
Chapter 20
Swarming of Self-propelled Particles
on the Surface of a Thin Liquid Film

Andrey Pototsky, Uwe Thiele and Holger Stark

Abstract We consider a colony of self-propelled particles (swimmers) in a thin
liquid film resting on a solid plate with deformable liquid-gas interface. Individual
particles swim along the surface of the film predominantly in circles and interact via
a short range alignment and longer-range anti-alignment. The local surface tension
of the liquid-gas interface is altered by the local density of swimmers due to the
soluto-Marangoni effect. Without the addition of swimmers, the flat film surface is
linearly stable. We show that a finite wave length instability of the homogeneous and
isotropic state can be induced by the carrier film for certain values of the rotational
diffusivity and a nonzero rotation frequency of the circular motion of swimmers. In
the nonlinear regime we find square arrays of vortices, stripe-like density states and
holes developing in the film.

20.1 Introduction

Emerging spatio-temporal density and velocity patterns in suspensions of motile
living cells became the focus of many experimental and theoretical studies over
the last decade. With the typical body size of several µm, the colonies of swimmers
exhibit a wide range of meso-scale and large-scale coherent structures such as circular
vortices, swirls and meso-scale turbulence with the correlation length of the collective
motion ranging between ∼10 and ∼100µm [6, 10, 12, 19–23, 27].

A. Pototsky (B)
Department of Mathematics, Faculty of Science Engineering and Technology,
Swinburne University of Technology, Hawthorn, VIC 3122, Australia
e-mail: apototskyy@swin.edu.au

U. Thiele
Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster,
48149 Münster, Germany

H. Stark
Institut für Theoretische Physik, Technische Universität Berlin,
Hardenbergstraße 36, 10623 Berlin, Germany

© Springer International Publishing Switzerland 2016
E. Schöll et al. (eds.), Control of Self-Organizing Nonlinear Systems,
Understanding Complex Systems, DOI 10.1007/978-3-319-28028-8_20

393



394 A. Pototsky et al.

It was recognized that the onset of the observed large-scale patterns is associated
with a finite wave length instability of the homogeneous and isotropic distribution of
swimmers [2]. Recently, a minimal phenomenological model of the spatio-temporal
pattern formation of living matter was developed on the basis of a Swift-Hohenberg
type scalar field theory [7]. The physical mechanism, underlying the instability was
traced down to the short-range aligning and longer-range anti-aligning interaction
between the orientation of swimmers [9]. On the microscopic level, the short-range
alignment can be explained by the collisions between swimmers with elongated
bodies, or by flagellar bundling [27]. The longer-range anti-alignment is linked to
hydrodynamic interactions [9] that are known to destabilize the polar order at high
densities.

In experiments with bacterial suspensions confined between solid boundaries, the
role of the solvent fluid is seen as a passive carrier that gives rise to hydrodynamic
interactions between individual swimmers. However, in the case of freely suspended
soaplike liquid films loaded with bacteria, the deformations of the liquid-gas interface
and the resulting motion of the carrier fluid can no longer be neglected. Thus, in the
early experiments with E. coli bacteria [29], a droplet of bacterial suspension was
stretched between 10µm thin fibers to form a soaplike film. In order to delay the
film rupture, a stabilizing chemical surfactant had to be added. In later studies with
1µm soaplike films, metabolic products, secreted by the B. subtilis bacteria, played
the role of the stabilizing surfactant [20–22]. Without the addition of a stabilizing
surfactant, the life time of the film is determined by the film thickness and the surface
tension. In most recent experiments with E. coli bacteria, the rupture of a 20µm film
was detected after several minutes [12].

Motivated by these recent experiments, we address here the question of how a
suspension of swimmers, confined to move in a thin liquid film on a solid substrate, is
affected by the presence of a deformable liquid-gas interface. To this end, we consider
a non-evaporating 10–100µm thin liquid film with a deformable liquid-gas interface,
resting on a solid plate. Lubrication theory [14] predicts that without the addition of
swimmers, the flat film is linearly stable, with respect to small amplitude variations of
its thickness. The film is loaded with surface swimmers that interact with each other
via a short-range alignment and longer-range anti-alignment, as described in [9]. In
case of the resting fluid, a homogeneous and isotropic distribution of swimmers is
linearly unstable with respect to a finite wave length instability.

We extend the model of self-propelled particles, used in Ref. [9], by additionally
taking into account a deterministic rotation of the bodies of individual swimmers
that gives rise to their circular motion. Thus, it is known that bacteria with helical
flagellas swim in circles, predominantly clockwise near a solid-liquid interface and
anticlockwise near a liquid-gas interface [5, 8]. We neglect steric repulsion between
the swimmers and introduce their translational surface diffusion.

As suggested by earlier studies, the coupling between the swimmers and the liq-
uid film occurs through the soluto-Marangoni effect [1, 18]. Indeed, some living
cells, such as B. subtilis bacteria, excrete metabolic products [21] that act as a sur-
factant and change the local surface tension of the liquid film. Consequently, the
local concentration of the surfactant particles is proportional to the local concentra-
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tion of swimmers. It should be emphasized that the surface tension decreases with
the surfactant concentration, implying that soluto-Marangoni effect stabilizes a flat
film [14].

Our resulting model consists of the thin film equation for the local film thickness,
coupled to the Smoluchowski equation for the swimmer density distribution func-
tion. In the coupled system, the emergence of a density patterns always occurs in
conjunction with film surface deformations. We find that a seemingly passive liquid
film has a profound effect on the linear stability of a homogeneous isotropic distrib-
ution of swimmers on the surface of a flat film. In particular, there exists a window
of parameters, for which the isotropic state is linearly stable in the absence of the
liquid film and is linearly unstable when the liquid film is included.

By numerically solving the evolution equations for film height and swimmer
density, we find square arrays of vortices for parameter combinations close to the
instability threshold. Deep in the unstable region, we find stripes in the density
distribution for small values of the self-propulsion velocity. These long-lasting states
are accompanied by stripe-like small amplitude deformations of the film surface.
Typically the stripes on the film surface are in antiphase with the density stripes. For
large self-propulsion velocities, we demonstrate the development of a depression
region on the film surface that has a lateral size comparable to the system size. The
depth of the depression gradually increases with time, thus, increasing the probability
of film rupture. In our numerical simulations we have observed film rupture at finite
times.

20.2 Model Equations

Consider a colony of active Brownian particles that swim along the liquid-gas inter-
face of a thin liquid film. The swimming direction of the i th particle is given by
the unit vector pi , which is tangential to the liquid-gas interface at all times. We
only take into account long wavelength deformations of the liquid-gas interface at
height h(x, y), whereby the gradient ∇h is small at all times. In this case, the orien-
tation vector pi is approximately two-dimensional pi = (cos (φ), sin (φ)), where φ

denotes the polar angle.
The interaction between the swimmers is characterized by pair-wise alignment at

short distances and anti-alignment at large distances. The interaction strength is given
by a certain coupling function μ(| r i − r j |) of the separation distance | r i − r j |
between the i th and the j th swimmer. Positive (negative) values of μ(r) correspond
to pair-wise alignment (anti-alignment) [9].

The stochastic equations of motion for the i th swimmer can be written as

ṙ i = v0 pi + U i + ξ i ,

φ̇i = χi + ω0 + 1

2
Ωz −

∑

k �=i

μ(| r i − rk |) sin(φi − φk), (20.1)
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where ω0 > 0 is an intrinsic rotation frequency that gives rise to the circular clock-
wise motion of the swimmer at the liquid-gas interface. �U = (Ux , Uy) is the surface
velocity field of the fluid, Ωz = (∇ × U)z = ∂xUy − ∂yUx is the z–component of
the curl of the surface velocity field. Random rotation of the vector pi is char-
acterized by a Wiener process χi (t) with 〈χi (t)χk(t ′)〉 = 2Drδ(t − t ′)δik , where
Dr is the rotational diffusivity. The two-dimensional vector ξ i = (ξx , ξy)i with
〈ξ i (t)ξ k(t

′)〉 = 12×22MkB T δ(t − t ′)δik represents the translational noise, where
12×2 is a unit 2 × 2 matrix, M is the mobility of a single swimmer and T is the
absolute temperature.

It is worthwhile to mention the relation of Eq. (20.1) to the previously studied
models of self-propelled particles. Thus in case of μ = 0, χ = 0, ξ = 0 and ω0 = 0,
the Eq. (20.1) describe a deterministic self-propelled particle that moves in a fluid
with a given flow velocityU , as considered in Ref. [30]. In the absence of the fluid and
without the deterministic rotation, i.e. U = 0, Ωz = 0, ω0 = 0 and ξ = 0 the system
Eq. (20.1) reduces to a swarming model, studied in Ref. [9]. For non-interacting and
non-rotating swimmers, i.e. for μ = 0 and ω0 = 0, Eq. (20.1) in conjunction with
the thin film equation, have been studied in Ref. [18].

The Smoluchowski equation, derived from Eq. (20.1), for the surface density of
swimmers ρ(r, φ, t) is then given by

∂tρ + ∇ · J t + ∂φ Jφ = 0, (20.2)

with translational and rotational currents J t and Jφ , given respectively by

J t = v0 pρ + Uρ − MkB T ∇ρ, (20.3)

Jφ =
(

ω0 + 1

2
Ωz

)
ρ − Dr ∂φρ −

∫ ∫
dφ′d r ′ρ2(r, φ, r + r ′, φ′)μ(r ′) sin (φ − φ′),

where ρ2 is the two-particle density function.
Following [9], we employ a mean-field approximation and replace the two-body

density ρ2(r, φ, r + r ′, φ′) in Eq. (20.3) by ρ(r, φ)ρ(r + r ′, φ′). Next, we recall that
the coupling strengthμ(r ′) rapidly decays with the distance r ′ between the swimmers.
This allows us to expand ρ(r + r ′, φ′) about r and truncate the expansion after a
certain number of leading terms. As shown in Ref. [9], in order to recover a finite wave
length instability, one should retain quartic terms ∼(r ′)4 in the density expansion.

The resulting rotational current can be written as

Jφ =
(

ω0 + 1

2
Ωz

)
ρ − Dr∂φρ − ρ(r, φ)

[
sin φ μ̂C(r) − cos φ μ̂S(r)

]
, (20.4)

where

C(r) =
∫ 2π

0
ρ(r, φ′) cos φ′dφ′, S(r) =

∫ 2π

0
ρ(r, φ′) sin φ′dφ′ (20.5)
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and the operator μ̂ is given by

μ̂ = μ0 + μ2Δ + μ4Δ
2, (20.6)

with Δ = ∇2. The coefficients μ0, μ2 and μ4 in Eq. (20.6) can be explicitly written
as functionals of the coupling strength μ(r) [9].

Swimmers at the liquid-gas interface may excrete metabolic products that act
as a surfactant and change the local surface tension σ(r) of the liquid film. This
phenomenon, called the soluto-Marangoni effect, typically implies a linear decrease
of σ(r) due to the local surface concentration of swimmers 〈ρ〉(r) = ∫ 2π

0 ρ(r, φ) dφ

(cf. Ref. [24]):
σ(r) = σ0 − Γ 〈ρ〉(r), (20.7)

where Γ > 0 and Σ0 is the reference surface tension in the absence of swimmers.
The thin film equation for the local film thickness h(r, t), derived in the lubrication

approximation [14], is then coupled to the average concentration 〈ρ〉 [1, 18]

∂t h + ∇ ·
(

h3

3η
∇ [σ0Δh]

)
− Γ ∇ ·

(
h2

2η
∇〈ρ〉

)
= 0, (20.8)

where η is the dynamic viscosity. The surface fluid velocity U(r) is found as a
function of the local film thickness h [14]

U = −Γ
h

η
∇〈ρ〉 + h2

2η
∇ (σ0Δh) . (20.9)

Equations (20.2), (20.8) and (20.9) form a closed system of integro-differential
equations for the density ρ(r, φ, t) and the film height h(r, t).

20.3 Linear Stability of the Homogeneous
and Isotropic State

In this section we discuss the linear stability of a spatially homogeneous and isotropic
stationary solution of Eqs. (20.2), (20.8) and (20.9), given by ρ(r, φ) = ρ0/(2π)

and h(r) = h0, where ρ0 is the stationary total swimmer density. Using the ansatz
h = h0 + δh and ρ = ρ0/(2π) + δρ, we expand the perturbation functions δh and
δρ according to

δh(r, t) = h0

∫
ĥ(k)eγ (k)t eikr dk, (20.10)

δρ(r, φ, t) = lim
N→∞

ρ0

2π

N∑

n=−N

einφ

∫
Wn(k)eγ (k)t eikr dk, (20.11)
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with the Fourier amplitudes ĥ(k) and Wn(k), the wave vector of the perturbation
k = (kx , ky), and the growth rate γ (k).

Substituting the expansions Eq. (20.10) into Eqs. (20.2) and (20.8) and linearizing
about the steady state, we obtain the eigenvalue problem

γ (k)H = J (k)H, (20.12)

with the eigenvector H

H(k) = (ĥ, W0, W1, W−1, W2, W−2, . . . ), (20.13)

and the Jacobi matrix J , which corresponds to a banded matrix of the structure

− J (k) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T11 T12 0 0 0 0 0 . . .

T21 T22 V − V + 0 0 0 . . .

0 V + d1 − μ̂(k)
2 0 V − 0 0 . . .

0 V − 0 d−1 − μ̂(k)
2 0 V + 0 . . .

0 0 V + 0 d2 0 V − . . .

0 0 0 V − 0 d−2 0 . . .

0 0 0 0 V + 0 d3 . . .

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20.14)

Here μ̂(k) = μ0 − μ2k2 + μ4k4, k2 = k2
x + k2

y , V + = v0

(
ky

2 + ikx
2

)
, V − =

v0

(
− ky

2 + ikx
2

)
and dm = imω0 + m2 Dr + MkB T k2 with m = ±1,±2,±3, . . .

The (2 × 2) matrix T in the upper left corner of J is given by

T (k) =
⎛

⎝
h3

0
3η

σ0k4 Γ h2
0

2η
k2

h2
0

2η
σ0k4

(
Γ h0

η
+ MkB T

)
k2

⎞

⎠ . (20.15)

In practice, we truncate the expansion in the angle φ and only take a certain number of
the first N Fourier modes into account. Then, the Jacobi matrix J is an (2N + 2) ×
(2N + 2) matrix and the truncated eigenvector H = (ĥ, W0, W1, W−1, . . . , WN ,

W−N ) is (2N + 2) dimensional.
Because the perturbations δh and δρ are both real, the eigenvectors of H satisfy

the following symmetry conditions

ĥ(k)∗γ = ĥ(−k)γ ∗

Wn(k)∗γ = W−n(−k)γ ∗ , (20.16)

where the asterisk denotes complex conjugation and the subscript γ indicates that
the eigenvector (ĥ(k)γ , W0(k)γ , W1(k)γ , W−1(k)γ , . . . ) corresponds to the eigen-
value γ .



20 Swarming of Self-propelled Particles on the Surface of a Thin Liquid Film 399

In what follows, we non-dimensionalise the evolution equations employing the
scaling as in Ref. [18]. Thus, we use h0 as the vertical length scale, h0

√
σ0/Γρ0 as the

horizontal length scale, ηh0σ0/(Γ
2ρ2

0 ) as the time scale and the direction-averaged
density of swimmers in the homogeneous state ρ0 as the density scale.

The complete set of the dimensionless system parameters consists of: the self-
propulsion velocity V = v0ησ

1/2
0 /(Γρ0)

3/2, the dimensionless rotational diffusivity
D = Dr h0ησ0/(Γρ0)

2, the translational surface diffusivity d = kB T Mη/(h0ρ0Γ ),
the rotation frequency Ω0 = ω0h0ησ0/(Γρ0)

2 and the alignment/anti-alignment
interaction parameters μ̃i = μiηh0σ0/(Γ

2ρ0). For simplicity we drop the tildes in
the dimensionless interaction parameters. The dimensionless evolution equations are
summarized in Appendix 1.

In what follows, we focus on the effect of the parameter triplet (V, D,Ω0) on
the linear stability of the homogeneous isotropic state. From here on we fix the
interaction parameters at μ0 = 1, μ2 = −1, μ4 = −10−2 that can be achieved by
the appropriate choice of the coupling function μ(r). This choice of μi corresponds
to the finite wave length instability of the homogeneous distribution of non-rotating
swimmers, i.e. Ω0 = 0, in the absence of the liquid film, as studied in Ref. [9].

20.3.1 Singularity of the Instability at V = 0

Linear stability analysis reveals remarkable behaviour of the system at vanishingly
small swimming velocity V ≈ 0. By setting V = 0 in Eq. (20.14), the eigenvalue
with the largest real part can be found analytically

γmax(k) = μ̂(k)

2
− d±1 = ±iΩ0 − D − dk2 + 1

2

(
μ0 − μ2k2 + μ4k4

)
. (20.17)

The fastest growing wave number kmax and the corresponding growth rate Re[γ (kmax)]
are

(kmax)
2 = 2d + μ2

2μ4
, Re[γ (kmax)] = −D + μ0

2
− (2d + μ2)

2

8μ4
. (20.18)

At V = 0, the matrix in the lower right corner of Eq. (20.14) is diagonal. The
eigenvectors that corresponds to each of the two complex-conjugate eigenval-
ues Eq. (20.17), have only one non-zero component: either W1 �= 0, or W−1 �= 0.
Indeed, the eigenvector H+ that corresponds to γ (k) = μ̂(k)/2 − d1 is given
by H+ = (0, 0, W1, 0, 0, . . . ). Similarly, the eigenvector H− that corresponds to
γ (k) = μ̂(k)/2 − d−1 is given by H− = (0, 0, 0, W−1, 0, . . . ). From the physical
point of view this means that the colony of swimmers is unstable for a certain inter-
val of k, however this is a purely orientational instability that is reflected in the first
Fourier mode, i.e. W±1 �= 0. This orientational instability does not translate into the
instability of h and W0, as the orientation averaged density

∫ 2π

0 ρ(rφ) dφ is insensi-
tive w.r.t. the orientational order of swimmers.
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Fig. 20.1 a Solid lines show the real part of the two largest eigenvalues versus wave number

k =
√

k2
x + k2

y for V = 0.7, D = 1, Ω0 = 0 and d = 0.1. The dashed line corresponds to the

dispersion curve at V = 0 from Eq. (20.17). The inset shows a zoom of the highlighted area near
the origin. b, c Amplitudes A0 =| ĥ(k) |2 (dashed line) and A1 =| W0(k) |2 (solid line) of the
eigenvectors of the b largest and the c second largest eigenvalue for 2 < k < 10 where at least
one mode is unstable. d Two most unstable eigenvalues Re(γ )(kmax) at the fastest growing wave
number kmax versus V

Thus, any non-zero velocity V �= 0, no matter how small, introduces the coupling
between the first Fourier mode W±1 and all other modes Wn , n = 0,±2,±3, . . . ,
including the amplitude of the film surface deformation ĥ. As the consequence, the
emerging orientational order translates into an instability of the uniform swimmer
density and the plane film surface. In order to examine the coupling between the
orientational instability of swimmers and the film surface deformations, we set V =
0.7, D = 1, Ω0 = 0 and d = 0.1 and numerically determine the eigenvalues and the
corresponding eigenvectors of the truncated Jacobi matrix Eq. (20.14) with the total
number of Fourier modes N = 50.

The real parts of the first and the second most unstable eigenvalues are given
in Fig. 20.1a as solid lines. The analytic eigenvalue, corresponding to V = 0 from
Eq. (20.17) is shown by the dashed line. Approximately, for k > 2, the first two most
unstable eigenvalues for V = 0.7 have positive real parts, implying an instability.
The fastest growing wave number for V = 0.7 is approximately the same as for
V = 0, i.e. kmax = √

40 from Eq. (20.18).
By examining the eigenvector that corresponds to the most unstable eigenvalue,

we find that the first two components of this eigenvector are given by a numerical
zero, i.e. | ĥ(k) |2∼ 10−32 and | W0(k) |2∼ 10−32, as shown in Fig. 20.1b. This means
that the corresponding perturbation is purely orientational and does not couple to the
thin film instability. However, the eigenvector of the second most unstable eigenvalue
has | ĥ(k) |2 �= 0 and | W0(k) |2 �= 0, as shown in Fig. 20.1c. This mode corresponds
to a simultaneous instability of the film thickness and the average swimmer density.

The singularity of the instability at vanishingly small V is visualized in Fig. 20.1d,
where the real parts of the first two most unstable eigenvalues, computed at the fastest
growing wave number kmax, are plotted against V . We are interested in the second
most unstable eigenvalue that corresponds to the coupling between the orientational
instability and the film surface deformation. Thus, at any nonzero V �= 0, no matter
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how small, the colony of swimmers is linearly unstable with the finite growth rate
Re[γ (kmax)] = −D + μ0/2 − [(2d + μ2)

2]/[8μ4], as given by Eq. (20.18).
It is important to remark that the role of the thin film in the onset of the instability

at vanishingly small V is purely passive. The above described coupling between the
orientational instability and the instability of the average density of swimmers 〈ρ〉
occurs with or without the liquid film, which is linearly stable without the colony
of swimmers. However, the situation changes dramatically, if V is finite and if one
takes into account the rotation frequency Ω0, as discussed in the next section.

20.3.2 Effect of the Liquid Film on the System Stability

In order to study the effect of the liquid film on the system stability, we distin-
guish between the film loaded with swimmers and the bare colony of swimmers
without the liquid film. Technically, the latter case corresponds to the matrix T in
Eq. (20.14), replaced by T11 = T12 = T21 = 0 and T22 = MkB T k2. We numerically
solve the eigenvalue problem Eq. (20.14) for the swimmers with and without the
liquid film. In the presence of the liquid film, we determine the largest eigenvalue
that corresponds to the coupling mode between the orientational instability and the
film surface deformation.

We fix V = 1, d = 0.1 and determine the stability threshold in the plane of para-
meters (D,Ω0). In Fig. 20.2a the shaded region marks the values of (D,Ω0), where
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Fig. 20.2 a Stability diagram for V = 1 and d = 0.1. Shaded area corresponds to linearly unstable
colony of swimmers in the absence of the liquid film. Dashed line is the stability threshold for the
flat liquid film with swimmers: the system is stable above and unstable below the dashed line. In
b, c, d we set D = 7 and Ω0 = 3 for a flat liquid film with swimmers (point A in (a)): b real part,
c imaginary part and d the amplitude A0 =| ĥ(k) |2 of the most unstable eigenvalue versus k
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the colony of swimmers is unstable in the absence of the liquid film. For the val-
ues of the interaction parameters μi chosen here, the homogeneous distribution of
swimmers becomes linearly unstable along the border of the shaded region via an
oscillatory instability at a finite wave number.

Remarkably, the addition of a stable liquid film, changes the stability threshold
dramatically, as shown by the dashed line in Fig. 20.2a. Thus, we find a window of
the rotation frequency 2 � Ω0 � 4 and of the rotational diffusivity 6.5 � D � 7.5,
where the inclusion of a seemingly passive liquid film destabilizes the system. The
dispersion curve Re(γ )(k) computed for D = 7 and Ω0 = 3 (point A in Fig. 20.2a) is
shown in Fig. 20.2b. In Fig. 20.2c, d we plot the imaginary part of the most unstable
eigenvalue and the amplitude A0 =| ĥ(k) |2 versus k, respectively. The finite val-
ues of | ĥ(k) |2 confirm the coupling between the orientational instability and the
deformation of the film surface.

Our results show that a colony of swimmers that move on top of a deformable
liquid film is less stable than the bare system of swimmers in the case when the
film is absent. Such effects are also known for passive systems where e.g. for a film
of a binary mixture, the decomposition process couples to the dewetting process
in such a way that the flat film becomes linearly unstable. However, the flat film
remains linearly stable w.r.t. the each process separately: i.e. it is stable w.r.t. the
dewetting and stable w.r.t. the decomposition process [25]. Another example of a
coupled system that is less stable than each of its components when decoupled, is
a two-layer liquid film on a solid substrate [16, 17]. Thus, for certain immiscible
polymer films of different film thickness, placed on top of each other, a two-layer
film can be linearly unstable due to weak van der Waals forces that exists between
apolar molecules. However, when separated, each of the two layers supported by the
same substrate may be linearly stable.

20.4 Nonlinear Evolution from a Homogeneous
Isotropic State

The nondimensional evolution equations for the swimmer density ρ(r, φ, t) and the
local film thickness h(r, t) are summarized in Appendix 1. In order to numerically
solve the system of Eq. (20.22), we discretize the film thickness h(x, y, t) in a square
box −L × L and the density ρ(x, y, φ, t) in a rectangle (x ∈ [−L/2, L/2]) × (y ∈
[−L/2, L/2]) × (φ ∈ [0, 2π ]) with periodic boundaries. We use 100 × 100 mesh
points for the discretisation in space and 20 Fourier modes for the decomposition
of the φ-dependency. We adopt a semi-implicit pseudo-spectral method for the time
integration, as outlined in Appendix 2. In order to quantify the patterns, we introduce
three global measures: the space-averaged mode type M

M = L−2
∫ ∫

(h(x, y, t) − 1)(〈ρ〉(x, y, t) − 1) dxdy, (20.19)
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the space-averaged flux of the fluid J̄h , determined by

J̄h = L−2
∫ ∫ [

(h3/3)∇ (Δh) − (1/2)
(
h2∇〈ρ〉)] dxdy (20.20)

and the space-averaged orientation field from Eq. (20.5)

(〈C〉(t), 〈S〉(t)) = L−2
∫ ∫

dxdy (C(x, y, t), S(x, y, t)) (20.21)

The mode type M can be used to analyse the phase shift between the patterns
of h and 〈ρ〉. Non-zero values of the space-averaged fluid flux J̄h indicates global
propagation of patterns. The active part of the space-averaged translational flux of
swimmers in Eq. (20.3) is given by v0(〈C〉(t), 〈S〉(t)).

20.4.1 Square Array of Vortices

We demonstrate the destabilizing action of the liquid film by choosing the parameters
as in point A in Fig. 20.2a.

The time evolution of the mode type M and of the film height h at arbitrarily
chosen point on the film surface (x∗, y∗) are shown in Fig. 20.3a, b, respectively.
The amplitudes of the average density 〈ρ〉min and 〈ρ〉max are shown in Fig. 20.3c.
After passing a certain relaxation time of approximately ≈100 time units, the system
reaches a stable time-periodic solution that can be characterized as a standing square
wave with a well defined spatial period. A typical snapshot of the average density
〈ρ〉(x, y) and of the film thickness h(x, y) taken at t = 150 is shown in the lower
panels in Fig. 20.3. The spatial period l of the square pattern is l ≈ 2π/kmax, where
kmax = 6.2 is the fastest growing wave number, as extracted from the dispersion curve
in Fig. 20.2b. During the entire time evolution, the space-averaged flux of the fluid J̄h

(not shown here) from Eq. (20.20) is of order of 10−6, dropping to a numerical zero
for t > 100. As the standing square wave regime is established, the space-averaged
orientation Eq. (20.21) is numerically zero (not shown). The temporal oscillation
period of the standing wave, T = 2.1, is extracted from the evolution of h(x∗, y∗) is
shown in the inset of Fig. 20.3b. Interestingly, the mode type M oscillates with only
a half of the period, T/2 = 1.05, indicating that the pattern oscillates between two
identical states that are shifted in space.

In order to gain a better understanding of the different phases of the temporal
oscillations of the vortex state, we show in Fig. 20.4 three snapshots of the average
density 〈ρ〉(x, y) and the film thickness h(x, y) from the zoomed area around the
bottom left corner of the domain. In addition, we overlay the density snapshot with
the vector field of the average orientation of swimmers α(C(x, y), S(x, y)), with a
conveniently chosen scaling factor α. The three snapshots are taken over one half of
the temporal period, between t = 150.4 and t = 151.2.
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Fig. 20.3 Nonlinear evolution from a homogeneous isotropic state for parameters as in point A
in Fig. 20.2a. a The mode type M from Eq. (20.19), b time evolution of the film height h at an
arbitrarily chosen point on the film surface (x∗, y∗) and c 〈ρ〉min and 〈ρ〉max as a function of time.
Lower panel snapshot of the average density 〈ρ〉(x, y) and of the film thickness h(x, y) at t = 150

At t = 150.4 the orientation field is represented by vortices arranged in a square
lattice. Vortices located over the depression (elevation) regions of the film thickness
profile have an anticlockwise (clockwise) polarity. The average density is in anti-
phase with the film profile, implying that the mode type is negative. The dynamics of
the vortex polarity can be appreciated from the snapshot taken at t = 151.0, where the
orientation field is almost radially symmetric. Note that at t = 151.0 the depression
regions in the average density and in the film thickness profile have turned into
the elevation regions and vise-versa. At t = 151.2, the polarity of the vortices has
reversed as compared with the snapshot taken at t = 150.4.

20.4.2 Stripe-Like Density Patterns

Next, we explore the temporal evolution of the system deep in the unstable region.
By setting Ω0 = 0 and D = 1 we vary the self-propulsion velocity V and compare
the evolution of the swimmers in the absence of the liquid film with the dynamics
of the coupled system. Numerically, the Smoluchowski equation is decoupled from
the thin film equation by setting U = 0 and Ωz = 0. In the absence of the liquid film
we find stripe-like density patterns at small velocities. In Fig. 20.5a the evolution
of 〈ρ〉min and 〈ρ〉max is shown by the solid (the dashed) line in the presence (in the
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Fig. 20.4 Three snapshots of the average density 〈ρ〉(x, y) in grey scale and of the film thickness
h(x, y), taken over one half of the oscillation period of the vortex state. The density is overlayed
by the vector field of the average orientation of swimmers ∼(C(x, y), S(x, y))

absence) of the liquid film. Figure 20.5e shows a snapshot of the density patterns at
t = 100 in the absence of the film.

The inclusion of the liquid film leads to a significantly smaller amplitude of the
average density fluctuations 〈ρ〉max − 〈ρ〉min, as can be seen from Fig. 20.5a. In the
long time limit, almost parallel stripe-like density patterns are found in the presence
of the film as given in Fig. 20.5f. The surface of the film is covered with similar
stripe-like patterns that are oriented parallel to the density stripes (Fig. 20.5g). The
amplitude of the film surface deformation is of the order of 0.5 % of the average film
thickness h = 1 (Fig. 20.5b). Stripes on the film surface are in anti-phase with the
density stripes, so that the mode type M is negative (Fig. 20.5c). The fluid flux J̄h is
zero in the long time limit (Fig. 20.5d). The space-averaged orientation Eq. (20.21)
in the long time limit is a certain non-zero constant (not shown).
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Fig. 20.5 Evolution with and without liquid film at V = 0.1, D = 1, Ω0 = 0 and d = 0.1. a, b, c,
d Time evolution of local and global measures. Solid (dashed) lines in (a) show 〈ρ〉min and 〈ρ〉max
in the presence (in the absence) of the liquid film. Dashed and solid lines in (d) correspond to (Jh)x
and (Jh)y , respectively. e Snapshot of the density patterns at t = 100 in the absence of the film. f,
g Snapshots of the density patterns and the film surface patterns at t = 100 in the presence of the
film

20.4.3 Large-Scale Holes in the Film and Film Rupture

When the self-propulsion velocity is increased to V = 1, the stripe-like density pat-
terns in the absence of the film are no longer found in the long time limit, as shown
in Fig. 20.6f, where we plot the average density field 〈ρ〉(x, y) taken at t = 60.
Instead, the density field corresponds to an irregular time-varying array of high- and
low-density spots that have the size of the fastest growing wave length.

In the case, when the film is present, the density field shows maze-like patterns with
a typical size comparable to the fastest growing wave length, as given in Fig. 20.6g.
These maze-like patterns are overlayed with large-scale modulations with the typical
length approximately equal to the domain size. Thus, an elevation region, resembling
a droplet, can be seen in the density field in Fig. 20.6g concentrated around x =
−3, y = −1. The film height h is nearly zero in this point, as seen in Fig. 20.6h. The
amplitude of density modulations 〈ρ〉max − 〈ρ〉min remains largely unaffected by the
liquid film (Fig. 20.6a), fluctuating around the value of 〈ρ〉max − 〈ρ〉min ≈ 1.5.
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Fig. 20.6 Evolution with and without liquid film at V = 1, D = 1, Ω0 = 0 and d = 0.1. Line
styles in (a) as in Fig. 20.5a. Solution measures: b the mode type, c hmin, hmax, d | J̄h | and e
|(〈C〉, 〈S〉)|. f Snapshot of the density patterns at t = 60 in the absence of the film. g, h Snapshots
of the density patterns and the film surface patterns at t = 60 in the presence of the film

Remarkably, we find a large-scale hole in the film that develops at a late stage of
the time evolution, as shown in Fig. 20.6h. The lateral hole size is of the order of the
domain length. The amplitude of the film surface deformations increases with time
and, eventually, reaches the point, where hmin ≈ 0 and the film rupture occurs (t = 60
in Fig. 20.6c). The hole in the film is in anti-phase with the elevation region in the
average density field, implying negative mode type M in Fig. 20.6b. The magnitudes
of the fluid flux | J̄h | and the space-averaged orientation | (〈C〉, 〈S〉) | fluctuate
randomly with time, as shown in Fig. 20.6d, e, respectively.

From our numerical results we can not definitely decide whether the observed film
rupture corresponds to a true finite time singularity or whether it is due to the limited
numerical resolution. There exist extensive studies on the rupture of films of simple
liquids [4]. In the case of the long-wave thermocapillary instability [3, 13], the film
rupture does not seem to occur after finite time. In the case of the destabilising van der
Waals interactions [15, 26, 28], the rupture clearly occurs after finite time and close to
rupture self-similar solutions can be given. In the model studied here, there are no van
der Waals or indeed any other destabilizing (or stabilizing) film surface—substrate
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interactions, what makes it unlikely that finite time rupture occurs. However, the issue
should be studied in detail in the future, in particular, the role of the interaction of the
swimmer density and the film height close to rupture. Average density contains two
distinct dominant wave lengths: one is of the order of 2π/kmax ≈ 1, and the other
one is of the order of the domain size.

20.5 Conclusion

In summary we have considered the dynamics of a colony of swimmers that interact
with each other via a short-range alignment and longer-range anti-alignment mech-
anism and move along the surface of a thin liquid film with deformable liquid-gas
interface. We have derived a dynamical model that consists of a thin film equation
in the long-wave approximation for the evolution of the local film thickness coupled
to the Somluchowski equation for the evolution of the swimmer density function.
In contrast to previously used models [1, 9, 18], we have included a deterministic
rotation of the swimmers bodies that gives rise to their circular motion along the film
surface.

We have focused on the effect of the liquid film on the linear stability of the
homogeneous isotropic distribution of swimmers and on its role in the nonlinear
time evolution of the system. To this end, we have compared the coupled system of
swimmers on the deformable film surface with the bare system of swimmers without
a liquid film.

Our results show that the inclusion of the flat film, which is linearly stable without
the colony of swimmers on its surface, can induce a finite wave length instability of
the isotropic density distribution. This effect is only found for a certain combination
of the rotational diffusivity, the self-propulsion velocity and the rotation frequency
that gives rise to the circular motion of swimmers. It is not surprising that the coupled
system of swimmers on top of a deformable liquid film appears to be less stable than
the bare system of swimmers. Generally, a higher degree of complexity of a system
implies less stability. Thus, a similar effect was observed earlier for some passive
systems that do not contain any active matter [16, 17, 25].

By numerically solving the equations of motion we investigated the nonlinear
dynamics of the system from the isotropic state for parameters close to the stability
threshold and deep in the unstable region. Close to the stability threshold we found
square array of vortices in the density distribution, accompanied by small amplitude
deformations of the film surface. Deep in the unstable region, for small values of
the self-propulsion velocity, small amplitude stripes in the density field emerge. The
film surface remains almost flat with the maximal deformation amplitude reaching
as less as 0.5 % of the average film thickness.

For larger values of the self-propulsion velocity, large-scale deep depression forms
in the film. The size of the depression is of the order of the domain size and its depth
gradually increases with time. The depth of the emerging depression may eventually
reach the value of the average film thickness, thus inducing the film rupture.
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On a qualitative level, our results can be used to explain the rupture of soaplike
liquid films loaded with bacteria, as observed in a series of experiments [20–22].
Without bacteria, any soaplike liquid film, regardless of the film thickness, is linearly
unstable due to long-range van der Waals forces that act between apolar molecules
that make up the ambient gas layer separated by the liquid film [11]. This implies
that even in the ideal case when the evaporation of the liquid can be neglected and
the liquid is not drained due to gravity, the flat film is linearly unstable w.r.t. the
long-wave deformations of the two liquid-gas interfaces. This instability eventually
leads to film rupture after a certain interval of time. The life time of the film is
determined by the Hamaker constant that characterizes the strength of the van der
Waals interaction, the film thickness h, the surface tension σ and the viscosity of the
liquid η. In fact, by using the lubrication approximation [14], it can be shown that
the typical life time of the film scales as ∼h5ση.

However, the situation changes dramatically, when the film is loaded with swim-
mers, whose motion couples to the film deformations via the soluto-Marangoni effect.
The orientational instability of the colony of swimmers couples to the instability of
the flat film. For films thicker than several µm, the destabilizing action of the van
der Waals forces can be neglected as compared with the strength of the orientational
instability. In this case, the life time of the film is determined by the typical time scale
of the orientational instability, which does not depend on the film thickness. This may
explain that surfactant-covered films loaded with bacteria break down earlier than
expected.

Appendix 1: Non-dimensional Thin Film Equation
and the Smoluchowski Equation

In the here employed dimensionless quantities, the resulting coupled system consists
of the reduced Smoluchowski equation for the swimmers density ρ(r, φ, t) and the
thin film equation for the local film thickness h(r, t)

∂t h + ∇ · Jh = 0, ∂tρ + ∇ · J t + ∂φ Jφ = 0, (20.22)

with the vorticity of the fluid flow Ωz = ∂xUy − ∂yUx , the fluid flux Jh , the trans-
lational and rotational probability currents J t and Jφ , the surface fluid velocity U‖
given by

Jh = (h3/3)∇ (Δh) − (h2/2)∇〈ρ〉, J t = (V q + U − d∇) ρ,

Jφ = (Ω0 + Ωz/2) ρ − D∂φρ − ρ
[
sin φ μ̂C(r, t) − cos φ μ̂S(r, t)

]
,

C(r, t) =
∫ 2π

0
ρ(r, φ, t) cos φ dφ, S(r, t) =

∫ 2π

0
ρ(r, φ, t) sin φ dφ,

μ̂ = μ0 + μ2Δ + μ4Δ
2, U = −h∇〈ρ〉 + h2/2∇ (Δh) . (20.23)
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Appendix 2: Semi-implicit Numerical Scheme
for Eqs. (20.22)

The coupled evolution equations Eq. (20.22) are solved numerically using the fol-
lowing version of the semi-implicit spectral method. First, we average the density
equation over the orientation angle φ. This yields

∂t 〈ρ〉 + ∇ · 〈J trans〉 = 0, (20.24)

with the average translational current 〈J trans〉 = V 〈qρ〉 + (U − d∇)〈ρ〉 and q =
(cos φ, sin φ). It is worthwhile noticing that the only term in Eq. (20.24) that depends
on the three-dimensional density ρ(x, y, φ, t) is the average orientation vector 〈qρ〉.
All other terms in Eq. (20.24), including the surface fluid velocityU explicitly depend
on the average density 〈ρ〉.

Next, we group the thin film equation together with Eq. (20.24)

∂t h + ∇ · Jh = 0, ∂t 〈ρ〉 + ∇ · 〈J trans〉 = 0, (20.25)

with the fluid flux Jh = h3

3 ∇ (Δh) − 1
2∇ (

h2∇〈ρ〉).
At the next step, we single out the linear parts in all the terms in Eq. (20.25) that

explicitly depend on the average density 〈ρ〉. This is done by linearising the current
J t and the fluid flux Jh about the trivial steady state given by h = 1 and 〈ρ〉 = 1.

Next, following the standard implicit time-integration scheme, we replace ∂t h and
∂t 〈ρ〉 by (ht+dt − ht )/dt and by (〈ρ〉t+dt − 〈ρ〉t )/dt , respectively and take all linear
terms at time t + dt and all nonlinear terms, including the term V 〈qρ〉, at time t .
Upon these transformations Eq. (20.25) become

ht+dt − ht + (dt/3)Δ2ht+dt − (dt/2)Δ〈ρ〉t+dt + dt∇ · (NLh)t = 0, (20.26)
〈ρ〉t+dt − 〈ρ〉t + (dt/2)Δ2ht+dt − dt (1 + d) Δ〈ρ〉t+dt + dt∇ · (〈NL trans〉)t = 0.

where N L denotes the nonlinear parts. After taking the discrete Fourier transforms
of Eq. (20.26), we find the updated fields ht+dt and 〈ρ〉t+dt at the time step t + dt .

With the update average density 〈ρ〉t+dt and the film thickness ht+dt at hand, we
find the updated surface fluid velocity U t+dt and the updated vorticity Ω t+dt

z .
At the next step, we decompose the currents in the second equation in Eq. (20.22)

into a linear and a non-linear parts and make use of the semi-implicit integration
scheme

ρ t+dt − ρ t + dt L̂ρ t+dt + dtNL(ρ t ) = 0. (20.27)

After taking the Fourier transform of Eq. (20.27) both, in space as well as in the angle
φ, the operator L̂ F can be written as

L̂ F = dk2 + Dn2 + inΩ0 − 0.5(δn,1 + δn,−1)
(
μ0 − μ0k2 + μ4k4

)
. (20.28)
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The nonlinear part NL is given by

NL(ρ t ) = 0.5Ω t+dt
z ∂φρ t + ∇ · (V qρ t + U t+dtρ t )

− ∂φ

(
ρ t − (2π)−1

) [
sin φ( ˜̂μCt ) − cos φ( ˜̂μSt )

]
. (20.29)

By solving Eq. (20.27) w.r.t. ρ t+dt in the Fourier space, we apply the backward
Fourier transform and find the updated three-dimensional density ρ t+dt (x, y) in the
real space.
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