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We consider a simple thermodynamically consistent model that captures the self-
organized chemomechanical coupling resulting from the interplay between autocatalyti-
cally reacting surfactants, the Marangoni effect, and wetting dynamics. An ambient bath
of surfactant acts as a chemostat and provides the system with chemical fuel, thereby
driving it away from thermodynamic equilibrium. We find that a positive feedback loop
between the local reactions and the Marangoni effect induces surface tension gradients that
allow for self-propelled droplets. Besides simple directional motion, we find crawling and
shuttling droplets as well as droplets performing random walks, thus exploring the entire
substrate. We study the occurring chemomechanical motility modes and show how the
observed dynamic states emerge from local and global bifurcations. Due to the underlying
generic thermodynamic structure, we expect that our results are relevant not only to directly
related biomimetic droplet systems but also to structurally similar systems like chemically
active phase-separating mixtures.

DOI: 10.1103/f3ck-dx5c¢

I. INTRODUCTION

The interface between hydrodynamics and chemistry is rich in fascinating phenomena, ranging
from chemical gardens [1] and chemically driven active colloids [2] to periodically erupting
droplets [3]. Considering this ubiquitous complexity, it seems plausible that also many biological
systems are found at the intersection of these fields [4—7]. Correspondingly, the study of physical
processes in living matter, including hydrodynamic phenomena, has gained considerable traction in
recent years. Examples include hydrodynamic models of the actomyosin complex [8—10], mitotic
spindle positioning [11], chromatin dynamics [12], protoplasmic droplets [13,14], and osmotic
biofilm spreading [15,16] as well as studies of reaction- and diffusion-based protein dynamics at
biomembranes [17-20] and biomolecular condensates [21-25]. Here, minimalistic models comple-
ment complicated biologically faithful descriptions, as they are more accessible to theoretical and
conceptual study. In particular, motility and self-propulsion phenomena are studied as hallmarks
of active matter, with diverse underlying physico-chemical mechanisms including asymmetric
distributions of catalytic activity [2,26-30], self-induced wettability gradients [31-36], active

*Contact author: f_voss09 @uni-muenster.de
TContact author: u.thiele @uni-muenster.de; http://www.uwethiele.de

Published by the American Physical Society under the terms of the Creative Commons Attribution

4.0 International license. Further distribution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

2469-990X/2025/10(9)/094005(32) 094005-1 Published by the American Physical Society


https://orcid.org/0009-0003-9679-035X
https://orcid.org/0000-0001-7989-9271
https://ror.org/00pd74e08
https://ror.org/00pd74e08
https://ror.org/00pd74e08
https://crossmark.crossref.org/dialog/?doi=10.1103/f3ck-dx5c&domain=pdf&date_stamp=2025-09-16
https://doi.org/10.1103/f3ck-dx5c
http://www.uwethiele.de
https://creativecommons.org/licenses/by/4.0/

FLORIAN VOSS AND UWE THIELE

stresses [13,14,37—-40], and enzymatically maintained concentration gradients [24,25]. Among such
self-propulsion strategies, the (solutal) Marangoni effect, i.e., the emergence of mechanical forces
localized at interfaces that results from surface tension gradients, is especially common in the con-
text of biomimetic and prebiotic systems. It is employed in, e.g., drop-based microswimmers [41,42]
and some simple models of protocell motility [43]. Aimed at achieving biomimetic functions, pre-
vious studies have combined autocatalytic pattern-forming reactions like the Belousov-Zhabotinsky
reaction with (droplet) hydrodynamics [44—47] and polymeric gels [48-50] resulting in complex
deformation and motility modes due to chemically driven flows. Autocatalytic mechanisms are
also discussed as possible forms of molecular self-replication under prebiotic conditions [51-53].
Interestingly, candidates for autocatalytic self-replication also include, e.g., amphiphilic peptides
[54] that can adsorb at water-air interfaces. In view of these observations, it is compelling to study
whether the coupling of autocatalytic processes at interfaces and droplet hydrodynamics can result
in complex forms of motility without the highly specialized biochemical machinery of biological
cells.

Here, we propose a simple mesoscopic hydrodynamic model that captures the interplay of an
autocatalytic reaction at the free surface of a droplet, the solutal Marangoni effect and the wetting
dynamics in the presence of chemical fuel. Despite being conceptually simple, the model exhibits a
striking degree of complexity of the resulting modes of self-propulsion.

We remark that the model briefly considered in Sec. 4.2 of Ref. [55] by the authors is related to the
one presented in this article. A notable difference consists in the modeling of the exchange reactions
with the chemostats (which provide the chemical fuel) which are here, in contrast to Ref. [55], not
linearized about chemical equilibrium. More importantly, here, we consider parameter regimes for
which the reaction-diffusion subsystem of surfactants without any coupling to hydrodynamics does
not form any patterns. Instead, the various modes of droplet motion emerge only as a consequence
of a chemomechanical feedback loop that results from the interplay of nonlinear chemical reactions
and the Marangoni effect which we describe in Sec. III.

The present article is organized as follows. In Sec. II we provide a thermodynamically consistent
free-energy-based description of droplets covered by chemically reacting surfactants. We discuss
how the presence of chemical fuel results in persistent nonequilibrium behavior. In Sec. III we
first investigate droplets on a one-dimensional substrate and study the underlying self-propulsion
mechanism which we identify as a positive feedback loop between the local chemical reactions
and the Marangoni effect. In Sec. IV we study more complex forms of droplet motion, namely
periodic stick-slip-like motion (“crawling”) and back-and-forth motion (“shuttling”), and the related
bifurcations. Finally, we briefly turn to droplets on a two-dimensional substrate, where the additional
degree of freedom allows for highly complex types of motility. In Sec. V, we recapitulate our
findings, discuss potential implications for biomimetic and related biological or prebiotic systems
and list possible extensions of the model.

II. DROPLETS COVERED BY AUTOCATALYTIC SURFACTANTS

We consider a mesoscopic droplet of a simple incompressible, partially wetting liquid that is
situated on a flat, solid substrate (Fig. 1). The free surface can be parametrized by the local film
thickness A(x, t) with substrate coordinates x = (x, y)T and time ¢. It is populated by insoluble
surface-active chemical species (surfactants) with densities ' (x, #) and ['»(x, 1) (particles per unit
surface area). The droplet is embedded in an ambient fluid that acts as a chemostat for surfactants.
The free energy of the system is

F= / [f(h) + Eg(T1, To)ld’x, (1)

S
where S denotes the substrate plane, & = /1 + ||Vh||? is the local metric factor of the droplet
surface with V = (9, 9y )T, and || - || is the Euclidean norm. The partial derivative with respect to i

is denoted by 9;. Equation (1) comprises two contributions, namely the mesoscopic wetting energy
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FIG. 1. Sketch of the considered system. A droplet of a partially wetting liquid is situated on a flat solid
substrate. The local film thickness is denoted by A (x, ). The droplet is in contact with an ambient bath and its
free surface is populated by two species of surface-active molecules (surfactants) with densities I'y (x, #) and
> (x, t). They equally linearly reduce the local surface tension y and engage in an autocatalytic reaction with
reaction rate r > 0. Here, I'; catalyses its own production. The ambient bath acts as a surfactant source or sink
(chemostat) with the exchange rates g, 8, > 0.

f(h) that encodes all liquid-substrate interactions and the surface energy g(I';, ['>). We here neglect
possible surfactant-substrate interactions [56], such that f is independent of I"; and I',. Conversely,
g is assumed to be independent of A. Specifically, we assume that the wetting energy is a simple
superposition of long-range attractive and short-range repulsive interactions,

3
f(h)zA(—LwL " ) 2
2h% 5

Here, A is the Hamaker constant that is directly related to the equilibrium contact angle [57], and
h, is the thickness of the ultrathin adsorption layer that covers the macroscopically “dry” substrate.
Note that with A > 0 we have for the spreading parameter S = f(h,) < 0 and Eq. (2) corresponds
to partial wetting [57-59]. We further assume that the droplet surface is only sparsely covered
by surfactant. Then, interactions between individual surfactant molecules are negligible and the
surfactant-dependent part of the surface energy g only comprises entropic contributions,

g1, T2) =y + kT [In (T1a]) — 1] + kT To[In (Mha3) — 1], 3)

where yy is the surface tension of the bare droplet surface, a;, a, are typical surfactant length scales,
T is the temperature and k;, is the Boltzmann constant. This choice results in the linear equation of
state,

vy, T2) =y — kT (' +T'y), €]

where the surface tension y symmetrically depends on both species, for details see Refs. [55,60].
This implies that only the total surfactant count determines the surface tension and therefore ex-
cludes (self-propulsion) effects based on differences in surfactant properties [41,42]. The surfactants
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chemically react in the reversible autocatalytic reaction

2 + T, 2 310, ®)

where 'y catalyzes its own production with the reaction rate » > 0. Consequently, we refer to I'; as
the autocatalyst and to I'; as the reactant. Reaction (5) corresponds to the central nonlinear reactions
of paradigmatic pattern forming systems like the Brusselator [61,62] and the Schlogl model [62].
Here, it represents a simple incorporation of a chemical nonlinearity. In systems containing multiple
surfactants, such higher order reactions may be associated with the formation of micelles that consist
of both species [63,64]. The droplet also exchanges surfactant with the ambient bath which acts
as a reservoir or chemostat for both chemical species. This is modeled as reversible adsorption-
desorption reactions,

B
I <:’l bath of chemical potential w,,

B
I, <:’2 bath of chemical potential w;, (6)

where forward reactions (e.g., I'j — bath) correspond to desorption from the free surface and
B1, B> > 0 are the reaction rates for I'y and I',, respectively. Instead of treating an ambient bath,
one could equivalently assume an exchange with the droplet bulk as a reservoir. In both cases, we
assume that the reservoir is large such that the exchange of surfactant with the drop surface does not
significantly alter the concentrations of species in the bath and the corresponding constant chemical
potentials p| and pu, are convenient control parameters. For a thermodynamically sound justification
of this approximation, see Ref. [65]. The reactions (6) can therefore continuously provide the droplet
with chemical fuel and drive the system away from thermodynamic equilibrium. The dynamics is
then described by a “passive core” in gradient dynamics form with thermodynamic forces derived
from variations of the free energy (1), that is augmented by the exchange reactions with the bath.
The complete model reads

oh=-V.j, =V |:Q VaF—i-Q V(SF—i—Q VSF}
n = Jn= hh sh hl, Sf*l hT, 3f‘27

A

. SF oF SF
alrl =_V11+R+Bl =V. QF1/1V5_+QF1F|V?+QI‘1F2V_ +R+B]a

h 8f 8T,

A . oF §F oF
8[F2 = _V .12 _R+BZ =V. [QFQ’IV_ +QF2F]VT +QF2F2V?} _R+82' (7)

Sh oIy )

Here, fl,z = &I, are “projected” densities (particles per unit substrate area) that directly cor-
respond to the particle numbers of surfactant and are independent of the surface geometry, for
details see Refs. [55,60,66]. For a general account of the thermodynamic structure of Eqs. (7) we
also refer to Ref. [55] and references therein. The fully equivalent hydrodynamic form is given in
Appendix A. Note that Egs. (7) conserve the total liquid volume. The variational derivatives 6F /§h
and §F /(Sf‘l, 8F/8 I, correspond to the liquid pressure and the chemical potentials of I'; and I',
on the droplet surface, respectively. The transport fluxes j, and j,, j, in Eqs. (7) are thus linear in
gradients of pressure and chemical potentials and represent diffusive and advective contributions to
transport, including Marangoni fluxes. The associated mobility matrix [55,60],

n Ty KT,
Ow  Owr, O, 3 pT) 7
T hr? AT
Q=% Orr Orn|=|% 5 +DilL = , (3)
Or,,  Orr, Onr, % hl“};)rz ’123 +D,T,
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is positive definite and symmetric, ensuring nonnegative entropy production and satisfying the
Onsager relations [67—69]. It corresponds to a thin-film description for droplets covered by insoluble
surfactants without slip at the substrate [55,60]. Here, n > 0 is the dynamic viscosity of the liquid
and Dy, D, > 0 are diffusive mobilities of the respective surfactant. Note that in the underlying
hydrodynamic problem, the transport fluxes j, and j,, j, respectively correspond to the vertically
integrated horizontal components of the liquid velocity and to diffusive and advective surfactant
transport at the free surface [70]. Equation (8) implies that the ambient medium does not contribute
to the drop dynamics, e.g., because it is of low viscosity. This differs from the commonly treated
Marangoni-driven microswimmers [41,42]. However, this assumption could be relaxed in the future
by incorporating aspects of Ref. [71]. The model (7) could also be extended to treat soluble
surfactants [66], e.g., to capture a possible depletion or enrichment of surfactants in the bath. Then,
the chemical potentials w1, 1, would be dynamical quantities, instead of the explicit chemostatting
assumed here.

Unlike the transport fluxes, the autocatalytic current ‘R is nonlinear in the free-energy variations,

R [ <2 6F+16F) (3 6F)} ©)
=FeXpPl\ T m T 7= ) SXPl 7= )|
P\t sty Tk er,) TP kT st

where the structure of Eq. (9) expresses the principle of detailed balance [55,67,72,73] and contains
the flux of the forward and the backward reactions of Eq. (5) as the first and second term,
respectively. In the limit of ideal systems, Eq. (9) corresponds to standard mass-action kinetics.
So far, all contributions are purely passive, i.e., they result in a decrease of the free energy F until
thermodynamic equilibrium is attained.

The final nonconserved terms in Eqs. (7) model the exchange of surfactant with the ambient bath
and are similarly to Eq. (9) given by

w 1 oF
B] = ﬂl |:6Xp (kb—}) — exXp (kb_T 8?)i|,
1

12%) 1 6F
= = B e s 1
By =B, [exp (k,,T) exp (ka 5F2)j| (10)

where w1, 4 are the uniform and constant chemical potentials of I'; and I'; in the bath that acts
as a chemostat. This reflects that the concentrations in the bath are not significantly affected by
the exchange with the drop surface. Note that in Sec. 4.2 of Ref. [55], the linearized expres-
sions of Egs. (10) are employed, which are strictly valid only near thermodynamic equilibrium
[67]. For u; = o, Eqgs. (7) represent an open albeit passive system where the grand potential
F—[Y.¢ w:T;d%x continuously decreases.! Then, the system ultimately relaxes to a single droplet
that is uniformly covered by both surfactants. Otherwise, 1| and wu, reflect driving forces and the
system is permanently out-of-equilibrium. More generally, the nonequilibrium driving results from
an incompatibility between the chemical potentials of the chemostat with respect to the conditions
for thermodynamic equilibrium [74]. Thus, if the chemical potentials of the chemostat are uniform
and constant, then two or more chemostatted species are necessary for sustained nonequilibrium.
Therefore, systems with only one chemostat such as the chemically driven running drop discussed in
Sec. 4.1 of Ref. [55] indeed relax toward thermodynamic equilibrium, i.e. the (semi)grand potential
continuously decreases [74] (in contrast to the increasing free energy shown in Ref. [55]). However,
if the running drop moves in an infinite domain, then the actual equilibrium is never reached
somewhat similar to a drop sliding down an infinite incline.

To study the emerging dynamics, we nondimensionalize Eqs. (7). Importantly, we explicitly
use the assumption that slopes in the droplet profile are small (||Vh|| < 1), resulting in the

'See, e.g., the formulation of the second law of thermodynamics for open reaction-diffusion systems in
Ref. [74] which also applies here.
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FIG. 2. Flat films rupture via spinodal dewetting and self-organize into self-propelled droplets moving with
constant velocity v. Panel (a) shows the final self-propelled state, where the droplet moves across the substrate
driven by a net imbalance in surface tension between the front and the rear. The top panel shows the film
thickness profile £, the other panels show the profiles of the surface tension y and the surfactant concentrations
I') and I';. The streamlines in the top panel correspond to the velocity field of the liquid in the laboratory
frame. Panel (b) shows a space-time diagram of the initial dewetting process and subsequent self-propulsion.
(c) Results of the linear stability analysis of a flat film that corresponds to the initial condition of panel (b).
The top two panels give the real and imaginary parts of the eigenvalues A (red, blue, green) as functions of
the wavenumber k. The bottom two panels show the real and imaginary parts of the ~A-component v, of the
three normalized eigenvectors as functions of k (also red, blue, green). The dotted lines indicate zero. The flat
film is linearly unstable for small wavenumbers (red) corresponding to a Cahn-Hilliard (spinodal) instability
which does not couple to the surfactant fields. When u, is increased (thin lines), other wavenumbers become
unstable, e.g., via a Hopf-instability (top panel, green line crosses zero at k = 0), via a wave instability (top
panel, blue line crosses zero at k # 0) or via a Turing instability (top panel, red line crosses zero at k # 0).
The parameters for panels (a), (b),and (c)are o1 = —1.4, u, =4.13,r=0.3,6,=2,5,=0.01,§ =1,D, =
D, = 0.45,W = 10 with a mean film thickness of 7 = 7. The computational domain in panels (a), (b) is
[0,100]. In panel (c), the thin lines correspond to w, = 4.15,4.17,4.19,4.21, 4.23. See also Supplemental
Video 1 [77].

approximation f‘m ~ I'| » in the final equations. For details, we refer to Appendix B, where we also
discuss possible dimensional parameter values. From hereon, all quantities are nondimensional. In
the following, we investigate the dynamics of self-propelled droplets which occur for sufficiently
strong nonequilibrium driving.

III. SELF-PROPULSION MECHANISM

First, we consider two-dimensional (2D) droplets (liquid ridges) on a one-dimensional domain
with periodic boundary conditions, and study the dynamics using finite-element-based time simu-
lations implemented in oomph-lib [75] (Appendix E). We specifically examine scenarios of strong
molecular interactions between the liquid and the substrate as compared to the energetic influence
of surfactant (W = Qf’lj:; > 1, Appendix B). In both the passive and the active case, flat films then
typically rupture by gpinodal dewetting (i.e., by a long-wave instability of Cahn-Hilliard type, see
Supplemental Material of Ref. [76] for a recent classification) and quickly form a single droplet
[Figs. 2(b) and 2(c)]. At large driving force also other instability types can occur [Fig. 2(c)], although
here we focus on the spinodal scenario. If the ambient reservoir is depleted of the autocatalyst I';
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and rich in the reactant I'; (u; < 0, up > 0), then droplets formed by dewetting spontaneously
break their left-right symmetry and move across the substrate (Figs. 2(a) and 2(b), Supplemental
Video 1 [77]). This is due to Marangoni convection induced by a greatly increased surface tension
in the advancing contact line region. The surface tension in the receding contact line region is also
slightly increased. The effect at the receding contact line vanishes when the coupling of the liquid
pressure to the surfactant dynamics [see Eq. (8)] is neglected and results from pressure gradients in
the contact line regions. Because this effect is comparatively small we do not discuss it further.

Importantly, self-propelled droplets can be observed even when both surfactants diffuse equally
(D1 =D,) which excludes a Turing instability of the reaction-diffusion subsystem as an underlying
mechanism. We now show that the mechanism for generating and maintaining local gradients in
surface tension arises from the chemomechanical interplay of the nonlinear “local reactor” and
Marangoni convection. Ultimately, this gives rise to various forms of self-propelled droplets. To
this end, temporarily we only consider the (nondimensional) local reactor given by

Iy =R+ By =r[6TL] — (6T’ + Bile — 8T1],
Iy =R+ B, = —r[6TLI] — (6T’ + Bale”> — 67' T2, (11)

where the dot denotes the derivative with respect to time and § = a;/a,. To compute the steady
states of the system given by (11), we additionally assume that 8, = O(¢) and e*2 = O(¢~!) with
¢ < 1 and that all other quantities are O(1). This reflects a slow exchange of I"; with the bath and a
strong energetic bias toward the adsorption of I'; onto the droplet. These assumptions also capture
the parameter choice of Fig. 2. Then, the local reactor (11) has a single fixed point which can be

determined to order O(1) as
1
Fl,‘vs — _|:eM1 + @eﬂz]’
B

) 1

’82 eH?
réT'?

1,ss

FZ,XS - 82F1,xx + s (12)

where I'y g, 'z 5 are the steady-state densities. From Eqgs. (12) we see that the autocatalyst con-
centration I'y i linearly depends on the chemical driving currents e, Be/** whereas the reactant
concentration I', i is generally nonlinear in the nonequilibrium forcing [Fig. 3(e)]. Notably, this
implies due to Eq. (4) that the nondimensional steady-state surface tension y,, = 1 — a]kgfyo Ty +
I’y 5s) also depends nonlinearly on the driving currents and may increase or decrease when the
influx from the bath is increased [Fig. 3(f)]. We now consider w, as the main driving force and, for
convenience, choose f,e*? as our control parameter (by varying u, and leaving §, fixed). The fixed
point (12) is then rendered unstable in either of two supercritical Hopf bifurcations which are given
by the condition (Appendix C)

a(rl,ss + F2,ss) _

9(paet2)
where both I'| i, and Iy 4 are understood as functions of B,e/? and of all other parameters (except
B> and p,) appearing in Eqs. (12). That is, the Hopf bifurcations occur at the local extrema of

vss(Bae"?) [see Fig. 3(e)].2 In between, chemical oscillations are observed [Figs. 3(b) and 3(d)].
Outside of this parameter region, all phase space trajectories converge to the fixed point [Figs. 3(a)

0, (13)

2This condition can be understood intuitively by considering a two-component dynamical system with an
N-shaped (e.g., cubic) and a vertical nullcline. This is the approximate shape of the nullclines of Eqs. (11) near
the fixed point. In this case, the Hopf bifurcations generically occur when the fixed point crosses the extrema
of the N-shaped nullcline. Approximately at these points, also I'j + I'; exhibits a local extremum along the
branch of steady states that is obtained by shifting the two nullclines with respect to each other.
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FIG. 3. Properties of the local reactor (11). Panels (a) and (b) show the phase portraits outside and inside
the Hopf unstable region with u, = 3.3 and p, = 4.8, respectively. The nullcline of I'; (I';) is represented
as a blue (green) line. The stable (unstable) fixed point is shown as a filled (empty) circle symbol. Red lines
represent typical trajectories, in panel (a) the red square denotes the initial condition, in panel (b) the trajectory
corresponds to the limit cycle. Panels (c) and (d) show the time evolution of I'; (blue) and I'; (green) for the
red trajectories in panels (a) and (b), respectively. In panel (c), the squares denote the initial concentrations.
Panel (e) shows the numerically computed bifurcation diagram with B,e*? as control parameter (8, fixed).
The steady-state concentrations I' ;; and I', i, are drawn in blue and green (dotted lines) the sum of both
concentrations is shown in orange [black for estimate given by Eqs. (12)]. Supercritical Hopf bifurcations
occur at the extrema of I'y i, + I'» 5, (orange dots). Between them, the steady state is unstable (dashed line). In
the unstable region, a limit cycle exists, where the mean total concentration is represented as a purple solid line.
(f) Dependence of the steady-state surface tension y (I'; s, + I'2.55) on both driving currents B!, B,e/? (fixed
Bi, B2) given by Egs. (4) and (12). The stability diagram shown at the bottom results from Eq. (13). In panels
(e) and (f), pentagon [triangle] markers denote the parameter choices in panels (a) and (c) [panel (b) and (d)].
The remaining parameters for all panels are r = 0.3, 8; = 2, 8, = 0.01, 6 = 1 and [except (f)] 1 = —1.4.

and 3(c)]. We find that the corresponding reaction-diffusion system shows similar dynamics when
D, = D, and relaxes to the homogeneous steady state if it is stable. Note that the Hopf bifurcations
given by condition (13) correspond exactly to the Hopf bifurcations of the flat film (Fig. 2(c) shows
the first). Therefore, due to our restriction to the purely spinodal case shown in Fig. 2(c), we are
operating within this stable regime of the local reactor also for the full model (7).

We now turn back to the complete spatially extended system and consider a self-propelled droplet
in the comoving frame z = x — vt. If the droplet moves with constant velocity v, then the surfactant
profiles are given by

0=— zjl +R+Bl — vazFl,
0=—8.jo— R+ B> —vd,T5. (14)

We consider self-propelled states given by Eqgs. (14) in three different regions (i) to (iii) shown
in Fig. 4(a). Region (i) is located away from the contact line region and corresponds to the bulk
of the droplet. The flow is nearly laminar and matter is “passed through” to the contact line region.
Consequently, no surfactant accumulates due to transport and we have 9, j; = 9, j, = 0. We find that
the surfactant profile is uniform in this region such that v9,I"; = v9.I", = 0. The concentrations are
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FIG. 4. (a) Magnification of the front of a self-propelled droplet that moves with velocity v. The top panel
shows the film thickness / and streamlines represent the velocity field of the liquid in the laboratory frame. The
bottom panel shows the surface tension profile y. The three regions correspond to (i) the bulk of the droplet, (ii)
the advancing contact line, and (iii) the adsorption layer. In (i) and (iii), the surface tension y; is given by the
steady state of the local reactor, i.e., by evaluating y,, at B,e/*2. At the surface tension maximum z = z,, in (ii),
the surface tension y; is determined as a balance between transport fluxes and chemical reactions and can be
obtained by evaluating y,, at B,e"? — 9. j»(z,,). This is illustrated in panel (b), where y,, is shown as a function
of B,e2. The gray region marks the section between the extrema of y,, (orange dots) where the steady-state
surface tension increases with increasing influx —d, j,. Note that y; lies outside of this region. This capacity of
the local reactor to increase the surface tension in response to an influx of reactant suggests a general positive
feedback loop that is shown in panel (c).

then given by the steady state of the local reactor (12) and we denote the respective surface tension
by y1. Region (iii) comprises the adsorption layer far away from the contact line region. Here, the
film thickness is constant (h = 1, or h = h, in dimensional units) and the surfactant coverage is
uniform. As before, we then have 9. j; = vd,I'; = 0 with i = 1, 2 and the local concentrations are
again given by Eqs. (12) with the surface tension y;. Finally, we turn to the contact line region (ii).
There, the liquid flow is dominated by two vortices that are “squeezed” into the contact line region
due to the strong left-right symmetry breaking. The weaker vortex reaches into the adsorption layer
[Fig. 4(a)]. Here, the fluxes j; and j, are generally not constant and there exist strong surface tension
gradients. However, we only consider the local maximum of the surface tension profile at z = z,,
with the surface tension y, and where 9,y = 0 and approximately 9,I") = 9,I", = 0 (since the local
extrema of I'; and I"; do not coincide exactly). In particular when the droplet speed is not too large,
the contributions —vd,I";, —vd,I", are then negligible. We additionally observe in time simulations
that the transport contributions —d. j; are small near the surface tension peak. This can be explained
by observing that I'; is enriched in the contact line region [see Fig. 2(a)] such that diffusion of I';
opposes the advective fluxes (which transport surfactant info the contact line region). Diffusive and
advective contributions then effectively cancel near the peak. Note that the difference in coverage
between I'; and I', (particularly near the advancing contact line) originates from differences in
Bi1, B> and w1, 1o as well as from the distinct roles of the two species in the autocatalysis (5) since
we assume D} = D, and § = 1. We further discuss these approximations in Appendix D. As a result,
at the local maximum of the surface tension profile at z = z,, we have the balance equations

0=R+ B,

0=—-R+B,— 0. (15)
We recognize that Egs. (15) correspond to the steady-state equations of the local reactor (11),
augmented by the spatial transport of reactant I',. We are now interested in steady states with
—09;j2(z) > 0 at the peak while Ay =y, — y; > 0. In this scenario matter is continuously ad-
vected into the contact line region due to a simultaneously maintained gradient in surface tension

between the three discussed regions, which must hold for self-propelled droplets. Using Egs. (15),
we see that —a, j>(z,,) (which can be directly determined from time simulations) acts simply as

094005-9



FLORIAN VOSS AND UWE THIELE

an additional driving term that may be added to the control parameter, i.e., at the surface tension
peak the surface tension y, can be found by evaluating y;, as a function of Be#>—9, j,. Because
yss changes nonmonotonically with the control parameter, there is a region of the curve where y;
increases with the driving current, i.e., the total mass in the reactor decreases with an increasing
influx of reactant [Fig. 4(b)]. We then find that Ay = y(Bre"2 — 0,j2(zm)) — Vss(B2e"?) > 0 may
coincide with —9, j>(z,,) > O for sufficiently large transport contributions (note that the stability of
the local reactor does not reflect the stability of the self-propelled state). Physically, this effect can be
summarized as follows. The local reactor may overcompensate additional influxes of the reactant I',
from neighboring regions on the free surface by a net removal of surfactant from the droplet, thereby
maintaining a locally increased surface tension. In consequence, matter is continuously advected
into the advancing contact line region and the droplet moves across the substrate. Self-propelled
droplets as shown in Figs. 2 and 4 therefore represent a balance between chemical reactions and
transport fluxes that is sustained due to an interplay of the nonlinear local reactor and the Marangoni
effect.

This interaction between the Marangoni effect and the local reactor relies on the capacity of
the local reactor to increase the surface tension in response to a reactant influx. More generally,
this suggests a positive feedback loop where locally induced Marangoni flows cause increases in
surface tension via the local reactor that in turn enhance these flows [Fig. 4(c)]. Surface tension
gradients can therefore be quickly excited, e.g., by perturbations of the local flow. We can then
expect more complex forms of self-propulsion when surface tension gradients are excited away
from the advancing contact line, which may cause droplets to stop or even reverse their direction of
propagation. We investigate such states in the following and study the bifurcations that give rise to
various forms of droplet motility.

IV. PARTIAL BIFURCATION STUDY AND COMPLEX FORMS OF DROP MOTILITY

A. Onset of self-propulsion

To explore the bifurcations that ultimately result in complex types of drop motility, we employ
numerical continuation [78-80] using the package pde2path [81] (see Appendix E). We first
investigate bifurcations from the base branch of resting droplets that are uniformly covered by
surfactants. At ) =pu,, this state corresponds to thermodynamic equilibrium. We additionally
assume equal diffusion of both surfactants with D; =D, =D. A typical bifurcation diagram with
control parameter u, at fixed p; # O is presented in Fig. 5(a). Note that we restrict ourselves to
states that are relevant to what is observed in time simulations and therefore only show a small
selection of all existing branches and bifurcations. As w, is increased, the branch of uniformly
covered drops is rendered unstable in a combination of a drift-pitchfork bifurcation DP; and a
transcritical bifurcation TC, that occur in immediate succession.® The fully resolved bifurcation
structure near DP; and TC; is shown in Fig. 6. First, a branch of parity-broken unstable traveling
states emerges subcritically at DP;. This branch then connects supercritically at a drift-pitchfork
DP; to an unstable branch of resting symmetric states that bifurcates from the base branch at TC;
and connects to it again at another transcritical bifurcation TC, at a larger value of ;. This series
of bifurcations comprising DP;, TC;, DP,, and TC, essentially produces two branches of unstable
symmetric resting states that continue to exist far away from the bifurcations. These states feature
either one or two surface-tension peaks near the droplet center [Fig. 5(a)]. At larger driving, a branch
of traveling states emerges at a subcritical drift-pitchfork DP3 with a linearly stable section that
is limited by two subcritical Hopf bifurcations H™ and H* [Figs. 5(a) and 5(d)]. Note that H™
and H* are unrelated to the Hopf bifurcations of the local reactor given by condition (13). This
section of linearly stable states corresponds to the simple self-propelled droplets described above in

3Note that in Ref. [55] this structure was erroneously identified as a higher-multiplicity pitchfork bifurcation.
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FIG. 5. (a) Partial bifurcation diagram of resting and moving droplets as a function of the chemical potential
o at D = 0.45 with the Ly-norm ||A||, =(f h*dx)"/* as solution measure (period-average of ||/, for time-
periodic states). Linearly stable states [unstable states] are represented as solid lines [dashed lines]. Only the
most relevant bifurcations and branches are shown. At small w, the resting-drop base state (black line) is
linearly stable. It is then rendered unstable in a series of bifurcations DP;, TC; (cf. magnification in Fig. 6).
The simple traveling droplets bifurcate at a drift-pitchfork bifurcation DP;. The emerging states (red line) are
unstable, but a linearly stable section is limited by two Hopf bifurcations H-, H* (red diamonds). The insets
schematically show exemplar droplet and surface tension profiles. The gray region is magnified in the bottom
panel where colored regions illustrate what kind of drop motion is obtained in time simulations initialized with
a flat film. (b) Analogous bifurcation diagram for D= 0.505. In the magnified region only shuttling is observed
in time simulations. The small inset in the bottom panel shows the temporal period 7 for both branches in
the marked region. (c) Two-parameter bifurcation diagram in the (2, D) plane with D= D;=D,. Red lines
mark the Hopf bifurcations H~, H* that cross at C*. In the red region, the traveling states are linearly stable.
The lines G and S correspond to the gluing bifurcation and the Shilnikov bifurcation. Black points mark data
obtained from time simulations. The regions T and A represent possible termination points. The inset shows
a magnification near the suspected T-point. Above DP; (dash-dotted line) the base state is unstable. The two
vertical dotted lines indicate the parameters of the bifurcation diagrams shown in panels (a) and (b). (d) Velocity
of the traveling states in panel (a). The remaining parameters for all panels are u; = —1.4,r =0.3, f; =
2,8, =0.01,8 = 1, W = 10 with a mean film thickness of 7 = 7. The computational domain is [0, 100] with
periodic boundaries.

Sec. II1.* The corresponding branch features several saddle-node bifurcations which are, however,
only visible as “kinks” in Figs. 5(b) and 5(d). We remark that the drift-pitchfork DP; occurs beyond
a Hopf bifurcation of the base branch (not shown) that corresponds to the first Hopf instability of
the flat film [Fig. 2(c)] (i.e., the first Hopf instability of the local reactor). Nevertheless, the linearly
stable section of the branch of self-propelled droplets lies fully within the parameter region where
the flat film is only spinodally unstable.

B. Crawling and shuttling droplets

We next focus on the parameter region near the primary instability of the base branch where
also the simple traveling states occur [gray area in Fig. 5(a)]. In this region, we further observe

“In Fig. 5(a) this linearly stable section is comparatively small. However, it can be broadened significantly
(up to an order of magnitude) by decreasing the diffusion constant D as indicated in Fig. 5(c).
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FIG. 6. (a) Magnification of the bifurcation structure of Fig. 5(a) near the first instabilities of the base
branch, i.e., near DP;, TC; and TC,. Panel (b) shows a further magnification of the region marked in panel (a).
The base state is first rendered unstable via the subcritical drift-pitchfork bifurcation DP,. The emerging
branch of traveling states (red line) connects at a supercritical drift-pitchfork DP, to the branch that bifurcates
backwards at the transcritical bifurcation TC;. The number of unstable eigenvalues (EV) for each branch is
given (—: linearly stable, +: one unstable EV, 4++-: two unstable EVs).

strikingly complex forms of self-propulsion that we study using direct numerical simulations. First,
we consider the parameter region near the destabilizing Hopf bifurcation H*. We typically find
two forms of droplet motion (Fig. 7). On the one hand, droplets “crawl” across the substrate by
periodically forming a single surface tension peak near the droplet center that is subsequently
advected to the advancing contact line region (Figs. 7(a) and 7(b), Supplemental Video 2 [77]).
This results in phases of uniform motion interrupted by abrupt stops. On the other hand, droplets
“shuttle” between two points on the homogeneous substrate by reversing their direction of travel
after stopping (Figs. 7(c) and 7(d), Supplemental Video 3 [77]). For both types of motion, we
find that the fluid flow at times long after a stop (times 1y, 12, #{, #; in Fig. 7) is nearly identical
to the simple traveling states shown in Fig. 2. Perturbations of this flow then lead to an explosive
generation of a new surface tension peak near the droplet center due to the positive feedback loop
outlined in Sec. III. Whether the droplet reverses its direction is determined by the exact position
of the newly generated surface tension peak. When it is created slightly on the side of the droplet
center that is opposite to the already existing peak the drop motion changes direction, otherwise
it retains its direction of travel. We also find that during the advection of the new surface tension
peak to the advancing contact line region, Egs. (15) are still valid when —d, j; is taken into account
(Supplemental Video 4 [77]). This implies that during this phase, the local reactive dynamics is fast
as compared to hydrodynamic transport.

Both crawling and shuttling motion can be understood as a periodic transition between an unsta-
ble resting and an unstable moving conformation [Figs. 8(d) and 8(e)]. The moving conformation
of the drop closely resembles the (unstable) simple traveling states.’ The resting conformation
corresponds to the symmetric resting droplet with one surface tension peak. This state is always
unstable [Fig. 5(a)] and any arbitrarily small breaking of the left-right symmetry induces droplet
motion. Crawling and shuttling motion can both be conveniently represented as periodic orbits in
a reduced phase space where the orbits closely pass the resting and the moving states. Therefore,
we refer to both forms of motion as periodic (the period corresponds to the time of a single orbit
roundtrip). We use a projection onto the (6, 8,) plane, where 6; and 6, are the left and right contact

>Note that there exist parameter regions, notably near H*, where either crawling or shuttling and the simple
traveling state are multistable [Fig. 5(a)]. In this case, it is the unstable (quasi)-time periodic state that emerges
subcritically at the nearby Hopf bifurcation H* that prevents the dynamics from converging to the simple

traveling state.
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FIG. 7. Comparison of crawling and shuttling droplets. Panels (a) and (b) respectively show snapshots and
a space-time plot for a right-crawling droplet. At times £y, #, the droplet moves as indicated by the arrows and at
time #, the droplet rests. The streamlines represent the velocity field of the bulk liquid in the laboratory frame.
After an initial dewetting phase, a single droplet spontaneously breaks left-right symmetry and begins to crawl
across the substrate. The white horizontal lines in panel (b) denote the times presented in panel (a). Panels
(c) and (d) show a shuttling droplet which reverses its direction of propagation at times ) and #; and travels at
times t{, t;. The parameters are u; = —1.4,r =0.3, 8, =2,8,=0.01,§ =1,D;, = D, = 0.45, W = 10 with
a mean film thickness of 2 = 7. For (a), (b) i, = 4.14 and for (c), (d) 1, = 4.145. The computational domain
is [0, 100] with periodic boundaries. See also Supplemental Videos 2 and 3 [77].

angles, respectively. They are determined from the slopes at the inflection points of 4 (Appendix E).
Examples are presented in Fig. 8(a). For crawling droplets, the orbits may be divided into three
phases that represent different stages of the motion. First, the trajectory passes by either the right-
(6, > 6,) or the left-traveling droplet state (6, > 6;). This corresponds to a right- or left-crawling
droplet, respectively. Second, the trajectory is quickly expelled from the region near the traveling
state and approaches the symmetric resting state (6; = 6,). In this phase, a new surface tension peak
is generated near the droplet center, the droplet abruptly stops and the dynamics slows down. As the
new surface tension peak appears near the droplet center, the orbit also crosses the diagonal 6, = 6,,
i.e., the advancing contact angle becomes greater than the receding one as the trajectory approaches
the resting state. This does not correspond to a direction reversal but reflects a change of the droplet
shape as the new surface tension peak appears. Third, as the newly generated peak is advected to the
advancing contact line the trajectory departs from the unstable resting state and again approaches
the moving state.

When the chemical potential w, is decreased, the stable section of the branch of crawling states
ends in what we believe to correspond to a saddle-node bifurcation [Fig. 5(a)]. For increased values
of u,, trajectories corresponding to crawling motion come gradually closer to the one-peak resting
state, i.e., droplets rest longer before resuming motion. At a critical driving 1§ the orbits of left-
and right-crawling droplets meet at this state and beyond this value only shuttling droplets exist.
They then represent a single orbit that passes by both the left- and the right-traveling droplet state
[Fig. 8(a)]. Close to this transition we find that the one-peak resting droplet only has one unstable
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FIG. 8. (a) Representation of crawling and shuttling droplets as periodic orbits in the plane spanned by
the right and left contact angles 6, and 6,. The two simple traveling states and the one-peak resting state
are marked as red points and gray points, respectively. The arrows represent motion along the orbit and
insets zoom into the region near the traveling states. For crawling droplets, right-crawling (strong lines)
and left-crawling droplets (weak lines) are shown. They are related by reflection. With increasing p,, the
crawling orbits move closer to the resting state. At a critical driving u$ they form a “two-winged” shuttling
orbit via a gluing bifurcation. The shuttling orbits closely pass both traveling states. The driving forces are
wo = 4.140,4.1405, 4.141, 4.1416,4.147 and puy ~ 4.1413. The diffusion constants are D; = D, = 0.45.
(b) Series of shuttling orbits that successively “wind around” the traveling states. The driving forces are
W, =4.112,4.115,4.1181 with D, = D, = 0.45. (c) Shuttling orbit at u, = 4.14325 and D, = D, = 0.503
that closely passes by the resting state and also winds around both traveling states. (d) and (e) show height and
surface tension profiles of the symmetric resting and the traveling states shown as fixed points in panels (a)—(c).
The symmetric state is always unstable. The streamlines represent the velocity of the bulk liquid in the
laboratory frame. (f), (g) Space-time representations of shuttling droplets that (f) are close to the gluing
bifurcation and therefore rest longer and (g) form many loops around the traveling states and thus travel for long
phases. The driving forces are (f) p, = 4.14136 and (g) u, = 4.1183 with D; = D, = 0.45. The remaining
parameters for all panels are as in Fig. 7. See also Supplemental Videos 5 and 6 [77].

eigenvalue and that the leading eigenvalues (closest to the imaginary axis) are real, i.e., the resting
droplet represents a saddle point in phase space. This transition is a gluing bifurcation [82], where
a pair of periodic orbits (here related by reflection symmetry x — —x) forms a double homoclinic
loop at a saddle point and merge afterwards to form a single orbit. The transition is schematically
shown in Figs. 9(a)-9(c). The period then diverges logarithmically as the critical parameter value is
approached [83]. We numerically confirm this scaling for the transition from crawling to shuttling
droplets in Fig. 10(a). In other contexts, gluing bifurcations have been reported, e.g., for models of
optothermal cavities [84] and periodically forced Taylor-Couette flows [85], and play crucial roles in
some transitions to chaos [86—88]. For highly simplified models in the form of ordinary differential

094005-14



CHEMOMECHANICAL MOTILITY MODES OF PARTIALLY ...

(a) < (b)  u=pc (c) w> e
Y
[ , )
(with symmetry)  (e) p = p© (near T-point)  (f) at T-point
(g) p=p° (no symmetry) (h) + Period 1)

T-point

L & =

S

FIG. 9. Schematic representation of phase space behavior related to the transitions between crawling and
shuttling states. (a)—(c) Gluing bifurcation in a three-dimensional dynamical system with a symmetry with
the control parameter . Two initially separate periodic orbits in panel (a) form a double homoclinic loop
at the central fixed point in panel (b) and finally merge into a single symmetric orbit shown in panel (c).
(d) Symmetric heteroclinic connections between two noncentral fixed points at a Shilnikov bifurcation. (e)
Same as panel (b) near a T-point. The homoclinic connections closely pass by the noncentral fixed points. (f)
Symmetric heteroclinic loops between the central and the noncentral fixed points at a T-point. (g) Homoclinic
loop at a single fixed point at a Shilnikov bifurcation. (h) Schematic bifurcation diagram of a periodic orbit
that approaches a homoclinic connection [pair of heteroclinic connections] at ;g when the Shilnikov condition
is fulfilled (see main text). The corresponding branch snakes around wg and the period tends to infinity as
®w — ws. (i) Sketch of a two-parameter bifurcation diagram in the (i, v) plane near the T-point shown in
panel (f). The loci of the double homoclinic loop [see panel (e), gluing bifurcation G] spiral into the T-point
while the loci of the pair of heteroclinic orbits [see panel (d), Shilnikov bifurcation S] approach it in a straight
line.

equations, e.g., for reaction-diffusion fronts [83] and active deformable particles [89], they have
been shown to give rise to direction reversing motion as also discussed here.

Shuttling states are also found near the stabilizing Hopf bifurcation H™ [Fig. 5(a)]. However,
they display strikingly different behavior when the driving is increased. A typical sequence of
trajectories is presented in Fig. 8(b). As u, is increased, the orbit “winds around” both traveling
states, successively forming more loops (the total number of loops is denoted by /). Droplets then
maintain their direction of travel for a longer time as the number of loops increases while both
contact angles slightly oscillate. This is in stark contrast to the situation shown in Fig. 8(a), where
droplets rest longer as the gluing bifurcation is approached. These two scenarios are also compared
in Figs. 8(f) and 8(g) (Supplemental Videos 5 and 6 [77]). We remark that particularly in cases like
in Fig. 8(g), the droplet is not restricted by the domain boundaries, i.e., it may also turn around after
crossing the periodic boundary. We find that with each additional pair of loops around the traveling
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FIG. 10. (a) Scaling of the temporal period 7 of crawling and shuttling motion as the gluing bifurcation is
approached. The period corresponds to a single orbit roundtrip in the (6;, 6,) plane. Black points denote points
measured in time simulations. The solid lines show logarithmic fits with 7 = —AIn |2 — u§| + B where A, B
and p§ are fit parameters. In particular, 1§ & 4.14133. (b) Periods of the first few pairs of loops that are formed
in a Shilnikov(-like) mechanism for shuttling droplets. Only the stable parts of the branches are shown. From
one branch to the next, 7 differs by approximately 47 /w. The total number of loops is denoted by /. The
remaining parameters are as in Fig. 7.

states, the temporal period of a single shuttle (one “back-and-forth”) increases approximately by
47 /w (each loop contributes 27 /w), where A1 » = p £ iw with p > 0 are the eigenvalues associated
with the Hopf instability H™ (they are the only unstable eigenvalues). The leading stable eigenvalue
A3 < 0 is real with |p/A3] < 1.° Note that w remains approximately constant over the parameter
region where we observe shuttling. We show the shuttling period over w, in Fig. 10(b) for the first
few pairs of loops. We expect that the stable part of each branch is limited by two saddle-node
bifurcations as the period does not diverge at the ends of the branches. They may also be limited,
e.g, by period doubling bifurcations on one side as in Ref. [90].

We believe that this dynamics is caused by the presence of a pair of heteroclinic connections
between the traveling states which exists for some nearby value of ;. For the present case with
|p/A3] < 1, it is known that a homoclinic loop gives rise to a branch of time-periodic states
which snakes around homoclinicity in a succession of infinitely many saddle-node bifurcations
that accumulate at homoclinicity and where the period along the branch increases by a constant
with each saddle-node [91,92] [Figs. 9(g) and 9(h)]. This scenario is also known as a Shilnikov
bifurcation and is related to various transitions to chaos [93-95]. Similar phenomena occur in
systems with an additional symmetry (here the reflection symmetry x — —x) where a pair of
heteroclinic connections takes the role of a single homoclinic one [92] [Fig. 9(d)]. We observe
that in the case of Fig. 10(b) there is no multistability between the stable parts of each branch and
that each stable section “folds upwards” at both ends, in contrast to what is expected for a single
branch approaching heteroclinicity [Fig. 9(h)]. However, since standard analyses like the one in
Ref. [92] are only strictly valid for parameter values in some unspecified small neighborhood of
heteroclinicity, there is no direct contradiction. The stable branch segments shown in Fig. 10(b)
could then be connected without any hysteresis or form separate isolas.

C. Long-time drift and random motion

In the very small regions between the stable sections in Fig. 10(b) we observe shuttling with
unequal numbers of loops around the left- and right-traveling states. This induces a long-time
effective drift of the droplet (Fig. 11(a), Supplemental Video 7 [77]). Corresponding asymmetric
periodic orbits also emerge in the context of Shilnikov bifurcations with symmetry [92]. Further,

®This is a direct consequence of the nearby Hopf instability H~, where p = 0.
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FIG. 11. Space-time plots for more complex variants of shuttling motion. Panel (a) shows asymmetric
shuttling motion with different numbers of loops around the left- and right-traveling state. Panel (b) shows
irregular shuttling motion over a long time span. The droplet aperiodically reverses its direction and each
section of the motion corresponds to a different number of loops around one of the traveling states. Panel
(c) shows a magnification of the marked section in panel (b) thereby illustrating the small changes in the
loci of direction reversal. The chemical potentials are (a) u, = 4.11599 and (b) 1, = 4.11854. The remaining
parameters are as in Fig. 7. See also Supplemental Videos 7 and 8 [77].

for driving forces that correspond to a large number of loops (/ > 30) we also find shuttling
motion, where the number of loops changes irregularly with time. This results in what appears
to be long-time random drop motion (Fig. 11(b), Supplemental Video 8 [77]). This irregular
direction-reversal dynamics is likely connected to the presence of the pair of (Shilnikov) heteroclinic
connections between the right- and left-traveling states, but in other systems with reflection and
translation symmetry it may also result from symmetry-increasing bifurcations of already existing
chaotic attractors [96]. Because the relevant parameter regions for both cases are extremely small,
here we do not discuss them further.

Last, we remark that quite similar bifurcation cascades, where the Shilnikov condition holds,
have been reported for systems of ordinary differential equations [90,97,98]. In Refs. [97,98] they
were also named “incomplete homoclinic scenarios” due to the apparent absence of a Shilnikov
homoclinic orbit. Nevertheless, in particular for the Koper model [90], the existence of such a
homoclinic orbit was recently demonstrated [99].

D. Organization around higher-codimension bifurcations

Next, we examine how the foregoing bifurcations change when a second parameter, the diffusion
constant D=D; =D,, is varied. The loci of the bifurcations discussed above are tracked in the
(w2, D) plane and presented in Fig. 5(c). The locus of the primary bifurcation DP; from the base
branch shows that the uniformly covered resting droplet is linearly stable for most of the shown
parameter region. The Hopf bifurcations H* and H™ interchange positions at C*, rendering the
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simple traveling droplets unstable for all values of w,. Of particular interest are the loci of the
gluing bifurcation G and of the inferred Shilnikov bifurcation S.” When D is increased, eventually
the distance of the loci of G and S becomes very small [Fig. 5(c), region T]. Beyond this region,
the one-parameter bifurcation diagram at fixed D transforms drastically and only two branches of
shuttling states exist with either / =0 or [ =2 loops, forming a continuous parameter region in which
shuttling is observed [Fig. 5(b)]. Notably, the period remains finite. It is instructive to consider the
representation of states in the (6;, 8,) plane in the region T [Fig. 8(c)]. Typical trajectories, e.g., near
the gluing bifurcation additionally show several loops, indicating that the homoclinic connections
at the gluing bifurcation also closely pass by the traveling states [Fig. 9(e)]. We can then expect that
there exists a point in the (u,, D) plane where the homoclinic connections collide with the traveling
states, or equivalently, where the heteroclinic connections at the Shilnikov bifurcation meet at the
central one-peak resting state. Then, the central resting state is simultaneously connected to both
traveling states in a heteroclinic loop [Fig. 9(f)]. The corresponding codimension-2 point where G
and S terminate is called a T-point [100,101]. The two-parameter bifurcation diagram near this point
is expected to be similar to Fig. 9(i), where the loci of G spiral into the T-point, while S approaches
it in a straight line.® We do not resolve this structure but note that in region T we find linearly
stable traveling, shuttling, crawling and uniformly covered resting droplets. Last, we observe that
the shuttling states that emerge from S cannot be observed for low D, corresponding to an end of the
bifurcation line [region A in Fig. 5(c)]. Because the Shilnikov condition |p/A3| < 1 is still fulfilled
in this region, we speculate that here, the line S turns around toward greater D. For a discussion of
other possible termination mechanisms, see Ref. [104].

E. Three-dimensional droplets

Up to here, we have discussed 2D droplets on 1D substrates. However, our considerations of
the feedback loop in Sec. III also apply to the case of a three-dimensional (3D) drop on a 2D
substrate. The liquid transport flux j, and the surfactant transport fluxes j, and j, in Eqs. (7) are
then two-dimensional vector fields and can exhibit, e.g., vortex structures. This may result in more
complex dynamics, particularly in parameter regions where 2D drops show shuttling or crawling
motion. The snapshots from a time simulation presented in Fig. 12 show a typical change of the
direction of droplet motion (Supplemental Video 9 [77]). Localized surface tension gradients are
simultaneously excited in different regions of the droplet, breaking rotational symmetry and leading
to complex liquid flow with several vortices near areas of increased surface tension. The Marangoni
stresses between such regions then cause fluid flows that result in an effective attraction between
neighboring surface tension peaks. Ultimately, this results in an irregular dynamics of generation,
attraction and merging of these localized structures. Sufficiently large droplets then no longer move
along straight lines but can explore the entire substrate in a random walk. This is mediated by the
repeated nucleation of protruding regions of high surface tension at various positions along the
contact line. Interestingly, at small liquid volumes shuttling motion is recovered (not shown).

A typical center-of-mass trajectory of such irregular motion is shown in Fig. 13(a).
We characterize this motion in Fig. 13(b) by computing the mean-squared displacement

"For a given D, we determine ¢ from the divergence of the period at the gluing bifurcation. We approximate
w5 by the location of the [ =8-branch.

8We note that S is located in close proximity of the line of Hopf bifurcations H™, beyond which the simple
traveling states are linearly stable. It is possible that the true S crosses the line of H™ at a codimension-2
Shilnikov-Hopf point, and that when a third parameter is varied, the T-point crosses H™ at a codimension-3 T-
point—Hopf bifurcation. In these cases, homo- and heteroclinic connections to the traveling states transform into
connections to the time-periodic states that emerge subcritically at H™. The one-parameter snaking structure
of the shuttling states and the two-parameter spiral of G remain qualitatively similar when crossing these
bifurcations [102,103].

094005-18



CHEMOMECHANICAL MOTILITY MODES OF PARTIALLY ...

) 0
Bi + Bs
(d) —

FIG. 12. Snapshots from a time simulation of a large 3D droplet performing a random walk. The columns
show (a) the film thickness, (b) the surface tension, (c) the streamlines of the liquid transport flux j, and
(d) both the streamlines of the total surfactant transport flux j; + j, (white lines) and the local total source term
of surfactant B, + B, (color map). The streamline thickness corresponds to the magnitude of the flux. Dashed
contour lines in panels (b), (c), and (d) show the outline of the droplet (given by 2 = 1.1). In panel (b), regions
of high surface tension are colored in red. The individual rows are at different times o, . . . , 3 and show a typical
change in the direction of motion resulting from the merging of the existing surface tension peaks (#, and #,) and
a subsequent generation of new peaks at different positions (#, and #;). Note that the streamlines in panel (c) con-
verge in regions of low B; + I3, that are surfactant sinks. Arrows in (a) indicate the direction of motion. The
parameters are W = 10,r =04,D, =D, =0.2,8,=2,5,=0.01, u, = —1.4, u, =4.175,6 =1 with a
mean film thickness of 1 = 3. The periodic computational domain is [0, 100] x [0, 100]. See also Supplemental
Video 9 [77].

(AP (1) = ﬁ fl:” [Ir(t + 1) — r(t)||* dt, where ¢4 and tz are the start and end times of the
trajectory and r denotes the droplet center of mass (Appendix E). We find two scaling regimes
characterized by different power laws ((Ar)?) ~ t%. At short times, we have o & 2, i.e., the motion

is ballistic. At longer times, we have o &~ 9/10 and droplet motion is to a good approximation
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FIG. 13. (a) Trajectory of the center of mass of a droplet undergoing a random walk from point A to
point B (red dots) over an approximate time interval of tz—#, = 3x 10*. (b) Corresponding mean-squared
displacement ((Ar)?) for the trajectory in (a). There are two scaling regimes with ((Ar)?) ~ 7. For short
times, droplet motion is ballistic with & & 2 and for longer times it is approximately diffusive with « ~ 9/10.
The parameters are as described in the caption of Fig. 12.

diffusive (¢ = 1). Note that the small undulations visible in this regime correspond to decaying

oscillations in the velocity autocorrelation function (v - v)(7) = %d2<${ ) [105]. This implies that
droplets are slightly more likely to reverse their direction of travel than to turn in any other direction
(for pure shuttling motion one would have a nondecaying oscillation of (v - v)). Therefore, the
random walk is not entirely uncorrelated. Nevertheless, we expect that the resulting deviations from

ideal diffusion are transients, i.e., ((Ar)?) ~ t should be approached asymptotically as T — oo.

V. CONCLUSION AND OUTLOOK

Many biomimetic and biological systems involve chemomechanical coupling with interacting
chemical reactions and hydrodynamic transport resulting in complex spatiotemporal behavior. To
study such interactions, we have employed a conceptually simple mesoscopic hydrodynamic model
that captures the dynamics of sessile droplets of a partially wetting liquid covered by autocatalyt-
ically reacting surfactants. The droplets are supplied with chemical fuel by an external chemostat.
Notably, our description is based on nonequilibrium thermodynamics, ensuring the existence of a
thermodynamically consistent passive (“dead”) limit. Our study has focused on the self-propulsion
of droplets that emerges for sufficiently large nonequilibrium driving. The underlying mechanism
is a positive feedback loop between the solutal Marangoni effect and the local chemical reactions.
Importantly, in contrast to the commonly treated drop-based microswimmers with simple conver-
sion reactions [41,42], the mechanism is not based on differences in physical properties of different
surfactants. The considered hydrodynamic scenario is also distinct since we treat droplets on a
substrate in a stress-free ambient medium instead of fully immersed drops in a bulk fluid that
contributes to the dynamics. Relaxing the latter assumption, one could additionally consider flows
in the surrounding medium, e.g., along the lines of Ref. [71]. Similarly, the present model may
be augmented to account for the surfactant dynamics in the bath (which may correspond to either
the droplet bulk or the ambient medium), i.e., by treating soluble surfactants [66] or surfactants
diffusing like a vapor phase [106].

Besides the simple self-propelled drops that move uniformly at constant speed, we find that
droplets on 1D substrates may also crawl (periodic stick-slip motion) or shuttle (periodic back-and-
forth motion). These types of motility can be explained by the positive feedback between Marangoni
fluxes and the local reactor. However, in the context of dynamical systems they can also be discussed
as periodic orbits in an effective low-dimensional phase space, where the corresponding trajectories
closely pass fixed points representing traveling and resting states. Using this representation, we
have identified two scenarios involving global bifurcations for the transitions between crawling
and shuttling states. Based on two-parameter representations of the loci of a gluing and a Shilnikov
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global bifurcation in the (., D) plane, we have further speculated that both bifurcations terminate at
a codimension-2 point (T-point). Various different linearly stable resting and motile droplets exist in
the vicinity of this point. It therefore acts as an organizing center in parameter space. Similar motifs
arise in the description of biological systems, e.g., in the study of electrical or mechanical signaling
in resting cells [107,108] and stick-slip cycles of motile cells [109] where small parameter changes
allow cells to switch between different modes of operation. For the actin cortex of motile cells, it
has been suggested on the basis of mass-conserving reaction-diffusion models that the bistability
of various dynamical states of the cortex can be traced to codimension-2 points [110,111]. Here,
we find the organization of highly complex states of motility around a codimension-2 point for a
full, spatially extended dynamical model that couples various transport and reaction processes in
the presence of interfaces, which to our knowledge has not yet been reported.

In our study of shuttling and crawling states, we have only employed direct numerical simulations
since numerical continuation of such spatially localized time-periodic slow-fast states is numerically
exceptionally challenging and computationally expensive. In consequence, we have only been able
to obtain partial bifurcation diagrams without the unstable branch sections of crawling and shuttling
droplets. In the future, our results could be extended by studying the entire bifurcation structure, e.g.,
by employing spatiotemporally adaptive continuation methods. One could thereby gain information
about local bifurcations of such states. For example, we expect that branches of crawling states
terminate either at Hopf bifurcations of traveling drops or at drift-pitchfork bifurcations of resting
oscillating drops. Further, it is known that direction-reversing (shuttling) states can emerge in
reflection symmetry-breaking Hopf bifurcations [89,112,113]. To verify our hypothesis that the
two-parameter bifurcation diagram is organized about a T-point, it is necessary to employ numerical
continuation of the associated heteroclinic and homoclinic connections involving the resting and
traveling states—a task beyond present numerical tools for partial differential equations known
to us. Last, we have turned to 3D droplets that, when large enough, explore the entire available
substrate in an approximately diffusive random walk due to irregular excitation, attraction and
merging of localized spots of surface tension gradients near the contact line region. The transition
between such random walks and other motility modes shall be investigated in the future. Here,
we expect that particularly the droplet volume represents an important control parameter, since
larger droplets can accommodate a larger number of localized surface tension peaks, resulting in
more complex behavior. This holds for both 2D and 3D drops, i.e., we find that large 2D droplets
(~50% larger volume than the one used in Secs. [V A-IV D) also exhibit highly irregular dynamics.
Furthermore, the linear stability of the traveling and resting states may change with the drop volume
(e.g., the symmetric one-peak resting state may become linearly stable for small volumes), thus
altering the bifurcation picture. In this regard, we expect that the results presented in Sec. IV are
valid for drops that can accommodate one or two surface tension peaks.

The discussed positive feedback loop is likely relevant to many biomimetic droplet systems that
feature higher-order chemical reactions of surface active species [46,63,64,114,115]. Such reactions
may occur, e.g., in auto- or cross-catalytic mechanisms and the formation of micellar structures.
Moreover, while the presented simple model does not reflect the complex biochemistry of real
biological cells, it may capture a motility mechanism relevant under prebiotic conditions, i.e., for
protocells, where autocatalytic reactions may represent a simple form of molecular self-replication.
Additionally, the here studied forms of motility (crawling, shuttling with and without net drift,
irregular motion) appear in models and experiments for amoeba [116] and Physarum droplets
[14,117,118]. Although related theoretical descriptions may include mechanical effects that go
beyond the present hydrodynamic model (e.g., viscoelasticity), it is worth pointing out that they
typically feature a (linear) coupling of a nonlinear chemical kinetics and active mechanical stresses,
in analogy to the here considered coupling of surface tension effects and autocatalytic chemical
reactions via surfactants. Furthermore, because common recent descriptions of biomolecular con-
densates within cells are based on a similar thermodynamic structure [24,25,72,73], we believe that
also there similar states and higher-codimension organizing centers may be of importance if one
includes cross- or autocatalytic effects and considers nonlinear mobility functions. In our case, the
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latter result from advection but they may also arise, e.g., for diffusion in crowded environments
[120]. Finally, we remark that one may lift our present restriction to the case where the underlying
reaction system does not form any patterns. Then one needs to amend the mobilities and reaction
rates, e.g., by adding film thickness-dependent cutoffs of the rates to maintain a passive adsorption
layer representing a macroscopically dry and therefore passive substrate.
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APPENDIX A: DYNAMICAL EQUATIONS IN HYDRODYNAMIC FORM

Equations (7) can be expressed in hydrodynamic form. To this end, we first explicitly compute
the variations

SF 1
p=—=0hf—-V |=(g—T10r,g—T20r,e)Vh|,
5h £
3 _, ith 1,2 (A1)
.= —— = with a=1,2.
o =75p, = 08

In particular, with the energetic contribution (3) for g(I';, I';) we obtain

1
p=0of—-V- |:§V(F1, Fz)Vh:|

te = kT In(Teal) with o =1,2. (A2)

Here, y(I'1, I'2) = yo — kT (I') + I'2) is the resulting local surface tension. By substituting the
expression for the chemical potentials in Egs. (A2) into Egs. (7) and transitioning to the long-wave
limit |[Vh| <« 1 (yielding I', & I'y), one obtains the hydrodynamic form

3 2

Gh=V. —Vp——Vyi|,

' | 3n 21
) T

a4 =V. Tle——lVy}+D1kaAF1+R+BI,
[ 27 n
[ h°T h*

W=V | = 2Vp——2Vy}+D2kaAF2—R+Bz, (A3)
[ 27 n

where R, By, and B, are given by Egs. (9) and (10). Further, it is commonly assumed that the
changes in surface tension due to the surfactants are small compared to y; [121]. The pressure then
reduces to p = 9,f — ypAh. This approximation only affects the capillary pressure and does not
alter the Marangoni fluxes appearing in Eqs. (A3). Note that if one also transitions to the long-wave
limit as done here, one again obtains a gradient dynamics (for ©; = w;) on the simplified grand
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potential Q* = fs[f(h) + §|Vh|2 +gT, )= MiFi]dzx, where the mobility matrix is given
by Eq. (8). The reaction currents (9) and (10) can then be reexpressed as

. 2 02 1 e 3 50
=r|ex o e — €X — s
P\, T o0, " kT oT, P\ kT o,
1 sQ*
B, =p|1- _ ,
1 .31|: exp(ka SFI):|

. 1 sQr
62 = ﬂZ 1— eXp kb_T 5F2 . (A4)

3 L L .
with r* = re®? | Bf = BieR’ and B; = Pre™” as the new rate constants. Then, all currents in
Eq. (A4) lead to a monotonic decrease of 2%, i.e., they are purely dissipative.

APPENDIX B: NONDIMENSIONALIZATION

We rescale Eqs. (A3) by introducing the scalings

t=ti, (Ly)=LE&Y), h=1lh T,=T./(aa) (f.&=«{. 3. B1)
where o = 1, 2 and dimensionless quantities are denoted by a tilde. The scales are chosen as
L? ks T
r==" L= /21 1=h, k=" (B2)
Kkl K araz

Note that the long-wave limit L >> [ implies y, > ;‘f—; in the present scaling, which is therefore
consistent with the approximation p = 8, f — yyAh as outlined in Appendix A. This yields the
nondimensional parameters

s=U woA b, —TpTD, 7 B B [y = —
= = 5 > = -5 o r =rtayaxr, o = TA1A2Pq, o = 7T -~ Mas
@ 2 o 12 b 1a2 1a2 24 kaM
(B3)
with @ = 1, 2. Omitting tildes, we obtain the dimensionless equations
[ 3 h?
dh=V. ?Vp+ ?V(Fl + Fz)],
[ h?Ty
o'y =V. Vp+hDZ' V(I +T%) |+ DAT + R + By,
[h°T,
I',=V. . Vp+hI V(T 4+ T2) | + Dy AT, — R+ By, (B4)
where the (simplified) pressure is given by
1 1 "

and the reaction terms are
R =r[8T.I'} — (8T1)’],
By = pile" —éI'1l, (B6)
B, = Bale> — 67'T1).

Table I lists a possible set of dimensional parameters, resulting in the nondimensional parameter

choice of Fig. 2(a). We use the given values of /, aj, a», kT, n and y; to determine the scales (B2)
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TABLE I. Example set of approximate numerical values for the scales employed in the nondimensional-
ization (B1) and the dimensional parameters of the model (7).

Symbol Quantity Numerical Value
l Vertical length scale 0.5 um

ap, a, Surfactant length scales 3nm

kT Thermal energy (at 25 °C) 4x10721]

n Dynamic viscosity 0.2Pas

Y0 Surface tension (bare droplet) 70 x 1073 J/ m?
K Thermal energy density of surfactant 4% 107*J/ m?
L Horizontal length scale 5 um

T Timescale 0.03s

A Hamaker constant 1x10715]
Ocq Equilibrium contact angle (bare droplet) 10°

LT—Z[)J, Lr—zf)z Surfactant diffusivity (on interface) 4 x 10710 m2g~!
%?, %Bl, %Bz Reaction rate constants 10s7',0.357!, 705!
Wi, U2 Chemical potentials (chemostats) —1k,T,4k,T

and then the other dimensional parameters using Eq. (B3). Here, the choice of / yields micrometer-
sized droplets (height ~10 wm, diameter ~250 um). For the surfactant length scales, we follow
Ref. [122]. The system is assumed to be at room temperature (7 = 25 °C) and we assume a surface
tension yy of the bare droplet (without surfactant) that is comparable to that of the water-air interface.
For the dynamic viscosity 1, we assume that the bulk liquid is significantly more viscous than water
but within the typical range encountered for applications concerning thin films containing surfactant
[121]. Notably, this results in a timescale of T = 0.03 s, yielding typical shuttling periods of ~20s.
Similar values have been reported experimentally for the shuttling motion of droplets in the presence
of multiple (possibly nonlinearly) chemically reacting surfactants [63,64]. Further, the dimensional
surfactant surface diffusivities are also consistent with literature values [123,124]. Nevertheless, we
stress that the aim of the presented study is not a quantitative comparison with experiments but the
qualitative investigation of the interplay between (nonlinear) chemical reactions on interfaces and
droplet hydrodynamics.

APPENDIX C: HOPF BIFURCATIONS OF THE LOCAL REACTOR

To obtain condition (13), we consider the Jacobian of Egs. (11) at the fixed point

dr, R + or, By I, R
= ’ Cl
1 < —3r‘1 R —a]"ZR + BFZBZ T Do ( )

When the fixed point is located near the extrema of the I'y nullcline both nullclines are approxi-
mately perpendicular and locally align with the coordinate axes (the nullcline of I'; aligns with the
I'; axis and the nullcline of I', with the I', axis). The flow of Egs. (11) is then circular near the
fixed point and the eigenvalues are complex. Hopf bifurcations are therefore given by the condition
trJ =0. Using dr, B, = & ~18, = O(e), this requirement simplifies at O(1) to

0 = r[28T5 T — (387 +8)I'] ] — 8B1. (C2)

1,ss
Using Egs. (12), we obtain from relation (C2)

2
Fl,ss

0=(+8)T], + Biett — 8. (C3)
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FIG. 14. (a) Magnification of the advancing contact line region of a self-propelled droplet in the comoving
frame z = x — vt. The top panel shows the film-height profile and the velocity field of the liquid (in the
laboratory frame), the bottom panel shows the surface tension profile. The two points z,, and z}, are the surface
tension maximum (y = y») and a point slightly offset from it (y = ;). (b) Steady-state curve y;, of the
local reactor as a function of fB,e#? — 9, j,. We consider three values of the secondary parameter (see text),
corresponding to B,e*! (solid orange line), B1e"! — 9, (z,) (dashed black line) and B,e/! — 9. j,(z},) (dashed
green line). When considering y,, there are significant deviations between the cases 8;e*! and B1e*! — 9, j;(zm)-
For y;j, the cases B1e"! and B,e"' — 9. j,(z;,) nearly overlap and y; approximately lies on both curves.

Furthermore, Eq. (13) can be reexpressed using the expression for I'; 5 in Eq. (12) and the chain
rule,

8(Fl,ss + FZ,SS) _

0, C4
31_‘],&? ( )

where I' ;s is understood as a function of I'; 55 and of all other parameters (except 8, and 11,) appear-
ing in Egs. (12). By using Egs. (12) one also obtains the relation 'y s, = §°T'y 5 + #(aﬂlf‘l,” —
1,58

Bi1e""). Substituting this into Eq. (C4) again yields Eq. (C3).

APPENDIX D: APPROXIMATIONS FOR FLUX-REACTION BALANCE

During our discussion of the self-propulsion mechanism in Sec. III, we have made two simpli-
fying assumptions. Generally, for a steadily traveling droplet in the comoving frame, the surfactant
profiles are given by

0=—0.j1 + R+ B —va.I'y,
0=—0.j, — R+ B, — va.I's. (D1)

First, we have assumed that the extrema of I'j, I';, and y coincide in space. This allows us to
neglect the terms —vd,I";, —vd,I"; at the surface tension peak (z = z,,) in region (ii) [see Fig. 14(a)],
yielding the balance equations

0 = _aZjl +R+Blv
0=—-03.j>—R+ B, (D2)

at z = z,, in the comoving frame. Second, we have argued that the transport contribution —d, j;
is negligible at the peak since diffusive and advective contributions effectively cancel. One then
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obtains

0=R+B,
0=—0»—R+ By, (D3)

As described in the main text, Eqs. (D3) correspond to the steady-state equations of the lo-
cal reactor with the shifted parameter B,e*? — 9,j,(z,), i.e., the surface tension at z, can be
obtained by evaluating y(B82€"* — 0,j2(z)). Analogously, if —9,j; is not neglected, then one
may obtain the peak surface tension by shifting both driving parameters, i.e., by evaluating
Vss(Boe!? — 0, ja(zm), Br1e™t — 0.j1(zm)). For the local reactor, this corresponds to considering the
function yg(Bre"2, B1e*!) instead, where fBie/! is a secondary parameter [cf. Fig. 3(f)]. Although
we justify dropping the contribution —9, j;(z,,) in the following, we point out that doing so is not
strictly necessary. Rather, it simplifies the discussion in Sec. III. From Fig. 3(f) it can be seen that
changes in Bie*' [here Bie”' — 0,j;1] only influence the shape of y;, as a function of B,e"* [here
Bre"? — 9. j»] near its local minimum, while the curve remains mostly unaffected for larger values
of BreM? near its local maximum. It is this section of y,, near its local maximum that is relevant for
points in space near the localized surface tension peak at z = z,,. Therefore, using Eq. (D2) instead
of Eq. (D3) only marginally affects ;.

Nevertheless, we generally find that Eqs. (D3) are appropriate to describe y», i.e., it indeed holds
that y» = yys(Bre"? — 0,j2(z)) [Figs. 4(b) and 14(b)]. However, a caveat is in order. By comparing
the curves y, as a function of B,e/? — 9, j, either with or without shifting B¢ (the steady-state
surface tension corresponding to either Egs. (D2) or (D3), respectively) we find that these curves
differ significantly, i.e., the contribution —0, j1 (z,) is not negligible [Fig. 14(b)]. The reason is that
the terms —vd,I", —vd, I, and —d,j; do not vanish at the same point in space (if they did, our
approximations would be exact) and the corresponding contributions in Egs. (D1) are large enough
to significantly change y,; when absorbed into the parameters of the local reactor. The circumstance
that y» is nevertheless well captured by Eqgs. (D3) is in fact a consequence of a favorable cancellation
of the errors induced by transitioning from Egs. (D1) to (D2) and finally to Eq. (D3). However,
we find that in practice [for diffusion coefficients D = D; = D, = O(107")] one can always find
a point z; in the immediate vicinity of z, with comparable surface tension y,* where all three
terms —vd,I";(z}), —vd.I"»2(z)) and —9. j,(z}) are indeed negligible (Fig. 14). Therefore, Eqs. (D3)
generally hold for some point near the surface tension peak with a surface tension that is comparable
to the maximum value. This point is usually not exactly the surface tension maximum. Because the
differences Ay =y, — y; and Ay* = y;* — y; are nearly identical, we may then draw the same
conclusions regarding the interplay between the Marangoni effect and the local reactor as in Sec. III.

APPENDIX E: NUMERICAL METHODS

Direct numerical simulations are based on the finite-element method and are implemented using
the open source library oomph-lib [75]. Most simulations are performed on a periodic domain that
is discretized using a static spatial mesh (1D: 641 nodes, 2D: 251 x 251 nodes). An exception are
the data shown in Figs. 4(a), 8(a), 8(c), 10(a), and 14(a), where we use an adaptive spatial mesh.
For temporal discretization, we use a backward differentiation scheme of order 2 (BDF(2)) with
adaptive time stepping.

For numerical continuation [78-81], Egs. (B4) are spatially discretized using the finite element
method on a one-dimensional periodic domain (400 nodes). We employ the continuation package
pde2path [81] which uses pseudoarc length continuation with a predictor-corrector method. Because
Eqgs. (B4) exhibit continuous symmetries (liquid volume conservation, translational symmetry on
a periodic domain), they are augmented by algebraic constraints for the liquid volume and the
spatial phase. Then, two additional parameters must be freed which are also determined during
continuation. In particular, the parameter corresponding to the spatial phase constraint is the velocity
v of the comoving frame, i.e., the droplet speed [Fig. 5(d)]. For details, see Refs. [80,81].
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The contact angles 6,,; of shuttling and crawling droplets shown in Figs. 8(a)-8(c) are determined
from the slopes m,; of the film-height profiles at the inflection points as 6,; = atan|m,;|. The
trajectories are then smoothed using a Savitzky-Golay filter (window length 53, polynomial order
3, ~1000 data points per trajectory) using scipy.signal.savgol_filter() from the Python
library SciPy.

To compute the droplet center of mass on a periodic domain [cf. Fig. 13(a)], we use the algorithm
described in Ref. [125]. The mean-squared displacement ((Ar)?) [Fig. 13(b)] is obtained in a
straight-forward manner, i.e., by averaging the squared displacement over the discretized center-
of-mass trajectory for various temporal shifts. To this end, we first interpolate the center-of-mass
trajectory onto a uniform temporal mesh.
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