Introduction to Nonlinear Physics, WS 2016/17

O. Kamps

http://pauli.uni-muenster.de/~okamp/complex/complex.html

Exercise Sheet 6

1. Turing instability

Consider the reaction-diffusion system

$$\dot{u} = f(u, v) + D_u u''$$

$$\dot{v} = g(u, v) + D_v v''$$

with the diffusion coefficients $D_u, D_v > 0$ with $D_v > D_u$. The functions f(u, v) and g(u, v) are nonlinear.

- 1. Start with $D_u = D_v = 0$ and determine via the Jacobian J under which conditions the homogeneous state (u, v) = (0, 0) is stable.
- 2. Make the ansatz (see lecture)

$$u(x,t) = \sum_{q} u_q(t) \cos(qx), \quad v(x,t) = \sum_{q} v_q(t) \cos(qx)$$

and derive the q-dependend Jacobian J_q . Under which conditions are the Fourier modes stable?

3. Determine the wavenumber q_c , which gets unstable first.