Quantum j invariant and Real Multiplication program for global function fields

Luca Demangos (Joint work with T. M. Gendron - UNAM, Mexico)

University of Stellenbosch

Hilbert's 12th problem

Let K be a number field. Hilbert's 12th problem consists in

Hilbert's 12th problem

Let K be a number field. Hilbert's 12th problem consists in giving an explicit description of every abelian extension L/K. In particular, describe explicitly

Hilbert's 12th problem

Let K be a number field. Hilbert's 12th problem consists in giving an explicit description of every abelian extension L/K. In particular, describe explicitly

• The Hilbert class field H_K of K: the maximal abelian extension of K, unramified at every place.

Hilbert's 12th problem

Let K be a number field. Hilbert's 12th problem consists in giving an explicit description of every abelian extension L/K. In particular, describe explicitly

- The Hilbert class field H_K of K: the maximal abelian extension of K, unramified at every place.
- 2 The maximal abelian extension K^{ab} of K.

Theorem of Kronecker-Weber

The abelian closure of $\mathbb Q$ is

Theorem of Kronecker-Weber

The abelian closure of $\mathbb Q$ is

$$\mathbb{Q}^{ab}=\mathbb{Q}(\langle\zeta_n\rangle_{n\in\mathbb{N}\setminus\{0\}}).$$

Theorem of Kronecker-Weber

The abelian closure of \mathbb{Q} is

$$\mathbb{Q}^{ab} = \mathbb{Q}(\langle \zeta_n \rangle_{n \in \mathbb{N} \setminus \{0\}}).$$

Minkowski's Theorem

Let K be a number field. Then:

$$\mathcal{O}_{K}$$
 is UFD $\Longrightarrow H_{K} = K$.

Theorem of Kronecker-Weber

The abelian closure of $\mathbb Q$ is

$$\mathbb{Q}^{ab} = \mathbb{Q}(\langle \zeta_n \rangle_{n \in \mathbb{N} \setminus \{0\}}).$$

Minkowski's Theorem

Let K be a number field. Then:

$$\mathcal{O}_{\kappa}$$
 is UFD $\Longrightarrow H_{\kappa} = K$.

In particular, when $K = \mathbb{Q}$, we have that $H_{\mathbb{Q}} = \mathbb{Q}$.

For K a number field the only case essentially known so far, other than $K=\mathbb{Q}$, is $K=\mathbb{Q}(\mu)$, μ imaginary quadratic.

For K a number field the only case essentially known so far, other than $K=\mathbb{Q}$, is $K=\mathbb{Q}(\mu)$, μ imaginary quadratic.

In this case the solution comes by the theory of complex multiplication.

For K a number field the only case essentially known so far, other than $K=\mathbb{Q}$, is $K=\mathbb{Q}(\mu)$, μ imaginary quadratic.

In this case the solution comes by the **theory of complex** multiplication.

Let $d \in \mathbb{N} \setminus \{0\}$, squarefree, $\mu := \sqrt{-d}$, $\Lambda_{\mu} := \langle 1, \mu \rangle_{\mathbb{Z}}$ is a CM lattice in \mathbb{C} . To Λ_{μ} one associates therefore the CM elliptic curve:

$$E_{\mu}: Y^2 = 4X^3 - 60G_4(\mu)X - 140G_6(\mu);$$

where:

$$G_n(\mu) := \sum_{\lambda \in \Lambda_{\mu} \setminus \{0\}} \lambda^{-n};$$

are the corresponding Eisenstein series.

Let:

$$j(\mu) := \frac{12^3}{1 - \frac{49}{20} \frac{G_6(\mu)^2}{G_4(\mu)^3}};$$

be the value taken in μ by the j-invariant:

$$j: Mod \rightarrow \mathbb{C};$$

defined on the moduli space:

$$Mod = (\mathbb{C} \setminus \mathbb{R})/GL_2(\mathbb{Z});$$

of elliptic curves defined over \mathbb{C} .

$$j(\mu)\in\overline{K}$$

$$j(\mu) \in \overline{K}$$

Theorem of Fueter-Weber

1 There exists $\alpha \in \mathbb{Q}(\mu) \setminus \mathbb{Q}$ such that:

$$H_K = K(j(\alpha));$$

2

$$K^{ab} = H_K(h(E_{\alpha tors}));$$

where $h: E_{\alpha} \to \mathbb{P}_1$ a Weber function.

More precisely, by calling $g_2(\mu) := 60 G_4(\mu)$ and $g_3(\mu) := 140 G_4(\mu)$, and $z := [\wp_z : \wp_z' : 1]$ the general point of E_μ :

The Weber function h is in particular:

$$h(z) = \begin{cases} \frac{g_2(\mu)g_3(\mu)}{\Delta(\mu)} \wp_z, & \text{if } j(\mu) \neq 0, 1728\\ \frac{g_2(\mu)^2}{\Delta(\mu)} \wp_z^2, & \text{if } j(\mu) = 1728\\ \frac{g_3(\mu)}{\Delta(\mu)} \wp_z^3, & \text{if } j(\mu) = 0 \end{cases}$$

where
$$\Delta(\mu) = g_2(\mu)^2 - 27g_3(\mu)^3 \neq 0$$
.

Roughly speaking, the problem is hence solved by two steps:

Roughly speaking, the problem is hence solved by two steps:

$$K = \frac{unramified}{roots/torsion} K^{ab}$$

Roughly speaking, the problem is hence solved by two steps:

$$K = \frac{unramified}{roots/torsion} K^{ab}$$

For example, if $K=\mathbb{Q}$ the first step is skipped as $H_{\mathbb{Q}}=\mathbb{Q}$, so that:

$$\mathbb{Q}^{ab} = \mathbb{Q}(S^1_{tors.}) = \mathbb{Q}(e^{2\pi i \mathbb{Q}})$$

directly (S^1 is the unit circle in \mathbb{C}).

Roughly speaking, the problem is hence solved by two steps:

$$K = \frac{unramified}{roots/torsion} K^{ab}$$

For example, if $K=\mathbb{Q}$ the first step is skipped as $H_{\mathbb{Q}}=\mathbb{Q}$, so that:

$$\mathbb{Q}^{ab} = \mathbb{Q}(S^1_{tors.}) = \mathbb{Q}(e^{2\pi i \mathbb{Q}})$$

directly (S^1 is the unit circle in \mathbb{C}).

(Here the role of the Weierstrass \wp -function is played by the exponential $e^{2\pi i}: \mathbb{R}/\mathbb{Z} \to S^1$).

K real quadratic number field.

K real quadratic number field. $K=\mathbb{Q}(\theta),\ \theta=\sqrt{d},\ d\in\mathbb{N}\setminus\{0\},$ squarefree.

K real quadratic number field. $K = \mathbb{Q}(\theta)$, $\theta = \sqrt{d}$, $d \in \mathbb{N} \setminus \{0\}$, squarefree.

$$\langle 1, \theta \rangle_{\mathbb{Z}}$$
 is DENSE subgroup in \mathbb{R} .

It is therefore not a lattice any longer.

K real quadratic number field. $K = \mathbb{Q}(\theta)$, $\theta = \sqrt{d}$, $d \in \mathbb{N} \setminus \{0\}$, squarefree.

$$\langle 1, \theta \rangle_{\mathbb{Z}}$$
 is DENSE subgroup in \mathbb{R} .

It is therefore not a lattice any longer. The corresponding quotient:

$$\Pi(\theta) := \mathbb{R}/\langle 1, \theta \rangle_{\mathbb{Z}}$$

it is a quantum object.

K real quadratic number field. $K = \mathbb{Q}(\theta)$, $\theta = \sqrt{d}$, $d \in \mathbb{N} \setminus \{0\}$, squarefree.

$$\langle 1, \theta \rangle_{\mathbb{Z}}$$
 is DENSE subgroup in \mathbb{R} .

It is therefore not a lattice any longer. The corresponding quotient:

$$\Pi(\theta) := \mathbb{R}/\langle 1, \theta \rangle_{\mathbb{Z}}$$

it is a **quantum** object. It is NOT Hausdorff and it is called a **quantum torus**.

Y. Manin's RM project

Eisenstein series can not be defined over a subgroup dense in \mathbb{R} .

Y. Manin's RM project

Eisenstein series can not be defined over a subgroup dense in \mathbb{R} . The project of developing a theory of "real multiplication" for quantum tori has been proposed by Y. Manin in order to solve Hilbert's 12th problem for real quadratic number fields in the spirit of Fueter-Weber theorem.

Let us define $||x|| := \inf_{n \in \mathbb{Z}} \{d(x, n)\}$, for all $x \in \mathbb{R}$. $\forall \epsilon > 0$ it is defined:

Let us define $||x|| := \inf_{n \in \mathbb{Z}} \{d(x, n)\}$, for all $x \in \mathbb{R}$. $\forall \epsilon > 0$ it is defined:

$$\Lambda_{\epsilon}(\theta) := \{ n \in \mathbb{Z}, ||n\theta|| < \epsilon \}.$$

Such a set is not trivially $\{0\}$ (and actually infinite) if $\theta \in \mathbb{R} \setminus \mathbb{Q}$ by Kronecker's Theorem.

Let us define $||x|| := \inf_{n \in \mathbb{Z}} \{d(x, n)\}$, for all $x \in \mathbb{R}$. $\forall \epsilon > 0$ it is defined:

$$\Lambda_{\epsilon}(\theta) := \{ n \in \mathbb{Z}, ||n\theta|| < \epsilon \}.$$

Such a set is not trivially $\{0\}$ (and actually infinite) if $\theta \in \mathbb{R} \setminus \mathbb{Q}$ by Kronecker's Theorem.

$$\zeta_{\theta,\epsilon}(k) := \sum_{\lambda \in \Lambda_{\epsilon}(\theta) \setminus \{0\}} \lambda^{-k};$$

Let us define $||x|| := \inf_{n \in \mathbb{Z}} \{d(x, n)\}$, for all $x \in \mathbb{R}$. $\forall \epsilon > 0$ it is defined:

$$\Lambda_{\epsilon}(\theta) := \{ n \in \mathbb{Z}, ||n\theta|| < \epsilon \}.$$

Such a set is not trivially $\{0\}$ (and actually infinite) if $\theta \in \mathbb{R} \setminus \mathbb{Q}$ by Kronecker's Theorem.

$$\zeta_{ heta,\epsilon}(k) := \sum_{\lambda \in \Lambda_{\epsilon}(heta) \setminus \{0\}} \lambda^{-k};$$

$$j_{\epsilon}(\theta) := \frac{12^3}{1 - \frac{49}{20} \frac{\zeta_{\theta,\epsilon}(6)^2}{\zeta_{\theta,\epsilon}(4)^3}}.$$

Theorem (T. M. Gendron, C. Castaño Bernard)

The limit:

$$j^{qt}(\theta) := \lim_{\epsilon \to 0^+} j_{\epsilon}(\theta)$$

produces multiple values and it is a modular invariant defined on the moduli space of quantum tori.

Definition

The quantum j-invariant is the multi-valued function:

$$i^{qt}: \mathbb{R}/GL_2(\mathbb{Z}) \longrightarrow \mathbb{R} \cup \{\infty\}.$$

PARI-GP suggests that if θ is a fundamental unit of \mathcal{O}_K with fundamental discriminant D:

0

$$\sharp\{j^{qt}(\theta)\}=D;$$

2

$$\infty \notin j^{qt}(\theta)$$
.

If $\theta = (1 + \sqrt{5})/2$ T. M. Gendron and C. Castaño Bernard computed explicit values.

PARI-GP suggests that if θ is a fundamental unit of \mathcal{O}_K with fundamental discriminant D:

0

$$\sharp\{j^{qt}(\theta)\}=D;$$

2

$$\infty \notin j^{qt}(\theta)$$
.

If $\theta = (1 + \sqrt{5})/2$ T. M. Gendron and C. Castaño Bernard computed explicit values.

[1] Castaño Bernard C., Gendron T. M., "Modular invariant of quantum tori", *Proc. Lond. Math. Soc.* 109 (2014), Issue 4, 1014 - 1049

Conjecture

Let θ be irrational real quadratic. One then has that:

- \bullet $\sharp j^{qt}(\theta) < \infty$ and $\infty \notin j^{qt}(\theta)$;
- **3** If θ is a fundamental unit:

$$H_K = K(N(j^{qt}(\theta)));$$

for N some weighted norm.

Let X be a smooth, projective curve over \mathbb{F}_q . Let $P \in X$.

Definition

$$A_P := \mathbb{F}_q[X \setminus \{P\}].$$

Let X be a smooth, projective curve over \mathbb{F}_q . Let $P \in X$.

Definition

$$A_P := \mathbb{F}_q[X \setminus \{P\}].$$

We know that if $X = \mathbb{P}_1(\mathbb{F}_q)$ and $P = \infty$:

$$A := A_P = \mathbb{F}_q[T]$$
 $k := \mathbb{F}_q(T)$

$$v_{\infty} = v_{1/T} := -\deg_{\mathcal{T}}(\cdot) \quad |\cdot| = |\cdot|_{1/T} := q^{\deg_{\mathcal{T}}(\cdot)}$$

$$k_{\infty} = \mathbb{F}_{a}((1/T))$$
 $\mathcal{C} := (\overline{k_{\infty}})_{\infty}$

$$A \longleftrightarrow \mathbb{Z}$$
;

$$k \longleftrightarrow \mathbb{Q};$$

$$k_{\infty} \longleftrightarrow \mathbb{R};$$
 $\mathcal{C} \longleftrightarrow \mathbb{C}.$

$$\mathcal{C} \longleftrightarrow \mathbb{C}$$
.

The Hilbert class field H_K has infinite degree over K as $\overline{\mathbb{F}_q}/\mathbb{F}_q$ is clearly abelian and unramified.

The Hilbert class field H_K has infinite degree over K as $\overline{\mathbb{F}_q}/\mathbb{F}_q$ is clearly abelian and unramified.

If we restrict the definition of H_K to be *geometric*, then there are $h_K = \sharp Cl_K$ distinct abelian, unramified extensions of K which are all maximal.

Introduction Complex multiplication theory Real quadratic number fields Function fields in positive characteristic Hayes

Definitions

Definition

A **real** algebraic function field is an algebraic extension of k which is contained in k_{∞} .

<u>De</u>finition

A **real** algebraic function field is an algebraic extension of k which is contained in k_{∞} . Equivalently, an algebraic extension of k is **real** if v_{∞} totally splits in it.

Definition

A **real** algebraic function field is an algebraic extension of k which is contained in k_{∞} . Equivalently, an algebraic extension of k is **real** if v_{∞} totally splits in it.

K/k real quadratic. So this field extension corresponds to a degree 2 morphism:

$$\pi: X \to \mathbb{P}_1(\mathbb{F}_a).$$

Definition

A **real** algebraic function field is an algebraic extension of k which is contained in k_{∞} . Equivalently, an algebraic extension of k is **real** if v_{∞} totally splits in it.

K/k real quadratic. So this field extension corresponds to a degree 2 morphism:

$$\pi: X \to \mathbb{P}_1(\mathbb{F}_q).$$

Note that:

$$\pi^{-1}(\infty) = \{\infty_1, \infty_2\}.$$

Definition

Relative integers $\Longrightarrow \mathcal{O}_K := \mathbb{F}_q[X \setminus \pi^{-1}(\infty)].$

Definition

Relative integers $\Longrightarrow \mathcal{O}_{\mathcal{K}} := \mathbb{F}_q[X \setminus \pi^{-1}(\infty)].$

Absolute integers $\Longrightarrow A_{\infty_1} := \mathbb{F}_q[X \setminus {\infty_1}].$

Clearly:

$$\mathcal{O}_K\supseteq A_{\infty_1}.$$

Clearly:

$$\mathcal{O}_K \supseteq A_{\infty_1}$$
.

Definition

We call absolute Hilbert class field $H_{A_{\infty_1}}$ the maximal abelian unramified extension of K which splits completely at ∞_1 .

Clearly:

$$\mathcal{O}_K\supseteq A_{\infty_1}.$$

Definition

We call **absolute Hilbert class field** $H_{A_{\infty_1}}$ the maximal abelian unramified extension of K which **splits completely at** ∞_1 .

We call **relative Hilbert class field** $H_{\mathcal{O}_K}$ the maximal abelian unramified extension of K which **splits completely at** $\pi^{-1}(\infty)$.

Clearly:

$$\mathcal{O}_K\supseteq A_{\infty_1}.$$

Definition

We call **absolute Hilbert class field** $H_{A_{\infty_1}}$ the maximal abelian unramified extension of K which **splits completely at** ∞_1 .

We call **relative Hilbert class field** $H_{\mathcal{O}_K}$ the maximal abelian unramified extension of K which **splits completely at** $\pi^{-1}(\infty)$.

Clearly, if K/k is **complex** (which means $\pi^{-1}(\infty) = \{\infty\}$), we have that $H_{A_{\infty}} = H_{\mathcal{O}_K}$.

Clearly:

$$\mathcal{O}_{\mathsf{K}}\supseteq A_{\infty_1}.$$

Definition

We call **absolute Hilbert class field** $H_{A_{\infty_1}}$ the maximal abelian unramified extension of K which **splits completely at** ∞_1 .

We call **relative Hilbert class field** $H_{\mathcal{O}_K}$ the maximal abelian unramified extension of K which **splits completely at** $\pi^{-1}(\infty)$.

Clearly, if K/k is **complex** (which means $\pi^{-1}(\infty) = {\infty}$), we have that $H_{A_{\infty}} = H_{\mathcal{O}_K}$.

If K/k is **real** (which means $\pi^{-1}(\infty)=\{\infty_1,\infty_2\}$), we have that $H_{A_{\infty_1}}\supsetneq H_{\mathcal{O}_K}$.

Let us take $f \in k_{\infty} \cap \overline{k}$, quadratic, so that:

$$K = k(f)$$
.

Let us take $f \in k_{\infty} \cap \overline{k}$, quadratic, so that:

$$K = k(f)$$
.

We may assume without loss of generality that f is a **fundamental** unit:

$$f^2 = a(T)f + b$$
, $a(T) \in A$, $b \in \mathbb{F}_q^*$.

Let $d := \deg_T(discr(f)) = \deg_T(a(T))$.

Let us take $f \in k_{\infty} \cap \overline{k}$, quadratic, so that:

$$K = k(f)$$
.

We may assume without loss of generality that f is a **fundamental** unit:

$$f^2 = a(T)f + b$$
, $a(T) \in A$, $b \in \mathbb{F}_q^*$.

Let
$$d := \deg_T(\operatorname{discr}(f)) = \deg_T(a(T))$$
. Therefore $|f| = |a(T)| = q^d$ and $|f'| = |b/f| = q^{-d}$.

Let us take $f \in k_{\infty} \cap \overline{k}$, quadratic, so that:

$$K = k(f)$$
.

We may assume without loss of generality that f is a **fundamental** unit:

$$f^2 = a(T)f + b$$
, $a(T) \in A$, $b \in \mathbb{F}_q^*$.

Let
$$d := \deg_T(\operatorname{discr}(f)) = \deg_T(a(T))$$
. Therefore $|f| = |a(T)| = q^d$ and $|f'| = |b/f| = q^{-d}$.

$$f \in A_{\infty_1}, \notin A_{\infty_2}, \ f^{-1} \in A_{\infty_2}, \notin A_{\infty_1}, \ T \in \mathcal{O}_K, \notin A_{\infty_1}, \notin A_{\infty_2}.$$

$$\mathcal{O}_K = \mathbb{F}_q[T, f] \supset A_{\infty_1} = \mathbb{F}_q[f, Tf, ..., T^{d-1}f].$$

$$\mathcal{O}_{K} = \mathbb{F}_{q}[T, f] \supset A_{\infty_{1}} = \mathbb{F}_{q}[f, Tf, ..., T^{d-1}f].$$

 $f \in \mathcal{O}_K{}^*, \notin A^*{}_{\infty_1}, \notin A^*{}_{\infty_2}$. Therefore the group of units of \mathcal{O}_K is infinite and no \mathcal{O}_K -lattice can be embedded in \mathcal{C} . While on the other hand $A^*{}_{\infty_1} = \mathbb{F}_q{}^*$.

$$\mathcal{O}_K = \mathbb{F}_q[T, f] \supset A_{\infty_1} = \mathbb{F}_q[f, Tf, ..., T^{d-1}f].$$

 $f \in \mathcal{O}_K{}^*, \notin A^*{}_{\infty_1}, \notin A^*{}_{\infty_2}$. Therefore the group of units of \mathcal{O}_K is infinite and no \mathcal{O}_K -lattice can be embedded in \mathcal{C} . While on the other hand $A^*{}_{\infty_1} = \mathbb{F}_a{}^*$.

We also note that both A_{∞_1} and \mathcal{O}_K are Dedekind domains, so the ideal classes over them form actually a group.

 A_{∞_1} -lattices can be embedded in \mathcal{C} . This gives rise to a **rank 1** theory which provides a generalization of the Theorem of Kronecker-Weber for any finite extension of $\mathbb{F}_q(T)$.

 A_{∞_1} -lattices can be embedded in \mathcal{C} . This gives rise to a **rank 1** theory which provides a generalization of the Theorem of Kronecker-Weber for any finite extension of $\mathbb{F}_q(\mathcal{T})$.

Definition

An **Hayes module** is a **rank** 1 **sign-normalized** Drinfeld module:

$$\Psi: A_{\infty_1} \to \overline{K}\{\tau\}.$$

 A_{∞_1} -lattices can be embedded in \mathcal{C} . This gives rise to a **rank 1** theory which provides a generalization of the Theorem of Kronecker-Weber for any finite extension of $\mathbb{F}_q(T)$.

Definition

An **Hayes module** is a **rank** 1 **sign-normalized** Drinfeld module:

$$\Psi: A_{\infty_1} \to \overline{K}\{\tau\}.$$

There are $h_{A_{\infty_1}}$ distinct isomorphism classes of Hayes modules over A_{∞_1} .

Theorem of Hayes

Theorem of Hayes

- **1** $H_{A_{\infty_1}}$ is the smallest field of definition of a Hayes module over A_{∞_1} .
- ② For every given modulus $\mathfrak m$ in A_{∞_1} the (narrow) absolute ray class field of conductor dividing $\mathfrak m$ is:

$$K^{\mathfrak{m}}_{\infty_{1}} = H_{A_{\infty_{1}}}(\Psi[\mathfrak{m}]).$$

Kronecker's Theorem for function fields

For any $h \in k_{\infty} \setminus k$ the image of Ah is dense in $S^1 := k_{\infty}/A$.

Kronecker's Theorem for function fields

For any $h \in k_{\infty} \setminus k$ the image of Ah is dense in $S^1 := k_{\infty}/A$.

Definition

The corresponding quantum torus is the quotient:

$$k_{\infty}/\langle 1, h \rangle_{\mathcal{A}}$$
.

Definition

Let $h \in k_{\infty}$, $\epsilon > 0$. We define:

$$\Lambda_{\epsilon}(h) := \{ a \in A, ||ah|| < \epsilon \};$$

Definition

Let $h \in k_{\infty}$, $\epsilon > 0$. We define:

$$\Lambda_{\epsilon}(h) := \{a \in A, ||ah|| < \epsilon\};$$

where $||x|| := \inf_{a \in A} \{|x - a|\}$, for any given $x \in k_{\infty}$.

Definition

$$\zeta_{h,\epsilon}(n):=\sum_{a\in\Lambda_{\epsilon}(h)^+\setminus\{0\}}a^{-n},\ \forall n\in\mathbb{N}.$$

Definition

$$\zeta_{h,\epsilon}(n) := \sum_{a \in \Lambda_{\epsilon}(h)^+ \setminus \{0\}} a^{-n}, \ \forall n \in \mathbb{N}.$$

Definition

$$j_{\epsilon}(h) := \frac{T^q - T}{1 - \frac{T^{q^2} - T}{T^{q^2} - T^q} \frac{\zeta_{h,\epsilon}(q^2 - 1)}{\zeta_{h,\epsilon}(q - 1)^{q + 1}}}, \ \forall \epsilon > 0.$$

Definition

$$\zeta_{h,\epsilon}(n) := \sum_{a \in \Lambda_{\epsilon}(h)^+ \setminus \{0\}} a^{-n}, \ \forall n \in \mathbb{N}.$$

Definition

$$j_{\epsilon}(h):=\frac{T^q-T}{1-\frac{T^{q^2}-T}{T^{q^2}-T^q}\frac{\zeta_{h,\epsilon}(q^2-1)}{\zeta_{h,\epsilon}(q-1)^{q+1}}}, \ \forall \epsilon>0.$$

(Analogue of E. U. Gekeler's j—invariant for rank 2 Drinfeld modules).

Definition

We call **quantum j**—**invariant** the following **multi-valued** function:

$$j^{qt}: k_{\infty}/GL_2(A) \multimap k_{\infty} \cup \{\infty\};$$

$$j^{qt}(h):=\lim_{\epsilon \to 0^+} j_{\epsilon}(h).$$

Theorem

0

$$\forall 0 < \epsilon < 1, \ \forall h \in k_{\infty} \setminus k, \ |j_{\epsilon}(h)| = q^{2q-1}.$$

In particular, $\infty \notin j^{qt}(h)$.

2

$$h \in k \iff j^{qt}(h) = \infty.$$

Definitions

Theorem

0

$$\forall 0 < \epsilon < 1, \ \forall h \in k_{\infty} \setminus k, \ |j_{\epsilon}(h)| = q^{2q-1}.$$

In particular, $\infty \notin j^{qt}(h)$.

2

$$h \in k \iff i^{qt}(h) = \infty.$$

[2] T. M. Gendron, L. Demangos, "Quantum j—invariant in positive characteristic I: definition and convergence", *Archiv der Mathematik*, 107 (1), 25-35 (2016)

Definitions

Theorem

0

h is quadratic
$$\Longrightarrow \sharp j^{qt}(h) < +\infty$$
.

2

h is quadratic unit
$$\Longrightarrow \sharp j^{qt}(h) = d = \deg_T(discr(h)).$$

Definitions

Theorem

0

h is quadratic
$$\Longrightarrow \sharp j^{qt}(h) < +\infty$$
.

2

h is quadratic unit
$$\Longrightarrow \sharp j^{qt}(h) = d = \deg_T(discr(h)).$$

[3] T. M. Gendron, L. Demangos, "Quantum j—invariant in positive characteristic II: formulas and values at the quadratics", *Archiv der Mathematik*, 107 (2), 159-166 (2016)

Main theorem

Let K/k be quadratic and real, $h \in \mathcal{O}^*_K$ unit. Then:

$$H_{\mathcal{O}_K} = K(N(j^{qt}(h)));$$

$$N(j^{qt}(h)) := \prod_{\alpha \in j^{qt}(h)} \alpha.$$

Main theorem

Let K/k be quadratic and real, $h \in \mathcal{O}^*_K$ unit. Then:

$$H_{\mathcal{O}_K} = K(N(j^{qt}(h)));$$

$$N(j^{qt}(h)) := \prod_{\alpha \in j^{qt}(h)} \alpha.$$

[4] T. M. Gendron, L. Demangos, "The quantum j—invariant and Hilbert class fields of real quadratic extensions in positive characteristic", https://arxiv.org/pdf/1607.03027.pdf

Step 1: Diophantine approximation

Let $h \in k_{\infty} \setminus k$. Let assume $h^2 = a(T)h + b$, $b \in \mathbb{F}_q^*$.

Step 1: Diophantine approximation

Let $h \in k_{\infty} \setminus k$. Let assume $h^2 = a(T)h + b$, $b \in \mathbb{F}_q^*$.

We define the sequence:

$$q_0 := 1, \ q_1 := a, \ \cdots, \ q_i := aq_{i-1} + bq_{i-2};$$

(best approximation of h if b = 1 by continued fraction).

Step 1: Diophantine approximation

Let $h \in k_{\infty} \setminus k$. Let assume $h^2 = a(T)h + b$, $b \in \mathbb{F}_q^*$.

We define the sequence:

$$q_0 := 1, \ q_1 := a, \ \cdots, \ q_i := aq_{i-1} + bq_{i-2};$$

(best approximation of h if b = 1 by continued fraction).

We have that
$$||q_n h|| = |q_n h - q_{n+1}| = \frac{|h'^{n+1}||h-h'|}{|a(T)|} = q^{-(n+1)d}$$
.

Step 1: Diophantine approximation

Let $h \in k_{\infty} \setminus k$. Let assume $h^2 = a(T)h + b$, $b \in \mathbb{F}_q^*$.

We define the sequence:

$$q_0 := 1, \ q_1 := a, \ \cdots, \ q_i := aq_{i-1} + bq_{i-2};$$

(best approximation of h if b = 1 by continued fraction).

We have that
$$||q_n h|| = |q_n h - q_{n+1}| = \frac{|h'^{n+1}||h-h'|}{|a(T)|} = q^{-(n+1)d}$$
.

This follows by Binet's formula:

$$q_n = \frac{h^{n+1} + (-h')^{n+1}}{\sqrt{D}}, \ \forall n \in \mathbb{N}.$$

 $\{T^{d-1}q_0,...,Tq_0,q_0,T^{d-1}q_1,...,Tq_1,q_1,...\}$ is \mathbb{F}_q -basis of A, where the order is by **decreasing errors**:

$$||T^{I}q_{n}h|| = |T^{I}q_{n}h - T^{I}q_{n+1}| = q^{I-(n+1)d} < 1.$$

 $\{T^{d-1}q_0,...,Tq_0,q_0,T^{d-1}q_1,...,Tq_1,q_1,...\}$ is \mathbb{F}_q -basis of A, where the order is by **decreasing errors**:

$$||T^{I}q_{n}h|| = |T^{I}q_{n}h - T^{I}q_{n+1}| = q^{I-(n+1)d} < 1.$$

We fix:

$$\epsilon := q^{-Nd-I}, \ I = 0, ..., d-1.$$

 $\{T^{d-1}q_0,...,Tq_0,q_0,T^{d-1}q_1,...,Tq_1,q_1,...\}$ is \mathbb{F}_q -basis of A, where the order is by **decreasing errors**:

$$||T^{I}q_{n}h|| = |T^{I}q_{n}h - T^{I}q_{n+1}| = q^{I-(n+1)d} < 1.$$

We fix:

$$\epsilon := q^{-Nd-l}, \ l = 0, ..., d-1.$$

One can prove that:

$$\Lambda_{\epsilon}(h) = \mathbb{F}_{q}\langle q_{N}, q_{N}T, ..., q_{N}T^{d-l-1}, q_{N+1}, q_{N+1}T, ..., q_{N+1}T^{d-1}, ...\rangle.$$

 $\{T^{d-1}q_0,...,Tq_0,q_0,T^{d-1}q_1,...,Tq_1,q_1,...\}$ is \mathbb{F}_q -basis of A, where the order is by **decreasing errors**:

$$||T'q_nh|| = |T'q_nh - T'q_{n+1}| = q^{l-(n+1)d} < 1.$$

We fix:

$$\epsilon := q^{-Nd-1}, \ I = 0, ..., d-1.$$

One can prove that:

$$\Lambda_{\epsilon}(h) = \mathbb{F}_{q}\langle q_{N}, q_{N}T, ..., q_{N}T^{d-l-1}, q_{N+1}, q_{N+1}T, ..., q_{N+1}T^{d-1}, ...\rangle.$$

By Binet's formula, if $N \to +\infty$, so $\epsilon \to 0^+$, we have that:

$$q_{N+i} pprox rac{h^{N+1+i}}{\sqrt{D}}.$$

Let:

$$\mathfrak{a}_i:=(h,hT,...,hT^i)_{A_{\infty_1}};$$

for any i = 0, ..., d - 1.

Let:

$$\mathfrak{a}_i := (h, hT, ..., hT^i)_{A_{\infty_1}};$$

for any i = 0, ..., d - 1.

So, by defining:

$$\zeta_{\mathfrak{a}_{d-l-1}}(n) := \sum_{\alpha \in \mathfrak{a}_{d-l-1}^+ \setminus \{0\}} \alpha^{-n};$$

Let:

$$\mathfrak{a}_i := (h, hT, ..., hT^i)_{A_{\infty_1}};$$

for any i = 0, ..., d - 1.

So, by defining:

$$\zeta_{\mathfrak{a}_{d-l-1}}(n) := \sum_{\alpha \in \mathfrak{a}_{d-l-1}^+ \setminus \{0\}} \alpha^{-n};$$

we obtain:

$$\zeta_{h,\epsilon}(n) = \sum_{a \in \Lambda_{\epsilon}(h)^{+} \setminus \{0\}} a^{-n} \xrightarrow{\epsilon \to 0^{+}} \frac{h^{N}}{\sqrt{D}} \{\zeta_{\mathfrak{a}_{d-l-1}}(n)\}_{l=0,\dots,d-1}.$$

By homogeneity of the degree $1-q^2$ we have cancellation of $(h^N/\sqrt{D})^{1-q^2}$ in the expression of $j^{qt}(h)$, so we obtain:

Step 2: Description of j^{qt}

$$j^{qt}(h) = \left\{ \frac{T^q - T}{1 - \frac{T^{q^2} - T}{T^{q^2} - T^q} \frac{\zeta_{\mathfrak{a}_i}(q^2 - 1)}{\zeta_{\mathfrak{a}_i}(q - 1)^{q + 1}}} \right\}_{i = 0, \dots, d - 1} = \{j(\mathfrak{a}_i)\}_{i = 0, \dots, d - 1}.$$

Step 2: Description of j^{qt}

$$j^{qt}(h) = \left\{ \frac{T^q - T}{1 - \frac{T^{q^2} - T}{T^{q^2} - T^q} \frac{\zeta_{a_i}(q^2 - 1)}{\zeta_{a_i}(q - 1)^{q + 1}}} \right\}_{i = 0, \dots, d - 1} = \{j(\mathfrak{a}_i)\}_{i = 0, \dots, d - 1}.$$

Theorem of Goss

$$\exists r \in \mathcal{C} \setminus \{0\}, \ \forall \mathfrak{a} \in Cl_{A_{\infty_1}}, \ \forall n \equiv 0 \ mod \ (q-1):$$

$$\frac{\zeta_{\mathfrak{a}}(n)}{r^n} \in H_{A_{\infty_1}}.$$

Step 2: Description of j^{qt}

$$j^{qt}(h) = \left\{ \frac{T^q - T}{1 - \frac{T^{q^2} - T}{T^{q^2} - T^q} \frac{\zeta_{a_i}(q^2 - 1)}{\zeta_{a_i}(q - 1)^{q + 1}}} \right\}_{i = 0, \dots, d - 1} = \{j(\mathfrak{a}_i)\}_{i = 0, \dots, d - 1}.$$

Theorem of Goss

$$\exists r \in \mathcal{C} \setminus \{0\}, \ \forall \mathfrak{a} \in Cl_{A_{\infty_1}}, \ \forall n \equiv 0 \ mod \ (q-1):$$

$$\frac{\zeta_{\mathfrak{a}}(n)}{r^n}\in H_{A_{\infty_1}}.$$

This generalizes Euler's formula:

$$\frac{\zeta(2n)}{\pi^{2n}} \in \mathbb{Q} = H_{\mathbb{Q}}.$$

Again by homogeneity of the degree $1-q^2$ we factor out r^{1-q^2} .

Again by homogeneity of the degree $1-q^2$ we factor out r^{1-q^2} . Therefore:

$$j(\mathfrak{a}) \in H_{A_{\infty_1}}, \ \forall \mathfrak{a} \in Cl_{A_{\infty_1}}.$$

Again by homogeneity of the degree $1-q^2$ we factor out r^{1-q^2} . Therefore:

$$j(\mathfrak{a}) \in H_{A_{\infty_1}}, \ \forall \mathfrak{a} \in Cl_{A_{\infty_1}}.$$

Which means that:

$$j^{qt}(h) \subset H_{A_{\infty_1}}$$
.

Step 3: Class field generation

$$G(H_{A_{\infty_1}}/K) \xrightarrow{\pi} G(H_{\mathcal{O}_K}/K)$$

$$\downarrow^{\simeq} \qquad \qquad \downarrow^{\simeq}$$

$$CI_{A_{\infty_1}} \xrightarrow{\pi} CI_{\mathcal{O}_K}$$

where:

$$\pi: \mathfrak{a} \mapsto \mathfrak{a} \mathcal{O}_{K}.$$

Step 3: Class field generation

$$G(H_{A_{\infty_1}}/K) \xrightarrow{\pi} G(H_{\mathcal{O}_K}/K)$$

$$\downarrow^{\simeq} \qquad \qquad \downarrow^{\simeq}$$

$$CI_{A_{\infty_1}} \xrightarrow{\pi} CI_{\mathcal{O}_K}$$

where:

$$\pi: \mathfrak{a} \mapsto \mathfrak{a} \mathcal{O}_{K}.$$

It is easy to see that:

$$\{\mathfrak{a}_i\}_{i=0,...,d-1} = \{(f, fT, ..., fT^i)\}_{i=0,...,d-1} \subset Ker(\pi).$$

Step 3: Class field generation

$$G(H_{A_{\infty_1}}/K) \xrightarrow{\pi} G(H_{\mathcal{O}_K}/K)$$

$$\downarrow^{\simeq} \qquad \qquad \downarrow^{\simeq}$$

$$CI_{A_{\infty_1}} \xrightarrow{\pi} CI_{\mathcal{O}_K}$$

where:

$$\pi: \mathfrak{a} \mapsto \mathfrak{a} \mathcal{O}_{K}.$$

It is easy to see that:

$$\{\mathfrak{a}_i\}_{i=0,...,d-1} = \{(f,fT,...,fT^i)\}_{i=0,...,d-1} \subset \mathit{Ker}(\pi).$$

$$(f \in \mathcal{O}_K^*).$$

Proposition

$$h_{A_{\infty_1}} = dh_{\mathcal{O}_K}.$$

Proposition

$$h_{A_{\infty_1}}=dh_{\mathcal{O}_K}.$$

Let $Cl_K := Div(K)/Princ(K)$ the class group of K.

Proposition

$$Cl_{A_{\infty_1}} \simeq Cl_K/\langle \infty_1 \rangle, \ Cl_{\mathcal{O}_K} \simeq Cl_K/\langle \infty_1, \infty_2 \rangle.$$

Proposition

$$h_{A_{\infty_1}} = dh_{\mathcal{O}_K}.$$

Let $Cl_K := Div(K)/Princ(K)$ the class group of K.

Proposition

$$Cl_{A_{\infty_1}} \simeq Cl_K/\langle \infty_1 \rangle, \ Cl_{\mathcal{O}_K} \simeq Cl_K/\langle \infty_1, \infty_2 \rangle.$$

Corollary

$$Ker(\pi) = \{ [\mathfrak{a}_0], ..., [\mathfrak{a}_{d-1}] \} = \langle [\mathfrak{a}_{d-1}] \rangle = \langle \infty_2 \rangle \simeq \mathbb{Z}/d\mathbb{Z}.$$

Therefore:

$$j^{qt}(h) = \{j(\mathfrak{a}), \ \mathfrak{a} \in \mathit{Ker}(\pi)\}.$$

Therefore:

$$j^{qt}(h) = \{j(\mathfrak{a}), \ \mathfrak{a} \in Ker(\pi)\}.$$

By Artin reciprocity:

$$Ker(\pi) \simeq G(H_{A_{\infty_1}}/H_{\mathcal{O}_K}).$$

Therefore:

$$\forall \sigma \in G(H_{A_{\infty_1}}/H_{\mathcal{O}_K}), \ \ N(j^{qt}(h))^{\sigma} = \prod_{\mathfrak{a}_i \in \mathit{Ker}(\pi)} j(\mathfrak{a}_i)^{\sigma} =$$

Therefore:

$$orall \sigma \in G(H_{A_{\infty_1}}/H_{\mathcal{O}_K}), \ \ N(j^{qt}(h))^{\sigma} = \prod_{\mathfrak{a}_i \in \mathit{Ker}(\pi)} j(\mathfrak{a}_i)^{\sigma} =$$

$$= \prod_{\mathfrak{a}_i \in \mathit{Ker}(\pi)} j(\mathfrak{a}_i \mathfrak{a}_{\sigma}^{-1}) = N(j^{qt}(h)).$$

Therefore:

$$egin{aligned} orall \sigma \in G(H_{A_{\infty_1}}/H_{\mathcal{O}_K}), & N(j^{qt}(h))^{\sigma} = \prod_{\mathfrak{a}_i \in \mathit{Ker}(\pi)} j(\mathfrak{a}_i)^{\sigma} = \ & = \prod_{\mathfrak{a}_i \in \mathit{Ker}(\pi)} j(\mathfrak{a}_i \mathfrak{a}_{\sigma}^{-1}) = N(j^{qt}(h)). \end{aligned}$$

It follows that:

$$N(j^{qt}(h)) \in H_{\mathcal{O}_K}$$
.

Theorem

$$\sharp Orb_{G(H_{\mathcal{O}_{\kappa}}/K)}(N(j^{qt}(h))) = h_{\mathcal{O}_{K}} = [H_{\mathcal{O}_{K}} : K].$$

Theorem

$$\sharp Orb_{G(H_{\mathcal{O}_K}/K)}(N(j^{qt}(h))) = h_{\mathcal{O}_K} = [H_{\mathcal{O}_K} : K].$$

As $G(H_{A_{\infty_1}}/K)$ is **abelian**: $\Longrightarrow K(N(j^{qt}(h)))/K$ is Galois extension.

Theorem

$$\sharp Orb_{G(H_{\mathcal{O}_K}/K)}(N(j^{qt}(h))) = h_{\mathcal{O}_K} = [H_{\mathcal{O}_K} : K].$$

As $G(H_{A_{\infty_1}}/K)$ is **abelian**: $\Longrightarrow K(N(j^{qt}(h)))/K$ is Galois extension.

Corollary

$$K(N(j^{qt}(h))) = H_{\mathcal{O}_{\kappa}}.$$

The ϵ -exponential $\exp_{\epsilon}: \mathcal{C} \to \mathcal{C}$ defined in the intuitive way:

$$\exp_{\epsilon}(z) := z \prod_{\lambda \in \Lambda_{\epsilon}(h) \setminus \{0\}} \left(1 - \frac{z}{\lambda}\right);$$

does not give any deep information because:

$$\lim_{\epsilon o 0^+} \exp_{\epsilon}(z) = z.$$

The $\epsilon-$ exponential $\exp_{\epsilon}:\mathcal{C}\to\mathcal{C}$ defined in the intuitive way:

$$\exp_{\epsilon}(z) := z \prod_{\lambda \in \Lambda_{\epsilon}(h) \setminus \{0\}} \left(1 - \frac{z}{\lambda}\right);$$

does not give any deep information because:

$$\lim_{\epsilon \to 0^+} \exp_{\epsilon}(z) = z.$$

Given Λ a rank 1 lattice, the corresponding rank 1 Drinfeld module becomes sign normalized by rescaling Λ by a suitable factor $\xi(\Lambda) \in \mathcal{C}$ explicitly computed as a function of Λ .

We define a transcendental ϵ -scaling factor $\xi_{\epsilon} \in \mathcal{C}$ associated to $\Lambda_{\epsilon}(h)$ in complete analogy.

Definition

For every $\epsilon>0$ the normalized $\epsilon-$ exponential $\widehat{\exp}_{\epsilon}:\mathcal{C}\to\mathcal{C}$ is defined as follows:

$$\widehat{\exp_{\epsilon}}(z) := \xi_{\epsilon} \exp_{\epsilon}(\xi_{\epsilon}^{-1}z).$$

Definition

For every $\epsilon>0$ the normalized $\epsilon-$ exponential $\widehat{\exp}_{\epsilon}:\mathcal{C}\to\mathcal{C}$ is defined as follows:

$$\widehat{\exp_{\epsilon}}(z) := \xi_{\epsilon} \exp_{\epsilon}(\xi_{\epsilon}^{-1}z).$$

$$\exp^{qt}(z) := \lim_{\epsilon \to 0^+} \widehat{\exp_{\epsilon}}(z).$$

Theorem

The quantum exponential is a multi-valued function:

$$\exp_h^{qt}: \mathcal{C} \multimap \mathcal{C};$$

such that:

$$\exp_h^{qt}(z) = \{e_0(z), ..., e_{d-1}(z)\};$$

where $e_0, ..., e_{d-1} : \mathcal{C} \to \mathcal{C}$ are the exponential functions associated to the Hayes modules $\Psi_0, ..., \Psi_{d-1}$, such that:

$$e_i: \mathcal{C}/\xi_i\mathfrak{a}_i \simeq \Psi_i;$$

for i = 0, ..., d - 1, where:

$$\lim_{\epsilon \to 0^+} \xi_{\epsilon} = \{\xi_0, ..., \xi_{d-1}\}.$$

Let \mathfrak{M} be an ideal of \mathcal{O}_K .

$$\mathcal{I}^{\mathfrak{M}}:=\{\mathfrak{A}\subseteq\mathcal{O}_{K},\; (\mathfrak{A},\mathfrak{M})=1\}.$$

$$\mathcal{P}^{\mathfrak{M}}:=\{a\mathcal{O}_{K}\in\mathcal{I}^{\mathfrak{M}},\; a\equiv 1\; \textit{mod}\; \mathfrak{M}\}.$$

$$\mathcal{P}^{\mathfrak{M}}_{1}:=\{a\mathcal{O}_{K}\in\mathcal{P}^{\mathfrak{M}},\; a\; \textit{positive}\; (\textit{sgn}(a)=1)\}.$$

$$\mathcal{P}^{\mathfrak{M}}_{2}:=\{a\mathcal{O}_{K},\; a^{\sigma}\; \textit{positive},\; 1\neq\sigma\in G(K/k)\}.$$

$$\mathcal{P}^{\mathfrak{M}}_{+}:=\{a\mathcal{O}_{K},\; a^{\sigma}\; \textit{positive},\; \forall\sigma\in G(K/k)\}.$$

$$Cl^{\mathfrak{M}}:=\mathcal{I}^{\mathfrak{M}}/\mathcal{P}^{\mathfrak{M}}.$$
 $Cl^{\mathfrak{M}}_{i}:=\mathcal{I}^{\mathfrak{M}}/\mathcal{P}^{\mathfrak{M}}_{i}, \ i=1,2.$ $Cl^{\mathfrak{M}}_{+}:=\mathcal{I}^{\mathfrak{M}}/\mathcal{P}^{\mathfrak{M}}_{+}.$

Definition

$$Cl^{\mathfrak{M}}:=\mathcal{I}^{\mathfrak{M}}/\mathcal{P}^{\mathfrak{M}}.$$
 $Cl^{\mathfrak{M}}_{i}:=\mathcal{I}^{\mathfrak{M}}/\mathcal{P}^{\mathfrak{M}}_{i}, \ i=1,2.$
 $Cl^{\mathfrak{M}}_{+}:=\mathcal{I}^{\mathfrak{M}}/\mathcal{P}^{\mathfrak{M}}_{+}.$

Completely analogous definitions are given for $\mathfrak{m}:=\mathfrak{M}\cap A_{\infty_1}$, except that there is no more need to distinguish positivities as the place above ∞ which is considered is only one.

Definition

$$Cl^{\mathfrak{M}}:=\mathcal{I}^{\mathfrak{M}}/\mathcal{P}^{\mathfrak{M}}.$$
 $Cl^{\mathfrak{M}}_{i}:=\mathcal{I}^{\mathfrak{M}}/\mathcal{P}^{\mathfrak{M}}_{i}, \ i=1,2.$
 $Cl^{\mathfrak{M}}_{+}:=\mathcal{I}^{\mathfrak{M}}/\mathcal{P}^{\mathfrak{M}}_{+}.$

Completely analogous definitions are given for $\mathfrak{m}:=\mathfrak{M}\cap A_{\infty_1}$, except that there is no more need to distinguish positivities as the place above ∞ which is considered is only one.

Definition

 $K^{\mathfrak{m}}$ and $K_{1}^{\mathfrak{M}}$ are the unique abelian extensions of K having their Galois groups over K isomorphic via reciprocity to $CI_{+}^{\mathfrak{m}}$ and $CI_{1}^{\mathfrak{M}}$, respectively.

We call:

$$Z:=G(K^{\mathfrak{m}}/K_{1}^{\mathfrak{M}}).$$

We call:

$$Z:=G(K^{\mathfrak{m}}/K_{1}^{\mathfrak{M}}).$$

Theorem

Z acts transitively on the set of A_{∞_1} -modules of \mathfrak{m} -torsion points $\{\Psi_0[\mathfrak{m}],...,\Psi_{d-1}[\mathfrak{m}]\}$.

$$t^{qt}:= \mathit{Orb}_{Z}(t_0), \;\; t_0 \in \Psi_0[\mathfrak{m}] \subset K^\mathfrak{m}.$$

Definition

$$t^{qt}:= Orb_{\mathcal{Z}}(t_0), \ \ t_0 \in \Psi_0[\mathfrak{m}] \subset \mathcal{K}^\mathfrak{m}.$$

Theorem

$$K_1^{\mathfrak{M}} = H_{\mathcal{O}_K}(\langle \mathit{Tr}_Z(t^{qt}), \ \forall t^{qt} \rangle).$$

Definition

$$t^{qt}:=\mathit{Orb}_{\mathsf{Z}}(t_0), \;\; t_0\in \Psi_0[\mathfrak{m}]\subset \mathcal{K}^\mathfrak{m}.$$

Theorem

$$K_1^{\mathfrak{M}} = H_{\mathcal{O}_K}(\langle \mathit{Tr}_Z(t^{qt}), \ \forall t^{qt} \rangle).$$

The analogous result is shown as well for $K_2^{\mathfrak{M}}$ by repeating the arguments on A_{∞_2} and replacing f with f'. Then:

$$K^{\mathfrak{M}}=K_{1}^{\mathfrak{M}}K_{2}^{\mathfrak{M}}.$$

This gives an explicit description of $K^{\mathfrak{M}}$ in terms of \exp^{qt} and t^{qt} . Submitted soon