Quantum j invariant and Real Multiplication program for global function fields

Luca Demangos

(Joint work with T. M. Gendron - UNAM, Mexico)

University of Stellenbosch
Hilbert’s 12th problem

Let K be a number field. Hilbert’s 12th problem consists in
Let K be a number field. Hilbert’s 12th problem consists in giving an explicit description of every abelian extension L/K. In particular, describe explicitly
Hilbert’s 12th problem

Let K be a number field. Hilbert’s 12th problem consists in giving an explicit description of every abelian extension L/K. In particular, describe explicitly

1. The **Hilbert class field** H_K of K: the maximal abelian extension of K, unramified at every place.
Hilbert’s 12th problem

Let K be a number field. Hilbert’s 12th problem consists in giving an explicit description of every abelian extension L/K. In particular, describe explicitly

1. The Hilbert class field H_K of K: the maximal abelian extension of K, unramified at every place.
2. The maximal abelian extension K^{ab} of K.
The case $K = \mathbb{Q}$

Theorem of Kronecker-Weber

The abelian closure of \mathbb{Q} is
The case $K = \mathbb{Q}$

Theorem of Kronecker-Weber

The abelian closure of \mathbb{Q} is

$$\mathbb{Q}^{ab} = \mathbb{Q}(\langle \zeta_n \rangle_{n \in \mathbb{N} \setminus \{0\}}).$$
The case $K = \mathbb{Q}$

Theorem of Kronecker-Weber

The abelian closure of \mathbb{Q} is

$$\mathbb{Q}^{ab} = \mathbb{Q}(\zeta_n)_{n \in \mathbb{N} \setminus \{0\}}.$$

Minkowski’s Theorem

Let K be a number field. Then:

$$\mathcal{O}_K \text{ is UFD} \implies H_K = K.$$
The case $K = \mathbb{Q}$

Theorem of Kronecker-Weber

The abelian closure of \mathbb{Q} is

$$\mathbb{Q}^{ab} = \mathbb{Q}(\langle \zeta_n \rangle_{n \in \mathbb{N} \setminus \{0\}}).$$

Minkowski’s Theorem

Let K be a number field. Then:

$$\mathcal{O}_K \text{ is UFD} \implies H_K = K.$$

In particular, when $K = \mathbb{Q}$, we have that $H_\mathbb{Q} = \mathbb{Q}$.
Imaginary quadratic number fields

For K a number field the only case essentially known so far, other than $K = \mathbb{Q}$, is $K = \mathbb{Q}(\mu)$, μ imaginary quadratic.
Imaginary quadratic number fields

For K a number field the only case essentially known so far, other than $K = \mathbb{Q}$, is $K = \mathbb{Q}(\mu)$, μ imaginary quadratic.

In this case the solution comes by the theory of complex multiplication.
For K a number field the only case essentially known so far, other than $K = \mathbb{Q}$, is $K = \mathbb{Q}(\mu)$, μ imaginary quadratic.

In this case the solution comes by the theory of complex multiplication.

Let $d \in \mathbb{N} \setminus \{0\}$, squarefree, $\mu := \sqrt{-d}$, $\Lambda_\mu := \langle 1, \mu \rangle \mathbb{Z}$ is a CM lattice in \mathbb{C}. To Λ_μ one associates therefore the CM elliptic curve:

$$E_\mu : Y^2 = 4X^3 - 60G_4(\mu)X - 140G_6(\mu);$$

where:

$$G_n(\mu) := \sum_{\lambda \in \Lambda_\mu \setminus \{0\}} \lambda^{-n};$$

are the corresponding Eisenstein series.
Imaginary quadratic number fields

Let:

\[j(\mu) := \frac{12^3}{1 - \frac{49}{20} \frac{G_6(\mu)^2}{G_4(\mu)^3}}; \]

be the value taken in \(\mu \) by the \(j \)-invariant:

\[j : Mod \to \mathbb{C}; \]

defined on the moduli space:

\[Mod = (\mathbb{C} \setminus \mathbb{R})/GL_2(\mathbb{Z}); \]

of elliptic curves defined over \(\mathbb{C} \).
Imaginary quadratic number fields

\[j(\mu) \in \bar{K} \]
Imaginary quadratic number fields

\[j(\mu) \in \overline{K} \]

Theorem of Fueter-Weber

1. There exists \(\alpha \in \mathbb{Q}(\mu) \setminus \mathbb{Q} \) such that:

\[H_K = K(j(\alpha)); \]

2. \(K^{ab} = H_K(h(E_{\alpha \text{tors}})); \)

where \(h : E_{\alpha} \to \mathbb{P}_1 \) a Weber function.
More precisely, by calling $g_2(\mu) := 60G_4(\mu)$ and $g_3(\mu) := 140G_4(\mu)$, and $z := [\wp_z : \wp'_z : 1]$ the general point of E_μ:

The Weber function h is in particular:

$$h(z) = \begin{cases}
\frac{g_2(\mu)g_3(\mu)}{\Delta(\mu)} \wp_z, & \text{if } j(\mu) \neq 0, 1728 \\
\frac{g_2(\mu)^2}{\Delta(\mu)} \wp'_z, & \text{if } j(\mu) = 1728 \\
\frac{g_3(\mu)}{\Delta(\mu)} \wp_z^3, & \text{if } j(\mu) = 0
\end{cases}$$

where $\Delta(\mu) = g_2(\mu)^2 - 27g_3(\mu)^3 \neq 0$.

L. Demangos

Quantum j invariant and Real Multiplication program for glo
Imaginary quadratic number fields

Roughly speaking, the problem is hence solved by two steps:
Imaginary quadratic number fields

Roughly speaking, the problem is hence solved by two steps:

\[\begin{align*}
K & \overset{\text{unramified}}{\longrightarrow} H_K & \overset{\text{roots/torsion}}{\longrightarrow} K^{ab}
\end{align*} \]
Imaginary quadratic number fields

Roughly speaking, the problem is hence solved by two steps:

\[
K \xrightarrow{unramified} H_K \xrightarrow{roots/torsion} K^{ab}
\]

For example, if \(K = \mathbb{Q} \) the first step is skipped as \(H_{\mathbb{Q}} = \mathbb{Q} \), so that:

\[
\mathbb{Q}^{ab} = \mathbb{Q}(S^1_{\text{tors.}}) = \mathbb{Q}(e^{2\pi i \mathbb{Q}})
\]

directly (\(S^1 \) is the unit circle in \(\mathbb{C} \)).
Imaginary quadratic number fields

Roughly speaking, the problem is hence solved by two steps:

\[K \xrightarrow{\text{unramified}} H_K \xrightarrow{\text{roots/torsion}} K^{ab} \]

For example, if \(K = \mathbb{Q} \) the first step is skipped as \(H_{\mathbb{Q}} = \mathbb{Q} \), so that:

\[\mathbb{Q}^{ab} = \mathbb{Q}(S^1_{\text{tors}}) = \mathbb{Q}(e^{2\pi i \mathbb{Q}}) \]

directly (\(S^1 \) is the unit circle in \(\mathbb{C} \)).

(Here the role of the Weierstrass \(\wp \)—function is played by the exponential \(e^{2\pi i} : \mathbb{R}/\mathbb{Z} \to S^1 \)).
Real Multiplication program

Let K be a real quadratic number field. $K = \mathbb{Q}(\sqrt{d})$, $d \in \mathbb{N} \backslash \{0\}$, squarefree. The set $\langle 1, \theta \rangle \mathbb{Z}$ is a dense subgroup in \mathbb{R}. It is therefore not a lattice any longer. The corresponding quotient: $\Pi(\theta) := \mathbb{R} / \langle 1, \theta \rangle \mathbb{Z}$ is a quantum object. It is NOT Hausdorff and it is called a quantum torus.
Real Multiplication program

K real quadratic number field. $K = \mathbb{Q}(\theta)$, $\theta = \sqrt{d}$, $d \in \mathbb{N} \setminus \{0\}$, squarefree.
Real Multiplication program

K real quadratic number field. $K = \mathbb{Q}(\theta), \theta = \sqrt{d}, d \in \mathbb{N} \setminus \{0\}$, squarefree.

$\langle 1, \theta \rangle_\mathbb{Z}$ is DENSE subgroup in \mathbb{R}.

It is therefore not a lattice any longer.
Real Multiplication program

Let K be a real quadratic number field. $K = \mathbb{Q}(\theta)$, $\theta = \sqrt{d}$, $d \in \mathbb{N} \setminus \{0\}$, squarefree.

\[\langle 1, \theta \rangle_{\mathbb{Z}} \text{ is DENSE subgroup in } \mathbb{R}. \]

It is therefore not a lattice any longer. The corresponding quotient:

\[\Pi(\theta) := \mathbb{R}/\langle 1, \theta \rangle_{\mathbb{Z}} \]

it is a quantum object.
Real Multiplication program

Let K be a real quadratic number field. $K = \mathbb{Q}(\theta)$, $\theta = \sqrt{d}$, $d \in \mathbb{N} \setminus \{0\}$, squarefree.

\[\langle 1, \theta \rangle \mathbb{Z} \text{ is DENSE subgroup in } \mathbb{R}. \]

It is therefore not a lattice any longer. The corresponding quotient:

\[\Pi(\theta) := \mathbb{R}/\langle 1, \theta \rangle \mathbb{Z} \]

it is a quantum object. It is NOT Hausdorff and it is called a quantum torus.
Y. Manin’s RM project

Eisenstein series can not be defined over a subgroup dense in \mathbb{R}.

Real Multiplication program
Y. Manin’s RM project

Eisenstein series can not be defined over a subgroup dense in \mathbb{R}. The project of developing a theory of "real multiplication" for quantum tori has been proposed by Y. Manin in order to solve Hilbert’s 12th problem for real quadratic number fields in the spirit of Fueter-Weber theorem.
Let us define $\|x\| := \inf_{n \in \mathbb{Z}} \{d(x, n)\}$, for all $x \in \mathbb{R}$. For all $\epsilon > 0$ it is defined:
C. Castaño Bernard - T. M. Gendron results

Let us define $\|x\| := \inf_{n \in \mathbb{Z}} \{d(x, n)\}$, for all $x \in \mathbb{R}$. \(\forall \epsilon > 0\) it is defined:

$$\Lambda_\epsilon(\theta) := \{n \in \mathbb{Z}, \|n\theta\| < \epsilon\}.$$

Such a set is not trivially \{0\} (and actually infinite) if $\theta \in \mathbb{R} \setminus \mathbb{Q}$ by Kronecker’s Theorem.
Let us define $||x|| := \inf_{n \in \mathbb{Z}} \{d(x, n)\}$, for all $x \in \mathbb{R}$. For all $\epsilon > 0$ it is defined:

$$\Lambda_\epsilon(\theta) := \{n \in \mathbb{Z}, ||n\theta|| < \epsilon\}.$$

Such a set is not trivially $\{0\}$ (and actually infinite) if $\theta \in \mathbb{R} \setminus \mathbb{Q}$ by Kronecker’s Theorem.

$$\zeta_{\theta, \epsilon}(k) := \sum_{\lambda \in \Lambda_\epsilon(\theta) \setminus \{0\}} \lambda^{-k};$$
Let us define $||x|| := \inf_{n \in \mathbb{Z}} \{d(x, n)\}$, for all $x \in \mathbb{R}$. For all $\epsilon > 0$ it is defined:

$$\Lambda_\epsilon(\theta) := \{n \in \mathbb{Z}, ||n\theta|| < \epsilon\}.$$

Such a set is not trivially $\{0\}$ (and actually infinite) if $\theta \in \mathbb{R} \setminus \mathbb{Q}$ by Kronecker’s Theorem.

$$\zeta_{\theta, \epsilon}(k) := \sum_{\lambda \in \Lambda_\epsilon(\theta) \setminus \{0\}} \lambda^{-k};$$

$$j_\epsilon(\theta) := \frac{12^3}{1 - \frac{49}{20} \frac{\zeta_{\theta, \epsilon}(6)^2}{\zeta_{\theta, \epsilon}(4)^3}}.$$
Theorem (T. M. Gendron, C. Castaño Bernard)

The limit:

$$j^{qt}(\theta) := \lim_{\epsilon \to 0^+} j_\epsilon(\theta)$$

produces multiple values and it is a modular invariant defined on the moduli space of quantum tori.

Definition

The quantum j–invariant is the multi-valued function:

$$j^{qt} : \mathbb{R}/GL_2(\mathbb{Z}) \to \mathbb{R} \cup \{\infty\}.$$
PARI-GP suggests that if θ is a fundamental unit of O_K with fundamental discriminant D:

1. $\#\{j^{qt}(\theta)\} = D$;

2. $\infty \notin j^{qt}(\theta)$.

If $\theta = (1 + \sqrt{5})/2$ T. M. Gendron and C. Castaño Bernard computed explicit values.
PARi-GP suggests that if θ is a fundamental unit of \mathcal{O}_K with fundamental discriminant D:

1. $\#\{j_{qt}(\theta)\} = D$;

2. $\infty \notin j_{qt}(\theta)$.

If $\theta = (1 + \sqrt{5})/2$ T. M. Gendron and C. Castaño Bernard computed explicit values.

Values of $j_\varepsilon(\phi)$, $\phi = \text{the golden mean}$

$0.8501..., j_\varepsilon(\phi)$

$\varepsilon = \phi^{-t}$

$0.8188..., t \to \infty (\varepsilon \to 0)$
C. Castaño Bernard - T. M. Gendron results

Conjecture

Let θ be irrational real quadratic. One then has that:

1. $\# j^{qt}(\theta) < \infty$ and $\infty \notin j^{qt}(\theta)$;
2. $j^{qt}(\theta) \subset \overline{\mathbb{Q}}$;
3. If θ is a fundamental unit:

$$H_K = K(N(j^{qt}(\theta)))$$

for N some weighted norm.
Definitions

Let X be a smooth, projective curve over \mathbb{F}_q. Let $P \in X$.

Definition

$$A_P := \mathbb{F}_q[X \setminus \{P\}].$$
Let X be a smooth, projective curve over \mathbb{F}_q. Let $P \in X$.

Definition

$$A_P := \mathbb{F}_q[X \setminus \{P\}].$$

We know that if $X = \mathbb{P}_1(\mathbb{F}_q)$ and $P = \infty$:

$$A := A_P = \mathbb{F}_q[T] \quad k := \mathbb{F}_q(T)$$

$$\nu_\infty = \nu_{1/T} := -\deg_T(\cdot) \quad |\cdot| = |\cdot|_{1/T} := q^{\deg_T(\cdot)}$$

$$k_\infty = \mathbb{F}_q((1/T)) \quad C := (\overline{k_\infty})_\infty$$
Definitions

\[A \leftrightarrow \mathbb{Z}; \]
\[k \leftrightarrow \mathbb{Q}; \]
\[k_\infty \leftrightarrow \mathbb{R}; \]
\[C \leftrightarrow \mathbb{C}. \]
Definitions

The Hilbert class field H_K has infinite degree over K as $\overline{\mathbb{F}_q}/\mathbb{F}_q$ is clearly abelian and unramified.
The Hilbert class field H_K has infinite degree over K as $\overline{\mathbb{F}_q}/\mathbb{F}_q$ is clearly abelian and unramified.

If we restrict the definition of H_K to be geometric, then there are $h_K = \# Cl_K$ distinct abelian, unramified extensions of K which are all maximal.
Definitions

Definition

A *real* algebraic function field is an algebraic extension of k which is contained in k_{∞}.
Definitions

Definition

A **real** algebraic function field is an algebraic extension of k which is contained in k_∞. Equivalently, an algebraic extension of k is **real** if v_∞ totally splits in it.
Definitions

Definition

A **real** algebraic function field is an algebraic extension of k which is contained in k_{∞}. Equivalently, an algebraic extension of k is **real** if v_{∞} totally splits in it.

K/k real quadratic. So this field extension corresponds to a degree 2 morphism:

$$\pi : X \to \mathbb{P}_1(\mathbb{F}_q).$$
Definitions

Definition

A **real** algebraic function field is an algebraic extension of \(k \) which is contained in \(k_\infty \). Equivalently, an algebraic extension of \(k \) is **real** if \(v_\infty \) totally splits in it.

\(K/k \) real quadratic. So this field extension corresponds to a degree 2 morphism:

\[
\pi : X \rightarrow \mathbb{P}_1(\mathbb{F}_q).
\]

Note that:

\[
\pi^{-1}(\infty) = \{\infty_1, \infty_2\}.
\]
Definitions

Relative integers\(\mapsto\mathcal{O}_K := \mathbb{F}_q[X \setminus \pi^{-1}(\infty)].\)
Definitions

Definition

Relative integers $\mapsto \mathcal{O}_K := \mathbb{F}_q[X \setminus \pi^{-1}(\infty)]$.

Absolute integers $\mapsto A_{\infty_1} := \mathbb{F}_q[X \setminus \{\infty_1\}]$.
Definitions

Clearly:

\[\mathcal{O}_K \supseteq A_{\infty_1}. \]
Definitions

Clearly:

$$\mathcal{O}_K \supseteq A_{\infty_1}.$$

Definition

We call **absolute Hilbert class field** $H_{A_{\infty_1}}$ the maximal abelian unramified extension of K which **splits completely at** ∞_1.
Definitions

Clearly:

\[\mathcal{O}_K \supseteq A_{\infty_1}. \]

Definition

We call **absolute Hilbert class field** $H_{A_{\infty_1}}$ the maximal abelian unramified extension of K which *splits completely at* ∞_1.

We call **relative Hilbert class field** $H_{\mathcal{O}_K}$ the maximal abelian unramified extension of K which *splits completely at* $\pi^{-1}(\infty)$.
Definitions

Clearly:

\[\mathcal{O}_K \supseteq A_{\infty_1}. \]

Definition

We call absolute Hilbert class field \(H_{A_{\infty_1}} \) the maximal abelian unramified extension of \(K \) which splits completely at \(\infty_1 \).

We call relative Hilbert class field \(H_{\mathcal{O}_K} \) the maximal abelian unramified extension of \(K \) which splits completely at \(\pi^{-1}(\infty) \).

Clearly, if \(K/k \) is complex (which means \(\pi^{-1}(\infty) = \{\infty\} \)), we have that \(H_{A_\infty} = H_{\mathcal{O}_K} \).
Definitions

Clearly:

\[\mathcal{O}_K \supseteq A_{\infty_1}. \]

Definition

We call absolute Hilbert class field \(H_{A_{\infty_1}} \) the maximal abelian unramified extension of \(K \) which \textit{splits completely at} \(\infty_1 \).

We call relative Hilbert class field \(H_{\mathcal{O}_K} \) the maximal abelian unramified extension of \(K \) which \textit{splits completely at} \(\pi^{-1}(\infty) \).

Clearly, if \(K/k \) is complex (which means \(\pi^{-1}(\infty) = \{\infty\} \)), we have that \(H_{A_{\infty}} = H_{\mathcal{O}_K} \).

If \(K/k \) is real (which means \(\pi^{-1}(\infty) = \{\infty_1, \infty_2\} \)), we have that \(H_{A_{\infty_1}} \nsubseteq H_{\mathcal{O}_K} \).
Real quadratic function fields

Let us take $f \in k_\infty \cap \bar{k}$, quadratic, so that:

$$K = k(f).$$
Let us take \(f \in k_{\infty} \cap \overline{k} \), quadratic, so that:

\[K = k(f). \]

We may assume without loss of generality that \(f \) is a fundamental unit:

\[f^2 = a(T)f + b, \quad a(T) \in A, \quad b \in \mathbb{F}_{q^*}. \]

Let \(d := \deg_T(discr(f)) = \deg_T(a(T)) \).
Real quadratic function fields

Let us take \(f \in k_{\infty} \cap \overline{k} \), quadratic, so that:

\[
K = k(f).
\]

We may assume without loss of generality that \(f \) is a fundamental unit:

\[
f^2 = a(T)f + b, \quad a(T) \in A, \quad b \in \mathbb{F}_q^*.
\]

Let \(d := \deg_T(discr(f)) = \deg_T(a(T)) \). Therefore

\[
|f| = |a(T)| = q^d \text{ and } |f'| = |b/f| = q^{-d}.
\]
Let us take $f \in k_\infty \cap \bar{k}$, quadratic, so that:

$$K = k(f).$$

We may assume without loss of generality that f is a fundamental unit:

$$f^2 = a(T)f + b, \ a(T) \in A, \ b \in \mathbb{F}_q^*. $$

Let $d := \deg_T(\text{discr}(f)) = \deg_T(a(T))$. Therefore

$$|f| = |a(T)| = q^d \text{ and } |f'| = |b/f| = q^{-d}. $$

$$f \in A_{\infty_1}, \notin A_{\infty_2}, \ f^{-1} \in A_{\infty_2}, \notin A_{\infty_1}, \ T \in \mathcal{O}_K, \notin A_{\infty_1}, \notin A_{\infty_2}. $$
Real quadratic function fields

\[\mathcal{O}_K = \mathbb{F}_q[T, f] \supset A_{\infty_1} = \mathbb{F}_q[f, Tf, \ldots, T^{d-1}f]. \]
Real quadratic function fields

\[\mathcal{O}_K = \mathbb{F}_q[T, f] \supset A_{\infty_1} = \mathbb{F}_q[f, Tf, \ldots, T^{d-1}f]. \]

\[f \in \mathcal{O}_K^*, \notin A_{\infty_1}^*, \notin A_{\infty_2}^*. \] Therefore the group of units of \(\mathcal{O}_K \) is infinite and no \(\mathcal{O}_K \)-lattice can be embedded in \(\mathcal{C} \). While on the other hand \(A_{\infty_1}^* = \mathbb{F}_q^* \).
Real quadratic function fields

$$\mathcal{O}_K = \mathbb{F}_q[T, f] \supset A_{\infty_1} = \mathbb{F}_q[f, Tf, \ldots, T^{d-1}f].$$

$$f \in \mathcal{O}_K^*, \notin A_{\infty_1}^*, \notin A_{\infty_2}^*.$$ Therefore the group of units of \mathcal{O}_K is infinite and no \mathcal{O}_K–lattice can be embedded in \mathcal{C}. While on the other hand $A_{\infty_1}^* = \mathbb{F}_q^*.$

We also note that both A_{∞_1} and \mathcal{O}_K are Dedekind domains, so the ideal classes over them form actually a group.
Real quadratic function fields

A_{∞_1}—lattices can be embedded in \mathcal{C}. This gives rise to a rank 1 theory which provides a generalization of the Theorem of Kronecker-Weber for any finite extension of $\mathbb{F}_q(T)$.
Real quadratic function fields

A_{∞_1}—lattices can be embedded in C. This gives rise to a rank 1 theory which provides a generalization of the Theorem of Kronecker-Weber for any finite extension of $\mathbb{F}_q(T)$.

Definition

An *Hayes module* is a rank 1 *sign-normalized* Drinfeld module:

$$\Psi : A_{\infty_1} \to \overline{K}\{\tau\}.$$
Real quadratic function fields

\(A_{\infty 1} \) —lattices can be embedded in \(\mathcal{C} \). This gives rise to a **rank 1** theory which provides a generalization of the Theorem of Kronecker-Weber for any finite extension of \(\mathbb{F}_q(T) \).

Definition

An **Hayes module** is a **rank 1** sign-normalized Drinfeld module:

\[
\Psi : A_{\infty 1} \rightarrow \overline{K}\{\tau}\).
\]

There are \(h_{A_{\infty 1}} \) distinct isomorphism classes of Hayes modules over \(A_{\infty 1} \).
Theorem of Hayes

1. $H_{A_{\infty 1}}$ is the smallest field of definition of a Hayes module over $A_{\infty 1}$.

2. For every given modulus m in $A_{\infty 1}$ the (narrow) absolute ray class field of conductor dividing m is:

$$K_{\infty 1}^m = H_{A_{\infty 1}}(\Psi[m]).$$
Kronecker’s Theorem for function fields

For any $h \in k_\infty \setminus k$ the image of Ah is dense in $S^1 := k_\infty / A$.
Definitions

Kronecker’s Theorem for function fields
For any $h \in k_\infty \backslash k$ the image of Ah is dense in $S^1 := k_\infty / A$.

Definition
The corresponding quantum torus is the quotient:

$$k_\infty / \langle 1, h \rangle_A.$$
Definitions

Definition

Let $h \in k_\infty$, $\epsilon > 0$. We define:

$$\Lambda_\epsilon(h) := \{ a \in A, \| ah \| < \epsilon \};$$
Definitions

Definition

Let $h \in k_\infty$, $\epsilon > 0$. We define:

$$\Lambda_\epsilon(h) := \{ a \in A, \| ah \| < \epsilon \};$$

where $\|x\| := \inf_{a \in A} \{|x - a|\}$, for any given $x \in k_\infty$.

L. Demangos
Quantum j invariant and Real Multiplication program for global function fields
Definitions

Definition

\[\zeta_{h, \epsilon}(n) := \sum_{a \in \Lambda_{\epsilon}(h)^+ \setminus \{0\}} a^{-n}, \ \forall n \in \mathbb{N}. \]
Definitions

Definition

\[\zeta_{h, \epsilon}(n) := \sum_{a \in \Lambda_\epsilon(h)^+ \setminus \{0\}} a^{-n}, \ \forall n \in \mathbb{N}. \]

Definition

\[j_\epsilon(h) := \frac{T^q - T}{1 - \frac{T^{q^2} - T^q}{T^{q^2} - T} \frac{\zeta_{h, \epsilon}(q^2 - 1)}{\zeta_{h, \epsilon}(q - 1)^{q+1}}}, \ \forall \epsilon > 0. \]
Definitions

\[\zeta_{h, \epsilon}(n) := \sum_{a \in \Lambda_{\epsilon}(h)^+ \setminus \{0\}} a^{-n}, \quad \forall n \in \mathbb{N}. \]

\[j_{\epsilon}(h) := \frac{T^q - T}{1 - \frac{T}{T q^2 - T} \frac{T q^2 - T}{T q^2 - T} \frac{\zeta_{h, \epsilon}(q^2 - 1)}{\zeta_{h, \epsilon}(q - 1) q + 1}}, \quad \forall \epsilon > 0. \]

(Analogue of E. U. Gekeler’s \(j \)-invariant for rank 2 Drinfeld modules).
Definitions

Definition

We call quantum j-invariant the following multi-valued function:

$$j^{qt} : k_\infty / GL_2(A) \rightarrow k_\infty \cup \{\infty\};$$

$$j^{qt}(h) := \lim_{\epsilon \rightarrow 0^+} j_\epsilon(h).$$
Definitions

Theorem

1. \(\forall 0 < \epsilon < 1, \ \forall h \in k \setminus k, \ |j_\epsilon(h)| = q^{2q-1}. \)

In particular, \(\infty \not\in j^{qt}(h). \)

2. \(h \in k \iff j^{qt}(h) = \infty. \)
Definitions

Theorem

1

∀ 0 < ϵ < 1, ∀ h ∈ k_∞ \ k, |j_ϵ(h)| = q^{2q-1}.

In particular, \(\infty \notin j^{qt}(h) \).

2

h \in k \iff j^{qt}(h) = \infty.

Definitions

Theorem

1. \(h \text{ is quadratic} \implies \#j^{qt}(h) < +\infty. \)

2. \(h \text{ is quadratic unit} \implies \#j^{qt}(h) = d = \deg_T(discr(h)). \)
Definitions

Theorem

1. \(h \) is quadratic \(\implies \#j^{qt}(h) < +\infty. \)

2. \(h \) is quadratic unit \(\implies \#j^{qt}(h) = d = \deg_T(\text{discr}(h)). \)

Main theorem

Let K/k be quadratic and real, $h \in \mathcal{O}^{\ast}_K$ unit. Then:

$$H_{\mathcal{O}_K} = K(N(j^{qt}(h))) ;$$

$$N(j^{qt}(h)) := \prod_{\alpha \in j^{qt}(h)} \alpha.$$
Class field generation

Main theorem

Let K/k be quadratic and real, $h \in \mathcal{O}_{K}^{*}$ unit. Then:

$$H_{\mathcal{O}_{K}} = K(N(j^{qt}(h)));$$

$$N(j^{qt}(h)) := \prod_{\alpha \in j^{qt}(h)} \alpha.$$

Class field generation

Step 1: Diophantine approximation

Let $h \in k_\infty \setminus k$. Let assume $h^2 = a(T)h + b$, $b \in \mathbb{F}_q^*$.

\[q_0 := 1, \quad q_1 := a, \quad \ldots, \quad q_i := aq_{i-1} + bq_{i-2}; \]

(best approximation of h if $b = 1$ by continued fraction).

We have that

\[|| q_n h || = |q_n h - q_{n+1}| = |h'_{n+1}| || h - h' || q^{-n-(n+1)/2} d. \]

This follows by Binet's formula:

\[q_n = h_n + (−h')_n + \sqrt{D}, \forall n \in \mathbb{N}. \]
Class field generation

Step 1: Diophantine approximation

Let $h \in k_\infty \setminus k$. Let assume $h^2 = a(T)h + b$, $b \in \mathbb{F}_q^*$. We define the sequence:

\[q_0 := 1, \quad q_1 := a, \quad \ldots, \quad q_i := aq_{i-1} + bq_{i-2}; \]

(best approximation of h if $b = 1$ by continued fraction).
Class field generation

Step 1: Diophantine approximation

Let $h \in k_\infty \setminus k$. Let assume $h^2 = a(T)h + b$, $b \in \mathbb{F}_q^*$. We define the sequence:

$$q_0 := 1, \; q_1 := a, \; \ldots, \; q_i := aq_{i-1} + bq_{i-2};$$

(best approximation of h if $b = 1$ by continued fraction).

We have that $\|q_nh\| = |q_nh - q_{n+1}| = \frac{|h'^{n+1}| |h-h'|}{|a(T)|} = q^{-(n+1)d}$.

L. Demangos Quantum j invariant and Real Multiplication program for glo
Class field generation

Step 1: Diophantine approximation

Let $h \in k_\infty \backslash k$. Let assume $h^2 = a(T)h + b$, $b \in \mathbb{F}_q^*$.

We define the sequence:

$$q_0 := 1, \quad q_1 := a, \quad \cdots, \quad q_i := aq_{i-1} + bq_{i-2};$$

(best approximation of h if $b = 1$ by continued fraction).

We have that $||q_nh|| = |q_nh - q_{n+1}| = \frac{|h'^{n+1}||h-h'|}{|a(T)|} = q^{-(n+1)d}$.

This follows by Binet’s formula:

$$q_n = \frac{h^{n+1} + (-h')^{n+1}}{\sqrt{D}}, \quad \forall n \in \mathbb{N}.$$
Class field generation

\{ T^{d-1} q_0, \ldots, T q_0, q_0, T^{d-1} q_1, \ldots, T q_1, q_1, \ldots \} is \mathbb{F}_q - \text{basis of } A, where the order is by \textbf{decreasing errors}:

\[\| T^l q_n h \| = | T^l q_n h - T^l q_{n+1} | = q^{l-(n+1)d} < 1. \]
Class field generation

\[\{ T^{d-1}q_0, \ldots, Tq_0, q_0, T^{d-1}q_1, \ldots, Tq_1, q_1, \ldots \} \] is \(\mathbb{F}_q \)-basis of \(A \), where the order is by decreasing errors:

\[||T^l q_n h|| = |T^l q_n h - T^l q_{n+1}| = q^{l-(n+1)d} < 1. \]

We fix:

\[\epsilon := q^{-Nd-l}, \quad l = 0, \ldots, d - 1. \]
Class field generation

\{ T^{d-1} q_0, \ldots, T q_0, q_0, T^{d-1} q_1, \ldots, T q_1, q_1, \ldots \} is \mathbb{F}_q \text{-basis of } A,\text{ where the order is by decreasing errors:}

\left\| T^l q_n h \right\| = \left| T^l q_n h - T^l q_{n+1} \right| = q^{l-(n+1)d} < 1.

We fix:

\epsilon := q^{-Nd-l}, \quad l = 0, \ldots, d - 1.

One can prove that:

\Lambda_\epsilon(h) = \mathbb{F}_q \langle q_N, q_N T, \ldots, q_N T^{d-l-1}, q_{N+1}, q_{N+1} T, \ldots, q_{N+1} T^{d-1}, \ldots \rangle.
Class field generation

\{ T^{d-1} q_0, ..., T q_0, q_0, T^{d-1} q_1, ..., T q_1, q_1, ... \} is \(\mathbb{F}_q \)-basis of \(A \), where the order is by decreasing errors:

\[\| T^l q_n h \| = | T^l q_n h - T^l q_{n+1} | = q^{l-(n+1)d} < 1. \]

We fix:

\[\epsilon := q^{-Nd-l}, \quad l = 0, ..., d - 1. \]

One can prove that:

\[\Lambda_\epsilon(h) = \mathbb{F}_q \langle q_N, q_N T, ..., q_N T^{d-l-1}, q_{N+1}, q_{N+1} T, ..., q_{N+1} T^{d-1}, ... \rangle. \]

By Binet’s formula, if \(N \to +\infty \), so \(\epsilon \to 0^+ \), we have that:

\[q_{N+i} \approx \frac{h^{N+1+i}}{\sqrt{D}}. \]
Class field generation

Let:

\[a_i := (h, hT, ..., hT^i)_{A_{\infty 1}} \]

for any \(i = 0, ..., d - 1 \).
Class field generation

Let:

$$a_i := (h, hT, \ldots, hT^i)_{A_{\infty 1}};$$

for any $i = 0, \ldots, d - 1$.

So, by defining:

$$\zeta_{a_{d-l-1}}(n) := \sum_{\alpha \in a_{d-l-1}^+ \setminus \{0\}} \alpha^{-n};$$
Class field generation

Let:

\[a_i := (h, hT, \ldots, hT^i)_{A_{\infty}}; \]

for any \(i = 0, \ldots, d - 1 \).

So, by defining:

\[\zeta_{a_{d-l-1}}(n) := \sum_{\alpha \in \Lambda^+ a_{d-l-1} \setminus \{0\}} \alpha^{-n}; \]

we obtain:

\[\zeta_{h,\epsilon}(n) = \sum_{a \in \Lambda_{\epsilon}(h)^+ \setminus \{0\}} a^{-n} \xrightarrow{\epsilon \to 0^+} \frac{h^N}{\sqrt{D}} \{ \zeta_{a_{d-l-1}}(n) \}_{l=0,\ldots,d-1}. \]

By homogeneity of the degree \(1 - q^2 \) we have cancellation of \((h^N/\sqrt{D})^{1-q^2} \) in the expression of \(j^{qt}(h) \), so we obtain:
Class field generation

Step 2: Description of j^{qt}

$$j^{qt}(h) = \left\{ \frac{T^q - T}{1 - \frac{T{q^2} - T}{T{q^2} - Tq} \frac{\zeta_i(q^2 - 1)}{\zeta_i(q - 1)q^2}} \right\}_{i=0,\ldots,d-1} = \{j(a_i)\}_{i=0,\ldots,d-1}.$$
Class field generation

Step 2: Description of j^{qt}

$$j^{qt}(h) = \begin{cases} \frac{T^q - T}{1 - \frac{T^q - T}{T^{q^2 - T}} \frac{\zeta_a(q^2 - 1)}{\zeta_a(q - 1)^{q + 1}}} \end{cases} \quad = \{j(a_i)\}_{i=0,\ldots,d-1}.$$

Theorem of Goss

$$\exists r \in C \setminus \{0\}, \forall a \in Cl_{A_{\infty}}, \forall n \equiv 0 \mod (q - 1):$$

$$\frac{\zeta_a(n)}{r^n} \in H_{A_{\infty}}.$$
Class field generation

Step 2: Description of j^{qt}

$$j^{qt}(h) = \left\{ \frac{T^q - T}{1 - \frac{Tq^2 - T}{Tq^2 - Tq} \frac{\zeta_{a_i}(q^2 - 1)}{\zeta_{a_i}(q - 1)q^1}} \right\}_{i=0,\ldots,d-1} = \{j(a_i)\}_{i=0,\ldots,d-1}.$$

Theorem of Goss

$$\exists r \in C \setminus \{0\}, \forall a \in Cl_{A_{\infty 1}}, \forall n \equiv 0 \mod (q - 1) : \frac{\zeta_a(n)}{r^n} \in H_{A_{\infty 1}}.$$

This generalizes Euler’s formula:

$$\frac{\zeta(2n)}{\pi^{2n}} \in Q = H_Q.$$
Class field generation

Again by homogeneity of the degree $1 - q^2$ we factor out $r^1 - q^2$.
Again by homogeneity of the degree $1 - q^2$ we factor out $r^1 - q^2$. Therefore:

$$j(a) \in H_{A_{\infty 1}}, \quad \forall a \in Cl_{A_{\infty 1}}.$$
Again by homogeneity of the degree $1 - q^2$ we factor out r^{1-q^2}. Therefore:

$$j(a) \in H_{A_{\infty 1}}, \forall a \in Cl_{A_{\infty 1}}.$$

Which means that:

$$j^{qt}(h) \subset H_{A_{\infty 1}}.$$
Step 3: Class field generation

\[G(H_{A_{\infty,1}}/K) \overset{\pi}{\longrightarrow} G(H_{O_K}/K) \]

\[\overset{\simeq}{\longrightarrow} \]

\[Cl_{A_{\infty,1}} \overset{\pi}{\longrightarrow} Cl_{O_K} \]

where:

\[\pi : a \mapsto aO_K. \]
Class field generation

Step 3: Class field generation

\[\begin{align*}
G(H_{A_{\infty}} / K) & \xrightarrow{\pi} G(H_{O_k} / K) \\
\xrightarrow{\cong} & \xrightarrow{\cong} \\
Cl_{A_{\infty}} & \xrightarrow{\pi} Cl_{O_k}
\end{align*} \]

where:
\[\pi : a \mapsto aO_K. \]

It is easy to see that:
\[\{a_i\}_{i=0, \ldots, d-1} = \{(f, fT, \ldots, fT^i)\}_{i=0, \ldots, d-1} \subset Ker(\pi). \]
Class field generation

Step 3: Class field generation

\[
G(H_{A_{\infty 1}} / K) \xrightarrow{\pi} G(H_{\mathcal{O}_K} / K) \\
\downarrow \cong \downarrow \cong \\
Cl_{A_{\infty 1}} \xrightarrow{\pi} Cl_{\mathcal{O}_K}
\]

where:

\[
\pi : a \mapsto a\mathcal{O}_K.
\]

It is easy to see that:

\[
\{a_i\}_{i=0,\ldots,d-1} = \{(f, fT, \ldots, fT^i)\}_{i=0,\ldots,d-1} \subset Ker(\pi).
\]

\((f \in \mathcal{O}_K^*)\).
Proposition

\[h_{A_{\infty_1}} = dh_{\mathcal{O}_K}. \]
Class field generation

Proposition

\[h_{A_{\infty 1}} = dh_{\mathcal{O}_K}. \]

Let \(Cl_K := \text{Div}(K)/\text{Princ}(K) \) the class group of \(K \).

Proposition

\[Cl_{A_{\infty 1}} \simeq Cl_K/\langle \infty_1 \rangle, \quad Cl_{\mathcal{O}_K} \simeq Cl_K/\langle \infty_1, \infty_2 \rangle. \]
Class field generation

Proposition

$$h_{A_{\infty_1}} = dh_{O_K}.$$

Let $Cl_K := \text{Div}(K)/\text{Princ}(K)$ the class group of K.

Proposition

$$Cl_{A_{\infty_1}} \cong Cl_K/\langle \infty_1 \rangle, \quad Cl_{O_K} \cong Cl_K/\langle \infty_1, \infty_2 \rangle.$$

Corollary

$$Ker(\pi) = \{[a_0], \ldots, [a_{d-1}]\} = \langle [a_{d-1}] \rangle = \langle \infty_2 \rangle \cong \mathbb{Z}/d\mathbb{Z}.$$

L. Demangos Quantum j invariant and Real Multiplication program for glo
Class field generation

Therefore:

\[j^{qt}(h) = \{ j(a), \ a \in \text{Ker}(\pi) \}. \]
Therefore:

$$j^{qt}(h) = \{j(a), \ a \in \text{Ker} (\pi)\}.$$

By Artin reciprocity:

$$\text{Ker} (\pi) \simeq G(H_{A_{\infty}} / H_{O_K}).$$
Therefore:

\[\forall \sigma \in G(H_{A_{\infty 1}}/H_{O_K}), \quad N(j^{qt}(h))^\sigma = \prod_{a_i \in \text{Ker}(\pi)} j(a_i)^\sigma = \prod_{a_i \in \text{Ker}(\pi)} j(a_i)^{\sigma - 1} = N(j^{qt}(h)). \]
Class field generation

Therefore:

\[\forall \sigma \in G(H_{A_{\infty_1}}/H_{O_K}), \ N(j^{qt}(h))^\sigma = \prod_{a_i \in Ker(\pi)} j(a_i)^\sigma = \prod_{a_i \in Ker(\pi)} j(a_i a_\sigma^{-1}) = N(j^{qt}(h)). \]
Therefore:

\[
\forall \sigma \in G(H_{A_{\infty}/H_{\mathcal{O}_K}}), \quad N(j^{qt}(h))\sigma = \prod_{a_i \in \text{Ker}(\pi)} j(a_i)\sigma = \prod_{a_i \in \text{Ker}(\pi)} j(a_ia_{\sigma}^{-1}) = N(j^{qt}(h)).
\]

It follows that:

\[
N(j^{qt}(h)) \in H_{\mathcal{O}_K}.
\]
Class field generation

Theorem

\[\#Orb_G(H_{\mathcal{O}_K}/K)(N(j^{qt}(h))) = h_{\mathcal{O}_K} = [H_{\mathcal{O}_K} : K]. \]
Class field generation

Theorem

\[\#\text{Orb}_G(H_\mathcal{O}_K/K)(N(j^{qt}(h))) = h_\mathcal{O}_K = [H_\mathcal{O}_K : K]. \]

As \(G(H_{A_{\infty 1}}/K) \) is abelian: \(\implies K(N(j^{qt}(h)))/K \) is Galois extension.
Class field generation

Theorem

\[\#\text{Orb}_G(H_{\mathcal{O}_K}/K)(N(j^{qt}(h))) = h_{\mathcal{O}_K} = [H_{\mathcal{O}_K} : K]. \]

As \(G(H_{A_{\infty 1}}/K) \) is abelian: \[\implies \] \(K(N(j^{qt}(h)))/K \) is Galois extension.

Corollary

\[K(N(j^{qt}(h))) = H_{\mathcal{O}_K}. \]
Class field generation

The ϵ–exponential $\exp_\epsilon : C \rightarrow C$ defined in the intuitive way:

$$\exp_\epsilon(z) := z \prod_{\lambda \in \Lambda_\epsilon(h) \setminus \{0\}} \left(1 - \frac{z}{\lambda}\right);$$

does not give any deep information because:

$$\lim_{\epsilon \rightarrow 0^+} \exp_\epsilon(z) = z.$$
Class field generation

The $\epsilon-$exponential $\exp_\epsilon : \mathbb{C} \to \mathbb{C}$ defined in the intuitive way:

$$\exp_\epsilon(z) := z \prod_{\lambda \in \Lambda_\epsilon(h) \backslash \{0\}} \left(1 - \frac{z}{\lambda}\right);$$

does not give any deep information because:

$$\lim_{\epsilon \to 0^+} \exp_\epsilon(z) = z.$$

Given Λ a rank 1 lattice, the corresponding rank 1 Drinfeld module becomes sign normalized by rescaling Λ by a suitable factor $\xi(\Lambda) \in \mathbb{C}$ explicitly computed as a function of Λ. We define a transcendental $\epsilon-$scaling factor $\xi_\epsilon \in \mathbb{C}$ associated to $\Lambda_\epsilon(h)$ in complete analogy.
For every $\epsilon > 0$ the normalized $\epsilon-$exponential $\hat{\exp}_\epsilon : \mathbb{C} \to \mathbb{C}$ is defined as follows:

$$\hat{\exp}_\epsilon(z) := \xi_\epsilon \exp_\epsilon(\xi_\epsilon^{-1} z).$$
Class field generation

Definition

For every $\epsilon > 0$ the normalized ϵ-exponential $\hat{\exp}_{\epsilon} : \mathbb{C} \rightarrow \mathbb{C}$ is defined as follows:

$$\hat{\exp}_{\epsilon}(z) := \xi_{\epsilon} \exp_{\epsilon}(\xi_{\epsilon}^{-1} z).$$

Definition

$$\exp^{qt}(z) := \lim_{\epsilon \to 0^+} \hat{\exp}_{\epsilon}(z).$$
Class field generation

Theorem

The quantum exponential is a multi-valued function:

\[\exp^q_t : \mathbb{C} \rightarrow \mathbb{C}; \]

such that:

\[\exp^q_t(z) = \{ e_0(z), ..., e_{d-1}(z) \}; \]

where \(e_0, ..., e_{d-1} : \mathbb{C} \rightarrow \mathbb{C} \) are the exponential functions associated to the Hayes modules \(\Psi_0, ..., \Psi_{d-1} \), such that:

\[e_i : \mathbb{C}/\xi_i \alpha_i \simeq \Psi_i; \]

for \(i = 0, ..., d - 1 \), where:

\[\lim_{\epsilon \to 0^+} \xi_\epsilon = \{ \xi_0, ..., \xi_{d-1} \}. \]
Let \mathcal{M} be an ideal of \mathcal{O}_K.

Definition

\[\mathcal{I}^m := \{ \mathcal{A} \subseteq \mathcal{O}_K, \ (\mathcal{A}, M) = 1 \}. \]
\[\mathcal{P}^m := \{ a\mathcal{O}_K \in \mathcal{I}^m, \ a \equiv 1 \mod M \}. \]
\[\mathcal{P}_1^m := \{ a\mathcal{O}_K \in \mathcal{P}^m, \ a \text{ positive (} \text{sgn}(a) = 1) \}. \]
\[\mathcal{P}_2^m := \{ a\mathcal{O}_K, \ a^\sigma \text{ positive, } 1 \neq \sigma \in G(K/k) \}. \]
\[\mathcal{P}_+^m := \{ a\mathcal{O}_K, \ a^\sigma \text{ positive, } \forall \sigma \in G(K/k) \}. \]
Class field generation

Definition

\[\text{Cl}^m := \mathcal{I}^m / \mathcal{P}^m. \]

\[\text{Cl}_i^m := \mathcal{I}^m / \mathcal{P}_i^m, \quad i = 1, 2. \]

\[\text{Cl}^+_m := \mathcal{I}^m / \mathcal{P}^+_m. \]
Class field generation

Definition

\[Cl^m := \mathcal{I}^m / \mathcal{P}^m. \]
\[Cl^m_i := \mathcal{I}^m / \mathcal{P}^m_i, \quad i = 1, 2. \]
\[Cl^+_m := \mathcal{I}^m / \mathcal{P}^+_m. \]

Completely analogous definitions are given for \(m := M \cap A_{\infty 1} \), except that there is no more need to distinguish positivities as the place above \(\infty \) which is considered is only one.
Class field generation

Definition

\[
Cl^m := \mathcal{I}^m / \mathcal{P}^m.
\]

\[
Cl_i^m := \mathcal{I}^m / \mathcal{P}_i^m, \quad i = 1, 2.
\]

\[
Cl^+_m := \mathcal{I}^m / \mathcal{P}_+^m.
\]

Completely analogous definitions are given for \(m := \mathcal{M} \cap A_{\infty 1} \), except that there is no more need to distinguish positivities as the place above \(\infty \) which is considered is only one.

Definition

\(K^m \) and \(K_1^m \) are the unique abelian extensions of \(K \) having their Galois groups over \(K \) isomorphic via reciprocity to \(Cl^m \) and \(Cl_1^m \), respectively.
We call:

\[Z := G(K^m/K_1^m). \]
We call:

$$Z := G(K^m/K_1^m).$$

Theorem

Z acts transitively on the set of A_{∞_1}-modules of m-torsion points
\{\psi_0[m], ..., \psi_{d-1}[m]\}.

L. Demangos

Quantum \(j \) invariant and Real Multiplication program for glo
Definition

\[t^{qt} := \text{Orb}_Z(t_0), \quad t_0 \in \Psi_0[m] \subset K^m. \]
Class field generation

Definition

\[t^{qt} := \text{Orb}_Z(t_0), \quad t_0 \in \Psi_0[m] \subset K^m. \]

Theorem

\[K_1^m = H_{\mathcal{O}_K}(\langle \text{Tr}_Z(t^{qt}), \forall t^{qt} \rangle). \]
Class field generation

Definition

\[t^{qt} := \text{Orb}_Z(t_0), \quad t_0 \in \Psi_0[m] \subset K^m. \]

Theorem

\[K_1^m = H_{O_K}(\langle Tr_Z(t^{qt}), \forall t^{qt} \rangle). \]

The analogous result is shown as well for \(K_2^m \) by repeating the arguments on \(A_{\infty_2} \) and replacing \(f \) with \(f' \). Then:

\[K^m = K_1^m K_2^m. \]

This gives an explicit description of \(K^m \) in terms of \(\exp^{qt} \) and \(t^{qt} \). Submitted soon