Lattice Boundaries and Dimensionality Crossover in Anderson Localization of Light

D. Jović, C. Denz and M. Belić

Anderson localization (AL) is one of the most fascinating universal phenomena in disordered systems physics.\(^1\) It still excites interest in a variety of systems, including light waves, despite its 50-year history. Anderson’s original work in 1958 demonstrated that AL strongly depends on the dimension of the medium. With respect to the localization of light, many facets of the phenomenon still remain in the dark.

Transverse optical AL in 2-D photonic lattices, nonlinear effects and quasilattices were considered experimentally in 2007.\(^2,3\) The intricacies of the dimensional influence on localization are still unexplored. The question of how AL changes at the boundaries of discrete photonic media is also not yet understood. Another unexplored region in this field is the localization of counterpropagating (CP) beams, which requires media of finite longitudinal extension. Since CP beams are inherently unstable in nonlinear media, this brings dynamical effects in AL to the forefront of disordered systems research.

We have recently achieved progress in each of the above-mentioned topics.\(^4-6\) We extended the concept of transverse AL to mutually incoherent CP beams, where we observed the dynamical localization of time-changing beams.\(^4\) We elucidated the effect of boundaries on AL of light in truncated 2-D photonic lattices in a nonlinear medium.\(^5\) Suppression of AL at the edges and corners is demonstrated, so that—quite counterintuitively—stronger disorder is needed near the boundaries to obtain the same localization as in the bulk material. We found that the level of suppression depends on the location in the lattice (edge vs. corner) as well as on disorder strength.

Most recently, we analyzed how system dimensionality affects light localization.\(^6\) A systematic study of the dependence on both the disorder strength and the nonlinearity on AL strength of such a system was carried out. Strong nonlinear regimes exist in which 1-D localization is more pronounced than the 2-D counterpart, opposite to the linear regime case.

To investigate the transition from 2-D to 1-D in a disordered photonic lattice, we devised a system with dimensionality crossover. An array of widely separated 1-D lattices is reached by starting with a 2-D square photonic lattice, and increasing the lattice period along one transverse direction while keeping the period along the other direction fixed. We are able to gradually switch from the 2-D to the 1-D case with this lattice stretching. By investigating intermediate cases, we can determine the transition of quantities of interest describing localization (e.g., the effective beam width and the localization length from 2-D to 1-D values). For example, such a dimensionality crossover is characterized by two different localization lengths along different transverse directions. We are convinced that our lines of inquiry in the AL of light open new research avenues into this fascinating field.\(^6\)

The authors acknowledge helpful discussions with Ya. S. Kivshar. This work is supported by the Ministry of Education and Science of the Republic of Serbia (project OI 171036) and the Qatar National Research Foundation (project NPRP 09-462-1-074). D. Jović expresses gratitude to the Alexander von Humboldt Foundation for the Fellowship for Postdoctoral Researchers.

- References