tilde{\pi}z).$$

A function field case

We denote by e the Carlitz exponential which is defined by

$$e(z) = z \prod_{\lambda \in L} (1 - \frac{z}{\lambda})$$

and consider the parameter t at infinity defined by

$$t(z) = 1/e(\tilde{\pi}z).$$

Here $L = \tilde{\pi}A$ is the lattice of periods of the Carlitz module

A function field case

We denote by e the Carlitz exponential which is defined by

$$e(z) = z \prod_{\lambda \in L} (1 - \frac{z}{\lambda})$$

and consider the parameter t at infinity defined by

$$t(z) = 1/e(\tilde{\pi}z).$$

Here $L = \tilde{\pi}A$ is the lattice of periods of the Carlitz module

Remark

If $f \in M^!_{k,m}$ then $f(z) = \sum_{n \geq n_0} a_n t^{(q-1)n+m}$ with $a_{n_0} \neq 0$, $(a_n \in C)$.

Remark

If $f \in M^!_{k,m}$ then $f(z) = \sum_{n \geq n_0} a_n t^{(q-1)n+m}$ with $a_{n_0} \neq 0$, $(a_n \in C)$.

Define ord_{∞} $f = (q-1)n_0 + m$.

Remark

 $GL_2(A)$ has only one cusp ∞ and the genus of $GL_2(A)$ is zero.

Remark

If $f \in M^!_{k,m}$ then $f(z) = \sum_{n \geq n_0} a_n t^{(q-1)n+m}$ with $a_{n_0} \neq 0$, $(a_n \in C)$.

Define ord_{∞} $f = (q-1)n_0 + m$.

Remark

 $GL_2(A)$ has only one cusp ∞ and the genus of $GL_2(A)$ is zero.

A generating function and dualities

Weakly holomorphic Drinfeld modular forms

Let k be an integer with $k \equiv 2m \pmod{q-1}$ and write

$$k = (q^2 - 1)l_k + m(q + 1) + r_k(q - 1)$$

Let k be an integer with $k \equiv 2m \pmod{q-1}$ and write

$$k = (q^2 - 1)l_k + m(q + 1) + r_k(q - 1)$$

Let k be an integer with $k \equiv 2m \pmod{q-1}$ and write

$$k = (q^2 - 1)I_k + m(q + 1) + r_k(q - 1)$$

Let k be an integer with $k \equiv 2m \pmod{q-1}$ and write

$$k = (q^2 - 1)I_k + m(q + 1) + r_k(q - 1)$$

Basis for the space of weakly holomorphic Drinfeld modular forms

Theorem (Choi)

For $f \neq 0 \in M_{k,m}^!$ we have that $ord_{\infty}f \leq (q-1)l_k + m$.

Theorem (Choi)

For each integer $n \ge -l_k$, there exists a unique $f_{k,n} \in M_{k,m}^!$ with the t-expansion of the form

$$f_{k,n}(z) = t^{(q-1)(-n)+m} + O(t^{(q-1)(l_k+1)+m})$$

Theorem (Choi)

For $f \neq 0 \in M_{k,m}^!$ we have that $ord_{\infty}f \leq (q-1)l_k + m$.

Theorem (Choi)

For each integer $n \ge -l_k$, there exists a unique $f_{k,n} \in M_{k,m}^!$ with the t-expansion of the form

$$f_{k,n}(z) = t^{(q-1)(-n)+m} + O(t^{(q-1)(l_k+1)+m})$$

Theorem (Choi)

For $f \neq 0 \in M_{k,m}^!$ we have that $\operatorname{ord}_{\infty} f \leq (q-1)l_k + m$.

Theorem (Choi)

For each integer $n \ge -l_k$, there exists a unique $f_{k,n} \in M_{k,m}^!$ with the t-expansion of the form

$$f_{k,n}(z) = t^{(q-1)(-n)+m} + O(t^{(q-1)(l_k+1)+m}).$$

Theorem (Choi)

For $f \neq 0 \in M_{k,m}^!$ we have that $\operatorname{ord}_{\infty} f \leq (q-1)l_k + m$.

Theorem (Choi)

For each integer $n \ge -l_k$, there exists a unique $f_{k,n} \in M_{k,m}^!$ with the t-expansion of the form

$$f_{k,n}(z) = t^{(q-1)(-n)+m} + O(t^{(q-1)(l_k+1)+m}).$$

Let h be the Poincaré series of weight q+1 and type 1.

$$h(z) = -t + \sum_{n \ge 0} a_n t^{(q-1)n+1}, \quad (a_n \in A).$$

Let g be the normalized Eisenstein series of wight q-1 and

Then
$$g(z) = 1 + \sum_{n>0} b_n t^{(q-1)n}, \quad (b_n \in A)$$

$$j(z) = -1/t^{q-1} + \sum_{n \geq 0} c_n t^{(q-1)n}, \quad (c_n \in A)$$

A generating function and dualities

Let h be the Poincaré series of weight q+1 and type 1. Then

$$h(z) = -t + \sum_{n>0} a_n t^{(q-1)n+1}, \quad (a_n \in A).$$

Let g be the normalized Eisenstein series of wight q-1 and

Then
$$g(z) = 1 + \sum_{n>0} b_n t^{(q-1)n}, \quad (b_n \in A)$$

$$j(z) = -1/t^{q-1} + \sum_{n \geq 0} c_n t^{(q-1)n}, \quad (c_n \in A)$$

Let h be the Poincaré series of weight q+1 and type 1. Then

$$h(z) = -t + \sum_{n>0} a_n t^{(q-1)n+1}, \quad (a_n \in A).$$

Let g be the normalized Eisenstein series of wight q-1 and type 0.

Then
$$g(z) = 1 + \sum_{n>0} b_n t^{(q-1)n}$$
, $(b_n \in A)$
Let j be the Drinfeld j -invariant

$$j(z) = -1/t^{q-1} + \sum_{n>0} c_n t^{(q-1)n}, \quad (c_n \in A)$$

A generating function and dualities

Let h be the Poincaré series of weight q+1 and type 1. Then

$$h(z) = -t + \sum_{n>0} a_n t^{(q-1)n+1}, \quad (a_n \in A).$$

Let g be the normalized Eisenstein series of wight q-1 and type 0.

Then
$$g(z) = 1 + \sum_{n>0} b_n t^{(q-1)n}, \quad (b_n \in A)$$

$$j(z) = -1/t^{q-1} + \sum_{n>0} c_n t^{(q-1)n}, \quad (c_n \in A)$$

Let h be the Poincaré series of weight q+1 and type 1. Then

$$h(z) = -t + \sum_{n>0} a_n t^{(q-1)n+1}, \quad (a_n \in A).$$

Let g be the normalized Eisenstein series of wight q-1 and type 0.

Then
$$g(z) = 1 + \sum_{n>0} b_n t^{(q-1)n}$$
, $(b_n \in A)$
Let j be the Drinfeld j -invariant

$$j(z) = -1/t^{q-1} + \sum_{n>0} c_n t^{(q-1)n}, \quad (c_n \in A)$$

A generating function and dualities

Let h be the Poincaré series of weight q+1 and type 1. Then

$$h(z) = -t + \sum_{n>0} a_n t^{(q-1)n+1}, \quad (a_n \in A).$$

Let g be the normalized Eisenstein series of wight q-1 and type 0.

Then
$$g(z) = 1 + \sum_{n>0} b_n t^{(q-1)n}, \quad (b_n \in A)$$

Let *j* be the Drinfeld *j*-invariant

Then

$$j(z) = -1/t^{q-1} + \sum_{n>0} c_n t^{(q-1)n}, \quad (c_n \in A)$$

A generating function and dualities

Let h be the Poincaré series of weight q+1 and type 1. Then

$$h(z) = -t + \sum_{n>0} a_n t^{(q-1)n+1}, \quad (a_n \in A).$$

Let g be the normalized Eisenstein series of wight q-1 and type 0.

Then
$$g(z) = 1 + \sum_{n>0} b_n t^{(q-1)n}, \quad (b_n \in A)$$

Let *j* be the Drinfeld *j*-invariant

Then

$$j(z) = -1/t^{q-1} + \sum_{n>0} c_n t^{(q-1)n}, \quad (c_n \in A)$$

We construct $f_{k,n}$ explicitly in terms of h, g, j as follows:

 $(-h)^{(q-1)l_k+m}g^{r_k}=t^{(q-1)l_k+m}+O(t^{(q-1)(l_k+1)+m})\in M_{k,m}!$ which gives $f_{k_1-l_2} = (-h)^{(q-1)l_k+m} g^{r_k}$. To construct $f_{k,-l_k+1}$ we multiply $f_{k,-l_k}$ by -j. We have $f_{k-l}(z)(-i(z)) - \alpha f_{k-l}(z) =$

We construct $f_{k,n}$ explicitly in terms of h, g, j as follows: We have that $(-h)^{(q-1)l_k+m}g^{r_k}=t^{(q-1)l_k+m}+O(t^{(q-1)(l_k+1)+m})\in M_{k,m}!$ which gives $f_{k_1-l_2} = (-h)^{(q-1)l_k+m} g^{r_k}$. To construct $f_{k,-l_k+1}$ we multiply $f_{k,-l_k}$ by -j. We have

$$\alpha \in A$$

$$f_{k,-l_k}(z)(-j(z)) - \alpha f_{k,-l_k}(z) = t^{(q-1)(l_k-1)+m} + O(t^{(q-1)(l_k+1)+m})$$
 and

$$f_{k,-l_k+1} = f_{k,-l_k}(-j-\alpha)$$

We construct $f_{k,n}$ explicitly in terms of h, g, j as follows: We have that $(-h)^{(q-1)l_k+m}g^{r_k}=t^{(q-1)l_k+m}+O(t^{(q-1)(l_k+1)+m})\in M_{k,m}!$ which gives $f_{k,-l_{k}} = (-h)^{(q-1)l_{k}+m} g^{r_{k}}$. To construct $f_{k,-l_k+1}$ we multiply $f_{k,-l_k}$ by -j. We have

We construct $f_{k,n}$ explicitly in terms of h, g, j as follows: We have that $(-h)^{(q-1)l_k+m}g^{r_k}=t^{(q-1)l_k+m}+O(t^{(q-1)(l_k+1)+m})\in M_{k,m}!$ which gives $f_{k,-l_{k}} = (-h)^{(q-1)l_{k}+m} g^{r_{k}}$. To construct $f_{k,-l_k+1}$ we multiply $f_{k,-l_k}$ by -j. We have $f_{k,-l_{i}}(z)(-i(z)) =$ $t^{(q-1)(l_k-1)+m} + \alpha t^{(q-1)l_k+m} + O(t^{(q-1)(l_k+1)+m})$ for some $\alpha \in A$

$$f_{k,-l_k}(z)(-j(z)) - \alpha f_{k,-l_k}(z) = t^{(q-1)(l_k-1)+m} + O(t^{(q-1)(l_k+1)+m})$$
 and

$$f_{k,-l_k+1} = f_{k,-l_k}(-j-\alpha)$$

We construct $f_{k,n}$ explicitly in terms of h, g, j as follows: We have that $(-h)^{(q-1)l_k+m}g^{r_k}=t^{(q-1)l_k+m}+O(t^{(q-1)(l_k+1)+m})\in M_{k,m}!$ which gives $f_{k,-l_{k}} = (-h)^{(q-1)l_{k}+m} g^{r_{k}}$. To construct $f_{k,-l_k+1}$ we multiply $f_{k,-l_k}$ by -j. We have $f_{k,-l_{i}}(z)(-i(z)) =$ $t^{(q-1)(l_k-1)+m} + \alpha t^{(q-1)l_k+m} + O(t^{(q-1)(l_k+1)+m})$ for some $\alpha \in A$ which gives

$$f_{k,-l_k}(z)(-j(z)) - \alpha f_{k,-l_k}(z) = t^{(q-1)(l_k-1)+m} + O(t^{(q-1)(l_k+1)+m})$$
 and $f_{k,-l_k+1} = f_{k,-l_k}(-j-\alpha)$

We construct $f_{k,n}$ explicitly in terms of h, g, j as follows: We have that $(-h)^{(q-1)l_k+m}g^{r_k}=t^{(q-1)l_k+m}+O(t^{(q-1)(l_k+1)+m})\in M_{k,m}!$ which gives $f_{k,-l_{k}} = (-h)^{(q-1)l_{k}+m} g^{r_{k}}$. To construct $f_{k,-l_k+1}$ we multiply $f_{k,-l_k}$ by -j. We have $f_{k-1}(z)(-i(z)) =$ $t^{(q-1)(l_k-1)+m} + \alpha t^{(q-1)l_k+m} + O(t^{(q-1)(l_k+1)+m})$ for some $\alpha \in A$ which gives $f_{k,-l_k}(z)(-j(z)) - \alpha f_{k,-l_k}(z) =$ $t^{(q-1)(l_k-1)+m} + O(t^{(q-1)(l_k+1)+m})$ and $f_{k,-l_{k}+1} = f_{k,-l_{k}}(-i-\alpha).$

We construct $f_{k,n}$ explicitly in terms of h, g, j as follows: We have that $(-h)^{(q-1)l_k+m}g^{r_k}=t^{(q-1)l_k+m}+O(t^{(q-1)(l_k+1)+m})\in M_{k,m}!$ which gives $f_{k,-l_{k}} = (-h)^{(q-1)l_{k}+m} g^{r_{k}}$. To construct $f_{k,-l_k+1}$ we multiply $f_{k,-l_k}$ by -j. We have $f_{k-1}(z)(-i(z)) =$ $t^{(q-1)(l_k-1)+m} + \alpha t^{(q-1)l_k+m} + O(t^{(q-1)(l_k+1)+m})$ for some $\alpha \in A$ which gives $f_{k,-l_k}(z)(-j(z)) - \alpha f_{k,-l_k}(z) =$ $t^{(q-1)(l_k-1)+m} + O(t^{(q-1)(l_k+1)+m})$ and $f_{k,-l_{k}+1} = f_{k,-l_{k}}(-i-\alpha).$

That is, for each $n \ge 1$, we obtain $f_{k,-l_k+n}$ by multiplying $f_{k,-l_k+n-1}$ by -j and then subtracting off multiples of $f_{k,-l_k+d}$ to successively kill the coefficients of $t^{(q-1)(l_k-d)+m}$ for 0 < d < n - 1.

By this process we find the $f_{k,n}$ for each integer $n \ge -l_k$.

- $f_{k,n} = (-h)^{(q-1)l_k+m} g^{r_k} P_{k,n+l_k}(-j)$ for a unique polynomial
- The elements $f_{k,n}$ have t-expansion coefficients in A.
- The elements $f_{k,n}$ form a basis for $M_{k,n}^!$.

That is, for each $n \ge 1$, we obtain $f_{k,-l_k+n}$ by multiplying $f_{k,-l_k+n-1}$ by -j and then subtracting off multiples of $f_{k,-l_k+d}$ to successively kill the coefficients of $t^{(q-1)(l_k-d)+m}$ for 0 < d < n - 1.

By this process we find the $f_{k,n}$ for each integer $n \ge -l_k$.

- $f_{k,n} = (-h)^{(q-1)l_k+m} g^{r_k} P_{k,n+l_k}(-j)$ for a unique polynomial
- The elements $f_{k,n}$ have t-expansion coefficients in A.
- The elements $f_{k,n}$ form a basis for $M_{k,n}^!$.

That is, for each $n \ge 1$, we obtain $f_{k,-l_k+n}$ by multiplying $f_{k,-l_k+n-1}$ by -j and then subtracting off multiples of $f_{k,-l_k+d}$ to successively kill the coefficients of $t^{(q-1)(l_k-d)+m}$ for 0 < d < n - 1.

By this process we find the $f_{k,n}$ for each integer $n \ge -l_k$.

- $f_{k,n} = (-h)^{(q-1)l_k+m} g^{r_k} P_{k,n+l_k}(-j)$ for a unique polynomial
- The elements $f_{k,n}$ have t-expansion coefficients in A.
- The elements $f_{k,n}$ form a basis for $M_{k,n}^!$.

That is, for each $n \ge 1$, we obtain $f_{k,-l_k+n}$ by multiplying $f_{k,-l_k+n-1}$ by -j and then subtracting off multiples of $f_{k,-l_k+d}$ to successively kill the coefficients of $t^{(q-1)(l_k-d)+m}$ for 0 < d < n - 1.

By this process we find the $f_{k,n}$ for each integer $n \ge -l_k$.

- $f_{k,n} = (-h)^{(q-1)l_k+m} g^{r_k} P_{k,n+l_k} (-j)$ for a unique polynomial $P_{k,n+l_k}(x) \in A[x]$ of degree $n+l_k$.
- The elements $f_{k,n}$ have t-expansion coefficients in A.
- The elements $f_{k,n}$ form a basis for $M_{k,m}^!$

That is, for each $n \ge 1$, we obtain $f_{k,-l_k+n}$ by multiplying $f_{k,-l_k+n-1}$ by -j and then subtracting off multiples of $f_{k,-l_k+d}$ to successively kill the coefficients of $t^{(q-1)(l_k-d)+m}$ for 0 < d < n - 1.

By this process we find the $f_{k,n}$ for each integer $n \ge -l_k$.

- $f_{k,n} = (-h)^{(q-1)l_k+m} g^{r_k} P_{k,n+l_k} (-j)$ for a unique polynomial $P_{k,n+l_k}(x) \in A[x]$ of degree $n+l_k$.
- The elements $f_{k,n}$ have t-expansion coefficients in A.
- The elements $f_{k,n}$ form a basis for $M_{k,n}^!$

That is, for each $n \geq 1$, we obtain $f_{k,-l_k+n}$ by multiplying $f_{k,-l_k+n-1}$ by -j and then subtracting off multiples of $f_{k,-l_k+d}$ to successively kill the coefficients of $t^{(q-1)(l_k-d)+m}$ for $0 \leq d \leq n-1$.

By this process we find the $f_{k,n}$ for each integer $n \ge -I_k$.

- $f_{k,n} = (-h)^{(q-1)l_k+m} g^{r_k} P_{k,n+l_k}(-j)$ for a unique polynomial $P_{k,n+l_k}(x) \in A[x]$ of degree $n+l_k$.
- The elements $f_{k,n}$ have t-expansion coefficients in A.
- The elements $f_{k,n}$ form a basis for $M_{k,m}^!$

That is, for each $n \ge 1$, we obtain $f_{k,-l_k+n}$ by multiplying $f_{k,-l_k+n-1}$ by -j and then subtracting off multiples of $f_{k,-l_k+d}$ to successively kill the coefficients of $t^{(q-1)(l_k-d)+m}$ for 0 < d < n - 1.

By this process we find the $f_{k,n}$ for each integer $n \ge -l_k$.

- $f_{k,n} = (-h)^{(q-1)l_k+m} g^{r_k} P_{k,n+l_k} (-j)$ for a unique polynomial $P_{k,n+l_k}(x) \in A[x]$ of degree $n+l_k$.
- The elements $f_{k,n}$ have t-expansion coefficients in A.
- The elements $f_{k,n}$ form a basis for $M_{k,m}^!$

A generating function

Theorem (Choi)

For each integer k with $k \equiv 2m \pmod{q-1}$, we have that

$$\sum_{n\geq -l_k} f_{k,n}(\tau)t(z)^{(q-1)n+1-m} = \frac{g(z)^q f_{k,-l_k}(\tau)}{(j(z)-j(\tau))h(z)^{q-2} f_{k,-l_k}(z)}$$

 $(2,7 \in 32)$

A generating function

Theorem (Choi)

For each integer k with $k \equiv 2m \pmod{q-1}$, we have that

$$\sum_{n\geq -l_k} f_{k,n}(\tau)t(z)^{(q-1)n+1-m} = \frac{g(z)^q f_{k,-l_k}(\tau)}{(j(z)-j(\tau))h(z)^{q-2} f_{k,-l_k}(z)}$$

Theorem (Choi)

For each integer k with $k \equiv 2m \pmod{q-1}$, we have that

$$\sum_{n \geq -l_k} f_{k,n}(\tau) t(z)^{(q-1)n+1-m} = \frac{g(z)^q f_{k,-l_k}(\tau)}{(j(z)-j(\tau))h(z)^{q-2} f_{k,-l_k}(z)}$$

$$(z, \tau \in \Omega).$$

Theorem (Choi)

For each integer k with $k \equiv 2m \pmod{q-1}$, we have that

$$\sum_{n \geq -l_k} f_{k,n}(\tau) t(z)^{(q-1)n+1-m} = \frac{g(z)^q f_{k,-l_k}(\tau)}{(j(z)-j(\tau))h(z)^{q-2} f_{k,-l_k}(z)}$$

$$(z, \tau \in \Omega).$$

A generating function and dualities

Theorem (Choi)

Let $f_{k,n}(z) = \sum_{r \ge -n} a_k(n,r) t^{(q-1)r+m}$. Then we have that

- (1) if 1 < m < q-1 then $-a_{2-k}(r, s-1) = a_k(s, r-1)$ for all r, s.

A Duality

Theorem (Choi)

Let $f_{k,n}(z) = \sum_{r \ge -n} a_k(n,r) t^{(q-1)r+m}$. Then we have that

(1) if
$$1 < m < q-1$$
 then $-a_{2-k}(r,s-1) = a_k(s,r-1)$ for all r,s .

(2) if
$$m = 0$$
 or 1 then $-a_{2-k}(r,s) = a_k(s,r)$ for all r,s .

A Duality

Theorem (Choi)

Let $f_{k,n}(z) = \sum_{r>-n} a_k(n,r) t^{(q-1)r+m}$. Then we have that

(1) if
$$1 < m < q-1$$
 then $-a_{2-k}(r,s-1) = a_k(s,r-1)$ for all r,s .

(2) if
$$m = 0$$
 or 1 then $-a_{2-k}(r, s) = a_k(s, r)$ for all r, s .

A Duality

Theorem (Choi)

Let $f_{k,n}(z) = \sum_{r>-n} a_k(n,r) t^{(q-1)r+m}$. Then we have that

(1) if
$$1 < m < q-1$$
 then $-a_{2-k}(r,s-1) = a_k(s,r-1)$ for all r,s .

(2) if
$$m = 0$$
 or 1 then $-a_{2-k}(r, s) = a_k(s, r)$ for all r, s .

Definition

For a positive integer k with $k \equiv 0 \pmod{q-1}$,

$$E_k(z) = 1 - \frac{1}{E_k(L)} \sum_{\text{a monic}} G_k(t(az)),$$

where $E_k(L) \in K$ is the Eisenstein series of weight k for the lattice L and G_k is the k-th Goss polynomial of L.

Then $E_k(z)$ is a Drinfeld modular form of weight k and type 0 for $GL_2(A)$.

Definition

For a positive integer k with $k \equiv 0 \pmod{q-1}$,

$$E_k(z) = 1 - \frac{1}{E_k(L)} \sum_{\text{a monic}} G_k(t(az)),$$

where $E_k(L) \in K$ is the Eisenstein series of weight k for the lattice L and G_k is the k-th Goss polynomial of L.

Then $E_k(z)$ is a Drinfeld modular form of weight k and type 0 for

Definition

For a positive integer k with $k \equiv 0 \pmod{q-1}$,

$$E_k(z) = 1 - \frac{1}{E_k(L)} \sum_{\text{a monic}} G_k(t(az)),$$

where $E_k(L) \in K$ is the Eisenstein series of weight k for the lattice L and G_k is the k-th Goss polynomial of L.

Then $E_k(z)$ is a Drinfeld modular form of weight k and type 0 for

Definition

For a positive integer k with $k \equiv 0 \pmod{q-1}$,

$$E_k(z) = 1 - \frac{1}{E_k(L)} \sum_{\text{a monic}} G_k(t(az)),$$

where $E_k(L) \in K$ is the Eisenstein series of weight k for the lattice L and G_k is the k-th Goss polynomial of L.

Then $E_k(z)$ is a Drinfeld modular form of weight k and type 0 for

Definition

For a positive integer k with $k \equiv 0 \pmod{q-1}$,

$$E_k(z) = 1 - \frac{1}{E_k(L)} \sum_{\text{a monic}} G_k(t(az)),$$

where $E_k(L) \in K$ is the Eisenstein series of weight k for the lattice L and G_k is the k-th Goss polynomial of L.

Then $E_k(z)$ is a Drinfeld modular form of weight k and type 0 for $GL_2(A)$.

Definition

For a positive integer k with $k \equiv 0 \pmod{q-1}$,

$$E_k(z) = 1 - \frac{1}{E_k(L)} \sum_{\text{a monic}} G_k(t(az)),$$

where $E_k(L) \in K$ is the Eisenstein series of weight k for the lattice L and G_k is the k-th Goss polynomial of L.

Then $E_k(z)$ is a Drinfeld modular form of weight k and type 0 for $GL_2(A)$.

For a positive integer k with $k \equiv 0 \pmod{q-1}$, let $p_k(T), q_k(T) \in A$ such that $(p_k(T), q_k(T)) = A$ and

$$E_k(z) = 1 - p_k(T)/q_k(T) \sum_{k=1}^{n} a(n)t^{(q-1)n+m}$$

For a positive integer k with $k \equiv 0 \pmod{q-1}$,

let $p_k(T), q_k(T) \in A$ such that $(p_k(T), q_k(T)) = A$ and

$$E_k(z) = 1 - p_k(T)/q_k(T) \sum_{i=1}^{n} a(n)t^{(q-1)n+m}$$

For a positive integer k with $k \equiv 0 \pmod{q-1}$, let $p_k(T), q_k(T) \in A$ such that $(p_k(T), q_k(T)) = A$ and

$$E_k(z) = 1 - p_k(T)/q_k(T) \sum_{n>1} a(n)t^{(q-1)n+m}$$

For a positive integer k with $k \equiv 0 \pmod{q-1}$, let $p_k(T), q_k(T) \in A$ such that $(p_k(T), q_k(T)) = A$ and

$$E_k(z) = 1 - p_k(T)/q_k(T) \sum_{n>1} a(n)t^{(q-1)n+m}$$

For a positive integer k with $k \equiv 0 \pmod{q-1}$, let $p_k(T), q_k(T) \in A$ such that $(p_k(T), q_k(T)) = A$ and

$$E_k(z) = 1 - p_k(T)/q_k(T) \sum_{n>1} a(n)t^{(q-1)n+m}$$

Theorem (Choi)

Let k be a positive integer with $k \equiv 0 \pmod{q-1}$.

$$f_{k,0}(z) = 1 + \sum_{r} a_k(0,r) t^{(q-1)r}.$$

Then a polynomial $p_k(T)$ divides $a_k(0, r)$ for all $r \ge l_k + 1$.

Theorem (Choi)

Let k be a positive integer with $k \equiv 0 \pmod{q-1}$.

We define the coefficients $a_k(0, r)$ by

$$f_{k,0}(z) = 1 + \sum_{r} a_k(0,r) t^{(q-1)r}.$$

Theorem (Choi)

Let k be a positive integer with $k \equiv 0 \pmod{q-1}$.

We define the coefficients $a_k(0, r)$ by

$$f_{k,0}(z) = 1 + \sum_{r} a_k(0,r) t^{(q-1)r}.$$

Then a polynomial $p_k(T)$ divides $a_k(0,r)$ for all $r \geq l_k + 1$.

Theorem (Choi)

Let k be a positive integer with $k \equiv 0 \pmod{q-1}$.

We define the coefficients $a_k(0, r)$ by

$$f_{k,0}(z) = 1 + \sum_{r} a_k(0,r) t^{(q-1)r}.$$

Then a polynomial $p_k(T)$ divides $a_k(0,r)$ for all $r \geq l_k + 1$.

Congruences

Theorem (Choi)

Let
$$k = (q-1)\alpha$$
 with $0 \le \alpha < q$, and

$$f_{k,1}(z) = 1/t^{(q-1)} + \sum_{n\geq 1} a_k(1,n)t^{(q-1)n}.$$

$$a_k(1, q\beta - 1) \equiv 0 \pmod{\mathfrak{p}}$$

Congruences

Theorem (Choi)

Let $k = (q-1)\alpha$ with $0 \le \alpha < q$, and

$$f_{k,1}(z) = 1/t^{(q-1)} + \sum_{n>1} a_k(1,n)t^{(q-1)n}.$$

Then we have that for all positive integer β

$$a_k(1, q\beta - 1) \equiv 0 \pmod{\mathfrak{p}},$$

where p is a monic polynomial of degree 1.

Congruences

Theorem (Choi)

Let $k = (q-1)\alpha$ with $0 \le \alpha < q$, and

$$f_{k,1}(z) = 1/t^{(q-1)} + \sum_{n>1} a_k(1,n)t^{(q-1)n}.$$

Then we have that for all positive integer β

$$a_k(1, q\beta - 1) \equiv 0 \pmod{\mathfrak{p}},$$

where p is a monic polynomial of degree 1.

Assume that $k \equiv 0 \pmod{q-1}$. Let l_k and r_k as before. Suppose either if $r_k = 0$ or if $r_k \neq 0$ and $n \geq -l_k$ is such that

Theorem (Choi and Im 2014)

Assume that $k \equiv 0 \pmod{q-1}$. Let l_k and r_k as before. Suppose either if $r_k = 0$ or if $r_k \neq 0$ and $n \geq -l_k$ is such that $\binom{n+l_k+r_k}{r_k} \neq 0$ in \mathbb{F}_q , then the zeros of $f_{k,n}$ in \mathfrak{T} are on the unit circle |z|=1.

Theorem (Choi and Im 2014)

Assume that $k \equiv 0 \pmod{q-1}$. Let l_k and r_k as before. Suppose either if $r_k = 0$ or if $r_k \neq 0$ and $n \geq -l_k$ is such that $\binom{n+l_k+r_k}{r_k} \neq 0$ in \mathbb{F}_q , then the zeros of $f_{k,n}$ in \mathfrak{T} are on the unit circle |z|=1.

Example

Let $a = p^s$ with s > 0

For each i with $1 \le i \le r_k$, let n(i) be the unique nonnegative integer such that

$$p^{n(i)}||i.$$

Let

 $l=\max\{n(i)|1\leq i\leq r_k\}$. For each integer t>l and every integer $\beta>0$ letting $n=\beta p^t-l_k$, we have $p^{n(i)}||n+l_k+i$. Hence

$$\binom{n+l_k+r_k}{r_k} \neq 0$$
 in \mathbb{F}_q .

Example

Let $q = p^s$ with s > 0

For each i with $1 \le i \le r_k$, let n(i) be the unique nonnegative integer such that

$$p^{n(i)}||i.$$

 $I = max\{n(i)|1 \le i \le r_k\}$. For each integer t > l and every integer

$$\binom{n+l_k+r_k}{r_k} \neq 0 \text{ in } \mathbb{F}_q$$

Example

Let $q = p^s$ with s > 0

For each i with $1 \le i \le r_k$, let n(i) be the unique nonnegative integer such that

$$p^{n(i)}||i.$$

Let

 $I = \max\{n(i)|1 \le i \le r_k\}$. For each integer t > l and every integer

$$\begin{pmatrix} n+l_k+r_k \\ r_k \end{pmatrix} \neq 0 \text{ in } \mathbb{F}_q$$

Example

Let $q = p^s$ with s > 0

For each i with $1 \le i \le r_k$, let n(i) be the unique nonnegative integer such that

$$p^{n(i)}||i.$$

Let

 $I = max\{n(i)|1 \le i \le r_k\}$. For each integer t > l and every integer $\beta > 0$ letting $n = \beta p^t - I_k$, we have $p^{n(i)} || n + I_k + i$. Hence

$$\begin{pmatrix} n+l_k+r_k \\ r_k \end{pmatrix} \neq 0 \text{ in } \mathbb{F}_q.$$

Remark (Kazalicki 2008)

For each $n \ge 1$ let j_n be the Drinfeld modular function with the t-expansion of the form

$$j_n(z) = t^{-n(q-1)} + \sum_{i=1}^{\infty} c_n(i)t^{i(q-1)}.$$

Then the zeros of j_n in \mathfrak{T} are on the unit circle |z|=1.

Note :
$$j_n = f_{0,n}$$
.

Remark (Kazalicki 2008)

For each $n \ge 1$ let j_n be the Drinfeld modular function with the t-expansion of the form

$$j_n(z) = t^{-n(q-1)} + \sum_{i=1}^{\infty} c_n(i)t^{i(q-1)}.$$

Then the zeros of j_n in \mathfrak{T} are on the unit circle |z|=1.

Note :
$$j_n = f_{0,n}$$
.

Remark (Kazalicki 2008)

For each $n \ge 1$ let j_n be the Drinfeld modular function with the t-expansion of the form

$$j_n(z) = t^{-n(q-1)} + \sum_{i=1}^{\infty} c_n(i)t^{i(q-1)}.$$

Then the zeros of j_n in \mathfrak{T} are on the unit circle |z|=1.

Note :
$$j_n = f_{0,n}$$
.

Thank you!