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@ F= function field of smooth projective curve C over I,

oo = fixed place of F

A C F = functions regular away from oo

L= field equipped with A-algebra structure v: A — L
A-characteristic of L is chara(L) = ker(v)

T:x > x9

L[r]=skew polynomial ring with 7b = b97, b€ L

My(L[7])= ring of d x d matrices with entries in L[7] = Enqu(Gg,L)

Action on the tangent space Lie(G¢ )

8+ My(L[r]) — Ma(L)

Z B,'Ti — BO
i>0
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D=central division algebra over F of dimension d?

Ram(D) = {v place of F | D® F, % Mq(F,)}

Assume oo ¢ Ram(D)

t(D) = [Iperam(p) b discriminant of D

Op=maximal A-order in D (note that A is the center of Op)
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Definition of Drinfeld-Stuhler modules

Assume chara(L) 1 t(D).

Drinfeld-Stuhler Op-module over L is an embedding

¢ Op — My(L[7])
br— (bb
satisfying the following conditions:

(i) For any 0 # b € Op the kernel ¢[b] := ker ¢, of the endomorphism ¢, of
GZ’L is a finite group scheme over L of order #(Op/Op - b).
(i) The composition

A= Op & My(Lr]) S My(L)
maps a € A to diag(y(a),...,v(a)).

e Morphisms: Hom(¢,v) := {u € My(L[7]) | upp = ¢pu for all b€ Op}
@ Isogeny is a morphism with finite kernel
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Comments

Q@ If d =1, so that D = F, we get Drinfeld A-modules of rank 1.

@ The idea of Drinfeld-Stuhler module (in its “shtuka” incarnation) was
proposed by Ulrich Stuhler. The modular varieties of these objects were
studied by Laumon, Rapoport and Stuhler in

[LRS] D-elliptic sheaves and the Langlands correspondence, Invent. Math.
(1993).
with the aim of proving the local Langlands correspondence for GL4 in
positive characteristic.

@ Condition (i) is equivalent to #¢[b] = #(A/Nr(b)A), where Nr(b) is the
non-reduced norm of b in D.

@ ¢[b] is not necessarily (left) ¢(Op)-invariant, so ¢[b] % Op/Opb.

@ But it is true that for a € A coprime to chara(L) we have ¢[a] = Op/Opa.
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Basic properties

e 0# u € Hom (¢, ) is an isogeny.
@ ¢[b] is étale if and only if Nr(b) is not divisible by chara(L).
@ Let 95 =00 ¢: Op — My(L) be the action on the tangent space. Then

D = 0p @aL: Op@al — My(L)

is an isomorphism.
= Drinfeld-Stuhler modules can be defined only over fields that split D. In
particular, Drinfeld-Stuhler module cannot be defined over F itself, even if
F=TF4(T).
(If [L: F] = d, then L splits D if and only if L embeds into D.)

o If chara(L) =0, then 0 : Hom, (¢,v) — Mqg(L) is injective.
= End;(¢) is commutative and is isomorphic to an A-subalgebra of L.
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By Grunwald-Wang theorem, there is a Galois extension K/F with
Gal(K/F) = Z/dZ, a generator o of Gal(K/F), and f € A such that

d—1

D§(K/F7J,f):@Kzi, z-y=o0(y)z, z9=Ff, yecK.
i=0

@ Assume K is imaginary (i.e., oo does not split in K/F), and let Ok be the
integral closure of A in K.

@ Assume the A-order o
Op = P Ok7'
i=0

is maximal in D.

Op might or might not be maximal in general. This can be verified in a given case
by comparing the discriminant f9(4=Ydisc(K/F)? of Op with the discriminant of
a maximal order. For prime d the discriminant of maximal order is t(D)d(d_l).
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Example (cont.)

Let ¢ : Ok — L[7] be a Drinfeld Ox-module of rank 1 defined over some field L.

Let
d—1

¢ : OD = @ OKZi — Md(L[T])
i=0
be defined as follows:

o = diag(va, Poas - - - s Pod-14), @ € Ok,

0 1 0 0

0 01 0
¢z = .

0o o0 --- 1

or 00 -~ 0

Note that ¢,¢n = ¢gad, and ¢¢ = ¢, so ¢ is an embedding. It is not hard to
check that (i) and (ii) hold, so ¢ is a Drinfeld-Stuhler Op-module.
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Example (explicit version)

Let A=TF,4[T], F=F4(T), K = ]qu(T).

Then Ok = F [ T] and Gal(K/F) = Gal(F,q/Fq).

Let vt = p1 -+ - py product of distinct primes of degrees coprime to d.
Let D = (K/F,Frobg,t).

If Y7, deg(p;) is divisible by d, then D splits at co and t(D) = t.
Op = @51:—01 Okz' is maximal in this case.

Let L be an Ok-field and v : A — Ok — L be the composition
homomorphism.

Let ¢ : Ox — L[] be defined by o1 = (T) + 7¢.
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Example (explicit version)

d—1
¢ : @PFel Tz — My(L[7])
i=0
is defined by
o7 = diag(eT,...,071), o1 =7(T)+7°
¢y = diag(h, h%, ..., h7 ), heFg,
010 --- 0
0 01 --- 0
¢z:
0 00 1
o 0 0 0
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Three equivalent categories

@ An Op-motive is a left O ®p, L[r]-module M, which is free L[7]-module
of rank d, locally free O ®p, L-module of rank 1, and for all a € A,
(a®l—-1®~v(a))M C 7M, where M := M @ L&,

@ D-elliptic sheaf over L is essentially a vector bundle of rank d? on

C Xgpec(r,) SPec(L) equipped with an action of Op and with a meromorphic
Op-linear Frobemus satisfying certain conditions.

—

Q Let C, = Fg‘gg. For a Drinfeld-Stuhler module ¢ over C, there is a discrete
Op-submodule Ay of CZ,, which is locally free of rank 1, and an entire
FFo-linear function exp,, : C, — C4,, such that for any b € Op the following
diagram is commutative:

expy,

0 As cd, ce, 0
a¢(b)J/ 8¢(b)l mi
0 Ag cd, 2 cd 0.
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Three equivalent categories (cont.)

o Drinfeld-Stuhler Op-modules <= Op-motives (Anderson)
o Op-motives <= D-elliptic sheaves mod Z (Taelman and [LRS])
e Uniformization C% /A4 (Taelman)
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Endomorphism rings of Drinfeld-Stuhler modules

Let ¢ be a Drinfeld-Stuhler Op-module over L. Then:
@ End,(¢) is a projective A-module of rank < d?.

@ Ifchara(L) =0, then End,(¢) is an A-order in an imaginary field extension
of F which embeds into D. In particular, End(¢) is commutative and its
rank over A divides d.

© The automorphism group Aut(¢) := End(¢)* is isomorphic to Fy. for
some r dividing d.

Proof uses Op-motives, D-elliptic sheaves, and the uniformization of ¢. O

Mihran Papikian Drinfeld-Stuhler modules



Complex multiplication (Example)

Let K/F be imaginary extension of degree d.
¢ : Ox — C[7] is a Drinfeld Ok-module of rank 1.

Let ¢ : Op = D7 Okz' — My(Cuo[7]) be defined by

¢a :diag(@a7§00aa-~-a(po’d_la)7 o€ OK7

0 10 -~ 0
0 01 - 0

¢z = ;
0 00 1
or 0 0 0

Then
Ok — {diag(¢a, - .-, ¢a) | a € Ok} C Ma(L[7]).
commutes with ¢, and ¢,. Therefore Ox = End(¢).

Definition

Drinfeld-Stuhler module ¢ over L with chara(L) = 0 has complex multiplication
by Ok if Ox = End(¢). Note that in that case K necessarily splits D.
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Complex multiplication

Let K be an imaginary extension of F of degree d, which splits D. Then:

@ Up to isomorphism, the number of Drinfeld-Stuhler modules over C., having
CM by Ok s finite and non-zero. (There is an explicit formula for this
number.)

@ A Dirinfeld-Stuhler module having CM by Ok can be defined over the Hilbert
class field of K. |

@ Compute the number of lattices in CZ, having CM by Ok.

@ The corresponding motive is an O2’” ®a Ox-module. But O2"” ®4 Ok is a
maximal order in My(K), so Morita equivalence reduces the problem to the
case of Drinfeld Ox-modules of rank 1.

O
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Supersingularity (Example)

@ L = degree d extension of A/TA =T,

@ Fix a generator h of L = F 4 over F,

° Ok =Fu[T]

o Op =@, Okz

v : Ok — L[7], o7 =79 (since y(T)=0)

¢: Op = @7;01 Ok z' — My(L[7]) is generated over Fy by

d—1

o1 = diag(r?,...,79), ¢ =diag(h,h?,..., h7 ),

o 1.0 --- O
0O o1 --- 0

¢z: 3
0 0 O 1
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Supersingularity (Example)

Let
7= diag(r',...,7"),
h .= diag(h,...,h),
ki=¢rd7l 1<i<d-1.
Then:

° E:= Fq[¢T7 ha Kiy-. ey ’idfl] - EndL(¢)

o D:=E®aF =(K/F,Frobg, vt 'T) is a central division algebra over F with
invr(D) =1/d, inve(D) = —1/d, inv, (D) = —inv, (D) for other places.

e E is a maximal A-order in D o
= End;(¢) is a maximal A-order in D.

° F;d =TFy(h)* C Auti ()
- AutL(¢) = ]F:d.

o Note that ¢[T] = kerdiag(79,...,79) is connected.
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Supersingularity

Let L be a finite extension of F, := A/p. Let ¢ be Drinfeld-Stuhler module over
L. The following conditions are equivalent:

o dime(End, e (¢) @4 F) = d?.

@ ¢[p] is connected.

e Some power of diag(r, ..., 7) lies in p(A).

If ¢ satisfies these conditions, then it is called supersingular.

Theorem
Let ¢ be a supersingular Drinfeld-Stuhler module over Fp. Then:
@ End(¢) is a maximal A-order in D.
@ ¢ can be defined over the extension of F,, of degree d - #Pic(A).

© Up to isomorphism, the number of supersingular Drinfeld-Stuhler modules
over F, is equal to the class number of End(¢).
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Rational points on modular varieties

It is known that in general the fields of moduli for abelian varieties are not
necessarily fields of definition.

This does not happen for elliptic curves (thanks to j-invariant), but does happen
for abelian surfaces with quaternionic multiplication:

Example

Let B be the indefinite quaternion algebra over Q of discriminant 6. Let X& be
the associated Shimura curve. Then

XB:x2+y?+3=0.

Since (VV=7)2+22+3 =0, XB(Q(v/~T7)) # 0. But K = Q(+/—7) does not split

B so there are no abelian surfaces with multiplication by B defined over K.

A necessary condition for this phenomenon is that B ramifies at 2.
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Rational points on modular varieties

Let A=F4[T], F =F4(T), and d = 2.
Then the modular curve XP of Drinfeld-Stuhler Op-modules is the function field
analogue of XB. However:

For any finite extension L of F,, v € Ram(D), which does not split D we have
XP(L) = 0.

For d > 2 the coarse moduli scheme XP? of Drinfeld-Stuhler modules is smooth
projective of dimension (d — 1) over F.

Assume d and q? — 1 are coprime. If L is a field extension of F which does not
split D, then XP(L) = 0.

If d # p is prime, then the assumption is satisfied if and only if d t g — 1.
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Let K/L be a finite Galois extension. Let ¢ be a Drinfeld-Stuhler module over K
such that for any o € Gal(K/L) we have ¢ = ¢, where

67 Op & My(K[r]) < My(K[r)).

We need to show that ¢ can be defined over L.
@ For each o choose an isomorphism ¢, : ¢ — ¢°. Then ¢,5 = o(¢s)Cr00,6
with g5 € Aut(¢) =Ty, r | d.

o If d and g9 — 1 are coprime then

GLg(K[r]) <% GLy(K) 25 K~
maps Aut(¢) isomorphically onto its image. Using Hilbert 90 for K*, one
can modify the isomorphism ¢, so that now they satisfy cocycle condition
Coo = 0(cs)cs-
@ Prove Hilbert 90 for GL4(K][7]): we can find S € GL4(K]r]) such that
¢ = (0S)71S.
e 1) = S¢S~ is defined over L.
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