H e A ey
N ew jo u r n a I of P h ys Ics Deutsche Physikalische Gesellschaft q) DPG I0P Institute of Physics @ Gt cenc

The open access journal at the forefront of physics

PAPER * OPEN ACCESS You may also like
. - Twisted mass lattice QCD with non-
Hyperparameter optimization in the estimation of leobreiaio quall s

Gernot Munster and Tobias Sudmann
P D E a nd d e I ay- P D E mOd els fro m d ata - Latest Research Trends and Prospects

Among the Various Materials and Designs
Used in Lithium-Based Batteries

Ralf Wagner, Nina Preschitschek, Stefano
Passerini et al.

To cite this article: Oliver Mai et al 2026 New J. Phys. 28 013701

- Rethinking the Role of Formerly Sub-
Sufficient Industrial/Synthesized SEI
. . . Additive Compounds - a New Perspective
View the article online for updates and enhancements. Adjmal Ghaur, Felix Pfeiffer, Diddo
Diddens et al.

This content was downloaded from IP address 128.176.202.20 on 14/01/2026 at 09:40

https://doi.org/10.1088/1367-2630/ae2e33
/article/10.1088/1126-6708/2006/08/085
/article/10.1088/1126-6708/2006/08/085
/article/10.1149/MA2014-01/1/78
/article/10.1149/MA2014-01/1/78
/article/10.1149/MA2014-01/1/78
/article/10.1149/MA2023-0172753mtgabs
/article/10.1149/MA2023-0172753mtgabs
/article/10.1149/MA2023-0172753mtgabs

10P Publishing

W) Check for updates

OPEN ACCESS

RECEIVED
22 August 2025

REVISED
28 November 2025

ACCEPTED FOR PUBLICATION
17 December 2025

PUBLISHED
13 January 2026

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOL.

New J. Phys. 28 (2026) 013701 https://doi.org/10.1088/1367-2630/ae2e33

Published in partnership
with: Deutsche Physikalische
Gesellschaftand the Institute
of Physics

Deutsche Physikalische Gesellschaft @ DPG

New Journal of Physics

The open access journal at the forefront of physics IOP Institute of Physics

PAPER

Hyperparameter optimization in the estimation of PDE and
delay-PDE models from data

Oliver Mai"* @, Tim W Kroll', Uwe Thiele"’

! Institute of Theoretical Physics, University of Miinster, Wilhelm-Klemm-Str. 9, 48149 Miinster, Germany
2 Center for Data Science and Complexity (CDSC), University of Miinster, Corrensstr. 2, 48149 Miinster, Germany
3 Center for Multiscale Theory and Computation (CMTC), University of Miinster, Corrensstr. 40, 48149 Miinster, Germany
*
Author to whom any correspondence should be addressed.

and Oliver Kamps’

E-mail: oliver.mai@uni-muenster.de

Keywords: data-driven modeling, dynamical systems, partial differential equations, delay equations

Abstract

We propose an improved method for estimating partial differential equations (PDEs) and delay
PDE:s from data, using Bayesian optimization and the Bayesian information criterion to auto-
matically find suitable hyperparameters for the method itself and also for the equations (such

as a time-delay). We show that combining time integration into an established model estima-
tion method increases robustness and yields predictive models. Allowing hyperparameters to be
optimized as part of the model estimation results in a wider modeling scope. We demonstrate
the method’s performance for a number of synthetic benchmark problems of different complex-
ity, representing different classes of physical behavior. This includes the Allen—Cahn and Cahn—
Hilliard models, as well as different reaction-diffusion systems without and with time-delay.

1. Introduction

The recent advancements in data collection and storage, as well as the rising availability of computa-
tional resources, have facilitated data-driven learning methods and impacted modern science in many
ways. As large-scale experiments and computer simulations continue to produce complex data sets, typ-
ical methods for discovering governing physical laws and translating them into mathematical models,
such as first-principle derivations, take more time and effort to complete or may not account for all the
available data. Thus over recent years computer-aided discovery of dynamical equations has attracted
more and more attention.

During their inception many symbolic data-driven modeling methods focused on ordinary differen-
tial equations (ODEs). As a results there are numerous such methods available, e.g. the multiple shoot-
ing method [1], sensitivity analysis [2] or generalized Gauss—Newton methods [3]. Then, [4] proposed
to reframe an inverse problem in terms of a least-square problem with a suitable set of candidate model
functions. This spawned various alterations and in recent developments the combination of various dif-
ferent methods. This includes combining de-noising and data preparation into the learning method [5],
and incorporating methods that allow for domain-specific user input to cope with sparsely sampled
data [6].

However, for many (especially spatially extended) systems a description using ODEs is insufficient
and partial differential equations (PDEs) are needed. Although, in principle, methods originally designed
for ODEs can readily be adapted for use with PDEs, often new challenges arise regarding scalability and
performance. Attempts to specifically identify PDEs from data started in the late 1990s [7—10] and have
seen various improvements and modifications over the years. Typically, just as for ODEs, a model struc-
ture is either proposed by prior knowledge about the system or expressed by a set of candidate func-
tions, which are then narrowed down using, e.g. sparsity-promoting algorithms [4, 11-13], sensitivity-
analysis [14, 15] and information criteria [16, 17]. The models are optimized to either minimize the
residual of the PDE [4, 11, 18] or its predictive error [19, 20]. While there have been variations and

© 2026 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ae2e33
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ae2e33&domain=pdf&date_stamp=2026-1-13
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0007-5864-7674
https://orcid.org/0000-0001-7989-9271
https://orcid.org/0000-0003-0986-0878
mailto:oliver.mai@uni-muenster.de

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

alternative methods, where the system is described via a weak-formulation [21, 22], methods which
allow for additional complexity such as time-delayed variables [23, 24] remain few and narrow in scope.

A parallel development is found in physics-informed neural networks [25] and related approaches.
There, knowledge about the underlying physical systems is incorporated to subsidize otherwise black-box
approaches to predict system behavior or to recover specific system parameters, but not to generate a
comprehensive mathematical description of the provided data.

For many of the model learning methods the sole benchmark remains the rediscovery of physical
laws based on numerical simulations. The performance on these benchmarks has made significant pro-
gress for both ODEs and PDEs. While this facilitates the use of these methods for real world applica-
tions, practical application to study open problems still faces many challenges. Examples include micro-
scopy data [26], gene expression [23] and monitoring of motors [27] or tokamak discharge [28], but
poor knowledge of involved parameters and overfitting onto noise still pose significant hurdles. The
model quality is often only evaluated after the learning method has concluded [17]. This results in mod-
els that are numerically unstable during time simulations or fail to replicate initial data at all, without
additional clean-up or corrections using prior knowledge.

In many data-driven model estimation methods, hyperparameters that govern model complexity, reg-
ularization, data preprocessing or optimization strategies have a vital influence on the performance of
the learning algorithms [29, 30]. These may gauge overfitting or set learning rates or thresholds during
optimization. Often these hyperparameters are not learned from data, but instead set beforehand and
either adjusted via a trial-and-error approach or via computationally expensive systematic grid-based or
random searches.

In [31] the REBEL (Reconstruction Error Based Estimation of dynamical Laws) method, a novel
method for identifying sparse ODE systems from data, is introduced. It combines the efficient sparse
parameter estimation approach of [4] with an error estimate based on a combination of the integrated
least squares error and the Wasserstein metric. Integrated within a Bayesian optimization framework,
this method efficiently determines optimal hyperparameters, leading to a better data approximation with
fewer parameters. Our goal is to leverage this approach for robust and efficient sparse PDE model estim-
ation from data. The hyperparameter optimization strategy in [31] also enables us to efficiently estimate
delay PDEs, thereby significantly expanding the applicability of the method.

In section 2 we develop our numerical method. Then, in section 3.1.1 we show that it yields virtu-
ally identical results for the elementary example analyzed in [11]. The same holds true in section 3.1.2,
where we compare resilience to noise and low spatial sample rate. To further investigate the comparat-
ive performance, we vary the sampling frequency in section 3.1.3 and show that our approach is more
robust than the one in [11] with respect to data that are under-sampled in time. Then, in section 3.2
we consider phase-field models with and without mass-conservation and show that further restrictions
are not needed to achieve mass-conservation and that our implementation allows more flexibility for
model ansatz functions. Finally, section 3.3 showcases how the method accommodates multiple hyper-
parameters, such as multiple method thresholds and time-delays, which enables us to treat models of
higher complexity. Section 4 summarizes our findings and proposes further fields of study. The appendix
houses more detailed information on creating a default set of ansatz functions in appendix A, a pseudo-
code representation of the model estimation procedure in appendix B, an in-depth numerical tutorial in
appendix C and unabbreviated numerical results for all examples in appendix D.

2. Numerical methods

2.1. Optimization framework
The symbolic approach to estimating dynamic equations in the form of PDEs from data relies on nar-
rowing down suitable functions for the right hand sides of the equations from a set of ansatz- or library-
functions. In its simplest form this means taking time series data and then fitting the library-functions
to the time derivative of the data. In practice, when using a least-squares fit, this often results in extens-
ive and unwieldy expressions, where most of the functions only give small contributions. The aim is to
single out only major contributions and to produce well-established and/or interpretable models.

We assume that there exists a functional expression F, which describes the true dynamics of the
time evolution of a physical quantity u(x,t) € R" (where n is the number of field variables) we wish to
model:

7:F(u> (1)

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

Here, ¢ is the time and x € R? d € {1,2,3} is the position in d-dimensional space. F(«) may include
nonlinearities and spatial derivatives of u and in principle any function that contributes to the dynamics
of u. We assume that each individual contribution in F (however complex it may be) can be combined
linearly, so F could look as follows:

%:au+bu2+cVu+dsin(t)+..., (2)
where a,b,c and d are coefficients. Now, for an unknown system it may be unclear which exact func-
tions appear on the right-hand side of equation (2), but many scientific disciplines hold broad catalogs
of modeling approaches. As such we assemble a large number of ansatz- or library-functions that could
capture the dynamics of an unknown system we wish to model (see appendix A for more details on lib-
rary creation). We collect all of the library-functions in a vector © (with k functions) and all of their
coefficients in a matrix o € R"**, so that we can rewrite equation (2) as the linear matrix multiplication

% =0-0(u). (3)
Of course, if the true dynamics falls outside of the space spanned by our library functions, then it can
only be approximated.

The goal is now to find a sparse set of values for o that best describes the time evolution of u. To
that end, we employ a regression method. See figure 1 for an overview of the entire optimization frame-
work. So we search for an approximate set of coefficients, that has a residual error with respect to the
true system:

R(o) = |0 —0-© (u)]x. (4)

Here,

[NIE

N, N?

llzll2= [DD lenl (5)

r=1 |=1

is the £2-norm for N; number of samples in time and N? sample points in space. Now we want to find
the set &, that minimizes R. In other words, we wish to solve the optimization problem

6 =argmin R(o)=argmin |[Qu—oc-0O(u)l,. (6)
g o

Since o - © is a linear matrix multiplication, this problem can be numerically solved by any least-squares

routine.

This leaves two problems. First, as previously mentioned, a least-square routine by itself typically
yields non-sparse results. Second, the residual in equation (4) is formulated with respect to the time
derivative of the original data and as shown in [31] the minimum of such a residual is not identical to
the one using the deviation from the integrated estimate to the original time series:

L(c})Hu/OT§~@(u)dtH2|uﬁ||2. (7)

The use of numerical time integration (from ¢ =0 to the final time ¢ = T) means, that a reconstruc-
ted time series i, now only implicitly depends on our coefficients 4.

To overcome both of these problems we employ the same strategy as [31], i.e. we make use of the
Bayesian information criterion (BIC), which takes the maximized likelihood L of our estimated model
(which is equivalent to minimizing equation (7)) and penalizes it with the number of model parameters:

BIC = sIn(N;) —2In (L). (8)

Here s is the number of non-zero coefficients in 6. When & is close (or equal) to the true system para-
meters, L(6) should also be minimal, thus L(6) = L. This results in the scheme shown in figure 1:

1. Load time series data of u(x,t) that shall be modeled.

3

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

2. 1
: N X Nonlinear Library u

Uz

\ i :
du=0-0= |0y 03 -+ o4} 2
s (1 2 .a 3{1‘:

u,(t - ‘r)

d Time Series
Data

(2, 8) /
4p

T

ug(,t] (Jf,t

. 5. BIC
[lu = @l|2==3 4 1n(V,) — 2In(||u — @|l2)
L

4. g @
? ? (5. Least-Squares

4: . arg min [|du — o - ©||2

with sequential thresholding

f) ’? Reconstructed
. . Time Series

uy(z,t) uy(x,t) J

Figure 1. Scheme of the model estimation procedure. The steps are: 1. load time series data; 2. compute suitable library func-
tions; 3. use least-squares-based sparse regression method to estimate model parameters; 4. integrate estimated model in time; 5.
compute BIC and repeat steps 2 (if library terms have changed), 3 and 4.

2. Construct the library © of nonlinear ansatz functions which may contain hyperparameters such as a
time delay 7.

3. Perform a least-squares fit to find estimated system parameters & and sequential thresholding with
hyperparameters hy, ..., h,, where contributions of ; to the evolution of variable u; below the
threshold h; are subsequently discarded until sparsity no longer increases.

4. Perform time integration using the estimated parameters ¢ and library O.

5. Use the deviation from the original time series and the BIC to optimize the hyperparameters and
repeat steps 2 (if any library term has changed due to a hyperparameter), 3 and 4.

In other words, we begin by using a sparsity promoting least-squares routine to find an initial &,
which minimizes the residual (4) with respect to the time derivative, then compute L using ¢ (and any
additional model parameters) by integrating our model in time and finally use another numerical optim-
ization procedure to iterate previous steps to minimize the BIC. This yields optimized method hyper-
parameters, such as any thresholds / in this sparsity promoting variant of the least-squares routine, and
refined model parameters. Additionally, we may add any other hyperparameter to be optimized, such as
ones that change our ansatz functions (e.g. a time delay 7 or a phase shift ¢). For more details on the
entire optimization routine see again figure 1 and section 2.2.

2.2. Estimation procedure

Even for a large library ©(u), problem (3) remains a linear matrix equation. Thus we initially estimate
parameters ¢ using the least-squares routine from the popular computing package Numpy [32], minim-
izing the difference to our time derivative:

¢ =argmin [||Ou—oc-0 (1)
[ea

The time derivative of the original time series data 0,u is computed using finite differences. Spatial
derivatives during library evaluation can be computed via FFT or finite differences (supplied by the
package findiff [33]). Our routine uses the latter per default. The accuracy of these derivatives can
greatly impact the estimation performance, albeit with diminishing returns: Falling below a certain
accuracy will result in a worse estimation performance depending on the problem at hand. Higher
accuracy, however, will not necessarily increase the estimation performance. The accuracy of the finite
differences method can be freely adjusted. The default is second order accuracy.

Sparsity of ¢ is then promoted using sequential thresholding least-squares (STLS, [4]), i.e. paramet-
ers with a magnitude below a threshold value h are set to zero and excluded, then the least-square fit is

4

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

repeated until either sparsity no longer increases or a maximum number of iterations is reached. The
threshold h constitutes a hyperparameter that greatly influences the resulting model. In [11] the STLS
algorithm is used with one identical threshold value for all parameters. In contrast, here, we allow for a
threshold h; per system variable u;. Additionally, one may want to group thresholds by the influence of
certain groups of library terms. For example when adding time-delayed library terms, we add a threshold
h., for those terms.

To find these threshold hyperparameters we use the optimization package Hyperopt [34] and its tree-
structured Parzen estimator (TPE) [35], which is commonly used for hyperparameter tuning in machine
learning. The TPE is a Bayesian optimization method that models a given objective function probab-
ilistically. It compares the ratio of two density estimators to focus on promising regions of the search
space. We set the objective function of the TPE to be the BIC (8). This requires the computation of
equation (7) and therefore 7, which we obtain by integrating the model in time. This time integration
makes use of the initial value problem solver of SciPy [36] and its explicit Runge—Kutta method of order
8 [37], although any method from SciPy may be selected (e.g. an implicit method). Such time integra-
tion can be a difficult task, however, since in the process of finding a feasible PDE description, in some
cases, candidate PDEs do not guarantee numerical stability. Hence we utilize a trapezoidal integration
scheme (also the one implemented in SciPy [36]) as a fallback method when integration fails, or to
reduce computation time. While more stable or higher-order integrators may enable successful estim-
ation where simpler methods fail, they introduce increased computation time and may not necessarily
improve estimation performance otherwise.

Additionally we may feed any other hyperparameter that defines our ansatz library into the TPE.
One example is the later described time-delay 7 for certain terms. In these cases values of the functions
in © change, so they are recomputed during the optimization if needed. Again, for an overview of the
estimation routine see figure 1 or the pseudo-code representation in algorithm 1 in appendix B.

3. Results

All results in this section (if not otherwise stated) have been achieved using the Python package TSME
(‘time series model estimation), software publication pending, preliminary release in [38]). All relevant
data and Python code for the examples given here can be found in the GitHub repository in [39].

This section investigates several synthetic inverse problems to illustrate the performance of the
developed method. First, we consider a symmetric two-field reaction-diffusion model equivalent to the
complex Ginzburg-Landau (cGL) equation, which was used as a benchmark in [11]. In particular, the
goodness of fit is investigated when varying the sample frequency in space and time or with added noise.
As the software package PySINDy [40] that originally implemented the method proposed in [4] was
later extended for use with PDEs via the method introduced in [11], that implementation will be used
as a reference. The second case is the Cahn—Hilliard (CH) equation, a model with mass conservation
for which corresponding state-of-the-art software packages are to our knowledge not yet applicable, due
to their restrictive ansatz library. The final three examples focus on the application of multiple hyper-
parameters. The FitzHugh—-Nagumo (FHN) reaction-diffusion model and the chaotic regime of the cGL
equation are employed to illustrate how incorporating semantic information into the choice of mul-
tiple thresholds may lead to improved results. Finally we show for the Fischer—-Kolmogorov—Petrovsky—
Piskunov (Fisher-KPP) equation with added time delay how the method can incorporate additional
hyperparameters, aside from thresholds. While all examples are based on synthetic data, they serve as
proof-of-concept and show that for cases where underlying equations are unknown the inclusion of
additional hyperparameters strongly improves model estimation abilities.

3.1. Dependence of performance on data quality

3.1.1. Baseline performance

As in [11] we generate synthetic data for a reaction-diffusion model with third-order nonlinearities cor-
responding to a ¢GL equation, namely:

O =D,V?u+ (1 —A)u+ Av
Ow=D,V*v+ (1 —A)v—Au (9)
A=u+12

https://github.com/CeNoS-CoSy/tsme_examples

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

Initial Condition — Synthetic Data Final State
10 — E ‘ : : — 105]
Ho.5 9 fo.5
(a) = o 00 3 o5 0 1 = 0 0.0 =
™
—0.5 a3 N A —0.5
ol Y . > -10
970] = 1y 3 1 G 3 00 210 0 10
" t T
— Reconstructed Data
10 S T 10 i
Ho.5 ® H0.5
(b) = o 00 = o 0 = 0 0.0 <=
0.5 = ‘ 0.5
—0.5) —().f
108 4 L _qp L3
=10 0 10 = 0 2 4 6 8 10 -0 10
T t &

Figure 2. Time simulation of equations (9) with D, = D, = 0.1 (first row) and of the data-based estimated equations (12)
(second row). In both cases the spatial grid is 128 x 128, the domain size is L, = L, = 20 and the time step is 0.05. Images on
the left show the identical initial conditions, images on the right show the final snapshot. The graphs in the center give the time
trace at the location marked in red within the snapshots. As the spiral rotates the traces oscillate. Very good agreement between
the original synthetic data and their reconstruction with the estimated model is found.

We use a two-dimensional spatial domain with coordinates x and y each ranging from —10 to 10 (thus
with domain size Ly X L, = 20 x 20) and periodic boundary conditions. The initial condition corres-
ponds to a spiral centered at the origin given by

up (x,y) = tanh (r) cos(6 — 1),
vo (x,y) = tanh (r) sin(f —r), (10)
where r=+/x2+y?, O=arg(x+iy).

In terms of a linear combination of polynomial functions in the fields and their derivatives the sys-
tem reads

O = Duafu + Dua}%u +u—ud—uw+ v+

8tv:Dv3£v+DV€);v+v—v3—uzv—uvz—u3. (11)

Synthetic data are generated using a time simulation of equations (9) with initial condition (10).
The u-component is shown in the first row of figure 2. Here and in the following, results shown for
PySINDy have been produced using the corresponding Python package [40]. For the sake of compar-
ability, here, we use our method with only one threshold # and with the identical library as employed in
[40], as described in appendix A.2.

With a maximum order m =3 of power products and a maximum order p =2 for spatial derivatives
both, our method implemented in TSME using the BIC (equation (8)) as well as the one implemented
in [40] (PySINDy) identify the system as:

Oyt = 0.1007 0+ 0.109; it 4 0.961 — 0.964> — 0.9647” + 1.004°7 + 1.007°

(12)
07 = 0.100;940.109;7 + 0.967 — 0.967° — 0.96i % — 1.004i%” — 1.00i7’
(here and in the following results are rounded to the second decimal place, see appendix D table 1
for complete results). The time simulation for this reconstructed model is given in the second row of
figure 2. Both methods correctly identify the underlying equations out of 110 candidate functions with
a single-digit error percentage (= 4.09%) for the prefactors. While for PySINDy the threshold from the
original reporting in [11] is used (h=0.08), our optimization procedure found a threshold &~ 0.0812.
Note, that [11] seems to have determined h heuristically, while the here developed optimization method
automatically chooses h to minimize the BIC (8).

3.1.2. Influence of spatial discretization and noise

Here, we first briefly compare the performance of our method implemented in TSME and and the
method of [11] implemented in PySINDy [40] with respect to the spatial sampling rate N for the N x N
spatial grid of data points. We again perform time simulations for equations (9) with identical model
parameters, time interval and boundary conditions, but for varying N and with random initial condi-
tions, where for each variable all N? values are sampled from a uniform distribution over the interval

6

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

(a) (b)

1.00 3.6

3.0
975t —— TSME — TSME
—— PySINDy — PySINDy

20 10 GO 80 100 120 140 160 0 5 10 15
spatial grid points N noise level a in

20 25 30

=
c/l

Figure 3. Average ¢*-error of the model parameters || — ||, over 10 data series for (a) varying spatial sampling rate N and
without additive noise and (b) for additive noise of various strength « at fixed N = 128. In panel (a) N increases from 20 to 165
in increments of 5 and in panel (b) « increases from 0 % to 30 % in increments of 1 %. The vertical dashed line in panel (a) indic-
ates the origin of panel (b) at N =128 and o =0.

[—0.25,0.25). Thereby, PySINDy optimizes only with respect to the residual R = ||0;u — & - 0|, (h=10.08)
and TSME instead incorporates the BIC (in both cases we use the library from section 3.1.1 with m =
3,p =2) averaged over 10 model estimations for each N. Figure 3(a) shows the error of the estimated
model parameters. We see that both methods are similarly susceptible to a low spatial sampling rate and
have a performance that improves with increasing N. While TSME is not as good as PySINDy for small
N it shows a stronger improvement with increasing N and is the better method at larger N.

Second, we compare the performance of TSME and PySINDy with respect to their resilience to noisy
data, in particular, we fix N =128 and add noise to all input data using

i=u(l+an), (13)

where 7 is a random real number sampled from a normal distribution with mean value 0 and standard
deviation 1 and « is a scaling factor that gauges noise strength. Otherwise, our methodology remains
unchanged, we take the same model parameters, time interval, boundary and initial conditions as before
and perform 10 model estimations for each of various «. The results are shown in figure 3(b). We see
that the performance of both methods suffers after only a few percent of noise added. While the overall
error of our method is lower for stronger noise, both TSME and PySINDy fail to reliably recover the
correct model after approximately 5 %. This implies that a de-noising of input data is advisable when
dealing with noisy data. Alternatives are briefly discussed in the conclusion.

3.1.3. Varying sample frequency in time

Here, we investigate the performance of TSME and PySINDy for different time step sizes of the data.
Time simulations are performed for equations (9) with the previous model parameters and random
initial conditions without additive noise at fixed N = 128. The resulting figure 4 shows (a) the average
deviation of the estimated model parameters from their true value, (b) the average number of incor-
rectly identified model parameters, and (c) the average deviation of a reconstructed time series using the
estimated model from the original time series.

As we can see in figure 4(a) for sufficiently small time steps both methods yield parameters very
close to their true values. Thereby, PySINDy shows a smaller deviation from the parameter values for
smaller time steps, but also less sparsity across all time step sizes (i.e. more incorrectly identified model
parameters in figure 4(b)) and thus a greater error in the reconstructed time series (figure 4(c)). So
while the proposed optimization method deviates more from true model parameter values for smaller
time step sizes, it identifies correct model terms more reliably and thus yields better results for time
integration. It should be noted, that PySINDy contains various extensions to improve the performance
when sub-sampling data or to accommodate poorly sampled data, which are not being used here. By
simply incorporating time integration into these methods, one should be able to increase the robustness
turther.

Between the two methods the average number of incorrectly identified terms varies greatly, but
seems to be independent of the time step size between samples. While the variance could be reduced by
increasing the number of time series per sample, it remains unclear as to why sparsity does not diminish
for increasing time step size as one would expect. Similarly, the errors between the estimated time series
and the original one do not mirror the trend seen in the errors of the model parameters.

7

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al
(a) (b) (c)
5.5 2 3.0
—— TSME = —— TSME —— TSME
50 —— PySINDy Zos —— PySINDy 120 —— PySINDy
LS _:‘;’ i = 100
® 2 =
I 40 © L5 «
N g |80
3.5 é 1.0 [=
o | | % 60
: 03 il J,q
-1 |
s -
01 05 10 15 2o 2358 201 05 10 15 20 2528 01 05 1.0 15 20 2528
time step size time step size time step size

Figure 4. Average estimation error over 10 data series with random initial conditions for varying time step size, ranging from 0.1
to 2.8 in increments of 0.01. Panel (a) shows the average £2-error of the model parameters ||o — &||2, panel (b) gives the average
number of falsely identified model parameters, which may be a positive real number due to averaging, panel (c) shows the average
root mean squared error (RMSE) of the reconstructed time series using the estimated model ||t — ii||> /N;. The proposed BIC
error shows a slightly increased deviation in its model parameters for lower time step sizes, but greatly reduced error for larger
time step sizes. Sparsity of the BIC error consistently outperforms the error w.r.t. only the time derivative.

3.2. Phase field models for pattern formation

Phase field models, such as the Allen—Cahn (AC) equation and the Cahn-Hilliard (CH) equation,
provide a description of interface evolution and phase separation in various physical systems. The key
distinction between these two models is their ‘mass-conservation character’: The AC equation describes
the dynamics of a non-conserved order parameter, where the local field can change dynamically without
restriction, e.g. in reaction to external fields. In contrast, the CH equation locally enforces mass con-
servation as it has the form of a continuity equation. This ensures that phase separation does not alter
the total quantity of each material. The non-conserved case lends itself readily to regression methods for
model estimation, whereas the conserved case often requires constrained optimization approaches. In
this section we show that the here proposed optimization method can directly be applied in both cases.

3.2.1. Allen—Cahn equation
The AC equation has been widely used to model phase transitions across different scientific fields. In
material science, it describes the phase separation in binary alloys and order-disorder transitions [41]. As
such it has become a basic model to study crystal growth and interfacial dynamics [42, 43]. In biology
it forms a basis for models simulating cancer cell migration, providing insights into tumor development
and metastasis [44].

We consider the following AC equation, that represents a gradient dynamics on a double-well poten-
tial:

O =Viu+u—i’. (14)

Here, u(x,t) is a non-conserved order parameter, typically representing a phase field of a bistable system.
We rewrite it in terms of our default library as

8tu:8£u+8§u+u—u3. (15)

A time simulation of equation (14) for periodic boundary conditions and uniform random initial con-
ditions (over the interval [—0.25,0.25)) can be found in the first row of figure 5. Now we apply the BIC
optimization method with the default library (see appendix A.1) with m =3 and p =4 (i.e. we allow for
spatial derivatives up to 4th order and up to cubic nonlinearities encompassing in total 46 terms). We
obtain

Oyt = 0.9997 11+ 0.990, it + 0.99i1 — 0.99i° (16)

(for complete results see appendix D table 2). A time simulation of the estimated model is found in the
second row of figure 5.

Consistent with section 3.1.1 we find very good agreement between original and estimated model
with errors below 2 %.

10P Publishing New J. Phys. 28 (2026) 013701 O Mai et al

| u(t=1214)

s =S
: u(t = 25.00) o

50

0 25 50 7590
x T T T

0 25 50 7590

Average Deviation (percent)

0.002

0.001

0.000

0 5 10 15 20 25
t

Figure 5. Time simulation of the original Allen—-Cahn equation (14) (top row) and the estimated equation (16) (middle row) for
a time step of 0.125 (spatial domain 128 x 128 and L = L, = 90). The bottom row show the average deviation of the reconstruc-
ted time series in percent. The estimated model shows very good agreement.

[~
at

5 50
T

= 0.00)

75 90 0 25 50 7590
T

0.0

50 75 90 D() 25 50 7590 0 25 50 7590
T xr T T

Average Deviation (percent)

0.00 A T ~ j‘ T

—0.05

—0.10

0 2 4 G 8 10 12 14
t

Figure 6. Time simulation of the original Cahn—Hilliard equation (17) (top row) and the estimated equation (19) (middle row)
for a time step of 0.15 (spatial domain 128 x 128 and Ly = L, = 90). The bottom row show the average deviation of the recon-
structed time series in percent.

3.2.2. Cahn-Hilliard equation

Next, we consider spinodal decomposition in a binary mixture as described by the CH equation.
Generally, the CH equation is used to study structure formation in phase-separating alloys or other
multi-component systems, often in chemical or biological contexts [45]. Therefore, one may expect

to find the CH equation or related models when investigating inverse problems involving demixing
behavior.

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

Here, we use the original equation
du=V? (u37u7V2u), (17)

where u denotes a difference in concentration between two species. Here as before we consider periodic
boundary conditions and uniform random initial conditions (over the interval [—0.25,0.25)).

As noted in [46], several points related to ill-posedness deserve attention when estimating PDE
models of CH-type, i.e. gradient-dynamics systems characterized by an energy functional and a mobil-
ity function. Any method that identifies the governing PDE effectively recovers the chemical poten-
tial, which can, in principle, be integrated to obtain the corresponding energy functional. For such a
mass-conserving dynamics the corresponding integration constant is arbitrary and of no importance.
Likewise, a constant external chemical potential (equivalent to a linear term in the energy) merely acts as
a Lagrange multiplier enforcing the mean value of the field, which, however, is fixed by the initial con-
dition and can be read directly from the data. Furthermore, there is an ambiguity between energy func-
tional and a mobility function that can individually only be estimated up to a relative factor. However,
also this is only of limited physical consequence, as it corresponds to a choice of time and energy scales.
If necessary, this can be resolved by analyzing the final steady state to extract the energy directly. Note,
however, that the candidate library of terms must be expanded if the mobility is expected to depend on
the field as, e.g. for thin-film equations [47].

Restated in terms of our default library again with m =3 and p=4 equation (17) reads:

O = —Ou— Qpu+ 7w’ + Opu’ — Ofu—2020,u — Oju. (18)

Note that nonlinearities with second-order spatial derivatives cannot be included using the implement-
ation provided by PySINDy in [40] as it lacks the ability to input user—defined library terms and terms
like D2u* are not of the form used in the example of section 3.1.1, i.e. they cannot be rewritten in terms
that only include spatial derivatives of linear order of u. The implementation presented here allows the
user to manipulate the default library. Furthermore, the default library already includes the nonlinear
terms with second-order spatial derivatives. Utilizing this implementation we obtain as result

Ot = —0.99 971 — 0.99 0311 4 0.98 97> +0.99 0, it> — 1.0203 0 — 1.92 020, it — 1.02 8y, (19)

(for a complete list see appendix D table 3). Again the method correctly identifies the original equation
correctly from 45 candidate terms within single digit (< 4%) error percentage, despite the presence of a
conservation law and without further constraints on the library. For a Python tutorial on how to obtain
these results please see appendix C.

3.3. Excitable, oscillatory, and wave propagation systems

Up to this point we only utilized a single hyperparameter, i.e. one threshold for all variables in the STLS
method. To illustrate the flexibility of our optimization approach we next study three systems, which
inherently benefit from including more than one hyperparameter in the optimization procedure.

3.3.1. FitzHugh-Nagumo model

The FHN model [48, 49] is a two—species reaction-diffusion model central in investigations of the pat-
terns of neuronal firing, synchronization of neural networks and the emergence of complex behavior in
excitable media [50, 51]. It is derived as a simplification of a model for the transmission of electrical
impulses along a nerve fiber, as introduced by Hodgkin and Huxley [52]. Due to its rich bifurcation
behavior, the accurate estimation of the model parameters is vital to understanding how the states and
patterns evolve in time. As such the FHN model is frequently considered in the context of parameter
identification [53, 54]. Here we study the FHN model in the form

Au=D,NV*u+\u—u’—wv

) (20)

T70v =D,V v+u—v,
where u describes a membrane potential, v a recovery variable, A a threshold for excitability, w gauges
inhibition strength, while D, and D, are respective diffusion constants. Again we use periodic bound-
ary conditions and uniform random initial conditions (over the interval [—0.25,0.25)). The top row of
figure 7 shows snapshots from a sample time series.

10

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

u(t = 0.00)

t — ’-',6: 1 t = ‘8—
- u(t = 37.63) - u(t = 74.87)

28 l:'r-

0% =
0 25 50 75100128
T

0
0 25 50 75100128
T

i(t = 0.00) a(t = 74.87)
100
50 B

-

0 s 0 e e

0 25 50 75100128 0 25 50 75100128 0 25 50 75100128
T T T

Average Deviation (percent)

0.00

—0.02

—0.04

0 20 40 G0 80 100 120 140
t

Figure 7. Snapshots from a time simulation of the original FHN equations (21) with D, = 0.5, D, = 0.06 (top row) and the
estimated equations (22) (middle row) at a time step of 0.75 (spatial domain 256 X 256 and L = L, = 128). The bottom row
shows the average deviation of the reconstructed time series in percent.

We rewrite the model in terms of the adequate candidate functions that are a subset of our library
and insert the specific parameters used in figure 7:

Au=0.5u—0.5v—1.01> + O.58§u + 0.58314

_ _ _ _ (21)
O = 0.06u — 0.06v + 0.0307v + 0.0302v,

Note that the order of magnitude of the parameters differs between the two equations. To account for

this we enable individual thresholds k, and h, for each equation in the sequential thresholding proced-

ure and optimize for both. With our default library as described in appendix A.1 with parameters m =3

and p =2, we identify the equations:

Ot = 0.4941 — 0.497 — 0.970° +0.2407 11+ 0.240} 1)

(22)
Oy =0.07i — 0.07%+ 0.020;7 + 0.020;7,
out of a library of 54 candidate terms for each equation (for full results see appendix D table 4). We
observe that all terms have been correctly identified, albeit with a diffusion coefficient for # that seems
to be diminished by half. The obtained thresholds are h, = 0.07 and h, = 0.01. When using only one
threshold, we find two cases. Either, the threshold is small enough, such that the second equation con-
tains non-zero entries. However, in turn this yields non-zero contributions for virtually all available lib-
rary functions in the first equation. Or, the threshold is large enough to lead to a sparse representation
of the first equation, but in turn eliminates all library functions from the second equation. These res-
ults indicate that one needs several thresholds, when one expects groups of model parameters to differ in
their orders of magnitude.

3.3.2. Exploring chaotic regimes
Next, we revisit the cGL equation (9) from section 3.1.1, this time for a parameter regime where the
system exhibits chaotic behavior like also considered in [55]. First, we show that our method maintains
its performance even in a chaotic regime.

Second, we highlight the benefit of incorporating additional hyperparameters, namely thresholds for
sub-groups of library terms as described in section 2.2. Here we choose a separate threshold for all the
diffusion terms.

11

10P Publishing New J. Phys. 28 (2026) 013701 O Mai et al

e T

GO

(b) %3'] .

40 B

8 10 12 11 16 18
t

Figure 8. Time simulation in the defect turbulence regime of equations (23) at D; = 1.0, D, = 2.0 and 8 = —4 with adapt-
ive time step size between 0.004 326 and 0.017 094 (spatial domain 128 x 128 and L, = L, = 20). The first row shows exem-
plary snapshots of u and the second row shows the £2-norm of u over time. The initial condition for both u and v is white noise
between values —0.5 and 0.5.

To allow for different chaotic regimes we slightly modify the reaction—diffusion system, by addition-
ally coupling the fields by cross diffusion terms, i.e.

O =D V*u—D,Vv+ (1—A)u+ BAv
0w =D V*v+D,Viu+ (1 —A)v— fAu (23)
A=+

Boundary conditions are periodic and initial conditions are uniform random (over the interval
[—0.25,0.25)). With the particular choice of diffusion constants, the system is equivalent to the cGL
equation [55] that features different types of chaos. The added parameter 3 serves as a way to control
the coupling strength, as well as the phase rotation of a complex amplitude w = u+iv.

Figure 8 shows a time simulation of equations (23) for D; = 1,D, = 2,3 = —4, which corresponds to
a chaotic defect turbulence regime. Eliminating the cross coupling terms at otherwise identical paramet-
ers places the system in an intermittency regime with more coherent structures, as illustrated in figure 9.

Applying the estimation method with a single thresholding hyperparameter in the defect turbulence
regime very closely recovers the system parameters:

O = 1.0007u +1.000; u — 2.009;v — 2.000; v + 1.00u — 1.001° — 1.00uv* — 4.00u’v — 4.00v°
O = 1.000;v 4 1.009; v + 2.0007u + 2.009; 1 + 1.00v — 1.00v" — 1.00u’v + 4.00uv” + 4.001°

(for full results see appendix D table 5). In contrast, when applying the method in this way in the inter-
mittency regime, it either fails to eliminate higher-order diffusion terms (see terms 44, 47, 50 and 53

in table 6 of appendix D) or incorrectly eliminates all diffusion terms. The problem is resolved when
making use of the methods ability to include additional hyperparameters. We incorporate two additional
thresholds, one for each of the two pairs of second order diffusion terms (corresponding to V*u and
V2v). This dramatically improves results in the intermittency regime (see appendix D table 7 for full res-
ults):

O = 0.9707u+0.900; u+0.96u +0.961° — 0.96u” + 3.99u’v — 3.99v°

(24)
O =0.9797v+0.908; 4 0.96v — 0.96v> — 0.961°v + 3.99uv” 4 3.991°.

This behavior may be due to rapid changes of large coherent structures in the input time series, akin
to the time series rapidly oscillating. This, in turn, effectively decreases spatial resolution of diffusive
boundaries and produces dynamics that are less dependent on diffusion, leading to difficulties when
estimating diffusion coefficients.

12

10P Publishing New J. Phys. 28 (2026) 013701 O Mai et al

0.0

—0.5

T =2 1n

(b) =60

50 F

8 10 12 11 16 18
t

Figure 9. Time simulation in the intermittency regime of equations (23) at D; = 1.0, D, = 0.0 and 8 = —4 with adaptive time
steps between 0.007 326 5 and 0.020553 (spatial domain 128 X 128 and Ly = L, = 20). The first row shows exemplary snapshots
of u and the second row shows the £2-norm of u over time. The initial condition for both u and v is white noise between values
—0.5and 0.5.

= "
0.50
0.25
)
0.06 :3%
0.4 ~ 2
.=
0.02 = E
a
0.00 o
?_E
—-0.02 £
=0 2 1 G 8
t t

Figure 10. Time simulations of the Fisher-KPP equation (25), with all parameters set to 1.0, time step size 0.0266 (spatial discret-
ization 128, L, = 90) (top left) and estimated model (26) (top right), as well as the absolute difference between the two (bottom
left) and the average deviation of the estimate relative to the original time series for every time step (bottom right).

3.3.3. Fisher-KPP equation with time delay

The efficient handling of additional hyperparameters opens a straight forward way to handle delay
equations. To our knowledge this has not yet been addressed in the framework of sparse system identi-
fication. As example we consider the Fisher-KPP equation [56, 57]. It is a one-species reaction-diffusion
system used, e.g. to study propagation fronts of biological populations. Here, we include a time delay 7
in the reaction term as inspired by [58, 59]. The equation then reads

O (t) = DOZu (t) + ru(t) (1 - u(t—;T)> , (25)

13

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

where D is a diffusion coefficient, r an intrinsic growth rate and K a carrying capacity. The time delay 7
represents a lag between the current population growth and past population pressure. This accounts for
example for the time it takes for members of a given population to reach reproductive maturity or other
delayed feedback introduced by external time-delayed resources.

For the sake of simplicity all parameters (including the time delay 7) are set to 1.0, boundary condi-
tions are periodic and the initial condition 1 (x) = sech® (0.2 (x— %)) is set for all £ < 0. (the domain
size is Ly = 90.) A space-time plot of the simulation is shown figure 10 (a).

To account for the time-delayed variable, we add 7 terms in u(t — 7) to our default library with
m=3 and p=4 and add 7 to the hyperparameters for optimization, such that some library terms now

change during optimization. This results in the identified model:
Osii () = 1.020241 () +0.987 (1) — 0.97u (t) it (t — 1.02) (26)

(see appendix D table 8 for complete results). Again we find that the correct model is identified out

of 23 candidate terms for the right-hand side. Figure 10 (b) shows a space-time plot of the estim-

ated model. While we see that the error of the estimation is greatest at the propagation fronts (see
figure 10 (c)) and increases over time (see figure 10 (d)), the average deviation of the reconstructed time
series seems to approach a constant value (see again figure 10 (d)).

4. Conclusion and outlook

In this work, we have shown how Bayesian optimization can improve data-driven model estimation
methods, by automatically finding hyperparameters of the numerical method and/or of the aimed-at
model. This has allowed us to extend the thresholding algorithm used in [4] with additional thresholds,
which affect individual parts of the estimated model structure. This has enabled model recovery from
synthetic data with parameters of different orders of magnitude including models that show relaxational,
time-periodic and chaotic behaviors. We have extended the method introduced in [31] for ODE models
toward PDE and delay-PDE models.

In sections 3.1.1 and 3.1.2 we have shown that, for an elementary case, the overall performance and
robustness against under-sampling in space and against the occurrence of additive noise are similar for
our method implemented in TSME and the established method implemented in PySINDy. For both
methods, further considerations are required when dealing with any significant amount of noise. In our
case, this implies that the supplied data need to be de-noised before estimation. In the future, one may
adapt more robust variations of the SINDy algorithm (such as, the one presented in [26, 60]) for use
with hyperparameter optimization and the BIC.

While TSME results in higher computational cost, we have shown that it outperforms PySINDy in
cases of data that are more sparsely sampled in time (section 3.1.3). TSME allows for a wider range of
permissible model structures and provides an implementation that allows for user-defined library terms.
Furthermore, section 3.2.1 has shown that our method performs well in scenarios where conservation
laws typically require additional constraints. In particular, in section 3.2.2 we have recovered a Cahn-
Hilliard model where PySINDy’s functional library is ill-suited. Notably, as long as the employed data
represent a dynamics that involves a range of field values that is not too small the Cahn-Hilliard and
Allen—Cahn systems can still be identified even without reaching extremal values or an equilibrium,
because the library functions naturally extrapolate toward the extremal values. Then, once a model has
been estimated it may be simulated in time to any extent and thus can reach values not present in the
initial data. Several points related to ill-posedness [46] have been discussed in section 3.2.2.

Additionally, via the usage of additional hyperparameters our method can accommodate on the one
hand differences in the order of magnitude of parameters either between equations for the different field
variables or between groups of terms within an equation (section 3.3.1) and on the other hand added
system parameters such as a time delay (section 3.3.3). This would typically require either a grid-based
search through the hyperparameter space or an altogether altered implementation compared to the one
presented in [40]. We have shown that our method is very flexible and can accommodate any number
of hyperparameters. This can be used to account for semantic connections between ansatz functions by
making them share an additional hyperparameter. This yields more precise results as shown for some
cases in section 3.3.2.

Since model estimation of higher quality takes precedent over computation time, our results imply
that the use of time integration should in the future be incorporated into other existing methods. Our
method can be further improved by including sub-sampling or gradient-based optimization. Its library
can easily accommodate more complex ansatz functions, which rely on additional hyperparameters, such

14

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

as external driving forces or temperature dependent functions. This greatly increases the number of per-
missible modeling approaches for unknown systems. Another topic of interest are models with discon-
tinuous solutions, e.g. a thin-film equation with a wetting energy that does not diverge for zero film
height. While the present method could apply to such problems in theory, they should be treated in a
dedicated manner, either by adapting the target function of the optimization or the optimization scheme
itself.

Importantly, after the synthetic data used here, in the future, the method needs to be applied to data
obtained in discrete stochastic model approaches and experiments, where the continuum description of
the dynamics is not explicitly known (but ideally a rich theoretical background exists that allows one to
tune the term library and hyperparameter strategy).

Data availability statement

The data that support the findings of this study are openly available at the following URL: https://github.
com/CDSC-CoSyML/tsme_examples [39].

Appendix A. Generating the library of functions

In this section we detail different strategies to generate the set of library functions used by the method
developed in section 2. They are based on the physical quantity u(x,t) € R" we ultimately wish to
describe, with ¢ being the time and x € R? d € {1,2,3} the position in d-dimensional space. Each lib-
rary function has a coefficient associated with it, that will be optimized to best describe data of u by the
method of section 2.

A.1. Default library

We construct a set of monomials (or power products) in the » field variables u; from zeroth order up to
order m. Then, for each non-trivial monomial we compute all (partial) spatial derivatives up to order p.
More specifically let o = (o, ay,...,«,) be a multi-index such that

n
a€N8,|a|:Zai <m, (27)

i=1

then, each monomial is of the form

n

n
Ug :Hui“:uf"uzaz-nua". (28)
i=1

For example, in the case n=2, m=2 and p=0 the set of monomials is
2 2
{1,”1,“27141,1411/{2,”2} .

Similarly for the spatial derivatives, let 3 = (51,52, ...,04), where d is the spatial dimension, be a multi-
index such that

d
BENGIBl= B<p, (29)

j=1
where the corresponding differential operator is
92 =0000.-- 00 (30)
For example, with d =2 and p =2 the set of differential operators is

{00,05,04,05,, 00,05, 0,05, 0,0,

X2

RNox}.

Now we apply each differential operator to each monomial except the one for |«| = 0. For the sake of
sequencing, let us group all terms by order |3|. This gives the vector of ansatz functions, by order q of
their respective differential operator:

0w — [ana | 1< ol <m,|B] =q]. G

So for any maximal order p, we take all ansatz functions with 0 < g < p. Combining the earlier examples
(d=2,n=2,m=2,and p=2,ie. q=0,1,2):

15

https://github.com/CDSC-CoSyML/tsme_examples
https://github.com/CDSC-CoSyML/tsme_examples

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

6(0) = [ul »y U2, u%7 Uiy, u%:l

O = [0y 1, Oy 1, Dy], O, (1142) , Oy 13, Dy 1y, Oy, Doy, D, (111142 , Oy 143

0@ = [92u1, 02 1, 0243, ..., Dy, Oy, Ox, Oy, ..., OZ 03] .
We note here, that terms such as 0 (u;1;) in 0WM could be expressed as two terms (u; 0ty and u;Ouy)
and therefore could have different coefficients within the estimation procedure, e.g. for the case of non-

linear diffusion. An entirely inclusive case could be based on the generalized product rule. So finally our
entire library consists of the concatenation of all the elements of these vectors:

T
o= [1@@)@(1)... @ﬂ . (32)

The total number k of all these elements may become fairly large due to combinatorics:

k =1+ (Number of monomials with || > 1) x (Number of derivatives) (32)
m p
n+r—1 d+q— 1)
=14 . . (33)
)

Following through with our example for d =2,n=2,m =2,p =2 we find k=31. This default lib-
rary may be modified by removing certain terms or adding terms, such as functions with explicit time
dependence or u(x,t— 7), where 7 is a set time delay. Also non-analytic functions may be included.

A.2. Alternative library: PySINDy

For the sake of comparison with [40] we recount the library used in PySINDy. It consists of power
products as in our case and terms linear in spatial derivatives of u. This leads to the following entries
in the library:

0@ = [UadPu | 0< || <m,|B| =q,0 <i <nl (34)

and just as before (only now with the trivial element included in ©(%):
T
I CRCRINCI
For example with d=2,n=2,m=2,p=2:

00 = [Lul,uz,uf,uluz,u%]

O = Dy, uy, Oy, 1, 11 O th1, 2 Dr, Uy, 11y O, th, Uz Oy, U3,
U O, Uy 111 1Oy, Uy O 11z, U3 Oy, Uy, 1505,
8x2u1,8x2u2,...,u§8X2u2]

0¥ = [351 ul,@fl uz,ulﬁfl Upy.. ., U0y Uy,
Oy, Oy 1, Oy, Oy, thy, 141 Ox, Ox, U1, . . ., 30, O, Uz,

6fzu1,8fzu2,u18iu1, ey u%@fzuz]
(Please note that here the ordering differs [40].) The number k of library elements in PySINDy is:

k = (Number of monomials) x (1+ Number of derivatives)

p
n+m Z d4+q—1
:(m) b < q) ’)

=1

which for this example gives k= 66. Please note that in this case m strictly only gives the highest order
of monomial, not the highest order of the entire library (which is m + 1 as each monomial is being mul-
tiplied by a derivative of a linear term in ;). This approach gives more individual terms for the same
values of parameters d,n,m and p than our approach, but not an identical order or coverage of the
function space.

16

10P Publishing New J. Phys. 28 (2026) 013701 O Mai et al

Appendix B. Pseudo-code for estimation procedure

Algorithm 1. Structure of the estimation method.

Load time series data u, time stamps t and spacial dimensions Li,...,L;
if delay 7 is to be used then
Ensure u has values for —7 < ¢ < 0 or set those values to u(t = 0)
end if
Compute O;u via finite differences and time stamps ¢
Create a semantic representation of (default) library terms ©
(Optional) Modify library by removing or adding terms (such as u(t — 7))
Evaluate all library terms © at all time steps using FFT (or finite difference) for spacial derivatives,
with applicable spatial domain sizes L,...,Ly
Define search space of the TPE for all hyperparameters: thresholds h; and 7 if applicable
for =010 | = Inax do
Recompute any library terms that may have changed (e.g. time delayed terms)
Perform sequential thresholding least-squares with ; to find values for 6 minimizing
|0 — - O]
Perform time integration using & (and 7) to obtain
Evaluate BIC = sIn(N;) — 2In(||u — i)
Use TPE w.r.t. BIC to find new values for h; (and 7)
end for

Appendix C. Tutorial : Cahn—-Hilliard (CH) equation

This section is a modified example taken from the documentation of the Python package TSME
[38] found in [61]. and will walk through the Python code needed to reproduce the results shown
here (all Python code can be found in [39]) .

We consider the CH equation in 2D (d =2, n=1) discussed in section 3.2.2:

Au=V? (u3 - ufvzu) .

We begin by performing a time simulation. As we are dealing with a spatially extended 2D system we
first set our spatial discretization N and domain sizes Lx and Ly in x and y direction. Then, we define a
time interval time_interval, as well as the time stamps t_eval where we want to sample the traject-
ory. The initial condition u0 is set to uniform random values over the interval [—0.25,0.25).

In [1]:
import numpy as np
np.random.seed(12389)

N = 128
Lx = 90
Ly = 90

domain = ((0, Lx), (0, Ly))

time_interval = [0, 15]

t_eval = np.linspace(time_interval[0], time_interval[-1], 100)
u0 = (np.random.random((N, N)) - 0.5) * 0.5

Next, we create the CH problem using TSME as an implementation of the supplied
AbstractTimeSimulator class:

In [2]:

from tsme.time_simulation import AbstractTimeSimulator
class CHESim(AbstractTimeSimulator) :

def __init__(self, ic=None, dom=domain, params=None,
bc="periodic", diff="finite_difference"):

super() .__init__(ic, domain=dom, bc=bc, diff=diff)

if params is None:

params = [1.0]

17

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

self.a = params[0]

def rhs(self, t, u_in):

u = u_in[0]

f=ux*xx3-u

- self.a * (self.diff.d_dx(u, 2) + self.diff.d_dy(u, 2))
u_next = self.diff.d_dx(f, 2) + self.diff.d_dy(f, 2)
return np.array([u_next])

This class allows for a number of different expressions in the right-hand side function rhs. Here we
use the spatial derivatives in both spatial directions to construct our Laplace operator.
Now all our preparations are done, and we can perform the actual time simulation:

In [3]:
i CHESim(ic=np.array([u0]), dom=domain, params=[1.0])
sim.simulate(time_interval, method="DOP853", t_eval=t_eval)

sim
sol

IVP: 100% |###t#######t| 16.0/156.0 [06:19< 00:00, 25.33s/ut]

The output shown here is a progress bar (that would be updated in real time), which shows in per-
cent how far in time the solver has progressed, how much time has elapsed since the computation began
and how long the rest of the computation is estimated to take. Since the computation here is already
finished, we see that it took about six and a half minutes to complete and that there is no computation
time remaining.

Now we import the model that will estimate the differential equations.

In [4]: from tsme.model_estimation.model import Model

All we need to do now is pass along the trajectory, domain size and the time stamps to our model.
We can then automatically generate a library of possible test functions for our right-hand side. Here we
take the powers of up to third order (m =3) and then, all spatial derivatives up to fourth order (p =4)
of said powers (these include both spatial directions and their mixed derivatives). In total these are 46
terms.

In [5]:

estimated_model = Model(sol, sim.time, phys_domain=domain)
estimated_model.init_library(3, 4)
estimated_model.print_library()

| Index | Term | Value 0O |
e | mm | —=mmmm - |
| 0] 1.0 | o |
[1] ulo0] | o |
| 2 | ul0o] * u[0] | 0 |
[3 1 ul0] * ul0] * ul0] | 0o |
| 4 | d_dx(ul[0],1) | U
5	d_dy(ul0],1)	o
6	d_dx(u[0] * u[0],1)	o
7	d_dy(ul[0] * u[0],1)	0
8	d_dx(ul[0] * u[0] * u[0],1)	0
9	d_dy(u[0] * u[0] * u[0],1)	o
10	d_dx(ul0],2)	0o
11	d_dy(ul0],2)	0o
12	dd_dxdy(u[0],(1,1))	o
13	d_dx(u[0] * u[0],2)	o
14	d_dy(ul0] * u[01,2)	o
15	dd_dxdy(ul[0] * u[0],(1,1))	o
[...]

18

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

Of course just after initialization the coefficients of all these library terms are yet to be determined
and are hence set to zero. The library supports some basic manipulations at this point, for more cor-
responding details see online tutorials. Now we can call the optimization routine to find the best sparse
combination of the library functions.

In [6]: estimated_model.optimize_sigma(max_evals=10)

Generating library functions (this may take some time)...
1007, | ###t####### | 10/10 [08:13< 00:00, 49.39s/trial,

best loss: 3438.0777397909883]

Optimal threshold(s) found: {'hO': 0.8189787983433431}
New Sigma set to:

Index	Term	Value 0
-—==———— [-——————	-———————	
10	d_dx(u[0],2)	-0.991169
11	d_dy(ul0],2)	-0.993026
16	d_dx(ul[0] * u[0] * u[0],2)	0.983057
17	d_dy(u[0] * u[0] * u[0],2)	0.982041
31	d_dx(ul[0],4)	-1.01657
32	d_dy(ul0],4)	-1.01647
35	dd_dxdy(ulo0],(2,2))	-1.91144

We find the results also reported in section 3.2.2, which agree very well with the original model.
Note that the optimization routine itself has hyperparameters (such as the maximum number of eval-
uations) that will be passed to the tree-structured Parzen estimator of Hyperopt.

19

10P Publishing New J. Phys. 28 (2026) 013701 O Mai et al

Appendix D. Detailed results for coefficients

In this section we give unabbreviated numerical results for all computations performed throughout
section 3, this includes all terms in our ansatz library, their estimated coefficients and the true model
coefficients. All library terms that have zero coefficients are listed as ‘discarded terms), while terms with
any non-zero coefficient for a field variable are listed in a table similar to the numerical output from the
tutorial in appendix C, and compared to a table with the true model coefficients.

Table 1. Full results for estimating the reaction diffusion equation (9) from data shown in figure 2 from section 3.1.1. Identical results
for both our method (found threshold: & = 0.081199 193 5628) and PySINDy (threshold: 4 = 0.08).

Estimated model True model
Index Term O Otp Index Term O Oty
1 ul 0.983 454 0 1 ul 1.0 0
2 u 0 0.983 574 2 u 0 1.0
6 w —0.983372 —0.999 644 6 w —-1.0 -1.0
7 W ud 0.999 632 —0.98 347 7 Wl ub 1.0 -1.0
8 ul —0.983362 —0.99963 8 ul —1.0 —1.0
9 w 0.999 646 —0.98 349 9 w 1.0 -1.0
12 9, (u) 0.0982818 0 12 9, (u1) 0.1 0
13 0, (u3) 0 0.0986 993 13 0, (u3) 0 0.1
18 O% (u) 0.0986863 0 18 9 (u1) 0.1 0
19 o%(m) 0 0.0982 933 19 9% () 0 0.1
100 Discarded Terms:
1.0, uf, ui uy, u3, 0y (u1), O gui) O (1), 0x (u3), 0:0y (1), 0:0; (u3), ui 8y (1), u3 8y (uy),
1w (9; (u{), ulub Byl (u}), W 0, (u%), w 8)} (u{), s 5‘y1 (u%), ul (9; (u{), w 8y1 (u%), ul Oyl (ui),
u Byl (ul), uw 8)} (ul), ul ul C?yl (u%), 3 8)} (u%), w ayl (ui s udub ayl (ui), ul 3 ayl (u%), w a; (u%),
ul Byz (u%), u%ﬁf (u%), w 6}% (ui), ul ué@f (u%), u%(?yz (ui), u?a}% (u%), w u%(?yz (u%), ul v 6}% (ui),
w 8}% (ui), ul 8)3 (u%), w 8}% (ui), uw 8}% (u% L ul 8}% (u%), s 8)% (u%), w 8}% (ué), Wl ub 8}% ué),
ul u%@f (u;), ugaf (u%), ul O; (u}), 1w O} ui), 1l O (u}), ul uj) (u}), 3 O (u}), w3 0L (uh),
b O (i), 01 (), 3 01 (), uf O ().) O (), st O (1), k01 (), u 01 (),
1w O} (u%), 1 1l O} (ui), ul u3 0} (u%), 10 0! gui), ul 6‘,1(9)} (u{), u 8;8}} u%), w2 a;ayl (u%),
ul Bic?yl (u%), 1 8,18; (u%), w 8,18; (u%), s ;a; (ui), ulud B;Byl (u%), w 8,18)} (u%),
ul 8;8}} (u% s 8,16; (u%), w 8,18; (u% il 8,18}} (u%), 13 6,18}} (u%), u 8;3; (u%),
b 8}8}} (ué), ul v 8,18}} (u%), 0 8;8}} (u%), ul 92 (ui), 1l 92 (u%), 13 92 (ui), ul ub 92 (u%),
13 02 (u} 15 02 (u} , 13 ub O (u}), ul ub 02 (u}), 13 02 (u} , ul 02 (u;), ul 02 (u;), w3 O (u%),
ul ul 92 (u%), 13 02 (ui), w92 (ui), W us 92 (ui), ul 13 92 (ué), w 02 (ui)

Table 2. Full results for estimating the Allen—-Cahn equation (14) from data shown in figure 5 from section 3.2.1. Found
hyperparameter (threshold): by = 0.3300998462576791.

Estimated model True model
Index Term O Index Term O
1 up 0.98 642 1 u} 1
3 u —0.986013 3 up -1
10 9% (u) 0.987 685 10 A% (u) 1
11 0y (up) 0.987 623 11 9y (up) 1

42 Discarded Terms:

1.0, up, O; (u(l)), 8; (u(l,),
020, (u5), 0z (u3)> 05 (u
0102 (1), 630} (i2), 02
930, (up), 020, (up)»
A8 (). 208 (1), &

20

10P Publishing

New J. Phys. 28 (2026) 013701

Table 3. Full results for estimating the Cahn—Hilliard equation (17) from data shown in figure 6 from section 3.2.2. Found

hyperparameter (threshold): hy = 0.330035457717988 15.

Estimated model True model
Index Term O Index Term Orun
10 02 (ul) —0.986 104 10 0y (ur) —1.0
11 82 (ul) —0.989 164 11 9, (1) ~1.0
16 02 (1) 0.977613 16 0y (uy) 1.0
17 82 (u3) 0.985 195 17 9y (u1) L0
31 8% (uh) ~1.02871 31 O (ur) -1.0
32 2 (ul) —1.0264 32 0y (1) —10
35 ;03 (u}) -1.91485 35 027 (ul) 2.0
39 Discarded Terms:

1.0, ub, ud, ud, ub ud, 1, 3, ud i, ud ud, 13, O (uz), ayl (u%), ()
o} (ul) 81 (ul) o} (u1 uz) 81 (ul uz) o} (u% ui), 6; (u ué) 8,1 (u%),) (
810 (ul) oo} (i), 7 (ul) 010} (i), 0% (ul) 2% (u}u

3 81 (UZ) 82 (ul) 82 (ul) 3 81 (ul)

O Mai et al

Table 4. Full results for estimating the FitzHugh—Nagumo equation (21) from data shown in figure 7 from section 3.3.1. Found
hyperparameter (thresholds): i = 0.066428 02839932697 for all terms for O;u; and h, = 0.013702 806950437454 for all terms for

81142.
Estimated model True model
Index Term Oy On Index Term Oy Oy
1 ul 0.485341 0.066 4892 1 ul 0.5 0.066
2 ul —0.493 396 —0.066 4834 2 ul —0.5 —0.066
6 uw —0.965856 0 6 s —1.0 0
28 . (up) 0242025 0 28 9% (u1) 0.5 0
29 aj (u1) 0242146 0 29 9, (m) 05 0
31 05 (uy) 0 0.016 7489 31 O(us) 0 0.0166
32 82 (1) 0 0.016 7483 32 oy (w)) 0 0.0166

48 Discarded Terms:

1.0, 2, ub b, 13, ub 13, ud uld, uz,al(),81(
Oy (uiu3), 0 (3), Oy (13), Ox (ui), Oy (u D,
81 (uz) 81 (uz) Oy 81 (ul) 8 81 (u2 , O2 (uf),
0v0) (u 1uz) 62(u2) 82(u2) 86‘1 u3), 05 (147)

8;3;(1”2) (u1 uz) (ul uz) 8,13} (u%) 6‘

21

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

Table 5. Full results for estimating the reaction diffusion equations (23) from data shown in figure 8 from section 3.3.2. Found
hyperparameters (thresholds) are: iy = 0.306 675543669 0512 for all terms for J;uy and h, = 0.177 583539319337 46 for all terms for
Bt u.

Estimated model True model

Index Term O Oty Index Term Oy Otp
1 ul 0.999621 0 1 ul 1.0 0

2 w 0 0.999 654 2 u 0 1.0
6 uw —0.999402 3.99925 6 W -1.0 4.0

7 wul —3.99919 —0.999489 7 wul —4.0 -1.0
8 W —0.999413 3.99925 8 ulu? -1.0 4.0
9 w —3.99918 —0.99947 9 w —4.0 -1.0
28 0;(w) 0977855 1.99941 28 05 (u1) 1.0 2.0
29 9 (uj) 0983671 1.9994 29 9, (u1) 1.0 2.0
31 O () —1.99934 0.974819 31 05 (u}) —2.0 1.0
32 8 (uh) —1.99935 0.982875 32 9y (u3) —-2.0 L0

45 Discarded Terms:

1
1
0, (1), Oy (13), O EM?
010y (u1), 0,0y (u3),
0y (u3), 00, (u2), 0% ((
8)3 (u% u%), 8;8}} (u% ué), O; (ug N (ug), 8;8; (ug)

Table 6. Full results for estimating reaction diffusion equations (23) from data shown in figure 9 from section 3.3.2 without additional
thresholds. Found hyperparameters (thresholds): by = 0.306 6755436690512 for all terms for O,u; and h, = 0.17758353931933746
for all terms for O:us.

Estimated model

Index Term [ATh Oty

True model
1 Uy 0.977 683 0 Index Term O Oy
2 ul 0 0.979197
6 w —0.998367 3.996 46 1 ul 1.0 0
7 whud —3.99625 —0.980391 2 w 0 1.0
8 13} —0.979247 3.99825 6 uw -1.0 4.0
9 w —3.99615 —1.00044 7 W ul —4.0 —1.0
28 9% (u1) 0.978 702 0 8 ul -1.0 4.0
29 9 (ur) 0.961488 0 9 w -4.0 -1.0
31 0z (u3) 0 0.979 449 28 9% (u1) 1.0 0
32 9, (u3) 0 0.966 95 29 9, (ut) 1.0 0
44 9, (1) —0.146276 0 31 9 () 0 1.0
47 9, (wug) 0 —0.122473 32 9 (u3) 0 1.0
50 9, (urup) —0.119995 0
53 9y (1) 0 —0.154 368

41 Discarded Terms:

1.0, 13, ubud, 13, O} (u
0, (1), Oy (1), O
210! (i), 80} (1)
0y (u3), 00y (u3)
9% (13), 0,0y (u3)

®
~—
=
o

SRo——
.
SRR

—0 N

2
=
—

=

22

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

Table 7. Full results for estimating reaction diffusion equations (23) from data shown in figure 9 from section 3.3.2 with additional
thresholds for the terms 82u;, Byz uo and &2u;, Byzul. Found hyperparameters (thresholds): h; = 0.3066755436690512 for all terms for
Oquy except indices 28 and 29, h, = 0.177583 539319, 33746 for all terms for O;u, except indices 31 and 32, and

hsuby = 0.005074209512 766352 for terms with indices 28 and 29 for 9yu1, hgyp, = 0.000669 976 353 564 3887 for terms with indices 31
and 32 for Osu;.

Estimated model True model

Index Term O Oty Index Term O Oip
1 ul 0.956482 0 1 ul 1.0 0

2 w 0 0.95713 2 w 0 1.0

6 w —0.959624 3.99263 6 w —-1.0 4.0

7 wul —3.99189 —0.960558 7 1w ul —4.0 —1.0
8 wlud —0.959277 3.99266 8 ul il —1.0 4.0
9 0 —3.9922 —0.959 894 9 0 —4.0 —1.0
28 95 (uj) 0974305 0 28 9 (u1) 1.0 0

29 9 (w) 089647 0 29 9, (ur) 1.0 0

31 85 (w) O 0.974735 31 A (u3) 0 1.0
32 9(m) 0 0.898 804 32 9; () 0 1.0

45 Discarded Terms:

1.0, u3, ub b, 13, O} (1
ol (u%), 5‘; (u%), o} (u?
010} (). 010} (u)
02 (12), 0101 (i2), % (o
8}% (u% u%), 8,18}} (u% uz)

—

Table 8. Full results for estimating the time-delayed Fisher-KPP equation (25) from data shown in figure 10 from section 3.3.3. Found
hyperparameter (threshold and time-delay): h; = 0.6238713362317317 and 7 = 1.017 246252677 2437.

Estimated model True model (7 =1.0)
Index Term O Index Term Oy
1 ul 0.976 494 1 ul 1.0
7 05 (u1) 1.01892 7 05 (u1) 1.0
17 ulupt —0.97902 17 ulupt -1.0
20 Discarded Terms:

10, ufy i, O (ui), 0x (1), O (1), O% (), 0% (wh), 0% (uh), 02 (), 0% (), O% (i), O% (u)
1

83 (H?), M-ri, uy MT%) 8;1 (MTD: 83% (uTl)! 83 (1/[7-%),8,% (”T)

ORCID iDs

Oliver Mai 0009-0007-5864-7674
Uwe Thiele 0000-0001-7989-9271
Oliver Kamps 0000-0003-0986-0878

References

[1] Bock H G and Plitt KJ 1984 A multiple shooting algorithm for direct solution of optimal control problems IFAC Proc. Volumes vol
17 pp 16038

[2] Guay M and Mclean D D 1995 Optimization and sensitivity analysis for multiresponse parameter estimation in systems of ordin-
ary differential equations Comput. Chem. Eng. 19 1271-85

[3] Houska B, Logist F, Diehl M and Impe J V 2012 A tutorial on numerical methods for state and parameter estimation in nonlin-
ear dynamic systems Identification for Automotive Systems ed D Alberer, H Hjalmarsson and L Re (Lecture Notes in Control and
Information Sciences vol 418) (Springer) pp 67-88

[4] Brunton S L, Proctor J L and Kutz] N 2016 Discovering governing equations from data by sparse identification of nonlinear
dynamical systems Proc. Natl Acad. Sci. 113 39327

[5] Egan K, Li W and Carvalho R 2024 Automatically discovering ordinary differential equations from data with sparse regression
Commun. Phys. 7 2

[6] Omejc N, Gec B, Brence J, Todorovski L and Dzeroski S 2024 Probabilistic grammars for modeling dynamical systems from coarse,
noisy and partial data Mach. Learn. 113 7689721

[7] Bar M, Hegger R and Kantz H 1999 Fitting partial differential equations to space-time dynamics Phys. Rev. E 59 337—42

23

https://orcid.org/0009-0007-5864-7674
https://orcid.org/0009-0007-5864-7674
https://orcid.org/0000-0001-7989-9271
https://orcid.org/0000-0001-7989-9271
https://orcid.org/0000-0003-0986-0878
https://orcid.org/0000-0003-0986-0878
https://doi.org/10.1016/S1474-6670(17)61205-9
https://doi.org/10.1016/0098-1354(94)00120-0
https://doi.org/10.1016/0098-1354(94)00120-0
https://doi.org/10.1007/978-1-4471-2221-0_5
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1038/s42005-023-01516-2
https://doi.org/10.1038/s42005-023-01516-2
https://doi.org/10.1007/s10994-024-06522-1
https://doi.org/10.1007/s10994-024-06522-1
https://doi.org/10.1103/PhysRevE.59.337
https://doi.org/10.1103/PhysRevE.59.337

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

[8] Ljung L 1998 System Identification: Theory for the User Prentice Hall Information and System Sciences Series 2nd edn (Prentice Hall)
[9] Voss H U, Kolodner P, Abel M and Kurths J 1999 Amplitude equations from spatiotemporal binary-fluid convection data Phys.
Rev. Lett. 83 34225
[10] Voss H, Biinner M and Abel M 1998 Identification of continuous, spatiotemporal systems Phys. Rev. E 57 2820-3
[11] Rudy S H, Brunton S L, Proctor J L and Kutz] N 2017 Data-driven discovery of partial differential equations Sci. Adv. 3 614
[12] Voss H U, Timmer J and Kurths] 2004 Nonlinear dynamical system identification from uncertain and indirect measurements Int.
J. Bifur. Chaos 14 1905-33
[13] Wang Z, Huan X and Garikipati K 2019 Variational system identification of the partial differential equations governing the physics
of pattern-formation: inference under varying fidelity and noise Comput. Methods Appl. Mech. Eng. 356 44—74
[14] Zhao H, Storey B D, Braatz R D and Bazant M Z 2020 Learning the physics of pattern formation from images Phys. Rev. Lett.
124 060201
[15] Naozuka G T, Rocha H L, Silva R S and Almeida R C 2022 SINDy-SA framework: enhancing nonlinear system identification with
sensitivity analysis Nonlinear Dyn. 110 2589-609
[16] Mangan N M, Kutz J N, Brunton S L and Proctor J L 2017 Model selection for dynamical systems via sparse regression and
information criteria Proc. R. Soc. A 473 20170009
[17] Dong X, Bai Y, Lu Y and Fan M 2022 An improved sparse identification of nonlinear dynamics with akaike information criterion
and group sparsity Nonlinear Dyn. 111 1485-510
[18] Rudy S, Alla A, Brunton S L and Kutz] N 2019 Data-driven identification of parametric partial differential equations STAM J.
Appl. Dyn. Syst. 18 643—-60
[19] Long Z, Lu Y and Dong B 2019 PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network J. Comput.
Phys. 399 108925
[20] Fullana J, Rossi M and Zaleski S 1997 Parameter identification in noisy extended systems: a hydrodynamic case Physica D
103 564-75
[21] Messenger D A and Bortz D M 2021 Weak SINDy: Galerkin-based data-driven model selection Multiscale Model. Simul.
19 1474-97
[22] Tang M, Liao W, Kuske R and Kang S H 2023 Weakident: weak formulation for identifying differential equation using narrow-fit
and trimming J. Comput. Phys. 483 112069
[23] Sandoz A, Ducret V, Gottwald G A, Vilmart G and Perron K 2023 SINDy for delay-differential equations: application to model
bacterial zinc response Proc. R. Soc. A 479 56
[24] Stephany R 2024 DDE-Find: Learning delay differential equations from noisy, limited data (arXiv:2405.02661)
[25] Zubov K et al 2021 NeuralPDE: automating physics-informed neural networks (PINNs) with error approximations (arXiv:2107.
09443)
[26] Maddu S, Cheeseman B L, Sbalzarini I F and Miiller C L 2022 Stability selection enables robust learning of differential equations
from limited noisy data Proc. R. Soc. A 478 0916
[27] Koch J 2021 Data-driven modeling of nonlinear traveling waves Chaos 31 255
[28] Wan C, Yu Z, Wang F, Liu X and Li] 2021 Experiment data-driven modeling of tokamak discharge in EAST Nucl. Fusion
61 066015
[29] Zhao J, Wang W and Sheng C 2018 Parameter estimation and optimization Data-Driven Prediction for Industrial Processes and
Their Applications (Information Fusion and Data Science vol 1) (Springer) pp 269-350
[30] Machlanski D, Samothrakis S and Clarke P 2023 The challenges of hyperparameter tuning for accurate causal effect estimation
(arXiv:2303.01412)
31] Kroll T W and Kamps O 2025 Sparse identification of evolution equations via Bayesian model selection ((arXiv:2501.01476)
32] Harris C R et al 2020 Array programming with NumPy Nature 585 357-62
33] Baer M 2018 findiff software package (available at: https://github.com/maroba/findiff)
34] Bergstra J, Komer B, Eliasmith C, Yamins D and Cox D D 2015 Hyperopt: a Python library for model selection and hyperpara-
meter optimization Comput. Sci. Discov. 8 014008
[35] Bergstra J, Bardenet R, Bengio Y and Kégl B 2011 Algorithms for hyper-parameter optimization Advances in Neural Information
Processing Systems vol 24, ed] Shawe-Taylor, R Zemel, P Bartlett, F Pereira and K Q Weinberger (Curran Associates, Inc)
[36] Virtanen P ef al 2020 SciPy 1.0: fundamental algorithms for scientific computing in Python Nat. Methods 17 261-72
[37] Hairer E, Norsett S P and Wanner G 1993 Solving Ordinary Differential Equations I (Springer Series in Computational Mathematics)
2nd edn (Springer) (https://doi.org/10.1007/978-3-540-78862-1)
[38] Mai O 2024 TSME PyPi repository (available at: https://pypi.org/project/tsme/)
[39] Mai O 2025 TSME examples GitHub repository (available at: https://github.com/CDSC-CoSyML/tsme_examples)
[40] De Silva B, Champion K, Quade M, Loiseau J, Kutz J and Brunton S 2020 PySINDy: a Python package for the sparse identification
of nonlinear dynamical systems from data J. Open Source Softw. 5 2104
[41] CahnJ W and Novick-Cohen A 1994 Evolution equations for phase separation and ordering in binary alloys J. Stat. Phys.
76 877-909
[42] Hussain S, Shah A, Ayub S and Ullah A 2019 An approximate analytical solution of the Allen-Cahn equation using homotopy per-
turbation method and homotopy analysis method Heliyon 5 03060
[43] Stegemerten F, Gurevich S V and Thiele U 2020 Bifurcations of front motion in passive and active Allen—-Cahn-type equations
Chaos 30 3271
[44] Bandeira J G P, Buske D, De Quadros R S and Kurz G B 2024 Allen-Cahn equation for modeling temporal evolution of non-
conserved field variables in cancer cell migration Ciénc. Nat. 46 e87268
[45] Kim], Lee S, Choi Y, Lee S and Jeong D 2016 Basic principles and practical applications of the Cahn—Hilliard equation Math.
Problems Eng. 2016 1-11
[46] Brunk A, Egger H and Habrich O 2023 On uniqueness and stable estimation of multiple parameters in the Cahn—Hilliard
equation Inverse Problems 39 065002
[47] Craster R V and Matar O K 2009 Dynamics and stability of thin liquid films Rev. Mod. Phys. 81 1131-98
[48] FitzHugh R 1961 Impulses and physiological states in theoretical models of nerve membrane Biophys. J. 1 445-66
[49] Nagumo J, Arimoto S and Yoshizawa S 1962 An active pulse transmission line simulating nerve axon Proc. IRE 50 2061-70
(
[

50] Zheng Q and Shen J 2015 Pattern formation in the FitzHugh—Nagumo model Comput. Math. Appl. 70 1082-97
51] Cebridn-Lacasa D, Parra-Rivas P, Ruiz-Reynés D and Gelens L 2024 Six decades of the FitzHugh—Nagumo model: a guide through
its spatio-temporal dynamics and influence across disciplines Phys. Rep. 1096 1-39

24

https://doi.org/10.1103/PhysRevLett.83.3422
https://doi.org/10.1103/PhysRevLett.83.3422
https://doi.org/10.1103/PhysRevE.57.2820
https://doi.org/10.1103/PhysRevE.57.2820
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1142/S0218127404010345
https://doi.org/10.1142/S0218127404010345
https://doi.org/10.1016/j.cma.2019.07.007
https://doi.org/10.1016/j.cma.2019.07.007
https://doi.org/10.1103/PhysRevLett.124.060201
https://doi.org/10.1103/PhysRevLett.124.060201
https://doi.org/10.1007/s11071-022-07755-2
https://doi.org/10.1007/s11071-022-07755-2
https://doi.org/10.1098/rspa.2017.0009
https://doi.org/10.1098/rspa.2017.0009
https://doi.org/10.1007/s11071-022-07875-9
https://doi.org/10.1007/s11071-022-07875-9
https://doi.org/10.1137/18M1191944
https://doi.org/10.1137/18M1191944
https://doi.org/10.1016/j.jcp.2019.108925
https://doi.org/10.1016/j.jcp.2019.108925
https://doi.org/10.1016/S0167-2789(96)00286-2
https://doi.org/10.1016/S0167-2789(96)00286-2
https://doi.org/10.1137/20M1343166
https://doi.org/10.1137/20M1343166
https://doi.org/10.1016/j.jcp.2023.112069
https://doi.org/10.1016/j.jcp.2023.112069
https://doi.org/10.1098/rspa.2022.0556
https://doi.org/10.1098/rspa.2022.0556
https://arxiv.org/abs/2405.02661
https://arxiv.org/abs/2107.09443
https://arxiv.org/abs/2107.09443
https://doi.org/10.1098/rspa.2021.0916
https://doi.org/10.1098/rspa.2021.0916
https://doi.org/10.1063/5.0043255
https://doi.org/10.1063/5.0043255
https://doi.org/10.1088/1741-4326/abf419
https://doi.org/10.1088/1741-4326/abf419
https://doi.org/10.1007/978-3-319-94051-9_7
https://arxiv.org/abs/2303.01412
https://arxiv.org/abs/2501.01476
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/maroba/findiff
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/978-3-540-78862-1
https://pypi.org/project/tsme/
https://github.com/CDSC-CoSyML/tsme_examples
https://doi.org/10.21105/joss.02104
https://doi.org/10.21105/joss.02104
https://doi.org/10.1007/BF02188691
https://doi.org/10.1007/BF02188691
https://doi.org/10.1016/j.heliyon.2019.e03060
https://doi.org/10.1016/j.heliyon.2019.e03060
https://doi.org/10.1063/5.0003271
https://doi.org/10.1063/5.0003271
https://doi.org/10.5902/2179460x87268
https://doi.org/10.5902/2179460x87268
https://doi.org/10.1155/2016/9532608
https://doi.org/10.1155/2016/9532608
https://doi.org/10.1088/1361-6420/acca44
https://doi.org/10.1088/1361-6420/acca44
https://doi.org/10.1103/RevModPhys.81.1131
https://doi.org/10.1103/RevModPhys.81.1131
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1016/j.camwa.2015.06.031
https://doi.org/10.1016/j.camwa.2015.06.031
https://doi.org/10.1016/j.physrep.2024.09.014
https://doi.org/10.1016/j.physrep.2024.09.014

10P Publishing

New J. Phys. 28 (2026) 013701 O Mai et al

[52] Hodgkin A L and Huxley A F 1952 A quantitative description of membrane current and its application to conduction and excita-
tion in nerve J. Physiol. 117 500—44

[53] Dong X and Wang C 2015 Identification of the FitzHugh—Nagumo model dynamics via deterministic learning Int. J. Bifurc. Chaos
25 1550159

[54] Ahmed S E, San O and Lakshmivarahan S 2022 Forward sensitivity analysis of the FitzZHugh—Nagumo system: parameter estim-
ation Advances in Nonlinear Dynamics NODYCON Conf.Proc. Series vol 3 ed W Lacarbonara, B Balachandran, M J Leamy,] Ma,
J A T Machado and G Stepan (Springer) pp 93-103

[55] Shraiman B I, Pumir A, Van Saarloos W, Hohenberg P C, Chaté H and Holen M 1992 Spatiotemporal chaos in the one-
dimensional complex Ginzburg-Landau equation Physica D 57 241-8

[56] Fisher R A 1937 The wave of advance of advantageous genes Ann. Eugen. 7 355-69

[57] Kolmogorov A N, Petrovskii I G and Piskunov N S 1937 A study of the diffusion equation with increase in the amount of sub-
stance and its application to a biological problem Bull. Moscow Univ. Math. Mech 1 1-26

[58] Ducrot A and Nadin G 2014 Asymptotic behaviour of travelling waves for the delayed Fisher-KPP equation J. Differ. Equ.
256 3115-40

[59] Zhang J, Hu H and Huang C 2025 Wave fronts for a class of delayed Fisher—KPP equations Appl. Math. Lett. 163 109406

[60] Fasel U, Kutz J N, Brunton B W and Brunton S L 2022 Ensemble-SINDy: robust sparse model discovery in the low-data, high-
noise limit, with active learning and control Proc. R. Soc. A 478 904

[61] Mai O 2022 TSME documentation: Cahn-Hilliard equation (available at: https://nonlinear-physics.zivgitlabpages.uni-muenster.
de/ag-kamps/tsme/source/notebooks/cahn_hilliard_equation.html)

25

https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1142/S021812741550159X
https://doi.org/10.1142/S021812741550159X
https://doi.org/10.1007/978-3-030-81170-9_9
https://doi.org/10.1016/0167-2789(92)90001-4
https://doi.org/10.1016/0167-2789(92)90001-4
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1016/j.jde.2014.01.033
https://doi.org/10.1016/j.jde.2014.01.033
https://doi.org/10.1016/j.aml.2024.109406
https://doi.org/10.1016/j.aml.2024.109406
https://doi.org/10.1098/rspa.2021.0904
https://doi.org/10.1098/rspa.2021.0904
https://nonlinear-physics.zivgitlabpages.uni-muenster.de/ag-kamps/tsme/source/notebooks/cahn_hilliard_equation.html
https://nonlinear-physics.zivgitlabpages.uni-muenster.de/ag-kamps/tsme/source/notebooks/cahn_hilliard_equation.html

	Hyperparameter optimization in the estimation of PDE and delay-PDE models from data
	1. Introduction
	2. Numerical methods
	2.1. Optimization framework
	2.2. Estimation procedure

	3. Results
	3.1. Dependence of performance on data quality
	3.1.1. Baseline performance
	3.1.2. Influence of spatial discretization and noise
	3.1.3. Varying sample frequency in time

	3.2. Phase field models for pattern formation
	3.2.1. Allen–Cahn equation
	3.2.2. Cahn-Hilliard equation

	3.3. Excitable, oscillatory, and wave propagation systems
	3.3.1. FitzHugh-Nagumo model
	3.3.2. Exploring chaotic regimes
	3.3.3. Fisher-KPP equation with time delay

	4. Conclusion and outlook
	Appendix A. Generating the library of functions
	A.1. Default library
	A.2. Alternative library: PySINDy

	Appendix B. Pseudo-code for estimation procedure
	Appendix C. Tutorial : Cahn–Hilliard (CH) equation
	

	Appendix D. Detailed results for coefficients
	References

