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Active soft matter frequently shows motility-induced phase separation, where self-propelled particles
condensate into clusters with an inner liquidlike structure. Such activity may also result in motility-induced
crystallization into clusters with an inner crystalline structure. We derive a higher-order active phase-field-
crystal model and employ it to study the interplay of passive (i.e., thermodynamic) and active (i.e., motility-
induced) condensation or evaporation and crystallization or melting. Stability and morphological phase
diagrams indicate the various occurring phase coexistences and transitions, e.g., the destruction of passive
clusters in the case of a density-independent effective velocity and the possible creation of active clusters in
the case of a density-dependent effective velocity. Finally, simple and complex rotating crystallites are
discussed, including states of time-periodic chirality.
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Motility-induced phase separation (MIPS) is an important
focus of attention in the physics of active soft matter: when
the driving activity of self-propelled particles crosses a critical
density-dependent threshold the particles phase-separate into
dense and dilute fluid phases even in the absence of attractive
interactions. In other words they accumulate into high-
density liquidlike clusters that coexist with a low-density
gaslike phase [1–7]. Experimental observations [3,8–10],
particle-based simulations [11–17], and continuum models
mainly based on nonvariational amendments [18–23] of the
Cahn-Hilliard model for phase decomposition [24] all yield
consistent results for the existence and properties of such
clusters [22]. Furthermore, motility can also strongly amend
the phase behavior for systems that have rich phase diagrams
already in the passive limit. For instance, in motility-
enhanced (motility-suppressed) phase separation the para-
meter range where phase separation occurs is enlarged
(reduced).

However, besides the clusters of liquidlike inner struc-
ture that result from phase separation, experiments and
simulations also increasingly report the existence of active
(or “living”) crystallites, i.e., resting, traveling, or rotat-
ing particle clusters with an inner crystalline structure
[8,9,12,25–30] that represent active solids [31–34] of
finite size. Frequently, their dynamics is investigated
using active phase-field-crystal (active PFC) models
[35–43], i.e., active equivalents of the passive PFC model
[44–46]—a versatile microscopic field theory for colloidal
crystallization that itself is a local approximation of a
dynamical density functional theory (DDFT) [47,48] and
has the form of a conserved Swift-Hohenberg equation
[46]. Such models are well suited to investigate activity-
induced (nonequilibrium) phase transitions, multistability,
time-periodic states, etc.
Although the standard active PFC model well captures

the transition from resting to traveling space-filling crys-
talline states [35], and also predicts the existence of active
crystallites in the form of resting and traveling localized
states [39,42,43] it suffers from two major shortcomings:
First, in the passive limit, it only describes the fluid-solid
phase behavior for a single fluid phase (that is normally
interpreted as liquid), but fails to capture the liquid-gas
transition. Therefore, the model cannot be employed to
study the interplay of condensation and crystallization.
Second, it does not describe proper motility-induced
crystallization (MIC) where activity induces crystalliza-
tion. Instead, with the standard active PFC model an
increase in activity tends to destroy preexisting crystalline
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states [35,41,42]. In other words, the crystallization of
passive (i.e., thermodynamic) crystalline clusters described
by a passive PFC model [46,49] is subdued by incorpo-
rating activity that also results in the transition from resting
to moving (and oscillating) crystals [41].
Here, we present a microscopically derived extended

active PFC model that mitigates both shortcomings: On the
one hand, in the appropriate limit it corresponds to the
passive higher-order PFC model of Wang et al. [50] that
faithfully captures phase transitions between all three
phases: the liquid-gas transition between low- and high-
density uniform phases as well as liquid-solid and gas-solid
transitions between uniform (gas or solid) and spatially
periodic (crystalline) phases. In consequence, it captures
the basic phase diagram featuring gas, liquid, and solid
phases including gas-liquid-solid coexistence, as well as all
corresponding dynamic transitions. In contrast to the
standard PFC model [44–48] its underlying free energy
functional F PFC½ϕ� includes contributions from three- and
four-point direct correlation functions and contains deriv-
atives of up to sixth order. A typical phase diagram in the
vicinity of the triple point (three-phase coexistence) is
given in Fig. 2(a) below.
On the other hand, our derivation extends the approach

of [35,36] regarding activity resulting from self-propulsion.
In particular, our model not only features a density-
independent effective velocity [35], but additionally a
microscopically justified density-dependent contribution
similar to a classical MIPS model [51]. This enables our
model to describe both—the destruction of passive clusters
and the creation of active ones as schematically illustrated
in Fig. 1. In the following, we briefly present the model,
analyze its phase behavior focusing on the destruction of
passive (thermodynamic) clusters, i.e., drops and crystal-
lites, and the emergence of active ones. Finally, we analyze
the emerging rotating crystallites and point out intriguing
states with complex chirality dynamics.
Overall, the passive dynamics of the amended PFC model

[50] in terms of the conserved density field ϕðx; tÞ is
nonvariationally coupled to the dynamics of a polarization
field P that indicates the local strength and direction of polar
order related to the drive of the active particles. The resulting
dynamic model is

∂tϕ ¼ ∇2
δF ½ϕ;P�

δϕ
−∇ · ½vðϕÞP�; ð1Þ

∂tP ¼ ∇2
δF ½ϕ;P�

δP
−Dr

δF ½ϕ;P�
δP

−∇½αvðϕÞðϕþ ρrÞ�:
ð2Þ

Note that ϕ and temperature T are nondimensional scaled
and shifted effective quantities (ρr is a reference density)
as further detailed in Sec. A of the Supplemental Material
[52], where also the full expression for the density- and

polarization-dependent energy F ½ϕ;P� ¼ F PFC½ϕ� þ FP½P�
is given, including the dependence on T. The first and
second term on the right-hand side of Eq. (2) correspond to
translational and rotational diffusion, respectively. Besides
these terms that represent respective conserved and non-
conserved gradient dynamics, there are the active coupling
terms [the respective final term of Eqs. (1) and (2)] [73].
Their nonreciprocal character breaks the overall gradient
dynamics structure, i.e., represents sustained nonequili-
brium influences like chemomechanical driving. They are
ultimately responsible for all occurring moving and
oscillating states.
The strength vðϕÞ of the coupling between the density

and polarization represents the effective self-propulsion
speed of the active particles that is often assumed constant
[35,39]. In contrast, here, we have obtained the density-
dependent expression vðϕÞ ¼ v0 − ζðϕþ ρrÞ that is
widely used in effective hydrodynamic models for MIPS
[19,20,23,51]. Thereby, v0 represents an effective speed of
an individual self-propelled particle while ζ results from the
force imbalance related to the self-trapping due to inter-
actions with other particles as frequently occurring at larger
densities. Note that more complicated expressions [e.g.,
vðϕ;∇2ϕÞ] may also be employed [21,23,74] but do not
amend our central result. A derivation from a microscopic
DDFT and a discussion of the quantitative relation to
classical MIPS models [51] are provided in Secs. B and D
of Supplemental Material [52], respectively.
The higher-order active PFC model (1) and (2) shows the

range of behaviors sketched in Fig. 1: In the passive case
(v ¼ 0) the full phase behavior of a system with gas, liquid,
and crystalline state is reproduced [50], shown here in
Fig. 2(a) by a phase diagram in the plane spanned by
effective mean density ϕ̄ and temperature T with a focus
on the vicinity of the triple point at ðϕ̄; TÞ ≈ ð−0.5; 0Þ.

FIG. 1. A schematic illustration of the destruction of passive
(thermodynamic) drops (top) and crystallites (bottom) by an
increase of activity from zero (left to center), and the subsequent
re-creation of both cluster types by increasing a density-
dependent velocity.
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For details on the employed time simulations see Sec. E
of [52]. There is a one-phase region of uniform states (dark
blue, liquid or gas), and two-phase regions of liquid-gas
(light blue), solid-liquid (dark green), and solid-gas coex-
istence (orange). The white lines indicate linear stability
thresholds for the uniform state, i.e., spinodals, with respect
to liquid-gas phase separation (dashed) and crystallization
(dotted). They correspond to Cahn-Hilliard (stationary,
large-scale) and conserved-Turing instabilities (stationary,
small-scale), respectively (see classification of Ref. [75]).
Typical dispersion relations and complete spinodals are
given in Sec. C of Supplemental Material [52].

Increasing the density-independent velocity v0 (at ζ ¼ 0)
from zero significantly changes the phase diagram [see
Fig. 2(b)]. Overall, all clustering is reduced, the region of
liquid-gas phase separation has disappeared from the
shown region and crystallization is shifted toward larger
densities. The dot-dashed spinodal now indicates the onset
of a conserved-wave instability [75] related to the direct
emergence of traveling crystalline states. The shift is
consistent with the suppression of crystallization with
increasing activity observed in the standard active PFC
model [35,39,41]. Here, it applies as well to phase
separation where with increasing v0 the liquid-gas critical
point and the spinodals are shifted toward lower temper-
atures. One further deduces from Fig. 2(b) that crystal-gas
coexistence [yellow in Fig. 2(a)] has also shifted to
similarly low values, as indicated by states ⑦ and ⑧ in
Fig. 3. The remaining crystalline states all correspond to
traveling states, see examples in Fig. 3. Thereby, finite-size
crystallites corresponding to crystal-liquid coexistence
frequently rotate as further analyzed below (also transla-
tional motion may occur). In summary, pre-existing struc-
tures that result from passive forces, i.e., by thermodynamic
interactions between particles, are all counteracted by the
density-independent velocity v0.
Then, in the hatched purple region domain-filling sta-

tionary traveling crystals are found (state ①). Coexistence
of drops with an extended traveling crystal has emerged
(states ⑤ and ⑥). Finally, ⑦ and ⑧ provide examples of
three-phase gas-liquid-solid coexistence in an active sys-
tem, in the former note the liquid wetting layer at the
crystal-gas interface. Note that coexisting states may also
exist outside the spinodally unstable region, i.e., the borders
between the colored regions in Fig. 2 represent finite-size
approximations of (non)equilibrium binodals. This indi-
cates that all transitions are of first order as also confirmed
by the existence of various localized states [43,46,76]. A
detailed understanding of the intricate relations between
and multistability of the various uniform, periodic and
localized states (that may rest or move), in particular, in the
vicinity of the triple point can be achieved by considering
the bifurcation structure for finite systems. A selection of
corresponding results is given in Sec. F of Supplemental
Material [52]. Note that in contrast to most results
described for the standard active PFC model [35,39,41],
here, the group velocity of the crystallites is lower than their
phase velocity, i.e., individual peaks move faster than the
overall structure (states ④, ⑥ to ⑧ in Fig. 3). Physically, this
corresponds to particles melting at the front of the traveling
crystallite into the coexisting uniform phase and crystalliz-
ing at the rear. In other words, at the rear particles get stuck
in the “slowly moving traffic jam” of the crystallite, then
slowly move through it until they detach themselves when
reaching the front.
Interestingly, an additional density-dependent velocity of

strength ζ can either further suppress clustering [see Fig. 2(c)

(a) (b) (c)

(d)

FIG. 2. Morphological phase diagrams for the extended PFC
model (1) and (2) in the plane spanned by effective mean density
ϕ̄ and temperature T. Shown are (a) the passive case (v ¼ 0) and
(b) an active case (v0 ¼ 1; ζ ¼ 0) with a focus on the vicinity of
the triple point in the passive case [at ðϕ̄; TÞ ≈ ð−0.5; 0Þ] for the
parameters of Ref. [50]. Time simulations are employed for finite
domain size Lx × Ly ¼ 100 × 100. Examples of occurring states
at numbered loci ①-⑥ are given in Fig. 3. Dark blue indicates
uniform states (gas or liquid), while light blue marks liquid-
gas coexistence. Green and orange represent coexistence of a
crystalline phase with liquid and gas state, respectively. The latter
may also include finite-size realizations of three-phase coexist-
ence. Finally, dark purple indicates domain-filling crystalline
states. In (a) all states are at rest while in (b) moving states are
shown hatched. The white dashed and dotted lines give linear
stability thresholds for a Cahn-Hilliard and a conserved-Turing
instability related to spinodals for phase separation and crystal-
lization, respectively. The dot-dashed line in (b) indicates a
conserved-wave instability related to the direct crystallization
into moving crystals. The full set of parameters is given in Sec. A
of Supplemental Material [52]. The employed parameter incre-
ments for ϕ̄ and T are both 0.1 [0.05 within the square in (a)].
Finally, panels (c) and (d) show how the spinodals change
with increasing ζ ≥ 0 (indicated by arrows) in two qualita-
tively different cases. In each case, blue [red] lines indicate
ζ ¼ 0½ζ > 0�. Specifically, (c) v0 ¼ 1; ζ ¼ 0.2, (d) v0 ¼ 0.5;
ζ ¼ 0.5. The colored dots show the trace of the liquid-gas critical
point. Specifically, in (c) ζ further suppresses phase separation
for otherwise identical parameters as in (a),(b), while in
(d) ζ enhances both, phase separation and crystallization (also
see Sec. C of Supplemental Material [52], for remaining
parameters see Table 1 of [52]).
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for otherwise identical parameters as in Figs. 2(a) and 2(b)]
or foster the creation of active clusters [Fig. 2(d)], also
cf. Fig. 7 of Supplemental Material [52]. In the latter case an
increase in ζ enhances both, phase separation and crystal-
lization. In particular, the liquid-gas spinodal is moving to
higher temperatures and densities while the liquid-crystal
binodal moves to lower densities. The resulting transitions
one may call MIPS and MIC. Note that in the corresponding
density range our model quantitatively reproduces corre-
sponding literature results for MIPS obtained with simpler
models that do not account for crystallization as well as
results for an active Cahn-Hilliard model. This is detailed in
Sec. C of [52]. Note that in the case of Fig. 2(d) the resulting
small distance between the critical and triple point implies
that crystallites nonlinearly dominate even in part of the
phase-separation region.
An intriguing state are rotating crystallites as state ③

in Fig. 3. Such states are described for many exper-
imental systems [27,32,77–80] and particle-based sim-
ulations [15,81], both for chiral [29,78,81] and nonchiral
[15,32,82,83] particles. However, such states are rarely
mentioned in studies employing PFC models ([38] shows
their existence for a circular domain). Here, they frequently
occur beside the also found traveling crystallites (state ④ in
Fig. 3). On general grounds, both should be expected even
for nonchiral particles as the corresponding collective
motions result from the interaction of pitchfork bifurcations
with Goldstone modes related to homogeneity and isotropy
of space, respectively. Such drift- and rotation-pitchfork

bifurcations were studied e.g., for a reaction-diffusion
system [84].
Here, the simplest rotating crystalline clusters move as a

nearly hexagonal rigid body, i.e., with identical group and
phase velocity. Figure 4 provides an overview of their
characteristics. Their radius R and angular velocity ω are
given as a function of T and R, respectively, at several fixed
densities ϕ̄ ¼ −0.2… − 0.45. The dependence RðTÞ has
the appearance of a staircase that goes up with decreasing T
while the steps are getting longer (at equal height), a typical
behavior for localized states that show homoclinic snaking
[85,86]. Figure 4 focuses on localized states with a central
peak, though states with a central hole also exist and show a
similar stairlike behavior. Inspecting profiles like Figs. 4(c)
and 4(d) shows that along each of the nearly horizontal
parts an initially incomplete outer shell of the hexagonal
structure laterally grows more peaks with decreasing T.
When a shell is completed, a new outer layer is initiated by
peaks in the central part of each face that then grows,
thereby resulting in the steplike increase of R. In other
words, each step corresponds to a stable radius. A corre-
sponding structure is visible in the dependence of ω on R
[Fig. 4(b)] where for small clusters the velocity decreases
with increasing cluster size while at large R one can discern
a very small increase. Beside the shown clusters of overall
sixfold symmetry, also less symmetric states exist that
feature facets of different lengths (not shown). Further
note that for the employed domain size, clusters above
Rmax ≈ 45.3 interact via the boundaries, ultimately form
other states, and are therefore excluded from the analysis.
Similarly, there is a minimal radius Rmin ≈ 13.7 corre-
sponding to the smallest stable cluster (two layers around
the central peak). Lower densities result in uniform
states [87].
At more extreme conditions, e.g., lower temperature and

larger density with ζ > 0 and ρr ¼ 3 more intricate
behavior is observed: There, also a stripe phase exists
(as in standard PFC models [35,46]) that corresponds to
particles that are periodically placed in one direction but are
mobile in the other one. This results in the new types of
localized states shown in Fig. 5. They are often of lower
symmetry and either combine local stripe and crystalline
arrangements [two-phase cluster, Figs. 5(c)–5(g)] or pre-
dominantly consist of localized stripe phase [Figs. 5(b)
and 5(h)]. Because of the activity the entire clusters and
their parts may move in different ways. A recurring type of
movement is the swinging motion found in Figs. 5(a), 5(b),
and 5(e). Such a pattern of time-periodic chirality is
reminiscent of a torsion pendulum and implies a periodic
reversal in the polarization field. It can also be found
in experiments, e.g., see Ref. [77]. Other motion types
which mostly involve the stripe phase resemble bouncing
[Fig. 5(c)], waving [Figs. 5(b) and (5e)] and wobbling
[Figs. 5(c)–5(e) and 5(g)], see movie in Supplemental
Material [52]. In experiments or simulations such states

FIG. 3. Typical snapshots of various resting and moving states
are represented by their density profiles ϕðx; tÞ. Panels ① to ⑥

show states at parameter values indicated by correspond-
ing numbers in Figs. 2(a) and 2(b). ⑦ and ⑧ give states with
v0 ¼ 1 at ðϕ̄; TÞ ¼ ð−0.5;−0.8Þ and ð−1;−0.58Þ, respectively.
Given are ① a phase-separated state of a gas bubble inside a liquid,
② an extended traveling crystal, ③ to ⑧ various types of moving
crystallites. The black arrows indicate the direction of motion of
the crystalline regions. Three-phase coexistence is visible in ⑦ and
⑧. A movie can be found in Supplemental Material [52].

PHYSICAL REVIEW LETTERS 135, 158301 (2025)

158301-4



would correspond to clusters with a rigid core structure and
a less rigid but still crystalline outer part. Figure 4(b) of [80]
shows some promising candidates. There, time traces
visualize particle motion, i.e., their large lower left cluster
combines strongly and weakly moving particles in the same
crystallite, suggesting that some of them are stronger bound
to their position than others, and further clusters show wavy
time traces. This suggests modes of relative motion as seen
in our Fig. 5.
To conclude, we have presented an amended active

phase-field-crystal model capable of describing (active)

gas, liquid and solid phases, including their dynamics in the
vicinity of the triple point. This has allowed us to study the
interplay of passive and active condensation and crystal-
lization including phase coexistences. This includes a
variety of traveling and rotating crystallites, i.e., finite-size
active solids, that may coexist with gas or liquid as further
evidenced by phase diagrams and a detailed study of
rotating crystallites. States with time-periodic chirality,
i.e., direction-reversing rotational waves, have also been
described.
Phase diagrams obtained with the present continuum

approach qualitatively match results of particle-based
simulations, see, e.g., Refs. [16,17] (when accounting
for their nondimensionalization), even though their models
are for hard spheres [88]. Studies with softer attractive
particles should identify the destruction of passive clusters
and creation of active ones as well in particle-based
simulations and experiments. Incorporating the approach
of [89], the model may also be extended toward spinning
particles with resulting effective interactions [78]. Finally,
note that the presented conceptually relatively simple
continuum model may be adapted to study many effects
that involve active solid, liquid, and gas phase as phenom-
ena of nonequilibrium pattern formation. Examples include
wetting phenomena on active solids, nucleation processes
for active crystals and premelting transitions at grain
boundaries of active solids.
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SUPPLEMENTARY MATERIAL

The Supplementary Material provides further details and background information regarding the higher-order active
Phase-Field-Crystal (PFC) model presented and analyzed in the main text published as M. Holl et al., Phys. Rev.
Lett. (2025), doi:10.1103/m3dy-53yc). In particular, section A gives details for the active PFC model, namely,
the employed energy functional, the specific kinetic equations, and the complete set of parameters. Furthermore,
it gives the parameters of the accompanying movies and briefly discusses their content. Then, section B sketches
a derivation of the PFC model from a microscopic model including a discussion of important differences to the
literature. Subsequently, section E details the employed numerical methods and related parameters while section C
presents the linear stability analysis of uniform states, discusses the types of resulting dispersion relations and the
corresponding spinodals and their dependence on parameters. This is expanded in section D by a detailed description
of the relation of the studied PFC model to limiting cases, namely, an active Cahn-Hilliard model and a standard
MIPS model. Finally, section F discusses the intricate bifurcation structure of uniform, periodic, and localized states
in the case of one-dimensional domains that in conjunction with the phase diagrams in the main text allows for a
deeper understanding of the system behavior.

A. Energy functional, governing equations and parameters

First, we provide details on the employed energy functional F [ϕ,P] underlying the gradient dynamics in Eqs. (1)
and (2) of the main text and the specific employed parameter values. The order parameter field ϕ(x, t) follows a mass-
conserving dynamics and represents a nondimensional effective density, namely, a shifted particle number density ρ.
Specifically, ϕ = ρ− ρr. For ease of comparison, the reference density ρr is chosen such that ϕ = 0 corresponds to the
critical point of the standard PFC model (without liquid-gas transition), cf. [1, 2]. Note that there are two common
interpretations of the peaks in ϕ in the crystalline structures: As the density field in a field theory represents the
probability of finding a particle at a certain position one may either see a peak as representing a single particle (that
fluctuates about the central point of the peak), e.g., a single hard-sphere colloidal particle, or, alternatively, as a group
of particles, e.g., for star-shaped polymers where several can ’sit on top of each other.’ The correct interpretation
depends on the studied system and the underlying classical Density Functional Theory model that the PFC model
approximates, see e.g., the comprehensive overview of PFC modeling in [3] and the discussion of various levels of
approximation in [4]. As PFC models correspond to generic approximations of lowest order, the distinction between
the different interpretations only matters when discussing specifics of the observed phases.

The free energy functional F [ϕ,P] combines the density-dependent higher-order free energy FPFC[ϕ] developed by
Wang et al. [5] and an orientational part FP[P]. The latter is chosen identical to the corresponding part of the energy
for the standard active PFC model [1, 2, 6]. Overall we have

F [ϕ,P] = FPFC[ϕ] + FP[P]. (1)

The density-dependent part is

FPFC[ϕ] =

∫
−B0(T )ϕ− 1

2
ϕ
(
C0(T ) + C2(T )∆ + C4(T )∆

2 + C6∆
3
)
ϕ

− 1

6

[
D0ϕ

3 +D11ϕ
2∆ϕ

]
− 1

24

{
E0ϕ

4 + E1122ϕ
2[∆ϕ]2

}
dnr (2)

=

∫
fPFC dnr . (3)
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where we explicitly indicate the temperature dependencies of the various coefficients as carefully developed in [5] such
that a standard solid-liquid-gas phase diagram is reproduced in the plane spanned by mean density ϕ̄ and effective
temperature T . The latter is scaled and shifted in such a way that in the passive case the triple point is at T = 0 and
the critical point of the liquid-gas transition is at T = 1. Furthermore, ∆ is the Laplace operator and n the spatial
dimension. For the sake of comparison, the employed T -dependencies of coefficients B0, C0, C2, and C4 and all related
parameters are chosen as in [5] for most of our work, and given in Table I. The higher-order terms D11ϕ

2(r)∆ϕ(r) and
E1122ϕ

2(r)[∆ϕ(r)]2 stem from three- and four-point correlations, respectively, and are essential to obtain the correct
sequence of phase transitions. For nonzero D11, one needs E1122 < 0 to prevent divergent large-k behavior at very
large mean densities ϕ̄.

TABLE I. Parameters and functional dependencies used in the free energy FPFC[ϕ] of the passive PFC model as determined
in Ref. [5]. In particular, B0, C0, C2, and C4 all depend on the effective temperature T .

used in B0 C0 C2 C4 C6 D0 D11 E0 E1122

Ref. [5] −4.5 −5.764 17.8 39.8 16 −9 −34.2 −6 −52.1

Fig. 2 (a)-(c), 3-5 of main text −3T −T +2T −T

Fig. 1, 2, 4-7 of SM

Fig. 2 (d) of main text −4.5 −5.764 17.8 39.8 200 0 −34.2 −6 −52.1

−3T −T +2T −T

The polarization-dependent part is [1]

FP[P] =

∫
Dc

2
P2 +

a

4
P4dnr. (4)

For Dc < 0 and a > 0 it allows for spontaneous polarization. However, we follow most earlier analyses [1, 2, 6] and
simply use a = 0. For Dc we use Dc = 0.2. Introducing the free energy Eq. (1) into the kinetic equations Eqs. (1)
and (2) of the main text we obtain

∂tϕ = ∆

{
− (C0(T ) + C2(T )∆ + C4(T )∆

2 + C6∆
3)ϕ− 1

2
D0ϕ

2 − 1

6
D11(2ϕ∆ϕ+∆(ϕ2))

−1

6
E0ϕ

3 − 1

12
E1122[ϕ(∆ϕ)2 +∆(ϕ2∆ϕ)]

}
−∇ · [v(ϕ)P], (5)

∂tP = Dc∆P−DncP−∇ · [αv(ϕ)(ϕ+ ρr)]. (6)

Further, we set the mobility constants for the conserved and the nonconserved part of the polarization dynamics to
Dnc = DrDc = 0.5 which corresponds to rotational diffusion of the polarization. The constant α in the coupling term
is not a physical parameter but can be employed to switch between different parameterizations employed in different
parts of the literature. Here, it is fixed to α = 0.5 as in models for motility-induced phase separation, e.g., Ref. [7].
Alternatively, α = 1 would be the value employed in standard active PFC models [1, 2]. However, the influence of
the qualitative behavior is small. The specific chosen parameters in v = v0 − ζ(ϕ + ρr) are given in the main text.
A microscopic derivation of the amended active PFC model is given in Sec. B of this SM, while the relation of the
appropriate limiting cases to models for motility-induced phase separation (MIPS) [8] is discussed in section D.

In the passive limit, Eqs. (5) and (6) decouple and steady states (with ∂tϕ = 0) are obtained by solving the twice
integrated Eq. (5), i.e.,

0 =− (C0(T ) + C2(T )∆ + C4(T )∆
2 + C6∆

3)ϕ− 1

2
D0ϕ

2 − 1

6
D11(2ϕ∆ϕ+∆(ϕ2))

− 1

6
E0ϕ

3 − 1

12
E1122[ϕ(∆ϕ)2 +∆(ϕ2∆ϕ)]− µ̃. (7)

The integration constant µ̃ is related to the chemical potential µ by µ̃ = B0 + µ. Note that the constant of the
first integration is set to zero as there is no flux across the domain boundaries. Equilibrium steady states described
by Eq. (7) may be followed through parameter space employing numerical path continuation while the dynamics
described by Eqs. (5) and (6) can be studied employing numerical time integration. Information on the numerical
methods is given in section E.
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The movie ‘eaPFC-fig3-video.avi’ accompanying Fig. 3 of the main text uses ζ = 0 for all panels. Panel 1○ at
ϕ̄ = −1, T = 0.3 and v0 = 0 shows a state with liquid-gas phase separation. For all remaining panels we use v0 = 1.
Panel 2○ at ϕ̄ = 0 and T = −0.2 shows a domain-filling traveling crystal. Panels 3○ and 4○ show at T = −0.3
rotating (ϕ̄ = −0.3) and traveling (ϕ̄ = −0.5) localized states, respectively. Panel 5○ shows a nearly horizontal
slap-like extended traveling crystal coexisting with a liquid at ϕ̄ = −0.2 and T = −0.4. Note that in panel 4○ group
and phase velocity are not identical, i.e., the cluster moves at a slower speed than the individual crystallized particles.
This is a typical traffic-jam effect: particles arive at its back end, move through the jam (the cluster), and finally
detach at the front. Similar effects are as well seen in panels 6○ to 8○. In particular, panel 6○ shows an extended
traveling crystal coexisting with a slowly downward moving hole filled by the fluid phase at ϕ̄ = −0.5 and T = −0.5,
panel 7○ and 8○ show three-phase coexistence of extended traveling crystals with both gas and a fluid phase at
(ϕ̄, T ) = (−0.5,−0.8) and (−1,−0.58), respectively (in 7○ in the form of a wetting layer at the crystal-gas interface
around a gas filled cavity). Interestingly, in panel 7○ the traveling crystal moves in an undulating manner.

The movie ‘eaPFC-fig5-video.avi’ accompanying Fig. 5 of the main text illustrates the dynamic chiral behavior of
active crystalline clusters at ϕ̄ = −1 and low temperature values between T = −3.0 and T = −4.43 (as given at the
individual panels). Furthermore, v0 = 1, ρr = 3, ζ = 1 and Lx = Ly = 100. After a short transient, the movie shows
a selection of quite intricate regular dynamic behavior of crystallites. In Fig. 5 of the main text the modes of motion
are indicated by arrows. The dynamic modes include (a) an elongated hexagonal crystallite with facets of different
lengths that swings like a torsion pendulum, i.e., that shows time-periodic chirality, (b) a swinging predominantly
striped localized state that also periodically adapts its shape, (c) a wobbling state with a crystalline core of nearly
bow-tie shape embedded into stripe domains (the dynamics seems to show several frequencies). Then, panels (d) to
(g) show other moving stripe-hexagon two-phase localized states with star-, and hexagon-shaped crystalline cores and
outer stripe regions of different degrees of asymmetry. The state in panel (e) seems to wave, while (f) simply rotates,
and (g) wobbles and very slowly rotates. Finally, panel (h) shows a dominantly stripe state with a few individual
peaks at some stripe ends. After a long transient a rigid-body rotation emerges.

B. Microscopic derivation of amended active PFC model

Here, we present a microscopic derivation of the PFC model given by Eqs. (1) and (2) in the main text. While the
general phenomenology described by our model can be found in a variety of systems, we here focus for specificity on one
of the most widely used particle-based active matter models – the active Brownian particle (ABP) [9], corresponding
to overdamped spherical self-propelling particles. It is well known that ABPs exhibit both motility-induced phase
separation (MIPS) [10] and crystalline phases [11]. More recently, it has been found in particle-based simulations that
the velocity field of ABPs in a MIPS cluster forms vortex-like structures [12], this is a form of spontaneous collective
rotation quite similar to the one that our field-theoretical model predicts. Also, systems of Quincke rollers, which are
in many respects similar to the ABPs considered here (for instance in the absence of intrinsic chirality), as they have
experimentally been found to form freestanding rotating particle clusters [13].

The microscopic equations of motion for an ABP are given by

ṙi(t) = v0û(φi(t))− βDT∇riU({rj}) +
√
2DTΛT,i(t), (8)

φ̇i(t) =
√
2DRΛR,i(t) (9)

with positions ri=(x1,i, x2,i)
T and orientation φi of the i-th particle, orientation vector ûi = (cos(φi), sin(φi))

T, trans-
lational and rotational diffusion coefficients DT and DR, thermodynamic beta β, potential U , and zero-mean Gaussian
white noises ΛT,i and ΛR,i. The Langevin equations (8) and (9) are stochastically equivalent to the Smoluchowski
equation

Ṗ({rj , φj}, t) =
N∑
i=1

(
DT∇2

ri +DR∂
2
φi

− v0û(φi) · ∇ri

)
P({rj , φj}, t)

+DTβ∇ri ·
(
P({rj , φj}, t)∇riU({rj})

) (10)

with the N -body distribution P. We moreover define the orientation-dependent n-particle density

ϱ(n)(r, . . . , rn, φ, . . . , φn, t) =
N !

(N − n)!

(
N∏

i=n+1

∫
R2

d2ri

∫ 2π

0

dφi

)
P({rj}, t) (11)
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and the orientation-dependent pair distribution function

g(r1, r2, φ1, φ2) =
ϱ(2)(r1, r2, φ1, φ2)

ϱ(r1, φ1)ϱ(r2, φ2)
. (12)

If we integrate Eq. (10) over the coordinates of all particles except for one, we get the exact dynamic equation for the
one-particle density

ϱ̇(1)(r1, φ1, t) =
(
DT∇2

r1+DR∂
2
φ1

− v0û(φ1)·∇r1

)
ϱ(1)(r1, φ1, t) + Iint(r1, φ1, t) (13)

with the interaction term

Iint(r1, φ1, t) = βDT∇r1 ·
∫
R2

d2r2

∫ 2π

0

dφ2 ϱ
(1)(r1, φ1, t)ϱ

(1)(r2, φ2, t)g(r1, r2, φ1, φ2)∇r1U2(r12), (14)

where we have assumed that the two-body interaction potential U2 depends only on the distance r12 between two
particles. In other words, we assume that the particles are spherical, and that there is no external potential (which
could, however, be easily added). The difficulty is that Eq. (14) depends on the unknown function g, which needs to
be obtained from a suitable closure relation. In the derivation of PFC models this closure is usually obtained using
equilibrium theorems from classical density functional theory [14], however, this is not sufficient for describing the
formation of MIPS clusters [15].

Exploiting translational and rotational invariance and assuming temporal homogeneity, we can write g as g(r, θ1, θ2)
[16] with the angles

θ1 = φR − φ1, (15)

θ2 = φ2 − φ1 (16)

and the distance vector

r2 − r1 = rû(φR). (17)

Moreover, we perform a Fourier expansion of g. From previous work [8, 16, 17], it is known that considering the
dependence on θ1 is sufficient to reproduce the effect that is of interest here, namely the existence of an effective
density-dependent swimming speed (see Ref. [18] for a derivation taking both angles into consideration). Therefore,
we restrict ourselves to the simple expansion

g(r, θ1, θ2) ≈ g0(r) + g1(r) cos(θ1) (18)

with the lowest-order Fourier modes g0 and g1. Note that, due to the symmetry of the problem, there is no contribution
proportional to sin(θ1). Using Eq. (18), Eq. (14) takes the form

Iint(r1, φ1, t) = Iad(r1, φ1, t) + Isup(r1, φ1, t) (19)

with the adiabatic interaction term

Iad(r1, φ1, t) = βDT∇r1 ·
∫
R2

d2r2

∫ 2π

0

dφ2 ϱ
(1)(r1, φ1, t)ϱ

(1)(r2, φ2, t)g0(r12)∇r1U2(r12). (20)

and the superadiabatic interaction term

Isup(r1, φ1, t) = βDT∇r1 ·
∫
R2

d2r2

∫ 2π

0

dφ2 ϱ
(1)(r1, φ1, t)ϱ

(1)(r2, φ2, t)g1(r12) cos(θ1)∇r1U2(r12). (21)

(The rationale behind this terminology will become clear below.) We also make the Cartesian orientational expansion
[19]

ϱ(1)(r, û, t) ≈ ρ(r, t) +P(r, t) · û, (22)

with the density

ρ(r, t) =
1

2π

∫ 2π

0

dφϱ(1)(r, û, t) (23)
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and the polarization

ρ(r, t) =
1

π

∫ 2π

0

dφϱ(1)(r, û, t)û(φ). (24)

The key idea (and the main novelty of our derivation compared to previous work) is now that we treat Iad and
Isup separately. For Iad, we first evaluate the integral over φ2 to find

Iad(r1, t) = 2πβDT∇r1 ·
(
ϱ(1)(r1, φ1, t)

∫
R2

d2r2ρ(r2, t)g0(r12)∇r1U2(r12)

)
, (25)

where we used Eq. (22). Next, we make the adiabatic approximation [20, 21]∫
R2

d2r2ρ(r2, t)g0(r12)∇r1U2(r12) = ∇r1

δFexc[ρ]

δρ(r1, t)
(26)

with the excess free energy Fexc[ρ] (which is the difference between the free energy of an interacting and a noninter-
acting system). Inserting Eq. (26) into Eq. (25) gives

Iad(r1, t) = 2πβDT∇r1 ·
(
ϱ(1)(r1, φ1, t)∇r1

δFexc[ρ]

δρ(r1, t)

)
. (27)

If we replace ϱ(1) ≈ ρ/(2π) in Eq. (27), we find

Iad(r1, t) = βDT∇r1 ·
(
ρ(r1, t)∇r1

δFexc[ρ]

δρ(r1)

)
. (28)

Now we turn to Isup(r1, φ1, t), where we will follow the standard framework of the interaction-expansion-method
[17, 18] by simply assuming that the function g1 is known from simulations (which it is for ABPs [22–24]). Moreover,
we write

∇r1Ur12 = −û(φR)U
′
2(r12), (29)

where the prime indicates a derivative with respect to r12. If we insert Eqs. (22) and (29) into Eq. (21) and perform
a gradient expansion [17, 25] truncated at zeroth order, we can evaluate the integrals and find (dropping arguments)

Isup(r, φ, t) = ζû · ∇(ρ(ρ+ û ·P)) (30)

with

ζ = −2π2βDT

∫ ∞

0

dr rU ′
2(r)g1(r). (31)

We now insert Eqs. (19), (22), (28) and (30) into Eq. (13) to find

ρ̇+ û · Ṗ = DT∇2ρ+DT∇2û ·P−DRû ·P− v0û · ∇(ρ+ û ·P)

+ βDT∇ ·
(
ρ(r1, t)∇

δFexc[ρ]

δρ

)
+ ζû · ∇(ρ(ρ+ û ·P)). (32)

Next, we observe

∇2ρ = β∇ ·
(
ρ∇δFid[ρ]

δρ

)
(33)

with the ideal gas free energy

Fid[ρ] = β−1

∫
d2r ρ(ln(λ3ρ)− 1) (34)

and the (irrelevant) thermal de Broglie wavelength λ. If we integrate Eq. (32) over φ, we find (using Eq. (33))

ρ̇ = βDT∇ ·
(
ρ(r, t)∇δF [ρ,P]

δρ

)
− v0

2
∇ ·P+

ζ

2
∇(ρP) (35)
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with the total free energy

F [ρ,P] = Fid[ρ] + Fexc[ρ] + β−1

∫
d2r

P2

2
. (36)

Making a constant mobility approximation [4] for the first term in Eq. (35) and defining the density-dependent
swimming speed

v(ρ) = v0 − ζρ, (37)

we find

ρ̇ = βDT∇2 δF [ρ,P]

δρ
− 1

2
∇ · (v(ρ)P). (38)

Similarly, we can multiply Eq. (32) by û and then integrate over φ to find

Ṗ = DTβ∇2 δF [ρ,P]

δP
−DRβ

δF [ρ,P]

δP
−∇(v(ρ)ρ), (39)

having used Eq. (36). The last step is to perform the rescaling

t =
r20
DT

t̃, (40)

r = r0r̃, (41)

F = β−1F̃ , (42)

ρ = ρ0ρ̃, (43)

P = 2ρ0P̃, (44)

D̃r = DR
r20
DT

, (45)

ṽ0 =
ρ0r0
DT

v0, (46)

ζ̃ =
ρ20r0
DT

ζ, (47)

where the quantities with a tilde are dimensionless. The parameters ρ0 and r0 are undetermined at this stage and
can be fixed via the free energy. Specifically, the choice Dc = 0.2 in Eq. (4) for the polarization-dependent part of
the free energy implies 4ρ20r

2
0 = 0.2.

Inserting Eqs. (40)–(47) into Eqs. (38) and (39) and dropping the tildes finally gives

ρ̇ = ∇2 δF [ρ,P]

δρ
−∇ · (v(ρ)P), (48)

Ṗ = ∇2 δF [ρ,P]

δP
−Dr

δF [ρ,P]

δP
−∇(αv(ρ)ρ) (49)

with α = 1/2. Note that the value of α depends primarily on the rescaling choice (44), the value α = 1 (which is also

common) could have been obtained by setting P =
√
2ρ0P̃ instead [26].

Finally, it is worth discussing some general physical insights that can be gained from this derivation. First, the usual
active PFC model is derived from dynamical density functional theory (DDFT) and thereby inherits one of its key
limitations – it is based on the adiabatic approximation [21], where one assumes that the correlations in the system
are the same as in an equilibrium system with the same density. The microscopic origin of MIPS, however, is the
existence of nonequilibrium correlations [8], such that DDFT and PFC models cannot describe MIPS in their standard
form. Our model, however, explicitly incorporates nonequilibrium correlations (resulting in so-called “superadiabatic
forces” [15]) via the higher-order Fourier mode g1. This is why our PFC model is capable of describing MIPS.

A second aspect is the sign of the parameter ζ. Since a microscopic expression (Eq. (31)) is available, the value of
ζ can be calculated, and doing this shows for repulsive ABPs that it is positive [17]. Physically, this means that it is
more likely to find another particle in front of a tagged particle than to find it behind it [8]. It also implies that, as
the density ρ is increased, the density-dependent swimming speed (37) goes down, which is the mechanism typically
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responsible for MIPS [10]. However, for other microscopic setups negative values of ζ might also be conceivable.
For instance, a derivation for ζ was obtained in Eq. (27) of Ref. [27] for a system with non-reciprocal (vision cone)
interactions [28]. In this system, the sign of ζ is determined by a balance of short-ranged repulsive and long-ranged
attractive vision-cone interactions, and for strong attractive interactions ζ becomes negative. (A PFC model for
systems with nonreciprocal interactions that form rotating crystals was developed in Ref. [29].)

Third, the only polarization dependence in the expression (36) for the free energy is a term in P, which is consistent
with the choice made in all our simulations. As discussed below, in general the free energy can have terms of higher
order in P. This will happen if there are orientation-dependent interactions in the equilibrium limit, in other words,
if we consider particles that are not spherical but, e.g., rodlike. Moreover, such a contribution can emerge from
nonequilibrium alignment interactions as present, e.g., in the Toner-Tu model [30]. Concerning the ρ-dependent
terms, the microscopic result obtained from density functional theory, involving a logarithm in the ideal gas free
energy (cf. Eq. (34)) and a convolution integral in the excess free energy is in PFC models usually simplified via a
combined Taylor and gradient expansion [21]. The specific form used here was obtained in Ref. [5]. A systematic
discussion of possible contributions to F in an active PFC model and when to find them is provided in Ref. [26].

To obtain Eqs. (5) and (6) (i.e., Eqs. (1) and (2) of the main text) from Eq. (48), one replaces ρ by ρr+ϕ. However,
the form in Eq. (48) is useful when comparing the the limiting case of a standard MIPS model as in Ref. [8]. This is
done below in section D.

C. Linear stability of uniform state - dispersion relations and spinodals

Next we provide the linear stability analysis of uniform steady states for the higher-order active PFC model in
Eqs. (5) and (6) (i.e., Eqs. (1) and (2) of the main text). Introducing the notation w = (ϕ, P )T, the uniform steady
states w∗ = (ϕ̄, 0)T solve Eqs. (5) and (6) with ∂tw = 0 for any ϕ̄ (due to mass conservation). Linearizing the kinetic
equations in small perturbations δweikx+λt about w∗ yields the linear eigenvalue problem

λδw = Lδw (50)

with the Jacobian matrix

L =

(
Lϕ −ik(v0 − ζϕ̄− ζρr)

−ikα(v0 − 2ζϕ̄− 2ζρr) LP

)
. (51)

Here,

Lϕ =− k2
[
−
(
C0(T ) +D0ϕ̄+

E0

2
ϕ̄2

)
+

(
C2(T ) +

2

3
D11ϕ̄

)
k2

−
(
C4(T ) +

1

12
E1122ϕ̄

2

)
k4 + C6k

6

]
, (52)

LP =− (Dck
2 +Dnc). (53)

represent the stability problem in the completely decoupled passive case. In the active case, the two branches of the
dispersion relation λ(k) are given by

λ± =
1

2

[
Lϕ + LP ±

√
(Lϕ + LP )2 − 4 detL

]
, (54)

where

detL = LϕLP + k2α[v20 + 2ζ2(ϕ̄+ ρr)
2 − 3v0ζ(ϕ̄+ ρr)] (55)

is the determinant of the Jacobian (51). The resulting Re(λ) and Im(λ) correspond to growth/decay rates and
frequencies, respectively, of harmonic modes in dependence of the wavenumber k. The λ are real for (Lϕ + LP )

2 ≥
4 detL. Then, v20 and 2ζ2(ϕ̄ + ρr)

2 always act stabilizing with increasing |v0| and |ζ|, as the larger eigenvalue (λ+)
decreases. Only the term 3v0ζ(ϕ̄+ ρr) acts destabilizing for v0, ζ > 0.
All borders of linear stability (spinodals) are given by detL = 0. As phase separation is a large-scale instability the

corresponding onset always occurs at k = 0. Therefore, to obtain the corresponding spinodals we simplify Eq. (55)
for k ≪ 1, leading to the condition

T = −C∗
0

C ′
0

− D0

C ′
0

ϕ̄− E0

2C ′
0

ϕ̄2 +
α

C ′
0Dnc

[v20 − 3v0ζ(ρr + ϕ̄) + 2ζ2(ρr + ϕ̄)2] . (56)
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where C0 = C∗
0 + C ′

0T . The spinodal’s maximum Tc is at

ϕ̄c =
α(3v0ζ − 4ζ2ρr) +D0Dnc

4αζ2 − E0Dnc
. (57)

The coordinates of the critical point (ϕc,Tc) indicate how v0 and ζ impact phase separation. An analysis of ∂ζT (ϕc) = 0
shows that the trace of the critical point in the (ϕ̄, T )-plane when ζ is changed can itself have a maximum and a
minimum, namely,

ζmax =
Dnc(E0ρr −D0)

3αv0
, i.e., when ϕc = −ρr (ρc = 0) (58)

ζmin = − 3v0E0

4(E0ρr −D0)
, i.e., at ϕc = −D0

E0
(59)

This indicates that there exist distinct parameter regions where ζ suppresses or enhances phase separation. Specifically,
D0 ≥ 0 allows ζ to raise the border of linear stability, though other parameters have to be adapted to avoid that the
region of phase separation is “swallowed up” by the region of pattern formation. Here, this is accomplished by setting
a large value for C6. For the case shown in Fig. 2 (d) of the main text we use D0 = 0 and C6 = 200 (see Table I).
Such a differentiated influence of ζ well agrees with literature results for standard MIPS models as further discussed
in section D.

−2 −1 0 1
φ̄

−3

−2

−1

0

1

2

3

T

a b

c

(a)

−2 −1 0 1
φ̄

d

(b)

FIG. 1. Spinodals of the extended PFC model Eqs. (5) and (6) in the (ϕ̄, T )-plane. Black dashed, dotted, and dash-dotted
lines give the spinodals, i.e., the stability thresholds of uniform states with respect to a large-scale stationary (Cahn-Hilliard),
small-scale stationary (conserved-Turing), and small-scale oscillatory (conserved-wave) instability, respectively. The parameters
for panels (a) and (b) are identical to the respective parameters for Fig. 2 (a) and (b) of the main text. In particular, (a)
represents the passive limit and (b) has activity parameters v0 = 1, ζ = 0. In both panels there exists a codimension-2 point
where the onset of large- and small-scale instability coincide, i.e., the spinodals cross. The red dots mark the positions of
dispersion relations given in Fig. 2 and the blue line indicates the parameter choices for Fig. 4.

The stability thresholds of the uniform state in the (ϕ̄, T )-plane for the parameters of Ref. [5] are shown in Fig. 1
for an extended range as compared to Fig. 2 (a) and (b) of the main text. The same passive and active cases are
shown. In each case, at intermediate ϕ̄ liquid-gas phase separation occurs (resulting from a large-scale stationary
instability with a conservation law, i.e., a Cahn-Hilliard instability), if the temperature is lower than a critical
value Tc. At large densities, crystallization occurs due to a small-scale stationary instability with a conservation
law, i.e., a conserved-Turing instability in the passive case or due to a small-scale stationary (again conserved-
Turing) or small-scale oscillatory (i.e., conserved-wave) instability in the active case. For more information on the
employed classification of instabilities, see SM of [31] and introduction of [32]. Large- and small-scale instabilities
occur simultaneously at the codimension-2 point at (ϕ̄, T ) ≈ (−0.5,−2). The critical point for phase separation is at
(ϕ̄, T ) ≈ (−1.5, 1) in the passive case. The spinodal line and critical point for phase separation are strongly influenced
by density-independent and density-dependent velocity. Increasing the former suppresses phase separation by shifting
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FIG. 2. Dispersion relations of the extended PFC model in Eqs. (5) and (6). Black solid [red dashed] lines indicate real 
[complex] eigenvalues. The dispersion relations presented in (a) at ϕ̄ = −1.5, T = −0.5, and v0 = 0, (b) at ϕ̄ = −0.2515, 
T = −0.5, and v0 = 0, and (c) at ϕ̄ = −0.52895, T = −2., and v0 = 0 all show stationary instabilities. The dispersion 
relation in (a) corresponds to a Cahn-Hilliard instability, the one in (b) corresponds to a conserved-Turing instability. Panel (c) 
presents a case close to the codimension-2 point, i.e., the point where Cahn-Hilliard and conserved-Turing instabilities occur 
simultaneously. Note that in panel (c) the scale of the y-axis is much smaller than in the other panels. Panel (d) shows an 
active case at ϕ̄ = 0.229, T = −0.5, and v0 = 1, ζ = 0. The dispersion relation corresponds to a conserved-wave instability. 
The remaining parameters are given in Table I.

the critical point and the entire spinodal to lower temperatures while the latter may enhance or further suppress phase 
separation. However, the linear stability threshold for crystallization barely moves in the investigated parameter range. 
Nevertheless, the coexistence regions outside the spinodals as obtained by nonlinear considerations (see below) show 
more pronounced changes, see Fig. 2 of the main text and Fig. 7 in the present SM. There, density-independent and 
density-dependent velocity similarily suppress and enhance/suppress crystallization, respectively, indicating that the 
latter represents motility-induced crystallization (MIC).

Phase diagrams with a similar appearence of regions where solid, liquid and gas occur, are obtained in Refs. [33, 34] 
from particle-based simulations of hard sphere systems. Their different c hoice o f  n ondimensionalization r e sults i n  a 
different s et o f c ontrol p arameters a nd d ifferent pa thways th rough physical pa rameter sp ac e. Fo r in stance, th e Peclet 
number in [33] is at fixed remaining parameters inversely proportional to temperature. This implies that inverting 
the y-axis of their Fig. 1a one would expect to obtain a diagram similar to Fig. 2 of the main text or (zoomed out) 
as Fig. 1 and Fig. 7 of this SM. This is indeed the case.
Examples of corresponding dispersion relations are presented in Fig. 2. There, black solid and red dashed lines 

correspond to the real and complex eigenvalues, respectively. While in Fig. 2 (a)-(c) dispersion relations in the
passive limit are presented, the dispersion relation in Fig. 2 (d) is at v0 = 1. In Fig. 2 (a) at T = −0.5, and ϕ̄ = −0.5
 the shown dispersion relation is at parameters well above the onset of a Cahn-Hilliard instability. At the onset 
of instability, k = 0 is the mode with the largest growth rate. Above the onset, the eigenvalue at k = 0 remains 
zero and there is an adjacent band of unstable wavenumbers. In time simulations, this gives rise to large-scale 
structures, i.e., a phase-separated state. This instability is similar to the one found for the Cahn-Hilliard equation. 
At the same
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temperature T = −0.5, but at a higher mean density ϕ = −0.2515 the dispersion relation is at parameters slightly
above the onset of a conserved-Turing instability. A small band of wave numbers close to k ≈ 1.1444 is unstable.
Directly at onset a time simulation is expected to result in a spatially periodic state, i.e., a crystal of corresponding
structure length. Further above onset the periodicity of the crystal slightly deviates from the linear result.

At a codimension-2 point the Cahn-Hilliard and the conserved-Turing instability are both at their threshold. A
typical dispersion relation close to this point, where both instabilities occur simultaneously, is presented in Fig. 2 (c)
at T = −2 and ϕ̄ = −0.52895. There, two bands of unstable wave numbers exist, one adjacent to k = 0 and another
one around kc ≈ 1.1533. In a time simulation these two instabilities compete. The nonlinear state that is eventually
realized can, however, not be predicted from the linear analysis. Nevertheless, the existence of the codimension-2
point is a first indicator for the existence of three-phase (vapor-liquid-solid) coexistence. Finally, in Fig. 2 (d) we
present a dispersion relation for the active case. As in Fig. 2 (b), a small-scale instability occurs, however, here
with complex eigenvalues, i.e., the instability is oscillatory and corresponds to a conserved-wave instability. A time
simulation produces a traveling periodic state, i.e., a traveling crystal.

D. Quantitative relation to classical MIPS and active Cahn-Hilliard models

Models solely focusing on motility-induced phase separation (MIPS) have been extensively studied. Notably, the
model in Eqs. (16) and (18) of Ref. [8] corresponds to our Eqs. (5) and (6) with the very simple energy functional

F [ρ, p] =
1

2

∫
dx(ρ2 + p2) (60)

that in the passive limit allows for no phase transition at all. In contrast, our F [ϕ, p] [Eq. (1)] contains higher-order
terms and uses a shifted density ϕ similar to a Cahn-Hilliard (CH) model. Considering a simple standard CH model,
the critical density ρc determines the position of the double-well potential, i.e., replacing ϕ = ρ − ρc the CH energy
reads

FCH [ρ,p] =

∫
dx

(
(ρ− ρc)

2

2
T + s2

(ρ− ρc)
3

3
+ s3

(ρ− ρc)
4

4
+

p2

2

)
. (61)

where we kept the polarization-dependence as in Eq. (60). Introducing, for convenience, ρrc = ρr − ρc, where ρr is
the reference density introduced in section A, an active CH model can be written as

∂tϕ =−∇(v(ϕ)p)

+D∆
[
T (ϕ+ ρrc) + s2(ϕ+ ρrc)

2 + s3(ϕ+ ρrc)
3
]

(62)

∂tP =Dc∆P−DncP−∇ · [αv(ϕ) (ϕ+ ρr)], (63)

with v(ϕ) =v0 − ρrζ − ϕζ .

Note that such a model for ζ = 0 is introduced and briefly studied in chapter 7.2 of [35].
Linearization gives the Jacobian

L =

[
−Dk2(T + 2s2(ϕ̄+ ρrc) + 3s3(ϕ̄+ ρrc)

2) −ik(v0 − ρrζ − ϕ̄ζ)
−ikα(v0 − 2ρrζ − 2ϕ̄ζ) −Dnc −Dck

2 ,

]
(64)

leading to the spinodal for phase separation

T =− 2s2(ϕ̄+ ρrc)− 3s3(ϕ̄+ ρrc)
2

− α

DDnc
[v20 − 3v0ζ(ρr + ϕ̄) + 2ζ2(ρr + ϕ̄)2]. (65)

In the limit corresponding to the simple energy (60), i.e., for ρr = ρc = s2 = s3 = 0 and T = 1 we recover the spinodal
of Ref. [8], where

ζ(ρr + ϕ̄) = 3/4v0 ±
√
(v0/4)2 −DDnc/2α . (66)

When displayed in a similar form, the full Eq. (65) writes

ζ(ρr + ϕ̄) =
3

4
v0 ±

√(v0
4

)2
− x

with x =
DDnc

2α

(
T + 2s2(ϕ̄+ ρrc) + 3s3(ϕ̄+ ρrc)

2
)
. (67)
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FIG. 3. Spinodals of phase separation in the (v0, ζ(ϕ̄+ρr))-plane, given by Eq. (67) for the reduced model (Eqs. (62) and (63))
corresponding to an active Cahn-Hilliard model that itself contains the simple MIPS model in Eqs. (16) and (18) of [8] as
special case. Here, x is a compound parameter as given in the legend and defined in (67). Values of x for the various spinodals
are given as colorbar. Values above the dashed black line, where ζ(ϕ̄+ ρr) > v0 are unphysical (shaded gray). For a discusion
see accompanying text.

A number of resulting spinodals for different values of x is given in Fig. 3 in the plane spanned by v0 and ζ(ϕ̄+ ρr).
The plane is bisected by the dashed black line, where ζ(ϕ̄+ρr) = v0. Everything above this line is unphysical because
there the total activity v becomes negative (shaded gray area). For x < 0 (the red lines) this is the case for the upper
branch of the spinodal. In consequence, depending on the value of v0, for x < 0 raising ζ from zero will enhance
phase separation (at small v0 <

√
−2x) or eventually cause phase separation (for v0 >

√
−2x). For x > 0 (the blue

lines) increasing ζ from zero may first cause phase separation if v0 is sufficiently large (v0 ≥ 4
√
x). However, a further

increase of ζ will eventually suppress phase separation again. Setting s2 = s3 = 0 and T = 1, i.e., using the simple
energy (60), this exactly corresponds to the situation shown in Fig. 1 (b) of [8].

Next the spinodal of phase separation of the reduced model, the active CH model (Eqs. (62) and (63)), is compared
to the extended active PFC model (Eqs. (5) and (6)) to see how the three discussed models are quantitatively related.
In particular, we match the spinodal conditions (Eqs. (65) and (56)) term by term. As the final terms are nearly
identical the corresponding condition is simply D = −C ′

0. The terms quadratic in ϕ give

s3 =
E0

6C ′
0

(68)

while the linear ones give

s2 =
D0 − E0ρrc

2C ′
0

. (69)

Finally, the constant terms give 2s2ρrc + 3s3ρ
2
rc =

C∗
0

C′
0
, leading to

ρrc =
D0

E0
±
√

D2
0

E2
0

− 2
C∗

0

E0
and s2 = ∓ E0

2C ′
0

√
D2

0

E2
0

− 2
C∗

0

E0
. (70)

For the values given in the first row of Table I, we obtain D = 1, s2 ≈ ∓1.72 (for ρrc ≈ 2.07 and ≈ 0.93 respectively)
and s3 = 1. These considerations now allow one to seamlessly discuss the active Cahn-Hilliard model of [35] and the
even simpler MIPS model in Eqs. (16) and (18) of [8] as limiting cases of our Eqs. (5) and (6) (i.e., Eqs. (1) and (2)
of the main text). Together with the considerations regarding the translation of parameters and fields between the
different models the spinodals for phase separation in Fig. 3 are directly valid for the higher-order active PFC model
detailed in section A.
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E. Numerical methods and set-ups

Time simulations are used to determine phase diagrams and example profiles of steady and dynamic states (Figs.
1-5 of main text) and determine the features of the rotating crystallites. To that end a pseudo-spectral semi-implicit
Euler method is employed [36].

The solution measure used for the phase diagrams in Fig. 2 of the main text is the solution type, which is obtained
by visual inspection. Solution measures for the rotating crystallites (Fig. 4 of the main text) are their radius and their
angular velocity. The former is obtained as a time average by taking a horizontal slice at y = 0 and then measuring
at which point ϕ(x, 0) first reaches a threshold value A, starting from the outer edge and moving in. The threshold
value is defined as A = (ϕh − ϕb)p, i.e., the difference of the highest peak density ϕh and the background density ϕb

is multiplied by a percentage p. For odd localized states we use p = 0.75. For even localized states we use p = 0.65
as the lack of a central peak results in a lower value of ϕh when averaging over time. The time average of the x-value
where A is passed gives the cluster radius R. The angular velocity is given in radians per time step. All simulations
are performed on a quadratic domain with Lx = Ly = 100 and a discretization of Nx = Ny = 256 at parameters given
in Table I.

The simulations for the phase diagram in the passive case (Fig. 2 (a) of the main text) are initialized with a circular
patch of radius RI = 25 and density ϕ(r) − ϕ̄ = 2 on a random background, which is then shifted to match ϕ̄. All
simulations for the phase diagram in the active case are initialized with the counterpart states in the passive limit.
This corresponds to first letting the system evolve towards thermodynamic equilibrium and subsequently taking it
permanently out of equilibrium by introducing activity. Initial condition for all rotating crystallite states in Figs. 4
and 5 of the main text are rotating crystallite states from previous simulations at neighboring parameter values.

To create bifurcation diagrams, numerical path continuation [37] is used for a one-dimensional domain. To that
end the Matlab package pde2path [38] is used. On the one hand, we follow individual states in parameter space and
obtain the branches of uniform, periodic and localized states in Figs. 4 to 6. On the other hand, we follow saddle-node
bifurcations using two-parameter continuation to obtain the ranges of existence summarized in Fig. 7.

Solution measures for the bifurcation diagrams are the mean grand potential ω̄, the chemical potential µ, the mean
concentration ϕ̄, the relative mean free energy density f̄ = f̄PFC − f0, where f0 is fPFC for ϕ = ϕ̄ and the L2-norm

∥δu∥ =

√
1

L

∫ L/2

−L/2

(ϕ− ϕ̄)2 + P 2 dx, (71)

where L is the domain size.
Note that bifurcation diagrams that show µ over ϕ̄ are appropriate for a conserved dynamics (i.e., ϕ̄ is controlled)

and indicate corresponding stability w.r.t. mass-conserving perturbations. If, in contrast the same branches of states
are shown in a bifurcation diagram that is plotted over µ the diagram is appropriate for a nonconserved dynamics
(i.e., µ is controlled) and indicates corresponding stability w.r.t. perturbations at fixed µ (that normally change mass).
See conclusion of [39], sections 3.2 and 3.3 of [37], and the final part of section 2 of [40] for corresponding discussions.
Also consider Figs. 4, 6, 9, and 11 of [41] for corresponding ’turnable’ plots in the cases of passive phase separation
in 1d and 2d, and crystallization in 1d and 2d, respectively.

F. Bifurcation behavior for one-dimensional states

To gain a deeper understanding of the nonlinear system behavior for the parameter set of Ref. [5], we finally present
selected bifurcation diagrams of steady states. In particular we focus on the various coexistence regions present in the
phase diagram in Fig. 2 of the main text. For relative simplicity and clarity, we limit our attention to one-dimensional
systems of a moderate domain size (L = 100).

First, we consider the dependence on ϕ̄ in the passive case at T = −0.5, i.e., we analyze a horizontal cut through
the phase diagram in Fig. 2 (a) of the main text marked by a horizontal blue line in Fig. 1 of the SM. To obtain
steady states we solve Eq. (7) and employ continuation techniques (see section E of SM) to follow branches of uniform
and nonuniform states in parameter space. The nonuniform states correspond to liquid-gas, solid-gas and solid-liquid
coexistence as well as domain-filling crystals. The bifurcation diagram is presented in Fig. 4 in terms of the L2-norm
Eq. (71), in Fig. 5 in terms of the mean free energy f̄ , and in Fig. 6 (a) in terms of the chemical potential µ. To
identify coexisting states (see below), Fig. 6 (b) gives all branches in the plane spanned by grand potential density
(negative of pressure) ω̄ and µ.

First, we inspect Fig. 4: The state of zero norm exists at all ϕ̄ and corresponds to a uniform gas (at low ϕ̄)
or liquid (at larger ϕ̄), two states that may coexist (crossing of the black solid line with itself in Fig. 6 (b) at
(µ, ω) ≈ (1.675,−0.15)). At low ϕ̄ the uniform state is the only, therefore globally stable state. Increasing ϕ̄,
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FIG. 4. Bifurcation diagram for the passive case (v0 = 0, ζ = 0) at fixed T = −0.5 showing branches of steady states
characterized by their L2 norm ∥δu∥ as a function of the mean density ϕ̄ for a one-dimensional domain of size L = 100.
Solid [dashed] lines indicate linearly stable [unstable] states. The black branch represents homogeneous (gas and liquid) states
while the light blue line consists of states of liquid-gas coexistence (phase-separated states). The thick [thin] dark blue line
corresponds to domain-filling crystalline (periodic) states with n = 18 [n = 19] peaks. The intertwined dark and light orange
lines represent the slanted snaking of branches of localized states with odd and even peak number, respectively. They both
represent crystal-gas coexistence and are interconnected by branches of asymmetric states (short dark green lines). The four
filled circles indicate two pairs of binodal points, where the fill-color corresponds to the color of the branch the state coexists
with, e.g., the state marked by the dark blue-filled circle on the black branch of homogeneous states coexists with the crystal
state at the black-filled circle on the dark blue branch. Crosses indicate the loci of states I to V whose density profiles ϕ(x) are
given in the small panels one the right. Corresponding free energy densities, grand potential densities and chemical potentials
are presented in Fig. 5, Fig. 6 (a) and Fig. 6 (b), respectively. The remaining parameters are as in Table I.

eventually it becomes unstable in a subcritical pitchfork bifurcation at ϕ̄ ≈ −2.140. It again gains stability at another
such bifurcation at ϕ̄ ≈ −0.830 before it destabilizes again at a supercritical pitchfork bifurcation at ϕ̄ ≈ −0.251. The
two leftmost bifurcations are connected by a branch of phase-separated states (blue line) that corresponds (where it is
stable) to liquid-gas coexistence, a behavior well known from the Cahn-Hilliard model (see, e.g.,[41]). As the branch
emerges subcritically at both ends, the states are initially unstable and gain stability at saddle-node bifurcations
at ϕ̄ ≈ −2.247 and ϕ̄ ≈ −0.739, respectively. Along the part between the two saddle-node bifurcations the phase-
separated state is linearly stable, for an example profile see panel I of Fig. 4. The corresponding dependencies of the
energy on ϕ̄ in Fig. 5 show that the phase-separated state represents the global energy minimum shortly after passing
the left saddle-node bifurcation (above ϕ̄ ≈ −2.218) till ϕ̄ ≈ −1.829 shortly before reaching the state of maximal
norm. The latter aspect differs from a simple CH model as, here, beyond this point the global minimum is related
to gas/liquid-crystal coexistence (see below). The unstable part of the branch consists of nucleation solutions, i.e.,
threshold states that have to be overcome for transitions between uniform and phase-separated state, i.e., between
metastable and stable state, in the binodal region outside the spinodal.

The Maxwell points of coexistence in the thermodynamic limit are obtained using the continuation procedure
described in Ref. [42]. For liquid-gas coexistence they are indicated in Fig. 4 by the filled black circles on the branch
of uniform states. In Fig. 6 (a) the Maxwell line connecting the two points lies on the upper thin dotted horizontal
line (at µ ≈ 1.854). This line represents the thermodynamic limit and is approached by the central part of the blue
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FIG. 5. Shown is the relative mean free energy density f̄ as a function of the mean density ϕ̄ for the passive case analyzed in
Fig. 4. All parameters, line styles and symbols are as in Fig. 4.

branch of phase-separated states. This is expected in accordance with analyses of the relation between bifurcation
diagrams for finite domains and phase diagrams (thermodynamic limit) performed for Cahn-Hilliard and PFC models
in Ref. [41]. Increasing the domain size would in Fig. 6 (a) result in a nearly horizontal branch of stable phase-separated
states limited by saddle-node bifurcations that approach the binodal values. This confirms also for the present model
that the branch of phase-separated states corresponds to a finite-domain representation of the gas-liquid coexistence
and may be taken as an indication of a first order transition.

At the supercritical bifurcation at ϕ̄ ≈ −0.251 a branch of domain-filling periodic states (with n = 18 peaks, dark
blue line) emerges from the uniform state. However, shortly thereafter, another supercritical pitchfork bifurcation at
ϕ̄ ≈ −0.239 results in another branch of domain-filling periodic states, this time with n = 19 peaks. The n = 18
branch is initially stable but is already at ϕ̄ ≈ −0.249 destabilized in a secondary pitchfork bifurcation. There, two
branches of localized states (LSs) emerge subcritically – one with an odd (LSodd) and one with an even (LSeven)
number of peaks (orange lines). Both are initially unstable, at first closely approach and then follow the branch of the
stable phase-separated states till beyond its maximum. The corresponding profiles resemble phase-separated states
with an additional distinct small-scale periodic modulation of the high-density plateau. In other words, a patch of
weakly crystalline state coexists with a gaseous background, for an example see panel II of Fig. 4. Both branches of
LSs fold back toward larger ϕ̄ in saddle-node bifurcations at ϕ̄ ≈ −1.9. There, the LSodd-branch is stabilized, while
the LSeven-branch remains unstable (one unstable eigenvalue) till it is stabilized in a further pitchfork bifurcation,
where a short branch of asymmetric LSs emerges subcritically (first short green branch). A typical asymmetric state
can be seen in panel IV of Fig. 4. In total, 27 such branches connect the LSodd-branch and the LSeven-branch together
forming snake-and-ladder structures of slanted homoclinic snaking typical for systems with a conservation law, i.e.,
when the mean density is employed as control parameter [39, 40, 43]. In contrast, if the chemical potential were used
as control parameter the snaking would become vertically aligned (cf. Fig. 6 (a) when rotated by 90 degree and the
discussions in [39, 40]).

Inspection of the energies in Fig. 5 shows that the two branches of symmetric LSs (that correspond to gas-solid
coexistence) alternatingly form the global minimum between ϕ̄ ≈ −1.829 and ϕ̄ ≈ 0.103. In this range there is always
at least one stable LS and the two branches of symmetric LSs exchange stability via the asymmetric runge states.
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FIG. 6. Panels (a) and (b) give the chemical potential µ as a function of the mean density ϕ̄ and of the mean grand potential ω̄,
respectively, for the passive case in Fig. 4. In (b), for clarity, only branches of domain-filling states are included. Intersections of
branches of stable states (solid lines) indicate Maxwell (binodal) points. The corresponding states coexist in the thermodynamic
limit and are marked by filled circles in Fig. 4. The horizontal red dotted lines indicate the chemical potential of the pairs of
binodal points. Note that at µ ≈ 1.2 there is almost another such intersection in (b) causing the snaking of branches magnified
in the inset of (a). The indicated stabilities correspond to control parameter ϕ̄, i.e., the stability with respect to perturbations
at fixed ϕ̄ (and adapting µ). All parameters, line styles and symbols are as in Fig. 4.

Further, it is discernible that the energy of the subcritical, i.e., unstable part of the branches of symmetric LS (the
orange lines close to the blue lines in Fig. 4) is slightly larger than the energy of the linearly stable phase-separated
states. This indicates that the former represent the threshold states that have to be overcome to reach the stable
LS of lowest energy from the metastable phase-separated state. While panels III and IV of Fig. 4 are relatively close
to solid-liquid-gas coexistence (in 1D the triple point is at (ϕ̄, T ) ≈ (−0.379,−0.271)) and show “liquid shoulders”
between the gas and the crystal phase, state V is a clear liquid-solid coexistence.

Fig. 6 (a) actually shows two distinct snaking structures, one at µ ≈ 1.676 [related to the just discussed gas-solid
coexistence that is indicated by the crossing of the black and blue solid lines in Fig. 6 (b)], and another one at µ ≈ 1.06
[magnified in the inset of Fig. 6 (a)], related to the near liquid-solid coexistence that is in Fig. 6 (b) indicated by the
near touching of the saddle-node bifurcation where solid and dashed black lines meet, and the blue solid line. One
may say that this liquid-solid coexistence is due to a “ghost-binodal” because the branches come very close to each
other without actually crossing. Coexistence is indicated by thin horizontal lines in Fig. 6 (a) that are decorated by
horizontally aligned branches and snaking structures. In Fig. 4 the second snaking structure occurs in the vicinity of
the locus of profile V. Note that the two parts of the branches of LSs where the two snaking structures respectively
occur are separated by a further pair of saddle-node bifurcations on the LSodd-branch [LSeven]-branch at ϕ̄ ≈ −0.218
and ϕ̄ ≈ −0.230 [ϕ̄ ≈ −0.210 and ϕ̄ ≈ −0.243]. Finally, when the LSs have filled the entire finite domain the branches
of LSs end in pitchfork bifurcations on the branch of domain-filling crystal states with n = 19 peaks. At large densities
above ϕ̄ ≈ 0.103, the domain-filling crystal with n = 19 corresponds to the state of lowest energy (Fig. 5). Overall,
one may say that the bifurcation structure combines structures known from CH and PFC models in a way as one
would expect in the vicinity of a gas-liquid-crystal triple point, and also shows the expected relation to the phase
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FIG. 7. Loci of saddle-node bifurcations in the PFC Model Eqs. (1) and (2) at (a) v0 = 0, ζ = 0 and (b) v0 = 1, ζ = 0.
Shown are the loci resulting from two-parameter continuations in T and ϕ̄. In case of the yellow and orange branches only the
outermost folds for stationary states are tracked. Black dashed and dotted lines denote the spinodal lines for Cahn-Hilliard
and conserved-Turing instabilities respectively, while the dot-dashed lines indicate a conserved-wave instability. The red dot
marks the critical point of the gas-liquid spinodal. The remaining parameters as in Table I, while the domain size and colors
are is as in Fig. 4

diagram.
Finally, we briefly discuss how main features of the bifurcation structure change when including activity. To this

end we revisit Fig. 1 of the SM for a system of finite size L = 100, i.e., the spinodals are slightly shifted, see Fig. 7.
Additionally, we track the outermost saddle-node (and primary pitchfork) bifurcations of branches of steady phase-
separated and localized crystallite states in the (ϕ̄, T )-plane. They represent good finite-domain approximations of
binodals, see [41]. The resulting loci for the gas-liquid coexistence are shown in light blue and branch off from the
spinodal representing the Cahn-Hilliard instability. The remaining colored lines represent the loci of the outermost
saddle-node bifurcations for the branches of localized states of odd (orange) and even (yellow) number of peaks.
They are nearly on top of each other and represent the complexities of the bifurcation structure as discussed above.
Additional traveling states exist in (b) and (c) (not shown) but do not have a significant impact on the overall
size of the coexistence region. The orange/yellow swallow tail structure marks the region where the triple point is
located. The different parts of the orange line are related to the different coexistences with the crystal state (including
metastable pairings).

Overall, adding the density-independent velocity lowers not only the gas-liquid spinodal (and critical point marked
by the red dot) and associated binodals, but also the binodal related to crystallization. Adding a density-dependent
velocity, however, counters this effect, and moves up the gas-liquid spinodal and binodals, but also (to a lesser extent)
the liquid-solid binodal. This corresponds to motility-enhanced phase separation and motility-enhaned crystallization.
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[1] A. M. Menzel and H. Löwen. Traveling and resting crystals in active systems. Phys. Rev. Lett., 110:055702, 2013.
doi:10.1103/PhysRevLett.110.055702.

[2] L. Ophaus, J. Kirchner, S. V. Gurevich, and U. Thiele. Phase-field-crystal description of active crystallites: Elastic and
inelastic collisions. Chaos, 30:123149, 2020. doi:10.1063/5.0019426.

[3] H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. I. Tóth, G. Tegze, and L. Gránásy. Phase-field-crystal models

Supplementary Material for M. Holl et al, PRL (2025) doi: 10.1103/m3dy-53yc – September 10, 2025

mailto:max.holl@aalto.fi
mailto:a_stei52@uni-muenster.de
mailto:tevrugtm@uni-mainz.de
mailto:u.thiele@uni-muenster.de
http://www.uwethiele.de
https://doi.org/10.1103/PhysRevLett.110.055702
https://doi.org/10.1063/5.0019426


17

for condensed matter dynamics on atomic length and diffusive time scales: an overview. Adv. Phys., 61:665–743, 2012.
doi:10.1080/00018732.2012.737555.

[4] A. J. Archer, D. J. Ratliff, A. M. Rucklidge, and P. Subramanian. Deriving phase field crystal theory from dynamical
density functional theory: Consequences of the approximations. Phys. Rev. E, 100:022140, 2019. doi:10.1103/PhysRevE.
100.022140.

[5] Z.-L. Wang, Z. Liu, Z.-F. Huang, and W. Duan. Minimal phase-field crystal modeling of vapor-liquid-solid coexistence and
transitions. Phys. Rev. Materials, 4:103802, 2020. doi:10.1103/PhysRevMaterials.4.103802.

[6] L. Ophaus, E. Knobloch, S. V. Gurevich, and U. Thiele. Two-dimensional localized states in an active phase-field-crystal
model. Phys. Rev. E, 103:032601, 2021. doi:10.1103/PhysRevE.103.032601.
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